
Minimum Squared Error

C12

Today

� Continue with Linear Discriminant Functions
� Last lecture: Perceptron Rule for weight learning

� This lecture: Minimum Squared Error (MSE) rule
� Pseudoinverse
� Gradient descent (Widrow-Hoff Procedure)
� Ho-Kashyap Procedure

LDF: Perceptron Criterion Function

� The perceptron criterion function
� try to find weight vector a s.t. atyi > 0 for all samples yi

� perceptron criterion function
� only look at the misclassified samples
� will converge in the linearly separable case

(((()))) (((())))∑∑∑∑
∈∈∈∈

−−−−====
MYy

t
p yaaJ

� Problem:
� will not converge in the nonseparable

case
� to ensure convergence can set

� However we are not guaranteed that
we will stop at a good point

(((())))
(((())))

k

1
k ηηηη

ηηηη ====

LDF: Minimum Squared-Error Procedures

� MSE procedure
� Choose positive constants b1, b2,…, bn

� try to find weight vector a s.t. atyi = bi for all samples yi

� If we can find weight vector a such that atyi = bi for all
samples yi , then a is a solution because bi’s are positive

� consider all the samples (not just the misclassified ones)

� Idea: convert to easier and better understood problem

atyi > 0 for all samples yi

solve system of linear inequalities

atyi = bi for all samples yi

solve system of linear equations

a

yi

a ty
i / ||a||

g(y) = 0

LDF: MSE Margins

� Since we want atyi = bi, we expect sample yi to be at distance
bi from the separating hyperplane (normalized by ||a||)

� Thus b1, b2,…, bn give relative expected distances or
“margins” of samples from the hyperplane

� Should make bi small if sample i is expected to be near
separating hyperplane, and make bi larger otherwise

� In the absence of any additional information, there are good
reasons to set b1 = b2 =… = bn = 1

yk

a ty
k / ||a||

LDF: MSE Matrix Notation

� Need to solve n equations

� Introduce matrix notation:
(((()))) (((()))) (((())))

(((()))) (((()))) (((())))

(((()))) (((()))) (((())))

====

n
dd

nnn

d

d

b

b
b

a

a
a

yyy

yyy
yyy

M
M

M

L

MM

MM

L

L

2

1

1

0

10

2
1

2
0

2

1
1

1
0

1

Y a b

� Thus need to solve a linear system Ya = b

nn
t

t

bya

bya

====

====
M

11

LDF: Exact Solution is Rare

� Y is an n by (d +1) matrix

� a = Y-1b

� Exact solution can be found only if Y is nonsingular
and square, in which case the inverse Y-1 exists

� Thus need to solve a linear system Ya = b

� (number of samples) = (number of features + 1)
� almost never happens in practice
� in this case, guaranteed to find the separating hyperplane

a

1y

2y

LDF: Approximate Solution

� Need Ya = b, but no exact solution exists for an
overdetermined system of equation
� More equations than unknowns

� Typically Y is overdetermined, that is it has more
rows (examples) than columns (features)
� If it has more features than examples, should reduce

dimensionality

Y ba =

� Find an approximate solution a, that is bYa ≈≈≈≈
� Note that approximate solution a does not necessarily

give the separating hyperplane in the separable case
� But hyperplane corresponding to a may still be a good

solution, especially if there is no separating hyperplane

LDF: MSE Criterion Function

� Minimum squared error approach: find a which
minimizes the length of the error vector e

bYae −−−−====

Ya

b

e

� Thus minimize the minimum squared error criterion
function:

(((()))) 2
bYaaJs −−−−====

� Unlike the perceptron criterion function, we can
optimize the minimum squared error criterion
function analytically by setting the gradient to 0

(((())))∑∑∑∑
====

−−−−====
n

i
ii

t bya
1

2

LDF: Optimizing Js(a)

� Let’s compute the gradient:

(((()))) 2
bYaaJs −−−−==== (((())))∑∑∑∑

====

−−−−====
n

i
ii

t bya
1

2

da
dJs====(((())))

∂∂∂∂
∂∂∂∂

∂∂∂∂
∂∂∂∂

====∇∇∇∇

d

s

s

s

a
J

a
J

aJ M
0 (((())))2

1
ii

t
n

i

bya
da
d

−−−−====∑∑∑∑
====

(((()))) (((())))ii
t

n

i
ii

t bya
da
d

bya −−−−−−−−====∑∑∑∑
====1

2

(((())))∑∑∑∑
====

−−−−====
n

i
iii

t ybya
1

2

(((())))bYaY t −−−−==== 2

LDF: Pseudo Inverse Solution

� Setting the gradient to 0:

(((()))) (((())))bYaYaJ t
s −−−−====∇∇∇∇ 2

(((()))) bYYaYbYaY ttt ====⇒⇒⇒⇒====−−−− 02

� Matrix YtY is square (it has d +1 rows and columns)
and it is often non-singular

� If YtY is non-singular, its inverse exists and we can
solve for a uniquely:

(((()))) bYYYa tt 1−−−−
====

pseudo inverse of Y
(((())))(((()))) (((()))) (((()))) IYYYYYYYY tttt ========

−−−−−−−− 11

LDF: Minimum Squared-Error Procedures

� If b1=…=bn =1, MSE procedure is equivalent to finding a
hyperplane of best fit through the samples y1,…,yn

(((()))) 2
ns 1YaaJ −−−−====

a

� Then we shift this line to the origin, if this line was a
good fit, all samples will be classified correctly

nn

====

1

1
1 M

LDF: Minimum Squared-Error Procedures

� Thus in linearly separable case, least squares solution
a does not necessarily gives separating hyperplane

� Only guaranteed the separating hyperplane if Ya > 0

====

n
t

1
t

ya

ya
Ya M� that is if all elements of vector are positive

� If εεεε1,…, εεεεn are small relative to b1,…, bn , then each element
of Ya is positive, and a gives a separating hyperplane

� That is where εεεε may be negative

++++

++++
====

nnb

b
Ya

εεεε

εεεε
M

11

� We have bYa ≈≈≈≈

� If approximation is not good, εεεεi may be large and negative,
for some i, thus bi + εεεεi will be negative and a is not a
separating hyperplane

� But it will give a “reasonable” hyperplane

LDF: Minimum Squared-Error Procedures

2

a
bYaminarg ββββ−−−− (((()))) 22

a
b/aYminarg −−−−==== ββββββββ

*aββββ====

� thus if for some i th element of Ya is less than 0, that is
yt

ia < 0, then yt
i (ββββa) < 0,

� Relative difference between components of b matters,
but not the size of each individual component

� We are free to choose b. May be tempted to make b
large as a way to insure 0bYa >>>>≈≈≈≈

� Does not work
� Let β β β β be a scalar, let’s try ββββb instead of b
� if a* is a least squares solution to Ya = b, then for any

scalar ββββ, least squares solution to Ya = ββββb is ββββa*

(((()))) 2

a
b/aYminarg −−−−==== ββββ

LDF: How to choose b in MSE Procedure?

� So far we assumed that constants b1, b2,…, bn are
positive but otherwise arbitrary

� Good choice is b1 = b2 =…= bn = 1. In this case,

1. MSE solution is basically identical
to Fischer’s linear discriminant
solution

2. MSE solution approaches the Bayes discriminant
function as the number of samples goes to infinity

(((()))) (((()))) (((())))xcPxcPxgB || 21 −−−−====

LDF: Example

� Class 1: (6 9), (5 7)
� Class 2: (5 9), (0 4)

� Matrix Y is then

−−−−−−−−
−−−−−−−−−−−−====

401
951
751
961

Y

� Set vectors y1, y2 , y3 , y4 by
adding extra feature and
“normalizing”

====

9
6
1

y1

====

7
5
1

y2

−−−−
−−−−
−−−−

====
9
5
1

y 3

−−−−

−−−−
====

4
0
1

y 4

LDF: Example

� Choose

====

1
1
1
1

b

� In matlab, a=Y\b solves the
least squares problem

−−−−
====

9.0
0.1
7.2

a

� Note a is an approximation to Ya = b, since no
exact solution exists

≠≠≠≠

====

1
1
1
1

1.1
6.0
3.1
4.0

Ya

� This solution does give a separating hyperplane
since Ya > 0

LDF: Example

� Class 1: (6 9), (5 7)
� Class 2: (5 9), (0 10)

� Matrix

−−−−−−−−
−−−−−−−−−−−−====
1001

951
751
961

Y

� The last sample is very far
compared to others from the
separating hyperplane

====

9
6
1

y1

====

7
5
1

y2

−−−−
−−−−
−−−−

====
9
5
1

y 3

−−−−

−−−−
====

10
0
1

y 4

LDF: Example

� Choose

====

1
1
1
1

b

� In matlab, a=Y\b solves the
least squares problem

−−−−
====

4.0
2.0
2.3

a

� Note a is an approximation to Ya = b, since no
exact solution exists

≠≠≠≠

−−−−====
1
1
1
1

16.1
04.0

9.0
2.0

Ya

� This solution does not give a separating
hyperplane since aty3 < 0

LDF: Example

� MSE pays to much attention to isolated “noisy”
examples (such examples are called outliers)

outlier
desired solution

MSE solution

� No problems with convergence though, and
solution it gives ranges from reasonable to good

LDF: Example
� we know that 4th point is far far

from separating hyperplane
� In practice we don’t know this

� In Matlab, solve a=Y\b

−−−−

−−−−
====

9.0
7.1
1.1

a

� Note a is an approximation to Ya = b,

≠≠≠≠

====

10
1
1
1

0.10
8.0
0.1
9.0

Ya

� This solution does give the separating hyperplane
since Ya > 0

new solutio
n

old solution

====

10
1
1
1

b� Thus appropriate

LDF: Gradient Descent for MSE solution

2. YtY may be close to singular if samples are highly
correlated (rows of Y are almost linear
combinations of each other)
� computing the inverse of YtY is not numerically stable

� May wish to find MSE solution by gradient descent:

1. Computing the inverse of YtY may be too costly

(((()))) 2
bYaaJs −−−−====

� In the beginning of the lecture, computed the
gradient:

(((()))) (((())))bYaYaJ t
s −−−−====∇∇∇∇ 2

LDF: Widrow-Hoff Procedure

� Thus the update rule for gradient descent:
(((()))) (((()))) (((()))) (((())))(((())))bYaYaa ktkkk −−−−−−−−====++++ ηηηη1

� If weight vector a(k) converges to the MSE
solution a, that is Yt(Ya-b)=0

(((()))) (((()))) kk /1ηηηηηηηη ====

(((()))) (((())))bYaYaJ t
s −−−−====∇∇∇∇ 2

� Widrow-Hoff procedure reduces storage
requirements by considering single samples
sequentially:

(((()))) (((()))) (((()))) (((())))(((())))i
kt

ii
kkk bayyaa −−−−−−−−====++++ ηηηη1

LDF: Ho-Kashyap Procedure

� Suppose training samples are linearly separable.
Then there is as and positive bs s.t.

� In the MSE procedure, if b is chosen arbitrarily,
finding separating hyperplane is not guaranteed

0>>>>==== ss bYa

� If we knew bs could apply MSE procedure to find the
separating hyperplane

� Idea: find both as and bs

� Minimize the following criterion function, restricting to
positive b: (((()))) 2

, bYabaJHK −−−−====

� JHK(as,bs)=0

LDF: Ho-Kashyap Procedure

� As usual, take partial derivatives w.r.t. a and b

(((()))) 2
, bYabaJHK −−−−====

(((()))) 02 ====−−−−====∇∇∇∇ bYaYJ t
HKa

(((()))) 02 ====−−−−−−−−====∇∇∇∇ bYaJHKb

� Use modified gradient descent procedure to find a
minimum of JHK(a,b)

2) Fix a and minimize JHK(a,b) with respect to b

� Alternate the two steps below until convergence:
1) Fix b and minimize JHK(a,b) with respect to a

LDF: Ho-Kashyap Procedure

(((()))) 02 ====−−−−====∇∇∇∇ bYaYJ t
HKa

(((()))) 02 ====−−−−−−−−====∇∇∇∇ bYaJHKb

� Step (1) can be performed with pseudoinverse

2) Fix a and minimize JHK(a,b) with respect to b

� Alternate the two steps below until convergence:
1) Fix b and minimize JHK(a,b) with respect to a

� For fixed b minimum of JHK(a,b) with respect to a is
found by solving

(((()))) 02 ====−−−− bYaY t

� Thus

(((()))) bYYYa tt 1−−−−
====

LDF: Ho-Kashyap Procedure

� We can’t use b = Ya because b has to be positive

� Step 2: fix a and minimize JHK(a,b) with respect to b

� Solution: use modified gradient descent

(((()))) (((()))) (((()))) (((()))) (((())))(((())))kk
b

kkk baJbb ,1 ∇∇∇∇−−−−====++++ ηηηη
� Regular gradient descent rule:

� If any components of are positive, b will
decrease and can possibly become negative

Jb∇∇∇∇

(((())))

−−−−
====

−−−−
−−−−−−−−

====++++

5
7
3

2
3
2

*2
1
1
1

1kb

LDF: Ho-Kashyap Procedure

� start with positive b , follow negative gradient but
refuse to decrease any components of b

� This can be achieved by setting all the positive
components of to 0Jb∇∇∇∇

(((()))) (((()))) (((()))) (((())))(((()))) (((()))) (((())))(((())))[[[[]]]]|b,aJ|b,aJ
2
1bb kk

b
kk

b
k1k ∇∇∇∇−−−−∇∇∇∇−−−−====++++ ηηηη

� Not doing steepest descent anymore, but we are
still doing descent and ensure that b is positive

� here |v| denotes vector we get after applying absolute
value to all elements of v

(((())))

−−−−

−−−−
−−−−−−−−

====++++

2
3
2

2
3
2

2
1*2

1
1
1

b 1k

−−−−
−−−−−−−−

====

4
6
0

1
1
1

====

5
7
1

LDF: Ho-Kashyap Procedure

� Then

(((()))) (((()))) (((()))) (((())))(((()))) (((()))) (((())))(((())))[[[[]]]]|b,aJ|b,aJ
2
1bb kk

b
kk

b
k1k ∇∇∇∇−−−−∇∇∇∇−−−−====++++ ηηηη

(((()))) 02 ====−−−−−−−−====∇∇∇∇ bYaJb

� Let (((()))) (((()))) (((())))kkk bYae −−−−====

(((()))) (((()))) (((()))) (((())))[[[[]]]]|2|2
2
11 kkkk eebb −−−−−−−−−−−−====++++ ηηηη

(((()))) (((())))(((())))kk
b baJ ,

2
1
∇∇∇∇−−−−====

(((()))) (((()))) (((())))[[[[]]]]|| kkk eeb ++++++++==== ηηηη

LDF: Ho-Kashyap Procedure
� The final Ho-Kashyap procedure:

0) Start with arbitrary a(1) and b(1) > 0, let k = 1

repeat steps (1) through (4)

3) Solve for a(k+1) using b(k+1)

(((()))) (((()))) (((())))111 ++++−−−−++++ ==== kttk bYYYa

4) k = k + 1

1) (((()))) (((()))) (((())))kkk bYae −−−−====

2) Solve for b(k+1) using a(k) and b(k)

(((()))) (((()))) (((()))) (((())))[[[[]]]]||1 kkkk eebb ++++++++====++++ ηηηη

until e(k) >= 0 or k > kmax or b(k+1) = b(k)

� For convergence, learning rate should be fixed
between 0 < ηηηη < 1

LDF: Ho-Kashyap Procedure

� What if e(k) is negative for all components?

(((()))) (((()))) (((()))) (((())))[[[[]]]]||1 kkkk eebb ++++++++====++++ ηηηη

� b(k+1) = b(k) and corrections stop

� Write e(k) out:
(((()))) (((()))) (((())))kkk bYae −−−−==== (((()))) (((()))) (((())))kktt bbYYYY −−−−====

−−−−1

� Multiply by Yt:
(((()))) (((()))) (((()))) (((())))(((())))kktttkt bbYYYYYeY −−−−====

−−−−1 (((()))) (((()))) 0====−−−−==== ktkt bYbY

� Thus Yt e(k) = 0

LDF: Ho-Kashyap Procedure

� Thus Yt e(k) = 0

� Suppose training samples are linearly separable.
Then there is as and positive bs s.t.

0>>>>==== ss bYa

� Multiply both sides by (e(k))t

(((())))(((()))) (((())))(((()))) stkstk beYae ========0

� Either e(k) = 0 or one of its components is positive

LDF: Ho-Kashyap Procedure

� In the linearly separable case,
� e(k) = 0, found solution, stop
� one of components of e(k) is positive, algorithm continues

� In non separable case,
� e(k) will have only negative components eventually, thus

found proof of nonseparability
� No bound on how many iteration need for the proof of

nonseparability

LDF: Ho-Kashyap Procedure Example

� Class 1: (6 9), (5 7)
� Class 1: (5 9), (0 10)

� Matrix

−−−−−−−−
−−−−−−−−−−−−====
1001

951
751
961

Y

� Use fixed learning ηηηη = 0.9

� Start with and (((())))

====

1
1
1
1

b 1(((())))

====

1
1
1

a 1

� At the start (((())))

−−−−
−−−−====

11
15
13
16

Ya 1

LDF: Ho-Kashyap Procedure Example

� solve for a(2) using b(2)

� solve for b(2) using a(1) and b(1)

� Iteration 1:

(((()))) (((()))) (((())))

−−−−

−−−−
−−−−====−−−−====

1
1
1
1

11
15
13
16

bYae 111
�

−−−−
−−−−====

12
16
12
15

(((()))) (((()))) (((()))) (((())))[[[[]]]]|e|e9.0bb 1112 ++++++++====

++++

−−−−
−−−−++++

====

12
16
12
15

12
16
12
15

9.0
1
1
1
1

====

1
1
6.22

28

(((()))) (((()))) (((()))) ====

−−−−−−−−−−−−
−−−−−−−−

−−−−−−−−
======== −−−−

1
1
6.22

28
*

1.02.05.026.0
2.01.01.016.0
5.06.17.46.2

bYYYa 2t1t2

−−−− 8.3
7.2
6.34

LDF: Ho-Kashyap Procedure Example

====

48.1
14.0

5.22
2.27

Ya

� a does gives a separating hyperplane

� Continue iterations until Ya > 0
� In practice, continue until minimum

component of Ya is less then 0.01

====

147
1

23
28

b

−−−−

−−−−
====

3.11
3.27
9.34

a

� After 104 iterations converged to solution

m1,...,i)(0 ====++++==== i
t
ii wxwxg

� Suppose we have m classes
� Define m linear discriminant functions

� Given x, assign class ci if

ij)()(≠≠≠≠∀∀∀∀≥≥≥≥ xgxg ji

� Such classifier is called a linear machine

� A linear machine divides the feature space into c
decision regions, with gi(x) being the largest
discriminant if x is in the region Ri

LDF: MSE for Multiple Classes

LDF: Many Classes

m1,...,i)(======== yayg t
ii

� We still use augmented feature vectors y1,…, yn
� Define m linear discriminant functions

� Given y, assign class ci if
ij y ≠≠≠≠∀∀∀∀≥≥≥≥ t

j
t
i aya

� For each class i, makes sense to seek weight
vector ai, s.t.

LDF: MSE for Multiple Classes

∉∉∉∉∀∀∀∀====
∈∈∈∈∀∀∀∀====

iclassy 0
iclassy 1

ya
ya

t
i

t
i

� If we find such a1,…, am the training error will be 0

� For each class i, find weight vector ai, s.t.

LDF: MSE for Multiple Classes

∉∉∉∉∀∀∀∀====
∈∈∈∈∀∀∀∀====

iclassy 0
iclassy 1

ya
ya

t
i

t
i

� We can solve for each ai independently

� Let ni be the number of samples in class i

� Let Yi be matrix whose rows are samples from
class i, so it has d +1 columns and ni rows

====

mY

Y
Y

Y
M
2

1

� Let’s pile all samples in n by d +1 matrix Y:

====

mclassfromsample
mclassfromsample

classfromsample
classfromsample

M

1
1

� Let bi be a column vector of length n which is 0
everywhere except rows corresponding to samples
from class i, where it is 1:

LDF: MSE for Multiple Classes

====

0

1

1

0

bi

M

M

M

rows corresponding
to samples from class i

� We need to solve: ii bYa ====

mclassfromsample
mclassfromsample

1classfromsample
1classfromsample

M
w

ei
g

h
ts

 a
i

====

0

1

1

0

M

M

M

LDF: MSE for Multiple Classes

� We need to solve Yai = bi

� Usually no exact solution since Y is overdetermined

� Use least squares to minimize norm of the error
vector || Yai - bi ||

� LSE solution with pseudoinverse:
(((()))) i

t1t
i bYYYa

−−−−
====

� Thus we need to solve m LSE problems, one for
each class

� Can write these m LSE problems in one matrix

LDF: MSE for Multiple Classes

[[[[]]]]n1 bbB L====

� Let’s pile all bi as columns in n by c matrix B

� Let’s pile all ai as columns in d +1 by m matrix A

[[[[]]]]maaA L1====

====

w
ei

g
h

ts
 a

1
w

ei
g

h
ts

 a
2

w
ei

g
h

ts
 a

m

� m LSE problems can be represented in YA = B:

3
3
3
2
1
1

classfromsample
classfromsample
classfromsample
classfromsample
classfromsample
classfromsample

w
ei

g
h

t s
 f

o
r

c1
w

ei
g

h
t s

 f
o

r
c2

w
ei

g
h

t s
 f

o
r

c3

=

100
100
100
010
001
001

Y A B

LDF: MSE for Multiple Classes

(((()))) ∑∑∑∑
====

−−−−====
m

1i

2
ii bYaAJ

� Our objective function is:

� J(A) is minimized with the use of pseudoinverse

(((()))) YBYYA t 1−−−−
====

LDF: Summary

� Perceptron procedures
� find a separating hyperplane in the linearly separable case,
� do not converge in the non-separable case
� can force convergence by using a decreasing learning rate,

but are not guaranteed a reasonable stopping point

� MSE procedures
� converge in separable and not separable case
� may not find separating hyperplane if classes are linearly

separable
� use pseudoinverse if YtY is not singular and not too large
� use gradient descent (Widrow-Hoff procedure) otherwise

� Ho-Kashyap procedures
� always converge
� find separating hyperplane in the linearly separable case
� more costly

