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a b s t r a c t

In this paper, the risk assessment of a PV integrated power system is accomplished by computing the
over-limit probabilities and the severities of events such as under-voltage, over-voltage, over-load, and
thermal over-load. These aspects are computed by performing temperature-augmented probabilistic
load flow (TPLF) using Monte Carlo simulation. For TPLF, the historical data for PV generation, ambient
temperature, and load power, each collected at twelve specific time instants of a day for the past five
years are pre-processed by using three linear regression models for accurate uncertainty modeling. For
PV generation data, the developed model is capable of filtering out the annual predictable periodic
variation (owing to positioning of the Sun) and decreasing production trend due to ageing effect
whereas, for ambient temperature and load power, the corresponding models accurately remove the
annual cyclic variations in the data and their growth. The simulations pertaining to the aforesaid risk
assessment are performed on a PV integrated New England 39-bus test system. The system over-limit
risk indices are calculated for different PV penetrations and input correlations. In addition, the
changes in the values of TPLF model parameters on the statistics of the result variables are analyzed. The
risk indices so obtained help in executing necessary steps to reduce system risks for reliable operation.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, power systems are more often operating under
highly unpredictable conditions due to the integration of various
renewable energy sources (RESs). Among the RESs, PV generation is
greatly favored because of its ability to generate power at varying
capacities. This results in uncertainty that sets a higher require-
ment on system security during planning and operation. Further,
geographically nearby PV generations are correlated feed-in. The
increase in uncertainty effect due to high PV penetrations and their
associated correlations cause system variables to violate the limit
and make the system vulnerable. Hence, risk assessment by
computing risk indices based on over-limit probability and severity
to recognize systemweakness more realistically is entailed [1]- [2].
The calculation of risk indices are accomplished with the help of
probabilistic load flow (PLF) with respect to input uncertainties and
correlations. The accuracy of the computed risk indices depends on
the accuracy of the PLF results. The following are the three major
requirements to achieve accurate PLF results.

i) Application of an accurate uncertainty handling method,
ii) Establishment of an accurate power system model, and
iii) Accurate modeling of input uncertainties.

The various methods used for PLF are categorized as, numerical
methods, analytical methods, approximate methods, and hybrid
methods [3]. Monte Carlo simulation (MCS), a typical numerical
method is considered as a reference for accuracy comparison of
other PLF methods [3e22]. MCS provides numerical estimation of
result variables based on random statistical sampling and solves
the PLF problem by a series of deterministic routines.

The establishment of an accurate power system model is highly
essential in PLF. A majority of the PLF studies except for [6] assume
transmission branch resistance as constant. But, branch resistance
depends on branch temperature which in turn is a function of a set
of factors that are probabilistic in nature; among which ambient
temperature is dominant. In order not to overlook the temperature
related errors, temperature-augmented load flow (TLF) captures
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electro-thermal coupling effect of transmission branches [23]. The
first proposal on sensitivity matrix-based temperature-augmented
PLF (TPLF) model is cited in Ref. [22] and the usefulness of proba-
bility distributions of TPLF result variables for various power sys-
tem studies is detailed in Table 1.

In case of TPLF, ambient temperatures of the temperature
dependent branches (TDBs) are included in the input vector in
addition to the bus power injections. This increases the total
number of input random variables (RVs), all of which may not be
modeled by any specific parametric distributions. Hence, it is an
uphill task to accurately model the probability distributions and to
include the associated correlations. Assumption of some para-
metric probability distributions to quantify the input uncertainties
may not always be suitable in all cases. On the other hand, a more
realistic probabilistic modeling, incorporating past experiences can
be achieved from the historical data. The authors in Refs. [4] [13],
[22] [24], have performed uncertainty modeling of input RVs at a
particular instant of time. The uncertainty modeling of peak load
power (at 7 p.m.) [4], maximum PV generation (at noon) [13] [22],
[24], and ambient temperature (at noon) [22] is performed for PLF.
In order to remove the trend from load samples, a fitting curve
using a set of standard functions is used [4]. In Ref. [13], the periodic
effect due to annual positioning of the Sun is removed from PV
generation samples by filtering out the daily, seasonal, and annual
periodic components whereas; in Ref. [24] the removal of predi-
cable lowest frequency annual periodic component is accomplished
with the help of a linear clear sky model. In Ref. [22], ambient
temperature data is probabilistically modeled by filtering out the
lowest frequency periodic component of one cycle/year. The un-
dertone of removing the trend and the periodic effect from the
historical data essentially is not to attribute their variations to a
movement in uncertainty.

Although the authors in Ref. [22] successfully have augmented
temperature effect in PLF analysis, the influence of variation of TPLF
model parameters on the statistics of result variables is overlooked.
At a specific time of the day PV generation depends on the
geographical and environmental conditions of that location. At
different time instants, the production patterns are different and
the clear sky model for eliminating the periodic effect as proposed
in Ref. [24] may not be suitable as it accounts for only the Sun's
height which alone is not adequate. Hence, an accurate clear sky
model taking into account the other important factors such as the
Sun's direction and the angle of incidence of solar radiation de-
serves research attention. Similarly, multi-time instant uncertainty
modeling of ambient temperature and load power needs to be
equally regarded for TPLF. Further, the analysis of the impact of
various PV penetrations and different input correlations on TPLF
results is imperative in making the over-limit risk assessment more
realistic. With this motivation, investigations are performed on the
following objectives.

i) An accurate uncertainty modeling of PV generation, ambient
temperature and load power at multiple time instants.
Table 1
Usefulness of probability distributions of the TPLF result variables.

Result variable Adequacy indices

Bus voltage magnitude Steady state under and over voltage probabilities can
Branch temperature Probability of branch temperature above the allowabl
Generator bus reactive power Capability of the system to maintain bus voltage mag
Branch power flow Steady state overload probabilities of the transmission

operations.
Slack bus power Probability of slack bus power exceeding the limit can
ii) An analysis of the effect of various PV penetrations and the
variations of TPLF model parameters on the statistics of the
result variables.

iii) Over-limit risk assessment considering various PV penetra-
tions and input correlations.

In Section 2, the application of MCS for TPLF is systematically
detailed. The input uncertainties are probabilistically modeled and
correlation effects are discussed in Section 3. In Section 4, various
types of over-limit risk indices are elaborated. In Section 5, modi-
fied New England 39-bus power system is used to analyze the effect
of PV penetration and the value of model parameters on statistics of
result variables. In addition, the system over-limit risk indices are
computed for various PV penetrations and input correlations.
Finally, the concluding remarks are given in Section 6.

2. PLF in temperature-augmented power system model

The power system model as developed for TLF is the basis for
TPLF using MCS. TLF assumes that the power system is both in
electrical and thermal steady state. It is a general conception that
electrical dynamics is neglected in load flow. Again, the thermal
dynamics of the branch conductors is assumed short as compared
to the changes in conductor loading over time. TLF model can be
developed either by considering branch resistance [25] or branch
temperature [23] as state variable. The consideration of the latter
simplifies the mathematics required for modeling and is compu-
tationally more efficient. The transmission branches having non-
zero series resistance are referred to as TDBs. The variation in
branch reactance due to temperature variation is assumed negli-
gible as in Ref. [23]. The modeling steps of TLF are explained as
under.

The resistance of a transmission branch i� j (branch connecting

ith bus and jth bus) is expressed as,

Ri�j ¼ RRef ; i�j

 
Ti�j þ TF; i�j

TRef ; i�j þ TF; i�j

!
(1)

where Ti�j is the conductor temperature of the branch i� j, TF is the
temperature constant, RRef ; i�j and TRef ; i�j are the reference values
of Ri�j and Ti�j respectively. According to thermal resistance model,
Ti�j is expressed as,

Ti�j ¼ TAmb; i�j þ TRise; i�j ¼ TAmb; i�j þ Rq; i�jPLoss; i�j (2)

where, TAmb and TRise are the ambient temperature and branch
temperature rise above TAmb respectively and Rq is the thermal
resistance. By using (2) let us define,

T 0i�j ¼ Ti�j � Rq; i�jPLoss; i�j ¼ TAmb; i�j (3)

Since the real and reactive bus power injections (P and Q
respectively) are specified, the mismatch equations DP and DQ
be obtained.
e maximum limit i.e., thermal over-load probability can be ensured.
nitudes at desired level can be evaluated.
branches can be identified to take decisions regarding reinforcement plans and

be known.
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respectively can be explicitly expressed. But, it is difficult to define
the branch temperature mismatch equations since their values are
unknown a priori. However, an equation for T 0 can be defined for
the TDBs. Here, T 0 is the measure of the difference between the
present value of T and the calculated temperature by using the state
variables i.e., bus voltage angle d and bus voltage magnitude jV j.
From (3) it is clear that, the value of T 0 is equal to TAmb. The
calculation of Rq is detailed in Ref. [22] as the ratio of the rated
temperature rise TRated rise to the corresponding rated loss
PRated loss. The value of PRated loss is either specified or is calculated
using the fully loaded resistance RHot measured at worst-case TAmb
i.e., TAmb�wc. The expression of RHot for a TDB using (1) is given as,

RHot; i�j ¼ RRef ; i�j

 
TAmb�wc; i�j þ TRated rise; i�j þ TF; i�j

TRef ; i�j þ TF; i�j

!
(4)

The expression for PLoss; i�j [23] is given as,

PLoss; i�j ¼ gi�j

�
jVij2 þ

��Vj
��2 � 2jVij

��Vj
��cos dij� (5)

where gi�j is the conductance of branch i� j; dij ¼ di � dj.
Substituting (5) in (3) yields,

T 0i�j ¼ T i�j � Rq; i�j gi�j

�
jVij2 þ

��Vj
��2 � 2jVij

��Vj
��cos dij� (6)

The mismatch equations as the difference between the specified
and calculated values are given as,

DPi ¼ PSp; i � Pi
DQi ¼ QSp; i � Qi

DT 0i�j ¼ TAmb; i�j � T 0i�j

(7)

where, PSp; i and QSp; i respectively are the specified real and reac-

tive power injections at an ith bus, Pi and Qi at an ith bus are
calculated by using the basic load flow equations. In terms of
temperature-augmented Jacobian matrix, mismatch equations in
(7) are expressed as,

0
@ DP

DQ
DT 0

1
A ¼

0
BBBBBBBB@

vP
vd

vP
vjV j

vP
vT

vQ
vd

vQ
vjV j

vQ
vT

vT 0

vd

vT 0

vjV j
vT 0

vT

1
CCCCCCCCA

0
@ Dd

DjV j
DT

1
A ¼ ðJÞ

0
@ Dd

DjV j
DT

1
A (8)

The error component of state vectors using (8) is obtained as,

0
@ Dd

DjV j
DT

1
A ¼

�
J�1
�0@ DP

DQ
DT 0

1
A (9)

where, J is the state vector Jacobian matrix.
The model so developed is referred to as a single slack bus TLF

model. The main advantage of this model is that, the transmission
Table 2
Technical and geographical details of the PV arrays.

PV Array 1

Capacity 10 kW
Orientation/Tilt South/30�

Location/Post code Monkton/21111
Coordinates 39.578� (N), 76.614� (W)

Note: All the three locations are in Eastern Time zone.
branch temperature is directly calculated from the power flow
solution using Newton-Raphson method. In TLF, the elements in
the state vector are updated by using the errors estimated from (9)
in each iteration. This continues until all mismatches fall within a
presumed tolerance. MCS solves the TPLF by a series of NS TLFs each
time considering a set of values for input RVs. Simultaneously, NS
number of samples for each result variable is obtained. Finally, the
probability distributions of the result variables are approximated.
3. Modeling of input uncertainty and description of input
correlation

The circumstance in which uncertainty modeling is carried out
mainly depends on the type of its application i.e., time instant
model or time period model. Therefore, it is essential to decide the
type of uncertainty model for implementation. Here, time-instant
model is adopted. An input RV at time t is modeled as a probabil-
ity distribution. The historical data for the past five years
(2012e2016) is used for uncertaintymodeling. The input RVs in this
study includes PV generation, TAmb, and load power.
3.1. PV generation uncertainty modeling

The historical data of PV generations are collected from three
different locations of USA (refer Table 2) situated in the Northern
hemisphere (21924 hourly values for each location) [22], [26]. The
intent is to accomplish an accurate uncertainty modeling at each
time instant from 7 a.m. to 6 p.m. on hourly basis. Since, the data
considered for modeling is at a specific time of the day; it conflates
variability (predictable PV generation variation across the year) and
uncertainty (unpredictable variation due to meteorological condi-
tions). Hence, the historical data observed at a particular time
instant for several years cannot be used alone to inform the un-
certainty of PV generation at that time instant. This calls for the
preprocessing of the observed data by filtering out the predictable
periodic effect. The stochastic variability left after removal of the
effect is termed as the uncertainty component. Consequently, the
variance of PV generation post processing is less than the pre-
processed value [24].

The existing approach [24] to eliminate the periodic effect from
data, considers the actual PV generation as a linear function of
sin qS, where qS is the solar elevation angle. But, such an approach is
less accurate in tracing the periodic variations (skewed and/or
multimodal) of data collected at different time instants and at
various locations. The function sin qS is the measure of the Sun's
height. But, the Sun's direction (as defined by solar azimuth angle
gS) also has an effect on PV generation. Moreover, the research
carried out in Ref. [27] indicate that array tilt qT significantly
dominates the PV generation pattern since it affects the angle of
incidence of solar radiation qI. The aforementioned factors cannot
be ignored in the design of a linear clear sky model. The actual data
in the model considered as a linear function of a set of terms,
T1 ¼ sin qS, T2 ¼ sin gS and T3 ¼ cos qI is proposed. In order to ac-
count for the decreasing trend in power production due to aging of
PV Array 2 PV Array 3

7.65 kW 8.88 kW
South/25� South-West/30�

Parkesburg/19960 Lincoln/19365
39.959� (N), 75.917� (W) 38.87� (N), 75.423� (W)



Fig. 1. Variations of sin qS, sin gR
S and cos qI at 6 p.m. for one year.
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PV array, two extra terms T4 ¼ DN and T5 ¼ DN2 are included
where, “DN” is the day number of the year (DN¼1 for 1st January
2012).

The linear model considering the above five terms is developed
as,

PM1 ¼ aPT1 þ bPT2 þ cPT3 þ dPT4 þ ePT5 þ fP (10)

where aP, bP, cP, dP, eP and fP are the unknown parameters of the
model which are estimated using the least squares method. The
sum of squares of the errors, E is defined as,

E ðaP; bP; cP; dP; eP; fPÞ ¼
Xnd
k¼1

fPPVðkÞ � PMðkÞg2 (11)

where, PPV is the observed PV generation, ‘nd’ is the total number of
data samples collected at a particular time instant for five years. The
values of aP, bP, cP, dP, eP, and fP are obtained by solving a set of
following equations:

vE
vaP

¼ 0;
vE
vbP

¼ 0;
vE
vcP

¼ 0;
vE
vdP

¼ 0;
vE
veP

¼ 0 and
vE
vfP

¼ 0

(12)

The expressions for qS and gS are respectively given as,

qS ¼ sin�1ðsin qLA sin qD þ cos qH cos qLA cos qDÞ (13)

gS ¼ sin�1
��sin qH cos qD

cos qS

�
(14)

where, qLA is the latitude, qD is the declination angle, qH is the hour
angle. For the Northern hemisphere, qD is calculated as,

qD ¼ 23:45
�
sin
�
DNþ 284

365
� 360

�
�

(15)

The value of qH can be calculated by converting clock time to
solar time [28]. A step by step formulation is provided underneath.

Step-1: Equation of time (EOT) is calculated as,

EOT ¼ 9:87 sinð2DÞ � 7:53 cosðDÞ � 1:5 sinðDÞ where D

¼
�
360
365

�
ðDN� 81Þ; (16)

Step-2: For the Western longitudes, local solar time (LST) is
calculated as,
LST ¼ LTþ ð4min:=deg:Þ
�
qSTMLO � qLO

�
þ EOT (17)

where, LT is the local clock time, qLO is the local longitude of the

location, qSTMLO is the local longitude of standard time meridian
which is calculated as,

qSTMLO ¼ 15
�
�
qLO
15�

�
(18)

where
�
qLO
15�

�
returns the nearest integer to qLO

15� .

Step-3: Finally, qH is calculated as,

qH ¼ 15
� ðLST� 12Þ (19)

The criteria used to obtain the required value of gS with refer-
ence to the true North [27] is given as,

gRS ¼
	
180

� � gS; cos qH � tan qD=tan qLA
360

� þ gS; cos qH < tan qD=tan qLA
(20)

By using (20), the expression for qI is given as,

qI ¼ cos�1
n
sin qS cos qT þ cos qS sin qT cos

�
g� gRS

�o
(21)

where, g is the azimuthal angle of the PV array. For the South and
the South-West facing PV arrays the values of g are 180� and 225�

respectively. Finally, the residual i.e., the unpredictable component
of the PV generation is obtained as,

εPV ¼ PPV � PM1 (22)

Henceforth, the model proposed in Ref. [24] is referred to as
model-1 and the proposed model in (10) as model-2. The plots for
sin qS, sin gRS and cos qI using (13), (20) and (21) respectively at 6
p.m. for one year is shown in Fig. 1. Since all the three places are
situated geographically not far from each other, sin qS and sin gR

S
plots are nearly identical. However, a slight variation is due to the
varying geographical coordinates. On the other hand, cos qI for
Lincoln is significantly deviating from other two owing to its
differing orientation (refer Table 2). The slight difference between
the plots of Monkton and Parkesburg is because of the dissimilar tilt
angles. The variations depicted in Fig. 1 are different at different
instants of time. A fitting curve to the observed data using these
three functions at any particular time instant captures accurately
the periodic pattern.



B.R. Prusty, D. Jena / Renewable Energy 116 (2018) 367e383 371
3.1.1 Preprocessing of PV generation data: The first step is to
remove the effect of daylight time shifting (popularly known as
daylight saving time) from the data. The observed PV generations
on a daily basis (at multiple time instants) for all the three places
are shown in Fig. 2. Due to space constraint, plots of only two years
data (2012 and 2013) are shown. However, the uncertainty
modeling considers five years of data. The PV generation at a
particular instant of time is found to be periodic and the patterns
Fig. 2. Observed PV generation plots at twelve t
are extremely differing at various time instants and locations. The
estimated periodic variations using model-1 and model-2 are also
shown for all the cases. Three different colors are used in the plots.
The black color represents the actual PV generation; the red color
and the blue color represent the periodic patterns as captured by
model-1 and model-2 respectively. The mean values, standard
deviations and percentage coefficient of variations (% CVs) of PV
generations pre and post processing at the three arrays for twelve
ime instants for two years (2012 and 2013).



Fig. 2. (continued).
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time instants are plotted in Fig. 3 considering five years data. The %
CV is calculated as,

%CV ¼ Standard deviation value
Mean value

� 100 (23)

The accuracy of model-2 in tracking the periodic pattern as
compared tomodel-1 is quite evident from Fig. 2. The plots of mean
value, standard deviation and % CV of PV generations of the three
arrays (refer Fig. 3) have nearly the same trend. The maximum
mean value and standard deviation of the PV generation occurs at
noon for PV arrays 1 and 2whereas; for PV array 3 it occurs at 1 p.m.
The % CV plot is opposite to that of the mean value plot. The highest
and the lowest values of % CV occur at 6 p.m. and noon respectively
for all the three PV arrays. The periodic patterns as depicted by
model-1 and model-2 are removed from the data using (22) to
obtain the unpredictable component of PV generation. The % CV pre
and post processing at all the time instants using both themodels is
provided in Table 3. During 10 a.m. to 3 p.m., the reduction in % CV



Fig. 3. Mean values, standard deviations and % CVs of PV generations pre and post processing.

B.R. Prusty, D. Jena / Renewable Energy 116 (2018) 367e383 373
post processing is less compared to that at remaining time instants.
The following are the major observations from Fig. 2 and Table 3

which illustrates the aptitude of model-2 in tracing the periodic
effect due to changing solar position.

i) The insets of 5th and 7th subplots of Fig. 2(a) and the inset of
12th subplot of Fig. 2(b) clearly show that model-2 has the
capability to identify the PV generation pattern in the region
of low power levels.
Table 3
Comparison of % CVs of PV generations pre and post processing.

Time instant % CV

PV Array 1 PV Array 2

BP AP1 AP2 BP

7 a.m. 107.74 59.96 56.72 115.63
8 a.m. 90.60 57.47 55.89 80.03
9 a.m. 70.74 56.07 54.84 64.57
10 a.m. 58.96 54.13 53.52 58.50
11 a.m. 55.18 52.90 52.65 54.34
noon 54.44 52.82 52.62 53.45
1 p.m. 55.15 53.10 52.51 54.23
2 p.m. 57.66 55.26 54.37 57.00
3 p.m. 60.18 56.19 55.46 59.22
4 p.m. 68.76 57.99 56.90 69.23
5 p.m. 92.24 60.47 57.80 91.03
6 p.m. 125.20 64.37 59.16 132.12

Note: BP stands for before processing. AP1 and AP2 stands for the values after processin
ii) During winter season (for the months December, January
and February in the Northern hemisphere) PV generation is
zero at 7 a.m., 5 p.m. and 6 p.m. It is observed from Fig. 2 that
during these instants there is an inaccuracy in identifying the
production patterns by both the models. But, at 6 p.m., the
performance of model-2 is comparatively better.

iii) At all other time instants, the overall performance of model-
2 is found to be superior as compared to model-1. The
reduction in % CVs in all the cases (as seen from Table 3)
PV Array 3

AP1 AP2 BP AP1 AP2

74.31 72.68 96.72 53.99 51.81
64.89 63.65 64.92 51.49 49.01
58.32 57.75 55.16 49.58 48.69
54.30 53.81 53.05 49.15 48.56
51.07 50.79 51.74 49.42 49.10
50.71 50.39 51.57 49.88 49.68
51.44 50.94 53.78 52.27 52.15
53.32 52.46 56.36 54.01 53.85
54.46 53.83 64.58 57.65 57.06
56.40 55.35 81.08 64.48 62.20
61.95 59.67 103.02 70.34 68.48
73.34 68.11 137.74 81.32 77.08

g using model-1 and model-2 respectively.
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Fig. 4. Comparison of probability density plots of PV generation uncertainty at three different time instants.

Fig. 5. Mean values, standard deviations and % CVs of TAmb pre and post processing at
Lincoln.
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further clarifies the accuracy of model-2 in identifying the
annual periodic effect at all the time instants.

The probability density plots of residuals of PV generations at 8
a.m., noon and 4 p.m. using model-2 is shown in Fig. 4. At noon,
when the % CV value is low, the shapes of probability density plots
are almost identical for all the three PV arrays. At 8 a.m. and 4 p.m.,
% CVs are comparatively higher than that at noon and the shapes of
probability density plots are different. While obtaining the unpre-
dictable components of PV generations at the time instants 7 a.m., 5
p.m. and 6 p.m., (22) is applied only during nonzero PV generation
periods.

The comparison of plots in Fig. 4 indicates that, the shapes of
probability density plots of PV generations are different at different
locations and at different time instants. They do not fit to any
specific parametric probability distributions. Hence, an assumption
of any parametric distribution for PV generation uncertainty may
be an obscure approach in any probabilistic analysis.

3.2. TAmb uncertainty modeling

The historical data for TAmb at Lincoln city, USA at twelve time
instants are collected from Ref. [29]. Unlike PV generation plots, the
Table 4
Comparison of % CVs of TAmb pre and post processing.

Time instant 7 a.m. 8 a.m. 9 a.m. 10 a.m. 11 a.m. N

% CV BP 76.99 71.12 63.29 58.38 55.28 5
AP 37.07 31.14 27.46 26.37 26.05 2
TAmb plots at various time instants have almost the same pattern.
The mean values, standard deviations and % CVs at various time
instants pre and post processing are plotted in Fig. 5. Standard
deviation values at all the time instants pre and post processing are
nearly the same, because of which the % CV plots pre and post
processing are opposite to that of the mean value plot. The
observed data is processed by eliminating the periodic effect. To
obtain the TAmb uncertainty, a linear regression model is developed
which is described as,

PM2 ¼ aT þ bTDNþ cTDN
2 þ dT sin

	�
2p
365

�
ðDNÞ




þ eT cos
	�

2p
365

�
ðDNÞ


 (24)

where, the unknown parameters, aT, bT, cT, dT, and eT are estimated
using least squares method. Finally, the unpredictable component
of TAmb is obtained as, εT ¼ TAmb � PM2. The second and third terms
in (24) track trend in the data whereas; the last two terms deter-
mine the lowest frequency periodic component in the data.

The % CVs pre and post processing are compared in Table 4. It is
clearly observed that the periodic effect has a significant impact on
the % CVs of TAmb. The various steps in the processing of observed
TAmb (at 2 p.m.) are shown in Fig. 6. In Fig. 6(a), the observed TAmb
plot with its periodic pattern is shown. The residual after filtering
out the periodic patternwith addedmean value of observed TAmb is
shown in Fig. 6(b). The probability density plot of TAmb considering
only the uncertainty component is shown in Fig. 6(c). At all the
twelve time instants, Gaussian distribution fits to the data with
minimal error as compared to other parametric distributions.

3.3. Load power uncertainty modeling

In case of transmission systems, the uncertainty associated with
aggregate load power is generally modeled by considering the
historical data [13]. Authors in Ref. [13] have processed load power
data taken from Electric Reliability Council of Texas (ERCOT) at
noon. So as to obtain the % CV information at other time instants,
data are collected from eight weather zones of Texas i.e., Coast (C),
East (E), Far West (FW), North (N), North Central (NC), South (S),
South Central (SC), and West (W) during 1 a.m.e12 p.m. at an
hourly interval [30]. The data represents aggregate load power for
all the retail premises in the respective weather zones. The intent is
to accomplish an accurate time instant uncertainty model at each
hour in a day. The mean values, standard deviations and % CVs at
oon 1 p.m. 2 p.m. 3 p.m. 4 p.m. 5 p.m. 6 p.m.

3.35 51.85 50.94 50.85 52.04 54.51 58.32
5.77 25.59 25.42 25.40 25.52 25.64 26.62
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Fig. 6. Processing of TAmb at 2 p.m.

Fig. 7. Mean values, standard deviations and % CVs of aggregate real load powers pre and post processing.
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Table 5
Comparison of % CVs of aggregate real load powers pre and post processing.

Time instant 7 a.m. 8 a.m. 9 a.m. 10 a.m. 11 a.m. Noon 1 p.m. 2 p.m. 3 p.m. 4 p.m. 5 p.m. 6 p.m.

Coast BP 13.57 14.39 15.77 17.55 19.38 21.12 22.71 23.72 24.35 24.49 23.94 21.90
AP 10.24 9.73 9.08 8.88 9.03 9.41 9.97 10.46 10.77 10.88 10.67 10.08

East BP 16.61 16.13 15.59 16.37 18.29 20.53 22.72 24.31 25.33 25.54 24.83 22.69
AP 14.68 13.67 12.32 11.57 11.33 11.44 11.69 11.95 12.05 12.15 12.16 11.99

Far West BP 15.47 15.47 15.27 15.43 15.92 16.61 17.41 18.05 18.50 18.71 18.49 18.11
AP 5.56 5.53 5.24 5.27 5.44 5.72 6.07 6.38 6.58 6.71 6.67 6.61

North BP 14.87 14.86 14.47 15.25 16.95 19.08 21.27 22.96 24.17 24.68 24.18 22.47
AP 11.73 11.09 10.40 10.33 10.59 11.01 11.47 11.83 12.02 12.08 11.96 11.69

North Central BP 18.31 18.04 17.35 18.29 20.38 22.94 25.45 27.46 28.86 29.48 29.07 26.94
AP 15.53 14.42 12.96 12.30 12.28 12.57 13.00 13.37 13.65 13.83 13.89 13.69

South BP 16.58 16.86 17.01 18.15 19.80 21.51 23.01 23.95 24.39 24.39 23.75 22.32
AP 14.33 13.69 12.10 11.13 10.68 10.54 10.60 10.78 10.95 11.02 10.97 10.80

South Central BP 17.23 16.85 16.39 17.41 19.50 22.00 24.36 26.24 27.56 28.07 27.75 25.95
AP 15.00 13.81 12.14 11.13 10.79 10.90 11.22 11.62 11.96 12.20 12.33 12.21

West BP 15.59 15.62 14.48 14.38 15.56 17.47 19.55 21.25 22.52 23.04 22.63 21.37
AP 12.22 11.59 10.64 10.15 10.10 10.32 10.64 10.96 11.19 11.32 11.31 11.22
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various time instants pre and post processing are plotted in Fig. 7.
Unlike PV generation patterns which are extremely varying at

different time instants, the pattern of aggregate load power time
series is approximately same at various time instants comprising of
many harmonic components. Further, an increasing growth in the
data is observed at all the time instants. A similar set of steps are
followed for load uncertainty modeling as applied to TAmb. To
obtain load power uncertainty, a linear regression model is devel-
oped which is given as,

PM3 ¼ aD þ bDðDNÞ þ cD
�
DN2

�
þ dD

�
DN3

�

þ
X5
h¼1

eD;h sin
	�

2p
365

�
hðDNÞ



þ fD;h cos

	�
2p
365

�
hðDNÞ




(25)

where the model parameters aD, bD, cD, dD, eD;1/, eD;5, fD;1/, fD;5
are determined by using least squaresmethod. The load power data
at all the 24 h is processed and % CVs at twelve time instants (7
a.m.e6 p.m. at an hourly interval) pre and post processing are
presented in Table 5. As in the case with TAmb, the periodic effect
has a noticeable impact on % CV values. The unpredictable
component is calculated as, εD ¼ PD � PM3 where, PD is the
observed aggregate load power.

In Fig. 8, the observed aggregate load powers with their periodic
patterns and growth at arbitrarily selected time instants 10 a.m.
and 4 p.m. respectively at Coast for the years 2012e2016 are
presented.

It is evident from Fig. 8 that, the periodic patterns as indicated
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Fig. 8. Observed load power plots a
by red color plots accurately has traced the trends and periodic
effects in the data. The probability density plots of the uncertainty
components of the load data for the same two time instants are
shown in Fig. 9. It is found that, Gaussian distribution fits the data
with minimal error and the same is applicable to the remaining
time instants.

3.4. Input correlation

Spatial correlation between the input RVs are considered for
TPLF simulations at various time instants. The degree of correlation
is measured by using Pearson product moment correlation coeffi-
cient (PMCC). For two RVs X1 and X2, the PMCC is represented as,
rX1; X2

. The plots of PMCC values between the PV generations as well
as between load powers (few cases) at various time instants post
processing is depicted in Fig. 10. The shapes of PMCC plots in all the
three cases as shown in Fig. 10(a) are nearly the same. The PMCC
values are positive due to the common effects of solar radiation,
temperature and other environmental factors. The geographical
distance between PV arrays 1 and 3 as well as PV arrays 2 and 3 are
nearly the same (around 130 km) hence, the PMCC plots resemble
closely. The distance 73 km between the PV arrays 1 and 2 is less as
compared to the distance in other two cases, because of which the
PMCC values in the former case are higher at all the time instants.
The aggregate load power data collected from different weather
zones comprise of different types of consumers such as, industrial,
commercial, residential etc. The positive correlation between the
load data series of different weather zones are due to the common
environmental factors such as, temperature, sunset, rain fall, etc.
and due to social factors such as sporting events, meal time,
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Fig. 9. Probability density plots of residuals of the real load powers as shown in Fig. 8.
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working habits, etc. The shapes of PMCC plots for three cases as
shown in Fig. 10(b) are nearly the same. The PMCC plots of
remaining cases also have the same shapes.

Further, the calculated PMCC values between PV generation and
TAmb are extremely low. The values of rPV3;TAmb

at various time in-
stants are slightly higher than that of the other two cases rPV1 ;TAmb

and rPV2;TAmb
. This is because PV array 3 is located in the same area

from where the historical data for TAmb is collected.

4. System over-limit risk indices

4.1. Over-limit probability calculations

The over-limit probability of a result variable is defined as the
probability of exceeding a predefined limiting value [31]. For a
result variable X, the probability of exceeding the higher limit XLimit
is denoted as,

probðX >XLimitÞ ¼ LðXLimitÞ ¼ 1� FðXLimitÞ (26)

where, Lð�Þ and Fð�Þ respectively are the complementary and cu-
mulative distribution functions. Now the probability of falling
below the lower limit, XL; Limit is denoted as,

prob
�
X <XL; Limit

� ¼ F
�
XL; Limit

�
(27)

Hence, from the complementary distribution functions of bus
voltage magnitudes, branch apparent power flows and branch
temperatures, the values of under-voltage probability (UVP), over-
voltage probability (OVP), over-load probability (OLP) and thermal
over-load probability (TOLP) are calculated. The system UVP and
Fig. 10. PMCC between (a) PV generations and (b) a fe
OVP at the hth hour are calculated as,

UVPh ¼ 1�
Yn
i¼1

ð1� UVPihÞ; OVPh ¼ 1�
Yn
i¼1

ð1� OVPihÞ (28)

where, “n” is the total number of buses in the system; UVPih and

OVPih respectively are the UVP and OVP values of ith bus at hth hour.

In the similar way, system OLP and TOLP at the hth hour are
calculated as,

OLPh ¼1�
Y[
k¼1

ð1�OLPkhÞ; TOLPh ¼1�
Y[
k¼1

ð1�TOLPkhÞ (29)

where, “[” is the total number of branches in the system, OLPkh and

TOLPkh respectively are the OLP and TOLP values of kth branch at

the hth hour.
The expected system under voltage and over-voltage times

during day time (7 a.m.e6 p.m.) are calculated as,

UVT ¼
X12
h¼1

ðUVPh � 1 hrÞ; OVT ¼
X12
h¼1

ðOVPh � 1 hrÞ (30)

Similarly, the expected system over-load time (OLT) and system
thermal over-load time (TOLT) during day time are calculated as,

OLT ¼
X12
h¼1

ðOLPh � 1 hrÞ; TOLT ¼
X12
h¼1

ðTOLPh � 1 hrÞ (31)
w cases of load powers at various time instants.
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4.2. Over-limit severity calculations

The severity of over-limit, quantifies the deviation of mean value
of the result variable from the reference value. Here, exponential
severity functions are implemented. The over-voltage severity

function (VSF) at ith bus in hth hour is expressed as,

VSFih ¼ ekVVDih � 1 (32)

where the factor kV ¼ lnð2Þ=ðjVLimitj � 1Þ, VDih is the voltage devi-

ation of the ith bus at the hth hour and is calculated as,

VDih ¼
���1� mjVihj

���, mjVih j is the mean value of the voltage at ith bus at

the hth hour. For mjVihj ¼ 1 pu, VSF is zero and its value equals to
unity for mjVihj ¼ jVLimitj.

Similarly, over-load severity function (OLSF) and thermal over-

load severity function (TOLSF) of kth branch at the hth hour are
respectively given as,

OLSFkh ¼ ekOLOLDkh � 1; TOLSFkh ¼ ekTOLTOLDkh � 1 (33)

where, the factors kOL ¼ 2 lnð2Þ=��SLimit; k
�� and

kTOL ¼ 2 lnð2Þ=��TLimit; k
��, ��SLimit; k

�� and TLimit; k respectively are the

apparent power flow limit and branch temperature limit of the kth

branch.
In (33), OLDkh and TOLDkh respectively are the over load and

thermal over load deviations of the kth branch at the hth hour and
are calculated as,

OLDkh ¼
�����STh; k��� mjSkhj

���; TOLDkh ¼
�����TTh; k��� mjTkh j

��� (34)

where, mjSkhj and mjTkhj respectively are the mean values of apparent

power flow and temperature of the kth branch at the hth hour,��STh; i�� and TTh; i respectively are the threshold values of apparent

power flowand temperature of kth branch (taken as 50% of
��SLimit; k

��
and TLimit; k respectively).
Fig. 11. PV integrated New England 39-bus system.
4.3. Calculation of risk indices

The over-limit risk index is calculated as the product of event's
over-limit probability and the corresponding severity [1]. The
events are under-voltage, over voltage, over-load, and thermal

over-load etc. The risk of system over voltage (RSOV) at the hth hour
is calculated as,

RSOVh ¼
Xn
i¼1

ðOVPihÞ$ðVSFihÞ (35)

Finally, the risk of system over load (RSOL) and risk of system

thermal over load (RSTOL) at the hth hour are respectively calcu-
lated as,

RSOLh ¼
X[
k¼1

ðOLPkhÞ$ðOLSFkhÞ; RSTOLh

¼
X[
k¼1

ðTOLPkhÞ$ðTOLSFkhÞ (36)
5. Case study and discussion of results

MCS is applied for PLF and TPLF on modified New England 39-
bus system as shown in Fig. 11 by considering 30000 samples for
each input RV. This number is ascertained by setting variance co-
efficient to less than 1% for all the result variables [3].
5.1. Power system description and statistical details of input RVs

The power system data is adopted from Ref. [32]. The slack
generator is connected at bus 31. The system base power is
100 MVA. The base value of branch temperature is assumed 100 �C;
it can however be any convenient value. Its only function is to
normalize the temperature scale to aid computational simplicity. It
does not carry any relationship with voltage and power base values,
implied or otherwise. The three PV arrays as discussed in Section
3.1 are included at buses 26, 27 and 28. The PV arrays are assumed
to be not providing voltage support to the system hence, the
reactive power generations are zero. The loads connected at buses
9, 18, 21, 23, 24, 25, 26, 27, 28 and 29 are assumed as RVs. The
discrete load instants and their corresponding probability values
for real and reactive load powers at bus numbers 9 and 18 are
specified in Table 6. The real load powers at buses 21, 23, 24, 25, 26,
27, 28 and 29 follow Gaussian distribution with % CVs (post pro-
cessing) of the load data of eight weather zones as indicated in
Table 5 for the respective time instants. The mean values are
considered as specified deterministic data. The load power factors
at these buses are assumed constant. TAmb is assumed same for all
the TDBs. The base case PMCCmatrix for TPLF is constituted among
20 input RVs which include PV generations of the three PV arrays,
TAmb, real and reactive load powers at buses 21, 23, 24, 25, 26, 27, 28
and 29. The PMCC between PV generations and load power is
assumed as 0.3. The other PMCC values are calculated from the
historical data post processing.
5.2. Impact of increased penetration of PV generations on the
statistics of result variables

The percentage penetration level (% PL) of PV generation (per-
centage of total system real load power) is expressed as,

%PL ¼ mean value of total PV generation
mean value of total system load

� 100 (37)

The mean value of total PV generation for a given % PL is ob-
tained by using (37). It is assumed that the obtained mean value
corresponds to the time at which maximum PV generation occurs
(usually at noon). Then after, it is shared among the three PV units.
Let, m121 , m122 , and m123 are the assigned mean values of the PV gen-
erations of three arrays based on their ratings as specified in Table 2
where, the superscript “12” corresponds to noon. By adopting this



Table 6
Probabilistic description of discrete load powers.

Bus 9 Bus 18 Probability value

Real (pu) Reactive (pu) Real (pu) Reactive (pu)

0.04 �0.61 1.32 0.15 0.10
0.05 �0.64 1.46 0.20 0.15
0.06 �0.67 1.58 0.28 0.30
0.07 �0.68 1.66 0.34 0.25
0.09 �0.69 1.70 0.43 0.20
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process, the method to compute the mean values of individual PV
generations is explained by considering 5% PL as an example. The
mean value of the total PV generation by using (37) is calculated as
3.1271 pu (total system real load power is 62.5423 pu). The ratio of
ratings of PV2 to PV1 and PV3 to PV1 is calculated as 0.765 and 0.888
respectively. Hence, the value 3.1271 pu is shared by the PV arrays
as, m121 ¼ 1.1787 pu, m122 ¼ 0.9017 pu, and m123 ¼ 1.0467 pu. Now the

samples of the PV generation at a kth place i.e., PV12
k corresponding

to a given % PL is calculated bymultiplying a factor (ratio of mk to the
mean of actual PV generation at kth place) with all the samples of
actual PV generation collected at that location. These set of steps
are applied to various other % PLs for obtaining the mean values of
PV generations at noon as indicated in Table 7.

In order to analyze the effect of increased PV penetrations on the
statistics of result variables, various % PLs such as, base case, 5%,
10%, 15%, and 20% are deliberated. The probability density plots of
PV generation pertaining to various % PLs at noon for all the three
PV arrays are shown in Fig.12. It is observed that with an increase in
% PL, the variance of PV generation increases. Further, the proba-
bility density plots are magnified but the shape remains same. The
cumulative probability plots of net real power load at buses 26, 27
and 28 for various PLs are plotted in Fig. 13. The net load power
variability in all the three cases is increased with increase in % PL.
Further, the lower tails of the distributions are shifted towards the
negative axis. In the base case, low PV penetration could not cause
multimodality in the cumulative probability of net load power. For
the remaining four % PL cases cumulative probability plots of net
load are multimodal at buses 26, 27 and 28. It can further be
observed that for % PL above 10, bidirectional power injections are
evident at buses 27 and 28 whereas the same is noticed above 5% at
bus 26.

The buses and branches in the vicinity to the PV array locations
are subjected to more uncertainty influences [13]. Hence, the
probability distributions of bus voltage magnitudes of buses 26, 27
and 28; branch temperatures and power flows in the branches
26e27 and 26e28 are analyzed. Both PLF and TPLF simulations are
carried out at noon by considering various PV penetration cases as
described in Table 7 and the results are compared in Table 8.
Henceforth, PL; i�j, QL; i�j and

��SL;i�j
�� are used to represent respec-

tively the real, reactive, and apparent power flows in the branch
i� j. P31 and Q31 respectively are the slack bus real and reactive
powers. From the comparison of results in Table 8 it is clear that the
increase in % PL has a noticeable effect on branch temperatures and
Table 7
Mean values of PV generations for various % PLs.

PV Array Base case % PL

5 10 15 20

PV1 0.0283 1.1787 2.3574 3.5361 4.7148
PV2 0.0222 0.9017 1.8034 2.7051 3.6068
PV3 0.0238 1.0467 2.0934 3.1401 4.1867
branch loadings. The PLF and TPLF results are nearly same for bus
voltage magnitudes indicating that the temperature-augmentation
has less effect on bus voltage magnitudes. However, temperature-
augmentation has a significant effect on the variance of real and
reactive power flows. The effect becomes more prominent for
increased % PLs. In all the above three cases for bus voltage mag-
nitudes with the increase in % PL beyond 5, mean values are
decreased whereas the standard deviation values are increased due
to the uncertainty influence of PV generations at these buses.
However in the base case, the patterns for mean values and stan-
dard deviations are significantly biased as compared to the other
cases, this is because of the bidirectional power injections at these
buses. TPLF provides the statistical information of branch temper-
atures of TDBs which PLF fails to do. Due to temperature-
augmentation, real power flow variability of the branch 26e27
using TPLF is significantly increased as compared to PLF. There is a
fixed pattern to explain the variations in the mean values and
standard deviations of real power flow. The slack bus powers are
radically changed especially for 15% and 20% penetration cases. The
slack bus absorbs the excess real power; this scenario resembles in
reality the power export to the nearby systems. The analysis of the
other branch power flow distributions indicate that, in most of the
cases the increase in % PL leads to bidirectional power flows where
the probability distributions are extended to both positive and
negative axes. This increase in power flow variability due to the
increase in % PL leads to over-limit risks in the system. Hence,
system reinforcements are essential.

5.3. Effect of variation of TPLF model parameters on the statistics of
result variables

The base case values of model parameters TRef , TRated rise, and
TAmb�wc are 10 �C, 25 �C, and 40 �C respectively. TRef is the tem-
perature at which branch resistance is initially specified. TRated rise is
the rise in temperature that is expected to occur at rated power
level. Typically, this is dictated by line sag considerations, allowable
operating temperature of insulating materials, etc. TAmb�wc is the
worst case value of TAmb. It is used for the estimation of RHot and
therefore estimates PRated loss. The above three parameters cannot
always be taken as constant and the effect of their variation on the
statistics of the result variables would be of interest. The analysis is
carried out at noon for 5% PL by considering a few result variables
associated with the branches where the effect of temperature
dependence is the highest. Due to consideration of temperature
dependence, resistances of all the TDBs are increased. In order to
quantify the effect of change in first two statistical parameters due
to temperature-augmentation, two relative percentage error
indices are defined which are given as,

em ¼
����mWT � mT

mWT

����� 100; es ¼
����sWT � sT

sWT

����� 100 (38)

where, mWT and mT respectively are the mean values of a particular
result variable as obtained using PLF and TPLF; sWT and sT
respectively are the standard deviation values of a particular result
variable as obtained using PLF and TPLF.

There is a significant increase in the value of em for branch
temperature. Average em for all the branch temperatures amounts
to 123.84%. The higher value is due to the consideration of tem-
perature effect in TPLF which is ignored in case of PLF. On the other
hand, the average em of branch power flow and branch power loss
respectively amounts to 5.65% and 6.93% whereas, average es of
those respectively amounts to 26.29% and 33.39%. The effect of
temperature-augmentation on other result variables is less. The
values of em and es of branch power flows in case of a few branches
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where the effect of temperature dependence is prominent are
indicated in Table 9. It is observed that, the temperature-
augmentation has led to increase in power flow variability.

The effect of variations of model parameter values on the
average of error indices em and es of power flows (both real and
reactive) are provided in Table 10. In majority of the cases, the in-
crease in model parameter values either increases or decreases the
values of error indices. But, in a few cases though the effect is
Table 8
Comparison of PLF and TPLF results for various % PLs of PV generation.

Result variable PLF

Base Case PL ¼ 5% PL ¼ 10% PL ¼ 15% PL ¼
jV26j m 1.0520 1.0524 1.0486 1.0403 1.02

s 0.0022 0.0016 0.0056 0.0142 0.02
jV27j m 1.0378 1.0375 1.0324 1.0223 1.00

s 0.0026 0.0022 0.0069 0.0168 0.03
jV28j m 1.0501 1.0512 1.0496 1.0453 1.03

s 0.0018 0.0010 0.0028 0.0078 0.01
T26�27 m 0.1000 0.1000 0.1000 0.1000 0.10

s 0 0 0 0 0
T26�28 m 0.1000 0.1000 0.1000 0.1000 0.10

s 0 0 0 0 0
PL; 26�27 m 2.5941 3.5371 4.4996 5.4299 6.34

s 0.3041 0.4963 0.9299 1.3667 1.78
PL; 26�28 m �1.4228 �2.0524 �2.6951 �3.3272 �3.

s 0.2702 0.3536 0.6269 0.9270 1.22
QL; 26�27 m 0.6792 0.6794 0.7288 0.8263 0.97

s 0.0427 0.0418 0.0886 0.1872 0.34
QL; 26�28 m �0.2159 �0.1253 �0.0459 0.0194 0.07

s 0.0457 0.0475 0.0780 0.1182 0.16��SL;26�27
�� m 2.6834 3.6029 4.5595 5.4939 6.42

s 0.2904 0.4898 0.9276 1.3733 1.81��SL;26�28
�� m 1.4418 2.0575 2.6973 3.3298 3.97

s 0.2589 0.3493 0.6239 0.9254 1.22
P31 m 6.6174 3.6556 0.6932 �2.1857 �4.

s 1.6653 1.6686 2.5176 3.5503 4.62
Q31 m 2.1702 1.6881 1.6305 1.9856 2.74

s 0.3973 0.1568 0.1317 0.7033 1.64
prominent, there is no fixed pattern to explain the change in error
indices.
5.4. Over-limit risk assessment

The probability distributions of result variables as obtained by
TPLF are useful in obtaining the over-limit risk indices under
various PV penetrations and input correlations. All the system
TPLF

20% Base Case PL ¼ 5% PL ¼ 10% PL ¼ 15% PL ¼ 20%

67 1.0519 1.0526 1.0493 1.0419 1.0302
85 0.0023 0.0016 0.0050 0.0126 0.0247
63 1.0374 1.0372 1.0324 1.0228 1.0080
31 0.0026 0.0022 0.0066 0.0159 0.0306
76 1.0500 1.0513 1.0502 1.0465 1.0400
65 0.0019 0.0010 0.0024 0.0067 0.0140
00 0.2185 0.2510 0.2963 0.3559 0.4349

0.0498 0.0551 0.0751 0.1169 0.1859
00 0.1897 0.2020 0.2186 0.2406 0.2698

0.0486 0.0500 0.0543 0.0654 0.0846
54 2.5975 3.5518 4.5194 5.4645 6.3937
90 0.3063 0.4985 0.9353 1.3846 1.8226
9718 �1.4200 �2.0514 �2.6925 �3.3267 �3.9537
88 0.2696 0.3525 0.6246 0.9227 1.2251
12 0.6840 0.6873 0.7431 0.8502 1.0131
05 0.0421 0.0424 0.0935 0.2007 0.3679
44 �0.2117 �0.1171 �0.0315 0.0451 0.1146
98 0.0470 0.0500 0.0839 0.1296 0.1888
23 2.6879 3.6187 4.5814 5.5318 6.4768
04 0.2926 0.4923 0.9336 1.3929 1.8476
64 1.4385 2.0561 2.6946 3.3298 3.9597
80 0.2583 0.3484 0.6224 0.9217 1.2257
9783 6.6461 3.6737 0.7318 �2.1042 �4.8050
10 1.6563 1.6504 2.4843 3.4861 4.4277
94 2.1845 1.7048 1.6552 2.0165 2.7717
49 0.3950 0.1538 0.1344 0.7010 1.5991



Table 9
Effect of temperature-augmentation on first two statistical moments of power flows in a few branches.

Branch % relative change in Real power Reactive power Apparent power

Branch resistance Branch temperature em es em es em es

02e03 08.73 207.91 0.36 2.17 2.42 18.58 0.43 2.64
02e25 08.30 197.72 0.48 1.73 5.54 15.13 0.06 0.56
06e11 10.45 248.70 0.13 1.13 5.62 3.77 0.13 1.13
10e11 07.73 184.11 0.08 0.99 1.56 12.40 0.10 1.09
15e16 07.34 174.80 0.04 0.89 0.67 4.49 0.11 1.01
16e19 08.27 196.83 0.06 5.46 0.97 0.04 0.07 2.16
21e22 07.26 172.78 0.03 0.74 0.23 1.57 0.04 0.85
23e24 06.21 147.98 0.01 0.93 10.49 2.77 0.01 0.94
26e27 06.34 150.91 0.42 0.45 1.16 1.62 0.44 0.50

Table 10
Effect of variations in values of TPLF model parameters on average em and es of power flows.

Result variable Average of em Average of es

TRef ¼ 10
�
C TRef ¼ 15

�
C TRef ¼ 20

�
C TRef ¼ 25

�
C TRef ¼ 10

�
C TRef ¼ 15

�
C TRef ¼ 20

�
C TRef ¼ 25

�
C

Power flow 1.6932 4.0455 2.9946 4.0364 4.0603 3.6370 3.5356 3.4557
Result variable TRated rise ¼ 25

�
C TRated rise ¼ 30

�
C TRated rise ¼ 35

�
C TRated rise ¼ 40

�
C TRated rise ¼ 25

�
C TRated rise ¼ 30

�
C TRated rise ¼ 35

�
C TRated rise ¼ 40

�
C

Power flow 1.6932 1.9870 2.0921 2.2813 4.0603 4.4332 4.7729 5.0793
Result variable TAmb�wc ¼ 40

�
C TAmb�wc ¼ 50

�
C TAmb�wc ¼ 60

�
C TAmb�wc ¼ 70

�
C TAmb�wc ¼ 40

�
C TAmb�wc ¼ 50

�
C TAmb�wc ¼ 60

�
C TAmb�wc ¼ 70

�
C

Power flow 1.6932 1.6509 1.6259 1.5471 4.0603 4.2205 3.9791 3.8785

Table 11
UVP and OVP values of load buses at noon for 20% PL.

Bus UVP OVP Bus UVP OVP Bus UVP OVP

1 0 0.1069 11 0.1406 0.0001 21 0 0.1896
2 0.0774 0.0437 12 0.0142 0.0033 22 0 0.0741
3 0.2860 0.0028 13 0.1043 0.0053 23 0 0.0595
4 0.1436 0.0025 14 0.0525 0.0045 24 0 0.7212
5 0.1039 0.0035 15 0 0.0344 25 0 0.2459
6 0.1966 0.0002 16 0.0093 0.0723 26 0.0055 0.1180
7 0.1891 0.0001 17 0.0418 0.0545 27 0 0.2692
8 0 0.0343 18 0 0.1863 28 0 0.2467
9 0.0014 0.0035 19 0 0 29 0 0.0082
10 0.0207 0.0028 20 0 0.0095

Table 12
OLP and TOLP values of TDBs at noon for 20% PL.

Branch OLP TOLP Branch OLP TOLP

1e2 0 0 5e8 0 0
1e39 0 0 6e7 0 0
2e3 0.7734 0.5212 6e11 0.9145 0.7439
2e25 0.8536 0.6998 7e8 0 0
3e4 0.6536 0.5421 8e9 0 0
3e18 0.0580 0.0055 9e39 0 0
4e5 0.2141 0.0453 10e11 0.7022 0.4937
4e14 0 0 10e13 0 0
5e6 0 0 13e14 0 0

Table 13
System UVP, OVP, OLP and TOLP values at noon with and without considering input corr

PL System UVP System OVP

WC BC WC BC

Base case 0 0 1 1
5% 0 0 1 1
10% 0 0 1 1
15% 0 0.0010 0.9998 1
20% 0.4765 0.7814 0.9351 0.96

Note: WC: without considering input correlations, BC: Base case correlations.
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buses and branches are considered for evaluating over-limit risks.
Table 11 indicates the UVP (<0.95 pu) and OVP (>1.05 pu) at noon
for 20% PL at all the load buses. Table 12 shows OLP (>jSLimitj) and
TOLP (>TLimit) values of TDBs at noon for 20% PL. The value of jSLimitj
is the MVA rating of the branch and TLimit is set to 0.5 pu, since a
maximum allowable temperature of value 50 �C is typically
selected to avoid loss of strength, sag and branch losses, etc. The
over-limit probability values are calculated from the respective
complementary distribution functions. The system UVP, OVP, OLP
and TOLP values for various % PLs are compared in Table 13 with
and without considering input correlations. The over-limit proba-
bility values differ significantly by accounting for input correlation
as compared to the case without considering correlation. The error
becomes more noticeable when the % PL increases. It is clearly
Branch OLP TOLP Branch OLP TOLP

14e15 0.0930 0.0086 21e22 0 0
15e16 0.7282 0.5633 22e23 0 0
16e17 0.0184 0 23e24 0 0
16e19 0 0 25e26 0.3174 0.0591
16e21 0 0 26e27 0.6110 0.4132
16e24 0 0 26e28 0.0118 0.0016
17e18 0.2140 0.0426 26e29 0 0
17e27 0.6360 0.5397 28e29 0 0

elation.

System OLP System TOLP

WC BC WC BC

0 0.0027 0 0.0002
0.0619 0.1707 0.0098 0.0235
0.9203 0.9297 0.4049 0.5029
0.9995 0.9998 0.9539 0.9660

09 1 1 0.9991 0.9994



Table 14
System RSOV, RSOL and RSTOL values at noon for various % PLs.

Risk index PL WC BC

RSOV Base case 4.1905 4.0715
5% 4.6464 4.7135
10% 2.8328 2.9559
15% 2.1462 2.4382
20% 1.5556 1.8008

RSOL Base case 0 0.0008
5% 0.0422 0.1138
10% 1.7250 1.8098
15% 6.0273 5.8387
20% 12.2257 11.5308

RSTOL Base case 0 0
5% 0.0029 0.0069
10% 0.2850 0.3600
15% 2.1760 2.2598
20% 7.5092 7.2365
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evident from the comparison of results that with an increase in %
PL, system UVP, OLP and TOLP values increase whereas system OVP
decreases. Although, the values of OVP at majority of the buses has
increased with increase in % PL, there is no fixed pattern to describe
the change in OVP with increase in % PL at buses 18, 21, 24, 25, 27
and 28.

Finally, the impact of input correlation on the calculation of
system risk indices at noon is compared in Table 14 for various % PLs
of PV generations. It is found that, in most of the cases, not ac-
counting for input correlations in analysis leads to underestimation
of risk indices. The system RSOV increases when % PL increases
from base case to 5% but for PL beyond 5%, system RSOV decreases.

The over-limit risk assessment at the remaining time instants
follow the similar set of steps as adopted for noon. Tables 3e5
provide %CV information of input RVs at the remaining time
instants.
6. Conclusion

This paper has presented a risk-based power system planning
with large scale integration of PV generations. Special focus is given
on the accurate uncertainty modeling of input RVs at multiple time
instants. The effect of PV generation penetrations and change in
value of model parameters on the statistics of result variables are
analyzed in detail. Further, the over-limit risk indices are calculated
for various PV penetrations and input correlations. Based on the
analysis of various results, the following sets of conclusions are
drawn.

i) The PV generation has a diverse production pattern. The
probability distributions at various time instants are
different and do not fit to any specific parametric
distribution.

ii) The Probability distributions of ambient temperature and
aggregate load power at all the time instants are same and
follow Gaussian distribution.

iii) The change in the values of TPLF model parameters has a
significant effect on statistics of result variables.

iv) A TPLF study considering higher penetration of PV genera-
tion leads to higher variability of branch power flows and
branch temperatures as compared to other result variables.

v) Hourly TPLF simulations under various PV penetrations and
correlations helps in identifying the critical buses and
branches by quantifying risk of over-limit in bus voltages and
branch power flowswhich are essential for the assessment of
system reinforcement and reliable operation.

As the extension of this research work, it is planned to accom-
modate both temporal and spatial correlations in multi-time
instant power system studies considering generation dispatch
strategy.
References

[1] X. Li, X. Zhang, P. Lu, S. Zhang, Transmission line overload risk assessment for
power systems with wind and load-power generation correlation, IEEE Trans.
Smart Grid 6 (3) (May 2015) 1233e1242.

[2] M. D. Jong, G. Papaefthymiou, and P. Palensky, A framework for incorporation
of infeed uncertainty in power system risk-based security assessment, IEEE
Trans. Power Syst., http://doi:10.1109/TPWRS.2017.2687983.

[3] B.R. Prusty, D. Jena, A critical review on probabilistic load flow studies in
uncertainty constrained power systems with photovoltaic generation and a
new approach, Renew. Sustain. Energy Rev. 69 (Mar. 2017) 1286e1302.

[4] A.M.L. Da Silva, S.M.P. Ribeiro, V.L. Arienti, R.N. Allan, M.B. Do Coutto Filho,
Probabilistic load flow techniques applied to power system expansion plan-
ning, IEEE Trans. Power Syst. 5 (4) (Nov. 1990) 1047e1053.

[5] P. Zhang, S.T. Lee, Probabilistic load flow computation using the method of
combined cumulants and gram-charlier expansion, IEEE Trans. Power Syst. 19
(1) (Feb. 2004) 676e682.

[6] C.L. Su, Probabilistic load-flow computation using point estimate method, IEEE
Trans. Power Syst. 20 (4) (Nov. 2005) 1843e1851.

[7] J.M. Morales, J.P. Ruiz, Point estimate schemes to solve the probabilistic power
flow, IEEE Trans. Power Syst. 22 (4) (Nov. 2007) 1594e1601.

[8] J. Usaola, Probabilistic load flow with correlated wind power injections, Elect.
Power Syst. Res. 80 (5) (May 2010) 528e536.

[9] Y. Yuan, J. Zhou, P. Ju, J. Feuchtwang, Probabilistic load flow computation of a
power system containing wind farms using the method of combined cumu-
lants and Gram-Charlier expansion, IET Renew. Power Gener. 5 (6) (Nov.
2011) 448e454.

[10] M.A. Abdullah, A.P. Agalgaonkar, K.M. Muttaqi, Probabilistic load flow incor-
porating correlation between time-varying electricity demand and renewable
power generation, Renew. Energy 55 (July 2013) 532e543.

[11] G. Valverde, A. Saric, V. Terzija, Probabilistic load flow with nonGaussian
correlated random variables using Gaussian mixture models, IET Gen. Transm.
Distrib. 6 (7) (Jul. 2012) 701e709.

[12] F.J. Ruiz-Rodriguez, J.C. Hern�andez, F. Jurado, Probabilistic load flow for
photovoltaic distributed generation using the Cornish Fisher expansion, Elect.
Power Syst. Res. 89 (Aug. 2012) 129e138.

[13] M. Fan, V. Vittal, G.T. Heydt, R. Ayyanar, Probabilistic power flow studies for
transmission systems with photovoltaic generation using cumulants, IEEE
Trans. Power Syst. 27 (4) (Nov. 2012) 2251e2261.

[14] M. Aien, M. Fotuhi-Firuzabad, F. Aminifar, Probabilistic load flow in correlated
uncertain environment using unscented transformation, IEEE Trans. Power
Syst. 27 (4) (Nov. 2012) 2233e2241.

[15] G. Carpinelli, P. Caramia, P. Varilone, Multi-linear Monte Carlo simulation
method for probabilistic load flow of distribution systems with wind and
photovoltaic generation systems, Renew. Energy 76 (Apr. 2015) 283e295.

[16] J.M. Sexauer, S. Mohagheghi, Voltage quality assessment in a distribution
system with distributed generationda probabilistic load flow approach, IEEE
Trans. Power Del. 28 (3) (Jul. 2013) 1652e1662.

[17] D. Villanueva, A.E. Feij�oo, J.L. Pazos, An analytical method to solve the prob-
abilistic load flow considering load demand correlation using the DC load
flow, Electr. Power Syst. Res. 110 (May 2014) 1e8.

[18] N. Gupta, V. Pant, B. Das, Probabilistic load flow incorporating generator
reactive power limit violations with spline based reconstruction method,
Elect. Power Syst. Res. 106 (Jan. 2014) 203e213.

[19] N. Gupta, Probabilistic load flow with detailed wind generator models
considering correlated wind generation and correlated loads, Renew. Energy
94 (Aug. 2016) 96e105.

[20] C. Wu, F. Wen, Y. Lou, F. Xin, Probabilistic load flow analysis of photovoltaic
generation system with plug-in electric vehicles, Int. J. Elect. Power Energy
Syst. 64 (Jan. 2015) 1221e1228.

[21] B.R. Prusty, D. Jena, Combined cumulant and Gaussian mixture approximation
for correlated probabilistic load flow studies: a new approach, CSEE J. Power
Energy Syst. 2 (2) (Jun. 2016) 71e78.

[22] B.R. Prusty, D. Jena, A sensitivity matrix-based temperature augmented
probabilistic load flow study, IEEE Trans. Ind. Appl. 53 (3) (May/Jun. 2017)
2506e2516.

[23] S. Frank, J. Sexauer, S. Mohagheghi, Temperature-dependent power flow, IEEE
Trans. Power Syst. 28 (4) (Nov. 2013) 4007e4018.

[24] M. Fan, V. Vittal, G.T. Heydt, R. Ayyanar, Preprocessing uncertain photovoltaic
data, IEEE Trans. Sustain. Energy 5 (1) (Jan. 2014) 351e352.

http://refhub.elsevier.com/S0960-1481(17)30947-3/sref1
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref1
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref1
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref1
https://doi.org/10.1109/TPWRS.2017.2687983
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref3
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref3
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref3
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref3
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref4
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref4
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref4
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref4
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref5
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref5
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref5
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref5
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref6
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref6
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref6
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref7
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref7
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref7
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref8
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref8
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref8
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref9
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref9
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref9
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref9
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref9
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref10
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref10
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref10
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref10
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref11
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref11
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref11
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref11
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref12
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref12
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref12
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref12
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref12
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref13
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref13
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref13
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref13
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref14
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref14
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref14
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref14
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref15
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref15
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref15
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref15
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref16
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref16
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref16
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref16
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref16
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref17
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref17
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref17
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref17
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref17
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref18
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref18
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref18
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref18
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref19
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref19
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref19
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref19
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref20
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref20
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref20
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref20
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref21
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref21
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref21
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref21
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref22
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref22
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref22
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref22
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref23
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref23
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref23
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref24
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref24
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref24


B.R. Prusty, D. Jena / Renewable Energy 116 (2018) 367e383 383
[25] X. Dong, C. Wang, J. Liang, X. Han, F. Zhang, H. Sun, M. Wang, J. Ren, Calcu-
lation of power transfer limit considering electro-thermal coupling of over-
head transmission line, IEEE Trans. Power Syst. 29 (4) (July 2014) 1503e1511.

[26] Hourly photovoltaic generation data. [Online]. Available: https://www.
pvoutput.org/ladder.

[27] J.V. Dave, P. Halpern, H.J. Myers, Computation of incident solar energy, IBM J.
Res. Dev. 19 (6) (Nov. 1975) 539e549.

[28] K.E. Holbert, D. Srinivasan, Solar Energy Calculations. Handbook of Renewable
Energy Technology, World Scientific Publishing Co, 2011, pp. 189e204,
https://doi.org/10.1142/9789814289078_0008.

[29] Hourly temperature data. [Online]. Available: https://www.wunderground.
com/history.
[30] Hourly load data. [Online]. Available: http://www.ercot.com/gridinfo/load/

load_hist.
[31] M. Fan, Probabilistic Power Flow Studies to Examine the Influence of Photo-

voltaic Generation on Transmission System Reliability, Ph.D. dissertation,
Arizona State University, Department of Electrical, Computer, and Energy
Engineering, Tempe AZ, April, 2012.

[32] S. Frank, J. Sexauer, S. Mohagheghi, Temperature Dependent Power Flow in
MATLAB, 2013 [Online]. Available, https://github.com/TDPF/TDPF/blob/
master/39bus_data.mat.

http://refhub.elsevier.com/S0960-1481(17)30947-3/sref25
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref25
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref25
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref25
https://www.pvoutput.org/ladder
https://www.pvoutput.org/ladder
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref27
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref27
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref27
https://doi.org/10.1142/9789814289078_0008
https://www.wunderground.com/history
https://www.wunderground.com/history
http://www.ercot.com/gridinfo/load/load_hist
http://www.ercot.com/gridinfo/load/load_hist
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref31
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref31
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref31
http://refhub.elsevier.com/S0960-1481(17)30947-3/sref31
https://github.com/TDPF/TDPF/blob/master/39bus_data.mat
https://github.com/TDPF/TDPF/blob/master/39bus_data.mat

	An over-limit risk assessment of PV integrated power system using probabilistic load flow based on multi-time instant uncer ...
	1. Introduction
	2. PLF in temperature-augmented power system model
	3. Modeling of input uncertainty and description of input correlation
	3.1. PV generation uncertainty modeling
	3.2. TAmb uncertainty modeling
	3.3. Load power uncertainty modeling
	3.4. Input correlation

	4. System over-limit risk indices
	4.1. Over-limit probability calculations
	4.2. Over-limit severity calculations
	4.3. Calculation of risk indices

	5. Case study and discussion of results
	5.1. Power system description and statistical details of input RVs
	5.2. Impact of increased penetration of PV generations on the statistics of result variables
	5.3. Effect of variation of TPLF model parameters on the statistics of result variables
	5.4. Over-limit risk assessment

	6. Conclusion
	References


