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Today

� Continue with Linear Discriminant Functions
� Last lecture:  Perceptron Rule for weight learning

� This lecture: Minimum Squared Error (MSE) rule
� Pseudoinverse
� Gradient descent (Widrow-Hoff Procedure)
� Ho-Kashyap Procedure



LDF:  Perceptron Criterion Function

� The perceptron criterion function
� try to find weight vector a s.t. atyi > 0 for all samples yi

� perceptron criterion function
� only look at the misclassified samples
� will converge in the linearly separable case
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� Problem:
� will not converge in the nonseparable

case
� to ensure convergence can set

� However we are not guaranteed that  
we will stop at a good point
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LDF:  Minimum Squared-Error Procedures

� MSE procedure
� Choose positive constants b1, b2,…, bn

� try to find weight vector a s.t. atyi = bi for all samples yi

� If we can find weight vector a such that atyi = bi for all 
samples yi , then a is a solution because bi’s are positive

� consider all the samples (not just the misclassified ones)

� Idea: convert to easier and better understood  problem

atyi > 0 for all samples yi

solve system of linear inequalities

atyi = bi for all samples yi

solve system of linear equations
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g(y) = 0

LDF:  MSE Margins

� Since we want atyi = bi, we expect sample yi to be at distance  
bi from the separating hyperplane (normalized by ||a||)

� Thus b1, b2,…, bn give relative expected distances or 
“margins” of samples from the hyperplane

� Should make bi small if sample i is expected to be near 
separating hyperplane, and make bi larger otherwise

� In the absence of any additional information, there are good 
reasons to set b1 = b2 =… = bn = 1

yk

a ty
k / ||a||



LDF:  MSE Matrix Notation

� Need to solve n equations

� Introduce matrix notation:
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� Thus need to solve a linear system Ya = b
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LDF:  Exact Solution is Rare

� Y is an n by (d +1) matrix

� a = Y-1b

� Exact solution can be found only if Y is nonsingular 
and square, in which case the inverse Y-1 exists

� Thus need to solve a linear system Ya = b

� (number of samples) = (number of features + 1)
� almost never happens in practice
� in this case, guaranteed to find the separating hyperplane
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LDF:  Approximate Solution

� Need Ya = b, but no exact solution exists for an 
overdetermined system of equation
� More equations than unknowns

� Typically Y is overdetermined, that is it has more 
rows (examples) than columns (features)
� If it has more features than examples, should reduce 

dimensionality

Y ba =

� Find an approximate solution a, that is bYa ≈≈≈≈
� Note that approximate solution a does not necessarily 

give the separating hyperplane in the separable case
� But hyperplane corresponding to a may still be a good 

solution, especially if there is no separating hyperplane



LDF:  MSE Criterion Function

� Minimum squared error approach: find a which 
minimizes the length of the error vector e
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� Thus  minimize the minimum squared error criterion 
function: 
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bYaaJs −−−−====

� Unlike the perceptron criterion function, we can 
optimize the minimum squared error criterion 
function analytically by setting the gradient to 0
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LDF:  Optimizing Js(a)

� Let’s compute the gradient:
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LDF:  Pseudo Inverse Solution

� Setting the gradient to 0:
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� Matrix YtY is square (it has d +1 rows and columns) 
and it is often non-singular

� If YtY is non-singular, its inverse exists and we can 
solve for a uniquely:

(((( )))) bYYYa tt 1−−−−
====

pseudo inverse of Y
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LDF:  Minimum Squared-Error Procedures

� If b1=…=bn =1, MSE procedure is equivalent to finding a 
hyperplane of best fit through the samples y1,…,yn

(((( )))) 2
ns 1YaaJ −−−−====

a

� Then we shift this line to the origin, if this line was a 
good fit, all samples will be classified correctly
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LDF:  Minimum Squared-Error Procedures

� Thus in linearly separable case, least squares solution 
a does not necessarily gives separating hyperplane

� Only guaranteed the separating hyperplane if  Ya > 0 
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� If  εεεε1,…, εεεεn are small relative to b1,…, bn ,   then each element 
of Ya is positive, and a gives a separating hyperplane

� That is                          where εεεε may be negative 
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� We have bYa ≈≈≈≈

� If approximation is not good, εεεεi may be large and negative, 
for some i, thus bi + εεεεi will be negative and a is not a 
separating hyperplane

� But it  will give a “reasonable” hyperplane



LDF:  Minimum Squared-Error Procedures
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� thus if for some i th element of Ya is less than 0, that is        
yt

ia < 0, then yt
i (ββββa) < 0, 

� Relative difference between components of b matters, 
but not the size of each individual component

� We are free to choose b. May be tempted to make b
large as a way to insure 0bYa >>>>≈≈≈≈

� Does not work
� Let β β β β be a scalar, let’s try  ββββb instead of b
� if a* is a least squares solution to Ya = b, then for any 

scalar  ββββ,  least squares solution to Ya = ββββb  is  ββββa*
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LDF:  How to choose b in MSE Procedure?

� So far we assumed that  constants b1, b2,…, bn are 
positive but otherwise arbitrary

� Good choice is  b1 = b2 =…= bn = 1. In this case,

1. MSE  solution is basically identical 
to Fischer’s linear discriminant
solution

2. MSE solution approaches the Bayes discriminant
function as the number of samples goes to infinity

(((( )))) (((( )))) (((( ))))xcPxcPxgB || 21 −−−−====



LDF:  Example

� Class 1: (6 9), (5 7)
� Class 2: (5 9), (0 4)

� Matrix Y is then
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� Set vectors y1, y2 , y3 , y4 by 
adding extra feature and 
“normalizing”
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LDF:  Example

� Choose
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� In matlab, a=Y\b solves the 
least squares problem
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� Note a is an approximation to Ya = b, since no 
exact solution exists
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� This solution does give a separating hyperplane
since Ya > 0



LDF:  Example

� Class 1: (6 9), (5 7)
� Class 2: (5 9), (0 10)

� Matrix
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� The last sample is very far 
compared to others from the 
separating hyperplane
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LDF:  Example

� Choose
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� In matlab, a=Y\b solves the 
least squares problem
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� Note a is an approximation to Ya = b, since no 
exact solution exists
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� This solution does not give a separating 
hyperplane since aty3 < 0



LDF:  Example

� MSE pays to much attention to isolated “noisy”
examples (such examples are called outliers)

outlier
desired solution

MSE solution

� No problems with convergence though, and 
solution it gives ranges from reasonable to good



LDF:  Example
� we know that 4th point is far  far 

from separating hyperplane
� In practice we don’t know this 

� In Matlab, solve  a=Y\b
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� Note a is an approximation to Ya = b, 
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� This solution does give the separating hyperplane
since Ya > 0
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LDF:  Gradient Descent for MSE solution

2. YtY may be close to singular if samples are highly 
correlated (rows of Y are almost linear 
combinations of each other)
� computing the inverse of YtY is not numerically stable

� May wish to find MSE solution by gradient descent:

1. Computing the inverse of YtY may be too costly
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� In the beginning of the lecture,  computed the 
gradient:
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LDF:  Widrow-Hoff Procedure

� Thus the update rule for gradient descent:
(((( )))) (((( )))) (((( )))) (((( ))))(((( ))))bYaYaa ktkkk −−−−−−−−====++++ ηηηη1

� If                       weight vector a(k) converges to the MSE 
solution a, that is Yt(Ya-b)=0
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� Widrow-Hoff procedure reduces storage 
requirements by considering single samples 
sequentially:
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LDF:  Ho-Kashyap Procedure

� Suppose training samples are linearly separable. 
Then there is as and positive bs s.t.

� In the MSE procedure, if b is chosen arbitrarily, 
finding separating hyperplane is not guaranteed

0>>>>==== ss bYa

� If we knew bs could apply MSE procedure to find the 
separating hyperplane

� Idea: find both as and bs

� Minimize the following criterion function, restricting to 
positive b: (((( )))) 2

, bYabaJHK −−−−====

� JHK(as,bs)=0 



LDF:  Ho-Kashyap Procedure

� As usual, take partial derivatives w.r.t. a and b

(((( )))) 2
, bYabaJHK −−−−====

(((( )))) 02 ====−−−−====∇∇∇∇ bYaYJ t
HKa

(((( )))) 02 ====−−−−−−−−====∇∇∇∇ bYaJHKb

� Use modified gradient descent procedure to find a  
minimum of JHK(a,b)

2) Fix a and minimize JHK(a,b) with respect to b

� Alternate the two steps below until convergence:
1) Fix b and minimize JHK(a,b) with respect to a



LDF:  Ho-Kashyap Procedure

(((( )))) 02 ====−−−−====∇∇∇∇ bYaYJ t
HKa

(((( )))) 02 ====−−−−−−−−====∇∇∇∇ bYaJHKb

� Step (1) can be performed with pseudoinverse

2) Fix a and minimize JHK(a,b) with respect to b

� Alternate the two steps below until convergence:
1) Fix b and minimize JHK(a,b) with respect to a

� For fixed b minimum of JHK(a,b) with respect to a is 
found by solving 
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� Thus 
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LDF:  Ho-Kashyap Procedure

� We can’t  use  b = Ya because  b has to be positive

� Step 2:  fix a and minimize JHK(a,b) with respect to b

� Solution: use modified gradient descent
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b
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� Regular gradient descent rule:

� If any components of           are positive, b will 
decrease and can possibly become negative
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LDF:  Ho-Kashyap Procedure

� start with positive b , follow negative gradient but 
refuse to decrease any components of b

� This can be achieved by setting all the positive 
components of           to  0Jb∇∇∇∇
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� Not doing steepest descent anymore, but we are 
still doing descent and ensure that  b is positive

� here  |v| denotes vector we get after applying absolute 
value to all elements of v
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LDF:  Ho-Kashyap Procedure

� Then
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LDF:  Ho-Kashyap Procedure
� The final Ho-Kashyap procedure:

0) Start with arbitrary a(1) and b(1) > 0, let k = 1

repeat steps (1) through (4)

3) Solve for a(k+1) using b(k+1)

(((( )))) (((( )))) (((( ))))111 ++++−−−−++++ ==== kttk bYYYa

4) k = k + 1

1) (((( )))) (((( )))) (((( ))))kkk bYae −−−−====

2) Solve for b(k+1) using a(k) and b(k)

(((( )))) (((( )))) (((( )))) (((( ))))[[[[ ]]]]||1 kkkk eebb ++++++++====++++ ηηηη

until e(k) >= 0  or  k > kmax or b(k+1) = b(k)

� For convergence, learning rate should be fixed 
between 0 < ηηηη < 1



LDF:  Ho-Kashyap Procedure

� What if e(k) is negative for all components?

(((( )))) (((( )))) (((( )))) (((( ))))[[[[ ]]]]||1 kkkk eebb ++++++++====++++ ηηηη

� b(k+1) = b(k) and corrections stop

� Write  e(k) out:
(((( )))) (((( )))) (((( ))))kkk bYae −−−−==== (((( )))) (((( )))) (((( ))))kktt bbYYYY −−−−====
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� Multiply by Yt:
(((( )))) (((( )))) (((( )))) (((( ))))(((( ))))kktttkt bbYYYYYeY −−−−====

−−−−1 (((( )))) (((( )))) 0====−−−−==== ktkt bYbY

� Thus Yt e(k) = 0



LDF:  Ho-Kashyap Procedure

� Thus Yt e(k) = 0

� Suppose training samples are linearly separable. 
Then there is as and positive bs s.t.

0>>>>==== ss bYa

� Multiply both sides by (e(k) )t

(((( ))))(((( )))) (((( ))))(((( )))) stkstk beYae ========0

� Either  e(k) = 0 or one of its components is positive



LDF:  Ho-Kashyap Procedure

� In the linearly separable case, 
� e(k) = 0,  found solution, stop
� one of components of e(k) is positive, algorithm continues

� In non separable case, 
� e(k) will have only negative components eventually, thus 

found proof of nonseparability
� No bound on how many iteration need for the proof of 

nonseparability



LDF:  Ho-Kashyap Procedure Example

� Class 1: (6 9), (5 7)
� Class 1: (5 9), (0 10)

� Matrix
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� Use fixed learning ηηηη = 0.9
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LDF:  Ho-Kashyap Procedure Example

� solve for a(2) using b(2)

� solve for b(2) using a(1) and b(1)

� Iteration 1:
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LDF:  Ho-Kashyap Procedure Example
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� a does gives a separating hyperplane

� Continue iterations until Ya > 0
� In practice, continue until minimum 

component of Ya is less then 0.01
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� After 104 iterations converged to solution



m1,...,i         )( 0 ====++++==== i
t
ii wxwxg

� Suppose we have m classes
� Define m linear discriminant functions 

� Given x, assign class ci if 

ij         )()( ≠≠≠≠∀∀∀∀≥≥≥≥ xgxg ji

� Such classifier is called a  linear machine

� A linear machine divides the feature space into c 
decision regions, with gi(x) being the largest 
discriminant if x is in the region Ri

LDF:  MSE for Multiple Classes



LDF:  Many Classes
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� We still use augmented feature vectors y1,…, yn
� Define m linear discriminant functions 

� Given y, assign class ci if 
ij        y ≠≠≠≠∀∀∀∀≥≥≥≥ t

j
t
i aya

� For each class i, makes sense to seek weight 
vector ai, s.t. 

LDF:  MSE for Multiple Classes
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� If we find such  a1,…, am the training error will be 0



� For each class i, find weight vector ai, s.t. 

LDF:  MSE for Multiple Classes
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� We can solve for each ai independently

� Let ni be the number of samples in class i

� Let Yi be matrix whose rows are samples from 
class i, so it has d +1 columns and ni rows
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� Let’s pile all samples in n by d +1 matrix Y:
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� Let bi be a column vector of length n which is 0
everywhere except rows corresponding to samples 
from class i, where it is 1:

LDF:  MSE for Multiple Classes























====

0

1

1

0

bi

M

M

M

rows corresponding 
to samples from class i

� We need to solve: ii bYa ====



















mclassfromsample
mclassfromsample

1classfromsample
1classfromsample

M
w

ei
g

h
ts

 a
i











































====

0

1

1

0

M

M

M



LDF:  MSE for Multiple Classes

� We need to solve Yai = bi

� Usually no exact solution since Y is overdetermined

� Use least squares to minimize norm of the error 
vector || Yai - bi ||

� LSE solution with pseudoinverse:
(((( )))) i
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� Thus we need to solve m LSE problems, one for 
each class

� Can write these m LSE problems in one matrix



LDF:  MSE for Multiple Classes

[[[[ ]]]]n1 bbB L====

� Let’s pile all bi as columns in n by c matrix B

� Let’s pile all ai as columns in d +1 by m matrix A
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� m LSE problems can be represented in YA = B:
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LDF:  MSE for Multiple Classes

(((( )))) ∑∑∑∑
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� Our objective function is:

� J(A) is minimized with the use of pseudoinverse
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LDF:  Summary

� Perceptron procedures 
� find a separating hyperplane in the linearly separable case,
� do not converge in the non-separable case
� can force convergence  by using a decreasing learning rate, 

but are not guaranteed a reasonable stopping point

� MSE procedures 
� converge in separable and not separable case 
� may not find separating hyperplane if classes are linearly 

separable
� use pseudoinverse if YtY is not singular and not too large
� use gradient descent (Widrow-Hoff procedure) otherwise

� Ho-Kashyap procedures 
� always converge
� find separating hyperplane in the linearly separable case
� more costly


