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Abstract
Shape memory alloys are a group of advanced materials that have found several industrial
applications due to their interesting mechanical properties including a shape memory effect and
superelasticity. In order to optimize the use of such materials in manufacturing different devices,
appropriate advanced constitutive models are required. Recent experiments show that shape
memory alloys exhibit an asymmetric response during tension and compression loading. In this
paper, a new three-dimensional constitutive law is proposed based on microplane theory with the
purpose of describing the tension–compression asymmetry. The model utilizes an equivalent
stress on the foundation of second and third invariants of the deviatoric stress tensor in
combination with two internal variables to distinguish between martensite volume fraction as
well as martensite elastic modulus during tension and compression. The proposed model is then
used to simulate uniaxial tension–compression loading in superelasticity as well as ferroelasticity
regimes. The simulation results are compared with the corresponding results obtained by
experiment and previous models reported in the literature, and a good agreement is observed. In
addition, a four-point bending test is simulated for NiTi tubes in several cases. The predicted
moment–curvature response and variations in the position of the neutral axis correlate fairly well
with the experimental findings reported in the literature.

Keywords: shape memory alloys, tension–compression asymmetry, microplane theory, super-
elasticity, shape memory effect, constitutive modeling
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1. Introduction

Nowadays, shape memory alloys (SMAs) are receiving a
great deal of attention due to their exceptional mechanical and
biological properties which make them good candidates for
bone implants [1], energy absorbers [2], actuators [3, 4], and
so on. The shape memory effect in these materials enables
them to recover the applied deformations simply by heating
them to above a specific temperature. In addition, if some
amount of deformation is applied at high enough tempera-
tures, the deformation will be totally recovered during
unloading indicating superelasticity in these alloys. These

phenomena happen because of the phase transformation from
martensite to austenite and vice versa. In order to understand
the thermomechanical behavior of SMA devices, appropriate
constitutive models are required. Because these materials
were first used in forms such as wires, beams, bars and rods,
one-dimensional (1D) constitutive models were also devel-
oped by researchers [5–8]. By increasing the potential
applications of SMAs such as load bearing implants, porous
products and three-dimensional (3D) actuators, attempts for
developing 3D constitutive models were also increased
[9–14].

It is shown that SMAs exhibit an asymmetric mechanical
behavior in tension and compression [15, 16]. To account for
this intrinsic property, several 1D and 3D constitutive models
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have been developed. In 3D constitutive models, some
transformation functions were introduced based on the first
invariant of the stress tensor, I1, the second invariant of the
deviatoric stress tensor, J2, and the third invariant of the
deviatoric stress tensor, J3. Auricchio and Taylor [17] pro-
posed a constitutive model to reproduce the superelastic
behavior of SMAs at finite strains. To account for the pressure
dependence of SMAs, they introduced a Drucker–Prager type
loading function. Qidwai and Lagoudas [18] investigated
various transformation functions to predict common char-
acteristics of SMAs. To assess tension–compression asym-
metry, they analyzed constitutive models in which J2, J2− I1,
J2 − J3, and J2− J3− I1 transformation functions were
employed. Auricchio and Petrini [19] presented a 3D mac-
roscopic thermomechanical model with the ability of repro-
ducing tension–compression asymmetry using Prager–Lode
type limit surface. Bouvet et al [20] proposed a phenomen-
ological model by taking the tension–compression asymmetry
into account using a transformation function based on J2 and
J3 invariants. Paiva et al [21] proposed a constitutive model to
consider superelasticity, one-way and two-way shape memory
effect, phase transformation due to temperature variations,
internal sub-loops due to incomplete phase transformations,
and tensile–compressive asymmetry. Lagoudas et al [22] used
averaging micromechanical methods based on the self-con-
sistent approximation to model the thermomechanical beha-
viors of polycrystalline SMAs. They assessed several
transformation functions to account for the tension–com-
pression asymmetry as well as the development of a small
volumetric strain during phase transformations. Lexcellent
et al [23] proposed a modeling approach within the frame-
work of thermodynamics of irreversible processes for the
anisothermal response of shape memory alloys. A transfor-
mation function based on J3 and J2 invariants was used for
considering the material asymmetry in tension and compres-
sion. Saint-Sulpice et al [24] investigated the superelastic
behavior of SMAs under cyclic loadings. Material asymmetry
was considered by utilizing the transformation function pro-
posed in [20]. In order to scrutinize the effects of different
loading modes on the superelastic behavior of SMAs, Zhu
and Due [15] carried out some experiments on NiTi speci-
mens under pure tension, compression, and torsion. They
presented a macro-constitutive model for considering the
tension–compression asymmetry of polycrystalline NiTi
SMAs. Chao et al [25] constructed a micromechanical con-
stitutive model to describe the cyclic deformation of poly-
crystalline NiTi SMAs in tensile and compressive loadings.

Mehrabi et al [26] used the microplane theory to develop
a constitutive model for tension-torsion coupling and tension–
compression asymmetry in NiTi shape memory alloys. In the
case of material asymmetry, they employed a modified phase
diagram for uniaxial loading and chose the material para-
meters based on the loading direction, i.e. tension or com-
pression. Since there is no transformation function, this
method can be used only for uniaxial loading and would be
inapplicable for multiaxial loadings. The idea of utilizing
microplane theory was first proposed by Brocca et al [27] and
has been further developed by Kadkhodaei et al [28, 29] and

Mehrabi et al [30]. This constitutive modeling approach was
shown to be thermodynamically consistent [31] and capable
of modeling nonproportional loading paths [28–30, 32]. One
of the most important features of microplane theory is its
capability to generalize a 1D constitutive model to a 3D one.
Therefore, one just needs the material parameters identified
through a uniaxial tension (or compression) test for modeling
3D loading cycles. According to the existing findings, this
modeling approach provides a simple yet powerful 3D con-
stitutive modeling approach for SMAs. However, it is neces-
sary to enhance it to be able to systematically consider the
tension–compression asymmetric response of SMAs. In addi-
tion, it has been previously shown that the elastic modulus of
the martensite phase is different in tension and compression
[33]. However, the available 3D constitutive models have not
addressed this behavior. The aim of this paper is to address
these issues. To this end, two internal state variables are con-
sidered to distinguish between martensite volume fraction in
tension and compression using a modified phase diagram and
evolution functions. The obtained results in uniaxial tension–
compression and four-point bending of NiTi tubes are com-
pared with experimental results and good correlations were
observed. Therefore, the proposed model can be used as an
appropriate tool for modeling 3D responses of shape memory
alloys considering tension–compression asymmetry.

2. Constitutive modeling

In microplane modeling, a 1D constitutive law is used for any
generic plane, referred to as a microplane, passing through
any material point. To generalize the 1D constitutive model to
the 3D one, a homogenization process is used. Therefore,
only the material parameters of the uniaxial tension (or
compression) test are required for the 3D model, which makes
this method of more interest. In this section, first, a 1D con-
stitutive relation of SMAs considering tension–compression
asymmetry is introduced. Then, this 1D law is generalized to
a 3D model by using microplane theory and a suitable
transformation function.

2.1. One-dimensional constitutive model

According to the approach proposed by Poorasadion et al
[33], considering the tension–compression asymmetry, the 1D
stress–strain relation of a SMA can be described using the
following equation:

( )E (1)L s L sσ ε ε ξ ε ξ= − −+ + − −

in which sξ and Lε are the stress-induced martensite volume
fraction and maximum recoverable strain, respectively. The
superscripts ‘+’ and ‘–’ denote tension and compression,
respectively. σ and ε are respectively the uniaxial stress and
strain, and E the elastic modulus. It is shown that the elastic
modulus of SMAs is a function of the martensite volume
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fraction and can be written using the Reuss model as follows:
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where EA and EM are the elastic moduli of full austenite and
full martensite phases, respectively, and Tξ the temperature-
induced martensite volume fraction. The superscript ‘T’ is
attributed to temperature-induced quantities.

To specify the evolution of ,sξ ± and ,Tξ the evolution
function presented by eqution (3) is utilized. This evolution
function was firstly proposed by Brinson [6] and then mod-
ified by Poorasadion et al [33] to account for the tension–
compression asymmetry. In this paper, this evolution function
is enhanced to model the start and finish of the reverse
transformation more accurately with the use of the stress-
temperature phase diagram depicted in figure 1 [34].
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in whichMf,Ms, As, Af, and T are martensite finish, martensite
start, austenite start, austenite finish, and temperature,
respectively. Superscripts ‘r’ and ‘p’ are as (r=+, p=−) in
tension and (r=−, p = +) in compression, s

crσ and f
crσ the

critical start and finish stresses for martensite detwinning, ,s
r
0ξ

,s
p
0ξ and T0ξ the initial values of the corresponding martensite

volume fraction, CM, CAs, and CAf the slopes of the
transformation strips as shown in figure 1, and

( )( ) ( )Y T M M Mcos / .MT s f sπ= − − σ̂ is the modified stress
to account for the asymmetry in tension and compression as
follows:

ˆ
1

1
(4)σ β

β
σ= ±

+

where ‘+’ and ‘–’ in the numerator indicate tension and
compression, respectively, and β is a parameter to determine
the value of asymmetry, which is defined using the following
relation:

if 0

if 0
(5)

1

2

⎧⎨⎩β
β σ
β σ

=
̇ >
̇ <

in which β1 and β2 are chosen to distinguish the asymmetry
level of loading from that of unloading. The effect of β on the
asymmetry level will be discussed in the following section.

When using the phase diagram at high temperatures, if
the values of CAs and CAf are higher than C ,M it should be
noted that the corresponding lines may cross each other. This
issue would be problematic when the critical stress of auste-
nite finish is higher than that of martensite start or if the
critical stress of austenite start is higher than that of martensite
finish. Figures 2(a) and (b) demonstrate these cases, respec-
tively. It implies some restrictions on the transformation
stresses as presented by equations (6) and (7):

( ) ( )C T A C T M (6)As s cr
f

M sσ− < + −

( )C C T M (7)( )T AAf cr
s

M sf σ< + −−

According to the above-mentioned explanations and
considering Md as the martensite dead temperature, the phase
diagram should be used for temperatures with the constraint

Figure 1. The stress-temperature diagram for the martensite
transformation of shape memory alloys.
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2.2. Three-dimensional constitutive model

To develop a 3D constitutive model using the microplane
theory, three main steps should be followed. These steps are
the projection of the macroscopic stress tensor on each
microplane, the definition of a 1D constitutive law for each
microplane, and the generalization of 1D constitutive laws to
3D using a homogenization process [28–31]. In this regard, a
static constraint formulation with a volumetric-deviatoric split
is employed in the present work. As shown in figure 3, the
macroscopic stress tensor may be projected as normal and
shear vectors on a microplane. The normal and shear stresses
on each microplane can be described as:

N (9)ij ijNσ σ=

T (10)ij ijTσ σ=

where ijσ is the macroscopic stress tensor, Nσ normal stress, Tσ
shear stress, N n n ,ij i j= ( )T t n t n /2ij i j j i= + in which

t n n n n( ) /i ik k i jr js r sN N
2σ σ σ σ σ= − − is the unit vector

parallel to the resultant shear stress on the plane, and ni are
the components of the unit normal vector, n, to a microplane.
The normal stress is split into volumetric and deviatoric parts
as:

(11)N V Dσ σ σ= +

in which /3,ij ijVσ δ σ= ( )N /3 ,ij ij ijDσ δ σ= − and ijδ is the
Kronecker delta. It is shown that using the volumetric-
deviatoric split, the micro-level elastic moduli are equal to the
macroscopic ones [27, 28]. It is also supposed that the
martensite transformation is just associated with the shear

component of microplane stresses [28, 29]. Accordingly, the
volumetric and deviatoric parts are described using Hooke’s
law, and the shear stress can be described using eqution (1) as
follows:

E

1 2
(12)VVε ν σ= −

E

1
(13)DDε ν σ= +

E

1
(14)T L s L sTε ν σ ε ξ ε ξ= + + ++ + − −

where ν is the SMAs Poisson ratio, Vε the volumetric strain,
Dε the deviatoric strain, and Tε the shear strain. By applying
the principle of complementary virtual work [28, 29] and
some simplifications, the following relation is obtained for the

Figure 2. The stress–strain curve of an SMA when (a) the critical stress of austenite finish is higher than that of start martensite, and (b) the
critical stress of austenite start is higher than that of martensite finish.

Figure 3. Projection of stress tensor as normal and shear stress
vectors on each micro plane.
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strain tensor:
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To consider the material asymmetry in tension and
compression, it is necessary to define an appropriate equiva-
lent stress to be used in equation (3) for evaluating the mar-
tensite volume fractions in equation (14). In this paper, an
equivalent stress based on second and third invariants of
deviatoric stress tensor (J2 and J3) is used as demonstreated
below [15, 19, 22]:

J
J

J
ˆ
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1
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(16)2

3

2

⎧⎨⎩
⎫⎬⎭σ

β
β=
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in which J2 and J3 are the second and third invariants of the
deviatoric stress tensor, respectively. Note that, equation (16)
reduces to equation (4) for 1D cases. Figure 4 shows the
transformation surfaces for different typical values of β in the
plane stress state. As it is obvious, when β = 0, the symmetric
transformation surface is achieved. By increasing the value of
β, the level of asymmetry will increase. According to
experimental observations, the transformation surface of
martensite-to-austenite and austenite-to-martensite might be
of a different level of asymmetry. This can be taken into
account by using different values of β presented in
equation (5).

3. Results and discussion

The proposed 3D constitutive model is implented through a
user subroutine UMAT in the ABAQUS comertial finite
element package. To verify the model, six available experi-
mental cases in the literature including two uniaxial tension–
compression tests, two ferroelasticity problems, and two four-
point bending tests of NiTi tubes are considered. One case
related to subloops due to incomplete phase transformations is
also investigated and the results are compared with experi-
menal findings. Notice that, since all the simulations are
carried out at constant temperatures, there is not any tem-
perature-induced martensite during the loading cycles.
Accordingly, the value of E T

M is optional in the nuemrical
simulations.

3.1. Uniaxial tests

In this subsection, the experimental tension–compression
responses of superelastic NiTi samples provided by Zhu and
Dui [15] (case 1) and Thamburaja and Anand [35] (case 2) are
used for verification of the model. For these cases, the
material is 50.8at.% NiTi and 55.96 wt.% NiTi, respectively.
Tables 1 and 2 show the material parameters utilized for the
determination of the stress–strain response in cases 1 and 2,
respectively. These material parameters are obtained from the
literature [15, 36]. Since the test temperature is above the

austenite finish, the material is in the austenite phase; so, the
initial value for ,s0ξ + ,s0ξ − and T 0ξ is zero for these two cases.

Figures 5 and 6 show the stress–strain response of NiTi
samples in tension and compression obtained using the pro-
posed approach, the Zhu and Dui model, and the experimental
measurements [15, 35]. In all cases, the absolute values of the
stress and strain are reported in compression tests. The results
show a good agreement between the empirical findings and
the numerical results of the present approach. In comparison
with the Zhu and Dui model, the proposed model correlates
better to the experimental findings especially during unload-
ing. It is because of using the modified phase diagram
(figure 1) which allows one to adjust the start and finish
martensite–austenite transformation stresses more adaptively.
As demonstrated in figure 5, since the elastic modulus of
martensite is considered to be different in tension and com-
pression, the proposed model is able to reproduce the
experimental stress–strain response in compression more
accurately. However, there is a considerable mismatch
between the numerical and experimental tensile stress–strain
responses at the first portion of the loading curve in figure 5.
This is due to different experimental values of the austenite
elastic modulus in tension and compression. In figure 5, the
value of the austenite elastic modulus is calibrated using the
compressive stress–strain response to be able to compare the
results with those reported in [15]. Zhu and Dui [15] suggest
the use of a compressive stress–strain curve to calibrate the
model parameters because the transformation is more stable
during unloading in the case of compression compared with
tension. In addition, in all the experimental cases, there is a
small amount of residual strain due to the transformation
induced plasticity (TRIP) phenomenon, which can be reduced
by training the SMA specimen through cyclic loading. Since
the present model is not capable of considering the effect of
TRIP, there is not any residual strain in the predicted stress–
strain response.

Figure 4. Transformation surface in plane–stress state for different
typical values of β.
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In order to show the capability of the model to consider
the effects of tension–compression asymmetry in ferroelastic
behavior, the stress–strain responses obtained using the pro-
posed model are compared with the numerical results reported
by Jaber et al [36] (case 3) and the experimental findings for

Au-47.5at.%Cd by Nakanishi et al [37] (case 4). The material
parameters used for the former and the latter cases are pro-
vided in tables 3 and 4, respectively. In case 3, the tem-
perature is below As and the material is initially fully
austenitic, which means the initial values of

0.s s0 0 T0ξ ξ ξ= = =+ − For case 4, the temperature is below the
martensite finish temperature and the material is initially in
the martensite phase which causes 0s s0 0ξ ξ= =+ − and 1.T0ξ =
The result of the present model are compared with the pre-
viously reported findings by Jaber et al [36] and the experi-
mental data by Nakanishi et al [37] in figures 7(a) and (b),
respectively. The obtained stress–strain responses show that
the present approach is in good agreement with the previously
proposed model and experiments. Since the proposed model
by Jaber et al [36] is not capable of considering different
values for martensite elastic moduli in tension and compres-
sion as well as different values for CA, it is assumed that
E EM M=+ − and C CAs Af= to be able to compare the results.

The stress–strain response presented in figure 7(b) shows
that the model is capable of modeling subloops due to
incomplete phase transformations for test temperature below
martensite finish temperature. To show the ability of the
model in reproducing this behavior for temperatures above
austenite finish, the experimental results for 50.95at.%NiTi
reported by Takeda et al [38] (case 5) are used. Figure 8
shows a comparison of the stress–strain response reproduced
by the proposed model and the experimental results [38]. The
material parameters utilized for this simulation are presented
in table 5 and the initial conditions are as 0.s s0 0 T0ξ ξ ξ= = =+ −

Since the test is just performed in tension, the material
parameters related to compression are not provided. Referring
to figures 7(b) and 8, the present model can be used for
modeling the internal subloops of an SMA in a wide range of
temperatures.

3.2. Four-point bending of tubes

In this subsection, the proposed model is used to simulate
four-point bending of NiTi tubes. First, the finite element
modeling of the four-point bending is described. Then, the
procedure of finding material parameters for two different
cases, named cases 6 and 7, is explained. Finally, the results

Table 1. Material parameters for case 1 [15].

E (MPa)A E (MPa)M
+ E (MPa)M

− ν M (K)f M (K)s A (K)s A (K)f (MPa)s
crσ

24 000 22 000 25 000 0.42 200.3 232.3 262.5 295.1 0
(MPa)f

crσ C (MPa/K)M C (MPa/K)As C (MPa/K)Af Lε +
Lε −

1β 2β T (K)
180 3.37 3.7 2 0.052 −0.023 0.165 0.165 299.1

Table 2. Material parameters for case 2 [36].

E (MPa)A E (MPa)M
+ E (MPa)M

− ν M (K)f M (K)s A (K)s A (K)f (MPa)s
crσ

71 000 35 000 42 000 0.33 213 251.3 260.3 268.5 256
(MPa)f

crσ C (MPa/K)M C (MPa/K)As C (MPa/K)Af Lε +
Lε −

1β 2β T (K)
288 4.28 5.73 4.07 0.048 -0.031 0.13 0.13 298

Figure 5. The experimental and numerical stress–strain responses for
case 1.

Figure 6. The experimental and numerical stress–strain response for
case 2.
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of the numerical simulations are presented and discussed for
both cases.

Consider a tube with length L, gage length Le, outer
diameter D, and thickness t as shown in figure 9(a) which
depicts the schematic of the four-point bending test. The four
loading points are circular rollers which hold the tube in the
bending plane. Each pair of rollers is fixed to a loading wheel.
These loading wheels are loaded by two cables and rotate
around their center which cause bending of the tube. The

magnitude of the applied moment can be calculated by
measuring the force in the cable, F. A gage with length Le is
attached at the middle of the tube to measure the rotation
angle due to the applied moment. More information about the
test apparatus and method are provided [39, 40]. As shown in
figure 9(b), the mean curvature of the tube, κ, can be calcu-
lated by measuring the angles of rotation at the tube’s ends (θ)
and using the following equation:

L
(17)

e
κ θ=

Because the problem is symmetric about the z= 0 plane, only
half of the tube is modeled and appropriate boundary
conditions are imposed. Referring to figure 10, a tube with
length Le/2 is considered for modeling purposes because the
response of the tube in the gage region is of concern. Due to
the symmetry about the z= 0 plane, this plane should not
move toward the z direction and the slope of the tube would
be zero at this point. Accordingly, at one end (symmetry
plane) of the half tube, the translational degree of freedom in
the z direction and all rotational degrees of freedom are fixed.
Referring to figure 9(a), the tube at the end of the gage length
rotates with the angle of θ due to the applied moment. To

Table 3. Material parameters for case 3 [36].

E (MPa)A E (MPa)M
+ E (MPa)M

− ν M (K)f M (K)s A (K)s A (K)f (MPa)s
crσ

80 000 30 000 30 000 0.33 273 283 293 303 105
(MPa)f

crσ C (MPa/K)M C (MPa/K)As C (MPa/K)Af Lε +
Lε −

1β 2β T (K)
225 5 5 5 0.0615 −0.046 0.186 0.186 285

Table 4. Material parameters for case 4 [37].

E (MPa)A E (MPa)M
+ E (MPa)M

− ν M (K)f M (K)s A (K)s A (K)f (MPa)s
crσ

5000 5000 5000 0.33 308 331 345 358 11
(MPa)f

crσ C (MPa/K)M C (MPa/K)As C (MPa/K)Af Lε +
Lε −

1β 2β T (K)
44 2 2 2 0.032 −0.034 −0.16 −0.16 300

Figure 7. Comparison of the obtained ferroelastic stress–strain
response with (a) numerical results reported by Jaber et al [36] and
(b) experimental results by Nakanishi et al [37].

Figure 8. Stress–strain response related to subloops due to
incomplete phase transformation.
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model this rotation, at this end, a reference point is defined
and all nodes of that end are tied to the reference point. A
rotation about the x-axis, UR1, is applied to the reference
point using the amplitude variation shown in figure 10(b). In
addition, the history of the reaction moment in response to the
applied amount of rotation is requested to be able to depict the
moment-rotation diagrams.

In this paper, the experimental results reported by
Reedlunn et al [40] and Bechle and Kyriakides [39] are used
for comparison. These experimental measurements are

performed isothermally using a cold-drawn, slightly Ni-rich
NiTi tube from the Memry Corporation [39, 40]. For the sake
of simplicity, in the rest of the paper, the former and the latter

Figure 9. (a) Schematic configuration of the four-point bending test and (b) illustration of the curvature calculation method.

Figure 10. (a) Boundary conditions and loading in the four-point bending model and (b) the amplitude variation of the reference point
rotation.

Table 5. Material parameters for case 5.

E (MPa)A E (MPa)M
+ E (MPa)M

− ν M (K)f M (K)s A (K)s A (K)f (MPa)s
crσ

27 600 24 000 NA 0.3 100 220 254 281 100
(MPa)f

crσ C (MPa/K)M C (MPa/K)As C (MPa/K)Af Lε +
Lε −

1β 2β T (K)
240 2.31 3.7 3.8 0.062 NA NA NA 298

Table 6. Geometric information of cases 6 and 7.

Dimension Le (mm) D (mm) t (mm)

Case 4 9.58 3.176 0.318
Case 5 76.7 5.11 0.625
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cases are denoted by case 6 and case 7, respectively. Table 6
shows the geometric details of these two cases.

Similar to cases 1 and 2, the test temperature is higher
than the austenite finish temperature and the initial phase is
austenite for cases 6 and 7. Therefore, the same initial con-
ditions are used for these simulations. To attribute suitable
material parameters to the finite element model, the experi-
mental stress–strain response in uniaxial tension–compression
is used to calibrate the required quantities. Table 7 shows the
calibrated material parameters for case 6, which was per-
formed isothermally at 298 K. Figure 11 depicts the predicted
stress–strain response that correlates fairly well and is fitted to
the experiment.

Table 7. Material parameters obtained by calibration of stress–strain response in tension and compression for case 6.

E (MPa)A E (MPa)M
+ E (MPa)M

− ν M (K)f M (K)s A (K)s A (K)f (MPa)s
crσ

65 300 28 000 87 000 0.45 126 210 248 292 90
(MPa)f

crσ C (MPa/K)M C (MPa/K)As C (MPa/K)Af Lε +
Lε −

1β 2β T (K)
170 3.65 4.5 32 0.054 −0.035 0.23 0.23 298

Figure 11. The experimental and numerical stress–strain curve of
NiTi tube in tension and compression for case 6.

Figure 12. The obtained phase diagram for the tube used in
experiments by Bechle and Kyriakides [39].

Figure 13. Comparison of numerical and experimental uniaxial
tension–compression stress–strain responses at (a) T = 286 K (b)
T = 296 K and (c) T = 306 K.
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Since the experiments of case 7 are performed at several
different temperatures, it is reasonable to develop the phase
diagram for the tube used by Bechle and Kyriakides [39]. The
reported uniaxial stress–strain responses at 286, 296, and
306 K are considered, and the phase diagram illustrated in
figure 12 is obtained. According to the phase diagram as well
as the stress–strain response at 306 K, the material parameters
reported in table 8 are determined and are utilized to study
case 7. Figures 13(a)–(c) show the uniaxial stress–strain
responses using the material parameters presented in table 8.
The comparison of the presented numerical predictions with
the corresponding experimental findings demonstrates a good
correlation between the results. It is worth mentioning that the
phase diagram reported in figure 12 is obtained using the
stress–strain response in tension. Therefore, the predictions of
the model are closer to the experimental stress–strain curve
during tension in comparison with compression.

The rest of the paper is allotted to the modeling of four-
point bending in the above-mentioned cases. The models are
meshed using 20-node quadratic brick reduced integration
elements denoted by C3-D20R in ABAQUS. To reduce the
effects of the mesh, the number of elements was refined until
a negligible change was observed in the output results.
Figures 14(a) and (b) show the final meshed model for cases 6
and 7 containing 375 and 615 elements, respectively.

Figure 15(a) shows variations of the normalized moment,
MC/I, with the dimensionless curvature, C ,κ where M is the
reaction moment about the x-axis, I the corresponding area
moment of inertia of the cross section, C=D/2 the outer

radius of the tube, and ( )C C UR L2 / e1κ = the dimensionless
curvature. Figure 15(b) compares the position of the neutral
axis of the tube obtained using the proposed model with the
experimentally measured one [40]. In this figure, the position
of the neutral axis (Y0) is measured from the centerline of the
tube. In figures 15(a) and (b), a good agreement is observed
for both moment and neutral axis position. The conformity is
very good for small values of curvature. However, the con-
formity is good for higher values of curvature as well as in the
unloading cycle; the predictions of the model are over-
estimated in these regions. This may be due to the effects of
strain localization in experimental measurements as reported
in [40]. Since the present model is not capable of capturing
this phenomenon, it over-predicts the amount of stress in high
values of curvature. In addition, the length of the tube is not
long enough in comparison with its diameter, and this causes
the cross sectional planes not to remain planar. However, in
the utilized model, all the degrees of freedom for the loading
plane are tied to a reference point meaning that the plane
remains planar. Therefore, the model is over-constrained in
comparison with the real sample, and the required moment is
over-predicted. As another reason, the transformation induced
plasticity may cause some errors in finding the appropriate
material parameters, especially maximum recoverable strain.
Qidwai and Lagoudas [18] stated that plastic deformations
occur before full Martensitic transformation takes place.
Therefore, it is not possible to obtain the maximum reco-
verable strain using the experimental data. This issue can be
one of the reasons for the difference between experimental

Figure 14. Final meshed model for (a) case 6 containing 375 elements and (b) case 7 containing 615 elements.

Table 8. Material parameters obtained by calibration of the stress–strain response in tension and compression for case 7.

E (MPa)A E (MPa)M
+ E (MPa)M

− ν M (K)f M (K)s A (K)s A (K)f (MPa)s
crσ

65 000 26 000 62 000 0.3 213 253 265.6 271.6 130.2
(MPa)f

crσ C (MPa/K)M C (MPa/K)As C (MPa/K)Af Lε +
Lε −

1β 2β T (K)
155 5.5 6 6 0.057 −0.027 0.28 0.4 286, 296, 306
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and numerical observations in the unloading cycle. Auricchio
and Taylor [17] reported that, for the case of four-point
bending, the part of the curve corresponding to the unloading
and the size of the hysteresis loop differ from the experi-
mental findings.

To compare the numerical predictions with the experi-
mentally reported results, the moment and curvature are
normalized with the same method as the one used in
experiments [39]. Referring to figure 13(b), suppose that PMσ
is the stress of the upper plateau, and 0ε is the amount of strain
at the beginning of the martensite transformation in tension at
296 K. Using these values, two quantities are defined for
normalizing the moment and curvature, respectively, as
M D to PM23 0

2σ= and D2 / .o23 0κ ε= In the first quantity,
D0 =D − 2t is the inner diameter of the tube. Variations of the
dimensionless moment with the dimensionless curvature for
case 7 are depicted in figures 16(a)–(c) at 286 K, 296 K, and
306 K. The demonstrated results in this figure show the ability
of the proposed model to predict the tension–compression
asymmetry of shape memory alloys with good correlations
with the experiment.

Referring to figures 16(a)–(c), deviation of predicted
response from the experiment increases, especially in the first
linear region, as the temperature decreases. In all these
simulations, the material is initially in the austenite phase and
this deviation would be due to variations of austenite elastic

Figure 16. Variations of the dimensionless moment with the
dimensionless curvature for case 7 in the temperatures of (a) 286 K,
(b) 296 K and (c) 306 K.

Figure 15. (a) Normalized moment versus dimensionless curvature
and (b) normalized position of the natural axis versus dimensionless
curvature for case 6.
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modulus. Figure 17 shows the variations of austenite elastic
modulus with temperature according to the experimental
stress–strain curves provided in figure 13. As is obvious, EA

differs between tension and compression, which may have
arisen due to the existence of some micro- (nano-) pores as
well as defects in the microstructure of test samples [41, 42].
In addition, the experimental value of austenite elastic mod-
ulus increases with temperature. According to these findings,
the difference between the numerical and experimental results
in figure 16 can be explained. However, it should be stated
that the present model cannot take different elastic moduli of
austenite in tension and compression into account. Accord-
ingly, only one fixed value is used through all the simulations.
As shown in figure 17, the average value of EA of tension and
compression is smaller than the value used for the simulation
at the temperatures of 286 and 296 K. Therefore, the
numerically predicted value of the dimensionless moment is
higher than the experimental one. However, for the tem-
perature of 306 K, the average value of EA is higher but not
too far from that used for the simulation, which causes a
better correlation with experimental observations. These
findings demonstrate that, in order to obtain reasonable
results, it is necessary to calibrate the elastic modulus of
austenite based on the average value in tension and
compression.

A comparison of the moment–curvature response for
cases 6 and 7 reveals that the difference between the
experiment and the presented model is larger for case 6. It
might be owing to less accurate material parameters for case
6. Since there is just a uniaxial stress–strain curve at one
temperature in case 6, it is not possible to find exact values of
the required material parameters. However, in case 7, the
existing stress–strain responses at three different temperatures
makes it possible to develop a phase diagram and to find more
accurate material parameters, which lead to a better correla-
tion with experimental findings.

4. Conclusion

To account for material asymmetry in tension and compres-
sion, this paper proposes a new three-dimensional constitutive
law based on microplane theory for shape memory alloys.
The tension–compression asymmetry is taken into account by
considering an equivalent stress based on J2 − J3 invarients.
Also, two internal variables are defined to distinguish
between martensite volume fraction as well as elastic modulus
in tension and compression. The proposed model is then used
for modeling the uniaxial tension–compression, ferroelastic
problem, subloops due to incomplete transformation and four-
point bending of SMA tubes. The obtained results are com-
pared with experimental and previously-reported numerical
ones. In each case, the results and their discrepancy are dis-
cussed. The findings of this study show that the model pre-
dictions are in good agreement with the experimental data, as
well as the previously reported results by the existing models.
In the case of four-point bending, some differences are
observed between numerical and experimental findings,
which could be due strain localization, distortion of the tubes
cross section, transformation induced plasticity, variations of
austenite elastic modulus with temperature, and different
values of austenite elastic modulus in tension and
comperession.
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