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a b s t r a c t

Cellular lattice structures (CLS) with designed structural integrity are highly demanded in many
applications such as light-weight industrial components and bone scaffold. In recent years, additive
manufacturing (AM) processes have been found to be capable of producing such products with
controllable porosity and pore sizes. However, AM faces an inherent obstacle so that the CLS strut
diameter varies along its length. This study uses finite element modeling to predict the effect of variation
in the struts' diameter on the elastic modulus as well as collapse stress of CLS using both beam and solid
finite elements. To determine the mechanical behavior of the lattice and bulk material, lattice structures
as well as compression test specimens are fabricated using fused deposition modeling. The results show
that the beam finite element model is stiffer than the solid one since the beam model cannot capture the
effects of material concentration at the points of diameter variations. However, the obtained elastic
modulus does not differ significantly between solid and beam models while the difference is not
negligible for collapse stress.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, lightweight and energy absorbent materials are of
interest in several industries such as automobile, aerospace, and
marine due to their notable mechanical properties. Among the
lightweight materials, the cellular lattice structures are of more
importance since the microstructure of the lattice is regular so that
the achieved mechanical properties can be adjusted by using an
appropriate structure. In recent years, additive manufacturing
(AM) methods have been widely used by researchers worldwide
to fabricate lattice structures. Although AMmethods are capable of
producing lattice structures with controllable pore shape and size
and with high repeatability, they are expensive and time consum-
ing even for fabricating small specimens. Accordingly, developing
numerical models, which are able to predict the mechanical
properties of lattice structures, can decrease the required experi-
mental measurements as well as the fabrication cost.

The first attempts for modeling the mechanical properties of
porous materials go back to the works by Gent and Thomas [1,2],
Ko [3], Shaw and Sata [4], Patel and Finnie [5], and Dement'ev and
Tarakanov [6]. The main scope of these investigations was to

present the elastic modulus of highly porous materials as a
function of the relative density. Several attempts were further
performed to model the nonlinear as well as linear part of the
stress–strain response of porous materials. Two main methodol-
ogies were used to model the mechanical behavior of porous
materials as well as cellular lattices named unit cell [7–11] and
supper cell [12–16] methods.

In the unit cell method, microstructure of a porous material is
supposed to be regular by repeating a unit cell in space. Accord-
ingly, only one repeating cell can be used to obtain the mechanical
behavior of a porous specimen. Although this modeling approach
is computationally efficient, it is suitable for cases where the pore
size is smaller than the sample's dimensions. Also, in this method,
the effects of the microstructural defects and imperfections cannot
be included [17]. To repel these difficulties, the supper cell method
is proposed. In this approach, a representative volume element
(RVE) of the real porous sample with more geometrical details is
used to model the mechanical behavior of a porous specimen. In
this regard, to generate geometry of porous materials, several
methodologies have been used, among which Voronoi tessellation
[15], the method of minimum energy [18], removing or assigning
zero stiffness to a number of elements [19], and distributing some
pores in a matrix [20] are more popular. Using these models,
several attempts were performed to study the microstructural
imperfections of porous materials such as irregular cells in shape
and size [13–15], non-uniform pore's walls [12,21], curvy and wavy
pore's walls [22,23], and microstructural defects [24,25].
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By developing additive manufacturing methods, efforts for
fabrication and characterization of cellular lattice structures are
increasing. These methods allow to adjust the mechanical proper-
ties of lattices by using an appropriate microstructure. Santorinaios
et al. [26] fabricated BCC-Z cellular lattice structures using selective
laser melting (SLM) from stainless steel. They experimentally
investigated the lattices under compression and shear loading.
Mines [27] precisely discussed theoretical and experimental issues
related to characterization, modeling, calibration, and validation of
core cellular materials used in sandwich constructions. McKown
et al. [28] fabricated and tested BCC and BCC-Z cellular lattice
structures with the use of SLM rapid prototyping technique to
characterize the progressive collapse behavior, failure mechanism,
and rate-dependent properties of their products. Gorny et al. [29]
used some in-situ approaches, including electron backscatter dif-
fraction, scanning electron microscopy, and digital image correla-
tion, to study deformation of a lattice structure produced by SLM.
Mines et al. [30] manufactured and characterized BCC micro-lattices
made from Ti6Al4V titanium alloy and 316 L stainless steel, as the
core material for sandwich panels, using SLM. Gumruk et al. [31]
experimentally examined the static behavior of BCC and
BCC-Z stainless steel micro-lattice structures manufactured by
SLM under several loading types such as compression, shear,
tension, and combined loadings. Mines et al. [32] fabricated small
sandwich panels with micro-lattice cores with the use of SLM. They
analyzed resultant damage under drop weight loading of a steel
hemisphere. Brodin and Saarimäki [33] fabricated some lattice truss
structures, hollow rectangular tubes, and composites of tubes with
an interior of lattice truss structures using SLM. They then tested all
samples under tension to compare their mechanical behavior.
Campanelli et al. [34] investigated the fabrication of Ti6Al4V
micro-lattices with pillar textile unit cells by means of selective
laser melting. They also performed compression tests in order to
evaluate strength and energy absorption of the lattice truss speci-
mens. Yan et al. [35] produced diamond lattice structures using
direct metal laser sintering (DMLS) to evaluate the manufactur-
ability and performance of AlSi10Mg periodic cellular lattice
structures.

After successful fabrication of cellular lattice structures, the
efforts for modeling their mechanical behavior were increased.
Labeas and Sunaric [36] developed a new approach to account for
buckling of the lattice struts. Then, they used this method to
investigate the structural response and failure process of open
lattice metallic cellular cores. Luxner et al. [37] used both 3D and
beam finite element models to study the elastic modulus of
lattice structures fabricated by rapid prototyping methods. The
micro-CT images of the cellular lattice microstructures show
some imperfections in the struts of the lattice including diameter
variations, micro- or nano-pores, and semi- or non-melted
powders. These imperfections affect the mechanical properties
of the lattice. Through experimental and computational analyses,
Zhou et al. [38] studied deformations in a lattice block structure
with a pyramidal core structure and triangulated planar truss
faces. They carried out some tension and compression tests on
individual struts to capture the effects of the microstructural
defects. Using a beam finite element model as well as theoretical
approaches, Gumruk and Mines [39] investigated the mechanical
behavior of 316 L stainless steel micro-lattice fabricated by
selective laser melting under the application of static compres-
sion. To consider the microstructural defects in the lattice struts,
they attributed the stress–strain response of individual struts to
the bulk material. As the elastic modulus obtained from simula-
tion was not satisfactory, they calibrated the stress–strain curve
of the individual strut using the elastic part of the lattice. This
was used as the correlated curve for modeling the nonlinear
region of the response. Smith et al. [40] used finite element

simulation to predict compressive response of the body-centered
cubic lattice structure and a similar structure with vertical pillars.
They used both 3D and beam finite element models in their
analysis. To account for defects in the micro-struts, the calibrated
stress–strain response of the individual struts provided in [39]
was used. Campoli et al. [41] developed some beam finite
element models to study the elastic behavior of cellular lattices
fabricated by selective laser melting and electron beam melting.
Using statistical methods, they implemented irregularities
caused by the manufacturing process including structural varia-
tions of the architecture. Karamooz and Kadkhodaei [42] devel-
oped a beam finite element model for predicting the elastic
modulus of Ti6Al4V scaffolds. They also compared the effects of
the mechanical properties of the bulk material on the elastic
modulus. Ahmadi et al. [43] presented analytical solutions and
closed form relationships for predicting the elastic modulus,
Poisson ratio, critical buckling load, and yield stress of cellular
structures made of the diamond lattice unit cell. They compared
the analytical results with those obtained using finite element
simulations and experimental measurements for Ti6Al4V speci-
mens fabricated using selective laser melting.

In this paper, the effects of variation in struts’ diameter on the
elastic modulus as well as collapse stress of cellular lattices is
analyzed. To this end, some lattice structures as well as compression
test specimens are fabricated using fused deposition modeling to
obtain the mechanical compressive behavior of the lattice and bulk
material, respectively. To determine variations of the struts’ dia-
meter along the length, measurements are done in several points of
each strut, and the probability of the diameters is calculated. Then,
solid and beam finite element models are developed to obtain the
elastic modulus of the lattice. In these models, each strut is divided
into a number of intervals to model the random variations of
diameter. Using this method, the effects of variation of struts’
diameter on the elastic modulus and the collapse stress are assessed
with the use of both beam and solid finite element analyses. Solid
and beam models are compared in terms of computational time as
well as predicted elastic modulus and collapse stress. Moreover,
configuration of the deformed structure is determined through
experimental observations and finite element models.

2. Experimental procedure

2.1. Fabrication

The cellular lattice structures investigated in this paper are
generated by repeating the BCC-Z unit cell are shown in Fig. 1.
The nominal diameter of struts is 1.5 mm, and dimensions of

Fig. 1. Three dimensional view of a unit cell.
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the cellular structure are 36.0 mm�36.0 mm�30.21 mm.
These dimensions are obtained according to the capabilities
of the available AM machine using some designed benchmarks
(not presented here). More information about finding capabil-
ity of the AM machine is provided in [44].

First of all, a three-dimensional (3D) CAD model is extended
to provide horizontal two-dimensional (2D) slice information
of the sample. The slice data are then sent to the fused
deposition modeling (FDM) machine for fabrication. A labora-
tory extruding-based apparatus, RAPMAN 3.2, is used to fabri-
cate the samples. A polylactic Acid (PLA) filament with the
diameter of 3 mm is fed as the raw material. The model is
constructed by deposition of material in layers. Once a layer is
built, the platform moves down one step in z direction, equal to
the specified layer thickness, to deposit the following layer.
Fig. 2(a) and (b) respectively shows one of the fabricated
cellular lattice structures and a close view of the struts and
joints.

As mentioned above, the structure is made layer by layer so the
diameter may be different from one layer to another. Conse-
quently, diameter of the struts is measured in several points, and
the probability of existing ranges for diameters is determined. This
issue will be discussed later in Section 4.

2.2. Mechanical characterization

Since in AMmethods fabrication is carried out by stacking layers
in different directions, the produced parts usually exhibit different
mechanical properties from cast or wrought materials. For under-
standing the mechanical property of the fabricated PLA parts, bulk
compression specimens are designed according to ASTM D638 [45]
and are fabricated by FDM. Simple compression test is then carried
out at the strain rate of 2�10�4 S�1 using universal SANTAM, STM-
50 testing machine. The stress–strain curve of the bulk compression
specimen is shown in Fig. 3. As can be seen in this figure, a toe
region is obvious in the small strains. To calculate the elastic
modulus and to obtain a typical stress–strain curve for simulation
purposes, the method presented in ASTM D695 [46] is used. In this
method, which is schematically shown in Fig. 3, continuation of the
linear region of the curve is intersected by the zero-stress axis. This
junction (shown by ε0 in the figure) is considered as the corrected
zero strain point from which all extensions or strains must be
measured. Using this method, the elastic modulus of the bulk
material in compression is calculated to be 1684.87144.7 MPa.

To ensure that compression tests are performed under static
conditions on the cellular lattice structures, the strain rate of
10�5 s�1 is chosen. Fig. 4 shows the manufactured cellular lattice
structure in compression test. The obtained stress–strain curve
and its correction are shown in Fig. 5, according to which the
average elastic modulus (En) of 49.0770.13 MPa and the collapse
stress (σcn) of 1.018 MPa are achieved.

3. Finite element modeling

In this paper, both solid and beam finite element models are
used to calculate the elastic modulus and the collapse stress of

Fig. 2. (a) A PLA cellular lattice structure fabricated by FDM (b) a close view of CLS's
struts and joints.

Fig. 3. Experimental and corrected stress–strain curve of the bulk compression
specimen.

Fig. 4. Compression test of cellular lattice structure.
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cellular lattices. The beammodel is computationally efficient while
the solid one can model the geometry with more details. In the
following sub-sections, details of the models will be discussed. All
the simulations are performed by the commercial finite element
software ABAQUS/STANDARD.

3.1. Beam finite element model

To generate the beam finite element model, a script is devel-
oped through python 6.6.6. The script gets the lattice vertexes as
well as their connection as its input to generate the wireframe of
the lattice as shown in Fig. 6(a) and (b).

Each strut of the lattice is divided into N equally-spaced
intervals to be able to model variations in the struts’ diameter.
Then, the structure is imported into ABAQUS 6.11-1, and a
randomly generated diameter is assigned to each interval. The
method for generating the random diameters will be presented in
Section 3.3. Fig. 7(a) and (b) shows a strut divided into 9 intervals
and a real CLS's strut, respectively.

Each interval of the struts is meshed using the three dimen-
sional, shear deformable, quadratic beam element B32. The cross
section of the struts is supposed to be circular. The trapezoidal rule
is used for integration point i.e. there are 3 and 8 integration
points in the radial and circumferential directions, respectively.

3.2. Solid finite element model

A script is developed to generate a solid finite element model of
the lattice. To define non-uniformities in the struts’ cross section
along the length, the space between each two connected vertexes
is divided into N intervals. As shown in Fig. 8, in the center of each
interval, a point is located at a random distance from the
connecting line. Then, a curve is fitted to the generated points,
and the curve is revolved to produce the strut. This procedure is
repeated for all struts. After modeling the whole structure, two
plates are defined at the bottom and top of the structure to remove
the overplus parts of the structure which are produced during the
modeling process. Fig. 9(a) and (b) shows the overplus part at the
conjunction of the struts and the whole solid model, respectively.

The model is meshed using a second- order accuracy tetrahe-
dral continuum element, C3D10M, to be able to capture the
complex geometry of the struts especially in the conjunction of
the struts and to avoid numerical problems. Fig. 10 shows a close
view of the meshed structure at a junction of struts for N¼8.

3.3. Calculating the struts’ diameter at each interval

Since some diameters are more probable, the diameter assign-
ment should be performed according to the probability which is
calculated for a range of diameters. To assign a diameter to a strut's
interval, an index is attributed to each range of diameters. Then, a
set whose members are the indices of the diameter range is
generated. Each index is repeated M times, which M is the nearest
integer number to the probability of that diameter range so that
∑Mi ¼ 100. To generate the diameter of each interval, first, an

Fig. 5. Experimental and corrected stress–strain curve of the cellular lattice
structure.

Fig. 6. The wireframe of the cellular lattice (a) front view (b) top view.

Fig. 7. (a) A strut divided into 9 intervals, and the randomly generated diameters
are assigned to the intervals (b) a real strut of the fabricated CLS.

Fig. 8. Generating a solid strut with variable diameter.
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integer number between 1 and 100 is randomly generated referred
to a member of the indices’ set to choose an index. Afterward, a
random diameter is calculated in the selected diameter range. It is
worth mentioning that, to capture the effects of material concen-
tration at the vertexes, diameter of the struts located at the
vertexes is calculated using the four largest diameter ranges.

For a better comparison, a model with a constant cross section
along the strut's length is generated too. In this model, the average
value of the struts’ diameters is assigned to all the struts.

3.4. Boundary conditions

To coincide with the experimental uniaxial compression test,
all the translational degrees of freedom on the bottom face of the
lattice are fixed while the rotational ones are free. For the upper
face of the lattice, all the translational degrees of freedom are fixed
except in the loading direction. In the loading direction, all the

nodes in the upper face are supposed to move toward the
bottom face. The rotational degrees of freedom are all free. More-
over, no boundary condition is applied to the sides of the lattice.
Fig. 11 summarizes the above-mentioned boundary conditions
schematically.

4. Results

As mentioned earlier, the struts’ defects and imperfections can
affect the mechanical properties of cellular lattices. Due the
inherence of AM methods for fabricating cellular lattice structure,
the building direction can affect the struts’ diameter. Accordingly,
the diameter as well as its variation along the strut's length of
vertical struts can be different from diagonal ones. This issue
depends on the fabrication method. To account for such effects,
the diameter variations of vertical and diagonal struts are mea-
sured separately and are compared with each other. For the
present specimens fabricated by the utilized FDM machine,
difference between the diameters of vertical and diagonal struts
is negligible. Consequently, in this paper, the same pattern for
diameter variations is used for both vertical and diagonal struts. It
is worth mentioning that, for cases where this difference is of
concern, separate patterns can be used for these two (or more)
kinds of built struts. Fig. 12 shows the probability of the ranges of
struts’ diameter along its length in the form of a histogram. As is
seen, the most probable diameter is about 1.5 mm which is the

Fig. 9. (a) The overplus of the struts at a conjunction (b) the whole solid model of
the structure.

Fig. 10. A close view of the meshed structure at the struts’ junction.

Fig. 11. Schematic of the applied boundary conditions to the cellular lattice.

Fig. 12. Probabilities for diameter of struts.
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designed value. This histogram is used to construct the finite
element models for considering the struts’ diameter variation.

All the following simulations are performed on a 2 Intel Xeon
X5670 (12 core), 2.93 GHz processors with 24 cores and
24 GB RAM.

Before reporting the results, a mesh-sensitivity study is per-
formed for each value of N. The results (not presented here) show
that the difference between the average stress–strain curve for
5 and 6 beam elements per interval is negligible. Therefore, in all
beam models, 5 elements are used to mesh each beam. For solid
model, a fine mesh is needed to capture details of the geometry
especially in the vicinity of the vertexes. Also, to model the
variation of the struts’ cross section, a fine mesh should be used.
Nevertheless, using a fine mesh can increase the required memory
as well as computational time. Shown in Fig. 13 is the stress–strain
curve of the PLA cellular lattice for different values of mesh size
when N¼1. As shown in this figure, although the elastic region
varies slightly with the mesh size, the effect of mesh size on the
nonlinear region is more severe. The difference between nonlinear
regions is negligible for 0.375 and 0.1875 mesh sizes, so the mesh
size value of 0.375 is used for this simulation. A similar trend is
followed for each value of N to be assured that the mesh size does
not significantly affect the results.

As the struts’ diameter is assigned randomly, the results may be
different from one model to another. To reduce the randomness
effects, 20 models are generated and solved for each value of N,
and the average stress–strain curve is reported. Fig. 14 shows the
elastic moduli of the lattice versus the number of intervals for both

solid and beam models with constant and variable cross sections.
As shown in the figure, by increasing the number of intervals, the
elastic modulus of the lattice gets closer to the experimentally
measured value. The maximum error occurs for one interval and in
the beam model. The error is decreased to values smaller than 1.5%
for at least 9 intervals in both beam and solid variable cross section
models.

Fig. 15 shows variations of the collapse stress with the number
of intervals for both beam and solid finite element models. The
trend of changes is similar to the one presented for the elastic
modulus. In this case, both models over-predict the collapse stress,
and the predictions of beam model are higher than those obtained
using solid model. Maximum error compared with the experi-
mental results is 127.9% for one interval beam model. The error
decreases by increasing the number of intervals. The minimum
error is about 6.1% for solid model. This value is about 27.7% for the
beam model.

5. Discussion

5.1. Stress–strain behavior

The stress–strain responses for beam and solid finite element
models with 1 and 12 intervals are presented in Fig. 16. Referring
to this figure, the beam model prediction is not satisfactory for one
interval. The collapse stress and strain are higher than the

Fig. 13. Stress–strain curve for different values of mesh size and N¼1.

Fig. 14. Variations of the elastic modulus of the lattice with the number of
intervals.

Fig. 15. Variations in the collapse stress of the lattice with the number of intervals.

Fig. 16. Stress–strain curve for the beam and solid finite element models with one
and 12 intervals.
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experimental findings. By increasing the number of intervals, the
collapse stress and its relating strain get closer to the experimen-
tally measured values. The prediction of solid model with just one
interval is better than that of the beam model with 12 intervals.
The predictions by the solid model with 12 intervals are much
better fitted with the experimental ones. Referring to Figs. 14 and
15, by increasing the value of Nmore than 12, slight improvements
in both elastic moduli and collapse stress are achieved.

For a better comparison, the obtained results using constant
cross section models are also considered and depicted in Figs. 14
and 15. The constant cross section beam model predicts the elastic
modulus and collapse stress with a difference of about 7% and
61.1%, respectively. These values are about 6% and 23.9% for the
constant cross section solid model. In all the models, the elastic
modulus as well as collapse stress predicted by the beam model is
higher than that by the solid model. It might be due to stress

concentration in some regions such as vertexes in the solid model
in comparison with the beam model.

In terms of the computational time, the solid models are more
inefficient than the beam models. As the number of intervals
increases, a finer mesh is needed to capture the geometrical
details. If the elastic modulus is of importance, one can use beam
finite element models for predicting the elastic modulus of cellular
lattice structures with the struts’ aspect ratios (strut's diameter
divided by strut's length) of up to 1/8 because the Timoshenko
beam theory is valid for this range of aspect ratio with a constant
cross section. But, for a good prediction of plastic region, a solid
finite element model should be used. In this regard, based on the
desired accuracy, either solid model with a small number of
intervals or beam model with larger values of N can be used.

5.2. Deformation of the lattice

The deformed configuration of the fabricated cellular lattice at
the strain of 3.2% is presented in Fig. 17. By applying compression
on the lattice, elastic deformation is started. The stress contours
(not presented here) show that, in the elastic regime, almost all
the compressive load is carried by the vertical struts. By increasing
the applied force, the vertical struts start to buckle and a shear
band initiates. More compression causes the formation of plastic
hinge in the diagonal struts and near the vertexes. This phenom-
enon starts in the diagonal struts, which connect the boundaries of
the shear band region. As another observation, buckling of the
vertical struts starts in the struts placed in the corners of the
lattice. Referring to Fig. 17, the shear band forms parallel to the
diagonal struts.

Fig. 18(a) and (b) shows the deformed configuration of the
lattice at the same strain presented in Fig. 16 using solid and beam
finite element models, respectively. The predictions by solid model
are reasonably well fitted by experimental ones while the beam
model predictions are not satisfactory. Notice that since the
deformed configuration of several intervals beam model is similar
to the beam model with one interval, so the latter is just presented
in Fig. 18(b) for a better view.

6. Conclusion

In this paper, some cellular lattices are fabricated by FDM and
are tested in compression to obtain the elastic modulus and the
collapse stress of the lattice. The struts’ diameter is measured in
several points of each strut, and the probability of the diameters is
calculated. To obtain the material parameters of the bulk material,
some compression test samples are fabricated and tested too.
Then, finite element models based on beam and solid elements are
developed to predict the elastic modulus as well as collapse stress
of the lattice. To do so, different models with variable and constant
cross sections are generated using both beam and solid models.
The results show that, to obtain a good accuracy, it is necessary to
model the cross section variations along the strut's length. It is also
shown that the solid model predicts a lower mechanical stress–
strain curve than that by the beam model. It might be as a result of
stress concentration at some regions in the solid model in
comparison with the beam model. Finally, the stress–strain curves
and deformed configurations obtained using beam and solid finite
element models are compared with experimental findings.
According to the obtained results, at least ten and twelve intervals
should be considered for each strut to achieve reasonable elastic
modulus and collapse stress, respectively. The results demonstrate
that the solid models are more accurate even with just one
interval. However, the beam models are more computationally

Fig. 17. Deformed configuration of the lattice under the strain of 3.2%.

Fig. 18. Predicted deformed configuration of the lattice at the strain of 3.2% using
(a) solid and (b) beam finite element model.

M.R. Karamooz Ravari et al. / International Journal of Mechanical Sciences 88 (2014) 154–161160



efficient. The decision on which method is suitable should be
made based on the desired accuracy and computational cost.
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