Chapter3

MEMORY MANAGEMENT

Basic memory management

Swapping

Virtual memory

Page replacement algorithms
Modeling page replacement algorithms
Design issues for paging systems
Implementation issues

Segmentation

Memory Management

» |deally programmers want memory that is
o large
o fast
@ non volatile

= Memory hierarchy

= small amount of fast, expensive memory — cache
@ some medium-speed, medium price main memory
o gigabytes of slow, cheap disk storage

= Memory manager handles the memory hierarchy

NO MEMORY ABSTRACTION

* Only one process at a time can be running

User
program

Operating
system in
RAM

(@)

OXFFF

Operating
system in
ROM

Device

drivers in ROM

User
program

User
program

Operating
system in
RAM

()

I Running Multiple Programs

Without a Memory Abstraction
= IBM 360

o Special hardware for protection
" 4 bits for each memory block

: : [o Jaeres
o static relocation :

CMP___ | 16412
16408
16404
16400
16396
. 16392
0 16388
JMP 28 | 16384
[o Jw3so [o 16380 0 16380

ADD |28 cMP |28 ADD |28

MOV |24 24 MOV |24

20 20 20

16 16 16

12 12 12

8 8 8

4 4 4

JMP 24 | 0 JMP28 | 0 JMP 24 | 0

(a) (b) (c)

AMEMORY ABSTRACTION: ADDRESS
SPACES

* Two problems should be solved

o protection _
o relocation . —

. . . CMP 16412
= Base and limit registers o0

16396
16392
16388

16384 JMP 28 16384
0 16380

Base register

ADD 28

MOV 24

20

16

12

8

4

JMP 24 0
(c)

Swapping

Time —>
7 /// 0000 o e ez ez
/ / g C C C C
Z) : 7 . 7 . // A
% D D D
Operating Operating Operating Operating Operating Operating Operating
system system system system system system system

(a)

(b)

(c)

(d)

(e)

(f)

(9)

Swapping

» Room for growth

______ b .

B - Actually in use

J

2.
______ —

A r Actually in use

~ Room for growth

Operating
system

(@)

B-Program

7

A-Program

Operating
system

(b)

} Room for growth

} Room for growth

Memory Management with Bit
Maps
» Part of memory with 5 processes, 3 holes

o tick marks show allocation units
= shaded regions are free

= Corresponding bit map

= Same information as a list
A5 s A, . 5]

A

11111000 Plo|ls| 4|H|5]|3|] G>|P|8]|6| [P [14]4]| =

11111111)

11001111 (
11111000 H|18| 2| —4+—>| P |20| 6| —+—>| P |26| 3| —+—>|H|29| 3| X

Process

(b) (c)

Memory Management with

Linked Lists

* Four neighbor combinations for the
terminating process X

Before X terminates

A

X

B

X

2

72

X

B

[

7

becomes

becomes

becomes

becomes

After X terminates

W7

B

r V7777

v

B

127

Memory Management with
Linked Lists

= Algorithms for allocating memory for new
processes
o First fit
= Next fit
= Best fit
= Worst fit

Virtual Memory
Paging (1)

» The position and function of the MMU

The CPU sends virtual

CPU addresses to the MMU
package
CPLL -1
/ Memory - Disk
L management emory controller
unit
'\ l l Bus

N

The MMU sends physical
addresses to the memory

11

Paging (2)

Virtual
address
space

60K-64K

= The relation between ., .«

virtual addresses
and physical
memory addresses
given by page table

52K-56K
48K-52K
44K-48K
40K-44K
36K-40K
32K-36K
28K-32K
24K-28K
20K-24K
16K-20K
12K-16K
8K-12K
4K-8K
0K-4K

N|=|o|lo|r|w| XX X[oa|Xx|~]Xx]|Xx]|X]|x

} Virtual page

Physical
memory
address

28K-32K
24K-28K
20K-24K
16K-20K
12K-16K
8K-12K
4K-8K
0K-4K

Page frame 12

pages

Page Tables (1)

Page
table

L

12-bit offset
copied directly
from input

to output

A
[iT1To[o[o[o]o[o[o[o[o[e][o[]

A

15| 000 |0
14| 000 | O
13 000 0
12| 000 |0
1] 111 |1
10 000 0
gl 101 |1
8| oo0 |o
7| ooo |o
6| 000 |0
5(o011 | 1
4| 100 |1
3| ooo |1
2| 110 |1~ 110
1] o001 |1 , i

resen

0L _oio 1 Kabsent bit

Virtual page = 2 is used
as an index into the

page table

A

[ofo]1]oJofofo]ofo]ofofo]o[1]o]f0]

|

* Internal operation of MMU with 16 4 KB

QOutgoing
physical
address
(24580)

Incoming
virtual
address
(8196)

13

I Page Tables (2)

» Typical page table entry

Caching
disabled Modified Present/absent

P— /

% Page frame number

; N\

Referenced Protection

TLBs - Translation Lookaside

Buffers

= ATLB to speed up paging

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X o0
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

Page Tables for Large

Memories —
» Multilevel Page Tables

Second-leve
page tables
S
—t—
B
———
—
——
T
Top-leve
page table
1023
. 6 4
3its 10 10 12 5 =5
ofisst] 4 =he
3 —
(a) 2 ——
1 _ ——
0 \ \ ——
1023
6 T
5 —t—
4 i
3 —
—
b
O\ e

Page
table for
the top
4M of
memory

To
pages

16

Page Tables for Large

Memories
* Inverted Page Tables

Traditional page
table with an entry
for each of the 252

pages
252 -1
256-MB physical
memory has 216
4-KB page frames
216 -1
0 T 0
Indexed
by virtual

page

Hash table

216 -4 — I 1 I

N
~ ~

—i 1 |
OT — I]
Indexed / \

by hash on Virtual Page
virtual page page frame

\

17

I Page Replacement Algorithms

= Page fault forces choice
o which page must be removed
= make room for incoming page

* Modified page must first be saved

o ynmodified just overwritten

= Better not to choose an often used page
= will probably need to be brought back in soon

I Optimal Page Replacement

Algorithm

» Replace page needed at the farthest pointin
future

o Optimal but unrealizable

= Estimate by ...

= logging page use on previous runs of process
= although this is impractical

I Not Recently Used Page

Replacement Algorithm
» Each page has Reference bit, Modified bit

o bits are set when page is referenced, modified

= Pages are classified
o Class o: not referenced, not modified.
o Class 1: not referenced, modified.
o Class 2: referenced, not modified.

o Class 3: referenced, modified.

= NRU removes page at random

= from lowest numbered non empty class

I FIFO Page Replacement
Algorithm

* Maintain a linked list of all pages
o in order they came into memory

= Page at beginning of list replaced

i » Disadvantage
= page in memory the longest may be often used

Second Chance Page

Replacement Algorithm

= Operation of a second chance
o pages sorted in FIFO order

o Page list if fault occurs at time 20, A has R bit set
(numbers above pages are loading times)

Page loaded first

Most recently

45 loaded page

A is treated like a

\ 0 7 12 14 15 18

A & D E F G H
(a)

3 8 12 14 15 18 20

B D E F G H A

Y newly loaded page

The Clock Page Replacement

Algorithm

A

,

When a page fault occurs,
the page the hand is
pointing to is inspected.
The action taken depends
on the R bit:
R = 0: Evict the page
R = 1:Clear R and advance hand

23

Least Recently Used (LRU)

= Assume pages used recently will used again soon
= throw out page that has been unused for longest time

» Must keep a linked list of pages
o most recently used at front, least at rear
o ypdate this list every memory reference !

= Alternatively keep counter in each page table
entry
o choose page with lowest value counter

24

Simulating LRU 1n Software

» The aging algorithm

Page

| | | I
R bits for { R bits for : R bits for : R bits for : R bits for
pages 0-5, I pages 0-5, I pages 0-5, l pages 0-5, | pages 0-5,
clock tick O : clock tick 1 : clock tick 2 l clock tick 3 : clock tick 4
o|t|o|1|1| i |1|1]ojo|t|o| i |1]1]|o|t]|o|1| i |1]o|ojo|t]|o| i |o|1]|1]|0]O
: l I :
| | | I
: : : :
10000000 | | | 11000000 | ! | 11100000 | ! | 11110000 | ! | 01111000
| | I I
| | | I
00000000 | i [10000000 | i [11000000 | i | 01100000 | i [10110000
10000000 i 01000000 i 00100000 i 00010000 i 10001000
| | I I
| | | I
00000000 i 00000000 i 10000000 i 01000000 i 00100000
10000000 | 11000000 : 01100000 : 10110000 : 01011000
| | I I
| | I I
| | I I
10000000 ! 01000000 ! 10100000 : 01010000 ! 00101000
(a) (b) (c) (d) (e)

25

The Working Set Page

Replacement Algorithm (1)

» The working set is the set of pages used by
the k most recent memory references

= w(k,t) is the size of the working set at time, t

w(k.1)

I The Working Set Page
Replacement Algorithm (2)

» The working set algorithm

Page table 2

[2204 | Current virtual time

Information about { / R (Referenced) bit
one page 2084 |1

2003 |1

A
Time of last use —1——-1980 | 1 Scan all pages examining R bit:
i I if (R==1)

Page referenced 1213 ‘0 set time of last use to current virtual time
during this tick T

2014 11 if (R == 0 and age > 1)

2020 | 1 remove this page

2032 | 1 if (R ==0and age <1)

Sage ntol':' rzetfelr(enced =ry remember the smallest time
uring this tic 1620 10

The WSClock Page Replacement

Algorithm

2204 | Current virtual time

= Operation of the WSClock algorithm

Hﬂ
o
o«
m
o
[
n
©
o
[3Y

16200

Hj
m
@
o
o
Hﬂ
H
©
o
[

162010

n _
ﬂ
o
o
N

©
- ©
o
o

28

o

o«

m ﬁ

o

E .G

=

n

=]

o

; E

(b)
162010

Hﬂ E
m
@
o
o
o
o
o
©
—
Hj
u
o]
o
) E

Review of Page Replacement
Algorithms

Algorithm Comment
Optimal Not implementable, but useful as a benchmark
NRU (Not Recently Used) Very crude approximation of LRU
FIFO (First-In, First-Out) Might throw out important pages
Second chance Big improvement over FIFO
Clock Realistic

LRU (Least Recently Used) | Excellent, but difficult to implement exactly

NFU (Not Frequently Used) | Fairly crude approximation to LRU

Aging Efficient algorithm that approximates LRU well
Working set Somewhat expensive to implement
WSClock Good efficient algorithm

29

I Design Issues for Paging
Systems

» Local versus Global Allocation Policies
= QOriginal configuration
o Local page replacement
o Global page replacement

Age
A0 10 A0 A0
Al 7 A1 Al
A2 5 A2 A2
- A3 4 A3 A3
B A4 6 A4 Ad
A5 3 A5
BO 9 BO BO
B1 4 B1 B1
B2 6 B2 B2
B3 2 B3
B4 5 B4 B4
B5 6 B5 B5
B6 12 B6 B6
C1 3 C1 Cf1
G2 5 C2 Cc2
C3 6 C3 C3
(a) (b) (c)

Design Issues for Paging
Systems

= | ocal versus Global Allocation Policies

o Page fault rate as a function of the number of
page frames assigned

Page faults/sec

Number of page frames assigned

Design Issues for Paging
Systems
» | oad control

o Despite good designs, system may still thrash
o When PFF algorithm indicates

* some processes need more memory

= but no processes need less
= Solution :

Reduce number of processes competing for
memory

= swap one or more to disk, divide up pages they held
* reconsider degree of multiprogramming

32

Design Issues for Paging
Systems

* Pagesize
o Small page size

* Advantages
* less internal fragmentation
= better fit for various data structures, code sections
* less unused program in memory

= Disadvantages
* programs need many pages

- larger page tables
= use up much valuable space inthe TLB

33

I Design Issues for Paging
Systems

» Separate Instruction and Data Spaces
= One address space
o Separate | and D spaces

Single address

space | space D space
032 032

} Unused page

Data < 7

DO

> Data
Program{ RQEKKKEKKY ~ Program { ‘

34

Design Issues for Paging

Systems
= Shared pages

o Two processes sharing same program sharing its
page table

o/ [1]]

ce
table

Program Data 1 Data 2

Page tables 35

Design Issues for Paging

Systems
= Cleaning policy

= Need for a background process, paging daemon

* periodically inspects state of memory
= When too few frames are free

- selects pages to evict using a replacement algorithm
o [t can use same circular list (clock)

= asregular page replacement algorithm but with diff
ptr

36

I Implementation Issues

= QOperating System Involvement with Paging
o Process creation
= determine program size
- create page table

- allocated space in the swap area
= initialize with program text and data

o Process execution

* MMU reset for new process

= TLB flushed
o Page fault time

* determine virtual address causing fault
| = swap target page out, needed pagein

o Process termination time

- release page table, pages
= Considering shared pages

Operating System Involvement
with Paging

» Page Fault Handling
1. Hardware traps to kernel
* savingthe program counter on the stack
2. General registers saved
assembly-code routine
calls the operating system as a procedure
3. OS determines which virtual page needed
= hardware register
» software simulation of current instruction
4. OS
Checks validity of address

Checks protection consistency
* Runpagereplacement algorithm

38

Operating System Involvement
with Paging
= Page Fault Handling
5. If selected frameis dirty
Schedule page for transfer to disk

Context switch takes place
frame is marked as busy

6. OS schedules to bring new page in from disk
faulting processiis still suspended
7. Page tables updated
frame is marked as being in the normal state
8. Faulting instruction backed up to when it began
* program counter is reset to point to that instruction

39

Operating System Involvement
with Paging
= Page Fault Handling

9. Faulting process scheduled

= operating system returns to the assembly-language
routine that called it

10. routine

* reloads the registers and other state information
" returns to user space

11. Program continues as if no fault had occurred

40

Instruction Backup

= Aninstruction causing a page fault

MOVE.L #6(A1), 2(A0)
- 16 Bits >

1000 MOVE | Opcode
1002 6 } First operand

1004 2

Second operand

Locking Pages in Memory

* Virtual memory and I/O occasionally interact

= Procissues call for read from device into
buffer

= while waiting for 1/O, another processes starts up
= has a page fault

o buffer for the first proc may be chosen to be
paged out

* Need pinning: specify some pages locked
= exempted from being target pages

42

Backing Store

= (a) Paging to static swap area
= (b) Backing up pages dynamically

Main memory Disk Main memor y
Pag Pag
0 0 3
4 4 6

Separation of Policy and

Mechanism

= Page fault handling with an external pager

User
space

Kernel
space

3. Request page

Main memory

User
process
2. Needed

4. Page
arrives

page

1. Page
fault Y

5. Here

is page
6. Map %
page in

Fault
handler

A

Segmentation (1)

* One-dimensional address space with growing
tables

* One table may bump into another

Virtual address space

Call stack +

} Free

allocated to the
parse tree

Parse tree

Address space
used by the parse tree

} Space currently being

Constant table {t

Source text f

bumped into the
source text table

Symbol table

1 } Symbol table has

45

I Segmentation (2)

= Allows each table to grow or shrink,

independently
20K
16K [~ 16K
12K |~ 12K 12K |~ 12K
Symbol
i table

8K |- 8K - 8K |~ Parse 8K

4K |- 4K 4K |- 4K
Constants

0K 0K OK 0K 0K

Segment Segment Segment Segment Segment
0 1 2 3 4

tree
Source Call
text stack

Segmentation (3)

= Comparison of paging and segmentation

Consideration Paging Segmentation
Need the programmer be aware No Yes
that this technique is being used?
How many linear address 1 Many
spaces are there?
Can the total address space Yes Yes
exceed the size of physical
memory?
Can procedures and data be No Yes
distinguished and separately
protected?
Can tables whose size fluctuates No Yes
be accommodated easily?
Is sharing of procedures No Yes

between users facilitated?

Why was this technique
invented?

To get a large
linear address
space without
having to buy
more physical
memory

To allow programs
and data to be broken
up into logically
independent address
spaces and to aid
sharing and
protection

47

Implementation of Pure
Segmentation

* (a)-(d) Development of checkerboarding

= (e) Removal of the checkerboarding by

S,

Segment 5
(4K)

S,

Segment 5
(4K)

Segment 3
(8K)

U

L

_

Segment 6
(4K)

Segment 5
(4K)

Segment 2
(5K)

Segment 2
5K)

Segment 6
(4K)

3K

Segment 7
(5K)

(

compaction
Segment 4 Segment 4
(7K) (7K)
Segment 3 Segment 3
(8K) (8K)
Segment 2 Segment 2
(5K) (5K)
7 ////7
3K
Segment 1 ///(/ pa /)//
(8K) Segment 7
(5K)
Segment 0 Segment 0
(4K) (4K)

(a)

Segment 0

Segment 7
(5K)

Segment 2
(5K)

(4K)

Segment 0

(b)

(c)

Segment 7
(5K)

(4K)

Segment 0

(d)

(4K)

(e)

48

Segmentation with Paging:

MULTICS (1)

= Descriptor segment points to page tables

= Numbers are field lengths

~ 36 bits - T T
) . Page 2 entry
) i Page 1 entry 18 9 111 3 3
Segment 6 descriptor Page 0 entry Main memory address Segment length /
of the page table (in pages)
Segment 5 descriptor Page table for segment 3 7]
, Page size:
Segment 4 descriptor 0= 1054 sarde
Segment 3 descriptor | | 1 = 84 words
Segment 2 descriptor i i ? = &egment s paged
= segment is not paged
Segment 1 descriptor Page 2 entry Miscellaneous bits
Segment 0 descriptor Page 1 entry
Protection bits
Descriptor segment Page 0 entry
Page table for segment 1
49

Segmentation with Paging:

MULTICS (2)

» A 34-bit MULTICS virtual address

Address within
the segment

Segment number

18

Page Offset within
number the page
6 10

Segmentation with Paging:

MULTICS (3)

= Conversion of a 2-part MULTICS address into
a main memory address

MULTICS virtual address

Segment number

Segment
number

Descriptor

Descriptor
segment

Page
number

Page Offset
number
Word
Page frame \
Page Page
table

Offset

51

Segmentation with Paging:

MULTICS (4)

= Simplified version of the MULTICSTLB

Comparison Is this
field enlry
y A \ used?
Segment Virtual Page
number page frame Protection Age l
4 1 T Read/write 13 1
6 0 2 Read only 10 | 1
12 3 1 Read/write 2 1
0
2 1 0 Execute only 7 1
2 2 12 Execute only 9 1
e — T —

52

Segmentation with Paging:
Intel x86

= An x86 selector

Bits

13

Index

/

0=GDT/1 =LDT

\

Privilege level (0-3)

53

Segmentation with Paging:

Intel x86

= x86 code segment descriptor

» Data segments differ slightly

0:
1:

0: Liis in bytes

1:Liisin pagesJLJ

6-Bit segment [

1
32-Bit segment J

1

| 0: Segment is absent from memory

| 1: Segment is present in memory

Privilege level (0-3)

" 0: System
| 1: Application

f— Segment type and protection

7/ -
Base 24-31 G|D é 1"6';_‘:'; DPL Type Base 16-23 4
£
Base 0-15 Limit 0-15 0
. . . Relative
) 32 Bits " address

54

Segmentation with Paging:

Intel x86

= Conversion of a (selector, offset) pairto a

linear address

Selector Offset
Descriptor
Base address +
e — Limit
Other fields
Y

32-Bit linear address

55

Segmentation with Paging:

Intel x86

* Mapping of a linear address onto a physical

Linear address
Bits 10 10 12
Dir Page Offset
(@)
Page directory Page table Page frame
A
é Ll—"x \.‘L t,L\ Word \.‘J"—x \L
selected
!
1024
Entries T
: T Offset
Dir
Page
' l /‘ f r
Directory entry Page table
points to entry points
page table to word
(b) 56

