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Abstract
Shape memory alloy (such as NiTi) cellular lattice structures are a new class of advanced
materials with many potential applications. The cost of fabrication of these structures however is
high. It is therefore necessary to develop modeling methods to predict the functional behavior of
these alloys before fabrication. The main aim of the present study is to assess the effects of
geometry, microstructural imperfections and material asymmetric response of dense shape
memory alloys on the mechanical response of cellular structures. To this end, several cellular and
dense NiTi samples are fabricated using a selective laser melting process. Both cellular and
dense specimens were tested in compression in order to obtain their stress–strain response. For
modeling purposes, a three -dimensional (3D) constitutive model based on microplane theory
which is able to describe the material asymmetry was employed. Five finite element models
based on unit cell and multi-cell methods were generated to predict the mechanical response of
cellular lattices. The results show the considerable effects of the microstructural imperfections on
the mechanical response of the cellular lattice structures. The asymmetric material response of
the bulk material also affects the mechanical response of the corresponding cellular structure.

Keywords: shape memory alloys, NiTi, cellular lattice structures, selective laser melting,
constitutive model, microplane theory, material asymmetry

(Some figures may appear in colour only in the online journal)

1. Introduction

Cellular materials have potential application in several industrial
applications due to their outstanding mechanical properties in
combination with low weight. Among these advanced materi-
als, cellular lattice structures (CLSs) are of great importance

because their microstructure is regular which allows us to adjust
their mechanical properties [1–3]. It is shown that additive
manufacturing (AM) methods are promising candidates for
fabricating CLSs [4–10]. High cost related to fabrication of
CLSs using AM methods makes it necessary to predict their
mechanical responses before fabrication. Accordingly, several
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modeling approaches are developed to predict the mechanical
response of CLSs. Labeas and Sunaric [11] developed a
methodology based on linear static and eigenvalue analysis to
study the structural response and failure process of open lattice
metallic cellular cores. Ptochos and Labeas [12] used Bernoulli–
Euler and Timoshenko beam theories in order to find an ana-
lytical solution for elastic moduli and Poisson’s ratio of the
body-centered cubic (BCC) cellular lattice structures in three
Cartesian directions. Gumruk and Mines [13] studied the
mechanical compression behavior of 316lstainless steel micro
lattices manufactured by selective laser melting (SLM) using
theoretical and numerical methods. Smith et al [14] used both
continuum and beam finite elements to model BCC and BCC-Z
architectures under quasi-static compressive loads. Campoli
et al [15] studied the effects of geometrical irregularities caused
by the manufacturing process on the elastic response of CLSs
using statistical models. Ushijima et al [16] proposed an
approach for predicting the yield surface of lattice structures
subjected to either a uniaxial or a biaxial stress state utilizing
both classical beam theory and finite element technique. Kar-
amooz Ravari et al [3] investigated the effect of variations in
strut cross-sectional area on the mechanical response of CLSs
fabricated by the fused deposition modeling (FDM) method
utilizing both beam and continuum finite element approaches.
In another work, Karamooz Ravari et al [2] proposed a com-
putationally efficient modeling approach to take the micro-
structural imperfections into account.

Since the fabrication of the first porous shape memory
alloys (PSMAs) [17, 18], attempts tofabricatelightweight
shape memory alloys (SMAs) have been increased [19–24].
Thanks to additive manufacturing techniques, the production of
SMA CLSs with regular microstructural geometry has recently
become possible [25, 26]. Although the constitutive modeling
of PSMAs is well established in previous studies using
micromechanical modeling [27–36] and the finite element
method [37–43], analytical and numerical investigations of the
mechanical response of SMA CLSs arerarely found in the
literature. Machado et al [44] created regular cellular materials
by joining thin-wall superelastic tubes using electrical resist-
ance welding. They then utilized the finite element approach to

simulate the mechanical behavior of these materials. Rahma-
nian et al [45, 46] fabricated CLSs with simple cubic micro-
structure using the SLM method. They also modeled the CLSs
using the unit cell approach and finite element method. How-
ever, the fabricated samples could not be considered as infinite
repeatingof unit cells along periodic vectors and the unit cell
method may not yield reliable predictions.

This paper seeks to address the lack of a comprehensive
simulation study on the mechanical response of SMA CLSs. To
this end, a three-dimensional (3D) constitutive model based on
microplane theory, which is capable of taking material asym-
metry into account is first introduced. Then, five finite element
models, i.e. two models based on theunit cell approach and
three models based on the multi-cell method, are generated to
simulate the compressive mechanical response of SMA CLSs.
Using these models, the effects of microstructural imperfections
and asymmetric response of dense SMA on the mechanical
response of SMA CLSs are investigated. In order to take the
effects of microstructural imperfections into account, a com-
putationally efficient method was successfully implemented for
simulation of the mechanical response of SMA CLSs.

2. Material and methods

2.1. Fabrication

Two different types of CLSs including BCC and BCC-Z are
investigated in this paper. It is demonstrated that ‘angle-ply’
lattices, whose struts are oriented at 45°, offer nearly opti-
mized configurations under bending, compression, and shear
loadings [2]. These structures are generated by repeating the
unit cells shown in figures 1(a) and (b) along x, y, and z
directions. As shown in this figure, the BCC unit cell is
constructed fromeight diagonal struts which connect the
center of the upper and lower faces of a cube to the center of
its vertical edges. The BCC-Z unit cell has an additional
vertical strut which connects the center of the upper and lower
faces of the cube.

To comprehensively define the microstructure of the
above-mentioned cellular lattices, three different geometrical

Figure 1. The repeating unit cell of (a) BCC, (b) BCC-Z cellular lattice structure.
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parameters should be specified including strut diameter, D,
cell length, L, and the number of repeating unit cells along
each direction. The level of porosity is defined as the ratio of
the pore volumes to the total volume of the dense part.
Alternatively, D/L represents the level of porosity. To
achieve 69% porosity, the strut diameter and the cell length of
both BCC and BCC-Z are assumed to be 0.65 and 2.33 mm,
respectively. The samples are constructed by repeating 4, 4,
and 3 unit cells along x, y, and z directions, respectively. Note
that y is the direction along the height of the sample. In order
to be able to carry out compression tests on the CLSs, two
plates of 0.933 mm thick are constructed on the upper and
lower faces of both the BCC and BCC-Z CLSs.

In this work, a selective laser melting machine made by a
PXM Phenix/3D Systems (Rock Hill, SC) is used for fabri-
cation. Ni50.09-Ti (at.-%) ingot (Nitinol Devices & Compo-
nents, Inc. Fremont, CA) is atomized to powder (25-75 μm
particle fractions) by TLS Technik GmbH (Bitterfeld Ger-
many) using the EIGA technique. The process parameters are
described in table 1 [47, 48].

Energy input is calculated using the following relation
[49]:

E
P

v. h. t
1( )=

where P, v, h, and t are laser power (W), scanning velocity
(mm/s), hatch spacing (mm), and layer thickness (mm),
respectively.

In order to be able to identify the material parameters of
the fabricated dense NiTi for the model, uniaxial compression
test samples are fabricated by the same processing parameters

as those used for fabrication of cellular lattice structures.
Figures 2(a) and (b) show the fabricated bulk and BCC CLS
samples, respectively.

2.2. Characterization

Uniaxial compression tests are conducted on the solid and
cellular samples. Tests are carried out using a hydraulic
Landmark MTS testing machine at the strain rate of s10 .4 1- -

Heating and cooling rates are fixed at 5 °Cmin−1 and are
controlled by a PID-driven Omega temperature controller.
Transformation strain is measured by an MTS high-temper-
ature extensometer with a gauge length of 12 mm. In order to
make sure that the specimens are in pure martensite phase,
samples are first kept in ice water for 2 h and are then exposed
to room temperature. All mechanical tests are performed at
ambient temperature, i.e. about 23 °C.

Characteristic temperatures for describing the phase
transformation are determined by the DSC system (A Perkin–
Elmer DSC Pyris 1). Typical temperature range is from
−150to 600 °C, and the heating/cooling rate is 10 Kmin−1.

Because the parts are produced layer-by-layer in the AM
processes, the products always have a few types of defects
and imperfections, e.g. variable cross -section along their
length, wavy struts, and micro-pores. These defects may
change the mechanical properties of CLSs. Figure 3 and
figure 4 show SEM images of the microstructure of the BCC
and BCCZ NiTi CLSs fabricated by SLM, respectively.
Variable cross section can easily be seen along the length of
both BCC and BCC-Z structures.

The effects of imperfections should be considered to
model the mechanical properties of CLSs. In this work, a cold

Table 1. Process parameters used in SLM machine.

Effective laser power (W) Layer thickness (μm) Scanning velocity (m s−1) Hatch distance (μm) Energy Input (J mm−3)

250 30 1.25 120 55.5

Figure 2. NiTi (a) bulk samples, (b) BCC cellular lattice structure fabricated by SLM.
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field emission high resolution scanning electron microscope
(S-4800) is used to study both structures. The diameters of the
struts are measured atseveral points and the probability of the
diameter ranges is determined based on the method proposed
by Karamooz Ravari et al [3]. Figure 5 shows the probability
of the ranges of the strut diameter along the length. This
diagram will be used later for constructing the finite element
models with microstructural defects.

2.3. SMA constitutive modeling

To simulate the mechanical response of SMA CLSs, a 3D
constitutive model is required. In this paper, a 3D constitutive
model based on microplane theory considering asymmetric
material response is developed. The main idea of this theory
is to generalize 1D constitutive relations to 3D ones.
According to this theory, the projection of macroscopic stress
tensor on each generic microplane is first found. Then, a 1D
constitutive relation is defined between micro-level stress and
strain. Finally, a homogenization process is used to generalize
1D relations to 3D ones [50–56]. In this section, the above-
mentioned three steps are briefly reviewed. For a more

comprehensive study of this theory, interested readers are
referred to [56].

As shown in figure 6, the macroscopic stress tensor can
be projected as normal and shear stress vectors on each
microplane. These components can be formulated using
equation (2) and equation (3) respectively:

N 2N ij ij ( )s s=

T 3T ij ij ( )s = s

In these equations, ijs is the macroscopic stress tensor, Ns the
normal component, Ts the shear component, and:

N n n 4ij i j ( )=

T t n t n
1

2
5ij i j j i( ) ( )= +

where ni are the components of the microplane’s unit normal
vector and ti are the components of the unit vector parallel to

Figure 3. SEM image from BCC structure.

Figure 4. SEM image from BCC-Z structure.

Figure 5. Probability of strut diameter variation along the length.

Figure 6. Projection of macroscopic stress tensor on each microplane
as normal and shear components.
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the shear stress vector that can be formulated as:

t
n n

n n
6i

ik k N i

jr js r s N
2

( )
( )

s s

s s s
=

-

-

Previous investigations on the microplane theory showed that
if the normal component of projected stress decomposed into
volumetric and deviatoric parts, the micro-level elastic
modulus is equal to the macroscopic one [50, 51, 56].
Accordingly, this decomposition rule is utilized here as

7N V D ( )s s s= +

in which 3V ij ijs s d= / is the volumetric stress,
N 3D ij ij ij( )s d s= - / the deviatoric stress, and ijd the

Kronecker’s delta. In microplane theory, it is assumed that
the martensitic transformation is associated with the shear
stress. So, the volumetric and deviatoric strains can be
calculated using Hook’s law:

E

1 2
8V V ( )e

n
s=

-

E

1
9D D ( )e

n
s=

+

where n is the SMAs’ Poisson ratio, Ve the volumetric strain,
De the deviatoric strain, and E the elastic modulus of SMA
which is defined using the Reuss model [56, 57]:

E E E E E E

E E

1 1 1 1 1 1

1 1
10

A
s

M A
s

M A

T
M
T

A
( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
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In this relation, EA is the austenite elastic modulus, EM
+ the

tensile elastic modulus of stress-induced martensite, EM
- the

compressive elastic modulus of stress-induced martensite, EM
T

the elastic modulus of temperature-induced martensite, sx
+ the

stress-induced martensite volume fraction in tension, sx
- the

stress-induced martensite volume fraction in compression,
and Tx the temperature-induced martensite volume fraction.
To complete the definition of the 1D micro-level constitutive
model, the relation between shear stress, ,Ts and shear strain,

,Te should be specified. In this regard, the 1D constitutive
relation proposed by Poorasadian et al [57] is utilized here:

1

E
11T T L s L s ( )e s e x e x=

+ n
+ ++ + - -

in which Le is the maximum recoverable strain. The
superscripts ‘+’ and ‘-‘respectively denote the tension and
compression. To generalize these 1D constitutive relations to
3D ones, the principle of complementary virtual work is used
as the homogenization method. This method implies the
following relation [50, 51]:

d
4

3
2 12ij ij V V D D T T( ) ( )ò

p
e s e ds e ds e ds= + + W

W

where Ω is the surface of a unit hemisphere, and ije the
macroscopic strain tensor. Substitution of equations (2), (3),
(7), (8), (9), and (11) into equation (12) followed by
simplifications leads to the following relation between

macroscopic stress and strain tensors [56]:

E E

N N T T d

T d

1 3

2

3

2
13

ij mm ij mn
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To finalize the constitutive model, the evolution of martensitic
volume fractions must be specified. Referring to figure 7,
evolution of stress-induced as well as temperature-induced
martensite volume fraction can be calculated as a function of
equivalent stress and temperature ateach material point using
the following relations [56]:
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In this relation, ‘r’ and ‘p’ are ‘+’ and ‘−’in tensile loading
and ‘−’and ‘+’ in the compressive one. ŝ is the equivalent
stress which is based on the second and third invariants of
macroscopic deviatoric stress tensor, J2 and J3, to account for
material asymmetry [56]:

J
J

J

1

1
3

9

2
152

3

2
ˆ ( )

⎧⎨⎩
⎫⎬⎭s

b
b=

+
+

2.4. Finite element modeling of cellular lattice structures

In this subsection, five finite element models are developed to
predict the mechanical stress–strain response of SMA CLSs.
Two models are based on the unit cell approach while three
models are based on the multi-cell method. These models are
described in the subsections below. Table 2 summarizes the
models and their brief description.

2.4.1. Unit cell model without defect (UC). Figures 8(a) and
(b) show the meshed unit cell model utilized for the modeling
of BCC and BCC-Z CLSs, respectively. Since the unit cell
model is used, the periodic boundary conditions should be
applied for modeling purposes. In order to do so, suppose that
the utilized unit cell has three opposite pairs of surfaces as

R R, ,i i1 2( )¶ ¶ i=1, 2, 3. The following constraints should be
applied between the degrees of freedom, u, of the paired
faces:

u u u u i, 1, 2, 3 16i i i
ref

i
ref

1 2 1 2 ( )- = - =

where the superscript ‘ref’ denotes reference points on the
paired faces. After applying the boundary conditions, the
upper face of the unit cell is compressed with the value of Δ
for displacement.

2.4.2. Unit cell model with defect. Karamooz Ravari et al [3]
showed that microstructural defects can considerably affect
the mechanical response of CLSs. To account for these
intrinsic imperfections in the unit cell model, the method
proposed by Karamooz Ravari and Kadkhodaei [2] is used
here. They presented a computationally efficient modeling
approach based on the experimental observations reported by
Tsopanos et al [9] and Gumrum and Mines [13]. In this
method, a single strut of CLSs, consisting of strut’s cross-
sectional variation along its length and deviation from
straightness, is modeled under uniaxial tension
(compression) and its stress–strain response is found. Then,
the material parameters related to this curve areattributed to
the bulk material of the unit cell model without any defect.
This model is abbreviated as ‘SS’ in the rest of this paper. The
combination of this method with other strategies is
accompanied by ‘+SS’ e.g. ‘UC+SS’ stands for the
combination of a unit cell model with a single strut one.
Here, this modeling approach is briefly explained:

To construct the strut’s geometry, it is assumed that each
strut is formed as layers of spherical elements. Referring to
figure 9, the amount of penetration for two neighboring
spheres, with radii R1 and R2, is Lp.

In addition, the maximum deviation positioned in
thecenter of spheres from the strut axis, i.e. deviation from
straightness in a wavy strut, is assumed to be Ad. To model
these defects, the centerline of the strut is first generated.
Then, some spheres with random diameters are generated
along this line until the strut’s length, Ls, reachesthe desired
value. To determine the spheres’ diameters, the method
provided in [3] is utilized in this paper. In this method, an
index is assigned to the strut diameter’s intervals of the
probability diagram depicted in figure 5. Then, a set of indices
is generated in which each index is repeated M times, where
M is the nearest integer number to the probability of that
diameter range. To choose a value for the sphere diameter, an
integer number between 1 and 100 is generated randomly and
the corresponding diameter range is selected. Then, a random
number is produced in this range using the following
equation:

D D r D D 17min max min( ) ( )= + ´ -

where r is a random number between 0 and 1, and Dmin and
Dmax are respectively the minimum and maximum values of
the struts’ diameters in the diameter range denoted by the
chosen index. To model the wavy strut defects, the center of
each sphere is shifted to a random position, Ad, using

Table 2. Description of the presented models.

Model Name Description

UC Unit cell model+stress–strain response of the dense SMA as the bulk material
UC+SS Unit cell model+stress–strain response of the single defected strut as the bulk material
MC Multi-cell model without defect+stress–strain response of the dense SMA as the bulk material
MC+SS Multi-cell model without defect+stress–strain response of the single defected strut as the bulk material
MCD Multi-cell model with defect+stress–strain response of the dense SMA as the bulk material

Figure 7. The stress–temperature phase diagram of SMA.
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equation (18):

A r A 18d d
max ( )= ´

in which Ad
max is the maximum value of deviation from

straightness and is obtained using SEM images. After
satisfying the strut’s length, the overplus regions areremoved
using two cutting planes. Figure 10 shows the 3Drepresenta-
tion of the single strutmodel which is obtained using the
SEM data.

After generating the geometry of the single strut, all
degrees of freedom at one end of the strut are fixed and the
other end is stretched (compressed) and the stress–strain
response is calculated using the following relations:

F

D

4
19

av
2

( )s
p

=

L
20

s
( )e

d
=

where δ is the applied displacement, Dav the average value of
the strut’sdiameter, and F the reaction force.

2.4.3. Multi-cell model without defect. Since in the unit cell
model a cellular material is supposed to be an infinite
medium, this model can present reliable results only when the
cell size is small enough compared to the sample size [58]. In
the present study, however, the cellular samples consist of
only 48 unit cells and the unit cell method may cause over-
prediction of the stress level at a specific strain value. To
assess this issue, a multi-cell model (MC) representing the

Figure 8. The meshed configuration of (a) BCC (b) BCC-Z unit cell model.

Figure 9. Two-dimensional (2D) schematic representation of single strut model.

Figure 10. 3Drepresentation of the strut model produced using the
SEM data.
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real utilized sample is also modeled. A python script is
developed as the input of the ABAQUS finite element
package to generate both BCC and BCC-Z CLSs. Two plates
of 0.933 mm thick areconstructed at the top and bottom of
the models to match with measurements in the experiments.
Figures 11(a) and (b) show the MC models for BCC and
BCC-Z CLSs, respectively.

2.4.4. Multi-cell model with defects. To include the
microstructural defects in the MC model, two approaches
are employed here. In the first approach, the stress–strain
response of the SS model, presented in subsection 2-4-2, is
used as the bulk material of the MC model presented in the
previous subsection. In another approach, all the ligaments of

the MC model are generated in a manner analogous to the one
for single strut. Consequently, all the struts of the model have
variations in their diameter as well as deviation from
straightness in their microstructure. Figures 12(a) and (b)
show the proposed MC model for BCC and BCC-Z CLSs,
respectively. This model is denoted by MCD in the rest of this
paper.

3. Results and discussion

In this section, the results of the above-mentioned modeling
approaches are presented and compared with the experiment.
Moreover, predictions of different proposed approaches are

Figure 11. Multi-cell model without defect for (a) BCC (b) BCC-Z cellular lattice structures.

Figure 12. MCD model for (a) BCC (b) BCC-Z cellular lattice structure.
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compared witheach other. It is worth mentioning that, for the
models with random microstructure, the results may be dif-
ferent from run to run. In order to reduce the effects of ran-
domness in the simulations, each simulation is repeated until
the maximum variations in the stress–strain responses gets
smaller than 10%. As shown in figure 13, the maximum value
of deviation is about 10% after 19 simulations. Accordingly,
each simulation was repeated 20 times and the average stress–
strain response is reported. Note that the maximum deviation
is related to the point at which the maximum stress is applied.
The models are meshed using 10-node modified quadratic
tetrahedron elements denoted by C3D10M in ABAQUS. A
mesh sensitivity analysis is performed for each model in such
a way that the mesh size is reduced until changes in the
obtained stress–strain response are negligible. After the mesh
convergence study, the mesh size is obtained to be 0.025, 0.2,
0.2, and 0.025 for SS, UC, MC, and MCD models, respec-
tively. All the simulations are performed on 2 Intel Xeon
X5670 (12 core), 2.93 GHz processors with 24 cores and
20 GB RAM.

3.1. Experimental results

In order to identify the material parameters for the bulk SMA,
the transformation temperatures first need to be determined.
In this regard, the DSC test described in sections 2–1 is
performed and the corresponding diagram is presented in
figure 14. Using this diagram, the transformation tempera-
tures are determined as follows: Mf=26 °C, Ms=54.1 °C,
As=59 °C, and Af=84.5 °C.

In order to determine the maximum allowable applied
stress before experiencing large plastic deformations on both
dense SMA and SMA CLSs, both dense and CLS specimens
are first loaded in compression until fracture as shown in
figures 15(a) and (b). Using these figures, the maximum stress
level for loading–unloading tests is determined to be 802, 50,
and 90MPa for dense SMA, BCC CLSs, and BCC-Z CLSs,
respectively.

Figures 16(a) and 15(b) show stress–strain response in a
loading–unloading cycle for dense and CLSs respectively. As
shown in figures17 and 18, after unloading, all the specimens
are heated up to 150 °C which is above the austenite finish
temperature. Then, the samples are cooled down to about
−50 °C and again heated up to the ambient temperature.

3.2. Calibration of material parameters

The material parameters are obtained using the experimental
compressive stress–strain response of the bulk sample as well
as DSC measurements. In this regard, the slope of the stress–
strain curve of dense SMA at the unloading portion is
reported as the martensite elastic modulus, and the unrecov-
ered strain at the end of the unloading, before heating the
sample, is considered as the maximum recoverable strain.
Then, the values of s

crs and f
crs are assessed according to the

experimental stress–strain curve. Table 3 shows the obtained
material parameters. To assess the effects of material asym-
metry on the mechanical stress–strain response of CLSs, the
symmetric material behavior of the dense SMA is first con-
sidered by setting β=0. Then, the effects of material
asymmetry on the mechanical behavior of the CLSs are
investigated. Since all the experimental measurements and
finite element simulations are performed at T=23 °C, which
is below the martensite start temperature, only the presented
material parameters in this table are necessary and the others
are optional.

3.3. Single strut model

Figure 19 compares the stress–strain curve of the SS model
with the experimental response of the bulk material. It can be
clearly seen from this curve that, at the same magnitude of
strain, the stress level is lower for the SS model than the bulk
material. This is due to the existence of two kinds of imper-
fections in the SS model: strutdiameter variation along its
length and deviation from straightness.

To be able to use the stress–strain response of the SS as
the bulk material of the UC as well as the MC model, it is
necessary to obtain the material parameters related to the

Figure 13. Variation of the maximum deviation in stress–strain
curves with the number of simulations.

Figure 14. DSC test on an SLM-fabricated dense part.
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stress–strain response of the SS model. Table 4 shows these
material parameters which are obtained using the stress–strain
response of SS shown in figure 19.

3.4. Cellular lattice structures modeling

Figure 20 shows the stress–strain response of BCC and BCC-
Z cellular lattice structures, respectively. In these figures, the
results of the UC, UC+SS, MC, MC+SS, and MCD
models are compared with experimental findings. It is
obvious from these curves that both models based on the unit
cell model significantly over-predict the stress level. As stated
earlier, it is because the unit cell size is not small enough in

comparison with the fabricated specimens indicating that the
unit cell model is not a good candidate for modeling
purposes.

By comparing the MC models, it can be concluded that
the existence of defects in the struts of CLSs can significantly
affect their mechanical responses. Ascan be seen, the MC
model has the highest stress level while the MCD model has
the lowest one. The maximum error relative to the exper-
imental results is about 53% for MC, 35% for MC+SS, and
22.7% for the MCD model in the case of BCC CLS. These
values are respectively 43.8, 19.3, and 12.1% for BCC-Z
CLS. The reasonthe stress level of the MC+SS model is
higher than that of MCD is that the latter has more defects in
its microstructure. In addition, the defectivestruts experience
bending, shearing, and axial loads in the MCD model while
the defectivesingle strut response is obtained only under
axial loading. It is worth mentioning that the computational
cost of the MCD model is almost eight times higher than that
for MC+SS. Therefore, one may condone the greater error of
the latter for more computational efficiency.

3.5. Effects of SMA material asymmetry response

It is previously reported that the transformation surface of a
dense SMA is not symmetric [43, 59]. This inherent behavior
causes the tension–compression asymmetry of the dense
SMAs. To assess the effects of this asymmetric response on
the mechanical stress–strain response of the SMA CLSs, two

Figure 15. Stress–strain response of (a) dense SMA (b) SMA CLSs until fracture.

Figure 16. The loading–unloading cycle of stress–strain response for (a) dense, (b) CLSs.

Figure 17. Change in compressive strain with temperature for
dense SMA.
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strategies are employed in this paper. In the first strategy,
denoted by MCD+AM, the model considering material
asymmetry is used as the constitutive model for the simula-
tion of the MCD model. Table 5 shows the material para-
meters used for this simulation. In this table, the material
parameters obtained in the previous section are considered for
the compressive response, and those related to tension are
obtained based on what is commonly reported for poly-
crystalline NiTi. That is, the elastic modulus of the martensite
phase in compression is supposed to be greater than that in
tension. In addition, the maximum recoverable strain in ten-
sion is assumed to be about twice that of compression. The
value of the asymmetry level is considered to be about 0.16 as
reported by Lubliner and Auricchio [60].

Figure 18. Change in compressive strain with temperature for (a) BCC (b) BCC-Z CLSs.

Table 3. Material parameters of bulk material utilized for the simulations in the symmetric model.

ν EM (MPa) s
crs (MPa) f

crs (MPa) Le M Cf ( ) M Cf ( ) A Cs ( ) A Cf ( )

0.3 69 000 85 450 0.045 26 54.1 59 84.5

Figure 19. Comparison of the stress–strain response of single strut
model and experimental one of bulk SMA.

Figure 20. Comparison of the numerical and empirical stress–strain
responses for (a) BCC and (b) BCC-Z cellular lattice structures.

Table 4. Material parameters obtained using the stress–strain response of the single strut model.

ν EM (MPa) s
crs (MPa) f

crs (MPa) Le M Cf ( ) M Cf ( ) A Cs ( ) A Cf ( )

0.3 51 000 38 438 0.043 26 54.1 59 84.5
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In the second strategy, denoted as the MC+SS+AM
model, the single strut is modeled using the asymmetric con-
stitutive model, and its tensile as well as compressive stress–
strain response is obtained (figure 21). Then, the material
parameters related to these stress–strain responses are obtained
and attributed to the bulk material of the MC model. Table 6
shows the material parameters obtained using the stress–strain
response of the single strut in tension and compression.

Figure 22 compares the stress–strain response of the
BCC CLS obtained using MC+SS, MCD, MC+SS+
AM, and MCD+AM with the empirical curve. Asseen
from this curve, the material asymmetry affects the stress–
strain response of the BCC CLS and reduces the stress level.
In addition, the predictions of the asymmetric model are in
better agreement with the experimental stress–strain response.
In this case, the maximum error relative to the experiment
reduces to 28.3and 11.7% for MC+SS+AM and
MCD+AM models, respectively.

Referring to figure 23, unlike the BCC CLS, introducing
the material asymmetric response does not affect the stress–
strain response of the BCC-Z CLS because the dominant
deformation mechanism in the BCC-Z CLS is axial loading
due to the existence of the vertical strut. However, the
dominant deformation mechanism in the BCC CLS is bend-
ing which submits some regions of the ligaments to tension
and some other regions to compression. In this case, max-
imum error relative to the experimental stress–strain curve is
about 17and 9.9% for MC+SS+AM and MCD+AM

models, respectively. It shows that introducing the asym-
metric material response into the modeling of BCC-Z CLS
decreases the relative error about 2%. This improvement is
about 8% inthe case of the BCC cellular lattice.

4. Conclusion

This paper deals with the simulation of SMA CLSs using the
finite element method. The main aim was to investigate the

Table 5. Material parameters utilized for investigation of the asymmetric response.

E MPaM ( )+ E MPaM ( )- n MPas
cr ( )s MPaf

cr ( )s Le
+

Le
- β

50 000 69 000 0.3 61.55 325.9 0.07 −0.045 325.9

Figure 21. Stress–strain response of NiTi single strut in tension and
compression.

Figure 22. Comparison of the stress–strain response of the BCC
cellular lattice structure obtained using MC+SS, MCD,
MC+SS+AM, and MCD+AM with the experimental one.

Figure 23. Comparison of the stress–strain response of the BCC-Z
cellular lattice structure obtained using MC+SS, MCD,
MC+SS+AM, and MCD+AM with the experimental one.

Table 6. Material parameters obtained using the tensile and compressive stress–strain response of the single strut.

E MPaM ( )+ E MPaM ( )- n MPas
cr ( )s MPaf

cr ( )s Le
+

Le
- b

36 950 51 000 0.3 27.51 317.2 0.062 −0.042 0.16
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effects of both microstructural imperfections and the asym-
metric response of dense SMA on the mechanical response of
SMA CLSs. Therefore, a constitutive model was combined
with five different finite element models with and without
microstructural imperfections. The obtained results showed
that the unit cell model was not suitable to study the
mechanical response of these CLSs because the fabricated
CLSs could not be considered as an infinite periodic lattice. It
was also observed that the microstructural imperfections
significantly affected the effective response of SMA CLSs.
Since considering the microstructural imperfections increased
the computational time, a computationally efficient method
was utilized to overcome this difficulty. The results showed
that, by compromising about ten percent error, the computa-
tionally efficient method could be used for taking micro-
structural imperfections into account. Finally, the effects of
the material asymmetric response of dense SMA on the
mechanical response of SMA CLSs were assessed by com-
paring the mechanical response of CLSs obtained by sym-
metric and asymmetric constitutive models. The results
demonstrated that as the portion of the axial load in the
deformation mechanisms of SMA CLSs increased, the effects
of the material asymmetric response of dense SMA decreased.
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