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In this paper, the risk assessment of a PV integrated power system is accomplished by computing the
over-limit probabilities and the severities of events such as under-voltage, over-voltage, over-load, and
thermal over-load. These aspects are computed by performing temperature-augmented probabilistic
load flow (TPLF) using Monte Carlo simulation. For TPLF, the historical data for PV generation, ambient
temperature, and load power, each collected at twelve specific time instants of a day for the past five
years are pre-processed by using three linear regression models for accurate uncertainty modeling. For
PV generation data, the developed model is capable of filtering out the annual predictable periodic
variation (owing to positioning of the Sun) and decreasing production trend due to ageing effect
whereas, for ambient temperature and load power, the corresponding models accurately remove the
annual cyclic variations in the data and their growth. The simulations pertaining to the aforesaid risk
assessment are performed on a PV integrated New England 39-bus test system. The system over-limit
risk indices are calculated for different PV penetrations and input correlations. In addition, the
changes in the values of TPLF model parameters on the statistics of the result variables are analyzed. The
risk indices so obtained help in executing necessary steps to reduce system risks for reliable operation.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, power systems are more often operating under
highly unpredictable conditions due to the integration of various
renewable energy sources (RESs). Among the RESs, PV generation is
greatly favored because of its ability to generate power at varying
capacities. This results in uncertainty that sets a higher require-
ment on system security during planning and operation. Further,
geographically nearby PV generations are correlated feed-in. The
increase in uncertainty effect due to high PV penetrations and their
associated correlations cause system variables to violate the limit
and make the system vulnerable. Hence, risk assessment by
computing risk indices based on over-limit probability and severity
to recognize system weakness more realistically is entailed [1]- [2].
The calculation of risk indices are accomplished with the help of
probabilistic load flow (PLF) with respect to input uncertainties and
correlations. The accuracy of the computed risk indices depends on
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the accuracy of the PLF results. The following are the three major
requirements to achieve accurate PLF results.

i) Application of an accurate uncertainty handling method,
ii) Establishment of an accurate power system model, and
iii) Accurate modeling of input uncertainties.

The various methods used for PLF are categorized as, numerical
methods, analytical methods, approximate methods, and hybrid
methods [3]. Monte Carlo simulation (MCS), a typical numerical
method is considered as a reference for accuracy comparison of
other PLF methods [3—22]. MCS provides numerical estimation of
result variables based on random statistical sampling and solves
the PLF problem by a series of deterministic routines.

The establishment of an accurate power system model is highly
essential in PLF. A majority of the PLF studies except for [6] assume
transmission branch resistance as constant. But, branch resistance
depends on branch temperature which in turn is a function of a set
of factors that are probabilistic in nature; among which ambient
temperature is dominant. In order not to overlook the temperature
related errors, temperature-augmented load flow (TLF) captures
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electro-thermal coupling effect of transmission branches [23]. The
first proposal on sensitivity matrix-based temperature-augmented
PLF (TPLF) model is cited in Ref. [22] and the usefulness of proba-
bility distributions of TPLF result variables for various power sys-
tem studies is detailed in Table 1.

In case of TPLF, ambient temperatures of the temperature
dependent branches (TDBs) are included in the input vector in
addition to the bus power injections. This increases the total
number of input random variables (RVs), all of which may not be
modeled by any specific parametric distributions. Hence, it is an
uphill task to accurately model the probability distributions and to
include the associated correlations. Assumption of some para-
metric probability distributions to quantify the input uncertainties
may not always be suitable in all cases. On the other hand, a more
realistic probabilistic modeling, incorporating past experiences can
be achieved from the historical data. The authors in Refs. [4] [13],
[22] [24], have performed uncertainty modeling of input RVs at a
particular instant of time. The uncertainty modeling of peak load
power (at 7 p.m.) [4], maximum PV generation (at noon) [13] [22],
[24], and ambient temperature (at noon) [22] is performed for PLF.
In order to remove the trend from load samples, a fitting curve
using a set of standard functions is used [4]. In Ref. [ 13], the periodic
effect due to annual positioning of the Sun is removed from PV
generation samples by filtering out the daily, seasonal, and annual
periodic components whereas; in Ref. [24] the removal of predi-
cable lowest frequency annual periodic component is accomplished
with the help of a linear clear sky model. In Ref. [22], ambient
temperature data is probabilistically modeled by filtering out the
lowest frequency periodic component of one cycle/year. The un-
dertone of removing the trend and the periodic effect from the
historical data essentially is not to attribute their variations to a
movement in uncertainty.

Although the authors in Ref. [22] successfully have augmented
temperature effect in PLF analysis, the influence of variation of TPLF
model parameters on the statistics of result variables is overlooked.
At a specific time of the day PV generation depends on the
geographical and environmental conditions of that location. At
different time instants, the production patterns are different and
the clear sky model for eliminating the periodic effect as proposed
in Ref. [24] may not be suitable as it accounts for only the Sun's
height which alone is not adequate. Hence, an accurate clear sky
model taking into account the other important factors such as the
Sun's direction and the angle of incidence of solar radiation de-
serves research attention. Similarly, multi-time instant uncertainty
modeling of ambient temperature and load power needs to be
equally regarded for TPLF. Further, the analysis of the impact of
various PV penetrations and different input correlations on TPLF
results is imperative in making the over-limit risk assessment more
realistic. With this motivation, investigations are performed on the
following objectives.

i) An accurate uncertainty modeling of PV generation, ambient
temperature and load power at multiple time instants.

Table 1
Usefulness of probability distributions of the TPLF result variables.

ii) An analysis of the effect of various PV penetrations and the
variations of TPLF model parameters on the statistics of the
result variables.

iii) Over-limit risk assessment considering various PV penetra-
tions and input correlations.

In Section 2, the application of MCS for TPLF is systematically
detailed. The input uncertainties are probabilistically modeled and
correlation effects are discussed in Section 3. In Section 4, various
types of over-limit risk indices are elaborated. In Section 5, modi-
fied New England 39-bus power system is used to analyze the effect
of PV penetration and the value of model parameters on statistics of
result variables. In addition, the system over-limit risk indices are
computed for various PV penetrations and input correlations.
Finally, the concluding remarks are given in Section 6.

2. PLF in temperature-augmented power system model

The power system model as developed for TLF is the basis for
TPLF using MCS. TLF assumes that the power system is both in
electrical and thermal steady state. It is a general conception that
electrical dynamics is neglected in load flow. Again, the thermal
dynamics of the branch conductors is assumed short as compared
to the changes in conductor loading over time. TLF model can be
developed either by considering branch resistance [25] or branch
temperature [23] as state variable. The consideration of the latter
simplifies the mathematics required for modeling and is compu-
tationally more efficient. The transmission branches having non-
zero series resistance are referred to as TDBs. The variation in
branch reactance due to temperature variation is assumed negli-
gible as in Ref. [23]. The modeling steps of TLF are explained as
under.

The resistance of a transmission branch i — j (branch connecting

i™ bus and jth bus) is expressed as,

L4 T i
L= I e B 1 o
RFJ RRef, i—j (TRef, i ¥ TF, ij> (l)

where T;_; is the conductor temperature of the branch i — j, Tg is the
temperature constant, Rger j_j and Ter, ;_j are the reference values
of R;_j and T;_j respectively. According to thermal resistance model,
T;_j is expressed as,

Tij = Tamb, i—j + Trise, i-j = Tamb, i—j + Re, i_jPross, i—j (2)

where, Tamp and Tyise are the ambient temperature and branch
temperature rise above Ty, respectively and Ry is the thermal
resistance. By using (2) let us define,

T'i_j =Ti_j — Ry, i_iPross, i-j = TAmb, i—j (3)

Since the real and reactive bus power injections (P and Q
respectively) are specified, the mismatch equations 4P and 4Q

Result variable Adequacy indices

Bus voltage magnitude
Branch temperature

Steady state under and over voltage probabilities can be obtained.
Probability of branch temperature above the allowable maximum limit i.e., thermal over-load probability can be ensured.

Generator bus reactive power Capability of the system to maintain bus voltage magnitudes at desired level can be evaluated.

Branch power flow
operations.
Slack bus power

Steady state overload probabilities of the transmission branches can be identified to take decisions regarding reinforcement plans and

Probability of slack bus power exceeding the limit can be known.
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respectively can be explicitly expressed. But, it is difficult to define
the branch temperature mismatch equations since their values are
unknown a priori. However, an equation for T’ can be defined for
the TDBs. Here, T’ is the measure of the difference between the
present value of T and the calculated temperature by using the state
variables i.e., bus voltage angle 6 and bus voltage magnitude |V/|.
From (3) it is clear that, the value of T’ is equal to Tpy,. The
calculation of Ry is detailed in Ref. [22] as the ratio of the rated
temperature rise Tgaed rise tO the corresponding rated loss
PRrated loss- The value of Pgaieq 10ss 1S €ither specified or is calculated
using the fully loaded resistance Ry, measured at worst-case Tapp
i.e., Tamp_wc- The expression of Ry, for a TDB using (1) is given as,

TAmbfwc. ijt TRated rise, i—j T TE i—j
RHot, i—j = RRef, i—j ( . - : (4)

TRef, i—j + TF, i—j

The expression for Py i_j [23] is given as,
2
Pross, i = &3 (Vil” + [Vi|* = 21V[|V|cos dy) (5)

where g;_j is the conductance of branch i-j; &;=6; — 9.
Substituting (5) in (3) yields,

T j=Tij—Ry i gi—j( Vi* + |‘/_||2 — 2|Vi||Vj|cos 5ij) (6)

The mismatch equations as the difference between the specified
and calculated values are given as,

AP, = Psp,  — P

AQ=0s.i—Q (7)
ATi_j = Tamp, ij — Ti_j
where, Ps;, ; and Qs), ; respectively are the specified real and reac-

tive power injections at an i™ bus, P, and Q; at an i™ bus are
calculated by using the basic load flow equations. In terms of
temperature-augmented Jacobian matrix, mismatch equations in
(7) are expressed as,

oP P P
% o] of
AP AS AS
ag | = | %2 B 9L A )~ Ay (®)
AT 00 OV T |\ ‘AT AT
oT T oT
90 9|V| oT

The error component of state vectors using (8) is obtained as,

Ao AP
AV| | = (1) | AQ (9)
AT AT

where, ] is the state vector Jacobian matrix.
The model so developed is referred to as a single slack bus TLF
model. The main advantage of this model is that, the transmission

branch temperature is directly calculated from the power flow
solution using Newton-Raphson method. In TLF, the elements in
the state vector are updated by using the errors estimated from (9)
in each iteration. This continues until all mismatches fall within a
presumed tolerance. MCS solves the TPLF by a series of Ng TLFs each
time considering a set of values for input RVs. Simultaneously, Ny
number of samples for each result variable is obtained. Finally, the
probability distributions of the result variables are approximated.

3. Modeling of input uncertainty and description of input
correlation

The circumstance in which uncertainty modeling is carried out
mainly depends on the type of its application i.e., time instant
model or time period model. Therefore, it is essential to decide the
type of uncertainty model for implementation. Here, time-instant
model is adopted. An input RV at time t is modeled as a probabil-
ity distribution. The historical data for the past five years
(2012—2016) is used for uncertainty modeling. The input RVs in this
study includes PV generation, Tpn, and load power.

3.1. PV generation uncertainty modeling

The historical data of PV generations are collected from three
different locations of USA (refer Table 2) situated in the Northern
hemisphere (21924 hourly values for each location) [22], [26]. The
intent is to accomplish an accurate uncertainty modeling at each
time instant from 7 a.m. to 6 p.m. on hourly basis. Since, the data
considered for modeling is at a specific time of the day; it conflates
variability (predictable PV generation variation across the year) and
uncertainty (unpredictable variation due to meteorological condi-
tions). Hence, the historical data observed at a particular time
instant for several years cannot be used alone to inform the un-
certainty of PV generation at that time instant. This calls for the
preprocessing of the observed data by filtering out the predictable
periodic effect. The stochastic variability left after removal of the
effect is termed as the uncertainty component. Consequently, the
variance of PV generation post processing is less than the pre-
processed value [24].

The existing approach [24] to eliminate the periodic effect from
data, considers the actual PV generation as a linear function of
sin s, where fg is the solar elevation angle. But, such an approach is
less accurate in tracing the periodic variations (skewed and/or
multimodal) of data collected at different time instants and at
various locations. The function sin s is the measure of the Sun's
height. But, the Sun's direction (as defined by solar azimuth angle
vs) also has an effect on PV generation. Moreover, the research
carried out in Ref. [27] indicate that array tilt 1 significantly
dominates the PV generation pattern since it affects the angle of
incidence of solar radiation 6;. The aforementioned factors cannot
be ignored in the design of a linear clear sky model. The actual data
in the model considered as a linear function of a set of terms,
T, =sin §s, T, = sin yg and T3 = cos 0 is proposed. In order to ac-
count for the decreasing trend in power production due to aging of

Table 2
Technical and geographical details of the PV arrays.
PV Array 1 PV Array 2 PV Array 3
Capacity 10 kW 7.65 kW 8.88 kW
Orientation/Tilt South/30° South/25° South-West/30°
Location/Post code Monkton/21111 Parkesburg/19960 Lincoln/19365

Coordinates 39.578° (N), 76.614° (W)

39.959° (N), 75.917° (W) 38.87° (N), 75.423° (W)

Note: All the three locations are in Eastern Time zone.
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Fig. 1. Variations of sin fs, sin 72 and cos 6, at 6 p.m. for one year.

PV array, two extra terms T4 = DN and T5 = DN? are included
where, “DN” is the day number of the year (DN=1 for 1st January
2012).

The linear model considering the above five terms is developed
as,
Pyy = apTq + bpT, + cpT3 + dpT4 + epT5 + fp (10)
where ap, bp, cp, dp, ep and fp are the unknown parameters of the
model which are estimated using the least squares method. The
sum of squares of the errors, E is defined as,

E (ap, bp, cp, dp,ep,fp) = Z{PPV — Pu(k)}? (11)

where, Ppy is the observed PV generation, ‘nd’ is the total number of
data samples collected at a particular time instant for five years. The
values of ap, bp, cp, dp, ep, and fp are obtained by solving a set of
following equations:

OE o OFE O o 0E o OE . OF
aap_ ’ abp_ ’ an_ ’ adp_ ’ oep afp
(12)
The expressions for s and vy are respectively given as,
Os = sin”! (sin 4 sin fp + cos Oy cos 04 cos Op) (13)
. —1(—sinfy cos fp
Ys = sin ( cos Os ) (14)

where, 6] 4 is the latitude, fp is the declination angle, y is the hour
angle. For the Northern hemisphere, fp is calculated as,

X 360“)

The value of Ay can be calculated by converting clock time to
solar time [28]. A step by step formulation is provided underneath.
Step-1: Equation of time (EOT) is calculated as,

DN + 284

365 (15)

0p = 23.45° sin(

EOT = 9.87 sin(2D) — 7.53 cos(D) — 1.5 sin(D) where D

360
<3 65) (DN — 81),
Step-2: For the Western longitudes, local solar time (LST) is
calculated as,

(16)

LST = LT + (4min. /deg.) (45" — 10 ) + EOT (17)
where, LT is the local clock time, 6, is the local longitude of the

location, 6;0™ is the local longitude of standard time meridian
which is calculated as,

g™ _ {ﬂo} (18)
where {HLO} returns the nearest integer to .

Step-3: Finally, fy is calculated as,
Oy = 15 (LST — 12) (19)

The criteria used to obtain the required value of yg with refer-
ence to the true North [27] is given as,

180" — vs, cos fy > tan fp/tan O 4

R
= . 2
s { 360" + vs, cos fy <tan fp/tan 65 (20)
By using (20), the expression for 6; is given as,
6, = cos~! {sin fs cos O + cos s sin 01 cos <7 - 75) } (21)

where, v is the azimuthal angle of the PV array. For the South and
the South-West facing PV arrays the values of v are 180° and 225°
respectively. Finally, the residual i.e., the unpredictable component
of the PV generation is obtained as,

epy = Ppy — Pyiy (22)

Henceforth, the model proposed in Ref. [24] is referred to as
model-1 and the proposed model in (10) as model-2. The plots for
sin fs, sin 75R and cos 6 using (13), (20) and (21) respectively at 6
p.m. for one year is shown in Fig. 1. Since all the three places are
situated geographically not far from each other, sin 65 and sin YSR
plots are nearly identical. However, a slight variation is due to the
varying geographical coordinates. On the other hand, cos 6; for
Lincoln is significantly deviating from other two owing to its
differing orientation (refer Table 2). The slight difference between
the plots of Monkton and Parkesburg is because of the dissimilar tilt
angles. The variations depicted in Fig. 1 are different at different
instants of time. A fitting curve to the observed data using these
three functions at any particular time instant captures accurately
the periodic pattern.
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3.1.1 Preprocessing of PV generation data: The first step is to
remove the effect of daylight time shifting (popularly known as
daylight saving time) from the data. The observed PV generations
on a daily basis (at multiple time instants) for all the three places
are shown in Fig. 2. Due to space constraint, plots of only two years
data (2012 and 2013) are shown. However, the uncertainty
modeling considers five years of data. The PV generation at a
particular instant of time is found to be periodic and the patterns

_ PV Array 1 | —
— — = —

_ PV Array 2 } —
— ™y

— = T — — — — — — — — — — — e e e e —— —— — —— — — R

are extremely differing at various time instants and locations. The
estimated periodic variations using model-1 and model-2 are also
shown for all the cases. Three different colors are used in the plots.
The black color represents the actual PV generation; the red color
and the blue color represent the periodic patterns as captured by
model-1 and model-2 respectively. The mean values, standard
deviations and percentage coefficient of variations (% CVs) of PV
generations pre and post processing at the three arrays for twelve

_ PV Array 3  —
— — = —

7 am

—— ——— —— — — — — —

10 am

11 am

h “:w‘u‘l!lrlr
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I
(N |
1N

[ 1 ul
i iyl |
| A

12 noon

i

i|‘l il w!!!‘ b

Ml

Ve s e s e e — ——— — — —— — — — — — ———— — — — — — o ——

(a) PV generation productions during morning hours (7 am to noon at an interval of one hour).

Fig. 2. Observed PV generation plots at twelve time instants for two years (2012 and 2013).
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(b) PV generation productions during afternoon hours (1 pm to 6 pm at an interval of one hour).
Note: For all the plots, x-axis: Day, y-axis: Actual PV Generation (kW).

Fig. 2. (continued).

time instants are plotted in Fig. 3 considering five years data. The %
CV is calculated as,

%OV — Standard deviation value 100 (23)
Mean value

The accuracy of model-2 in tracking the periodic pattern as
compared to model-1 is quite evident from Fig. 2. The plots of mean
value, standard deviation and % CV of PV generations of the three
arrays (refer Fig. 3) have nearly the same trend. The maximum

mean value and standard deviation of the PV generation occurs at
noon for PV arrays 1 and 2 whereas; for PV array 3 it occurs at 1 p.m.
The % CV plot is opposite to that of the mean value plot. The highest
and the lowest values of % CV occur at 6 p.m. and noon respectively
for all the three PV arrays. The periodic patterns as depicted by
model-1 and model-2 are removed from the data using (22) to
obtain the unpredictable component of PV generation. The % CV pre
and post processing at all the time instants using both the models is
provided in Table 3. During 10 a.m. to 3 p.m., the reduction in % CV



Mean value/Standard deviation(kW)

B.R. Prusty, D. Jena / Renewable Energy 116 (2018) 367—383 373

—@——e——e|Before processing [-o— —o-|After processing

Mean value/Standard deviation(kW)

PV array 1

PV array 2

o~

w
o

[\

—
poy

o

Hours

% CV
Mean value/Standard deviation(kW)

PV array 3

Ut

-w >

(V]

—

o0

[==]

Hours

Fig. 3. Mean values, standard deviations and % CVs of PV generations pre and post processing.

post processing is less compared to that at remaining time instants.

The following are the major observations from Fig. 2 and Table 3
which illustrates the aptitude of model-2 in tracing the periodic
effect due to changing solar position.

i) The insets of 5th and 7th subplots of Fig. 2(a) and the inset of
12th subplot of Fig. 2(b) clearly show that model-2 has the
capability to identify the PV generation pattern in the region
of low power levels.

ii) During winter season (for the months December, January
and February in the Northern hemisphere) PV generation is
zero at 7 a.m., 5 p.m. and 6 p.m. It is observed from Fig. 2 that
during these instants there is an inaccuracy in identifying the
production patterns by both the models. But, at 6 p.m., the
performance of model-2 is comparatively better.

iii) At all other time instants, the overall performance of model-
2 is found to be superior as compared to model-1. The
reduction in % CVs in all the cases (as seen from Table 3)

Table 3
Comparison of % CVs of PV generations pre and post processing.
Time instant % CV
PV Array 1 PV Array 2 PV Array 3
BP AP1 AP2 BP AP1 AP2 BP AP1 AP2
7 am. 107.74 59.96 56.72 115.63 7431 72.68 96.72 53.99 51.81
8 am. 90.60 57.47 55.89 80.03 64.89 63.65 64.92 51.49 49.01
9am. 70.74 56.07 54.84 64.57 58.32 57.75 55.16 49.58 48.69
10 am. 58.96 54.13 53.52 58.50 54.30 53.81 53.05 49.15 48.56
11 am. 55.18 52.90 52.65 5434 51.07 50.79 51.74 49.42 49.10
noon 54.44 52.82 52.62 53.45 50.71 50.39 51.57 49.88 49.68
1 p.m. 55.15 53.10 52.51 54.23 51.44 50.94 53.78 52.27 52.15
2 p.m. 57.66 55.26 54.37 57.00 53.32 52.46 56.36 54.01 53.85
3 p.m. 60.18 56.19 55.46 59.22 54.46 53.83 64.58 57.65 57.06
4 p.m. 68.76 57.99 56.90 69.23 56.40 55.35 81.08 64.48 62.20
5 p.m. 92.24 60.47 57.80 91.03 61.95 59.67 103.02 70.34 68.48
6 p.m. 125.20 64.37 59.16 132.12 73.34 68.11 137.74 81.32 77.08

Note: BP stands for before processing. AP1 and AP2 stands for the values after processing using model-1 and model-2 respectively.



374 B.R. Prusty, D. Jena / Renewable Energy 116 (2018) 367—383
1.5 0.25 0.7
>
é‘ —PV, é‘ 02 £0.6
=} =} . =}
— 0.5
8 1f=tY2 2015 g
S| PV o 204
= 3 Z 01 =03
205 e 202
el H - o o
o N S 0.05 201
i S E Eo.
52 a0 0 1 2 %TaT o2 o 2 a4 0 2 0 2

PV Generation (kW)

PV Generation (kW)

PV Generation (kW)

Fig. 4. Comparison of probability density plots of PV generation uncertainty at three different time instants.

[~®——®——&—|Before processing [-e— —o—|After processing

Lincoln
20, 80
18
70
16 p
14 , 60
129 50 5
IS

Mean value/Standard deviation(°C)

Hours

Fig. 5. Mean values, standard deviations and % CVs of Tay,;, pre and post processing at
Lincoln.

further clarifies the accuracy of model-2 in identifying the
annual periodic effect at all the time instants.

The probability density plots of residuals of PV generations at 8
a.m., noon and 4 p.m. using model-2 is shown in Fig. 4. At noon,
when the % CV value is low, the shapes of probability density plots
are almost identical for all the three PV arrays. At 8 a.m. and 4 p.m.,
% CVs are comparatively higher than that at noon and the shapes of
probability density plots are different. While obtaining the unpre-
dictable components of PV generations at the time instants 7 a.m., 5
p.m. and 6 p.m., (22) is applied only during nonzero PV generation
periods.

The comparison of plots in Fig. 4 indicates that, the shapes of
probability density plots of PV generations are different at different
locations and at different time instants. They do not fit to any
specific parametric probability distributions. Hence, an assumption
of any parametric distribution for PV generation uncertainty may
be an obscure approach in any probabilistic analysis.

3.2. Tamp uncertainty modeling

The historical data for Ty, at Lincoln city, USA at twelve time
instants are collected from Ref. [29]. Unlike PV generation plots, the

Tamp Plots at various time instants have almost the same pattern.
The mean values, standard deviations and % CVs at various time
instants pre and post processing are plotted in Fig. 5. Standard
deviation values at all the time instants pre and post processing are
nearly the same, because of which the % CV plots pre and post
processing are opposite to that of the mean value plot. The
observed data is processed by eliminating the periodic effect. To
obtain the Ta,,, uncertainty, a linear regression model is developed
which is described as,

Pya = ar + byDN + ¢;DN? + dp sin{ <ﬂ> (DN) }

365
+er cos{ (%) (DN) }

where, the unknown parameters, ar, br, cr, dr, and er are estimated
using least squares method. Finally, the unpredictable component
of Ty, is obtained as, ey = Tamp — Puvz- The second and third terms
in (24) track trend in the data whereas; the last two terms deter-
mine the lowest frequency periodic component in the data.

The % CVs pre and post processing are compared in Table 4. It is
clearly observed that the periodic effect has a significant impact on
the % CVs of T, The various steps in the processing of observed
Tamp (at 2 p.m.) are shown in Fig. 6. In Fig. 6(a), the observed Tpm,
plot with its periodic pattern is shown. The residual after filtering
out the periodic pattern with added mean value of observed Tpp, is
shown in Fig. 6(b). The probability density plot of Tp,, considering
only the uncertainty component is shown in Fig. 6(c). At all the
twelve time instants, Gaussian distribution fits to the data with
minimal error as compared to other parametric distributions.

(24)

3.3. Load power uncertainty modeling

In case of transmission systems, the uncertainty associated with
aggregate load power is generally modeled by considering the
historical data [13]. Authors in Ref. [13] have processed load power
data taken from Electric Reliability Council of Texas (ERCOT) at
noon. So as to obtain the % CV information at other time instants,
data are collected from eight weather zones of Texas i.e., Coast (C),
East (E), Far West (FW), North (N), North Central (NC), South (S),
South Central (SC), and West (W) during 1 a.m.—12 p.m. at an
hourly interval [30]. The data represents aggregate load power for
all the retail premises in the respective weather zones. The intent is
to accomplish an accurate time instant uncertainty model at each
hour in a day. The mean values, standard deviations and % CVs at

Table 4
Comparison of % CVs of Ty, pre and post processing.
Time instant 7 am. 8 am. 9am. 10 am. 11 am. Noon 1 p.m. 2 p.m. 3 p.m. 4 p.m. 5 p.m. 6 p.m.
% CV BP 76.99 71.12 63.29 58.38 55.28 53.35 51.85 50.94 50.85 52.04 54.51 58.32
AP 37.07 31.14 27.46 26.37 26.05 25.77 25.59 2542 25.40 25.52 25.64 26.62
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Table 5
Comparison of % CVs of aggregate real load powers pre and post processing.
Time instant 7 am. 8 am. 9am. 10 am. 11 am. Noon 1 p.m. 2 p.m. 3 p.m. 4 p.m. 5 p.m. 6 p.m.
Coast BP 13.57 14.39 15.77 17.55 19.38 21.12 22.71 23.72 2435 2449 2394 21.90
AP 10.24 9.73 9.08 8.88 9.03 9.41 9.97 10.46 10.77 10.88 10.67 10.08
East BP 16.61 16.13 15.59 16.37 18.29 20.53 22.72 2431 25.33 25.54 2483 22.69
AP 14.68 13.67 12.32 11.57 11.33 11.44 11.69 11.95 12.05 12.15 12.16 11.99
Far West BP 15.47 15.47 15.27 15.43 15.92 16.61 17.41 18.05 18.50 18.71 18.49 18.11
AP 5.56 5.53 5.24 5.27 5.44 5.72 6.07 6.38 6.58 6.71 6.67 6.61
North BP 14.87 14.86 14.47 15.25 16.95 19.08 21.27 22.96 2417 24.68 24.18 2247
AP 11.73 11.09 10.40 10.33 10.59 11.01 11.47 11.83 12.02 12.08 11.96 11.69
North Central BP 18.31 18.04 17.35 18.29 20.38 22.94 25.45 27.46 28.86 29.48 29.07 26.94
AP 15.53 14.42 12.96 12.30 12.28 12.57 13.00 13.37 13.65 13.83 13.89 13.69
South BP 16.58 16.86 17.01 18.15 19.80 21.51 23.01 23.95 2439 2439 23.75 22.32
AP 14.33 13.69 12.10 11.13 10.68 10.54 10.60 10.78 10.95 11.02 10.97 10.80
South Central BP 17.23 16.85 16.39 17.41 19.50 22.00 24.36 26.24 27.56 28.07 27.75 25.95
AP 15.00 13.81 12.14 11.13 10.79 10.90 11.22 11.62 11.96 12.20 12.33 12.21
West BP 15.59 15.62 14.48 14.38 15.56 17.47 19.55 21.25 22.52 23.04 22.63 21.37
AP 12.22 11.59 10.64 10.15 10.10 10.32 10.64 10.96 11.19 11.32 11.31 11.22

various time instants pre and post processing are plotted in Fig. 7.

Unlike PV generation patterns which are extremely varying at
different time instants, the pattern of aggregate load power time
series is approximately same at various time instants comprising of
many harmonic components. Further, an increasing growth in the
data is observed at all the time instants. A similar set of steps are
followed for load uncertainty modeling as applied to Tap,. To
obtain load power uncertainty, a linear regression model is devel-
oped which is given as,

Pm3 =ap + bp(DN) + cp <DN2> +dp (DN3>

N :Z]enﬁh sin{ (%)h(DN)} +fon cos{ (%)h(DN)}
(25)

where the model parameters ap, bp, ¢p, dp, eép 1, €ps, fo1-, fos
are determined by using least squares method. The load power data
at all the 24 h is processed and % CVs at twelve time instants (7
a.m.—6 p.m. at an hourly interval) pre and post processing are
presented in Table 5. As in the case with Ty, the periodic effect
has a noticeable impact on % CV values. The unpredictable
component is calculated as, ep =Pp — Py3 where, Py is the
observed aggregate load power.

In Fig. 8, the observed aggregate load powers with their periodic
patterns and growth at arbitrarily selected time instants 10 a.m.
and 4 p.m. respectively at Coast for the years 2012—2016 are
presented.

It is evident from Fig. 8 that, the periodic patterns as indicated

by red color plots accurately has traced the trends and periodic
effects in the data. The probability density plots of the uncertainty
components of the load data for the same two time instants are
shown in Fig. 9. It is found that, Gaussian distribution fits the data
with minimal error and the same is applicable to the remaining
time instants.

3.4. Input correlation

Spatial correlation between the input RVs are considered for
TPLF simulations at various time instants. The degree of correlation
is measured by using Pearson product moment correlation coeffi-
cient (PMCC). For two RVs X; and X5, the PMCC is represented as,
Px,. x,- The plots of PMCC values between the PV generations as well
as between load powers (few cases) at various time instants post
processing is depicted in Fig. 10. The shapes of PMCC plots in all the
three cases as shown in Fig. 10(a) are nearly the same. The PMCC
values are positive due to the common effects of solar radiation,
temperature and other environmental factors. The geographical
distance between PV arrays 1 and 3 as well as PV arrays 2 and 3 are
nearly the same (around 130 km) hence, the PMCC plots resemble
closely. The distance 73 km between the PV arrays 1 and 2 is less as
compared to the distance in other two cases, because of which the
PMCC values in the former case are higher at all the time instants.
The aggregate load power data collected from different weather
zones comprise of different types of consumers such as, industrial,
commercial, residential etc. The positive correlation between the
load data series of different weather zones are due to the common
environmental factors such as, temperature, sunset, rain fall, etc.
and due to social factors such as sporting events, meal time,

x 10° x 10
_ 16 ~ 19
Z = 17
S 14 St
= =15
[} o
g 12 13
A ey
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3 S 09
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Fig. 8. Observed load power plots at Coast with periodic patterns.
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Fig. 9. Probability density plots of residuals of the real load powers as shown in Fig. 8.
working habits, etc. The shapes of PMCC plots for three cases as OVP at the h™™ hour are calculated as,
shown in Fig. 10(b) are nearly the same. The PMCC plots of
remaining cases also have the same shapes. n n
Further, the calculated PMCC values between PV generationand ~ UVPh=1— H(1 —UVPy,), OVP, =1 — H(1 —OVPy,)  (28)

Tamp are extremely low. The values of ppy, 1, , at various time in-
stants are slightly higher than that of the other two cases ppy, 1,
and ppy, 1, .- This is because PV array 3 is located in the same area
from where the historical data for Ty, is collected.

4. System over-limit risk indices
4.1. Over-limit probability calculations

The over-limit probability of a result variable is defined as the

probability of exceeding a predefined limiting value [31]. For a
result variable X, the probability of exceeding the higher limit X
is denoted as,
Prob(X > Ximit) = L(Xrimit) = 1 — F(XLimit) (26)
where, L(e) and F(e) respectively are the complementary and cu-
mulative distribution functions. Now the probability of falling
below the lower limit, X; iimi; is denoted as,

prob(X <X 1imit) = F(XL, Limit) (27)

Hence, from the complementary distribution functions of bus
voltage magnitudes, branch apparent power flows and branch
temperatures, the values of under-voltage probability (UVP), over-
voltage probability (OVP), over-load probability (OLP) and thermal
over-load probability (TOLP) are calculated. The system UVP and

i=1 i=1

where, “n” is the total number of buses in the system; UVP;, and
OVP;;, respectively are the UVP and OVP values of i™ bus at h™" hour.

In the similar way, system OLP and TOLP at the h™ hour are
calculated as,

2 Q
OLP, =1— [ ] (1—OLPyp), TOLP, =1— J [ (1 — TOLP)
k=1 k=1

(29)

where, “¢” is the total number of branches in the system, OLP,;, and
TOLPy;, respectively are the OLP and TOLP values of k™ branch at
the h™ hour.

The expected system under voltage and over-voltage times
during day time (7 a.m.—6 p.m.) are calculated as,

12 12
UVT = » "(UVPy x 1 hr), OVT = > "(OVP}, x 1 hr) (30)

h=1 h=1

Similarly, the expected system over-load time (OLT) and system
thermal over-load time (TOLT) during day time are calculated as,

12 12
OLT =) "(OLP, x 1 hr), TOLT = > (TOLP}, x 1 hr) (31)
h=1 h=1

+pPV‘,PV7 - pPVI,P\/; eolhens pPV),PV}

........

Fig. 10. PMCC between (a) PV generations and (b) a few cases of load powers at various time instants.
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4.2. Over-limit severity calculations

The severity of over-limit, quantifies the deviation of mean value
of the result variable from the reference value. Here, exponential
severity functions are implemented. The over-voltage severity

function (VSF) at i™ bus in h™ hour is expressed as,

VSFy, = elvVPin _ 1 (32)

where the factor ky = In(2)/(|Viimit| — 1), VDjy is the voltage devi-

ation of the i™ bus at the h™ hour and is calculated as,
VDj, = ’1 - My,

wl[» #v,,| 1S the mean value of the voltage at i™ bus at

the h'™ hour. For My, = 1 pu, VSF is zero and its value equals to
unity for wy,| = [Viimitl-
Similarly, over-load severity function (OLSF) and thermal over-

load severity function (TOLSF) of k™ branch at the h™ hour are
respectively given as,

OLSFy, = ekotOlDin _ 1 TOLSF, = ekrotTOLDmn _ 1 (33)
where, the factors KoL = 21n(2)/|Stimit, k| and
kroL = 2 In(2)/|Tiimit, k|» [Stimit, k| @and Tiimic, k respectively are the

apparent power flow limit and branch temperature limit of the k™
branch.
In (33), OLDy;, and TOLDy,;, respectively are the over load and

thermal over load deviations of the k™ branch at the h™™ hour and
are calculated as,

 TOLDy, = || Tan, ] =

OLDyy, = HSTn, K| = sl (34)

where, ps,.| and ug, | respectively are the mean values of apparent
power flow and temperature of the k™ branch at the h™ hour,
|Sth.i| and Ty, ; respectively are the threshold values of apparent

power flow and temperature of k™ branch (taken as 50% of |Spimit. k|
and Ty, k respectively).

4.3. Calculation of risk indices

The over-limit risk index is calculated as the product of event's
over-limit probability and the corresponding severity [1]. The
events are under-voltage, over voltage, over-load, and thermal

over-load etc. The risk of system over voltage (RSOV) at the h™ hour
is calculated as,

n

RSOVy, = Y (OVPyp)-(VSFjp) (35)
i=1

Finally, the risk of system over load (RSOL) and risk of system

thermal over load (RSTOL) at the h™ hour are respectively calcu-
lated as,

Q
RSOLy = _ (OLPyy)- (OLSFyy), RSTOLy,
k=1

2
= (TOLPyp)- (TOLSFyy) (36)
k=1

5. Case study and discussion of results

MCS is applied for PLF and TPLF on modified New England 39-
bus system as shown in Fig. 11 by considering 30000 samples for
each input RV. This number is ascertained by setting variance co-
efficient to less than 1% for all the result variables [3].

5.1. Power system description and statistical details of input RVs

The power system data is adopted from Ref. [32]. The slack
generator is connected at bus 31. The system base power is
100 MVA. The base value of branch temperature is assumed 100 °C;
it can however be any convenient value. Its only function is to
normalize the temperature scale to aid computational simplicity. It
does not carry any relationship with voltage and power base values,
implied or otherwise. The three PV arrays as discussed in Section
3.1 are included at buses 26, 27 and 28. The PV arrays are assumed
to be not providing voltage support to the system hence, the
reactive power generations are zero. The loads connected at buses
9, 18, 21, 23, 24, 25, 26, 27, 28 and 29 are assumed as RVs. The
discrete load instants and their corresponding probability values
for real and reactive load powers at bus numbers 9 and 18 are
specified in Table 6. The real load powers at buses 21, 23, 24, 25, 26,
27, 28 and 29 follow Gaussian distribution with % CVs (post pro-
cessing) of the load data of eight weather zones as indicated in
Table 5 for the respective time instants. The mean values are
considered as specified deterministic data. The load power factors
at these buses are assumed constant. Ty, is assumed same for all
the TDBs. The base case PMCC matrix for TPLF is constituted among
20 input RVs which include PV generations of the three PV arrays,
Tamb, real and reactive load powers at buses 21, 23, 24, 25, 26, 27, 28
and 29. The PMCC between PV generations and load power is
assumed as 0.3. The other PMCC values are calculated from the
historical data post processing.

5.2. Impact of increased penetration of PV generations on the
statistics of result variables

The percentage penetration level (% PL) of PV generation (per-
centage of total system real load power) is expressed as,

mean value of total PV generation

%PL = mean value of total system load

x 100 (37)

The mean value of total PV generation for a given % PL is ob-
tained by using (37). It is assumed that the obtained mean value
corresponds to the time at which maximum PV generation occurs
(usually at noon). Then after, it is shared among the three PV units.
Let, u}2, 12, and pl? are the assigned mean values of the PV gen-
erations of three arrays based on their ratings as specified in Table 2
where, the superscript “12” corresponds to noon. By adopting this
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[ |
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Fig. 11. PV integrated New England 39-bus system.
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Table 6
Probabilistic description of discrete load powers.

Bus 9 Bus 18 Probability value
Real (pu) Reactive (pu) Real (pu) Reactive (pu)

0.04 -0.61 1.32 0.15 0.10

0.05 -0.64 1.46 0.20 0.15

0.06 -0.67 1.58 0.28 0.30

0.07 -0.68 1.66 034 0.25

0.09 —0.69 1.70 043 0.20

process, the method to compute the mean values of individual PV
generations is explained by considering 5% PL as an example. The
mean value of the total PV generation by using (37) is calculated as
3.1271 pu (total system real load power is 62.5423 pu). The ratio of
ratings of PV, to PV and PV3 to PV, is calculated as 0.765 and 0.888
respectively. Hence, the value 3.1271 pu is shared by the PV arrays
as, u}2 =1.1787 pu, ui? = 0.9017 pu, and p1? = 1.0467 pu. Now the

samples of the PV generation at a k™ place i.e., PV,1<2 corresponding
to a given % PL is calculated by multiplying a factor (ratio of u to the

mean of actual PV generation at k™ place) with all the samples of
actual PV generation collected at that location. These set of steps
are applied to various other % PLs for obtaining the mean values of
PV generations at noon as indicated in Table 7.

In order to analyze the effect of increased PV penetrations on the
statistics of result variables, various % PLs such as, base case, 5%,
10%, 15%, and 20% are deliberated. The probability density plots of
PV generation pertaining to various % PLs at noon for all the three
PV arrays are shown in Fig. 12. It is observed that with an increase in
% PL, the variance of PV generation increases. Further, the proba-
bility density plots are magnified but the shape remains same. The
cumulative probability plots of net real power load at buses 26, 27
and 28 for various PLs are plotted in Fig. 13. The net load power
variability in all the three cases is increased with increase in % PL.
Further, the lower tails of the distributions are shifted towards the
negative axis. In the base case, low PV penetration could not cause
multimodality in the cumulative probability of net load power. For
the remaining four % PL cases cumulative probability plots of net
load are multimodal at buses 26, 27 and 28. It can further be
observed that for % PL above 10, bidirectional power injections are
evident at buses 27 and 28 whereas the same is noticed above 5% at
bus 26.

The buses and branches in the vicinity to the PV array locations
are subjected to more uncertainty influences [13]. Hence, the
probability distributions of bus voltage magnitudes of buses 26, 27
and 28; branch temperatures and power flows in the branches
26—27 and 26—28 are analyzed. Both PLF and TPLF simulations are
carried out at noon by considering various PV penetration cases as
described in Table 7 and the results are compared in Table 8.
Henceforth, P ; j, Q. i_j and |S.; j| are used to represent respec-
tively the real, reactive, and apparent power flows in the branch
i—j. P3; and Qs respectively are the slack bus real and reactive
powers. From the comparison of results in Table 8 it is clear that the
increase in % PL has a noticeable effect on branch temperatures and

Table 7
Mean values of PV generations for various % PLs.
PV Array Base case % PL
5 10 15 20
PV, 0.0283 1.1787 2.3574 3.5361 4.7148
PV, 0.0222 0.9017 1.8034 2.7051 3.6068
PV 0.0238 1.0467 2.0934 3.1401 41867

branch loadings. The PLF and TPLF results are nearly same for bus
voltage magnitudes indicating that the temperature-augmentation
has less effect on bus voltage magnitudes. However, temperature-
augmentation has a significant effect on the variance of real and
reactive power flows. The effect becomes more prominent for
increased % PLs. In all the above three cases for bus voltage mag-
nitudes with the increase in % PL beyond 5, mean values are
decreased whereas the standard deviation values are increased due
to the uncertainty influence of PV generations at these buses.
However in the base case, the patterns for mean values and stan-
dard deviations are significantly biased as compared to the other
cases, this is because of the bidirectional power injections at these
buses. TPLF provides the statistical information of branch temper-
atures of TDBs which PLF fails to do. Due to temperature-
augmentation, real power flow variability of the branch 26—27
using TPLF is significantly increased as compared to PLF. There is a
fixed pattern to explain the variations in the mean values and
standard deviations of real power flow. The slack bus powers are
radically changed especially for 15% and 20% penetration cases. The
slack bus absorbs the excess real power; this scenario resembles in
reality the power export to the nearby systems. The analysis of the
other branch power flow distributions indicate that, in most of the
cases the increase in % PL leads to bidirectional power flows where
the probability distributions are extended to both positive and
negative axes. This increase in power flow variability due to the
increase in % PL leads to over-limit risks in the system. Hence,
system reinforcements are essential.

5.3. Effect of variation of TPLF model parameters on the statistics of
result variables

The base case values of model parameters Tref, Trated rises and
Tamb—we are 10 °C, 25 °C, and 40 °C respectively. Tger is the tem-
perature at which branch resistance is initially specified. Tr,teq rise 1S
the rise in temperature that is expected to occur at rated power
level. Typically, this is dictated by line sag considerations, allowable
operating temperature of insulating materials, etc. Tapp_wc iS the
worst case value of Ty,. It is used for the estimation of Ry, and
therefore estimates Pgyieqd j0ss- The above three parameters cannot
always be taken as constant and the effect of their variation on the
statistics of the result variables would be of interest. The analysis is
carried out at noon for 5% PL by considering a few result variables
associated with the branches where the effect of temperature
dependence is the highest. Due to consideration of temperature
dependence, resistances of all the TDBs are increased. In order to
quantify the effect of change in first two statistical parameters due
to temperature-augmentation, two relative percentage error
indices are defined which are given as,

Mwt — MT
HwTt

e :‘ x 100, e; = T =T/ 100 (38)
WT

where, uwr and ur respectively are the mean values of a particular
result variable as obtained using PLF and TPLF; owr and ot
respectively are the standard deviation values of a particular result
variable as obtained using PLF and TPLF.

There is a significant increase in the value of e, for branch
temperature. Average e, for all the branch temperatures amounts
to 123.84%. The higher value is due to the consideration of tem-
perature effect in TPLF which is ignored in case of PLF. On the other
hand, the average e, of branch power flow and branch power loss
respectively amounts to 5.65% and 6.93% whereas, average e, of
those respectively amounts to 26.29% and 33.39%. The effect of
temperature-augmentation on other result variables is less. The
values of e, and e, of branch power flows in case of a few branches
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Fig. 13. Cumulative probability plots of net load at buses 26, 27 and 28 for various % PLs.

where the effect of temperature dependence is prominent are
indicated in Table 9. It is observed that, the temperature-
augmentation has led to increase in power flow variability.

The effect of variations of model parameter values on the
average of error indices e, and e, of power flows (both real and
reactive) are provided in Table 10. In majority of the cases, the in-
crease in model parameter values either increases or decreases the
values of error indices. But, in a few cases though the effect is

prominent, there is no fixed pattern to explain the change in error
indices.

5.4. Over-limit risk assessment

The probability distributions of result variables as obtained by
TPLF are useful in obtaining the over-limit risk indices under
various PV penetrations and input correlations. All the system

Table 8
Comparison of PLF and TPLF results for various % PLs of PV generation.
Result variable PLF TPLF
Base Case PL = 5% PL = 10% PL = 15% PL = 20% Base Case PL = 5% PL = 10% PL = 15% PL = 20%
[Vag] N 1.0520 1.0524 1.0486 1.0403 1.0267 1.0519 1.0526 1.0493 1.0419 1.0302
4 0.0022 0.0016 0.0056 0.0142 0.0285 0.0023 0.0016 0.0050 0.0126 0.0247
Va7 N 1.0378 1.0375 1.0324 1.0223 1.0063 1.0374 1.0372 1.0324 1.0228 1.0080
4 0.0026 0.0022 0.0069 0.0168 0.0331 0.0026 0.0022 0.0066 0.0159 0.0306
[Vag] w 1.0501 1.0512 1.0496 1.0453 1.0376 1.0500 1.0513 1.0502 1.0465 1.0400
4 0.0018 0.0010 0.0028 0.0078 0.0165 0.0019 0.0010 0.0024 0.0067 0.0140
Tas 27 w 0.1000 0.1000 0.1000 0.1000 0.1000 0.2185 0.2510 0.2963 0.3559 0.4349
4 0 0 0 0 0 0.0498 0.0551 0.0751 0.1169 0.1859
Ta6-28 W 0.1000 0.1000 0.1000 0.1000 0.1000 0.1897 0.2020 0.2186 0.2406 0.2698
4 0 0 0 0 0 0.0486 0.0500 0.0543 0.0654 0.0846
P 26-27 N 2.5941 3.5371 4.4996 5.4299 6.3454 2.5975 3.5518 4.5194 5.4645 6.3937
4 0.3041 0.4963 0.9299 1.3667 1.7890 0.3063 0.4985 0.9353 1.3846 1.8226
PL 2628 uw —1.4228 —2.0524 —2.6951 —3.3272 -3.9718 —1.4200 —2.0514 —2.6925 —3.3267 —3.9537
4 0.2702 0.3536 0.6269 0.9270 1.2288 0.2696 0.3525 0.6246 0.9227 1.2251
QL 2627 w 0.6792 0.6794 0.7288 0.8263 0.9712 0.6840 0.6873 0.7431 0.8502 1.0131
7 0.0427 0.0418 0.0886 0.1872 0.3405 0.0421 0.0424 0.0935 0.2007 0.3679
Qu 26-28 1 -0.2159 -0.1253 —0.0459 0.0194 0.0744 -0.2117 -0.1171 —-0.0315 0.0451 0.1146
4 0.0457 0.0475 0.0780 0.1182 0.1698 0.0470 0.0500 0.0839 0.1296 0.1888
[SL26-27] w 2.6834 3.6029 4.5595 5.4939 6.4223 2.6879 3.6187 4.5814 5.5318 6.4768
g 0.2904 0.4898 0.9276 1.3733 1.8104 0.2926 0.4923 0.9336 1.3929 1.8476
[SL26-28] I 1.4418 2.0575 2.6973 3.3298 3.9764 1.4385 2.0561 2.6946 3.3298 3.9597
4 0.2589 0.3493 0.6239 0.9254 1.2280 0.2583 0.3484 0.6224 0.9217 1.2257
P3q n 6.6174 3.6556 0.6932 -2.1857 —4.9783 6.6461 3.6737 0.7318 —2.1042 —4.8050
4 1.6653 1.6686 25176 3.5503 4.6210 1.6563 1.6504 2.4843 3.4861 44277
Q31 w 2.1702 1.6881 1.6305 1.9856 2.7494 2.1845 1.7048 1.6552 2.0165 2.7717
4 0.3973 0.1568 0.1317 0.7033 1.6449 0.3950 0.1538 0.1344 0.7010 1.5991
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Table 9

Effect of temperature-augmentation on first two statistical moments of power flows in a few branches.
Branch % relative change in Real power Reactive power Apparent power

Branch resistance Branch temperature ey ey ey ey ey ey

02-03 08.73 20791 0.36 217 2.42 18.58 0.43 2.64
02-25 08.30 197.72 0.48 1.73 5.54 15.13 0.06 0.56
06—-11 10.45 248.70 0.13 1.13 5.62 3.77 0.13 1.13
10-11 07.73 184.11 0.08 0.99 1.56 12.40 0.10 1.09
15—-16 07.34 174.80 0.04 0.89 0.67 4.49 0.11 1.01
16—-19 08.27 196.83 0.06 5.46 0.97 0.04 0.07 2.16
21-22 07.26 172.78 0.03 0.74 0.23 1.57 0.04 0.85
23-24 06.21 147.98 0.01 0.93 10.49 2.77 0.01 0.94
26-27 06.34 150.91 0.42 0.45 1.16 1.62 0.44 0.50

Table 10

Effect of variations in values of TPLF model parameters on average e, and e, of power flows.

Result variable Average of e,

Average of e,

Tres = 10°C Trer = 15 °C Trer = 20 °C Trer = 25 C Tref = 10°C Trer = 15°C Trer = 20 °C Trer = 25 C
Power flow 1.6932 4.0455 2.9946 4.0364 4.0603 3.6370 3.5356 3.4557
Result variable TRated rise = 25 C TRated rise = 30 C TRated rise = 35 C TRated rise = 40 C TRated rise = 25 C TRated rise = 30 C TRated rise = 35 C TRated rise = 40 C
Power flow 1.6932 1.9870 2.0921 22813 4.0603 44332 47729 5.0793
Result variable Tamp-we =40 'C  Tamb-we = 50 'C  Tamb-we =60 C  Tamp-we =70 C  Tamp-we =40 C  Tamp-we =50 C  Tamp_we = 60 C  Tamp_we = 70 C
Power flow 1.6932 1.6509 1.6259 1.5471 4.0603 42205 3.9791 3.8785
bl buses and branches are considered for evaluating over-limit risks.
Table 11 FE
Table 11 indicates the UVP (<0.95 pu) and OVP (>1.05 pu) at noon
UVP and OVP values of load buses at noon for 20% PL. o ( pu) ( pu)
for 20% PL at all the load buses. Table 12 shows OLP (>|S;jmit|) and
Bus  UVP ovp Bus  UVP ovep Bus  UVP ovp TOLP (>Tijmic) values of TDBs at noon for 20% PL. The value of |Sy ;|
1 0 01069 11  0.1406 0.0001 21 0O 0.1896 is the MVA rating of the branch and Ty;,;; is set to 0.5 pu, since a
2 0.0774 0.0437 12 00142 00033 22 0 0.0741 maximum allowable temperature of value 50 °C is typically
3 02860 00028 13 01043 00053 23 0 0.0595 selected to avoid loss of strength, sag and branch losses, etc. The
4 0.1436  0.0025 14  0.0525 0.0045 24 0 0.7212 limit babilit : leulated f th i
5 01039 00035 15 0 00344 25 0 02459 over-limit probability values are calculated from the respective
6 0.1966 0.0002 16 0.0093 0.0723 26 0.0055 0.1180 complementary distribution functions. The system UVP, OVP, OLP
7 0.1891 0.0001 17  0.0418 00545 27 O 0.2692 and TOLP values for various % PLs are compared in Table 13 with
8 0 00343 18 0 01863 28 0 0.2467 and without considering input correlations. The over-limit proba-
9 0.0014 0.0035 19 0 0 29 0 0.0082 bili . L . . .
ility values differ significantly by accounting for input correlation
10 0.0207 00028 20 O 0.0095 . . .
as compared to the case without considering correlation. The error
becomes more noticeable when the % PL increases. It is clearly
Table 12
OLP and TOLP values of TDBs at noon for 20% PL.
Branch OLP TOLP Branch OLP TOLP Branch OLP TOLP Branch OLP TOLP
1-2 0 0 5-8 0 0 14-15 0.0930 0.0086 21-22 0 0
1-39 0 0 6-7 0 0 15-16 0.7282 0.5633 22-23 0 0
2-3 0.7734 05212 6-11 0.9145 0.7439 16-17 0.0184 0 23-24 0 0
2-25 0.8536 0.6998 7-8 0 0 16-19 0 0 25-26 03174 0.0591
34 0.6536 0.5421 8-9 0 0 16-21 0 0 26-27 0.6110 0.4132
3-18 0.0580 0.0055 9-39 0 0 16-24 0 0 26-28 0.0118 0.0016
4-5 02141 0.0453 10-11 0.7022 0.4937 17-18 0.2140 0.0426 26-29 0 0
4-14 0 0 10-13 0 0 17-27 0.6360 0.5397 28-29 0 0
5-6 0 0 13-14 0 0
Table 13
System UVP, OVP, OLP and TOLP values at noon with and without considering input correlation.
PL System UVP System OVP System OLP System TOLP
WC BC WC BC e BC WwC BC
Base case 0 0 1 1 0 0.0027 0 0.0002
5% 0 0 1 1 0.0619 0.1707 0.0098 0.0235
10% 0 0 1 1 0.9203 0.9297 0.4049 0.5029
15% 0 0.0010 0.9998 1 0.9995 0.9998 0.9539 0.9660
20% 0.4765 0.7814 0.9351 0.9609 1 1 0.9991 0.9994

Note: WC: without considering input correlations, BC: Base case correlations.
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Table 14
System RSOV, RSOL and RSTOL values at noon for various % PLs.
Risk index PL WC BC
RSOV Base case 4.1905 4.0715
5% 4.6464 47135
10% 2.8328 2.9559
15% 2.1462 24382
20% 1.5556 1.8008
RSOL Base case 0 0.0008
5% 0.0422 0.1138
10% 1.7250 1.8098
15% 6.0273 5.8387
20% 12.2257 11.5308
RSTOL Base case 0 0
5% 0.0029 0.0069
10% 0.2850 0.3600
15% 2.1760 2.2598
20% 7.5092 7.2365

evident from the comparison of results that with an increase in %
PL, system UVP, OLP and TOLP values increase whereas system OVP
decreases. Although, the values of OVP at majority of the buses has
increased with increase in % PL, there is no fixed pattern to describe
the change in OVP with increase in % PL at buses 18, 21, 24, 25, 27
and 28.

Finally, the impact of input correlation on the calculation of
system risk indices at noon is compared in Table 14 for various % PLs
of PV generations. It is found that, in most of the cases, not ac-
counting for input correlations in analysis leads to underestimation
of risk indices. The system RSOV increases when % PL increases
from base case to 5% but for PL beyond 5%, system RSOV decreases.

The over-limit risk assessment at the remaining time instants
follow the similar set of steps as adopted for noon. Tables 3—5
provide %CV information of input RVs at the remaining time
instants.

6. Conclusion

This paper has presented a risk-based power system planning
with large scale integration of PV generations. Special focus is given
on the accurate uncertainty modeling of input RVs at multiple time
instants. The effect of PV generation penetrations and change in
value of model parameters on the statistics of result variables are
analyzed in detail. Further, the over-limit risk indices are calculated
for various PV penetrations and input correlations. Based on the
analysis of various results, the following sets of conclusions are
drawn.

i) The PV generation has a diverse production pattern. The
probability distributions at various time instants are
different and do not fit to any specific parametric
distribution.

ii) The Probability distributions of ambient temperature and
aggregate load power at all the time instants are same and
follow Gaussian distribution.

iii) The change in the values of TPLF model parameters has a
significant effect on statistics of result variables.

iv) A TPLF study considering higher penetration of PV genera-
tion leads to higher variability of branch power flows and
branch temperatures as compared to other result variables.

v) Hourly TPLF simulations under various PV penetrations and
correlations helps in identifying the critical buses and
branches by quantifying risk of over-limit in bus voltages and

branch power flows which are essential for the assessment of
system reinforcement and reliable operation.

As the extension of this research work, it is planned to accom-
modate both temporal and spatial correlations in multi-time
instant power system studies considering generation dispatch
strategy.
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