
1

MEMORY MANAGEMENT
Chapter 3

Basic memory management
Swapping
Virtual memory
Page replacement algorithms
Modeling page replacement algorithms
Design issues for paging systems
Implementation issues
Segmentation

Memory Management

 Ideally programmers want memory that is
 large
 fast
 non volatile

 Memory hierarchy
 small amount of fast, expensive memory – cache
 some medium-speed, medium price main memory
 gigabytes of slow, cheap disk storage

 Memory manager handles the memory hierarchy

2

NO MEMORY ABSTRACTION

 Only one process at a time can be running

3

Running Multiple Programs
Without a Memory Abstraction
 IBM 360

 Special hardware for protection
 4 bits for each memory block

 static relocation

4

AMEMORY ABSTRACTION: ADDRESS
SPACES
 Two problems should be solved

 protection
 relocation

 Base and limit registers

5

Swapping

Swapping

Memory Management with Bit
Maps
 Part of memory with 5 processes, 3 holes

 tick marks show allocation units
 shaded regions are free

 Corresponding bit map
 Same information as a list

8

Memory Management with
Linked Lists
 Four neighbor combinations for the

terminating process X

9

Memory Management with
Linked Lists
 Algorithms for allocating memory for new

processes
 First fit
 Next fit
 Best fit
 Worst fit

10

Virtual Memory
Paging (1)
 The position and function of the MMU

11

Paging (2)

 The relation between
virtual addresses
and physical
memory addresses
given by page table

12

Page Tables (1)

 Internal operation of MMU with 16 4 KB
pages

13

Page Tables (2)

 Typical page table entry

14

TLBs – Translation Lookaside
Buffers
 A TLB to speed up paging

15

Page Tables for Large
Memories
 Multilevel Page Tables

16

Page Tables for Large
Memories
 Inverted Page Tables

17

Page Replacement Algorithms

 Page fault forces choice
 which page must be removed
 make room for incoming page

 Modified page must first be saved
 unmodified just overwritten

 Better not to choose an often used page
 will probably need to be brought back in soon

18

Optimal Page Replacement
Algorithm
 Replace page needed at the farthest point in

future
 Optimal but unrealizable

 Estimate by …
 logging page use on previous runs of process
 although this is impractical

19

Not Recently Used Page
Replacement Algorithm
 Each page has Reference bit, Modified bit

 bits are set when page is referenced, modified

 Pages are classified
 Class 0: not referenced, not modified.
 Class 1: not referenced, modified.
 Class 2: referenced, not modified.
 Class 3: referenced, modified.

 NRU removes page at random
 from lowest numbered non empty class

20

FIFO Page Replacement
Algorithm
 Maintain a linked list of all pages

 in order they came into memory

 Page at beginning of list replaced

 Disadvantage
 page in memory the longest may be often used

21

Second Chance Page
Replacement Algorithm
 Operation of a second chance

 pages sorted in FIFO order
 Page list if fault occurs at time 20, A has R bit set

(numbers above pages are loading times)

22

The Clock Page Replacement
Algorithm

23

Least Recently Used (LRU)

 Assume pages used recently will used again soon
 throw out page that has been unused for longest time

 Must keep a linked list of pages
 most recently used at front, least at rear
 update this list every memory reference !!

 Alternatively keep counter in each page table
entry
 choose page with lowest value counter

24

Simulating LRU in Software

 The aging algorithm

25

The Working Set Page
Replacement Algorithm (1)
 The working set is the set of pages used by

the k most recent memory references
 w(k,t) is the size of the working set at time, t

26

The Working Set Page
Replacement Algorithm (2)
 The working set algorithm

27

The WSClock Page Replacement
Algorithm
 Operation of the WSClock algorithm

28

Review of Page Replacement
Algorithms

29

Design Issues for Paging
Systems
 Local versus Global Allocation Policies

 Original configuration
 Local page replacement
 Global page replacement

30

Design Issues for Paging
Systems
 Local versus Global Allocation Policies

 Page fault rate as a function of the number of
page frames assigned

31

Design Issues for Paging
Systems
 Load control

 Despite good designs, system may still thrash
 When PFF algorithm indicates

 some processes need more memory
 but no processes need less

 Solution :
Reduce number of processes competing for
memory
 swap one or more to disk, divide up pages they held
 reconsider degree of multiprogramming

32

Design Issues for Paging
Systems
 Page size

 Small page size
 Advantages

 less internal fragmentation
 better fit for various data structures, code sections
 less unused program in memory

 Disadvantages
 programs need many pages
 larger page tables
 use up much valuable space in the TLB

33

Design Issues for Paging
Systems
 Separate Instruction and Data Spaces

 One address space
 Separate I and D spaces

34

Design Issues for Paging
Systems
 Shared pages

 Two processes sharing same program sharing its
page table

35

Design Issues for Paging
Systems
 Cleaning policy

 Need for a background process, paging daemon
 periodically inspects state of memory

 When too few frames are free
 selects pages to evict using a replacement algorithm

 It can use same circular list (clock)
 as regular page replacement algorithm but with diff

ptr

36

Implementation Issues

 Operating System Involvement with Paging
 Process creation

 determine program size
 create page table
 allocated space in the swap area

 initialize with program text and data
 Process execution

 MMU reset for new process
 TLB flushed

 Page fault time
 determine virtual address causing fault
 swap target page out, needed page in

 Process termination time
 release page table, pages

 Considering shared pages

37

Operating System Involvement
with Paging
 Page Fault Handling

1. Hardware traps to kernel
• saving the program counter on the stack

2. General registers saved
• assembly-code routine
• calls the operating system as a procedure

3. OS determines which virtual page needed
 hardware register
 software simulation of current instruction

4. OS
• Checks validity of address
• Checks protection consistency
• Run page replacement algorithm

38

Operating System Involvement
with Paging
 Page Fault Handling

5. If selected frame is dirty
• Schedule page for transfer to disk
• Context switch takes place
• frame is marked as busy

6. OS schedules to bring new page in from disk
• faulting process is still suspended

7. Page tables updated
• frame is marked as being in the normal state

8. Faulting instruction backed up to when it began
• program counter is reset to point to that instruction

39

Operating System Involvement
with Paging
 Page Fault Handling

9. Faulting process scheduled
 operating system returns to the assembly-language

routine that called it

10. routine
 reloads the registers and other state information
 returns to user space

11. Program continues as if no fault had occurred

40

Instruction Backup

 An instruction causing a page fault

41

Locking Pages in Memory

 Virtual memory and I/O occasionally interact
 Proc issues call for read from device into

buffer
 while waiting for I/O, another processes starts up
 has a page fault
 buffer for the first proc may be chosen to be

paged out

 Need pinning: specify some pages locked
 exempted from being target pages

42

Backing Store

 (a) Paging to static swap area
 (b) Backing up pages dynamically

43

Separation of Policy and
Mechanism
 Page fault handling with an external pager

44

Segmentation (1)
 One-dimensional address space with growing

tables
 One table may bump into another

45

Segmentation (2)

 Allows each table to grow or shrink,
independently

46

Segmentation (3)

 Comparison of paging and segmentation

47

Implementation of Pure
Segmentation
 (a)-(d) Development of checkerboarding
 (e) Removal of the checkerboarding by

compaction

48

Segmentation with Paging:
MULTICS (1)
 Descriptor segment points to page tables
 Numbers are field lengths

49

Segmentation with Paging:
MULTICS (2)
 A 34-bit MULTICS virtual address

50

Segmentation with Paging:
MULTICS (3)
 Conversion of a 2-part MULTICS address into

a main memory address

51

Segmentation with Paging:
MULTICS (4)
 Simplified version of the MULTICS TLB

52

Segmentation with Paging:
Intel x86

 An x86 selector

53

Segmentation with Paging:
Intel x86
 x86 code segment descriptor
 Data segments differ slightly

54

Segmentation with Paging:
Intel x86
 Conversion of a (selector, offset) pair to a

linear address

55

Segmentation with Paging:
Intel x86
 Mapping of a linear address onto a physical

address

56

