
1

PROCESSES AND THREADS
Chapter 2

2.1 Processes
2.2 Threads
2.3 Interprocess communication
2.4 Classical IPC problems
2.5 Scheduling

Processes
The Process Model
 Multiprogramming of four programs
 Conceptual model of 4 independent,

sequential processes
 Only one program active at any instant

2

Process Creation

 Principal events that cause process creation
 System initialization
 Execution of a process creation system
 User request to create a new process
 Initiation of a batch job

3

Process Termination

 Conditions which terminate processes
 Normal exit (voluntary)
 Error exit (voluntary)
 Fatal error (involuntary)
 Killed by another process (involuntary)

4

Process Hierarchies

 Parent creates a child process, child
processes can create its own process

 Forms a hierarchy
 UNIX calls this a "process group"

 Windows has no concept of process hierarchy
 all processes are created equal

5

Process States (1)

 Possible process states
 running
 blocked
 ready

 Transitions between states shown

6

Process States (2)

 Lowest layer of process-structured OS
 handles interrupts, scheduling

 Above that layer are sequential processes

7

Implementation of Processes
(1)
 Fields of a process table entry

8

Implementation of Processes
(2)
 Skeleton of what lowest level of OS does

when an interrupt occurs

9

Thread Usage (1)

 A word processor with three threads

10

Thread Usage (2)

 A multithreaded Web server

11

Thread Usage (3)

 Rough outline of code for previous slide
 (a) Dispatcher thread
 (b) Worker thread

12

Thread Usage (4)

 Three ways to construct a server

13

Thread Usage (5)

 Reasons for using threads
 Many applications need to do multiple activities at

once
 They are lighter weight than processes
 Speed up gain by overlapping computing and I/O
 Real parallelism on systems with multiple CPUs
 They make it possible to retain sequential

processes that make blocking calls and still
achieve parallelism

14

Threads
The Thread Model (1)
 (a) Three processes each with one thread
 (b) One process with three threads

15

The Thread Model (2)

 Items shared by all threads in a process
 Items private to each thread

16

The Thread Model (3)

 Each thread has its own stack

17

POSIX Threads

 Pthreads
 IEEE standard 1003.1c

 defines over 60 function calls

18

Implementing Threads in User
Space
 A user-level threads package

19

Implementing Threads in the
Kernel
 A threads package managed by the kernel

20

Hybrid Implementations

 Multiplexing user-level threads onto kernel-
level threads

21

Scheduler Activations

 Goal – mimic functionality of kernel threads
 gain performance of user space threads

 Avoids unnecessary user/kernel transitions
 Kernel assigns virtual processors to each

process
 lets runtime system allocate threads to processors

 Problem:
 Fundamental reliance on kernel (lower layer)

calling procedures in user space (higher layer)

22

Pop-Up Threads

 Creation of a new thread when message
arrives
 (a) before message arrives
 (b) after message arrives

23

Making Single-Threaded Code
Multithreaded (1)
 Conflicts between threads over the use of a

global variable

24

Making Single-Threaded Code
Multithreaded (2)
 Threads can have private global variables

25

Interprocess Communication
Race Conditions
 Two processes want to access shared

memory at same time

26

Critical Regions (1)

 Four conditions to provide mutual exclusion
 No two processes simultaneously in critical region
 No assumptions made about speeds or numbers

of CPUs
 No process running outside its critical region may

block another process
 No process must wait forever to enter its critical

region

27

Critical Regions (2)

 Mutual exclusion using critical regions

28

Mutual Exclusion with Busy
Waiting (1)
 Two simple methods

 Disabling interrupts
 Lock variables

29

Mutual Exclusion with Busy
Waiting (2)
 Strict alternation

 (a) Process 0. (b) Process 1.

30

Mutual Exclusion with Busy
Waiting (3)
 Peterson's solution for achieving mutual

exclusion

31

Mutual Exclusion with Busy
Waiting (4)
 Entering and leaving a critical region using

the TSL instruction

32

Mutual Exclusion with Busy
Waiting (5)
 XCHG: An alternative instruction to TSL

33

Sleep and Wakeup
 Producer-consumer problem with fatal race

condition

34

Semaphores
 The producer-consumer problem using

semaphores

35

Mutexes

 Implementation of mutex_lock and
mutex_unlock

36

Monitors (1)
 Example of a monitor

37

Monitors (2)
 Outline of producer-consumer problem with

monitors
 only one monitor procedure active at one time
 buffer has N slots

38

Monitors (3)
 Solution to producer-consumer problem in

Java (part 1)

39

Monitors (4)
 Solution to producer-consumer problem in

Java (part 2)

40

Message Passing
 The producer-consumer problem with N

messages

41

Barriers

 Use of a barrier
 processes approaching a barrier
 all processes but one blocked at barrier
 last process arrives, all are let through

42

Avoiding Locks: Read-Copy-
Update

Introduction to Scheduling
(1)
 Bursts of CPU usage alternate with periods of

I/O wait
 a CPU-bound process
 an I/O bound process

44

Introduction to Scheduling
(2)
 When to schedule

 Creation of a new process
 Exiting of a process
 Blocking a process
 I/O interrupt
 Clock period

 Preemptive
 Non-preemptive

45

Introduction to Scheduling
(3)
 Categories of Scheduling Algorithms

 Batch
 Interactive
 Real-time

46

Introduction to Scheduling
(4)
 Scheduling Algorithm Goals

47

Scheduling in Batch Systems

 First-Come, First-Served
 Adv: easy to understand and program
 disAdv: long delays for io-bound processes

 shortest job first

 Shortest Remaining Time Next

48

Scheduling in Interactive
Systems (1)
 Round Robin Scheduling

 list of runnable processes
 list of runnable processes after B uses up its

quantum

49

Scheduling in Interactive
Systems (2)
 A scheduling algorithm with four priority

classes

50

Scheduling in Interactive
Systems (3)
 Multiple Queues

 Idea: occasionally large quantum for CPU-bound
processes

 Implementation:
 Set up priority classes
 Highest class: one quantum
 Next-highest: two quanta
 Next one: four quanta, etc.
 Move down process that used all of its quanta one class

 Problem
 punishing process that runs for a long time and becomes

interactive later

51

Scheduling in Interactive
Systems (4)
 Shortest Process Next

 Idea: use SJF for interactive processes
 Implementation:

 Guaranteed Scheduling
 Idea: promise about 1/n of the CPU cycles
 Implementation:

 Ratio: actual assigned time / entitled time
 Run the process with the lowest ratio

52

Scheduling in Interactive
Systems (5)
 Lottery Scheduling

 Idea: give processes lottery tickets
 Interesting properties

 Highly responsive
 Possible exchanging of tickets
 Can solve problems that are difficult for other

methods
 Example: video server with different frame rates

53

Scheduling in Interactive
Systems (6)
 Fair-Share Scheduling

 Idea: taking into account the owner of processes
 Implementation:

 Allocate some fraction of CPU time to each user
 Run processes in such a way to enforce it

54

Scheduling in Real-Time
Systems
 Schedulable real-time system

 Given
 m periodic events
 event i occurs within period Pi and requires Ci

seconds

 Then the load can only be handled if

55

Policy versus Mechanism

 Separate what is allowed to be done with
how it is done
 a process knows which of its children threads are

important and need priority
 Scheduling algorithm parameterized

 mechanism in the kernel

 Parameters filled in by user processes
 policy set by user process

56

Thread Scheduling (1)

 Possible scheduling of user-level threads
 50-msec process quantum
 threads run 5 msec/CPU burst

57

Thread Scheduling (2)
 Possible scheduling of kernel-level threads

 50-msec process quantum
 threads run 5 msec/CPU burst

58

