
1

MEMORY MANAGEMENT
Chapter 3

Basic memory management
Swapping
Virtual memory
Page replacement algorithms
Modeling page replacement algorithms
Design issues for paging systems
Implementation issues
Segmentation

Memory Management

 Ideally programmers want memory that is
 large
 fast
 non volatile

 Memory hierarchy
 small amount of fast, expensive memory – cache
 some medium-speed, medium price main memory
 gigabytes of slow, cheap disk storage

 Memory manager handles the memory hierarchy

2

NO MEMORY ABSTRACTION

 Only one process at a time can be running

3

Running Multiple Programs
Without a Memory Abstraction
 IBM 360

 Special hardware for protection
 4 bits for each memory block

 static relocation

4

AMEMORY ABSTRACTION: ADDRESS
SPACES
 Two problems should be solved

 protection
 relocation

 Base and limit registers

5

Swapping

Swapping

Memory Management with Bit
Maps
 Part of memory with 5 processes, 3 holes

 tick marks show allocation units
 shaded regions are free

 Corresponding bit map
 Same information as a list

8

Memory Management with
Linked Lists
 Four neighbor combinations for the

terminating process X

9

Memory Management with
Linked Lists
 Algorithms for allocating memory for new

processes
 First fit
 Next fit
 Best fit
 Worst fit

10

Virtual Memory
Paging (1)
 The position and function of the MMU

11

Paging (2)

 The relation between
virtual addresses
and physical
memory addresses
given by page table

12

Page Tables (1)

 Internal operation of MMU with 16 4 KB
pages

13

Page Tables (2)

 Typical page table entry

14

TLBs – Translation Lookaside
Buffers
 A TLB to speed up paging

15

Page Tables for Large
Memories
 Multilevel Page Tables

16

Page Tables for Large
Memories
 Inverted Page Tables

17

Page Replacement Algorithms

 Page fault forces choice
 which page must be removed
 make room for incoming page

 Modified page must first be saved
 unmodified just overwritten

 Better not to choose an often used page
 will probably need to be brought back in soon

18

Optimal Page Replacement
Algorithm
 Replace page needed at the farthest point in

future
 Optimal but unrealizable

 Estimate by …
 logging page use on previous runs of process
 although this is impractical

19

Not Recently Used Page
Replacement Algorithm
 Each page has Reference bit, Modified bit

 bits are set when page is referenced, modified

 Pages are classified
 Class 0: not referenced, not modified.
 Class 1: not referenced, modified.
 Class 2: referenced, not modified.
 Class 3: referenced, modified.

 NRU removes page at random
 from lowest numbered non empty class

20

FIFO Page Replacement
Algorithm
 Maintain a linked list of all pages

 in order they came into memory

 Page at beginning of list replaced

 Disadvantage
 page in memory the longest may be often used

21

Second Chance Page
Replacement Algorithm
 Operation of a second chance

 pages sorted in FIFO order
 Page list if fault occurs at time 20, A has R bit set

(numbers above pages are loading times)

22

The Clock Page Replacement
Algorithm

23

Least Recently Used (LRU)

 Assume pages used recently will used again soon
 throw out page that has been unused for longest time

 Must keep a linked list of pages
 most recently used at front, least at rear
 update this list every memory reference !!

 Alternatively keep counter in each page table
entry
 choose page with lowest value counter

24

Simulating LRU in Software

 The aging algorithm

25

The Working Set Page
Replacement Algorithm (1)
 The working set is the set of pages used by

the k most recent memory references
 w(k,t) is the size of the working set at time, t

26

The Working Set Page
Replacement Algorithm (2)
 The working set algorithm

27

The WSClock Page Replacement
Algorithm
 Operation of the WSClock algorithm

28

Review of Page Replacement
Algorithms

29

Design Issues for Paging
Systems
 Local versus Global Allocation Policies

 Original configuration
 Local page replacement
 Global page replacement

30

Design Issues for Paging
Systems
 Local versus Global Allocation Policies

 Page fault rate as a function of the number of
page frames assigned

31

Design Issues for Paging
Systems
 Load control

 Despite good designs, system may still thrash
 When PFF algorithm indicates

 some processes need more memory
 but no processes need less

 Solution :
Reduce number of processes competing for
memory
 swap one or more to disk, divide up pages they held
 reconsider degree of multiprogramming

32

Design Issues for Paging
Systems
 Page size

 Small page size
 Advantages

 less internal fragmentation
 better fit for various data structures, code sections
 less unused program in memory

 Disadvantages
 programs need many pages
 larger page tables
 use up much valuable space in the TLB

33

Design Issues for Paging
Systems
 Separate Instruction and Data Spaces

 One address space
 Separate I and D spaces

34

Design Issues for Paging
Systems
 Shared pages

 Two processes sharing same program sharing its
page table

35

Design Issues for Paging
Systems
 Cleaning policy

 Need for a background process, paging daemon
 periodically inspects state of memory

 When too few frames are free
 selects pages to evict using a replacement algorithm

 It can use same circular list (clock)
 as regular page replacement algorithm but with diff

ptr

36

Implementation Issues

 Operating System Involvement with Paging
 Process creation

 determine program size
 create page table
 allocated space in the swap area

 initialize with program text and data
 Process execution

 MMU reset for new process
 TLB flushed

 Page fault time
 determine virtual address causing fault
 swap target page out, needed page in

 Process termination time
 release page table, pages

 Considering shared pages

37

Operating System Involvement
with Paging
 Page Fault Handling

1. Hardware traps to kernel
• saving the program counter on the stack

2. General registers saved
• assembly-code routine
• calls the operating system as a procedure

3. OS determines which virtual page needed
 hardware register
 software simulation of current instruction

4. OS
• Checks validity of address
• Checks protection consistency
• Run page replacement algorithm

38

Operating System Involvement
with Paging
 Page Fault Handling

5. If selected frame is dirty
• Schedule page for transfer to disk
• Context switch takes place
• frame is marked as busy

6. OS schedules to bring new page in from disk
• faulting process is still suspended

7. Page tables updated
• frame is marked as being in the normal state

8. Faulting instruction backed up to when it began
• program counter is reset to point to that instruction

39

Operating System Involvement
with Paging
 Page Fault Handling

9. Faulting process scheduled
 operating system returns to the assembly-language

routine that called it

10. routine
 reloads the registers and other state information
 returns to user space

11. Program continues as if no fault had occurred

40

Instruction Backup

 An instruction causing a page fault

41

Locking Pages in Memory

 Virtual memory and I/O occasionally interact
 Proc issues call for read from device into

buffer
 while waiting for I/O, another processes starts up
 has a page fault
 buffer for the first proc may be chosen to be

paged out

 Need pinning: specify some pages locked
 exempted from being target pages

42

Backing Store

 (a) Paging to static swap area
 (b) Backing up pages dynamically

43

Separation of Policy and
Mechanism
 Page fault handling with an external pager

44

Segmentation (1)
 One-dimensional address space with growing

tables
 One table may bump into another

45

Segmentation (2)

 Allows each table to grow or shrink,
independently

46

Segmentation (3)

 Comparison of paging and segmentation

47

Implementation of Pure
Segmentation
 (a)-(d) Development of checkerboarding
 (e) Removal of the checkerboarding by

compaction

48

Segmentation with Paging:
MULTICS (1)
 Descriptor segment points to page tables
 Numbers are field lengths

49

Segmentation with Paging:
MULTICS (2)
 A 34-bit MULTICS virtual address

50

Segmentation with Paging:
MULTICS (3)
 Conversion of a 2-part MULTICS address into

a main memory address

51

Segmentation with Paging:
MULTICS (4)
 Simplified version of the MULTICS TLB

52

Segmentation with Paging:
Intel x86

 An x86 selector

53

Segmentation with Paging:
Intel x86
 x86 code segment descriptor
 Data segments differ slightly

54

Segmentation with Paging:
Intel x86
 Conversion of a (selector, offset) pair to a

linear address

55

Segmentation with Paging:
Intel x86
 Mapping of a linear address onto a physical

address

56

