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Abstract
The demand for lightweight devices attracts attention toward porous materials. Among them, porous shape memory
alloys are of interest due to superior mechanical and biological properties. High cost related to fabrication and character-
ization of such materials makes it necessary to model their mechanical properties before fabrication. Experimental
observations of dense shape memory alloys show tension–compression asymmetry which in turn can affect the mechan-
ical response of porous ones. In this article, the effects of this asymmetric response on the mechanical response of por-
ous shape memory alloys are investigated by comparing three models: asymmetric, symmetric with tensile, and
symmetric with compressive material parameters. To this end, a constitutive model considering asymmetric material
response is proposed based on microplane theory. Then, this model is used to simulate the stress–strain response of
porous shape memory alloys. The results are compared with available experimental and numerical data, and a good
agreement is observed. It is concluded that in comparison with the asymmetric model, the symmetric model with tensile
material parameters under-predicts the stress level while the model with compressive one over-predicts the stress level.
In addition, the effects of porosity on the asymmetric response as well as hysteresis of stress–strain curve in tension and
compression are assessed.
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Introduction

Since the fabrication of first porous shape memory
alloys (PSMAs) in the 1990s, they have found several
applications in biology, aerospace, and civil engineering
due to their superior mechanical properties and bio-
compatibility (Mehrabi et al., 2015). The increasing
demand for using these advanced materials have moti-
vated the researchers worldwide to develop powerful
modeling approaches to simulate their mechanical
responses. In this regard, several modeling approaches
such as finite element (DeGiorgi and Qidwai, 2002;
Hassan et al., 2009; Michailidis et al., 2009; Panico and
Brinson, 2008; Qidwai et al., 2001; Shariat et al., 2013;
Zhu et al., 2013, 2014), micromechanical averaging
(Entchev and Lagoudas, 2002, 2004; Freed et al., 2008;
Liu et al., 2014; Nemat-Nasser et al., 2005; Olsen and
Zhang, 2012; Toi and Choi, 2008; Zhao et al., 2005;
Zhao and Taya, 2007; Zhu and Dui, 2011), phenomen-
ological (Sayed et al., 2012), theoretical (Liu et al.,
2012), and scaling methods (Maı̂trejean et al., 2013a,

2013b) have been developed. It has been previously
shown that microplane theory can be successfully used
for modeling the three-dimensional (3D) behavior of
shape memory alloys (SMAs). The idea of utilizing
microplane theory for this purpose was first proposed
by Brocca et al. (2002) and has been further developed
by Kadkhodaei et al. (2007a, 2007b) and Mehrabi et al.
(2013). This constitutive modeling approach has been
shown to be thermodynamically consistent (Mehrabi
et al., 2014c) and capable of modeling nonproportional
loading paths (Kadkhodaei et al., 2007a, 2007b;
Mehrabi et al., 2014c, 2014d). Mehrabi et al. (2014b)
used the microplane theory to develop a constitutive
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model for tension–torsion coupling and tension–
compression asymmetry in NiTi SMAs. To take
tension–compression asymmetry into account, they
employed a modified phase diagram for uniaxial load-
ing and chose the material parameters based on the
loading direction, that is, tension or compression. Since
no transformation function was used, this method
could be used only for uniaxial loading and would be
inapplicable for multiaxial loadings.

Finite element method has been used by several
researchers to investigate the mechanical properties of
PSMAs. DeGiorgi and Qidwai (2002) used a mesoscale
technique based on two-dimensional (2D) finite ele-
ment method to determine effective material response.
They considered a PSMA as a combination of dense
SMA and randomly distributed pores. Panico and
Brinson (2008) studied the mesoscopic behavior of
PSMAs using 3D finite element method. They modeled
pores by allocating zero stiffness to some randomly
chosen elements. The evolution of plastic strains as well
as martensite transformation has also been studied.
Zhu et al. (2013) used a 3D constitutive model to exam-
ine localization of phase transformation field due to
the presence of structured arrays of holes in a NiTi
plate. In another work (Zhu et al., 2014), they used a
similar approach to assess interactions between trans-
formation and plastic deformation of those plates.

In another approach, a PSMA is considered as a
composite material with SMA as matrix and pores as
inclusions. Then, the micromechanical averaging meth-
ods are used to obtain the macroscopic mechanical
response. Using this method, Qidwai et al. (2001) esti-
mated PSMAs’ thermomechanical behavior by consid-
ering randomly distributed spherical and cylindrical
pores. Entchev and Lagoudas (2002) established the
effective elastic and inelastic behaviors of PSMAs based
on the information about the mechanical response of
the individual phases, shape, and volume fraction of
pores. Zhao et al. (2005) presented a model for the
macroscopic compressive behavior of superelastic
PSMAs using Eshelby’s inhomogeneous inclusion
method. Entchev and Lagoudas (2004) used an incre-
mental formulation of the Mori–Tanaka averaging
scheme in combination with transformation-induced
plasticity constitutive model for fully dense SMAs
(Lagoudas and Entchev, 2004) to simulate effective
mechanical behavior of PSMAs. Nemat-Nasser et al.
(2005) modeled PSMAs as three-phase composite mate-
rials with austenite as the matrix and martensite and
voids as the embedded inclusions. Zhao and Taya
(2007) proposed two models, open cell and close cell, by
considering spherical and ellipsoidal pore shapes. Toi
and Choi (2008) developed an existing one-dimensional
(1D) constitutive model for SMAs to account for the
porosity and strain rate effects using porosity and mar-
tensite volume fraction as internal variables.

Experimental observations (Bechle and Kyriakides,
2014; Gall et al., 1999; Reedlunn et al., 2014;
Thamburaja and Anand, 2001; Zhu and Dui, 2010)
show that the mechanical stress–strain response of
dense SMAs is asymmetric in tension and compres-
sion. This asymmetric response is because of an asym-
metric transformation surface. Since a PSMA can be
considered as a cluster of connecting ligaments, the
asymmetric response of dense SMAs can severely
affect the mechanical response of PSMAs. So far, sev-
eral investigations have been performed on the devel-
opment of asymmetric constitutive models for dense
SMAs (Auricchio and Petrini, 2004; Auricchio and
Taylor, 1997; Bouvet et al., 2004; Lagoudas et al.,
2006; Lexcellent et al., 2006; Lubliner and Auricchio,
1996; Paiva et al., 2005; Qidwai and Lagoudas, 2000;
Saint-Sulpice et al., 2009; Sedlak et al., 2012; Yu
et al., 2013). However, there is only a few studies that
assess the effects of asymmetry for PSMAs (Liu et al.,
2014; Zhu and Dui, 2011). Zhu and Dui (2011) pro-
posed a micromechanical constitutive model for
macroscopic behavior of porous NiTi. They consid-
ered the first invariant of stress tensor as the source of
the tensile–compressive asymmetry. Liu et al. (2014)
presented a yield function for PSMAs considering
both the effect of hydrostatic stress and tensile–
compressive asymmetry. In these two studies, only the
tensile–compressive stress–strain response of PSMAs
is compared, and the effects of asymmetry material
response of dense SMAs on the response are not
considered.

To the best of authors’ knowledge, the effects of
material asymmetric response of dense SMAs on the
mechanical behavior of PSMAs have not been consid-
ered by previous studies. In this article, a 3D constitu-
tive model is proposed for dense SMAs based on the
microplane theory which takes the material asymmetry
into account. Then, this constitutive model is used for
investigation of the stress–strain response of PSMAs
using finite element analysis. The results show good
agreements with previously reported findings. In addi-
tion, the effects of asymmetry on the stress–strain
response of PSMAs as well as SMA cellular lattices are
assessed by comparing the results of symmetric and
asymmetric models (AMs). The results indicate that a
symmetric model with the tensile material parameters
under-predicts the stress level, while that model with
compressive ones over-predicts the stress level. In addi-
tion, the effects of porosity on the asymmetric stress–
strain response of PSMAs in tension and compression
as well as the hysteresis area are analyzed. For the case
of SMA cellular lattices, the effects of material asym-
metry as well as deformation mechanisms are investi-
gated for body-centered cubic (BCC) and reinforced
body-centered cubic (BCC-Z) microstructures with sev-
eral values of porosity.
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Methodology

Constitutive modeling

The main idea of microplane theory is to generalize 1D
constitutive laws to 3D ones which allows to use just
the material parameters of uniaxial tension (compres-
sion) tests. To derive macroscopic governing equations,
two main formulations can be employed, namely, ‘‘sta-
tic constraint’’ and ‘‘kinematic constraint.’’ In the for-
mer formulation, the stress vector on each microplane
is supposed to be the projection of macroscopic stress
tensor, while in the latter, this projection rule is consid-
ered for strain vector and macroscopic strain tensor. In
fact, ordinary constitutive modeling approaches, where
both constraints co-exist, utilize the so-called double-
constraint formulation in this regard. Carol and Bazant
(1997) showed that using the kinematic constraint for-
mulation, the obtained constitutive relations could be
just used for a limited range of Poisson’s ratio.
Accordingly, in this article, the static constraint formu-
lation is utilized for the evolution of SMA constitutive
relations. In this formulation, three main steps should
be followed: first, the projection of stress tensor is
found on each microplane as normal and shear stress
vectors; then, a 1D constitutive relation is defined for
each normal and shear component, and finally a homo-
genization process is utilized to generalize the 1D
model to 3D one (Kadkhodaei et al., 2007a, 2007b;
Mehrabi et al., 2014a, 2014b, 2014c, 2014d; Mehrabi
and Kadkhodaei, 2013). Figure 1 shows the projected
stress tensor on a generic microplane as shear and nor-
mal components. Considering ni as the components of
the unit normal vector (n) to a microplane, the traction
vector on a microplane (ti) can be written as follows

ti =sijnj ð1Þ

in which sij is the macroscopic stress tensor. The nor-
mal stress on a microplane, sN , is formulated as the
scalar projection of traction vector onto unit normal
vector as

sN =sijninj =sijNij ð2Þ

Referring to Figure 1, the shear component of the
traction vector is obtained as the subtraction of normal
stress vector from traction vector which yields

sTi = ti � sN ni ð3Þ

The magnitude of the shear stress on a microplane is
calculated as

sT =sTisTi ð4Þ

By substituting equation (3) into equation (4) and
some algebraic simplifications, the magnitude of the
shear stress component can be expressed as follows

sT = Tijsij ð5Þ

where Tij =(̂tinj + t̂jni)=2 in which t̂i =(siknk � sN ni)=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sjrsjsnrns � s2

N

q
is the unit vector parallel to resultant

shear stress on the plane. It has been previously shown
that using the static constraint formulation with
volumetric–deviatoric split, that is, sN =sV +sD, the
elastic part of a microplane constitutive equation exhi-
bits double constraint (Kadkhodaei et al., 2007a;
Mehrabi and Kadkhodaei, 2013), and the microlevel
elastic moduli are equal to the macroscopic ones
(Kadkhodaei et al., 2007a). It is also supposed that the
martensite transformation is just associated with the
shear component of microplane stresses (Kadkhodaei
et al., 2007a, 2007b). Based on this assumption, the
volumetric and deviatoric parts of the normal compo-
nent of the strain vector can be related to the corre-
sponding stresses using Hook’s law, and the shear
strain is calculated using the 1D relation proposed for
SMAs by Poorasadion et al. (2013)

eV =
1� 2n

E
sV ð6Þ

eD =
1+ n

E
sD ð7Þ

eT =
1+ n

E
sT + e+L j+s + e�Lj�s ð8Þ

in the relationships above, n is SMA’s Poisson’s ratio;
eV is the volumetric strain; eD is the deviatoric strain; eT

is the shear strain; e+L and e�L are the maximum recover-
able strains in uniaxial tension and compression, respec-
tively; and E is the macroscopic elastic modulus which
can be described as a function of martensite volume
fraction (Poorasadion et al., 2013)

1

E
=

1

EA

+ j+s
1

E+
M

� 1

EA

� �

+ j�s
1

E�M
� 1

EA

� �
+ jT

1

ET
M

� 1

EA

� � ð9Þ

where EA is fully austenite elastic modulus; EM is fully
martensite elastic modulus; and js and jT are stress-

Figure 1. Projection of stress tensor as normal and shear
stress vectors on each microplane.
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and temperature-induced martensite volume fractions,
respectively. The superscripts ‘‘+ ’’ and ‘‘2’’ denote
tension and compression, correspondingly. The super-
script ‘‘T’’ is attributed to temperature-induced quanti-
ties. In this article, two internal variables related to
martensite volume fraction are considered to be able to
distinguish between tension and compression. In addi-
tion, equation (9) indicates that the effects of different
martensite elastic moduli in tension and compression
are taken into account.

To generalize the 1D constitutive relations to 3D
ones, the principle of complementary virtual work is
utilized which yields (Kadkhodaei et al., 2007a, 2007b)

4p

3
eijsij = 2

ð
O

eV dsV + eDdsD + eT dsTð ÞdO ð10Þ

where O is the surface of a unit hemisphere and eij is the
macroscopic strain tensor. By substituting equations (2)
and (6) to (8) into equation (10) and taking the indepen-
dence of individual components of virtual stress tensor
into account, the following equation is obtained

eij = � n

E
smmdij +

1+ n

E
smn

� 3

2p

ð
O

NmnNij + TmnTij

� �
dO+ e+L j+s + e�L j�s

� �

� 3

2p

ð
O

TijdO ð11Þ

It is also necessary to explain the evolution of mar-
tensite volume fraction during transformation in ten-
sion and compression. In this regard, as shown in
Figure 2, the proposed phase diagram by Sameallah
et al. (2014) is utilized. In this diagram, Mf , Ms, As, and
Af are martensite finish, martensite start, austenite
start, and austenite finish temperatures, respectively.
scr

s and scr
f are the critical start and finish stresses for

martensite detwinning, respectively, and CM , CAs, and
CAf are the slopes of stress–temperature diagram.

When temperature is below Ms, by applying stress,
twinned martensite starts to transform to detwinned
one when the stress reaches the critical value scr

s . The
detwinning process will be completed by the value of
stress scr

f . For temperatures higher than Ms, the trans-
formation of austenite to martensite starts when the
applied stress is equal to scr

s +CM (T �Ms), and this
transformation finishes at the stress of
scr

f +CM (T �Ms). Similarly, for temperatures higher
than As, transformation from martensite to austenite
starts at the stress of CAs(T � As) and finishes at
CAf (T � Af ).

One must use this phase diagram with precaution
for high temperatures. At high temperatures, the lines
related to the austenite band may cross those of the
martensite band. As shown in Figure 3, this issue
would be problematic when the critical stress of auste-
nite finish is higher than that of martensite start or if
the critical stress of austenite start is higher than that
of martensite finish. It means that this phase diagram
should be used by implying the following constraints

Figure 3. Stress–strain curve of an SMA when (a) the critical stress of austenite finish is higher than that of martensite start and (b)
the critical stress of austenite start is higher than that of martensite finish.

Figure 2. Employed phase diagram for shape memory alloys.
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CAs T � AsÞ\sf
cr +CM T �Msð Þ

�
ð12Þ

CAf (T � Af )\ss
cr +CM T �Msð Þ ð13Þ

Using the above two equations and considering Md

as the martensite dead temperature, the maximum value
of the temperature can be calculated as

Tmax =

min
CAf Af +ss

cr � CM Ms

� �
CAf � CM

,
CAsAs +sf

cr � CM Ms

� �
CAs � CM

,Md

� �
ð14Þ

To evaluate the value of martensite volume fractions
in tension and compression, in this article, the evolu-
tion function of martensite volume fraction presented
by Poorasadion et al. (2013) is modified based on this
phase diagram as follows

ifT �Ms andscr
s \ŝ\scr

f :

Y = cos
p

scr
f � scr

s

ŝ � scr
s

� � !

jr
s =

1� Y

2
+ jr

s0

1+ Y

2
, jp

s = j
p
s0

1� jr
s

1� jr
s0

, jT = jT0 +Dð Þ
1� jr

s

� �
1� jr

s0

ifT\Mf : D= 0

else : D=
1� j0

2
1� YMTð Þ

ifT.Ms andscr
s +CM T �Msð Þ\ŝ\scr

f +CM T �Msð Þ :

Y = cos
p

scr
f � scr

s

ŝ � scr
s � CM T �Msð Þ

� � !

jr
s =

1� Y

2
+ jr

s0

1+ Y

2
, jp

s = j
p
s0

1� jr
s

1� jr
s0

, jT = jT0

1� jr
s

1� jr
s0

ifT.As andCAf T � Af

� �
\ŝ\CAs T � Asð Þ :

Y = cos
p

CAs T � Asð Þ � CAf T � Af

� � CAs T � Asð Þ � ŝð Þ
 !

jr
s =

jr
s0

2
1+ Yð Þ, jp

s =
j

p
s0

2
1+ Yð Þ, jT =

jT0

2
1+ Yð Þ

ifMf \T\Ms and ŝ\scr
s

jr
s = jr

s0, jp
s = j

p
s0, jT =

1� j0

2
1� YMTð Þ+ jT0

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð15Þ

in which superscripts ‘‘r’’ and ‘‘p’’ are as (r = +,
p = 2) in tension and (r = 2, p = +) in com-
pression; jr

s0, j
p
s0, and jT0 are the initial values of

the corresponding martensite volume fraction;
YMT =cos(p(T �Ms)=(Mf �Ms)); and ŝ is the modi-
fied equivalent stress to account for asymmetric mate-
rial response as follows

ŝ =
1

1+b

ffiffiffiffiffiffiffi
3J2

p
+

9

2
b

J3

J2

� �
ð16Þ

in which b is a parameter to determine the value of
asymmetry, and J2 and J3 are the second and third
invariants of deviatoric stress tensor, respectively. For
b = 0, the equivalent stress, ŝ, is reduced to von-Mises
equivalent stress, and the constitutive model will be
symmetric. According to experimental observations,
the transformation surfaces of martensite to austenite
and austenite to martensite might be of different levels

of asymmetry which could be taken into account using
different values of b presented by

b=
b1 if _s.0

b2 if _s\0

�
ð17Þ

The parameters b1 and b2 are chosen to distinguish
the asymmetry level in loading from unloading. Finally,
using equations (9), (11), (15), and (16) under the limita-
tions of equation (14), one can model the 3D constitu-
tive response of SMAs.

Unit cell models for porous materials

In this section, three cases including 13% porous NiTi,
42% porous NiTi, and BCC as well as BCC-Z SMA
cellular lattice structures with the porosities of 25.2%,
44.30%, 64.25%, and 82.15% are used to assess the
effects of asymmetric response of dense SMA on the
mechanical response of porous specimens in tension
and compression. For each case, a repeating unit cell
representing the microstructure of porous sample is
used in combination with suitable boundary conditions.
In the rest of this section, first, the repeating unit cell
models are explained and then the applied boundary
conditions are introduced.

Case 1: 13% porous NiTi. Figure 4(a) shows the micro-
structure of 13% porous NiTi fabricated by Zhao et al.
(2005). Referring to this figure, the microstructure may
be represented as the intersection of some spheres.
Since the sample is fabricated by spark plasma sinter-
ing, these spheres are the powder particles sintered with
each other. Based on this observation, the unit cell
shown in Figure 4(b) is used for modeling purposes.
This unit cell is constructed by putting eight spheres
with the radius of ‘‘R’’ on the corners of a cube with the
length of L = 2 3 (1 2 d) 3 R meaning that two
spheres are penetrated to each other with a value of
2 3 d 3 R. The amount of porosity can be adjusted
by changing the value of d as shown in Figure 5. Based
on this figure, to achieve the value of 13% for porosity,
d = 0.21265 should be utilized.

Case 2: 42% porous NiTi. This subsection is allotted to
the modeling of 42% porous NiTi produced by
Entchev and Lagoudas (2002). Figure 6(a) shows the
microstructure of 42% porous NiTi, and Figure 6(b)
shows the corresponding unit cell model utilized for
modeling. This unit cell is composed of a spherical pore
with the radius R at the center of a cube with the length
of L. In this article, L = 1 is assumed, and the value of
R is adjusted to satisfy the desirable amount of poros-
ity. Figure 7 shows the value of porosity as a function
of pore’s radius. Using this curve, R = 0.4646 should
be used to obtain 42% porosity.

Karamooz Ravari et al. 1691
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Case 3: SMA cellular lattice structures. Cellular lattice struc-
tures are a class of porous materials with regular micro-
structure which allows a designer to adjust the
mechanical properties more easily than conventional
porous materials. Thanks to additive manufacturing,
several attempts have been made to fabricate and char-
acterize SMA cellular lattices (Rahmanian et al., 2014).
In this article, BCC and BCC-Z cellular lattice struc-
tures are used to investigate the effects of material
asymmetry on the mechanical behavior of porous sam-
ples. There are two reasons for choosing these micro-
structures in this study: (1) it has been previously
proved that these two microstructures are nearly opti-
mized for carrying combination of loads (Karamooz
Ravari et al., 2014; Karamooz Ravari and Kadkhodaei,

Figure 4. (a) Microstructure of 13% porous NiTi (Zhao et al., 2005) and (b) repeating unit cell model.

Figure 6. (a) Microstructure of 42% porous NiTi (Entchev and Lagoudas, 2002) and (b) unit cell utilized for the modeling of 42%
porous NiTi.

Figure 5. Variation of the porosity with the parameter d for
case 1 unit cell model.
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2015), and (2) since all the struts of BCC lattice are
diagonal, the main deformation mechanism is bending
of the struts. Therefore, fibers of each strut experience
tensile and compressive loads at the same time. For
BCC-Z cellular lattice, there is one vertical strut which
causes the main deformation mechanism to tend toward
axial one (Karamooz Ravari and Kadkhodaei, 2013).
Therefore, using these two, it is possible to assess the
effects of deformation mechanisms on the asymmetric
material response of porous SMAs.

Figure 8(a) and (b) shows the repeating unit cell of
BCC and BCC-Z cellular lattices together with their
geometrical parameters, respectively. In this figure, the
cell size and struts’ diameter are denoted by L and D,
respectively. The amount of porosity can be adjusted by
changing the value of these two geometrical parameters.
In this article, L = 1 is considered, and the value of D
is varied to achieve the desired porosity. Figure 9 shows
the variation of porosity as a function of struts’ dia-
meter for BCC and BCC-Z cellular lattice structures.
Based on this curve, for the porosity values of 82.15%,
64.25%, 44.30%, and 25.20%, the value of struts’ dia-
meter is obtained to be 0.1, 0.2, 0.3, and 0.4,

respectively, for BCC cellular lattice structure. The
struts’ diameters are 0.187, 0.283, 0.378, and 0.476 for
BCC-Z cellular lattices.

Periodic boundary conditions

Since only one unit cell is utilized for modeling pur-
poses, appropriate periodic boundary conditions must
be imposed to the models. As all the above-mentioned
unit cell models have three symmetric planes, combina-
tion of periodic and symmetric boundary conditions
can be used to reduce the computational cost of the
simulations. To do so, as shown in Figure 10, the trans-
lational degree of freedom normal to symmetry planes
should be fixed. Beside this boundary condition, the
opposite faces to symmetry ones should be forced to
remain planar during the loading cycle. After imposing
these boundary conditions, the upper face of the unit
cell is compressed by the displacement of D. More infor-
mation about these boundary conditions is given by
Altenbach and Oechsner (2011), Böhm (2004), and Li
(2008).

Results and discussion

In this section, first, the stress–strain response of 13%
porous SMA in tension and compression is compared
with previously reported experimental and numerical
findings. Then, the results of other unit cell models are
presented. To investigate the effects of material asym-
metry in cases 2 and 3, three constitutive laws are com-
pared including symmetric model using tensile material
parameters (SMT), symmetric model using compressive
material parameters (SMC), and AM. In each case,
first, the utilized material parameters are introduced.
For all the cases, the simulations are performed at a
constant temperature and there is not any temperature-
induced martensite. Therefore, for all the cases, the
value of ET

M is optional and is not presented.

Figure 8. Unit cell of (a) BCC and (b) BCC-Z cellular lattice structures.

Figure 7. Variation of the porosity with the parameter R for
case 2 unit cell model.
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Case 1: 13% porous NiTi

To be able to compare the results with the previously
reported ones, the material parameters presented in
Table 1 are obtained based on the findings reported by
Liu et al. (2014). In this regard, the material parameters
are adjusted in such a way to achieve the start and fin-
ish transformation stresses which were considered as
the material parameters in Liu et al. (2014). Then, the
model is meshed using 10-node modified quadratic tet-
rahedron elements denoted by C3D10M in ABAQUS.
A mesh sensitivity study is conducted by repeatedly
refining the mesh size and rerunning the analysis until
changes in the results are negligible. Consequently, the
appropriate mesh size was found to be about 0.2 3 R
which forms 373 elements through the unit cell model.

Figure 11 compares the predicted stress–strain curve
for 13% porous NiTi with available experimental
response in compression (Zhao et al., 2005) and with
the theoretical results presented by Liu et al. (2014) in

tension and compression. As shown in this figure, a
good agreement is achieved between the proposed
model and the experiment in compression. The results
of the present model correlate very well with those
reported by Liu et al. (2014) model except for strains
larger than 5.6%. The discrepancy at larger strains
might be due to the different transformation functions
utilized in these two models. As it is seen in this figure,
the initial unloading slope of tensile stress–strain curve
for both models is similar; however, the value of maxi-
mum stress corresponding to the maximum applied
strain is higher for the present model compared to that
reported by Liu et al. (2014). The latter can also be
observed in the compressive stress–strain response
which shows that the Liu et al. model under-predicts
the stress level. However, the transformation rate is
predicted more accurately by the proposed model. In
addition, at the beginning of unloading curve in com-
pression, the proposed model predicts a smaller slope
compared to the experimental response. However, this
prediction is more accurate than that predicted by Liu
et al. (2014). It is worth mentioning that there are no
experimental results for simultaneous tensile and com-
pressive loadings of porous SMAs. Consequently, the
validity of the results still needs to be investigated in
the future.

Figure 12 compares the stress–strain response of
13% porous NiTi using the symmetric model and AM.
Note that the symmetric model is attributed by setting
b = 0. It is obvious that the difference between these

Figure 11. Stress–strain response of 13% porous SMA in
tension and compression: experiment, Liu et al. (2014) model,
and present model.

Table 1. Material parameters utilized for 13% porous NiTi fabricated by Zhao.

EA (MPa) E+
M (MPa) E�M (MPa) n Mf (8C) Ms (8C) As (8C) Af (8C) scr

s (MPa)

75,000 31,000 52,000 0.33 5.39 20.65 19.3 38.82 50
scr

f (MPa) CM (MPa=8C) CAs (MPa=8C) CAf (MPa=8C) e+L e�L b1 b2 T(8C)
800 4.02 11.4 3.65 0.052 20.023 0.175 0.48 58

Figure 9. Variation of porosity as a function of struts’ diameter
for BCC and BCC-Z cellular lattice structures.

Figure 10. Combination of periodic and symmetric boundary
conditions.
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stress–strain responses is negligible, meaning that the
asymmetric material response of dense SMA has a
slight effect on the mechanical response of this unit cell
model.

Case 2: 42% porous NiTi

The unit cell model related to the 42% porous NiTi
sample is meshed using 10-node general-purpose tetra-
hedron elements with improved surface stress formula-
tion denoted by C3D10I in ABAQUS. By applying the
mesh sensitivity analysis, a mesh size of about 0.1 3 R
is chosen for this case. The material parameters used
by Entchev and Lagoudas (2002) are supposed to be
related to compressive response of dense SMA.
Accordingly, the material parameters corresponding to
tension and asymmetric response including E+

M , e+L , b1,
and b2 are considered according to the experimental
observations for NiTi alloys. It is observed for poly-
crystalline SMAs that martensite elastic moduli in com-
pression are greater than those in tension. Also, the
maximum recoverable strain in tension is about twice
the compressive one. Accordingly, E+

M is supposed to
be smaller than E�M , and e+L is taken to be about twice
e�L (Poorasadion et al., 2013). Moreover, it is reported
that the value of asymmetric parameter (b) is about
0.16 for polycrystalline NiTi (Auricchio and Taylor,
1997; Lubliner and Auricchio, 1996). Based on these
facts, the material parameters presented in Table 2 are
used for modeling purposes.

Figure 13(a) to (c) compares two cycles of loading–
unloading stress–strain response of 42% porous NiTi

obtained by experiment and predicted by Entchev and
Lagoudas (2002) model with SMT, SMC, and AM. As
it is seen, the prediction of AM is more reasonable than
SMT and SMC, especially for the first cycle. As a
result, unlike the studied 13% porous NiTi, the asym-
metric response of dense SMA has a considerable effect
on the stress–strain response of 42% porous specimen.
Since stress state in porous materials, especially near
their pore walls, is too complicated, asymmetric mate-
rial response of dense SMAs should be considered
using a suitable equivalent stress rather than separate
material parameters in tension and compression similar
to the approach proposed by Mehrabi et al. (2014b)
and Poorasadion et al. (2013).

Referring to Figure 13, it is not possible to distin-
guish the initiation and finish of transformations in the
experimental stress–strain curves. It might be due to
stress concentration in pores, especially their sharp
points, which cause local transformation and smooth
change in the slope of the curve (Panico and Brinson,
2008). As it is obvious, compared to the approach pro-
posed by Entchev and Lagoudas (2002), the present
model is capable of capturing this phenomenon.
However, since it is supposed that the pores are spheri-
cal voids without sharp edges which are repeated uni-
formly through the PSMA, the effects of stress
concentration is not so severe in the present work. This
issue causes the predicted stress–strain response not to
be as smooth as the experimental one.

Figure 14 shows the stress–strain response of 42%
porous NiTi in tension and compression using the AM.
It is seen that for a specific value of strain, the compres-
sive hysteresis is bigger than the tensile one. To assess
this issue more comprehensively, the stress–strain
responses of the PSMA with different values of porosity
are depicted in Figure 15. Note that since the solid finite
element model is used, a vast range of porosity can be
modeled. In this article, the value of porosity between
10% and 85% is considered for studying the effects of
porosity. Figure 15 shows that an increase in the value
of porosity leads to a decrease in the hysteresis of the
stress–strain curve as well as the required stress for the
same value of strain in both tension and compression.
In addition, the difference between the hysteresis area
in tension and compression decreases with the increase
in the value of porosity. To prove this claim, a dimen-
sionless parameter L=(AC

hist � AT
hist)=AC

hist is introduced,
in which AC

hist and AT
hist are the hysteresis areas of

Figure 12. Comparison of stress–strain response of 13%
porous NiTi obtained using symmetric and asymmetric models.

Table 2. Material parameters attributed to case 2.

EA (MPa) E+
M (MPa) E�M (MPa) n Mf (8C) Ms (8C) As (8C) Af (8C) scr

s (MPa)

40,000 20,000 28,000 0.33 0.0 20.0 30.0 60.0 0.0
scr

f (MPa) CM (MPa=8C) CAs (MPa=8C) CAf (MPa=8C) e+L e�L b1 b2 T (8C)
0.0 7.0 7.0 7.0 0.03 20.016 0.16 0.16 60
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stress–strain curve in tension and compression, respec-
tively. Variations of the parameter L with the value of
porosity related to Figure 15 are shown in Figure 16. It
can be concluded from this figure that the hysteresis
area of stress–strain curve in tension tends to that in
compression by increasing the value of porosity. The
value of parameter L is about 10% for 10% porosity,
while it is smaller than 0.5% for 85% porosity.

Case 3: SMA cellular lattice structures

The model is meshed similar to case 1, and the appro-
priate mesh size was found to be about 0.05 3 D.

Figure 13. Comparison of two loading–unloading cycles obtained in experiment and by Entchev and Lagoudas (2002) model with
(a) SMT, (b) SMC, and (c) AM.

Figure 15. Influence of porosity on the asymmetric stress–
strain response of PSMAs.

Figure 14. Stress–strain response of 42% porous NiTi in
tension and compression obtained using the AM.
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Table 3 shows the material parameters utilized for these
investigations.

Figure 17(a) to (d) shows the stress–strain response
of BCC lattice structure using SMC, SMT, and AM for
different values of porosity. It is seen that the SMC pre-
dicts stress levels higher than those by the other two

models. It might be because of higher values of stress
level related to compressive stress–strain response of
dense SMAs as observed in experiments. Since some
fibers of each strut in the lattice experience tension
while some experience compression, using the AM, the
required stress at a specific strain is higher than that by
SMT while it is lower than that by SMC. Moreover, the
stress level in AM is closer to SMC than that in SMT.
This issue can be explained such that the unit cell is sup-
posed to carry compressive loads. Therefore, each strut
is under bending as well as compression. Additionally,
more fibers experience compressive loads, and the neu-
tral axis moves toward the tensile portion. Accordingly,
the stress–strain response of AM is closer to that of
SMC. As another result, by decreasing the amount of
porosity, the stress–strain response of AM tends to one
obtained using the SMC. It is due to the fact that by
increasing the value of porosity, bending in the lattice
struts is more pronounced in comparison with axial

Figure 17. Stress–strain response of SMA with BCC cellular lattice structure with the porosity of (a) 25.20%, (b) 44.30%, (c)
64.25%, and (d) 82.15%.

Table 3. Material parameters utilized for case 3.

EA (MPa) E+
M (MPa) E�M (MPa) n Mf (8C) Ms (8C) As (8C) Af (8C) scr

s (MPa)

45,000 35,000 60,000 0.33 240 220 10 35 200
scr

f (MPa) CM (MPa=8C) CAs (MPa=8C) CAf (MPa=8C) e+L e�L b1 b2 T (8C)
500 3.75 12 12 0.045 20.016 0.3 0.18 60

Figure 16. Variations of the parameter L with porosity.
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loading, meaning that more portions of the struts expe-
rience tension.

Figure 18 compares the stress–strain response of
BCC-Z cellular lattice structures obtained using SMT,
SMC, and AM for different values of porosity. As it
can be seen, even for high amounts of porosity, the
material asymmetric response of dense SMA has a
slight effect on the mechanical response of BCC-Z cel-
lular lattices in comparison with BCC lattices. It means
that the main deformation mechanism in BCC-Z lattice
structure is axial contraction due to the existence of
vertical strut. In addition, similar to BCC structure, by
decreasing the value of porosity, the effects of asym-
metric material response decrease.

Conclusion

This article deals with study of the effects of asym-
metric material response of dense SMAs on the
mechanical properties of porous products. To achieve
this goal, a 3D constitutive model considering this
behavior was developed based on microplane theory.
The model was then used to attribute material beha-
vior of SMAs to corresponding unit cell models. The
results of AM were compared with experiment and
previous model, and a good correlation was observed.
The results obtained by the SMT and SMC were also
compared with those obtained by AM. It was realized

that in comparison with the other two models, predic-
tions of the AM are closer to experimental findings. In
addition, the effects of asymmetric material response
on the hysteresis area of stress–strain curve in tension
and compression for several levels of porosity were
assessed. It was concluded that by increasing the value
of porosity, the difference between the hysteresis area
in tension and compression decreased. Finally, the
stress–strain response of superelastic BCC and BCC-Z
cellular lattice structures was investigated using sym-
metric model with tensile and compressive material
parameters as well as AM. The obtained results illus-
trates that the asymmetric material response can affect
the stress–strain response of lattice structures. In addi-
tion, in comparison with the AM, a less stress level is
predicted using the SMT and SMC, while the SMC
over-predicts the stress level. Also, the effects of asym-
metric material response are decreased by decreasing
the value of porosity and increasing the portion of
axial loading in deformation mechanisms of the
lattices.
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Böhm HJ (2004) A Short Introduction to Continuum Microme-

chanics. New York: Springer.
Bouvet C, Calloch S and Lexcellent C (2004) A phenomeno-

logical model for pseudoelasticity of shape memory alloys

under multiaxial proportional and nonproportional load-

ings. European Journal of Mechanics: A/Solids 23: 37–61.
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Appendix 1

Notation

Af austenite finish temperature
As austenite start temperature
AC

hist hysteresis area of stress–strain curve in
compression

AT
hist hysteresis area of stress–strain curve in

tension
CAf slope of austenite finish in stress–

temperature phase diagram
CAs slope of austenite start in stress–

temperature phase diagram
CM slope of martensite band in stress–

temperature phase diagram
D struts’ diameter of BCC and BCC-Z

lattice structures
E macroscopic elastic modulus
EA austenite elastic modulus
E+

M stress-induced tensile elastic modulus of
martensite

E�M stress-induced compressive elastic
modulus of martensite

ET
M temperature-induced elastic modulus of

martensite
J2 second invariant of deviatoric stress

tensor
J3 third invariant of deviatoric stress tensor
L unit cell length
Mf martensite finish temperature
Ms martensite start temperature
ni components of the unit normal vector, n,

to a microplane
R radius of spherical pores in unit cell model
ti traction vector on a microplane
t̂i unit vector parallel to resultant shear

stress on a microplane

u translational displacement in the x
direction

v translational displacement in the y
direction

w translational displacement in the z
direction

b parameter to determine the value of
asymmetry

d penetration value for porous SMA unit
cell model

D compressive displacement to a unit cell
eD total deviatoric strain
eij macroscopic strain tensor
e+L maximum recoverable strains in uniaxial

tension
e�L maximum recoverable strains in uniaxial

compression
eT total shear strain
eV total volumetric strain
n Poisson’s ratio
jT temperature-induced martensite volume

fraction
j+s volume fraction of stress-induced tensile

martensite
j�s volume fraction of stress-induced

compressive martensite
sD deviatoric part of sN

sij macroscopic stress tensor
sN normal stress on a microplane
sT shear stress on a microplane
sTi components of shear stress vector on a

microplane
sV volumetric part of sN

scr
f critical stress for finish of detwinning

scr
s critical stress for start of detwinning

ŝ modified equivalent stress
O surface of a unit hemisphere
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