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Özet. Bu makalede, verilen bir X kategorisi için, verilen birM⊆ X1 derlemesi üzerindeki
kapanış operatörlerinin belli kategorilerini, X üzerindeki önsınıf-değerli esnek öndemetlerin
belli kategorilerinin içine tam gömüyoruz. Daha sonra, X üzerindeki önsınıf-değerli esnek
öndemetlerin biraz önce bahsi geçen kategorilerini, X üzerindeki topolojik izleçlerin belli
kategorilerinin içine tam gömüyoruz. Elde edilen dolu gömmeleri birleştirerek, verilen bir
kapanış operatöründen bir topolojik izleç inşa ediyoruz.†

Anahtar Kelimeler. Kapanış operatörü, esnek öndemet, esnek doğal dönüşüm, (tam)
önsıralı ya da kısmi sıralı sınıf, (zayıf) topolojik izleç.

Abstract. In this article for a given category X , we fully embed certain categories of
closure operators on a given collection M ⊆ X1, in certain categories of preclass-valued
lax presheaves on X . We then fully embed the just mentioned categories of preclass-valued
lax presheaves on X , in certain categories of topological functors on X . Combining the full
embeddings obtained, we construct a topological functor from a given closure operator.

Keywords. Closure operator, lax presheaf, lax natural transformation, (complete)
preordered or partially ordered class, (weak) topological functor.

1. Introduction

The categorical notion of closure operators has unified several notions in different

areas of mathematics, [12]. It is studied in connection with many other notions

as well as the notion of topological functors. Closure operators and/or topological

functors have been investigated in [1] to show full functors and topological func-

tors form a weak factorization system in the category of small categories, in [3],

to characterize the notions of compactness, perfectness, separation, minimality and

absolute closedness with respect to certain closure operators in certain topological

categories, in [4] to show that the category of MerTop is topological over Top and to
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study certain related closure operators, in [5] to verify that there is a bicoreflective

general process available for carrying out certain constructions and that the bicore-

flector can be adapted to respect a closure operator when the topological construct is

endowed with such, in [6] to prove certain categories are topological, in [8] to define

connectedness with respect to a closure operator in a category and to show that un-

der appropriate hypotheses, most classical results about topological connectedness

can be generalized to this setting, in [9] to define and compare an internal notion of

compact objects relative to a closure operator and relative to a class of morphisms,

in [10] to show that Alg(T ) as well as some other categories are topological, in [11] to

provide a product theorem for c-compact objects which gives the known Tychonoff’s

Theorem, in [13] to investigate epireflective subcategories of topological categories

by means of closure operators, in [14] to study initial closure operators which include

both regular and normal closure operators, in [15] to study the concepts of isolated

submodule, honest submodule, and relatively divisible submodule, in [16] in con-

nection with semitopologies, in [17] to show certain fuzzy categories are topological

and extended fuzzy topologies are given dually as a certain fuzzy closure operators,

in [18] to study the notions of closed, open, initial and final morphism with respect

to a closure operator, in [19] to give a connection between closure operators, weak

Lawvere-Tierney topologies and weak Grothendieck topologies and in [21] to prove

for a topological functor over B, every cocontinuous left action of B(b, b) on any

cocomplete poset can be realized as the final lift action associated to a canonically

defined topological functor over B; to mention a few.

The categories we consider in this paper are generally quasicategories in the sense

of [2], however we refer to them as categories.

For a given category X , in Section 2 of the paper, we introduce the categories,

Cl(X ) (Cls(X )), of closure operators (respectively, semi-idempotent closure opera-

tors) and we show they can be fully embedded in the categories, PrclsX
op

LL (respec-

tively, PrclsX
op

SL ), of preclass-valued lax presheaves (respectively, preclass-valued semi

presheaves). We also consider the cases where the domain of the closure operator

is a complete preordered class, or a complete partially ordered class and fully em-

bed the corresponding categories in complete preclass-valued lax presheaves, etc. In

Section 3, we show the category PrclsX
op

SL can be fully embedded in the category

CAT(X ) of concrete categories over X . In Section 4, we fully embed the category

PrclsX
op

SL in the category, WTop1(X ), of weak 1-topological categories over X . We

also prove if the semi presheaves are complete preclass valued, then the embedding



CUJSE 10 (2013), No. 1 103

factors through the category, WTop(X ), of weak topological categories over X ; and

that if they are poclass valued, then the embedding factors through the category,

Top(X ), of topological categories over X . We conclude this section by combining

the previously obtained full embeddings to get (weak) topological categories from

given closure operators. Finally, in Section 5, we give several examples.

2. Lax Presheaves via Closure Operators

For a category X , we denote the collection of objects by X0 and the collection of

morphisms by X1.

Definition 2.1. Let X be a category and for x ∈ X0, X1/x be the class of all

morphisms to x. Define a preorder on X1/x, by f ≤ g if there is a morphism α

such that f = g ◦ α and let “∼” be the equivalence relation generated by “≤”, so

that f ∼ g if and only if f ≤ g and g ≤ f . For M ⊆ X1, the above preorder and

equivalence relation on X1/x can be passed over to M/x. Also we write m ∼M/x

(m ∼M) if there is n ∈M/x (n ∈M) such that m ∼ n.

Denoting a pullback of g along f by f−1(g), one can easily verify:

Lemma 2.2. Let f : x −→ y be a morphism and g, h ∈ X1/y such that f−1(g) and

f−1(h) exist.

(i) If g ≤ h, then f−1(g) ≤ f−1(h).

(ii) If g ∼ h, then f−1(g) ∼ f−1(h).

Definition 2.3. M has X -pullbacks if for all f : x −→ y in X1, whenever m ∈M/y,

then a pullback, f−1(m), of m along f exists and f−1(m) ∈M/x.

Definition 2.4. Let M⊆ X1 have X -pullbacks. A closure operator cM on M is a

family of {cxM :M/x −→M/x}x∈X0 of functions with the following properties:

(i) For every m ∈M/x, m ≤ cxM(m) (expansiveness),

(ii) For m,n ∈M/x with m ≤ n, cxM(m) ≤ cxM(n) (order preservation),

(iii) For every f : x −→ y ∈ X1 and m ∈ M/y, cxM(f−1(m)) ≤ f−1(cyM(m))

(continuity).

Sometimes we use the notations f̄ or cM(f) instead of cxM(f).
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Definition 2.5. Let X be a category with a closure operator cM on it.

(i) An object m ∈ M is called semi-closed if m ∼ m. A closure operator cM is

called semi-identity if all the members of M are semi-closed.

(ii) An object m ∈ M is called semi-idempotent if m is semi-closed. A closure

operator cM is called semi-idempotent if all the members of M are semi-

idempotent.

Lemma 2.6. Let cM be a closure operator.

(i) If m ∈M is semi-closed, then so is f−1(m).

(ii) If m ∈M is semi-idempotent, then f−1(m) is semi-closed.

Proof. (i) By Lemma 2.2 (ii), f−1(m) ≤ f−1(m) ≤ f−1(m) ∼ f−1(m). The result

follows.

(ii) Follows from part (i) and the fact that m is semi-closed. 2

Definition 2.7. A closure morphism, c : cM −→ cN , from a closure operator cM to

a closure operator cN is a family of order preserving maps {cx :M/x −→ N /x}x∈X0

such that for each f : x −→ y in X1 and each m inM/y, cx(f−1(m)) ≤ f−1(cy(m)).

The collection of the identities form a closure morphism 1cM : cM −→ cM and for

morphisms c : cM −→ cN and c′ : cN −→ cK, c′ ◦ c(f−1(m)) ≤ c′(f−1(c(m))) ≤
(f−1(c′(c(m)))). Hence c′ ◦ c is a closure morphism. So we have:

Lemma 2.8. The closure operators in a category X whose domain has X -pullbacks,

together with the closure morphisms form a category.

We denote the category of Lemma 2.8, whose objects are the closure operators in

a category X for which the domain has X -pullbacks, and whose morphisms are the

closure morphisms, by Cl(X ). The full subcategory of Cl(X ) whose objects are

semi-idempotent is denoted by Cls(X ).

With Prcls the category of preclasses with order preserving maps, we have:

Definition 2.9. (a) A preclass valued lax presheaf M : X op −→ Prcls is a map

that satisfies the following two conditions:

(i) For each x ∈ X , 1M(x) ≤M(1x).

(ii) For each f, g ∈ X1, M(f ◦ g) ≤M(g) ◦M(f).

A preclass valued semi presheaf is a preclass valued lax presheaf satisfying
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(ii)′ For each f, g ∈ X1, M(f ◦ g) ∼M(g) ◦M(f).

(b) A lax natural transformation ϕ : M −→ M ′ is a transformation such that for

each morphism f : x −→ y, one has ϕx ◦M(f) ≤M ′(f) ◦ ϕy.

If ϕ : M −→M ′ and ψ : M ′ −→M ′′ are lax natural transformations, then for each

morphism f : x −→ y we have (ψ◦ϕ)x◦M(f) ≤ ψx◦M ′(f)◦ϕy ≤M ′′(f)◦ψy ◦ϕy =

M ′′(f) ◦ (ψ ◦ ϕ)y. So ψ ◦ ϕ is a lax natural transformation. It follows that:

Lemma 2.10. Lax presheaves and lax natural transformations on X form a cate-

gory.

We denote the category of Lemma 2.10 by PrclsX
op

LL and its full subcategory whose

objects are semi presheaves by PrclsX
op

SL .

Definition 2.11. For cM : M −→ M in Cl(X ), let Mc : X op −→ Prcls be the

mapping that takes f : x −→ y to Mc(f) : M/y −→ M/x, where Mc(f)(m) =

f−1(m) for f the identity morphism, we pick f−1 to act like identity.

Proposition 2.12. Mc is a lax presheaf.

Proof. Since M has X -pullbacks, Mc(f) is well-defined. For m,n ∈ M/y with

m ≤ n, m ≤ n and consequently for each f : x −→ y, f−1(m) ≤ f−1(n). So Mc(f)

is a morphism in Prcls.

For m ∈ Mc(x) and morphisms f : x −→ y and g : y −→ z, we have m ≤ m =

Mc(1)(m) and Mc(g ◦ f)(m) = (g ◦ f)−1(m) ∼ f−1 ◦ g−1(m) ≤ f−1(g−1(m)) =

Mc(f) ◦Mc(g)(m). So Mc : X op −→ Prcls is a lax presheaf. 2

Definition 2.13. For c : cM −→ cN in Cl(X ), let θc : Mc −→ Nc be the transfor-

mation defined by the collection {cx :M/x −→ N /x}x∈X0 , so that (θc)x = cx.

Proposition 2.14. θc is a lax natural transformation.

Proof. For each m, we have (θc)x ◦ Mc(f)(m) = (θc)x(f
−1(m)) = cx(f−1(m)) ≤

f−1(cy(m)) = Nc(f)(cy(m)) = Nc(f) ◦ (θc)y(m). Hence θc is a lax natural transfor-

mation. 2

Theorem 2.15. (i) The mapping L : Cl(X ) −→ PrclsX
op

LL , that takes the object

cM to Mc and the morphism c : cM −→ cN to θc, is a full embedding.

(ii) The full embedding L restricted to Cls(X ) factors through PrclsX
op

SL , yielding a

full embedding Ls : Cls(X ) −→ PrclsX
op

SL .
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Proof. (i) One can easily verify that L is a faithful functor.

Now we show L is one to one on objects. For this aim let L(cM) = L(cN ). So for

each x ∈ X0 we haveM/x = N /x, and thereforeM = N . Also for 1x : x −→ x and

each m ∈ M we have Mc(1x)(m) = Nc(1x)(m), i.e cM(m) = cN (m), consequently

cM = cN .

Faithfulness and the fact that L is one to one on objects renders L an embedding.

Finally to show L is full, let θ : Mc −→ Nc be in hom(L(cM),L(cN )). Define

c : cM −→ cN by c(f) = θ(f). Since c(f−1(m)) = θ(f−1(m)) = θ(M(f)(m)) ≤
N(f)(θ(m)) = f−1(c(m)), c is in hom(cM, cN ) and it easily follows that L(c) = θ.

(ii) We first need to show that for each object cM in Cls(X ), L(cM) is a semi presheaf.

Let cM :M−→M be in Cl(X ). For m ∈Mc(x), we have m ≤ m ∼Mc(1)(m); and

for morphisms f : x −→ y and g : y −→ z, since cM is a semi-idempotent closure

operator, Lemma 2.6 implies, Mc(g ◦ f)(m) = (g ◦ f)−1(m) ∼ f−1 ◦ g−1(m) ∼
f−1(g−1(m)) = Mc(f) ◦Mc(g)(m). Hence Mc is a semi presheaf.

The fact that L is an embedding will easily imply that so is Ls. 2

Definition 2.16. Let M be a collection of morphisms in X and cM : M −→ M
be a closure operator.

(i) M is locally complete if for all x ∈ X , M/x is complete, i.e. it has meets.

(ii) M is stably locally complete if it is complete, it has X -pullbacks, and for all

morphisms f : x −→ y, f−1 :M/y −→M/x preserves meets.

(iii) cM is meet preserving ifM is stably locally complete and for all x, the mapping

cxM :M/x −→M/x preserves meets.

We denote by CmCls(X ) (respectively CmPoCls(X ), the full subcategory of Cls(X )

whose objects are meet preserving (respectively meet preserving with domain a

poset). Also let ‘Cmprcls’ (respectively ‘Cmpocls’) be the subcategory of ‘Prcls’

whose objects are complete (respectively complete and partially ordered) and whose

morphisms are meet preserving and denote by CmprclsX
op

SL (respectively CmpoclsX
op

SL )

the category whose objects are semi presheaves M : X op −→ Cmprcls (respectively

M : X op −→ Cmpocls). We have:

Corollary 2.17. The full embedding Ls : Cls(X ) −→ PrclsX
op

SL restricts to give:

(i) the full embedding Ls : CmCls(X ) −→ CmprclsX
op

SL .

(ii) the full embedding Ls : CmPoCls(X ) −→ CmpoclsX
op

SL .

Proof. Follows easily. 2
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3. Concrete Functors via Lax Presheaves

Definition 3.1. For M : X op −→ Prcls in PrclsX
op

SL , let
´
X M have objects (x, a)

with a ∈ M(x) and morphisms f̃ : (x, a) −→ (y, b) corresponding to morphisms

f : x −→ y in X for which a ≤ M(f)(b). Also define Ṁ :
´
X M −→ X to take

f̃ : (x, a) −→ (y, b) to f : x −→ y.

Proposition 3.2. (
´
X M, Ṁ) is a concrete category.

Proof. For each a ∈ M(x) we have a ≤ M(1)(a), so 1̃x : (x, a) −→ (x, a) is a

morphism. Also if f̃ : (x, a) −→ (y, b) and g̃ : (y, b) −→ (z, c) are morphisms, then

a ≤M(f)(b) ≤M(f) ◦M(g)(c) ∼M(g ◦ f)(c) meaning g̃ ◦ f̃ is a morphism. Hence´
X M is a category. It follows easily that Ṁ is a faithful functor. 2

The category
´
X M is a generalization of the category of elements as defined in [20].

Definition 3.3. For θ : M −→ N in PrclsX
op

SL , let θ̇ :
´
X M −→

´
X N be defined by

taking f̃ : (x, a) −→ (y, b) in
´
X M to f̃ : (x, θx(a)) −→ (y, θy(b)) in

´
X N .

Proposition 3.4. θ̇ : Ṁ −→ Ṅ is a concrete functor.

Proof. Obviously θ̇ is well-defined on objects. To show it is well-defined on mor-

phisms, let f̃ : (x, a) −→ (y, b) be given in
´
X M . So a ≤ M(f)(b). Since θx

preserves order, θx(a) ≤ θx(M(f)(b)). Since θ is lax, θx(M(f)(b)) ≤ N(f)(θy(b)).

Therefore θx(a) ≤ N(f)(θy(b)), implying the morphism f : x −→ y lifts uniquely

to f̃ : (x, θx(a)) −→ (y, θy(b)) in
´
X N . It then follows easily that θ̇ is a concrete

functor. 2

With CAT(X ) denoting the category whose objects are the concrete categories over

X and whose morphisms are the concrete functors between them, we have:

Theorem 3.5. The mapping C : PrclsX
op

SL −→ CAT(X ) that takes the morphism

θ : M −→ N to θ̇ : Ṁ −→ Ṅ is a full embedding.

Proof. It follows easily that C is a functor. To show it is faithful, let M
θ
−→−→
θ′
N be

morphisms in PrclsX
op

SL such that θ̇ = θ̇′. Then θ̇(x, a) = θ̇′(x, a), and so (x, θx(a)) =

(x, θ′x(a)). Therefore θx(a) = θ′x(a), implying θ = θ′.

Next we show C is one to one on objects. So suppose Ṁ = Ṅ . It follows that´
X M =

´
X N . Now if a ∈ M(x), then (x, a) ∈

´
X M and so (x, a) ∈

´
X N , which

implies a ∈ N(x). Therefore M(x) ⊆ N(x). Similarly N(x) ⊆ M(x). Hence

M = N . It now follows that C is an embedding.
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Finally to show fullness, let F : Ṁ −→ Ṅ be a morphism in CAT(X ). Since

Ṅ ◦ F = Ṁ , if F (x, a) = (y, b), then y = x. We define θ : M −→ N so that θx(a)

is the second component of F (x, a). Therefore we have F (x, a) = (x, θx(a)). To

show θ is lax, let f : x −→ y be a morphism in X and b ∈ M(y). Then f lifts to

f̃ : (x,M(f)(b)) −→ (y, b) in
´
X M and so F (f̃) : (x, θx(M(f)(b))) −→ (y, θy(b)) is in´

X N . Therefore, with g̃ = F (f̃), θx(M(f)(b)) ≤ N(g)(θy(b)). But Ṅ ◦F (f̃) = Ṁ(f̃)

implies g = f and so θx(M(f)(b)) ≤ N(f)(θy(b)). Hence θ is lax.

It is obvious that θ̇ = F . 2

4. Topological Functors via Closure Operators

Definition 4.1. A functor G : C −→ X is said to be weak (1-)topological if every

structured (1-)source (fi : x −→ yi = G(bi))I has an initial lift (f̃i : a −→ bi)I .

Proposition 4.2. (i) For M ∈ PrclsX
op

SL , Ṁ :
´
X M −→ X is weak 1-topological.

(ii) For M ∈ CmprclsX
op

SL , Ṁ :
´
X M −→ X is weak topological.

(iii) For M ∈ CmpoclsX
op

SL , Ṁ :
´
X M −→ X is topological.

Proof. (i) If f : x −→ y = Ṁ(y, a) is an Ṁ -structured morphism, then obviously

f̃ : (x,M(f)(a)) −→ (y, a) is a lift of f . To show f̃ : (x,M(f)(a)) −→ (y, a) is

initial, suppose g : z −→ x is such that f ◦ g has a lift f̃ ◦ g : (z, c) −→ (y, a), then

c ≤M(f ◦ g)(a) ∼M(g)(M(f)(a)). Hence there is a lift g̃ : (z, c) −→ (x,M(f)(a))

of g.

(ii) Consider an Ṁ -structured source S = (fi : x −→ yi = Ṁ(yi, ai))I over I. For

each i ∈ I, M(fi)(ai) ∈ M(x) which is a complete preclass. Let a be a meet of

M(fi)(ai). We show that S̃ = (f̃i : (x, a) −→ (yi, ai))I is an initial lift of the source

S. If g : z −→ x is such that S ◦ g has a lift P = (f̃i ◦ g : (z, c) −→ (yi, ai))I , then

for each i we have c ≤M(fi ◦ g)(ai) ∼M(g)(M(fi)(ai)). Since M(g) is a morphism

in Cmprcls, it preserves meets. Hence we have c ≤ M(g)(a), i.e. there is a lift

g̃ : (z, c) −→ (x, a) of g.

(iii) If (x, a) ∼ (x, b) in Ṁ−1(x), then a ∼ b in M(x) and so a = b. Therefore Ṁ is

amnestic. By part (ii) Ṁ is weak topological, hence it is topological. 2

Denoting by WTop1(X ) (respectively WTop(X ), Top(X )) the full subcategory of

CAT(X ) whose objects are weak 1-topological (respectively weak topological, topo-

logical), we have:
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Theorem 4.3. We have:

(i) The full embedding C : PrclsX
op

SL −→ CAT(X ) factors through WTop1(X ),

yielding a full embedding C : PrclsX
op

SL −→WTop1(X ).

(ii) The full embedding C : CmprclsX
op

SL −→ CAT(X ) factors through WTop(X ),

yielding a full embedding C : CmprclsX
op

SL −→WTop(X ).

(iii) The full embedding C : CmpoclsX
op

SL −→ CAT(X ) factors through Top(X ),

yielding a full embedding C : CmpoclsX
op

SL −→ Top(X ).

Proof. Follows from Theorem 3.5 and Proposition 4.2. 2

Corollary 4.4. We have the following full embeddings.

(i) W1 : Cls(X ) −→WTop1(X ).

(ii) W : CmCls(X ) −→WTop(X ).

(iii) T : CmPoCls(X ) −→ Top(X ).

Proof. Composing the full embeddings given in Theorem 2.15, Corollary 2.17 and

Theorem 4.3 yields the given full embeddings. 2

5. Examples

Lemma 5.1. Let U : X −→ Set be a construct, Epi be the collection of all the

epis in X and Iinc = {i : a −→ x : i is initial and U(i) is the inclusion}. Suppose

X has pullbacks and unique (Epi, Iinc)-factorization that is pullback stable. If the

collection M⊇ Iinc has X -pullbacks and satisfies: m = i ◦ e with m ∈ M, e ∈ Epi

and i ∈ Iinc, implies e is a retraction, then:

(i) M is (stably) locally complete if Iinc is.

(ii) any closure operator ( ) : Iinc −→ Iinc extends to a closure operator on M
such as c :M−→M. Furthermore c is idempotent if ( ) is.

Proof. (i) Suppose Iinc is locally complete. Given any collection mα ∈ M/x for

some x, let mα = iα ◦ eα be the factorization of mα. Using the fact that eα is a

retraction, one can easily verify that any meet of the collection iα is a meet of the

collection mα.

Now suppose Iinc is stably locally complete. Given a morphism f : x −→ y and a

collection mα : bα −→ y in M/y, let mα = imα ◦ emα be the factorization of mα,

and nα be the pullback of mα along f . Since factorizations are pullback stable,
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inα = f−1(imα). So ∧nα = ∧inα = ∧f−1(imα) = f−1(∧imα) = f−1(∧mα), as

required.

(ii) Given m : a −→ x inM/x, let m = im ◦em with em ∈ Epi and im ∈ Iinc. Define

c(m) = im. Since m ≤ im and im ≤ im, m ≤ c(m). If m ≤ n via α (i.e. m = n ◦ α),

then im ≤ in via en ◦ α ◦ sm, where sm is the right inverse of em which exists since

m ∈ M. So (m) = im ≤ in = c(n). Finally suppose f : x −→ y is a morphism

in X and m ∈ M/y. Let n be the pullback of m along f . Since factorizations are

pullback stable, in = f−1(im). So c(n) = in = f−1(im) ≤ f−1(im) = f−1(c(m)),

as desired. Hence c is a closure operator on M. If m ∈ Iinc, then im = m and so

c(m) = im = m. Hence c is an extension of the given closure operator.

Also with m ∈M, we have c(m) = im ∈ Iinc. So c(c(m)) = c(im) = im, rendering c

idempotent if ( ) is. 2

Example 5.2. Consider the category Set as a construct over Set via the identity

functor. The collection Iinc of Lemma 5.1 is the collection Inc of all the inclusions

which is stably locally complete. So if M is a class of morphisms that has X -

pullbacks and contains all the inclusions (M can be the collection of inclusions, the

collection of monos, or the collection of all the morphisms, among others), then all

the conditions of Lemma 5.1 are met, and so M is stably locally complete.

Next consider the identity closure operator on Inc. By Lemma 5.1, we get an

idempotent closure operator c on M . c(m) is just the image of m. Note that each

inclusion is closed and every morphism m ∈M is semi-closed (because m = im ◦ em
and em is a retraction). Hence c is a semi-identity closure operator.

The associated category
´
M , related to this closure operator, has objects (X,m),

where X is a set and m : A −→ X is in M for some set A; and has morphisms

f : (X,m) −→ (Y, n), where f : X −→ Y is a function such that m ≤ f−1(c(n)) or

equivalently Imf◦m ⊂ Imn or equivalently f ◦m ≤ n. This category over Set is, by

Corollary 4.4 (ii), a weak topological construct.

Example 5.3. Consider the category Top of topological spaces and continuous

functions as a construct over Set via the forgetful functor. The collection Iinc of

Lemma 5.1 is the collection Inc of all the inclusions (with the subspace topology)

which is stably locally complete. So if M is a class of morphisms that has X -

pullbacks and contains all the inclusions such that in the (Epi, Inc)-factorization of

each m inM, the epi factor is a retraction (M can be the collection of inclusions, the
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collection of embeddings (i.e., initial monos), among others), then all the conditions

of Lemma 5.1 are met, and so M is stably locally complete.

Consider the following closure operators on Inc, that take the inclusion map i :

A −→ X to the inclusion map i : A −→ X, [7], where A is:

(i) the intersection of all closed subsets of X containing A.

(ii) the intersection of all clopen subsets of X containing A.

(iii) the union of A with all connected subsets of X that intersect A.

(iv) the set of all x ∈ X such that for every neighborhood U of x, A∩ ¯{x}∩U 6= ∅,
that ¯{x} is the topological closure of the subset {x}.

(v) the set of all x ∈ X such that for every neighborhood U of x, A∩ Ū 6= ∅, that

Ū is the topological closure of the subset U .

By Lemma 5.1, each of the above closure operators yield a closure operator c on

M, where c(m) = im, with im the image of m. All the above closure operators

are idempotent except the one in part (v). So in cases (i) to (iv), we may consider

the categories
´
M related to these closure operators. Objects of these categories

are (X,m), where m : A −→ X is in M and morphisms are f : (X,m) −→ (Y, n),

where f : X −→ Y is a continuous function such that m ≤ f−1(c(n)) or equivalently

f ◦m ≤ in. These categories over Top are, by Corollary 4.4 (ii), weak topological.

Example 5.4. Consider the category Grp of groups and group homomorphisms as

a construct over Set via the forgetful functor. The collection Iinc of Lemma 5.1 is

the collection Inc of all the inclusions (with the subgroup structure) which is stably

locally complete. So ifM is a class of morphisms that has X -pullbacks and contains

all the inclusions such that in the (Epi, Inc)-factorization of each m in M, the epi

factor is a retraction (M can be the collection of inclusions, the collection of initial

monos, among others), then all the conditions of Lemma 5.1 are met, and so M is

stably locally complete.

Consider the following closure operators on Inc, that take the inclusion map i :

A −→ X to the inclusion map i : A −→ X, [7], where A is:

(i) the intersection of all normal subgroups of X containing A.

(ii) the intersection of all normal subgroups K of X containing A such that X/K

is Abelian.

(iii) the intersection of all normal subgroups K of X containing A such that X/K

is torsion-free.

(iv) the subgroup generated by A and by all perfect subgroups of X.
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By Lemma 5.1, each of the above closure operators yield a closure operator c on

M, where c(m) = im, with im the image of m. All the above closure operators are

idempotent except the one in part (iv). So in cases (i) to (iii), we may consider the

categories
´
M related to these closure operators. Objects of these categories are

(X,m), where m : A −→ X is inM and morphisms are f : (X,m) −→ (Y, n), where

f : X −→ Y is a group homomorphism such that m ≤ f−1(c(n)) or equivalently

f ◦m ≤ in. These categories over Grp are, by Corollary 4.4 (ii), weak topological.

Example 5.5. Consider the category Set∗ of pointed sets and point preserving

functions. LetM be any collection of morphisms that has X -pullbacks and is stably

locally complete. Define c :M−→M to take the morphism m : (A, a0) −→ (X, x0)

to m ⊕ x̂0 : (A
∐

1, a0) −→ (X, x0), where 1 is the terminal and x̂0 : 1 −→ X is

the map taking the point to x0. Now m ≤ m ⊕ x̂0 via ν1 : A −→ A
∐

1, the first

injection to the coproduct. If m ≤ n via φ, then m⊕ x̂0 ≤ n⊕ x̂0 via φ
∐

1. Finally,

given f : (X, x0) −→ (Y, y0) and m : (B, b0) −→ (Y, y0), let n : (A, a0) −→ (X, x0)

be the pullback of m along f . Then c(f−1(m)) = c(n) = n ⊕ x̂0 and f−1(c(m)) =

f−1(m ⊕ ŷ0) = n ⊕ i, where i : (f−1(y0), x0) −→ (X, x0) is the inclusion. But

n⊕ x̂0 ≤ n⊕ i via 1
∐
x̂0. Hence c is a closure operator.

Now for m : (A, a0) −→ (X, x0) in M, c(m) = m⊕ x̂0 and c(c(m)) = m⊕ x̂0 ⊕ x̂0.
Since m ⊕ x̂0 ⊕ x̂0 ≤ m ⊕ x̂0 via 1

∐
(1 ⊕ 1) : (A

∐
1
∐

1, a0) −→ (A
∐

1, a0),

m⊕ x̂0 ∼ m⊕ x̂0 ⊕ x̂0. Hence c is semi-idempotent but obviously not idempotent.

The corresponding weak topological category can be constructed as in the previous

examples.

Example 5.6. Let (X,≤) be a complete partially ordered set and X = C(X,≤)

be the associated category. With M = X1 and c the identity closure operator on

M, the corresponding category
´
M has objects (x, x′) with x′ ≤ x and there is a

unique morphism f : (x, x′) −→ (y, y′) if and only if x ≤ y and y′ ∧ x ≤ x′. By

Corollary 4.4 (iii), this category is topological over X .
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