
1

PROCESSES AND THREADS
Chapter 2

2.1 Processes
2.2 Threads
2.3 Interprocess communication
2.4 Classical IPC problems
2.5 Scheduling

Processes
The Process Model
 Multiprogramming of four programs
 Conceptual model of 4 independent,

sequential processes
 Only one program active at any instant

2

Process Creation

 Principal events that cause process creation
 System initialization
 Execution of a process creation system
 User request to create a new process
 Initiation of a batch job

3

Process Termination

 Conditions which terminate processes
 Normal exit (voluntary)
 Error exit (voluntary)
 Fatal error (involuntary)
 Killed by another process (involuntary)

4

Process Hierarchies

 Parent creates a child process, child
processes can create its own process

 Forms a hierarchy
 UNIX calls this a "process group"

 Windows has no concept of process hierarchy
 all processes are created equal

5

Process States (1)

 Possible process states
 running
 blocked
 ready

 Transitions between states shown

6

Process States (2)

 Lowest layer of process-structured OS
 handles interrupts, scheduling

 Above that layer are sequential processes

7

Implementation of Processes
(1)
 Fields of a process table entry

8

Implementation of Processes
(2)
 Skeleton of what lowest level of OS does

when an interrupt occurs

9

Thread Usage (1)

 A word processor with three threads

10

Thread Usage (2)

 A multithreaded Web server

11

Thread Usage (3)

 Rough outline of code for previous slide
 (a) Dispatcher thread
 (b) Worker thread

12

Thread Usage (4)

 Three ways to construct a server

13

Thread Usage (5)

 Reasons for using threads
 Many applications need to do multiple activities at

once
 They are lighter weight than processes
 Speed up gain by overlapping computing and I/O
 Real parallelism on systems with multiple CPUs
 They make it possible to retain sequential

processes that make blocking calls and still
achieve parallelism

14

Threads
The Thread Model (1)
 (a) Three processes each with one thread
 (b) One process with three threads

15

The Thread Model (2)

 Items shared by all threads in a process
 Items private to each thread

16

The Thread Model (3)

 Each thread has its own stack

17

POSIX Threads

 Pthreads
 IEEE standard 1003.1c

 defines over 60 function calls

18

Implementing Threads in User
Space
 A user-level threads package

19

Implementing Threads in the
Kernel
 A threads package managed by the kernel

20

Hybrid Implementations

 Multiplexing user-level threads onto kernel-
level threads

21

Scheduler Activations

 Goal – mimic functionality of kernel threads
 gain performance of user space threads

 Avoids unnecessary user/kernel transitions
 Kernel assigns virtual processors to each

process
 lets runtime system allocate threads to processors

 Problem:
 Fundamental reliance on kernel (lower layer)

calling procedures in user space (higher layer)

22

Pop-Up Threads

 Creation of a new thread when message
arrives
 (a) before message arrives
 (b) after message arrives

23

Making Single-Threaded Code
Multithreaded (1)
 Conflicts between threads over the use of a

global variable

24

Making Single-Threaded Code
Multithreaded (2)
 Threads can have private global variables

25

Interprocess Communication
Race Conditions
 Two processes want to access shared

memory at same time

26

Critical Regions (1)

 Four conditions to provide mutual exclusion
 No two processes simultaneously in critical region
 No assumptions made about speeds or numbers

of CPUs
 No process running outside its critical region may

block another process
 No process must wait forever to enter its critical

region

27

Critical Regions (2)

 Mutual exclusion using critical regions

28

Mutual Exclusion with Busy
Waiting (1)
 Two simple methods

 Disabling interrupts
 Lock variables

29

Mutual Exclusion with Busy
Waiting (2)
 Strict alternation

 (a) Process 0. (b) Process 1.

30

Mutual Exclusion with Busy
Waiting (3)
 Peterson's solution for achieving mutual

exclusion

31

Mutual Exclusion with Busy
Waiting (4)
 Entering and leaving a critical region using

the TSL instruction

32

Mutual Exclusion with Busy
Waiting (5)
 XCHG: An alternative instruction to TSL

33

Sleep and Wakeup
 Producer-consumer problem with fatal race

condition

34

Semaphores
 The producer-consumer problem using

semaphores

35

Mutexes

 Implementation of mutex_lock and
mutex_unlock

36

Monitors (1)
 Example of a monitor

37

Monitors (2)
 Outline of producer-consumer problem with

monitors
 only one monitor procedure active at one time
 buffer has N slots

38

Monitors (3)
 Solution to producer-consumer problem in

Java (part 1)

39

Monitors (4)
 Solution to producer-consumer problem in

Java (part 2)

40

Message Passing
 The producer-consumer problem with N

messages

41

Barriers

 Use of a barrier
 processes approaching a barrier
 all processes but one blocked at barrier
 last process arrives, all are let through

42

Avoiding Locks: Read-Copy-
Update

Introduction to Scheduling
(1)
 Bursts of CPU usage alternate with periods of

I/O wait
 a CPU-bound process
 an I/O bound process

44

Introduction to Scheduling
(2)
 When to schedule

 Creation of a new process
 Exiting of a process
 Blocking a process
 I/O interrupt
 Clock period

 Preemptive
 Non-preemptive

45

Introduction to Scheduling
(3)
 Categories of Scheduling Algorithms

 Batch
 Interactive
 Real-time

46

Introduction to Scheduling
(4)
 Scheduling Algorithm Goals

47

Scheduling in Batch Systems

 First-Come, First-Served
 Adv: easy to understand and program
 disAdv: long delays for io-bound processes

 shortest job first

 Shortest Remaining Time Next

48

Scheduling in Interactive
Systems (1)
 Round Robin Scheduling

 list of runnable processes
 list of runnable processes after B uses up its

quantum

49

Scheduling in Interactive
Systems (2)
 A scheduling algorithm with four priority

classes

50

Scheduling in Interactive
Systems (3)
 Multiple Queues

 Idea: occasionally large quantum for CPU-bound
processes

 Implementation:
 Set up priority classes
 Highest class: one quantum
 Next-highest: two quanta
 Next one: four quanta, etc.
 Move down process that used all of its quanta one class

 Problem
 punishing process that runs for a long time and becomes

interactive later

51

Scheduling in Interactive
Systems (4)
 Shortest Process Next

 Idea: use SJF for interactive processes
 Implementation:

 Guaranteed Scheduling
 Idea: promise about 1/n of the CPU cycles
 Implementation:

 Ratio: actual assigned time / entitled time
 Run the process with the lowest ratio

52

Scheduling in Interactive
Systems (5)
 Lottery Scheduling

 Idea: give processes lottery tickets
 Interesting properties

 Highly responsive
 Possible exchanging of tickets
 Can solve problems that are difficult for other

methods
 Example: video server with different frame rates

53

Scheduling in Interactive
Systems (6)
 Fair-Share Scheduling

 Idea: taking into account the owner of processes
 Implementation:

 Allocate some fraction of CPU time to each user
 Run processes in such a way to enforce it

54

Scheduling in Real-Time
Systems
 Schedulable real-time system

 Given
 m periodic events
 event i occurs within period Pi and requires Ci

seconds

 Then the load can only be handled if

55

Policy versus Mechanism

 Separate what is allowed to be done with
how it is done
 a process knows which of its children threads are

important and need priority
 Scheduling algorithm parameterized

 mechanism in the kernel

 Parameters filled in by user processes
 policy set by user process

56

Thread Scheduling (1)

 Possible scheduling of user-level threads
 50-msec process quantum
 threads run 5 msec/CPU burst

57

Thread Scheduling (2)
 Possible scheduling of kernel-level threads

 50-msec process quantum
 threads run 5 msec/CPU burst

58

