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Vibration analysis of a rotating variable
thickness bladed disk for aircraft gas
turbine engine using generalized
differential quadrature method

B Shahriari1, Mohammadhadi Jalali2 and MR Karamooz Ravari3

Abstract

In this paper, free vibration analysis of rotating variable thickness annular bladed disk suitable to be used in aircraft gas

turbine engine is investigated. The numerical generalized differential quadrature method is introduced in this paper as a

fast and efficient numerical method to be used for vibration analysis of bladed disks of real gas turbine engines.

The boundary conditions are supposed to be similar to those of the real bladed disk used in the aircraft engines i.e.

clamped for the inner edge and free for the outer edge. Considering the thickness of the disk to vary as a power function

and the blades of the bladed disk to be rigid, the numerical solution is performed and the effects of thickness variation,

geometric parameters, angular velocity, and number of blades on the natural frequencies and critical speeds are inves-

tigated. The obtained numerical results are compared with those reported in the literature indicating a good agreement.
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Introduction

Rotating bladed disks are one of the most fundamental
components of engineering devices such as aero-gas
turbine engines. An undesired vibration of these rotat-
ing systems in the operating conditions may cause cata-
strophic failures of the parts or even the whole engine.
According to what is mentioned above, a careful design
of the rotating systems is of crucial importance.

The dynamic characteristics of circular disks have
been studied for several decades. Lamb et al.1 inves-
tigated the vibration of spinning uniform disk, for the
first time. They obtained an exact solution for natural
frequencies of rotating, homogenous, constant thick-
ness circular disk. Southwell2 extended the Lamb’s
work and analyzed the effects of rotation on the vibra-
tion of uniform homogeneous circular disk, more
deeply. Deshpande et al.3 presented a model for
in-plane vibration of rotating thin disk accounting
for the stiffening of the disk due to the radial expan-
sion resulting from its rotation. Considering that the
thickness of the plate to be varied linearly and expo-
nentially, Lee et al.4 used the assumed modes method
to formulate the equations of motion of rotating
homogeneous circular annular plates. They obtained
the natural frequencies and critical speeds for

vibration modes consisting of radial nodal lines with-
out any nodal circle. Al-bedoor5 presented a dynamic
model for a typical elastic blade attached to a disk
driven by a shaft, which is flexible in torsion. He
employed the Lagrangian approach in conjunction
with the finite element method in deriving the equa-
tions of motion, within the assumption of small
deformation theory. Yang and Huang6 studied the
effects of disk flexibility, blade’s stagger angle, and
rotational speed on the natural frequencies and mode
shapes of a shaft–disk–blade system. They derived the
equations of motion using energy approach in conjunc-
tion with the assumed modes method. Yang and
Huang7 analyzed the dynamic behavior of a coupled
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shaft–disk–blade system. They found out that the
flexibility of the disk evolves the blade–blade modes
into disk–blade and blade–blade modes, and causes
frequency loci veering and merging with rotation.
Jalali et al.8 investigated the dynamic behavior of a
rotor-bearing system by the use of experimental meas-
urements and one-dimensional and three-dimensional
finite element models. Callioglu et al.9 studied the
stress in uniform functionally graded (FG) rotating
disks, numerically and analytically. They used finite
element method to obtain the radial and circumferen-
tial stresses and radial displacement of rotating FG
disks and compared the numerical results with the
analytical ones. Kermani et al.10 used differential
quadrature method (DQM) to solve the equations of
motion of rotating FG circular annular plates. They
assumed that the variation of the elastic modulus and
density of the plate to be an exponential function of
radius and the thickness of the plate to be uniform.
They investigated the natural frequencies and critical
speeds of the plates with clamped–clamped (C–C),
clamped–simply supported (C–S), and clamped–free
(C–F) boundary conditions and they evaluated the
effects of the graded index, angular velocity, and geo-
metric parameters on the modal response. Gutzwiller
et al.11,12 developed a computer software for auto-
mated design optimization of rotating bladed disks.
Using finite difference method, they obtained stresses
and displacements considering various thickness vari-
ations of the plate.

In the past few years, DQM has been applied exten-
sively for solving engineering problems. This method
provides a global approach to numerical discretization,
which approximates the derivatives by a linear
weighted sum of all the functional values in the
whole domain. Shu13 discussed the mathematical fun-
damentals, recent developments, major applications in
engineering, and implementation procedure of DQM.
Comparing to the other numerical methods, the DQM
can lead to almost accurate results using a considerably
smaller number of grid points and hence requiring
relatively little computational effort.13–19 The general-
ized differential quadrature method (GDQM) is an
improvement of the DQM especially for solving
higher order differential equations, which is more com-
putationally efficient and accurate.20 Unlike the DQM,
the GDQM considers a general situation, where the
derivatives of a function are approximated using a
linear weighted sum of all the functional values and
also some derivatives of the functional values.20

To the best of the authors’ knowledge, the vibration
analysis of a real bladed disk using the GDQM has not
been investigated until now. In this paper, free vibra-
tion of a variable thickness elastic disk with attached
rigid blades is investigated using the GDQM as a fast
and accurate numerical method. The boundary condi-
tions of the disk are assumed to be clamped in the inner
edge and free in the outer edge which are similar to
those of real gas turbine engines. In the real aero

engine, the inner edge of the bladed disk is clamped
to the rotor’s shaft and the outer edge of the bladed
disk is free. Also, the thickness of the bladed disk is
assumed to vary by a power function, which is a good
and applicable approximation for the thickness vari-
ation of industrial bladed disks. The obtained results
are compared with those reported in the literature,
which shows good agreement. In addition, the conver-
gence analysis is performed and the effects of the disk
thickness variation, angular velocity, geometric param-
eters, and the number of the blades on the natural
frequencies and critical speeds are investigated.

Theoretical foundation

Governing equations

A circular annular plate with outer radius a, inner
radius b, thickness t, and outer surface thickness h0,
which is rotating with angular velocity ~! is shown in
Figure 1. The thickness, t, can be variable in the radial
direction.

Considering the variable thickness and the plane
stress formulation, the equilibrium equation in the
radial direction is as follows11

d

dr
ðtr�rÞ � t�� þ t� ~!2 r2 ¼ 0 ð1Þ

where �r is the radial stress, �� the circumferential
stress, and � the density. Application of the axisym-
metric assumption ( @@� ¼ 0) to the Kirshoff’s strain–
displacement relations leads to the following11

"r ¼
du

dr
, "� ¼

u

r
, �r� ¼ 0 ð2Þ

where u is the radial displacement. The stress–strain
relations, i.e. the Hook’s law is given by11

�r ¼
E

1� �2
ð"r þ �"�Þ, �� ¼

E

1� �2
ð�"r þ "�Þ ð3Þ

Figure 1. Rotating annular plate.
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where E is the Young’s modulus and � the Poisson’s
ratio, which is assumed to be constant. By substitut-
ing equation (2) into equation (3), stresses are
obtained in terms of radial displacement as11

�r ¼
E

1� �2
du

dr
þ
�u

r

� �
, �� ¼

E

1� �2
�du

dr
þ
u

r

� �
ð4Þ

By substituting equation (4) into equation (1), the
equilibrium equation is obtained in terms of radial
displacement. To be able to solve the obtained equa-
tion, it is necessary to apply the boundary conditions.
In this paper, it is supposed that the inner edge of the
disk is clamped while the outer one is free.
Accordingly, the radial displacement of the inner
edge must be set to zero and in the outer edge, the
radial stress should be equal to the stress produced by
the centrifugal force of the blades. The equation
below shows the mathematical description of these
boundary conditions11

@ r ¼ b, u ¼ 0 and @ r ¼ a, �r ¼
nbmbrcg ~!2

2�rh0
ð5Þ

where nb is the number of blades, mb is the mass of
each blade, and rcg is the radius of the center of the
mass of each blade.

Governing equations for vibration analysis

The governing equation for out-of-plane vibration of
a rotating disk of variable thickness and variable
material properties can be expressed as21

Dr4wþ
dD

dr
2
@

@r
ðr2wÞ þ

1

r
�
@2w

@r2
þ
1

r

@w

@r
þ

1

r2
@2w

@�2

� �� �

þ
d2D

dr2
@2w

@r2
þ �

1

r
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þ

1

r2
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tr�r

@w
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� �
�

1

r2
t��

@2w

@�2
þ �t

@2w

@t2
¼ 0

ð6Þ

where w is the out-of-plane deflection, D ¼ Et3

12ð1��2Þ
the

flexural rigidity of the disk, r2 ¼ @2

@r2
þ ð1rÞ

@
@rþ

1
r2
@2

@�2
the

Laplacian operator. The thickness of the disk is
assumed to vary in the radial direction by the follow-
ing equation

t ¼ h0
r

a

� �m1

ð7Þ

where m1 is a constant. Once again, the C–F bound-
ary condition must be applied which

@r ¼ b, w ¼ 0,
@w

@r
¼ 0 ð8Þ

@r ¼ a, Mr ¼ �D
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ð9Þ

The out-of-plane deflection, w, may be written as

w ¼WðrÞ cosðm�Þei!t ð10Þ

where m is the angular wave number, and ! the nat-
ural frequency. By substituting equations (7), (4), and
(10) into equation (6), the following governing equa-
tion in terms of W(r) is obtained

r2m1
d4W

dr4
þ P1

d3W

dr3
þ P2

d2W

dr2
þ P3

dW

dr
þ P4W ¼ 0

ð11Þ

Where

P1 ¼ 2r2m1�1ð3m1 þ 1Þ

P2 ¼ r2m1�2ð�1þ 3m1ð1þ �þ 3m1Þ � 2m2Þ

�
12a2m1

h20

du

dr
þ
�u

r

� �

P3 ¼ r2m1�3 ð3m1 � 1Þð�1þ 3�m1 � 2m2Þ
� 	

�
12a2m1

h20

� ð1þm1Þ
1

r

du
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þ
�u

r2

� �
þ
d2u

dr2
�
�u

r2
þ
�

r

du
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� �

P4 ¼ r2m1�4 m4 �m2 4þ 3m1ð�3þ �ð3m1 � 1ÞÞð Þ
� 	

þ
12m2a2m1

h20r
2

�du

dr
þ
u

r

� �
�
12�ð1� v2Þa2m1

Eh20
!2

Substituting equation (10) into equations (8) and
(9), the boundary conditions can be expressed as
follows

@r ¼ b, W ¼ 0,
dW

dr
¼ 0

@r ¼ a ,
d2W

dr2
þ �

1

r

dW

dr
�
m2

r2
W

� �
¼ 0

@r ¼ a,
d3W

dr3
þ
1þ 3m1

r

d2W

dr2

þ
�1�m2ð2� �Þ þ 3m1�

r2

� �
dW

dr

þ
m2ð3� �Þ � 3m1m

2�

r2

� �
W ¼ 0

ð12Þ

By introducing the dimensionless parameters,

R ¼ r
a,

�W ¼ W
h0
, �u ¼ u

h0
, and � ¼ !a2

h0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12�ð1��2Þ

E

q
the gov-

erning equation and boundary conditions can be
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expressed using equations (13) and (14), respectively

R2m1
d4 �W

dR4
þ �P1

d3 �W

dR3
þ �P2

d2 �W

dR2
þ �P3

d �W

dR
þ �P4

�W ¼ 0

ð13Þ

@R ¼ b=a , �W ¼ 0,
d �W

dR
¼ 0

@R ¼ 1,
d2 �W

dR2
þ �

1

R

d �W

dR
�
m2

R2
�W

� �
¼ 0

@R ¼ 1,
d3 �W

dR3
þ
1þ 3m1

R

d2 �W

dR2

þ
�1�m2ð2� �Þ þ 3m1�

R2

� �
d �W

dR

þ
m2ð3� �Þ � 3m1�m

2

R3

� �
�W ¼ 0

ð14Þ

where

�P1 ¼ 2R2m1�2ð3m1 � 1Þ

�P2 ¼ R2m1�2 �1þ ð3m1Þð1þ �þ 3m1Þ � 2m2
� 	

�
12a
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dR
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12a
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� 	

þ
12m2a

h0R2

�d �u

dR
þ

�u

R

� �
��2

In order to solve the governing equation presented
as equation (13) and to obtain the dimensionless nat-
ural frequency (�), the GDQM is used. In the follow-
ing subsection, this method is briefly explained.

Generalized differential quadrature method

In the numerical GDQ method, the solution domain
is divided into points Ri (i¼ 1, 2,. . ., N) and the
derivatives of a function with the weighted summation
of that function.20 The GDQR expression for a
fourth-order boundary value differential equation
may be expressed as follows20

�WðSÞðRiÞ ¼
ds �WðRiÞ

dRs
¼
XNþ2
j¼1

E
ðSÞ
ij Uj i ¼ 1, 2, . . . ,N

ð14Þ

where U1,U2, ::,UNþ2

� �
¼ �W1, �W

ð1Þ
1 , �W2, . . . , �WN, �W

ð1Þ
N

n o
,

�Wj is the function value at j-th point, �W
ð1Þ
1 and �W

ð1Þ
N

are the first-order derivatives of the dimensionless dis-
placement function at the first and N-th points,
respectively. E

ðSÞ
ij are the S-order weighting coeffi-

cients at points Ri. The GDQR explicit weighting

coefficients have been derived in Sadasue et al.22 and
Chao and Qi23 and are used directly in this paper.

In order to discretize the solution space, two dis-
cretization schemes namely, (I) equally spaced points
and (II) Chebyshev–Gauss–Lobatlo discretization,
are used in this paper. The second discretization
method can be formulated as

Ri ¼
1

a

1

2
1� Cos

ði� 1Þ�

N� 1

� �
ða� bÞ þ b

� �
i ¼ 1, 2, . . . ,N

ð15Þ

Appling GDQM to equation (13) yields the follow-
ing governing equation20

Hij Uj ¼ �2 �Wi i ¼ 2, 3, . . . ,N� 1 ð16Þ

in which Hij is a (N)� (Nþ 2) matrix. Adding four
boundary conditions to the above (N� 2) equations
leads to (Nþ 2) algebraic equations, which can be
arranged as20

Sbb½ � Sbd½ �

Sdb½ � Sdd½ �

� �
Ub

Ud

� �
¼

0

!2Ud

� �
ð17Þ

where

Ub ¼

�W1

�W
ð1Þ
1

�WN

�W
ð1Þ
N

2
6664

3
7775, Ud ¼

�W2

..

.

�WN�1

2
664

3
775

By matrix sub-structuring and manipulation, one
obtains a standard eigenvalue problem as follows20

½S�Ud ¼ �2Ud ð18Þ

in which ½S� ¼ Sdd½ � � Sdb½ � Sbb½ �
�1 Sbd½ � is a (N� 2)�

(N� 2) matrix. The dimensionless natural frequency
(�) can be obtained by solving the eigenvalue problem
of equation (18).

Application of boundary conditions in GDQM

The following equations are the GDQ form of the
C–F boundary conditions:

�W1 ¼ 0, U1 ¼ 0

�W
ð1Þ
1 ¼ 0, U2 ¼ 0

XNþ2
j¼1

E
ð2Þ
NjUjþ

�

RN

�W
ð1Þ
N �

�m2

R2
N

�WN ¼ 0

XNþ2
j¼1

E
ð3Þ
NjUj þ

1þ 3m1

RN

XNþ2
j¼1

E
ð2Þ
NjUj
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þ
�1�m2ð2� �Þ þ 3m1�

R2
N

� �
�W
ð1Þ
N

þ
m2ð3� �Þ � 3m1�m

2

R3
N

� �
�WN ¼ 0 ð19Þ

By separating the boundary and domain coeffi-
cients in equation (16), one would have

Hi1 U1 þHi2U2 þHiNþ1UNþ1 þHiNþ2UNþ2

þ
XN
j¼3

HijUj ¼ �2 �Wi i ¼ 2, . . . ,N� 1
ð20Þ

By separating the boundary and domain coefficients
in equation (19) and using equation (20), the follow-
ing sub-matrices are obtained.

Sbb ¼

1 0 0 0

0 1 0 0

E
ð2Þ
N1 E

ð2Þ
N2 E

ð2Þ
NNþ1 �

�m2

R2
N

E
ð2Þ
NNþ2 þ

�

RN

Sbb1 Sbb2 Sbb3 Sbb4

2
666664

3
777775

ð21Þ

where

Sbb1 ¼ E
ð3Þ
N1
þ
1þ 3m1

RN
E
ð2Þ
N1

Sbb2 ¼ E
ð3Þ
N2
þ
1þ 3m1

RN
E
ð2Þ
N2

Sbb3 ¼ E
ð3Þ
NNþ1 þ

1þ 3m1

RN
E
ð2Þ
NNþ1

þ
m2ð3� �Þ � 3m1m

2�

R3
N

Sbb4 ¼ E
ð3Þ
NNþ2 þ

1þ 3m1

RN
E
ð2Þ
NNþ2

þ
�1�m2ð2� �Þ þ 3m1�

R2
N

Sbd ¼

½0�2�4

Sbd3

Sbd4

2
64

3
75

Sdb ¼ Hi1 Hi2 HiNþ1 HiNþ2


 �
i ¼ 2, . . . ,N� 1

Sdd ¼ Hij i ¼ 2, . . . ,N� 1, j ¼ 3, . . . ,N

in which Sbd3 ¼ E
ð2Þ
Nj , j ¼ 3, . . . ,N, and Sbd4 ¼ E

ð3Þ
Nj

þ 1þ3m1

RN
E
ð2Þ
Nj , j ¼ 3, . . . ,N. By obtaining the dimension-

less natural frequency (�), the natural frequency (!)
can be calculated. Note that the obtained natural
frequency is the natural frequency in the rotating
(noninertial) coordinate system, which is attached to

the rotating plate. For each ! in the rotating coord-
inate system, there would be two corresponding nat-
ural frequencies in the stationary (inertial) coordinate
system. These natural frequencies are obtained as10

! f ¼ !þm ~! ð22Þ

!b ¼ !�m ~! ð23Þ

Figure 2. Discretization method (I) convergence diagram of

(a) first, (b) second, (c) third dimensionless frequency.

Table 1. Properties of the bladed disk.

Parameter E (GPa) � (kg/m3) u rcg (cm) mb (g)

Value 380 3800 0.3 9 6

Shahriari et al. 5



where ! f and !b are the forward and backward nat-
ural frequencies, respectively. Whenever !b is equal to
zero, the critical speed might occur.

Numerical results

A MATLAB program is developed to calculate the
dimensionless natural frequency. In this section,
first, the convergence of the proposed method is
assessed for both utilized schemes. Then, the pre-
sented approach is validated against previously
reported numerical results.

Convergence analysis

For the sake of numerical implementation, the par-
ameters presented in Table 1 are utilized.

As mentioned earlier, for the discretization of the
plate in the radial direction, two discretization meth-
ods, denoted as (I) and (II) are used. Figure 2 shows
the convergence diagram for the first three dimension-
less natural frequencies using method (I). As can be
seen from the figure, by increasing the number of
points, N, the variation in the results decreases. For
the values greater than 15, this variation is negligible.
Figure 3 shows the same diagram for discretization
scheme (II). It can be seen from these figures that
the convergence of the method using this discret-
ization method is guaranteed if a sufficiently high
number of points is utilized.

Validation of the proposed approach

Tables 2 and 3 compare the first dimensionless natural
frequencies of the homogeneous disk without blades
obtained using the proposed method with those
reported in Kermani et al.10 The data presented in
the former table are obtained using the discretization
scheme (I) while those reported in the latter table are
obtained using scheme (II). Referring to these two
tables, it can be concluded that the convergence of

Figure 3. Discretization method (II) convergence diagram of

(a) first, (b) second, (c) third dimensionless frequency.

Table 2. The first dimensionless natural frequency of a disk without bade for different values of

wave number obtained using the discretization method (I) (m1 ¼ 0, h0=a ¼ 0:001, b=a ¼ 0:2).

m 0 1 2 3 4 5

Present N¼ 15 5.134 4.802 6.051 11.447 19.806 30.286

Kermani et al.10 N¼ 15 5.172 4.694 6.030 12.097 21.316 32.907

Error % 0.73 2.30 0.34 5.37 7.08 7.96

Present N¼ 20 5.185 4.939 6.502 12.099 20.551 31.115

Kermani et al.10 N¼ 20 5.215 4.822 6.360 12.417 21.535 33.029

Error % 0.57 2.42 2.23 2.56 4.56 5.79

Present N¼ 25 5.180 4.898 6.440 12.147 20.782 31.628

Kermani et al.10 N¼ 25 5.180 4.817 6.342 12.394 21.514 33.014

Error % 0 1.68 1.54 1.99 3.40 4.19

6 Proc IMechE Part G: J Aerospace Engineering 0(0)



the frequency value is achieved so that increasing the
value of N would not affect this value significantly.
In addition, referring to the value of the error percent-
age presented in Tables 2 and 3, the obtained results
are in good agreement with those reported in Kermani
et al.10 indicating that the proposed model can be suc-
cessfully utilized for predicting the modal response of
rotating variable thickness bladed disks.

Investigating effects of thickness
variation and number of blades
on the natural frequency

Figure 4 shows the effect of thickness variation on the
first dimensionless natural frequency for different
values of wave numbers, m. As can be seen, an
increase in the value of m1 from �2 to 0 decreases
the first dimensionless natural frequency. It means
that the constant thickness disk has the lowest first
natural frequency and by using the variable thickness
disk, a higher natural frequency may be obtained.

Figure 5 depicts the variation of the first dimen-
sionless natural frequency with parameter m1 for

Table 3. The first dimensionless natural frequency of a disk without blade for different values of

wave number obtained using the discretization method (II) (m1 ¼ 0, h0=a ¼ 0:001, b=a ¼ 0:2).

m 0 1 2 3 4 5

Present N¼ 15 5.180 5.006 6.441 11.588 19.558 29.607

Kermani et al.10 N¼ 15 5.172 4.694 6.030 12.097 21.316 32.907

Error % 0.15 6.64 6.81 4.20 8.24 10.02

Present N¼ 20 5.181 4.959 6.447 11.861 20.316 30.661

Kermani et al.10 N¼ 20 5.125 4.822 6.360 12.417 21.535 33.029

Error % 1.09 2.84 1.36 4.47 5.66 7.16

Present N¼ 25 5.181 4.929 6.447 12.016 20.511 31.240

Kermani et al.10 N¼ 25 5.213 4.817 6.342 12.394 21.514 33.014

Error % 0.61 2.32 1.65 3.04 4.66 5.37

Figure 6. Variation of the first dimensionless natural fre-

quency with the number of blades for different thickness

variations (rotating speed¼ 10,000 r/min) (m¼ 1).

Figure 5. Variation of the first dimensionless natural

frequency with the thickness variation for different number

of blades (rotating speed¼ 10,000 r/min) (m¼ 1).

Figure 4. Variation of the first dimensionless natural

frequency with the thickness variation for different values

of wave number, m.
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various numbers of blades. As it can be seen, by
increasing the number of the blades the fundamental
natural frequency decreases. In addition, it can be
observed that the lowest natural frequency is related
to the constant thickness disk. However, by increasing
the value of m1 from �2 to 0, which means that
decreasing the amount of variation of the thickness
in radial direction causes a decrease in the natural
frequency. Consequently, the lowest natural fre-
quency corresponds to a constant thickness bladed
disk with the highest number of blades.

The influence of the number of blades on the fun-
damental natural frequency is depicted in Figure 6.
Referring to this figure, increasing the number of
the blades decreases the fundamental natural fre-
quency. Also, the effect of the number of blades on

the natural frequency is more pronounced for m1 ¼

�2 and has the smallest effect for m1 ¼ 0. It means
that by increasing the amount of thickness variation
in a bladed disk, the influence of the number of
attached blades on the modal data gets more
pronounced.

Investigating the effects of angular
velocity on the natural frequencies

For investigating the effects of rotating speed on the
dimensionless natural frequencies, a disk without
blade with the parameters of m1 ¼ �1, h0=a ¼ 0:01 ,
b=a ¼ 0:2 is considered. Figures 7 to 9 show the vari-
ation of the first three dimensionless forward and
backward natural frequencies with rotating speeds

Figure 7. The variation of the first dimensionless natural frequency with rotating speed for different values of wave number.

Figure 8. The variation of the second dimensionless natural frequency with rotating speed for different values of wave number.
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for different wave numbers, respectively. As stated
before, whenever the backward natural frequency
equals to zero, the critical angular velocity occurs.
Figures 7 to 9 are well-known Campbell diagrams,
which give valuable information for the design of
any rotating machine. The intersection of the back-
ward natural frequencies curves with the rotating
speed axis gives us the rotating speed in which
the backward natural frequencies equal to zero. The
obtained rotating speed from this intersection is the
critical speed and must be avoided in the design of
bladed disks.

Investigating the effects of thickness
variation and number of blades
on the critical angular velocity

As mentioned earlier, whenever the backward natural
frequency equals to zero, the critical angular velocity

occurs. Figure 10 shows the effect of thickness vari-
ation on the first critical speed of the bladed disk with
40 blades. As it is obvious from the figure, the con-
stant thickness disk (m1¼ 0) has the lowest critical
speed. In addition, by increasing the absolute value
of the parameter m1 this critical speed increases.

Figure 9. The variation of the third dimensionless natural frequency with rotating speed for different values of wave number.

Figure 11. Variation of the critical speed with (inner radius)/

(outer radius) ratio for different values of (outer thickness)/

(outer radius) ratio (m1¼�1, m¼ 2, number of blades¼ 30).

Figure 10. Variation of the first critical angular velocity with

the thickness variation (m¼ 2).

Table 4. The first critical speed (r/min) for different number

of blades (m ¼ 2, h0=a ¼ 0:01 , b=a ¼ 0:2).

Number of

blades 0 10 20 30 40

m1¼�2 22,642 22,629 22,615 22,601 22,588

m1¼�1 8511 8510 8508 8506 8505
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It shows that using variable thickness bladed disk, one
can achieve higher critical speeds.

Table 4 presents the first critical speed of the rotat-
ing bladed disk with different number of blades.
Referring to this table, it can be understood that the
effect of number of blades on the critical speed is more
pronounced when the thickness variation of the disk is
more (m1¼�2). It means that the variation of the first
critical speed with the variation of number of blades is
more for m1¼�2 than for m1¼�1.

Investigating the effects of the
dimensionless geometrical
parameters on the critical speed

In Figure 11, the effects of (inner radius)/(outer
radius) ratio, b/a, and (outer thickness)/(outer
radius) ratio, h0/a, on the critical speed is shown.
The trend of this plot is in good agreement with the
results reported in Lee and Ng.4 It can be seen that an
increase in b/a as well as h0/a ratio may increase the
critical speed. It is worthwhile to mention that the
same analyses are performed for different values of
m and m1 and the same trends are observed (not pre-
sented here for the sake of brevity).

Conclusions

Generalized differential quadrature method is utilized
to investigate free vibration of variable thickness
rotating bladed disks that can be used in gas turbine
engines. Compared with other numerical approaches,
the GDQM just needs a few number of grid points in
order to achieve high-precision solutions with a good
convergence rate and little computational efforts. This
paper dealt with elastic disks with attached rigid
blades and investigated the effects of number of the
blades, geometric parameters, thickness variation, and
angular velocity on the natural frequencies and crit-
ical speeds of bladed disks using GDQM. To do so,
the equations of motion of the rotating variable thick-
ness elastic disk with attached rigid blades are
obtained, and the GDQM is used to discretize these
equations with a relatively small number of grid
points. Using this numerical method, the equations
of motion are changed to an algebraic eigenvalue
problem, which can be solved simply by any existing
method. After analyzing the convergence of the
method, the natural frequencies and critical speeds
of the bladed disk are obtained and are validated
against what is reported in the literature. Finally,
the effects of different corresponding parameters on
the natural frequencies as well as critical speeds of
bladed disks are assessed and the following conclu-
sions are made:

1. Using a constant thickness disk, a lower nat-
ural frequency and a lower critical speed can be
obtained.

2. Increasing the number of the blades decreases the
natural frequency and critical speed of the system.

3. The effect of the number of the blades on the
modal data is more pronounced when the thick-
ness variation of the disk is more.

4. By increasing the (inner radius)/ (outer radius) as
well as (outer thickness)/ (outer radius) ratio, the
critical speed increases.
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