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Abstract In recent years nanostructures have been
used in a vast number of applications, so the study
of the mechanical behavior of such structures could
be of interest. In the present study, the buckling be-
havior of circular annular plates and solid disks under
uniform compression has been surveyed for several
combinations of boundary conditions using the finite
difference method. The affects of nonlocal parameter
and the plate size have been studied for each combina-
tion of boundary conditions. The obtained results are
in good agreement with the other studies and the real-
ity. The results also convince that the finite difference
method is a powerful method for solving the problems
corresponding to nanoplate mechanical behaviors.

Keywords Nanoplate · Buckling load · Finite
difference method · Circular annular plates · Solid
disks · Half-intenerated grid

1 Introduction

Nanostructures have a wide range of applications due
to their superior mechanical, thermal and electrical
properties. These properties let to produce small de-
vices that were impossible before.
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There are two approaches for mechanical analy-
sis of nanoscale structures namely molecular dynamic
model and continuum models. It is shown in many
studies that continuum models can be used effectively
in the analysis of nano structures [1].

In recent years many efforts were concentrated on
the studying of mechanical behaviors of nanostruc-
tures. These studies could be classified in two experi-
mental and theoretical groups. Since controlling of the
experiment conditions is not easy in the nano scale so
the theoretical methods is in important.

Liu and Rajapakse [2] developed a general model
to analyze the behavior of nanobeams with arbitrary
cross sections using Gurtin’s continuum surface the-
ory based on Euler-Bernoulli and Timoshenko beam
models. Wang and Feng [3] studied the stability and
vibration of nanowires by using Timoshenko beam
theory. Farshi et al. [4] studied the size dependent
vibration of nanotubes using a modified beam the-
ory based on Timoshenko beam. Fuand Zhang [5]
used analog equation method to solve the problem
of electrically actuated nanobeams with considera-
tion of surface. Fu et al. [6] studied the affects of
the surface energies on nonlinear bending and vibra-
tion of nanobeams. J.N. Sharma et al. [7] derived
the closed form expressions for the transverse vi-
brations of a homogeneous isotropic, thermoelastic
thin beam with voids, based on Euler–Bernoulli the-
ory. They also studied the effects of voids, relax-
ation times, thermomechanical coupling, surface con-
ditions and beam dimensions on energy dissipation
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induced by thermoelastic damping in MEMS/NEMS
resonators for beams under clamped and simply sup-
ported boundary conditions. B. Bar-On et al. [8] stud-
ied the effects of surface residual stresses on nano-
beams including mid-plane stretching under near res-
onance vibrations. In another work [9], they analyzed
the deflection of clamped nano-beam due to stochastic
surface stresses, induced by adsorption/desorption of
surrounding particles. They considered both linear and
non-linear effects using 1D nano-beam model. A. Ty-
likowski [10] studied the stochastic parametric vibra-
tions of micro- and nano-rods based on Eringen’s non-
local elasticity theory and Euler–Bernoulli beam the-
ory. B. Mohammadi et al. [11] presented an efficient
numerical method to analyze the vibration behavior of
nano Timoshenko beams based on Eringen’s nonlocal
elasticity theory. Yan-Gao Hu et al. [12] presented a
brief review of vibrations of single-walled carbon nan-
otubes (SWCNTs) using the nonlocal beam model and
nonlocal rod model and MD simulation. Yang Yang et
al. [13] simulated the double-walled carbon nanotubes
with a Timoshenko beam model based on the nonlo-
cal continuum elasticity theory, referred to as an an-
alytically nonlocal Timoshenko-beam (ANT) model.
Lu et al. [14] studied the effect of additional sur-
face properties illustrating the size dependent mechan-
ical behavior of nanoplates using generalized Kirch-
hoff and Mindlin plate theories. Sheng et al. [15] an-
alyzed the three dimensional elasticity of nanoplates
including surface properties using the theory of lami-
nated structures. Assadi et al. [16] used the laminated
plate theory to survey the effects of surface proper-
ties on the dynamic behavior of nanoplates in ther-
mal environments using size dependent Young’s mod-
ulus. S. Narendar et al. [17] studied the thermal ef-
fects on the ultrasonic wave propagation characteris-
tics of a nanoplate based on the nonlocal continuum
theory. B. Arash et al. [18] provided a comprehensive
study on wave propagations in SLGSs by a developed
nonlocal finite element plate model and MD simula-
tions. They also studied the effect of the size of the
sheet width on GS phonon dispersion relations. Assadi
et al. [19] studied the transverse vibration of circular
nanoplates with consideration of surface energies and
obtained the size dependent natural frequencies and
vibration mode shapes. Behfar et al. [20] used clas-
sical continuum modeling for vibration of multilay-
ered graphene sheet embedded in an elastic medium.
Murmu et al. [21, 22] studied the size dependent vi-

bration of nanoplates using nonlocal continuum the-
ory. R.M. Lin [23] proposed a continuum-based plate
model to study the nanoscale vibration characteris-
tics of multi-layered graphene sheets (MLGSs). Gen-
eralized Differential Quadrature (GDQ) method was
used to predict the natural frequencies and their as-
sociated vibration modes of single-layered and triple-
layered graphene sheets, as well as general MLGSs.
Huang [24] studied size dependent bending, buckling
and vibration of nanoplates by using the nonlinear
Kirchhoff plate theory and Von-Karman nonlinearity
assumptions. Tolga Aksencer et al. [1] presented the
Levy type solution method for vibration and buck-
ling of nanoplates using nonlocal elasticity theory.
Babaei et al. [25] studied buckling of the quadrilateral
nanoplates by using of nonlocal plate theory. Pradhan
et al. [26] analyzed the buckling of rectangular single-
layered graphene sheets under biaxial compression by
using the nonlocal elasticity. Sakhaee-Pour [27] stud-
ied the buckling of graphene nanosheets with atom-
istic modeling. S. Narendar [28] studied the buckling
analysis of isotropic nanoplates using the two variable
refined plate theory and nonlocal small scale effects.
A. Farajpour et al. [29] studied axisymmetric buck-
ling of the circular graphene sheets using the nonlo-
cal continuum plate model. Nabian et al. [30] studied
the pull-in instability of circular micro-scale plates un-
der uniform hydrostatic and non-uniform electrostatic
pressures.

Nanoplates are widely used in MEMS/NEMS com-
ponents so the buckling of them is in important. In this
paper first governing differential equation has been in-
troduced according to literature and then this equa-
tion has been solved using finite difference method to
obtain the non-dimensional buckling load for several
combinations of boundary conditions. In these cases
suitable grids have been presented to repel the sin-
gularity of the solid disk at its center. The obtained
results have been compared with those from litera-
ture for solid disk and have been discussed for circu-
lar annular one. The results show the finite difference
method could be used as a powerful method for solv-
ing such problems.

2 Nonlocal plate model

The stress equation for a linear homogeneous nonlocal
elastic body by neglecting the body force using nonlo-
cal elasticity theory [31] can be written as
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σij (x) =
∫

λ
(∣∣x − x′∣∣, α)

cijklεkl

(
x′)dV

(
x′)

∀x ∈ V (1)

Here σij , εij and Cijkl are the stress, strain and fourth
order elasticity tensors, respectively. λ(|x − x′|,μ) is
the non-local modulus, |x − x′| represents the dis-
tance in Euclidean form and μ is a material con-
stant (μ = e0a/�) that depends on the internal (lat-
tice parameter, granular size, distance between C–C
bonds), a and external characteristics lengths (crack
length, wave length), �. The parameter e0 is estimated
such that the relations of the non-local elasticity model
could provide satisfied approximation of atomic dis-
persion curves of plane waves with those of atomic
lattice dynamics.

Since solving integral constitutive is difficult, a
simplified equation in differential form of Eq. (1) is
used as a basis of all non-local constitutive formula-
tion:

(
1 − μ2�2∇2)σ = C : ε (2)

Here “:” represents the double dot product. ∇2 =
(∂2/∂x2 + ∂2/∂y2) is the Laplacian operator. Us-
ing Laplacian operator the two-dimensional non-local
constitutive relation can be expressed as:

σxx − (e0a)2∇2σxx = E

(1 − ν2)
(εxx + νεyy) (3a)

σyy − (e0a)2∇2σyy = E

(1 − ν2)
(εyy + νεxx) (3b)

τxy − (e0a)2∇2τxy = Gγxy (3c)

Stress resultants in the Cartesian coordinate can be
written as:

Nxx =
∫ t/2

−t/2
σxxdz, Nyy =

∫ t/2

−t/2
σyydz

Nxy =
∫ t/2

−t/2
σxydz

(4a)

Mxx =
∫ t/2

−t/2
zσxxdz, Myy =

∫ t/2

−t/2
zσyydz

Mxy =
∫ t/2

−t/2
zσxydz

(4b)

Using Eqs. (3a)–(3c) and (4a)–(4b) one obtains
the following non-local constitutive relation based on
classical plate’s theory:

Nxx − (e0a)2
(

∂2Nxx

∂x2
+ ∂2Nxx

∂y2

)

= C

(
∂u

∂x
+ ν

∂v

∂y

)
(5a)

Nyy − (e0a)2
(

∂2Nyy

∂x2
+ ∂2Nyy

∂y2

)

= C

(
∂v

∂y
+ ν

∂u

∂x

)
(5b)

Nxy − (e0a)2
(

∂2Nxy

∂x2
+ ∂2Nxy

∂y2

)

= C
(1 − ν)

2

(
∂u

∂y
+ ∂v

∂x

)
(5c)

Mxx − (e0a)2
(

∂2Mxx

∂x2
+ ∂2Mxx

∂y2

)

= −D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
(5d)

Myy − (e0a)2
(

∂2Myy

∂x2
+ ∂2Myy

∂y2

)

= −D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
(5e)

Mxy − (e0a)2
(

∂2Mxy

∂x2
+ ∂2Mxy

∂y2

)

= −D(1 − ν)

(
∂2w

∂x∂y

)
(5f)

Here D = Et3

12(1−ν2)
, C = Et

(1−ν2)
, E is elastic modu-

lus, υ is Poisson’s ratio, t is plate thickness, w is out-
of-plane displacement.

Note that stress resultants displacement relations
given in Eqs. (5a)–(5f); reduce to that of the classical
relation when the scale coefficient e0a is set to zero.

Using the principle of virtual work, the following
equilibrium equations can be obtained:

∂Nxx

∂x
+ ∂Nxy

∂y
= m0

∂2u

∂t2
(6a)

∂Nyy

∂y
+ ∂Nxy

∂x
= m0

∂2v

∂t2
(6b)
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Fig. 1 Circular annular plate under uniform compression

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+ ∂2Myy

∂y2
+ q

+ ∂

∂x

(
Nxx

∂w

∂x

)
+ ∂

∂x

(
Nxy

∂w

∂y

)

+ ∂

∂y

(
Nyy

∂w

∂y

)
+ ∂

∂y

(
Nxy

∂w

∂x

)
= 0 (6c)

For uniform radial compression (Fig. 1), we have:

Nxx = Nr, Nyy = Nr, Nxy = 0 (7)

Here Nr is the compression load as shown in Fig. 1.
Substituting Eqs. (7) into Eqs. (6a)–(6c) yields the

governing equation for the buckling analysis of the
uniform radial compression of the circular annular
plate as in Eq. (8) [1, 29, 32]:[
D − Nrμ

2]∇4w + Nr∇2w = 0 (8)

By some simplifications, Eq. (8) yields the follow-
ing equation:[

1 − Ω

R2
μ2

]
∇4w + Ω∇2w = 0 (9)

Here Ω = NrR
2

D
is the non-dimensional buckling load.

The aim of the future attempts is to obtain the non-
dimensional buckling load.

3 Finite difference method

As the axisymmetric circular annular nano-plate is
tended to study, so the Laplacian operator in polar co-
ordinate could be expressed as follow:

∇2 = d2

dr2
+ 1

r

d

dr
(10)

Substituting Eq. (10) into Eq. (9) yields the governing
equation as follow:(

1 − Ω

R2
μ2

)[
d4w

dr4
+ 2

r

d3w

dr3
− 1

r2

d2w

dr2
+ 1

r3

dw

dr

]

+ Ω

(
d2w

dr2
+ 1

r

dw

dr

)
= 0 (11)

Two cases have been studied in this paper: solid disk
and circular annular one which will be presented in
Sects. 3.1 and 3.2 respectively.

The derivatives of w in the k-th grid point can be
explained as Eq. (12) to Eq. (15):

dw

dr
= 1

2h
(wk+1 − wk−1) (12)

d2w

dr2
= 1

h2
(wk+1 − 2wk + wk−1) (13)

d3w

dr3
= 1

2h3
(wk+2 − 2wk+1 + 2wk−1 − wk−2) (14)

d4w

dr4
= 1

h4
(wk+2 − 4wk+1 + 6wk − 4wk−1 + wk−2)

(15)

Here h is the distance between two grid points and
subscript of w denotes the point number. Substituting
Eqs. (12)–(15) into Eqs. (3a)–(3c) yields:

1

h3

(
1 − Ω

R2
μ2

)(
1

h
+ 1

r

)
wk+2 + 1

h

[(
1 − Ω

R2
μ2

)(
1

2r3
− 1

r2h
− 2

rh2
− 4

h3

)
+ Ω

(
1

h
+ 1

2r

)]
wk+1

+ 1

h2

[(
1 − Ω

R2
μ2

)(
6

h2
+ 2

r2
k

)
− 2Ω

]
wk + 1

h

[(
1 − Ω

R2
μ2

)(
− 1

2r3
− 1

r2h
+ 2

rh2
− 4

h3

)

+ Ω

(
1

h
− 1

2r

)]
wk−1 + 1

h3

(
1 − Ω

R2
μ2

)(
1

h
− 1

r

)
wk−2 = 0 (16)
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Fig. 2 Grid points for the axisymmetric solid disk

3.1 Solid disk

Because of the singularity of the governing equa-
tion (11) in the center of the plate, suitable grid should
be chosen to repel the singularity. As shown in Fig. 2,
the half-intenerated grid has been chosen according to
the following equation [33]:

ri =
(

i − 1

2

)
h (17)

Here h = 2R
2N+1 and N is the number of interior grid

points as shown in Fig. 2. Notice that the value of
wN+1 and wN+2 should be assessed according to the
boundary conditions which will peruse in Sect. 3.3.

3.2 Circular annular plate

Figure 3 shows the grid for the circular annular plate
which h is the distance between two grid points and is
calculated as follow:

h = R − R0

N + 1
(18)

Here N is the number of interior grid points as shown
in Fig. 3. Notice that the values of w−1, w0, wN+1 and
wN+2 should be assessed according to the boundary
conditions as peruse in next subsection.

Fig. 3 Grid points for the axisymmetric circular annular plate

3.3 Boundary conditions

In this paper clamp and simply supported boundary
conditions have been surveyed at the inner and outer
edges. In this section we would assess the values of
w−1, w0, wN+1 and wN+2 which are necessary for
solving the differential equation (8).

3.3.1 Clamped boundary condition

The clamped boundary condition could be expressed
as follows:

w = 0,
dw

dr
= 0 (19)

Using the above conditions at inner and outer clamped
edges yields:

w0 = 0, w−1 = w1

wN+1 = 0, wN+2 = wN

(20)

3.3.2 Simply supported edge

For the simply supported edge the relations are as fol-
low:

w = 0, Mr = 0 (20)
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Fig. 4 Change of non-dimensional buckling load with nonlocal parameter for clamped edge and (a) R = 5 nm, (b) R = 10 nm,
(c) R = 15 nm, (d) R = 20 nm

These conditions yield the following expressions:

w0 = 0, w−1 = hν − 2R0

hν + 2R0
w1

wN+1 = 0, wN+2 = hν + 2R

hν − 2R
wN

(21)

4 Solution procedure

Using Eq. (16) in each interior grid point and substi-
tuting from the corresponding boundary conditions for
w−1, w0, wN+1 and wN+2, yield N equation contains
N unknowns which could be shown as follows:

Aw = 0 (22)

Here A is a square matrix with N rows and N columns
and aij is the coefficient of the wj in the governing
equation of wi . The evident solution for the system of
Eqs. (22) yields the following equation:

det(A) = 0 (23)

Solution of Eq. (23) yields the non-dimensional buck-
ling load in mode number 1 to N .

5 Numerical results and discussion

A MATLAB program has been developed to solve
Eq. (23) and to obtain the non-dimensional buckling
load for each combination of the boundary conditions
and the nonlocal parameter. Let divide the numerical
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Fig. 5 Change of non-dimensional buckling load with nonlocal parameter for simply-supported edge and (a) R = 5 nm,
(b) R = 10 nm, (c) R = 15 nm, (d) R = 20 nm

results in two categories one concentrated on the solid
disk and another on circular annular one.

5.1 Solid disk

As observed in the literatures the exact solution of the
first mode non-dimensional buckling load of a solid
disk with clamped and simply-supported edge could
be explained as Eqs. (24) and (25) respectively [29]:

Ω = 14.6819

1 + 14.6819 μ2

R2

(24)

Ω = 4.1976

1 + 4.1976 μ2

R2

(25)

Figures 4 and 5 show change of the first mode non-
dimensional buckling load (Ω) with nonlocal param-

Fig. 6 The effect of the number of internal grids (N ) on
the non-dimensional load to find the suitable value of N for
clamped-clamped boundary condition
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Fig. 7 Change of non-dimensional buckling load with nonlocal parameter for R = 20 and (a) C–C, (b) C (inner)–SS (outer), (c) SS (in-
ner)–C (outer), (d) SS–SS (C = Clamped and SS = Simply supported)

eter for several values of number of interior grids (N )
for clamped and simply supported boundary condi-
tions respectively. As the radius of the plate increase
the number of grid points which is necessary to obtain
acceptable results increase. In all cases N > 5 presents
acceptable results which are in good agreement with
those from literature [29].

5.2 Circular annular plate

To have authentic results in each case first the non-
dimensional buckling load has been obtained for sev-
eral value of N while the results variation is slight.
Figure 6 shows an example of such verifications. It ob-
served that N > 16 yields acceptable results so N =
20 has been used in all cases.

Figure 7 shows changes of the non-dimensional
buckling load with nonlocal parameter for several
values of inner radius (R0) and fixed outer radius.
In all combination of boundary conditions the non-
dimensional buckling load increases while the in-
ner radius increased. As another result by increasing
of nonlocal parameter the difference between non-
dimensional buckling loads of various R0s extremely
decreased. In another word for greater values of nonlo-
cal parameter the effects of inner radius is slight. (No-
tice that the pattern of explanation of boundary condi-
tions is as: inner edge boundary-outer edge boundary.)

Figure 8 depicts the effects of the boundary condi-
tions on the non-dimensional buckling load. The plates
with C–C boundary conditions have the largest non-
dimensional buckling load and SS–SS boundary con-
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Fig. 8 Change of non-dimensional buckling load with nonlocal parameter for various combination of boundary conditions and
(a) R = 20, R0 = 10, (b) R = 30, R0 = 10

dition yields the smallest one. It is necessary to men-
tion that the non-dimensional buckling load of a SS–C
plates is greater than C–SS ones.

6 Conclusion

The governing equation of buckling of circular an-
nular plates has been derived using non-local the-
ory. The half integrated grid in cylindrical coordinate
has been chosen to obtain the non-dimensional buck-
ling load. The non-dimensional buckling load of solid
disks under clamped and simply supported bound-
ary conditions has been obtained and compared with
those from the literatures which are in good agree-
ment. The buckling analysis of the circular annular
plates has been surveyed and the effects of the non-
local parameter, outer and inner radiuses and bound-
ary conditions have been studied. Results show the
effect of inner radius in large nonlocal parameters is
slight. Also plates with clamped-clamped boundary
condition have the largest non-dimensional buckling
load while simply supported-simply supported have
the smallest one. The non-dimensional buckling load
of a simply support-Clamped plates is greater than
Clamped-simply support ones.
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