Chapter 2

PROCESSES AND THREADS

|

i
2.1 Processes
2.2 Threads
2.3 Interprocess communication

2.4 Classical IPC problems
2.5 Scheduling

Processes

The Process Model

* Multiprogramming of four programs

» Conceptual model of 4 independent,

sequential processes

* Only one program active at any instant

One program counter

e

IV LV §

(a)

Four program counters

A Process
E switch
B

8

B Y

(b)

°

DY

Process

> W O O

Process Creation

» Principal events that cause process creation
o System initialization
o Execution of a process creation system
o User request to create a new process
o |nitiation of a batch job

Process Termination

» Conditions which terminate processes
= Normal exit (voluntary)
o Error exit (voluntary)
o Fatal error (involuntary)
o Killed by another process (involuntary)

Process Hierarchies

» Parent creates a child process, child
Drocesses can create its own process

» Forms a hierarchy
= UNIX calls this a "process group"

* Windows has no concept of process hierarchy
= all processes are created equal

Process States (1)

= Possible process states
o running
= blocked
o ready

= Transitions between states shown

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

Blocked

I Process States (2)

» Lowest layer of process-structured OS
o handles interrupts, scheduling

» Above that layer are sequential processes

Processes

Scheduler

I Implementation of Processes

(1)

» Fields of a process table entry

Process management Memory management File management
Reqisters Pointer to text segment Root directory
Program counter Pointer to data segment Working directory
Program status word Pointer to stack segment | File descriptors
Stack pointer User ID
Process state Group ID
Priority
Scheduling parameters

i Process ID

Parent process
Process group
Signals
Time when process started
CPU time used
Children’s CPU time
Time of next alarm

Implementation of Processes

(2)

s Skeleton of what lowest level of OS does
when an interrupt occurs

1. Hardware stacks program counter, etc.

2. Hardware loads new program counter from interrupt vector.
3. Assembly language procedure saves registers.

4. Assembly language procedure sets up new stack.

5. C interrupt service runs (typically reads and buffers input).

6. Scheduler decides which process is to run next.

7. C procedure returns to the assembly code.

8. Assembly language procedure starts up new current process.

Thread Usage (1)

= A word processor with three th

reads

Four score and seven
years ago, owr fathers
brought forth upon this
continent a new nation:
conceived in liberty,
and dedicated to the
proposition that all
men are created equal.

Now we are engaged
in a great civil war
testing whether that

nation, or any nation
80 conceived and s0
dedicated, can long
endwe. We are met on
a great battlefield of
that war.

We have come to
dedicate a portion of
that field as a final
resting place for those
who hete gave their

lives that this nation
might live. &t is
altogether fitting and
proper that we should
o this

But, in a larger sense,
we cannot dedicate, we
cannot consecrate we
canmot hallow this
govnd The brmve
men, living and dead,

who struggled here
have consecrated it, far
above our poor power
o add or detract. The
world will little note,
mor long remember,
what we say here, but
it can never forget
what they did here

1t is for s the living,
mather, to be dedicated

her to the unfinished
wotk which they who
fought here have thues
far 0 nobly acdvanced
It is rther for vs to be
here dedicated to the
great task remaining
before ws, that from
these honored dead we
take increased devotion
1o that canse for which

they gave the last full
measure of devotion,
that we here highly
resolve that these dead
shall ot have died in
vain that this nation,
under God, shall have
a new birth of freedom
and that government of
the people by the
people, for the people

Keyboard

L

J

'

Kernel

Disk

10

Thread Usage (2)

= A multithreaded Web server

Web server process

Dispatcher thread

- »?m , Worker thread

Web page cache

Kernel

Network
connection

User
> space

Kernel
space

11

Thread Usage (3)

= Rough outline of code for previous slide
= (a) Dispatcher thread
o (b) Worker thread

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf)
handoff_work(&buf); look _for_page_in_cache(&buf, &page);
} if (page_not_in_cache(&page)

read_page_from_disk(&buf, &page);

return_page(&page);
}
(a) (b)

12

Thread Usage (4)

» Three ways to construct a server

Model

Characteristics

Threads

Parallelism, blocking system calls

Single-threaded process

No parallelism, blocking system calls

Finite-state machine

Parallelism, nonblocking system calls, interrupts

13

Thread Usage (5)

= Reasons for using threads

O

Many applications need to do multiple activities at
once

They are lighter weight than processes
Speed up gain by overlapping computing and I/O
Real parallelism on systems with multiple CPUs

They make it possible to retain sequential
processes that make blocking calls and still
achieve parallelism

Threads
The Thread Model (1)

» (a) Three processes each with one thread
» (b) One process with three threads

Process 1 Process 1 Process 1 Process

Thread

] \\ | | l
User
o | @ @ @
L Thread

Kernel K | K |
space erne erne

(a) (b)

I The Thread Model (2)

* |tems shared by all threads in a process
» |tems private to each thread

Per process items Per thread items
Address space Program counter
Global variables Registers

Open files Stack

Child processes State

Pending alarms

Signals and signal handlers

Accounting information

16

The Thread Model (3)

» Each thread has its own stack

Thread 1's
stack

Thread 2

Th read 1

Th read 3

“ﬁ/

_—~ Process

Thread 3's stack

Kernel

POSIX Threads

» Pthreads

o |EEE standard 1003.1c

= defines over 60 function calls

Thread call

Description

Pthread_create

Create a new thread

Pthread_exit

Terminate the calling thread

Pthread_join

Wait for a specific thread to exit

Pthread_yield

Release the CPU to let another thread run

Pthread_attr_init

Create and initialize a thread’s attribute structure

Pthread_attr_destroy

Remove a thread’s attribute structure

18

I Implementing Threads in User

Space
= Auser-level threads package

Process Thread

_/

|| VT

—

: \Lj/@
N
\

Kernel
space Kernel

Run-time Thread Process
system table table

I Implementing Threads in the

Kernel
» Athreads package managed by the kernel
Process Thread
\ _/
\
i
Kernel
—
Process Thread

table table

Hybrid Implementations

» Multiplexing user-level threads onto kernel-
level threads

Multiple user threads
on a kernel thread

\ l

> User

\Léf(\1{[space

Kernel
Kernel <— Kernel thread space

Scheduler Activations

* Goal — mimic functionality of kernel threads

= gain performance of user space threads
= Avoids unnecessary user/kernel transitions

= Kernel assigns virtual processors to each
process

= |ets runtime system allocate threads to processors
* Problem:

= Fundamental reliance on kernel (lower layer)
calling procedures in user space (higher layer)

22

Pop-Up Threads

= Creation of a new thread when message
arrives
o (a) before message arrives
o (b) after message arrives

(a) (b)

23

I Making Single-Threaded Code
Multithreaded (1)

= Conflicts between threads over the use of a
global variable

Thread 1 Thread 2
9_) i
k= Access (ermo set)
| $
- |
:)

Open (errno overwritten)

%

3

Errno inspected

Making Single-Threaded Code
Multithreaded (2)

» Threads can have private global variables

Thread 1's
code

Thread 2's
code

Thread 1's
stack ~~

Thread 2's
/ stack

Thread 1's
globals

Thread 2's
globals

I Interprocess Communication

Race Conditions

= Two processes want to access shared
memory at same time

Spooler
directory

abc out=4

prog.c
prog.n

u
i

~N oo o b~

Critical Regions (1)

O

O

Four conditions to provide mutual exclusion

No two processes simultaneously in critical region

No assumptions made about speeds or numbers
of CPUs

No process running outside its critical region may
block another process

No process must wait forever to enter its critical
region

27

Critical Regions (2)

* Mutual exclusion using critical regions

Process A

Process B

A enters critical region

/ A leaves critical region

B leaves
critical region

B enters
critical region

B attempts to
enter critical

<

region
s -
| w | |
1 B blocked I I
1 Tz T3 T4

28

Mutual Exclusion with Busy
Waiting (1)
» Two simple methods

o Disabling interrupts
o Lock variables

I Mutual Exclusion with Busy
Waiting (2)

= Strict alternation

o (a) Process o. (b) Process 1.
while (TRUE) { while (TRUE) {
while (turn !=0) /* loop */ ; while (turn 1= 1) /* loop */ ;
critical _region(); critical _region();
turn = 1; turn = 0;
: noncritical_region(); noncritical _region();

} }
(a) (b)

Mutual Exclusion with Busy
Waiting (3)

= Peterson's solution for achieving mutual
exclusion

#define FALSE 0
#define TRUE 1

#define N 2 /* number of processes */

int turn; /* whose turn is it? */

int interested[N]; /* all values initially 0 (FALSE) */

void enter_region(int process); /* process is 0 or 1 */

{
int other; /* number of the other process */
other = 1 — process; /* the opposite of process */
interested[process] = TRUE; /* show that you are interested */
turn = process; /* set flag */
while (turn == process && interested[other] == TRUE) /* null statement */ ;

}

void leave_region(int process) /* process: who is leaving */

{

interested[process] = FALSE; /* indicate departure from critical region */

}

31

Mutual Exclusion with Busy

Waiting (4)

* Entering and leaving a critical region using
the TSL instruction

enter_region:

TSL REGISTER,LOCK | copy lock to register and set lock to 1
CMP REGISTER,#0 | was lock zero?
JNE enter_region | if it was non zero, lock was set, so loop

RET | return to caller; critical region entered

leave region:
MOVE LOCK,#0 | store a 0 in lock
RET | return to caller

32

Mutual Exclusion with Busy
Waiting (5)
= XCHG: An alternative instruction to TSL

enter_region:

MOVE REGISTER,#1 | put a 1 in the register

XCHG REGISTER,LOCK | swap the contents of the register and lock variable

CMP REGISTER,#0 | was lock zero?

JNE enter_region | if it was non zero, lock was set, so loop

RET | return to caller; critical region entered
leave_region:

MOVE LOCK,#0 | store a 0 in lock

RET | return to caller

33

Sleep and Wakeup

» Producer-consumer problem with fatal race

condition jiamer

void producer(void)

{

int item;

while (TRUE) {
item = produce_item();
if (count == N) sleep();
insert_item(item);
count = count + 1,
if (count == 1) wakeup(consumer);

void consumer(void)

{

int item;

while (TRUE) {
if (count == 0) sleep();
item = remove_item();
count = count — 1;

/* number of slots in the buffer */
/* number of items in the buffer */

/* repeat forever */

/* generate next item */

/* if buffer is full, go to sleep */

/* put item in buffer */

/* increment count of items in buffer */
/* was buffer empty? */

/* repeat forever */

/* if buffer is empty, got to sleep */

/* take item out of buffer */

/* decrement count of items in buffer */

if (count == N — 1) wakeup(producer); /* was buffer full? */

consume_item(item);

/[* print item */

Semaphores

* The producer-consumer problem using

semaphores

#define N 100

typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

void producer(void)
int item;

while (TRUE) {

item = produce_item();
down(&empty);
down(&mutex);
insert_item(item);

up(&mutex);

i @ £l -
UpSul],

void consumer(void)
int item;

while (TRUE) {

down(&full);
down(&mutex);

item = remove_item();
up(&mutex);
up(&empty);
consume_item(item);

/* number of slots in the buffer */

/* semaphores are a special kind of int */
/* controls access to critical region */

/* counts empty buffer slots */

/* counts full buffer slots */

/* TRUE is the constant 1 */

/* generate something to put in buffer */
/* decrement empty count */

/* enter critical region */

/* put new item in buffer */

/* leave critical region */

nnnint ~f fall n!n{

% inAramant w/
I NIGIGTHITHIL VUUTIL VI TUl 91IvL

fa]
2 7/

/* infinite loop */

/* decrement full count */

/* enter critical region */

/* take item from buffer */

/* leave critical region */

/* increment count of empty slots */
/* do something with the item */

35

Mutexes

* Implementation of mutex_lock and
mutex_unlock

mutex _lock:
TSL REGISTER,MUTEX | copy mutex to register and set mutex to 1
CMP REGISTER,#0 | was mutex zero?
JZE ok | if it was zero, mutex was unlocked, so return
CALL thread_yield | mutex is busy; schedule another thread
JMP mutex_lock | try again later

ok: RET| return to caller; critical region entered

mutex unlock:
MOVE MUTEX,#0 | store a 0 in mutex
RET | return to caller

36

Monitors (1)

» Example of a monitor

monitor example
integer i;
condition c;

procedure producer();

end;

procedure consumer();

end;
end monitor:;

37

Monitors (2)

» Qutline of producer-consumer problem with

monitors

= only one monitor procedure active at one time

o puffer has N slots

procedure producer,
begin
while rrue do
begin
item = produce_item;
ProducerConsumer.insert(item)
end
end;
procedure consumer;
begin
while rrue do
begin
item = ProducerConsumer.remove,
consume _item(item)
end
end;

monitor ProducerConsumer
condition full, empty;
integer count,
procedure insert(item: integer),
begin
if count = N then wait(full);
insert_item(item);
count := count + 1;
if count = 1 then signal(empty)
end;
function remove: integer;
begin
if count = 0 then wait(empty);
remove = remove _item,
count = count — 1;
if count = N — 1 then signal(full)
end;
count = 0;
end monitor;

38

Monitors (3)

= Solution to producer-consumer problem in
Java (part 1)

public class ProducerConsumer {

static final int N = 100; // constant giving the buffer size
static producer p = new producer(); // instantiate a new producer thread
static consumer ¢ = new consumer();// instantiate a new consumer thread
static our_maonitor mon = new our_maonitor(); // instantiate a new monitor
public static void main(String args[]) {

p.start(); // start the producer thread

c.start(); // start the consumer thread

}

static class producer extends Thread {

public void run() { // run method contains the thread code
int item;
while (true) { // producer loop

item = produce _item();
mon.insert(item);
}
}

private int produce_item() {...} // actually produce

}

static class consumer extends Thread {

public void run() { run method contains the thread code
int item;
while (true) { // consumer loop

item = mon.remove();
consume_item (item);
}
}

private void consume_item(int item) { ...} // actually consume

Monitors (4)

= Solution to producer-consumer problem in
Java (part 2)

static class our_monitor { //this is a monitor
private int buffer{] = new int[N];
private int count =0, lo =0, hi = 0; // counters and indices

public synchronized void insert(int val) {

}

if (count == N) go_to_sleep(). //if the buffer is full, go to sleep
buffer [hi] = val; // insert an item into the buffer

hi=(hi+1)%N; // slot to place next item in

count =count + 1; //one more item in the buffer now

if (count == 1) notify(); /I if consumer was sleeping, wake it up

public synchronized int remove() {

}

int val;

if (count == 0) go_to_sleep(); //if the buffer is empty, go to sleep
val = buffer [lo]; // fetch an item from the buffer

lo=(lo+1)%N; // slot to fetch next item from
count=count-1; //one few items in the buffer

if (count == N - 1) notify(); / if producer was sleeping, wake it up
return val,

private void go_to_sleep() { try{wait().} catch(InterruptedException exc) {}.}

}

40

Message Passing

» The producer-consumer problem with N

MEeSSAJES sdefine N 100

void producer(void)
{
int item;
message m;

while (TRUE) {
item = produce_item();
receive(consumer, &m);
build_message(&m, item);
send(consumer, &m);

}

void consumer(void)
{
int item, i;
message m;

/* number of slots in the buffer */

/* message buffer */

/* generate something to put in buffer */
/* wait for an empty to arrive */

/* construct a message to send */

/* send item to consumer */

for (i= 0; i< N; i++) send(producer, &m); /* send N empties */

while (TRUE) {
receive(producer, &m);
item = extract_item(&m);
send(producer, &m);
consume_ item(item);

/* get message containing item */
/* extract item from message */
/* send back empty reply */

/* do something with the item */

41

I Barriers

= Use of a barrier
o processes approaching a barrier
= all processes but one blocked at barrier
o |ast process arrives, all are let through

Barrier
Barrier

Barrier

I Avoiding Locks: Read-Copy-
Update

Adding a node:

A A A
B B X
Y
C D E C C D E
(a) Original tree. (b) Initialize node X and (c) When X is completely initialized,

connect E to X. Any readers connect X to A. Readers currently

in A and E are not affected. in E will have read the old version,
while readers in A will pick up the
new version of the tree.

Removing nodes:

[| A A A
|
r==1
B X : B : X X
y SRR] \
C D E C D E C E
(d) Decouple B from A. Note (e) Wait until we are sure (f) Now we can safely
that there may still be readers that all readers have left B remove B and D
in B. All readers in B willsee and C. These nodes cannot
the old version of the tree, be accessed any more.

while all readers currently
in A will see the new version.

Introduction to Scheduling

(1)

» Bursts of CPU usage alternate with periods of
/O wait
= a CPU-bound process
= an |/O bound process

(@ | — — —] |

Long CPU burst \
Waiting for 1/O
Short CPU burst \
) [L1 1 0 (—] L+l (H——1

Time
” A

I Introduction to Scheduling
(2)

* When to schedule

= Creation of a new process
= Exiting of a process

o Blocking a process

o |/O interrupt

o Clock period

" Preemptive
* Non-preemptive

Introduction to Scheduling

(3)

= Categories of Scheduling Algorithms
= Batch
o |nteractive
o Real-time

46

Introduction to Scheduling

(4)
» Scheduling Algorithm Goals

All systems
Fairness - giving each process a fair share of the CPU
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy

Batch systems
Throughput - maximize jobs per hour
Turnaround time - minimize time between submission and termination
CPU utilization - keep the CPU busy all the time

Interactive systems
Response time - respond to requests quickly
Proportionality - meet users’ expectations

Real-time systems
Meeting deadlines - avoid losing data
Predictability - avoid quality degradation in multimedia systems 47

I Scheduling in Batch Systems

= First-Come, First-Served
o Adv: easy to understand and program
= disAdv: long delays for io-bound processes

» shortest job first

8 4 4 4 4 4 4 8
: A B | c | D B | c | D A
(a) (b)

= Shortest Remaining Time Next

48

Scheduling in Interactive
Systems (1)
= Round Robin Scheduling

o list of runnable processes
o |ist of runnable processes after B uses up its

quantum
Current Next Current
process process process
B F D G A F D G A

(a) (b)

49

Scheduling in Interactive
Systems (2)
» A scheduling algorithm with four priority

classes

Queue
headers

Runable processes

AL

Priority 4

Priority 3

Priority 2

Priority 1

(Highest priority)

(Lowest priority)

Scheduling in Interactive
Systems (3)

» Multiple Queues

o |dea: occasionally large quantum for CPU-bound
processes

o Implementation:

* Set up priority classes

* Highest class: one quantum

* Next-highest: two quanta

* Next one: four quanta, etc.

* Move down process that used all of its quanta one class
o Problem

* punishing process that runs for a long time and becomes
interactive later

51

Scheduling in Interactive
Systems (4)
» Shortest Process Next
o |dea: use SJF for interactive processes
= Implementation:
aly + (1 — a)T,
= Guaranteed Scheduling

o |dea: promise about 1/n of the CPU cycles

o Implementation:
* Ratio: actual assigned time [entitled time
* Run the process with the lowest ratio

52

Scheduling in Interactive
Systems (5)
= Lottery Scheduling
o |dea: give processes lottery tickets
o |nteresting properties
= Highly responsive
* Possible exchanging of tickets

= Cansolve problems that are difficult for other
methods

= Example: video server with different frame rates

53

Scheduling in Interactive
Systems (6)
= Fair-Share Scheduling

o |dea: taking into account the owner of processes

o Implementation:
* Allocate some fraction of CPU time to each user
* Run processes in such a way to enforce it

54

Scheduling in Real-Time
Systems

» Schedulable real-time system
o Given
* m periodic events

= eventioccurs within period Pi and requires Ci
seconds

o Then the load can only be handled if

th
25 <!

55

Policy versus Mechanism

= Separate what is allowed to be done with
how it is done

o a process knows which of its children threads are
important and need priority

o Scheduling algorithm parameterized
= mechanism in the kernel

o Parameters filled in by user processes
= policy set by user process

56

Thread Scheduling (1)

» Possible scheduling of user-level threads
o [O-MSeC Process quantum
o threads run 5 msec/CPU burst

Process A Process B
Order in which l

threads run \

2. Runtime 1 2 3
system
picks a —
thread — = =

1
L1. Kernel picks a process

Possible: A1, A2, A3, A1, A2, A3
Not possible: A1, B1, A2, B2, A3, B3

57

Thread Scheduling (2)

» Possible scheduling of kernel-level threads
o £O-MSeC process quantum
o threads run 5 msec/CPU burst

Process A Process B

1 Kernel picks a thread

Possible: A1, A2, A3, A
B

A2, A3
Also possible: A1, B1, A2, B3

1
2A3

58

