
G. C. Onwubolu, B. V. Babu

New Optimization Techniques in Engineering

Springer-Verlag Berlin Heidelberg GmbH

Studies in Fuzziness and Soft Computing, Volume 141

Editor-in-chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series
can be found on our homepage:
springeronline.com

Vol. 122. M. Nachtegael, D. Van der Weken,
D. Van de Ville and E.E. Kerre (Eds.)
Fuzzy Filters for Image Processing, 2003
ISBN 3-540-00465-3

Vol. 123. V. Torra (Ed.)
Information Fusion in Data Mining, 2003
ISBN 3-540-00676-1

Vol. 124. X. Yu, J. Kacprzyk (Eds.)
Applied Decision Support with Soft Computing,
2003
ISBN 3-540-02491-3

Vol. 125. M. Inuiguchi, S. Hirano and S. Tsumoto
(Eds.)
Rough Set Theory and Granular Computing, 2003
ISBN 3-540-00574-9

Vol. 126. J.-L. Verdegay (Ed.)
Fuzzy Sets Based Heuristics for Optimization,
2003
ISBN 3-540-00551-X
Vol 127. L. Reznik, V. Kreinovich (Eds.)
Soft Computing in Measurement and Information
Acquisition, 2003
ISBN 3-540-00246-4

Vol 128. J. Casillas, O. Cordón, F. Herrera,
L. Magdalena (Eds.)
Interpretability Issues in Fuzzy Modeling, 2003
ISBN 3-540-02932-X

Vol 129. J. Casillas, O. Cordón, F. Herrera,
L. Magdalena (Eds.)
Accuracy Improvements in Linguistic Fuzzy
Modeling, 2003
ISBN 3-540-02933-8

Vol 130. P.S. Nair
Uncertainty in Multi-Source Databases, 2003
ISBN 3-540-03242-8

Vol 131. J.N. Mordeson, D.S. Malik, N. Kuroki
Fuzzy Semigroups, 2003
ISBN 3-540-03243-6

Vol 132. Y. Xu, D. Ruan, K. Qin, J. Liu
Lattice-Valued Logic, 2003
ISBN 3-540-40175-X

Vol. 133. Z.-Q. Liu, J. Cai, R. Buse
Handwriting Recognition, 2003
ISBN 3-540-40177-6

Vol 134. V.A. Niskanen
Soft Computing Methods in Human Sciences, 2004
ISBN 3-540-00466-1

Vol. 135. J.J. Buckley
Fuzzy Probabilities and Fuzzy Sets for Web
Planning, 2004
ISBN 3-540-00473-4

Vol. 136. L. Wang (Ed.)
Soft Computing in Communications, 2004
ISBN 3-540-40575-5

Vol. 137. V. Loia, M. Nikravesh, L.A. Zadeh (Eds.)
Fuzzy Logic and the Internet, 2004
ISBN 3-540-20180-7

Vol. 138. S. Sirmakessis (Ed.)
Text Mining and its Applications, 2004
ISBN 3-540-20238-2

Vol. 139. M. Nikravesh, B. Azvine, I. Yager, L.A.
Zadeh (Eds.)
Enhancing the Power of the Internet, 2004
ISBN 3-540-20237-4

Vol. 140. A. Abraham, L.C. Jain, B.J. van der
Zwaag (Eds.)
Innovations in Intelligent Systems, 2004
ISBN 3-540-20265-X

Godfrey C. Onwubolu
B. V. Babu

New Optimization
Techniques in Engineering

123

Professor Godfrey C. Onwubolu
Chair of Department of Engineering
The University of the South Pacifi c
P.O. Box 1168
Suva
Fiji Islands
E-mail: onwubolu_g@usp.ac.fj

Professor B. V. Babu
Assistant Dean – Engineering Services Division (ESD) &
Head – Chemical Engineering & Engineering Technology Departments
Birla Institute of Technology & Science (BITS)
Pilani - 333 031 (Rajasthan)
India
E-mail: bvbabu@bits-pilani.ac.in;
bv_babu@hotmail. com

ISSN 1434-9922

Library of Congress Cataloging-in-Publication-Data

Onwubolu, Godfrey C.
New optimization techniques in engineering / Godfrey C. Onwubolu, B. V. Babu.
p. cm. -- (Studies in fuzziness and soft computing ; v. 141)
Includes bibliographical references and index.
1. Engineering--Mathemaical models. 2. Mathematica optimization. I. Babu, B. V. II. Title.
III. Series.
TA342.059 2004
620'0015'196--dc22

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations,
recitations, broadcasting, reproduction on microfi lm or in any other way, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the German copyright Law of September 9, 1965, in its current version, and permission for
use must always be obtained from Springer-Verlag. Violations are liable for prosecution under
the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 2004

The use of general descriptive names, registered names trademarks, etc. in this publication
does not imply, even in the absence of a specifi c statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Cover design: E. Kirchner, Springer-Verlag, Heidelberg
Printed on acid free paper 62/3020/M - 5 4 3 2 1 0

Softcover reprint of the hardcover 1st edition 2004
Originally published by Springer-Verlag Berlin Heidelberg in 2004

ISBN 978-3-642-05767-0 ISBN 978-3-540-39930-8 (eBook)
DOI 10.1007/978-3-540-39930-8

PREFACE

Presently, general-purpose optimization techniques such as Simulated Annealing,
and Genetic Algorithms, have become standard optimization techniques. These
optimization techniques commence with a single solution and then find the best
from several moves made, and generally, past history is not carried forward into
the present. Many researchers agree that firstly, having a population of initial solu-
tions increases the possibility of converging to an optimum solution, and secondly,
updating the current information of the search strategy from previous history is a
natural tendency. Accordingly, attempts have been made by researchers to restruc-
ture these standard optimization techniques in order to achieve the two goals men-
tioned.

To achieve these two goals, researchers have made concerted efforts in the last
one-decade in order to invent novel optimization techniques for solving real life
problems, which have the attributes of memory update and population-based
search solutions. This book describes these novel optimization techniques, which
in most cases outperform their counterpart standard optimization techniques in
many application areas. Despite these already promising results, these novel opti-
mization techniques are still in their infancy and can most probably be improved.
To date, researchers are still carrying out studies on sound theoretical basis and
analysis to determine why some of these novel optimization techniques converge
so well compared to their counterpart standard optimization techniques.

Interestingly, most books that have reported the applications and results of
these novel optimization techniques have done so without sufficiently considering
practical problems in the different engineering disciplines. This book, New Opti-
mization Techniques in Engineering has three main objectives: (i) to discuss in the
clearest way possible, these novel optimization techniques, (ii) to apply these
novel optimization techniques in the conventional engineering disciplines, and (iii)
to suggest and incorporate the improvements in these novel optimization tech-
niques that are feasible as and when it is possible in the application areas chosen.

To achieve the first objective, Part I containing seven chapters have been writ-
ten by the inventors of these novel optimization techniques or experts who have
done considerable work in the areas (Genetic Algorithm, Memetic Algorithm,
Scatter Search, Ant Colony Optimization, Differential Evolution, Self-Organizing
Migrating Algorithm, Particle Swarm Optimization). Genetic Algorithm has been
included for completeness since it is the progenitor of Memetic Algorithm. The
contributors for Genetic Algorithm and Particle Swarm Optimization have been
chosen, not as the inventors, but due to their expertise and contributions in these
areas of optimization. To achieve the second objective, Part II contains several

VI Preface

chapters in which researchers have applied these novel optimization techniques to
different Engineering disciplines such as Chemical/Metallurgical Engineering,
Civil/Environmental Engineering/Interdisciplinary, Electrical/Electronics Engi-
neering, Manufacturing/Industrial Engineering, and Mechanical/Aeronautical En-
gineering. Firstly, the Engineering background is sufficiently given concerning the
problem-domain, and then a novel optimization technique is applied. Conse-
quently, Part II makes it easy for engineers and scientists to understand the link
between theory and application of a particular novel optimization technique. To
achieve the third objective, the possible improvements in these novel optimization
techniques are identified, suggested and applied to some of the engineering prob-
lems successfully. Part III discusses newer areas, which are considered as ex-
tended frontiers.

The text serves as an instructional material for upper division undergraduates,
entry-level graduate student, and a resource material for practicing engineers, re-
search scientists, operations researchers, computer scientists, applied mathemati-
cians, and management scientists. Those to purchase the book include upper divi-
sion undergraduates or entry-level graduate students, academics, professionals and
researchers of disciplines listed above, and libraries.

Godfrey C Onwubolu and B V Babu
June 2003

CONTRIBUTORS

B. V. Babu, Assistant Dean-Engineering Services Division & Head-Chemical Engineering
& Engineering Technology Departments, Birla Institute of Technology and Science
(BITS), Pilani-333 031 (Rajasthan), India. E-mail: bvbabu@bits-pilani.ac.in (CHAP.
1, 9, 10, 11 & 12)

Laxmidhar Behera, Assistant Professor, Department of Electrical Engineering, Indian In-
stitute of Technology, Kanpur-208 016, India. E-mail: lbehera@iitk.ac.in (CHAP. 19)

Sergiy Butenko, Department of Industrial and Systems Engineering, 373 Weil Hall, Uni-
versity of Florida, Gainesville, FL 32611. E-mail: butenko@ufl.edu (CHAP. 29)

Antonella Carbonaro, Department of Computer Science, University of Bologna via Sac-
chi, 3, 47023 Cesena, Italy. Email: carbonar@csr.unibo.it (CHAP. 15)

Kai-Ying Chen, Assistant Professor, Department of Industrial Engineering, National
Taipei University of Technology. E-mail: kychen@ntut.edu.tw (CHAP. 25 & 28)

Mu-Chen Chen, Professor, Department of Business Management, National Taipei Univer-
sity of Technology, No. 1, Section 3, Chung-Hsiao E. Road, Taipei 106, Taiwan, ROC.
Email: bmcchen@ntut.edu.tw / iemcchen@yahoo.com.tw (CHAP. 25 & 28)

Maurice Clerc, France Télécom Recherche & Développement, 90000, Belfort, France.
Email: Maurice.Clerc@ WriteMe.com (CHAP. 8)

Carlos Cotta, Associate Professor, University of Málaga, Departamento de Lenguajes y
Ciencias de la Computación Complejo Tecnológico (Despacho 3.2.49), Campus de
Teatinos 29071-Málaga. SPAIN. Email: ccottap@lcc.uma.es (CHAP. 3 & 27)

Kalyanmoy Deb, Professor, Department of Mechanical Engineering, Indian Institute of
Technology, Kanpur, Pin 208 016, INDIA. E-mail: deb@iitk.ac.in (CHAP. 2)

Luca Maria Gambardella, Director, IDSIA, Istituto Dalle Molle di Studi sull'Intelligenza
Artificiale Galleria 2 6928 Manno-Lugano, Switzerland. Email: luca@idsia.ch (CHAP.
5)

Fred Glover, MediaOne Chaired Professor of Systems Science, University of Colorado;
Visiting Hearin Professor, University of Mississippi; Research Director of the Hearin
Center for Enterprise Science; School of Business Administration University of Mis-
sissippi University, MS 38677. Email: fglover@bus.olemiss.edu (CHAP. 4 &13)

Lee Tong Heng, Department of Electrical & Computer Engineering, National University of
Singapore, 4 Engineering Drive 3, Singapore-117 576, E-mail: eleleeth@nus.edu.sg
(CHAP. 20)

Hanno Hildmann, University of Amsterdam, Department of Sciences, The Netherlands.
Email: hanno@dfki.de (CHAP. 15)

Nguyen Van Hop, Sirindhorn International Institute of Technology, Thammasat Univer-
sity, P.O.Box 22, Klong Luang, Pathumthani 12121, Thailand. E-mail: van-
hop@siit.tu.ac.th (CHAP. 14)

D. Nagesh Kumar, Associate Professor, Civil Engineering Department, Indian Institute of
Science, Bangalore-560 012, India. E-mail: nagesh@civil.iisc.ernet.in (CHAP. 16)

VIII Contributors

Manuel Laguna, Leeds School of Business, University of Colorado,Boulder, CO 80309-
0419, USA. Email: Manuel.Laguna@Colorado.edu (CHAP. 4 & 13)

Fabio de Luigi, Dept. Computer Science, University of Ferrara, Italy.
Email: f.deluigi@unife.it (CHAP. 5)

Jouni Lampinen, Department of Information Technology, Laboratory of Information
Processing, Lappeenranta University of Technology, P.O.Box 20, FIN-53851 Lap-
peenranta, Finland. E-mail: Jouni.Lampinen@lut.fi (CHAP. 6 & 26)

Alexandre Linhares, Adjunct Professor, Brazilian School of Business and Public Admini-
stration, FGV, Praia de Botafogo 190/426, Rio de Janeiro 22257-970.
Email: linhares@fgv.br (CHAP. 18)

Vittorio Maniezzo, Professor, Department of Computer Science, University of Bologna via
Sacchi, 3, 47023 Cesena, Italy. Email: maniezzo@csr.unibo.it (CHAP. 5 & 15)

Rafael Marti, Departamento de Estadistica e Investigación Operativa, Facultad de
Matemáticas, Universidad de Valencia, C/ Dr. Moliner 50, 46100 Burjassot, Valencia,
Spain. E-mail: Rafael.Marti@uv.es (CHAP. 4 & 13)

Alexandre de Sousa Mendes, Universidade Estadual de Campinas – UNICAMP
Faculdade de Engenharia Elétrica e de Computação – FEEC Departamento de Engen-
haria de Sistemas - DENSIS C.P. 6101 - CEP 13083-970, Campinas - SP - Brazil
E-mail: asmendes@yahool.com (CHAP.3, 18 & 27)

Pablo Moscato, Senior Lecturer and Postgraduate Director for Computer Science, School
of Electrical Engineering and Computer Science, Faculty of Engineering and Built En-
vironment, The University of Newcastle, Callaghan, 2308 New South Wales, Austra-
lia. Email: moscato@cs.newcastle.edu.au (CHAP. 3, 18, & 27)

Godfrey C. Onwubolu, Professor and Chair of Engineering, Department of Engineering,
The University of the South Pacific, PO Box 1168, Suva, FIJI. Email: on-
wubolu_g@usp.ac.fj (CHAP. 1, 21, 22, 23, & 24)

Panos M. Pardalos, Professor and Co-Director, Center for Applied Optimization, Indus-
trial and Systems Engineering Department, 303 Weil Hall, University of Florida, PO
Box 116595, Gainesville, FL 32611-6595, Email: pardalos@ufl.edu / par-
dalos@cao.ise.ufl.edu (CHAP. 29)

Xiao Peng, Department of Electrical & Computer Engineering, National University of Sin-
gapore, 4 Engineering Drive 3, Singapore-117 576, E-mail: engp0525@nus.edu.sg
(CHAP. 20)

K. Srinivasa Raju, Assistant Professor, Civil Engineering Group, Birla Institute of Tech-
nology and Science (BITS), Pilani-333 031, Rajasthan, India. Email: ksraju@bits-
pilani.ac.in (CHAP. 16)

Anuraganand Sharma, Computer Section, Colonial, Suva, Fiji. Email:
ANDS@Colonial.com.au (CHAP. 23)

Rainer Storn, Infineon AG, TR PRM AL, Balanstr. 73, D-81541 Muenchen, Germany /
International Computer Science Institute 1947 Center Street, Suite 600, Berkeley, CA
94704-1198. E-mail: rainer.storn@infineon.com / storn@icsi.berkeley.edu (CHAP. 6)

Mario T. Tabucanon, Asian Institute of Technology, P.O. Box 4, Klong Kluang, Pathum-
thani 1210, Thailand. E-mail: mtt@ait.ac.th (CHAP. 14)

Prahlad Vadakkepat, Assistant Professor, Department of Electrical & Computer Engi-
neering, National University of Singapore & General Secretary, Federation of Interna-
tional Robot-soccer Association, Singapore, E-mail: prahlad@nus.edu.sg (CHAP. 20).

Ivan Zelinka, Tomas Bata University in Zlin, Faculty of Technology, Institut of Informa-
tion Technologies, Mostni 5139, Zlin 760 01, Czech Republic. Email: ze-
linka@ft.utb.cz (CHAP. 7, 17 & 26)

Acknowledgements

The process of producing a book is the outcome of the inputs of many people. We

are grateful to all the contributors for their ideas and cooperation. Working to-

gether with such a number of contributors from remotely located distances is both

challenging and interesting; there was such a speedy response from contributors,

that they deserve to be acknowledged. On the publishers’ side, we want to thank

Thomas Ditzinger, Heather King and other colleagues at Springer-Verlag, Heidel-

berg, Germany for their enthusiasm and editorial hard work to get this book out to

the readers.

BVB acknowledges the Director, Prof. S. Venkateswaran; Deputy Director

(Administration), Prof. K.E.Raman; Deputy Director (Academic), Prof.

L.K.Maheshwari; and Deputy Director (Off-Campus Programmes), Prof. V.S.Rao

of BITS-Pilani for continuous encouragement, support, and providing him with

the required infrastructure facilities in preparing this book. He thanks his col-

leagues and Ph.D. Students Mr. Rakesh Angira and Mr. Ashish Chaurasia for

helping him in making some of the figures and proof reading.

Producing a book is not without the support and patience of some close people

to the authors. In this regard, GCO thanks his wife, Ngozi and their children

Chioma, Chineye, Chukujindu, Chinwe and Chinedu for their supporting-role and

forbearance. In addition, the undergraduate and graduate students who worked un-

der my supervision are acknowledged for their hardwork. BVB thanks his wife

Shailaja for unconditional support and understanding, and his children Shruti and

Abhinav for understanding the importance and seriousness of this project contri-

bution by not complaining on reaching home late nights. BVB also thanks his

parents Shri Venkata Ramana and Mrs. Annapurna for making him what he is to-

day.

CONTENTS

Chapter 1: Introduction 1
Godfrey C Onwubolu and B V Babu
1.1 Optimization 1
1.2 Stochastic Optimization Technique 4
1.2.1 Local Search 4
1.2.2 Population-based Search 5
1.3 Framework for Well-Established Optimization Techniques 6
1.4 New & Novel Optimization Techniques 7
1.5 The Structure of the Book 9
1.6 Summary 10

References 11

Part I: New Optimization Techniques

Chapter 2: Introduction to Genetic Algorithms for Engineering Optimization
Kalyanmoy Deb 13
2.1 Introduction 13
2.2 Classical Search and Optimization Techniques 14
2.3 Motivation from Nature 16
2.4 Genetic Algorithms 17
2.4.1 Working Principle 17
2.4.2 An Illustration 22
2.4.3 A Hand Calculation 27
2.4.4 Constraint Handling 31
2.5 Car Suspension Design Using Genetic Algorithms 34
2.5.1 Two-dimensional model 34
2.5.2 Three-dimensional model 37
2.6 Real-Parameter Genetic Algorithms 40
2.7 A Combined Genetic Algorithm 43
2.7.1 Gear Train Design 44
2.8 A Spring Design 45
2.9 Advanced Genetic Algorithms 47
2.10 Conclusions 48

References 49

XII Contents

Chapter 3: Memetic Algorithms 53
Pablo Moscato, Carlos Cotta and Alexandre Mendes
3.1 Introduction 53
3.2 The MA Search Template 54
3.3 Design of Effective MAs 60
3.4 Applications of MAs 65
3.4.1 NP-hard Combinatorial Optimization problems 66
3.4.2 Telecomunications and networking 66
3.4.3 Scheduling and Timetabling Problems 67
3.4.4 Machine Learning and Robotics 67
3.4.5 Engineering, Electronics and Electromagnetics 68
3.4.6 Problems involving optimization in molecules 68
3.4.7 Other Applications 69
3.5 Conclusions and Future Directions 69

References 72

Chapter 4: Scatter Search and Path Relinking: Foundations and
Advanced Designs 87
Fred Glover, Manuel Laguna and Rafael Martí
4.1 Introduction 87
4.2 Foundations 89
4.2.1 Scatter Search 89
4.2.2 Path Relinking 91
4.3 Advanced Strategies 93
4.3.1 Scatter Search 93
4.3.2 Path Relinking 96

References 99

Chapter 5: Ant Colony Optimization 101
Vittorio Maniezzo, Luca Maria Gambardella, Fabio de Luigi
5.1 Introduction 101
5.2 Ant Colony Optimization 102
5.2.1 Ant System 103
5.2.2 Ant Colony System 105
5.2.3 ANTS 107
5.3 Significant problems 109
5.3.1 Sequential ordering problem 110
5.3.2 Vehicle routing problems 111
5.3.3 Quadratic Assignment Problem 113
5.3.4 Other problems 114
5.4 Convergence proofs 115
5.5 Conclusions 116

References 117

Contents XIII

Chapter 6: Differential Evolution 123
Jouni Lampinen and Rainer Storn
6.1 Introduction 123
6.2 Mixed integer-discrete-continuous non-linear programming 124
6.3 Differential Evolution 125
6.3.1 Initialization 127
6.3.2 Mutation and Crossover 128
6.3.3 Selection 130
6.3.4 DE dynamics 132
6.4 Constraint handling 138
6.4.1 Boundary constraints 138
6.4.2 Constraint functions 139
6.4 Handling integer and discrete variables 142
6.5.1 Methods 142
6.5.2 An Illustrative Example 143
6.6 Numerical examples 144
6.6.1 Example 1: Designing a gear train 146
6.6.2 Example 2: Designing a pressure vessel 149
6.6.3 Example 3: Designing a coil compression spring 153
6.7 DE’s Sensitivity to Its Control Variables 157
6.8 Conclusions 160

References 163

Chapter 7: SOMA - Self-Organizing Migrating Algorithm 167
Ivan Zelinka
7.1 Introduction 167
7.2 Function domain of SOMA 168
7.3 Population 169
7.4 Mutation 170
7.5 Crossover 171
7.6 Parameters and Terminology 172
7.7 Principles of SOMA 175
7.8 Variations of SOMA 179
7.9 SOMA dependence on control parameters 180
7.10 On the SOMA classification and some additional information 182
7.11 Constraint Handling 184
7.11.1 Boundary constraints 185
7.11.2 Constraint functions 186
7.11.3 Handling of Integer and Discrete Variables 187
7.12 Selected Applications and Open Projects 189
7.13 Gallery of test functions 192
7.14 SOMA on tested functions 200
7.15 Conclusion 212

References 215

XIV Contents

Chapter 8: Discrete Particle Swarm Optimization, illustrated by the
Traveling Salesman Problem 219
Maurice Clerc
8.1 Introduction 219
8.2 A few words about “classical” PSO 219
8.3 Discrete PSO 221
8.4 PSO elements for TSP 222
8.4.1 Positions and state space 222
8.4.2 Objective function 222
8.4.3 Velocity 223
8.4.4 Opposite of a velocity 223
8.4.5 Move (addition) “position plus velocity” 223
8.4.6 Subtraction “position minus position” 224
8.4.7 Addition “velocity plus velocity” 224
8.4.8 Multiplication “coefficient times velocity” 224
8.4.9 Distance between two positions 225
8.5 The algorithm “PSO for TSP”. Core and variations 225
8.5.1 Equations 225
8.5.2 NoHope tests 226
8.5.3 ReHope process 227
8.5.4 Adaptive ReHope Method (ARM) 228
8.5.5 Queens 228
8.5.6 Extra-best particle 228
8.5.7 Parallel and sequential versions 229
8.6 Examples and results 229
8.6.1 Parameters choice 229
8.6.2 A toy example as illustration 230
8.6.3 Some results, and discussion 235

Appendix 236
References 238

Part II: Applications of New Optimization Techniques in Engineering

Part II.1: Chemical/Metallurgical Engineering

Chapter 9: Applications in Heat Transfer 241
B V Babu
9.1 Introduction 241
9.2 Heat Transfer Parameters in Trickle Bed Reactor 244
9.2.1 Orthogonal collocation 247
9.2.2 Experimental setup and procedure 249
9.2.3 Results and discussions 251
9.2.4 Conclusions 258

Contents XV

9.3 Design of Shell-and-Tube Heat Exchanger 259
9.3.1 The Optimal HED problem 259
9.3.2 Problem Formulation 262
9.3.3 Results & Discussions 263
9.3.4 Conclusions 276

Nomenclature 277
References 281

Chapter 10: Applications in Mass Transfer 287
B V Babu
10.1 Introduction 287
10.2 Optimization of Liquid Extraction Process 287
10.2.1 Process Model 290
10.2.2 Objective function 291
10.2.3 Inequality constraints 291
10.2.4 Results & Discussion 292
10.2.5 Conclusions 294
10.3 Optimization of a Separation Train of Distillation Columns 295
10.3.1 Problem formulation 295
10.3.2 Results & Discussion 298
10.3.3 Conclusions 300
10.4 Optimization and Synthesis of Heat Integrated Distillation Column

Sequences 300
10.4.1 Problem formulation 301
10.4.2 Synthesis of Distillation system 303
10.4.3 Results & Discussion 305
10.4.4 Conclusions 308

References 309

Chapter 11: Applications in Fluid Mechanics 313
B V Babu
11.1 Introduction 313
11.2 Gas Transmission Network 314
11.2.1 Problem Formulation 315
11.2.2 Results & Discussion 320
11.3 Water Pumping System 327
11.3.1 Differential Evolution Strategies 327
11.3.2 Problem Formulation 331
11.3.3 Results & Discussion 332
11.4 Conclusions 334

References 336

Chapter 12: Applications in Reaction Engineering 341
B V Babu
12.1 Introduction 341

XVI Contents

12.2 Design of Auto-Thermal Ammonia Synthesis Reactor 343
12.2.1 Ammonia Synthesis Reactor 343
12.2.2 Problem Formulation 345
12.2.3 Simulated Results & Discussion 345
12.2.4 Optimization 352
12.2.5 Conclusions 356
12.3 Thermal Cracking Operation 356
12.3.1 Thermal Cracking 357
12.3.2 Problem Description 357
12.3.3 Problem Reformulation 360
12.3.4 Simulated Results and Discussion 361
12.3.5 Conclusions 362

References 363

Part II.2: Civil/Environmental Engineering/ Interdisciplinary

Chapter 13: New Ideas and Applications of Scatter Search and Path
Relinking 367
Fred Glover, Manuel Laguna and Rafael Martí
13.1 Introduction 367
13.2 Scatter Search Applications 368
13.2.1 Neural Network Training 368
13.2.2 Multi-Objective Routing Problem 369
13.2.3 OptQuest: A Commercial Implementation 371
13.2.4 A Context-Independent Method for Permutation Problems 373
13.2.5 Classical Vehicle Routing 375
13.3 Path Relinking Applications 378
13.3.1 Matrix Bandwidth Minimization 378
13.3.2 Arc Crossing Minimization 379

References 382

Chapter 14: Improvement of Search Process in Genetic Algorithms:
An Application of PCB Assembly Sequencing Problem 385
Nguyen Van Hop and Mario T Tabucanon
14.1 Introduction 385
14.2 Guided Genetic Algorithm (GGA) 388
14.2.1 Coding scheme 389
14.2.2 Fitness function 390
14.2.3 Genetic Operators 390
14.2.4 Input parameters 394
14.2.5 Guided Genetic Algorithm (GGA) 395
14.3 The GGA for the PCB Assembly Sequencing Problem 396
14.3.1 The PCB Sequencing Problem on Multiple Non-identical Parallel

Machines 396
14.3.2 Related works 399

Contents XVII

14.3.3 The GGA Solution 401
14.3.4 Experimental Results 403
14.4 Concluding Remarks 407

References 408

Chapter 15: An ANTS Heuristic for the Long-Term Car Pooling
Problem: ACO 411
Vittorio Maniezzo, Antonella Carbonaro, Hanno Hildmann
15.1 Introduction 411
15.2 Problem Definition and Formulation 413
15.2.1 The objective function 414
15.2.2 A four-indices mathematical formulation 416
15.2.3 A set partitioning formulation 418
15.2.4 Reduction rules 418
15.3 The ANTS metaheuristic 420
15.3.1 Attractiveness 421
15.3.2 Trail update 421
15.4 ANTS approaches for the LCPP 422
15.4.1 Attractiveness quantification 422
15.4.2 Local optimization 423
15.5 A DSS for the LCPP 424
15.6 Computational results 426
15.7 Conclusions 429

References 430

Chapter 16: Genetic Algorithms in Irrigation Planning: A Case Study
of Sri Ram Sagar Project, India 431
K Srinivasa Raju and D Nagesh Kumar
16.1 Introduction 431
16.1.1 Working Principle of Genetic Algorithms 432
16.1.2 Necessity of Mathematical Modeling in Irrigation Planning 433
16.2 Literature Review 433
16.3 Irrigation System and Mathematical Modeling 434
16.3.1 Continuity equation 436
16.3.2 Crop area restrictions 436
16.3.3 Crop water diversions 436
16.3.4 Canal capacity restrictions 437
16.3.5 Live storage restrictions 437
16.3.6 Crop diversification considerations 437
16.4 Results and Discussion 437
16.5 Conclusions 441

References 443

XVIII Contents

Chapter 17: Optimization of Helical Antenna Electromagnetic Pattern Field
Ivan Zelinka 445

17.1 Introduction 445
17.2 Problem description 445
17.3 Simulations 448
17.4 Software support 451
17.5 Conclusion 452

References 453

Chapter 18: VLSI design: Gate Matrix Layout Problem 455
Pablo Moscato, Alexandre Mendes and Alexandre Linhares
18.1 Introduction 455
18.2 The gate matrix layout problem 456
18.3 The memetic algorithm 458
18.3.1 Population structure 458
18.3.2 Representation and crossover 459
18.3.3 Mutation 461
18.3.4 Local search 462
18.3.5 Selection for recombination 466
18.3.6 Offspring insertion 467
18.3.7 Pseudo-code of the MA 468
18.3.8 Migration policies 469
18.4 Computational experiments 471
18.5 Discussion 475

References 477

Chapter 19: Parametric Optimization of a Fuzzy Logic Controller
for Nonlinear Dynamical Systems using Evolutionary Computation 479
Laxmidhar Behera
19.1 Introduction 480
19.2 Differential Evolution 482
19.3 Simple Genetic Algorithm with Search Space Smoothing 483
19.4 Simple Genetic Algorithm Vs Differential Evolution 485
19.5 pH Neutralization Process 486
19.6 Simulation 488
19.7 Experiments & Results 490
19.8 The Univariate Marginal Distribution Algorithm 493
19.9 Robot arm control 493
19.9.1 Control Architecture 493
19.9.2 Inverse Dynamics Model 494
19.9.3 Feedback fuzzy PD Controller 497
19.10 Conclusions 499

References 500

Part II.3: Electrical/Electronics Engineering

Chapter 20: DNA Coded GA: Rule Base Optimization of FLC
for Mobile Robot 503
Prahlad Vadakkepat, Xiao Peng and Lee Tong Heng
20.1 Introduction 503
20.2 DNA Computing 504
20.3 The Khepera Robot and Webots Software 506
20.3.1 The Khepera Robot 506
20.3.2 The Webots Software 507
20.4 The Fuzzy logic controller 508
20.5 DNA coded Genetic Algorithm for FLC 510
20.6 Simulation Results 512
20.7 Discussion 514

References 515

Part II.4: Manufacturing/Industrial Engineering

Chapter 21: TRIBES application to the flow shop scheduling problem 517
Godfrey C Onwubolu
21.1 Introduction 517
21.2 Flow-shop scheduling problem (FSP) 518
21.3 TRIBES approach 519
21.3.1 Terminology and concepts 519
21.3.2 Informers 520
21.3.3 Hyper-spheres, and promising areas 520
21.3.4 Adaptations 525
21.3.5 Adaptive scheme 527
21.3.6 Transformer 527
21.3.7 Local search 528
21.3.8 The transformer-local search scheme 528
21.3.9 Illustrating Tribes 529
21.4 The TRIBES Algorithm 530
21.5 Experimental results 533
21.5.1 Parameter setting 533
21.5.2 Comparison with other heuristics 534
21.6 Conclusion 534

References 536

Chapter 22: Optimizing CNC Drilling Machine Operations:
Traveling Salesman Problem-Differential Evolution Approach 537
Godfrey C Onwubolu
22.1 Introduction 537
22.2 Travelling Salesman Problem (TSP) 539
22.3 TSP using Closest Insertion Algorithm 540
22.4 TSP using Differential Evolution 544
22.4.1 Differential Evolution Method 544

Contents XIX

XX Contents

22.4.2 Differential Evolution Method for TSP 551
22.4.3 Parameter Setting 554
22.4.4 An Example 554
22.4.5 Experimentation 555
22.5 TSP/Differential Evolution Application in CNC Drilling of PCB 556
22.5.1 PCB Manufacturing 557
22.5.2 Automated Drilling Location and Hit Sequencing using DE 560
22.6 Summary 562

References 564

Chapter 23: Particle swarm optimization for the assignment of facilities
to locations 567
Godfrey C Onwubolu and Anuraganand Sharma
23.1 Introduction 567
23.2 Problem Formulation 568
23.3 Application of the PSO to the QAP 569
23.3.1 Explosion Control 572
23.3.2 Particle Swarm Optimization Operators 573
23.3.3 Particle Swarm Optimization Neighborhood 576
23.3.4 Particle Swarm Optimization Improvement Strategies 577
23.4 Experimentation 580
23.4.1 Parameter settings 580
23.4.2 Computational results 580
23.5 Conclusion 581

References 582

Chapter 24: Differential Evolution for the Flow Shop Scheduling Problem585
Godfrey C Onwubolu
24.1 Introduction 585
24.2 Problem Formulation for the flow shop schedules 587
24.3 Differential Evolution 589
24.3.1 Constraint Handling 592
24.3.2 Integer and Discrete Optimization by Differential Evolution

 Algorithm 594
24.4 Illustrative Example 602
24.4.1 Mutation Scheme 603
24.4.2 Selection 606
24.5 Experimentation 606
24.5.1 Parameter Setting 607
24.6 Summary 609

References 610

Chapter 25: Evaluation of Form Errors to Large Measurement Data
Sets Using Scatter Search 613
Mu-Chen Chen and Kai-Ying Chen
25.1 Introduction 613
25.2 Mathematical Models for Roundness 615
25.2.1 Roundness 615
25.2.2 The maximum inscribed circle 616
25.2.3 The minimum circumscribed circle 617
25.2.4 The minimum zone circle 617
25.3 Mathematical Models for Sphericity 618
25.3.1 Sphericity 618
25.3.2 Maximum inscribed sphere 618
25.3.3 Minimum circumscribed sphere 619
25.3.4 Minimum zone sphere 620
25.4 Scatter Search 620
25.4.1 Overview of scatter search 620
25.4.2 Scatter search template 622
25.4.3 The scatter search procedure 624
25.5 Computational Experience 625
25.5.1 Roundness measurement 625
25.5.2 Sphericity measurement 626
25.6 Summary 627
 References 630

Chapter 26: Mechanical engineering problem optimization by SOMA 633
Ivan Zelinka and Jouni Lampinen
26.1 Mechanical engineering problem optimization by SOMA 633
26.1.1 Designing a gear train 634
26.1.2 Designing a pressure vessel 638
26.1.3 Designing a coil compression spring 644
26.2 Conclusion 650
 References 652

Chapter 27: Scheduling and Production & Control: MA 655
Pablo Moscato, Alexandre Mendes and Carlos Cotta
27.1 Introduction 655
27.2 The single machine scheduling problem 656
27.2.1 The test instances 658
27.2.2 The memetic algorithm approach 660
27.2.3 The SMS computational results 662
27.3 The parallel machine scheduling problem 665
27.3.1 The test instances 667
27.3.2 The memetic algorithm approach 667
27.3.3 The PMS computational results 668
27.4 The flowshop scheduling problem 670

Contents XXI

Part II.5: Mechanical/Aeronautical Engineering

XXII Contents

27.4.1 The test instances 672
27.4.2 The memetic algorithm approach 673
27.4.3 The flowshop computational results 674
27.5 Discussion 677

References 679

Chapter 28: Determination of Optimal Machining Conditions Using
Scatter Search 681
Mu-Chen Chen and Kai-Ying Chen
28.1 Introduction 681
28.2 Fundamentals of CNC Turning 682
28.2.1 CNC turning machine axes 683
28.2.2 CNC turning operations 683
28.2.3 CNC turning conditions 683
28.3 Literature Review 685
28.3.1 Machining optimization for turning operations 685
28.3.2 Review of machining optimization techniques 686
28.4 Notations in Machining Model 689
28.5 The Multi-Pass Turning Model 691
28.5.1 The cost function 691
28.5.2 Turning condition constraints 694
28.6 Computational Experience 696
28.7 Conclusions 698

References 700

Part III: Extended Frontiers

Chapter 29: Extended Frontiers in optimization techniques 703
Sergiy Butenko and Panos M Pardalos
29.1 Recent Progress in Optimization Techniques 703
29.2 Heuristic Approaches 706
29.2.1 Parallel Metaheuristics 707
29.3 Emerging Application Areas of Optimization 708
29.4 Concluding Remarks 709

References 710

1 Introduction

Godfrey C Onwubolu and B V Babu

1.1 Optimization

Engineers, analysts, and managers are often faced with the challenge of making
tradeoffs between different factors in order to achieve desirable outcomes. Opti-
mization is the process of choosing these tradeoffs in the "best" way. The notion
of ’different factors’ means that there are different possible solutions, and the no-
tion of ’achieving desirable outcomes’ means that there is an objective of seeking
improvement on how to find the best solution. Therefore, in an optimization prob-
lem, different candidate solutions are compared and contrasted, which means that
solution quality is fundamental.

Many engineering problems can be defined as optimization problems, e.g. pro-
cess design, process synthesis & analysis, transportation, logistics, production
scheduling, telecommunications network, complex reactor networks, separation
sequence synthesis, finding of an optimal trajectory for a robot arm, the optimal
thickness of steel in pressure vessels, the optimal set of parameters for controllers,
or optimal relations or fuzzy sets in fuzzy models, optimal network in energy inte-
gration, automated design of heat exchangers, mass exchanger networks, etc. The
solutions to such problems are usually not easy to obtain because they have large
search spaces. In practice, these real-life optimization problems are very ’hard’ to
solve since it is impossible to find the optimal solution by sampling every point in
the search space within an acceptable computation time. For small size problems
if all the points in a search space are examined, it is possible to find an optimum
solution (which is not the case, anyway, in practice). However, for the class of
’hard’ problems, which we have listed above, it is often difficult if not impossible
to guarantee convergence or find the best solution in an acceptable amount of
time. Another characteristic of many real-life engineering optimization problems
is that they are ’discontinuous’ (discrete) and ’noisy’.

The days when researchers emphasized using deterministic search techniques
(also known as traditional methods) to find optimal solutions are gone. Determi-
nistic search techniques will ensure that the global optimum solution of an optimi-

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004

2 1 Introduction

zation problem is found, but these techniques will not work when a complex, real-
life scenario is considered. In practice, an engineer, an analyst, or a manager wants
to make decision as soon as possible in order to achieve desirable outcomes.
Moreover, when an optimal design problem contains multiple global are near
global optimal solutions, designers are not only interested in finding just one
global optimal solution, but as many as possible for various reasons. Firstly, a de-
sign suitable in one situation may not be valid in another situation. Secondly, de-
signers may not be interested in finding the absolute global solution. Instead they
are interested in a solution, which corresponds to a marginally inferior objective
function value but is more amenable to fabrication. Thus, it is always prudent to
know about other equally good solutions for later use. For example, an engineer
may be given the task to find the most reliable way to design a telecommunica-
tions network where millions of people are subscribing to the telecommunication
service, such as Internet. What is the point using a deterministic search technique
to find the optimal or global solution, if it will take thousands of hours of com-
puter time? Take another example: an engineer is given a task to drill several
thousands of holes on a printed circuit board (PCB), within a short time in order to
meet the customer requirement of minimum production time. The problem of
drilling holes on PCBs with the objective of minimum production time could be
formulated as the popular traveling salesman problem (TSP). Imagine using a de-
terministic search technique to find the optimal or global solution (the best route
to take in drilling the holes from one point to the other), how much of computer
time would be needed? There are numerous combinations of parameters, the val-
ues of which are available in discrete manner, are possible in the design of a shell-
and-tube heat exchanger, which makes this design problem a large-scale discrete
combinatorial optimization problem. Similarly, there are number of parameters
and combinations of heat exchanger networks possible in energy integration prob-
lems at various stages of network proposal, starting from choosing minimum ap-
proach temperature, stream splitting, loop breaking, restoring minimum approach
temperature, etc. The number of combinations in choosing the heat transfer pa-
rameters (effective radial thermal conductivity of the bed and wall-to-bed heat
transfer coefficient) is innumerable in the design of most widely used industrial
trickle bed reactors. Unless and until these heat transfer parameters are correctly
estimated, there is a danger of hot spot formation that leads to reactor runaway. In
the design of auto-thermal ammonia synthesis reactor, the heat released due to
exothermic nature of the reaction has to be removed to obtain a reasonable con-
version as well as to protect the catalyst life. At the same time, the released heat
energy is utilized to heat the incoming feed-gas to proper reaction temperature.
Here again, the choice of reactor length and the reactor top temperature play a
crucial role for which the combinations are many. There are countless ways to
make product-mix decisions in a factory that manufactures thousands of product
types using common resources: which product-mix decision maximizes the total
throughput? There are innumerable ways to organize a large-scale factory produc-
tion schedule: which gives the best throughput? There are countless routes a mis-
sile could take in order to hit its target: which is the best route to take? What is the
point for an optimization technique to take several hours to find the ’best’ route if

1.1 Optimization 3

split of a second is what is required because the target is an enemy? There are
countless trajectories for a robot arm in a pick-and-place problem in a three-
dimensional space: which is the optimal trajectory to take? There are numerous
options of thickness of steel in a pressure vessel when optimizing the cost of the
pressure vessel: which is the optimal thickness? To find the optimal set of parame-
ters for controllers, or optimal relations or fuzzy sets in fuzzy models is a colossal
task: which are the optimal set of parameters and relations respectively? There are
many other engineering problems with many equality and inequality constraints,
which come under the above category. The following is only a representative, but
not exhaustive, list of such problems: optimization of alkylation reaction, digital
filter design, neural network learning, fuzzy decision making problems of fuel
ethanol production, design of fuzzy logic controllers, batch fermentation process,
multi sensor fusion, fault diagnosis and process control, optimization of thermal
cracker operation, scenario integrated optimization of dynamic systems, optimiza-
tion of complex reactor networks, computer aided molecular design, synthesis and
optimization of non-ideal distillation systems, dynamic optimization of continuous
polymer reactor, online optimization of culture temperature for ethanol fermenta-
tion, molecular scale catalyst design, scheduling of serial multi-component batch
processes, preliminary design of multi-product non continuous plants, separation
sequence synthesis, mass exchanger networks, generating initial parameter estima-
tions for kinetic models of catalytic processes, synthesis of utility systems, global
optimization of MINLP problems, etc. This list is unending. In practical scenario,
where search space for solution is extremely large, it is inconceivable that today’s
computer power can cope with finding these solutions within acceptable computa-
tion time if deterministic search techniques are used.

Consequently, researchers in the area of optimization have recently de-
emphasized using deterministic search techniques to achieve convergence to the
optimum solution for ‘hard’ optimization problems encountered in practical set-
tings. What is now emphasized is getting a good enough solution, within a reason-
able time in order to achieve desirable outcomes of an enterprise. Modern re-
searchers in optimization have now resorted to using good approximate search
techniques for solving optimization problems because they often find near-optimal
solutions within reasonable computation time. An engineer may be satisfied find-
ing a solution to a 'hard' optimization problem if the solution is about 98% of the
optimal (best) solution, and if the time taken is very 'reasonable' such that custom-
ers are none the less satisfied. We briefly discuss optimization techniques in gen-
eral, and the framework for the well-established optimization techniques in the
following subsections of this introductory chapter. Then new and novel optimiza-
tion techniques are discussed, which form the building block for subsequent chap-
ters that are devoted to applications of these techniques to hard optimization prob-
lems in different areas of engineering.

4 1 Introduction

1.2 Stochastic Optimization Technique

There are two classes of approximation search techniques: tailored and general-
purpose. Tailored and customized approximation search technique for a particular
optimization problem may often find an optimal (best) solution very quickly.
However, they fall short when compared with general-purpose types, in that they
cannot be flexibly applied, even, to slightly similar problems. Stochastic optimiza-
tion falls within the spectrum of the general-purpose type of approximation search
techniques. Stochastic optimization involves optimizing a system where the func-
tional relationship between the independent input variables and output (objective
function) of the system is not known a priori. Hard and discrete function optimi-
zation, in which the optimization surface or fitness landscape is “rugged”, possess-
ing many locally optimal solutions is well suited for stochastic optimization tech-
niques.

Stochastic optimization techniques play an increasingly important role in the
analysis and control of modern systems as a way of coping with inherent system
noise and with providing algorithms that are relatively insensitive to modeling un-
certainty. Their general form follows the algorithm in Figure 1.1.

Developing solutions with the stochastic optimization technique has the follow-
ing desirable characteristics:
• It is versatile, in that it can be applied with only minimal changes to other 'hard'

optimization problems;
• It is very robust, being relatively insensitive to noisy and/or missing data.
• It tends to be rather simple to implement;
• It has proved very successful in finding good, fast solutions to hard optimiza-

tion problems in a great variety of practical, real-life applications; and
• Development time is much shorter than for those techniques using more tradi-

tional approaches.

Steps involved:
1. Begin: Generate and evaluate an initial collection of candidate solutions S.
2. Operate: Produce and evaluate a collection of potential candidate solutions S’

by ’operating’on (or making randomized changes to) selected members of S.
3. Replace: Replace some of the members of S with some of the members of S’,

and then return to 2 (unless some termination criterion has been reached).

Fig. 1.1. Generalized stochastic optimization techniques.

The existing, successful methods in stochastic iterative optimization fall into
two broad classes: local search, and population-based search.

1.2.1 Local Search

In local search, a special current solution is maintained, and its neighbors are ex-
plored to find better quality solutions. The neighbors are new candidates that are

1.2 Stochastic Optimization Technique 5

only slightly different from the special current solution. Occasionally, one of these
neighbors becomes the new current solution, and then its neighbors are explored,
and so forth. The simplest example of a local search method is called stochastic
hill climbing. Figure 1.2 illustrates it.

Steps involved:
1. Begin: Generate and evaluate an initial current solution S.
2. Operate: Make randomized changes to S, producing S’, and evaluate S’
3. Replace: Replace S with S’, if S’ is better than S
4. Continue: Return to 2 (unless some termination criterion has been reached).

Fig. 1.2. The simple stochastic hill-climbing algorithm.

More sophisticated local search methods, in different ways, improve on sto-
chastic hill climbing by being more careful or clever in the way that new candi-
dates are generated. In simulated annealing, for example, the difference is basi-
cally in step 3: sometimes, we will accept S’ as the new current solution, even if it
is worse then S. Without this facility, hill-climbing is prone to getting stuck at lo-
cal peaks. These are solutions whose neighbors are all worse than the current solu-
tion or plateau areas of the solution space where there is considerable scope for
movement between solutions of equal goodness, but where very few or none of
these solutions has a better neighbor. With this feature, simulated annealing and
other local search methods can sometimes (but certainly not always) avoid such
difficulties.

1.2.2 Population-based Search

In population-based search, the notion of a single current solution is replaced by
the maintenance of a population or collection of (usually) different current solu-
tions. Members of this population are first selected to be current candidates solu-
tions, and then changes are made to these current candidates solutions to produce
new candidate solutions. Since there is now a collection of current solutions,
rather than just one, we can exploit this fact by using two or more from this collec-
tion at once as the basis for generating new candidates. Moreover, the introduction
of a population brings with it further opportunities and issues such as using some
strategy or other to select which solutions will be current candidates solutions.
Also, when one or more new candidate solutions have been produced, we need a
strategy for maintaining the population. That is, assuming that we wish to main-
tain the population at a constant size (which is almost always the case), some of
the population must be discarded in order to make way for some or all of the new
candidates produced via mutation or recombination operations. Whereas the selec-
tion strategy encompasses the details of how to choose candidates from the popu-
lation itself, the population maintenance strategy affects what is present in the
population, and what therefore is selectable. Figure 1.3 illustrates the population-
based search method.

6 1 Introduction

Steps involved:
1. Begin: Initialize and evaluate solution S(0).
2. Select: Select S(t) from S(t-1)
3. Generate: Generate a new solution space S’(t) through genetic operators
4. Evaluate: Evaluate solution S’(t) and replace S(t) with S’(t)
5. Continue: Return to 2 (unless some termination criterion has been reached).

Fig. 1.3. The population-based optimization algorithm

There are almost as many population-based optimization algorithms and vari-
ants as there are ways to handle the above issues. Commonly known evolutionary
algorithms (evolution strategy, evolutionary programming, and genetic algorithm,
for example), have the key characteristic of population-based algorithms.

1.3 Framework for Well-Established Optimization
Techniques

In random search, information from previous solutions is not used at all. Conse-
quently, performance of random search is very poor. However, in current, well-
established optimization methods information gleaned from previously seen can-
didate solutions are used to guide the generation of new ones. In other words, in-
telligence gathered from previously seen candidate solutions, are used to guide the
generation of new ones. Intelligence gathering of information related to previous
events is a powerful tool in devising strategies for seeking solutions to related cur-
rent events. This concept of utilization of intelligent information gathered from the
past event in guiding solutions to a current event is now applied in economics,
military, etc., and also in new and novel optimization methods. Most of the ideas
discussed so far can be summarized in three categories (see Figure 1.4), which are
used in well-established optimization methods (Corne et al., 1999):

Classification:
Category 1: New candidate solutions are slight variations of previously generated can-
didates.
Category 2: New candidate solutions are generated when aspects of two or more exist-
ing candidates are recombined.
Category 3: The current candidates solutions from which new candidates are produced
(in Category l or 2) are selected from previously generated candidates via a stochastic
and competitive strategy, which favors better-performing candidates.

Fig. 1.4. Categories used in well-established optimization methods.

In genetic algorithm, for example, the ’slight variations’ mentioned in Category
1 is achieved by so-called neighborhood or mutation operators. For example, sup-

1.4 New & Novel Optimization Techniques 7

pose we are trying to solve a flow-shop schedule problem and we encode a solu-
tion as a string of numbers such that the jth number represents the order of job j in
the sequence. We can simply use a mutation operator, which changes a randomly
chosen number in the list to a new, randomly chosen value. The ’mutant’ flow-
shop schedule is thus a slight variation on current candidate solutions flow-shop
schedule. In tabu search, for example, the ’slight variation’ mentioned in Category
I, is achieved by so-called neighborhood also called move operators. For example,
suppose we were addressing an instance of the traveling salesman problem, then
we would typically encode a candidate solution as a permutation of the cities (or
points) to be visited. Our neighborhood operator in this case might simply be to
swap the positions of a randomly chosen pair of cities.

The ’recombination’ operators mentioned in Category 2, which produce new
candidates from two or more existing ones, are achieved via crossover, recombi-
nation, or merge operators. Some operators involve more sophisticated strategies,
in which, perhaps, two or more current candidate solutions are the inputs to a self-
contained algorithmic search process, which outputs one or more new candidate
solutions.

The randomized but ’competitive strategy’ mentioned in Category 3 is used to
decide which solution be a current candidate solution. The strategy is usually that
the fitter a candidate is, the more likely it is to be selected to be a current candi-
date solution, and thus be the (at least partial) basis of a new candidate solution.

Several stochastic optimization tools have been enhanced in the last decade,
which facilitate solving optimization problems that were previously difficult or
impossible to solve. These stochastic optimization tools include Evolutionary
Computation, Simulated Annealing (Laarhoven and Aarts, 1987), Tabu Search
(Glover, 1995; 1999), Genetic Algorithms (Goldberg, 1989), and so on, all use at
least one of these key ideas. Reports of applications of each of these tools have
been widely published. Recently, these new heuristic tools have been combined
among themselves and with knowledge elements, as well as with more traditional
approaches such as statistical analysis (hybridization), to solve extremely chal-
lenging problems. Excellent resources for an introduction to a broad collection of
these techniques are Reeves (1995) and Onwubolu (2002).

1.4 New & Novel Optimization Techniques

Continued investigation into local search and population based optimization tech-
niques, and a consequent growing regard for their ability to address realistic prob-
lems well, has inspired much investigation of new and novel optimization meth-
ods. Often we can express these as different or novel ways of implementing
Categories 1, 2 and 3 of section 1.3, but in other cases this would be quite difficult
or inappropriate.

Chapter Two, introduced by Deb concerns genetic algorithm (Goldberg, 1989).
Genetic Algorithm has been included for completeness since it is the progenitor of
Memetic Algorithm.

8 1 Introduction

Chapter Three, introduced by Moscato & Mendes, concerns Memetic Algo-
rithms invented by Moscato (1999). This represents one of the more successful
emerging ideas in the ongoing research effort to understand population based and
local search algorithms. The idea itself is simply to hybridize the two types of
method, and Memetic Algorithms represent a particular way of achieving the hy-
bridization, and one, which has chalked up a considerable number of successes in
recent years.

Chapter Four, introduced by Glover & Marti, is about Scatter Search invented
by Glover (1995, 1999). Scatter Search places a particular focus on Category 2,
that is, the use of previously generated candidate solutions in the generation of
new ones. Similar to Differential Evolution, Scatter Search emphasizes the pro-
duction of new solutions by a linear combination of the ‘reference’ solutions, al-
though guided instead by combining intensification and diversification themes,
and introducing strategies for rounding integer variables.

Chapter Five, introduced by Maniezzo and Gambardella concerns ant colony
optimization developed by Dorigo (1992), which has drawn inspiration from the
workings of natural ant colonies to derive an optimization method based on ant
colony behavior. This has lately been shown to be remarkably successful on some
problems, and there is now a thriving international research community worldwide
further investigating the technique. Essentially, the method works by equating the
notion of a candidate solution with the route taken by an ant between two (possi-
bly the same) places. Ants leave a trail as they travel, and routes, which corre-
spond to good solutions, will leave a stronger trail than routes, which lead to poor
solutions. The trail strength affects the routes taken by future ants. We could view
this as a very novel way to implement a combination of Categories 1, 2, and 3. Es-
sentially, previously generated solutions (routes taken by past ants) affect (via trail
strengths) the solutions generated by future ants. However, it makes more sense to
view it for what it is a new and novel idea for optimization inspired by a process,
which occurs in nature.

Chapter Six introduced by Lampinen & Storn concerns an algorithm called Dif-
ferential Evolution (Storn and Price, 1995). Differential Evolution can be easily
viewed as a new way to implement Category 2; that is, it is a novel and highly
successful method for recombination of two or more current candidate solutions.
Rather than new candidates solutions combining parts of their current candidates
solutions in Differential Evolution a child is a linear combination of itself and its
current candidates solutions in which the 'difference' between its current candi-
dates solutions plays a key role. As such, Differential Evolution is necessarily re-
stricted to optimization problems in which solutions are represented by real num-
bers. Recently, transformation scheme has been introduced so that Differential
Evolution is generalized to deal with discrete optimization problems in which the
solutions are represented by integers (Onwubolu, 2001); however, the power of
even quite simple Differential Evolution algorithms to solve complex real-world
problems provides great compensation for this restriction. Apart from its simplic-
ity, it also has the flexibility to incorporate and improve upon the existing ten dif-
ferent strategies. It has the capability of finding the global optimum for complex
and complicated problems of varied nature, ranging from optimization of continu-

1.5 The Structure of the Book 9

ous functions (Babu and Sastry, 1999) to large-scale discrete combinatorial opti-
mization (Babu and Munawar, 2001). Very recently, a new concept of “nested
DE” has been successfully implemented for the optimal design of an auto-thermal
ammonia synthesis reactor (Babu et al., 2002). This concept uses DE within DE
wherein outer loop takes care of optimization of key parameters (NP – population
size, CR – crossover constant, and F – scaling factor) with the objective of mini-
mizing the number of generations required, while inner loop taking care of opti-
mizing the problem variables. Yet complex objective is the one that takes care of
minimizing the number of generations/function evaluations & the standard devia-
tion in the set of solutions at the last generation/function evaluation, and try to
maximize the robustness of the algorithm.

Chapter Seven concerns Self-Organizing Migrating Algorithm (Zelinka and
Lampinen, 2000; Zelinka, 2001), originally proposed by Zelinka has drawn inspi-
ration from existing algorithms like, evolutionary algorithms and genetic algo-
rithms. However, in general, the design of Self-Organizing Migrating Algorithm is
unique and original. Its principle is both interesting and novel. It offers a novel
approach to optimization and combines global search (the attraction of individuals
towards the fitter ones) and local search (the multiple jumps of each individual
during one migration loop); hence it covers both exploration and exploitation. The
temporary replacement of the cost function with a virtual cost function seems to
be a unique approach to overcome the difficulties when local optima are populat-
ing search space. The idea of the search algorithm is certainly a contribution con-
taining new scientific knowledge.

Chapter Eight concerns Particle Swarm Optimization (Kennedy and Eberhart,
1995; Clerc and Kennedy, 2002). An analogy with the way birds flock has sug-
gested the definition of a new computational paradigm, which is known as particle
swarm optimization. The main characteristics of this model are cognitive influ-
ence, social influence, and the use of constriction parameters. Cognitive influence
accounts for a particle moving towards its best previous position, social influence
accounts for a particle moving towards the best neighbor, and constriction parame-
ters control the explosion of the systems’ velocities and positions. Particle Swarm
Optimization is a powerful method to find the minimum of a numerical function,
on a continuous definition domain. As some binary versions have already success-
fully been used, it seems quite natural to try to define a framework for a discrete
PSO. In order to better understand both the power and the limits of this approach,
Clerc examines in detail how it can be used to solve the well-known Traveling
Salesman Problem, which is in principle very "bad" for this kind of optimization
heuristic.

1.5 The Structure of the Book

Part I introduces the new and novel optimization techniques. Part I containing six
chapters have been written by the inventors of these novel optimization techniques
or experts who have done considerable work in the areas.

10 1 Introduction

Then, the applications of these new and novel optimization techniques in the
different engineering-disciplines are discussed in Part Two.

Part II.1 puts together a collection of chemical/metallurgical engineering appli-
cations

Part II.2 puts together a collection of civil/environmental engineering applica-
tions

Part II.3 puts together a collection of electrical/electronic engineering applica-
tions

Part II.4 puts together a collection of manufacturing/industrial engineering ap-
plications

Part II.5 puts together a collection of mechanical/aeronautical engineering ap-
plications

Finally, Part III discusses newer or ’green’ areas, which are considered as ex-
tended frontiers, not discussed in the book.

1.6 Summary

There are many more new optimization techniques we could have included in the
succeeding chapters. Our selection of what to incorporate in this book is based
partly on successful results so far in different areas of engineering. And partly on
what we perceive as the ’generality’ of the optimization technique. Several more
new ideas and methods fit these criteria quite well.

What is left out is a result of constraints of time and space, but what remains
within these pages is, we hope, a collection of some of the more novel and in-
spired new methods in optimization. We have assembled this material with three
purposes in mind: first, to provide in one volume a survey of recent successful
ideas in stochastic optimization technique, which can support upper-undergraduate
and graduate teaching of relevant courses; second, to provide intellectual stimula-
tion and a practical resource for the very many researchers and practitioners in op-
timization who wish to learn about and experiment with these latest ideas in the
field; third, to provide in one volume a survey of recent successful applications of
stochastic optimization techniques different areas of engineering practices.

1.6 Summary 11

References

Babu, B.V. and Sastry, K.K.N., 1999, Estimation of Heat Transfer Parameters in a Trickle
Bed Reactor using Differential Evolution and Orthogonal Collocation, Computers and
Chemical Engineering, 23, 327-339 (Also Available via internet as .pdf file at
http://bvbabu.50megs.com/about.html).

Babu, B.V. and Munawar, S.A., 2001, Optimal Design of Shell-and-Tube Heat Exchangers
using Different Strategies of Differential Evolution, PreJournal.com - The Faculty
Lounge, Article No. 003873, posted on March 03 at website Journal
http://www.prejournal.com (Also Available via internet as .pdf files in two parts at
http://bvbabu.50megs.com/about.html).

Babu, B.V., Rakesh Angira, and Anand Nilekar, 2002, Differential Evolution for Optimal
Design of an Auto-Thermal Ammonia Synthesis Reactor, Communicated to Com-
puters and Chemical Engineering.

Clerc, M. and Kennedy, J., 2002, The Particle Swarm-Explosion, Stability, and Conver-
gence in a Multidimensional Complex Space, IEEE Transactions on Evolutionary
Computation, (6), 58-73.

Dorigo, M., 1992, Optimization, Learning and Natural Algorithms, Ph.D. Thesis, Departi-
mento di Electronica, Politecnico di Milano, Italy.

Goldberg, D. E., 1989, Genetic Algorithm in Search, Optimization & Machine Learning,
Addison Wesley, Workingham, England.

Glover, F., 1995, Scatter Search and Star-Paths: Beyond the Genetic Metaphor, Operational
Research Spektrum, 17,125-137.

Glover, F., 1999, Scatter Search and Paths Re-linking, In New Ideas in Optimization,
Corne, D., Dorigo, M., and Glover, F., (Eds.) Chapter 19, McGraw-Hill: London

Laarhoven, P. J. M., and Aarts, E. H. L., 1987, Simulated Annealing: Theory and Applica-
tions, Kluwer Academic Publishers: The Netherlands.

Kennedy, J., and Eberhart, R. C., 1995, Particle swarm optimization, IEEE Proceedings
of the International Conference on Neural Networks IV (Perth, Australia), IEEE
Service Center, Piscataway, NJ, 1942-1948.

Moscato, P., 1999, Memetic algorithms: a short introduction, In New Ideas in Optimization,
Corne, D., Dorigo, M., and Glover, F., (Eds.) Chapter 14, McGraw-Hill: London

Onwubolu, G. C., 2001, Optimization using differential evolution, Institute of Applied Sci-
ence Technical Report, TR-2001/05.

Onwubolu, G. C., 2002, Emerging Optimization Techniques in Production Planning &
Control, Imperial College Press: London

Reeves, C. R. 1995, Modern Heuristic Techniques for Combinatorial Problems, (Ed.)
McGraw-Hill (transfer from Blackwell Scientific, 1993)

Storn, R. and Price, K., 1995, Differential evolution - a simple and efficient adaptive
scheme for global optimization over continuous spaces, Technical Report TR-95-012,
ICSI, March 1999

12 References

(Available via ftp from ftp.icsi.berkeley.edu/pub/techreports/1995/tr-95-012.ps.Z).
Zelinka, I., and Lampinen, J., 2000, SOMA: Self-Organizing Migrating Algorithm, 3rd In-

ternational Conference on Prediction and Nonlinear Dynamic, Zlin, Czech Republic:
Nostradamus.

Zelinka I., 2001, Prediction and Analysis of Behavior of Dynamical Systems by means of
Artificial Intelligence and Synergetic, Ph.D. Thesis, Department of Information Proc-
essing, Lappeenranta University of Technology, Finland.

2 Introduction to Genetic Algorithms for
Engineering Optimization

Kalyanmoy Deb

2.1 Introduction

A genetic algorithm (GA) is a search and optimization method which works by
mimicking the evolutionary principles and chromosomal processing in natural ge-
netics. A GA begins its search with a random set of solutions usually coded in bi-
nary string structures. Every solution is assigned a fitness which is directly related
to the objective function of the search and optimization problem. Thereafter, the
population of solutions is modified to a new population by applying three opera-
tors similar to natural genetic operators--reproduction, crossover, and mutation. A
GA works iteratively by successively applying these three operators in each gen-
eration till a termination criterion is satisfied. Over the past couple of decades and
more, GAs have been successfully applied to a wide variety of engineering prob-
lems, because of their simplicity, global perspective, and inherent parallel process-
ing.

Classical search and optimization methods demonstrate a number of difficulties
when faced with complex engineering problems. The major difficulty arises when
one algorithm is applied to solve a number of different problems. This is because
each classical method is designed to solve only a particular class of problems effi-
ciently. Thus, these methods do not have the breadth to solve different types of
problems often faced by designers and practitioners. Moreover, most classical
methods do not have the global perspective and often get converged to a locally
optimal solution. Another difficulty is their inability to be used in parallel comput-
ing environment efficiently. Since most classical algorithms are serial in nature,
not much advantage (or speed-up) can be achieved with them.

The GA technique was first conceived by Professor John Holland of University
of Michigan, Ann Arbor in 1965. His first book appeared in 1975 (Holland, 1975)
and till 1985, GAs have been practiced mainly by Holland and his students. Expo-
nentially more number of researchers and practitioners became interested in GAs
soon after the first International conference on GAs held in 1985. Now, there exist

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004

14 2 Introduction to Genetic Algorithms for Engineering Optimization

a number of books (Gen and Cheng, 1997; Goldberg, 1989; Michalewicz, 1992;
Mitchell, 1996) and a few journals dedicated to publishing research papers on the
topic (including one from MIT Press and one from IEEE). Every year, there are at
least 15-20 conferences and workshops being held on the topic at various parts of
the globe. The major reason for GA’s popularity in various search and optimiza-
tion problems is its global perspective, wide spread applicability, and inherent
parallelism.

In the remainder of the paper, we highlight the shortcomings of the classical
optimization methods and then discuss the working principle of a GA by showing
an illustration on a simple can design problem and a hand simulation. Thereafter,
we argue intuitive reasons for the working of a GA. Later, we present a number of
engineering applications, in which a combined binary-coded and real-parameter
GAs are applied for solving mixed-integer programming problems. The descrip-
tion of GAs and their broad-based applicabilities demonstrated in this paper
should encourage academician and practitioners to pay attention to this growing
field of interests.

2.2 Classical Search and Optimization Techniques

Traditional search and optimization methods can be classified into two distinct
groups: Direct and gradient-based methods (Deb, 1995; Reklaitis at el., 1983). In di-
rect methods, only objective function and constraints are used to guide the search
strategy, whereas gradient-based methods use the first and/or second-order deriva-
tives of the objective function and/or constraints to guide the search process. Since
derivative information is not used, the direct search methods are usually slow, re-
quiring many function evaluations for convergence. For the same reason, they can
be applied to many problems without a major change of the algorithm. On the
other hand, gradient-based methods quickly converge to an optimal solution, but
are not efficient in non-differentiable or discontinuous problems. In addition, there
are some common difficulties with most of the traditional direct and gradient-
based techniques:
• Convergence to an optimal solution depends on the chosen initial solution.
• Most algorithms tend to get stuck to a suboptimal solution.
• An algorithm efficient in solving one search and optimization problem may not

be efficient in solving a different problem.
• Algorithms are not efficient in handling problems having discrete variables.
• Algorithms cannot be efficiently used on a parallel machine.

Because of the nonlinearities and complex interactions among problem vari-
ables often exist in complex search and optimization problems, the search space
may have many optimal solutions, of which most are locally optimal solutions
having inferior objective function values. When solving these problems, if tradi-
tional methods get attracted to any of these locally optimal solutions, there is no
escape from it.

2.2 Classical Search and Optimization Techniques 15

Many traditional methods are designed to solve a specific type of search and
optimization problems. For example, geometric programming (GP) method is de-
signed to solve only polynomial-type objective function and constraints (Duffin et
al., 1967). GP is efficient in solving such problems but can not be applied suitably
to solve other types of functions. Conjugate direction method has a convergence
proof for solving quadratic functions, but they are not expected to work well in
problems having multiple optimal solutions. Frank-Wolfe method (Reklaitis at el.,
1983) works efficiently on linear-like function and constraints, but the perform-
ance largely depends on the chosen initial conditions. Thus, one algorithm may be
best suited for one problem and may not be even applicable to a different problem.
This requires designers to know a number of optimization algorithms.

In many search and optimization problems, problem variables are often re-
stricted to take discrete values only. To solve such problems, an usual practice is
to assume that the problem variables are real-valued. A classical method can then
be applied to find a real-valued solution. To make this solution feasible, the near-
est allowable discrete solution is chosen. But, there are a number of difficulties
with this approach. Firstly, since many infeasible values of problem variables are
allowed in the optimization process, the optimization algorithm is likely to take
many function evaluations before converging, thereby making the search effort in-
efficient. Secondly, for each infeasible discrete variable, two values (the nearest
lower and upper available sizes) are to be checked. For N discrete variables, a total
of 2N such additional solutions need to be evaluated. Thirdly, two options checked
for each variable may not guarantee the optimal combination of all variables. All
these difficulties can be eliminated if only feasible values of the variables are al-
lowed during the optimization process.

Many search and optimization problems require use of a simulation software,
involving finite element technique, computational fluid mechanics approach, solu-
tion of nonlinear equations, and others, to compute the objective function and con-
straints. The use of such softwares is time-consuming and may require several
minutes to hours to evaluate one solution. Because of the availability of parallel
computing machines, it becomes now convenient to use parallel machines in solv-
ing complex search and optimization problems. Since most traditional methods
use point-by-point approach, where one solution gets updated to a new solution in
one iteration, the advantage of parallel machines cannot be exploited.

The above discussion suggests that a traditional method is not good candidate
for an efficient search and optimization algorithm. In the following section, we de-
scribe the genetic algorithm which works according to principles of natural genet-
ics and evolution, and which has been demonstrated to solve various search and
optimization problems in engineering.

16 2 Introduction to Genetic Algorithms for Engineering Optimization

2.3 Motivation from Nature

Most biologists believe that the main driving force behind the natural evolution is
the Darwin’s survival-of-the-fittest principle (Dawkins, 1976; Eldredge, 1989). In
most situations, the nature ruthlessly follows two simple principles:
1. If by genetic processing an above-average offspring is created, it usually sur-

vives longer than an average individual and thus have more opportunities to
produce children having some of its traits than an average individual.

2. If, on the other hand, a below-average offspring is created, it usually does not
survive longer and thus gets eliminated from the population.

The renowned biologist Richard Dawkins explains many evolutionary facts with
the help of Darwin’s survival-of-the-fittest principle in his seminal works (Dawk-
ins, 1976; 1986). He argues that the tall trees that exist in the mountains were only
a feet tall during early ages of evolution. By genetic processing if one tree had
produced an offspring an inch taller than all other trees, that offspring enjoyed
more sunlight and rain and attracted more insects for pollination than all other
trees. With extra benefits, that lucky offspring had an increased life and more im-
portantly had produced more offspring like it (with tall feature) than others. Soon
enough, it occupies most of the mountain with trees having its genes and the com-
petition for survival now continues with other trees, since the available resource
(land) is limited. On the other hand, if a tree had produced an offspring with an
inch smaller than others, it was less fortunate to enjoy all the facilities other
neighboring trees had enjoyed. Thus, that offspring could not survive longer. In a
genetic algorithm, this feature of natural evolution is introduced somewhat di-
rectly through its operators.

The principle of emphasizing good solutions and eliminating bad solutions
seems a good feature an optimization algorithm may have. But one may wonder
about the real connection between an optimization procedure and natural evolu-
tion! Has the natural evolutionary process tried to maximize a utility function of
some sort? Truly speaking, one can imagine a number of such functions which the
nature may be thriving to maximize: Life span of a species, quality of life of a
species, physical growth, and others. However, any of these functions is non-
stationary in nature and largely depends on the evolution of other related species.
Thus, in essence, the nature has been really optimizing much more complicated
objective functions by means of natural genetics and natural selection than the
search and optimization problems we are interested in solving. Thus, it is not sur-
prising that a genetic algorithm is not as complex as the natural genetics and selec-
tion, rather it is an abstraction of the complex natural evolutionary process. The
simple version of a GA described in the following section aims to solve stationary
search and optimization problems. Although a GA is a simple abstraction, it is ro-
bust and has been found to solve various search and optimization problems of sci-
ence, engineering, and commerce.

2.4 Genetic Algorithms 17

2.4 Genetic Algorithms

In this section, we first describe the working principle of a genetic algorithm.
Thereafter, we shall show a simulation of a genetic algorithm for one iteration on
a simple optimization problem. Later, we shall give intuitive reasoning of why a
GA is a useful search and optimization procedure.

2.4.1 Working Principle

Genetic algorithm (GA) is an iterative optimization procedure. Instead of working
with a single solution in each iteration, a GA works with a number of solutions
(collectively known as a population) in each iteration. A flowchart of the working
principle of a simple GA is shown in Figure 2.1. In the absence of any knowledge
of the problem domain, a GA begins its search from a random population of solu-
tions. As shown in the figure, a solution in a GA is represented using a string cod-
ing of fixed length. We shall discuss about the details of the coding procedure a
little later. But for now notice how a GA processes these strings in a iteration. If a
termination criterion is not satisfied, three different operators--reproduction,
crossover, and mutation--are applied to update the population of strings. One itera-
tion of these three operators is known as a generation in the parlance of GAs.
Since the representation of a solution in a GA is similar to a natural chromosome
and GA operators are similar to genetic operators, the above procedure is named
as genetic algorithm. We now discuss the details of the coding representation of a
solution and GA operators in details in the following subsections.

2.4.1.1 Representation

In a binary-coded GA, every variable is first coded in a fixed-length binary string.
For example, the following is a string, representing N problem variables:

The i-th problem variable is coded in a binary substring of length il , so that the

total number of alternatives allowed in that variable is il2 . The lower bound solu-

tion min
ix is represented by the solution (00…0) and the upper bound solution

max
ix is represented by the solution (11…1). Any other substring is decodes to a

solution ix as follows:

),(
12

minmax
min

il
ii

ii sDV
xx

xx
i −
−+= (2.1)

18 2 Introduction to Genetic Algorithms for Engineering Optimization

Begin

Evaluation

Cond?
No

Initialize Population

gen = 0

Assign Fitness

Yes

gen = gen + 1

Reproduction

Crossover

Mutation

Stop

Fig. 2.1. A flowchart of working principle of a genetic algorithm

where DV(si) is the decoded value of the substring si. The length of a substring is
usually decided by the precision needed in a variable. For example, if three deci-
mal places of accuracy is needed in the i-th variable, the total number of alterna-

tives in the variable must be 001.0/)(minmax
ii xx − , which can be set equal to

il2 and li can be computed as follows:

.log
minmax

2 ⎟⎟⎠

⎞
⎜⎜⎝

⎛ −=
i

ii
i

xx
l

ε
(2.2)

Here, the parameter iε is the desired precision in i-th variable. The total string

length of a N-variable solution is then ∑ =
= N

i ill
1

. Representing a solution in a

string of bits (0 or 1) resembles a natural chromosome which is a collection of
genes having particular allele values.

2.4 Genetic Algorithms 19

In the initial population, l-bit strings are created at random (at each of l posi-
tions, there is a equal probability of creating a 0 or a 1). Once such a string is cre-
ated, the first l1 bits can be extracted from the complete string and corresponding
value of the variable x1 can be calculated using Equation 2.1 and using the chosen
lower and upper limits of the variable x1. Thereafter, the next l2 bits can be ex-
tracted from the original string and the variable x2 can be calculated. This process
can be continued until all N variables are obtained from the complete string. Thus,
an l-bit string represents a complete solution specifying all N variables uniquely.
Once these values are known, the objective function f(x1… xN) can be computed.

2.4.1.2 Fitness Assignment

In a GA, each string created either in the initial population or in the subsequent
generations must be assigned a fitness value which is related to the objective func-
tion value. For maximization problems, a string’s fitness can be equal to the
string’s objective function value. However, for minimization problems, the goal is
to find a solution having the minimum objective function value. Thus, the fitness
can be calculated as the reciprocal of the objective function value so that solutions
with smaller objective function value get larger fitness. Usually, the following
transformation function is used for minimization problems:

.
),...,(1

1

1 Nxxf
Fitness

+
= (2.3)

There are a number of advantages of using a string representation to code vari-
ables. First, this allows a shielding between the working of GA and the actual
problem. What a GA processes is l-bit strings, which may represent any number of
variables, depending on the problem at hand. Thus, the same GA code can be used
for different problems by only changing the definition of coding a string. This al-
lows a GA to have a wide spread applicability. Second, a GA can exploit the simi-
larities in a string coding to make its search faster, a matter which is important in
the working of a GA and is discussed in Subsection 2.4.3.

2.4.1.3 Reproduction

Reproduction (or selection) is usually the first operator applied on a population.
Reproduction selects good strings in a population and forms a mating pool. There
exist a number of reproduction operators in the GA literature (Goldberg and Deb,
1991), but the essential idea is that above-average strings are picked from the cur-
rent population and duplicates of them are inserted in the mating pool. The com-
monly-used reproduction operator is the proportionate selection operator, where a
string in the current population is selected with a probability proportional to the
string’s fitness. Thus, the i-th string in the population is selected with a probability
proportional to f1. Since the population size is usually kept fixed in a simple GA,
the cumulative probability for all strings in the population must be one. Therefore,

20 2 Introduction to Genetic Algorithms for Engineering Optimization

the probability for selecting i-th string is ∑ =

N

j ji ff
1

/ , where N is the population

size. One way to achieve this proportionate selection is to use a roulette-wheel
with the circumference marked for each string proportionate to the string’s fitness.
The roulette-wheel is spun N times, each time keeping an instance of the string,
selected by the roulette-wheel pointer, in the mating pool. Since the circumference
of the wheel is marked according to a string’s fitness, this roulette-wheel mecha-

nism is expected to make
−
ffi / copies of the i-th string, where

−
f is the average

fitness of the population. This version of roulette-wheel selection is somewhat
noisy; other more stable versions exist in the literature (Goldberg, 1989). As will
be discussed later, the proportionate selection scheme is inherently slow. One fix-
up is to use a ranking selection scheme. All N strings in a population is first
ranked according to ascending order of string’s fitness. Each string is then as-
signed a rank from 1 (worst) to N (best) and an linear fitness function is assigned
for all the strings so that the best string gets two copies and the worst string gets
no copies after reproduction. Thereafter, the proportionate selection is used with
these fitness values. This ranking reproduction scheme eliminates the function-
dependency which exists in the proportionate reproduction scheme.

The tournament selection scheme is getting increasingly popular because of its
simplicity and controlled takeover property (Goldberg and Deb, 1991). In its sim-
plest form (binary tournament selection as described in the next subsection), two
strings are chosen at random for a tournament and the better of the two is selected
according to the string’s fitness value. If done systematically, the best string in a
population gets exactly two copies in the mating pool. It is important to note that
this reproduction operator does not require a transformation of the objective func-
tion to calculate fitness of a string as suggested in Equation 2.3 for minimization
problems. The better of two strings can be judged by choosing the string with the
smaller objective function value.

2.4.1.4 Crossover

Crossover operator is applied next to the strings of the mating pool. Like repro-
duction operator, there exists a number of crossover operators in the GA literature
(Spears and De Jong, 1991; Syswerda, 1989), but in almost all crossover opera-
tors, two strings are picked from the mating pool at random and some portion of
the strings are exchanged between the strings. In a single-point crossover operator,
both strings are cut at an arbitrary place and the right-side portions of both strings
are swapped among themselves to create two new strings, as illustrated in the fol-
lowing:

It is interesting to note from the construction that good substrings from either par-
ent string can be combined to form a better child string if an appropriate site is
chosen. Since the knowledge of an appropriate site is usually not known, a random

2.4 Genetic Algorithms 21

site is usually chosen. However, it is important to realize that the choice of a ran-
dom site does not make this search operation random. With a single-point cross-
over on two l-bit parent strings, the search can only find at most 2(l-1) different
strings in the search space, whereas there are a total of 2l strings in the search
space. With a random site, the children strings produced may or may not have a
combination of good substrings from parent strings depending on whether the
crossing site falls in the appropriate place or not. But we do not worry about this
aspect too much, because if good strings are created by crossover, there will be
more copies of them in the next mating pool generated by the reproduction opera-
tor. But if good strings are not created by crossover, they will not survive beyond
next generation, because reproduction will not select bad strings for the next mat-
ing pool.

In a two-point crossover operator, two random sites are chosen and the contents
bracketed by these sites are exchanged between two parents. This idea can be ex-
tended to create a multi-point crossover operator and the extreme of this extension
is what is known as a uniform crossover operator (Syswerda, 1989). In a uniform
crossover for binary strings, each bit from either parent is selected with a probabil-
ity of 0.5.

It is worthwhile to note that the purpose of the crossover operator is two-fold.
The main purpose of the crossover operator is to search the parameter space. Other
aspect is that the search needs to be performed in a way to preserve the informa-
tion stored in the parent strings maximally, because these parent strings are in-
stances of good strings selected using the reproduction operator. In the single-
point crossover operator, the search is not extensive, but the maximum informa-
tion is preserved from parent to children. On the other hand, in the uniform cross-
over, the search is very extensive but minimum information is preserved between
parent and children strings. However, in order to preserve some of the previously-
found good strings, not all strings in the population are participated in the cross-
over operation. If a crossover probability of pc is used then 100pc% strings in the
population are used in the crossover operation and 100(1-pc)% of the population
are simply copied to the new population. Even though best 100(1-pc)% of the cur-
rent population can be copied deterministically to the new population, this is usu-
ally performed stochastically.

2.4.1.5 Mutation

Crossover operator is mainly responsible for the search aspect of genetic algo-
rithms, even though mutation operator is also used for this purpose sparingly. Mu-
tation operator changes a 1 to a 0 and vice versa with a small mutation probability,
pm:

0 0 0 0 0 ==> 0 0 0 1 0
In the above example, the fourth gene has changed its value, thereby creating a
new solution. The need for mutation is to maintain diversity in the population. For
example, if in a particular position along the string length all strings in the popula-
tion have a value 0, and a 1 is needed in that position to obtain the optimum or a

22 2 Introduction to Genetic Algorithms for Engineering Optimization

near-optimum solution, then the crossover operator described above will be able to
create a 1 in that position. The inclusion of mutation introduces some probability
of turning that 0 into a 1. Furthermore, for local improvement of a solution, muta-
tion is useful.

After reproduction, crossover, and mutation are applied to the whole popula-
tion, one generation of a GA is completed. These three operators are simple and
straightforward. Reproduction operator selects good strings and crossover operator
recombines good substrings from two good strings together to hopefully form a
better substring. Mutation operator alters a string locally to hopefully create a bet-
ter string. Even though none of these claims are guaranteed and/or tested while
creating a new population of strings, it is expected that if bad strings are created
they will be eliminated by the reproduction operator in the next generation and if
good strings are created, they will be emphasized. Later, we shall discuss some in-
tuitive reasoning as to why a GA with these simple operators may constitute a po-
tential search algorithm.

2.4.2 An Illustration

We describe the working of the above GA further by illustrating a simple can de-
sign problem. A cylindrical can is considered to have only two parameters -- the
diameter d and height h. Let us consider that the can needs to have a volume of at
least 300 ml and the objective of the design is to minimize the cost of the can ma-
terial. With this constraint and the objective, we first write the corresponding non-
linear programming problem (NLP problem) (Deb, 1999):

Minimize ,
2

),(
2

⎟⎟⎠

⎞
⎜⎜⎝

⎛
+= dh

d
chdf ππ

Subject ,300
4

),(
2

≥= hd
hdg

π

Variable bounds
.

,

maxmin

maxmin

hhh

ddd

≤≤
≤≤

(2.4)

The parameter c is the cost of the can material per square cm, and the decision
variables d and h are allowed to vary in [dmin, dmax] and [hmin, hmax] cm, respec-
tively.

2.4 Genetic Algorithms 23

2.4.2.1 Representing a Solution

Let us assume that we shall use five bits to code each of the two decision
variables, thereby making the overall string length equal to 10. The following
string represents a can of diameter 8 cm and height 10 cm:

h

d

(Chromosome) = 0 1 0 0 0 0 1 0 1 0
(d, h) = (8, 10) cm

23

Fig. 2.2. A typical can and its chromosomal representation are shown. The cost of the can is
marked as 23 units.

This string and corresponding decision variables are shown in Figure 2.2. Coding
the decision variables in a binary string is primarily used to achieve a pseudo-
chromosomal representation of a solution. For example, the 10-bit string
illustrated above can be explained to exhibit a biological representation of a can
having a diameter of 8 cm and a height of 10 cm. Natural chromosomes are made
of many genes, each of which can take one of many different {allele} values (such
as, the gene responsible for the eye color in a person’s chromosomes may be
expressed as black, whereas it could have been blue or some other color). When
we see the person, we see the person’s phenotypic representation, but each feature
of the person is precisely written in his/her chromosomes -- the genotypic
representation of the person. In the can design problem, the can itself is the
phenotypic representation of an artificial chromosome of 10 genes. To see how
these 10 genes control the phenotype (the shape) of the can, let us investigate the
leftmost bit (gene) of the diameter (d) parameter. A value of 0 at this bit (the most
significant bit) allows the can to have diameter values in the range [0, 15] cm,
whereas the other value 1 allows the can to have diameter values in the range [16,
31] cm. Clearly, this bit (or gene) is responsible for dictating the ‘slimness’ of the
can. If the allele value 0 is expressed, the can is slim, while if the value 1 is
expressed, the can is ‘fat’. Each other bit position or a combination of two or more
bit positions can also be explained to support the can’s phenotypic appearance, but
some of these explanations are interesting and important, and some are not.

After choosing a string representation scheme and creating a population of
strings at random, we are ready to apply genetic operations to such strings to
hopefully find better populations of solutions.

24 2 Introduction to Genetic Algorithms for Engineering Optimization

2.4.2.2 Assigning Fitness to a Solution

In the absence of constraints, the fitness of a string is assigned a value which is a
function of the solution’s objective function value. In most cases, however, the fit-
ness is made equal to the objective function value. For example, the fitness of the
above can represented by the 10-bit string s is:

,)10)(8(
2

)8(
065.0)(

2

⎥
⎦

⎤
⎢
⎣

⎡
+= ππ

sF

,23=
assuming c=0.065. Since the objective of the optimization here is to minimize the
objective function, it is to be noted that a solution with a smaller fitness value
compared to another solution is better. The fitness of an infeasible solution is de-
scribed later, but here we simply add a penalty in proportion to its constraint viola-
tion.

Figure 2.3 shows the phenotypes of a random population of six cans. The fit-
ness of each can is also marked. It is interesting to that two infeasible solutions do
not have internal volume of 300 ml and thus are penalized by adding an extra arti-
ficial cost. The extra penalized cost is large enough to cause all infeasible solu-
tions to have a worse fitness value than that of any feasible solution. We are now
ready to discuss three genetic operators.

2.4.2.3 Reproduction or Selection Operator

Here, we use the tournament selection, in which tournaments are played between
two solutions and the better solution is chosen and placed in the mating pool. Fig-
ure 2.4 shows six different tournaments played

23

24

1130

37

+ 30

9 + 40

Fig. 2.3. A random population of six cans.

2.4 Genetic Algorithms 25

Mating Pool

9 + 40

9 + 40

23

30

24

11 + 30

37

24

23 24

23

30

23

11 + 30

24

30

37

37

Fig. 2.4. Tournaments are played between the six population members of Figure 2.3. The
population enclosed by the dashed box forms the mating pool.

between old population members (each gets exactly two turns). When cans with a
cost of 23 units and 30 units are chosen at random for the first tournament, the can
costing 23 units wins and a copy of it is placed in the mating pool. The next two
cans are chosen for the second tournament and a copy of the better can is then
placed in the mating pool. This is how the mating pool (Figure 2.5) is formed. It is
interesting to note how better solutions (having less costs) have made themselves
to have multiple copies in the mating pool and worse solutions have been dis-
carded. This is precisely the purpose of a reproduction or a selection operator. An
interesting aspect of the tournament selection operator is that just by changing the
comparison operator, the minimization and maximization problems can be han-
dled easily.

2.4.2.4 Crossover Operator

A crossover operator is applied next to the strings of the mating pool. Let us illus-
trate the crossover operator by picking two solutions (called parent solutions) from
the new population created after the reproduction operator. The cans and their
genotype (strings) are shown in Figure 2.6. The third site along the string length is
chosen at random and the contents of the right side of this cross site are exchanged

26 2 Introduction to Genetic Algorithms for Engineering Optimization

between the two strings. The process creates two new strings (called offspring).
Their phenotypes (the cans) are also shown in this figure.

23

24 24

2330

37

Fig. 2.5. The population after reproduction operation.

23 (8, 10) 0 1 0 0 0 0 1 0 1 0

(14, 6) 0 1 1 1 0 0 0 1 1 0

0 1 0 1 0 0 0 1 1 0 (10, 6)

0 1 1 0 0 0 1 0 1 0 (12, 10)

22

3937

Fig. 2.6. The single point crossover operation.

It is important to note that the above crossover operator created a solution (hav-
ing a cost of 22 units) which is better in cost than both of the parent solutions. One
may wonder that if different cross sites were chosen or two other strings were cho-
sen for crossover, whether we would have found a better offspring every time. It is
true that every crossover between any two solutions from the new population is
not likely to find offspring better than both parent solutions, but the chance of cre-
ating better solutions is far better than random. This is because the parent strings
being crossed are not any two arbitrary random strings. These strings have sur-
vived tournaments played with other solutions during the earlier reproduction
phase. Thus, they are expected to have some good bit combinations in their string
representations. Since, a single-point crossover on a pair of parent strings can only
create l different string pairs (instead of all 2l-1 possible string-pairs) with bit com-
binations from either strings, the created offspring are also likely to be good
strings.

2.4.2.5 Mutation Operator

Figure 2.7 shows how a string obtained after the use of reproduction and crossover
operators has been mutated to another string, thus representing a slightly different
can. Once again, the solution obtained in the illustration is better than the original
solution. Although it may not happen in all the instances of a mutation operation,

2.4 Genetic Algorithms 27

mutating a string with a small probability is not a random operation since the pro-
cess has a bias for creating only a few solutions in the search space.

22 (10, 6) 0 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 (8, 6) 16

Fig. 2.7. The bit-wise mutation operator. The fourth bit is mutated to create a new string.

2.4.3 A Hand Calculation

The working principle described above is simple, with GA operators involving
string copying and substring exchange, plus the occasional alteration of bits. In-
deed, it is surprising that with such simple operators and mechanisms, a potential
search is possible. We will try to give an intuitive answer to such doubts and also
remind the reader that a number of studies have attempted to find a rigorous
mathematical {convergence proof} for GAs (Rudolph, 1994; Vose, 1999;
Whitley, 1992). Even though the operations are simple, GAs are highly nonlinear,
massively multi-faceted, stochastic and complex. There exist studies using
Markov chain analysis which involves deriving transition probabilities from one
state to another and manipulating them to find the convergence time and solution.
Since the number of possible states for a reasonable string length and population
size becomes unmanageable even with the high-speed computers available today,
other analytical techniques (statistical mechanics approaches and dynamical sys-
tems models) have also been used to analyze the convergence properties of GAs.

In order to investigate why GAs work, let us apply the GA (with the propor-
tionate selection operator) for only one-cycle to a numerical maximization prob-
lem (Deb, 2001):

Maximize),sin(x

Variable bounds .0 π≤≤ x

(2.5)

We will use five-bit strings to represent the variable x in the range [0, ��������	��
the string (00000) represents the x = 0 solution and the string (11111) represents
the x = ���
��������������������������	����	������������	������� ��������
���
Let us also assume that we use a population of size four, the proportionate selec-
tion, the single-point crossover operator with pc = 1, and no mutation (or, pm = 0).
To start the GA simulation, we create a random initial population, evaluate each
string, and then use three GA operators, as shown in Table 2.1. The first string has
a decoded value equal to 9 and this string corresponds to a solution x = 0.912,
which has a function value equal to sin(0.912) = 0.791. Similarly, the other three
stings are also evaluated. Since the proportionate reproduction scheme assigns a
number of copies according to a string’s fitness, the expected number of copies for
each string is calculated in column 5. When the proportionate selection operator is
actually implemented, the number of copies allocated to the strings is shown in

28 2 Introduction to Genetic Algorithms for Engineering Optimization

column 6. Column 7 shows the mating pool. It is noteworthy that the third string
in the initial population has a fitness which is very small compared to the average
fitness of the population and is eliminated by the selection operator. On the other
hand, the second string, being a good string, made two copies in the mating pool.
The crossover sites are chosen at random and the four new strings created after
crossover is shown in column 3 of the bottom table. Since no mutation is used,
none of the bits are altered. Thus, column 3 of the bottom table represents the
population at the end of one cycle of a GA. Thereafter, each of these stings is then
decoded, mapped and evaluated. This completes one generation of a GA simula-
tion. The average fitness of the new population is found to be 0.710, i.e. an im-
provement from that in the initial population. It is interesting to note that even
though all operators used random numbers, a GA with all three operators produces
a directed search, which usually results in an increase in the average quality of so-
lutions from one generation to the next.

2.4.3.1 Understanding How GAs work

The string copying and substring exchange are all interesting and seem to im-
prove the average performance of a population, but let us now ask the question:
‘What has been processed in one cycle of a GA?’ If we investigate carefully, we
observe that among the strings of the two populations there are some similarities
in the string positions among the strings. By the application of three GA operators,
the number of strings with similarities at certain string positions has been in-
creased from the initial population to the new population. These similarities are
called schema in the GA literature. More specifically, a schema represents a set of
strings with certain similarities at certain string positions. To represent a schema
for binary codings, a triplet (1, 0 and *) is used; a * represents either 1 or 0. It is
interesting to note that a string is also a schema representing only one string -- the
string itself.

2.4 Genetic Algorithms 29

Table 2.1. One generation of a GA hand-simulation on the function sin(x).

Two definitions are associated with a schema. The order of a schema H is de-
fined as the number of defined positions in the schema and is represented as o(H).
A schema with full order o(H) = l represents a string. The defining length of a
schema H is defined as the distance between the outermost defined positions. For
example, the schema H = (* 1 0 * * 0 * * *}) has an order o(H) = 3 (there are
three defined positions: 1 at the second gene, 0 at the third gene, and 0 at the sixth
gene) and a defining length (H) = 6 -2 = 4.

A schema H1 = (1 0 * * *) represents eight strings with a 1 in the first position
and a 0 in the second position. From Table 2.1, we observe that there is only one
string representing this schema H1 in the initial population and that there are two
strings representing this schema in the new population. On the other hand, even
though there was one representative string of the schema H2 = (0 0 * * *) in the
initial population, there is not one in the new population. There are a number of
other schemata that we may investigate and conclude whether the number of
strings they represent is increased from the initial population to the new popula-
tion or not.

The so-called schema theorem provides an estimate of the growth of a schema
H under the action of one cycle of the above tripartite GA. Holland (1975) and
later Goldberg (1989) calculated the growth of the schema under a selection op-

30 2 Introduction to Genetic Algorithms for Engineering Optimization

erator and then calculated the survival probability of the schema under crossover
and mutation operators, but did not calculate the probability of constructing a
schema from recombination and mutation operations in a generic sense. For a sin-
gle-point crossover operator with a probability pc, a mutation operator with a
probability pm, and the proportionate selection operator, Goldberg (1989) calcu-
lated the following lower bound on the schema growth in one iteration of a GA:

,)(
1

)(
1

)(
),()1,(⎥⎦

⎤
⎢⎣
⎡ −

−
−=+ Hop

l

H
p

f

Hf
tHmtHm mc

avg

δ (2.6)

where m(H, t) is the number of copies of the schema H in the population at gen-
eration t, f(H) is the fitness of the schema (defined as the average fitness of all
strings representing the schema in the population), and favg is the average fitness of
the population. The above inequality leads to the schema theorem (Holland, 1975),
as follows.

Short, low-order, and above-average schemata receive exponentially in-
creasing number

of trials in subsequent generations.

A schema represents a number of similar strings. Thus, a schema can be
thought of as representing a certain region in the search space. For the above func-
tion, the schema H1 = (1 0 * * *) represents strings with x values varying from
1.621 to 2.330 with function values varying from 0.999 to 0.725. On the other
hand, the schema H2 = (0 0 * * *) represents strings with x values varying from
0.0 to 0.709 with function values varying from 0.0 to 0.651. Since our objective is
to maximize the function, we would like to have more copies of strings represent-
ing schema H1 than H2. This is what we have accomplished in Table 2.1 without
having to count all of these competing schema and without the knowledge of the
complete search space, but by manipulating only a few instances of the search
space. Let us use the inequality shown in equation (2.6) to estimate the growth of
H1 and H2. We observe that there is only one string (the second string) represent-
ing this schema, or m(H1, 0) = 1. Since all strings are used in the crossover opera-
tion and no mutation is used, pc = 1.0 and pm = 0. For the schema H1, the fitness
f(H1) = 0.898, the order o(H1) = 2, and the defining length ��1) =1. In addition,
the average fitness of the population is favg = 0.569. Thus, we obtain from equation
(2.6):

,)2)(0.0(
15

1
)0.1(1

569.0

898.0
)1()1,(1 ⎥⎦

⎤
⎢⎣
⎡ −

−
−−=Hm

.184.1=
The above calculation suggests that the number of strings representing the schema
H1 must increase. We have two representations (the second and third strings) of
this schema in the next generation. For the schema H2, the estimated number of
copies using equation (2.6) is m(H2, 1) ����������	
��������������	���o represen-
tative string of this schema exists in the new population.

2.4 Genetic Algorithms 31

The schema H1 for the above example has only two defined positions (the first
two bits) and both defined bits are tightly spaced (very close to each other) and
contain the possible near-optimal solution (the string (1 0 0 0 0) is the optimal
string in this problem). The schemata that are short, low-order, and above-average
are known as the building blocks. While GA operators are applied on a population
of strings, a number of such building blocks in various parts along the string get
emphasized, such as H1 (which has the first two bits in common with the true op-
timal string) in the above example. Note that although H2 is short and low-order, it
is not an above-average schema. Thus, H2 is not a building block. This is how
GAs can emphasize different short, low-order and above-average schemata in the
population. Once adequate number of such building blocks are present in a GA
population, they get combined together due to the action of the GA operators to
form bigger and better building blocks. This process finally leads a GA to find the
optimal solution. This hypothesis is known as the Building Block Hypothesis
(Goldberg, 1989). More rigorous convergence analyses of GAs exist (Prugel-
Bennett and Rogers, 2001; Rudolph, 1994; Shapiro, 2001; Vose, 1999).

2.4.4 Constraint Handling

As outlined elsewhere (Michalewicz and Schoenauer, 1996), most constraint han-
dling methods which exist in the GA literature can be classified into five catego-
ries, as follows:

1. Methods based on preserving feasibility of solutions.

2. Methods based on penalty functions.

3. Methods biasing feasible over infeasible solutions.

4. Methods based on decoders.

5. Hybrid methods.

However, in most applications, the penalty function method has been used with
GAs. Usually, an exterior penalty term (Deb, 1995, Reklaitis et al., 1983), which
penalizes infeasible solutions, is preferred. Based on the constraint violation gj(x)
or hk(x), a bracket-operator penalty term is added to the objective function and a
penalized function is formed:

,)()()()(
11

∑∑
==

+〉〈+=
K

k
kkj

J

j
j xhrxgRxfxF (2.7)

where Rj and rk are user-defined penalty parameters. The bracket-operator ‹ › de-
notes the absolute value of the operand, if the operand is negative. Otherwise, if
the operand is non-negative, it returns a value of zero. Since different constraints
may take different orders of magnitude, it is essential to normalize all constraints
before using the above equation. A constraint gj(x) ��bj can be normalized by us-
ing the following transformation:

32 2 Introduction to Genetic Algorithms for Engineering Optimization

.01/)()(≥−≡ jjj bxgxg

Equality constraints can also be normalized similarly. Normalizing constraints in
the above manner has an additional advantage. Since all normalized constraint
violations take more or less the same order of magnitude, they all can be simply
added as the overall constraint violation and thus only one penalty parameter R
will be needed to make the overall constraint violation of the same order as the ob-
jective function:

.)()()()(
11

⎥
⎦

⎤
⎢
⎣

⎡
+〉〈+= ∑∑

==

K

k
kj

J

j

xhxgRxfxF (2.8)

When an EA uses a fixed value of R in the entire run, the method is called the
static penalty method. There are two difficulties associated with this static penalty
function approach:

1. The optimal solution of F(x) depends on penalty parameters R. Users usually
have to try different values of R to find which value would steer the search
towards the feasible region. This requires extensive experimentation to find
any reasonable solution. This problem is so severe that some researchers have
used different values of R depending on the level of constraint violation (Ho-
maifar et al., 1994), while some have used a sophisticated temperature-based
evolution of penalty parameters through generations (Michalewicz and Attia,
1994) involving a few parameters describing the rate of evolution. We will
discuss these dynamically changing penalty methods a little later.

2. The inclusion of the penalty term distorts the objective function (Deb, 1995).
For small values of R, the distortion is small, but the optimum of F(x) may
not be near the true constrained optimum. On the other hand, if a large R is
used, the optimum of F(x) is closer to the true constrained optimum, but the
distortion may be so severe that F(x) may have artificial locally optimal solu-
tions. This primarily happens due to interactions among multiple constraints.
EAs are not free from the distortion effect caused due to the addition of the
penalty term in the objective function. However, EAs are comparatively less
sensitive to distorted function landscapes due to the stochasticity in their op-
erators.

A recent study (Deb, 2000) suggested a modification, which eliminates both
the above difficulties by not requiring any penalty parameter:

⎪⎩

⎪
⎨
⎧

++
=

∑ ∑= =

J

j

K

k kj xhxgf

xf
xF

1 1max ,)()(

),(
)(if x is feasible;

(2.9)

Here, fmax is the objective function value of the worst feasible solution in the popu-
lation. Figure 2.8 shows the construction procedure of F(x) from f(x) and g(x) for
a single-variable objective function. One fundamental difference between this ap-
proach and the previous approach is that the objective function value is not com-
puted for any infeasible solution. Since all feasible solutions have zero constraint

2.4 Genetic Algorithms 33

violation and all infeasible solutions are evaluated according to their constraint
violations only, both the objective function value and constraint violation are not
combined in any solution in the population. Thus, there is no

Fig. 2.8. A constraint handling strategy without any penalty parameter.

need to have any penalty parameter R for this approach. Moreover, the approach is
also quite pragmatic. Since infeasible solutions are not to be recommended for
use, there is no real reason for one to find the objective function value for an in-
feasible solution. The method uses a binary tournament selection operator, where
two solutions are compared at a time, and the following scenarios are always as-
sured:

1. Any feasible solution is preferred to any infeasible solution.

2. Among two feasible solutions, the one having a better objective function
value is preferred.

3. Among two infeasible solutions, the one having a smaller constraint violation
is preferred.

To steer the search towards the feasible region and then towards the optimal solu-
tion, the method recommends the use of a niched tournament selection (where two
solutions are compared in a tournament only if their Euclidean distance is within a
pre-specified limit). This ensures that even if a few isolated solutions are found in
the feasible space, they will be propagated from one generation to another for
maintaining diversity among the feasible solutions.

In the following section, we present an engineering case study.

34 2 Introduction to Genetic Algorithms for Engineering Optimization

2.5 Car Suspension Design Using Genetic Algorithms

Suspension systems are primarily used in a car to isolate the road excitations from
being transmitted directly to the passengers. Although different types of suspen-
sion systems exist, we consider here the independent suspension system. We first
consider the two-dimensional model of the suspension system and later show op-
timal solutions for the three-dimensional model.

2.5.1 Two-dimensional model

In a two-dimensional model of a car suspension system, only two wheels (one
each at rear and front) are considered. Thus, the sprung mass is considered to have
vertical and pitching motions only. The dynamic model of the suspension system
is shown in Figure 2.9. For more information, refer to the detailed study (Deb and
Saxena, 1997). The following nomenclature is used in the design formulation.

Sprung mass ms, Front coil stiffness
kfs,

Front unsprung mass mfu, Rear coil stiffness
krs,

Rear unsprung mass mru, Front tyre stiffness
kft,

Rear damper coefficient �r, Rear tyre stiffness
krt,

Front damper coefficient �f, Axle-to-axle dis-
tance L,

Polar moment of inertia of the car J.

Fig. 2.9. The dynamic model of the car suspension system.

2.5 Car Suspension Design Using Genetic Algorithms 35

Since a suspension designer is interested in choosing the optimal dampers and
suspension coils, we consider only four of the above parameters--front coil stiff-
ness kfs, rear coil stiffness krs, front damper coefficient �f, and rear damper coeffi-
cient �r --- as design variables. Considering the forces acting on the sprung mass
and on the front and rear unsprung mass, we write the differential equations gov-
erning the vertical motion of the unsprung mass at the front axle q1, the sprung
mass q2, and the unsprung mass at the rear axle q4, and the angular motion of the
sprung mass q3 as follows (Deb, 1995):

,/)(1321 fumFFFq −+=�� (2.10)

,/)(54322 smFFFFq +++−=�� (2.11)

,/])()[(1322543 JlFFlFFq +−+=�� (2.12)

,/)(6544 rumFFFq −+=�� (2.13)

where the parameters l1 and l2 are the horizontal distance of the front and rear axle
from the center of gravity of the sprung mass. Forces F1 to F6 are calculated as fol-
lows:

,11 dkF ft= ,22 dkF fs= ,23 dF f
�α=

,44 dkF rs= ,45 dF r
�α= .36 dkF rt=

The parameters d1, d2, d3, and d4 are the relative deformations in the front tyre, the
front spring, the rear tyre, and the rear spring, respectively. Figure 2.9 shows all
the four degrees-of-freedom of the above system (q1 to q4). The relative deforma-
tions in springs and tyres can be written as follows:

),(111 tfqd −= ,13122 qqlqd −+=

),(243 tfqd −= .43224 qqlqd −−=
The functions f1(t) and f2(t) are road excitations as functions of time in the front
and rear tyre, respectively. For example, a bump can be modeled as f1(t) = A sin
(���), where A is the amplitude of the bump and T the time required to cross the
bump. When a car is moving forward, the front wheel experiences the bump first,
while the rear wheel experiences the same bump a little later, depending on the
axle-to-axle distance, L, and the speed of the car, v. Thus, the function f2(t) can be
written as f2(t) = f1(t-L/v).

The coupled differential equations specified in Equations (2.10) to (2.13) can
be solved using a numerical integration technique to obtain the pitching and
bouncing dynamics of the sprung mass ms. At first, we use the bouncing transmis-
sibility--the ratio of the bouncing amplitude |q2(t)| of the sprung mass to the
maximum road excitation amplitude, A---as the objective of the design; later we
shall use a more practical objective function. A practical guideline, often used in

36 2 Introduction to Genetic Algorithms for Engineering Optimization

automobile industries, is to limit the maximum allowable vertical jerk experienced
by the passengers. Another practical consideration is the piece-wise linear varia-
tion of spring and damper characteristics with displacement and velocity (Figure
2.10). For simplicity, we consider krs

a (when the deflection is between zero and a
value) as the variable and assume other two spring rates, krs

b (when the deflec-
tion is more than) and krs

c (when the deflection is negative), as to vary in a fixed
proportion with respect to krs

a. Dampers at front and rear are also considered to
vary accordingly. However, the front suspension spring is assumed to vary line-
arly, as commonly followed in automobile industries. The following parameters of
the car suspension system are used in all simulations:

ms = 730 kg, mfu = 50 kg, mru = 115 kg,
kft = 15 kg/mm, krt = 17 kg/mm, L = 2.85 m,
l1 = 1.50 m, l2=1.35 m,
v = 5 Kmph, J = 2.89(104) kg-m2.

The car motion is simulated over a sinusoidal bump having 500 mm width and
70 mm height. In all solutions, the spring rates are expressed in Kg/mm and damp-
ing coefficients are in Kg-s/mm. The following GA parameters are used:

Overall string length : 40 (10 for each variable)

Population size : 30

Crossover probability : 0.8

Mutation probability : 0.01

A fixed penalty parameter of R = 100 is used. With above parameters, the binary-
coded GA finds the following solution:

kfs = 4.53, f
a = 1.72, krs

a = 2.86, r
a = 1.01.

The bouncing transmissibility for this solution is 0.315. The existing design for a
car having identical data (as used in a renowned Indian automobile industry) is as
follows:

kfs = 1.56, f
a = 3.30, krs

a = 1.45, r
a = 1.00.

Fig. 2.10. Variation of rear spring rate with deflection.

2.5 Car Suspension Design Using Genetic Algorithms 37

The bouncing transmissibility for this existing design is 0.82. Comparing these
two solutions, we notice that GA-optimized design has 64% lesser transmissibility
than that in the existing design. The maximum jerk for this suspension is found to
be 5.094 m/s3, whereas the allowable limit is 18.0 m/s3. To better appreciate the
GA-optimized design, we plot the bouncing amplitude of the sprung mass, as the
car moves over the bump in Figure 2.11.

Fig. 2.11. Bouncing amplitude of the sprung mass as the car moves over a bump for exist-
ing and GA-optimized suspension.

2.5.2 Three-dimensional model

We now consider the three-dimensional model and introduce jerk and a set of fre-
quency constraints to make the design procedure more realistic. Automobile in-
dustries design cars having front natural frequencies smaller than the rear natural
frequencies. This is achieved to make the pitching oscillations die down faster. In
this model, all four wheels are considered. Thus, the rolling motion of the sprung
mass can also be studied. The sprung mass can have three motions--vertical
bouncing, pitching, and rolling. Besides, each of the four unsprung masses will
have a vertical motion. Thus, there are a total of seven second-order differential
equations governing the motion of the sprung and unsprung masses, which can be
derived using similar methods adopted in two-dimensional model. Since both left
and right rear (or front) wheels have the same suspension system, the number of
variables in three-dimensional optimal design model is also four. However, the
dynamics of the car will be different than that in the two-dimensional case. Here,
there are 14 nonlinear differential equations which are solved using a numerical

38 2 Introduction to Genetic Algorithms for Engineering Optimization

integration procedure and all motions can be computed for a specified road pro-
file.

In this model, ms = 1,460 Kg and the wheel-to-wheel distance is 1.462 m are
used. To make the problem more realistic, a polyharmonic road profile is used:

)./2sin()()(
1

φλπλ
λ

λλ
−= ∑

=

vtAtf
n

(2.14)

The parameters A() is the amplitude of the road roughness which varies linearly
with the wavelength (Demic, 1989):

,)(110 λλ AAA += (2.15)

where A0 and A1 are the coefficients which depend on the type of the road. For as-
phalt road, they are A0 = 6.44(10-4) and A1 = 3.14(10-5). The phase angle for the
sine wave of a particular wavelength is randomly chosen between - �to , as fol-
lows:

),5.0(2 −= RNDπφ (2.16)

where RND is a random number between 0 and 1. In this study, we choose wave-
lengths to vary between 100 mm to 5000 mm. The velocity of the car is assumed
to be 50 Kmph. ISO 2631 limits the extent of vibrations on different frequency
levels which are allowed for different levels of comfort. The vertical motion (q2)
of the sprung mass is simulated by solving the governing equations of motion for

the above mentioned realistic road. Thereafter, the vertical acceleration (2q��) is

calculated by numerically differentiating the vertical motion of the sprung mass.
The time-acceleration data is then Fourier-transformed to calculate the vertical ac-
celeration as a function of the forcing frequency. The total area under the accelera-
tion-frequency plot is used as the objective to be minimized.

The same GA parameters are used and the following suspension has been ob-
tained:

kfs = 1.45, f
a = 0.14, krs

a = 1.28, r
a = 0.11.

The front and rear natural frequencies of the suspension system are found to be
1.35 and 1.37 Hz. It is clear that the front natural frequency is smaller than that of
the rear. This solution is close to the optimal solution since this design makes the
front natural frequency almost equal to rear natural frequency, thereby making the
constraint active. Moreover, the GA-optimized solution having smaller damping
coefficients is also justified from the vibration theory--for a forcing frequency lar-
ger than the natural frequency, a suspension having a lower damping coefficient
experiences a smaller transmissibility (Tse et al., 1983). The GA-optimized design
is compared with that of the existing design by plotting the acceleration-frequency
diagram in Figures 2.12 and 2.13. The figures show that the acceleration ampli-
tude for the GA-optimized suspension is about an order of magnitude smaller.
When the peak acceleration at significant frequencies are plotted on the ISO 2631
chart (Figure 2.14), it is observed that the comfortable exposure time for the exist-

2.5 Car Suspension Design Using Genetic Algorithms 39

ing design is only about 25 minutes, whereas that for the GA-optimized design is
about 4 hours, thus giving a much longer comfortable ride.

Fig. 2.12. Acceleration as a function of frequency for the existing design.

Fig. 2.13. Acceleration as a function of frequency for the GA-optimal design.

40 2 Introduction to Genetic Algorithms for Engineering Optimization

2.6 Real-Parameter Genetic Algorithms

In the real-coded GA, the problem variables are represented directly. Thus, a typi-
cal solution is a vector of real values, as follows:

(x1 x2 x3 …. xn)
In solving continuous search space problems using the binary-coded GA, there

may exist a number of difficulties. First of all, since binary-coded GA discretizes
the search space by using a finite-length binary string, getting arbitrary precision
is a problem. Secondly, binary string coding introduces the so-called Hamming
cliffs (nonlinearities) into the problem. Thirdly, the artificial string coding to prob-
lem variables causes design engineers and practitioners to have a hindrance in the
understanding of GA’s working

Fig. 2.14. Exposure times for existing and GA-optimized designs using ISO 2631 chart.

principles. The direct use of variables in the real-coded GA eliminates all difficul-
ties stated above and makes the GA approach more user-friendly.

Since the problem variables are initialized directly, they can be used to calcu-
late the fitness value. However, the crossover and mutation operators are different
than that used in the binary-coded GA. Without going into the details, we first de-
scribe the crossover operator and then outline the mutation operator.

The crossover operator is applied variable-by-variable with a probability 0.5. If
the i-th variable is to be crossed between two parents x(t) and x(t+1), we use the fol-
lowing simulated binary crossover (SBX) procedure to calculate two new children
solutions y(t) and y(t+1) (Deb and Agrawal, 1995):
1. Create a random number u between 0 and 1.

2. Find a non-dimensionalized spread factor β for which

2.6 Real-Parameter Genetic Algorithms 41

∫ =
β

ββ
0

.)(udp
(2.17)

The probability distribution)(βp is given as follows:

⎪
⎩

⎪
⎨
⎧

+

+
=

+ .
1

)1(5.0

,)1(5.0
)(

2c

c

c

c

p
η

η

β
η

βη
β

if

if

.1

;1

>
≤

β
β

(2.18)

The non-negative factor β is defined as follows:

.
)()1(

)()1(

tt

tt

xx

yy

−
−= +

+

β

The probability distribution)(βp allows a large probability for creating

children solutions near the parent solutions and less probability for solutions
away from parent solutions. Another nice aspect of this crossover is that the
same probability distribution can be used for any two parent solutions. The
non-dimensionalized factor β takes care of this aspect.

3. The children solutions are calculated as follows:
[]
[].)(5.0

,)(5.0

)()1()1()()1(

)()!()1()()(

ttttt

ttttt

xxxxy

xxxxy

−++=

−−+=
+++

++

β

β

It is clear that the distribution depends on the exponent c. For small values of c,
solutions far away from the parents are likely to be chosen, whereas for large val-
ues of c, only solutions closer to the parents are likely to be chosen. Ideally, a
good search algorithm must have a broad search (with a small c) in early genera-
tions and as the generations proceed the search must be focused on to a narrow re-
gion (with a large c) to obtain better precision in the solution. However, for brev-
ity, we use a fixed compromised c = 2 for an entire simulation in this study.
Figure 2.15 shows the probability distribution of creating offspring solutions in the
case of variables with and without variable bounds. If a variable can take any
value in the real space, the distribution shown in solid lines would be used and for
variables with specific bounds, the distribution shown in dashed line would be
used. The latter distribution is calculated by distributing the cumulative probabil-
ity from (-�, xi

(L)]$ and [xi
(U), �) in the respective range.

42 2 Introduction to Genetic Algorithms for Engineering Optimization

Fig. 2.15. Probability distribution for creating children solutions in continuous variables
with and without variable bounds.

Fig. 2.16. Probability distribution for creating children solutions of discrete variables.

In order to handle discrete variables having arbitrary number of permissible
values, a discrete version of the above probability distribution (equation 2.18) can
be used. Figure 2.16 shows such a probability distribution, which creates only
permissible values of the design variable.

In order to implement the mutation operator, the current value of a problem
variable is changed to a neighboring value using a polynomial probability distribu-

2.7 A Combined Genetic Algorithm 43

tion having its mean at the current value and its variance as a function of the dis-
tribution index m. To perform mutation, a perturbance factor is defined as fol-
lows:

,
maxΔ
−= pcδ (2.19)

where �max is a fixed quantity, representing the maximum permissible perturbance
in the parent value p and c is the mutated value. Similar to the crossover operator,
the mutated value is calculated with a probability distribution that depends on the
perturbance factor :

.)1)(1(5.0)(m

mp ηδηδ −+= (2.20)

The above probability distribution is valid in the range � (-1, 1). To create a mu-
tated value, a random number u is created in the range (0, 1). Thereafter, the fol-

lowing equation can be used to calculate the perturbance factor δ corresponding
to u using the above probability distribution:

[]⎪
⎩

⎪
⎨
⎧

−−

−=
+

+

,)1(21

,1)2(

1

1

1

1

m

m

u

u

η

η
δ

if

if

.5.0

;5.0

≥

<

u

u

(2.21)

Thereafter, the mutated value is calculated as follows:

.maxΔ+= δpc (2.22)

2.7 A Combined Genetic Algorithm

Based on the above two GA implementations, a combined GA can be developed
to solve mixed-integer programming problems where some variables are discrete
and some are continuous. They can be represented by using a mixed coding--
discrete variables can be coded using a binary substring (alternatively, discrete
values can be directly used with a discrete version of SBX operator) and continu-
ous variables can be used directly. Thereafter, mixed GA operators can be used to
create new solutions. The variables represented using a binary substring, the sin-
gle-point crossover can be used and the variables used directly, the real-coded
crossover can be used. Similarly, appropriate mutation operator can also be used.
This way, the best of both GAs can be combined and a flexible yet efficient GA
can be developed. To illustrate the concept of a mixed coding, we consider the de-
sign of a cantilever beam having four variables:

((1) 14 23.457 (101))

The first variable (zero-one) can take only one of two values (either 1 or 0). The
value 1 represents a circular cross-section and the value 0 represents a square
cross-section of the cantilever beam. The second variable represents the diameter

44 2 Introduction to Genetic Algorithms for Engineering Optimization

of the circular section if the first variable is a 1 or the side of the square if the first
variable is a 0. This variable is discrete, since arbitrary section sizes are not usu-
ally available for fabrication. The third variable represents the length of the canti-
lever beam. Thus, it could be a continuous variable. The fourth variable is a dis-
crete variable representing the material, which can take one of 8 pre-specified
materials. For simplicity, a set of three binary digits (totaling 23 or 8 values) may
be used to code this variable. Thus, the above string represents a cantilever beam
made of the 5-th material from a prescribed list of 8 materials having a circular
cross-section with a diameter 14 mm and having a length of 23.457 mm. With the
above flexibility in design representation, any combination of cross sectional
shape and size, material specifications, and length of the cantilever beam can be
represented. This flexibility in the representation of a design solution is not possi-
ble with traditional optimization methods. Since each design variable is allowed to
take only permissible values (no hexagonal shape will be tried or no unavailable
diameter of a circular cross-section will be chosen), the computational time for
searching of the optimal problem is also expected to be substantially less.

With such a representation scheme, a standard reproduction operator can still
be used. However, for crossover and mutation operations, the respective genetic
operator described above can be suitably used. For real variables, the SBX and the
polynomial mutation operator and for integer variables represented by binary sub-
strings, standard binary crossover and mutation operators can be used. In the fol-
lowing, we show a couple of engineering case studies.

2.7.1 Gear Train Design

A compound gear train is to be designed to achieve a specific gear ratio between
the driver and driven shafts (Figure 2.17). The objective of the gear train design is
to find the number of teeth in each of the four gears so as to minimize the error be-
tween the obtained gear ratio and a required gear ratio of 1/6.931 (Kannan and
Kramer, 1993). All four variables are strictly integers. By denoting the variable
vector x = (x1, x2, x3, x4) = (Td, Tb, Ta, Tf), we write the NLP problem:

Maximize ,
931.6

1
)(

2

43

21 ⎥
⎦

⎤
⎢
⎣

⎡
−=

xx

xx
xf

Variable bounds ,60,,,12 4321 ≤≤ xxxx
All xi’s are integers.

The variables are coded in the range (12, 60). We have used two different coding
schemes. In Case I, the variables are coded directly allowing only integer values.
In Case II, each variable can be coded in six-bit binary strings (having 26 or 64
values), so that variables take values between 12 and 75 (integer values) and four
constraints (60 - xi ��������i = 1,2,3,4) are added to penalize infeasible solutions.
Table 2.2 shows the best solutions found in each case with a population of 50 so-
lutions.

2.8 A Spring Design 45

It is clear from the table that both runs with GeneAS have found much better
solutions than the previously known solutions. By computing all possible gear
teeth combinations (494 or about 5.76 million), it has been observed that the solu-
tion obtained by Case I is, in fact, the globally best solution.

� � �� � � � �� � � � �� �

Td

Driver Follower

Ta

Tb

Tf

Fig. 2.17. A compound gear train.

Table 2.2. Optimal gear design solutions.

2.8 A Spring Design

A helical compression spring needs to be designed for the minimum volume.
Three variables are used: The number of coils N, the wire diameter d, and the
mean coil diameter D. Of these variables, N is an integer variable, d is a discrete
variable having 42 non-equispaced values and D is a continuous variable. A typi-
cal representation of a design solution is shown below:

Denoting the variable vector x = (x1, x2, x3) = (N, d, D), we write the NLP prob-
lem:

Min)2(25.0)(13
2
2

2 += xxxxf π

With ,0
8

)(
3
2

3max
1 ≥−=

x

xKP
Sxg

π

46 2 Introduction to Genetic Algorithms for Engineering Optimization

,0)2(05.1)(21
max

max2 ≥+−−= xx
k

P
lxg

,0)(min23 ≥−= dxxg

,0)()(32max4 ≥+−= xxDxg

,03/)(5 ≥−= dDxg

,0)(6 ≥−= ppmxg δδ

,0)2(05.1)(max
7 ≥+−−= dN

k

P
lxg f

,0)(max
8 ≥−−= wk

PP
xg δ

x1 is integer, x2 is discrete, x3 is continuous.

The parameters used above are as follows:

The free length lf is so chosen that the constraint g7 becomes an equality con-
straint. The variable N is coded in five-bit strings so that the feasible values of N
are integers between 1 to 32. The variable d is coded as a discrete variables coded
directly. The variable D takes any real value. The flexibility of GeneAS allows
these three different types of variables to be coded naturally. An initial population
of 60 random solutions are created with a 5-bit binary string for N, a feasible dis-
crete value for d, and a value of D in the range (1.0, 30.0) inch. However, any real
value for D is allowed in subsequent iterations. Table 2.3 once again shows that
the solution obtained by GeneAS in this problem has outperformed previously re-
ported optimal solutions. The solution obtained by GeneAS is about 5% better
than that reported by Sandgren (1988). When the discrete (integer) variable N is
coded directly, a marginally better solution has emerged: N = 9, d = 0.283, and D
= 1.224 with f(x) = 2.661.

2.9 Advanced Genetic Algorithms 47

Table 2.3. Optimal spring design solutions.

2.9 Advanced Genetic Algorithms

There exist a number of extensions to the simple GA described above. Interested
readers may refer to the GA literature for details:
Micro GA: A small population size (of the order of 4 or 5) is used (Krishnaku-

mar, 1989). This GA solely depends on the mutation operator, since such a
small population cannot take advantage of the discovery of good partial solu-
tions by a selecto-recombination GA. However, for unimodal and simple
problems, micro-GAs are good candidates. For problems where the function
evaluations are expensive, many researchers have used micro-GAs with a
small population size in the expectation of finding a reasonable solution.

Knowledge-augmented GA: GA operators and/or the initial population is as-
sisted with problem knowledge, if available. In most problems, some problem
information is available and generic GA operators mentioned in this paper can
be modified to make the search process faster (Davidor, 1991; Deb, Reddy
and Singh, 2002).

Hybrid GA: A classical greedy search operator is used starting from a solution
obtained by a GA. Since a GA can find good regions in the search space
quickly, using a greedy approach from a solution in the global basin may
make the overall search effort efficient (Powell and Skolnick, 1989).

Multimodal GA: Due to the population approach, GAs can be used to find multi-
ple optimal solutions in one simulation of a GA run. In such a multi-modal
GA, only the reproduction operator needs to be modified. In one implementa-
tion, the raw fitness of a solution is degraded with its niche count, an estimate
of the number of neighboring solutions. It has been shown that if the repro-
duction operator is performed with the degraded fitness values, stable sub-
populations can be maintained at various optima of the objective function
(Deb and Goldberg, 1989; Goldberg and Richardson, 1987). This allows GAs
to find multiple optimal solutions simultaneously in one single simulation run.

48 2 Introduction to Genetic Algorithms for Engineering Optimization

Multi-objective GA: Most real-world search and optimization problems involve
multiple conflicting objectives, of which the user is unable to establish a rela-
tive preference. Such considerations give rise to a set of multiple optimal so-
lutions, largely known as the Pareto-optimal solutions or inferior solutions
(Deb, 2001). Multiple Pareto-optimal solutions are found simultaneously in a
population. A GA is an unique optimization algorithm in solving multi-
objective optimization problems in this respect. In one implementation, non-
domination concept is used with all objective functions to determine a fitness
measure for each solution. Thereafter, the GA operators described here are
used as usual. On a number of multi-objective optimization problems, this
non-dominated sorting GA has been able to find multiple Pareto-optimal solu-
tions in one single run (Deb, 2001; Fonseca and Fleming, 1993; Horn et al.,
1994).

Non-stationary GA: The concept of diploidy and dominance can be implemented
in a GA to solve non-stationary optimization problems. Information about
earlier good solutions can be stored in recessive alleles and when needed can
be expressed by suitable genetic operators (Goldberg and Smith, 1987).

Scheduling GA: Job-shop scheduling, time tabling, traveling salesman problems
are solved using GAs. A solution in these problems is a permutation of N ob-
jects (name of machines or cities). Although reproduction operator similar to
one described here can be used, the crossover and mutation operators must be
different. These operators are designed in order to produce offspring’s which
are valid and yet have certain properties of both parents (Goldberg, 1989;
Starkweather, 1991).

2.10 Conclusions

In this paper, we have described a potential search and optimization algorithm
originally conceived by John Holland of University of Michigan, Ann Arbor,
about four decades ago, but now gained a lot of popularity. A genetic algorithm
(GA) is different from other classical search and optimization methods in a num-
ber of ways: it does not use gradient information; it works with a set of solutions
instead of one solution in each iteration; it works on a coding of solutions instead
of solutions themselves; it is a stochastic search and optimization procedure; and it
is highly parallelizable. GAs are finding increasing popularity primarily because
of their wide spread applicability, global perspective, and inherent parallelism.

The efficacy of genetic algorithms is shown by illustrating a number of engi-
neering case studies. The standard binary-coded genetic algorithm can be com-
bined with a real-parameter implementation to develop a combined GA which is
ideal for solving mixed-integer programming problems often encountered in engi-
neering design activities. Besides, the flexibility of GAs in solving a number of
other types of search and optimization problems, such as scheduling and multi-
objective optimization problems, is the main attraction of their increasing popular-
ity in various engineering problem solving.

2.10 Conclusions 49

References

Davidor, Y. (1989). Analogous crossover. Proceedings of the Third International
Conference on Genetic Algorithms, 98--103.

Dawkins, R. (1986). The Blind Watchmaker. New York: Penguin Books.
Dawkins, R. (1976). The Selfish Gene. New York: Oxford University Press.
Deb, K, Reddy, A. R., and Singh, G. (2002). Optimal scheduling of casting se-

quence using genetic algorithms. KanGAL Report No. 2002002. Kanpur, In-
dia: Kanpur Genetic Algorithms Laboratory, India.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms.
Chichester, UK: Wiley.

Deb, K. (2000). An efficient constraint handling method for genetic algorithms.
Computer Methods in Applied Mechanics and Engineering, 186(2--4), 311--
338.

Deb, K. (1999). An introduction to genetic algorithms. Sadhana, 24(4), 293--315.
Deb, K. and Saxena, V. (1997). Car suspension design for comfort using genetic

algorithms. In Thomas Back (Ed.) Proceedings of the Seventh International
Conference on Genetic Algorithms, (East Lansing, USA), 553--560.

Deb, K. (1995). Optimization for engineering design: Algorithms and examples.
Delhi: Prentice-Hall.

Deb, K. (1993). Genetic algorithms in optimal optical filter design. In E. Balagu-
rusamy and B. Sushila (Eds.), Proceedings of the International Conference on
Computing Congress (pp. 29--36).

Deb, K. and Agrawal, R. B. (1995) Simulated binary crossover for continuous
search space. Complex Systems, 9 115--148.

Deb, K. and Goldberg, D. E. (1989). An investigation of niche and species forma-
tion in genetic function optimization, Proceedings of the Third International
Conference on Genetic Algorithms, pp. 42-50.

Demic, M. (1989). Optimization of characteristics of the elasto-damping elements
of a passenger car by means of a modified Nelder-Mead method. Interna-
tional Journal of Vehicle Design, 10(2), 136--152.

Duffin, R. J., Peterson, E. L., and Zener, C. (1967). Geometric Programming.
New York: Wiley.

Eldredge, N. (1989). Macro-evolutionary Dynamics: Species, niches, and adaptive
peaks. New York: McGraw-Hill.

Fonseca, C. M. and Fleming P. J. (1993). Genetic algorithms for multi-objective
optimization: Formulation, discussion and generalization. In S. Forrest (Ed.),
Proceedings of the Fifth International Conference on Genetic Algorithms (pp.
416--423).

50 References

Gen, M. and Cheng, R. (1997). Genetic Algorithms and Engineering Design. New
York: Wiley.

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine
learning. New York: Addison-Wesley.

Goldberg, D. E. and Deb, K. (1991). A comparison of selection schemes used in
genetic algorithms, Foundations of Genetic Algorithms, edited by G. J. E.
Rawlins, pp. 69-93.

Goldberg, D. E. and Richardson, J. (1987). Genetic algorithms with sharing for
multimodal function optimization. Proceedings of the Second International
Conference on Genetic Algorithms, 41--49.

Goldberg, D. E. and Smith, R. (1987). Non-stationary function optimization using
genetic algorithms with dominance and diploidy. In J. J. Grefenstette (Ed.)
Proceedings of the Second International Conference on Genetic Algorithms.
New Jersey: Lawrence Erlbaum Associates. (pp. 59--68).

Homaifar, A., Lai, S. H.-V. and Qi, X. (1994). Constrained optimization via ge-
netic algorithms. Simulation 62(4), 242--254.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor:
University of Michigan Press.

Horn, J., Nafploitis, N. and Goldberg, D. (1994). A niched Pareto genetic algo-
rithm for multi-objective optimization. In Proceedings of the First IEEE Con-
ference on Evolutionary Computation, pp. 82--87.

Kannan, B. K. and Kramer, S. N. (1995). An augmented Lagrange multiplier
based method for mixed integer discrete continuous optimization and its ap-
plications to mechanical design. Journal of Mechanical Design, 116, 405--
411.

Krishnakumar, K. (1989). Microgenetic algorithms for stationary and non-
stationary function optimization. SPIE Proceedings on Intelligent Control
and Adaptive Systems, 1196, 289--296.

Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Pro-
grams. Berlin: Springer-Verlag.

Michalewicz, Z. and Attia, N. (1994). Evolutionary optimization of constrained
problems. In Proceedings of the Third Annual Conference on Evolutionary
Programming, pp. 98--108.

Michalewicz, Z. and Schoenauer, M. (1996). Evolutionary algorithms for con-
strained parameter optimization problems. Evolutionary Computation, 4(1),
1--32.

Mitchell, M. (1996). Introduction to Genetic Algorithms. Ann Arbor: MIT Press.
Powell, D. and Skolnick, M. M. (1993). Using genetic algorithms in engineering

design optimization with nonlinear constraints. In S. Forrest (Ed.) Proceed-
ings of the Fifth International Conference on Genetic Algorithms}, San
Mateo, CA: Morgan Kaufmann (pp. 424--430).

Prugel-Bennett, A. and Rogers, A. (2001). Modelling genetic algorithm dynamics.
In L. Kallel, B. Naudts, and A. Rogers (Eds.) Theoretical Aspects of Evolu-
tionary Computing. Berlin, Germany: Springer, 59--85. Reklaitis, G. V.,
Ravindran, A., and Ragsdell, K. M. (1983). Engineering optimization meth-
ods and applications. New York: John Wiley and Sons.

2.10 Conclusions 51

Rudolph, G. (1994). Convergence analysis of canonical genetic algorithms. IEEE
Transactions on Neural Network. (pp 96--101).

Sandgren, E. (1988). Nonlinear integer and discrete programming in mechanical
design. Proceedings of the ASME Design Technology Conference, Kissimee,
FL, 95--105.

Shapiro, J. (2001). Statistical mechanics theory of genetic algorithms. In L. Kallel,
B. Naudts, and A. Rogers (Eds.) Theoretical Aspects of Evolutionary Comput-
ing. Berlin, Germany: Springer, 87--108.

Spears, W. M. and De Jong, K. A. (1991). An analysis of multi-point crossover. In
G. J. E. Rawlins (Eds.), Foundations of Genetic Algorithms (pp. 310--315).
(Also AIC Report No. AIC-90-014).

Starkweather, T., McDaniel, S., Mathias, K., Whitley, D., and Whitley, C. (1991).
A comparison of genetic scheduling operators. In R. Belew and L. B. Booker
(Eds.) Proceedings of the Fourth International Conference on Genetic Algo-
rithms. San Mateo, CA: Morgan Kaufmann. (pp. 69--76).

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In J. D. Schaffer
(Ed.), Proceedings of the Third International Conference on Genetic Algo-
rithms (pp. 2--9).

Tse, F. A., Morse, I. E. and Hinkle, R. T. (1983). Mechanical vibrations: Theory
and applications. New Delhi: CBS Publications.

Vose, M. D. (1999). Simple Genetic Algorithm: Foundation and Theory. Ann Ar-
bor, MI: MIT Press.

3 Memetic Algorithms

Pablo Moscato, Carlos Cotta and Alexandre Mendes

3.1 Introduction

Back in the late 60s and early 70s, several researchers laid the foundations of
what we now know as Evolutionary Algorithms (EAs) (Fogel et al. 1966; Holland
1975; Rechenberg 1973; Schwefel 1965). In these almost four decades, and de-
spite some hard beginnings, most researchers interested in search or optimization
– both from the applied and the theoretical standpoints – have grown to know and
accept the existence – and indeed the usefulness – of these techniques. This has
been also the case for other related techniques, such as Simulated Annealing (SA)
(Kirkpatrick et al. 1983), Tabu Search (TS) (Glover and Laguna 1997), etc. The
name metaheuristics is used to collectively term these techniques.

It was in late 80s that the term ‘Memetic Algorithms’ (MAs) (Moscato 1989)
was given birth to denote a family of metaheuristics that tried to blend several
concepts from tightly separated – at that time – families of metaheuristics such as
EAs and SA. The adjective ‘memetic’ comes from the term ‘meme’, coined by R.
Dawkins (Dawkins 1976) to denote an analogous to the gene in the context of cul-
tural evolution. Quoting Dawkins:

“Examples of memes are tunes, ideas, catch-phrases, clothes fashions, ways of
making pots or of building arches. Just as genes propagate themselves in the gene
pool by leaping from body to body via sperms or eggs, so memes propagate them-
selves in the meme pool by leaping from brain to brain via a process which, in the
broad sense, can be called imitation.”

The above quote illustrates the central philosophy of MAs: individual im-
provement plus population cooperation and competition, as they are present in
many social/cultural systems. As it was the case for classical EAs, MAs had to
suffer tough initial times, but they are now warmly received in community, as the
reader may check by taking a quick look at the number of recent articles on MAs
we review at the end of this chapter. It is often the case that MAs are used under a
different name (‘hybrid EAs’ and ‘Lamarckian EAs’ are two popular choices for

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004

54 3 Memetic Algorithms

this). Not surprisingly in a rapidly expanding field as this is, one can also find the
term MA used in the context of particular algorithmic subclasses, arguably differ-
ent from those grasped in the initial definition of MAs. This point will be tackled
in next section; anticipating further definitions, we can say that a MA is a search
strategy in which a population of optimizing agents synergistically cooperate and
compete (Norman and Moscato 1989). A more detailed description of the algo-
rithm, as well as a functional template will be given in Sect. 3.2.

As mentioned before, MAs are a hot topic nowadays, mainly due to their suc-
cess in solving many hard optimization problems, like the Traveling Salesman
Problem (Merz and Freisleben, 2002b). A particular feature of MAs is greatly re-
sponsible for this: unlike traditional Evolutionary Computation (EC) methods,
MAs are intrinsically concerned with exploiting all available knowledge about the
problem under study; this is something that was neglected in EAs for a long time,
despite some contrary voices such as (Hart and Belew 1991), and most notably
(Davis 1991). The formulation of the so-called No-Free-Lunch Theorem (NFL) by
(Wolpert and Macready 1997) made it definitely clear that a search algorithm
strictly performs in accordance with the amount and quality of the problem
knowledge they incorporate, thus backing up one of the leiv motivs of MAs (Nor-
man and Moscato 1989).

The exploitation of problem-knowledge can be accomplished in MAs by incor-
porating heuristics, approximation algorithms, local search techniques, specialized
recombination operators, truncated exact methods, etc. Also, an important factor is
the use of adequate representations of the problem being tackled. These issues are
of the foremost interest from an applied viewpoint, and will be dealt in Sect. 3.3.

As important as the basic algorithmic considerations about MAs that will be
presented below, a more applied perspective of MAs is also provided in Sect. 3.4.
The reader may be convinced of the wide applicability of these techniques by in-
specting the numerous research papers published with regard to the deployment of
MAs on the most diverse domains. For the purposes of this book, we will pay spe-
cial attention to the application of MAs in Engineering-related endeavors. This
chapter will end with a brief summary of the current research trends in MAs, with
special mention to those emerging application fields in which MAs are to play a
major role in the near future.

3.2 The MA Search Template

As mentioned in the previous section, MAs try to blend together concepts from
(one or more) different metaheuristics, such as EAs and SA for instance. Let us
start by those ideas gleaned from the former.

MAs are – like EAs – population-based metaheuristics. This means that the al-
gorithm maintain a population of solutions for the problem at hand, i.e., a pool
comprising several solutions simultaneously. Each of these solutions is termed in-
dividual in the EA jargon, following the nature-inspired metaphor upon which
these techniques are based. In the context of MAs, the denomination agent seems

3.2 The MA Search Template 55

more appropriate for reasons that will be evident later in this section. When clear
from the context, both terms will be used interchangeably.

Each individual – or agent – represents a tentative solution for the problem un-
der consideration. These solutions are subject to processes of competition and mu-
tual cooperation in a way that resembles the behavioral patterns of living beings
from a same species. To make clearer this point, it is firstly necessary to consider
the high-level template of the basic populational event: a generation. This is
shown next in Fig. 3.1.

Process Do-Generation (↑↓ pop : Individual[])
variables

breeders, newpop : Individual[];
begin

breeders ← Select-From-Population(pop);
newpop ← Generate-New-Population(breeders);
pop ← Update-Population(pop, newpop);

end

Fig. 3.1. The basic generational step

As it can be seen, each generation consists of the updating of a population of
individuals, hopefully leading to better and better solutions for the problem being
tackled. There are three main components in this generational step: selection, re-
production, and replacement. The first component (selection) is responsible
(jointly with the replacement stage) for the competition aspects of individuals in
the population. Using the information provided by an ad hoc guiding function (fit-
ness function in the EA terminology), the goodness of individuals in pop is evalu-
ated; subsequently, a sample of individuals is selected for reproduction according
to this goodness measure. This selection can be done in a variety of ways. The
most popular techniques are fitness-proportionate methods (the probability of se-
lecting an individual for breeding is proportional to its fitness1), rank-based meth-
ods (the probability of selecting an individual depends on its position after ranking
the whole population), and tournament-based methods (individuals are selected on
the basis of a direct competition within small sub-groups of individuals).

Replacement is very related to this competition aspect, as mentioned above.
This component takes care of maintaining the population at a constant size. To do
so, individuals in the older population are substituted by the newly-created ones
(obtained from the reproduction stage) using some specific criterion. Typically,
this can be done by taking the best (according to the guiding function) individuals
both from pop and newpop (the so-called “plus” replacement strategy), or by sim-
ply taking the best individuals from newpop and inserting them in pop substituting
the worst ones (the “comma” strategy). In the former case, if |pop| = |newpop| then

1 Maximization is assumed here. In case we were dealing with a minimization problem, fit-
ness should be transformed so as to obtain an appropriate value for this purpose, e.g.,
subtracting it from the highest possible value of the guiding function.

56 3 Memetic Algorithms

the replacement is termed generational; if |newpop| is small (say |newpop| = 1),
then we have a steady-state replacement.

The most interesting aspect in this generation process probably is the interme-
diate phase of reproduction. At this stage, we have to create new individuals (or
agents) by using the existing ones. This is done using a number of reproductive
operators. Many different such operators can be used in a MA, as illustrated in the
general pseudocode shown in Fig. 3.2. Nevertheless, the most typical situation in-
volves utilizing just two operators: recombination and mutation.
Process Generate-New-Population

(↓ pop : Individual[] , ↓ op : Operator[]) → Individual[]
variables

buffer : Individual[][];
j : [1..|op|];

begin
buffer[0] ← pop;
for j ← 1: |op| do

buffer[j] ← Apply-Operator(op[j], buffer[j-1]);
endfor;
return buffer[nop];

end

Fig. 3.2. Generating the new population

Recombination is a process that encapsulates the mutual cooperation among
several individuals where we see cooperation as exchange of information adquired
during the individual search steps. Recombination algorithms typically employ at
least two feasible solutions, but a higher number is possible (Eiben et al. 1994).
The algorithm then uses the information contained in a number of selected solu-
tions named parents in order to create new solutions. If it is the case that the re-
sulting individuals (the offspring) are entirely composed of information taken from
the parents, then the recombination is said to be transmitting (Radcliffe 1994).
This is the case of classical recombination operators for bitstrings such as single-
point crossover, or uniform crossover (Syswerda 1989). This property captures the
a priori role of recombination as previously enunciated, but it can be difficult to
achieve for certain problem domains (the TRAVELING SALESMAN PROBLEM – TSP
– is a typical example). In those situations, it is possible to consider other proper-
ties of interest such as respect or assortment. The former refers to the fact that the
recombination operator generates descendants carrying all features (i.e., basic
properties of solutions with relevance for the problem attacked) common to all
parents; thus, this property can be seen as a part of the exploitative side of the
search. On the other hand, assortment represents the exploratory side of recombi-
nation. A recombination operator is said to be properly assorting if, and only if, it
can generate descendants carrying any combination of compatible features taken
from the parents. The assortment is said to be weak if it is necessary to perform
several recombinations within the offspring to achieve this effect.

3.2 The MA Search Template 57

Several interesting concepts have been introduced in this description of recom-
bination, namely, relevant features and cooperation. We will return to these points
in the next section. Before that, let us consider the other operator mentioned
above: mutation. From a classical point of view (at least in the genetic-algorithm
arena (Goldberg 1989), this is a secondary operator whose mission is to “keep the
pot boiling”, continuously injecting new material in the population, but at a low
rate (otherwise the search would degrade to a random walk in the solution space).
Evolutionary-programming practitioners (Fogel et al. 1966) would disagree with
this characterization, claiming a central role for mutation. Actually, it is consid-
ered the crucial part of the search engine in this context. This possibly reflects
similar discussions on the roles of natural selection and random genetic drift in
biological evolution.

In essence, a mutation operator must generate a new solution by partly modify-
ing an existing solution. This modification can be random – as it is typically the
case – or can be endowed with problem-dependent information so as to bias the
search to probably-good regions of the search space. It is precisely in the light of
this latter possibility that one of the most distinctive components of MAs is intro-
duced: local-improvers. To understand their philosophy, let us consider the fol-
lowing abstract formulation: first of all, assume a mutation operator that performs
a random minimal modification in a solution; now consider the graph whose verti-
ces are solutions, and whose edges connect pairs of vertices such that the corre-
sponding solutions can be obtained via the application of the mutation operator on
one of them2. A local-improver is a process that starts at a certain vertex, and
moves to an adjacent vertex, provided that the neighboring solution is better that
the current solution. This is illustrated in Fig. 3.3.

Process Local-Improver (↑↓ current : Individual, ↓ op : Operator[])
variables

new : Individual;
begin

repeat
new ← Apply-Operator(op, current);
if (Fg(new) <F Fg(current)) then

current ← new;
endif;

until Local-Improver-Termination-Criterion();
return current;

end

Fig. 3.3. Pseudocode of a Local-Improver

As it can be seen, the local-improver tries to find an “uphill” (in terms of im-
proving the value provided by the guiding function Fg path in the graph whose

2 Typically this graph is symmetrical, but in principle there is no problem in assuming it to
be asymmetrical.

58 3 Memetic Algorithms

definition was sketched before. The formal name for this graph is fitness land-
scape (Jones 1995). Notice that the length of the path found by the local-improver
is determined by means of a Local-Improver-Termination-Criterion function. A
usual example is terminating the path when no more uphill movements are possi-
ble (i.e., when the current solution is a local optimum with respect to op). How-
ever, this is not necessarily the case always. For instance, the path can be given a
maximum allowed length, or it can be terminated as soon as the improvement in
the value of the guiding function is considered good enough. For this reason, MAs
cannot be characterized as “EAs working in the space of local-optima (with re-
spect to a certain fitness landscape)”; that would be an unnecessarily restricted
definition. Indeed, the earlier MAs by Moscato and Norman in 1988-89, where not
restricted to search with only local-optima as basis for recombination.

The local-improver algorithm can be used in different parts of the generation
process, for it is nothing else than just another operator. For example, it can be in-
serted after the utilization of any other recombination or mutation operator; alter-
natively, it could be just used at the end of the reproductive stage. As said before,
the utilization of this local-improver3 is one of the most characteristic features of
MAs. It is precisely because of the use of this mechanism for improving individu-
als on a local (and even autonomous) basis that the term ‘agent’ is deserved. Thus,
the MA can be viewed as a collection of agents performing an autonomous explo-
ration of the search space, cooperating via recombination, and competing for
computational resources due to the use of selection/replacement mechanisms.

After having presented the innards of the generation process, we can now have
access to the larger picture. The functioning of a MA consists of the iteration of
this basic generational step, as shown in Fig. 3.4.

Process MA () → Individual[]
variables

pop : Individual[];
begin

pop ← Generate-Initial-Population();
repeat

pop ← Do-Generation(pop);
if Converged(pop) then

pop ← Restart-Population(pop);
endif;

until MA-Termination-Criterion();
end

Fig. 3.4. The general template of a MA

Several comments must be made with respect to this general template. First of
all, the Generate-Initial-Population process is responsible for creating the initial

3 We use the term in singular, but notice that several different local-improvers could be
used in different points of the algorithm, or in different agents.

3.2 The MA Search Template 59

set of pop configurations. This can be done by simply generating pop random con-
figurations or by using a more sophisticated seeding mechanism (for instance,
some constructive heuristic), by means of which high-quality configurations are
injected in the initial population (Surry and Radcliffe 1996; Louis et al. 1999).
Another possibility, the Local-Improver presented before could be used as shown
in Fig. 3.5:

Process Generate-Initial-Population (↓ μ : �) → Individual[]
variables

pop : Individual[];
ind : Individual;
j : [1..μ];

begin
for j ← 1:μ do

ind ← Generate-Random-Solution();
pop[j] ← Local-Improver(ind);

endfor;
return pop;

end

Fig. 3.5. Injecting high-quality solutions in the initial population

There is another interesting element in the pseudocode shown in Fig. 3.4: the
Restart-Population process. This process is very important in order to make an ap-
propriate use of the computational resources. Consider that the population may
reach a state in which the generation of new improved solution is very unlikely.
This could be the case when all agents in the population are very similar to each
other. In this situation, the algorithm will probably expend most of the time re-
sampling points in a very limited region of the search space (Cotta 1997), with the
subsequent waste of computational efforts. This phenomenon is known as conver-
gence, and it can be identified using measures such as Shannon’s entropy
(Davidor and Ben-Kiki 1992). If this measure falls below a predefined threshold,
the population is considered at a degenerate state. This threshold depends upon the
representation of the problem being used (number of values per variable, con-
straints, etc.) and hence must be determined in an ad-hoc fashion. A different pos-
sibility is the use of a probabilistic approach to determine with a desired confi-
dence that the population has converged. For example, in (Hulin 1997) a Bayesian
approach is presented for this purpose.

Once the population is considered to be at a degenerate state, the restart process
is invoked. Again, this can be implemented in a number of ways. A very typical
strategy is keeping a fraction of the current population (this fraction can be as
small as one solution, the current best), and substituting the remaining configura-
tions with newly generated (from scratch) solutions, as shown in Fig. 3.6:

60 3 Memetic Algorithms

Process Restart-Population (↓ pop : Individual[]) → Individual[]
variables

newpop : Individual[];
j, #preserved : [1..|pop|];

begin
#preserved ← |pop| . %PRESERV;
for j ← 1: #preserved do

newpop[j] ← ith Best(pop, j);
endfor;
for j ← (#preserved+1):|pop| do

newpop[j] ← Generate-Random-Configuration();
newpop[j] ← Local-Improver(newpop[j]);

endfor;
return newpop;

end

Fig. 3.6. A possible re-starting procedure for the population

The above process completes the functional description of MAs. Obviously, it
is possible to conceive some ad-hoc modifications of this basic template that still
could be catalogued as MA. The reader can nevertheless be ensured that any such
algorithm will follow the general philosophy depicted in this section, and could be
possibly rewritten so as to match the spirit of this template.

3.3 Design of Effective MAs

The general template of MAs we have depicted in the previous section must be
instantiated with precise components in order to be used for as a heuristic for an
specific problem. This instantiation has to be carefully done so as to obtain an ef-
fective optimization tool. We will address some design issues in this section.

A first obvious remark must be done: there is no single general approach for the
design of effective MAs. This fact admits different proofs depending on the pre-
cise definition of effective in the previous statement. Such proofs may involve
classical complexity results and conjectures if ‘effective’ is understood as ‘poly-
nomial-time’, the NFL Theorem if we consider a more general set of performance
measures, and even Computability Theory if we relax the definition to arbitrary
decision problems. For these reasons, we can only define several design heuristics
that will likely result in “well-performing” MAs, but without explicit guarantees
for this.

Having introduced this point of caution, the first element that one has to decide
is the representation of solutions. At this point it is necessary to introduce a subtle
but important distinction here: representation and codification are different things.

3.3 Design of Effective MAs 61

The latter refers to the way solutions are internally stored, and it can be chosen ac-
cording to memory limitations, manipulation complexity, and other resource-
based considerations. On the contrary, the representation refers to an abstract for-
mulation of solutions, relevant from the point of view of the functioning of repro-
ductive operators. This duality was present in discussions contemporary to the
early debate on MAs (e.g., Radcliffe 1992), and can be very well exemplified in the
context of permutational problems. For instance, consider the TSP; solutions can
be internally encoded as permutations, but if a edge-recombination operator is
used (e.g., Mathias and Whitley 1992) then solutions are de facto represented as
edge lists.

The above example about the TSP also serves for illustrating one of the proper-
ties of representations that must be sought. Consider that a permutation can be ex-
pressed using different information units; for instance, it can be determined on the
basis of the specific values of each position. This is the position-based representa-
tion of permutations (Goldberg 1989). On the other hand, it can be determined on
the basis of adjacency relationships between the elements of the permutation.
Since the TSP is defined by a matrix of inter-city distances, it seems that edges are
more relevant for this problem than absolute positions in the permutation. In ef-
fect, it turns out that operators manipulating this latter representation perform bet-
ter than operators that manipulate positions such as partially-mapped crossover
(PMX) (Goldberg and Lingle 1985) or cycle crossover (CX) (Oliver et al. 1987).

There have been several attempts for quantifying how good a certain set of in-
formation units is for representing solutions for a specific problem. We can cite a
few of them:

• Minimizing epistasis: epistasis can be defined as the non-additive influence on
the guiding function of combining several information units (see (Davidor
1991) for example). Clearly, the higher this non-additive influence, the lower
the absolute relevance of individual information units. Since the algorithm will
be processing such individual units (or small groups of them), the guiding
function turns out to be low informative, and prone to misguide the search.

• Minimizing fitness variance (Radcliffe and Surry 1994a): This criterion is
strongly related to the previous one. The fitness variance for a certain informa-
tion unit is the variance of the values returned by the guiding function, meas-
ured across a representative subset of solutions carrying this information unit
(Hofmann 1993). By minimizing this fitness variance, the information pro-
vided by the guiding function is less noisy, with the subsequent advantages for
the guidance of the algorithm.

• Maximizing fitness correlation: In this case a certain reproductive operator is
assumed, and the correlation in the values of the guiding function for parents
and offspring is measured (Moscato 1989). If the fitness correlation is high,
good solutions are likely to produce good solutions, and thus the search will
gradually shift toward the most promising regions of the search space (Mo-
scato 1993; Merz and Freisleben 2000). Again, there is a clear relationship
with the previous approaches; for instance, if epistasis (or fitness variance) is

62 3 Memetic Algorithms

low, then solutions carrying specific features will have similar values for the
guiding function; since the reproductive operators will create new solutions by
manipulating these features, the offspring is likely to have a similar guiding
value as well.

Obviously, the description of these approaches may appear somewhat idealized,
but the underlying philosophy is well illustrated. It must be noted that selecting a
representation is not an isolated process, but it has a strong liaison with the task of
choosing appropriate reproductive operators for the MA as already recognized in
(Moscato 89). Actually, according to the operator-based view of representations
described above, the existence of multiple operators may imply the consideration
of different representations of the problem at different stages of the reproductive
phase. We will come back to this issue later in this section.

In order to tackle the operator-selection problem, we can resort to existing op-
erators, or design new ad hoc operators. In the former case, a suggested line of ac-
tion could be the following (Cotta 1998):

1. We start from a set of existing operators Ω = {ω1, ω2, ..., ωk}. The first step is
identifying the representation of the problem manipulated by each of these op-
erators.

2. Use any of the criterions presented for measuring the goodness of the represen-
tation.

3. Select ωi from Ω, such that the representation manipulated by ωi is the more
trustable.

This is called inverse analysis of operators since some kind of inverse engi-
neering is done in order to evaluate the potential usefulness of each operator. The
alternative would be a direct analysis in which new operators would be designed.
This could be do as follows:

1. Identify different potential representation for the problem at hand (e.g., recall
the previous example on the TSP).

2. Use any of the criterions presented for measuring the goodness of these repre-
sentation.

3. Create new operators Ω′ = {ω′1, ω′2, ..., ω′k}. via the manipulation of the most
trustable information units.

In order to accomplish the last step of the direct analysis, there exist a number
of templates for the manipulation of abstract information units. For example, the
templates known as random respectful recombination (R3), Random Assorting Re-
combination (RAR), and Random Transmitting Recombination (RTR) have been
defined in (Radcliffe 1994). An example of the successful instantiation of some of
these templates using the direct analysis in the context of flowshop scheduling can
be found in (Cotta and Troya 1998).

3.3 Design of Effective MAs 63

The generic templates mentioned above are essentially blind. This means that
they do not use problem-dependent information at any stage of their functioning.
This use of blind recombination operators is traditionally justified on the grounds
of not introducing excessive bias in the search algorithm, thus preventing ex-
tremely fast convergence to suboptimal solutions. However, this is a highly argu-
able point since the behavior of the algorithm is in fact biased by the choice of
representation. Even if we neglect this fact, it can be reasonable to pose the possi-
bility of quickly obtaining a suboptimal solution and restarting the algorithm,
rather than using blind operators for a long time in pursuit of an asymptotically
optimal behavior (not even guaranteed in most cases).

Reproductive operators that use problem knowledge are commonly termed heu-
ristic or hybrid. In these operators, problem information is used to guide the proc-
ess of producing the offspring. There are numerous ways to achieve this inclusion
of problem knowledge; in essence, we can identify two major aspects into which
problem knowledge can be injected: the selection of the parental features that will
be transmitted to the descendant, and the selection of non-parental features that
will be added to it4.

With respect to the selection of parental features to be injected in the offspring,
there exists evidence that respect (transmission of common features, as mentioned
in the previous section) is beneficial for some problems (e.g., see (Cotta and
Muruzábal 2002; Mathias and Whitley 1992)). After this initial transmission, the
offspring can be completed in several ways. For example, (Radcliffe and Surry
1994a) have proposed the use of local-improvers or implicit enumeration sche-
mas5. This is done by firstly generating a partial solution by means of a non-
heuristic procedure; subsequently, two approaches can be used:

• locally-optimal completion: the child is completed at random, and a local-
improver is used restricted to those information units added for completion.

• globally-optimal completion: an implicit enumeration schema is used in order
to find the globally best combination of information units that can be used to
complete the child.

Related to the latter approach, the implicit enumeration schema can be used to
find the best combination of the information units present in the parents. The re-
sulting recombination would thus be transmitting, but not necessarily respectful
since it can be proved that these two properties are incompatible in general. How-
ever, we can enforce respect by restricting the search to non-common features.
Notice that this would not be globally-optimal completion since the whole search
is restricted to information comprised in the parents. The set of solutions that can
be constructed using this parental information is termed dynastic potential, and for

4 Notice that the use of the term ‘parental information’ does not imply the existence of more
than one parent. In other words, the discussion is not restricted to recombination opera-
tors, but may also include mutation operators.

5 Actually, these approaches can be used even when no initial transmission of common fea-
tures is performed.

64 3 Memetic Algorithms

this reason this approach is termed dynastically optimal recombination (DOR)
(Cotta and Troya 2002). This operator is monotonic in the sense that any child
generated is at least as good as the best parent.

Problem-knowledge need not be necessarily only included via iterative algo-
rithms. On the contrary, the use of constructive heuristics is a popular choice. A
distinguished example is the Edge Assembly Crossover (EAX) (Nagata and
Kobayashi 1997). EAX is a specialized operator for the TSP (both for symmetric
and asymmetric instances) in which the construction of the child comprises two-
phases: the first one involves the generation of an incomplete child via the so-
called E-sets (subtours composed of alternating edges from each parent); subse-
quently, these subtours are merged in a single feasible subtour using a greedy re-
pair algorithm. The authors of this operator reported impressive results in terms of
accuracy and speed. It has some strong similarities with the recombination opera-
tor proposed in (Moscato and Norman 1992; Moscato 1993).

To some extent, the above discussion is also applicable to mutation operators,
although these exhibit a clearly different role: they must introduce new informa-
tion. This means that purely transmitting mechanisms would not be acceptable for
this purpose. Nevertheless, it is still possible to use the ideas described in the pre-
vious paragraphs by noting that the ‘partial solution’ mentioned in several situa-
tions can be obtained by simply removing some information units from a single
solution. A completion procedure as described before can then be used in order to
obtain the mutated solution.

Once we have one or more knowledge-augmented reproductive operators, it is
necessary to make them work in a synergistic fashion. This is a feature of MAs
that is also exhibited by other metaheuristics such as Variable Neighborhood
Search (VNS) (Hansen and Mladenovic 2001), although it must be emphasized
that it was already included in the early discussions of MAs, before the VNS
metaheuristic was formulated. We can quote from (Moscato 1989) discussing the
implementation of MAs in parallel and distributed heterogeneous computer sys-
tems:

“Another advantage that can be exploited is that the most powerful computers
in the network can be doing the most time-consuming heuristics, while others are
using a different heuristics. The program to do local search in each individual can
be different. This enriches the whole, since what is a local minima for one of the
computers is not a local minima for another in the network. Different heuristics
may be working fine due to different reasons. The collective use of them would
improve the final output. In a distributed implementation we can think in a divi-
sion of jobs, dividing the kind of moves performed in each computing individual. It
leads to an interesting concept, where instead of dividing the physical problem
(assignment of cities/cells to processors) we divide the set of possible moves. This
set is selected among the most efficient moves for the problem.”

This idea of synergistically combining different operators (and indeed different
search techniques) was exemplified at its best by the extraordinary achievements
of Applegate, Bixby, Cook, and Chvatal in 1998. They established new break-
through results for the MIN TSP that support our view that MAs will have a central

3.4 Applications of MAs 65

role as a problem solving methodology. This team solved to optimality an instance
of the TSP of 13,509 cities corresponding to all U.S. cities with populations of
more than 500 people6. The approach, according to Bixby: “...involves ideas from
polyhedral combinatorics and combinatorial optimization, integer and linear pro-
gramming, computer science data structures and algorithms, parallel computing,
software engineering, numerical analysis, graph theory, and more”. Their ap-
proach can possibly be classified as the most complex MA ever built for a given
combinatorial optimization problem.

These ideas have been further developed in a recent unpublished manuscript,
“Finding Tours in the TSP” by the same authors (Bixby et al.), available from
their web site. They present results on running an optimal algorithm for solving
the MIN WEIGHTED HAMILTONIAN CYCLE PROBLEM in a subgraph formed by the
union of 25 Chained Lin-Kernighan tours. The approach consistently finds the op-
timal solution to the original MIN TSP instances with up to 4,461 cities. They also
attempted to apply this idea to an instance with 85,900 cities (the largest instance
in TSPLIB) and from that experience they convinced themselves that it also works
well for such large instances.

The approach of running a local search algorithm (Chained Lin Kernighan) to
produce a collection of tours, following by the dynastical-optimal recombination
method the authors named tour merging gave a non-optimal tour of only 0.0002%
excess above the proved optimal tour for the 13,509 cities instance. We take this
as a clear proof of the benefits of the MA approach and that more work is needed
in developing good strategies for Complete Memetic Algorithms, i.e., those that
systematically and synergistically use randomized and deterministic methods and
can prove optimality.

We would like to close this section by emphasizing once again the heuristic na-
ture of the design principles described in this section. The most interesting thing to
note here is not the fact that they are just probably-good principles, but the fact
that there is still much room for research in methodological aspects of MAs (e.g.,
see (Krasnogor 2002)). The open-philosophy of MAs make them suitable for in-
corporating mechanisms from other optimization techniques. In this sense, the
reader may find a plethora of new possibilities for MA design by studying other
metaheuristics such as TS, for example.

3.4 Applications of MAs

This section will provide an overview of the numerous applications of MAs.
This overview is far from exhaustive since new applications are being developed
continuously. However, it is intended to be illustrative of the practical impact of
these optimization techniques.

6 See: http://www.crpc.rice.edu/CRPC/newsArchive/tsp.html

66 3 Memetic Algorithms

3.4.1 NP-hard Combinatorial Optimization problems

Traditional NP Optimization problems constitute one of the most typical appli-
cation areas of MAs. A remarkable history of successes has been reported with re-
spect to the application of MAs to NP-hard problems such as the following:
GRAPH PARTITIONING (Bui and Moon 1996, 1998; Merz and Freisleben 1998a,
1999b, 2000) MIN NUMBER PARTITIONING (Berretta et al. 2001; Berretta and Mo-
scato 1999), MAX INDEPENDENT SET (Aggarwal et al. 1997; Hifi 1997; Sakamoto
et al. 1997), BIN-PACKING (Reeves 1996), MIN GRAPH COLORING (Coll et al.
1999; Costa et al. 1995; Dorne and Hao 1998; Fleurent and Ferland 1997), SET

COVERING (Beasley and Chu 1996), MIN GENERALISED ASSIGNMENT (Chu and
Beasley 1997), MULTIDIMENSIONAL KNAPSACK (Beasley and Chu 1998; Cotta and
Troya 1998; Gottlieb 2000), NONLINEAR INTEGER PROGRAMMING (Taguchi et al.
1998), QUADRATIC ASSIGNMENT (Brown et al. 1989; Carrizo et al. 1992; Merz
and Freisleben 1997a, 1999a, 1999b), QUADRATIC PROGRAMMING (Merz and
Freisleben 2002a; Merz and Katayama 2002), SET PARTITIONING (Levine 1996),
and particularly on the MIN TRAVELLING SALESMAN PROBLEM and its variants
(Freisleben and Merz 1996a, 1996b; Gorges-Schleuter 1989, 1991, 1997; Holstein
and Moscato 1999; Katayama et al. 1998; Krasnogor and Smith 2000; Merz 2002;
Merz and Freisleben 1997b, 1999b, 2002b; Moscato and Norman 1992; Radcliffe
and Surry 1994b; Rodrigues and Ferreira 2001).

The problems cited above are viewed as “classical” NP-hard problems as the
decisions versions appeared in Karp’s notorious paper (Karp 1972) on the reduci-
bility of combinatorial problems. In many of them the authors claim that their
MAs are probably the best-known heuristic for the problem at hand. This is very
important since these problems have been addressed with several different combi-
natorial optimization methods.

The MA paradigm is not limited to the above-mentioned problems. There exist
additional “non-classical” combinatorial optimization problems that are difficult
to solve in practice. In their resolution with heuristic methods MAs have revealed
themselves as outstanding techniques. As an example of these problems, one can
cite partial shape matching (Ozcan and Mohan 1998), Kauffman NK Landscapes
(Merz and Freisleben 1998b), spacecraft trajectory design (Crain et al. 1999),
minimum weighted k-cardinality tree subgraph problem (Blesa et al. 2001), mini-
mum k-cut problem (Yeh 2000), uncapacitated hub location (Abdinnour 1998),
placement problems (Hopper and Turton 1999; Krzanowski and Raper 1999;
Schnecke and Vornberger 1997), vehicle routing (Berger et al. 1998; Jih and Hsu
1999), transportation problems (Gen et al. 1998; Novaes et al. 2000), and task al-
location (Hadj-Alouane et al. 1999).

3.4.2 Telecomunications and networking

Another important class of combinatorial optimization problems are those that
directly or indirectly correspond to telecommunication network problems. For ex-

3.4 Applications of MAs 67

ample, we can cite: frequency allocation (Cotta and Troya 2001; Kassotakis et al.
2000), network design (Garcia et al. 1998; Runggeratigul 2001), degree-
constrained minimum spanning tree problem (Raidl and Julstron 2000), vertex-
biconnectivity augmentation (Kersting et al. 2002), assignment of cells to switches
in cellular mobile networks (Quintero and Pierre 2003), and OSPF routing (Buriol
et al. 2002).

Obviously, this list is by no means complete since its purpose is simply to
document the wide applicability of the approach for combinatorial optimization.

3.4.3 Scheduling and Timetabling Problems

Undoubtedly, scheduling problems are one of the most important optimization
domains due their importance in Production Planning. They thus deserve a section
of their own, despite they could be included in the NP-hard class surveyed in the
previous subsection.

MAs have been used to tackle a large variety of scheduling problems. We can
cite the following: maintenance scheduling (Burke and Smith 1997, 1999a,
1999b), open shop scheduling (Cheng et al. 1999; Fang and Xi 1997; Liaw 2000),
flowshop scheduling (Basseur et al. 2002; Cavalieri and Gaiardelli 1998; Murata
and Ishibuchi 1994; Murata et al. 1996), total tardiness single machine scheduling
(Mendes et al. 2002a), single machine scheduling with setup-times and due-dates
(França et al. 1999, 2001; Lee 1994; Miller et al. 1999), parallel machine schedul-
ing (Cheng and Gen M 1996, 1997; Mendes et al. 2002b; Min and Cheng 1998),
project scheduling (Nordstrom and Tufekci 1994; Ozdamar 1999; Ramat et al.
1997), warehouse scheduling (Watson et al. 1999), production planning (Dellaert
and Jeunet 2000; Ming and Mak 2000), timetabling (Burke et al. 1995, 1996,
1997, 1998; Burke and Newall 1997; Gonçalves 2001; Ling 1992; Monfroglio
1996b, 1996c; Paechter et al. 1996, 1998; Rankin 1996), rostering (De
Causmaecker et al. 1999; Monfroglio 1996a), and sport games scheduling (Costa
1995).

3.4.4 Machine Learning and Robotics

Machine learning and robotics are two closely related fields since the different
tasks involved in the control of robots are commonly approached using artificial
neural networks and/or classifier systems. MAs, generally cited in these fields un-
der the denomination of “genetic hybrids” have been used, i.e., in general optimi-
zation problems related to machine learning (for example, the training of artificial
neural networks), and in robotic applications. With respect to the former, MAs
have been applied to neural network training (Abbass 2001; Ichimura and
Kuriyama 1998; Moscato 1993; Topchy et al. 1996; Yao 1993), pattern recogni-
tion (Aguilar and Colmenares 1998), pattern classification (Krishna and
Narasimha-Murty 1999; Mignotte et al. 2000), and analysis of time series (Dos
Santos Coelho et al. 2001; Ostermark 1999a).

68 3 Memetic Algorithms

In robotics, work has been done in reactive rulebase learning in mobile agents
(Cotta and Troya 2000), path planning (Osmera 1995; Pratihar et al. 1999; Xiao
and Zhang 1997), manipulator motion planning (Ridao et al. 1998), time optimal
control (Chaiyaratana and Zalzala 1999), etc.

3.4.5 Engineering, Electronics and Electromagnetics

Electronics and engineering are also two fields in which these methods have
been actively used. For example, with regard to engineering problems, work has
been done in the following areas: structure optimization (Yeh 1999), system mod-
eling (Wang and Yen 1999), fracture mechanics (Pacey et al. 2001), aeronautic
design (Bos 1998; Quagliarella and Vicini 1998), trim loss minimization
(Ostermark 1999b), traffic control (Srinivasan et al. 2000), power planning
(Urdaneta et al. 1999; Valenzuela and Smith 2002), calibration of combustion en-
gines (Knödler et al. 2002; Poland et al. 2001), and process control (Conradie et al.
2002; Zelinka et al. 2001).

As to practical applications in the field of electronics and electromagnetics
(Ciuprina et al. 2002), the following list can illustrate the numerous areas in which
these techniques have been employed: semiconductor manufacturing (Kim and
May 1999), circuit design (Areibi 2001, 2002; Guotian and Changhong 1999;
Harris and Ifeachor 1998; Weile and Michielssen 1999), circuit partitioning
(Areibi 2000), computer aided design (Becker and Drechsler 1994), multilayered
periodic strip grating (Aygun et al. 1997), analogue network synthesis (Grimbleby
1999), service restoration (Augugliaro et al. 1998), optical coating design
(Hodgson 2001), and microwave imaging (Caorsi et al. 2002; Pastorino et al.
2002).

3.4.6 Problems involving optimization in molecules

This is a class of problems that involve nonlinear optimization techniques and
global optimization challenges. We hope the reader can easily identify a common
trend in the literature. Some authors continue referring to their technique as ‘ge-
netic’, although they are closer in spirit to MAs (Hodgson 2000). This makes dif-
ficult to identify the trend from some abstracts available from database searches.

The Caltech report that gave the name to the field of MAs (Moscato 1989) dis-
cussed a metaheuristic that can be viewed as a hybrid of GAs and annealing based
methods developed with M. G. Norman in 1988. In recent years, several papers
applied hybrids of GAs with SA or other methods to a variety of molecular opti-
mization problems (Bayley et al. 1998; Dandekar and Argos 1996; De Souza et al.
1998; Doll and VanHove 1996; Fu et al 1997; Gunn 1997; Jones et al. 1997;
Kariuki et al. 1997; Landree et al. 1997; Li et al. 1997; Lorber and Shoichet 1998;
Mackay 1995; Merkle et al. 1996; Miller et al. 1996; Pacey et al. 1999; Shankland
et al. 1997, 1998; Tam and Compton 1995; White et al. 1998; Zacharias et al.
1998; Zwick et al. 1996). These are hybrid population approaches that cannot be

3.5 Conclusions and Future Directions 69

catalogued as being ‘genetic’, but this denomination has appeared in previous
work by Deaven and Ho (Deaven and Ho 1995) and then cited by J. Maddox in
Nature (Maddox 1995) and is being used by researchers not aware of MAs.

Other fields of application include cluster physics (Niesse and Mayne 1996).
Additional work has been done in (Deaven et al. 1996; Ho et al. 1998; Hobday
and Smith 1997; Pucello et al. 1997; Pullan 1997; White et al. 1998). Other evolu-
tionary approaches to a variety of molecular problems can be found in (Doll and
VanHove 1996; Hartke 1993; Hirsch and Mullergoymann 1995; May and Johnson
1994; Meza et al. 1996; Raymer et al. 1997; VanKampen et al. 1996). Their use
for design problems is particularly appealing (Clark and Westhead 1996; Kariuki
et al. 1997; Willett 1995). They have also been applied in protein design
(Desjarlais and Handel 1995; Lazar et al. 1997), structure prediction (Krasnogor
et al. 2002; Krasnogor and Smith 2002), and alignment (Carr et al. 2002) (see also
the discussion in (Moscato 1993) and the literature review in (Hodgson 2000).

This field is enormously active, and new application domains for MAs are con-
tinuously emerging. Among these, we must mention applications related to ge-
nomic analysis, such as clustering gene-expression profiles (Merz and Zell 2002),
or inferring phylogenetic trees (Cotta and Moscato 2002).

3.4.7 Other Applications

In addition to the application areas described above, MAs have been also util-
ized in other fields such as, for example, medicine (Haas et al. 1996, 1998;
Wehrens et al. 1993), economics (Li et al. 1996; Ostermark, 1999c), oceanogra-
phy (Musil et al. 1999), mathematics (Reich 2000; Wei and Cheng 1999; Wei and
Kangling 2000), imaging science and speech processing (Cadieux et al. 1997;
Krishna et al. 1997; Li 1997; Mathias and Whitley 1994; Ruff et al. 1999;
Yoneyama et al. 1999), etc.

For further information about MA applications we suggest querying biblio-
graphical databases or web browsers for the keywords ‘memetic algorithms’ (or its
singular form) as well as ‘hybrid genetic algorithm’. We have selected some ref-
erences for well-known application areas. This means that, with high probability,
many important contributions, some of them new or some of them unknown to us,
may have been inadvertently left out and we hope the authors would forgive us for
important unvoluntary omissions.

3.5 Conclusions and Future Directions

We believe that MAs have very favorable perspectives for their development
and widespread application. We have several good reasons as hypothesis. First of
all, MAs are showing a great record of efficient implementations, providing very
good results in practical problems as the reader may have already checked the ref-
erences cited in the previous section. We also have reasons to believe that we are

70 3 Memetic Algorithms

near some major leaps forward in our theoretical understanding of these tech-
niques, including for example the worst-case and average-case computational
complexity of recombination procedures. On the other hand, the ubiquitous nature
of distributed systems, like networks of workstations for example, plus the inher-
ent asynchronous parallelism of MAs and the existence of web-conscious lan-
guages like Java are all together an excellent combination to develop highly port-
able and extendable object-oriented frameworks allowing algorithmic reuse
(Mendes et al. 2001).

The systematic development of other particular optimization strategies is a
healty sign of the evolution of the field, particularly if we have a reductionist ap-
proach to metaheuristic development. If any of the simpler metaheuristics (SA,
TS, VNS, GRASP, etc.) performs the same as a more complex method (GAs,
MAs, Ant Colonies, etc.), an “elegance design” principle should prevail and we
must either resort to the simpler method, or to the one that has less free parame-
ters, or to the one that is easier to implement. This will be the major forces in heu-
ristic creation and development. The existence of a simple method that works well
should defy us to adapt the complex methodology to beat a simpler heuristic, or to
check if that is possible at all. An unhealthy sign of current research, however, are
the attempts to encapsulate metaheuristics on stretched confinements.

We think that there are several “learned lessons” from work in other metaheu-
ristics. For instance, a Basic Tabu Search scheme (Glover and Laguna 1997) de-
cides to accept another new configuration without restriction to the relative objec-
tive function value of the two solutions. This has lead to good performance in
some configuration spaces where evolutionary methods and Simulated Annealing
perform poorly. A classical example of this situation is the MIN NUMBER

PARTITIONING problem (Berretta and Moscato 1999).
There are many open lines of research in areas such as co-evolution. In (Mo-

scato 1999) we can find the following quotation:

“It may be possible that a future generation of MAs will work in at least two
levels and two time scales. In the short-time scale, a set of agents would be
searching in the search space associated to the problem while the long-time scale
adapts the heuristics associated with the agents. Our work with D. Holstein which
will be presented in this book might be classified as a first step in this promising
direction. However, it is reasonable to think that more complex schemes evolving
solutions, agents, as well as representations, will soon be implemented.”

At that time, we were referring to the use of a metaheuristic called Guided Lo-
cal Search used in (Holstein and Moscato, 1999) as well as the possibility of co-
evolving the neighborhood techniques by other means. Unfortunately, this was not
studied in depth in Holstein’s thesis. However, a number of more recent articles
are paving the way to more robust MAs (Carr et. al 2002; Krasnogor 1999; Kras-
nogor and Smith 2001). Krasnogor has recently introduced the term multimeme
algorithms to identify those MAs that also adaptively change the neighborhood
definition (Krasnogor and Smith 2002). In collaboration with other colleagues he
is applying the method for the difficult problem of protein structure prediction

3.5 Conclusions and Future Directions 71

(Krasnogor et al. 2002). Smith also presents a recent study on these issues in
(Smith 2002).

More work is necessary, and indeed the protein folding models they are using
are a good test-bed for the approach. However, we also hope that the researchers
should again concentrate MAs for large-scale challenging instances of the TSP,
possibly following the approaches of using population structures (Moscato and
Tinetti 1992; França et al. 2001), self-adapting local search (Krasnogor and Smith
2000) as well as the powerful recombination operators that have been devised for
TSP instances (Holstein and Moscato 1999; Merz 2002, Merz and Freisleben
2002b; Moscato 1993). We have also identified some problems with evolutionary
search methods in instances of the TSP in which the entries of the distance matrix
have a large number of decimal digits. This means that there is an inherent prob-
lem to be solved, for evolutionary methods to deal with fitness functions that have
so many decimal digits. Traditional rank-based or fitness-based selection schemes
to keep new solutions in the current population fail. It would be then reasonable to
investigate whether some ideas from basic TS mechanisms could be adapted to al-
low less stringent selection approaches.

Multiparent recombination is also an exciting area to which research efforts can
be directed too. From (Papadimitriou and Steiglitz 1982) we can read:

“The strategy developed by (Lin 1965) for the TSP is to obtain several local op-
tima and then identify edges that are common to all of them. These are then fixed,
thus reducing the time to find more local optima. This idea is developed further in
(Lin and Kernighan 1973) and (Goldstein and Lesk 1975). It is intriguing that
such an strategy, which has been around for more than three decades, is still not
accepted by some researchers.”

We think that the use of multiparent recombination with proven good proper-
ties is one of the most challenging issues for future developement in MAs, as well
as for the whole EC paradigm.

72 References

References

Abbass H (2001) A memetic Pareto evolutionary approach to artificial neural networks.
Lecture Notes in Computer Science 2256:1–12

Aggarwal C, Orlin J, Tai R (1997) Optimized crossover for the independent set problem.
Operations Research 45:226–234

Aguilar J, Colmenares A (1998) Resolution of pattern recognition problems using a hybrid
genetic/random neural network learning algorithm. Pattern Analysis and Applications
1:52–61

Abdinnour H (1998) A hybrid heuristic for the uncapacitated hub location problem.
European Journal of Operational Research 106:489–499

Areibi S (2000) An integrated genetic algorithm with dynamic hill climbing for VLSI
circuit partitioning. Proceedings of Data Mining with Evolutionary Algorithms, pp 97–
102

Areibi S (2001) Memetic algorithms for VLSI physical design: Implementation issues.
Proceedings of the 2nd WOMA – Workshop on Memetic Algorithms, pp 140–145

Areibi S (2002) The performance of memetic algorithms on physical design. Submitted to
the Journal of Applied Systems Studies.

Augugliaro A, Dusonchet L, Riva-Sanseverino E (1998) Service restoration in compensated
distribution networks using a hybrid genetic algorithm. Electric Power Systems
Research 46:59–66

Aygun K, Weile D, Michielssen E (1997) Design of multi-layered periodic strip gratings by
genetic algorithms. Microwave and Optical Technology Letters 14:81–85

Basseur M, Seynhaeve F, Talbi E (2002) Design of multi-objective evolutionary
algorithms: Application to the flow-shop scheduling problem. Proceedings of the
CEC’02 – Congress on Evolutionary Computation, pp 1151–1156

Bayley M, Jones G, Willett P, Williamson M (1998) Genfold: A genetic algorithm for
folding protein structures using NMR restraints. Protein Science 7:491–499

Beasley J, Chu P (1996) A genetic algorithm for the set covering problem. European
Journal of Operational Research 94:393–404

Beasley J, Chu P (1998) A genetic algorithm for the multidimensional knapsack problem.
Journal of Heuristics 4:63–86

Becker B, Drechsler R (1994) Ofdd based minimization of fixed polarity Reed-Muller
expressions using hybrid genetic algorithms. Proceedings of the IEEE International
Conference on Computer Design: VLSI in Computers and Processor, pp 106–110

Berger J, Salois M, Begin R (1998) A hybrid genetic algorithm for the vehicle routing
problem with time windows. Proceedings of the 12th Biennial Conference of the
Canadian Society for Computational Studies of Intelligence, pp 114–127

3.5 Conclusions and Future Directions 73

Berretta R, Cotta C, Moscato P (2001) Forma analysis and new heuristic ideas for the
number partitioning problem. Proceedings of the 4th MIC – Metaheuristic International
Conference, pp 337–341

Berretta R, Moscato P (1999) The number partitioning problem: An open challenge for
evolutionary computation? In: New Ideas in Optimization. McGraw-Hill, pp 261–278

Blesa M, Moscato P, Xhafa F (2001) A memetic algorithm for the minimum weighted k-
cardinality tree subgraph problem. Proceedings of the 4th MIC – Metaheuristic
International Conference, pp 85–90

Bos A (1998) Aircraft conceptual design by genetic/gradient-guided optimization.
Engineering Applications of Artificial Intelligence 11:377–382

Brown D, Huntley C, Spillane A (1989) A Parallel Genetic Heuristic for the Quadratic
Assignment Problem. Proceedings of the 3rd ICGA – International Conference on
Genetic Algorithms, pp 406–415

Bui T, Moon B (1996) Genetic algorithm and graph partitioning. IEEE Transactions on
Computers 45:841–855

Bui T, Moon B (1998) GRCA: A hybrid genetic algorithm for circuit ratio-cut partitioning.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
17:193–204

Buriol L, Resende M, Ribeiro C, Thorup M (2002) A memetic algorithm for OSPF routing.
Proceedings of the 6th INFORMS Telecommunications Conference, pp 187–188

Burke E, Jackson K, Kingston J, Weare R (1997) Automated timetabling: The state of the
art. The Computer Journal 40:565–571

Burke E, Newall J (1997) A phased evolutionary approach for the timetable problem: An
initial study. Proceedings of the ICONIP/ANZIIS/ANNES’97 Conference, pp 1038–
1041

Burke E, Newall J, Weare R (1996) A memetic algorithm for university exam timetabling.
Lecture Notes in Computer Science 1153:241–250

Burke E, Newall J, Weare R (1998) Initialisation strategies and diversity in evolutionary
timetabling. Evolutionary Computation 6:81–103

Burke E, Smith A (1997) A memetic algorithm for the maintenance scheduling problem.
Proceedings of the ICONIP/ANZIIS/ANNES’97 Conference, pp 469–472

Burke E, Smith A (1999a) A memetic algorithm to schedule grid maintenance. Proceedings
of the CIMCA’99 – International Conference on Computational Intelligence for
Modelling Control and Automation, pp 122–127

Burke E, Smith A (1999b) A multi-stage approach for the thermal generator maintenance
scheduling problem. Proceedings of the CEC’99 – Congress on Evolutionary
Computation, pp 1085–1092

Burke E, Elliman DG, Weare RF (1995) A hybrid genetic algorithm for highly constrained
timetabling problems. Proceedings of the 6th ICGA – International Conference on
Genetic Algorithms, pp 605–610

Cadieux S, Tanizaki N, Okamura T (1997) Time efficient and robust 3-D brain image
centering and realignment using hybrid genetic algorithm. Proceedings of the 36th

SICE Annual Conference, pp 1279–1284
Caorsi S, Massa A, Pastorino M, Rafetto M, Randazzo A (2002) A new approach to

microwave imaging based on a memetic algorithm. Proceedings of the PIERS’02 –
Progress in Electromagnetics Research Symposium. Invited

74 References

Carr R, Hart W, Krasnogor N, Hirst J, Burke E, Smith J (2002) Alignment of protein
structures with a memetic evolutionary algorithm. Proceedings of the GECCO’02 –
Genetic and Evolutionary Computation Conference, pp 1027–1034

Carrizo J, Tinetti F, Moscato P (1992) A computational ecology for the quadratic
assignment problem. Proceedings of the 21st Meeting on Informatics and Operations
Research.

Cavalieri S, Gaiardelli P (1998) Hybrid genetic algorithms for a multiple-objective
scheduling problem. Journal of Intelligent Manufacturing 9:361–367

Chaiyaratana N, Zalzala A (1999) Hybridisation of neural networks and genetic algorithms
for time-optimal control. Proceedings of the CEC’99 – Congress on Evolutionary
Computation, pp 389–396

Cheng R, Gen M (1996) Parallel machine scheduling problems using memetic algorithms.
Proceedings of the IEEE SMC’96 – International Conference on Systems, Man and
Cybernetics. Information Intelligence and Systems, pp 2665–2670

Cheng R, Gen M (1997) Parallel machine scheduling problems using memetic algorithms.
Computers & Industrial Engineering 33:761–764

Cheng R, Gen M, Tsujimura Y (1999) A tutorial survey of job-shop scheduling problems
using genetic algorithms. II. Hybrid genetic search strategies. Computers & Industrial
Engineering 37:51–55

Chu P, Beasley J (1997) A genetic algorithm for the generalised assignment problem.
Computers & Operations Research 24:17–23

Ciuprina G, Ioan D, Munteanu I (2002) Use of intelligent-particle swarm optimization in
electromagnetics. IEEE Transactions on Magnetics 38:1037–1040

Clark D, Westhead D (1996) Evolutionary algorithms in computer-aided molecular design.
Journal of Computer-aided Molecular Design 10:337–358

Coll P, Durán G, Moscato P (1999) On worst-case and comparative analysis as design
principles for efficient recombination operators: A graph coloring case study. In: New
Ideas in Optimization. McGraw-Hill, pp 279–294

Conradie A, Mikkulainen R, Aldrich C (2002) Intelligent process control utilising
symbiotic memetic neuro-evolution. Proceedings of the CEC’02 – Congress on
Evolutionary Computation, pp 623–628

Costa D (1995) An evolutionary tabu search algorithm and the NHL scheduling problem.
INFOR 33:161–178

Costa D, Dubuis N, Hertz A (1995) Embedding of a sequential procedure within an
evolutionary algorithm for coloring problems in graphs. Journal of Heuristics 1:105–
128

Cotta C (1997) On resampling in nature-inspired heuristics (In Spanish). Proceedings of the
7th Conference of the Spanish Association for Artificial Intelligence, pp 145–154

Cotta C (1998) A study of hybridisation techniques and their application to the design of
evolutionary algorithms. AI Communications 11:223–224

Cotta C, Moscato P (2002) Inferring phylogenetic trees using evolutionary algorithms.
Lecture Notes in Computer Science 2439:720–729

Cotta C, Muruzábal J (2002) Towards a more efficient evolutionary induction of bayesian
networks. Lecture Notes in Computer Science 2439:730–739

Cotta C, Troya J (1998) Genetic forma recombination in permutation flowshop problems.
Evolutionary Computation 6:25–44

Cotta C, Troya J (1998) A hybrid genetic algorithm for the 0-1 multiple knapsack problem.
In: Artificial Neural Nets and Genetic Algorithms 3. Springer-Verlag, pp 251–255

3.5 Conclusions and Future Directions 75

Cotta C, Troya J (2000) Using a hybrid evolutionary-A* approach for learning reactive
behaviors. Lecture Notes in Computer Science 1803:347–356

Cotta C, Troya J (2001) A comparison of several evolutionary heuristics for the frequency
assignment problem. Lecture Notes in Computer Science 2084:709–716

Cotta C, Troya J (2002) Embedding branch and bound within evolutionary algorithms.
Applied Intelligence. To be published

Crain T, Bishop R, Fowler W, Rock K (1999) Optimal interplanetary trajectory design via
hybrid genetic algorithm/recursive quadratic program search. Proceedings of the 9th

AAS/AIAA Space Flight Mechanics Meeting, pp 99–133
Dandekar T, Argos P (1996) Identifying the tertiary fold of small proteins with different

topologies from sequence and secondary structure using the genetic algorithm and
extended criteria specific for strand regions. Journal of Molecular Biology 256:645–
660

Davidor Y (1991) Epistasis variance: A viewpoint on GA-hardness. In: Foundations of
Genetic Algorithms. Morgan Kaufmann, pp 23–35

Davidor Y, Ben-Kiki O (1992) The interplay among the genetic algorithm operators:
Information theory tools used in a holistic way. Proceedings of 2nd PPSN – Parallel
Problem Solving From Nature, pp 75–84

Davis L (1991) Handbook of Genetic Algorithms. Van Nostrand Reinhold Computer
Library, New York

Dawkins R (1976) The selfish gene. Oxford University Press, Oxford
De Causmaecker P, Van Den Berghe G, Burke E (1999) Using tabu search as a local

heuristic in a memetic algorithm for the nurse rostering problem. Proceedings of the
13th Conference on Quantitative Methods for Decision Making, abstract only, poster
presentation

De Souza P, Garg R, Garg V (1998) Automation of the analysis of Mossbauer spectra.
Hyperfine Interactions 112:275–278

Deaven D, Ho K (1995) Molecular-geometry optimization with a genetic algorithm.
Physical Review Letters 75:288–291

Deaven D, Tit N, Morris J, Ho K (1996) Structural optimization of Lennard-Jones clusters
by a genetic algorithm. Chemical Physics Letters 256:195–200

Dellaert N, Jeunet J (2000) Solving large unconstrained multilevel lot-sizing problems
using a hybrid genetic algorithm. International Journal of Production Research
38:1083–1099

Desjarlais J, Handel T (1995) New strategies in protein design. Current Opinion in
Biotechnology 6:460–466

Doll R, VanHove M (1996) Global optimization in LEED structure determination using
genetic algorithms. Surface Science 355:L393–L398

Dorne R, Hao J (1998) A new genetic local search algorithm for graph coloring. Lecture
Notes in Computer Science 1498:745–754

Dos Santos Coelho L, Rudek M, Junior OC (2001) Fuzzy-memetic approach for prediction
of chaotic time series and nonlinear identification. Proceedings of the 6th On-line
World Conference on Soft Computing in Industrial Applications

Eiben A, Raue P-E, Ruttkay Z (1994) Genetic algorithms with multi-parent recombination.
Lecture Notes in Computer Science 866:78–87

76 References

Fang J, Xi Y (1997) A rolling horizon job shop rescheduling strategy in the dynamic
environment. International Journal of Advanced Manufacturing Technology 13:227–
232

Fleurent C, Ferland J (1997) Genetic and hybrid algorithms for graph coloring. Annals of
Operations Research 63:437–461

Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial Intelligence through Simulated Evolution.
John Wiley & Sons, New York

França P, Mendes A, Moscato P (1999) Memetic algorithms to minimize tardiness on a
single machine with sequence-dependent setup times. Proceedings of the DSI’99 – 5th

International Conference of the Decision Sciences Institute, pp 1708–1710
França P, Mendes A, Moscato P (2001) A memetic algorithm for the total tardiness single

machine scheduling problem. European Journal of Operational Research 132:224–242
Freisleben B, Merz P (1996a) A Genetic Local Search Algorithm for Solving Symmetric

and Asymmetric Traveling Salesman Problems. Proceedings of the ICEC’96 –
International Conference on Evolutionary Computation, pp 616–621

Freisleben B, Merz P (1996b) New Genetic Local Search Operators for the Traveling
Salesman Problem. Lecture Notes in Computer Science 1141:890–900

Fu R, Esfarjani K, Hashi Y, Wu J, Sun X, Kawazoe Y (1997) Surface reconstruction of Si
(001) by genetic algorithm and simulated annealing method. Science Reports of The
Research Institutes Tohoku University Series A-Physics Chemistry And Metallurgy
44:77–81

Garcia B, Mahey P, LeBlanc L (1998) Iterative improvement methods for a multiperiod
network design problem. European Journal of Operational Research 110:150–165

Gen M, Ida K, Yinzhen L (1998) Bicriteria transportation problem by hybrid genetic
algorithm. Computers & Industrial Engineering 35:363–366

Glover F, Laguna M (1997) Tabu Search. Kluwer Academic Publishers, Boston
Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley
Goldberg D, Lingle Jr R (1985) Alleles, loci and the traveling salesman problem.

Proceedings of 1st ICGA – International Conference on Genetic Algorithms, pp 154–
159

Goldstein A, Lesk A (1975) Common feature techniques for discrete optimization.
Computer Science Tech. Report 27, Bell Tel. Labs.

Gottlieb J (2000) Permutation-based evolutionary algorithms for multidimensional
knapsack problems. Proceedings of the ACM Symposium on Applied Computing, pp
408–414

Glover F, Laguna M (1997) Tabu Search. Kluwer Academic Publishers, Boston, MA
Gonçalves JF (2001) A memetic algorithm for the examination timetabling problem.

Proceedings of Optimization 2001 Conference, pp 23-25
Gorges-Schleuter M (1989) ASPARAGOS: An asynchronous parallel genetic optimization

strategy. Proceedings of the 3rd ICGA – International Conference on Genetic
Algorithms, pp 422–427

Gorges-Schleuter M (1991) Genetic Algorithms and Population Structures - A Massively
Parallel Algorithm. PhD thesis, University of Dortmund, Germany

Gorges-Schleuter M (1997) Asparagos96 and the traveling salesman problem. Proceedings
of the ICEC’97 – International Conference on Evolutionary Computation, pp 171–174

Grimbleby J (1999) Hybrid genetic algorithms for analogue network synthesis. Proceedings
of the CEC’99 – Congress on Evolutionary Computation, pp 1781–1787

3.5 Conclusions and Future Directions 77

Gunn J (1997) Sampling protein conformations using segment libraries and a genetic
algorithm. Journal of Chemical Physics 106:4270–4281

Guotian M, Changhong L (1999) Optimal design of the broad-band stepped impedance
transformer based on the hybrid genetic algorithm. Journal of Xidian University 26:8–
12

Haas O, Burnham K, Mills J (1998) Optimization of beam orientation in radiotherapy using
planar geometry. Physics in Medicine and Biology 43:2179–2193

Haas O, Burnham K, Mills J, Reeves C, Fisher M (1996) Hybrid genetic algorithms applied
to beam orientation in radiotherapy. Proceedings of the 4th European Congress on
Intelligent Techniques and Soft Computing Proceedings, pp 2050–2055

Hadj-Alouane A, Bean J, Murty K (1999) A hybrid genetic/optimization algorithm for a
task allocation problem. Journal of Scheduling 2:189–201

Hansen P, Mladenovic N (2001) Variable neighborhood search: Principles and applications.
European Journal of Operational Research 130:449–467

Harris S, Ifeachor E (1998) Automatic design of frequency sampling filters by hybrid
genetic algorithm techniques. IEEE Transactions on Signal Processing 46:3304–3314

Hart W, Belew R (1991) Optimizing an arbitrary function is hard for the genetic algorithm.
Proceedings of the 4th ICGA – International Conference on Genetic Algorithms, pp
190–195

Hartke B (1993) Global geometry optimization of clusters using genetic algorithms. Journal
of Physical Chemistry 97:9973–9976

Hifi M (1997) A genetic algorithm-based heuristic for solving the weighted maximum
independent set and some equivalent problems. Journal of the Operational Research
Society 48:612–622

Hirsch R, Mullergoymann C (1995) Fitting of diffusion-coefficients in a 3-compartment
sustained-release drug formulation using a genetic algorithm. International Journal of
Pharmaceutics 120:229–234

Ho K, Shvartsburg A, Pan B, Lu Z, Wang C, Wacker J, Fye J, Jarrold M (1998) Structures
of medium-sized silicon clusters. Nature 392, 6676:582–585

Hobday S, Smith R (1997) Optimisation of carbon cluster geometry using a genetic
algorithm. Journal of The Chemical Society-Faraday Transactions 93:3919–3926

Hodgson R (2000) Memetic algorithms and the molecular geometry optimization problem.
Proceedings of the CEC’00 – Congress on Evolutionary Computation, pp 625–632

Hodgson R (2001) Memetic algorithm approach to thin-film optical coating design.
Proceedings of the 2nd WOMA – Workshop on Memetic Algorithms, pp 152–157

Hofmann R (1993) Examinations on the algebra of genetic algorithms. Master Thesis,
Technische Universitat Munchen, Institut fur Informatik

Holland J (1975) Adaptation in Natural and Artificial Systems. The University of Michigan
Press

Holstein D, Moscato P (1999) Memetic algorithms using guided local search: A case study.
In: New Ideas in Optimization. McGraw-Hill, pp 235–244

Hopper E, Turton B (1999) A genetic algorithm for a 2D industrial packing problem.
Computers & Industrial Engineering 37:375–378

Hulin M (1997) An optimal stop criterion for genetic algorithms: A bayesian approach.
Proceedings of the 7th ICGA – International Conference on Genetic Algorithms, pp
135–143

78 References

Ichimura T, Kuriyama Y (1998) Learning of neural networks with parallel hybrid GA using
a Royal Road function. Proceedings of the IJCNN’98 – International Joint Conference
on Neural Networks, pp 1131–1136

Jih W, Hsu Y (1999) Dynamic vehicle routing using hybrid genetic algorithms.
Proceedings of the CEC’99 – Congress on Evolutionary Computation, pp 453–458

Jones G, Willett P, Glen R, Leach A, Taylor R (1997) Development and validation of a
genetic algorithm for flexible docking. Journal of Molecular Biology 267:727–748

Jones T (1995) Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis,
University of New Mexico, USA

Karp R (1972) Reducibility among combinatorial problems. In: Complexity of Computer
Computations. Plenum, New York, pp 85–103

Kariuki B, Serrano-Gonzalez H, Johnston R, Harris K (1997) The application of a genetic
algorithm for solving crystal structures from powder diffraction data. Chemical
Physics Letters 280:189–195

Kassotakis I, Markaki M, Vasilakos A (2000) A hybrid genetic approach for channel reuse
in multiple access telecommunication networks. IEEE Journal on Selected Areas in
Communications 18:234–243

Katayama K, Hirabayashi H, Narihisa H (1998) Performance analysis for crossover
operators of genetic algorithm. Transactions of the Institute of Electronics, Information
and Communication Engineers J81D-I, 6:639–650

Kersting S, Raidl G, Ljubic I (2002) A memetic algorithm for vertex-biconnectivity
augmentation. Lecture Notes in Computer Science 2279:101–110

Kim T, May G (1999) Intelligent control of via formation by photosensitive BCB for
MCM-L/D applications. IEEE Transactions on Semiconductor Manufacturing 12:503–
515

Kirkpatrick S, Gellat DC, Vecchi M (1983) Optimization by simulated annealing. Science
220: 671–680

Knödler K, Poland J, Zell A, Mitterer A (2002) Memetic algorithms for combinatorial
optimization problems in the calibration of modern combustion engines. Proceedings
of the GECCO’99 – Genetic and Evolutionary Computation Conference, pp 687

Krasnogor N (1999) Coevolution of genes and memes in memetic algorithms. Proceedings
of the Graduate Student Workshop, Orlando, Florida, USA, July, pp 371

Krasnogor N (2002) Studies on the Theory and Design Space of Memetic Algorithms.
Ph.D. Thesis, Faculty of Engineering, Computer Science and Mathematics. University
of the West of England, United Kingdom

Krasnogor N, Blackburne B, Burke EK, Hirst JD (2002) Multimeme algorithms for protein
structure prediction. Lecture Notes in Computer Science 2439:769–778

Krasnogor N, Smith J (2000) A memetic algorithm with self-adaptive local search: TSP as
a case study. Proceedings of the GECCO’00 – Genetic and Evolutionary Computation
Conference, pp 987–994

Krasnogor N, Smith J (2001) Emergence of profitable search strategies based on a simple
inheritance mechanism. Proceedings of the GECCO’01 – Genetic and Evolutionary
Computation Conference, pp 432–439

Krasnogor N, Smith J (2002) Multimeme algorithms for the structure prediction and
structure comparison of proteins. Proceedings of the GECCO’02 – Genetic and
Evolutionary Computation Conference, pp 42–44

Krishna K, Narasimha-Murty M (1999) Genetic k-means algorithm. IEEE Transactions on
Systems, Man and Cybernetics, Part B 29:433–439

3.5 Conclusions and Future Directions 79

Krishna K, Ramakrishnan K, Thathachar M (1997) Vector quantization using genetic
k-means algorithm for image compression. Proceedings of the 1997 International
Conference on Information, Communications and Signal Processing, pp 1585–1587

Krzanowski R, Raper J (1999) Hybrid genetic algorithm for transmitter location in wireless
networks. Computers, Environment and Urban Systems 23:359–382

Landree E, Collazo-Davila C, Marks L (1997) Multi-solution genetic algorithm approach to
surface structure determination using direct methods. Acta Crystallographica Section B
- Structural Science 53:916–922

Lazar G, Desjarlais J, Handel T (1997) De novo design of the hydrophobic core of
ubiquitin. Protein Science 6:1167–1178

Lee C (1994) Genetic algorithms for single machine job scheduling with common due date
and symmetric penalties. Journal of the Operations Research Society of Japan 37:83–
95

Levine D (1996) A parallel genetic algorithm for the set partitioning problem. In: Meta-
Heuristics: Theory & Applications. Kluwer Academic Publishers, pp 23–35

Li F, Morgan R, Williams D (1996) Economic environmental dispatch made easy with
hybrid genetic algorithms. Proceedings of the International Conference on Electrical
Engineering, pp 965–969

Li L, Darden T, Freedman S, Furie B, Baleja J, Smith H, Hiskey R, Pedersen L (1997)
Refinement of the NMR solution structure of the gamma-carboxyglutamic acid domain
of coagulation factor IX using molecular dynamics simulation with initial Ca2+
positions determined by a genetic algorithm. Biochemistry 36:2132–2138

Li S (1997) Toward global solution to map image estimation: Using common structure of
local solutions. Lecture Notes in Computer Science 1223:361–374

Liaw C (2000) A hybrid genetic algorithm for the open shop scheduling problem. European
Journal of Operational Research 124:28–42

Lin S (1965) Computer solutions of the traveling salesman problem. Bell System Technical
Journal 10:2245–2269

Lin S, Kernighan B (1973) An Effective Heuristic Algorithm for the Traveling Salesman
Problem. Operations Research 21:498–516

Ling S (1992) Integrating genetic algorithms with a prolog assignment program as a hybrid
solution for a polytechnic timetable problem. Proceedings of 2nd PPSN – Parallel
Problem Solving from Nature, pp 321–329

Lorber D, Shoichet B (1998) Flexible ligand docking using conformational ensembles.
Protein Science 7:938–950

Louis S, Yin X, Yuan Z (1999) Multiple vehicle routing with time windows using genetic
algorithms. Proceedings of the CEC’99 – Congress on Evolutionary Computation, pp
1804–1808

MacKay A (1995) Generalized crystallography. THEOCHEM – Journal of Molecular
Structure 336:293–303

Maddox J (1995) Genetics helping molecular-dynamics. Nature 376, 6537:209–209
Mathias K, Whitley D (1992) Genetic operators, the fitness landscape and the traveling

salesman problem. Proceedings of the 2nd PPSN – Parallel Problem Solving From
Nature, pp 221–230

Mathias K, Whitley L (1994) Noisy function evaluation and the delta coding algorithm.
Proceedings of the SPIE’94 – The International Society for Optical Engineering, pp
53–64

80 References

May A, Johnson M (1994) Protein-structure comparisons using a combination of a genetic
algorithm, dynamic-programming and least-squares minimization. Protein Engineering
7:475–485

Mendes A, França P, Moscato P (2001) NP-Opt: An optimization framework for NP
problems. Proceedings of the POM’01 – International Conference of the Production
and Operations Management Society, pp 82–89

Mendes A, França P, Moscato P (2002a) Fitness landscapes for the total tardiness single
machine scheduling problem. Neural Network World – an International Journal on
Neural and Mass-Parallel Computing and Information Systems 2:165–180

Mendes A, Muller F, França P, Moscato P (2002b) Comparing meta-heuristic approaches
for parallel machine scheduling problems. Production Planning & Control 13:1–6

Merkle L, Lamont G, Gates GJ, Pachter R (1996) Hybrid genetic algorithms for
minimization of a polypeptide specific energy model. Proceedings of the ICEC’96 –
International Conference on Evolutionary Computation, pp 396–400

Merz P (2002) A comparison of memetic recombination operators for the traveling
salesman problem. Proceedings of the GECCO’02 – Genetic and Evolutionary
Computation Conference, pp 472–479

Merz P, Freisleben B (1997a) A Genetic Local Search Approach to the Quadratic
Assignment Problem. Proceedings of the 7th ICGA – International Conference on
Genetic Algorithms, pp 465–472

Merz P, Freisleben B (1997b) Genetic Local Search for the TSP: New Results. Proceedings
of the ICEC’97 – International Conference on Evolutionary Computation, pp 159–164

Merz P, Freisleben B (1998a) Memetic Algorithms and the Fitness Landscape of the Graph
Bi-Partitioning Problem. Lecture Notes in Computer Science 1498:765–774

Merz P, Freisleben B (1998b) On the Effectiveness of Evolutionary Search in High-
Dimensional NK-Landscapes. Proceedings of the ICEC’98 – International Conference
on Evolutionary Computation, pp 741–745

Merz P, Freisleben B (1999a). A Comparison of Memetic Algorithms, Tabu Search, and
Ant Colonies for the Quadratic Assignment Problem. Proceedings of the CEC’99 –
Congress on Evolutionary Computation, pp 2063–2070

Merz P, Freisleben B (1999b) Fitness landscapes and memetic algorithm design. In: New
Ideas in Optimization. McGraw-Hill, pp 245–260

Merz P, Freisleben B (2000) Fitness Landscapes, Memetic Algorithms and Greedy
Operators for Graph Bi-Partitioning. Evolutionary Computation 8:61–91

Merz P, Freisleben B (2002a) Greedy and local search heuristics for the unconstrained
binary quadratic programming problem. Journal of Heuristics 8:197–213

Merz P, Freisleben B (2002b) Memetic algorithms for the traveling salesman problem.
Complex Systems. To be published

Merz P, Katayama K (2002) Memetic algorithms for the unconstrained binary quadratic
programming problem. Bio Systems. To be published

Merz P, Zell A (2002) Clustering gene expression profiles with memetic algorithms.
Lecture Notes in Computer Science 2439:811–820

Meza J, Judson R, Faulkner T, Treasurywala A (1996) A comparison of a direct search
method and a genetic algorithm for conformational searching. Journal of
Computational Chemistry 17:1142–1151

3.5 Conclusions and Future Directions 81

Mignotte M, Collet C, Pérez P, Bouthemy P (2000) Hybrid genetic optimization and
statistical model based approach for the classification of shadow shapes in sonar
imagery. IEEE Transactions on Pattern Analysis and Machine Intelligence 22:129–141

Miller D, Chen H, Matson J, Liu Q (1999) A hybrid genetic algorithm for the single
machine scheduling problem. Journal of Heuristics 5:437–454

Miller S, Hogle J, Filman D (1996) A genetic algorithm for the ab initio phasing of
icosahedral viruses. Acta Crystallographica Section D – Biological Crystallography
52:235–251

Min L, Cheng W (1998) Identical parallel machine scheduling problem for minimizing the
makespan using genetic algorithm combined with simulated annealing. Chinese
Journal of Electronics 7:317–321

Ming X, Mak K (2000) A hybrid hopfield network-genetic algorithm approach to optimal
process plan selection. International Journal of Production Research 38:1823–1839

Monfroglio A (1996a) Hybrid genetic algorithms for a rostering problem. Software –
Practice and Experience 26:851–862

Monfroglio A (1996b) Hybrid genetic algorithms for timetabling. International Journal of
Intelligent Systems 11:477–523

Monfroglio A (1996c) Timetabling through constrained heuristic search and genetic
algorithms. Software – Practice and Experience 26:251–279

Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts:
towards memetic algorithms. Technical Report C3P 826, Caltech Concurrent Compu-
tation Program, California Institute of Technology, Pasadena, USA

Moscato P (1993) An Introduction to Population Approaches for Optimization and
Hierarchical Objective Functions: The Role of Tabu Search. Annals of Operations
Research 41: 85–121

Moscato P (1999) Memetic algorithms: A short introduction. In: New Ideas in
Optimization, McGraw-Hill, pp 219–234

Moscato P, Norman M (1992) A Memetic Approach for the Traveling Salesman Problem
Implementation of a Computational Ecology for Combinatorial Optimization on
Message-Passing Systems. In: Parallel Computing and Transputer Applications. IOS
Press, pp 177–186

Moscato P, Tinetti F (1992) Blending heuristics with a population-based approach: A
memetic algorithm for the traveling salesman problem. Technical Report 92-12,
Universidad Nacional de La Plata, C.C. 75, 1900 La Plata, Argentina

Murata T, Ishibuchi H (1994) Performance evaluation of genetic algorithms for flowshop
scheduling problems. Proceedings of the CEC’94 – Conference on Evolutionary
Computation, pp 812–817

Murata T, Ishibuchi H, Tanaka H (1996) Genetic algorithms for flowshop scheduling
problems. Computers & Industrial Engineering 30:1061–1071

Musil M, Wilmut M, Chapman N (1999) A hybrid simplex genetic algorithm for estimating
geoacoustic parameters using matched-field inversion. IEEE Journal of Oceanic
Engineering 24:358–369

Nagata Y, Kobayashi S (1997) Edge assembly crossover: A high-power genetic algorithm
for the traveling salesman problem. Proceedings of the 7th ICGA – International
Conference on Genetic Algorithms, pp 450–457

Niesse J, Mayne H (1996) Global geometry optimization of atomic clusters using a
modified genetic algorithm in space-fixed coordinates. Journal of Chemical Physics
105:4700–4706

82 References

Nordstrom A, Tufekci S (1994) A genetic algorithm for the talent scheduling problem.
Computers & Operations Research 21:927–940

Norman M, Moscato P (1989). A competitive and cooperative approach to complex
combinatorial search. Technical Report 790, Caltech Concurrent Computation
Program, California Institute of Technology, Pasadena, California, USA

Novaes A, De-Cursi J, Graciolli O (2000) A continuous approach to the design of physical
distribution systems. Computers & Operations Research 27:877–893

Oliver I, Smith D, Holland J (1987) A study of permutation crossover operators on the
traveling salesperson problem. Proceedings of the 2nd International Conference on
Genetic Algorithms and their Applications, pp 224–230

Osmera P (1995) Hybrid and distributed genetic algorithms for motion control. Proceedings
of the 4th International Symposium on Measurement and Control in Robotics, pp 297–
300

Ostermark R (1999a) A neuro-genetic algorithm for heteroskedastic time-series processes:
empirical tests on global asset returns. Soft Computing 3:206–220

Ostermark R (1999b) Solving a nonlinear non-convex trim loss problem with a genetic
hybrid algorithm. Computers & Operations Research 26:623–635

Ostermark R (1999c) Solving irregular econometric and mathematical optimization
problems with a genetic hybrid algorithm. Computational Economics 13:103–115

Ozcan E, Mohan C (1998) Steady state memetic algorithm for partial shape matching.
Lecture Notes in Computer Science 1447:527–536

Ozdamar L (1999) A genetic algorithm approach to a general category project scheduling
problem. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications
and Reviews) 29:44–59

Pacey M, Patterson E, James M (2001) A photoelastic technique for characterising fatigue
crack closure and the effective stress intensity factor. Zeszyty Naukowe Politechniki
Opolskiej, Seria: Mechanika z.67, kol. 269/2001

Pacey M, Wang X, Haake S, Patterson E (1999) The application of evolutionary and
maximum entropy algorithms to photoelastic spectral analysis. Experimental
Mechanics 39:265–273

Paechter B, Cumming A, Norman M, Luchian H (1996) Extensions to a Memetic
timetabling system. Lecture Notes in Computer Science 1153:251–265

Paechter B, Rankin R, Cumming A (1998) Improving a lecture timetabling system for
university wide use. Lecture Notes in Computer Science 1408:156–165

Papadimitriou C, Steiglitz K (1982) Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, New Jersey

Pastorino M, Caorsi S, Massa A, Randazzo A (2002) Reconstruction algorithms for
electromagnetic imaging. Proceedings of IEEE Instrumentation and Measurement
Technology Conference, pp 1695–1700

Poland J, Knödler K, Mitterer A, Fleischhauer T, Zuber-Goos F, Zell A (2001).
Evolutionary search for smooth maps in motor control unit calibration. Lecture Notes
in Computer Science 2264:107–116

Pratihar D, Deb K, Ghosh A (1999) Fuzzy-genetic algorithms and mobile robot navigation
among static obstacles. Proceedings of the CEC’99 – Congress on Evolutionary
Computation, pp 327–334

3.5 Conclusions and Future Directions 83

Pucello N, Rosati M, D’Agostino G, Pisacane F, Rosato V, Celino M (1997) Search of
molecular ground state via genetic algorithm: Implementation on a hybrid SIMD-
MIMD platform. International Journal of Modern Physics C 8:239–252

Pullan, W (1997) Structure prediction of benzene clusters using a genetic algorithm.
Journal of Chemical Information and Computer Sciences 37:1189–1193

Quagliarella D, Vicini A (1998) Hybrid genetic algorithms as tools for complex
optimisation problems. Proceedings of the Second Italian Workshop on Fuzzy Logic,
pp 300–307

Quintero A, Pierre S (2003) A multi-population memetic algorithm to optimize the
assignment of cells to switches in cellular mobile networks. Submitted for publication

Radcliffe N (1992) Non-linear genetic representations. Proceedings of the 2nd PPSN –
Parallel Problem Solving From Nature, pp 259–268

Radcliffe N (1994) The algebra of genetic algorithms. Annals of Mathematics and Artificial
Intelligence 10:339–384

Radcliffe N, Surry P (1994a) Fitness Variance of Formae and Performance Prediction.
Proceedings of the 3rd FOGA – Workshop on Foundations of Genetic Algorithms, pp
51–72

Radcliffe N, Surry P (1994b) Formal Memetic Algorithms. Lecture Notes in Computer
Science 865:1–16

Raidl G, Julstron B (2000) A weighted coding in a genetic algorithm for the degree-
constrained minimum spanning tree problem. Proceedings of the ACM Symposium on
Applied Computing 2000, pp 440–445

Ramat E, Venturini G, Lente C, Slimane M (1997) Solving the multiple resource
constrained project scheduling problem with a hybrid genetic algorithm. Proceedings
of the 7th ICGA – International Conference on Genetic Algorithms, pp 489–496

Rankin R (1996) Automatic timetabling in practice. In: Practice and Theory of Automated
Timetabling. First International Conference. Springer-Verlag, pp 266–279

Raymer M, Sanschagrin P, Punch W, Venkataraman S, Goodman E, Kuhn L (1997)
Predicting conserved water-mediated and polar ligand interactions in proteins using a
k-nearest-neighbors genetic algorithm. Journal of Molecular Biology 265:445–464

Rechenberg I (1973) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien
der biologischen Evolution. Frommann-Holzboog, Stuttgart, Germany

Reeves C (1996) Hybrid genetic algorithms for bin-packing and related problems. Annals
of Operations Research 63:371–396

Reich C (2000) Simulation of imprecise ordinary differential equations using evolutionary
algorithms. Proceedings of the ACM Symposium on Applied Computing 2000, pp
428–432

Ridao M, Riquelme J, Camacho E, Toro M (1998). An evolutionary and local search
algorithm for planning two manipulators motion. Lecture Notes in Computer Science
1416:105–114

Rodrigues A, Ferreira JS (2001) Solving the rural postman problem by memetic algorithms.
Proceedings of the 4th MIC – Metaheuristic International Conference, pp 679–684

Ruff C, Hughes S, Hawkes D (1999) Volume estimation from sparse planar images using
deformable models. Image and Vision Computing 17:559–565

Runggeratigul S (2001) A memetic algorithm to communication network design taking into
consideration an existing network. Proceedings of the 4th MIC – Metaheuristic
International Conference, pp 91–96

84 References

Sakamoto A, Liu X, Shimamoto T (1997) A genetic approach for maximum independent
set problems. IEICE Transactions on Fundamentals of Electronics Communications
and Computer Sciences E80A, 3:551–556

Schnecke V, Vornberger O (1997) Hybrid genetic algorithms for constrained placement
problems. IEEE Transactions on Evolutionary Computation 1:266–277

Schwefel HP (1965) Kybernetische Evolution als Strategie der experimentellen Forschung
in der Stromungstechnik. Diplomarbeit, Technische Universitat Berlin, Germany

Shankland K, David W, Csoka T (1997) Crystal structure determination from powder
diffraction data by the application of a genetic algorithm. Zeitschrift Fur
Kristallographie 212:550–552

Shankland K, David W, Csoka T, McBride L (1998) Structure solution of ibuprofen from
powder diffraction data by the application of a genetic algorithm combined with prior
conformational analysis. International Journal of Pharmaceutics 165:117–126

Smith J (2002) Co-evolving memetic algorithms: Initial investigations. Lecture Notes in
Computer Science 2439:537–548

Srinivasan D, Cheu R, Poh Y, Ng A (2000) Development of an intelligent technique for
traffic network incident detection. Engineering Applications of Artificial Intelligence
13:311–322

Surry P, Radcliffe N (1996) Inoculation to initialise evolutionary search. Lecture Notes in
Computer Science 1143:269–285

Syswerda G (1989) Uniform crossover in genetic algorithms. Proceedings of the 3rd ICGA
– International Conference on Genetic Algorithms, pp 2–9

Taguchi T, Yokota T, Gen M (1998) Reliability optimal design problem with interval
coefficients using hybrid genetic algorithms. Computers & Industrial Engineering
35:373–376

Tam K, Compton R (1995) GAMATCH - a genetic algorithm-based program for indexing
crystal faces. Journal of Applied Crystallography 28:640–645

Topchy A, Lebedko O, Miagkikh V (1996). Fast learning in multilayered networks by
means of hybrid evolutionary and gradient algorithms. Proceedings of International
Conference on Evolutionary Computation and its Applications, pp 390–398

Urdaneta A, Gómez J, Sorrentino E, Flores L, Díaz R (1999) A hybrid genetic algorithm for
optimal reactive power planning based upon successive linear programming. IEEE
Transactions on Power Systems 14:1292–1298

Valenzuela J, Smith A (2002) A seeded memetic algorithm for large unit commitment
problems. Journal of Heuristics 8:173–195

VanKampen A, Strom C, Buydens L (1996) Lethalization, penalty and repair functions for
constraint handling in the genetic algorithm methodology. Chemometrics And
Intelligent Laboratory Systems 34:55–68

Wang L, Yen, J (1999) Extracting fuzzy rules for system modeling using a hybrid of
genetic algorithms and kalman filter. Fuzzy Sets and Systems 101:353–362

Watson J, Rana S, Whitley L, Howe A (1999) The impact of approximate evaluation on the
performance of search algorithms for warehouse scheduling. Journal of Scheduling
2:79–98

Wehrens R, Lucasius C, Buydens L, Kateman G (1993) HIPS, A hybrid self-adapting
expert system for nuclear magnetic resonance spectrum interpretation using genetic
algorithms. Analytica Chimica ACTA 277:313–324

Wei P, Cheng L (1999) A hybrid genetic algorithm for function optimization. Journal of
Software 10:819–823

3.5 Conclusions and Future Directions 85

Wei X, Kangling F (2000) A hybrid genetic algorithm for global solution of
nondifferentiable nonlinear function. Control Theory & Applications 17:180–183

Weile D, Michielssen E (1999) Design of doubly periodic filter and polarizer structures
using a hybridized genetic algorithm. Radio Science 34:51–63

White R, Niesse J, Mayne H (1998) A study of genetic algorithm approaches to global
geometry optimization of aromatic hydrocarbon microclusters. Journal of Chemical
Physics 108:2208–2218

Willett P (1995) Genetic algorithms in molecular recognition and design. Trends in
Biotechnology 13:516–521

Wolpert D, Macready W (1997) No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1:67–82

Xiao J, Zhang L (1997) Adaptive evolutionary planner/navigator for mobile robots. IEEE
Transactions on Evolutionary Computation 1:18–28

Yao X (1993) Evolutionary artificial neural networks. International Journal of Neural
Systems 4:203–222

Yeh I (1999) Hybrid genetic algorithms for optimization of truss structures. Computer
Aided Civil and Infrastructure Engineering 14:199–206

Yeh WC (2000) A memetic algorithm for the min k-cut problem. Control and Intelligent
Systems 28:47–55

Yoneyama M, Komori H, Nakamura S (1999) Estimation of impulse response of vocal tract
using hybrid genetic algorithm - a case of only glottal source. Journal of the Acoustical
Society of Japan 55:821–830

Zacharias C, Lemes M, Pino A (1998) Combining genetic algorithm and simulated
annealing: a molecular geometry optimization study. THEOCHEM – Journal of
Molecular Structure 430:29–39

Zelinka I, Vasek V, Kolomaznik K, Dostal P, Lampinen J (2001) Memetic algorithm and
global optimization of chemical reactor. Proceedings of the 13th International
Conference on Process Control.

Zwick M, Lovell B, Marsh J (1996) Global optimization studies on the 1-d phase problem.
International Journal of General Systems 25:47–59

4 Scatter Search and Path Relinking:
Foundations and Advanced Designs

Fred Glover, Manuel Laguna and Rafael Martí

Scatter Search and its generalized form Path Relinking, are evolutionary methods
that have been successfully applied to hard optimization problems. Unlike genetic
algorithms, they operate on a small set of solutions and employ diversification
strategies of the form proposed in Tabu Search, which give precedence to strategic
learning based on adaptive memory, with limited recourse to randomization. The
fundamental concepts and principles were first proposed in the 1970s as an exten-
sion of formulations, dating back to the 1960s, for combining decision rules and
problem constraints. (The constraint combination approaches, known as surrogate
constraint methods, now independently provide an important class of relaxation
strategies for global optimization.) The Scatter Search framework is flexible, al-
lowing the development of alternative implementations with varying degrees of
sophistication. Path Relinking, on the other hand, was first proposed in the con-
text of the Tabu Search metaheuristics, but it has been also applied with a variety
of other methods. This chapter’s goal is to provide a grounding in the essential
ideas of Scatter Search and Path Relinking, together with pseudo-codes of simple
versions of these methods, that will enable readers to create successful applica-
tions of their own.

4.1 Introduction

Scatter Search (SS) and Path Relinking (PR) are evolutionary methods that con-
struct solutions by combining others by means of strategic designs that exploit the
knowledge on the problem at hand. The goal of these procedures is to enable a so-
lution procedure based on the combined elements to yield better solutions than one
based on the original elements. SS and PR are rapidly becoming methods of
choice for designing solution procedures for hard combinatorial optimization
problems. A comprehensive examination of these methodologies can be found in

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004

88 4 Scatter Search and Path Relinking: Foundations and Advanced Designs

Glover (1997, 1999), Glover, Laguna and Martí (2000, 2002) and Laguna and
Martí (2003).

In common with other evolutionary methods, SS and PR operate with a popula-
tion of solutions, rather than with a single solution at a time, and employ proce-
dures for combining these solutions to create new ones. The meaning of “combin-
ing,” and the motivation for carrying it out, has a rather special origin and
character in the SS/PR setting, however. One of the distinguishing features of this
approaches is its intimate association with the Tabu Search (TS) metaheuristic,
and hence its adoption of the principle that search can benefit by incorporating
special forms of adaptive memory, along with procedures particularly designed for
exploiting that memory. In fact, Scatter Search and Tabu Search share common
origins, and initially SS was simply considered one of the component processes
available within the TS framework. However, most of the TS literature and the
preponderance of TS implementations have disregarded this component, with the
result that the merits of Scatter Search did not come to be recognized until quite
recently, when a few studies began to look at it as an independent method in the
context of evolutionary procedures.

Unlike a “population” in genetic algorithms, the reference set of solutions in SS
and PR is relatively small. A typical population size in a genetic algorithm con-
sists of 100 elements, which are sampled by various schemes with a significant re-
liance on randomization to create combinations. In contrast, SS and PR chooses
two or more elements of the reference set in a systematic way with the purpose of
systematically creating new solutions. Randomization, where employed, is given a
highly controlled and strategic character. (Some of the more recent GA proposals
are beginning to incorporate some of the features of early SS and PR designs, in-
cluding an adoption of some of the SS and PR terminology. However, a number
of key elements continue to distinguish the SS and PR methods from GA ap-
proaches, with important consequences for performance.)

The process of generating combinations of a set of reference solutions in Scat-
ter Search consists of forming linear combinations that are structured to accom-
modate discrete requirements (such as those for integer-valued variables). The re-
sulting combinations may be characterized as generating paths between and
beyond these solutions, where solutions on such paths also serve as sources for
generating additional paths. Path Relinking is based on this conception of the
meaning of creating combinations of solutions, but making reference to paths be-
tween and beyond selected solutions in neighborhood space, rather than in Euclid-
ean space as in the case of Scatter Search. (More precisely, SS operates within a
subset of Euclidean space determined by imposing certain constraints according to
the problem setting.). The following principles summarize the foundations of the
SS and PR methodologies:

• Useful information about the form (or location) of optimal solutions is
typically contained in a suitably diverse collection of elite solutions.

• When solutions are combined as a strategy for exploiting such information,
it is important to provide mechanisms capable of constructing combina-
tions that extrapolate beyond the regions spanned by the solutions consid-

4.2 Foundations 89

ered. Similarly, it is also important to incorporate heuristic processes to
map combined solutions into new solutions. The purpose of these combi-
nation mechanisms is to incorporate both diversity and quality.

• Taking account of multiple solutions simultaneously, as a foundation for
creating combinations, enhances the opportunity to exploit information
contained in the union of elite solutions.

In this paper we describe the foundations of these closely related methods and
discuss some extensions and advanced designs that have been proved effective on
solving hard combinatorial optimization problems. Section 2 is devoted to the
foundations of both methods, where we provide pseudo-code of simple versions of
each. Extensions and advanced strategies are described in Section 3, to conclude
the paper.

4.2 Foundations

4.2.1 Scatter Search

Scatter Search consists of five component processes:

1. A Diversification Generation Method to generate a collection of diverse trial
solutions, using one or more arbitrary trial solutions (or seed solutions) as an
input.

2. An Improvement Method to transform a trial solution into one or more en-
hanced trial solutions. (Neither the input nor the output solutions are required
to be feasible, though the output solutions are typically feasible. If the input
trial solution is not improved as a result of the application of this method, the
“enhanced” solution is considered to be the same as the input solution.)

3. A Reference Set Update Method to build and maintain a reference set consist-
ing of the b “best” solutions found (where the value of b is typically small,
e.g., no more than 20), organized to provide efficient accessing by other parts
of the solution procedure. Several alternative criteria may be used to add so-
lutions to the reference set and delete solutions from the reference set.

4. A Subset Generation Method to operate on the reference set, to produce a
subset of its solutions as a basis for creating combined solutions. The most
common subset generation method is to generate all pairs of reference solu-
tions (i.e., all subsets of size 2).

5. A Solution Combination Method to transform a given subset of solutions pro-
duced by the Subset Generation Method into one or more combined solutions.
The combination method is analogous to the crossover operator in genetic al-
gorithms but it must be capable of combining two or more solutions.

The structured combinations produced by Scatter Search are designed with the
goal of creating weighted centers of selected sub-regions. These include non-
convex combinations that project new centers into regions that are external to the

90 4 Scatter Search and Path Relinking: Foundations and Advanced Designs

original reference solutions. The dispersion patterns created by such centers and
their external projections have been found useful in a variety of application areas.

Another important feature relates to the strategies for selecting particular sub-
sets of solutions to combine. These strategies are typically designed to make use
of a type of clustering to allow new solutions to be constructed “within clusters”
and “across clusters”. The method is generally organized to use improving
mechanisms that are able to operate on infeasible solutions, removing the restric-
tion that solutions must be feasible in order to be included in the reference set.

The basic procedure for a minimization problem given in Figure 1.4 starts with
the creation of an initial reference set of solutions (RefSet). The Diversification
Generation Method is used to build a large set of diverse solutions P. The size of
P (PSize) is typically 10 times the size of RefSet. An Improvement Method is ap-
plied to each generated solution to obtain a better solution, which is added to P
(often, though not invariably, as a replacement for the solution it was derived
from). Initially, the reference set RefSet consists of b distinct and maximally di-
verse solutions from P. The solutions in RefSet are ordered according to quality,
where the best solution is the first one in the list. The search is then initiated by
assigning the value of TRUE to the Boolean variable NewSolutions. In step 3,
NewSubsets is constructed and NewSolutions is switched to FALSE. We focus
our attention in this basic illustrative scheme to subsets of size 2, and specify that
the cardinality of NewSubsets corresponding to the initial reference set is given by
(b2-b)/2, which accounts for all pairs of solutions in RefSet. The pairs in NewSub-
sets are selected one at a time in lexicographical order and the Solution Combina-
tion Method is applied to generate one or more solutions in step 5. The Improve-
ment Method is applied again to every newly created solution. If the final solution
improves upon the worst solution currently in RefSet, the new solution replaces
the worst and RefSet is reordered in step 6. The NewSolutions flag is switched to
TRUE and the subset s that was just combined is deleted from NewSubsets in steps
7 and 8, respectively.

1. Start with P = Ø.
� Use the Diversification Generation Method to construct a solution y.
� Apply the Improvement Method to y. Let x be the final solution.
� If Px ∉ then add x to P (i.e., xPP ∪=), otherwise, discard x.
� Repeat this step until |P| = PSize. Build RefSet = { x1, …, xb } with b diverse solu-

tions in P.
2. Evaluate the solutions in RefSet and order them according to their objective function

value such that x1 is the best solution and xb the worst. Make NewSolutions = TRUE.
while (NewSolutions) do

3. Generate NewSubsets, which consists of all pairs of solutions in RefSet that include
at least one new solution. Make NewSolutions = FALSE.

while (NewSubsets ≠ ∅) do
4. Select the next subset s in NewSubSets.
5. Apply the Solution Combination Method to s to obtain one or more new so-

lutions y.
6. Apply the Improvement Method to y and obtain x.
if (x is not in RefSet and f(x)<f(xb)) then

6. Make xb = x and reorder RefSet.
7. Make NewSolutions = TRUE.

4.2 Foundations 91

end if
8. Delete s from NewSubsets.

end while
end while

Fig. 1.4. Outline of a simple scatter search approach

This illustrative procedure is very aggressive in trying to improve upon the
quality of the solutions in the current reference set, to the extent that it sacrifices
search diversity. In fact, the Diversification Generation Method is used only once
to generate PSize different solutions at the beginning of the search and is never
employed again. The initial RefSet is built by selecting a solution from P and
then making b-1 more selections in order to maximize the minimum distance be-
tween the candidate solution and the solutions currently in RefSet. That is, for
each candidate solution x in P-RefSet and reference set solution y in RefSet, we
calculate a measure of distance or dissimilarity d(x,y). We then select the candi-
date solution that maximizes { }),(min)(min yxdxd

y RefS et∈
= .

The updating of the reference set is based on improving the quality of the worst
solution and the search terminates when no new solutions are admitted to RefSet.
The Subset Generation Method is also very simple and consists of generating all
pairs of solutions in RefSet that contain at least one new solution. This means that
the procedure does not allow for two solutions to be subjected to the Combination
Method more than once. In the next section, several improvements to this basic
scheme are proposed.

4.2.2 Path Relinking

Path relinking was originally suggested as an approach to integrate intensification
and diversification strategies in the context of tabu search (Glover, 1994; Glover
and Laguna, 1997). This approach generates new solutions by exploring trajecto-
ries that connect high-quality solutions, by starting from one of these solutions,
called an initiating solution, and generating a path in the neighbourhood space that
leads toward the other solutions, called guiding solutions. This is accomplished
by selecting moves that introduce attributes contained in the guiding solutions.

PR can be considered an extension of the combination mechanisms of Scatter
Search. Instead of directly producing a new solution when combining two or
more original solutions, PR generates paths between and beyond the selected solu-
tions in the neighborhood space. The character of such paths is easily specified by
reference to solution attributes that are added, dropped or otherwise modified by
the moves executed. Examples of such attributes include edges and nodes of a
graph, sequence positions in a schedule, vectors contained in linear programming
basic solutions, and values of variables and functions of variables.

To generate the desired paths, it is only necessary to select moves that perform
the following role: upon starting from an initiating solution, the moves must pro-
gressively introduce attributes contributed by a guiding solution (or reduce the dis-

92 4 Scatter Search and Path Relinking: Foundations and Advanced Designs

tance between attributes of the initiating and guiding solutions). The roles of the
initiating and guiding solutions are interchangeable; each solution can also be in-
duced to move simultaneously toward the other as a way of generating combina-
tions. First consider the creation of paths that join two selected solutions x��	��
x��� ����������� 	������� ��� ��� part of the path that lies ‘between’ the solutions,
producing a solution sequence x����x(l), x(2), …, x(r) = x������������������������
of options to be considered, the solution x(i + 1) may be created from x(i) at each
step by choosing a move that leaves a reduced number of moves remaining to
reach x.

Instead of building a Reference Set as in SS, Path Relinking usually starts from
a given set of elite solutions obtained during a search process. To simplify the
terminology, we will also let RefSet (short for “Reference Set”), refer to this set of
b solutions that have been selected during the application of the embedded search
method. This method can be Tabu Search, as in Laguna et al. (1999), GRASP, as
in Laguna and Martí (1999), or simply a diversification generator coupled with an
improvement method as proposed in Scatter Search. From this point of view, SS
and PR can be considered pool-oriented methods (Greistorfer and Voss, 2001) that
operate on a set of reference solutions and basically differ in the way in which the
Reference Set is constructed, maintained, updated and improved.

In the basic scheme of SS proposed above, all pairs of solutions in the RefSet
are subjected to the combination method. Similarly, in this basic version of PR we
will consider all pairs in the RefSet to perform a relinking phase. (For each pair
(x���x���� ���	����	������������!���������x�����x��	�����������������x�����x���

Several studies have experimentally found that it is convenient to add a local
search exploration from some of the generated solutions within the relinking path,
as proposed in Glover (1994), in order to produce improved outcomes. We refer
the reader to Laguna and Martí (1999), Piñana et al. (2001) or Laguna et al. (1999)
for some examples. Note that two consecutive solutions after a relinking step are
very similar and differ only in the attribute that was just introduced. Therefore, it
is generally not efficient to apply an Improvement Method at every step of the re-
linking process. We introduce the parameter NumImp to control its application.
In particular, the Improvement Method is applied every NumImp steps of the re-
linking process. (An alternative suggested in Glover (1994) is to keep track of a
few “best solutions” generated during the path trace, or of a few best neighbors of
the solutions generated, and then return to these preferred candidate solutions to
initiate the improvement process.)

Figure 2.4 shows a simple PR procedure for a minimization problem. It starts
with the creation of an initial set of b elite solutions (RefSet). As in the SS
method, the solutions in RefSet are ordered according to quality, and the search is
initiated by assigning the value of TRUE to NewSolutions. In step 3, NewSubsets
is constructed with all the pairs of solutions in RefSet, and NewSolutions is
switched to FALSE. The pairs in NewSubsets are selected one at a time in lexico-
graphical order and the Relinking Method is applied to generate two paths of solu-
tions in steps 5 and 7. The Improvement Method is applied every NumImp steps of
the relinking process in each path (steps 6 and 8). Each of the generated solutions
in each path (including also those obtained after the application of the Improve-

4.3 Advanced Strategies 93

ment Method), is checked to see whether it improves upon the worst solution cur-
rently in RefSet. If so, the new solution replaces the worst and RefSet is reordered
in step 6. The NewSolutions flag is switched to TRUE and the pair (x���x�� that
was just combined is deleted from NewSubsets in step 11.

1. Obtain a RefSet of b elite solutions.
2. Evaluate the solutions in RefSet and order them according to their objective func-

tion value such that x1 is the best solution and xb the worst. Make NewSolutions =
TRUE.

while (NewSolutions) do
3. Generate NewSubsets, which consists of all pairs of solutions in RefSet that

include at least one new solution. Make NewSolutions = FALSE.
while (NewSubsets ≠ ∅) do

4. Select the next pair (x
� �

x
� � � �

NewSubSets.
5. Apply the Relinking Method to produce the sequence x

� �
x(l), x(2), …,

x(r)= x
�

for i=1 to i < r / NumImp do
6. Apply the Improvement Method to x(NumImp * i).

end for
7. Apply the Relinking Method to produce the sequence x

� �
y(l), y(2), …,

y(s)= x
�

for i=1 to i < s / NumImp do
8. Apply the Improvement Method to y(NumImp * i).

end for
for (each generated solutions x) if (x is not in RefSet and f(x)<f(xb))

then
9. Make xb = x and reorder RefSet.
10. Make NewSolutions = TRUE.

end if, end for
11. Delete (x

� �
x

� �
from NewSubsets.

end while
end while

Fig. 2.4 Outline of a simple path relinking approach

As in the illustrative scheme proposed for SS, the updating of the reference set
is based on improving the quality of the worst solution and the search terminates
when no new solutions are admitted to RefSet. Similarly, the Subset Generation
Method is also very simple and consists of generating all pairs of solutions in Ref-
Set that contain at least one new solution. In the next section we propose strate-
gies to overcome the limitations of this basic design.

4.3 Advanced Strategies

4.3.1 Scatter Search

A. REFSET REBUILDING

This update adds a mechanism to partially rebuild the reference set when no new
solutions can be generated with the Combination Method. The update is per-

94 4 Scatter Search and Path Relinking: Foundations and Advanced Designs

formed when the inner “while-loop” in Figures 1 and 2 fails and the NewSolutions
variable is FALSE. The RefSet is partially rebuilt with a diversification update,
which works as follows. Solutions x[b/2]+1, …, xb are deleted from RefSet, where
[v] is the largest integer less than or equal to v. The frequency counts in the Di-
versification Generation Method are updated with the corresponding values from
the solutions that remain in the reference set, that is, x1, …, x[b/2]. Then, the gen-
erator is used to construct a set P of new solutions. Solutions x[b/2]+1, …, xb in Ref-
Set are sequentially selected from P with the max-min criterion used in step 1 of
Figure 1 (and described in the previous section). The min-max criterion is applied
against solutions x1, …, x[b/2] when selecting solution x[b/2]+1, then against solutions
x1, …, x[b/2]+1 when selecting solution x[b/2]+2, and so on.

B. REFSET DYNAMIC UPDATE

In the basic design, the new solutions that become members of RefSet are not
combined until all pairs in NewSubsets are subjected to the Combination Method.
We call Static Update to this strategy. On the other hand, the Dynamic Update
strategy applies the Combination Method to new solutions in a manner that is
faster than in the basic design. That is, if a new solution is admitted to the refer-
ence set, the goal is to allow this new solution to be subjected to the Combination
Method as quickly as possible.

A simple way to implement this strategy is by reducing NewSubsets to just one
pair of solutions. Then, the procedure returns to the generation of subsets imme-
diately after one application of the Combination Method. The downside of this in-
tensification phase is that some solutions in RefSet could be replaced before being
combined. To illustrate this, suppose that the initial RefSet = { x1, x2, x3, x4 } and
that the combination of the pair (x1, x2) results in a solution y for which:

f(y) < f(x3)

Then, the reference set is changed in such a way that the updated RefSet = { x1,
x2, y, x3 }. The search continues by combining the members of the pair (x1, y).
Clearly, the quick updating of the reference set will eliminate the operation of
combining members of the pair (x1, x4). Campos et al. (2001) compare this strat-
egy with the basic design in the linear ordering problem.

C. MULTIPLE SOLUTION COMBINATIONS

The combination mechanism in SS is not limited in its general form in combining
just two solutions. Glover (1997) proposes a procedure that generates subsets of
the RefSet that have useful properties while avoiding the duplication of subsets
previously generated. Specifically, four different collections of subsets of RefSet
are introduced:

• SubsetType 1 : All 2- element subsets

4.3 Advanced Strategies 95

• SubsetType 2: 3-element subsets derived from 2-element
subsets by augmenting each 2-element subset
to include the best solution not in this subset.

• SubsetType 3: 4-element subsets derived from 3-element
subsets by augmenting each 3-element subset
to include the best solution not in this subset.

• SubsetType 4: the subsets consisting of the best i elements,
for i=5 to b.

These subsets interact with a dynamic update of the RefSet as described above.
Algorithms for maintaining the RefSet with these Subsets and avoid duplications
are detailed in Glover (1997).

D. HANDLING PROBLEMS WITH ZERO-ONE VARIABLES

When generating linear combinations of points it is important to be sure the results
are dispersed appropriately, and to avoid calculations that simply duplicate other –
particularly where the duplications occur after mapping continuous values into in-
teger values. This caveat is especially to be heeded in the case of zero-one vari-
ables, since each continuous value can only map into one of the two alternatives 0
and 1, and a great deal of effort can be wasted by disregarding this obvious conse-
quence.

Specifically, for the 0-1 case, a useful set of combinations and mappings (ex-
cept for random variations) of r reference points consists simply of those that cre-
ate a positive integer threshold t �����	�������������	����� offspring will have its ith

component xi = 1 if and only if at least t of the r parents have xi = 1. (A preferred
way to apply this rule is to subdivide the variables into categories, and to apply
different thresholds to different categories – i.e., to different subvectors. Many
problems offer natural criteria for subdividing variables into categories. However,
in the absence of this, or in the case where greater diversity is desired, the catego-
ries can be arbitrarily generated and varied. At the extreme, for example, each
variable can belong to its own category. This SS option gives the same set of al-
ternative mappings as the so-called “Bernoulli crossover” introduced into GAs
about a decade after the original SS proposals, except that Scatter Search does not
select the 0 and 1 values at random as in the Bernoulli scheme, but instead selects
these values by relying on frequency memory to achieve intensification and diver-
sification goals.)

To illustrate the consequences of such a threshold mechanism applied to 2 par-
ents (or to selected subvectors of two parents), t = 1 gives the offspring that is the
union of the 1's in the parents and t = 2 gives the offspring that is the intersection
of the 1's in the parents. But the threshold mechanism is not the only relevant one
to consider. Two other kinds of combinations can be produced for r = 2, consisting
of those equivalent to subtracting one vector (or subvector) from another and set-
ting xi = 1 if and only if the difference is positive. In this case it is not unreason-
able to consider one more linear combination by summing these two offspring to
get the symmetric difference between the parents.

96 4 Scatter Search and Path Relinking: Foundations and Advanced Designs

To summarize: restricting attention to r = 2 yields the following options of in-
terest:

(1) the intersection of 1’s
(2) the union of 1’s
(3) the 1’s that belong to parent 1 and not to parent 2
(4) the 1’s that belong to parent 2 and not to parent 1

(5) the symmetric difference (summing (3) and (4)).
In some contexts the last three options are not as useful as the first two, but in oth-
ers they can be exceedingly important. An example of the importance of the sym-
metric difference is given in Glover and Laguna (1997).

An analogous set of options for r = 3 is given by:

(1) the intersection of 1’s
(2) the union of 1’s
(3) the 1’s that belong to a majority of the parents
(4) the 1’s that belong to exactly 1 parent but not more
(5) the 1’s that belong to exactly 2 parents but not more
(6) the 1’s that belong to the union of 2 parents, excluding those that belong

to the 3rd parent.
(3 different cases)

(7) the 1’s that belong to the intersection of 2 parents, excluding those that
belong to the 3rd parent. (3 different cases)

Inclusion of the 6th and 7th options, each of which involves 3 different cases, en-
tails a fair amount of effort, which may not be warranted in many situations. How-
ever, it would make sense to use (6) and (7) by defining the "3rd parent" to be the
worst of the 3, hence the 1’s that are excluded are those that belong to the worst
parent.

In general, the relevant mappings for linear combinations involving 0-1 vari-
ables can be identified in advance by rules such as those indicated, applied either
to full vectors or to subvectors. This results in a much more economical and ef-
fective process than separately generating a wide range of linear combinations and
then performing a mapping operation. The latter can produce multiple duplications
and even miss relevant alternatives.

4.3.2 Path Relinking

A. VARIATION AND TUNNELING

A variant of the Path Relinking approach starts with both endpoints x��	��x���i-
multaneously, and produces two sequences x����x�"
��� , x�(r) and x����x��"
��� ��
x�"s). The choices in this case are designed to yield x�(r) = x�"s), for final values
of r and s. To progress toward this outcome when x�(r) = x�"s), either x�"r) is se-
lected to create x�"r + 1), as by the criterion of minimizing reducing the number of

4.3 Advanced Strategies 97

moves remaining to reach x�"s), or x�"s) is chosen to create x�"s + 1), as by the cri-
terion of minimizing (reducing) the number of moves remaining to reach x�"r).
From these options, the move is selected that produces the smallest c(x) value,
thus also determining which of r or s is incremented on the next step. Basing the
relinking process on more than one neighborhood also produces a useful variation.

The Path Relinking approach also benefits from a tunneling strategy that en-
courages a different neighborhood structure to be used than in the standard search
phase. For example, moves for Path Relinking may be periodically allowed that
normally would be excluded due to creating infeasibility. Such a practice is pro-
tected against the possibility of becoming ‘lost’ in an infeasible region, since fea-
sibility evidently must be recovered by the time x�������	��������������
����f-
fect therefore offers a chance to reach solutions that might otherwise be bypassed.
In the variant that starts from both x��	��x�������������	�������#�����$������	��
least one of x�"r) and x�"s) feasible.

B. EXTRAPOLATED RELINKING

The Path Relinking approach goes beyond consideration of points ‘between’ x �
and x ���������	����	����	������	�����
��	�������������
������ ��������	��	����x-
pressed as convex combinations of two endpoints. In seeking a path that contin-
ues beyond x �!��	����"�#�������� �����x $���������	"	�����%�&�������	
��'�	����
concept of referring to sets of attributes associated with the solutions generated, as
a basis for choosing a move that ‘approximately’ leaves the fewest moves remain-
ing to reach x �� � (�� A(x) denote the set of solution attributes associated with
(‘contained in’) x, and let A_drop denote the set of solution attributes that are
dropped by moves performed to reach the current solution x !i), starting from x ���
(Such attributes may be components of the x vectors themselves, or may be related
to these components by appropriately defined mappings.)

Define a to-attribute of a move to be an attribute of the solution produced by
the move, but not an attribute of the solution that initiates the move. Similarly, de-
fine a from-attribute to be an attribute of the initiating solution but not of the new
solution produced. Then we seek a move at each step to maximize the number of
to-attributes that belong to A(x") - A(x(i)), and subject to this to minimize the
number that belong to A_drop - A(x"). Such a rule generally can be implemented
very efficiently by appropriate data structures.

Once x(r) = x�������	���
��	��
follows. The criterion now selects a move to maximize the number of its to-
attributes not in A_drop minus the number of its to-attributes that are in A_drop,
and subject to this to minimize the number of its from-attributes that belong to
A(x�). The combination of these criteria establishes an effect analogous to that
achieved by the standard algebraic formula for extending a line segment beyond
an endpoint. (The secondary minimization criterion is probably less important in
this determination.) The path then stops whenever no choice remains that permits
the maximization criterion to be positive. The maximization goals of these two
criteria are of course approximate, and can be relaxed.

98 4 Scatter Search and Path Relinking: Foundations and Advanced Designs

C. MULTIPLE PARENTS

New points can be generated from multiple parents in Path Relinking by the fol-
lowing explicit process. Instead of moving from a point x�����"������������	���c-
ond point x��� �� ���
	��� x�� ��� 	� ��

������ ��� ��
������X��� Upon generating a
point x(i), the options for determining a next point x(i + 1) are given by the union
of the solutions in X�, or more precisely, by the union A��of the attribute sets A(x),
for x ∈ X�������takes the role of A(x) in the attribute-based approach previously de-
scribed, with the added stipulation that each attribute is counted (weighted) in ac-
cordance with the number of times it appears in elements A(x) of the collection.
Still more generally, we may assign a weight to A(x), which thus translates into a
sum of weights over A" applicable to each attribute, creating an effect analogous
to that of creating a weighted linear combination in Euclidean space. Parallel
processing can be applied to operate on an entire collection of points x� ∈ X����
a-
tive to a second collection x��∈ X����������	����	�����%��������������	����� ��	��
build on these ideas are detailed in Glover (1994), but they go beyond the scope of
our present development.

This multiparent Path Relinking approach generates new elements by a process
that emulates the strategies of the original Scatter Search approach at a higher
level of generalization. The reference to neighborhood spaces makes it possible to
preserve desirable solution properties (such as complex feasibility conditions in
scheduling and routing), without requiring artificial mechanisms to recover these
properties in situations where they may otherwise become lost.

Acknowledgments

Fred Glover’s research is partially supported by the Office of Naval Research
Contract N00014-01-1-0917 in connection with the Hearin Center of Enterprise
Science at the University of Mississippi. Rafael Marti’s research is partially sup-
ported by the Spanish Government (PR2002-0060 and TIC2000-1750-C06-01).

Acknowledgments 99

References

Campos, V., Glover, F., Laguna, M. and Martí, R. (2001), “An Experimental Evaluation of
a Scatter Search for the Linear Ordering Problem” Journal of Global Optimization 21,
397-414

Glover F. (1994). “Tabu Search for Nonlinear and Parametric Optimization (with Links to
Genetic Algorithms),” Discrete Applied Mathematics, vol. 49, 231-255.

Glover, F. (1997). “A Template for Scatter Search and Path Relinking,” in Lecture Notes
in Computer Science, 1363, J.K. Hao, E. Lutton, E. Ronald, M. Schoenauer, D. Snyers
(Eds.), 1-53. (Expanded version available on request.)

Glover F. (1999). “Scatter Search and Path Relinking,” In: D Corne, M Dorigo and F
Glover (eds.) New Ideas in Optimisation, Wiley.

Glover, F. and M. Laguna (1997) Tabu Search, Kluwer Academic Publishers, Boston.
Glover, F., M. Laguna and R. Martí (2000), “Fundamentals of Scatter Search and Path Re-

linking” Control and Cybernetics, 29(3), 653-684
Glover, F., M. Laguna and R. Martí (2002). “Scatter Search,” to appear in Theory and Ap-

plications of Evolutionary Computation: Recent Trends, A. Ghosh and S. Tsutsui
(Eds.) Springer-Verlag.

Greistorfer, P. and Voss, S. (2001), “Controlled Pool Maintenance in Combinatorial Opti-
mization” Conference on Adaptive Memory and Evolution: Tabu Search and Scatter
Search, University of Mississippi.

Laguna, M. (2000) “Scatter Search,” to appear in Handbook of Applied Optimization, P. M.
Pardalos and M. G. C. Resende (Eds.), Oxford Academic Press.

Laguna, M. and R. Martí (1999). “GRASP and Path Relinking for 2-Layer Straight Line
Crossing Minimization,” INFORMS Journal on Computing, Vol. 11, No. 1, pp. 44-52.

Laguna, M. and R. Martí (2000a). “Experimental Testing of Advanced Scatter Search De-
signs for Global Optimization of Multi-modal Functions,” Working paper, University
of Colorado.

Laguna, M. and R. Martí (2000b). “The OptQuest Callable Library,” Optimization Software
Class Libraries, S. Voss and D. L. Woodruff (Eds.), Kluwer, Boston. pp. 193- 218

Laguna, M. and Martí, R. (2003), Scatter Search. Methodology and Implementations in C,
Kluwer Academic Publishers, 312 pp.

Laguna, M., R. Martí and V. Campos (1999). “Intensification and Diversification with Elite
Tabu Search Solutions for the Linear Ordering Problem,” Computers and Operations
Research, Vol. 26, pp. 1217-1230.

Piñana, E., Plana, I., Campos, V. and Martí, R. (2001). “GRASP and Path relinking for the
matrix bandwidth minimization”, European Journal of Operational Research, forth-
coming.

5 Ant Colony Optimization

Vittorio Maniezzo, Luca Maria Gambardella, Fabio de Luigi

5.1 Introduction

Ant Colony Optimization (ACO) is a paradigm for designing metaheuristic algo-
rithms for combinatorial optimization problems. The first algorithm which can be
classified within this framework was presented in 1991 [21, 13] and, since then,
many diverse variants of the basic principle have been reported in the literature.
The essential trait of ACO algorithms is the combination of a priori information
about the structure of a promising solution with a posteriori information about the
structure of previously obtained good solutions.

Metaheuristic algorithms are algorithms which, in order to escape from local
optima, drive some basic heuristic: either a constructive heuristic starting from a
null solution and adding elements to build a good complete one, or a local search
heuristic starting from a complete solution and iteratively modifying some of its
elements in order to achieve a better one. The metaheuristic part permits the low-
level heuristic to obtain solutions better than those it could have achieved alone,
even if iterated. Usually, the controlling mechanism is achieved either by con-
straining or by randomizing the set of local neighbor solutions to consider in local
search (as is the case of simulated annealing [46] or tabu search [33]), or by com-
bining elements taken by different solutions (as is the case of evolution strategies
[11] and genetic [40] or bionomic [56] algorithms).

The characteristic of ACO algorithms is their explicit use of elements of previ-
ous solutions. In fact, they drive a constructive low-level solution, as GRASP [30]
does, but including it in a population framework and randomizing the construction
in a Monte Carlo way. A Monte Carlo combination of different solution elements
is suggested also by Genetic Algorithms [40], but in the case of ACO the probabil-
ity distribution is explicitly defined by previously obtained solution components.

The particular way of defining components and associated probabilities is prob-
lem-specific, and can be designed in different ways, facing a trade-off between the
specificity of the information used for the conditioning and the number of solu-
tions which need to be constructed before effectively biasing the probability dis-

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004

102 5 Ant Colony Optimization

tribution to favor the emergence of good solutions. Different applications have fa-
vored either the use of conditioning at the level of decision variables, thus requir-
ing a huge number of iterations before getting a precise distribution, or the compu-
tational efficiency, thus using very coarse conditioning information.

The chapter is structured as follows. Section 2 describes the common elements
of the heuristics following the ACO paradigm and outlines some of the variants
proposed. Section 3 presents the application of ACO algorithms to a number of
different combinatorial optimization problems and it ends with a wider overview
of the problem attacked by means of ACO up to now. Section 4 outlines the most
significant theoretical results so far published about convergence properties of
ACO variants.

5.2 Ant Colony Optimization

ACO [1, 24] is a class of algorithms, whose first member, called Ant System, was
initially proposed by Colorni, Dorigo and Maniezzo [13, 21, 18]. The main under-
lying idea, loosely inspired by the behavior of real ants, is that of a parallel search
over several constructive computational threads based on local problem data and
on a dynamic memory structure containing information on the quality of previ-
ously obtained result. The collective behavior emerging from the interaction of the
different search threads has proved effective in solving combinatorial optimization
(CO) problems.

Following [50], we use the following notation. A combinatorial optimization
problem is a problem defined over a set C = c1, ... , cn of basic components. A

subset S of components represents a solution of the problem; F ⊆ 2C is the subset
of feasible solutions, thus a solution S is feasible if and only if S ∈ F. A cost func-

tion z is defined over the solution domain, z : 2C � R, the objective being to find
a minimum cost feasible solution S*, i.e., to find S*: S* ∈ F and z(S*) ≤ z(S),
∀S∈F.

Given this, the functioning of an ACO algorithm can be summarized as follows
(see also [27]). A set of computational concurrent and asynchronous agents (a col-
ony of ants) moves through states of the problem corresponding to partial solu-
tions of the problem to solve. They move by applying a stochastic local decision
policy based on two parameters, called trails and attractiveness. By moving, each
ant incrementally constructs a solution to the problem. When an ant completes a
solution, or during the construction phase, the ant evaluates the solution and modi-
fies the trail value on the components used in its solution. This pheromone infor-
mation will direct the search of the future ants.

Furthermore, an ACO algorithm includes two more mechanisms: trail evapora-
tion and, optionally, daemon actions. Trail evaporation decreases all trail values
over time, in order to avoid unlimited accumulation of trails over some compo-
nent. Daemon actions can be used to implement centralized actions which cannot
be performed by single ants, such as the invocation of a local optimization proce-

5.2 Ant Colony Optimization 103

dure, or the update of global information to be used to decide whether to bias the
search process from a non-local perspective [27].

More specifically, an ant is a simple computational agent, which iteratively
constructs a solution for the instance to solve. Partial problem solutions are seen as
states. At the core of the ACO algorithm lies a loop, where at each iteration, each
ant moves (performs a step) from a state ι to another one ψ, corresponding to a
more complete partial solution. That is, at each step σ, each ant k computes a set

Ak
σ(ι) of feasible expansions to its current state, and moves to one of these in

probability. The probability distribution is specified as follows. For ant k, the
probability pιψk of moving from state ι to state ψ depends on the combination of

two values:

• the attractiveness ηιψ of the move, as computed by some heuristic indicating

the a priori desirability of that move;
• the trail level τιψ of the move, indicating how proficient it has been in the past

to make that particular move: it represents therefore an a posteriori indication
of the desirability of that move.

Trails are updated usually when all ants have completed their solution, increas-
ing or decreasing the level of trails corresponding to moves that were part of
"good" or "bad" solutions, respectively.

The general framework just presented has been specified in different ways by
the authors working on the ACO approach. The remainder of Section 2 will out-
line some of these contributions.

5.2.1 Ant System

The importance of the original Ant System (AS) [13, 21, 18] resides mainly in be-
ing the prototype of a number of ant algorithms which collectively implement the
ACO paradigm. AS already follows the outline presented in the previous subsec-
tion, specifying its elements as follows.

The move probability distribution defines probabilities pιψk to be equal to 0 for
all moves which are infeasible (i.e., they are in the tabu list of ant k, that is a list
containing all moves which are infeasible for ants k starting from state ι), other-
wise they are computed by means of formula (5.1), where α and β are user-
defined parameters (0 ≤ α,β ≤ 1):

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧
∉

⎟
⎠
⎞⎜

⎝
⎛ ⋅+

+

= ∑
∉

otherwise0

tabu)(if

p

k

)(
k

ιψ
ητ

ητ

ιζ

β
ιζ

α
ιζ

β
ιψ

α
ιψ

ιψ
ktabu

(5.1)

104 5 Ant Colony Optimization

In formula 5.1, tabuk is the tabu list of ant k, while parameters α and β specify

the impact of trail and attractiveness, respectively.
After each iteration t of the algorithm, i.e., when all ants have completed a solu-

tion, trails are updated by means of formula (5.2):

τιψ (τ) = ρ τιψ (τ − 1) + Δτιψ (5.2)

where Δτιψ represents the sum of the contributions of all ants that used move

(ιψ) to construct their solution, ρ, 0 ≤ ρ ≤ 1, is a user-defined parameter called
evaporation coefficient, and Δτιψ represents the sum of the contributions of all

ants that used move (ιψ) to construct their solution. The ants’ contributions are
proportional to the quality of the solutions achieved, i.e., the better solution is, the
higher will be the trail contributions added to the moves it used.

For example, in the case of the TSP, moves correspond to arcs of the graph,
thus state ι could correspond to a path ending in node i, the state ψ to the same
path but with the arc (ij) added at the end and the move would be the traversal of
arc (ij). The quality of the solution of ant k would be the length Lk of the tour

found by the ant and formula (5.2) would become τij(t)=ρ τij(t-1)+Δτij , with

∑
=

Δ=Δ
m

k

k
ijij

1

ττ
 (5.3)

where m is the number of ants and
k
ijτΔ is the amount of trail laid on edge (ij)

by ant k, which can be computed as

⎪⎩

⎪
⎨
⎧

=Δ
otherwise0

touritsin(ij)arcusesantif
L

Q

k
k
ij

kτ (5.4)

Q being a constant parameter.
The ant system simply iterates a main loop where m ants construct in parallel

their solutions, thereafter updating the trail levels. The performance of the algo-
rithm depends on the correct tuning of several parameters, namely: α, β, relative
importance of trail and attractiveness, ρ, trail persistence, τij(0), initial trail level,

m, number of ants, and Q, used for defining to be of high quality solutions with
low cost. The algorithm is the following.

1. {Initialization}
Initialize τιψ and ηιψ,

�
(� �).

2. {Construction}
For each ant k (currently in state �) do

repeat
choose in probability the state to move into.

5.2 Ant Colony Optimization 105

append the chosen move to the k-th ant’s set tabuk.

until ant k has completed its solution.
end for

3. {Trail update}
For each ant move (� �) do

compute � � ιψ
update the trail matrix.

end for

4. {Terminating condition}
If not(end test) go to step 2

5.2.2 Ant Colony System

AS was the first algorithm inspired by real ants behavior. AS was initially applied
to the solution of the traveling salesman problem but was not able to compete
against the state-of-the art algorithms in the field. On the other hand he has the
merit to introduce ACO algorithms and to show the potentiality of using artificial
pheromone and artificial ants to drive the search of always better solutions for
complex optimization problems. The next researches were motivated by two
goals: the first was to improve the performance of the algorithm and the second
was to investigate and better explain its behavior. Gambardella and Dorigo pro-
posed in 1995 the Ant-Q algorithm [35], an extension of AS which integrates
some ideas from Q-learning [76], and in 1996 Ant Colony System (ACS) [36, 25]
a simplified version of Ant-Q which maintained approximately the same level of
performance, measured by algorithm complexity and by computational results.
Since ACS is the base of many algorithms defined in the following years we focus
the attention on ACS other than Ant-Q. ACS differs from the previous AS because
of three main aspects:

5.2.2.1 Pheromone

In ACS once all ants have computed their tour (i.e. at the end of each iteration) AS
updates the pheromone trail using all the solutions produced by the ant colony.
Each edge belonging to one of the computed solutions is modified by an amount
of pheromone proportional to its solution value. At the end of this phase the
pheromone of the entire system evaporates and the process of construction and
update is iterated. On the contrary, in ACS only the best solution computed since
the beginning of the computation is used to globally update the pheromone. As
was the case in AS, global updating is intended to increase the attractiveness of
promising route but ACS mechanism is more effective since it avoids long con-
vergence time by directly concentrate the search in a neighborhood of the best tour
found up to the current iteration of the algorithm.

106 5 Ant Colony Optimization

In ACS, the final evaporation phase is substituted by a local updating of the
pheromone applied during the construction phase. Each time an ant moves from
the current city to the next the pheromone associated to the edge is modified in the

following way: () () 0)1(τρτρτ ⋅−+⋅= 1-tt ijij where 0 ≤ ρ ≤ 1 is a parameter

(usually set at 0.9) and τ0 is the initial pheromone value. τ0 is defined as
τ0=(n·Lnn)-1, where Lnn is the tour length produced by the execution of one ACS
iteration without the pheromone component (this is equivalent to a probabilistic
nearest neighbor heuristic). The effect of local-updating is to make the desirability
of edges change dynamically: every time an ant uses an edge this becomes
slightly less desirable and only for the edges which never belonged to a global best
tour the pheromone remains τ0. An interesting property of these local and global
updating mechanisms is that the pheromone τij(t) of each edge is inferior limited
by τ0. A similar approach was proposed with the Max-Min-AS (MMAS, [70]) that
explicitly introduces lower and upper bounds to the value of the pheromone trials.

5.2.2.2 State Transition Rule

During the construction of a new solution the state transition rule is the phase
where each ant decides which is the next state to move to. In ACS a new state
transition rule called pseudo-random-proportional is introduced. The pseudo-
random-proportional rule is a compromise between the pseudo-random state
choice rule typically used in Q-learning [76] and the random-proportional action
choice rule typically used in Ant System. With the pseudo-random rule the chosen
state is the best with probability q0 (exploitation) while a random state is chosen
with probability 1-q0 (exploration). Using the AS random-proportional rule the
next state is chosen randomly with a probability distribution depending on ηij and
τij. The ACS pseudo-random-proportional state transition rule provides a direct
way to balance between exploration of new states and exploitation of a priori and
accumulated knowledge. The best state is chosen with probability q0 (that is a pa-
rameter 0 ≤ q0 ≤ 1 usually fixed to 0.9) and with probability (1-q0) the next state
is chosen randomly with a probability distribution based on ηij and τ ij weighted by
α (usually equal to 1) and β (usually equal to 2) .

{ }

⎪
⎪

⎩

⎪
⎪

⎨

⎧ ≤⋅
∉

on)(exploratiotherwise5.1ruleAS

ion)(exploitatifmaxarg

=

)(
0qq

s

ijij
ktabuij

βα ητ

 (5.5)

5.2 Ant Colony Optimization 107

5.2.2.3 Hybridization and performance improvement

ACS was applied to the solution of big symmetric and asymmetric traveling
salesman problems (TSP/ATSP) [36],[25]. For these purpose ACS incorporates an
advanced data structure known as candidate list [60]. A candidate list is a static
data structure of length cl which contains, for a given city i, the cl preferred cities
to be visited. An ant in ACS first uses candidate list with the state transition rules
to choose the city to move to. If none of the cities in the candidate list can be vis-
ited the ant chooses the nearest available city only using the heuristic value ηij.
ACS for TSP/ATSP has been improved by incorporating local optimization heu-
ristic (hybridization): the idea is that each time a solution is generated by the ant it
is taken to its local minimum by the application of a local optimization heuristic
based on an edge exchange strategy, like 2-opt, 3-opt or Lin-Kernighan [48]. The
new optimized solutions are considered as the final solutions produced in the cur-
rent iteration by ants and are used to globally update the pheromone trails.

This ACS implementation combining a new pheromone management policy, a
new state transition strategy and local search procedures was finally competitive
with state-of-the-art algorithm for the solution of TSP/ATSP problems [5]. This
opened a new frontier for ACO based algorithm. Following the same approach
that combines a constructive phase driven by the pheromone and a local search
phase that optimizes the computed solution, ACO algorithms were able to break
several optimization records, including those for routing and scheduling problems
that will be presented in the following paragraphs.

5.2.3 ANTS

ANTS is an extension of the AS proposed in [50], which specifies some underde-
fined elements of the general algorithm, such as the attractiveness function to use
or the initialization of the trail distribution. This turns out to be a variation of the
general ACO framework that makes the resulting algorithm similar in structure to
tree search algorithms. In fact, the essential trait which distinguishes ANTS from a
tree search algorithm is the lack of a complete backtracking mechanism, which is
substituted by a probabilistic (Non-deterministic) choice of the state to move into
and by an incomplete (Approximate) exploration of the search tree: this is the ra-
tionale behind the name ANTS, which is an acronym of Approximated Non-
deterministic Tree Search. In the following, we will outline two distinctive ele-
ments of the ANTS algorithm within the ACO framework, namely the attractive-
ness function and the trail updating mechanism.

5.2.3.1 Attractiveness

The attractiveness of a move can be effectively estimated by means of lower
bounds (upper bounds in the case of maximization problems) on the cost of the
completion of a partial solution. In fact, if a state ι corresponds to a partial prob-
lem solution it is possible to compute a lower bound on the cost of a complete so-

108 5 Ant Colony Optimization

lution containing ι. Therefore, for each feasible move ι,ψ, it is possible to compute
the lower bound on the cost of a complete solution containing ψ: the lower the
bound the better the move. Since a large part of research in ACO is devoted to the
identification of tight lower bounds for the different problems of interest, good
lower bounds are usually available.

When the bound value becomes greater than the current upper bound, it is ob-
vious that the considered move leads to a partial solution which cannot be com-
pleted into a solution better than the current best one. The move can therefore be
discarded from further analysis. A further advantage of lower bounds is that in
many cases the values of the decision variables, as appearing in the bound solu-
tion, can be used as an indication of whether each variable will appear in good so-
lutions. This provides an effective way of initializing the trail values. For more de-
tails see [50].

5.2.3.2 Trail update

A good trail updating mechanism avoids stagnation, the undesirable situation in
which all ants repeatedly construct the same solutions making any further explora-
tion in the search process impossible. Stagnation derives from an excessive trail
level on the moves of one solution, and can be observed in advanced phases of the
search process, if parameters are not well tuned to the problem.

The trail updating procedure evaluates each solution against the last k solutions
globally constructed by ANTS. As soon as k solutions are available, their moving

average z is computed; each new solution zcurr is compared with z (and then

used to compute the new moving average value). If zcurr is lower than z , the trail

level of the last solution’s moves is increased, otherwise it is decreased. Formula
(5.6) specifies how this is implemented:

⎟
⎠
⎞⎜

⎝
⎛

−
−−⋅=Δ
LBz

LBzcurr
ij 10ττ (5.6)

where z is the average of the last k solutions and LB is a lower bound on the
optimal problem solution cost. The use of a dynamic scaling procedure permits
discrimination of a small achievement in the latest stage of search, while avoiding
focusing the search only around good achievement in the earliest stages.

One of the most difficult aspects to be considered in metaheuristic algorithms is
the trade-off between exploration and exploitation. To obtain good results, an
agent should prefer actions that it has tried in the past and found to be effective in
producing desirable solutions (exploitation); but to discover them, it has to try ac-
tions not previously selected (exploration). Neither exploration nor exploitation
can be pursued exclusively without failing in the task: for this reason, the ANTS
algorithm integrates the stagnation avoidance procedure to facilitate exploration
with the probability definition mechanism based on attractiveness and trails to de-
termine the desirability of moves.

5.3 Significant problems 109

Based on the elements described, the ANTS algorithm is as follows.

1. Compute a (linear) lower bound LB to the problem

Initialize τιψ (∀ι,ψ) with the primal variable values

2. For k=1,m (m= number of ants) do

repeat

2.1 compute ηιψ ∀(ιψ)

2.2 choose in probability the state to move into

2.3 append the chosen move to the k-th ant’s tabu list

until ant k has completed its solution

2.4 carry the solution to its local optimum

end for

3. For each ant move (ιψ),

compute Δτιψ and update trails by means of (5.6)

4. If not(end_test) goto step 2.

It can be noted that the general structure of the ANTS algorithm is closely akin
to that of a standard tree search procedure. At each stage we have in fact a partial
solution which is expanded by branching on all possible offspring; a bound is then
computed for each offspring, possibly fathoming dominated ones, and the current
partial solution is selected from among those associated to the surviving offspring
on the basis of lower bound considerations. By simply adding backtracking and
eliminating the MonteCarlo choice of the node to move to, we revert to a standard
branch and bound procedure. An ANTS code can therefore be easily turned into
an exact procedure.

5.3 Significant problems

In the following of this section we will present applications of ACO algorithms to
some significant combinatorial optimization problems. This is to give the reader
an idea of what is involved by the use of an ACO algorithm for a problem: even
though the last subsection presents an overview of recent application the list is by
no means exhaustive, as it becomes readily evident by searching the web under the
keywords “ant colony optimization”.

110 5 Ant Colony Optimization

5.3.1 Sequential ordering problem

The first ACO applications were devoted to solve the symmetric and the asymmet-
ric traveling salesman problem. Given a set of cities V = {v1, ... , vn}, a set of
edges A = {(i,j) : i,j ∈V} and a cost dij = dji associated with edge (i,j) ∈ A, the TSP
is the problem of finding a minimal length closed tour that visits each city once. In
case dij �dji for at least one edge (i,j) than the TSP becomes an Asymmetric TSP
(ATSP). The first algorithm that applies an ACO based algorithm to a more gen-
eral version of the ATSP problem is Hybrid Ant System for the Sequential Order-
ing Problem (HAS-SOP, [34]). HAS-SOP was intended to solve the sequential or-
dering problem with precedence constraints (SOP). The SOP in an NP-hard
combinatorial optimization problem first formulated by Escudero [29] to design
heuristics for a production planning system. The SOP models real-world problems
like production planning [29], single-vehicle routing problems with pick-up and
delivery constraints [64], and transportation problems in flexible manufacturing
systems [2]. The SOP can be seen as a general case of both the ATSP and the
pick-up and delivery problem [47]. It differs from ATSP because the first and the
last nodes are fixed, and in the additional set of precedence constraints on the or-
der in which nodes must be visited. It differs from the pick-up and delivery prob-
lem because this is usually based on symmetric TSPs, and because the pick-up and
delivery problem includes a set of constraints between nodes with a unique prede-
cessor defined for each node, in contrast to the SOP where multiple precedences
can be defined.
HAS-SOP combines a constructive phase (ACS-SOP) based on the ACS algo-
rithm [36] with a new local search procedure called SOP-3-exchange. SOP-3-
exchange is based on a lexicographic search heuristic due to [64], on a new label-
ing procedure and on a new data structure called don’t push stack inspired by the
don’t look bit [6] both introduced by the authors. SOP-3-exchange is the first local
search able to handle multiple precedence constraints in constant time.

ACS-SOP implements the constructive phase of HAS-SOP but differs from
ACS in the way the set of feasible nodes is computed and in the setting of one of
the algorithm’s parameters that is made dependent on the problem dimensions.
ACS-SOP generates feasible solutions that does not violate the precedence con-
straints with a computational cost of order O(n2) like the traditional ACS heuris-
tic.

A set of experiments based on the TSPLIB data shows that HAS-SOP algo-
rithm is more effective than other existing methods for the SOP. HAS-SOP was
compared against the two previous most effective algorithms: a branch-and-cut al-
gorithm [2] that proposed a new class of valid inequalities and Maximum Partial
Order/Arbitrary Insertion (MPO/AI), a genetic algorithm by Chen and Smith [17].

To better understand the role of the constructive ACS-SOP phase and the role
of the SOP-3-exchange local search MPO/AI was also coupled with the SOP-3-
exchange local search. Experimental results shows that MPO/AI alone is better
than ACS-SOP due to the use of a simple local search embedded in its crossover
operator. On the contrary, the combination between constructive phase and local

5.3 Significant problems 111

search shows that HAS-SOP is better than both MPO/AI alone and MPO/AI +
SOP-3-exchange. This is probably due to the fact that MPO/AI generates solutions
that are already optimized and therefore the SOP-3-exchange procedure quickly
gets stuck. On the contrary, ACS-SOP solution is a very effective starting point
for the SOP-3-exchange local search therefore the HAS-SOP hybridization is very
effective. Currently HAS-SOP is the best known method to solve the SOP and was
able to improve 14 over 22 best known results in the TSPLIB data set.

5.3.2 Vehicle routing problems

A direct extension of the TSP, the first problem AS was applied to, are Vehicle
routing problems (VRPs). These are problems where a set of vehicles stationed at
a depot has to serve a set of customers before returning to the depot, and the ob-
jective is to minimize the number of vehicles used and the total distance traveled
by the vehicles. Capacity constraints are imposed on vehicle trips, as well as pos-
sibly a number of other constraints deriving from real-world applications, such as
time windows, backhauling, rear loading, vehicle objections, maximum tour
length, etc. The basic VRP problem is the Capacitated VRP (CVRP): ASrank, the

rank-based version of AS, was applied to this problem by Bullnheimer, Hartl and
Strauss [7, 8] with good results. These authors used various standard heuristics to
improve the quality of VRP solutions and modified the construction of the tabu
list considering constraints on the maximum total tour length of a vehicle and on
its capacity.

Following these results, and the excellent ones obtained by ACS with TSP,
SOP and QAP problems, ACS was applied to a VRP version more close to actual
logistic practice, called VRPTW. VRPTW is defined as the problem of minimiz-
ing time and costs in case a fleet of vehicles has to distribute goods from a depot
to a set of customers. The VRPTW minimizes a multiple, hierarchical objective
function: the first objective is to minimize the number of tours (or vehicles) and
the second objective is to minimize the total travel time. A solution with a lower
number of tours is always preferred to a solution with a higher number of tours
even if the travel time is higher. This hierarchical objectives VRPTW is very
common in the literature and in case problem constraints are very tight (for exam-
ple when the total capacity of the minimum number of vehicles is very close to the
total volume to deliver or when customers time windows are narrow), both objec-
tives can be antagonistic: the minimum travel time solution can include a number
of vehicles higher than the solution with minimum number of vehicles (see e.g.
Kohl et al., [45]).

To adapt ACS to a multiple objectives the Multiple Ant Colony System for the
VRPTW (MACS-VRPTW [38]) has been defined. MACS-VRPTW is organized
with a hierarchy of artificial ACS colonies designed to hierarchically optimize a
multiple objective function: the first ACS colony (ACS-VEI) minimizes the num-
ber of vehicles while the second ACS colony (ACS-TIME) minimizes the traveled
distances. Both colonies use independent pheromone trails but they collaborate by
exchanging information through mutual pheromone updating. In the MACS-

112 5 Ant Colony Optimization

VRPTW algorithm both objective functions are optimized simultaneously: ACS-
VEI tries to diminish the number of vehicles searching for a feasible solution with
always one vehicle less than the previous feasible solution.

ACS-VEI is therefore different from the traditional ACS applied to the TSP. In
ACS-VEI the current best solution is the solution (usually unfeasible) with the
highest number of visited customers, while in ACS the current best solution is the
shortest one. On the contrary, ACS-TIME is a more traditional ACS colony: ACS-
TIME, optimizes the travel time of the feasible solutions found by ACS-VEI. As
in HAS-SOP, ACS-TIME is coupled with a local search procedure that improves
the quality of the computed solutions. The local search uses data structure similar
to the data structure implemented in HAS-SOP [36] and is based on the exchange
of two sub-chains of customers. One of this sub-chain may eventually be empty,
implementing a more traditional customer insertion.

0. MACS-VRPTW algorithm

1. {Initialization}

Initialize gbψ the best feasible solution: lowest number

of vehicles and shortest travel time.

2. {Main loop}
Repeat

2.1 Vehicles ← #active_vehicles(gbψ)/* The number of used

vehicles is computed */

2.3 Activate ACS-VEI(Vehicles - 1) /* ACS-VEI searches for a
feasible solution with always one
vehicle less by maximising the num.
of visited customers */

2.4 Activate ACS-TIME(Vehicles)/* ACS-TIME is a traditional
ACS colony that minimises the travel
time*/

While ACS-VEI and ACS-TIME are active

Wait for an improved solution ψ from ACS-VEI or

ACS-TIME

2.5 gbψ ← ψ

if #active_vehicles(gbψ) < Vehicles then

2.6 kill ACS-TIME and ACS-VEI

End While

until a stopping criterion is met

5.3 Significant problems 113

Experimentally has been shown that the performance of the system increases in

case the best solution gbψ calculated in ACS-TIME is used, in combination with

the ACS-VEI best solution VEIACS −ψ , to update the pheromone in ACS-VEI equa-

tion (5.7).

() VEI-ACSVEI-ACS
),(1)1()(ψρτρτ ψ ∈∀−+−⋅= jiLtijtij (5.7)

() gbgb
jiLtijtij ψρτρτ ψ ∈∀−+−⋅=),(1)1()(

MACS-VRPTW has been experimentally proved to be most effective than the
best known algorithms in the field such as the the tabu search of Rochat and Tail-
lard [61], the large neighbourhood search of Shaw [71] and the genetic algorithm
of Potvin and Bengio [58]. MACS-VRPTW was also able to improve many results
in the Solomon problem set both decreasing the number of vehicle or the travelled
time.

MACS-VRPTW introduces a new methodology for optimising multiple objec-
tive functions. The basic idea is to coordinate the activity of different ant colonies,
each of them optimizing a different objective. These colonies work by using inde-
pendent pheromone trails but they collaborate by exchanging information. This is
the first time a multi-objective function minimization problem is solved with a
multiple ant colony optimization algorithm.

5.3.3 Quadratic Assignment Problem

The quadratic assignment problem (QAP) is the problem of assigning n facilities
to n locations so that the assignment cost is minimized, where the cost is defined
by a quadratic function. The QAP is considered one of the hardest CO problems,
and can be solved to optimality only for small instances. Several ACO applica-
tions dealt with the QAP, starting using AS and then by means of several of the
more advanced versions [54], [66]. The limited effectiveness of AS was in fact
improved using a well-tuned local optimizer [53], but several other systems previ-
ously introduced were also adapted to the QAP. For example, two efficient tech-
niques are the MMAS-QAP algorithm [69] and HAS-QAP [39]. For the testing of
QAP solution algorithms, Taillard [74] proposed to categorize instances into four
groups: (i) unstructured, uniform random (ii) unstructured, grid distance, (iii) real-
world and (iv) real-world-like. Both MMAS-QAP and HAS-QAP have been ap-
plied to problem instances of type i and iii. The performances of these two heuris-
tic approaches are strongly dependent on the type of problem. Comparisons with
some of the best heuristics for the QAP have shown that HAS-QAP performs well
as far as real-world, irregular and structured problems are concerned. On the other

114 5 Ant Colony Optimization

hand, on random, regular and unstructured problems the performance of this tech-
nique is less competitive.

This problem-dependency was not shown by ANTS, which was also applied to
QAP. In order to apply ANTS to QAP (or any other problem), it is necessary to
specify the lower bound to use and what is a move in the problem context (step
2.2). The application described in [50] made the following choices.

As for the lower bound, since there is currently no lower bound for QAP, which
is both tight and efficient to compute, the LBD bound was used, which can be
computed in O(n) but which is unfortunately on the average quite far from the op-
timal solution.

As for the moves, it was declared that a move corresponds to the assignment of
a facility to a location, thus adding a new component to the partial solution corre-
sponding to the state from which the move originated. Some considerations on the
move structure were used to improve the computational effectiveness of the result-
ing algorithm.

ANTS was tested on instances up to n=40 and showed to be effective on all in-
stance types; moreover its direct transposition into an exact branch and bound was
also effective when compared to other exact algorithms.

5.3.4 Other problems

This section outlines some of the more recent applications of ACO approaches to
problems other than those listed in the previous ones. This variety is well repre-
sented in the many diverse conference with tracks entirely dedicated to ACO and
most notably in ANTS conference series, entirely dedicated to algorithms inspired
by the observation of ants’ behavior (ANTS’98, ANTS’2000 and ANTS’2002).
Many different applications have been presented: from plan merging to routing
problems, from driver scheduling to search space sharing, from set covering to
nurse scheduling, from graph coloring to dynamic multiple criteria balancing
problems. A large part of the relevant literature can be accessed online from [1].

Moreover, several introductory overviews have been published. We refer the
reader to [23], [24] and [52] for other overviews on ACO.

Among the problems not in the list above, a prominent role is played by the
TSP. In fact, TSP has been and in many cases still is the first testbed for ACO
variants, and more in general for most combinatorial optimization metaheuristics
[68]. It was already on this problem that the limited effectiveness of the first vari-
ants emerged, and this fostered the design of improved approaches modifying
some algorithm element and possibly hybridizing the framework with greedy local
search or with other approaches, such as genetic algorithms or tabu seach [69],
[42], [72]. These variants were then applied to other problems, for example MAX-
MIN ant system was applied to the flow shop problem in [63], a problem then
faced also with other ACO modifications [10], whereas in [8] a rank-based ap-
proach for the TSP is described or in [14] a so-called best-worst variant.

More recently, different authors ([75], [44]) have tackled the TSP with hybrid
variants, mainly using tabu search, but also, in the case of large TSP instances,

5.4 Convergence proofs 115

also with genetic evolution and nearest neighbor search, in order to improve both
efficiency and efficacy. Moreover, variations of the basic TSP, such as the orien-
teering problem [49] or the probabilistic TSP where clients have to be visited with
a certain probability [4] have also been studied.

Scheduling problems provide another common area for testing the effectiveness
of ACO algorithms. An ACO approach for the job-shop scheduling is presented in
[12], whereas applications to real-world scheduling cases have been recently de-
scribed in [3] and [62].

More recently, the maturity of the field is showed by the fact that ACO ap-
proaches began to be proposed also for problems which are not standard combina-
torial optimization testbed, but which are more directly connected to actual prac-
tice. For example, the problem of searching and clustering records of large
databases is faced by means of ACO in [59], while an algorithm for document
clustering is described in [78]. Even more theoretical problems linked to spatial
data analysis were tackled with ACO techniques in [73] and [37].

Finally, a recent interesting research branch of ACO, not directly related to
combinatorial optimization, is about telecommunication. In fact, the area of packet
switching communications appear to be a promising field for ACO-related routing
approaches [19, 20]. Whereas a standard optimization version of the frequency as-
signment problem was described in [51], an application to wavelength allocation
was presented in [57], while techniques for path adaptive search are described in
[77], [22], [9], [79] and an application to a satellite network in [67]. Moreover,
applications directly related to communication Quality of Service (QoS) have been
presented in [28], and more recently in [15], while an application which optimizes
communication systems with GPS techniques is described in [16].

5.4 Convergence proofs

Recently, some works appeared which provide theoretical insight into the conver-
gence properties of ant colony algorithms. All proofs refer to simplified versions
of actually used systems, and do not provide direct guidelines for real-world us-
age, but they are of interest for the ascertainment of general properties of the sys-
tems used.

The first such proofs was proposed by Gutjahr [31], who worked on an ACO
variant called Graph-Based Ant System (GBAS). The name derives from the
analysis being carried on a so-called construction graph, which is a graph as-
signed to an instance of the optimization problem under consideration, encoding
feasible solutions by “walks” on the graph. The objective function value of the
walk is equal to the objective function value of the corresponding feasible solution
of the original problem. It is always possible to design a construction graph for
any given combinatorial optimization problem instance, with a number of nodes
linear in the number of bits needed for the representation of a solution, and a num-
ber of arcs quadratic in this number of bits. Gutjahr proved that, under the condi-
tions listed below, the solutions generated in each iteration of this Graph-based

116 5 Ant Colony Optimization

Ant System converge with a probability that can be made arbitrarily close to 1 to
the optimal solution of the given problem instance. Essential conditions are: (i)
there is only one optimal walk in W, i.e., the optimal solution is unique, and it is
encoded by only one walk in W; (ii) along the optimal walk w*, the desirability
values satisfy ηkl.(u) > 0 for all arcs (k,l) of w* and the corresponding partial

walks u of w*; (iii) a version of what is called elitist strategy is used, where only
the best walks are rewarded: walks that are dominated by another already trav-
ersed walk do not get pheromone increments anymore. Especially the first of these
conditions is quite restrictive.

Stützle and Dorigo [65] propose another convergence proof. They consider
both the MAX-MIN Ant System and the ACS outlined in Section 3, and they
show that in this case it is possible to prove that allowing more and more iterations
the cost of the best solution found converges with probability equal to 1 to the op-
timal cost. This a property already guaranteed by random search alone, and it does
not get lost imposing a minimum trail value. Moreover, the authors show that it is
possible to compute a lower bound for the probability of the current best solution
to be optimal.

Finally, Gutjahr [32] in a recent paper builds upon these results context of ACO
and shows that for a particular ACO algorithm, a time-dependent modification of
GBAS, the current solutions converge to an optimal solution with probability ex-
actly one. More specifically, he shows that by using suitable parameter schemes, it
can be guaranteed that the optimal paths get attractors of the stochastic dynamic
process realized by the algorithm. This improves all previous results and proves a
property of the same strength of the tightest one so far obtained in the whole
metaheuristic area, which was that obtained by Hajek [41] for Simulated Anneal-
ing.

5.5 Conclusions

Ant Colony Optimization has been and continues to be a fruitful paradigm for de-
signing effective combinatorial optimization solution algorithms. After more than
ten years of studies, both its application effectiveness and its theoretical ground-
ings have been demonstrated, making ACO one of the most successful paradigm
in the metaheuristic area.

This overview tries to propose the reader both introductory elements and point-
ers to recent results, obtained in the different directions pursued by current re-
search on ACO.

No doubt new results will both improve those outlined here and widen the area
of applicability of the ACO paradigm.

5.5 Conclusions 117

References

1. M. Dorigo, Ant colony optimization web page,
http://iridia.ulb.ac.be/mdorigo/ACO/ACO.html.

2. N. Ascheuer (1995) Hamiltonian path problems in the on-line optimization of flexible
manufacturing systems. Ph.D.Thesis, Technische Universität Berlin, Germany

3. M. E. Bergen P.van Beek, T. Carchrae (2001) Constraint-based assembly line sequenc-
ing, Lecture Notes in Computer Science, 2056:88-99

4. L. Bianchi, L.M. Gambardella, M. Dorigo (2002) An ant colony optimization approach
to the probabilistic traveling salesman problem. In Proceedings of PPSN-VII, Seventh
International Conference on Parallel Problem Solving from Nature, Lecture Notes in
Computer Science. Springer Verlag, Berlin, Germany, pp 883-892

5. E. Bonabeau, M. Dorigo, G. Theraulaz (2000) Nature, 406(6791):39-42
6. J.L. Bentley (1992) Fast algorithms for geometric traveling salesman problem, ORSA

Journal on Computing, 4:387-411
7. B. Bullnheimer, R.F. Hartl, C. Strauss (1999) Applying the ant system to the vehicle

routing problem, In: Voss S., Martello S., Osman I.H., Roucairol C. (eds.) Meta-
Heuristics: Advances and Trends in Local Search Paradigms for Optimization, Klu-
wer, Boston, pp 285-296

8. B. Bullnheimer, R.F. Hartl, C. Strauss (1999) A new rank-based version of the ant sys-
tem: a computational study, Central European Journal of Operations Research
7(1):25-38

9. C. N. Bendtsen, T. Krink (2002) Phone routing using the dynamic memory model, In
Proceedings of the 2002 congress on Evolutionary Computation, Honolulu, USA, pp
992-997

10. C. Blum, M. Sampels (2002) Ant colony optimization for FOP shop scheduling: a case
study on different pheromone representations, In Proceedings of the 2002 congress on
Evolutionary Computation, Honolulu, USA, pp 1558-1563

11. T. Bäck, H.-P. Schwefel (1993) An overview of evolutionary algorithms for parameter
optimization, Evolutionary Computation 1(1):1-23

12. M. den Besten, T. Stützle, M. Dorigo (2000) Ant colony optimization for the total
weighted tardiness problem, In Proceedings Parallel Problem Solving from Nature:
6th international conference, Lecture Notes in Computer Science. Springer Verlag,
Berlin, Germany, pp 611-620

13. A. Colorni, M. Dorigo, V. Maniezzo (1991) Distributed optimization by ant colonies,
In Proceedings of ECAL’91 European Conference on Artificial Life, Elsevier Publish-
ing, Amsterdam, The Netherlands, pp 134-142

14. O. Cordon, I. Fernandez de Viana, F. Herrera, L. Moreno (2000) A new ACO model
integrating evolutionary computation concepts: the best-worst ant system, In Proceed-
ings of ANTS’2000 - From Ant Colonies to Artificial Ants: Second International Work-
shop on Ant Algorithms, Brussels, Belgium, pp 22-29

118 References

15. C. Chao-Hsien, G. JunHua, H. Xiang Dan, G. Qijun (2002) A heuristic ant algorithm
for solving QoS multicast routing problem, in Proceedings of the 2002 congress on
Evolutionary Computation, Honolulu, USA, pp 1630-1635

16. D. Camara, A.A.F. Loureiro (2000) A GPS/ant-like routing algorithm for ad hoc net-
works, In Proceeding of 2000 IEEE Wireless Communications and Networking Con-
ference, Chicago, USA, 3:1232-1236

17. S. Chen, S. Smith (1996) Commonality and genetic algorithms. Technical Report
CMU-RI-TR-96-27, The Robotic Institute, Carnegie Mellon University, Pittsburgh,
PA, USA

18. M. Dorigo (1992) Optimization, learning and natural algorithms, Ph.D. Thesis,
Politecnico di Milano, Milano

19. G. di Caro, M. Dorigo (1998) Antnet: distributed stigmergetic control for communica-
tions networks, Journal of Artificial Intelligence Research, 9:317-365

20. G. di Caro, M. Dorigo (1998) Mobile agents for adaptive routing, In Proceedings of
the 31st Hawaii International Conference on System, IEEE Computer Society Press,
Los Alamitos, CA, pp 74-83

21. M. Dorigo, V. Maniezzo, A. Colorni (1991) The ant system: an autocatalytic optimiz-
ing process, Technical Report TR91-016, Politecnico di Milano

22. G. di Caro, M. Dorigo (1998) AntNet: distributed stigmergetic control for communica-
tions network, JAIR, Journal of Artificial Intelligence Research, 9:317-365

23. M. Dorigo, G. Di Caro (1999) The Ant Colony Optimization Meta-Heuristic. In D.
Corne, M. Dorigo, F. Glover (eds) New Ideas in Optimization, McGraw-Hill, London,
UK, pp 11-32

24. M. Dorigo, G. Di Caro, L.M. Gambardella (1999) Ant Algorithms for Discrete
Optimization. Artificial Life, 5(2):137-172

25. M. Dorigo, L.M. Gambardella (1997) Ant colony system: a cooperative learning ap-
proach to the traveling salesman problem, IEEE Transaction on Evolutionary Compu-
tation 1:53-66

26. M. Dorigo, V. Maniezzo, A. Colorni (1996) The ant system: optimization by a colony
of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics-Part B
26(1):29-41

27. M. Dorigo, T. Stützle (2002) The ant colony optimization metaheuristic: Algorithms,
applications and advances. In F. Glover, G. Kochenberger (eds) Handbook of Meta-
heuristics. Kluwer Academic Publishers, Norwell, MA, pp 251-285

28. G. Di Caro, T. Vasilakos (2000) Ant-SELA: Ant-agents and stochastic automata learn
adaptive routing tables for QoS routing in ATM networks, In Proceedings of
ANTS’2000 - From Ant Colonies to Artificial Ants: Second International Workshop on
Ant Algorithms, Brussels, Belgium, pp 43-46

29. L.F. Escudero (1988) An inexact algorithm for the sequential ordering problem. Euro-
pean Journal of Operational Research 37:232-253

30. T.A. Feo, M.G.C. Resende (1995) Greedy randomized adaptive search procedures,
Journal of Global Optimization 6:109-133

31. W.J. Gutjahr (2000) A graph-based Ant System and its convergence. Future Genera-
tion Computer Systems. 16:873-888

32. W.J. Gutjahr (2002) ACO algorithms with guaranteed convergence to the optimal so-
lution. Information Processing Letters 82(3):145-153

33. F. Glover (1989) Tabu search, ORSA Journal on Computing 1:190-206

5.5 Conclusions 119

34. L.M. Gambardella, M. Dorigo (2000) An ant colony system hybridized with a new lo-
cal search for the sequential ordering problem, INFORMS Journal on Computing
12(3):237-255

35. L.M. Gambardella, M. Dorigo (1995) Ant-Q: a reinforcement learning approach to the
travelling salesman problem, In Proceedings of the Twelfth International Conference
on Machine Learning, Morgan Kaufmann, Palo Alto, California, USA, pp 252-260

36. L.M. Gambardella, M. Dorigo (1996) Solving Symmetric and Asymmetric TSPs by
Ant Colonies, In Proceedings of the IEEE Conference on Evolutionary Computation,
ICEC96, Nagoya, Japan, pp 622-627

37. Y. Gabriely, E. Rimon (2001) Spanning-tree based coverage of continuous areas by a
mobile robot, Annals of Mathematics and Artificial Intelligence 31(1-4):77-98

38. L.M. Gambardella, E. Taillard, G. Agazzi (1999) MACS-VRPTW: A Multiple Ant
Colony System for Vehicle Routing Problems with Time Windows, In D. Corne, M.
Dorigo, F. Glover (eds) New Ideas in Optimization, McGraw-Hill, London, UK, pp 63-
76

39. L.M. Gambardella, E. Taillard, M. Dorigo (1999) Ant colonies for the quadratic as-
signment problem, Journal of the Operational Research Society 50:167-176.

40. J.H. Holland (1975) Adaptation in natural and artificial systems, University of Michi-
gan Press

41. B. Hajek (1988) Cooling schedules for optimal annealing, Math. of OR, 13:311-329
42. H.M. Botee, E. Bonabeau (1999) Evolving ant colony optimization, (SFI Working Pa-

per Abstract)
43. C. Hurkens, S. Tiourine (1995) Upper and lower bounding techniques for frequency

assignment problems, Technical Report 95-34, T.U. Eindhoven
44. T. Kaji (2001) Approach by ant tabu agents for Traveling Salesman Problem, In Pro-

ceedings of the IEEE International Conference on System, Man and Cybernetics
45. N. Kohl, J. Desrosiers, O. B. G. Madsen, M. M. Solomon, F. Soumis (1997) K-Path

Cuts for the Vehicle Routing Problem with Time Windows, Technical Report IMM-
REP-1997-12, Technical University of Denmark

46. S. Kirkpatrik, C.D. Gelatt, M.P. Vecchi (1983) Optimization by simulated annealing,
Science 220:671-680

47. G.A.P. Kindervater, M.W.P. Savelsbergh (1997) Vehicle routing: handling edge ex-
changes, E. H. Aarts, J. K. Lenstra (eds) Local Search in Combinatorial Optimization.
John Wiley & Sons, Chichester, UK, pp 311-336

48. S. Lin, B.W. Kernighan, (1973) An effective heuristic algorithm for the traveling
salesman problem, Operations Research, 21:498–516

49. Yun-Chia Liang, S. Kulturel-Konak, A.E. Smith (2002) Meta heuristic for the orien-
teering problem, In Proceedings of the 2002 Congress on Evolutionary Computation,
Honolulu, USA, pp 384-389

50. V. Maniezzo (1999) Exact and approximate nondeterministic tree-search procedures
for the quadratic assignment problem, INFORMS Journal of Computing 11(4):358-369

51. V. Maniezzo, A. Carbonaro (2000) An ANTS Heuristic for the Frequency Assignment
Problem, Future Generation Computer Systems; 16, North-Holland/Elsevier, Amster-
dam, 927-935.

52. V. Maniezzo, A.Carbonaro (2001) Ant Colony Optimization: an overview, in C.
Ribeiro (ed) Essays and Surveys in Metaheuristics, Kluwer, 21-44

53. V. Maniezzo, A. Colorni (1999) The ant system applied to the quadratic assignment
problem, IEEE Transactions on Knowledge and Data Engineering 11(5):769-778

120 References

54. V. Maniezzo, A. Carbonaro (2000) A bionomic approach to the capacitated p-median
problem, Future Generation Computer Systems 16(8):927-935

55. V. Maniezzo, R. Montemanni (1999) An exact algorithm for the radio link frequency
assignment problem, Technical Report CSR99-02

56. V. Maniezzo, A. Mingozzi, R. Baldacci (1998) A bionomic approach to the capacitated
p-median problem, Journal of Heuristics 4(3):263-280

57. G. Navarro Varela, M. C. Sinclair (1999) Ant Colony Optimization for virtual wave-
length path routing and wavelength allocations, In Proceeding of the Congress on Evo-
lutionary Computation, Washington DC, USA, pp 1809-1816

58. J.Y. Potvin, S. Bengio (1996) The vehicle routing problem with time windows – part
II: genetic search, Informs Journal of Computing 8:165-172

59. R.S. Parpinelli, H.S. Lopes, A.A. Freitas (2002) Data mining with ant colony optimiza-
tion algorithm, in IEEE Transactions on Evolutionary Computation, 6(4):321-332

60. G. Reinelt (1994) The traveling salesman: computational solutions for TSP applica-
tions. Springer-Verlag

61. Y. Rochat, E.D. Taillard (1995) Probabilistic diversification and intensification in local
search for vehicle routing, Journal of Heuristics 1:147-167

62. H. Shyh-Jier (2001) Enhancement of hydroelectric generation scheduling using ant
colony system based organization approach, in IEEE Transactions of Energy Conver-
sion, Volume 16(3):296-301

63. T. Stützle (1998) An Ant Approach to the Flow Shop Problem, In Proceedings of
EUFIT’98 , Aachen, Germany, pp 1560-1564

64. M.W.P. Savelsbergh (1990) An efficient implementation of local search algorithms for
constrained routing problems. European Journal of Operational Research 47:75-85

65. T. Stützle, M. Dorigo (2002) A Short Convergence Proof for a Class of ACO Algo-
rithms, IEEE Transactions on Evolutionary Computation, 6(4):358-365

66. T. Stützle, M. Dorigo (1999) Aco algorithms for the quadratic assignment problem, In
D. Corne, M. Dorigo, F. Glover (eds) New Ideas in Optimization, McGraw-Hill, Lon-
don, pp 3-50

67. E. Siegel, B. Denby, S. Le Hégarat-Mascle (2000) Application of ant colony optimiza-
tio to adaptive routing in a telecommunications satellite network, submitted to IEEE
Trasactions on Networks

68. T. Stützle, A .Grün, S. Linke, M. Rüttger (2000) A comparison of nature inspired heu-
ristic on the traveling salesman problem, In Deb et al. (eds) In Proceeding of PPSN-
VI, Sixth International Conference on Parallel Problem Solving from Nature,
1917:661-670

69. T. Stützle, H. Hoos (2000) MAX-MIN ant system, Future Generation Computer Sys-
tems, Vol. 16(8):889-914

70. T. Stützle, H. Hoos (1997) Improvements on the ant system: Introducing MAX-MIN
ant system, In Proceeding of ICANNGA’97, International Conference on Artificial
Neural Networks and Genetic Algorithms, Springer Verlag, pp 245-249

71. P. Shaw (1998) Using Constraint Programming and Local Search Methods to Solve
Vehicle Routing Problems, In Proceeding of Proceedings of the Fourth International
Conference on Principles and Practice of Constraint Programming, M. Maher, J.-F.
Puget (eds.), Springer-Verlag, pp 417-43

72. T. Stützle, H. Hoos (1998) The MAX-MIN Ant System and Local Search for Combi-
natorial Optimization Problems: Towards Adaptive Tools for Combinatorial Global
Optimization In S. Voss, S. Martello, I.H. Osman, C. Roucairol (eds) Meta-Heuristics:

5.5 Conclusions 121

Advances and Trends in Local Search Paradigms for Optimization, Kluwer Academic
Publishers, Boston, pp 313-329

73. M. Schreyer, G. R. Raidl, (2002) Letting ants labeling point feature, in Proceedings of
the 2002 congress on Evolutionary Computation, Honolulu, USA, pp 1564-1569

74. E.D. Taillard (1995) Comparison of iterative searches for the quadratic assignment
problem, Location Science, 3:87-105

75. C. Tsai, C. Tsai, C. Tseng (2002) A new approach for solving large traveling salesman
problem, In Proceeding of the 2002 Congress of Evolutionary Computation, Honolulu,
USA, pp 1636-1641

76. C.J. Watkins, P. Dayan (1992) Q-learning, Machine Learning, 8:279-292
77. O. Wittnr, B. E. Helvik, (2002) Cross-entropy guided ant-like agents finding depend-

able primary/backup path patterns in networks, In Proceedings of the 2002 congress
on Evolutionary Computation, Honolulu, USA, pp 1528-1533

78. B. Wu, Y. Zheng, S. Liu, Z. Shi, (2002) CSIM: a document clustering algorithm based
on swarm intelligence, In Proceedings of the 2002 congress on Evolutionary Computa-
tion, Honolulu, USA, pp 477-482

79 . W. Ying, X. Jianying (2000) Ant colony optimization for multicast routing, In Pro-
ceeding of the 2000 IEEE Asia-Pacific Conference on Circuits and Systems, Tianjin,
China

6 Differential Evolution

Jouni Lampinen and Rainer Storn

Abstract. This article discusses solving non-linear programming problems con-
taining integer, discrete and continuous variables. A novel optimization method
based on a recently introduced Evolutionary Algorithm called Differential Evolu-
tion is described. Three numerical examples are given to demonstrate the capabili-
ties and practical use of the method. Since these classical examples have been used
by a number of other researchers, it was possible to compare results between no
less than 21 alternative optimization methods. The novel method was found easy to
implement and use, effective, efficient and robust, which makes it an attractive and
widely applicable approach for solving practical engineering design problems.

Keywords. evolutionary algorithms, differential evolution, non-linear optimiza-
tion, mixed integer-discrete-continuous variables, penalty functions

6.1 Introduction

Most non-linear optimization methods assume that objective function variables are
continuous. In practical engineering design work, however, problems are common
in which some, or all, of the design parameters are discrete or integer variables.
Discrete variables often occur because a design element is only available in a lim-
ited set of standard sizes. For example, the thickness of steel plate, the diameter of
copper pipe, the size of a screw, the pitch of a gear tooth, the size of a roller bear-
ing, the value of an electronic resistor, etc., are often limited to a set of commer-
cially available standard sizes. Integer variables occur in problems with identical
design elements. Examples of integer variables include the number of teeth on a
gear, bolts or rivets needed to fix a structure, heat exchanger tubes, cooling fins on
a heat sink, parallel V-belts in a transmission, coils of a spring, etc.

It is clear that a large number of engineering design optimization problems fall
into the category of mixed integer-discrete-continuous, non-linear programming

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004

124 6 Differential Evolution

problems. Nevertheless, the most frequently discussed methods in the literature are
for solving continuous problems. Generally, continuous problems are considered to
be easier to solve than discrete ones, suggesting that the presence of any non-
continuous variables considerably increase the difficulty of finding a solution. In
practice, problems containing integer or discrete variables are usually solved as
though they were continuous with the nearest available discrete values then being
chosen. In most cases, this technique produces a result that is often quite far from
optimal. The reason for this approach is that it is still commonly believed that there
are no efficient, effective, robust, and easy-to-use non-linear programming meth-
ods currently available that are capable of handling mixed variables.

Another source of difficulty encountered in practical engineering design optimi-
zation involves constraint handling. Real-world limitations frequently impose mul-
tiple, non-linear and non-trivial constraints on a design. Constraints can limit the
feasible solutions to only a small subset of the design space.

In response to these demands, a novel approach for solving mixed integer-
discrete-continuous, non-linear engineering design optimization problems has been
developed based on the recently introduced Differential Evolution (DE) algorithm
[1,2,3] (see also [4]). This investigation describes the techniques needed to handle
boundary constraints as well as those needed to deal with several non-linear and
non-trivial constraint functions. After introducing these techniques, three illustra-
tive and practical numerical examples are presented. The first example designs a
gear train with a specified gear ratio, the second problem minimizes the manufac-
turing cost of a pressure vessel, and the third example uses DE to design a coil
spring with a minimum amount of steel. The mixed-variable methods used to solve
these problems are discussed in detail and compared with published results ob-
tained using other optimization methods for the same problems. Although this in-
vestigation only focuses on engineering design applications, DE can be applied, in
principle at least, to solve any mixed integer-discrete-continuous optimization task.

6.2 Mixed integer-discrete-continuous non-linear
programming

A mixed integer-discrete-continuous, non-linear programming problem can be ex-
pressed as follows:

6.3 Differential Evolution 125

(6.1)

X(i), X(d) and X(c) denote feasible subsets of integer, discrete and continuous vari-
ables, respectively. The above formulation is general and basically the same for all
types of variables. Only the structure of the design domain distinguishes one prob-
lem from another. While both integer and discrete variables have a discrete nature,
only discrete variables can assume floating-point values. In practice, it is not un-
common for the discrete values of a feasible set to be unevenly spaced. This is the
main reason why integer and discrete variables are often handled differently.

Some researchers also define a fourth class of variables, so-called, “zero-one”
(binary) variables that only assume the integer values, 0 or 1. This class of vari-
ables is important because it is capable of expressing many practically relevant
machine states, like a switch that is on or off, a valve that is open or closed, a de-
vice that is connected or not, a clutch that is open or closed, etc. For this investiga-
tion, the class of binary-integer variables is treated as a special case of integer vari-
ables.

6.3 Differential Evolution

Price and Storn first introduced the Differential Evolution (DE) algorithm a few
years ago [1,2]. DE can be classified as an evolutionary optimization algorithm. At
present, the best-known representatives of this class are genetic algorithms [5] and
evolution strategies [6] all of which belong to the class of stochastic population
based optimization algorithms. Genetic algorithms (GAs) are less suitable for real-
valued function optimization because they encode floating-point parameters into
bitstrings. For most real-valued problems defined on the continuous domain, this
parameter transformation has not proven beneficial [39,40]. On the other hand, en-
coding real parameters as floating-point numbers makes Evolution Strategies (ESs)
well suited for real-parameter optimization. Like ES, DE also uses floating-point

{ } []
()

()

ccddii

U
ii

L
i

j

Tcdi
D

XXX

Dixxx

mjXg

Xf

XXXxxxxX

ℜ∈ℜ∈ℜ∈

=≤≤

=≤

==

)()()(

)()(

)()()(
321

,,

where

,...,1

sconstraintboundarysubject toand

,...,10

sconstraintsubject to

minimizeto

,,,...,,,

Find

126 6 Differential Evolution

encoding. ESs, however, are more complicated and computationally expensive to
use than DE [41,42]. This drawback mainly stems from the fact that ESs use pre-
defined probability density functions (PDFs), usually gaussian or cauchy, for pa-
rameter perturbation. Since the proper variances and covariances for these PDFs
are unknown in advance, they have to be adapted throughout the optimization by a
process that imposes additional complexity to the optimization procedure. In con-
trast to classical ESs, however, DE is self-adjusting since it deduces the perturba-
tion information from the distances between the vectors that comprise the popula-
tion itself. This feature automatically yields reasonably large vector perturbations
at the beginning, i.e. the exploratory stage, of the optimization. Later on, when the
vector population is closing in on the optimum, the distances between the vectors
automatically get smaller. These smaller perturbations allow DE to conduct a fine-
grained search for the optimum. The self-adjusting property of DE uses fewer con-
trol mechanisms when compared to other approaches, making DE both effective
and easy to use.

Currently, there are several variants of DE [3]. The particular version used
throughout this investigation is the DE/rand/1/bin scheme. The extension of DE to
mixed-parameter optimization [8] will be described in detail. As the DE algorithm
was originally designed to operate on continuous variables, the optimization of
continuous problems is discussed first, while the manner in which this method has
been adapted to handle integer and discrete variables is explained later.

Generally, the function to be optimized, f, is of the form:

(6.2)

The optimization goal is to minimize the value of this objective function f(X),

(6.3)

by optimizing the values of its parameters:

(6.4)

where X denotes a vector composed of D objective function parameters. No gener-
ality is lost by the restriction to minimization since every maximization task can be
cast into a minimization problem by multiplying the objective function by –1.
Usually, the parameters of the objective function are also subject to lower and up-
per boundary constraints, x(L) and x(U), respectively:

(6.5)

() ℜ→ℜDXf :

())(min Xf

() D
D XxxX ℜ∈= ,,...,1

Djxxx U
jj

L
j ,...,1)()(=≤≤

6.3 Differential Evolution 127

Figure 6.1 illustrates a simple function to be minimized.

2x

x1

()()Xfmin

)U(
2x

)L(
2x

)L(
1x

)U(
1x

Fig. 6.1. Contour lines of a simple function f(X) the minimum of which has to be found.

As with all evolutionary optimization algorithms, DE operates on a population, Pg,
of candidate solutions, not just a single solution. These candidate solutions are the
individuals of the population. In particular, DE maintains a population of constant
size that consists of NP real-valued vectors, Xi,g, where i indexes the population and
g is the generation to which the population belongs.

(6.6)

Each vector Xi,g contains D real parameters (chromosomes of individuals):

(6.7)

6.3.1 Initialization

In order to establish a starting point for optimum seeking, the population must be
initialized. Often there is no more knowledge available about the location of a
global optimum than the limits of the problem variables. In this case, a natural way
to seed the initial population, Pg=0, is with random values chosen from within the
given boundary constraints:

maxgig ggNPiXP ,...,1,,...,1, ===

DjNPixX gijgi ,...,1,,...,1,,, ===

128 6 Differential Evolution

(6.8)

where randj[0,1] denotes a uniformly distributed random value within the range:
[0.0,1.0] that is chosen anew for each j. Equations 6.6 - 6.8 are illustrated in Fig.
6.2 for the current example, showing how an initial population might look like.
The "x"-signs denote the endpoints of the population vectors.

6.3.2 Mutation and Crossover

DE’s self-referential population reproduction scheme is different from other evolu-
tionary algorithms. From the 1st generation on, vectors in the current population,
Pg, are randomly sampled and combined to create candidate vectors for the subse-
quent generation, Pg+1. The population of candidate or “trial” vectors, P’g = Ui,g =
uj,i,g, is generated as follows:

(6.9)

The randomly chosen indexes, r1, r2 and r3 are different from each other and also
different from the running index, i. New random integer values for r1, r2 and r3 are
chosen for each value of the index i, i.e., for each individual. The index k refers to
a randomly chosen chromosome, which is used to ensure that each individual trial
vector, Ui,g, differs from its counterpart in the previous generation, Xi,g, by at least
one parameter. A new random integer value is assigned to k prior to the construc-
tion of each trial vector, i.e. for each value of the index i. The vector mutation
scheme described by Eq. 6.9 is illustrated in Fig. 6.2.

F and CR are control parameters of DE. Like NP, both values remain constant
during the search process. F is a real-valued factor in the range (0.0,1.0+] that
scales the differential variations. The upper limit on F has been empirically deter-
mined. So far, it is considered that values of F greater than unity, while possible,
do not appear to be productive. However, later on in this article it is demonstrated
that values higher than F = 1.0, may still be useful.

() DjNPixxxrandxP L
j

L
j

U
jjij ,...,1,,...,1]1,0[)()()(

0,,0 ==+−⋅==

()

{ }
{ }

]1,0(],1,0[

:exceptselected,randomly,,...,1,,

eachforoncechosenindex,parameterrandom,,...,1

,...,1,,...,1

where

otherwise

)1,0[if

321321

,,

,2,,1,,3,,,
,,

+∈∈
≠≠≠∈

∈
==

⎪⎩

⎪
⎨
⎧ =∨≤−⋅+=

=

FCR

irrrNPrrr

iDk

DjNPi

x

kjCRrandxxFxv
u

gij

jgrjgrjgrjgij
gij

6.3 Differential Evolution 129

CR is a real-valued crossover constant in the range [0.0,1.0] which controls the
probability that a trial vector parameter will come from the randomly chosen, mu-
tated vector, Vi,g, instead of from the current vector, X,i,g. Figure 6.3 gives a pictorial
representation of DE’s crossover operation.

x

x

x

x

x

x

x

x

1r
X

2r
X

)XX(F
21 rr −⋅

x

3r
X

x2

x1

)XX(FX
213 rrr −⋅+

Fig. 6.2. Illustration of initial population and the mutation mechanism of DE.

j = 0

1

2

3

4

5

6

j = 0

1

2

3

4

5

6

j = 0

1

2

3

4

5

6

target vector Xi,g

mutated vector
Vi,g=Xr3,g+F(Xr1,g-Xr2,g)

trial vector Ui,g

Fig. 6.3. Example for the binary crossover operation in DE.

Generally, both F and CR affect the convergence velocity and robustness of the
search process. Their optimal values are dependent both on objective function
characteristics and on the population size, NP. Usually, suitable values for F, CR
and NP can be found by trial-and-error after a few tests using different values.
Reasonable values to start with are NP=5×D...30×D , F=0.90, and CR=0.9. Ac-
cording our experiences, these settings are typically effective, while further fine-

130 6 Differential Evolution

tuning of the control parameters often result in a considerably higher convergence
rate. In order to demonstrate the usefulness of this advice, all the examples given
later on in this article are solved with these particular settings. More practical ad-
vice on how to select control parameters NP, F and CR can be found in [1,2,3,7,9],
for example.

6.3.3 Selection

DE’s selection scheme also differs from other evolutionary algorithms. The popu-
lation for the next generation, Pg+1, is selected from the current population, PG, and
the child population, P’G, according to the following rule:

(6.10)

Thus, each individual of the temporary population is compared with its counterpart
in the current population. Assuming that the objective function is to be minimized,
the vector with the lower or equal objective function value wins a place in the next
generation’s population. As a result, all the individuals of the next generation are
as good or better than their counterparts in the current generation.

The interesting point concerning DE’s selection scheme is that a trial vector is
only compared to one individual, not to all the individuals in the current popula-
tion. Such a scheme can be viewed as binomial tournament selection, since it's ba-
sic principle is similar with the general tournament selection rule [46] using tour-
nament size 2. Here the binomial tournaments are kept between each trial
individual and the corresponding current population member – the winners of a
one-to-one competition enter the next stage of the optimization. An example of
such a one-to-one competition is shown in Fig. 6.4.

() ()
⎩
⎨
⎧ ≤

=+ otherwise

 if

,

,,,
1,

gi

gigigi
gi X

XfUfU
X

x

x

x

x

x

x

x

x

)XX(FX
213 rrr −⋅+

x

iX

x2

x1

x

Fig. 6.4. Illustration of DE’s standard selection scheme when two vectors compete. The
winner point is encircled.

6.3 Differential Evolution 131

Differential Evolution (DE)

individual 1 individual 2 individual 3 individual 4 individual 5 individual 6

cost value 2.63 3.60 1.29 1.58 2.77 2.58

parameter 1 0.68 0.92 0.22 0.12 0.40 0.94 CURRENT
parameter 2 0.89 0.92 0.14 0.09 0.81 0.63 POPULATION
parameter 3 0.04 0.33 0.40 0.05 0.83 0.13

parameter 4 0.06 0.58 0.34 0.66 0.12 0.34

parameter 5 0.94 0.86 0.20 0.66 0.60 0.54

weighted

difference difference
vector vector

0.80 0.64

0.83 0.66

0.28 0.22

-0.07 -0.06

0.19 0.16

noisy vector

1.59

1.29

0.35

0.29

0.70

trial vector

cost value 3.28

parameter 1 1.59

parameter 2 0.89

parameter 3 0.04 control variables of

parameter 4 0.06 number of dimensions D 5
parameter 5 0.70 population size NP 6

mutation constant F 0.80
crossover constant CR 0.50

individual 1 individual 2 individual 3 individual 4 individual 5 individual 6

cost value 2.63

parameter 1 0.68 POPULATION
parameter 2 0.89 FOR NEXT
parameter 3 0.04 GENERATION
parameter 4 0.06

parameter 5 0.94

� �

�
�

1.
Choose target vector

2.
Randomly choose two other
vectors

3.
Third randomly chosen
vector, subject of mutations

CROSSOVER:
With probability CR select
parameter value from noisy
vector, otherwise select value
from target vector

SELECTION:
Select target vector or trial
vector, the one with the lower
cost survive

� �

MUTATION:
Add difference vector
weighted withF to third
randomly chosen vector

EVALUATION OF
COST FUNCTION:
Evaluation of cost
function value for
trial vector takes it’s
place here

Fig. 6.5. Differential Evolution works directly with the floating-point valued variables of the
objective function, not with their (binary) encoded equivalents. The functioning of
DE/rand/1/bin is here illustrated in the case of a simple objective function

() 54321 xxxxxXf ++++= .

132 6 Differential Evolution

The described binomial tournament selection (Eq. 6.10) is not the only selection
scheme that allows DE to be effective. Different tournament sizes and alternative
approaches for selecting the competing vectors for the tournaments have also been
applied with success [1,2,3]. For example, "best of parents and children"-selection
or (μ + λ)-selection [41], chooses the best vectors from the combined parent and
child populations to comprise the next generation. For DE, the current vectors are
the μ = NP parents and new vectors are the λ = NP children. In fact, (μ + λ)-
selection frequently offers faster convergence than binomial tournament selection
since it is greedier in terms of movement towards lower objective function values.
It is, however, also more prone to getting stuck in a local minimum and may re-
quire a larger NP to compensate.

Figure 6.5 shows that DE maintains two separate populations so that the current
population is left intact while the population for the next generation is computed.
Again, from a functional point of view this is not a necessity. It is also possible to
immediately save the winning vectors in the array of the current population. This
way the current population gradually changes into the new one. Keeping only one
population requires less memory, so this method can be important for resource-
limited computational environments. It is also evident that keeping only one popu-
lation is greedier than DE’s classical approach of maintaining two populations.
With only one population, the population members have less time to participate as
vector difference donors. As such, this scheme introduces asymmetry since the
population members with higher indexes survive longer than those with lower in-
dexes. This imbalance can be compensated for by altering the direction in which
the population array is processed. For each new generation, the sequence in which
the population vectors have to compete against the trial vectors should be reversed.

Figure 6.5 summarizes Mutation, Crossover, and Selection of DE/rand/1/bin in
a data flow diagram.

6.3.4 DE dynamics

Understanding why DE works well as an optimization scheme is far from being
trivial, but a few general statements can be made easily. One is that there are two
opposing mechanisms that influence DE’s population. The first mechanism is the
population’s tendency to expand and hence to explore the terrain on which it is
working. There is a high probability that perturbations yielding acceptable new
points will enlarge the region covered by the population. If the objective function
surface is flat, the population will continue to expand, since a new point survives if
its associated objective function value is (less than or) equal to that of its competi-
tor. The new vector does not need to be better than the current one; equality suf-
fices to supplant. The second mechanism is selection. By removing vectors, which
are located in unproductive regions, selection can counteract the expansion of the
population. The expansion mechanism prevents DE's population from converging

6.3 Differential Evolution 133

prematurely, while the selection mechanism prevents the population from diverg-
ing into regions which are not of interest. Of course, these general mechanisms are
not unique to DE; any evolution strategy adheres to these rules. The major differ-
ence between DE and other evolution strategies is the PDF that each employs.

One may wonder how the PDF generated by DE’s mutation scheme compares to
the gaussian and cauchy distributions upon which ESs rely. A simple investigation
of the vector difference distribution reveals that NP population members have
NP(NP-1)/2 interconnections if the connections between identical points are ne-
glected. Since each connection has two directions, there are NP(NP-1) difference
vectors with a length greater than zero. Since a negative counterpart exists for each
vector, the mean of the distribution will always be zero. Figure 6.6 shows a simple
two-dimensional example to illustrate these findings. The distribution itself
changes with and depends on the objective function surface being searched.

x2

x1

x2

x1

A simple 2D-population with NP = 4 points Difference vector distribution for the given 2D-population

Fig. 6.6. Simple example to illustrate DE’s difference vector distribution.

x2

x1

F=1
F=0.5

Fig. 6.7. Influence of the scaling factor F on the trial vectors.

134 6 Differential Evolution

The scaling factor, F ≠ 1.0, attempts to dampen the expansion mechanism and to
reduce the chance that trial points are too close to already existing points. The lat-
ter argument becomes more important as the population size, NP, gets smaller. The
smaller the population size becomes, the greater the chances are that the population
will stagnate [45]. Stagnation is a situation where none of the possible new vectors
yields an improved solution. This lack of diversity in the set of vector differences
makes it impossible to explore new territory. Stagnation is different from prema-
ture convergence because in the latter the population is still evolving. If stagnation
occurs the population is basically frozen.

Figure 6.7 shows the potential points to be reached for F=1.0 and F=0.5 if the
upper right point shown in Fig. 6.6 is used as a base point.

The crossover constant, CR < 1.0, may also help to prevent stagnation by in-
creasing the number of possible perturbations beyond NP(NP-1) thus allowing
more potential points to be reached [45]. Figure 6.8 shows an example of the po-
tential points that may be reached if the upper right point from Fig. 6.6 is the base
vector, and crossover is introduced. Not only is the point defined by the addition of
the base point and the weighted difference vector a potential trial point, but so are
all points which mix the components of the target vector and the trial vector.

x2

x1

potential trial points if
crossover is introduced

Fig. 6.8. Influence of the crossover constant CR on the trial vectors.

All these factors influence the outcome of the PDF used by DE and it is obvious
that the shape of the PDF is difficult, if not impossible, to predict. The following
sequence of pictures shows the evolution of both the vector population and the cor-
responding difference vector distribution when minimizing the two-dimensional

function: () () ()21
22

1221 1100, xxxxxf −+−⋅= . This function is the well-known

"Rosenbrock’s Saddle" [6] which has been used extensively as a test example in
the optimization literature.

6.3 Differential Evolution 135

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3
Rosenbrock saddle

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Difference vector distribution

Fig. 6.9. Generation No. 1.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3
Rosenbrock saddle

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Difference vector distribution

Fig. 6.10. Generation No. 6.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3
Rosenbrock saddle

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Difference vector distribution

Fig. 6.11. Generation No. 12.

136 6 Differential Evolution

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3
Rosenbrock saddle

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Difference vector distribution

Fig. 6.12. Generation No. 18.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3
Rosenbrock saddle

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Difference vector distribution

Fig. 6.13. Generation No. 24.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3
Rosenbrock saddle

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Difference vector distribution

Fig. 6.14. Generation No. 30.

6.3 Differential Evolution 137

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3
Rosenbrock saddle

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Difference vector distribution

Fig. 6.15. Generation No. 36.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3
Rosenbrock saddle

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Difference vector distribution

Fig. 6.16. Generation No. 42.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3
Rosenbrock saddle

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Difference vector distribution

Fig. 6.17. Generation No. 48.

138 6 Differential Evolution

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3
Rosenbrock saddle

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Difference vector distribution

Fig. 6.18. Generation No. 54.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3
Rosenbrock saddle

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Difference vector distribution

Fig. 6.19. Generation No. 60.

Figure 6.9 through Fig. 6.19 clearly show that the PDF used by DE very often has
a shape different from either a gaussian or a cauchy distribution. It can also be seen
that DE automatically adapts to the landscape it has to search and that its standard
deviation diminishes as the population approaches the global optimum at the point
(1,1).

6.4 Constraint handling

6.4.1 Boundary constraints

In boundary constrained problems, it is essential to ensure that parameter values lie
inside their allowed ranges after performing the mutation and crossover operations.

6.4 Constraint handling 139

A simple way to guarantee this is to replace parameter values that violate boundary
constraints with random values generated within the feasible range:

(6.11)

This is the method that was used for this work. Another, less efficient method for
keeping trial vectors within bounds is to regenerate the offending parameter value
according Eq. 6.9 as many times as is necessary to satisfy the boundary constraint.
It should also be mentioned that DE’s generating scheme can extend its search be-
yond the space defined by initial parameter limits (Eqs. 6.8 and 6.9) if allowed to
do so. This can be a beneficial property for unconstrained optimization problems
because optima that are outside the initialized range can often be located.

6.4.2 Constraint functions

In the literature [4], mostly various penalty function methods have been applied
with DE for handling constraint functions. In its simplest form, the function value f
’(X) to be minimized by DE can be computed by penalizing the objective function
value with a weighted sum of constraint violations, for example as follows:

(6.12)

The penalty function approach effectively converts a constrained problem into an
unconstrained one, and then f ’(X) is used instead of f (X) as objective function.

Typically a penalty function method will establish one or more additional con-
trol parameters, penalty parameters or the weights like the ones, wj, in Eq. 6.12.
Appropriate values for the control parameters are expected to be set by the user a
priori. In practice this stage always requires some additional efforts, and often
finding suitable setting may be a laborious or even impossible task in practice.
Quite often several trial runs of the DE are required for setting the penalty parame-
ters by trial-and-error. The need for improved constraint handling techniques, that
does not require user to set any extra search parameters, is obvious.

In [43,44] a new, more elegant approach for constraint handling is described,
which does not establish any extra search parameters, like the weights, wj, in Eq.
6.12, due to presence of the constraint functions. For constraint handling this novel
approach applies a modified replacement rule of DE that is extended to handle also

()

DjNPi

u

xuxuxxxrand
u

gij

U
jgij

L
jgij

L
j

L
j

U
jj

gij

,...,1 ,,...,1

where

otherwise

 if]1,0[

,,

)(
,,

)(
,,

)()()(

,,

==

⎪⎩

⎪
⎨
⎧ >∨<+−⋅

=

()∑
=

⋅+=
m

j
jj XgwXfXf

1

)(,0max)()(’

140 6 Differential Evolution

the involved constraint functions. In particular, DE’s original replacement rule
(Eq. 6.10) is substituted with the following one:

(6.13)

Thus, when compared with the corresponding member, Xi,g , of the current popula-
tion, the trial vector, Ui,g , will be selected if:

• it satisfies all constraints and provides a lower or equal objective function value,
while both the compared solutions are feasible, or

• it is feasible while Xi,g is infeasible, or
• it is infeasible, but provides a lower or equal constraint violation for all con-

straint functions.

Note that in case of an infeasible solution, the replacement rule does not compare
the objective function values. Thus no selective pressure exists towards the search
space regions providing low objective values, but infeasible solutions. Instead, a
selective pressure towards regions, where constraint violation decreases, will be
present in general. Because of that, also for finding the first feasible solution an ef-
fective selection pressure will be applied. This results in a fast convergence to the
feasible regions of the search space.

Note also, that DE’s replacement operation does not essentially require numeri-
cal objective function values for performing the selection, but only the result of the

{ }

{ }

{ }

{ }

{ }

()
()0,)(max)(’

0,)(max)(’

where

otherwise

)(’)(’:,...,1

0)(:,...,1

0)(:,...,1

0)(:,...,1

)()(

0)(0)(:,...,1

 if

,,

,,

,

,,

,

,

,

,,

,,

,
1,

gijgij

gijgij

gi

gijgij

gij

gij

gij

gigi

gijgij

gi
gi

UgUg

XgXg

X

XgUgmj

Ugmj

Xgmj

Ugmj

XfUf

XgUgmj

U
X

=

=

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

⎪
⎩

⎪
⎨

⎧

≤∈∀
∧

>∈∃

∨

⎪
⎩

⎪
⎨

⎧

>∈∃
∧

≤∈∀

∨

⎪
⎩

⎪
⎨

⎧

≤
∧

≤∧≤∈∀

=+

6.4 Constraint handling 141

comparison; Which one of the compared solutions is better? Here it is considered
that:

• If both the compared solutions are feasible, the one with lower objective func-
tion value is better.

• Feasible solution is better than infeasible.
• If both the compared solutions are infeasible, the situation is less obvious. Then

the candidate vector can be considered less infeasible, and thus better than the
current vector, if it does not violate any of the constraints more than the current
vector and if it violates at least one of the constraints less.

The last mentioned concept for comparing two infeasible solutions is analogous
with, and derived from, the concepts of Pareto-optimality. The selection is based
on Pareto-dominance in the effective constraint function space, g’(X) =
max(0,g(X)). Note, that the Pareto-optimal front in the effective constraint function
space is a single point (g’(X) = 0), if a feasible solution for the problem exists.

In addition, the candidate vectors considered equally good as the compared cur-
rent population member are allowed to enter into the population in order to avoid
stagnation at flat regions of the objective function surface.

This novel approach does not introduce any extra search parameters to be set by
the user – simply, there are no constraint handling related, or any other, search pa-
rameters in Eq. 6.13.

An important special case should also be noted here. In case of an unconstrained
problem (m = 0), Eq. 6.13 effectively reduces into the DE’s original replacement
rule (Eq. 6.10). Thus the new replacement rule does not change the DE from this
point of view, except extending its capabilities for handling constraint functions.

In many real-world engineering design optimizations, the number of constraint
functions is relatively high and the constraints are often non-trivial. It may well be,
for example, that the feasible solutions comprise only a small subset of the search
space. Feasible solutions may also divide the search space into isolated “islands”.
This discontinuity introduces stalling points for some genetic searches and also
raises the possibility of new, locally optimal areas near the island borders. Fur-
thermore, the user may easily define totally conflicting constraints so that no feasi-
ble solutions exist at all. Even so, if two or more constraints conflict so that no fea-
sible solution exists, DE can find the nearest feasible solution. In the case of non-
trivial constraints, the user is often able to judge which of the constraints are con-
flicting on the basis of the nearest feasible solution. It is then possible to reformu-
late the objective function or reconsider the problem setting itself to resolve the
conflict.

Especially in cases for heavily constrained problems, where only a tiny fraction
of the search space contains feasible solutions and where these feasible solutions
are located in multiple separated islands around the search space, the novel con-
straint handling approach has been found particularly effective [43,44]. For further
details, see [43,44].

142 6 Differential Evolution

6.5 Handling integer and discrete variables

6.5.1 Methods

In its canonical form, the Differential Evolution algorithm is only capable of han-
dling continuous variables. Extending it to optimize integer variables is, however,
very easy and requires only a couple of simple modifications. First, integer values
should be used to evaluate the objective function, even though DE itself still works
internally with continuous floating-point values. Thus,

(6.14)

INT() is a function for converting a real value to an integer value by truncation.
Truncation is performed here to evaluate trial vectors and to handle boundary con-
straints. Truncated values are not assigned elsewhere. Thus, DE works with a
population of continuous variables regardless of the corresponding object variable
type. This is essential to maintain the diversity of the population and the robustness
of the algorithm.

Instead of Eq. 6.8, integer variables should be initialized as follows:

(6.15)

Additionally, instead of Eq. 6.11, boundary constraints for integer variables should
be handled according to the prescription provided in Eq. 6.15 below:

(6.16)

()

()
Xx

xINT

x
y

Diyf

i

i

i
i

i

∈
⎩
⎨
⎧

=

=

riablesinteger vafor

 variablescontinuousfor

where

,...,1

() DjNPixxxrandxP L
j

L
j

U
jjij ,...,1 ,,...,1 1]1,0[)()()(

0,,0 ==++−⋅==

()
() ()

DjNPi

u

xuINTxuINT

xxxrand

u

gij

U
jgij

L
jgij

L
j

L
j

U
jj

gij

,...,1 ,,...,1

where

otherwise

 if

1]1,0[

,,

)(
,,

)(
,,

)()()(

,,

==

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

>∨<
++−⋅

=

6.5 Handling integer and discrete variables 143

Discrete values can also be handled in a straightforward manner. Suppose that the
subset of discrete variables, X(d), contains l elements that can be assigned to vari-
able x:

(6.17)

Instead of the discrete value xi itself, we may assign its index, i, to x. Now the dis-
crete variable can be handled as an integer variable that is boundary constrained to
the range 1,…,l. To evaluate the objective function, the discrete value, xi, is used
instead of its index i. In other words, instead of optimizing the value of the discrete
variable directly, we optimize the value of its index, i. Only during evaluation is
the indicated discrete value used. Once the discrete problem has been converted
into an integer one, the previously described methods for handling integer vari-
ables can be applied (Eqs. 6.14–6.16).

6.5.2 An Illustrative Example

Consider minimization of a simple 2D objective function,

(6.18)

In which the variables x1 and x2 are continuous. Then consider the same problem
when the feasible set for x1 and x2 is limited to a set of integer values.

Figure 6.20 illustrates the application of the described integer and discrete vari-
able handling techniques. The actual cost function surface from the DE’s point of
view is shown. Simply, the discrete problem is converted to a continuous one, in
which flat regions (providing equal cost value) represent each alternative combina-
tion of discrete variables. The DE algorithm works internally with a continuous
representation space, while the actual objective function evaluation space is dis-
crete, since the truncation operation is applied before the objective function
evaluation. Note that instead of truncation, a rounding operation may be applied as
well. In this case, however, the Eqs. 6.14–6.16 should be modified respectively.

)(
1

)(

)()(

where

,,1

d
i

d
i

d
i

d

xx

lixX

+<

== �

55

subject to

)(

21

21

≤≤

+=

,xx-

xxXf

144 6 Differential Evolution

Fig. 6.20. The suggested method for handling integer and discrete variables is illustrated for
the case of a simple 2D objective function f(X) = |x1|+|x2| . A continuous variable case (left)
and a discrete case (right), in which only integer values are allowed is shown. In the discrete
case the optimization algorithm still works with a continuous objective function surface, but
the surface is modified according to Eqs. 6.14-6.17 as illustrated. A discrete problem is ac-
tually converted to a corresponding continuous one.

The modified cost-function surface does not actually make the problem more diffi-
cult to solve with DE. In fact, the modified cost function may be easier to solve
than the original continuous problem. Note that continuous problems are often
converted to a discrete one before problem solving, for example a widely applied
binary encoded genetic algorithm follows this approach. Why convert a continuous
problem to a discrete one, which is, in principle at least, more difficult to solve?
The opposite approach considered here appears to be much more useful.

6.6 Numerical examples

To discover the effectiveness of the techniques proposed in Sects. 6.4 and 6.5,
three numerical examples (Table 6.1) were optimized using DE and the described
constraint handling approach (Eq. 6.13). These non-linear, engineering design op-
timization problems with discrete, integer and continuous variables were first in-
vestigated by Eric Sandgren [10] and subsequently by many other researchers who
applied a variety of optimization techniques (Table 6.2). These problems represent
optimization situations involving discrete, integer and continuous variables that are
similar to those encountered in everyday mechanical engineering design tasks. Be-
cause the problems are clearly defined and relatively easy to understand, they form
a suitable basis for comparing alternative optimization methods.

6.6 Numerical examples 145

Table 6.1. Test problems.

Summary of Test Problems
Example Description Number of variables

Total Discrete Integer Continuous

1 Design of a Gear Train 4 0 4 0
2 Design of a Pressure Vessel 4 2 0 2
3 Design of a Coil Spring 3 1 1 1

Table 6.2. Alternative methods used to solve the test problems.

Compared Methods
Reported by Solution technique Reference

1. Sandgren Branch & Bound using Sequential Quadratic Programming [10]
2. Fu, Fenton & Gleghorn Integer-Discrete-Continuous Non-Linear Programming [11]
3. Loh & Papalambros Sequential Linearization Algorithm [12,13]
4. Zhang & Wang Simulated Annealing [14]
5. Chen & Tsao Genetic Algorithm [15]
6. Li & Chou Non-Linear Mixed Discrete Programming [16]
7. Kannan & Kramer Augmented Lagrange Method [17]
8. Wu & Chow Meta-Genetic Algorithm [18]
9. Shih & Lai Mixed-Discrete Fuzzy Programming [19]
10. Lin, Zhang & Wang Modified Genetic Algorithm [20]
11. Deb & Goyal Combination of Binary/Real-coded Genetic Algorithm [21,22]
12. Cai & Thierauf Two-level Parallel Evolution Strategy [23,24,25]
13. Cao & Wu Evolutionary Programming [26,27]
14. Wang, Teo & Lee Non-Linear Mixed Discrete Programming [28]
15. Cao & Wu Cellular Automata based Genetic Algorithm [29]
16. Litinetski & Abrahamzon Multistart Adaptive Random Search [30]
17. Ndiritu & Daniell Modified Genetic Algorithm [31]
18. Lewis & Mistree Foraging-Directed Adaptive Linear Programming [32]

19. Coello Coello Genetic Algorithm with self-adaptive penalties [33,34]
20. Lin, Wang & Hwang Hybrid Differential Evolution [35]
21. This article Differential Evolution This article

In order to demonstrate that the DE is particularly easy to adapt for different prob-
lems, and finding suitable values for it’s control parameters does not require dozens
of trials-and-errors, the search parameters of DE were set to F = 0.9 and CR = 0.9
for all problems. These settings have been found effective for most of the prob-
lems, while they rarely provide the best efficiency. In other words, these settings
are usually enough to solve the problem, but do not always provide the highest
possible convergence rate. Thus, only the population size and the number of gen-
erations were coarsely varied to provide some problem specific adaptation. For
each problem, the population size NP was selected among the multiples of 10 and
the number of generations was selected from the multiples of 50. Any further set-
tings, like penalty parameters, weights for each constraint function or other extra
search parameters, were not required to be set by the user. No particular attempts

146 6 Differential Evolution

were performed in order to optimize the search parameter settings to fit optimally
to each test problem.

6.6.1 Example 1: Designing a gear train

The first example problem is to optimize the gear ratio for the compound gear train
arrangement shown in Fig. 6.21. The gear ratio for a reduction gear train is defined
as the ratio of the angular velocity of the output shaft to that of the input shaft. In
order to produce the desired overall gear ratio, the compound gear train is con-
structed out of two pairs of gearwheels, d-a and b-f. The overall gear ratio, itot, be-
tween the input and output shafts can be expressed as:

(6.19)

where ωo and ωi are the angular velocities of the output and input shafts, respec-
tively, and z denotes the number of teeth on each gearwheel.

Fig. 6.21. Compound gear train for Example 1.

The optimization problem is to find the number of teeth for gearwheels d, a, b and
f in order to produce a gear ratio, itot, as close as possible to the target ratio: itrg =
1/6.931 (= 0.1443). For each gear, the minimum number of teeth is 12 and the
maximum is 60.

The problem is formulated as follows:

fa

bd

i

o
tot zz

zz
i ==

ω
ω

6.6 Numerical examples 147

(6.20)

Thus, the goal is to find optimum values for four integer variables that will mini-
mize the squared difference between the desired gear ratio, itrg, and current gear ra-
tio, itot. The objective (cost) function was simply defined as the squared error be-
tween the actual and the desired gear ratio. For this problem, each variable is
subject only to upper and lower boundary constraints. The integer techniques de-
scribed in Sect. 6.5.1 were invoked to handle boundary constraints.

The gear train problem was solved using the DE/rand/1/bin strategy with con-
trol settings of: NP=110, F=0.90 and CR=0.90.

Table 6.3 lists the various gear train solutions and compares DE’s result with
those reported in [10,11,13,14,17,18,20,21,22,26,27,30,32,35].

The solution found by DE was as good as the best solution in the literature. In
fact, DE provided different results from run to run with the same objective func-
tion value (Table 6.4). In [21,22] it is reported that these solutions have been found

to be globally optimal by applying explicit enumeration of all possible 484 (= 5.3⋅
106) gear teeth combinations.

By inspecting Eq. 6.20, it is obvious that there are four global optima. Because
DE can work with a population of solutions rather than just a single solution, it is
capable of finding multiple global optima for this problem. By using a sufficiently
large population, it is possible to obtain all four alternative solutions in a single
run. Nevertheless, only one solution was extracted from the population of the last
generation because the other three solutions can be found in a trivial way based on
one solution and the symmetry of Eq. 6.20. In practice, however, optimization
tasks exist with multiple global optima that cannot be detected so simply.

One may wonder why finding a single, globally optimal solution is not always
sufficient when multiple global optima exist. One reason is that the sensitivity of
the objective function to small changes in its variables may be different at the al-
ternative optimal points. In practice, it is often important to select the most robust
solution, i.e., the global optima with the least sensitivity to noise. For example, if a
machine design is subject to optimization, it is possible that the optimized design
variables cannot be manufactured accurately. Alternatively it may be that the de-
sign parameters change during the lifetime of the machine due to normal wear of
its components, for example. In such cases, robust global optima are to be pre-
ferred over those that exhibit a high sensitivity to design implementation errors.

() () { }

() ()

.4,3,2,1 , 6012

subject to

931.6
1

minimize to

60,...,13,12 , ,,,,,,

Find

2

43

212

4321

=≤≤

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−=−=

∈==

ix

xx

xx
iiXf

xzzzzxxxxX

i

tottrg

fabd

148 6 Differential Evolution

Table 6.3. Optimal solutions for the gear train problem.

Optimal solutions for the gear train problem
Reported by x1

(zd)
x2

(zb)
x3

(za)
x4

(zf)
f(x) Gear

Ratio
Error
[%]

Sandgren [10] 18 22 45 60 5.7×10-6 0.146666 1.65

Fu et al. [11] 14 29 47 59 4.5×10-6 0.146411 1.17

Loh & Papalambros [13] 19 16 42 50 0.233×10-6 0.144762 0.334

Zhang & Wang [14] 30 15 52 60 2.36×10-9 0.144231 0.034

Lin et al. [20] 19 16 49 43 2.7 � 10-12 0.144281 0.00114
Kannan & Kramer [17] 13 15 33 41 2.12×10-8 0.1441 0.11

Wu & Chow [18] 19 16 43 49 2.7 � 10-12 0.144281 0.00114
Deb & Goyal [21,22] 19 16 49 43 2.7 � 10-12 0.144281 0.00114
Litinetski & Abrahamzon [30] 1) 19 16 43 49 2.7 � 10-12 0.144281 0.00114
Cao & Wu [26,27] 30 15 52 60 2.36×10-9 0.144231 0.034

Lewis & Mistree [32] 19 16 49 43 2.7 � 10-12 0.144281 0.00114
Lin, Wang & Hwang [35] 19 16 43 49 2.7 � 10-12 0.144281 0.00114
This article 2) 16 19 43 49 2.7 � 10-12 0.144281 0.00114

1) Only 6% out of 100 independent runs of the search algorithm found the optimum requiring
averagely 5100 function evaluations. However, 95% of the runs found f(X) = 2.7×10-12 or a better
solution.
2) Also alternative solutions with an equal target function value were obtained from run to run. All of
the 100 independent runs of the search algorithm found the optimum after 110,000 function
evaluations or earlier.

Table 6.4. Alternative solutions for the gear train problem found by DE. These solutions
have been found to be globally optimal by applying explicit enumeration [21,22].

Alternative solutions for gear train problem
Solution zd zb za zf

1 19 16 43 49

2 16 19 43 49

3 19 16 49 43

4 16 19 49 43

6.6 Numerical examples 149

Results for DE were recorded after 1000 generations, corresponding to 110,000

evaluations of the objective function, which is only 2.1% of all possible 484 (= 5.3⋅
106) gear teeth combinations. The computation time required was 1.15 seconds us-
ing a PC with an AMD K6-233 MHz processor (SPECfp95 rating 5.5 [36]). To
evaluate the robustness of the DE algorithm, 100 independent trials were per-
formed. All runs yielded the reported value of f(X). As mentioned, different solu-
tions were obtained from run to run because of the existence of multiple global op-
tima (Table 6.4).

6.6.2 Example 2: Designing a pressure vessel

The second test problem is to design a compressed air storage tank with a working
pressure of 3,000 psi and a minimum volume of 750 ft3. As Fig. 6.22 shows, the
cylindrical pressure vessel is capped at both ends by hemispherical heads. Using a
rolled steel plate, the shell is to be made out of two halves that are joined by two
longitudinal welds to form a cylinder. Each head is forged and then welded to the
shell.

The objective is to minimize the manufacturing cost of the pressure vessel. The
cost is a combination of material cost, welding cost and forming cost. Refer to [10]
for more details.

The design variables are shown in Fig. 6.22. Variables L and R are continuous
while Ts and Th are discrete. The thickness of the shell, Ts, and the head, Th, are
both required to be standard sizes. For this example, steel plate was available in
multiples of 0.0625 inches.

Fig. 6.22. Pressure vessel for Example 2.

150 6 Differential Evolution

The problem can be formulated as follows:

(6.21)

The objective function, f(X), represents the total manufacturing cost of the pressure
vessel as a function of the design variables.

The constraints, g1,…,g6, quantify the restrictions to which the pressure vessel
design must adhere. These limits arise from a variety of sources. For example, the
minimal wall thickness of the shell, Ts (g1), and heads, Th (g2), with respect to the
shell radius are limited by the pressure vessel design code. The volume of the ves-
sel must be at least the specified 750 ft3 (g3). Available rolling equipment limits the
length of the shell, L, to no more than 20 feet (g4). According to the pressure vessel
design code, the thickness of the shell, Ts, is not to be less than 1.1 inches (g5) and
the thickness of the head, Th, is not to be less than 0.6 inches (g6).

The DE control variables used to solve the pressure vessel design problem were:
NP=30, F=0.90 and CR=0.90. The problem statements do not define the bounda-
ries for the design variables, but the constraints, g4, g5 and g6 are pure boundary
constraints, so they were handled as lower boundary constraints for x1 and x2, and
as an upper boundary constraint for x4, respectively. The lower boundaries for x3

and x4 can be set to zero, since common sense demands that they must be non-
negative values. The upper boundaries for x1, x2 and x3, however, must still be
specified in order to define the search space. Consequently, these bounds were set
high enough to make it highly probable for the global optimum to lie inside of the
defined search space. Since the possibility existed that the global optimum was
outside of the initially defined search space, these estimated bounds were used
only to initialize the population according to Eqs. 6.8 and 6.15. DE was then al-
lowed to extend the search beyond these boundaries. The possibility of using this
kind of “loose“ boundary constraint for variables is one of the advantages of DE.

() ()

06.0)(

01.1)(

00.240)(

0
3

4
0.17280.750)(

000954.0)(

00193.0)(

subject to

84.191611.37781.16224.0)(

minimize to

,,,,,,

Find

26

15

44

3
34

2
33

232

131

3
2
14

2
1

2
32431

4321

≤−=
≤−=

≤−=

≤−−×=

≤−=
≤−=

+++=

==

xXg

xXg

xXg

xxxXg

xxXg

xxXg

xxxxxxxxxXf

LRTTxxxxX hs

ππ

6.6 Numerical examples 151

In practical engineering design work, it is not unusual for one or more boundaries
to be unknown and the distance to the optimum cannot be reliably estimated. The
boundary constraints used for each variable are shown in Table 6.5. The other con-
straints, g1, g2 and g3 were handled as constraint functions.

Table 6.5. Boundary constraints used for the pressure vessel example.

Boundary constraints for pressure vessel example
Lower limitation Constraint Upper limitation

constraint g5 5.121.1 1 ≤≤ x Roughly guessed *

constraint g6 5.126.0 2 ≤≤ x Roughly guessed *

non-negative value of x3 0.2400.0 3 ≤≤ x Roughly guessed *

non-negative value of x4 0.2400.0 4 ≤≤ x Constraint g4

* The value of this boundary is not given among the problem statements. Thus, the value is estimated roughly
and used only for initialization of the population. DE was allowed to extend the search beyond this limit.

Notice that it is not necessary to evaluate the constraint functions, g4, g5 and g6, be-
cause they were handled as boundary constraints and DE was not allowed to gen-
erate a candidate vector that violated any of them.

The problem formulation given in Eq. 6.21 follows Sandgren’s original problem
statements [10]. In researching this problem, at least four different formulations
were found in the literature. For some unknown reason, [16,23,24,25,28] have used
a slightly reformulated constraint-function, g5. Non-original problem statements
have also been applied in [22,26,27,29,33,34,35], where the constraints g5 and g6

were ignored. Both these modifications extend the region of feasible solutions and
also make it possible to obtain a significantly lower objective function value than
with Sandgren’s original problem statements [10]. For this reason, the results of
[16,22,23,24,25,26,27,28,29,33,34,35] cannot be fairly compared with the results
obtained using Sandgren’s original problem statements [10]. To enable a more
comprehensive comparison with the other methods, all four cases were solved us-
ing DE.

In Table 6.6, DE’s results are compared to those reported in
[10,11,13,17,18,19,28,30,31]. Since all these results are obtained using Sandgren’s
original problem statements [10], they are comparable with each other. Due to
space limitations and the objectives for this introductory article, the results with the
modified problem formulations are not included here. However, it can be briefly
mentioned that the DE obtained continuously lower objective function values than
any of these compared results [16,22,23,24,25,26,27,28,29,33,34,35], when identi-
cal problem statements were applied.

152 6 Differential Evolution

T
ab

le
 6

.6
. O

pt
im

al
 s

ol
ut

io
ns

 f
or

 th
e

pr
es

su
re

 v
es

se
l p

ro
bl

em
.

6.6 Numerical examples 153

As Table 6.6 shows, DE found a better solution for the pressure vessel design
problem than the best solution found in the literature. Computations were carried
out to 500 generations, corresponding to 15,000 evaluations of the cost function.
Computation took 0.22 seconds on a PC with an AMD K6-233 MHz processor
(SPECfp95 rating 5.5 [36]). In order to ensure robustness, one hundred independ-
ent runs were performed for each case. All trials yielded the reported value of f(X)
or (marginally) better. In addition, all solutions were within the feasible design
domain.

6.6.3 Example 3: Designing a coil compression spring

The third example involves the design of a coil compression spring (Fig. 6.23).
The spring is to be a helical compression spring to which a strictly axial and con-
stant load will be applied.

Fig. 6.23. Coil spring for Example 3.

The objective is to minimize the volume of spring steel wire needed to manufac-
ture the spring. The design variables are the number of spring coils, N, the outside
diameter of the spring, D, and the spring wire diameter, d. This example contains
integer, discrete and continuous variables. The number of spring coils, N, is an in-
teger variable and the outside diameter, D, is a continuous variable. Additionally,
the spring wire diameter, d, is only available in the standard (discrete) sizes shown
in Table 6.7.

154 6 Differential Evolution

The problem is formulated as follows:

(6.22)

The objective function, f(X), computes the volume of spring steel wire as a func-
tion of the design variables. The design constraints are specified as follows:

a) The maximum working load is: Fmax = 1000.0 lb.
b) The allowable maximum shear stress is: S = 189000.0 psi (g1).
c) The maximum free length is: lmax = 14.0 inch (g2).

() ()

()

()
()

() 31
max

3
21

4
3

2

3

32

32

max
8

31
max

7

6

3

2
5

max24

3min3

max2

3
3

2max
1

1
2
32

2

321

205.1

8

0
615.0

4/4

1/4

where

0)(

0)2(05.1)(

0)(

00.3)(

0)(

0)(

0)(

0
8

)(

subject to
4

2
)(

minimize to

,,,,

Find

xx
K

F
l

K

F

xx

Gx
K

x

x

xx

xx
C

K

FF
Xg

lxx
K

FF
Xg

Xg

x

x
Xg

DxXg

xdXg

llXg

S
x

xFC
Xg

xxx
Xf

dDNxxxX

f

p
p

f

p
w

f
p

p

pmp

f

f

++=

=

=

≤+
−
−=

≤
−

−=

≤−++
−

+=

≤−=

≤−=

≤−=
≤−=

≤−=

≤−=

+=

==

σ

σ

σ

σσ

π

π

6.6 Numerical examples 155

d) The minimum wire diameter is: dmin = 0.2 inch (g3).
e) The maximum outside diameter of the spring is: Dmax = 3.0 inch (g4).
f) The pre-load compression force is: Fp = 300.0 lb.
g) The allowable maximum deflection under pre-load is: σpm = 6.0 inch (g6).
h) The deflection from pre-load position to maximum load position is: σw = 1.25

inch (g8).
i) The combined deflections must be consistent with the length, i.e., the spring

coils should not touch each other under the maximum load at which the maxi-
mum spring deflection occurs (g7).

j) The shear modulus of the material is: G = 11.5×106.
k) The spring is guided, so the buckling constraint is bypassed.
l) The outside diameter of the spring, D, should be at least three times greater

than the wire diameter, d, to avoid lightly wound coils (g5).

A more detailed explanation of the coil spring design procedure can be found in
[10,18] and in [37; pp.371–381].

Table 6.7. Allowable spring steel wire diameters for the coil spring design problem.

Allowable wire diameters [inch]
0.009 0.0095 0.0104 0.0118 0.0128 0.0132
0.014 0.015 0.0162 0.0173 0.018 0.020
0.023 0.025 0.028 0.032 0.035 0.041
0.047 0.054 0.063 0.072 0.080 0.092
0.105 0.120 0.135 0.148 0.162 0.177
0.192 0.207 0.225 0.244 0.263 0.283
0.307 0.331 0.362 0.394 0.4375 0.500

Table 6.8. Boundary constraints used for the coil spring example.

Boundary constraints for coil spring example
Lower limitation Constraint Upper limitation

At least one spring coil is
required to form a spring.

min

max
11

d

l
x ≤≤

Upper and lower surfaces of
unloaded spring coils touch
each other.

Constraints g3 and g5 together max2min3 Dxd ≤≤ constraint g4

Constraint g3

3
max

3min
D

xd ≤≤
constraints g4 and g5 together

The following DE control variable settings solved the coil spring problem: NP=50,
F=0.90 and CR=0.90. Although the problem statements do not define the bounda-

156 6 Differential Evolution

ries for design variables, the constraints, g3 and g4 are pure boundary constraints
and were treated as a lower boundary constraint for x3 and as an upper boundary
constraint for x2, respectively. Furthermore, g5 can also be handled as a boundary
constraint. In order to define the search space, the other boundary constraints were
chosen based on the problem statements and the simple geometric space limita-
tions elaborated in Table 6.8. The remaining constraints were handled as soft-
constraint functions.

Constraint functions: g3, g4 and g5 did not have to be evaluated because they
were handled as boundary constraints and DE was not allowed to generate a candi-
date vector that violated any of them.

Table 6.9. Optimal solutions for the coil spring problem.

Item Optimal solutions for the coil spring design problem 2) Type of
variable

Sandgren
[10]

Chen & Tsao
[15]

Kannan &
Kramer [17]

Wu & Chow
[18]

Deb & Goyal
[21,22]

This article 3)

x1 (N) [1] 10 9 7 9 9 9 Integer

x2 (D) [inch] 1.180701 1.2287 1.329 1.227411 1.226 1.2230410 Continuous

x3 (d) [inch] 0.283 0.283 0.283 0.283 0.283 0.283 Discrete

g1(X) 54309 415.969 Violated 1) 550.993 713.510 1008.8114

g2(X) 8.8187 8.9207 – 8.9264 8.933 8.94564

g3(X) 0.08298 0.08300 – 0.08300 0.083 0.083000

g4(X) 1.8193 1.7713 – 1.7726 1.491 1.77696

g5(X) 1.1723 1.3417 – 1.3371 1.337 1.32170

g6(X) 5.4643 5.4568 – 5.4585 5.461 5.46429

g7(X) 0.0 0.0 – 0.0 0.0 2.67581×10-16

g8(X) 0.0 0.0174 – 0.0134 0.009 5.07515×10-16

f(X) [inch3] 2.7995 2.6709 Infeasible 1) 2.6681 2.665 2.65856

100.0% 95.4% – 95.3% 95.2% 95.0%

1) In [17], a feasible solution with value of f(X) = 2.365 was originally reported. Other than reported in [17], the solution
results in a severe violation of constraint g1. Thus their solution is clearly infeasible – not a feasible high quality solution as
they have reported.

2) In [32], a solution for the coil spring design problem was also reported. However, a problem formulation that is
significantly different from [10] was applied in [32], thus their result can not be compared here at all.

3) All of the 100 independent runs of the search algorithm found the reported optimum or better within 12,500 function
evaluations.

Table 6.9 compares DE’s solution with results obtained by other researchers. DE
obtained a better solution than the best solution found in the literature. In order to
demonstrate the robustness of the DE algorithm, 100 independent optimization tri-
als were performed. All trials yielded the reported value of f(X) or better. All of the
solutions were also within the feasible region of the design space. The number of
generations was 250, corresponding to 12,500 function evaluations. The computa-
tion time was 0.22 seconds on a PC with an AMD K6-233 MHz processor
(SPECfp95 rating 5.5 [36]).

6.7 DE's Sensitivity to Its Control Variables 157

6.7 DE’s Sensitivity to Its Control Variables

In order to investigate DE’s sensitivity to its control variables (NP, F, CR) and in
order to investigate if any simple rules for selecting their values exists, the follow-
ing experiments were performed. The focus was on the convergence velocity and
on the robustness of the optimum seeking.

The coil spring design problem was used as a test problem. As a base point, the
settings NP=50, F=0.90 and CR=0.90 were applied. One by one, each control vari-
able was kept fixed, while the other two were varied incrementally as follows:

• NP from 4 to 100 with increments of 1
• F from 0.0 to 2.0 with increments of 0.1
• CR from 0.0 to 1.0 with increments of 0.1

100 independent optimization runs were performed with each individual set of
control variable settings.

As a measure of the convergence velocity, the required number of cost function

evaluations to reach the cost value f(X) ≤ 2.65856 (the best value reported in Table
6.9) was used. The number of function evaluations was averaged over the above-
mentioned 100 independent optimization runs. The maximum number of function
evaluations was limited to 200,000. In cases when this stopping criterion was
reached before the specified cost value, the optimization run was considered to
have failed. The number of failures was used as a measure of the robustness. The
results of the experiments are visualized in Figs. 6.24–6.26.

The results suggest that DE is not remarkably sensitive to its control parameters.
Thus, their values are relatively easy to choose. It is a fact that generally, for an ar-
bitrary objective function, a 0% failure risk within any finite number of function
evaluations cannot be reached for any stochastic non-linear optimization algorithm.
However, the results demonstrate that a low failure rate, say less than 1%, can be
achieved with a finite number of function evaluations, in this case with a relatively
low number of function evaluations.

Furthermore, Figs. 6.24–6.26 suggest that it should be relatively easy to find
good initial values for NP, F and CR just by following the existing recommenda-
tions in [1,2,3,7,9] for the initial guess and by following the further advice given in
this article. Actually, it is much more difficult to choose such values that do not re-
sult in any convergence at all.

158 6 Differential Evolution

NP fixed to 50 – F and CR varied

�
Fig. 6.24. Results of the 1st experiment. NP was kept fixed to 50 while F and CR were var-
ied. The average number of function evaluations FE required to reach cost value f(X) ≤
2.65856 (left) and the number of failures (right), where the specified cost value was not
reached within 200,000 function evaluations. Results are based on 100 independent trials at
each studied point.

CR fixed to 0.9– NP and F varied

Fig. 6.25. Results of the 2nd experiment. CR was kept fixed to 0.9 while F and NP were var-
ied. The average number of function evaluations FE required to reach cost value f(X) ≤
2.65856 (left) and the number of failures (right), where the specified cost value was not
reached within 200,000 function evaluations. Results are based on 100 independent trials at
each studied point.

6.7 DE’s Sensitivity to Its Control Variables 159

F fixed to 0.9– NP and CR varied

�
Fig. 6.26. Results of 3rd experiment. F was kept fixed to 0.9 while NP and CR were varied.
The average number of function evaluations FE required to reach cost value f(X) ≤ 2.65856
(left) and the number of failures (right), where the specified cost value was not reached
within 200,000 function evaluations. Results are based on 100 independent trials at each
studied point.

For CR, generally, a relatively high value of CR should be the initial guess.
Only in the case that there is some a priori knowledge that the objective function is
separable, or it is known that there is only a low degree of interaction between the
function parameters, a low CR, say lower than 0.6, may result in a faster and/or
more robust convergence. This is because CR=1.0 results in a rotationally invariant
sampling of the search space, while CR=0.0 results in a search towards directions
of the coordinate axes only. With CR=1.0 any search direction in the search space
is equally likely, which is essential for solving common non-separable real-world
problems efficiently. See [38] for further details. Note, how in this particular case
of the spring design problem, with a high degree of non-linear interactions between
the design parameters, higher values of CR are clearly the best ones, while low
values result in a slow and failure prone convergence, despite whatever value NP
or F was tried.

High values of both F and NP decrease the failure rate at the expense of the
convergence velocity. However, both F and NP should be selected to be high
enough, since when increasing them, both the convergence velocity and failure rate
will improve until a certain point is reached, where the convergence velocity starts
to decrease while the failure rate is still decreasing. One difficulty is the fact that
all the control parameters CR, F and NP appeared to be dependent on each other.
However, it seems that the nature of their interactions is not extremely complex.
That explains why an intuitive tuning of the control parameters appeared to be so
easy. Furthermore, it suggests that some further analysis in future may extract
more accurate information on how to set the control parameters, or even select

160 6 Differential Evolution

them automatically. In the current situation, selecting the control parameters with-
out any previous experience, even randomly, within the recommended boundaries
is highly likely to result in convergence. Nevertheless, finding near optimal values
requires some hands-on experience and usually a few experiments with different
values.

Actually, selecting CR, F and NP appears to be a non-linear and non-separable
optimization problem itself. Indeed, one could apply an effective optimization
method for optimizing itself, too. A future solution for a control parameter setting
problem could be a Meta-Differential Evolution (as suggested by Kenneth Price),
in which another higher level DE algorithm is applied to optimize the control pa-
rameters. The involved high computational costs have usually prevented using any
Meta-Evolutionary approaches so far. However, it is likely that in the case of
Meta-DE the computational cost would be much lower than with a Meta-Genetic
Algorithm, for example. Figures 6.24-6.26 suggest that the objective function sur-
face of the DE itself would not be too difficult – it appears to have an almost uni-
modal basic structure. This fact suggests that a relatively fast solution with a small
population (in Meta-DE population) would be possible. Maybe it could be possible
to solve a wide range of problems by Meta-DE using the same control parameters
for all of the problems on outer DE, while the control parameters for the inner DE
become optimized by the outer DE. At least, a Meta-Differential Evolution seems
to be a subject worthy of further investigation.

6.8 Conclusions

Based on the results of this 3-problem test suite and comparisons with 20 other op-
timization methods, DE appears to be a promisingly efficient, effective and robust
optimization algorithm. Additionally, DE is both easy to implement and easy to
use. With the described extensions, DE was capable of optimizing all integer, dis-
crete and continuous variables, and it was able to handle non-linear objective func-
tions with multiple non-trivial constraints. Furthermore, high quality solutions
were obtained in every case. In all test problems, the solution found by DE was
better than or equal to the best solution found by any of the competing methods.
Although the problems in this test set had generally been considered to be rather
difficult, they were not sufficiently difficult to test DE’s limits.

In order to evaluate and demonstrate DE’s robustness, 100 independent trials
were performed for each case studied. In every instance, all runs yielded the re-
ported value of f(X) or better. In addition, all of the solutions were within the fea-
sible region of the design space. Thus, it can be concluded that DE is a robust de-
sign algorithm for mixed parameter global optimization.

DE’s ability to solve a problem is not particularly sensitive to the values of its
control parameters NP, F and CR. Typically, it is sufficient to choose the values for
the control parameters F and CR as multiples of 0.1 and the population size, NP, as

6.8 Conclusions 161

a multiple of 10. Notice that exactly the same values of F and CR were effective
for solving all the problems investigated here!

As demonstrated, the values of NP, F and CR, however, still affect the conver-
gence velocity and robustness of the algorithm. In this investigation, values were
selected roughly, and to favor robustness rather than convergence velocity. Be-
cause computationally inexpensive objective functions were used, the highest pos-
sible convergence velocity was not important. Despite this, convergence was still
relatively fast in all cases. It is possible, however, to increase the convergence ve-
locity significantly by favoring fast convergence over robustness.

A closer investigation of DE’s sensitivity to the values of its control parameters
provided further evidence supporting the above mentioned findings. Furthermore,
more information about the contribution of each control parameter to the behavior
of the DE algorithm was gathered. Understanding better the nature of each control
parameter makes selecting their values easier and the resulting behavior can be es-
timated more reliably. However, the final target should be a DE without any user
selected control parameters. This target can be reached only via a better under-
standing of the underlying behavior of the algorithm. The results of this investiga-
tion suggest that a Meta-DE could be a possibility to eliminate user-specified set-
tings, for example. However, there are still a lot of open questions in this area.

It is sometimes argued that evolutionary optimizers require a large number of
objective function evaluations. Before deciding whether or not this is true for DE,
some further facts should be considered. Each of the real-world optimization prob-
lems discussed here can be solved on an ordinary PC using a couple of seconds for
computation. Furthermore, this test problem set contains problems that are too dif-
ficult for most existing optimization methods. Unfortunately, insufficient data was
available to accurately compare the number of objective function evaluations re-
quired by other methods with those required by DE. For some unknown reason, a
large majority of the articles to which this investigation refers did not report the
number of function evaluations properly. Besides, the number of objective function
evaluations would be important only if the competing algorithm is, in fact, capable
of finding the optimal solution.

Based on experience, DE seems to be better at locally fine-tuning a solution
than traditional binary-encoded genetic algorithms. This property appeared espe-
cially when continuous parameters were the subject of optimization. This advan-
tage appears not to decrease the capability of DE for global exploration, as is the
case with many other methods. DE also seems capable of producing useful results
with much lower population sizes than required by traditional genetic algorithms.
Despite its small population sizes and greedy selection criterion, DE displayed a
relatively low risk of premature convergence. As a result, DE required less than
one tenth as many objective function evaluations as did a simple genetic algorithm.

Some methods for multi-constrained nonlinear optimization require a feasible
initial solution as a starting point for a search. Preferably, this feasible solution
should be rather close to a global optimum to ensure that the algorithm does not
converge to a local minimum. If non-trivial constraints are imposed, it may be dif-

162 6 Differential Evolution

ficult or impossible to provide a feasible initial solution. The efficiency, effective-
ness and robustness of many methods are often highly dependent on the quality of
the starting point. The combination of DE with the described novel constraint han-
dling approach does not require any initial solution, but it can still take advantage
of a high quality initial solution if one is available. For example, initializing DE
with normally distributed variations of a good solution creates a population that is
biased towards the feasible region of the search space.

If there are no feasible solutions in the search space, as is the case for totally
conflicting constraints, DE with the described constraint handling approach is still
able to find the nearest feasible solution. This is important in practical engineering
design work because often many non-trivial constraints are involved.

Another interesting topic is the fact that DE works with more than just one can-
didate solution. When multiple global optima exist, as was the case in the gear
train example, multiple solutions can be found by performing only a single run of
DE. In the case of multi-objective problems, the use of a population enables DE to
locate multiple points from a Pareto-front instead of only a single Pareto-optimal
solution.

It can be concluded, that the DE is a high potential novel alternative for practi-
cal engineering optimization. As this investigation demonstrates, DE has proven to
be very effective for this purpose. DE has great potential to become a widely used,
multipurpose optimization tool for solving a broad range of practical engineering
design problems.

 References 163

References

1. Storn R, Price KV (1995). Differential evolution - a simple and efficient adaptive
scheme for global optimization over continuous spaces. Technical Report TR-95-012,
ICSI, March 1995. Available via ftp://ftp.icsi. berkeley.edu/pub/

techreports/1995/tr-95-012.ps.Z .
2. Storn R, Price KV (1997). Differential Evolution – a Simple and Efficient Heuristic for

Global Optimization over Continuous Spaces. Journal of Global Optimization
11(4):341–359, December 1997. Kluwer Academic Publishers.

3. Price KV (1999). An Introduction to Differential Evolution. In: Corne D, Dorigo M,
Glover F (eds) New Ideas in Optimization. McGraw-Hill, London (UK), pp 79–108.
ISBN 007-709506-5.

4. Lampinen J (2002). A Bibliography of Differential Evolution Algorithm. Technical Re-
port. Lappeenranta University of Technology, Lab. of Information Processing. Avail-
able via Internet: http://www.lut.fi/~jlampine/debiblio.htm . Cited 18th
March 2002.

5. Goldberg DE (1989). Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading (MA). ISBN 0-201-15767-5.

6. Schwefel H-P (1995). Evolution and Optimum Seeking. John Wiley & Sons Inc., New
York. ISBN 0-471-57148-2.

7. Price KV, Storn R (1997). Differential Evolution – A simple evolution strategy for fast
optimization. Dr. Dobb’s Journal, April 97, pp 18–24 and p 78.

8. Lampinen J, Zelinka I (1999). Mechanical Engineering Design Optimization by Differ-
ential Evolution. In: Corne D, Dorigo M, Glover F (eds). New Ideas in Optimization.
McGraw-Hill, London (UK), pp 127–146. ISBN 007-709506-5.

9. Storn R (1996). On the usage of differential evolution for function optimization. In:
1996 Biennial Conference of the North American Fuzzy Information Processing Soci-
ety (NAFIPS 1996), Berkeley, pp 519–523. IEEE, New York, NY, USA. Available via
Internet http://www.icsi.berkeley.edu/~storn/litera.html .

10. Sandgren E (1990). Nonlinear integer and discrete programming in mechanical design
optimization. Transactions of the ASME, Journal of Mechanical Design 112(2):223–
229, June 1990. ISSN 0738-0666.

11. Fu J-F, Fenton RG, Cleghorn WL (1991). A mixed integer-discrete-continuous pro-
gramming method and its application to engineering design optimization. Engineering
Optimization 17(4):263–280. ISSN 0305-2154.

12. Loh H-T, Papalambros PY (1991). A sequential linearization approach for solving
mixed-discrete nonlinear design optimization problems. Transactions of the ASME,
Journal of Mechanical Design 113(3):325–334, September 1991.

13. Loh H-T, Papalambros PY (1991). Computational implementation and tests of a se-
quential linearization algorithm for mixed-discrete nonlinear design optimization.

164

Transactions of the ASME, Journal of Mechanical Design 113(3):335–345, September
1991.

14. Zhang C, Wang H-P (1993). Mixed-discrete nonlinear optimization with simulated an-
nealing. Engineering Optimization 21(4):277–291. ISSN 0305-215X.

15. Chen JL, Tsao YC (1993). Optimal design of machine elements using genetic algo-
rithms. Journal of the Chinese Society of Mechanical Engineers 14(2):193–199.

16. Li H-L, Chou C-T (1994). A global approach for nonlinear mixed discrete program-
ming in design optimization. Engineering Optimization 22(2):109–122.

17. Kannan BK, Kramer SN (1994). An Augmented Lagrange Multiplier Based Method for
Discrete Continuous Optimization and Its Applications to Mechanical Design. Trans-
actions of the ASME, Journal of Mechanical Design 116(2):405–411, June 1994.

18. Wu S-J, Chow P-T (1995). Genetic algorithms for nonlinear mixed discrete-integer op-
timization problems via meta-genetic parameter optimization. Engineering Optimiza-
tion 24(2):137–159. ISSN 0305-215X.

19. Shih CJ, Lai TK (1995). Mixed-Discrete Fuzzy Programming for Nonlinear Engineer-
ing Optimization. Engineering Optimization 23(3):187–199. ISSN 0305-215X.

20. Lin S-S, Zhang C, Wang H-P (1995). On mixed-discrete nonlinear optimization prob-
lems: A comparative study. Engineering Optimization 23(4):287–300. ISSN 0305-
215X.

21. Deb K, Goyal M (1997). Optimizing Engineering Designs Using a Combined Genetic
Search. In: Bäck T (ed) Proceedings of the 7th International Conference on Genetic Al-
gorithms, pp 521–528.

22. Deb K, Goyal M (1998). A Flexible Optimization Procedure for Mechanical Compo-
nent Design Based on Genetic Adaptive Search. Transactions of the ASME, Journal of
Mechanical Design 120(2):162–164, June 1998.

23. Cai J, Thierauf G (1997). Evolution Strategies in Engineering Optimization. Engineer-
ing Optimization 29(1–4):177–199. ISSN 0305-215X.

24. Thierauf G, Cai J (1999). Evolution Strategies – Parallelisation and Application in En-
gineering Optimization. In: Topping BHV (ed) Parallel and Distributed Processing for
Computational Mechanics: Systems and Tools, Saxe-Coburg Publications, Edinburgh
(Scotland), pp 329–349. ISBN 1-874672-03-2.

25. Cai J, Thierauf G (2000). Evolution Strategies and Genetic Algorithms and their Paral-
lelisation for Structural Optimization: Part 2, Parallelisation and Applications. In:
Topping BHV, Lämmer L (eds). High Performance Computing for Computational Me-
chanics. Saxe-Coburg Publications, Edinburgh (Scotland), pp 195–205. ISBN 1-
874672-06-7.

26. Cao YJ, Wu QH (1997). Mechanical Design Optimization by Mixed-Variable Evolu-
tionary Programming. Proceedings of the 1997 IEEE Conference on Evolutionary
Computation, IEEE Press, pp 443–446.

27. Cao YJ, Wu QH (1999). A Mixed Variable Evolutionary Programming for Optimiza-
tion of Mechanical Design. International Journal of Engineering Intelligent Systems for
Electrical Engineering and Communications 7(2):77–82, June 1999. CRL Publishing
Ltd.

28. Wang S, Teo KL, Lee HWJ (1998). A New Approach to Nonlinear Mixed Discrete
Programming Problems. Engineering Optimization 30(3–4):249–262. ISSN 0305-
215X.

 6 Differential Evolution

29. Cao YJ, Wu QH (1998). A Cellular Automata based Genetic Algorithm and its Appli-
cation in Mechanical Design Optimisation. In: Proceedings of the UKACC Interna-
tional Conference on Control ’98, 1.–4. September 1998. IEEE Conf. Publ. No. 455,
vol. 2, pp. 1593–1598. ISBN 0-85296-708-X.

30. Litinetski VV, Abrahamzon BM (1998). MARS – a multistart adaptive random search
method for global constrained optimization in engineering applications. Engineering
Optimization 30(2):125–154. ISSN 0305-215X.

31. Ndiritu JG, Daniell TM (1999). An Improved Genetic Algorithm for Continuous and
Mixed Discrete-Continuous Optimization. Engineering Optimization 31(5):589–614.
ISSN 0305-215X.

32. Lewis K, Mistree F (1999). Foraging-Directed Adaptive Linear Programming (FALP):
A Hybrid Algorithm for Discrete/Continuous Design Problems. Engineering Optimiza-
tion 32(2):191–217. ISSN 0305-215X.

33. Coello Coello CA (1999). Self-adaptive penalties for GA-based optimization. In: Pro-
ceedings of the 1999 Congress on Evolutionary Computation, CEC 99, 6.–9. July 1999,
Vol. 1, pp 573–580. ISBN 0-7803-5536-9.

34. Coello Coello CA (2000). Use of a Self-Adaptive Penalty Approach for Engineering
Optimization Problems. Computers in Industry 41(2):113–127, March 2000.

35. Lin Y-C, Wang F-S, Hwang K-S (1999). A hydrid method of evolutionary algorithms
for mixed-integer nonlinear optimization problems. In: Proceedings of the 1999 Con-
gress on Evolutionary Computation, CEC'99, Vol. 3, pp 2159–2166. IEEE, Piscataway,
NJ, USA. ISBN 0-7803-5536-9.

36. SPECint95 and SPECfp95 computer benchmarks (1998). The Standard Performance
Evaluation Corporation. http://www.specbench.org/ .

37. Siddall JN (1982). Optimal engineering design: principles and applications. Mechani-
cal engineering series / 14. Marcel Dekker Inc. ISBN 0-8247-1633-7.

38. Salomon R (1996). Reevaluating Genetic Algorithm Performance under Coordinate
Rotation of Benchmark Functions. BioSystems 39(3):263–278, Elsevier Science.

39. Bersini H, et.al. (1996) Results of the First International Contest on Evolutionary Op-
timisation (1st ICEO). In: Proceedings of the IEEE International Conference on Evolu-
tionary Computation ICEC 96, pp 611-615.

40. Ingber L, Rosen B (1992). Genetic Algorithms and Very Fast Simulated Reannealing:
A Comparison. Journal of Mathematical and Computer Modeling 16(11):87–100.

41. Bäck T, Hammel U, Schwefel H-P (1997). Evolutionary Computation: Comments on
the History and Current State. IEEE Trans. Evol. Comp. 1(1):3–17, April 1997.

42. Sprave J (1995). Evolutionäre Algorithmen zur Parameteroptimierung. Automatis-
ierungstechnik 43(3):110–117, Oldenbourg.

43. Lampinen J (2002). A Constraint Handling Approach for the Differential Evolution
Algorithm. In: The 2002 IEEE World Congress on Computational Intelligence – WCCI
2002, 2002 Congress on Evolutionary Computation – CEC2002, Honolulu, Hawaii,
May 12-17, 2002. 6 pages. IEEE. ISBN 0-7803-7281-6 (published as a CD-ROM).

44. Lampinen J (2002). Multi-Constrained Nonlinear Optimization by the Differential
Evolution Algorithm. In: Roy R, Köppen M, Ovaska S, Furuhashi T, Hoffmann F (Eds)
Soft Computing and Industry – Recent Advances, pp 305-318. Springer Verlag. ISBN
1-85233-539-4.

45. Lampinen J, Zelinka I (2000). On Stagnation of the Differential Evolution Algorithm.
In: Ošmera P (ed) Proceedings of MENDEL 2000, 6th International Mendel Confer-

 References 165

166

ence on Soft Computing, June 7.–9. 2000, Brno, Czech Republic. Brno University of
Technology, Brno (Czech Republic), pp 76–83. ISBN 80-214-1609-2.

46. Goldberg DE, Deb K (1991). A comparative analysis of selection schemes used in ge-
netic algorithms. In: Foundations of Genetic Algorithms, pp 69–93. Morgan Kauf-
mann.

 6 Differential Evolution

7 SOMA - Self-Organizing Migrating Algorithm

Ivan Zelinka

7.1 Introduction

In recent years, a broad class of algorithms has been developed for stochastic op-
timization, i.e. for optimizing systems where the functional relationship between
the independent input variables x and output (objective function) y of a system S is
not known. Using stochastic optimization algorithms such as Genetic Algorithms
(GA), Simulated Annealing (SA) and Differential Evolution (DE), a system is
confronted with a random input vector and its response is measured. This re-
sponse is then used by the algorithm to tune the input vector in such a way that the
system produces the desired output or target value in an iterative process.

Most engineering problems can be defined as optimization problems, e.g. the
finding of an optimal trajectory for a robot arm, the optimal thickness of steel in
pressure vessels, the optimal set of parameters for controllers, optimal relations or
fuzzy sets in fuzzy models, etc. Solutions to such problems are usually difficult to
find their parameters usually include variables of different types, such as floating
point or integer variables. Evolutionary algorithms (EAs), such as the Genetic Al-
gorithms and Differential Evolutionary Algorithms, have been successfully used
in the past for these engineering problems, because they can offer solutions to al-
most any problem in a simplified manner: they are able to handle optimizing tasks
with mixed variables, including the appropriate constraints, and they do not rely
on the existence of derivatives or auxiliary information about the system, e.g. its
transfer function.

Evolutionary algorithms work on populations of candidate solutions that are
evolved in generations in which only the best-suited - or fittest - individuals are
likely to survive. This article introduces SOMA (’Self-Organizing Migrating Algo-
rithm’), a new class of stochastic optimization algorithms. It explains the princi-
ples behind SOMA and demonstrates how this algorithm can assist in solving of
various optimization problems. Functions on which SOMA have been tested can
be found in this chapter.

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004

168 7 SOMA - Self-Organizing Migrating Algorithm

SOMA, which can also works on a population of individuals, is based on the
self-organizing behavior of groups of individuals in a “social environment”. It can
also be classified as an evolutionary algorithm, despite the fact that no new gen-
erations of individuals are created during the search (based on philosophy of this
algorithm). Only the positions of the individuals in the search space are changed
during a generation, called a 'migration loop'. Individuals are generated by random
according to what is called the 'specimen of the individual' principle. The speci-
men is in a vector, which comprises an exact definition of all those parameters that
together lead to the creation of such individuals, including the appropriate con-
straints of the given parameters.

SOMA is not based on the philosophy of evolution (two parents create one new
individual – the offspring), but on the behavior of a social group of individuals,
e.g. a herd of animals looking for food. One can classify SOMA as an evolution-
ary algorithm, because the final result, after one migration loop, is equivalent to
the result from one generation derived by the classic EA algorithms - individuals
hold new positions on the N dimensional hyper-plane. When the group of indi-
viduals is created, then the rule mentioned above governs the behavior of all indi-
viduals so that they demonstrate 'self-organization' behavior. Because no new in-
dividuals are created, and only existing ones are moving over the N-dimensional
hyper-plane, this algorithm has been termed the Self-Organizing Migrating Algo-
rithm, or SOMA for short. This algorithm was published in journals, books and
presented at international conferences, symposiums, as well as in various invita-
tional presentations, for example [1] – [11], [19], [20], [29].

In the following text the principle of the SOMA algorithm including its con-
straint handling and testing will be explained. The description is divided into short
sections to increase the understandability of principles of the SOMA algorithm.

7.2 Function domain of SOMA

The set of functions on which a given algorithm shows good performance (i.e. its
algorithm domain) should be clearly defined. A general definition can be found
for example in [12]. This definition is, however, very general and hence not satis-
factory for these purposes here. Based on experiences from artificial and real
world test functions (for details see [11]) test functions can be classified like for
example:

1. none-fractal type
2. defined at real, integer or discrete argument spaces
3. constrained, multiobjective, nonlinear
4. needle-in-haystack problems
5. NP problems

7.3 Population 169

SOMA has been successfully tested on functions of type 1 - 3. Tests based on
functions of type 4 and 5 are open for future research. Despite this fact, there is no
rigorous presumption, which would eliminate functions 4 and 5 from the set de-
fined above. Generally, the SOMA algorithm should be able to work on any sys-
tem which provides an objective function, i.e. one that returns cost value. No aux-
iliary information, such as gradients etc. are needed.

7.3 Population

SOMA, as well as the other algorithms mentioned above, is working on a popula-
tion of individuals. A population can be viewed as a matrix of size NxM (Table
7.1) where the columns represent individuals. Each individual in turn represents
one candidate solution - or input vector - for the given problem or system, i.e. a set
of arguments for the cost function. Associated with each individual is also a so-
called cost value, i.e. the system response to the input vector. The cost value
represents the fitness of the evaluated individual. It does not take part in the evolu-
tionary process itself - it only guides the search process.

Table 7.1. Population – an example, P-parameter, I-individual, CV- cost value

A population is usually randomly initialized at the beginning of the evolution-
ary process. Before that, a so-called Specimen (Eq.(7.1)) has to be defined on
which the generating of the population is based.

(7.1)

The Specimen defines for each parameter the type (e.g. integer, real, discrete,
etc.) and its borders. For example, {Integer, {Low, High}} defines an integer pa-
rameter with an upper border High and a lower border Low. In other words, the
borders define the allowed range of values for that particular cost function pa-
rameter. The careful selection of these borders is crucial for engineering applica-
tions, because without well-defined borders one can get solutions which are not
applicable to the real physical system. For example one could get a negative
thickness of the wall of a pressure vessel as an optimal result.

����������	
�����������������������	
������������������ …=

170 7 SOMA - Self-Organizing Migrating Algorithm

The borders are also important for the evolution process itself. Without them,
the evolutionary process could go to infinity (author’s experience with Schwefel’s
function – extremes are further and further away from the original. When a
Specimen is properly defied then the population (Table 7.1) is generated as fol-
lows

(7.2)

Meaning of parameters is following – P(0) is the initial population and x is jth

parameter of individual which consist of nparam parameters. Population then consist
of npop individuals. Eq. (7.1) ensures that the parameters of all individuals are ran-
domly generated within the allowed borders, i.e. that the initial candidate solutions
are chosen from that area within the search space that contains a feasible solution
to the optimization problem, see Fig. 7.1.

- 2 - 1 0 1 2

- 2

- 1

0

1

2

12

3
45

6

7

8

9

10

- 2 - 1 0 1 2

- 2

- 1

0

1

2

1

2

3

45

6
7

8

9

10

Fig. 7.1. Randomly generated population inside searched space, two examples

7.4 Mutation

Mutation, the random perturbation of individuals, is an important operation for EA
strategies. It ensures the diversity amongst the individuals and it also provides the
means to restore lost information in a population. Mutation in SOMA is different
compared to other EA strategies. SOMA uses a PRT parameter to achieve pertur-
bation. This parameter has the same effect for SOMA as mutation has for GA. It is

� � � � �� � �

� � �
�

� � �
�

	
 � �

��
�

����

��������

�������

��
���

�

��

�

��

�� ==

+−==

7.5 Crossover 171

defined in the range <0, 1> and is used to create a perturbation vector (PRTVec-
tor, see Table 7.2) as follows:

(7.3)

Table 7.2. An example of perturbation vector for four parameter individual with PRT = 0.3

rndj PRTVector
0.231 1
0.456 0
0.671 0
0.119 1

The “novelty” of this approach is that the PRTVector is created before an indi-
vidual starts its journey over the search space (in standard EA terminology “be-
fore crossover”). The PRTVector defines the final movement of an active individ-
ual in N-k dimensional subspace (see next section).

7.5 Crossover

In standard EAs the 'Crossover' operator usually creates new individuals based on
information from the previous generation. Geometrically speaking, new positions
are selected from an N dimensional hyper-plane. In SOMA, which is based on the
simulation of cooperative behavior of intelligent beings, sequences of new posi-
tions in the N dimensional hyper-plane are generated. They can be thought of as a
series of new individuals obtained by the special crossover operation. This cross-
over operation determines the behavior of SOMA. The movement of an individual
is thus given as follows:

(7.4)

or, more precisely:

(7.5)

paramjj njelsePRTVectorthenPRTrndif ,,1,01 �==<

	

�������
������	�������

����������
������������

�������
������ �

� �

� � � � ���

� �

��

� �

� � � � ���

� � 	
 �

��

>∈<

−+=

���

�� ������

>∈<
+=

→→→→

����������
������������

����
��������

���

172 7 SOMA - Self-Organizing Migrating Algorithm

It can be observed from Eq. (7.4, 7.5) that the PRTVector causes an individual
to move toward the leading individual (the one with the best fitness) in N-k dimen-
sional space. If all N elements of the PRTVector are set to 1, then the search proc-
ess is carried out in an N dimensional hyper-plane (i.e. on a N+1 fitness land-
scape). If some elements of the PRTVector are set to 0 (see 7.4 and 7.5) then the
second terms on the right hand side of equation equal 0. This means those parame-
ters of an individual that are related to 0 in the PRTVector are ’frozen’, i.e. not
changed during the search. The number of frozen parameters “k” is simply the
number of dimensions which are not taking part in the actual search process.
Therefore, the search process takes place in a N-k dimensional subspace.

� � � � � �

� � � � 	 � �
 � �

� � �

� � � � � � � � � 	 � �

� � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

!

Fig. 7.2. PRTVector and its action on individual movement

7.6 Parameters and Terminology

SOMA, as other EAs, is controlled by a special set of parameters. Some of these
parameters are used to stop the search process when one of two criteria are ful-
filled; the others are responsible for the quality of the results of the optimization
process. The parameters are shown in Table 7.3.

7.6 Parameters and Terminology 173

Table 7.3. SOMA parameters and their recommended domain

Parameter name Recommended range Remark
PathLength <1.1, 3> Controlling parameter
Step <.11, PathLength> Controlling parameter
PRT <0, 1> Controlling parameter
Dim Given by problem Number of arguments in

cost function
PopSize <10, up to user> Controlling parameter
Migrations <10, up to user> Stopping parameter
MinDiv <arbitrary negative, up to user > Stopping parameter

A "disadvantage" of SOMA, as well as of other EAs, is that it has a slight de-
pendence on the control parameter setting. During various tests it was found that
SOMA is even more sensitive on the parameter setting than others algorithms. On
the other side there was found setting that is almost universal, i.e. this setting was
used almost in all simulations and experiments with very good performance of
SOMA. The control parameters are described below and recommended values for
the parameters, derived empirically from a great number of experiments, are
given:

• PathLength ∈ <1.1, 3>. This parameter defines how far an individual stops
behind the Leader (PathLength=1: stop at the leader’s position, PathLength=2:
stop behind the leader’s position on the opposite side but at the same distance as
at the starting point). If it is smaller than 1, then the Leader’s position is not
overshotted, which carries the risk of premature convergence. In that case
SOMA may get trapped in a local optimum rather than finding the global opti-
mum. Recommended value is 3.

• Step ∈ <.11, PathLength>. The step size defines the granularity with what the
search space is sampled. In case of simple objective functions (convex, one or a
few local extremes, etc.), it is possible to use a large Step size in order to speed
up the search process. If prior information about the objective function is not
known, then the recommended value should be used. For greater diversity of
the population, it is better if the distance between the start position of an indi-
vidual and the Leader is not a multiple of the Step parameter. That means that a
Step size of 0.11 is better than a Step size of 0.1, because the active individual
will not reach exactly the position of the Leader. Recommended value is 0.11.

• PRT ∈ <0, 1>. PRT stands for perturbation. This parameter determines
whether an individual will travel directly towards the Leader, or not. It is one of
the most sensitive control parameters. The optimal value is near 0.1. When the
value for PRT is increased, the convergence speed of SOMA increases as well.
In the case of low dimensional functions and a great number of individuals, it is
possible to set PRT to 0.7-1.0. If PRT equals 1 then the stochastic component

174 7 SOMA - Self-Organizing Migrating Algorithm

of SOMA disappears and it performs only deterministic behavior suitable for
local search.

• Dim - the dimensionality (number of optimised arguments of cost function) is
given by the optimization problem. Its exact value is determined by the cost
function and usually cannot be changed unless the user can reformulate the op-
timization problem.

• PopSize ∈ <10, up to the user>. This is the number of individuals in the popu-
lation. It may be chosen to be 0.2 to 0.5 times of the dimensionality (Dim) of
the given problem. For example, if the optimization function has 100 argu-
ments, then the population should contain approximately 30-50 individuals. In
the case of simple functions, a small number of individuals may be sufficient;
otherwise larger values for PopSize should be chosen. It is recommended to use
at least 10 individuals (two are theoretical minimum), because if the population
size is smaller than that, SOMA will strongly degrade its performance to the
level of simple and classic optimization methods.

• Migrations ∈ <10, up to user>. This parameter represents the maximum num-
ber of iterations. It is basically the same as generations for GA or DE. Here, it
is called Migrations to refer to the nature of SOMA - individual creatures move
over the landscape and search for an optimum solution. ’Migrations’ is a stop-
ping criterion, i.e. it tells the optimizing process when to stop.

• MinDiv ∈ <arbitrary negative, up to the user >. The MinDiv defines the largest
allowed difference between the best and the worst individual from actual popu-
lation. If the difference is too small then the optimizing process is will stop (see
Fig. 7.3). It is recommended to use small values (see [11]). It is safe to use
small values for the MinDiv, e.g. MinDiv = 1. In the worst case, the search will
stop when the maximum number of migrations is reached. Negative values are
also possible for the MinDiv. In this case, the stop condition for MinDiv will
not be satisfied and thus SOMA will pass through all migrations.

-400 -200 200 400

-400

-200

200

400

Fig. 7.3. Principle of MinDiv on population which consist of 5 individuals

When recommended values are taken into consideration like acceptable, then they
can be included into algorithm or permanently set to be constant and number of

If < MinDiv then End

7.7 Principles of SOMA 175

control parameters will decrease from 6 to 1 (Migrations). The problem of deter-
ministic finding suitable SOMA parameter settings for a given optimization prob-
lem is not absolutely solved and can be regarded as one of the future research ac-
tivities.

7.7 Principles of SOMA

In the previous sections it was mentioned that SOMA was inspired by the com-
petitive-cooperative behavior of intelligent creatures solving a common problem.
Such a behavior can be observed anywhere in the world. A group of animals such
as wolves or other predators may be a good example. If they are looking for food,
they usually cooperate and compete so that if one member of the group is success-
ful (it has found some food or shelter) then the other animals of the group change
their trajectories towards the most successful member. If a member of this group is
more successful than the previous best one (is has found more food, etc.) then
again all members change their trajectories towards the new successful member. It
is repeated until all members meet around one food source. This principle from the
real world is of course strongly simplified. Yet even so, it can be said it is that
competitive-cooperative behavior of intelligent agents that allows SOMA to carry
out very successful searches. For the implementation of this approach, the follow-
ing analogies are used:
• members of herd/pack ⇒ individuals of population, PopSize parameter of

SOMA
• member with the best source of food ⇒ Leader, the best individual in popula-

tion for actual migration loop
• food ⇒ fitness, local or global extreme on N dimensional hyper-plane
• landscape where pack is living ⇒ N dimensional hyper-plane given by cost

function
• migrating of pack members over the landscape⇒ migrations in SOMA

The following section explains in a series of detailed steps how SOMA actually
works. SOMA works in loops - so called Migration loops. These play the same
role as Generations in classic EAs. The difference between SOMA’s ’Migration
loops’ and EA’s ’Generations’ stems from the fact that during a Generations in
classic EA’s offspring is created by means of at least two or more parents (two in
GA, four in DE). In the case of SOMA, there is no newly created offspring based
on parents crossing. Instead, new positions are calculated for the individuals trav-
elling towards the current Leader. The term ’Migrations’ refers to their movement
over the landscape-hyper-plane.

It can be demonstrated that SOMA can be viewed as an algorithm based on off-
spring creation. The leader plays the role of roe-buck (male), while other individu-
als play the role of roe (female); note that this has the characteristics of pack re-
production with one dominant male. Hence, GA, DE, etc. may be seen as a special
case of SOMA and vice versa (see later SOMA strategy AllToAll). Because the
original idea of SOMA is derived from competitive-cooperative behavior of intel-

176 7 SOMA - Self-Organizing Migrating Algorithm

ligent beings, the authors suppose that this background is the most suitable one for
its explanation.

�

�

�

�

�

�

�

�

�

�

Fig. 7.4. Principle of basic version of SOMA – artificial example

The basic version of SOMA consists of the following steps:

1. Parameter definition. Before starting the algorithm, SOMA’s parameters, e.g.
Specimen, Eq. (7.1), Step, PathLength, PopSize, PRT, MinDiv, Migrations (see
Table 7.3) and the cost function needs to be defined. Cost function is simply the
function which returns a scalar that can directly serve as a measure of fitness.
The cost function is then defined as a model of real world problems, (e.g. be-
havior of controller, quality of pressure vessel, behavior of reactor, etc.).

2. Creation of Population. A population of individuals is randomly generated.
Each parameter for each individual has to be chosen randomly from the given
range <Low, High> by using Eq. (7.1). The population (Table 7.1) then con-
sists of columns - individuals which conform with the specimen, Eq. (7.1).

3. Migrating loop. Each individual is evaluated by cost function and the Leader
(individual with the highest fitness) is chosen for the current migration loop.
Then all other individuals begin to jump, (according to the Step definition) to-
wards the Leader. Each individual is evaluated after each jump using the cost
function. The jumping (Eq. (7.2 or 7.3)) continues, until a new position defined
by the PathLength has been reached. The new position after each jump is calcu-
lated by Eq. (7.2) or Eq. (7.3). This is shown graphically in Fig. 7.2. The indi-
vidual returns then to that position where it found the best fitness on its trajec-
tory. Before an individual begins jumping towards the Leader, a random
number is generated (for each individual’s component), and then compared
with PRT. If the generated random number is larger than PRT, then the associ-
ated component of the individual is set to 0 by means of the PRTVector (see
Eq. (7.3) and Fig. 7.2). Hence, the individual moves in the N-k dimensional

7.7 Principles of SOMA 177

subspace, which is perpendicular to the original space. This fact establishes a
higher robustness of the algorithm. Earlier experiments have demonstrated that,
without the use of PRT, SOMA tends to determine a local optimum rather than
the global one. Migration can be also viewed as a competitive-cooperative
phase. During the competitive phase each individual tries to find the best posi-
tion on its way and also the best from all individuals. Thus during migration, all
individuals compete among themselves. When all individuals are in new posi-
tions, they “release” information as to their cost value. This can be regarded as
a cooperative phase. All individuals cooperate so that the best individual
(Leader) is chosen. Competitive-cooperative behavior is one of the other impor-
tant attributes typical for memetic algorithms [13].

4. Test for stopping condition. If the difference between Leader and the worst
individual is not lower than the MinDiv and the maximum number of Migra-
tions has not been reached, return to step 3 otherwise go to step 5 .

5. Stop. Recall the best solution(s) found during the search.

Steps 1 to 5 are graphically depicted in Table 7.4.

178 7 SOMA - Self-Organizing Migrating Algorithm

Table 7.4. Basic principle of SOMA
� � � � � � � � � � 	
 � � � �

� � � ! � " # $ � % & ' � � � (� %) � * + � !)
� � � (, � % - � (" # $ � % & ' � � � (� %) � * + � ! !
� � ! �) # $ � % & ' � � � (� %) � * + � ! !

 . % / . 0 ! �) # $ � % & ' � � � (� %) � * + � !)

 . - � � � . � % +) ! ! ! # $ � % & ' � � � (� %) � * + � ! !
� � � . 1 � 2 # $ � % & ' � � � (� %) � * + � !)

3 � + � 4 5 % � � . � % � 6 + 7 � � � � � � � � �) 8 9 � 6 + 7 � � � � � � � � � : 8 9 ; ; ; 9 � 6 + 7 � � � � � � � � � < 8

= � � � � � � � � � � � � � � � > � � � � �

% & . 0 . & 5 � *) # % & . 0 . & 5 � * : # % & . 0 . & 5 � * " # % & . 0 . & 5 � * ? # % & . 0 . & 5 � * @ # % & . 0 . & 5 � * < # % & . 0 . & 5 � * 2
3 � A B C D E F G A H A I F D J I J A F I J D K E I K E F A F D K J B F E F B K D G A K H C F A F D B I B A C F A B D A B E K C

� � � � � � � � �) " � ! <) @ 2 @ " L ? < � < " @ < M @ � ! : ? < @ @ " " N � 2 : " M) : " @ � N : : " ? " ! � ! 2) @) N @ : " � 2 <) : : ?
� � � � � � � � � : : � @)) 2 : N : @ ? � ! " < < N @ N @ �) ! ? 2 ! ? ! � : M : N < ! < : ? �))) ? ? " ? � : N 2 M < M) : ! � " N ? < < @
� � � � � � � � � " ? < � 2 @ !) ? @) � : N : N M ?)) � " ? 2) < ? " � ! 2 M < M < " : ? � < @ 2 < N M < ! � : ?) 2 ") " " � ? " 2 : ? N
� � � � � � � � � ? 2 : � ? N < <) 2) @ � ! N !) : M : � M) < < N < " � < 2) " ? < " @ � N) ? : ? ! 2 ? � @ " N @) < ? ? � ! ? N : ! :)
� � � � � � � � � @ < � ") < @ < ? @ 2 �) @ @ 2 ? ? @ N � N : M @ " 2 : < � <) ! ! @ <) : � ? " N @ < : " � N M) M ! 2 ? � : : 2) : 2)
� � � � � � � � � < 2 " � 2 N N < @ 2 L " 2 �) 2 : ! < ! � @ 2 ? ! ? ? : ? M � " @ : ") < ? � < N " @ < 2 < : N � ! : N @ M N " ? � " @) : 2 "

O � P � + . � . � % +
� Q ! � Q) � Q : � Q N � Q M � Q) !

3 � A I F D J I J A A A F D A H E J C F H I D H E J K J
…

J H C D F K H J I C A C D A G A A A C I C D J A I B H
L ? < � < " @ < M L :) � N M N : N : � N " M) : M ?

…
) @) � : < " @ M) 2 < � ! !) : ! ! � 2 " N ?)

@ ? � ! " < < N @ @ ? � ! " < < N @ @ ? � ! " < < N @
…

@ ? � ! " < < N @ @ ? � ! " < < N @ @ ? � ! " < < N @
@) � : N : N M ? @) � : N : N M ? @) � : N : N M ?

…
@) � : N : N M ? @) � : N : N M ? @) � : N : N M ?

) @ � ! N !) : M) : � " ! ! " < : M � @ : ! @ M @ M
…

L 2 �) @ N ! ! " L M � M " 2 2 < M L) : � 2) 2 @ ?
@ 2 �) @ @ 2 ? ? @ 2 �) @ @ 2 ? ? @ 2 �) @ @ 2 ? ?

…
@ 2 �) @ @ 2 ? ? @ 2 �) @ @ 2 ? ? @ 2 �) @ @ 2 ? ?

L " 2 �) 2 : ! < L : ? � <) @ " 2 L) : � ! @ N < N
…

< " � : N) ? ?) 2 @ � N " N) : N N N � " M ? N) @

3 � A I F D J I J A # % & . 0 . & 5 � * F H I D H E J K J (� 6 � + � . % & . 0 . & 5 � * $ � � �
L ? < � < " @ < M P . � (: � N " M) : M ? % � P * � � � * � 5 * � � � & � + . � . � % +

@ ? � ! " < < N @ * � P � � @ ? � ! " < < N @
@) � : N : N M ? 3 � @) � : N : N M ?

… …

% & . 0 . & 5 � *) # % & . 0 . & 5 � * : # % & . 0 . & 5 � * " # % & . 0 . & 5 � * ? # % & . 0 . & 5 � * @ # % & . 0 . & 5 � * < # % & . 0 . & 5 � * 2
3 � A B C D E F G A H F H I D H E J K J
� � � � � � � � �) " � ! <) @ 2 @ " : � N " M) : M ?
� � � � � � � � � : : � @)) 2 : N : @ ? � ! " < < N @
� � � � � � � � � " ? < � 2 @ !) ? @) � : N : N M ?
� � � � � � � � � ? 2 : � ? N < <) 2 M � @ : ! @ M @ M
� � � � � � � � � @ < � ") < @ < ? @ 2 �) @ @ 2 ? ?
� � � � � � � � � < 2 " � 2 N N < @ 2 L) : � ! @ N < N

>∈<

−+=+

����������
�������

�������
������ R
S T

U V W X VRY
S T

RZ
S T

U V W X VRY
S T

RY

���

�� [[[[[
\

[

7.8 Variations of SOMA 179

7.8 Variations of SOMA

Currently, a few variations - strategies of the SOMA algorithm exist. All versions
are almost fully comparable with each other in the sense of finding of global opti-
mum. These versions are:

1. ’AllToOne’: This is the basic strategy, that was previously described. Strategy
AllToOne means that all individuals move towards the Leader, except the
Leader. The Leader remains at its position during a Migration loop. The princi-
ple of this strategy is shown in Fig. 7.4.

2. ’AllToAll’: In this strategy, there is no Leader. All individuals move towards
the other individuals. This strategy is computationally more demanding. Inter-
estingly, this strategy often needs less cost function evaluations to reach the
global optimum than the AllToOne strategy. This is caused by the fact that each
individual visits a larger number of parts on the N dimensional hyper-plane dur-
ing one Migration loop than the AllToOne strategy does. Fig. 7.5 shows the
AllToAll strategy with PRT = 1.

3. ’AllToAll Adaptive’: The difference between this and the previous version is,
that individuals do not begin a new migration from the same old position (as in
AllToAll), but from the last best position found during the last traveling to the
previous individual.

4. ’AllToRand’: This is a strategy, where all individuals move towards a randomly
selected individual during the migration loop, no matter what cost value this in-
dividual has. It is up to the user to decide how many randomly selected indi-
viduals there should be. Here are two sub-strategies:

• The number of randomly selected individuals is constant during the whole
SOMA process.

• For each migration loop, (in intervals of <1,PopSize>) the actual number of
individuals is determined randomly. Thus, the number of randomly chosen
individuals in the second sub-strategy is different in each migration loop.

5. ’Clusters’: This version of SOMA with Clusters can be used in any of the above
strategies. The word ’Cluster’ refers to calculated clusters. Each individual from
the population is tested for the cluster to which it belongs, according to
Eq. (7.6) expressed below, where INDi is the i-th parameter of the individual;
CCi is the i-th parameter of the leader (Cluster Center); HBi and LBi are the al-
lowed bounds for the given parameter (see Specimen, Eq. (7.1)); and CD is the
Cluster Distance given by the user. The result is that after a cluster calculation,
clusters with their Leaders are derived, and each individual belongs to one clus-
ter. In the case that all individuals create their own cluster (1 individual = 1
cluster), then each individual will jump toward all others, (this is identical with
the ’AllToAll’ strategy). Some clusters may be created or anihilated during mi-
gration loops.

180 7 SOMA - Self-Organizing Migrating Algorithm

(7.6)

-2 -1 0 1 2

-2

-1

0

1

2

Fig. 7.5. AllToAll – an artificial example. Note that no Leader is present here.

By using SOMA with clusters, the user must define a so-called ’Cluster Dis-
tance’– the parameter, which says how large (how many of individuals) the cluster
should be, and the domain of attraction of the local cluster Leader. Using this ba-
sic parameter, SOMA breaks itself up into more local SOMAs, each focusing on
the contained Leaders. Therefore, independent groups of individuals are carrying
out the search. These local SOMAs create clusters, which can join together or split
into new clusters. This strategy has not been studied in detail yet, because of its
increased complexity of computation compared with the low quality improvement
of the optimization process. Other possible strategies or variations of SOMA are,
for example, that individuals need not move along a straight line-vectors, but they
can travel on curves, etc.

7.9 SOMA dependence on control parameters

As already mentioned above, the control parameters for SOMA are: PRT,
PathLength, Step, MinDiv and PopSize. The quality of the results for the optimi-
zation partially dependant on the selection of these parameters. To demonstrate,

∑
=

⎟⎟⎠

⎞
⎜⎜⎝

⎛
−
−

>
� � �

�

�

� ��

��

����

 !"#
 #

1

2

3

7.9 SOMA dependence on control parameters 181

how this influences the algorithm, some simulations were performed to show
SOMA’s dependence on them (Fig. 7.6).

a) … on PathLength size b) … on PopSize

c) … on PRT size d) … on Step size

e) … on MinDiv size

Fig. 7.6. Dependence SOMA on control parameters

These simulations demonstrate the dependency of the quality of optimization
on the parameters PRT, PathLength, Step, MinDiv and PopSize. A total of 100
simulations were performed for each change of each parameter. The results are
depicted as columns of points (point – the best value founded during actual simu-
lation). Part a) shows the dependence on the PathLength parameter. It can be ob-
served that an increases of the PathLength parameter resulted in deeper (better)
extremes. This is logical since the search process passes through a lager search
space. Part b) shows the dependence on the PopSize parameter. In addition, there
is a small improvement. Part c) shows the dependence on PRT from which it is
visible, that in the case of low PRT, SOMA’s efficiency is very good. Part d)

182 7 SOMA - Self-Organizing Migrating Algorithm

shows the dependence on the Step parameter. From this picture, it is clear that in
the case of big steps, results are poor due to individuals performing large jumps
and thus the searched space is poorly searched. The last part e) shows the depend-
ence on the MinDiv parameter. From the picture it is visible that the MinDiv plays
a role of something like a lens which determines the dispersion of final solutions
in the case of repeated simulations (or/and solutions in the last population). Min-
Div is the difference between the worst and the best individual and if it is quite
large, then the process may stop before the optimal solution is found.

7.10 On the SOMA classification and some additional
information

SOMA can be classified in two ways. Firstly, one can say that it is an evolutionary
algorithm despite the fact that there are no new children created in the common
’evolutionary’ way. The reason for such classification is simple. During a SOMA
run, migration loops are performed, after which individuals are re-positioned, with
the same effect as after one Generation in standard EAs. From this point of view,
one can say that SOMA is an evolutionary algorithm.

Secondly, SOMA can be classified (based on the principles described – which
is more logical), as a so-called memetic algorithm. This classification covers a
wide class of meta-heuristic algorithms (see [13]). The key characteristic of these
algorithms can be observed in various optimization algorithms, local search tech-
niques, special recombination operators, etc. Basically speaking, memetic algo-
rithms are classified as competitive-cooperative strategies [13] showing synergetic
attributes.

SOMA algorithms show these attributes as well. Because of this, it is more ap-
propriate to classify SOMA as a memetic algorithm (see also [14]). The word
'memetic' was coined by R. Dawkins in his book 'The Selfish Gene' [15]:

Examples of memes are tunes, ideas, catch phrases, clothes fash-
ions, and ways of making pots or of building arches. Just as genes
propagate themselves in the gene pool by leaping from body to body
via sperm and eggs, so memes propagate themselves in the meme
pool by leaping from brain to brain via a process that, in a broad
sense, can be called imitation.

In this sense, memetic algorithms can be taken to be like 'cultural, social or in-
formational evolution' in comparison to GA, which stems from biological evolu-
tion. Dawkins defines memes as "...units of information in the brain...", where the
phenotypes are gestures, communication and changes in behavior.

The synergetic effect of SOMA stems from the fact that during the migration
loops individuals influence each others, and very often, one can observe the ap-
pearance and disappearance of time-space structures - sets consisting of individu-

7.10 On the SOMA classification and some additional information 183

als which travel over the search space. For a graphical view, see [11]. This is, of
course, only a ’visual’effect.

The more important effect is that individuals - thanks to this mutual influence -
change their trajectories and consequently find new and usually better positioning-
solutions. Their final trajectory is not only given by deterministic rules but primar-
lily by their mutual interaction.

In Fig. 7.7 the movement of individuals for the simple version of SOMA is de-
picted (AllToOne, PRT=1, i.e. no perturbation) and also in 3D view in Fig. 7.8.

Fig. 7.7. Movement of individual for simplest version SOMA in 2D

0

200

400
0

200

400-500

0

500

0

200

400

3D SOMA polyhedron with individuals at
its vertices

0 200 400
0

200

400

-5000500

0

200

400

3D SOMA polyhedron with individuals
at its vertices. View from the top

Fig. 7.8. Movement of individual for simplest version SOMA in 3D along to edges of
SOMA polyhedron

The set of cost function
values obtained during
travelling of one individual
along to edge of SOMA
polyhedron. Edges are
here represented like ar-
rows.

184 7 SOMA - Self-Organizing Migrating Algorithm

Because all individuals travel towards the Leader in straight lines (vectors of
direction), their movement can be regarded as movement to the edges, thereby
creating a polyhedron looking shape (Fig. 7.8). Movement is then determined not
by the shape of the searched space but by the shape of polyhedron. Therefore,
SOMA is able to overstep many local optima, which can usually cause problems
to classic gradient-based methods. Fig. 7.8 shows only half of a real polyhedron.
In the real SOMA process, individuals do not stop at the Leader position, but con-
tinue past the Leader to a position, which is given by the PathLength parameter.

7.11 Constraint Handling

SOMA, as well as other such evolutionary algorithms, can be used to solve opti-
mization problems, sometimes called mixed integer-discrete-continuous, non-
linear programming problems, etc. These can (see also [13]) be expressed as fol-
lows:

(7.7)

X(i), X(d) and X(c) denote feasible subsets of integer, discrete and continuous
variables respectively. The above formulation is general and basically the same for
all types of variables. Only the structure of the design domain distinguishes one
problem from another. However, it is worth noticing here the principal differences
between integer and discrete variables. While both integer and discrete variables
have a discrete nature, only discrete variables can assume floating-point values.
For example, Discrete = {-1, 2.5, 20, -3, -5.68…}. In practice, the discrete values
of the feasible set are often unevenly spaced. These are the main reasons why in-
teger and discrete variables require different handling. SOMA can be categorized

{ } []

ccddii

Hi
ii

Lo
i

j

Tcdi

XXX

nixxx

mjXg

Xf

XXX

RRR ∈∈∈

=≤≤

=≤

==

)()()(

)()(

)()()(
n321

,,

where

,,1

sconstraintboundarysubject toand

,...,10)(

sconstraintsubject to

)(

minimizeto

,,x,,x,x,xX

Find

�

�

7.11 Constraint Handling 185

as belonging to the class of floating-point encoded, ’memetic’ optimization algo-
rithms. Generally, the function to be optimized, f, is of the form:

(7.8)

The optimization target is to minimize the value of this objective function f(X),

(7.9)

by optimizing the values of its parameters:

(7.10)

where X denotes a vector composed of nparam objective function parameters. Usu-
ally, the parameters of the objective function are also subject to lower and upper
boundary constraints, x(Low) and x(High), respectively:

(7.11)

7.11.1 Boundary constraints

With boundary-constrained problems, it is essential to ensure that the parameter
values lie within their allowed ranges after recalculation. A simple way to guaran-
tee this, is to replace the parameter values that violate boundary constraints with
random values generated within the feasible range:

(7.12)

RR →n���$%

()����� $%

() R∈= ���$ � � � � ����� �

� � 	 �

� � �

��

� � �

� ����� ���
����

�=≤≤

� � � � �� � �

� �
��

� � � �
�

� �

��

� � �
�

� �

��

� � �
�

� � �
�

� � � �
���

� �

��

����

�

����

����

�

�������

������

���������

���

��

�

���

�

�����

�

�����

�

������

�

���

�

�� ==

⎪
⎪
⎩

⎪
⎪
⎨

⎧

>∨<

+−

=

+

++
+

186 7 SOMA - Self-Organizing Migrating Algorithm

7.11.2 Constraint functions

A soft-constraint (penalty) approach was applied for the handling of the con-
straint functions. The constraint function introduces a distance measure from the
feasible region, but is not used to reject unfeasible solutions, as is the case with
hard-constraints. One possible soft-constraint approach is to formulate the cost-
function as follows:

(7.13)

The constant, a, is used to ensure that only non-negative values will be assigned
to fcost. When the value of a is set high enough, it does not otherwise affect the
search process. The constant, s, is used for appropriate scaling of the constraint
function value. The exponent, b, modifies the shape of the optimization hyper-
plane. Generally, higher values of s and b are used when the range of the con-
straint function, g(X), is expected to be low. Often setting s=1 and b=1 works sat-
isfactorily and only if one of the constraint functions, gi(X), remains violated after
the optimization run, will it be necessary to use higher values for si and/or bi. In
many real-world engineering optimization problems, the number of constraint
functions is relatively high and the constraints are often non-trivial. It is possible
that the feasible solutions are only a small subset of the search space. Feasible so-
lutions may also be divided into separated islands around the search space,
Eq. (7.9). Furthermore, the user may easily define totally conflicting constraints
so that no feasible solutions exist at all.

For example, if two or more constraints conflict, so that no feasible solution ex-
ists, EAs are still able to find the nearest feasible solution. In the case of non-
trivial constraints, the user is often able to judge which of the constraints are con-
flicting on the basis of the nearest feasible solution. It is then possible to reformu-
late the cost-function or reconsider the problem setting itself to resolve the con-
flict.

A further benefit of the soft-constraint approach is that the search space re-
mains continuous. Multiple hard constraints often split the search space into many
separated islands of feasible solutions. This discontinuity introduces stalling points
for some genetic searches and also raises the possibility of new, locally optimal

()

() 0)(min

1

1

otherwise1

0)()(0.1

where

)()(
1

>+
≥
≥

⎩
⎨
⎧ >⋅+

=

⋅+= ∏
=

aXf

b

s

XgifXgs
c

caXfXf

i

i

iii
i

m

i

b
icost

i

7.11 Constraint Handling 187

areas near the island borders. For these reasons, a soft-constraint approach is con-
sidered essential. It should be mentioned that many traditional optimization meth-
ods are only able to handle hard-constraints. For evolutionary optimization, the
soft-constraint approach was found to be a natural approach.

Fig. 7.9. Separated islands around the search space

7.11.3 Handling of Integer and Discrete Variables

In its canonical form, SOMA (as well as DE) is only capable of handling continu-
ous variables. However extending it for optimization of integer variables is rather
easy. Only a couple of simple modifications are required. First, for evaluation of
cost-function, integer values should be used. Despite this, the SOMA algorithm it-
self may still work internally with continuous floating-point values. Thus,

(7.14)

INT() is a function for converting a real value to an integer value by truncation.
Truncation is performed here only for purposes of cost function value evaluation.
Truncated values are not elsewhere assigned. Thus, EA works with a population of
continuous variables regardless of the corresponding object variable type. This is
essential for maintaining the diversity of the population and the robustness of the

()

$�

�!"�

�
�

���%

�

�

�

�

� � � � ��

∈
⎩
⎨
⎧

=

=

���!�����������"�
����

�"����!����
����#
#�
��

�����

���� � � 	 �

188 7 SOMA - Self-Organizing Migrating Algorithm

algorithm. Secondly, in case of integer variables, the population should be initial-
ized as follows:

(7.15)

Additionally, instead of Eq. (7.12), the boundary constraint handling for integer
variables should be performed as follows:

(7.16)

Discrete values can also be handled in a straightforward manner. Suppose that
the subset of discrete variables, X(d), contains l elements that can be assigned to
variable x:

(7.17)

x2 �{-1.2, 2.69, 110, 256.3569, …..}

{1, 2, 3, 4, …..}

Discrete (original) parameter of individual…

…and its integer index
– alternate parameter used
in evolution process

Fcost(x1,x2,….xn)

no

yes

Fig. 7.10. Discrete parameter handling

Instead of the discrete value xi itself, we may assign its index, i, to x. Now the
discrete variable can be handled as an integer variable that is boundary constrained

��
�

������

��������
�

�
�

�
�

�
�

��	��$ +<== �

� � � � 	�
 �

�
 �

�
 �

� � � �
��

����

������

�������

���
������

�

���

�

���

�� ==

++−==

() ()

� � � � �� � �

� �
��

� � !
�

� �
��

� � "
�

� �
��

� � "
�

� � "
�

� � !
���

� �
��

����

�

��!"���!"�

����

�

�������

������

���������

���

���

�

#$%

&

#%#$%

&

#%#$%

&

#%#%#%

&

#$%

&

�� ==

⎪
⎪
⎩

⎪
⎪
⎨

⎧

>∨<

++−

=

+

++
+

7.12 Selected Applications and Open Projects 189

to range <1,2,3,…,N>. So as to evaluate the objective function, the discrete value,
xi , is used instead of its index i. In other words, instead of optimizing the value of
the discrete variable directly, we optimize the value of its index i. Only during
evaluation is the indicated discrete value used. Once the discrete problem has been
converted into an integer one, the previously described methods for handling inte-
ger variables can be applied. The principle of discrete parameter handling is de-
picted in Fig. 7.10.

7.12 Selected Applications and Open Projects

The SOMA algorithm was not tested only on the mentioned 15 test functions. This
algorithm was used on various examples usually from the engineering domain of
interest. Some of examples are:

• Active Compensation in RF-driven Plasmas. Simulated annealing (SA), DE
and SOMA were used in this experiment which was done at The Open Univer-
sity of Oxford, Oxford Research Unit. The aim of this experiment was to make
a comparative study with previously published results (SA) and compare all
three different evolutionary algorithms to deduce the fourteen Fourier terms in
a radio-frequency (RF) waveform to tune a Langmuir probe inserted into
plasma reactor (Fig. 7.11). Langmuir probes are diagnostic tools used to ana-
lyze the electron energy distribution in plasma processes. Two basic experi-
ments were done, e.g. 1) SA and DE, 2) SA, DE and SOMA. The results of the
first set of experiments (SA, DE) will be seen in a soon to be published book
focusing on DE, and results of the second set of experiments will be published
in a selected journal. For details please see [33].

Plasma reactor Langmuir probe inside reactor
chamber (needle in the middle)

Fig. 7.11. Plasma reactor at The Open University of Oxford, Oxford Research Unit

190 7 SOMA - Self-Organizing Migrating Algorithm

• RESTORM (Radical Environmentally Sustainable Tannery Operations by
Resource Management) – a 5th framework program of the European Union
(coordinated by BLC – British Leather Center, Northampton). In this project,
based on the research cooperation of 15 European countries, is SOMA used in
the frame of mathematical modeling for optimization of technological devices.
The main aim of this optimization is to minimize operating costs and waste,
which is usually produced during each technological process. In this research is
going to be done a comparative study of SOMA with other well known algo-
rithms like DE, GA, SA, etc.

• Neural network learning. The aim of this research was to show how evolu-
tionary algorithms could be used as learning algorithms for various types of
neural networks. The ways, in which differential evolution could be used for
neural network learning, were examined. Various experiments were made and
compared with standard neural algorithms [16] and [17].

• Evolutionary identification of predictive models. In this work it was shown
how evolutionary algorithms could be used for retrieval of suitable predictive
models. Two different algorithms were used. The first one was DE and the sec-
ond was SOMA. Both algorithms were used in the same way to find the model
whose response agreed closest with a given time series. The problem was for-
mulated as an optimization problem where the cost function was based on the
difference between the original time series and the time series produced by a
candidate model [18], [19], [7] and [20].

• Inverse fractal problem. The aim of this project was to show how a new evo-
lutionary algorithm could be used to solve inverse fractal problems (IFP). Two
algorithms were used for mutual comparison i.e. DE [21], [22], [23] and [24]
and SOMA [1].

• Mechanical engineering problem optimization. In this research, are de-
scribed three illustrative and practical numerical examples. The first example
was the design of a gear train with a specified gear ratio; the second problem is
the minimization of manufacturing cost of a pressure vessel. A third example is
to design a coil spring with a minimum amount of steel. The mixed-variable
methods used to solve these problems are discussed in detail and compared
with published results obtained with other optimization methods for the same
problems. Even though this investigation only focuses on engineering design
applications, SOMA as well as DE can be applied, in principle, to solve any
mixed integer-discrete-continuous optimization task [13], [25], [26] and [1].
This case study is described in Chapter 26.

• Statical optimization of chemical reactor. In this ressearch, a chemical reac-
tor was optimized by SOMA [6]. The reactor model was based on five inter-
locked ordinal differential equations (ODEs). The “speciality” of this example
was that the optimization was based on this 5 ODEs model, not on its suitable
analytical solution. Simply said, SOMA tried to search for such parameters,
which resulted in a suitable behavior for the reactor produced [6]. Because
there was no general analytic solution (from the point of view of reactor pa-

7.12 Selected Applications and Open Projects 191

rameters), for each set of optimized parameters, numerical simulation of the 5
ODEs model had to be carried out.

• Predictive control. As in the previous example, the application of SOMA was
used for predictive control of a given reactor from a different point of view [6].

• Fuzzy logic setting. In this research, both DE and SOMA were used to find
suitable fuzzy logic setting. An input set, an output set and a rule base had to be
optimized by SOMA and DE. The results were compared with expert and neu-
ral network settings [8].

• Analytic programming. In this application [29] of SOMA discrete variable
handling was used to handle with arbitrary functions via integer index [13]. The
result of analytic programming (AP) is thus the same as genetic programming.
The output of AP are more or less complicated functions called “programs”.
The principles of AP are general enough to be used by any other evolutionary
algorithms. In [29] the first results that demonstrated the ability of AP to solve
selected examples from [30] were presented. Now is in process comparative
study with examples from [31], [32]. Formulas in 7.18 - 7.21 demonstrate a few
successful programs which were “generated” by analytic programming and
which successfully solve so called “sextic polynomial” example [31].

(7.18)

(7.19)

(7.20)

(7.21)

192 7 SOMA - Self-Organizing Migrating Algorithm

7.13 Gallery of test functions

Each new algorithm has to be theoretically analyzed and practically tested in order
to verify how robust and powerful it is from a specific point of view (global ex-
treme finding,…). For algorithm the SOMA a set of 15 test functions was used,
which are depicted here, including their mathematical formulas. All these func-
tions are a part of source C++ files which are accessible on [11]. On each contour
plot, one or more black point sets are depicted, which represents a set of points
which are “x%” (in the sense of 3D representation of appropriate function its and
allowed boundaries) far from the global extreme from the cost value point of view.
They are depicted here to demonstrate multiple global extremes and the complex-
ity of test functions used for SOMA testing. It is important to note that these black
points depend also on graphical resolution of used program.

∑
=

� � �

�

��
�

�

-5

-2.5

0

2.5

5
-5

-2.5

0

2.5

5

0

20

40

-5

-2.5

0

2.5

5
- 4 - 2 0 2 4

- 4

- 2

0

2

4

48.748.7

48.748.7

43.743.7

43.743.7

38.738.7

38.738.7

33.733.7

33.733.7

28.728.7

28.728.7

23.7
18.7
13.7

8.7

3.6

Fig. 7.12. 1st De Jong – black point represents a set of points which differ max. 0.01 %
from global extreme in point of view of cost function value

7.13 Gallery of test functions 193

∑
−

=
+ −+−

�

�

����

�

�

����������
� � �

�

��� ���

-2-101
2

-2
-1

0

1

2

0

1000

2000

3000

4000

-2-101
2

- 2 - 1 0 1 2

- 2

- 1

0

1

2

1000.1000.

500.500.

300.

300.

250.

250.

200.

200.

150.

150.

100.

100.

10.

10.

Fig. 7.13. Rosenbrock’s saddle – black point represents a set of points which differ max.
0.0001 % from global extreme in point of view of cost function value

∑
=

� � �

�

��
	

-2

-1

0

1

2
-2

-1

0

1

2

0

1

2

3

4

-2

-1

0

1

2

- 2 - 1 0 1 2

- 2

- 1

0

1

2
3.813.81

3.813.81

3.423.42

3.423.42

3.033.03

3.033.03

2.642.64

2.642.64

2.262.26

2.262.26

1.87

1.48

1.1

0.71

0.32

Fig. 7.14. 3rd De Jong – black point represents a set of points which differ max. 0.1 % from
global extreme in point of view of cost function value

194 7 SOMA - Self-Organizing Migrating Algorithm

∑
=

� � �

�

���
�

�

-1

0

1
-1

0

1

0

2

4

6

8

-1

0

1

- 1 - 0.5 0 0.5 1

- 1

- 0.5

0

0.5

1

6.6.

6.6.

5.

5.

4.

4.

3.

3.

2.
1.

0.1

Fig. 7.15. 4th De Jong – black point represents a set of points which differ max. 0.000001 %
from global extreme in point of view of cost function value

∑
=

−
� � �

�

���
	

��$�
��������%$� π

-5

-2.5

0

2.5

5
-5

-2.5

0

2.5

5

0

500

1000

-5

-2.5

0

2.5

5

- 1 - 0.5 0 0.5 1

- 1

- 0.5

0

0.5

1

37.637.6

37.637.6

33.733.7

33.733.7

29.929.9

29.929.9

26.26.

26.26.

22.122.1

22.122.1

22.1

22.1

22.1

22.1

22.122.1

22.122.1

18.3

18.3 18.3

18.3

18.3

18.3

18.3

18.3

18.3

14.4

14.4 14.4

14.4
14.4

14.4

14.4

14.4

14.4

10.5

10.5 10.5

10.5
10.5

10.5

10.5
10.5

10.5

6.7

6.7 6.7

6.7

6.7
6.7

6.7

6.7

6.7

6.7
6.7

6.7

6.7

2.82.8 2.8

2.82.8 2.8

2.82.8 2.8

Fig. 7.16. Rastrigin's function - black point represents a set of points which differ max. 0.5
% from global extreme in point of view of cost function value

7.13 Gallery of test functions 195

∑
−

=
−

�

�

�����
� � �

�

�� ��

-500

-250

0

250

500
-500

-250

0

250

500

-500

0

500

-500

-250

0

250

500

0 100 200 300 400 500
0

100

200

300

400

500

498.
498.

498.498.

361.
361.

361.

361.

361.

361.361.
361.

224.

224.

224. 224.

224.
224.

224.

224.

224.87.

87.

87.
87.

87.

87.

87.

87.

-50.
-50.

-50.-50.

-50.

-50.

-50.

-50.

-50.

-187.

-187.
-187.

-187.

-187.

-187.

-187.

-187.

-325.
-325.

-325.
-325.

-325.

-325.

-462.
-462.

-462.

-462.

-462.

-599.
-599.

-599.

-736.

Fig. 7.17. Schwefel’s function - black point represents a set of points which differ max.
0. 1 % from global extreme in point of view of cost function value

∑ ∏
= =

−+
� � �

�

� � �

�

��

�

��
� �

	

��
��
&���

�

-100

-50

0

50

100 -100

-50

0

50

100

0

2

4

6

-100

-50

0

50

100

- 4 - 2 0 2 4

- 4

- 2

0

2

4

1.861.86

1.86

1.86

1.671.67

1.67

1.67

1.481.48

1.48

1.48

1.281.28

1.28

1.28

1.28

1.28

1.28

1.28

1.091.09

1.09

1.09

1.09

1.09

1.09

1.09

0.9

0.9 0.9

0.90.9

0.90.9

0.71

0.710.71

0.710.71

0.52

0.520.52

0.520.52

0.33

0.330.33

0.330.33

0.14

0.140.14

0.140.14

Fig. 7.18. Griewangk’s function - black point represents a set of points which differ max.
0.01 % from global extreme in point of view of cost function value

196 7 SOMA - Self-Organizing Migrating Algorithm

∑
−

= +

+

++
−+

+−
�

� �� ��

�� ��
�

������'���

�('�����
('��

� � �

� ��

��

��

��

-20

-10

0

10

20
-20

-10

0

10

20

-1.5
-1.25

-1
-0.75

-0.5

-20

-10

0

10

20

- 2 - 1 0 1 2
- 2

- 1

0

1

2

-0.65

-0.65
-0.83
-1.
-1.17

-1.17-1.17

-1.17-1.17

-1.35 -1.35-1.35

-1.35-1.35

Fig. 7.19. Sine envelope sine wave function – black point represents a set of points which
differ max. 1 % from global extreme in point of view of cost function value

∑
−

=
++ +++−

�

�

���	�
�

��
�	�
�

�
�����(��������

� �

�
���� ����

-10

-5

0

5

10 -10

-5

0

5

10

2

4

6

-10

-5

0

5

10

Fig. 7.20. Stretched V sine wave function – black point represents a set of points which dif-
fer max. 0. 1 % from global extreme in point of view of cost function value

7.13 Gallery of test functions 197

∑
−

=
++

− +++
�

�
�

�
�

����
���$�����$��
��)�

� � �

�
���� ����&

-20

0

20

-20

0

20

0

5

10

15

20

-20

0

20

-20

0

20

- 3 - 2 - 1 0 1 2 3

- 3

- 2

- 1

0

1

2

3

8.05

8.05

8.05

8.05

6.75

6.75 6.75

6.756.75

5.45

5.45 5.45

5.455.45

5.45

5.45

5.45

4.16

4.16 4.16

4.164.164.16

4.16

4.16

4.16

2.86

2.86

2.86

2.86

2.86

2.86

2.86

1.56

1.56

1.561.56

0.260.26

0.260.26

-1.04-1.04

-1.04-1.04

-2.33-2.33

-2.33-2.33

-3.63-3.63

-3.63-3.63

Fig. 7.21. Test function (Ackley) – black point represents a set of points which differ max.
0.1 % from global extreme in point of view of cost function value

∑
−

=

+−+− ++ −−+
�

�

	 	
� � �	
� � � ����	����
��
�$�$�� �

�
�

�� � �

�
���� ����

&&& ππ

-20

0

20

-20

0

20

0

5

10

15

20

25

-20

0

20

-20

0

20

- 3 - 2 - 1 0 1 2 3

- 3

- 2

- 1

0

1

2

3
9.67

9.679.67

9.67

9.67

9.679.67

9.67

8.69

8.69

8.69

8.69

8.69

8.69

8.69

8.69

8.69

8.69

8.698.69

8.69

8.69

8.69

8.69

8.698.69

8.69

8.69

7.727.72

7.727.72

7.72

7.72

7.72

7.72

7.72

7.72

7.72

7.727.727.72

7.727.727.72

6.746.74

6.746.74

6.74
5.775.77

5.775.77

5.775.77

5.775.77

5.77

4.79
3.813.81

3.813.81

3.81
2.84

2.842.84
2.84

2.84

1.86
0.88

Fig. 7.22. Ackley’s function – black point represents a set of points which differ max. 0.1 %
from global extreme in point of view of cost function value

198 7 SOMA - Self-Organizing Migrating Algorithm

∑
−

=
+++ +++−+−−

�

�

��� ��
$

&*�����&*���&*������
� � �

�

�

�����
�

�����

-500

-250

0

250

500
-500

-250

0

250

500

-1000

-500

0

500

1000

-500

-250

0

250

500

300 350 400 450 500

300

350

400

450

500

644.

644.

644.

644.

479.

479.

479.

479.

314.

314.

314.

314.

314.

314.

150.

150.

150.

150.

150.

150.

150.

150.

-15.

-15.

-15.

-15.

-15.

-15.-15.-15.

-180.

-180.

-180.

-180.

-344.

-344.

-344.

-344.

-509.

-509.

-509.

-509.

-509.

-509.

-673.

-673.-673.

-673.

-673.
-838.

-838.-838.

-838.

-838.

Fig. 7.23. Egg holder – black point represents a set of points which differ max. 1 % from
global extreme in point of view of cost function value

����

� � �

�

��

��������������

������

++=−+=

++

++

−

=
+∑

��

���
������������
��������

��

�

�

�

-400
-200

0
200

400
-400

-200

0

200

400

-400
-200

0
200

400

-400
-200

0
200

400

- 500 - 450 - 400 - 350 - 300

300

350

400

450

500

350.350.

350.350.350.
350.

350.

350.

350.

350.

350.

175.

175.

175.

175.

175.

175.

175.

175.

0

0

0

0

0

0

0

0

-176.

-176.

-176.

-176.

-176.

-176.

-176.

-176.

-351.-351.-351.-351.-351.
-351.

-351.

-351.

-351.

-351.

Fig. 7.24. Rana's function – black point represents a set of points which differ max. 2 %
from global extreme in point of view of cost function value

7.13 Gallery of test functions 199

∑
−

= ++

+

+−+
−+

+
�

� �� ���

�� ��
�

�$����'��

('���������
('��

� � �

� ����

��

����

��

-100
-50

0
50

100

-100

-50
0

50
100

0

0.5

1

1.5

2

-100
-50

0
50

100

-100

-50
0

50
100

-10
-5

0
5

10

-10

-5
0

5
10

0

0.25

0.5

0.75

1

-10
-5

0
5

10

-10

-5
0

5
10

Fig. 7.25. Pathological function – detail is on the right. Due to extremely high complexity
of this function, contour graph is not depicted here

∑
−

=

+
++−

�

�

� �
�

�
�

� �
�

���
$

����������������������
	
 �

 �

�
�

�
ππ

0

1

2

3
0

1

2

3-1.5

-1

-0.5

0

0.5

0

1

2

3

-1.5

-1

-0.5

0

0.5

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

-0.27 -0.27

-0.27-0.27

-0.27

-0.27

-0.59

-0.59

-0.59

-0.59

-0.9

-0.9
-0.9

-1.21-1.53

Fig. 7.26. Michalewicz's function – black point represents a set of points which differ max.
0.1 % from global extreme in point of view of cost function value

200 7 SOMA - Self-Organizing Migrating Algorithm

∑
−

=
++

++−

++−
++

�

�

�

�

�

��

��
�

��

��('�&�
���
	

	

� �

�

����

����

����&
����

-4
-2

0
2

4
-4

-2

0

2

4

-1
-0.5

0
0.5

-4
-2

0
2

4

- 4 - 2 0 2 4

- 4

- 2

0

2

4

0.476

0.476

0.4760.476

-0.022

-0.022

-0.022

-0.022

-0.022

-0.022

-0.022

-0.022

-0.022

-0.022

-0.519

-0.519
-0.519

Fig. 7.27. Inverted cosine wave function (Masters) – black point represents a set of points
which differ max. 0.1 % from global extreme in point of view of cost function value

7.14 SOMA on tested functions

The first testing of the SOMA algorithm was performed on 15 test functions,
which are given and depicted in Fig. 7.12 – 7.27 and shortly in Table 7.5. In each
case of the functions tested, the SOMA algorithm was searching for the global
minimum of the given function. Each simulation was repeated 100 times in 100
dimensional space (i.e. the individuals consisted of 100 parameters). The left part
of all figures below shows the descriptions for SOMA. All these results were
compared with DE (at the right side) and are fully comparable for each function.
The parameters setting for each simulation is given in the Table 7.7. One can use
them to reproduce and verify the results by “ready to use” C++ code at [11].

Two figures represented results for each test function here. The first one shows
average values of founded parameters and its deviations (based on all 100 simula-
tions) and the second one (bar chart) shows cost value of the best individual after
all migrations (SOMA) or in the last population (DE).

Each simulation was designed so that the same amount number of cost function
evaluations was done. More details about DE (used here like comparative algo-
rithm) can be found in [27], [28] and [13]. Number of cost function evaluation for
SOMA and DE can be calculated quite easily. If principles of SOMA are taken

7.14 SOMA on tested functions 201

into account, then number of cost function evaluations done during one individual
run is given by

����
���������

" � � � � � � � � � �� � � � =
	

	

(7.22)

Because there is one Leader and thus (PopSize-1) individuals will run in one mi-
gration loop then for one migration is done number of cost function evaluations by

����
����������
���'�

" � � � � � � � �� � � �
%���

�
�

�

−= (7.23)

Finally, during all migrations is total number of cost function evaluations given by

����
������
������������
���'�

" � � � �
%%��� −= (7.24)

For strategy AllToAll is situation similar. Because there is no Leader and all indi-
viduals run toward themselves, then nominator is multiplied by PopSize. Term
(PopSize-1) means here the fact, that no one individual run toward itself. The
number of cost function evaluations is for AllToAll strategy given by

����
������
������������
���'��
���'�

" � � � �
%%���% −= (7.25)

Under some assumptions can be also calculated probability that global extreme
will be found. Main assumption is that searched space is discrete, i.e. can be cov-
ered by grid, fine or rough. This discretization can be done if there are no indi-
viduals, who are exactly at one point, i.e. there are no individuals with exactly the
same coordinates. This is true every time, because probability that two or more in-
dividuals will share the same position is almost 0 (there is an infinite number of
real numbers). Discretization can be done “a priori” by estimation or “a posteriori”
so that after evolution is grid size based on minimal distance of individuals in the
population. Thus each axe of searched space consist of L discrete elements and for
cost function with “n” arguments (i.e. “n” axes) is probability done by

! " # $
% &

�

"
� = (7.26)

If grid size is constant, then probability of global extreme retrieval is bigger if
Neval increase and vice versa. Values represented by Neval can increase only if Pop-
Size, PathLength and Migrations are bigger or/and Step is lesser. All these theo-

202 7 SOMA - Self-Organizing Migrating Algorithm

retical conclusions are in good relation with numerical simulations described in
Section 7.8

Table 7.5. SOMA and DE on test functions

Distance from global extreme
The worst case The best case

Test function

SOMA DE SOMA DE
Sphere model, 1st De Jong’s
function, Fig. 7.28

1.01 7.72 3.9 x10-7 0.17

Rosenbrock’s saddle, Fig. 7.29 138.35 222.39 93.27 94.08
3rd De Jong’s function, Fig. 7.30 1.6 x10-9 1.8 x10-5 9.3 x10-11 4.8 x10-6

4th De Jong’s function, Fig. 7.31 1.5 x10-19 4.6 x10-7 4.8 x10-22 1.3 x10-8

Rastrigin’s function, Fig. 7.32 44.82 148.73 22.93 77.41
Schwefel’s function, Fig. 7.33 -40928.8 -41405.1 -41995.7 -41997.8
Griewangk’s function, Fig. 7.34 0.00785 0.14 6.7 x10-6 1.1 x10-19

Stretched V sine wave function,
Fig. 7.35

0.80 0.13 0.035 1.2 x10-37

Test function* , Fig. 7.36 -279.46 -283.44 -290.60 -290.60
Ackley’s function, Fig. 7.37 5.15 0.022 -1.8 x10-4 -1.8 x10-4

Egg holder, Fig. 7.38 -44696.6 -29331.8 -76415.8 -33780.2
Rana’s function, Fig. 7.39 - 25581.5 -17782.9 -38451 -19920.3
Pathological function, Fig. 7.40 17.30 29.80 2.34 27.06
Michalewicz’s function, Fig. 7.41 -97.90 -98.69 -99.89 -99.89
Cosine wave function, Fig. 7.42 -77.40 -41.27 -92.65 -75.22

*Two equal global extremes are presented in this function

Table 7.6. Overview of all simulations

The worst The bestResult
SOMA DE SOMA DE

Winner 10 x 6 x 9 x 4 x
Draw 0 x 3 x

7.14 SOMA on tested functions 203

Table 7.7. Parameter settings

Algorithm settingTest function
SOMA DE

Parameters with constant
value for all simulations

PathLength = 3.
D = 100, MinDiv = -1

D = 100

Abbreviation (see below) S* PRT PS** M*** F CR NP G****

Sphere model, 1st De Jong,
Fig. 7.28

0.5 0.1 20 500 0.8 0.8 20 3300

Rosenbrock’s saddle,
Fig. 7.29

0.11 0.1 60 125 0.2 0.2 60 3450

3rd De Jong, Fig. 7.30 0.11 0.1 20 500 0.8 0.2 20 13301
4th De Jong, Fig. 7.31 0.11 0.1 20 500 0.8 0.2 20 13301
Rastrigin, Fig. 7.32 0.11 0.1 60 400 0.2 0.8 60 11015
Schwefel, Fig. 7.33 0.11 0.1 60 400 0.2 0.2 60 11015
Griewangk, Fig. 7.34 0.11 0.1 60 200 0.2 0.2 60 5508
Stretched V sine wave,
Fig. 7.35

0.11 0.1 60 400 0.2 0.2 60 11015

Test function, Fig. 7.36 0.11 0.1 60 400 0.2 0.2 60 11015
Ackley’s function, Fig. 7.37 0.11 0.1 60 400 0.2 0.2 60 11015
Egg holder, Fig. 7.38 0.11 0.1 60 800 0.2 0.2 60 22030
Rana’s function, Fig. 7.39 0.11 0.1 60 800 0.2 0.2 60 22030
Pathological, Fig. 7.40 0.11 0.1 60 800 0.2 0.2 60 22030
Michalewicz, Fig. 7.41 0.11 0.1 60 200 0.2 0.2 60 5508
Cosine wave, Fig. 7.42 0.11 0.1 60 400 0.2 0.4 60 11015

*Step, **PopSize, ***Migrations, ****Generations

204 7 SOMA - Self-Organizing Migrating Algorithm

0 20 40 60 80 100
Parameter

- 0.0015
- 0.001

- 0.0005

0
0.0005
0.001
0.0015

r
et

e
ma

r
a
P

e
u
la

v

0 20 40 60 80 100
Parameter

- 0.6

- 0.4

- 0.2

0

0.2

0.4

0.6

r
e
te

m
a
ra

P
eu

l
av

0 20 40 60 80 100
Number of Experiments

0

0.2

0.4

0.6

0.8

1

t
so

C
e
u
l
aV

0 20 40 60 80 100
Number of Experiments

0

2

4

6

t
so

C
e
u
l
aV

Fig. 7.28. 1st De Jong’s function

0 20 40 60 80 100
Parameter

- 0.1

- 0.05

0

0.05

0.1

0.15

re
te

m
ar

aP
eu

l
av

0 20 40 60 80 100
Parameter

- 0.75

- 0.5

- 0.25

0

0.25

0.5

0.75

1

re
t
em

ar
a
P

e
ul

av

0 20 40 60 80 100
Number of Experiments

0

20

40

60

80

100

120

140

t
soC

e
ula

V

0 20 40 60 80 100
Number of Experiments

0

50

100

150

200

ts
oC

e
ul

aV

Fig. 7.29. Rosenbrock’s saddle

7.14 SOMA on tested functions 205

0 20 40 60 80 100
Parameter

- 4 ´ 10-11

- 2 ´ 10-11

0

2 ´ 10-11

4 ´ 10-11

r
ete

mara
P

eul
av

0 20 40 60 80 100
Parameter

- 7.5 ´ 10-7
- 5´ 10-7

- 2.5 ´ 10-7
0

2.5 ´ 10-7
5´ 10-7

7.5 ´ 10-7

r
e
te

ma
r
aP

eu
l
av

0 20 40 60 80 100
Number of Experiments

0

2.5 ´ 10- 10

5´ 10- 10

7.5 ´ 10- 10

1´ 10-9

1.25 ´ 10-9

1.5 ´ 10-9

tso
C

eu
laV

0 20 40 60 80 100
Number of Experiments

0

2.5 ´ 10- 6

5 ´ 10- 6

7.5 ´ 10- 6

0.00001

0.0000125

0.000015

0.0000175
ts

oC
e
u
la

V

Fig. 7.30. 3rd De Jong’s function

0 20 40 60 80 100
Parameter

- 7.5 ´ 10-6
- 5´ 10-6

- 2.5 ´ 10-6
0

2.5 ´ 10-6
5´ 10-6

7.5 ´ 10-6

r
et

em
ar

aP
e
ul

av

0 20 40 60 80 100
Parameter

- 0.015

- 0.01

- 0.005

0

0.005

0.01

0.015

re
te

ma
raP

e
ul

av

0 20 40 60 80 100
Number of Experiments

0

2.5 ´ 10- 20

5 ´ 10- 20

7.5 ´ 10- 20

1 ´ 10- 19

1.25 ´ 10- 19

1.5 ´ 10- 19

ts
oC

e
u
la

V

0 20 40 60 80 100
Number of Experiments

0

1 ´ 10- 7

2 ´ 10- 7

3 ´ 10- 7

4 ´ 10- 7

tso
C

eu
laV

Fig. 7.31. 4th De Jong’s function

206 7 SOMA - Self-Organizing Migrating Algorithm

0 20 40 60 80 100
Parameter

- 2

- 1

0

1

2

3

re
te

ma
ra

P
eu

la
v

0 20 40 60 80 100
Parameter

- 3

- 2

- 1

0

1

2

3

re
t
em

ar
a
P

eu
la

v

0 20 40 60 80 100
Number of Experiments

0

10

20

30

40

t
s
o
C

e
u
l
a
V

0 20 40 60 80 100
Number of Experiments

0

20

40

60

80

100

120

140

tso
C

eu
laV

Fig. 7.32. Rastrigin’s function

0 20 40 60 80 100
Parameter

- 300

- 200

- 100

0

100

200

300

400

r
et

ema
ra

P
eu

la
v

0 20 40 60 80 100
Parameter

- 300

- 200

- 100

0

100

200

300

400

r
et

ema
ra

P
eu

la
v

0 20 40 60 80 100
Number of Experiments

- 40000

- 30000

- 20000

- 10000

0

t
s
oC

e
u
l
aV

0 20 40 60 80 100
Number of Experiments

- 40000

- 30000

- 20000

- 10000

0

tsoC
eulaV

Fig. 7.33. Schwefel’s function

7.14 SOMA on tested functions 207

0 20 40 60 80 100
Parameter

- 0.04

- 0.02

0

0.02

0.04

r
et

em
a
ra

P
eu

l
av

0 20 40 60 80 100
Parameter

- 0.02

0

0.02

0.04

re
t
em

a
ra

P
e
u
la

v

0 20 40 60 80 100
Number of Experiments

0

0.002

0.004

0.006

0.008

t
s
o
C

e
u
l
a
V

0 20 40 60 80 100
Number of Experiments

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

tsoC
eulaV

Fig. 7.34. Griewangk’s function

0 20 40 60 80 100
Parameter

- 0.00075
- 0.0005

- 0.00025
0

0.00025
0.0005
0.00075

r
e
t
e
m
a
r
aP

e
u
l
a
v

0 20 40 60 80 100
Parameter

- 2 ´ 10-35

- 1 ´ 10-35

0

1 ´ 10-35

2 ´ 10-35

r
ete

mara
P

eul
av

0 20 40 60 80 100
Number of Experiments

0

0.2

0.4

0.6

0.8

tsoC
eula

V

0 20 40 60 80 100
Number of Experiments

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

ts
oC

eul
aV

Fig. 7.35. Stretched V sine wave function (Ackley)

208 7 SOMA - Self-Organizing Migrating Algorithm

0 20 40 60 80 100
Parameter

- 1

0

1

2

r
et

e
ma

r
a
P

eu
l
av

0 20 40 60 80 100
Parameter

- 1

0

1

2

r
e
te

ma
r
aP

eu
l
av

0 20 40 60 80 100
Number of Experiments

- 250

- 200

- 150

- 100

- 50

0

tso
C

eu
laV

0 20 40 60 80 100
Number of Experiments

- 250

- 200

- 150

- 100

- 50

0

tsoC
eulaV

Fig. 7.36. Test function (Ackley)

0 20 40 60 80 100
Parameter

- 1.5 ´ 10-8
- 1´ 10-8
- 5´ 10-9

0
5´ 10-9
1´ 10-8

1.5 ´ 10-8

r
et

em
ar

aP
e
ul

av

0 20 40 60 80 100
Parameter

- 1 ´ 10-18

- 5 ´ 10-19

0

5 ´ 10-19

1 ´ 10-18

r
et

e
ma

r
a
P

e
u
la

v

0 20 40 60 80 100
Number of Experiments

0

1

2

3

4

5

tsoC
eula

V

0 20 40 60 80 100
Number of Experiments

0

0.005

0.01

0.015

0.02

t
soC

eul
aV

Fig. 7.37. Ackley’s function

7.14 SOMA on tested functions 209

0 20 40 60 80 100
Parameter

- 400

- 200

0

200

400

r
et

ema
ra

P
eu

la
v

0 20 40 60 80 100
Parameter

- 400

- 200

0

200

400

r
et

em
ar

aP
e
ul

av

0 20 40 60 80 100
Number of Experiments

- 60000

- 40000

- 20000

0

tso
C

eulaV

0 20 40 60 80 100
Number of Experiments

- 30000

- 25000

- 20000

- 15000

- 10000

- 5000

0

tsoC
eulaV

Fig. 7.38. Egg holder

0 20 40 60 80 100
Parameter

- 400

- 200

0

200

400

r
e
te

ma
r
aP

eu
l
av

0 20 40 60 80 100
Parameter

- 400

- 200

0

200

400

r
e
te

ma
r
aP

eu
l
av

0 20 40 60 80 100
Number of Experiments

- 30000

- 20000

- 10000

0

tsoC
eulaV

0 20 40 60 80 100
Number of Experiments

- 20000

- 15000

- 10000

- 5000

0

t
soC

e
ula

V

Fig. 7.39. Rana’s function

210 7 SOMA - Self-Organizing Migrating Algorithm

0 20 40 60 80 100
Parameter

- 100

- 50

0

50

r
e
te

ma
r
aP

eu
l
av

0 20 40 60 80 100
Parameter

- 100

- 50

0

50

100

r
et

e
m
ar

a
P

e
u
l
av

0 20 40 60 80 100
Number of Experiments

0

2.5

5

7.5

10

12.5

15

17.5

tso
C

eulaV

0 20 40 60 80 100
Number of Experiments

0

5

10

15

20

25

30

tso
C

eulaV

Fig. 7.40. Pathological function

0 20 40 60 80 100
Parameter

1.6

1.7

1.8

1.9

2

2.1

2.2

re
t
em

ar
a
P

e
ul

a
v

0 20 40 60 80 100
Parameter

1.6

1.7

1.8

1.9

2

2.1

2.2

re
te

ma
ra

P
eu

la
v

0 20 40 60 80 100
Number of Experiments

- 100

- 80

- 60

- 40

- 20

0

t
soC

eul
aV

0 20 40 60 80 100
Number of Experiments

- 100

- 80

- 60

- 40

- 20

0

tsoC
eula

V

Fig. 7.41. Michalewicz’s function

~

j

7.14 SOMA on tested functions 211

~

I
o '" " ro ro '00 - ~"'"

Kurrrer ~l Experirr;8~ts

Fig. 7.42. Cosine wave function (Masters)

a) b)

Fig. 7.43. SOMA (a) anii DE (b) an Egg Holder. The flow of all solutions was for SOMA
spread as is shOWIl in a) only for three functiOIlS - Egg holder, Rana's function aud Patho
logica! function.

212 7 SOMA - Self-Organizing Migrating Algorithm

7.15 Conclusion

This article described SOMA, a new stochastic search algorithm for global opti-
mization. In this chapter were introduced:

�

Basic principles of SOMA algorithm�

Various strategies (versions) of the algorithm�

Selected applications�

Testing for robustness�

Handling of various constraints

The methods described for handling constraints are relatively simple, easy to im-
plement and easy to use. Originally were introduced in [13] and used here because
of their universality and easy implementation.

A soft-constraint (penalty) approach is applied for the handling of constraint
functions. Some optimization methods require a feasible initial solution as a start-
ing point for a search. Preferably, this solution should be rather close to a global
optimum to ensure convergence to it instead of to a local optimum. If non-trivial
constraints are imposed, it may be difficult or impossible to provide a feasible ini-
tial solution.

The efficiency, effectiveness and robustness of many methods are often highly
dependent on the quality of the starting point. The combination of SOMA algo-
rithm and the soft-constraint approach does not require an initial solution, but yet
it can take advantage of a high quality initial solution if one is available.

For example, this initial solution can be used for initialization of the population
in order to establish an initial population that is biased towards a feasible region of
the search space. If there are no feasible solutions in the search space, as is the
case for totally conflicting constraints, SOMA algorithms with the soft-constraint
approach are still able to find the nearest feasible solution. This is often important
in practical engineering optimization applications, because many non-trivial con-
straints are involved.

The test functions used for SOMA and DE testing had all ’negative’ attributes
mentioned in Section 7.2 Well known tested functions (Fig. 7.12 – Fig. 7.27) have
been used and the results were depicted graphically (Fig. 7.28 – Fig. 7.42) and
numerically (Table 7.5) including parameter setting for both algorithms
(Table 7.7). Each test was designed so that the global extreme was searched in 101
dimensions, i.e. the cost functions had 100 arguments. For each cost function, the
success for SOMA and DE for 100 simulations was given. These tests have dem-
onstrated that SOMA is capable of solving hard optimization problems. However
it is important to remember some important facts:

1. Two versions of both algorithms were compared here, one of the best versions
of DE (DERand1Bin) with the basic SOMA (AllToOne). This approach was
chosen for the following reasons: if two algorithms are mutually compared (one

7.15 Conclusion 213

of the the best DE versions and the worst version of SOMA) then it is almost
sure that better versions of SOMA give better results (see Chapter 26).

2. The time needed to get results was relatively long – in the range from 40 sec-
onds to 5 hours (on Intel Pentium 4, 2 GHz, 500 Mb RAM) for both algorithms
(SOMA, DE). This surprisingly long time was caused by fact that each simula-
tion was repeated 100 times. In reality, simulations took approx. from seconds
to minutes, depending on how complicated the cost function was. This fact
show that SOMA can be used for real time processes (see Section 7.11, “Active
Compensation in RF - driven Plasmas”). Very often, it is difficult to find an
analytical solution to a given engineering problem. It was shown that evolu-
tionary algorithms usually find a solution faster than manual calculations.

3. Test functions (as well as the others problems) are sensitive to coordinates of
the global extreme. This means that small differences in coordinates of the
global extreme can cause a large change in the final cost values despite the fact
that the evaluated position is not far from the position of the global extreme.
This is especially important for high dimensional extremes. From this point of
view, a difference of 10% or 39.56 (say from 0) does not means that the opti-
mizing process is far from the global extreme (in sense of the cost function ar-
guments - coordinates).

4. For some functions it is difficult to find the global optimum. Typical examples
are Schwefel’s function (Fig. 7.33) and Rosenbrock's saddle (Fig. 7.29).
Schwefel’s function being particularly difficult: The first problem is that the
minimum is not in the origin as it usually is for other functions, but at the edge
of the search space. The second problem is more interesting: in the case of
symmetrical unfolding of the search space owing to the origin, the position of
the global extreme cyclically changes its position (see Fig. 7.44 a)! A second
tricky function is Rosenbrock's saddle (Fig. 7.44 b). There are almost two iden-
tical extremes but only one is the global one. Hence, this is a quite an unpleas-
ant test function for any optimization algorithm. Both functions (and the others
as well as) provide rather difficult test conditions for EAs as well as problems
where global extreme change its position (that was problem of real example on
plasma reactor, see Section 7.11, “Active Compensation in RF - driven Plas-
mas”).

a)
-2 -1.5 -1 -0.5 0.5 1 1.5 2

20

40

60

80

100

b)

Fig. 7.44. Two tricky functions

214 7 SOMA - Self-Organizing Migrating Algorithm

5. The conditions for the optimization were set as highly difficult as possible i.e. a
limited number of individuals was used, etc. Usually, 20 to 60 individuals were
used for searching in 100 dimensional hyper-plane. It is for this reason that the
global extreme was not exactly found in all cases. Different numbers of indi-
viduals, different parameter settings or different versions of the algorithms
could improve this dramatically. Based on results can be declared that the
SOMA performance was almost the same like DE. SOMA showed a very good,
and sometimes better, ability to find extremes as DE (see Fig. 7.38, Fig. 7.39
and Fig. 7.40).

6. The number of cost function evaluations was preferred for “x” axis on graphs
where history of cost value is depicted prior to Generations or Migrations
(Fig. 7.43). The use of Generations or Migrations can in a graphical point of
view cause that process with a lower convergence to global extreme to be
viewed to the similarly to the faster, and vice versa.

7. Convergence speed. In the case of many test functions DE was faster in the fi-
nal extreme (means here the best located extreme) than SOMA. As is visible
from results described in the Chapter 26, SOMA was able to locate the same
extreme as well as DE but no in all cases. Because examples in the Chapter 26
are low dimensional, it can be stated that SOMA gives better performance on
problems which shows higher dimensionality and/or “irregularity” like func-
tions on Fig. 7.23 – Fig. 7.25 and Fig. 7.38 – Fig. 7.39.

Despite comparing only the basic version of the SOMA algorithm with one of
the best versions of DE algorithm, it is visible that SOMA's performance on the
tested functions was very good. The SOMA algorithm works with minimum as-
sumptions with respect to the objective function. The algorithm requires only the
cost value returned from the objective function for guidance of its seeking for the
optimum. No derivatives or other auxiliary information are needed. Including the
algorithm's extensions discussed in this article, the SOMA algorithm can be ap-
plied to a wide range of optimization problems, which practitioners in the field of
modern optimization would like to solve.

Acknowledgements

This work was supported by the grant No. MSM 26500014 of the Ministry of
Education of the Czech Republic and by grants of the Grant Agency of Czech Re-
public GACR 102/03/0070 and GACR 102/02/0204.

Acknowledgements 215

References

[1] Zelinka Ivan, Artificial Intelligence in Problems of Global Optimiza-
tion, Czech ed., BEN, ISBN 80-7300-069-5

[2] Zelinka Ivan, Vladimir Vasek, Jouni Lampinen, New Algorithms of
Global Optimization, Automatizace (Journal of Automatization,
Czech Ed.), 10/01, 628-634, ISSN 0005-125X

[3] Zelinka, I., Vašek, V., Lampinen, J.: SOMA and Differential Evolu-
tion - New Algorithms of Global Optimisation, Fine Mechanics and
Optics, 4/2002, p. 112-117, ISSN 0447-6441

[4] Zelinka, I., Kolomazník, K., Lampinen, J., Nolle L.: SOMA – Selfor-
ganizing Migrating Algorithm and its application in the Mechanical
Engineering. Part 1. – Theory of Algorithm, Journal of Engineering
Mechanics, 21 p., ISSN 1210-2717

[5] Zelinka, I., Kolomazník, K., Lampinen, J., Nolle L.: SOMA – Selfor-
ganizing Migrating Algorithm and its application in the Mechanical
Engineering. Part 1. – Testing and Applications, Journal of Engineer-
ing Mechanics, 23 p., ISSN 1210-2717

[6] Zelinka Ivan, Prediction and analysis of behavior of dynamical sys-
tems by means of artificial intelligence and synergetic, Ph.D. thesis,
2001, awarded by Siemens price like the best Ph.D thesis of year 2001
in the field of automation and cybernetics in Czech Rep.

[7] Kehar Jiri, Evolutionary algorithms in prediction and control, diploma
thesis, 2000

[8] Dlapa Marek, Evolutionary algorithms in fuzzy logic and control, di-
ploma thesis, 2000

[9] Zelinka Ivan, Lampinen Jouni, SOMA - Self-Organizing Migrating
Algorithm, Mendel 2000, 6th International Conference on Soft Com-
puting, Brno, Czech Republic, ISBN 80-214-1609-2

[10] Zelinka Ivan, Lampinen Jouni,SOMA - Self-Organizing Migrating
Algorithm, Nostradamus 2000, 3rd International Conference on Pre-
diction and Nonlinear Dynamic, Zlín, Czech Republic, ISBN

[11] Articles about SOMA algorithm (source codes, graphics animated gal-
lery, bibliography, see http://www.ft.utb.cz/people/zelinka/soma

[12] &#	��'$	�(���)���*��	
�+����� ��)��,�����-#�
�'.�	
���������/�0�
Bratislava, ISBN 85-246-2000, 2000

[13] Lampinen Jouni, Zelinka, Ivan. New Ideas in Optimization - Me-
chanical Engineering Design Optimization by Differential Evolution.
Volume 1. London : McGraw-Hill, 1999. 20 p.

216 References

ISBN 007-709506-5.
[14] http://www.densif.fee.unicamp.br/~moscato/memetic_home.html,

http://www.geocities.com/ResearchTriangle/3123/ms2.html
[15] Dawkins Richard, The Selfish Gene, Oxford Univ Pr (Trade);

ISBN: 0192860925

[16] Zelinka Ivan, DELA - An Evolutionary Learning Algorithms For Neu-
ral Networks. In Mendel ’99, 5th International Conference on Soft
Computing. Volume 1. Brno : PC-DIR, Brno, 1999, 1999, p. 410;414.
ISBN 80-214-1131-7.

[17] Zelinka Ivan, DELA - An Evolutionary Learning Algorithms For Neu-
ral Networks. In Proces Controll ’99. Volume 1. Slovak University of
Technology : Vydavatelstvo STU, Bratislava, 1999, p. 346;351. ISBN
80-227-1228-0.

[18] Zelinka Ivan, Lampinen Jouni, Evolutionary Identification of Predic-
tive Models. In Nostradamus 99. Volume 1. Zlín : Knihovna
F.Bartoše, Zlín, 1999, p. 114;122. ISBN 80-214-1424-3.

[19] Zelinka Ivan, Lampinen Jouni,Evolutionary Identification of Predic-
tive Models, ISF' 2000, The 20th International Symposium on Fore-
casting, Lisbon, Portugal, June 21-24, Editor - International Institute
of Forecasters

[20] Zelinka Ivan, Lampinen Jouni, Evolutionary Identification of Predic-
tive Models, EIS' 2000, International Symposium on Engineering of
Intelligent Systems, Paisley, Scotland, UK, Editor - C. Fye, Publica-
tion by ICSC Academic Press International Computer Science Con-
ventions, Canada, Switzerland, ISBN 3-906454-21-5

[21] Kenneth V. Price, Rainer Storn and Jouni Lampinen: Differential
Evolution: Global Optimization for Scientists and Engineers
Ivan Zelinka, Inverse Fractal Problem, in print

[22] Zelinka Ivan, Fractal Sight by Means of Neural Network. In Mendel
'98. Volume 1. Brno : PC-DIR, Brno, 1998, p. 305;308. ISBN 80-
214-1199-6.

[23] Zelinka�1#	��%�	$�2
�#��3������*������#4����*�*��1�)������
controll '99. Volume 1. Slovak University of Technology, Bratislava,
STU Bratislava, 1999, p. 318;322. ISBN 80-227-1228-0.

[24] Zelinka, Ivan, Inverse Fractal Problem By Means of Evolutionary Al-
gorithms. In Mendel '99, 5th International Conference on Soft Com-
puting. Volume 1. Brno : PC-DIR, Brno, 1999, p. 430;435.
ISBN 80-214-1131-7.

[25] Lampinen Jouni, Zelinka Ivan, Mixed Integer-Discrete-Continuous
optimalization by Differential Evolution 1. In Mendel '99, 5th Interna-
tional Conference on Soft Computing. Volume 1. Brno : PC-Dir,
Brno, 1999, 1999, p. 71;76. ISBN 80-214-1131-7.

[26] Lampinen Jouni, Zelinka Ivan, Mixed Integer-Discrete-Continuous
optimalization by Differential Evolution 1. In Mendel '99, 5th Interna-
tional Conference on Soft Computing. Volume 1. PC-DIR, Brno,

Acknowledgements 217

1999 : PC-Dir, Brno, 1999, p. 77;81. ISBN 80-214-1131-7.
[27] Lampinen Jouni (1999). A Bibliography of Differential Evolution Al-

gorithm. Technical Report. Lappeenranta University of Technology,
Department of Information Technology, Laboratory of Information
Processing, 16th October 1999. Available via Internet
http://www.lut.fi/~jlampine/debiblio.htm .

[28] Original homepage of DE
http://www.icsi.berkeley.edu/~storn/code.html

[29] Zelinka I.: Analytic Programming by Means of Soma Algorithm.
ICICIS’02, First International Conference on Intelligent Computing
and Information Systems, Egypt, Cairo, 2002, ISBN 977-237-172-3

[30] Rektorys, Karel, Variational methods in Engineering Problems and
Problems of Mathematical Physics. Czech Ed., 1999, ISBN 80-200-
0714-8. English edition is also available on the Internet, see
www.amazon.com

[31] Koza J.R. 1998, Genetic Programming, MIT Press, ISBN 0-262-
11189-6, 1998

[32] Koza J.R.,Bennet F.H., Andre D., Keane M. 1999, Genetic
Programming III, Morgan Kaufnamm pub., ISBN 1-55860-543-6,
1999

[33] Zelinka I., Nolle L., Active Compensation in RF-driven Plasmas by
Means of Differential Evolution, in Price K., Storn R., Lampinen J.,
Differential Evolution: Global Optimisation for Scientists and Engi-
neers, CRC Press, in print

8 Discrete Particle Swarm Optimization,
illustrated by the Traveling Salesman Problem

Maurice Clerc

8.1 Introduction

The classical Particle Swarm Optimization is a powerful method to find the mini-
mum of a numerical function, on a continuous definition domain. As some binary
versions have already successfully been used, it seems quite natural to try to de-
fine a framework for a discrete PSO. In order to better understand both the power
and the limits of this approach, we examine in detail how it can be used to solve
the well known Traveling Salesman Problem, which is in principle very “bad” for
this kind of optimization heuristic. Results show Discrete PSO is certainly not as
powerful as some specific algorithms, but, on the other hand, it can easily be
modified for any discrete/combinatorial problem for which we have no good spe-
cialized algorithm.

8.2 A few words about “classical” PSO

The basic principles in “classical” PSO are very simple. A set of moving particles
(the swarm) is initially “thrown” inside the search space. Each particle has the fol-
lowing features.
1. It has a position and a velocity.
2. It knows its position, and the objective function value for this position.
3. It remembers its best previous position found so far.
4. It knows its neighbours’ best previous position and objective function value

(variant: current position and objective function value). See below for neigh-
bour definition.
From now on, we will consider a particle to be one of its own neighbours, and

so 3 and 4 can be combined.

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004

220 8 Discrete Particle Swarm Optimization, illustrated by the Traveling Salesman
Problem

There are many ways to define a “neighbourhood “ [1], which is set of particles
related to a given one, but we can distinguish two classes.
• “Physical” neighbourhood, which takes distances into account. In practice, dis-

tances are recomputed at each time step, which is quite costly, but some cluster-
ing techniques need this information.

• “Social” neighbourhood, which just takes “relationships” into account. In prac-
tice, for each particle, its neighbourhood is defined as a list of particles at the
very beginning, and does not change. Note that, when the process converges, a
social neighbourhood becomes a physical one.

At each time step, the behaviour of a given particle is a compromise between three
possible choices:
• to follow its own way,
• to go towards its best previous position,
• to go towards the best neighbour’s best previous position, or towards the best

neighbour (variant).

This compromise is formalized by the following equations:

() ()
⎩
⎨
⎧

+=

−+−+=

++

+

11

,3,211

ttt

ttgttitt

vxx

xpcxpcvcv (8.1)

where

vt := velocity at time step t
xt := position at time step t
pi,t := best previous position, found so far, at time step t
pg,t := best neighbour’s previous best position, at time step t
c1, c2, c3 := social/cognitive confidence coefficients

xt

vt

pg,t

i-proximity

g-proximitypi,t

xt+1

Fig. 1. Weighted combination of three possibles moves

The three social/cognitive coefficients respectively quantify:
• how much the particle trusts itself now,
• how much it trusts its experience,

8.3 Discrete PSO 221

• how much it trusts its neighbours.
It is important to note that the social/cognitive coefficients are usually ran-

domly chosen within some given intervals, at each time step, and for each velocity
component. It means a rule like “to go towards its best previous position” should
be understood as “to go towards an area (proximity area) around of its best previ-
ous position”. In classical PSO, these proximity areas are hyperparallelepids.

Of course, much works have been done to study and generalize this method [2,
3, 4, 5, 6, 7, 8]. In particular, in the following discussion, I use a “nohope/rehope”
technique as defined in [9], and the convergence criterion proved in [10].

8.3 Discrete PSO

So, what do we really need for using PSO ?
• A search space of positions/states { }isS =

• A cost/objective function f on S, mapping S on a set of values { }i
f cCS =⎯→⎯ ,

and the minimums of f are the solution states.
• An order on C, or, more generally, a semi-order, so that for every pair of ele-

ments of C ()ji cc , , we can say we have either ji cc < or ji cc ≥ .

• If we want to use a physical neighbourhood, we also need a distance d in the
search space.

Usually, S is a real space DR , and f a numerical continuous function. However,
Eq. 8.1 does not imply that this must be the case. In particular, S may be a finite
set of states and f a discrete function, and, as soon as you are able to define the fol-
lowing basic mathematical objects and operations, you can use PSO:
• position of a particle
• velocity of a particle

• subtraction () velocitypositionposition ⎯⎯ →⎯minus,

• external multiplication () velocityvelocitynumberreal ⎯⎯ →⎯times,_

• addition () velocityvelocityvelocity ⎯⎯ →⎯plus,

• move () positionvelocityposition ⎯⎯⎯⎯ →⎯ (plus)move,

To illustrate this assertion, I have written yet-another-traveling-salesman-
algorithm. This choice is intentionally very far from the “usual” use of PSO, so
that we can have an idea of the power but also of the limits of this approach. The
aim is certainly not to compete with powerful dedicated algorithms like LKH [11],
but mainly to say something like “If you do not have a specific algorithm for your
discrete optimization problem, use PSO: it works”. We are in a finite case, so, to
anticipate any remark concerning the NFL (No Free Lunch) theorem [12], let us
say immediately it does not hold here for at least two reasons: the number of pos-
sible objective functions is infinite and the algorithm does use some specific in-

222 8 Discrete Particle Swarm Optimization, illustrated by the Traveling Salesman
Problem

formation about the chosen objective function by modifying some parameters (and
even, optionally, uses several different objective functions).

Note that some discrete PSO versions have already been defined and used suc-
cessfully[13, 14], in particular an improved version of this “PSO for TSP” [15].

8.4 PSO elements for TSP

8.4.1 Positions and state space

Let { }GG VEG ,= be the weighted graph in which we are looking for Hamiltonian

cycles. GE is the set of weighted edges (arcs) and GV the set of vertices (nodes).

Graph nodes are numbered from 1 to N, so each element of GV can be seen as just

a label { }Nii ,...,1, ∈ . Each element of GE is then a triplet

() +∈∈∈ RwVjViwji jiGGji ,, ,,,,, . As we are looking for cycles, we can consider

just sequences of N+1 nodes, all different, except the last one equal to the first
one. Such a sequence is here called a N-cycle and seen as a “position”. So the
search space is defined as follows: the finite set of all N-cycles.

8.4.2 Objective function

Let us consider a position like () 11121 ,,,,,, ++ =∈= NGiNN nnVnnnnnx � . It is

“acceptable” only if all arcs ()1, +ii nn do exist. In the graph, each existing arc has a

value. In order to define the “cost” function, a classical way it to just complete the
graph, and to create all non existent arcs with an arbitraty value lsup large enough
to ensure no solution could contain such a “virtual” arc, for example

()()
()

()⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=

−−+>

ji

ji

wMINl

wMAXl

llNll

,min

,max

minmaxmaxsup 1 (8.2)

So, each arc ()1, +ii nn has a value, a real one or a “virtual” one. Now, at each

position, a possible objective function can be simply defined by

() ∑
−

=
+

=
1

1
, 1

N

i
nn ii

wxf (8.3)

This objective function has a finite number of values and its global minimum is
indeed reached at a position (N-cycle) that is the best solution.

8.4 PSO elements for TSP 223

8.4.3 Velocity

We want to define an operator v which, when applied to a position during one time
step, gives another position. So, here, it is a permutation of N elements, that is to
say a list of transpositions. Let v be the length of this list. A velocity is then de-

fined by

()() vkVjVijiv GkGkkk ,...,1,,,, =∈∈= (8.4)

or, in short ()()kk jiv ,= , which means “exchange nodes ()11, ji , then nodes

()22 , ji , etc. and at last nodes ()vv ji , ”. Note that we need two parentheses, for it

is a list of pairs.
Two such different lists can generate the same result when applied independ-

ently to any position. We call such velocities equivalent and use the notation ≅ to
express it. Thus, if 1v and 2v are equivalent, we say 21 vv ≅ . For example, we have

() ()() () ()()3,1,5,25,2,3,1 ≅ . In fact, in this example, they are not only equivalent,

they are opposite (see below): when using velocities to move on the search space,
this one is like a « sphere »: you can reach the same point following two opposite
paths. A null velocity is a velocity equivalent to ∅ , the empty list.

8.4.4 Opposite of a velocity

It is defined by

()()11, +−+−=¬ kvkv jiv (8.5)

This formula means “to do the same transpositions as in v, but in reverse or-
der”. It is easy to verify that we have vv =¬¬ (and ∅≅¬⊕ vv , see below Ad-
dition “velocity plus velocity”).

8.4.5 Move (addition) “position plus velocity”

Let x be a position and v a velocity. The position vxx +=’ is found by applying
the first transposition of v to x, then the second one to the result etc.

8.4.5.1 Example

()
() ()()⎩

⎨
⎧

=
=

3,2,2,1

1,5,4,3,2,1

v

x (8.6)

Applying v to x, we obtain successively

224 8 Discrete Particle Swarm Optimization, illustrated by the Traveling Salesman
Problem

()
()3,5,4,2,1,3

2,5,4,3,1,2
(8.7)

8.4.6 Subtraction “position minus position”

Let 1x and 2x be two positions. The difference 12 xx − is defined as the velocity

v, found by a given algorithm, so that applying v to 1x gives 2x . The condition

“found by a given algorithm” is necessary, for, as we have seen, two velocities can
be equivalent, even when they have the same size. In particular, the algorithm is
chosen so that we have ()2112 xxxx −¬=− , and ∅=−=⇒= 1221 xxvxx .

8.4.7 Addition “velocity plus velocity”

Let 1v and 2v be two velocities. In order to compute 21 vv ⊕ we define the list of

transpositions which contains first the elements (pairs, or transpositions) of 1v ,

followed by the elements of 2v . Optionally, we “contract” it to obtain a smaller

equivalent velocity. In particular, this operation is defined so that ∅=¬⊕ vv .

Then, we have 2121 vvvv +≤⊕ , but we usually do not have

1221 vvvv ⊕=⊕ .

8.4.8 Multiplication “coefficient times velocity”

Let c be a real coefficient and v be a velocity. There are several cases, depending
on the value of c.

8.4.8.1 Case c = 0

We have ∅=cv .

8.4.8.2 Case c �]0,1]

We just “truncate” v. Let cv be the greatest integer smaller than or equal to vc .

So we define ()() cvkjicv kk ,...,1,, == .

8.5 The algorithm “PSO for TSP”. Core and variations 225

8.4.8.3 Case c > 1

It means we have [[1,0’,,’ * ∈∈+= ckckc N . So we can define

vcvvvcv
k

’
times

⊕⊕⊕⊕= �� ��� �� � .

8.4.8.4 Case c < 0

By writing () vccv ¬−= , we just have to consider one of the previous cases. Note

that we have 2121 cvcvvv ≅⇒≅ if c is an integer, but it is usually not true in the

general case.

8.4.9 Distance between two positions

Let 1x and 2x be two positions. The distance between these positions is defined

by 1221),(xxxxd −= . Note: it is a metric, for we do have (x3 is any third posi-

tion):

133212

2112

2112

0

xxxxxx

xxxx

xxxx

−+−≤−

=⇔=−

−=−

8.5 The algorithm “PSO for TSP”. Core and variations

8.5.1 Equations

We can now rewrite Eq. 8.1 as follows:
() ()

⎩
⎨
⎧

+=

−⊕−⊕=

++

+

11

,3,211

ttt

ttgttitt

vxx

xpcxpcvcv (8.8)

In practice, we assume 23 cc = . No experiment has found that a different

choice gives significantly better result on some class of problems. More precisely,
for a given problem, you may find a better choice after a lot of trials, but there is
no known rule to find it “in advance”. Therefore, choosing 23 cc = doesn’t change

the algorithm in any significant way. By defining an intermediate position
() 2,,,, titgtitig pppp −+= , we finally use the following system:

226 8 Discrete Particle Swarm Optimization, illustrated by the Traveling Salesman
Problem

()
⎪⎩

⎪
⎨
⎧

+=

−⊕=

++

+

11

,
’
211

ttt

ttigtt

vxx

xpcvcv (8.9)

The advantage of this equation is that it can be used as a guideline for choosing
“good” coefficients [10], even if the proofs given in this article is applied to dif-
ferentiable systems. It is indeed possible to use it just like that, but with such a
straightforward and simple approach, the swarm size may need be quite big to
avoid getting stuck at local minimums. Thus, some modifications of the core algo-
rithm are quite helpful to improve performances. In particular, the No-
Hope/ReHope process can be very powerful, which we describe in the next sec-
tion.

8.5.2 NoHope tests

8.5.2.1 Criterion 0

If a particle has to move “towards” another one which is at distance 1, either it
does not move at all, or it goes to exactly at the same position as the second one,
depending on the social/confidence coefficients. When the swarm size gets
smaller than N(N-1), it may happen that all moves computed according to Eq. 8.9
are null. In this case there is absolutely no hope to improve the current best solu-
tion.

8.5.2.2 Criterion 1

The NoHope test defined in [9] is “Is the swarm to small?”. This demand a com-
putation of the swarm diameter at each time step, which is expensive. However, in
a discrete case like the one being presented here, as soon as the distance between
two particles tend to become “too small”, the particles become identical (usually
first by positions and then by velocities). So, at each time step, a “reduced” swarm
is computed, in which all particles are different, which is not very expensive, and
the NoHope test becomes “Is the swarm too reduced?”, say by 50%.

8.5.2.3 Criterion 2

Another criterion has been added: “Is the swarm too slow?”. This is done by com-
paring the velocities of all particles to a threshold, either individually or globally.
In one version of the algorithm, this threshold is in fact modified at each time step,
according to the best result obtained so far and to the statistical distribution of arc
values.

8.5 The algorithm “PSO for TSP”. Core and variations 227

8.5.2.4 Criterion 3

Another very simple criterion is defined: “No improvement for too many time
steps”. However, in practice, it appears that criteria 1 and 2 are sufficient.

8.5.3 ReHope process

As soon as there is “no hope”, the swarm is re-expanded. The first two methods
used here are inspired by the ones described in [9] and [16].

8.5.3.1 Lazy Descent Method (LDM)

Each particle goes back to its previous best position and, from there, moves ran-
domly and slowly (1=v) and stops as soon as it finds a better position or when a

maximal number of moves maxM is reached (in the examples below NM =max).

If the current swarm is smaller than the initial one, it is completed by a new set of
randomly chosen particles.

8.5.3.2 Energetic Descent Method (EDM)

Each particle goes back to its previous best position and, from there, moves slowly
(1=v) as long as it finds a better position in at most maxM moves. If the current

swarm is smaller than the initial one, it is completed by a new set of particles ran-
domly chosen. You may find, by chance, a solution, but it is more expensive than
LDM. Ideally, it should be used only if the combination Eq. 8.9 + LDM seems to
fail.

8.5.3.3 Local Iterative Levelling (LIL)

This method is more powerful … and more expensive. In practice, it should be
used only when we know there is a better solution, but the combination Eq. 8.9 +
EDM fails to find it.

The idea is as follows. There are infinitely possible objective functions with the
same global minimum, so we can locally and temporarily use any of them to guide
a particle. For each immediate physical neighbour y (at distance 1) of the particle
x, a temporary objective function value ()yft is computed by using the following

algorithm.

LIL algorithm

• Find all neighbours at distance 1.
• Find the best one, ymin.

228 8 Discrete Particle Swarm Optimization, illustrated by the Traveling Salesman
Problem

• Assign to y the temporary objective function value () () ()() 2min xfyfyft +=
and, according to these temporary evaluations, x moves to its best immediate
neighbour.

In TSP, the cost of such an algorithm is ()2NO . If repeated too often, it consid-

erably increases the total cost of the process. That is why it should be used only if
there is really “no hope”, and if you do want the best solution. In practice, the al-
gorithm will usually find a good one, even without using LIL.

8.5.4 Adaptive ReHope Method (ARM)

The four methods described above (NoHope ReHope/LDM/EDM/LIL) can be
used automatically in an adaptive way, depending on how many time steps has
passed from the last improvement of the solution. A possible strategy is given in
the following table.

Table 8.1. A possible ReHope strategy

8.5.5 Queens

Instead of using the best neighour/neighbour’s previous best for each particle, we
can use an extra particle, which “summarizes” the neighbourhood. This method is
a combination of the (unique) queen method defined in [9] and the multi-
clustering method described in [17]. For each neighbourhood, we iteratively build
a centroid and take it as the best neighbour (pg,t in Eq. 8.8).

8.5.6 Extra-best particle

In order to speed up the process, the algorithm can also use a special extra particle
that stores the best position found so far. It is not absolutely necessary, for this po-
sition is also memorized as “previous best” in at least one particle, but it may
avoid a whole sequence of iterations between two ReHope processes.

Number of time steps without
improvement

ReHope type

0-1 No ReHope
2-3 Lazy Descent Method

4 Energetic Descent Method
>4 Local Iterative Levelling

8.6 Examples and results 229

8.5.7 Parallel and sequential versions

The algorithm can run either in (simulated) parallel mode or in sequential mode.
In the parallel mode, at each time step, new positions are computed for all parti-
cles and then the swarm is globally moved. In sequential mode, each particle is
moved at a time: particle 1, then particle 2, … then particle N, then again particle
1, etc. Note that Eq. 8.9 implicitly supposes a parallel mode, but in practice there
is no clear difference in performances on a given sequential machine, and the sec-
ond method is a bit less expensive.

8.6 Examples and results

8.6.1 Parameters choice

The purpose of this paper is mainly to show how PSO can be used, in principle, on
a discrete problem. For that reason, we use some default values for the parameters.
Of course, a better set of parameters can certainly be found by “optimizing the op-
timization” (in fact, PSO itself may be used to find an optimum in a parameter
space).

8.6.1.1 Social/cognitive coefficients

If nothing else is explicitly mentioned, in all the examples we use] [1,01 ∈c (typi-

cally 0.5 if NoHope/ReHope is used or 0.999 if not). c2 is randomly chosen at
each time step in []2,0 . The convergence criterion defined in [10] is satisfied. This
criterion is proved only for differentiable objective functions, but it is not unrea-
sonable to think it should work here too. At least, in practice, it does.

8.6.1.2 Swarm size and neighbourhood size

Ideally, the best swarm and neighbourhood sizes depend on the number of local
minimums of the objective function, say local_minn , so that the swarm can have

sub-swarms around each of these minimums. Usually, we simply do not have this
information, except the fact that there are at most N-1 such minimums. A possible
way is to use a very small swarm at the beginning, just to have an idea of the land-
scape defined by the objective function (see the example below). Also, a statistical
estimation of nlocal_min can be made, using the arc values distribution. In practice,
we usually use a swarm size S equal to N-1 (see below Structured Search Map).

Some considerations, not completely formalized, about the fact that each parti-
cle uses three velocities to compute a new one, indicate that a good neighbourhood
size should be simply 4 (including the particle itself).

230 8 Discrete Particle Swarm Optimization, illustrated by the Traveling Salesman
Problem

But all this is still “rules of thumb”, and this is the main limitation of the ap-
proach: on a given example, we do not know in advance what are the best parame-
ters and usually have to try different values. That is why, in particular, some adap-
tive PSO versions are now under development.

8.6.1.3 Performance criteria

Normally, the performance measures are reported in literature with too specific
data. For example, “The program took 3 seconds on XYZ machine to solve in-
stance xxxx from TSPLIB”. Unfortunately, such data is not easy to compare with
another performance measure which uses machine ZYX. Thus, we think it is bet-
ter to have a measure like the following: “it needed 7432 tour evaluations to reach
a solution”.

However, completely compute the objective function value on a N-cycle or to
update it after having swapped two nodes is not all the same: the first case is about
N/4 times more expensive. So we use two criteria: the number of position evalua-
tions and the number of arithmetic/logical operations. It is still not perfect, for the
same algorithm can be written in different ways even in the same language, one
more efficient, and the other less. However, if you know your machine is a xxx
Mips computer, you can estimate how long it would take to run the example.

8.6.2 A toy example as illustration

In this example, we use here a very simple graph (17 nodes) from TSPLIB, called
br17.atsp (cf. Appendix). The minimal objective function value is 39, and there
are several solutions. Although it has only a few nodes, it is designed so that find-
ing one of the best tours is not so easy, so it is nevertheless an interesting example.

8.6.2.1 What the landscape looks like

We define randomly a small swarm of, say, five particles, where pbest is the best
one. For each other particle pi, we now consider the linear sequence

() () 1,...,0,11 −=−−+= NkNppkpp bestik , and plot the graph

() () ()()kbest pfpfNk −− ,1 . It give us an idea of the landscape (see Fig. 2 and

Fig. 3). The landscape is clearly quite chaotic, so we will surely need to use the
NoHope/ReHope process quite often. Also, the Queen option is probably not effi-
cient (a centroid does not give a better position).

8.6 Examples and results 231

-150

-100

-50

0

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Distance to the best

D
if

f.
 o

f
fu

n
ct

io
n

 v
al

u
es

Fig. 2. One section of the search space landscape

Best particle

Fig. 3. Main sections for a 5-swarm

8.6.2.2 Structured Search Map. How the swarm moves

Let us suppose we know a solution solx . We consider all possible positions in the

search space, and plot the map () ()()xfxxd sol ,, . On this map, at each time step,

we highlight the positions of the particles, so that we can see how it moves. We
define some equivalence classes according to the equivalence relation

() ()’,,’ xxdxxdxx solsol =⇔≅ . As we can see, not only the swarm globally

moves towards the solution, but some particles also tend to move towards the
minimum (in terms of objective function value) of the equivalence classes. It
means that even if it does not find the best solution, it finds at least (and usually
quite rapidly) interesting quasi-solutions. It also means that if the swarm is big

232 8 Discrete Particle Swarm Optimization, illustrated by the Traveling Salesman
Problem

enough, we may simultaneously find several solutions (this property is used in
multiple objective optimization [18, 19]).

In our example, as the number of positions is quite big (1221!16 ≈), we plot
only a few of them (4700), as the “background” of the diagram sequence of Fig. 4
and 5. We clearly see that the example has been designed to be a bit difficult, for
there is a “gap” between distances 4 and 8. Here, we use a swarm of 16 particles,
and it finds three solutions in one “standard” run, and some others if we modify
the parameters (see Appendix).

0

50

100

150

200

250

300

350

400

0 5 10 15 20

Distance to a given solution

Fig. 4. Initial position on the Structured Search Map (swarm size = 16)

0

50

100

150

200

250

300

350

400

0 5 10 15 20

Distance to a given solution

8.6 Examples and results 233

0

50

100

150

200

250

300

350

400

0 5 10 15 20

Distance to a given solution

0

50

100

150

200

250

300

350

400

0 5 10 15 20

Distance to a given solution

0

50

100

150

200

250

300

350

400

0 5 10 15 20

Distance to a given solution

234 8 Discrete Particle Swarm Optimization, illustrated by the Traveling Salesman
Problem

0

50

100

150

200

250

300

350

400

0 5 10 15 20

Distance to a given solution

0

50

100

150

200

250

300

350

400

0 5 10 15 20

Distance to a given solution

0

50

100

150

200

250

300

350

400

0 5 10 15 20

Distance to a given solution

Fig. 5. How the swarm moves on the Structured Search Map (some times step between 1
and 480). It takes some times to jump the gap betwee distance 9 and 4

8.6 Examples and results 235

8.6.3 Some results, and discussion

Table 8.2. Some result using Discrete PSO on graph br17.atsp

Swarm
size

Hood
size

c1 Random
c2

ReHope
type

Best solution

16 4 0.500]0,2] ARM 39
(3 solutions)

16 4 0.500]0,2] ARM 39
16 4 with

queens
0.500]0,2] ARM 39

(3 solutions)
8 4 0.500]0,2] ARM 39
1 1 0.500]0,2] ARM 44

128 4 0.999]0,2] no 47
32 4 0.999]0,2] no 66
16 4 0.999]0,2] no 86

Table 8.2 (cont.)

Hood type Tour evalua-
tions

Arithmeti-
cal/logical opera-

tions
social 7990 4.8 M

physical 7742 6.3 M
social or

physical
9051 5.8 M

social 4701 2.8 M
social 926 to ∞ 0.6 M
social 41837 to ∞ 33.2 M to ∞
social 14351 to ∞ 10.8 M to ∞
social 2880 to ∞ 1.9 M to ∞

As we can see from Table 8.2:
• Using “physical” neighbourhood may need less tour evaluations, but is much

more expensive than “social” option, if we consider the total number of arith-
metical/logical operations (distances have to be recaculated at each time step).
The fact that with social neighbourhood you find more solutions is not a gen-
eral rule.

• Using only ReHope methods (in this case, using s particles for T time steps is
equivalent to using just one particle for sT time steps) is not enough to reach the
best solution.

• Using only core algorithm, with no ReHope at all, is not enough to reach the
best solution, unless, probably, you use a huge swarm.

• Using queens is not interesting.
Results are not particularly good nor bad, mainly because we use a generic Re-

Hope method which is not specifically designed for TSP. However, this is done on

236 8 Discrete Particle Swarm Optimization, illustrated by the Traveling Salesman
Problem

purpose. This way, by just changing the objective function, you could use Discrete
PSO for different problems.

Appendix

Graph br17.atsp (from TSPLIB)

In the original data, diagonal values are equal to 9999. Here, they are equal to 0.
For PSO algorithm, it changes nothing, and it simplifies the visualization program.
NAME: br17
TYPE: ATSP
COMMENT: 17_city_problem_(Repetto)_Opt.:_39
DIMENSION: 17
EDGE_WEIGHT_TYPE: EXPLICIT
EDGE_WEIGHT_FORMAT: FULL_MATRIX
EDGE_WEIGHT_SECTION

0 3 5 48 48 8 8 5 5 3 3 0 3 5 8 8 5
3 0 3 48 48 8 8 5 5 0 0 3 0 3 8 8 5
5 3 0 72 72 48 48 24 24 3 3 5 3 0 48 48 24
48 48 74 0 0 6 6 12 12 48 48 48 48 74 6 6 12
48 48 74 0 0 6 6 12 12 48 48 48 48 74 6 6 12
8 8 50 6 6 0 0 8 8 8 8 8 8 50 0 0 8
8 8 50 6 6 0 0 8 8 8 8 8 8 50 0 0 8
5 5 26 12 12 8 8 0 0 5 5 5 5 26 8 8 0
5 5 26 12 12 8 8 0 0 5 5 5 5 26 8 8 0
3 0 3 48 48 8 8 5 5 0 0 3 0 3 8 8 5
3 0 3 48 48 8 8 5 5 0 0 3 0 3 8 8 5
0 3 5 48 48 8 8 5 5 3 3 0 3 5 8 8 5
3 0 3 48 48 8 8 5 5 0 0 3 0 3 8 8 5
5 3 0 72 72 48 48 24 24 3 3 5 3 0 48 48 24
8 8 50 6 6 0 0 8 8 8 8 8 8 50 0 0 8
8 8 50 6 6 0 0 8 8 8 8 8 8 50 0 0 8
5 5 26 12 12 8 8 0 0 5 5 5 5 26 8 8 0

Some solutions found by Discrete PSO

Each line of Table 8.3 gives the sequence of nodes of a minimum tour (common
total weight=39). For example, according to the above matrix, the first tour gives
the following weights: 5+0+3+0+0+0+8+0+0+0+6+0+12+0+0+5+0=39.

Appendix 237

Table 8.3. Some solutions for br17.atsp

3 14 11 13 2 10 15 7 6 16 4 5 9 17 8 12 1

6 7 15 16 5 4 17 9 8 10 2 13 11 14 3 12 1

7 6 15 16 5 4 9 8 17 10 11 13 2 14 3 12 1

9 8 17 5 4 15 6 7 16 13 10 11 2 3 14 12 1

12 3 14 10 2 13 11 17 8 9 5 4 7 6 16 15 1

12 3 14 10 11 2 13 17 8 9 4 5 16 6 15 7 1

12 6 7 15 16 5 4 9 17 8 2 11 13 10 14 3 1

12 8 9 17 5 4 16 15 7 6 10 2 11 13 14 3 1

12 14 3 2 10 11 13 17 9 8 5 4 15 6 7 16 1

12 14 3 11 2 10 13 15 6 16 7 4 5 9 8 17 1

12 15 16 7 6 5 4 8 17 9 11 10 2 13 14 3 1

12 16 15 7 6 4 5 9 8 17 10 2 11 13 14 3 1

12 16 15 7 6 5 4 8 9 17 10 11 2 13 14 3 1

12 16 7 6 15 5 4 9 17 8 11 10 13 2 14 3 1

12 17 8 9 5 4 15 16 7 6 2 10 11 13 3 14 1

12 17 8 9 5 4 15 16 7 6 2 10 11 13 3 14 1

14 3 10 13 11 2 17 8 9 4 5 15 6 16 7 12 1
14 3 10 13 11 2 8 17 9 4 5 15 6 7 16 12 1

14 3 10 11 2 13 8 17 9 4 5 15 7 6 16 12 1

16 6 7 15 4 5 9 8 17 13 11 10 2 3 14 12 1

16 6 7 15 4 5 9 8 17 13 10 2 11 3 14 12 1

17 9 8 4 5 7 6 16 15 10 11 2 13 14 3 12 1

12 14 3 2 10 13 11 16 6 7 15 4 5 17 9 8 1

238 References

References

[1] Kennedy J., "Small Worlds and Mega-Minds: Effects of Neighborhood Topology
on Particle Swarm Performance", Congress on Evolutionary Computation, Wash-
ington D.C., 1999, p. 1931-1938.

[2] Angeline P. J., "Using Selection to Improve Particle Swarm Optimization", IEEE
International Conference on Evolutionary Computation, Anchorage, Alaska, May
4-9, 1998, p. 84-89.

[3] Eberhart R. C., Kennedy J., "A New Optimizer Using Particle Swarm Theory",
Sixth International Symposium on Micro Machine and Human Science, Nagoya,
Japan, 1995, p. 39-43.

[4] Kennedy J., Eberhart R. C., "Particle Swarm Optimization", IEEE International
Conference on Neural Networks, Perth, Australia, 1995, p. 1942-1948.

[5] Kennedy J., "The Particle Swarm: Social Adaptation of Knowledge", Interna-
tional Conference on Evolutionary Computation, Indianapolis, Indiana, 1997, p.
303-308.

[6] Kennedy J., "The behavior of particles", Evolutionary VII, San Diego, CA, 1998,
p. 581-589.

[7] Shi Y., Eberhart R. C., "Parameter Selection in Particle Swarm Optimization",
Evolutionary Programming VII, 1998,

[8] Shi Y. H., Eberhart R. C., "A Modified Particle Swarm Optimizer", International
Conference on Evolutionary Computation, Anchorage, Alaska, May 4-9, 1998, p.
69-73.

[9] Clerc M., "The Swarm and the Queen: Towards a Deterministic and Adaptive
Particle Swarm Optimization", Congress on Evolutionary Computation, Wash-
ington DC, 1999, p. 1951-1955.

[10] Clerc M., Kennedy J., "The Particle Swarm-Explosion, Stability, and Conver-
gence in a Multidimensional Complex Space", IEEE Transactions on Evolution-
ary Computation, vol. 6, 1, 2002, p. 58-73.

[11] Helsgaun K., An Effective Implementation of the Lin-Kernighan Traveling
Salesman Heuristic, Department of Computer Science,Roskilde University,
Denmark, 1997.

[12] Wolpert D. H., Macready W. G., No Free Lunch for Search, The Santa Fe Insti-
tute, 1995.

[13] Kennedy J., Eberhart R. C., "A discrete binary version of the particle swarm algo-
rithm", Conference on Systems, Man, and Cybernetics, 1997, p. 4104-4109.

[14] Yoshida H., Kawata K., Fukuyama Y., "A Particle Swarm Optimization for Reac-
tive Power and Voltage Control considering Voltage Security Assessment", IEEE
Trans. on Power Systems, vol. 15, 4, 2001, p. 1232-1239.

[15] Secrest B. R., Lamont G. B., "Communication in Particle Swarm Optimization Il-
lustrated by the Travelling Salesman Problem", Workshop on Particle Swarm Op-
timization, Indianapolis, IN: Purdue School of Engineering and Technology,
2001,

Appendix 239

[16] He Z., Wei C., Jin B., Pei W., Yang L., "A New Population-based Incremental
Learning Method for the Traveling Salesman Problem", Congress on Evolution-
ary Computation, Washington D.C., 1999, p. 1152-1156.

[17] Kennedy J., "Stereotyping: Improving Particle Swarm Performance With Cluster
Analysis", Congress on Evolutionary Computation,, 2000, p. 1507-1512.

[18] Coello Coello C. A., Toscano Pulido G., Lechuga M. S., Handling Multiple Ob-
jectives with Particle Swarm Optimization, EVOCINV-02-2002, CINVESTAV,
Evolutionary Computation Group, 2002.

[19] Hu X., Eberhart R. C., "Multiobjective Optimization Using Dynamic Neighbor-
hood Particle Swarm Optimization", Congress on Evolutionary Computation
(CEC’2002), Piscataway, New Jersey, 2002, p. 1677-1681.

9 Applications in Heat Transfer

B V Babu

9.1 Introduction

In this chapter, we shall discuss two successful applications of Genetic Algorithms
(GA) and Differential Evolution (DE) on heat transfer problems: (1) Estimation of
heat transfer parameters in trickle bed reactors, and (2) Optimal design of shell-
and-tube heat exchanger.

In the first problem, a new non-sequential technique is proposed for the estima-
tion of effective heat transfer parameters using radial temperature profile meas-
urements in a gas–liquid co-current downflow through packed bed reactors (often
referred to as trickle bed reactors). Orthogonal collocation method combined with
a new optimization technique, differential evolution (DE) is employed for estima-
tion. DE is an exceptionally simple, fast and robust, population based search algo-
rithm that is able to locate near-optimal solutions to difficult problems. The results
obtained from this new technique are compared with that of radial temperature
profile (RTP) method. Results indicate that orthogonal collocation augmented
with DE offer a powerful alternative to other methods reported in the literature.
The proposed technique takes less computational time to converge when com-
pared to the existing techniques without compromising with the accuracy of the
parameter estimates. This new technique takes on an average 10 s on a 90 MHz
Pentium processor as compared to 30 s by the RTP method. This new technique
also assures of convergence from any starting point and requires less number of
function evaluations.

The second problem presents the application of Differential Evolution (DE) for
the optimal design of shell-and-tube heat exchangers. The main objective in any
heat exchanger design is the estimation of the minimum heat transfer area required
for a given heat duty, as it governs the overall cost of the heat exchanger. Lakhs
of configurations are possible with various design variables such as outer diame-
ter, pitch, and length of the tubes; tube passes; baffle spacing; baffle cut etc.
Hence the design engineer needs an efficient strategy in searching for the global
minimum. In the present study for the first time DE, an improved version of Ge-

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004

242 9 Applications in Heat Transfer

netic Algorithms (GAs), has been successfully applied with different strategies for
1,61,280 design configurations using Bell’s method to find the heat transfer area.
In the application of DE 9680 combinations of the key parameters are considered.
For comparison, GA is also applied for the same case study with 1080 combina-
tions of its parameters. For this optimal design problem, it is found that DE, an
exceptionally simple evolution strategy, is significantly faster compared to GA
and yields the global optimum for a wide range of the key parameters.

Since their inception three decades ago, Genetic Algorithms (GA) have evolved
like the species they try to mimic (Goldberg, 1989). Just as competition drives
each species to adapt to a particular environmental niche, so too, has the pressure
to find efficient solutions across the spectrum of real-world problems forced ge-
netic algorithms to diversify and specialize (Davis, 1991; Moros et al., 1996; Wolf
and Moros, 1997; Chakraborti and Sastry, 1997, 1998; Babu and Mohiddin, 1999;
Babu and Vivek, 1999). Differential Evolution (Price and Storn, 1997; Babu,
2001) is a search procedure similar to a GA applied on real variables, which is
significantly fast at numerical optimization and is also more likely to find a func-
tion’s true global optimum. DE is in similar to a real coded GA combined with an
adaptive random search (ARS) (Boender and Romeijn, 1995; Maria, 1998) with a
normal random generator. Among DE’s advantages are its simple structure, ease
of use, speed and robustness.

The various applications of DE include: digital filter design (Storn, 1995),
fuzzy decision making problems of fuel ethanol production (Wang et al., 1998),
Design of fuzzy logic controller (Sastry et al., 1998), batch fermentation process
(Chiou and Wang, 1999; Wang and Cheng, 1999), multi sensor fusion (Joshi and
Sanderson, 1999), dynamic optimization of continuous polymer reactor (Lee et al.,
1999), estimation of heat transfer parameters in trickle bed reactor (Babu and Sas-
try, 1999), optimization of alkylation reaction (Babu and Chaturvedi, 2000), opti-
mal design of heat exchangers (Babu and Mohiddin, 1999; Babu and Munawar,
2000; Babu and Munawar, 2001), synthesis & optimization of heat integrated dis-
tillation system (Babu and Singh, 2000), optimization of non-linear functions
(Babu and Angira, 2001a), scenario- integrated optimization of dynamic systems
(Babu and Gautam, 2001), optimization of thermal cracking operation (Babu and
Angira, 2001b), determining the number of components in mixtures of linear
models (Dollena et al., 2001), Identification of hysteretic systems using the dif-
ferential evolution algorithm (Kyprianou et al., 2001), optimization of Low Pres-
sure Chemical Vapour Deposition Reactors Using Hybrid Differential Evolution
(Lu and Wang, 2001), hybrid differential evolution for problems of Kinetic Pa-
rameter Estimation and Dynamic Optimization of an Ethanol Fermentation Proc-
ess (Wang et al., 2001), optimal design of auto-thermal ammonia synthesis reactor
(Babu et al., 2002), global optimization of MINLP problems (Babu and Angira,
2002a; Angira and Babu, 2003), optimization of non-linear chemical processes
(2002b), etc. Upreti and Deb (1997) used GAs to optimize the length of ammonia
reactor by solving coupled differential equations. They used binary strings to code
the parameters; however this choice limits the resolution with which an optimum
can be located to the precision set by the number of bits in the integer (Davis,
1991; Price and Storn, 1997; Wolf and Moros, 1997). Wolf and Moros (1997) en-

9.1 Introduction 243

coded a floating point codes into mantissa, exponent and sign of exponent; how-
ever the string encoding can be completely circumvented by using the floating
point codes directly. DE uses floating-point numbers that are more appropriate
than integers for representing points in continuous space, which not only uses
computer resources efficiently but also reduces the computational time which is
very crucial for estimation problems. Upreti and Deb (1997) used bitwise mutation
(logical exclusive OR, XOR). However addition is a more appropriate choice for
mutation to search the continuum. Consider, for example, the consequences of us-
ing the XOR operator for mutation. To change a binary 15 (01111) into a binary
16 (10000) with an XOR operation requires inverting all the five bits. In most bit
flipping schemes, a mutation of this magnitude is very rare even though the muta-
tion operator is meant for fine tuning. The easiest way to restore the adjacency of
neighboring points is addition. Using addition, 15 becomes 16 by just adding 1.
Wolf and Moros (1997) divided the mutation probability into mantissa, exponent
and the sign mutation probabilities and altered the selected segments randomly.
The magnitude of alteration used by them was fixed, whereas, the magnitude of
the mutation increments are automatically scaled by the simple adaptive scheme
used by DE. The overall structure of the differential evolution (DE) algorithm de-
veloped by Price and Storn (1997) resembles that of most other population-based
searches. Generally, a GA is used for maximizing a criterion, whereas DE is used
for minimizing a criterion. DE utilizes NP parameter vectors of dimension D,

1,..........2,1,0,, −=Γ NPii,x (9.1)

as a population for each generation Γ. NP remains constant during the optimiza-
tion process. The initial population is chosen randomly if nothing is known about
the system. If a preliminary solution is available, the initial population is often
generated by adding normally distributed random deviations to the nominal solu-
tion xnom,0. The crucial idea behind DE is a new scheme for generating trial pa-
rameter vectors. DE generates new parameter vectors by adding the weighted dif-
ference vector between two population members to a third member. Extracting
distance and direction information from the population to generate random devia-
tions results in an adequate scheme with excellent convergence properties. The
two operators used are Mutation and Recombination. For each vector, xiΓ, a trial
vector v is generated according to,

() ()
21 ,r ΓΓΓΓΓ −⋅+−⋅+= ,,,, ribesti F xxxxxv λ (9.2)

with

[]1021 −∈ NPrr ,, (9.3)

integer and mutually different, λ > 0, and F > 0.
The integers r1 and r2 are chosen randomly from the interval [0, NP-1] and are

different from the running index i. F is a real and constant factor that controls the
amplification of the differential variation. The idea behind using λ is to provide a
means to enhance the greediness of the scheme by incorporating the current best
value xbest,Γ. Recombination (crossover) provides an alternative and complemen-

244 9 Applications in Heat Transfer

tary means of creating viable vectors from the components of existing vectors.
Previous studies on GA for solving PDEs (Upreti and Deb, 1997; Wolf and Mo-
ros, 1997) used a uniform crossover, however, a DE uses a nonuniform crossover
that can take child vector parameters from one parent more often than it does from
the other. In order to increase the diversity of the parameter vectors, the vector uiΓ
with

() ()⎪⎩

⎪
⎨
⎧ −++=

=
Γ

Γ otherwise

11for

ji

j

ji x

DMnDnDnjv

,
,

,.,,.........,
u (9.4)

is formed where the acute brackets < >p denote the modulo function with modulus
number equal to dimension D. A certain sequence of the vector elements of u is
identical to the elements of v, the other elements of u acquire the original values of
xiΓ. Choosing a subgroup of parameters for mutation is similar to a process known
as crossover in evolution theory. The integer M is drawn from the interval [0, D-1]
with the probability Pr (M=γ) = (CR)γ, CR ε [0, 1] is the crossover probability and
constitutes a control variable for the above-mentioned scheme. The random deci-
sions for both n and M are made new for each trial vector v. Unlike many GAs,
DE does not use proportional selection, ranking or even an annealing criterion that
would allow occasional uphill moves. Instead the cost of each trial vector is com-
pared to that of its parent target vector. The vector with the lower cost is rewarded
by being selected to the next generation. This selection of the individuals to the
next generation resembles tournament selection except that each child that is pit-
ted against one of its parents, not against a randomly chosen competitor. If the re-
sulting child vector yields a lower objective function value than a predetermined
population member, the child vector replaces the parent vector with which it was
compared. The comparison vector can, but need not, be a part of the generation
process mentioned above. In addition, the best parameter vector xbest,Γ is evaluated
for every generation C in order to keep track of the progress that is made during
the minimization process.

9.2 Heat Transfer Parameters in Trickle Bed Reactor

Trickle-bed reactors are widely used in petroleum and petro-chemical indus-
tries, and to a lesser extent in chemical and pharmaceutical industries. They also
have a potential application in waste water treatment and in bio-chemical reac-
tions. Various flow regimes such as trickle flow (at low liquid and low gas rates),
pulse flow (intermediate gas and liquid rates), dispersed bubble flow (at high liq-
uid and low gas rates), and spray flow (at low liquid and high gas rates) are en-
countered in a trickle-bed reactor depending upon the flowrates and physical
properties of flowing phases and the packing geometry. The most common
mathematical model for the non-adiabatic trickle-bed catalytic reactor is the two-
dimensional pseudo-homogeneous model (Tsang et al., 1976; Babu, 1993), which
consists of coupled partial differential equations of the parabolic type. The inher-
ent characteristic of the homogeneous model is that the system can be considered

9.2 Heat Transfer Parameters in Trickle Bed Reactor 245

as a continuum; no distinction is made between the solid phase and the fluid
phase. The assumption implies that the reactant and the product concentrations in
the bulk fluid phase are same as that on the surface of the catalyst pellet. A similar
implication holds for the bed temperature. The homogeneous model that describes
the physical and chemical processes is as follows:

Mass transfer

⎟⎟⎠

⎞
⎜⎜⎝

⎛
∂

∂
+

∂
∂

=+
∂

∂
r

C

rr

C
Dr

z

C
u AA

erAB
A 1

2

2

ερ (9.5)

Heat transfer

() ⎟⎟⎠

⎞
⎜⎜⎝

⎛
∂
∂+

∂
∂=ΔΗ−+

∂
∂

r

T

rr

T
kr

z

T
Cu erABpf

1
2

2

ρρ (9.6)

with boundary conditions

()WWer
A

A

A

TTh
r

T
k

r

C
ZzRr

r

T

r

C
Zzr

TTCCRrz

−=
∂
∂−=

∂
∂

≤≤=

=
∂
∂=

∂
∂

≤≤=

==≤≤=

00

000

00 00

,,

,,

,,

(9.7)

In the typical operation of a trickle-bed reactor the heat transfer parameters, the
effective radial thermal conductivity of the bed, ker , and the effective wall-to-bed
heat transfer coefficient, hw, are unknown and need to be estimated. These parame-
ters are extremely important in design and in process analysis. Once these parame-
ters are estimated, the temperature profile can be generated numerically. The tem-
perature profile in the reactor is important because it affects the selectivity, the
yield and the stability of the reactor. Froment (1967) has demonstrated the sensi-
tivity of the homogeneous model to the effective parameters. He concluded that
changing the effective Peclet number of mass transfer had a negligible effect on
the temperature and conversion, whereas a 10% increase either in ker or hw greatly
changed the temperature and conversion pro-files in the reactor. Smith (1973) has
analyzed the relative importance of the heat and mass transfer effects in the fixed-
bed reactor and concluded that the radial temperature gradient is the most impor-
tant heat transfer characteristic. Only a few studies have been reported on the heat
transfer characteristics (Weekman and Myers, 1965; Hashimoto et al., 1976;
Muroyama et al., 1978; Matsuura et al., 1979a; Matsuura et al., 1979b; Specchia
and Baldi, 1979; Crine, 1982; Lamine et al., 1996; Babu and Rao, 1998), which
are essential for the proper design of a trickle-bed reactor, using only air–water
and air–glycerol systems; although a lot of information is available on hydrody-
namics and mass transfer for the same. Deviations of 30–40% were reported for
the prediction of hw with their own empirical correlations by different authors even
for their own data. Moreover, the effect of gas rate on ker and hw is not well under-
stood with respect to the flow regimes encountered in two-phase flow, especially
in the pulse flow with packing geometry. Further, the pulse properties especially
liquid holdup and pulse frequency could play an important role on the heat trans-

246 9 Applications in Heat Transfer

fer parameters in pulse flow, and none of the earlier studies except Babu (1993)
detailed their effects on heat transfer. These factors emphasize the importance of
heat transfer and suggest the further need for study of the heat transfer phenom-
ena. The study of heat transfer characteristics in a trickle bed can be simplified by
testing the system with no reaction occurring. In this case only the heat transfer
balance equation without the reaction term is needed, i.e.,

() ⎟⎟⎠

⎞
⎜⎜⎝

⎛
∂
∂+

∂
∂=

∂
∂+ ∗

r

T

rr

T
k

z

T
GCLC erpGpL

1
2

2
(9.8)

,, 00 TTz == (9.9)

,, 00 =
∂
∂=

r

T
r (9.10)

()WWer TTh
r

T
kRr −=

∂
∂−= , (9.11)

Various methods can be used to integrate Eq. (9.8) subject to the boundary
conditions. Among the most popular are analytical solution, finite difference tech-
niques and the method of weighted residuals, the last two being numerical meth-
ods. Virtually all of the previous work on estimating the effective parameters has
been based on the analytical solution, which is

() () ()()
() ()∑

∞

=

∗

+

+−
=

−
−

1 0
22

22

0

2
i ii

pGpLier
r
Rio

W

W

bJbBi

RGCLCzbkbBiJ

TT

TzrT exp, , (9.12)

where
()
()i

i
i

er

W

bJ

bJ
b

k

Rh
Bi

0

1== (9.13)

Since the eigenvalues bi increase as i increases, there are certain ranges of pa-
rameters within which only the first few terms of the infinite series in Eqs. (9.12)
and (9.13) is significant (Coberly and Marshall, 1951; Tsang et al., 1976; Specchia
and Baldi, 1979). Most of the previous studies, except Specchia and Baldi (1979)
used graphical methods for estimating ker and hw considering only the first term of
the infinite series in the analytical solution (Eq. (9.12)) of two-dimensional energy
equation for simplicity leading to uncertainty in the estimated values. Babu (1993)
concluded that the first seven terms of the infinite series would be sufficient for
ensuring good convergence. Differing numbers and locations of temperature
measurements made on the packed bed system have led to several types of pa-
rameter estimation methods using the analytical solution. The relative advantages
and disadvantages have been accounted by Tsang et al. (1976). Tsang et al. (1976)
proposed a technique using orthogonal collocation in an inverse problem. They
used both gradient and gradient-free optimization schemes for parameter estima-
tion. They showed that the results were accurate enough and the computational
time required was less. They used Graeffe’s method along with Newton’s method
for finding out the roots of the Jacobi polynomial. But the Newton’s method is
highly dependent on the initial guess, is less accurate and takes more computa-

9.2 Heat Transfer Parameters in Trickle Bed Reactor 247

tional time (Acton, 1970). Graeffe’s method involves in squaring the polynomial
and then taking the square root of the solution, which reduces the accuracy as the
degree of the polynomial increases (Acton, 1970). It has been shown that the ob-
jective function is very flat near the minimum or the contours are long and narrow
(Tsang et al., 1976). For such kinds of problems the gradient-based optimization
techniques fail and computational time taken is also large (Acton, 1970). Though
gradient-free optimization solves some of the problems of the gradient methods,
the global optimum is not assured and the computational time taken is still large.
Thus, to develop a new technique for the estimation of the heat transfer parameters
in a trickle bed, which is not only accurate but also guarantees faster convergence
is the main objective of our study. The results obtained from DE in the present
study are compared with those obtained from the radial temperature profile
method employing Powell’s method for optimization. This new technique is
highly robust and is very fast in terms of computation time when compared to the
radial temperature profile method. The results show that the Orthogonal Colloca-
tion augmented with the DE’s offer a powerful alternative to the conventional es-
timation techniques while demonstrating the potential of Orthogonal Collation for
solving boundary value problems.

9.2.1 Orthogonal collocation

The trickle-bed reactor model is not amenable to an analytical solution when the
chemical reaction term is non-zero. In this case, a numerical integration method
such as a finite difference technique must be used. However, the orthogonal collo-
cation method (Villadsen and Stewart, 1967; Villadsen and Michelsen, 1978;
Finlayson, 1972, 1980), a technique categorized as a method of weighted residu-
als, has been shown by Ferguson and Finlayson (1970), and Finlayson (1972,
1980) to be superior in some respects to the finite difference approaches. Further-
more, the orthogonal collocation method, besides obtaining the solution, gives the
possibility of exploring the local stability within the system (Perlmutter, 1972;
Bosch and Padmanabhan, 1974; Sorenson et al., 1973). Young and Finlayson
(1973) have used the orthogonal collocation technique to approximate the bound-
ary condition at the entrance of a reactor and solved the coupled non-linear partial
differential equations, which take both the axial and radial dispersions into ac-
count. Finlayson (1971) has also shown when the two-dimensional reactor model
must be used instead of one-dimensional model. Karanth and Hughes (1974) used
collocation to simulate the adiabatic packed bed reactor. Carey and Finlayson
(1975) combined the orthogonal collocation method with finite element method to
solve the catalyst pellet problem with large Thiele modulus. The orthogonal collo-
cation method has been used in the above studies for the simulation, i.e., as a nu-
merical method to solve the boundary value problems. Tsang et al., (1976) used
the orthogonal collocation method in an inverse problem for the estimation of the
heat transfer parameters in a packed-bed reactor. Bosch and Hellinckx (1974) used
Lobatto quadrature combined with the collocation method to estimate the parame-
ters in the differential equations. This yielded a non-linear programming problem.

248 9 Applications in Heat Transfer

Polis et al. (1973) have used the Galerkin technique to estimate the parameters in
distributed systems. The Galerkin method is also classified as one of the methods
of weighted residuals, which can be used to reduce the partial differential equation
to a set of ordinary differential equations. The set of ordinary differential equa-
tions can then be used to simulate the system response iteratively. However unlike
all other weighted residual methods, which determine the undetermined coeffi-
cients of the trial function, the orthogonal collocation method gives the solution of
the dependent variables at the collocation points directly. One can select the
measurement locations to coincide with the collocation points. The various prob-
lems in estimating the parameters in a distributed system from the point of view of
accurate parameter estimates have been discussed by Goodson and Polis (1974).
The details of the use of the orthogonal collocation to estimate ker and hw are given
below. By rewriting Eqs. (9.8)–(9.11) in dimensionless form, the parameter esti-
mation problem becomes

Minimizing

εε QT=� (9.14)

subject to

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∂
∂

∂
∂′=

∂
∂

r

T
r

rr
P

z

T
er ~

~
~

~~~

~
1 (9.15)

dTTz
~~,~ == 0 (9.16)

00 =
∂
∂=

r

T
r ~

~
,~ (9.17)

TBi
r

T
r

~
~

~
,~ =

∂
∂= -1 (9.18)

where WTTT −=~
, the modified Peclet number

( ) ZzzRrrRLCGCZkP pLpGerer ==+=′ ∗ ~,~,2 (9.19)

and ε is defined as an Nx1 column vector:

( ) ( )( )
d

icali

T

ZrTZrT
~

,~,~
exp −

=ε (9.19a)

N is the number of collocation or measurement points. Q is a NxN positive-definite
weighting matrix, the identity matrix being used in the present study. The estima-
tion criterion used, when Q is taken to be an identity matrix reduces from
weighted least squares to a simple least-squares estimation. A detailed derivation
of the solution of Eqs. (9.15)–(9.18) using orthogonal collocation is given in Babu
and Sastry (1999). Using orthogonal collocation method, the estimation problem
reduces to



9.2 Heat Transfer Parameters in Trickle Bed Reactor 249

Minimizing Eq. (9.15) subject to

( )
TB

T ~
~

~

,
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−′=
++ 11 NN

T

er ABi
P

zd

d �� (9.20)

( ) dTT ~~ =0 (9.21)

where B, ��and � are the computational collocation matrix and vectors given by
Villadsen and Stewart (1967). However, instead of using Graeffe’s method and
Newton’s method, in the present study, the Laguerre’s method (Ralston and Rabi-
nowitz, 1978) for finding the roots of the Jacobi polynomial has been used.
Laguerre’s method is guaranteed to converge to all types of roots: real, complex,
single or multiple from any starting point (Acton, 1970; Press et al., 1996). In this
study we used LU-decomposition and LU-back-substitution for finding out the in-
verse of a matrix required in calculating the collocation matrices (Villadsen and
Stewart, 1967). The integration of the ordinary differential equation, Eq. (14), was
computed using the fifth-order Runge–Kutta method with adaptive step size con-
trol (Cash and Karp, 1990; Press et al., 1996) for greater accuracy.

9.2.2 Experimental setup and procedure

Experiments were carried out to obtain the data on radial temperature profile in a
trickle-bed reactor (gas–liquid co-current downflow through packed beds). The
schematic diagram of the setup is shown in Fig. 9.1.

The experimental setup mainly consists of a packed bed column of 50 mm di-
ameter, comprising of air–liquid distributor, calming section, jacketed test section
and air–liquid separator with other auxiliary parts. Air was drawn from 3.7 kW
double piston–double action compressor, of maximum volumetric capacity of
14.98 m3/s at STP and a working pressure of 12 atm. The air drawn from the
compressor was saturated with water in a saturator. The saturated air was intro-
duced at the top of the column through a set of pre-calibrated rotameters to the
air–liquid distributor at a constant pressure of 4 atm, monitored by a pneumatic
pressure regulator. The air flowrates in the rotameter were controlled by needle
valves. The air was passed through a filter before entering the distributor to re-
move traces of oil and dust, if any. Water was pumped through a 4.5 kW pump
and was metered through a set of pre-calibrated rotameters to the air–liquid dis-
tributor at the top of the column. Water flowrates to the column were controlled
by means of globe valves. Air and water were uniformly distributed through an
air–liquid distributor at the top of the calming section. The air–liquid distributor
essentially consists of two sets of openings, 21 copper tubes for distributing liquid
and 16 nozzles for distributing air. The tubes and the nozzles were alternately ar-
ranged on a triangular pitch over the column cross-section. The number of liquid
distribution tubes per unit area was approximately equal over the entire cross-
section to ensure equal distribution of liquid. The calming section consisted of a
long tube, which ensured a fully developed equilibrium gas–liquid flow before it
entered the test section. The jacketed test section was designed for heat transfer



250 9 Applications in Heat Transfer

studies. It consists of a jacket in order to circulate hot water at 60°C. Hot water
was pumped with a 4.5 kW and metered through a set of pre-calibrated rotameters.
Below the heat transfer section radial temperature profile measurement section

Fig. 9.1. Schematic diagram of experimental set-up (Babu and Sastry, 1999). Reprinted
with permission from the Computers & Chemical Engineering.

was provided. An air–liquid separator was provided at the bottom of the column to
separate the air and the liquid phases coming out of the test section. The radial
temperature profile was obtained by measuring the temperatures at the bottom of
the test section at three radial positions at r = 0.0, 0.4, and 0.8, and at three sym-
metric angular positions (120° apart) for each radial position. Wall temperature
was measured by installing a thermocouple at the inside wall 3 mm above from
bottom of the jacketed test section. Thermocouples were also installed at various
locations to measure the inlet temperature of test liquid, and inlet and outlet tem-
peratures of hot water. An INSREF constant temperature bath having an accuracy
of 0.01°C and a MINCO platinum resistance thermometer bridge (MINCO
RTB8078, Model No. S7929 Pail120C) with an accuracy of 0.025°C as a standard
thermometer were used for calibrating all the chromel–alumel thermocouples used
in the present study. All these thermocouples were connected to an APTEK multi-
channel digital temperature scanner for recording the temperatures. The detailed



9.2 Heat Transfer Parameters in Trickle Bed Reactor 251

description of the experimental set-up, and the data collection and reduction pro-
cedures are reported elsewhere (Babu, 1993; Babu and Rao, 1998). Air and water
were fed to the column from the top at the desired flowrates by means of pre-
calibrated rotameters. Hot water was circulated through the jacket around the test
section at sufficiently high flowrates (25–30 liters per minute) in order to maintain
nearly constant wall temperature, and the minimum and maximum temperature
difference between the inlet and the outlet hot water streams were 0.3°C at low
flowrates to 2°C at high flowrates respectively of the flowing fluids. In general, it
took 20–40 min for attaining the steady state. After steady state was attained,
which was confirmed from the constant values of flowrates and temperatures, the
flowrates of air and water and the temperatures were recorded. The average of the
three angular positions was taken as the temperature at each radial position. This
procedure was repeated for a wide range of air (0.01–0.898 kg/m2 s) and water
flowrates (3.16– 71.05 kg/m2 s), covering trickle, pulse and dispersed bubble flow
regimes. The length of the heat transfer test section used for heat transfer experi-
ments was 0.715 m. The packing employed were 2.59 mm ceramic spheres, 4.05
and 6.75 mm glass spheres and 4.0 and 6.75 mm ceramic raschig rings.

9.2.3 Results and discussions

The psuedocode of the DE algorithm used in the present study is shown below:
• Initialize the values of D, F, CR, NP, λ and maximum number of generations

MaxGen.
• Initialize all the vectors of the population randomly between a given lower

bound LB, and upperbound UB
for i =1 to NP

for j =1 to D
(xi, 0)j = LB + Random Number × (UB – LB)

• Evaluate the cost of each vector. Cost here is the value of the objective function
to be minimized.
for i =1 to NP

0

2

,ii xε=�

• Find out the vector with lowest cost i.e., the best vector so far
1bestand1 == ��min

for i = 2 to NP
if (�i < �min)

then �min = �i and best = i
• While the current generation is less than the maximum number of generations

perform recombination, mutation, reproduction and evaluation of the objective
function. While (Γ< MaxGen) do {

for i = 1 to NP {
• Select two distinct vectors randomly from the population other than the vector

xi, r



252 9 Applications in Heat Transfer

do r1 = Random Number × NP while (r1 = i)
do r2 = Random Number × NP while ((r2 = i) or (r1 = r2))

• Perform D binomial trials, change at least one parameter of the trial vector ui, r

and perform mutation.
j = Random Number × D
for n =1 to D {

if ((Random Number < CR) OR (n = (D – 1)))
then (ui, r)j = (xi, r)j + λ* ((xbest, r)j – (xi, r)j) + F * ((xr1, r)j – (xr2, r)j)

else (ui, r)j = (xi, r)j

D
nj 1+= }

• Evaluate the cost of the trial vector.

ri,u
2

trial ε=�

• If the cost of the trial vector is less than the parent vector then select the trial
vector to the next generation.
If (�trial ≤ �i) {

�i = �trial

If (�trial < �min)
�min = �trial and best = i}} /* for i = 1 to NP ends */

• Copy the new vectors ui, r to xi, r and increment Gamma, Γ = Γ + 1.
• Check for convergence and break if converged.} /* while Γ …. ends. */
• Print the results.

The collocation points or the measurement points were chosen to be that of the
radial temperature profile measurements, i.e., r/R = 0, 0.4, 0.8. The values of NP,
CR, λ and F are fixed empirically following certain heuristics (Price and Storn,
1997; Sastry et al., 1998): (1) F and λ are usually equal and are between 0.5 and
1.0, (2) CR usually should be 0.3, 0.7, 0.9 or 1.0 to start with, (3) NP should be of
the order of 10D and should be increased in case of misconvergence, and (4) if NP
is increased then usually F has to be decreased. In the present study, the values of
D, NP, F, λ and CR were taken as 2, 20, 0.7, 0.7 and 0.9, respectively. The maxi-
mum number of iterations was kept as 100; however, in all the runs the algorithm
converged within 15 generations. The initial values of Bi and Per were generated
using Knuth’s uniform random variate (Press et al., 1996). The matrix inversions
involved in computing the collocation matrices were achieved using LU decompo-
sition and LU back-substitution. Runge–Kutta method with adaptive step size con-
trol was used for integrating the differential equation (Eq. (14)). Altogether 232
experimental data points were obtained covering a wide range of liquid and gas
flowrates using five packings of different size and shape. The DE algorithm in
conjunction with orthogonal collocation method was employed using the experi-
mental temperature profile obtained for all the 232 data points. The typical radial
temperature profile given by DE and RTP methods is shown in Table-9.1, which
shows that the temperature profiles generated by both the methods are almost
similar to the experimental profile. Similar trends were observed for all data
points. The minimum and maximum sum square error for DE being 1.905052x10-6



9.2 Heat Transfer Parameters in Trickle Bed Reactor 253

and 7.57026x10-4, respectively, and that for RTP being 1.905064x10-6 and
7.757032x10-4, respectively with the present experimental data. The close agree-
ment with the analytical solution and the experimental value shows that nonopti-
mal selection of collocation points, which are taken to be the measurement points
and not the roots of the Jacobi polynomial, does not cause significant errors. The
estimation errors (sum square error) given in Table-9.2 indicate that the tempera-
ture profile by DE is slightly better than that with RTP (DE’s sum square error is
0.0001–0.001% less than RTP). Computational time taken by DE and RTP algo-
rithm for randomly selected sample data points is compared in Fig. 9.2. Although
the qualitative trends by both the methods is more or less the same, the average
time taken, based on all data points, for an estimation by DE is 10 s as compared
to 30 s by RTP on a 90 MHz Pentium processor. The function evaluations com-
puted for sample data points by RTP and DE is shown in Fig. 9.3. DE also takes
less number of function evaluations as compared to RTP (DE takes average of 800
function calls as compared to 2000 evaluations by RTP).

Table 9.1. Radial temperature profile generations: DE vs. RTP

The unit of De is mm.

G = 0.0107, ∗
pGC = 8952.44

1638137 .,. ==
∗

L
GC

LC

pG

pL

De = 8.1, TF

G = 0.2041, ∗
pGC = 6809.25

895401165 .,. ==
∗

L
GC

LC

pG

pL

De = 4.89, DBF

G = 0.5, ∗
pGC = 9447.63

1111792 .,. ==
∗

L
GC

LC

pG

pL

De = 2.59, PF
EXP(0C) DE(0C) RTP(0C) EXP(0C) DE(0C) RTP(0C) EXP(0C) DE(0C) RTP(0C)
56.48 56.605865 56.605843 38.00 38.075127 38.074937 57.30 57.276149 57.276099
56.95 56.776015 56.775936 38.98 38.876623 38.876634 57.46 57.493691 57.493661
57.20 57.248915 57.248689 41.09 41.118606 41.119144 58.08 58.069785 58.069799
58.91 58.91 58.91 49.85 49.85 49.85 59.12 59.12 59.12

Table 9.2. Estimation Characteristics: DE vs. RTP

Sum square error hW ker Parameters
DE RTP DE RTP DE RTP L G De Flow
4.637816e-5 4.637820e-5 894.626343 894.51169 17.688709 17.693483 3.16 0.017 8.1 TF
2.333386e-4 2.333388e-4 2508.752686 2507.566406 27.927656 27.941372 9.57 0.2401 8.1 PF
1.764492e-4 1.764498e-4 3195.485596 3195.852539 53.098129 53.086544 19.83 0.5 8.1 PF
2.432793e-4 2.432798e-4 3999.604736 3999.616943 63.374241 63.372268 18.38 0.898 8.1 PF
1.568811e-4 1.568813e-4 1645.458130 1645.295044 26.286270 26.290203 6.52 0.0459 8.1 TF
3.369437e-5 3.369470e-5 4505.336914 4505.336914 99.590958 99.575050 54.89 0.2401 4.89 DBF
1.905052e-6 1.905064e-6 1761.488281 1761.581177 16.218536 16.217493 3.16 0.5 4.89 TF
1.340671e-4 1.340675e-4 4035.566406 4035.837646 65.492363 65.486969 36.87 0.0459 4.89 DBF
6.927241e-4 6.927244e-4 9719.313477 9718.518555 41.572712 41.573727 45.31 0.102 2.59 DBF
7.757026e-4 7.757032e-4 11872.214844 11868.007812 58.668274 58.678162 60.18 0.0459 2.59 DBF
The unit of De is mm.



254 9 Applications in Heat Transfer

Fig. 9.2. Computational time: DE vs. RTP (Babu and Sastry, 1999). Reprinted with permis-
sion from the Computers & Chemical Engineering.

The estimation of values of hw and ker using both DE algorithm and RTP meth-
ods, are compared in Figs. 9.4 and 9.5 respectively, which shows that the estima-
tion by DE is as accurate as the well-proven RTP algorithm. The estimations are
also tabulated in Table 2, which show that the estimation error of DE is lower
when compared to that of RTP algorithm. It also indicates that the estimation ac-
curacy depends on the accuracy of the measured temperature profile, which in the
present study is accurate only to two decimal places. Since a wide range of air and
water flow rates was used covering the trickle, pulse and dispersed bubble flow for
generalization of the estimation algorithm; the estimated parameters cover a wide
range (894–11872 W/m2K for hw and 16-99 W/mK for ker). The convergence crite-
rion used for RTP is very stringent: the objective function, its relative change, the
parameter values and their relative changes and the gradient of the objective func-
tion were all checked before the optimization scheme was terminated.



9.2 Heat Transfer Parameters in Trickle Bed Reactor 255

Fig. 9.3. Number of function evaluations: DE vs. RTP (Babu and Sastry, 1999). Reprinted
with permission from the Computers & Chemical Engineering.

Fig. 9.4. Estimated value of hw (W/m2K): RTP vs. DE (Babu and Sastry, 1999). Re-
printed with permission from the Computers & Chemical Engineering.



256 9 Applications in Heat Transfer

The RTP algorithm is said to have converged if it satisfies all the conditions
given below (Eq. (9.22) - (9.27)):

1δ<Γ� (9.22)

21 δ<− −ΓΓ �� (9.23)

maxminmi ,,, ererner kkk ≤≤ (9.24)

maxmin ,,, WWW hhh ≤≤ Γ (9.25)

31- δ<− ΓΓ ,, erer kk (9.26)

41- δ<− ΓΓ ,, WW hh (9.27)

Fig. 9.5. Estimated value of ker (W/m K): RTP vs. DE (Babu and Sastry, 1999). Reprinted
with permission from the Computers & Chemical Engineering.

where δ1, δ2, δ3 and δ4 are constants. On the contrary, in case of DE the termina-
tion criterion is when 90–95% of the population has the same cost. The conver-
gence criterion used for DE is:



9.2 Heat Transfer Parameters in Trickle Bed Reactor 257

δσσ <− −ΓΓ 1
(9.28)

where δ is a constant (in the present study δ =1.0×10-4) and σΓ is the cost variance
given by

( )
1

1

2

−

−
= ∑ = ΓΓ

Γ NP

NP

i i �� ,σ (9.29)

Fig. 9.6. Convergence of DE & RTP (x(0) is RMS error of best initial guess of DE) (Babu
and Sastry, 1999). Reprinted with permission from the Computers & Chemical Engineer-
ing.

RTP either failed or took a long time to converge when the initial guess of hw

and ker was bad. Besides, DE initial guesses generated randomly were spread
throughout the search space. Still the convergence of DE is faster than that of
RTP. The convergence of DE and RTP is compared for sample data points in Fig.
9.6a–d, which clearly shows that DE converges much faster than RTP irrespective
of the initial guesses. As depicted in Fig. 6a even though the initial estimation er-
ror of the best vector (the vector with least cost) of DE algorithm is 0.092, and in
RTP method the initial estimation error is only 1.52×10-4, DE converged in 10
generations whereas RTP took 32 iterations. Similarly, as shown in Fig. 6b–d, the
initial estimation errors of the best vector of DE algorithm are 0.11, 0.047 and



258 9 Applications in Heat Transfer

0.54, respectively, and it took 10, 15 and 12 generations respectively to converge.
On the other hand, even though the initial estimation errors are 3.6×10-3, 6.0×10-3

and 6.5×10-4, RTP method took 30, 30 and 31 iterations, respectively, to converge.
The results clearly illustrate that DE is a design tool of great utility that is immedi-
ately accessible for practical applications.

The previous studies (Weekman and Myers, 1965; Hashimoto et al., 1976;
Muroyama et al., 1978; Matsuura et al., 1979a, b; Specchia and Baldi, 1979;
Crine, 1982; Lamine et al., 1996; Babu and Rao, 1997) on heat transfer effects in
trickle-bed reactors have been conducted on non-reacting systems (air–water or
air–glycerol). In the present study, the DE algorithm was applied on an air–water
system as, to the best of our knowledge, no radial temperature profile data is
available for trickle-bed reactors with reacting systems. As stated earlier, with the
reaction term the pseudo-homogeneous model equations cannot be solved analyti-
cally. Since the proposed DE algorithm uses orthogonal collocation for solving the
model equations, which can also be applied for systems with reaction. However,
from the results shown above, it can be predicted that the DE algorithm will be
equally effective in estimating heat transfer parameters in the presence of reaction
effects.

9.2.4 Conclusions

The present study clearly shows the potential for using DE in estimating the
heat transfer parameters in trickle bed reactors. In most of the studies carried out
earlier in the estimation of heat transfer parameters in packed bed reactors, re-
searchers have focused on using the first few terms of the analytical solution of the
model equation and have used either gradient based or non-gradient based tradi-
tional optimization techniques for the estimation of hw and ker. Since the parame-
ters are floating point and also due to its simple structure, ease of use, speed and
robustness, it has been shown that a DE is the more appropriate choice for optimi-
zation. The results were compared with that of a RTP using analytical solu-
tion with Powell’s method for estimation. In previous studies, DE has been used
for design and control purposes, but in the present study DE is used as an estima-
tor. DE algorithm is much faster, has less computational burden when compared to
the RTP algorithm and the estimation is much more accurate. It is also observed
that DE algorithm converges to the global optimum irrespective of its initial popu-
lation, whereas the RTP Powell algorithm needed an initial guess nearer to the
global optimum for convergence. The results presented in this study depict the
scope of Differential Evolution in estimating the heat transfer parameters of a
trickle-bed reactor. DE is more effective in terms of faster convergence, greater
accuracy, lesser number of function evaluation and robustness. Based on these re-
sults, it is concluded that DE can be a very valuable resource for accurate and
faster estimation of the heat transfer parameters, in multi-phase reactors such as
trickle-bed reactors.



9.3 Design of Shell-and-Tube Heat Exchanger 259

9.3 Design of Shell-and-Tube Heat Exchanger

This problem (Babu and Munawar, 2001) presents the application of Differential
Evolution (DE) for the optimal design of shell-and-tube heat exchangers. The
main objective in any heat exchanger design is the estimation of the minimum
heat transfer area required for a given heat duty, as it governs the overall cost of
the heat exchanger. Lakhs of configurations are possible with various design vari-
ables such as outer diameter, pitch, and length of the tubes; tube passes; baffle
spacing; baffle cut etc. Hence the design engineer needs an efficient strategy in
searching for the global minimum. In this study for the first time DE, an improved
version of Genetic Algorithms (GAs), has been successfully applied with different
strategies for 1,61,280 design configurations using Bell’s method to find the heat
transfer area. In the application of DE 9680 combinations of the key parameters
are considered. For comparison, GA is also applied for the same case study with
1080 combinations of its parameters. For this optimal design problem, it is found
that DE, an exceptionally simple evolution strategy, is significantly faster com-
pared to GA and yields the global optimum for a wide range of the key parame-
ters.

9.3.1 The Optimal HED problem

The proper use of basic heat transfer knowledge in the design of practical heat
transfer equipment is an art. The designer must be constantly aware of the differ-
ences between the idealized conditions for which the basic knowledge was ob-
tained versus the real conditions of the mechanical expression of his design and its
environment. The result must satisfy process and operational requirements (such
as availability, flexibility, and maintainability) and do so economically. Heat ex-
changer design is not a highly accurate art under the best of conditions (Perry &
Green, 1993).

9.3.1.1. Generalized Design Procedure

The design of a process heat exchanger usually proceeds through the following
steps (Perry & Green, 1993):
• Process conditions (stream compositions, flow rates, temperatures, pressures)

must be specified.
• Required physical properties over the temperature and pressure ranges of inter-

est must be obtained.
• The type of heat exchanger to be employed is chosen.
• A preliminary estimate of the size of the exchanger is made, using a heat trans-

fer coefficient appropriate to the fluids, the process, and the equipment.
• A first design is chosen, complete in all details necessary to carryout the design

calculations.



260 9 Applications in Heat Transfer

• The design chosen is now evaluated or rated, as to its ability to meet the proc-
ess specifications with respect to both heat duty and pressure drop.

• Based on this result a new configuration is chosen if necessary and the above
step is repeated. If the first design was inadequate to meet the required heat
load, it is usually necessary to increase the size of the exchanger, while still re-
maining within specified or feasible limits of pressure drop, tube length, shell
diameter, etc. This will sometimes mean going to multiple exchanger configu-
rations. If the first design more than meets heat load requirements or does not
use the entire allowable pressure drop, a less expensive exchanger can usually
be designed to fulfill process requirements.

• The final design should meet process requirements (within the allowable error
limits) at lowest cost. The lowest cost should include operation and mainte-
nance costs and credit for ability to meet long-term process changes as well as
installed (capital) cost. Exchangers should not be selected entirely on a lowest
first cost basis, which frequently results in future penalties.

The flow chart given in Fig 9.7 (Sinnott, 1993) below gives the sequence of steps
and the loops involved in the optimal design of a shell-and-tube heat exchanger.



9.3 Design of Shell-and-Tube Heat Exchanger 261

Specification: Define duty, Make Energy balance
if needed to calculate unspecified flow rates or

temperature

Collect physical properties: ρ, μ, Cp, k

Assume overall coefficient, Uo, ass

Decide number of shell and tube passes.
Calculate ΔTlm, correction factor Ft and

hence ΔTm

Calculate overall heat transfer coefficient
Including dirt factors, Uo, ass

set Uo, ass = Uo, cal

?
Determine heat transfer No Uo, cal - Uo, ass

area required: Ao = [Q / (Uo, ass ΔTm )] 0 < ------------------ < 30%
Uo, ass

Yes

Decide type, tube size, material Estimate tube side
layout. Assign fluids to shell or and shell side pressure drops
tube side

Calculate number of tubes Pressure
No drops within the

specifications
?

Calculate shell diameter
Yes

Estimate cost of exchanger

Estimate tube side heat
transfer coefficient

can
Yes design be optimized

to reduce cost ?

Decide baffle spacing and
estimate shell side heat No
transfer coefficient

Accept design

Fig. 9.7. Flow chart for optimal design of Shell-and-tube Heat Exchanger



262 9 Applications in Heat Transfer

9.3.2 Problem Formulation

The objective function and the optimal problem of shell-and-tube HED of this
study are represented as shown in Table-9.3, similar to the problem formulation of
Manish et al., (1999).

Table 9.3. Problem formulation

min C(X) or A(X)
X ∈ {x1, x2, x3, x4, x5, x6¸ x7}
where

x1 = {1,2,...,12}
x2 = {1,2}
x3 = {1,2,3,4}
x4 = {1,2,...,5}
x5 = {1,2,..,8}
x6 = {1,2,...,6}
x7 = {1,2,...,7}

subject to
feasibility constraints [pressure-drop]

The objective function can be minimization of HE cost C(X) or heat transfer
area A(X) and X is a solution string representing a design configuration. The de-
sign variable x1 takes 12 values for tube outer diameter in the range of 0.25” to
2.5” (0.25”, 0.375”, 0.5”, 0.625”, 0.75”, 0.875”, 1.0”, 1.25”, 1.5”, 1.75”, 2”, 2.5”).
x2 represents the tube pitch - either square or triangular - taking two values repre-
sented by 1 and 2. x3 takes the shell head types: floating head, fixed tube sheet, U
tube, and pull through floating head represented by the numbers 1, 2, 3 and 4 re-
spectively. x4 takes number of tube passes 1-1, 1-2, 1-4, 1-6, 1-8 represented by
numbers from 1 to 5. The variable x5 takes eight values of the various tube lengths
in the range 6’ to 24’ (6’, 8’, 10’, 12’, 16’, 20’, 22’, 24’) represented by numbers 1
to 8. x6 takes six values for the variable baffle spacing, in the range 0.2 to 0.45
times the shell diameter (0.2, 0.25, 0.3, 0.35, 0.4, 0.45). x7 takes seven values for
the baffle cut in the range 15 to 45 percent (0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45).

In the present problem, the pressure drop on the fluids exchanging heat is con-
sidered to be the feasibility constraint. Generally a pressure drop of more than 1
bar is not desirable for the flow of fluid through a HE. For a given design configu-
ration, whenever the pressure drop exceeds the specified limit, a high value for the
heat transfer area is returned so that as an infeasible configuration it will be elimi-
nated in the next iteration of the optimization routine. The total number of design
combinations with these variables are 12 x 2 x 4 x 5 x 8 x 6 x 7 = 1,61,280. This
means that if an exhaustive search is to be performed it will take at the maximum
1,61,280 function evaluations before arriving at the global minimum heat ex-
changer cost. So the strategy, which takes few function evaluations, is the best
one. Considering minimization of heat transfer area as the objective function, dif-



9.3 Design of Shell-and-Tube Heat Exchanger 263

ferential evolution technique is applied to find the optimum design configuration
with pressure drop as the constraint. For the case study considered, the perform-
ance of DE is compared with GA and the results are discussed in the fourth sec-
tion.

9.3.3 Results & Discussions

The algorithm of Differential Evolution as given by Price and Storn (2002), is in
general applicable for continuous function optimization. The upper and lower
bounds of the design variables are initially specified. Then, after mutation because
of the addition of the weighted random differential the parameter values may even
go beyond the specified boundary limits. So, irrespective of the boundary limits
initially specified, DE finds the global optimum by exploring beyond the limits.
Hence, when applied to discrete function optimization the parameter values have
to be limited to the specified bounds. In the present problem, since each design
variable has a different upper bound when represented by means of integers, the
same DE code given by Price and Storn (2002) cannot be used. We have used the
normalized values for all the design variables and randomly initialized all the de-
sign variables between 0 and 1. Whenever it is required to find the heat transfer
area using Bell’s method for a given design configuration, these normalized values
are converted back to their corresponding boundary limits. The pseudo code of
the DE algorithm used in this study for the optimal heat exchanger design problem
is given below:
• Choose a strategy and a seed for the random number generator.
• Initialize the values of D, NP, CR, F and MAXGEN.
• Initialize all the vectors of the population randomly. Since the upper bounds

are all different for each variable in this problem, the variables are all normal-
ized. Hence generate a random number between 0 and 1 for all the design
variables for initialization.

for i = 1 to NP
{ for j = 1 to D

xi,j = random number
}

• Evaluate the cost of each vector. Cost here is the area of the shell-and-tube
heat exchanger for the given design configuration, calculated by a separate
function cal_area () using Bell’ method.

for i = 1 to NP
Ci = cal_area ()

• Find out the vector with the lowest cost i.e. the best vector so far.
Cmin = C1 and best =1
for i = 2 to NP

{ if (Ci < Cmin)
then Cmin = Ci and best = i

}



264 9 Applications in Heat Transfer

• Perform mutation, crossover, selection and evaluation of the objective func-
tion for a specified number of generations.

While (gen < MAXGEN)
{ for i = 1 to NP

{
• For each vector Xi (target vector), select three distinct vectors Xa, Xb and Xc

(select five, if two vector differences are to be used) randomly from the cur-
rent population (primary array) other than the vector Xi

do
{

r1 = random number * NP
r2 = random number * NP
r3 = random number * NP

}while (r1 = i) OR (r2 = i) OR (r3 = i) OR (r1 = r2) OR (r2 = r3) OR (r1 = r3)
• Perform crossover for each target vector Xi with its noisy vector Xn,i and cre-

ate a trial vector, Xt,i. The noisy vector is created by performing mutation. If
CR = 0 inherit all the parameters from the target vector Xi, except one which
should be from Xn,i.

for exponential crossover
{ p = random number * 1

r = random number * D
n = 0

do
{ Xn, i = Xa, i + F ( X b, i - X c, i )

r = ( r+1 ) % D
increment r by 1

} while ( ( p<CR ) and ( r<D ) )
}

/* add two weighted vector differences for two vector perturbation. For best /
random vector perturbation the weighted vector difference is added to the best /
random vector of the current population. */

for binomial crossover
{ p = random number * 1

r = random number * D
for n = 1 to D

{ if ( ( p<CR ) or ( p = D-1 ) )
/* change at least one parameter if CR=0 */

Xn, i = Xa, i + F ( X b, i - X c, i )
r = (r+1)%D

}
}

if ( Xn, i > 1 ) Xn, i = 1
if ( Xn, i < 0 ) Xn, i = 0



9.3 Design of Shell-and-Tube Heat Exchanger 265

/* for discrete function optimization check the values to restrict to the limits */
/* 1 - normalized upper bound; 0 – normalized lower bound */

• Perform selection for each target vector, Xi by comparing its cost with that of
the trial vector, Xt,i ; whichever has the lowest cost will survive for the next
generation.

Ct,i = cal_area()
if ( Ct,i < Ci ) new Xi = Xt,i

else new Xi = X i } /* for i=1 to NP */
}

• Print the results.
The entire scheme of optimization of shell-and-tube heat exchanger design is

performed by the DE algorithm, while intermittently it is required to evaluate the
heat transfer area for a given design configuration. This task is accomplished
through the separate function cal_area(), which employs Bell’s method of heat ex-
changer design. Bell’s method gives accurate estimates of the shell-side heat trans-
fer coefficient and pressure drop compared to Kern's method, as it takes into ac-
count the factors for leakage, bypassing, flow in window zone etc. The various
correction factors in Bell’s method include: temperature correction factor, tube-
side heat transfer and friction factor, shell-side heat transfer and friction factor,
tube row correction factor, window correction factor for heat transfer and pressure
drop, bypass correction factor for heat transfer and pressure drop, friction factor
for cross-flow tube banks, baffle geometrical factors etc. These correction factors
are reported in the literature in the form of monographs (Sinnott, 1993; Perry &
Green, 1993). In this study, the data on these correction factors from the mono-
graphs are fitted into polynomial equations and incorporated in the computer pro-
gram.

As a case study the following problem for the design of a shell-and-tube heat
exchanger (Sinnott, 1993) is considered:

20,000 kg/hr of kerosene leaves the base of a side-stripping column at 200oC and is to be
cooled to 90oC with 70,000 kg/hr light crude oil coming from storage at 40oC. The kero-
sene enters the exchanger at a pressure of 5 bar and the crude oil at 6.5 bar. A pressure drop
of 0.8 bar is permissible on both the streams. Allowance should be made for fouling by in-
cluding fouling factor of 0.00035 (W/m2 0C)–1 on the crude stream and 0.0002 (W/m2 0C)–1

on the kerosene side.
By performing the enthalpy balance, the heat duty for this case study is found

to be 1509.4 kW and the outlet temperature of crude oil to be 78.6oC. The crude is
dirtier than the kerosene and so is assigned through the tube-side and kerosene to
the shell-side. Using a proprietary program (HTFS, STEP5) the lowest cost design
meeting the above specifications is reported to be a heat transfer area of 55 m2

based on outside diameter (Sinnott, 1993). Considering the result of the above
program as the base case design, in this study DE is applied for the same problem
with all the ten different strategies.

As a heuristic, the pressure drop in a HE normally should not exceed 1 bar.
Hence, the DE strategies are applied for this case study separately with both 0.8
bar and 1 bar as the constraints. In both the cases, the same global minimum heat



266 9 Applications in Heat Transfer

exchanger area of 34.44 m2 is obtained using DE as against 55 m2 reported by
Sinnott, 1993. But, in the subsequent analysis, the results for 1 bar as the con-
straint are referred here in drawing the generalized conclusions.

A seed value for the pseudo random number generator should be selected by
trial and error. In principle any positive integer can be taken. Integers 3, 5, 7, 10,
15 and 20 are tried with all the strategies for a NP value of 70 (10 times D). The F
values are varied from 0.1 to 1.1 in steps of 0.1 and CR values from 0 to 1 in steps
of 0.1, leading to 121 combinations of F and CR for each seed. When DE pro-
gram is executed for all the above combinations, the global minimum HE area for
the above heat duty is found to be 34.44 m2 as against 55 m2 for the base case de-
sign – indicating that DE is likely to converge to the true global optimum. For
each seed, out of the 121 combinations of F and CR considered, the percentage of
the combinations converging to this global minimum (CDE) in less than 30 genera-
tions is listed. The average CDE for each seed as well as for each strategy can be
considered to be a measure of the likeliness in achieving the global minimum. It
was found that the individual values of CDE cover a wide range from 28.1 to 81.8 -
indicating that DE is more likely to find the global optimum. Combining this
above observation with the earlier one, it can be concluded that DE is more likely
to find a function’s true global optimum compared to the base case design. The
average CDE for each seed ranges from 40.7 to 64.8. In this range, the average CDE

for seeds 5, 7 and 10 is above 54 and so these seeds are good relative to others.
With a benchmark of 40 for the individual CDE values as well, seeds 5, 7 and 10
stand good from the rest. Thus with these seeds, there is more likeliness of
achieving the global minimum. Whereas with seeds 3, 5 and 20 there are more of
CDE values below 40 and hence not considered to be good from likeliness point of
view.

The average CDE for different strategies varies from 44.2 to 59.4 and hence all
are good if an average CDE of 40 is considered to be the benchmark. With the
same benchmark for CDE values also is taken, then, excepting strategy numbers 2,
7 and 8 all other strategies are good. Considering ‘speed ’ as the other criteria, to
further consolidate the effect of strategies on each seed and vice versa, the best
combinations of F and CR - taking the minimum number of generations to con-
verge to the global minimum (Gmin) - are listed in Table-9.4.

The Criteria for choosing a good seed from ‘speed’ point view could be: (1) It
should yield the global minimum in less number of generations, and (2) It should
yield the same over a wide range of F and CR for most of the strategies. Follow-
ing the first criteria with a benchmark of - achieving the global minimum in not
more than two generations – seed 3 is eliminated. Satisfying the second criteria
also, only seeds 7 and 10 remain. But comparing the overall performance of seeds
7 and 10, seed 10 yields the global minimum in two generations for more number
of combinations of F and CR (18 times) than for seed 7 (11 times). Also, when
random numbers are generated between 1 and 10 using seed 10, it is observed that
it generates more 1’s which is required in the design configuration leading to the
global minimum. Though seed 5 was good from the ‘more likeliness’ point of
view, but with ‘speed’ as the other criteria it got eliminated.



9.3 Design of Shell-and-Tube Heat Exchanger 267

Table 9.4. Effect of seed on DE strategies w.r.t. Gmin

NP = 70 & MAXGEN = 30S. No. Strategy
Seed = 3
F CR Gmin

Seed = 5
F CR Gmin

Seed = 7
F CR Gmin

Seed = 10
F CR Gmin

Seed = 15
F CR Gmin

Seed = 20
F CR Gmin

1 DE/best/1/exp 0.7 0.9 3 0.9 1.0 3
1.0 1.0 3
1.1 1.0 3

0.4 0.4 5
0.5 0.4 5
0.6 0.4 5
0.7 0.4 5
0.8 0.4 5
0.9 0.4 5
0.9 0.7 5
1.0 0.4 5
1.1 0.4 5

0.8 0.8 2
0.9 0.8 2
0.9 1.0 2
1.0 1.0 2
1.1 1.0 2

0.6 0.3 4
0.7 0.3 4

0.8 0.4 3
0.9 0.4 3
1.0 0.4 3

2 DE/rand/1/exp 1.1 0.1 3 1.0 0.6 6
1.1 0.6 6

0.9 0.9 6
1.0 0.9 6

0.9 0.9 7 0.9 0.4 7
1.0 0.4 7
1.1 0.4 7

1.0 0.5 6
1.1 0.5 6

3 DE/rand-to-best/1/exp 1.0 0.9 4 1.0 0.2 5
1.1 0.2 5

0.9 1.0 2
1.0 1.0 2
1.1 1.0 2

0.6 0.8 4
0.8 0.9 4
0.9 1.0 4
1.0 0.7 4

0.7 0.9 3 1.0 0.7 4
1.0 0.9 4

4 DE/best/2/exp 0.4 0.9 4
0.7 0.9 4
0.9 1.0 4
1.1 0.7 4

1.1 1.0 2 0.8 0.7 2 1.0 0.6 4
1.1 0.6 4

0.8 0.8 4 0.7 1.0 2
0.8 1.0 2

5 DE/rand/2/exp 0.6 0.9 12
1.1 0.7 12

1.0 0.5 6
1.1 0.5 6

0.8 0.9 2 1.0 1.0 3 0.6 0.9 1
1.0 0.3 9

0.2 1.0 6

6 DE/best/1/bin 0.4 0.6 7
1.0 0.9 7

0.9 1.0 3
1.0 1.0 3
1.1 1.0 3

1.0 0.8 3 0.5 0.7 2
0.6 0.4 2
0.6 0.5 2
0.6 0.9 2
0.7 0.4 2
0.9 1.0 2
1.0 0.9 2
1.0 1.0 2
1.1 0.8 2
1.1 0.9 2
1.1 1.0 2

0.9 0.8 5 0.4 0.7 5
1.0 0.9 5

7 DE/rand/1/bin 1.0 0.5 9 0.1 0.3 7
0.7 0.5 7
0.8 0.8 7

0.9 0.9 5 0.4 0.5 7 0.7 0.9 3 0.6 0.7 10

8 DE/rand-to-best/1/bin 0.7 0.1 6
1.1 0.9 6

0.7 0.4 5
0.8 0.5 5
1.1 0.4 5

0.9 0.6 2
0.9 0.7 2
0.9 0.8 2
0.9 1.0 2
1.0 1.0 2
1.1 1.0 2

0.9 0.7 3
0.9 0.8 3

0.7 0.8 5
0.7 1.0 5

1.0 0.5 3

9 DE/best/2/bin 0.9 1.0 4 0.6 0.8 2
0.7 0.8 2
1.1 1.0 2

1.1 0.8 3 0.5 0.5 2
0.6 0.5 2

0.7 0.4 5 0.7 1.0 2
0.8 1.0 2

10 DE/rand/2/bin 0.6 0.8 6 0.4 0.8 5
1.1 0.5 5

0.9 1.0 6 1.0 1.0 3 1.1 0.4 9 0.2 0.9 4
0.8 0.9 4

Similarly with seed 15, using DE/rand/2/exp, with F = 0.6 and CR = 0.9,
though the global minimum is achieved in one generation itself, still it is not con-
sidered as more number of generations are taken to converge with other strategies
and other combinations of F and CR. From the ‘speed’ point of view it can be ob-
served from Table-9.9 that the strategy numbers 2, 5, 7, and 10 are good. Hence,
from both ‘more likeliness’ and ‘speed’ point of view, for different seeds, strategy
numbers 1, 3, 4, 6, and 9 are good.

From the above results, it is also observed that, if for a given seed the random
numbers generated are already good, then by using DE/best/1/...(strategy numbers
1 and 6) the global minimum is achieved in few generations itself. For example,
with seeds 3 and 10 the global minimum is achieved in two generations itself with
DE/best/1/... strategies. To summarize the effect of seed on each strategy, from
Table-9.9, the best seeds and the number of combinations of F and CR in which
the global minimum is achieved are found for each strategy along with Gmin.



268 9 Applications in Heat Transfer

The seed value of 10 works well for four out of the ten strategies considered for
a total of 19 combinations of F and CR. Seed 7 does well with 3 strategies, but for
a total of 10 combinations of F and CR only. From this table also, it is clear that
the seed value of 10 is better out of all the seeds considered.

Once a good seed is chosen, the next step is to study the effect of the key pa-
rameters of DE to find the best combinations of NP, F and CR for each strategy.
For this, the DE algorithm for the optimal HED problem is executed for all the ten
strategies for various values of NP, F and CR with MAXGEN = 15. The popula-
tion size, NP is normally about five to ten times the number of parameters in a
vector D (Price & Storn, 1997). To further explore the effect of the key parameters
in detail, the NP values are varied from 10 to 100 in steps of 10 and F & CR val-
ues are varied again as before. The reason for taking MAXGEN = 15 can be ex-
plained as follows. As can be seen from Table-9.9, at the maximum 12 generations
are taken to converge to the global minimum with NP=70. Hence, to study the ef-
fect of NP, the MAXGEN is restricted to only 15 so that with other NP values if
more number of generations are taken then NP=70 itself can be claimed to be the
best population size.

With MAXGEN = 15, and for the selected seed value of 10, the percentage of
the combinations converging to the global minimum (CDE) are found for each
strategy for different NP values.

Though the NP values are varied from 10 to 100, the results for NP = 10, 20,
and 30 are not considered in the subsequent analysis for the following reasons: (1)
The global minimum is not achieved for any of the combinations of F and CR
with some strategies for these NP values, and (2) To have the same basis for com-
parison with GA, for which the N values are varied from 32 to 100 (the reasons
for taking the above range of N for GA is explained later). From these results, it is
seen that the individual CDE values cover a wide range from 0.8 to 66.1. The aver-
age CDE for each NP as well as for each strategy are also computed. This average
is again a measure of the likeliness of achieving the global minimum. The aver-
age CDE for different NP varies from 6.3 to 31.3. With a benchmark of 10 for this
average CDE, it can be observed that, NP value of 70 and above stand good from
the rest. From ‘more likeliness’ point of view, with a benchmark of 20 for CDE

values, again NP values of 70 and above are good. But for NP values of 100 and
above it is observed that the likeliness decreases. The average CDE for different
strategies varies from 6.0 to 32.1. With a benchmark of 15 for this average CDE,
from ‘more likeliness’ point of view, strategy numbers 1, 3, 4, 6, 8, and 9 stand
good from the rest.

Considering ‘speed’ again as the other criteria, the best combinations of F and
CR – taking the least number of generations to converge to the global minimum
(Gmin) – are determined for various strategies with different NP values. It was
found that for certain combinations of F and CR, DE is able to converge to the
global minimum in a single generation also. From the ‘speed’ point of view also
again it is evident that the NP values of 70 and above are good – indicating that at
least a population size of 10 times D is essential to have more likeliness in achiev-
ing the global minimum. It is in agreement with the simple rules proposed by
Price & Storn (1997). And strategy numbers 1, 4, 6, and 9 are good. Hence, from



9.3 Design of Shell-and-Tube Heat Exchanger 269

‘more likeliness’ as well as ‘speed’ point of view, for different NP values, strategy
numbers 1, 4, 6, and 9 are good.

Combining the results of variations in seed and NP, from ‘more likeliness’ as
well as ‘speed’ point of view, it can be concluded that DE/best/…(strategy num-
bers 1, 4, 6, and 9) are good. Hence, for this optimal HED problem, the best vec-
tor perturbations either with a single or two vector differences are the best with ei-
ther exponential or binomial crossovers.

The Number of Function Evaluations (NFE) are related to the population size,
NP as NFE = NP * (Gmin + 1) (plus one corresponds to the function evaluations of
the initial population). It can be inferred from the simulated results (using NP and
Gmin values to compute NFE) that NFE varies from only 100 to 1300, out of the
1,61,280 possible function evaluations considered. Hence, the best combination
corresponding to the least function evaluations is found to be for NP = 50 and
DE/best/1/exp strategy, with 100 function evaluations as it converges in one gen-
eration itself. For this combination DE took 0.1 seconds of CPU time on a 266
MHz Pentium-II processor.

Now, to study the effect of F and CR on various strategies, the DE algorithm is
executed for the present optimal problem, for different values of F and CR. For the
selected seed value of 10 and NP = 70, the F values are varied from 0.5 to 1.0 in
steps of 0.1 and CR values from 0 to 1 in steps of 0.1. For the ten different strate-
gies considered in the above range of F and CR, 21 plots are made for number of
generations versus CR values with F as a parameter; and 18 plots for the number
of generations versus F values with CR as a parameter. Typical graphs are shown
in Figs. 9.8 – 9.11. The numbers given in the legend correspond to the strategy.
Whenever the global minimum is obtained, it is observed that DE converges in
less than 70 generations for strategies 1, 4, 6, and 9; and in less than 100 genera-
tions for the rest of the strategies. This implies that for any particular combination
of the key parameters, if convergence is not achieved in less than 100 generations,
then it is never achieved. So the points at 100 generations in the graphs correspond
to the misconvergence and hence represent local minima (other than 34.44 m2 and
obviously higher values of area).



270 9 Applications in Heat Transfer

Fig. 9.8. Comparison of DE strategies for best vector perturbation with F as a parameter
(F=0.5)

Fig. 9.9. Comparison of DE strategies for best vector perturbation with F as a parameter
(F=0.9)

0

10

20

30

40

50

60

70

80

90

100

110

0 0.3 0.5 0.7 0.8 0.9 1
CR

G
en

er
at

io
ns

1. DE/best/1/exp

4. DE/best/2/exp

6. DE/best/1/bin

9. DE/best/2/bin

0

10

20

30

40

50

60

70

80

90

100

110

0 0.3 0.5 0.7 0.8 0.9 1

CR

G
en

er
at

io
ns

1. DE/best/1/exp

4. DE/best/2/exp

6. DE/best/1/bin

9. DE/best/2/bin



9.3 Design of Shell-and-Tube Heat Exchanger 271

Fig. 9.10. Comparison of DE strategies for random vector perturbation with CR as a pa-
rameter (CR=0.5)

Fig. 9.11. Comparison of DE strategies for random vector perturbation with CR as a pa-
rameter (CR=1.0).

For studying the effect of F and CR on each strategy, the criterion considered is
‘speed’. So, it should yield the global minimum in less number of generations.
From the ‘speed’ point of view, it can be seen that with F as a parameter, in gen-

0

10

20

30

40

50

60

70

80

90

100

110

0.5 0.6 0.7 0.8 0.9 1
F

G
en

er
at

io
ns

2. DE/rand/1/exp

5. DE/rand/2/exp

7. DE/rand/1/bin

10. DE/rand/2/bin

0

10

20

30

40

50

0.5 0.6 0.7 0.8 0.9 1
F

G
en

er
at

io
ns

2. DE/rand/1/exp

5. DE/rand/2/exp

7. DE/rand/1/bin

10. DE/rand/2/bin



272 9 Applications in Heat Transfer

eral (excluding the misconvergence points) DE/best/1/...(strategy numbers 1 and
6) are better than DE/best/2/.. (strategy numbers 4 and 9) unlike from ‘more like-
liness’ point of view, where DE/best/2/.. is better than DE/best/1/.. as the former
one takes less number of generations. Similar trends are observed for CR also as a
parameter. It means that if best vector perturbation is to be tried then, from the
‘speed’ point of view, it is worth trying it with single vector perturbation first to
see quickly if there is any convergence. If misconvergence occurs DE/best/2/.. can
be tried as it has more likeliness of achieving the global minimum. With
DE/best/1/.. it is observed that at low values of F binomial crossover is better than
exponential crossover; and as F values are increased there is no marked difference
in the performance of exponential and binomial crossover. From the ‘speed’ point
of view this observation is again clearly evident from the results obtained. But for
DE/best/2/.. binomial crossover seems to be better than that of exponential, as it
yields the global minimum in less number of generations at medium to higher val-
ues of F. Similar trends are observed with CR also as a parameter.

If misconvergence occurs with DE/best/..., either DE/rand-to-best/1/... or
DE/rand/...seem to be the immediate good options. From the ‘speed’ point of view
DE/rand/2/... is seen to be better than DE/rand/1/... at high values of F and CR.
This indicates that if random vector perturbation is to be used then, from the
‘speed’ point of view, it is better to use it with two vector differences. With
DE/rand/1/.., exponential crossover seems to be a better option. For the optimal
HED problem considered, it is concluded from the preceding discussions that for
variations in seed and NP, from ‘more likeliness’ as well as ‘speed’ point of view
DE/best/.. strategies are better than DE/rand/.. From these results it is also ob-
served that the DE strategies are more sensitive to the values of CR than to F. Ex-
treme values of CR are worth to be tried first. It was observed that there is no dif-
ference in the performance of exponential and binomial crossover at CR=1.0,
which is quite obvious from the nature of these operators. The priority order of the
strategies to be employed for a given optimal problem may vary from what is ob-
served above. Selection of a good seed is indeed the first hurdle before investigat-
ing the right combination of the key parameters and the choice of the strategy.
Some of these observations made in present the study form the supportive evi-
dence of the recommendations and suggestions, made for other applications by
Price and Storn (2002).

For comparison, Genetic Algorithms with binary coding for the design vari-
ables are also applied for the same case study with Roulette-wheel selection, sin-
gle-point crossover, and bit-wise mutation as the operators for creating the new
population. The GA algorithm is executed for various values of N - the population
size, pc – the crossover probability and pm – the mutation probability. With a seed
value of 10 for the pseudo random number generator, N is varied from 32 to 100
in steps of 4; pc from 0.5 to 0.95 in steps of 0.05; and pm from 0.05 to 0.3 in steps
of 0.05, leading to a total of 1080 combinations. The reasons for not considering
the N values of 30 and below are same as those already explained for NP while
discussing the results with DE. N/2 has to be an even number for single-point
crossover and hence the starting value of 32 and the step size of 4 are taken. The
step size is smaller for GA compared to DE, as it can be seen later that GA has



9.3 Design of Shell-and-Tube Heat Exchanger 273

less likeliness so more search space is required. For each population size, 60
combinations of pc and pm are possible in this range. For the case study consid-
ered, the same global minimum heat transfer area is obtained (34.44m2) by using
GA also. The minimum number of generations required by GA to converge to the
global minimum (Gmin), in the above range of the key parameters is listed in Ta-
ble-9.5 along with the Number of Function Evaluations (NFE).

Table 9.5. GA parameters converging to the global minimum

Seed = 10 & MAXGEN = 100S. No.

N pc pm CGA Gmin NFE

1 44 0.55
0.60

0.05 - 0.30 20 53
63

2376
2816

2 48 0.75 0.05 - 0.30 10 5 288
3 52 0.75

0.90
0.05 - 0.30 20 67

19
3536
1040

4 60 0.65
0.70

0.05 - 0.30 20 71
14

4320
900

5 64 0.50
0.60
0.80

0.05 - 0.30 30 59
43
25

3840
2816
1664

6 68 0.65
0.85

0.05 - 0.30 20 64
6

4420
476

7 72 0.50 0.05 - 0.30 10 47 3456
8 76 0.75 0.05 - 0.30 10 90 6916

9 80 0.60
0.75
0.80
0.85
0.95

0.05 - 0.30 50 23
18
39
35
46

1920
1520
3200
2880
3760

10 84 0.75
0.90

0.05 - 0.30 20 97
70

8232
5964

11 100 0.60
0.75

0.05 - 0.30 20 13
4

1400
500

For each combination of N and pc listed in this table, GA is converging to the
global minimum heat transfer area of 34.44 m2 for all the six values of pm from
0.05 to 0.3 in steps of 0.05. While executing the GA program, it is observed that
more number of generations is taken by GA to converge and hence, the maximum
number of generations (MAXGEN) is specified as 100. For a given N, the per-
centage of the combinations converging to the global minimum (CGA) in less than
100 generations, out of the 60 possible combinations of pc and pm considered, is
also listed in Table-9.5. As can be seen, CGA ranges from 10 to 50 only as against
the individual CDE, which varies from 0.8 to 66.1. Comparing the individual CDE

range for one of the best strategy DE/best/2/bin, which varies 11.6 to 66.1 (except
one that is 3.3), CGA is relatively less. The average CGA is calculated to be 20.9,
whereas the average CDE is above 22 for four out of the ten strategies (strategy
numbers 1, 4, 6 and 9). It is interesting to note that, had the basis of MAXGEN



274 9 Applications in Heat Transfer

been same (i.e. 100) for both GA and DE then, it is quite obvious that the CDE val-
ues would have been very high (may be close to 100) – indicating that DE has
‘more likeliness’ of achieving the global optimum compared to GA – as it has a
wide range of the individual CDE values. And also DE has more strategies to
choose from, which is an advantage over GA. As a measure of ‘likeliness’ another
criteria is identified and defined – the percentage of the key parameter combina-
tions converging to the global minimum, out of the total number of combinations
considered (Ctot). In Table-9.10, out of the 1080 combinations of the key parame-
ters considered with GA, only 138 combinations (i.e. Ctot = 12.8) are converging
to the global minimum in less than 100 generations. Whereas in DE, out of the to-
tal of 9680 possible combination of key parameters considered 1395 combinations
(i.e. Ctot = 14.4) are converging to global minimum in less than 15 generations it-
self.

The relation between NFE and the number of generations in GA also, remains
the same as in DE. (NFE = N * (Gmin + 1)). Using GA, with a seed value of 10,
NFE varies from 288 to 8148 as against a small range of 100 to 1300 only for DE,
which is an indication of the tremendous ‘speed’ of the DE algorithm. The above
two observations clearly demonstrate that for the case study taken up, the DE al-
gorithm is significantly faster, has more likeliness in achieving the global opti-
mum and so is efficient compared to GA. It is also evident from Table-9.5 that, the
best combination corresponding to the least function evaluations is for N = 48, pc

= 0.75, and pm 0.05 to 0.3 (entire range of pm), with 288 function evaluations as it
converges in 5 generations itself. For this combination of parameters GA took
0.46 seconds of CPU time (on a 266 MHz Pentium-II processor) to obtain 34.44
m2 area. The summary of the results from the preceding discussions, for the se-
lected seed value of 10 is listed in Table-9.6.

The performance of DE and GA can be compared from this table with respect
to the various criteria identified and defined. Out of the entire range of key pa-
rameter combinations considered, the range of the individual key parameter values
converging to the global minimum heat exchanger area of 34.44 m2, along with
the best strategies recommended are listed for DE and GA. For comparison of DE
and GA, the characteristic criteria identified are the ‘likeliness’ and the ‘speed’ in
achieving the global minimum. As a measure of ‘likeliness’ the following pa-
rameters are defined: CDE and average CDE for DE; CGA and average CGA for GA;
Ctot for both GA and DE. Similarly, as a measure of ‘speed’ the parameters de-
fined are: Gmin; NFE; and CPU time. From the range of the values of these identi-
fied parameters for the above criteria listed in Table-8, it is evident that DE has
shown remarkable performance within 15 generations itself from both ‘likeliness’
and ‘speed’ point of view, which GA could not show even in 100 generations.
Hence, it can be concluded that DE is significantly faster at optimization and has
more likeliness in achieving the global optimum. The results shown in this com-
prehensive table consolidate all the observations made and the conclusions drawn
from the preceding discussions. So, the authors recommend the above range of
the key parameter values (as listed in Table-9.6) for the optimal design of a shell-
and-tube heat exchanger using differential evolution.



9.3 Design of Shell-and-Tube Heat Exchanger 275

Table 9.6. Comparison of DE and GA w.r.t. various criteria for the entire range of
parameters

Seed = 10S. No.

Criteria DE GA
1 MAXGEN 15 100
2 Global minimum

heat exchanger area (m2)
34.44 34.44

NP: 50 – 100 N: 44 – 100
F: 0.3 – 1.1 Pm: 0.05 – 0.3

(a) Key pa-
rameters

CR: 0.1 – 1.0 Pc: 0.5 – 0.95
DE/best/1/exp
DE/best/1/bin
DE/best/2/exp

3 Parameter values
converging to the
global minimum

(b) Strategy

DE/best/2/bin

-

CDE: 0.6–66.1 CGA: 10 - 50
Avg. CDE: 6.0-32.1 Avg. CGA: 0.9

4 Measure of ‘likeliness’ in achieving
the global minimum

Ctot: 12.8 Ctot : 14.4
(a) Gmin 1 – 12 4 – 97
(b) NFE 100 – 1300 288 – 8148

5 Measure of ‘speed’
in achieving the
global minimum (c) CPU

time (s)
0.1 – 2.23 0.46 – 15.29

The performance of DE and GA is compared for the present problem in Table-
9.7, with respect to the ‘best’ parameters – parameter values converging to the
global minimum out of the entire range considered.

Table 9.7. Comparison of DE and GA w.r.t. various criteria for the best parameters

Seed = 10S. No.
Criteria DE GA

1 Global minimum heat transfer area (m2) 34.44 34.44

NP: 50 N: 48
F: 0.8 – 1.1 pm : 0.05 – 0.30

(a) Key parameters

CR: 0.7 pc : 0.75

2 Best parameter
values converging
to the global mini-
mum (b) Strategy DE/best/1/exp -

3 Gmin 1 5
4 NFE 100 288
5 CPU time (s) 0.1 0.46

For NP=50, with DE/best/1/exp strategy, CR=0.7 and F = 0.8 to 1.1 (any value
in steps of 0.1), as already been mentioned DE took one generation, 100 function
evaluations and 0.1 seconds of CPU time. But with GA, for N = 48, pc = 0.75 and
pm = 0.05 to 0.3 (any value in steps of 0.05) it took 5 generations, 288 function
evaluations and 0.46 seconds of CPU time.

From Table-9.7, it can be seen that DE is almost 4.6 times faster than GA. And
by using DE, there is 78.3 % savings in the computational time compared to GA.
Comparing the results of the proprietary program (HTFS, STEP5) with these algo-



276 9 Applications in Heat Transfer

rithms (both DE and GA), there is 37.4 % saving in the heat transfer area for the
case study considered. For the optimal shell-and-tube HED problem considered,
the best population size using both DE and GA is seen to be around 7 times the
number of design variables with about 70 percent crossover probability. Hence,
for the heat duty of the case study taken up, the best design configuration of the
shell-and-tube heat exchanger with respect to the design variables considered, cor-
responds to the global minimum heat exchanger area of 34.44 m2. The best design
variables are listed in Table-9.8 along with the best key parameters of the DE al-
gorithm used for this optimization.

Table 9.8. Summary of the proposed final design for the case study

S. No. Parameters
1 Heat duty (kW) 1509.4

(a) tube outer diameter (inch) ½
(b) tube pitch 5/8” triangular
(c) shell head type Fixed tube sheet
(d) tube passes Single
(e) tube length(ft) 24
(f) baffle spacing 20%

2 Best design variables

(g) baffles cut 15%
3 Heat exchanger area (m2) 34.44

(a) tube-side 0.674 Pressure drop (bar)
(b) shell-side 0.31
(a) strategy DE/best/1/exp
(b) seed 10
(c) NP 50
(d) F 0.8 – 1.1

5 DE parameters

(e) CR 0.7

9.3.4 Conclusions

This problem demonstrates the first successful application of Differential Evolu-
tion for the optimal design of shell-and-tube heat exchangers. A generalized pro-
cedure has been developed to run the DE algorithm coupled with a function that
uses Bell’s method of heat exchanger design, to find the global minimum heat ex-
changer area. For the case study taken up, application of all the ten different work-
ing strategies of DE is explored. The performance of DE and GA is compared.
The following conclusions are drawn from this study:

1. The population-based algorithms such as GAs and DE provide significant im-
provement in the optimal designs, by achieving the global optimum, compared
to the traditional designs.

2. For the present optimal shell-and-tube HED problem:
• The best population size, using both DE and GA, is about 7 times the num-

ber of design variables



Nomenclature 277

• From ‘more likeliness’ as well as ‘speed’ point of view, DE/best/... strategies
are better than DE/rand/... for the selected seed value of 10

• DE/best/1/.. strategy is found to be the best out of the presently available ten
strategies of DE

3. Differential Evolution, a simple evolution strategy is significantly faster com-
pared to GA.

4. DE achieves the global minimum over a wide range of its key parameters – in-
dicating the ‘likeliness’ of achieving the true global optimum.

5. And DE proves to be a potential source for accurate and faster optimization.

Nomenclature

� average cost

z~ dimensionless axial position

r~ dimensionless radius, r/R

T
~

temperature vector, (= T(r, z) - Tw) K

dT
~

Temperature vector, (= To - Tw), K

Γ,ix ith vector in generation Γ

Γ,bestx vector with minimum cost in generation Γ

ΓΓ 21 ,, , rr xx randomly selected vector

ΔH heat of reaction, J/kg

ΔTlm log-mean temperature difference

ΔTm mean temperature difference

� collocation vector

A(X) objective function heat transfer area, m2

Aij element of the collocation matrix A

Ao heat transfer area based on outer surface, m2

B collocation matrix

� collocation vector

Bi biot number

bi coefficients of the analytical solutions

Bij element of the collocation matrix B

C(X) objective function heat exchanger cost
∗
pGC rate of change of enthalpy with respect to the rise in

temperature of the gas phase, J/kgK



278 9 Applications in Heat Transfer

CA concentration of reactant A, kmol/m3

CDE percentage of the combinations converging to the global
minimum of 34.44 m2 of heat exchanger area, out of the
121 combinations of F and CR considered (Tables-2 &
5).

CGA percentage of the combinations converging to the global
minimum of 34.44 m2 of heat exchanger area, out of the
60 combinations of pc and pm considered (Tables-7 &
9).

Co inlet concentration, kmol/m3

Cp heat capacity at constant pressure, J/kg K

CpL specific heat of liquid, J/kgK

CPU time the time taken on 266MHz Pentium-II processor

CR (0<CR<1) crossover constant

Ctot percentage of the key parameter combinations converg-
ing to the global minimum, out of the total number of
combinations considered.

D dimension

D number of design variables or dimension of the parame-
ter vector.

De effective diameter of the packing, m

Der effective diffusivity, m2/s

F (0<F<1.2) scaling factor

� cost or the value of the objective function

F weight applied to the random differential

Ft LMTD correction factor

G gas flow rate, kg/m2 s

Gmin minimum number of generations required to converge
to the global minimum

hw Wall heat transfer coefficient, W/m2K

k thermal conductivity, W/m K

ker effective thermal conductivity of the bed, W/mK¸

L liquid flowrate, kg/m2 s

M (0<M<D -1) random integer

N measurement points or number of collocation points

N population size in GA

NP population size in DE

erP′ modified Peclet number, ("kerZ/(¸CpL /GC*pg)R
2)



Nomenclature 279

pc crossover probability in GA

Pi Jacobi polynomial of order i

pm mutation probability in DE

Pr binomial probability function

Q positive-definite weighting matrix

Q heat duty, W

r radial position in trickle bed, m

R trickle-bed radius, m

r random number

rA reaction rate

T temperature, K

To inlet fluid temperature, K

Tw wall temperature, K

u fluid velocity, m/s

u, v trial vectors

U0,cal calculated value of overall heat transfer coefficient
based on outside area, W/m2 0C

Uo.ass assumed value of overall heat transfer coefficient based
on outside area, W/m2 0C

X a design configuration

x a design variable

z axial direction in the trickle bed, m

Z length of the trickle bed, m

Greek letters

δ, δ1, δ2, δ3, δ4 constants

∈ dimensionless temperature vector, dTrT
~

/)1,~(
~

ε void fraction of the bed
γ integer
Γ generation number
λ (0<λ1.2) greediness scaling factor
ρB catalyst bulk density, kg/m3
ρf fluid density, kg/m3
σA cost variance in generation "
ρ density, kg/m3

μ viscosity, kg/m s



280 9 Applications in Heat Transfer

Abbreviations

ARS adaptive random search

DBF dispersed bubble flow

DE differential evolution

GA Genetic Algorithms

HE Heat Exchanger

HED Heat Exchanger Design

HTFS Heat Transfer Flow Systems

HTRI Heat Transfer Research Institute

LMTD Log-Mean Temperature Difference

MAXGEN Maximum Number of Generations specified

NFE Number of Function Evaluations

PDE Partial differential equation

PF pulse flow

RTP radial temperature profile method

TF trickle flow



Nomenclature 281

References

Acton, F. S. (1970). Numerical methods that work. Harper& Row, New York.
Angira, R. and Babu, B.V. (2003). “Evolutionary Computation for Global Optimization of

Non-Linear Chemical Engineering Processes”. Proceedings of International Sympo-
sium on Process Systems Engineering and Control (ISPSEC’03) - For Productivity
Enhancement through Design and Optimization, IIT-Bombay, Mumbai, January 3-4,
2003, Paper No. FMA2, pp 87-91 (2003). (Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#56.

Babu, B.V. (1993). Hydrodynamics and heat transfer in single-phase liquid and two-phase
gas-liquid co-current downflow through packed bed columns. Ph.D. thesis. IIT, Bom-
bay.

Babu, B.V. (2001). “Evolutionary Computation-At a Glance” NEXUS, Annual Magazine
of Engineering Technology Association, BITS, Pilani, 3-7, 2001. Also available via
Internet as .pdf file at http://bvbabu.50megs.com/custom.html/#36.

Babu, B.V. and Angira, R. (2001a). “Optimization of Non-Linear Functions Using Evolu-
tionary Computation”, Proceedings of 12th ISME Conference on Mechanical Engineer-
ing, Crescent Engineering College, Chennai, January 10-12, 2001, Paper No. CT07,
153-157. Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#34.

Babu, B.V. and Angira, R. (2001b). “Optimization of Thermal Cracker Operation using
Differential Evolution”, Proceedings of International Symposium & 54th Annual Ses-
sion of IIChE (CHEMCON-2001), CLRI, Chennai, December 19-22, 2001. Also avail-
able via Internet as .pdf file at http://bvbabu.50megs.com/custom.html/#38 & Applica-
tion No. 20, Homepage of Differential Evolution, the URL of which is:
http://www.icsi.berkeley.edu/~storn/code.html

Babu, B.V. and Angira, R. (2002a). "A Differential Evolution Approach for Global Optimi-
zation of MINLP Problems", Proceedings of 4th Asia-Pacific Conference on Simulated
Evolution And Learning (SEAL-2002), Singapore, November 18 - 22, 2002 Paper No.
1033, Vol. 2, pp 880-884. (Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#46).

Babu, B.V. and Angira, R. (2002b). “Optimization of Non-Linear Chemical Processes Us-
ing Evolutionary Algorithm”. Proceedings of International Symposium & 55th Annual
Session of IIChE (CHEMCON-2002), OU, Hyderabad, December 19-22, 2002. (Also
available via Internet as .pdf file at http://bvbabu.50megs.com/custom.html/#54).

Babu, B.V. and Chaturvedi, G. (2000). “Evolutionary Computation strategy for optimiza-
tion of an Alkylation Reaction”, Proceedings of International Symposium & 53rd An-
nual Session of IIChE (CHEMCON-2000), Science City, Calcutta, December 18-21,
2000. Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#31. & Application No. 19, Homepage of Dif-



282 References

ferential Evolution, the URL of which is:
http://www.icsi.berkeley.edu/~storn/code.html

Babu, B.V. and Gautam, K. (2001). “Evolutionary Computation for Scenario-Integrated
Optimization of Dynamic Systems”, Proceedings of International Symposium & 54th

Annual Session of IIChE (CHEMCON-2001), CLRI, Chennai, December 19-22, 2001.
Also available via Internet as .pdf file at http://bvbabu.50megs.com/custom.html/#39
& Application No. 21, Homepage of Differential Evolution, the URL of which is:
http://www.icsi.berkeley.edu/~storn/code.html.

Babu, B.V. and Mohiddin, S.B. (1999). “Automated Design of Heat Exchangers using Arti-
ficial Intelligence based Optimization”, Proceedings of International Symposium &
52nd Annual Session of IIChE (CHEMCON-1999), Panjab University, Chandigarh, De-
cember 20-23, 1999. Also available via Internet as .htm file at
http://bvbabu.50megs.com/custom.html/#27.

Babu, B.V. and Munawar, S.A. (2000). “Differential Evolution for the Optimal Design of
Heat Exchangers”, Proceedings of All India Seminar on Chemical Engineering Pro-
gress on Resource Development: A Vision 2010 and Beyond, organized by IE (I),
Orissa State Centre Bhuvaneshwar, March 13, 2000. Also available via Internet as .pdf
file at http://bvbabu.50megs.com/custom.html/#28.

Babu, B.V. and Munawar, S.A. (2001). “Optimal Design of Shell-and-Tube Heat Exchang-
ers using Different Strategies of Differential Evolution”, PreJournal.com – The Faculty
Lounge, Article No. 003873, posted on website Journal http://www.prejournal.com,
March 03, 2001. Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#35 & Application No. 18, Homepage of Dif-
ferential Evolution, the URL of which is:
http://www.icsi.berkeley.edu/~storn/code.html.

Babu, B.V. and Rao, V.G. (1998). “Prediction of effective bed thermal conductivity and
wall-to-bed heat transfer co-efficient in a packed bed under no flow conditions”. Jour-
nal of Energy, Heat and Mass Transfer, 20, 43-50. Also In: Proceedings of the 1st

ISHM¹–ASME HM¹ Conf. (pp. 715–721), TMH Publishing Company Limited, New
Delhi (1994).

Babu, B.V. and Sastry, K.K.N. (1999). “Estimation of Heat Transfer Parameters in a
Trickle Bed Reactor using Differential Evolution and Orthogonal Collocation”, Com-
puters & Chemical Engineering, 23, 327-339. Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#24. & Application No. 13, Homepage of
Differential Evolution, the URL of which is:
http://www.icsi.berkeley.edu/~storn/code.html

Babu, B.V. and Singh, R.P. (2000). “Optimization and Synthesis of Heat Integrated Distil-
lation Systems Using Differential Evolution”, Proceedings of All India Seminar on
Chemical Engineering Progress on Resource Development: A Vision 2010 and Be-
yond, organized by IE (I), Orissa State Centre Bhuvaneshwar, March 13, 2000.

Babu, B.V. and Vivek, N. (1999). “Genetic Algorithms for Estimating Heat Transfer Pa-
rameters in Trickle Bed Reactors”, Proceedings of International Symposium & 52nd

Annual Session of IIChE (CHEMCON-99), Panjab University, Chandigarh, December
20-23, 1999. Also available via Internet as .htm file at
http://bvbabu.50megs.com/custom.html/#26.

Babu, B.V., Angira, R. and Nilekar, A. (2002). “Differential Evolution for Optimal Design
of an Auto-Thermal Ammonia Synthesis Reactor”, Computers & Chemical Engineer-
ing (Communicated).



Nomenclature 283

Boender, C.G.E. and Romeijn, H.E. (1995). “Stochastic methods”. In: R. Horst, & P. M.
Pardalos, (Eds.), Handbook of global optimization (pp. 829–869). Dordrecht: Kluwer
Publishers.

Bosch, B.V.D. and Hellinckx, L. (1974). “A new method for the estimation of parameters
in differential equations”. American Institute of Chemical Engineers Journal, 20, 250–
255.

Bosch, B.V.D. and Padmanabhan, L. (1974). “Use of orthogonal collocation methods for
the modeling of catalyst particles – II: Analysis of stability”. Chemical Engineering
Science, 29, 805–810.

Carey, G.F. and Finlayson, B.A. (1975). “Orthogonal collocation on finite elements”.
Chemical Engineering Science, 30, 587–596.

Cash, J.R. and Karp, A.H. (1990). “A variable order Runge–Kutta method for initial value
problems with rapidly varying right–hand sides”. ACM Transactions in Mathematics
and Software, 16, 201–222.

Chakraborti, C. and Sastry, K.K.N. (1997). “Genetic algorithm – an efficient alternative for
proving logical arguments”. Evonews, 5, 17–18.

Chakraborti, C. and Sastry, K.K.N. (1998). “The genetic algorithms approach for proving
logical arguments in natural language”. In: J. R. Koza, W. Banzhaf, K. Chellapilla, K.
Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, & R. Riolo
(Eds.), Genetic programming 1998: Proceedings of the 3rd Annual Conference. (pp.
463–470): San Mateo, CA. Morgan Kaufmann.

Chiou, J.P. and Wang, F.S. (1999). “Hybrid method of evolutionary algorithms for static
and dynamic optimization problems with application to a fed-batch fermentation proc-
ess”, Computers & Chemical Engineering, 23, 1277-1291.

Coberly, C.A. and Marshall, W.R. (1951). “Temperature gradients in gas streams flowing
through fixed granular bed”. Chemical Engineering Progress, 47 (3), 141–150.

Crine, M. (1982). “Heat transfer phenomena in trickle-bed reactors”. Chemical Engineering
Communications, 19, 99–114.

Davis, L., (1991). Handbook of genetic algorithms. Van Nostrand Reinhold, New York.
Dollena S.H, David M.A. and Arnold J.S. (2001). “Determining the number of components

in mixtures of linear models”. Computational Statistics & Data Analysis, 38, 15-48.
Ferguson, N.B. and Finlayson, B.A. (1970). “Transient chemical reaction analysis by or-

thogonal collocation”. Chemical Engineering Journal, 1, 327–335.
Finlayson, B.A. (1971). “Packed bed reactor analysis by orthogonal collocation”. Chemical

Engineering Science, 26, 1081–1091.
Finlayson, B.A. (1972). The method of weighted residuals and variational principles. Aca-

demic Press, New York.
Finlayson, B.A. (1980). Nonlinear analysis in chemical engineering, Chemical Engineering

Series. McGraw-Hill International, New York.
Froment, G.F. (1967). Fixed bed catalytic reactors: Current design status. Industrial & En-

gineering Chemistry - Research, 59 (2), 18–27.
Goldberg, D.E. (1989). Genetic algorithms in search, optimization, and machine learning.

Addison-Wesley, Reading, MA.
Goodson, R.E. and Polis, M.P. (1974). Identification of parameters in a distributed systems.

A.S.M.E., New York.
Hashimoto, K., Muroyama, K., Fujiyoshi, K. and Nagata, S. (1976). “Effective radial ther-

mal conductivity in co-current flow of a gas and liquid through a packed bed”. Interna-
tional Journal of Chemical Engineering. 16, 720–727.



284 References

Joshi, R. and Sanderson, A.C. (1999). “Minimal representation multi-sensor fusion using
differential evolution”. IEEE Transactions on Systems, Man and Cybernetics, Part A
29, 63-76.

Karanth, N.G. and Hughes, R. (1974). “Simulation of an adiabatic packed bed reactor”.
Chemical Engineering Science, 29, 197–205.

Kyprianou, A., Worden, K. and Panet, M. (2001). “Identification of hysteretic systems us-
ing the differential evolution algorithm”. Journal of Sound and Vibration, 248 (2),
289-314.

Lamine, A.S., Gerth, L., Le Gall, H. and Wild, G. (1996). “Heat transfer in a packed bed
reactor with co-current downflow of a gas and a liquid”. Chemical Engineering Sci-
ence, 51, 3813–3827.

Lee, M.H., Han, C. and Chang, K.S. (1999). “Dynamic optimization of a continuous poly-
mer reactor using a modified differential evolution”. Industrial & Engineering Chemis-
try Research, 38 (12), 4825-4831.

Lu, J.C. and Wang, F.S. (2001). “Optimization of Low Pressure Chemical Vapour Deposi-
tion Reactors Using Hybrid Differential Evolution”. Canadian Journal of Chemical
Engineering, 79 (2), 246-254.

Manish, C.T., Yan Fu, and Urmila, M.D. (1999). “Optimal design of heat exchangers: A
genetic algorithm framework” Industrial & Engineering Chemistry Research, 38, 456-
467.

Maria, G. (1998). “ARS and short-cut techniques for process model identification and
monitoring”. FOCAPO98 Conference Snowbird.

Matsuura, A., Hitaka, Y., Akehata, T. and Shirai, T. (1979a). “Apparent wall heat transfer
coefficient in packed beds with downward cocurrent gas–liquid flow”. Heat Transfer –
Japanese Research, 8, 53–60.

Matsuura, A., Hitaka, Y., Akehata, T. and Shirai, T. (1979b). “Effective radial thermal con-
ductivity in packed beds with downward cocurrent gas–liquid flow”. Heat Transfer –
Japanese Research, 8, 44–52.

Moros, R., Kalies, H., Rex, H.G. and Schaffarczyk, St. (1996). “A genetic algorithm for
generating initial parameter estimations for kinetic models of catalytic processes”.
Computers & Chemical Engineering, 20, 1257–1270.

Muroyama, K., Hashimoto, K. and Tomita, T. (1978). “Heat transfer from wall in gas–
liquid cocurrent packed beds”. Heat Transfer – Japanese Research, 7, 87–93.

Perlmutter, D.D. (1972). Stability of chemical reactors. Prentice-Hall Publication, Engle-
wood Cliffs, New Jersey.

Perry, R.H. and Green, D. (1993). Perry’s Chemical Engineers’ Handbook, 6th ed.,
McGraw Hill International Editions, New York.

Polis, M.P., Goodson, R.E. and Wozny, M.J. (1973). “Identification of parameters in a dis-
tributed systems”. Automatica, 9, 53–58.

Press, W.H., Teukolsky, S.A., Vellerling, W.T. and Flannery, B.P. (1996). Numerical reci-
pes in C: The art of scientific computing. (2nd ed.), Cambridge University Press, Cam-
bridge.

Price, K. and Storn, R. (1997). “Differential Evolution – A simple evolution strategy for
fast optimization”, Dr. Dobb’s Journal, 22 (4), 18-24 & 78.

Price, K. and Storn, R. (2002). Home Page on Differential Evolution as on July 2002.
http://www.ICSI.Berkeley.edu/~storn/code.html.

Ralston, A. and Rabinowitz, P. (1978). A first course in numerical analysis. McGraw-Hill,
New York.



Nomenclature 285

Sastry, K.K.N., Behera, L. and Nagrath, I.J. (1998). “Differential evolution based fuzzy
logic controller for nonlinear process control”, Fundamenta Informaticae: Special Is-
sue on Soft Computation.

Sinnott, R.K. (1993). Coulson & Richardson’s Chemical Engineering (Design), 6, 2nd ed.,
Pergamon Press, New York.

Smith, J.M. (1973). ‘Heat & mass transfer effects in fixed bed reactors”. Chemical Engi-
neering Journal, 5, 109–118.

Sorenson, J.P., Guertin, E.W. and Stewart, W.E. (1973). “Computational models for cylin-
drical catalyst particle”. American Institute of Chemical Engineers Journal, 19, 969–
975.

Specchia, V. and Baldi, G. (1979). “Heat transfer in trickle bed reactors”. Chemical Engi-
neering Communications, 3, 483–499.

Storn, R. (1995). “Differential evolution design of an IIR-filter with requirements for mag-
nitude and group delay”, International Computer Science Institute, TR-95-018.

Tsang, T.H., Edgar, T.F. and Hougen, J.O. (1976). “Estimation of heat transfer parameters
in a packed bed”. Chemical Engineering Journal, 11, 57–66.

Upreti, S.R. and Deb, K. (1997). “Optimal design of an ammonia synthesis reactor using
genetic algorithms”. Computers & Chemical Engineering, 21, 87–93.

Villadsen, J. and Michelsen, M.L. (1978). Solution of differential equation models by poly-
nomial approximation. Prentice- Hall Publishers, Englewood Cliffs, New Jersey.

Villadsen, J.V. and Stewart, W.E. (1967). “Solution of boundary-value problems by or-
thogonal collocation”. Chemical Engineering Science, 22, 1483–1501.

Wang, F.S. and Cheng, W.M. (1999). “Simultaneous optimization of feeding rate and op-
eration parameters for fed-batch fermentation processes”, Biotechnology Progress, 15
(5), 949-952.

Wang, F.S., Jing, C.H. and Tsao, G.T. (1998). “Fuzzy-decision-making problems of fuel
ethanol production using genetically engineered yeast”, Industrial & Engineering
Chemistry Research, 37, 3434-3443.

Wang, F.S., Su, T.L. and Jang, H.J. (2001). “Hybrid Differential Evolution for Problems of
Kinetic Parameter Estimation and Dynamic Optimization of an Ethanol Fermentation
Process”. Industrial & Engineering Chemistry Research, 40 (13), 2876-2885.

Weekman, V. W. and Myers, J. E. (1965). “Heat transfer characteristics of concurrent gas–
liquid flow in packed beds”. American Institute of Chemical Engineers Journal, 11,
13–17.

Wolf, D. and Moros, R. (1997). “Estimating rate constants of heterogeneous catalytic reac-
tions without supposition of rate determining surface steps – an application of genetic
algorithm”. Chemical Engineering Science, 52, 1189–1199.

Young, L.C. and Finlayson, B. A. (1973). “Axial dispersion in non isothermal packed bed
chemical reactors”. Industrial & Engineering Chemistry Fundamentals, 12 (4), 412–
422.



10 Applications in Mass Transfer

B V Babu

10.1 Introduction

In this chapter, we shall discuss two successful applications of Differential Evolu-
tion (DE) on mass transfer problems: (1) Optimization of Liquid Extraction Proc-
ess, (2) Optimization of a Separation Train of Distillation Columns, and (3) Opti-
mization and Synthesis of Heat Integrated Distillation Column Sequences.

In recent years, evolutionary algorithms (EAs) have been applied to the solu-
tion of NLP in many engineering applications. The best-known algorithms in this
class include Genetic Algorithms (GA), Evolutionary Programming (EP), Evolu-
tion Strategies (ES) and Genetic Programming (GP). There are many hybrid sys-
tems, which incorporate various features of the above paradigms and consequently
are hard to classify, which can be referred just as EC methods. They differ from
the conventional algorithms since, in general, only the information regarding the
objective function is required. In recent years, EC methods have been applied to a
broad range of activities in process system engineering including modeling, opti-
mization and control (Androulakis and Venkatasubramanian, 1991; McKay et al.,
1997; Edwards et al., 1998; Chiou and Wang, 1999; Babu and Angira, 2001a;
Babu and Angira, 2001b; Babu and Angira, 2002a; Babu and Angira, 2002b; Babu
and Chaturvedi, 2000; Babu and Gautam, 2001; Babu et al., 2002; Angira and
Babu, 2003). Differential Evolution (DE), developed by Storn & Price (1997), is
one of the best EC methods. This method provides one of the best genetic algo-
rithms for solving the real-valued test function. The convergent speed of the DE is
very fast.

10.2 Optimization of Liquid Extraction Process

Liquid-Liquid extraction is a mass transfer operation in which a liquid solution
(the feed) is contacted with an immiscible or nearly immiscible liquid (solvent)
that exhibits preferential affinity or selectivity towards one or more of the compo-

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



288 10 Applications in Mass Transfer

nents in the feed. Two streams result from this contact: the extract, which is the
solvent rich solution containing the desired extracted solute, and the raffinate, the
residual feed solution containing little solute.

Liquid-liquid extraction is a powerful separation technique which falls right
behind distillation in the hierarchy of separation methods (Fig. 10.1). In situations
where distillation is not feasible for reasons such as a complex process sequence,
high investment or operating costs, heat sensitive materials, or low volatility, ex-
traction is often the best technology to use.

LLE is carried out either (1) in a series of well-mixed vessels or stages (well
mixed tanks or plate columns or (2) in a continuous process such as spray col-
umns, packed columns, and rotating disk columns. This example illustrate the ap-
plication of Evolutionary Computation method such as Differential Evolution
(DE) to the optimization of a LLE system represented by a plug flow model.

Steady state continuous countercurrent liquid extraction can be modeled in a
variety of ways, the most common of which are (1) a plug flow model and (2) an
axial dispersion model. Jackson and Agnew (1980) demonstrated the effectiveness
of an on-line model based steady-state optimization scheme in finding and holding
the optimum operation conditions of a liquid extraction pilot plant in which acetic
acid was extracted from amyl alcohol using water as the solvent. The equipment
could be operated either manually or under computer control. Under automatic
operation, the computer could maintain the interface level, feed and solvent flow
rates, and the stirrer speed to their respective set points. The latter three set points
were able to be changed by the optimization routine. The interface level was con-
trolled via the extract flow. The measured variables, for both control and optimiza-
tion purposes were the feed and solvent flow rates; the feed, raffinate and extract
concentrations; the stirrer speed; the interface position; and the feed temperature.
Further details are given in Jackson (1977).

The process operation was subject to upper and lower limits on feed and sol-
vent phase superficial velocities and the stirrer speed, and to minimum throughput
and flooding constraints. For use I an optimization scheme, a process model is re-
quired to be able to predict the steady-state process output for a given set of in-
puts. These predicted values can then be used to calculate the value of the per-
formance function. To be of use in an on-line scheme, the model must be
amenable to solution without excessive computational effort. They examined the
accuracy of four models viz., a model based on plug flow of both phases, one
based on axial dispersion superimposed on the flow of both phases, and two em-
pirical models, one linear and one nonlinear) for a continuous pilot-scale extrac-
tion column in which water was used to extract acetic acid from amyl alcohol. The
linear and non-linear models were direct correlations of experimentally obtained
mass transfer data.



10.2 Optimization of Liquid Extraction Process 289

Hierarchy of
Separation Technology

Physical separations
Decantation, Coalescing, Filtering, Demisting

Evaporation
Single effect, Multi effect

Distillation
Simple, Azeotropic, Extractive, Reactive

Extraction
Simple, Fraction, Reactive

Adsorption
Pressure Swing, Temperature Swing

Crystallization
Melt, Solvent

Membranes
MF, UF, NF, RO

Fig. 10.1. Hierarchy of Separation Technologies

A statistical test (an F test or similar) on the model predictions of the process
output variables provided a reasonable indication as to whether or not the model
would be acceptable for use in a model-based optimization scheme. Two empirical
models were rejected, as they were not fitting the data. Both plug-flow and axial-
diffusion models enabled the correct optimum to be predicted in all cases, the dif-
ferences in performance when these models were used were negligible, as there
was little axial mixing of the phases in the Rotating Disc Contactor. Also, the
marginally superior performance of the axial diffusion model was offset by the



290 10 Applications in Mass Transfer

greater complexity of its solution compared to the plug flow model. Hence, the
plug flow model offered the best compromise between predictive ability and com-
plexity because of its greater simplicity. The same is used in the present study too.
Once a model is specified, it can be used to determine the maximum extraction
rate. A typical column is shown in Fig. 10.2. The process model, the objective
function, and the constraints, are described below.

10.2.1 Process Model

Assuming that the concentrations are expressed on a solute free mole basis and
that the equilibrium relation between Y and X is a straight, i.e., the phases are in-
soluble. The model is then given as below:

( ) 0=−− YXN
dZ

dX
OX

(10.1)

( ) 0=−− YXFN
dZ

dY
OX

(10.2)

where

F = extraction factor ( YX vmv )
m = distribution coefficient (m = 1.5)

NOX = number of transfer units

YX vv , = superficial velocity in raffinate, extract phase
X = dimensionless raffinate phase concentration
Y = dimensionless extract phase concentration
Z = dimensionless contactor length

Feed

(X0) Solvent (Y1)

Raffinate (X1)

Extract (Y0)

Fig. 10.2. Extraction Column, schematic



10.2 Optimization of Liquid Extraction Process 291

Fig. 10.2 shows the extraction column with boundary conditions X0 and Y1. A
solution for Y0 in terms of vx and vY can be obtained, given the values for m, NOX,
and the length of the column.

Hartland and Mecklenburgh (1975) list the solution for the plug flow model
(and also the axial dispersion model) for a linear equilibrium relationship, in terms
of F:

( ){ }[ ]
( )[ ]FNF

FNF
Y

OX

OX

−−
−−

=
11

11
0 exp

)exp (10.3)

For the plug flow and axial diffusion models, Jackson and Agnew (1980) summa-
rized a number of correlations for NOX given by an equation of the form:

( )c

b

Y

X
OX N

v

v
aN ⎟⎟⎠

⎞
⎜⎜⎝

⎛
= (10.4)

The correlations obtained by non-linear least-squares regression were:

( ) 0690

240

71 .
.

. N
v

v
N

Y

X
OX ⎟⎟⎠

⎞
⎜⎜⎝

⎛
= for 124082 −≤≤ sN .. (10.5a)

( ) 51

240

20 .

.

. N
v

v
N

Y

X
OX ⎟⎟⎠

⎞
⎜⎜⎝

⎛
= for 133824 −≤≤ sN .. (10.5b)

( ) 0880

180

180 .
.

. N
v

v
N

Y

X
OX ⎟⎟⎠

⎞
⎜⎜⎝

⎛
= for 134082 −≤≤ sN .. (10.5c)

( ) 12

240

090 .
.

. N
v

v
N

Y

X
OX ⎟⎟⎠

⎞
⎜⎜⎝

⎛
= for 133834 −≤≤ sN .. (10.5d)

In the present study, equation (10.5b) is used with 1338 −= sN . .
240

814
.

. ⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

Y

X
OX v

v
N (10.6)

10.2.2 Objective function

We have used the same objective function as proposed by Jackson and Agnew
(1980) i.e., to maximize the total extraction rate for constant disk rotation speed
subject to the inequality constraints:

Maximize f = vY Y0 (10.7)

10.2.3 Inequality constraints

Implicit constraints exist because of the use of dimensionless variables



292 10 Applications in Mass Transfer

01

10

YYY

XXX

≤≤
≤≤ (10.8)

Constraints on vX and vY would be upper and lower bounds such as:

300050

250050

..

..

<<
<<

y

x

v

v (10.9)

and flooding constraint is:

200.≤+ yx vv (10.10)

10.2.4 Results & Discussion

Jackson and Agnew (1980) used a modified gradient-projection technique for
linearly constrained optimization problems developed by Jackson (1977). Edgar &
Himmelblau (1989) used GRG (generalized reduced gradient method) and ob-
tained the same optimum (0.15, 0.05) as Jackson and Agnew. The objective func-
tion is 0.225 i.e. the true optimum lay on the flooding constraint.

In the present study, the DE (differential evolution), an evolutionary technique,
is applied. Apart from the well known seventh strategy (DE-7) i.e., DE/rand/1/bin,
the two new strategies (NS-1& NS-2) have been applied. The psuedo codes for
DE-7, NS-1 and NS-2 are given below:

(a) For DE-7
{

If (random number {0,1})<CR || k==D)
{

trial[j]=x1[c][j]+F*(x1[a][j]-x1[b][j]);
}

else trial[j]=x1[i][j];

j=(j+1)%D;
}

(b) For NS-1
{

If (random number {0,1})<CR || k==D)
{

trial[j]=x1[c][j]+F*(x1[a][j]-x1[b][j]);
}

else trial[j]=bestit[j]+F*(x1[a][j]-x1[b][j]);

j=(j+1)%D;
}



10.2 Optimization of Liquid Extraction Process 293

(c) For NS-2:
{

If (random number {0,1})<CR || k==D)
{

trial[j]=x1[c][j]+F*(x1[a][j]-x1[b][j])+(1-F)*(x1[d][j]-x1[e][j]);
}

else trial[j]=bestit[j]+F*(x1[a][j]-x1[b][j]);

j=(j+1)%D;
}

Fig. 10.3 and Fig. 10.4 show the results obtained using DE-7, NS-1 and NS-2
and present the comparison of DE-7 with NS-1 & NS-2. The stopping criterion
adopted is to terminate the search process when one of the following conditions is
satisfied: (1) the maximum number of generations is reached (assumed 2000 gen-

erations). (2) | kk ff minmax − | < 10-5 where f is the value of objective function for k-

th generation. After the mutation & recombination, if the bound (i.e. lower & up-
per limit of a variable) is violated then it is brought in the bound range (i.e. be-
tween lower & upper limit) by randomly assigning a value in the bound range
(without forcing).

In Fig. 10.3 & Fig. 10.4, NRC & NFE represent respectively, the mean number
of objective function evaluations and the percentage of runs converged to the
global optimum in all the 10 executions (with different seed values). The code was
run for all possible combination of F & CR (0.0<F<=1; and 0.0<CR<=1.0), where
F is scaling factor & CR is crossover constant.

Liquid Extraction

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

CR

N
R

C
(%

)

NRC(NS-1)
NRC(NS-2)
NRC(DE-7)

Fig. 10.3. NRC vs. CR (for F = 0.5)



294 10 Applications in Mass Transfer

Fig. 10.3 presents NRC vs. CR results obtained for F = 0.5 for all three strate-
gies i.e., DE-7, NS-1 and NS-2. The NRC are more in case of new strategy (NS-2)
as compared to DE-7 & NS-1. The new strategy NS-2 seems to be robust than DE-
7 & NS-1 due to nearly 100% conversion to global optimum. Also, it is clear that
till CR = 0.3 the NRC are nill for NS-1 while it is almost 100% for DE-7 & NS-2.

Liquid Extraction

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

CR

N
F

E
*1

00

NFE(NS-1)*100
NFE(NS-2)*100
NFE(DE-7)*100

Fig. 10.4. NFE vs. CR (for F = 0.5)

From the Fig. 10.4, it is evident that NFE are least in case of NS-1. Also, dif-
ference of NFE between NS-1 & DE-7 becomes less after CR = 0.5 and both NS-
1& DE-7 have same NFE at CR = 1.0. NFE are 3.55%, 6.56%, 1.24% more in
case of DE-7 than the NS-1 at CR = 0.6, 0.7, 0.9 respectively.

From above Fig. 10.4 we can observe that till CR = 0.4, the NFE for NS-2 are
less than that of DE-7. But for CR >0.4 the NFE are slightly more than either DE-
7 or NS-1. At CR = 0.5, the NFE are 6.65% and 4.41% more than that of NS-1 and
DE-7 respectively. Although the NFE are slightly more for NS-2 but NRC is
nearly 100% indicating the robustness of the strategy.

10.2.5 Conclusions

In the present study, the problem of optimization of liquid extraction has been
solved using DE and two new DE strategies. It is found that that performance of
DE is slightly better than that of NS-1. But NS-2 seems to be the best choice and
certainly better than DE due to almost 100% NRC which indicate the robustness
of this strategy.



10.3 Optimization of a Separation Train of Distillation Columns 295

10.3 Optimization of a Separation Train of Distillation
Columns

In this example we illustrate use of DE (Differential Evolution) to optimize the
operation of the solvent splitter column shown in figure-5. The feed is naphtha
which has a value of $42/bbl in its alternate use as a gasoline blending stock. The
light ends sell at $53/bbl while the bottoms are passed through a second distilla-
tion column to yield two solvents. A medium solvent containing 50 to 70% of the
bottoms can be sold for $68/bbl, while the remaining heavy solvent (containing 30
to 50% of the bottoms) can be sold for $42/bbl. Another part of plant requires 200
bbl/day of medium solvent and an additional 200 bbl/day can be sold to an exter-
nal market. The maximum feed that can be processed in first column is 2000
bbl/day. The operational costs (i.e., utilities) associated with each distillation col-
umn are $1.25/bbl feed. The operating range for second column is given as the
percentage split of medium and heavy solvent.

10.3.1 Problem formulation

The problem is formulated by developing the objective function and constraints.
The five variables are identified (Fig. 10.5). The objective is to maximize the
profit. The equality constraints arise from material balances and the inequality
constraints from restrictions.

Let us define the operating variables as follows (all are in units of bbl/day):

x1 = naphtha feed rate
x2 = bottoms production rate
x3 = light ends production rate
x4 = medium solvent production rate
x5 = heavy solvent production rate

10.3.1.1 Objective Function

The objective function in terms of profit is:
Maximize f = medium solvent sales + heavy solvent sales + light ends sales –
feed cost – operational costs for each distillation column

Max. 211354 25125142534268 xxxxxxf .. −−−++= (10.11)

10.3.1.2 Inequality constraints

The inequality constraints for the ranges of production are:



296 10 Applications in Mass Transfer

500
2

4 .≥
x

x
& 300

2

5 .≥
x

x
.

Rearranging and substituting for x2 yields:

050 24 ≥− xx . ⇒ ( ) 050 544 ≥+− xxx . ⇒ 054 ≥− xx (10.12a)

030 25 ≥− xx . ⇒ ( ) 030 545 ≥+− xxx . ⇒ 03070 45 ≥− xx .. (10.12b)

Similarly,

700
2

4 .≤
x

x
& 500

2

5 .≤
x

x
yields

07030 54 ≤− xx .. (10.12c)

045 ≤− xx (10.12d)

The constraints (10.12a) & (10.12d) and constraint (10.12b) & (10.12c) are the
same. Therefore only two of the constraints are independent. The other inequality
constraints (supply and operating constraints) are:

400200 4 ≤≤ x

20001 ≤x ⇒ ( ) 20006671 54 ≤+ xx. Or ( ) 120054 ≤+ xx

Also,
05 ≥x .

Thus, total numbers of inequality constraints are:

054 ≥− xx (10.13)

03070 45 ≥− xx .. (10.14)

400200 4 ≤≤ x (10.15)

120054 ≤+ xx (10.16)

05 ≥x (10.17)

10.3.1.3 Equality constraints

(1). Total Material Balance:

5431 xxxx ++= (10.18)

(2). Material balance on column 2:



10.3 Optimization of a Separation Train of Distillation Columns 297

54160 xxx +=. ⇒ ( )541 6671 xxx += . (10.19)

(3). Material balance on column 1:

13 40 xx .= ⇒ ( )543 6670 xxx += . (10.20)

12 60 xx .= ⇒ ( )542 xxx += (10.21)

10.3.1.4 Problem Reformulation

We simplify the objective function by substitution of the equality constraints
(10.19), (10.20) & (10.21) into equation (10.11) so that it is expressed in terms of
the two independent variables, x4 and x5. The final objective function is:

Max. 54 430 xxf += (10.22)

The optimum values of x4 and x5 are:
x4 = 400 bbl/day
x5 = 800 bbl/day
The optimal profit is $13600/day.

40% light ends medium solvent

(x3) (x4)

Feed (x1)

60% bottoms heavy solvents
(x2) (x5)

1 2

Fig. 10.5. Train of distillation columns



298 10 Applications in Mass Transfer

10.3.2 Results & Discussion

Edgar & Himmelblau (1989) used Linear programming Simplex method and ob-
tained the same optimum as stated above. In the present study, the DE (differential
evolution), an evolutionary technique, is applied. Apart from the well known sev-
enth strategy (DE-7) i.e., DE/rand/1/bin, the two new strategies (NS-1& NS-2)
have been applied.

Fig. 10.6 & Fig. 10.7 show the results obtained using DE-7, NS-1 and NS-2 and
present the comparison of DE-7 with NS-1 & NS-2. The stopping criterion
adopted is to terminate the search process when one of the following conditions is
satisfied: (1) the maximum number of generations is reached (assumed 2000 gen-

erations). (2) | kk ff minmax − | < 10-5 where f is the value of objective function for k-th

generation. After the mutation & recombination, if the bound (i.e. lower & upper
limit of a variable) is violated then it is brought in the bound range (i.e. between
lower & upper limit) by randomly assigning a value in the bound range (without
forcing).

Separation Train

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1

CR

N
R

C
(%

)

NRC(NS-1)
NRC(NS-2)
NRC(DE-7)

Fig. 10.6. NRC vs. CR (for F = 0.5)



10.3 Optimization of a Separation Train of Distillation Columns 299

Separation Train

0
5

10
15
20
25
30
35

0 0.2 0.4 0.6 0.8 1

CR

(N
F

E
)*

10
0

NFE(NS-1)*100
NFE(NS-2)*100
NFE(DE-7)*100

Fig. 10.7. NFE vs. CR (for F = 0.5)

In Fig. 10.6 & Fig. 10.7, NFE & NRC represent respectively, the mean number
of objective function evaluations and the percentage of runs converged to the
global optimum in all the 10 executions (with different seed values). The code was
run for all possible combination of F & CR (0.0<F<=1; and 0.0<CR<=1.0), where
F is scaling factor & CR is crossover constant.

Fig.10.6 presents NRC vs. CR results obtained for F = 0.5 for all three strate-
gies i.e., DE-7, NS-1 and NS-2. The NRC are more (100%) in case of new strat-
egy (NS-2) as compared to DE-7 & NS-1. Also, it is clear that for CR = 0.1 & 0.4
the NRC are nill for NS-1 while it is 100% for DE-7 & NS-2. Also, the NRC at
CR =1.0 are 100% for NS-2 but it is only 50% for both DE-7 & NS-1. Evidently,
the new strategy NS-2 seems to be robust than DE-7 & NS-1 due to 100% conver-
sion to global optimum for all values of CR ( 0110 .. ≤≤ CR ).

From the Fig. 10.7, it is evident that NFE are least in case of NS-1. Also, dif-
ference of NFE between NS-1 & DE-7 becomes less after CR = 0.5 and both NS-
1& DE-7 have same NFE at CR = 1.0. NFE are 45.8%, 46.91%, 15.24% &
13.29% more in case of DE-7 than the NS-1 at CR = 0.6, 0.7, 0.8 & 0.9 respec-
tively.

We can observe from Fig. 10.7 that till CR = 0.5, the NFE for NS-2 are less
than that of DE-7. But for CR >0.5 the NFE are slightly more than the DE-7. At
CR = 0.6, the NFE in NS-2 are 49.44% and 2.46% more than that of NS-1 and
DE-7 respectively. Although the NFE are slightly more for NS-2 but NRC is
100% for all values of CR ( 0110 .. ≤≤ CR ) indicating the robustness of this
strategy.



300 10 Applications in Mass Transfer

10.3.3 Conclusions

In the present study, the problem of Optimization of a Separation Train of Dis-
tillation Columns has been solved using DE and two new DE strategies. It is found
that that performance of DE is slightly better than that of NS-1. But NS-2 seems to
be the best choice and certainly better than DE due to 100% NRC which indicate
the robustness of this strategy.

10.4 Optimization and Synthesis of Heat Integrated
Distillation Column Sequences

Distillation is most widely used in separation process in the chemical industry. It
is also a highly energy intensive unit operation, with some process consuming one
third or more of their energy in distillation alone. These systems are widely used
in the manufacturing of petroleum and petrochemical products. Distillation sys-
tems consume large amount of energy to achieve separation. In view of increasing
cost, it is important to design distillation systems, which consume less energy.
Synthesis and design of these systems lies in the hands of human experts. The goal
of energy conservation as an integral part of process synthesis is the main chal-
lenge in computer – aided design.

By definition, synthesis of heat integrated distillation systems will require op-
timization of following areas:

1. Determine the sequence of individual columns
2. Design of column sequence and their operating parameters e.g. pressure
3. Designing heat exchanger network

In last three decades, significant advances have been made in these areas. Heu-
ristics methods are proposed by a number of researchers. These rules play impor-
tant roles in reducing the huge search space when coupled with heat integration.
Howevwr, lack of complete and systematic knowledge required often causes diffi-
culty and leads to low quality solutions.

Decomposing approaches (Jaroslave, 1988; Rong, 1996) used pinch technol-
ogy. Pinch technology, though has been proved to be very successful in engineer-
ing design, is useful for analysis of flow sheet. Many researchers (Andercovich,
1985; Kravanja and Grossman, 1990; Zorka et al., 1994; Zdravko, K., and
Grossman, 1997) have suggested mixed integer linear or non-linear programming
methods (MIL/NLP). Once one of the main solution techniques was found com-
plex and computationally expensive for mathematical programming. In such tech-
niques many simplification have to be assumed to make mathematical models
manageable, which pose several limitations in practical applications.

All these advances show considerable degree of heat integration into model
formulation, simultaneous optimization methods have not been developed in the
way, which would allow efficient flow sheet optimization. Still there is a need to
explore the alternative strategies for the synthesis and optimization of heat inte-
grated – separation sequence and the heat exchanger network.



10.4 Optimization and Synthesis of Heat Integrated Distillation Column Se-
quences 301

In synthesis and optimization of heat integrated columns variables are continu-
ous and mixed integer search space persists. Mathematically, our goal is to search
for minimum in such search space. Random search algorithms like genetic algo-
rithm are capable of search in a multidimensional search space with many peaks
and valleys. Improved genetic algorithm inherits its features from GA. Already us-
ing IGA; research has been reported (Wang et al, 1998). Differential evolution has
shown its merits over GA and IGA in its robustness, ease of implementation and
fast convergence. It has shown better result in an industrial case study for process
simulation (Babu & Sastry, 1999). Differential evolution (Price and Storn, 1997)
is another, yet relatively new, random search technique. It’s faster in finding in
global optimum for industrial applications with huge search space. Just 20 lines of
C code are required for implementation. Inspired by their work we present and ap-
plication of differential evolution to challenge the task.

10.4.1 Problem formulation

The problem to be addressed can be stated as follows:
Given a multi component feed stream of known conditions, it is to be separated

into a number of products of specified compositions. The problem is to synthesize
the optimal distillation sequence and its HEN, allowing use of sharp separators
and minimize total annual cost. Basic assumptions made in this problem are as fol-
lows:
1. Heating and cooling requirement are not directly provided by hot and cold utili-

ties. Heat integration should be taken into consideration for economical techno-
logical reasons. Pressures are selected from the range of allowable pressures.
This allows column pressure with in an allowable range in order to carry out
heat integration. Pressures of columns are treated as continuous variables.

2. Each distillation column performs a simple split (i.e. one feed and two prod-
ucts) and sharp splits. This excludes complex columns from the scope of this
work, and is due to primary reasons first there are number of industrial exam-
ples there only simple columns (non sharp of sharp) are used. Second, I con-
sider the approach in this problem as a step in direction understanding general
separation sequences. Future work will attempt to incorporate complex col-
umns.

3. Column feeds are the same as the outputs of the upstream columns. It simplifies
the modal heat integration.

10.4.1.1 New method for representation of separation sequence

The superstructure for the separation sequence is of great importance, which is ba-
sis for modeling of synthesis and optimization. Cheng and Liu (1988) introduced
component assignment diagram for representation of problem. Yee et al., (1990)
proposed a network structure rather than tree representation. However, both of
them need a large space and two products) superstructure would contain (N-1)



302 10 Applications in Mass Transfer

columns for a feed stream containing N components. There are (2N-1) possible
sequences in total. In this work I propose a (2N-1) dimensional array of integers I
(2N-1) to show all possible sequences. The strategy is illustrated by an example of
five components feed streams as follows:
1. N-1 integers are defined to show the decompositions point.

A ↑ B ↑ C ↑ D ↑ E
1 2 3 4 0

shows one of components have been separated. A, B, C, D, E are refereed to as
five components of a mixture which has been ranked according to physical proper-
ties as relative volatility.
2. I (2N-1) represent all possible sequences of feed stream, which is shown in the

Table-10.1 below.

Table 10.1. Representation of I [2N-1] sequences for whole population

Sequences Column 1 Column 2 Column 3 Column 4 I (2N-1)
1 ABCD/E ABC/D AB/C A/B {4,3,0,2,0,1,0,0,0}
2 ABCD/E ABC/D A/BC B/C {4,3,0,1,0,0,2,0,0}
3 ABCD/E AB/CD A/B C/D {4,2,0,1,3,0,0,0,0}
4 ABCD/E A/BCD B/CD C/D {4,1,0,0,2,0,3,0,0}
5 ABCD/E A/BCD BC/D B/C {4,1,0,0,3,2,0,0,0}
6 ABC/DE A/BC D/E B/C {3,1,4,0,2,0,0,0,0}
7 ABC/DE AB/C D/E A/B {3,2,4,1,0,0,0,0,0}
8 AB/CDE A/B CD/E C/D {2,1,4,0,0,3,0,0,0}
9 AB/CDE A/B C/DE D/E {2,1,3,0,0,0,4,0,0}
10 A/BCDE BCD/E BC/D B/C {1,0,4,3,0,2,0,0,0}
11 A/BCDE BCD/E B/CD C/D {1,0,4,2,0,0,3,0,0}
12 A/BCDE BC/DE B/C D/E {1,0,2,0,4,3,0,0,0}
13 A/BCDE B/CDE CD/E C/D {1,2,0,4,0,3,0,0,0}
14 A/BCDE B/CDE C/DE D/E {1,0,2,0,3,0,4,0,0}

3. I (2N-1) is generated automatically and randomly. Taking the example of
ABCD/E, A/BCD, BC/D, B/C which is shown in the table, generation of I
(2*5-1) is demonstrated as follows:

− Two integer variables a and b are defined to stand for the lower and upper lim-
its of component number in the mixture, respectively is 0 while b is 5.

− For the first column I [1] = random (a, b) = 4, meaning top product is ABCD
and bottom product is E for the first column.

− I [1] - a = 4, there are four components in the top product of the first column,
which need further columns to separate. I [2] = random (a, I [1] = random (0, 4)
= 1, which stands for the second column as top product A and bottom product
BCD. Since b - I [1] = 1, bottom product of the first column is the pure product.
Then I [3] = 0, standing for the pure product E, as one product has been sepa-
rated, b <= b-1 = 4.



10.4 Optimization and Synthesis of Heat Integrated Distillation Column Se-
quences 303

− I [2] - a = 1, standing for pure product in the top stream of the second column,
then I [4] = 0. As A has been separated, a <= a + 1; for the bottom product is
BC and the bottom product is D for the third column.

− I [5] - a = 2, there are two components in the top products of the third column.
I [6] = random (a, I [2]) = 2; which stands for the fourth column with the top
product B and bottom product C. for the bottom product of third column, as b -
I [5] = 1, I [7] = 0, b <= b-1 = 3.

− I [6] - a = 1, the top product of the fourth column is a product so I [8] = 0, a <=
a+1 = 2. For the bottom product of the fourth column, b- I [6] = 1, so I [9] = 0,
b <= b-1 = 2.

− Since a = b, synthesis is finished, I = {4,1,0,0,3,2,0,0,0}.
− Merits of this coding method are obvious although the number of the feasible

distillation sequences will increase exponentially with increase of the number
of components, dimensions of array of integers I [2N-1] increase linearly; this
new method provides a basis for DE to optimize the distillation sequence.

10.4.1.2 Heat integration strategy

For each sequence, compositions of feed streams, top products and bottom prod-
ucts of all N-1 columns are given. When operating conditions such as operating
pressure are also given, the short cut simulation provides information of tempera-
tures and condenser and reboiler, heat duties of top and bottom product streams.
All units receive energy from environment and give off energy to environment.
From the view point of process energy utilization’s condensers and reboilers can
be retreated as hot streams and cold streams, respectively. In this way the problem
of heat integration is transformed into a synthesis problem of constrained HEN.
This problem involves N-1 hot streams; N-1 cold streams and several levels of hot
and cold utilities depending on temperatures of the units. Then the strategy to syn-
thesize the HEN using DE can be used.

10.4.1.3 The cost model

The cost model involves a representation of cost and sizing requirement of distilla-
tion columns and HEN. The cost module method of Gutheri (1969) can determine
cost of columns from operating pressure, shell size and material, type and numbers
of trays (valve trays were used for all costing methods). The cost module method
of Gutheri (1969) can also provide cost of HEN, which includes the investment
and operating cost for heat exchangers.

10.4.2 Synthesis of Distillation system

Solutions are represented as strings of continuous numbers in order. Each string is
composed of three parts:



304 10 Applications in Mass Transfer

1. The first part of the string is I [2N-1], representing all possible sequences of
distillation. These are shown in the table.

2. The second part is O [m x (N-1)]. N-1 columns are needed for separation of N-
components mixture. Each column is associated with m operating parameters.

3. The part is Q [(N-1)(N-1)], representing heat transferred in the heat exchanger
between matched streams. A heat exchanger network involves NH hot streams
and NC cold streams. If the network is acyclic, there are at most Z = NH x NC

exchangers (Ponton and Donaldson, 1974).
As mentioned above, the problem of heat integration will be changed into a

synthesis HEN, which involves N-1 hot streams, N-1 cold streams. For the struc-
ture including at most Z [(N-1)(N-1)] heat exchangers for an acyclic network, we
can set up a matrix. The number of rows and columns of entry in the matrix de-
note the cold and hot streams, respectively. Instead of identifying each entry in the
synthesis matrix by its row I and column j, a transformation is defined as follows:

L = j + (N-1)(I-1), I = 1,2,………….., N-1.
J = 1, 2,…………………………….., N-1.
This maps each (I, J) entry into a unique number L which ranges from 1 to Z.

Each entry in the synthesis matrix may be denoted by its equivalent L number.
Thus array of Q [(N-1)(N-1)] can represent all heat exchangers between process
streams.

In order to generate a feasible population of the first generation, the value of Q
[L] is taken randomly in a feasible range, from 0 to FQ [L] (the maximal permissi-
ble heat transferred of the entry L). For the solution to be feasible, FQ [L] must be
known at first. They are determined as follows to satisfy the constraints of both
heat balance and temperature approach. We refer to TH (I) as the source and target
temperature of heat stream I, TC (j) the target and source temperature of cold
stream j. Then

FQ [L] = 0 (TH (I) < TC (J))
FQ [L] = min (QH (I), QC (J)) (TH (I)>TC (J))
Where QH (I) is the residual heat duty of stream I; QC (J) is the residual heat

duty of cold stream j.
Note that the FQ [L] are determined not simultaneously, but successively. The

order is determined by matches between I =1,…………,N-1; J =1,……….N-1. It
is apparent that QH (I) and QC (J) will change from match to match. For example,
if we refer the pressure as the operating parameters of each column, string for a
distillation separation process diagram of five components, N = 5, three parts of
the string are represented as follows:

{I [2x5-1]; O [1x(5-1); Q [(5-1)(5-1)]} = {I [9]; O [4]; Q [16]} = {4, 3, 0, 2, 0,
1, 0, 0, 0; p1, p2, p3, p4; Q1, Q2,……………………, Q16}.

The first part I [9] stands for distillation sequence {ABCD/E, ABC/D, AB/C,
A/B}; the second part O [4] stands for pressure of each column. In the example,
p1, p2, p3, p4 are pressure of columns ABCD/E, ABC/D, AB/C, A/B respectively.
They are taken within the feasible range. There are two points, however, that
should be noted.



10.4 Optimization and Synthesis of Heat Integrated Distillation Column Se-
quences 305

1. Pressures are referred to as top pressure for each column, while bottom pressure
of the column should plus an approach of the pressure depending on the num-
ber of trays.

2. The lower bounds of the pressure should be equal to the pressure of the previ-
ous column, since there is no constraint that temperature of the feed stream
should be lower than that of bottom products.

3. This part is Q [16] representing heat transferred in heat exchangers between
matched streams. If Q [16] are given randomly as {100, 0, 0, 40, 0, 0, 200, 0, 0,
0, 0, 0, 0, 160, 0, 0}, QH (I); QC (I) are given as {140, 320, 150, 160} and {100,
160, 240, 160} respectively. Then HEN is obtained, which is shown in Table-
10.2 below.

Table 10.2. Heat Exchanger Network Obtained

H1 H2 H3 H4 Hot Utility
C1 100 0 0 40 0
C2 0 0 200 0 120
C3 0 0 0 0 150
C4 0 160 0 0 0
Cold Utility 0 0 40 120

10.4.2.1 Generation of First feasible generation and cost estimation

The main steps for generating the first feasible generations are as follows:
1. The first part of the string I [2N-1] is generated randomly.
2. The second part O [m x (N-1)] is generated randomly with in the given feasible

range.
3. From operating conditions determined by the second part of the string, tem-

perature and heat duty of the condenser and reboiler are calculated using the
short cut method (Douglas, 1988). Condenser and reboiler are treated as hot
streams and cold streams with fixed inlet and outlet temperature and flow heat
capacity, and thus HEN is developed.

4. The third part of Q [16] is also taken randomly with in the calculated feasible
range. Cost of columns is calculated of Gutherie (1969). From the first two
parts of the strings. Heat duty of utility is calculated by heat balance of each
stream from the third part of the strings. The total cost of operating and heat
exchangers is calculated.

10.4.3 Results & Discussion

To illustrate the suitability of the proposed algorithm for the design of heat inte-
grated distillation system following example is taken:

Example: Heat integration of propanol separation problem. The required data
is presented in Table-10.3 below:



306 10 Applications in Mass Transfer

Table 10.3. Data for Example

Component Feed fraction
A ethanol 0.25
B I-propanol 0.15
C n-propanol 0.10
D I-butanol 0.35
E n-butanol 0.15

Feed flow rate = 500.4 kmol/hours. Feed is saturated liquid in each column.
Recovery of key components = 99%.

This is a typical five components separation problem which is discussed by
many authors (Isia and Xenda, 1988; Schuttenhelm and Simmrock, 1992; Schem-
becker et al., 1994; Wang et al., 1998). A mixture of five components is to be
separated into pure products. The system of rectification units should recover the
process energy as soon as possible. The number of plates and reflux ratio of recti-
fication columns are being calculated by Fenske-Gilland-Underwood method. The
heat loads and the temperature of leaving streams are being calculated by short cut
method given by those authors. Here we are supposed to do bubble point and dew
point calculations to find the temperatures of the leaving streams. The heat loads
are calculated by performing enthalpy or energy balance on column. Then heuris-
tic for heat exchanger network is applied and found where heat exchangers can be
put. After analyzing these all-possible heat transactions vectors are prepared. Pres-
sures are also taken randomly between given ranges. Population of NP = 290 is
chosen at first as D is 29 for these vectors. On various CR and F values results are
generated for 500 iterations. As CR can be varied from 0 to 1.0, at every CR value
between this range, F is incremented from 0.4 to 1.0.

After completing 500 iterations of above population results are found in this
manner:
1, 0, 2, 0, 3, 0, 4, 0, 0, 23.3537, 35.6743, 30.2393, 39.0726, 4.99231e+006,
1.12053e+007, 690884, 4.47881e+006, 2.64236e+006, 1.74641e+006, 0, 0,
1.12667e+006, 0, 0, 0, 262561, 1.36789e+006, 0, 461565,

This result is for NP = 290, CR = 0.2 and F = 0.5 here optimum cost comes out
to be $5770.17 per year.

In most of the generations it takes at most 30 to 50 iterations to find the mini-
mum indicating efficiency of DE. After that DE tries to force all the vectors to
come down to that minimum, and from all these generations and different parame-
ter values we can notice that most of the generations with NP = 290 will have
separation sequence as: 1, 0, 2, 0, 3, 0, 4, 0, 0, 0 that is A/BCDE, B/CDE, C/DE,
D/E. The parameters pressures and heat loads will change according to operating
pressure. Cost is also more less found to be between $ 50000 to $ 6000 which is
much more improved then what Wang et al., (1998) could come to using genetic
algorithm.

Final optimized vector for iteration number 500 for parameters NP = 290, D
=29, CR = 0.2, F = 0.7 comes out to be:

1, 0, 2, 0, 3, 0, 4, 0, 0, 23.5175, 18.7515, 5.14835, 10.0602, 8.33306+006, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 229255, cost = 5780.81.



10.4 Optimization and Synthesis of Heat Integrated Distillation Column Se-
quences 307

Where pressures are in 106 kPa’s and heat load’s are in kCal’s. Optimized heat
exchanger network for this generation and final heat exchanger match are shown
in Table-10.4 & Table-10.5 below.

Table 10.4. Heat Exchanger Network for Example

Streams H1 H2 H3 H4
C1 8.3306e+006 0 0 0
C2 0 0 0 0
C3 0 0 0 0
C4 0 0 0 229255

Table 10.5. Final Heat Exchanger Match for Example

No. Of HE Matched Streams Heat loads in kCal
1 C1/H1 8.3306e+006
2 C4/H4 229255

Pressures in all the columns are listed in Table-10.6.

Table 10.6. Pressures for Example

Column No. Pressure
1. 23.5175
2. 18.7515
3. 5.14835
4. 10.0602

These are results when we keep a population of NP = 145 i.e. (D*5) and CR =
0.2 and F = 0.7, D = 29.

After 500 iterations we following optimized vector.
1, 0, 2, 0, 3, 0, 4, 0, 0, 25.0035, 32.011, 7, 24.7422, 20.0442, 0, 0,

5.45524e+006, 0, 0, 0, 0, 5.45767e+007, 0, 0, 0, 0, 0, 1.26565e+006, 315948,
28994.6, cost = 5930.54

Here again we can notice that we get the same separation sequence, but the op-
erating parameters are bit different and moreover we have 5 heat exchanger in
HEN, the reason for this is we did not have sufficient number of vector’s in our
population compared to last time what we had. Hence we can notice that more the
points in search space we get more closely to global optimum. In the case of 145
vector’s population we slightly missed the global optimum vector which comes
out when we increase our population to 290 that is 10 times of dimension of prob-
lem.

Parameter variation like in CR and F gives DE a faster and robust attitude when
we increase or decrease them. Following heat exchanger network presented in Ta-
ble-10.7 is achieved. The final match and the corresponding column pressures are
shown in Table-10.8 & Table-10.9 respectively.



308 10 Applications in Mass Transfer

Table 10.7. Heat Exchanger Network for NP =145 for example

Stream H1 H2 H3 H4
C1 0 0 0 0
C2 0 0 0 1.26565e+006
C3 5.45524e+006 0 0 315948
C4 0 5.45767e+007 0 28994.6

Table 8. Final match for example when NP = 145

No. of HE Matched streams Heat load (kcal)
1 C3/H1 5.45524e+006
2 C4/H2 5.45767e+007
3 C2/H4 1.26565e+006
4 C3/H4 315948
5 C4/H4 28994.6

Table 9. Pressures in the columns

Column Pressure (106 kPa)
1 25.0035
2 25.0035
3 24.7422
4 20.0442

And, we can notice that cost of this particular vector, which is minimum in this
population, is more than what we got in population of 290.

10.4.4 Conclusions

We proposed a differential evolution based synthesis and optimization strategy for
heat integrated distillation systems. The strategy finds simultaneously the synthe-
sized separation sequence, operating parameters and HEN for particular problem.
One example has been taken to show the feasibility of DE for synthesis and design
of heat integrated distillation systems. And performance evaluation on various NP
values has been shown.



10.4 Optimization and Synthesis of Heat Integrated Distillation Column Se-
quences 309

References

Andrecovich, M. J., and Westerberg, A. W. (1985). An MILP formulation for heat inte-
grated distillation sequence synthesis. A.I.Ch.E.J., 31, 1461-1474.

Androulakis, I. P. & Venkatasubramanian, V. (1991). A genetic algorithm framework for
process design and optimization. Computers & Chemical Engineering, 15(4), 217-228.

Angira, Rakesh and Babu, B.V. (2003). Evolutionary Computation for Global Optimization
of Non-Linear Chemical Engineering Processes. Proceedings of International Sympo-
sium on Process Systems Engineering and Control (ISPSEC ’03)- For Productivity
Enhancement through Design and Optimization, IIT-Bombay, Mumbai, January 3-4,
2003, Paper No. FMA2, pp 87-91. (Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#56).

Babu, B. V. and Angira, Rakesh (2001a). Optimization of Non-linear functions using Evo-
lutionary Computation. Proceedings of 12th ISME Conference, Chennai, India, Jan,
10−12, 153-157. (Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#34).

Babu, B. V. and Angira, Rakesh (2001b). Optimization of thermal cracker operation using
Differential Evolution. Proceedings of 54th Annual Session of IIChE (CHEMCON-
2001), CLRI, Chennai, December 19-22, 2001. (Also available via Internet as .pdf file
at http://bvbabu.50megs.com/custom.html/#38) & Application No. 20, Homepage of
Differential Evolution, the URL of which is:
http://www.icsi.berkeley.edu/~storn/code.html

Babu, B. V., and Sastry, K.K.N. (1999). Estimation of heat transfer parameters in trickle
bed reactors using differential evolution and orthogonal collection. Computers and
chemical engineering, 23, 327-333. (Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#24) & Application No. 13, Homepage of Dif-
ferential Evolution, the URL of which is:
http://www.icsi.berkeley.edu/~storn/code.html

Babu, B.V. and Angira, Rakesh (2002a). Optimization of Non-Linear Chemical Processes
Using Evolutionary Algorithm. Proceedings of International Symposium & 55th An-
nual Session of IIChE (CHEMCON-2002), OU, Hyderabad, December 19-22. (Also
available via Internet as .pdf file at http://bvbabu.50megs.com/custom.html/#54).

Babu, B.V. and Angira, Rakesh (2002b). A Differential Evolution Approach for Global Op-
timization of MINLP Problems. Proceedings of 4th Asia-Pacific Conference on Simu-
lated Evolution And Learning (SEAL’02), Singapore, November 18-22, 2002, Vol. 2,
pp 866-870. (Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#46).

Babu, B.V. and Chaturvedi, Gaurav (2000). Evolutionary Computation strategy for optimi-
zation of an Alkylation Reaction. Proceedings of International Symposium & 53rd
Annual Session of IIChE (CHEMCON-2000), Science City, Calcutta, December 18-



310 References

21, 2000. (Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#31) & Application No. 19, Homepage of Dif-
ferential Evolution, the URL of which is:
http://www.icsi.berkeley.edu/~storn/code.html

Babu, B.V., and Gautam, K. (2001). Evolutionary Computation for Scenario-Integrated Op-
timization of Dynamic Systems. Proceedings of International Symposium & 54th An-
nual Session of IIChE (CHEMCON-2001), CLRI, Chennai, December 19-22, 2001.
(Also available via Internet as .pdf file at http://bvbabu.50megs.com/custom.html/#39)

Babu, B.V., Angira, Rakesh, and Nilekar, Anand (2002). Differential Evolution for Optimal
Design of an Auto-Thermal Ammonia Synthesis Reactor. Communicated to Com-
puters & Chemical Engineering, 2002.

Cheng, S. H. and Liu, Y. A. (1988). Studies in chemical process design and synthesis. Ind.
Engng Chem. Res., 27, 230-241.

Chiou, J. P. and Wang, F. S. (1999). Hybrid method of evolutionary algorithms for static
and dynamic optimization problems with application to a fed-batch fermentation proc-
ess. Computers & Chemical Engineering, 23(9), 1277-1291.

Douglas, J. M. (1988). The conceptual design of chemical process. New York. McGraw-
Hill.

Edgar, T. F. & Himmelblau, D. M. (1989). Optimization of Chemical Processes. Singa-
pore, McGraw-Hill, Inc., Page Nos. 534-539.

Edwards, K., Edgar, T. F., and Maousiouthakis, V. I. (1998). Kinetic model reduction using
genetic algorithms. Computers & Chemical Engineering, 22, 239.

Gutheri, K.M. (1969). Capital cost estimating. Chem. Engg., 24, 114-135.
Hartland, S., and Mecklenburgh, J. C. (1975). The Theory of Backmixing, Wiley, New

York. Chap.10.
Isia, M. A., and Xerda, J. (1988). A heuristic method for the synthesis of heat integrated

distillation system. Chem. Engng J., 37(3), 161-177.
Jackson, P. J. (1977). Ph.D. Thesis. Monash University, Victoria, Australia.
Jackson, P. J., and Agnew, J. B. (1980). A model based Scheme for the On-line Optimiza-

tion of a Liquid Extraction Process. Computers & Chemical Engineering, 4, 241.
Jaroslav, J., and Radim Ptacnlk (1988). Synthesis of heat integrated rectification systems.

Computers and chemical engg., 12 (5), 427-432.
Kravanja, Z., and Grossman, I.E. (1990). PROSYN – an MINLP process synthesizer. Com-

puters and chemical engg., 14, 1363-1378.
McKay, B., Willis, M., and Barton, G. (1997). Steady state modeling of chemical process

systems using genetic programming. Computers & Chemical Engineering, 21, 981.
Ponton, J. W., and Donaldson, R. A. B. (1974). A fast method for the synthesis of optimal

heat exchanger networks. Chemical Engineering Science, 29, 2375-2377.
Price, K. and Storn, R. (1997). Differential evolution. Dr. Dobbs Journal, April, 18-22.
Rong, B. G., Hu, Y. D., Zheng, Zhou, S. Q., and Han, F. Y. (1996). A hierarchical method

to the synthesis of heat-integrated distillation flowsheets. Praha. Czech. Paper no.
h5[508].

Schembecker, G., Schuttenhelm, W., and Simmrock, K. H. (1994). Cooperating knowledge
integrating system for the systhesis of energy-integrated distillation process. Com-
puters & Chemical Engineering, 18(Suppl), S131-S135.

Schuttenhelm, W., and Simmrock, K. H. (1992). Knowledge based synthesis of energy in-
tegrated distillation column and sequences. Inst. Chem. Engng Symp., 28, A461-A480.

Smith, B.D. (1967). Design of equilibrium stage processes. New York. McGraw-Hill.



10.4 Optimization and Synthesis of Heat Integrated Distillation Column Se-
quences 311

Storn, R. and K. Price (1997). Differential Evolution: A simple and Efficient Heuristic for
global optimization over continuous spaces. Journal of Global Optimization, 11, 341.

Wang, Kefeng, Qian, yu, Yuan Yi and Ping Jing Yao (1998). Synthesis and optimization of
heat integrated distillation systems using improved genetic algorithm. Computers and
chemical engg. 23, 125-136.

Yee, T. F., Grossmann, I. E., and Kravanja, A. (1990). Simultaneous optimization model
for multicomponent separation. Computers & Chemical Engineering, 14, 1185-1200.

Zdravko, K., and Grossmann, I. E. (1997). Multilevel-hierarchical MINLP synthesis of
process flow sheets. Computers and Chemical Engineering, 21 (Suppl), 421-426.

Zorka, N., Zdravko, K., & Grossmann, I. E. (1994). Simultaneous optimization model for
multicomponent separation. Computers and Chemical Engineering, 18 (Suppl), S125-
S129.



11 Applications in Fluid Mechanics

B V Babu

11.1 Introduction

The optimization of non-linear constrained problems is relevant to chemical engi-
neering practice (Salcedo, 1992; Floudas, 1995). In recent years, evolutionary al-
gorithms (EAs) have been applied to the solution of NLP in many engineering ap-
plications. The best-known algorithms in this class include Genetic Algorithms
(GA), Evolutionary Programming (EP), Evolution Strategies (ES) and Genetic
Programming (GP). There are many hybrid systems, which incorporate various
features of the above paradigms and consequently are hard to classify, which can
be referred just as EC methods (Dasgupta and Michalewicz, 1997). They differ
from the conventional algorithms since, in general, only the information regarding
the objective function is required. EC methods have been applied to a broad range
of activities in process system engineering including modeling, optimization and
control. Differential Evolution (DE), developed by Price & Storn (1997), is one of
the best EC methods. This method provides one of the best genetic algorithms for
solving the real-valued test function. The convergence speed of DE is very high.

Some of the successful applications of DE include: digital filter design (Storn,
1995), fuzzy decision making problems of fuel ethanol production (Wang et al.,
1998), Design of fuzzy logic controller (Sastry et al., 1998), batch fermentation
process (Chiou and Wang, 1999; Wang and Cheng, 1999), multi sensor fusion
(Joshi and Sanderson, 1999), dynamic optimization of continuous polymer reactor
(Lee et al., 1999), estimation of heat transfer parameters in trickle bed reactor
(Babu and Sastry, 1999), optimization of alkylation reaction (Babu and
Chaturvedi, 2000), optimal design of heat exchangers (Babu and Mohiddin, 1999;
Babu and Munawar, 2000; Babu and Munawar, 2001), synthesis & optimization
of heat integrated distillation system (Babu and Singh, 2000), optimization of non-
linear functions (Babu and Angira, 2001a), scenario- integrated optimization of
dynamic systems (Babu and Gautam, 2001), optimization of thermal cracking op-
eration (Babu and Angira, 2001b), determining the number of components in mix-
tures of linear models (Dollena et al., 2001), Identification of hysteretic systems

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



314 11 Applications in Fluid Mechanics

using the differential evolution algorithm (Kyprianou et al., 2001), optimization of
Low Pressure Chemical Vapour Deposition Reactors Using Hybrid Differential
Evolution (Lu and Wang, 2001), hybrid differential evolution for problems of Ki-
netic Parameter Estimation and Dynamic Optimization of an Ethanol Fermenta-
tion Process (Wang et al., 2001), optimal design of auto-thermal ammonia synthe-
sis reactor (Babu et al., 2002), global optimization of MINLP problems (Babu and
Angira, 2002a; Angira and Babu, 2003), optimization of non-linear chemical
processes (Babu and Angira, 2002b), optimization of pyrolysis of biomass (Babu
and Chaurasia, 2003) etc.

In this chapter, DE – an evolutionary computation method, is used to solve two
classical problems in the area of fluid mechanics: (1) Gas transmission network,
and (2) Water pumping system.

11.2 Gas Transmission Network

In this age of high competition in the several industries, it becomes necessary to
cut down capital and operating costs as much as possible. Specifically in case of
Chemical industries, the main focus is on reducing the processing costs, which in-
clude heating, cooling, transfer of various streams involved in any operational
unit. The gas transmission network, which forms a considerable fraction of the op-
erating cost, is also one of the focus areas. Broadly, a gas transmission system in-
cludes source of gas, delivery sites with the pipeline segments and compressor sta-
tions used to achieve desired pressure at the delivery site. As the design of an
efficient and economical gas transmission network involves a lot of design pa-
rameters which directly/indirectly affect the capital and operating costs, this topic
deserves special attention. A lot of work has been done in this area over the years.
Larson and Wong (1968), Graham et al (1971), Martch and McCall (1972), Flani-
gan (1972), Mah and Shacham (1978), Cheesman (1971), Edgar et al. (1978) have
discussed the various aspects of the problem. Larson and Wong determined the
steady state optimal operating conditions of a straight natural line pipeline with
compressors in series. They used dynamic programming to find the optimal suc-
tion and discharge pressures. The length and diameter of the pipeline segment
were assumed to be constant because of limitations of dynamic programming.
Martch and McCall (1972) modified the problem by adding branches too the pipe-
line segments. However, the transmission network was predetermined because of
the limitations of the optimization technique used. Cheeseman introduced a com-
puter optimizing code in addition to Martch and McCall (1972) problem they con-
sidered the length and diameters of the pipeline segments to be variables. But their
problem formulation did not allow unbranched network, so complicated network
systems couldn’t be handled. Olorunniwo (1981) and Olorunniwo and Jensen
(1982) provided further breakthrough by optimizing a gas transmission network
including the following features:

1. The maximum no. of compressor stations that would ever be required during
the specified time horizon.



11.2 Gas Transmission Network 315

2. The optimal location of these compressor stations.
3. The initial construction dates of the stations.
4. The optimal solutions of expansion for the compressor stations.
5. The optimal diameter sizes of the main pipes for each arc of the network.
6. The minimum recommended thickness of the main pipe.
7. The optimal diameter sizes, thicknesses and lengths of any required parallel

pipe loops on each arc of the network
8. The timing of construction of the parallel pipe loops
9. The operating pressures of the compressors and the gas in the pipelines.
They used dynamic programming coupled with optimization logic to find the

shortest route through the network.
Edgar & Himmelblau (1988) simplified the problem to make sure that the vari-

ous factors involved in the design are clear. They assumed the gas quantity to be
transferred along with the suction and discharge pressures to be given in the prob-
lem statement. They optimized the following variables:

1. The number of compressor stations
2. The length of pipeline segments between the compressors stations
3. The diameters of the pipeline segments
4. The suction and discharge pressures at each station.
They considered the minimization of the total cost of operation per year includ-

ing the capital cost in their objective function against which the above parameters
are to be optimized.

Edgar and Himmelblau (1988) also considered two possible scenarios:
1. The capital cost of the compressor stations is linear function of the horse

power
2. The capital cost of the compressor stations is linear function of the horse-

power with a fixed capital outlay for zero horsepower.
The first scenario is easy to solve as compared to the second one. They solved

the second scenario using the branch and bound technique.

11.2.1 Problem Formulation

Babu et al. (2003a; 2003b) solved the above two possible scenarios of the problem
using Differential Evolution (DE) as optimizer. The pipeline configuration is same
as chosen by Edgar and Himmelblau (1988) and shown in Fig. 11.1.

Each of the compressor stations is represented by a node and each of the pipe-
line segments by an arc. Pressure is assumed to be increasing at a compressor and
decreasing along the pipeline segment. The transmission system is presumed to be
horizontal. This is a simple example chosen to illustrate a gas transmission system.
However, a much more complicated network can be accommodated including
various branches and loops at the cost of additional execution time.



316 11 Applications in Fluid Mechanics

pout

t

N121

LN1+N2
DN1+N2

N1+N2

LN1+1

DN1+1

LN1+N2+1

LN1+N2+1

LN1+N2+N3+1 DN1+N2+N3+1

DN1+N2+1

N1+N2+1

DN1+N2+1

L1

D2

L2

D2

Branch 1

Branch 2

N1+1

DN1

LN1

Branch 3

Compressor

Pipeline segment
pout

pin

Fig. 11.1. Pipeline configuration with three branches.

Edgar and Himmelblau (1988) distinguished between two related problems
(one is of a higher degree of difficulty than the other) before proceeding ahead
with the details of the design problem. Fig. 11.2 shows the cost vs. horsepower.
If the capital costs of the compressors are linear functions of horsepower as shown
in line A of Fig. 11.2, the transmission line problem can be solved as a nonlinear
programming problem by one of the methods discussed by Edgar and Himmelblau
(1988). Alternately, if the capital costs are a linear function of horsepower with a
fixed capital outlay for zero horsepower as shown by line B in Fig. 11.2, a condi-
tion that is more closely represents the practical problems, then the design prob-
lem becomes more difficult to solve and a branch-and-bound algorithm combined
with a nonlinear programming algorithm has to be used. It would be clear the rea-
son why branch and bound method is avoided for the case involving line A after
the mathematical formulation of the objective function has been completed.



11.2 Gas Transmission Network 317

Capital
costs

Slope = C

B Slope = C
hp

C f +
max

Cf

A Operating
cost

0 hpmax

$/year

C = 69.5
Cf = 10,000

hpmax = 20000

Horsepower, hp

Fig. 11.2. Capital and operating costs of compressors

11.2.1.1 Number of Variables

Each node and each arc are labeled separately for a given pipeline configuration.
The number of variables is as following:

• Total Compressors : N
• Suction Pressures : N-1
• Discharge Pressures : N
• Pipeline Lengths & Diameters: N+1

11.2.1.2 Variables

Each pipeline segments has the following variables associated with it:
1. The flow rate
2. The initial pressure
3. The outlet pressure
4. The pipe diameter
5. The pipeline segment length



318 11 Applications in Fluid Mechanics

It is assumed that each of the compressors has gas losses of one-half of one per-
cent of the gas transmitted. As the mass flow rate is fixed, only the last four vari-
ables become important and need to be determined for each segment in the present
problem.

11.2.1.3 Assumptions

The following assumptions are made:
1. Each compressor functions adiabatically with an inlet temperature equal to

that of the surroundings.
2. Pipeline segment is long so that by the time gas reaches the next compressor

it returns to the ambient temperature.
3. The annualized capital costs for each pipeline segment depend on pipe di-

ameter and length, and have been taken as $870/(inch)(mile)(year) as re-
ported by Martch and McCall (1972).

4. The rate of work of one compressor is estimated using the following correla-
tion:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟⎠

⎞
⎜⎜⎝

⎛
−

=
−

1
1

)08531.0(
/)1(

1

kkz

s

d

p

p
T

k

k
QW

(11.1)

where
k = Cp/Cv for gas at suction conditions = 1.26 (Katz et al., 1959)
z = compressibility factor of gas at suction conditions
ps = suction pressure, psia
pd = discharge pressure, psia
Ti = suction temperature = 5200R
Q = flow rate into the compressor, MMCFD (million cubic feet per day)
W = rate of work, horsepower

5. Total operating costs are linear function of compressor horsepower (Opera-
tion and maintenance costs per year can be related directly to horsepower
(Cheesman, 1971b) and have been estimated to be between 8.00 and 14.0
$/(hp)(year) (Martch and McCall, 1972))

6. Line A in Fig. 11.2 indicates that the cost is a linear function of horsepower
($70.00/(hp)(year)) with the line passing through the origin.

7. Line B in Fig. 11.2 assumes a linear function of horsepower with a fixed ini-
tial capital outlay ($70.00/(hp)(year) + $10,000) which takes the installation
costs, foundation, etc. into account.

11.2.1.4 Objective Function

As the objective in this study is to minimize the cost, the objective function com-
prises of the sum of the yearly operating and maintenance costs of the compres-
sors in addition to the sum of the discounted capital costs of the pipeline segments



11.2 Gas Transmission Network 319

and compressors over a period of 10 years. For line A, the objective function for
the problem chosen in dollars per year is:

jj

m

j

s

kkz

s

d

ic

n

i

DLC
p

p

k

k
TQCCf

i

i ∑∑
=

−

=

+
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛

−
+=

1

)/1(

1

1

0 1
1

)08531.0()(
(11.2)

where,
n = number of compressors in the system
m = number of pipeline segments in the system (= n + 1)
C0 = annual operating cost, $/(hp)(year)
Cc = compressor capital cost, $/(hp)(year)
Cs = pipe capital cost, $/(in)(mile)(year)
Lj = length of pipeline segment j, mile
Dj = diameter of pipeline segment j, inch

As can be seen from the above expression, it is now clear why a branch and
bound technique is not required to solve the design problem for line A . The term
involving compressor i vanishes from the first summation in the objective function
if the ratio (pd/ps) = 1, because of the way the objective function is formulated.
This is equivalent to the deletion of compressor i in the execution of a branch and
bound strategy. Nevertheless, the joined pipeline segments at node i may be of
different diameters. But when line B represents the compressor costs, the fixed
incremental cost for each compressor in the system at zero horsepower (Cf) would
not be multiplied by the term in the square brackets of Eq. 11.2. Cf would be
added in the sum of the costs whether or not compressor i is in the system, and a
non-linear programming technique alone could not be used. Hence, a different so-
lution procedure is required if line B applies.

However, DE has the capability of dealing with above complications as it is a
population-based search algorithm, and hence, DE is used in this study (Babu et
al., 2003a; 2003b) for both the possible scenarios.

11.2.1.5 Inequality Constraints

A constraint is there for operation of each compressor as the discharge pressure is
always greater than or equal to the suction pressure:

ni
p

p

i

i

s

d
......,,2,11 =≥ (11.3)

and the compressor ratio should not exceed some prespecified maximum limit K

niK
p

p
i

s

d

i

i ......,,2,1=≤ (11.4)

Also, the upper and lower bounds are placed on each of the four variables
maxmin

iii ddd ppp ≤≤ (11.5)

maxmin

iii sss ppp ≤≤ (11.6)



320 11 Applications in Fluid Mechanics

maxmin
iii LLL ≤≤ (11.7)

maxmin
iii DDD ≤≤ (11.8)

11.2.1.6 Equality Constraints

For the gas transmission network chosen in the problem, there are two classes of
equality constraints. First, as the length of the system is fixed, there would be two
constraints for two branches as given below:

*
1

21

1

11

1

LLL
NN

Nj

j

N

j

j =+ ∑∑
+

=

−

=

(11.9)

*
2

1321

121

11

1

LLL
NNN

NNj

j

N

j

j =+ ∑∑
+++

++=

−

=

(11.10)

where *
kL represents the length of a branch. Secondly, each pipeline segment must

satisfy the Weymouth flow equation (GPSA, 1972):
2/1

22
3/8871

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
=

j

sd
jj L

pp
DQ

(11.11)

Where jQ is a fixed number, and pd & ps are the discharge pressure & suction

pressure at the entrance and exit of the segment respectively.

11.2.2 Results & Discussion

The seventh of the ten DE strategies (DE/rand/1/bin) proposed by Price & Storn
(2003) is used for solving this problem. The key parameters of DE are: NP, the
population size; CR, the crossover constant; and F, scaling factor. The steps car-
ried out in this strategy are:
Step 1: Generate NP random vectors as the initial population.
Generally, NP is taken to be 5-10 times of the dimension (D) of the problem. In
the present case the dimension of our problem is 4. Hence NP is chosen to be 40.
Generate (NP*D) random numbers and linearize the range (0-1) to cover the en-
tire range of the function. From these (NP*D) random numbers, generate NP
random vectors, each of dimension D by mapping the random numbers over the
range of the function.

All the NP random vectors that are generated should satisfy the constraints
(Eq. 11.3 – 11.11).
Step 2: Choose a target vector from population of size NP.
First generate a random number between 0-1. From the value of the random
number, decide which population member is to be selected as the target vector (Xi

). (a linear mapping rule can be used)



11.2 Gas Transmission Network 321

Step 3: Choose two vectors at random from the population and find the
weighted difference.
Generate two random numbers. Decide which two population members are to be
selected (Xa, Xb). Find the vector difference between the two vectors (Xa - Xb).
Multiply this difference with F to obtain the weighted difference. The value of F
ranges between 0 and 1.2. But, the optimal range is 0.4-1.0 for many problems.
As a guideline initially F may be chosen to be 0.5. If this leads to premature con-
vergence, then it may be increased. In the present problem, F is chosen to be
0.75.
Weighted difference = F(Xa - Xb)
Step 4: Find the noisy random vector.
Generate a random number. Choose a third random vector from the population
(Xc). Add this vector to the weighted difference to obtain the noisy random vector
(Xc

′).
Noisy Random Vector (Xc

′) = Xc + F(Xa - Xb)
Again, the NP noisy random vectors that are generated should satisfy the con-
straints (Eq. 11.3 – 11.11).
Step 5: Perform Crossover between Xi and Xc

�

to find Xt, the trial vector.
Generate D random numbers. For each of the D dimensions:
If random no. > CR ; copy the value from Xi into the trial vector.
If random no. < CR ; copy the value from Xc

′ into the trial vector.
CR = 0.9 is a good first guess. Subsequently, CR may be chosen judging by the
speed between 0 and 1. In this problem, CR is chosen to be 0.9.
Step 6: Calculate the cost of the trial vector and the target vector.
For a minimization problem, calculate the function value directly and this is the
cost. For a maximization problem, transform the objective function f(x) using the

rule, F(x) =
)(1

1

xf+
and calculate the value of the cost. Alternately, directly cal-

culate the value of f(x) and this yields the profit.

If the objective function is formulated in terms of cost, the vector that yields the
lesser cost replaces the population member in the initial population. If the objec-
tive function is in terms of profit function, then the vector with greater profit re-
places the population member in the initial population.

Steps 1 to 6 are continued till some stopping criterion is met. This may be of
two kinds. One may be some convergence criterion that states that the error in the
minimum or maximum between two previous generations should be less than
some specified value (standard deviation may be used). The other may be an upper
bound on the number of generations. The stopping criteria may be a combination
of the two as well. Either way, once the stopping criterion is met, the computa-
tions are terminated.

Fig. 11.3 shows the design problem outlined. The maximum number of com-
pressors in branches 1, 2, and 3 are set at 4, 3, and 3 respectively. The input pres-
sure was fixed at 500 psia at a flow rate of 600 MMCFD, and the two output pres-
sures are 600 and 300 psia respectively for branches 2 and 3. The total length of



322 11 Applications in Fluid Mechanics

the branches 1 and 2 put together is constrained to be 175 miles, whereas the total
length of the branches 1 and 3 put together is constrained to be 200 miles. The
upper bound for diameter of pipeline segments in branch 1 is set at 36 inches, and
those for branches 2 and 3 are set at 18 inches. The lower bound on the diameter
of all pipeline segments is set at 4 inches. A lower bound of 2 miles is placed on
each pipeline segment to ensure that the natural gas is at ambient conditions when
it entered at subsequent compressor in the pipeline.

Branch 2

500 psi

600 MMCFD

Branch 3

8 9

2 3
8

9 10

1 2 3 4

5 6 7

10

4
5 6

600 psi
7

300 psi
11

Branch 1

1

175 miles

200 miles

Fig. 11.3. Initial configuration of chosen gas transmission network

The resulting solution obtained by Edgar and Himmelblau (1988) to the example
designed problem as shown in Fig. 11.3 using the cost relation of line A of Fig.
11.2 (using non-linear programming) and for line B of Fig. 11.2 (using branch and
bound technique) are shown in Fig. 11.4 & Table-11.1, and Fig. 11.5 & Table-
11.2 respectively. The optimum value of objective function for line A (Fig. 11.2)
is reported to be 7.289x106 $/yr. Based on the results listed the calculated opti-
mum value of objective function for line B is found to be 7.389x106 $/yr.

500psi

27.0
4

51.3

113.7
1 2 3

300 psi

600 psi

600 MMCFD

8.02.0

6.0

Fig. 11.4. Final optimal gas transmission network for line A of Fig. 11.2 (Edgar and
Himmelblau, 1988)



11.2 Gas Transmission Network 323

Table 11.1. Values of operating variables for the optimal network configuration using the
costs of line A, Fig. 11.2 (Edgar and Himmelblau, 1988)

Pipeline
segment

Discharge
Pressure
(psia)

Suction
Pressure
(psia)

Pipe
Diameter
(inch)

Length
(mile)

Flow rate
(MMCFD)

1 719.1 715.4 35.0 2.0 597.0
2 1000.0 889.3 32.4 51.3 594.0
3 1000.0 735.8 32.4 113.7 591.0
4 735.7 703.8 18.0 2.0 294.0
5 703.8 670.6 18.0 2.0 292.6
6 670.6 636.1 18.0 2.0 291.1
7 636.1 600.0 18.0 2.0 289.7
8 735.8 703.8 18.0 2.0 294.0
9 685.2 859.1 18.0 2.0 292.6
10 859.1 832.5 18.0 2.0 291.1
11 832.5 300.0 18.0 27.0 289.7

Compressor station Compression ratio Capital cost ($/year)
1 1.44 70.00
2 1.40 70.00
3 1.12 70.00
4 1.00 70.00
5 1.00 70.00
6 1.00 70.00
7 1.00 70.00
8 1.26 70.00
9 1.00 70.00
10 1.00 70.00

4

122.9
1 2 3

300 psi

600 psi
600 MMCFD

7.249.9

25.2

2.0

500 psi

Fig. 11.5. Final optimal gas transmission network for line B of Fig. 11.2 (Edgar and
Himmelblau, 1988)



324 11 Applications in Fluid Mechanics

Table 11.2. Values of operating variables for the optimal network configuration using the
costs of line B, Fig. 11.2 (Edgar and Himmelblau, 1988)

Pipeline
segment

Discharge
Pressure
(psia)

Suction
Pressure
(psia)

Pipe
Diameter
(inch)

Length
(mile)

Flow rate
(MMCFD)

1 954.5 837.2 32.3 49.9 597.0
2 1000.0 699.7 32.3 122.9 594.0
3 699.7 600.0 15.2 2.2 295.5
4 699.7 665.7 18.0 2.0 295.5
5 952.2 300.0 16.9 25.2 294.0

Compressor station Compression ratio Capital cost ($/year)
1 1.91 69.50
2 1.19 69.50
3 1.00 69.50
4 1.43 69.50

As can be seen from Table-11.1, the discharge pressure of pipeline segment 9
does not satisfy the second equality constraint (Eq. 11.11). The value of the com-
pression ratio of third compressor station for line A (Fig. 11.2) does not match
with the corresponding ratio of discharge and suction pressures shown in Table-
11.1. Edgar and Himmelblau (1988) modified the second equality constraint (Eq.
11.11) to avoid problems in taking square roots by squaring it as given below:

( ) 0)871( 2223/162 =−− jjsdj QLppD (11.12)

But, all the results shown in Table-11.1 do not satisfy the above constraint.

All problems mentioned above have been addressed and sorted out in this study
using DE. The resulting solution obtained to the example designed problem as
shown in Fig. 11.3 using the cost relation of line A of Fig. 11.2 and for line B of
Fig. 11.2 are shown in Fig. 11.6 & Table-11.3.

500psi

4

37.39

52.84
1 2 3

600 psi

300 psi

600 MMCFD

90.1219.65

32.44
5

18.49 14.19

Fig. 11.6. Final optimal gas transmission network for both line A & line B of Fig. 11.2
(Babu et al., 2003a)



Table 11.3. Values of operating variables for the optimal network configuration using the
costs of line A & line B, Fig. 11.2 (Babu et al., 2003a)

Pipeline
segment

Discharge
Pressure
(psia)

Suction
Pressure
(psia)

Pipe
Diameter
(inch)

Length
(mile)

Flow rate
(MMCFD)

1 730.56 691.44 34.77 19.65 597.000
2 942.47 852.83 32.08 37.39 594.015
3 865.68 736.92 32.61 52.84 591.045
4 736.92 690.05 24.33 14.51 294.022
5 806.07 715.99 22.09 17.93 292.552
6 715.99 620.00 22.45 18.49 291.079
7 663.72 600.00 23.27 14.19 289.624
8 970.15 775.08 21.03 33.88 294.022
9 775.08 749.88 22.76 5.89 292.552
10 749.88 711.46 21.40 6.27 291.079
11 711.46 300.00 21.15 44.07 289.624

Compressor station Compression ratio Capital cost ($/year)
1 1.4611 70.00
2 1.3630 70.00
3 1.0150 70.00
4 1.0000 70.00
5 1.1681 70.00
6 1.0000 70.00
7 1.1062 70.00
8 1.0000 70.00
9 1.0000 70.00
10 1.0000 70.00

As can be seen from the above results, all the constraints are satisfied with this op-
timal gas transmission network. Also, a single network has been obtained for both
the possible scenarios (line A & line B of Fig. 11.2) described earlier, and DE
alone could give the solution for both scenarios. The optimum values of objective
function for both the possible scenarios are obtained as 7.692x106 $/yr and
7.792x106 $/yr respectively. Though the objective function values are slightly
higher than those reported by Edgar and Himmelblau (1988), these values corre-
spond to satisfying all the constraints. In addition, by approximating the compres-
sion ratio of compressor station 3 (1.0150 in Table-11.4) to 1.00 (considering only
two digits as Edgar and Himmelblau, 1988), it is possible to remove one more
compressor from the proposed final network (Fig. 11.6), in which case the total
number of compressors would be only 4 and the final objective function value
would further reduce.

Babu et al. (2003b) further obtained an improved solution (better than that re-
ported by above two studies) by forcing some of the parametric values (of pipe di-
ameters and lengths) in optimization as shown in Table 11.3. The resulting final
network for both line A and line B is shown in Fig. 11.7.



326 11 Applications in Fluid Mechanics

Table 11.4. Values of operating variables for the optimal network configuration using the
costs of line A & line B, Fig. 11.2 (Babu et al., 2003b)

Pipeline
segment

Discharge
Pressure
(psia)

Suction
Pressure
(psia)

Pipe
Diameter
(inch)

Length
(mile)

Flow rate
(MMCFD)

1 691.41 639.94 33.03 18.44 597.000
2 882.36 701.54 34.89 103.88 594.015
3 715.17 634.30 35.62 44.68 591.045
4 735.70 703.80 18.00 2.00 294.022
5 703.80 670.60 18.00 2.00 292.552
6 670.60 636.10 18.00 2.00 291.079
7 636.10 600.00 18.00 2.00 289.624
8 735.80 703.80 18.00 2.00 294.022
9 885.20 859.10 18.00 2.00 292.552
10 859.10 832.50 18.00 2.00 291.079
11 832.50 300.00 18.00 27.00 289.624

Compressor station Compression ratio Capital cost ($/year)
1 1.2877 70.00
2 1.2390 70.00
3 1.0398 70.00
4 1.0202 70.00
5 1.0000 70.00
6 1.0000 70.00
7 1.0000 70.00
8 1.2577 70.00
9 1.0000 70.00
10 1.0000 70.00

The optimum values of objective function for both the possible scenarios are
obtained as 6.834x106 $/yr and 6.934x106 $/yr respectively. This shows a saving
of close to 7.2 million dollars from its first feasible state and a savings of close to
0.5 million dollars that predicted by Edgar and Himmelblau (1988). It can be seen
from Table-11.4 that out of the ten possible compressor stations only five re-
mained in the final optimum network (see Fig. 11.7). As the compression ratio is
unity for compressors 5, 6, 7, 9 and 10 they do not exist in the final optimal con-
figuration.

DE converged to an optimal solution, and the final cost is less than what re-
ported earlier in the literature.

4

122.9
1 2 3

300 psi

600 psi

600 MMCFD

7.249.9

25.2

2

500 psi

Fig. 11.7. Final optimal gas transmission network for both line A & line B of Fig. 11.2
(Babu et al., 2003b).



11.3 Water Pumping System 327

11.3 Water Pumping System

This problem arises from the area of chemical engineering, and represent difficult
non-linear optimization problem, with equality constraints. Babu and Angira
(2003) solved this problem using DE and compared with Branch & Reduce algo-
rithm (Ryoo & Sahinidis, 1995). It is found that DE, an exceptionally simple evo-
lutionary computation method, is significantly faster and yields the global opti-
mum for a wide range of the key parameters.

11.3.1 Differential Evolution Strategies

Differential Evolution (Price & Storn, 1997) is an improved version of GA (Gold-
berg, 1989) for faster optimization. Unlike simple GA that uses binary coding for
representing problem parameters, DE uses real coding of floating point numbers.
Among the DE’s advantages are its simple structure, ease of use, speed and ro-
bustness. Price & Storn (1997) gave the working principle of DE with single strat-
egy. Later on, they suggested ten different strategies of DE (Price & Storn, 2002).
A strategy that works out to be the best for a given problem may not work well
when applied for a different problem. Also, the strategy and key parameters to be
adopted for a problem are to be determined by trial & error. The key parameters of
control are: NP - the population size, CR - the crossover constant, F - the weight
applied to random differential (scaling factor). The Pseudo codes, for all ten DE
strategies, used in the present study are given below:

/*-----------------DE/rand/1/bin--------------------------*/
if (strategy = 1)
{

j = int (random number [0,1])*D);
for (k = 1;k<=D;k++)
{

if ((random number [0,1]))<CR or| k=D)
{

trial[j]=x1[c][j]+F*(x1[a][j]-x1[b][j]);
}

else trial[j]=x1[i][j];
j=(j+1)%D;

}
}

/*--------------------------DE/best/1/bin------------------------*/
else if (strategy = 2)

{
j=int (random number [0,1])*D);
for (k=1;k<=D;k++)



328 11 Applications in Fluid Mechanics

{
if ((random number [0,1]))<CR or k=D)
{
trial[j]=bestit[j]+F*(x1[a][j]-x1[b][j]);
}
else trial[j]=x1[i][j];

j=(j+1)%D;
}

}

/*------------------DE/best/2/bin-----------------------*/
else if (strategy = 3)

{
j=int (random number [0,1])*D);

for (k=1;k<=D;k++)
{

if ((random number [0,1]))<CR or k=D)
{

trial[j]=bestit[j]+F*(x1[a][j]+x1[b][j]-x1[c][j]-x1[d][j]);
}
else trial[j]=x1[i][j];

j=(j+1)%D;
}

}

/*------------------DE/rand/2/bin-----------------------*/
else if (strategy = 4)

{
j=int (random number [0,1])*D);
for (k=1;k<=D;k++)
{

if ((random number [0,1]))<CR or k=D)
{

trial[j]=x1[e][j]+F*(x1[a][j]+x1[b][j]-x1[c][j]-
x1[d][j]);

}
else trial[j]=x1[i][j];

j=(j+1)%D;
}

}

/*------------------DE/rand-to-best/1/bin-----------------------*/
else if (strategy = 5)

{
assignd (trial,x1[i]);

j=int (random number [0,1])*D);



11.3 Water Pumping System 329

for (k=1;k<=D;k++)
{

if ((random number [0,1]))<CR or k=D)
{

trial[j]=trial[j]+F*(bestit[j]-trial[j])+F*(x1[a][j]-
x1[b][j]);

}
else trial[j]=x1[i][j];

j=(j+1)%D;
}

}

/*------------------DE/rand/1/exp-----------------------*/
else if (strategy = 6)

{ assignd (trial,x1[i]);
j=int (random number [0,1])*D);
k=0;
do

{
trial[j]=x1[c][j]+F*(x1[a][j]-x1[b][j]);
j=(j+1)%D;
k++;

}
while((random number [0,1] ))<CR and k < D);

}

/*------------------DE/best/1/exp-----------------------*/
else if (strategy = 7)

{ assignd (trial,x1[i]);
j=int (random number [0,1])*D);
k=0;

do
{

trial[j]=bestit[j]+F*(x1[a][j]-x1[b][j]);
j=(j+1)%D;
k++;

}
while ((random number [0,1]))<CR and k < D);

}

/*------------------DE/best/2/exp-----------------------*/
else if (strategy = 8)

{ assignd (trial,x1[i]);
j=int (random number [0,1])*D);
k=0;



330 11 Applications in Fluid Mechanics

do
{

trial[j]=bestit[j]+F*(x1[a][j]+x1[b][j]-x1[c][j]-x1[d][j]);
j=(j+1)%D;
k++;

}
while ((random number [0,1]))<CR and k < D);

}

/*------------------DE/rand/2/exp-----------------------*/
else if (strategy = 9)

{ assignd (trial,x1[i]);
j=int (random number [0,1])*D);
k=0;

do
{

trial[j]=x1[e][j]+F*(x1[a][j]+x1[b][j]-x1[c][j]-x1[d][j]);
j=(j+1)%D;
k++;

}
while ((random number [0,1]))<CR and k < D);

}

/*------------------DE/rand-to-best/1/exp-----------------------*/
else if(strategy =10)

{ assignd (trial,x1[i]);
j=int (random number [0,1])*D);
k=0;

do
{

trial[j]=trial[j]+F*(bestit[j]-trial[j])+F*(x1[a][j]-
x1[b][j]);

j=(j+1)%D;
k++;

}
while ((random number [0,1]))<CR and k < D);

}

The crucial idea behind DE is a scheme for generating trial parameter vectors. Ba-
sically, DE adds the weighted difference between two population vectors to a third
vector. Price & Storn (2002) have given some simple rules for choosing key pa-
rameters of DE for any given application. DE has been successfully applied in
various fields.



11.3 Water Pumping System 331

11.3.2 Problem Formulation

A water pumping system (Stoecker, 1971) consists of two parallel pumps drawing
water from a lower reservoir and delivering it to another that is 40 m higher, as
shown in Fig. 11.8. In addition to overcoming the pressure difference due to the
elevation, the friction in the pipe is 7.2w2 kPa, where w is the combined flow rate
in kilograms per second. The pressure-flow-rate characteristics of the pumps are:

Pump 1: 2
11 75.325810(kPa) wwp −−=Δ (11.13)

Pump 2: 2
22 3065900(kPa) wwp −−=Δ (11.14)

where w1 and w2 are the flow rates through pump 1 and pump 2, respectively.
The system can be represented by four simultaneous equations. The pressure

difference due to elevation and friction is:
( )( )( )

Pa/kPa1000

m/s8079kg/m1000m40
27

23
2 .

. +=Δ wp (11.15)

Pump 1: 2
11 75325810 wwp .−−=Δ (11.16)

Pump 2: 2
22 3065900 wwp −−=Δ (11.17)

Mass balance: 21 www +=
(11.18)

Stocker, (1971) used the method of successive substitution for solving this prob-
lem.

40 m

w1

w2

w

w

Δp

Fig. 11.8. Water Pumping System



332 11 Applications in Fluid Mechanics

11.3.2.1 Problem Modification

Liebman et al. (1986) modified the above problem as given below:

Min. f = 3x (11.19)

such that
2
113 630250 xxx −+= (11.20)

2
223 1220300 xxx −+= (11.21)

( )2
213 5.0150 xxx ++= (11.22)

( ).42.267,903.5,422.9x0 ≤≤ (11.23)

Ryoo & Sahinidis (1995) solved this problem using Branch and Reduce algo-
rithm. They used different strategies of Branch and Reduce algorithm. The CPU-
time reported by them ranges from a minimum of 0.3 s to a maximum of 150 s for
various strategies used on Sun SPARC station 2. The termination criterion used
was an accuracy (ε) = 10-6. The global optimum reported is (x; f) = (6.293429,
3.821839, 201.159334; 201.159334).

11.3.2.2 Problem Reformulation

When DE was applied to the above problem, it was found that the equality con-
straints were difficult to deal with. Hence, the problem was reformulated. The re-
formulated problem (Babu and Angira, 2003) is as follows:

Min. f = ( )2
215.0150 xx ++ (11.24)

such that

( ) 0.05.00.1509999999.249306 2
211

2
1 ≥+++−− xxxx (11.25)

( ) 0.05.00.1509999999.2992012 2
212

2
2 ≥+++−− xxxx (11.26)

( ).903.5,422.9x0 ≤≤ (11.27)

The global optimum obtained is: (x; f) = (6.293429, 3.821839; 201.159334).

11.3.3 Results & Discussion

Table 11.5 shows the results obtained by both DE and Branch & Reduce algorithm
(Ryoo & Sahinidis, 1995). It may be noted that the global optimum is same as re-
ported by Ryoo & Sahinidis (1995) i.e. f = 201.159334 and the flow rates through
Pump 1 & Pump 2 are x1 = 6.293430 & x2 = 3.821839 respectively.



11.3 Water Pumping System 333

Table 11.5. Comparison of DE with Branch & Reduce

Parameters Using DE Using Branch & Reduce

1x 6.293430 6.293429

2x 3.821839 3.821839

3x 201.159334 201.159334

CPU-time (s) 0.0714* 0.3$

Objective function (f) 201.159334 201.159334

* CPU-time on Pentium PIII, 500 MHz PC with strategy no. 10
$ CPU-time on Sun SPARC Station 2

Tables 11.6 & 11.7 present the comparison, in terms of the number of objective
function evaluations, CPU-time and proportion of convergences to the optimum,
between the different DE strategies. The termination criterion used is accuracy of
10-6 and 10-7 respectively. In these tables, NFE, NRC and CPU-time represents, re-
spectively the mean number of objective function evaluations over all the 10 exe-
cutions, the percentage of convergences to the global optimum and the average
CPU time per execution (key parameters used are NP = 20, CR = 0.5, F = 0.8).

Table 11.6. Results of DE with all ten strategies (accuracy (ε)= 10-6).

S. No. Strategy NFE CPU-time NRC

1 DE/rand/1/bin 3134 0.1319 100

2 DE/best/1/bin 2406 0.0879 100

3 DE/best/2/bin 4444 0.1758 100

4 DE/rand/2/bin 4644 0.1758 100

5 DE/rand-to-best/1/bin 2364 0.0879 100

6 DE/rand/1/exp 3214 0.1154 100

7 DE/best/1/exp 2372 0.0934 100

8 DE/best/2/exp 4506 0.1648 100

9 DE/rand/2/exp 4652 0.1868 100

10 DE/rand-to-best/1/exp 2162 0.0714 100



334 11 Applications in Fluid Mechanics

Table 11.7. Results of DE with all ten strategies [accuracy (ε)= 10-7].

S. No. Strategy NFE CPU- time (s) NRC

1 DE/rand/1/bin 3524 0.1374 100

2 DE/best/1/bin 2624 0.1099 100

3 DE/best/2/bin 5016 0.1868 100

4 DE/rand/2/bin 5158 0.2033 100

5 DE/rand-to-best/1/bin 4146 0.1648 99

6 DE/rand/1/exp 3542 0.1319 100

7 DE/best/1/exp 2636 0.0989 100

8 DE/best/2/exp 5048 0.1923 100

9 DE/rand/2/exp 5206 0.1978 100

10 DE/rand-to-best/1/exp 2484 0.0989 100

The time taken by DE is much less than that of Branch & Reduce algorithm (Ta-
ble-1). Of course the CPU-times cannot be compared directly because different
computers are used. From the above table-2 & 3 it is evident that the strategy
number 10 (DE/rand-to-best/1/exp) is the best strategy. It takes least average CPU-
time, maximum NRC and minimum NFE.

11.4 Conclusions

DE is successfully applied to two classical fluid mechanics problems. In the first
problem, all the constraints are satisfied with this optimal gas transmission net-
work (Babu et al., 2003a). Also, a single network has been obtained for both the
possible scenarios (line A & line B of Fig. 11.2), and DE alone could give the so-
lution for both scenarios as against two different approaches adopted by earlier in-
vestigators. The optimum values of objective function for both the possible sce-
narios are obtained as 7.692x106 $/yr and 7.792x106 $/yr respectively. Though the
objective function values are slightly higher than those reported by Edgar and
Himmelblau (1988), these values correspond to satisfying all the constraints. In
addition, by approximating the compression ratio of compressor station 3 (1.0150
in Table-11.4) to 1.00 (considering only two digits as Edgar and Himmelblau,
1988), it is possible to remove one more compressor from the proposed final net-
work (Fig. 11.6), in which case the total number of compressors would be only 4
and the final objective function value would further reduce. Subsequently, Babu
et al. (2003b) obtained an improved solution (better than that reported earlier stud-



11.4 Conclusions 335

ies) by forcing some of the parametric values (of pipe diameters and lengths) in
optimization as shown in Table 11.3. The optimum values of objective function
for both the possible scenarios are obtained as 6.834x106 $/yr and 6.934x106 $/yr
respectively.

In the second problem, the optimization of water pumping system using Differ-
ential evolution (DE) has been presented. The key parameters used for the present
problem are: NP = 40, CR = 0.8, F = 0.5. The strategy that took minimum CPU-
time with highest NRC is strategy no. 10 (DE/rand-to-best/1/exp). The results ob-
tained by two methods (viz. DE & Branch & Reduce algorithm) are same and
matches with that reported in literature.



336 References

References

Angira, R. and Babu, B.V. (2003). Evolutionary Computation for Global Optimization of
Non-Linear Chemical Engineering Processes”. Proceedings of International Sympo-
sium on Process Systems Engineering and Control (ISPSEC’ 03) - For Productivity
Enhancement through Design and Optimization, IIT Bombay, Mumbai, January 3-4,
2003, Paper No. FMA2, pp 87-91 (2003). (Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#56).

Babu, B.V. and Angira, R. (2001a). Optimization of Non-linear functions using Evolution-
ary Computation. Proceedings of 12th ISME Conference, India, January 10−12, 153-
157 (2001). (Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#34).

Babu, B.V. and Angira, R. (2001b). Optimization of thermal cracker operation using Dif-
ferential Evolution. Proceedings of International Symposium & 54th Annual Session
of IIChE (CHEMCON-2001), Chennai, December 19-22. (Also available via Inter-
net as .pdf file at http://bvbabu.50megs.com/custom.html/#38) & Application No.
20, Homepage of Differential Evolution, the URL of which is:
http://www.icsi.berkeley.edu/~storn/code.html

Babu, B.V. and Angira, R. (2002a). A Differential Evolution Approach for Global Optimi-
zation of MINLP Problems. Presented at 4th Asia-Pacific Conference on Simulated
Evolution And Learning (SEAL’02), Singapore, November 18 – 22. (Also available via
Internet as .pdf file at http://bvbabu.50megs.com/custom.html/#46).

Babu, B.V. and Angira, R. (2002b). Optimization of Non-Linear Chemical Processes Using
Evolutionary Algorithm”. Proceedings of International Symposium & 55th Annual
Session of IIChE (CHEMCON-2002), OU, Hyderabad, December 19-22, 2002. (Also
available via Internet as .pdf file at http://bvbabu.50megs.com/custom.html/#54).

Babu, B.V. and Angira, R. (2003). "Optimization of Water Pumping System Using Differ-
ential Evolution Strategies". To be presented at The Second International Conference
on Computational Intelligence, Robotics, and Autonomous Systems (CIRAS-2003),
Singapore, December 15-18, 2003.

Babu, B.V. and Chaturvedi, G. (2000). Evolutionary Computation strategy for Optimization
of an Alkylation Reaction. Proceedings of International Symposium & 53rd Annual
Session of IIChE (CHEMCON-2000), Calcutta, December 18-21. (Also available via
Internet as .pdf file at http://bvbabu.50megs.com/custom.html/#31) & Application
No. 19, Homepage of Differential Evolution, the URL of which is:
http://www.icsi.berkeley.edu/~storn/code.html

Babu, B.V. and Chaurasia, A.S. (2003). "Optimization of Pyrolysis of Biomass Using Dif-
ferential Evolution Approach". To be presented at The Second International Confer-
ence on Computational Intelligence, Robotics, and Autonomous Systems (CIRAS-
2003), Singapore, December 15-18, 2003.



11.4 Conclusions 337

Babu, B.V. and Gautam, K. (2001). Evolutionary Computation for Scenario-Integrated op-
timization of Dynamic Systems. Proceedings of International Symposium & 54th An-
nual Session of IIChE (CHEMCON-2001), Chennai, December 19-22. (Also avail-
able via Internet as .pdf file at http://bvbabu.50megs.com/custom.html/#39) &
Application No. 21, Homepage of Differential Evolution, the URL of which is:
http://www.icsi.berkeley.edu/~storn/code.html

Babu, B.V. and Mohiddin, S.B. (1999). “Automated Design of Heat Exchangers using Arti-
ficial Intelligence based Optimization”, Proceedings of International Symposium &
52nd Annual Session of IIChE (CHEMCON-1999), Panjab University, Chandigarh, De-
cember 20-23, 1999. Also available via Internet as .htm file at
http://bvbabu.50megs.com/custom.html/#27.

Babu, B.V. and Munawar, S.A. (2000). Differential Evolution for the optimal design of
heat exchangers. Proceedings of All-India seminar on Chemical Engineering Progress
on Resource Development: A Vision 2010 and Beyond, IE (I), Bhubaneswar, India,
March 11, (2000). (Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#28).

Babu, B.V. and Munawar, S.A. (2001). Optimal Design of Shell & Tube Heat Exchanger
by Different strategies of Differential Evolution. PreJournal.com - The Faculty
Lounge, Article No. 003873, posted on website Journal http://www.prejournal.com.
(Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#35) & Application No. 18, Homepage of
Differential Evolution, the URL of which is:
http://www.icsi.berkeley.edu/~storn/code.html

Babu, B.V. and Sastry, K.K.N. (1999). Estimation of heat-transfer parameters in a trickle-
bed reactor using differential evolution and orthogonal collocation. Computers &
Chemical Engineering, 23, 327–339. (Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#24) & Application No. 13, Homepage of
Differential Evolution, the URL of which is:
http://www.icsi.berkeley.edu/~storn/code.html

Babu, B.V. and Singh, R.P. (2000). Synthesis & optimization of Heat Integrated Distillation
Systems Using Differential Evolution. Proceedings of All-India seminar on Chemical
Engineering Progress on Resource Development: A Vision 2010 and Beyond, IE (I),
Bhubaneswar, India, March 11, (2000).

Babu, B.V., Angira, R. and Nilekar, A. (2002). “Differential Evolution for Optimal Design
of an Auto-Thermal Ammonia Synthesis Reactor”, Computers & Chemical Engineer-
ing (Communicated).

Babu, B.V., Angira, R., Chakole, P.G. and Mubeen, J.H.S. (2003a), “Optimal Design of
Gas Transmission Network using Differential Evolution”, To be presented at The Sec-
ond International Conference on Computational Intelligence, Robotics, and Autono-
mous Systems (CIRAS-2003), Singapore, December 15-18, 2003.

Babu, B.V., Chakole, P.G. and Mubeen, J.H.S. (2003b). “Differential Evolution Strategy
for Optimal Design of Gas Transmission Network”, European Journal of Operational
Research (Communicated).

Cheesman, A.P. (1971a). “How to Optimize Gas Pipeline Design by Computer”. Oil and
Gas Journal, 69 (51), December 20, 64.

Cheesman, A.P. (1971b). “Understanding Origin of Pressure is a Key to Better Well Plan-
ning”. Oil and Gas Journal, 69 (46), November 15, 146.



338 References

Chiou, J.P. and Wang, F.S. (1999). Hybrid method of evolutionary algorithms for static and
dynamic optimization problems with application to a fed-batch fermentation process.
Computers & Chemical Engineering, 23, 1277-1291.

Dasgupta, D. and Michalewicz, Z. (1997). Evolutionary algorithms in Engineering Applica-
tions, 3 - 23, Springer, Germany,.

Dollena S.H, David M.A. and Arnold J.S. (2001). “Determining the number of components
in mixtures of linear models”. Computational Statistics & Data Analysis, 38, 15-48.

Edgar, T.F., Himmelblau, D.M. (1988). Optimization of Chemical Processes, McGraw Hill
Book Company, New York.

Edgar, T.F., Himmelblau, D.M., and Bickel, T.C. (1978). “Optimal Design of Gas Trans-
mission Network”, Society of Petroleum Engineering Journal, 30, 96.

Flanigan, O. (1972). “Constrained Derivatives in Natural Gas Pipeline System Optimiza-
tion”, Journal of Petroleum Technology, May, 549.

Floudas, C.A. (1995). Nonlinear and mixed-integer optimization. Oxford University Press,
New York.

Floudas, C.A. and Pardalos, P.M. (1990). A Collection of Test Problems for Constrained
Global Optimization Algorithms. Lecture notes in computer Science, Vol. 455.
Springer, Germany.

Goldberg, D.E. (1989). Genetic Algorithms in search, Optimization, and Machine learning,
Reading, MA, Addison-Wesley.

GPSA (1972). “Gas Processor Suppliers Association”, Engineering Data Book.
Graham, G.E., Maxwell, D.A. and Vallone, A. (1971). “How to Optimize Gas Pipeline

Networks”, Pipeline Industry, June, 41-43.
Happel, J. and Jordan, D.G. (1975). Chemical Process Economics. 2nd Edition, Marcel

Dekker, New York.
Joshi, R. and Sanderson, A.C. (1999). “Minimal representation multi-sensor fusion using

differential evolution”. IEEE Transactions on Systems, Man and Cybernetics, Part A
29, 63-76.

Katz, D.L. (1959). Handbook of Natural Gas Engineering, McGraw Hill, New York.
Kyprianou, A., Worden, K. and Panet, M. (2001). “Identification of hysteretic systems us-

ing the differential evolution algorithm”. Journal of Sound and Vibration, 248 (2),
289-314.

Larson, R.E. and Wong, P.J. (1968). “Optimization of Natural Gas System via Dynamic
Programming”, Industrial and Engineering Chemistry, AC 12 (5), 475-481.

Lee, M.H., Han, C. and Chang, K.S. (1999). “Dynamic optimization of a continuous poly-
mer reactor using a modified differential evolution”. Industrial & Engineering Chemis-
try Research, 38 (12), 4825-4831.

Leibman J., Lasdon, L., Schrage, L. and Waren, A. (1986). Modeling and optimization with
GINO. The Scientific Press, Palo Alto, CA.

Letterman, R.D. (1980). “Economic Analysis of Granular Bed Filtration”, Transactions of
American Society of Civil Engineers (Journal of Environmental Engineering Division),
106, 279.

Lu, J.C. and Wang, F.S. (2001). “Optimization of Low Pressure Chemical Vapour Deposi-
tion Reactors Using Hybrid Differential Evolution”. Canadian Journal of Chemical
Engineering, 79 (2), 246-254.

Mah, R.S.H. and Schacham, M. (1978). “Pipeline Network Design and Synthesis”, Ad-
vances in Chemical Engineering, 10.



11.4 Conclusions 339

Martch, H.B. and McCall, N.J. (1972). “Optimization of the Design and Operation of Natu-
ral Gas Pipeline Systems”, Paper No. SPE 4006, Society of Petroleum Engineers of
AIME, 1972.

McCabe, W.L., Smith, J.C. and Harriot, P. (1985). Unit Operations of Chemical Engineer-
ing, 4th Edition, McGraw-Hill.

Olorunniwo, F.O. (1981). “A Methodology for Optimal Design and Capacity Expansion
Planning of Natural Gas Transmission Networks”, Ph.D. Dissertation, The University
of Texas at Austin, May, 1981.

Olorunniwo, F.O. and Jensen, P.A. (1982). “Optimal Capacity Expansion Policy for Natu-
ral Gas Transmission Networks – A Decomposition Approach”, Engineering Optimi-
zation, 6, 95.

Price, K. and Storn, R. (1997). Differential Evolution - A simple evolution strategy for fast
optimization. Dr. Dobb’s Journal, 22 (4), 18 – 24 and 78.

Price, K. and Storn, R. (2002). Web site of DE as on July, 2003, the URL of which is:
http://www.ICSI.Berkeley.edu/~storn/code.html

Ryoo, H.S. & Sahinidis, N.V. (1995). Global optimization of nonconvex NLPs and
MINLPs with Applications in Process Design. Computers& Chemical Engineering,
19(5), 551-566.

Salcedo, R.L. (1992). Solving Nonconvex Nonlinear Programming Problems with Adaptive
Random Search. Industrial & Engineering Chemistry Research, 31, 262.

Sastry, K.K.N., Behera, L. and Nagrath, I.J. (1998). “Differential evolution based fuzzy
logic controller for nonlinear process control”, Fundamenta Informaticae: Special Is-
sue on Soft Computation.

Stoecker, W.F. (1971). Design of Thermal Systems. 3rd ed., McGraw-Hill International edi-
tion, Singapore, pp 117-121.

Storn, R. (1995). Differential Evolution design of an IIR-filter with requirements for magni-
tude and group delay. International Computer Science Institute, TR-95-026.

Wang, F.S. and Cheng, W.M. (1999). Simultaneous optimization of feeding rate and opera-
tion parameters for fed-batch fermentation processes. Biotechnology Progress, 15 (5),
949-952.

Wang, F.S., Jing, C.H. and Tsao, G.T. (1998). “Fuzzy-decision-making problems of fuel
ethanol production using genetically engineered yeast”, Industrial & Engineering
Chemistry Research, 37, 3434-3443.

Wang, F.S., Su, T.L. and Jang, H.J. (2001). “Hybrid Differential Evolution for Problems of
Kinetic Parameter Estimation and Dynamic Optimization of an Ethanol Fermentation
Process”. Industrial & Engineering Chemistry Research, 40 (13), 2876-2885.



12 Applications in Reaction Engineering

B V Babu

12.1 Introduction

This chapter presents the application of Genetic Algorithms (GA) & Differential
Evolution (DE) on two most important chemical engineering problems: (1) Opti-
mal design of an auto-thermal ammonia synthesis reactor, and (2) Optimization of
thermal cracking operation.

In the first problem, the Differential Evolution (DE), an evolutionary computa-
tion technique, is applied to the optimal design of an auto-thermal ammonia syn-
thesis reactor. This paper also presents the new concept of “Nested” DE (DE is
also used to find out the best combination of key parameters of DE itself). The
main objective in the optimal design of an auto-thermal ammonia synthesis reactor
is the estimation of the optimal length of reactor for different top temperatures
with the constraints of energy and mass balance of reaction and feed gas tempera-
ture & mass flow rate of nitrogen for ammonia production. Thousands of combi-
nations of feed gas temperature, nitrogen mass flow rate, reacting gas temperature
and reactor length are possible. This section also presents the application of four
methods, viz., Euler’s method, Runge-Kutta method (both variable & constant step
size), & Gear’s method in combination with DE, and compare the results reported
using GA in earlier literature. A software package “POLYMATH” is also used to
solve the three equality constraints i.e. three coupled differential equations. Apart
from determining the optimal reactor length, the comparison of results obtained
from different methods is presented. DE found to be a robust, fast and simple
evolutionary computation technique for optimization problems.

The second paper presents the application of Differential Evolution (DE) for
the optimization of Thermal Cracking operation. The objective in this problem is
the estimation of optimal flow rates of different feeds to the cracking furnace un-
der the restriction on ethylene and propylene production. Thousands of combina-
tions of feeds are possible. Hence an efficient optimization strategy is essential in
searching for the global optimum. In the present study LP Simplex method and
DE, an improved version of Genetic Algorithms (GA), have been successfully ap-

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



342 12 Applications in Reaction Engineering

plied with different strategies to find the optimum flow rates of different feeds. In
the application of DE, various combinations of the key parameters are considered.
It is found that DE, an exceptionally simple evolution strategy, is significantly
faster and yields the global optimum for a wide range of the key parameters. The
results obtained from DE are compared with that of LP Simplex method.

Price and Storn (1997) gave the working principle of DE with single strategy.
Later on, they suggested ten different strategies of DE (Price and Storn, 2002). DE
is an improved version of GA for faster optimization. Among the DE’s advantages
are its simple structure, ease of use, speed and robustness. The key parameters of
control are: NP - the population size, CR - the crossover constant, F - the weight
applied to random differential (scaling factor). Babu (2001) gave an overview of
DE at a glance.

Differential Evolution (DE) is an improved version of GA. It is exceptionally
simple, significantly faster & robust at numerical optimization and is more likely
to find a function’s true global optimum. DE has been successfully applied in
various fields. The various applications of DE are: digital filter design (Storn,
1995), fuzzy decision making problems of fuel ethanol production (Wang et al.,
1998), Design of fuzzy logic controller (Sastry et al., 1998), batch fermentation
process (Chiou and Wang, 1999; Wang and Cheng, 1999), multi sensor fusion
(Joshi and Sanderson, 1999), dynamic optimization of continuous polymer reactor
(Lee et al., 1999), estimation of heat transfer parameters in trickle bed reactor
(Babu and Sastry, 1999; Babu and Vivek, 1999), optimization of alkylation reac-
tion (Babu and Chaturvedi, 2000), optimal design of heat exchangers (Babu and
Mohiddin, 1999; Babu and Munawar, 2000; Babu and Munawar, 2001), synthesis
& optimization of heat integrated distillation system (Babu and Singh, 2000), op-
timization of non-linear functions (Babu and Angira, 2001a), scenario- integrated
optimization of dynamic systems (Babu and Gautam, 2001), optimization of ther-
mal cracking operation (Babu and Angira, 2001b), determining the number of
components in mixtures of linear models (Dollena et al., 2001), Identification of
hysteretic systems using the differential evolution algorithm (Kyprianou et al.,
2001), optimization of Low Pressure Chemical Vapour Deposition Reactors Using
Hybrid Differential Evolution (Lu and Wang, 2001), hybrid differential evolution
for problems of Kinetic Parameter Estimation and Dynamic Optimization of an
Ethanol Fermentation Process (Wang et al., 2001), Global optimization of MINLP
problems (Babu and Angira, 2002a), Optimal design of an auto-thermal ammonia
synthesis reactor (Babu et al., 2002b) Optimization of non-linear chemical proc-
esses (Babu and Angira, 2002c; Angira and Babu, 2003), etc.



12.2 Design of Auto-Thermal Ammonia Synthesis Reactor 343

12.2 Design of Auto-Thermal Ammonia Synthesis
Reactor

12.2.1 Ammonia Synthesis Reactor

Ammonia is one of the most important chemicals produced as it enjoys the wide
use in the manufacture of fertilizers. Hence modeling and simulation of ammonia
manufacturing process has received considerable attention among the process in-
dustries. Simulation models for ammonia synthesis converters of different types
have been developed for design & optimization (Annable, 1952; Eymery, 1964;
Dyson, 1965; Murase et al., 1970; Singh and Saraf, 1979; Upreti and Deb, 1997),
and control (Shah, 1967) purposes.

Annable (1952) compared the performance of an autothermal ammonia synthe-
sis reactor (Fig. 1) with the maximum yield that could be obtained if one had di-
rect control of the temperature profile. He found that conversion could be in-
creased by 14%. Obviously, one does not have direct control of the temperature
profile, but it could be affected by the configuration of the heat transfer surface,
viz., added insulation and/or fins. Dyson (1965) considered the general problem of
determining the heat transfer coefficient vs. length function that would maximize
the yield in an autothermal reactor.

Murase et al. (1970) computed the optimum temperature trajectory along the
reactor length applying the Pontryagin’s maximum principle. Although their for-
mulation was correct, the stated objective function was wrong. Edger and Him-
melblau (1989) rectified the same and used Lasdon’s generalized reduced-gradient
method to arrive at an optimal reactor length corresponding to a particular reactor
top temperature of 694 K. However they also ignored a term mentioned in Mu-
rase’s formulation, pertaining to the cost of ammonia already present in the feed
gas, in the objective function. Also the expressions of the partial pressures of ni-
trogen, hydrogen and ammonia, used to simulate the temperature and flow rate
profiles across the length of the reactor, were not correct.

Upreti & Deb (1997) rectified above stated shortcomings. They used Murase’s
formulation with correct objective function and correct stoichiometric expressions
of the partial pressures of N2, H2, and NH3. They used GA in combination with
Gear package of NAG library’s subroutine, D02EBF, for the optimization of am-
monia synthesis reactor. GA has the tendency to locate the near global optima but
not necessarily the global optima. Also, Upreti & Deb (1997) have not tried all
possible combinations of key parameters (pc – crossover probability, pm – muta-
tion probability, N – population size). Moreover, there is a contradiction in the
temperatures & gas flow rate profiles obtained. They reported the profiles that
were not so smooth as in earlier literature. Also, they reported reverse reaction
condition at the top temperature of 664 K, which was not found in literature ear-
lier. Hence, the present study is carried out in order to take care of the above defi-
ciencies.



344 12 Applications in Reaction Engineering

A typical ammonia production process consists of production of the synthesis
gas from the petroleum feed stock, compression of the gas to the required pressure
and the synthesis loop in which the conversion to ammonia takes place. The am-
monia converter is part of the synthesis loop, and its operation is quite crucial in
the overall control strategy of the plant. In the converter the following catalytic re-
action takes place at elevated temperatures and pressures releasing a large amount
of heat.

N2 + 3H2 ⇔ 2NH3; ΔH = -22.0 kcal (12.1)

This heat has to be removed to obtain a reasonable conversion as well as to pro-
tect the catalyst life. At the same time, the released heat energy is utilized to heat
the incoming feed-gas to proper reaction temperature.

Fig. 12.1. Ammonia Synthesis Reactor

A typical ammonia synthesis reactor is as shown in the following Fig 12.1.
The reaction zone (shaded) contains the catalyst. A number of cooling tubes are
inserted vertically through the reaction zone. The feed gas comes in from the
lower part of the reactor and flows up through the top of the reactor. Then, chang-
ing direction, it flows down through the reaction zone and heat exchanger to the
outlet. As with all reversible exothermic reactions, the temperature, at which the
reaction rate is maximum, decreases as the conversion increases. Even though one
would like to maximize the reaction rate at each instant, it is impossible to obtain
the ideal temperature profile by control of available design variables. The counter-
current flow does, however, cause the temperature to decrease in the bottom part
of the reactor because of heat transfer between the reacting and feed gas. Babu et
al. (2002) carried out detailed simulation incorporating the optimization for the
above problem.



12.2 Design of Auto-Thermal Ammonia Synthesis Reactor 345

12.2.2 Problem Formulation

The Problem formulation of Babu et al. (2002) is similar to that in Murase et al.
(1970) including the modifications mentioned in Upreti and Deb (1997). Feed gas
contains 21.75 mole% nitrogen, 65.25 mole% hydrogen, 5 mole% ammonia, 4
mole% methane and 4 mole% argon. In a typical ammonia reactor, feed gas enters
the bottom of the reactor. The production of ammonia depends on the temperature
of feed gas at the top of the reactor (henceforth called top temperature), the partial
pressures of the reactants (nitrogen and hydrogen), and the reactor length.

12.2.2.1 Assumptions

The following assumptions are used in modeling the ammonia synthesis reactor
(Murase et al, 1970):

1. The rate expression is valid.
2. The model is one dimensional, i.e., the temperature and concentration gradi-

ents in the radial direction are neglected.
3. Heat & mass diffusion in the longitudinal direction are negligible.
4. The temperature of the gas flowing through the catalyst zone is equal to the

reacting gas and the catalyst particles.
5. The heat capacities of the reacting gas and the feed gas are constant.
6. The catalyst activity is uniform along the reactor and equal to unity.
7. Pressure drop across the reactor is negligible compared to the total pressure

of the system.

12.2.2.2 Objective function

The objective function is the economic return based on the difference between the
value of the product gas (heating value and the ammonia value) and the value of
feed gas (as a source of heat only) less the amortization of reactor capital costs.
Other operating costs are omitted. As shown by Upreti and Deb (1997), the final
consolidation of the objective function terms is:

2/197
0

0
47

]1098365.11045663.3[)(27.699

)(09.7041070843.11033563.1),,,(
22

xTT

TTNTTNxf

f

gNgfN

×+×−−−

−+×−×=
(12.2)

It is clear from the above expression that the objective function depends on four
variables: the reactor length x, proportion of nitrogen N2, the top temperature Tg,
the feed gas temperature Tf.

12.2.2.3 Constraints

There are mistakes in modeling equations reported in Murase et al. (1970), which
were corrected and some of them were reported by Upreti & Deb (1997). Hence
for the sake of clarity, all the corrected modeling equations are presented below:



346 12 Applications in Reaction Engineering

a. Energy-Balances

Feed Gas: Referring to Fig. 12.2, an energy balance on the feed stream yields the
following equation:

Heat Flow

Catalyst Zone Cooling tube

Tube wall

x

Δ x

Fig. 12.2. Energy & Material Balance on control volume

( )fg
pf

f TT
WC

US

dx

dT
−= 1 (12.3)

where,
U = Overall heat transfer coefficient, Kcal/m2.hr.K

1S = Surface area of cooling tubes per unit length of reactor, m

gT = Temperature of reacting gas, K

W = Total mass flow rate, kg/hr

pfC = Specific heat of feed gas, kcal/kg. K

x = Distance along axis, m

Reacting Gas: Similarly, for the reacting gas,

( ) ( )
⎟⎟⎠

⎞
⎜⎜⎝

⎛ −Δ−+−−=
dx

dN

WC

SH
TT

WC

US

dx

dT N

pg
fg

pg

g 221 (12.4)

where,
HΔ = Heat of reaction, kcal/kg mole of N2

2S = Cross-sectional area of catalyst zone, m2

dx

dN N 2 = Reaction rate, kg moles of N2 /hr.m3

pgC = Heat capacity of reacting gas, kcal/kg. K

b. Material balance
Considering the incremental distance in the catalyst zone (Fig. 12.2) and perform-
ing a N2 material balance yields:



12.2 Design of Auto-Thermal Ammonia Synthesis Reactor 347

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−=

5.12

5.1

1

2

3

3

222

H

NH

NH

HNN

p

p
K

p

pp
Kf

dx

dN
(12.5)

where,
f = Catalyst activity

2Np ,
2Hp ,

3NHp = Partial pressure of N2, H2, and NH3

1K , 2K = Rate constants

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −×=
gRT

K
20800

exp1078954.1 4
1 (12.6)

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −×=
gRT

K
47400

exp105714.2 16
2 (12.7)

In order to maintain the energy & material balance of reaction, the above three
coupled differential equations (Eqs. 12.3, 12.4, & 12.5) must be satisfied. It turns
out that three of the above variables ( fT , gT ,

2NN ) can be eliminated by satisfy-

ing these energy & material balance equations. Thus, practically, there is only one
design variable for given top temperature. The partial pressures appearing in the
differential equations are computed as follows:

22

2

2 2598.2

286
0

NN

N

N
NN

N
p

+
= (12.8)

22
3 NH pp = (12.9)

22

22

3 2598.2

)223.2(286
0

0

NN

NN
NH NN

NN
p

+
−

= (12.10)

The boundary conditions are:

0TT f = at x=0 (12.11)

fg TT = at x=0 (12.12)

2.7010

2
=NN kmol/hr.m2 at x=0 (12.13)

The three inequality constraints that limit the values of three of the design vari-
ables are as given below:



348 12 Applications in Reaction Engineering

32200.0
2

≤≤ NN (12.14)

800400 ≤≤ fT (12.15)

0.100.0 ≤≤ x (12.16)

Since the reaction gas temperature ( gT ) depends on the nitrogen mass flow rate

(
2NN ), feed gas temperature ( fT ) and reactor length ( x ), explicit bounds on gT

are not necessary. From the system model, we have three differential equations
and four variables, making the degrees of freedom equal to one. We specify the
length of the reactor, calculate the remaining variables using the system model and
then pass these variables to the optimization algorithm. The computation proce-
dure for the optimization carried out is shown in Fig 12.3.

Reactor Length

Differential
Equation Solver

Optimization
Routine

Fig. 12.3. Computation Procedure

12.2.3 Simulated Results & Discussion

12.2.3.1 Temperature & Flow rate Profiles

First, the system equations (12.3, 12.4, & 12.5) were solved using Runge-Kutta
fixed step size method (RKFS) and Fig. 12.4 (a) shows the profiles obtained.



12.2 Design of Auto-Thermal Ammonia Synthesis Reactor 349

0 2 4 6 8 10

200

300

400

500

600

700

800

Reactor Length (m)

T
f, 

T
g,

 N
N

2

Tf

Tg

NN2

0 2 4 6 8 10

200

300

400

500

600

700

800

Reactor Length (m)

T
f, 

T
g,

 N
N

2

T
f

Tg

NN
2

(a) RKFS (b) EULER

0 2 4 6 8 10

200

300

400

500

600

700

800

Reactor Length (m)

T
f, 

T
g,

 N
N

2

Tf

Tg,
NN

2

0 2 4 6 8 10

200

300

400

500

600

700

800

Reactor Length (m)

T
f, 

T
g,

 N
N

2

T
f

Tg

NN
2

(c) POLYMATH (d) RKVS

0 2 4 6 8 10

200

300

400

500

600

700

800

Reactor Length (m)

T
f, 

T
g,

 N
N

2

Tf

Tg

NN2

(e) GEAR

Fig. 12.4. The Profiles obtained using different Numerical Methods



350 12 Applications in Reaction Engineering

From the graph it is clear that the profiles of
2NN & fT intersect at a reactor

length of 4.933 m. And the profiles of
2NN & gT intersect at a reactor length of

8.915 m. It is evident from the graph that the profiles are very smooth and there
are no such spikes as those reported by Upreti and Deb (1997). Therefore, in order
to check if it is the limitation of RKFS because of which spikes are not obtained,
the other numerical methods viz. Euler’s method (EULER), Runge-Kutta variable
step size method (RKVS) & Gear’s method (GEAR) are also used for simulating
the results. Apart from above mentioned numerical methods, the POLYMATH (a
software package) is also used to simulate the results for profiles. Figs. 12.4 (b),
(c), (d), & (e) show the profiles obtained using the above four methods. The pro-
files obtained are quite smooth without any spikes and similar to that of RKFS.
The profiles are same qualitatively but they differ slightly quantitatively.

To illustrate the exact difference quantitatively, the above observations & com-
parison of various numerical methods used for simulating the results are presented
in Table-12.1 for the reactor lengths of 10 m. Table-12.2 & Table-12.3 show the
reactor length for which the variables

2NN & gT and
2NN & fT intersect re-

spectively.

12.2.3.2 Comparison of Results

From the Table-12.1, Table-12.2 and Table-12.3, it is evident that all the numeri-
cal methods (stated above) are equally good barring a few of the following differ-
ences. There is good agreement between RKFS & POLYMATH, which can be
explained with the fact that POLYMATH software is based on RKFS algorithm.
Similarly GEAR & EULER are giving same results though slightly different from
RKFS & POLYMATH. The difference in the prediction is less than 2.3 % be-
tween GEAR/EULER & RKFS/POLYMATH respectively. Similarly, the differ-
ence in prediction of intersections is less than 5.0% between RKVS &
GEAR/EULER method. RKVS is latest & has the ability to adopt its step size &
varies as per requirement at every move. Based on the above observations, it can
be substantiated that all the five methods are equally good both qualitatively giv-
ing the same results and quantitatively with slight difference. Hence, any one of
the above numerical methods can be used for the solution of three coupled differ-
ential equations.

Upreti and Deb (1997) reported that the reverse reaction predominates the for-
ward reaction at the top temperature of 664 K. In this study, RKVS, which is well
accepted for many engineering problems, is used to generate temperature & flow
rate profiles at that temperature. Surprisingly, there is no such trend observed in
the profiles obtained [for which Upreti and Deb (1997) gave a very good physical
explanation] as can be seen in Fig 12.5 (a). To see the presence of any reverse re-
action effect, the program is executed for temperatures even below 664 K with in-
terval of 10 K up to 600 K. But no such trend is observed. Typical results obtained
at top temperature of 640 K and 600 K are shown in Fig. 12.5 (b) & (c) respec-
tively.



12.2 Design of Auto-Thermal Ammonia Synthesis Reactor 351

Table 12.1. Comparison of different Numerical Methods at a reactor length of 10 m

Methods

Parameters

RKFS EULER POLYMATH RKVS GEAR

x 10.00 10.00 10.00 10.00 10.00

2NN 490.55 499.48 490.46 499.68 499.46

gT 422.00 432.89 422.25 462.86 432.69

fT 183.23 204.23 183.38 235.71 204.73

Table 12.2. Reactor Length at which variables
2NN & gT intersect

Methods

Parameters

RKFS EULER POLYMATH RKVS GEAR

x 8.915 8.915 8.916 9.355 8.895

2NN , gT 490.48 499.56 490.56 499.68 499.57

Table12.3. Reactor Length at which variables
2NN & fT intersect

Methods

Parameters

RKFS EULER POLYMATH RKVS GEAR

x 4.933 4.900 4.935 5.156 4.900

2NN , fT 501.525 511.50 501.64 511.75 511.55

As is evident from the figures there is no reverse reaction effect even at a top
temperature as low as 600 K. Again, to check if it is the limitation of RKVS, the
other methods are applied but none of them could show this effect.

Also, Upreti and Deb (1997) reported that the three differential equations (12.3,
12.4, & 12.5) become unstable at the top temperature of 706 K. However, using
the above stated numerical methods, it is observed that the equations are not un-
stable even at a top temperature as high as 800 K. It may be noted that Upreti &
Deb (1997) used NAG library’s subroutine D02EBF (which is now replaced by
D02EJF (NAG, 2002)). So it may be because of the error in the software package
that they reported the reversible reaction effect.



352 12 Applications in Reaction Engineering

0 2 4 6 8 10

450

500

550

600

650

700

Reactor Length (m)

T
f, 

T
g,

 N
N

2

Tf

T
g

NN2

(a) 664 K (b) 640 K

0 2 4 6 8 10
520
530

540
550
560
570
580
590
600
610

620
630
640
650
660
670
680
690

700

Reactor Length (m)

T
f, 

T
g,

 N
N

2

Tf

Tg

NN2

(c) 600 K

Fig. 12.5. The profiles obtained using RKVS for different top temperatures

12.2.4 Optimization

12.2.4.1 “Nested” DE – A new Concept

Choosing NP, F, and CR depends on the specific problem applied, and is often
difficult. But some general guidelines are available. Normally, NP should be
about 5 to 10 times the number of parameters in a vector. As for F, it lies in the
range 0.4 to 1.0. Initially F = 0.5 can be tried then F and/or NP is increased if the
population converges prematurely. A good first choice for CR is 0.1, but in gen-
eral CR should be as large as possible (Price & Storn, 1997). The best combina-
tion of these key parameters of DE for each of the strategies mentioned earlier is
again different. Price & Storn (2002) have mentioned some simple rules for
choosing the best strategy as well as the ranges of corresponding key parameters.

0 2 4 6 8 10

300

350

400

450

500

550

600

650

700

750

Reactor Length (m)

T
f, 

T
g,

 N
N

2

Tf

Tg

N
N2



12.2 Design of Auto-Thermal Ammonia Synthesis Reactor 353

12.2.4.2 Effect of DE Key Parameters

The key parameters are generally found by trial & error method. In this method
one parameter is kept constant while varying the others in steps. In this process we
may miss out optimum combination that gives global optima, as it is very difficult
to cover the entire range of all the key parameters, however small the incremental
step may be. The comparison of results obtained using different combination of
DE key parameters (CR and F) are shown in Fig. 12.6 (a) and (b). These graphs
show us how difficult it is to find out which combination can be the most suitable
one for our problem as there is no specific trend observed.

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
5

10

15

20

25

30

35

40

45

50 CR = 0.25
CR = 0.75

F

N
o.

 o
f g

en
er

at
io

ns
 r

eq
ui

re
d

0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

120
F = 0.5
F = 0.8

CR

N
o.

 o
f g

en
er

at
io

ns
 r

eq
ui

re
d

(a) Constant CR (b) Constant F

Fig. 12.6. The Effect of F and CR on Number of generations

By looking at the problems mentioned above and the results obtained in this
study in choosing the right combination of the DE key parameters, it was felt that
why not to use DE itself for finding the optimum key parameters along with the
optimum variables of the actual problem formulation (i.e. using DE within DE
wherein outer loop takes care of optimization of key parameters (NP, CR, F) with
the objective of minimizing the number of generations required, while inner loop
taking care of optimizing the problem variables). Yet complex objective can be
one that takes care of minimizing the number of generations/function evaluations
& the standard deviation (SD) in the set of solutions at the last generation/function
evaluation, and try to maximize the robustness of the algorithm. The optimum re-
actor length obtained using GEAR with “Nested” DE is 6.79 m (at top temperature
of 694) with objective function value of $4848383.0 per year. Using RKFS with
DE the values are 6.59 m (at top temperature of 694 K) and $5006814.58 per year
respectively. To find the best combination of these parameters for the present
problem, we vary CR & F, but keep NP to the higher side (NP=10*D, for being on
the safer side). The algorithm followed for the “Nested” DE operation in combina-
tion with GEAR is shown in Fig. 12.7.



354 12 Applications in Reaction Engineering

Optimize
CR, F

Optimize
reactor length

Solve the System Model
equation using GEAR

Perform the mutation, crossover
& recombination on the reactor

length till convergence

Is
SD>limit

Print the optimum
value of CR, F &

Reactor length

Yes

NO

Fig. 12.7. The Solution Strategy For Nested DE

The optimum DE parameters using “Nested” DE (with the strategy
DE/rand/1/bin) with gear method for various standard deviations are shown in Ta-
ble-12.4. For population of xi’s (i=1,2,3…NP,) we define

Standard Deviation (SD)= ∑
= −

−NP

i

i

NP

xx

1

2

)1(

)(
(12.17)

where,

∑
=

=
NP

i

i

NP

x
x

1
(12.18)

From Table-12.4, it is clear that irrespective of the values of SD (1.0, 0.5, 0.25,
0.1 0.01 & 0.01) and the corresponding CR & F values, we obtained almost same
values of the objective function (4848383.0 $/year) and reactor length (6.79 m). It
consolidates the robustness of the DE algorithm. The more wider the range of val-



12.2 Design of Auto-Thermal Ammonia Synthesis Reactor 355

ues of CR, F, and SD for which same values of objective function and reactor
length are obtained, the more robust is the algorithm.

Table 12.4. Optimum DE parameters Using Nested DE with GEAR for various SD values

Standard
Deviation

Reactor
length (m)

Objective function
($/year)

CR F Gmin

1.0 6.79 4848382.5 0.745547 0.520328 1

0.5 6.79 4848382.5 0.939156 0.485891 2

0.25 6.79 4848382.5 0.995696 0.7012 4

0.1 6.79 4848383.0 0.8686 0.553093 6

0.01 6.79 4848383.0 0.902649 0.434454 10

0.001 6.79 4848383.0 0.793195 0.43707 18

Also, the code of “Nested” DE was run with another strategy DE/rand/1/exp,
and found that the results are exactly same. This also proves DE’s power and ro-
bustness. Now that we have already tried the effect of DE parameters and strategy
on speed and accuracy and found that it has little or no effect on accuracy, we can
say that the NP in a generation, if taken within the limits, would not have any ef-
fect on the result.

Table-12.5 shows the results obtained from different methods & its comparison
with those obtained by Murase et al. (1970), Edgar and Himmelblau (1989) &
Upreti and Deb (1997) using Pontryagin’s maximum principle (PMP), Lasdon’s
generalized reduced-gradient method (LGRG) & Genetic Algorithm (GA) respec-
tively.

Table 12.5. Results of various Numerical Methods and their comparison

Meth-
ods

Pa-
rameter

PMP
(Mu-
rase et
al,
1970)

LGRG
(Edgar
&
Himme-
lblau,
1989)

D02EBF

With GA

(Upreti
& Deb,
1997)

EULER

With DE

RKFS

With DE

GEAR

With DE

RKVS

With DE

Opti-
mum
x (m)

5.18 2.58 5.33 6.8 6.59 6.79 7.16

Objec-
tive
func-
tion
($/year)

Not
re-
ported

1.29x106 4.23x106 4.84x106 5.00x106 4.84x106 4.84x106



356 12 Applications in Reaction Engineering

From Table-12.5, we observe that an optimum reactor length of 2.58 m is re-
ported by Edgar and Himmelblau (1989) and 5.18 m by Murase et al. (1970), both
of which are wrong due to the errors in their problem formulations as pointed out
by Upreti and Deb (1997). An optimum reactor length of 5.33 m and the corre-
sponding objective function value is 4.23 x 106 $/year, reported by Upreti and Deb
(1997) are also not correct as found in this study due to a possible error in the
software they used (D02EBF – NAG Library sub-routine). This may also be
wrong because simple GA does not ensure global optimum.

Among other methods, GEAR, EULER & RKVS have the same objective func-
tion value though the optimum reactor length is slightly different in each case.
RKVS is an improved method over the other methods & well-accepted one. Also,
this study establishes the accuracy and robustness of DE. Hence, the correct opti-
mum reactor length can be considered as 7.16 m with an objective function value
of 4.841x 106 $/year.

12.2.5 Conclusions

In this problem, Differential Evolution (DE) is used for the optimal design of an
auto-thermal ammonia synthesis reactor. The new concept of “Nested” DE is in-
troduced. Results indicate that the profiles of temperatures & flow rate are smooth
and there is no reverse reaction effect irrespective of numerical method used for
the solution of differential equations. The optimum reactor length depends upon
the top temperature. Also, the power & robustness of DE is brought out using
new concept of nested DE. This successful application of DE for the optimal de-
sign of ammonia synthesis reactor indicates that DE has great potential and can be
applied to advantage in all the highly non-linear & complex engineering problems.

12.3 Thermal Cracking Operation

This problem (Babu and Angira, 2001b) presents the application of Differential
Evolution (DE) for the optimization of Thermal Cracking operation. The objective
in this problem is the estimation of optimal flow rates of different feeds to the
cracking furnace under the restriction on ethylene and propylene production.
Thousands of combinations of feeds are possible. Hence an efficient optimization
strategy is essential in searching for the global optimum. In this problem LP Sim-
plex method and DE, an improved version of Genetic Algorithms (GA), have been
successfully applied with different strategies to find the optimum flow rates of dif-
ferent feeds. In the application of DE, various combinations of the key parameters
are considered.



12.3 Thermal Cracking Operation 357

12.3.1 Thermal Cracking

It is defined as the thermal decomposition, under pressure, of large hydrocarbon
molecules to form smaller molecules. Lighter, more valuable hydrocarbons may
thus be obtained from such relatively low value stocks as heavy fuel/gas oils (boil-
ing up to 5400C) and residues. This is conducted without any catalyst. Thermal
cracking is normally carried out at temperatures varying from 4500C to 7500C and
pressures ranging from atmospheric to 1000 psig (Hobson, 1975). The important
reactions occurring are:

• Decomposition and destructive condensation.
• Hydrogenation and de hydrogenation.
• Polymerization.
• Cyclization.
The first two reactions are endothermic, while polymerization is exothermic.

Coke formation is an additional reaction, which plays an important role in thermal
cracking. Although the mechanism by which coke is formed are not entirely un-
derstood. It is thought, however, that coke results from extensive degradation of
relatively heavy molecules to form increasing quantities of light hydrocarbon
gases (dry gas) and polycyclic compounds having low hydrogen to carbon ratios.
The rate at which hydrocarbon crack, is strongly dependent on temperature.
Cracking reactions begin about 315-3700C, depending on the type of material be-
ing cracked (Hobson, 1975).

Depending upon the pressure and temperature employed for the cracking and
the characteristics of feed, there are various thermal cracking processes in which
the product yields and characteristics are different (Gupta, 1994). Mainly there are
four commercial processes employed for thermal cracking in oil refineries. They
are:

• Dubbs thermal cracking process
• Pyrolysis.
• Visbreaking.
• Coking.
Pyrolysis or mild thermal cracking is done mainly for the production of lighter

products mainly unsaturated like olefins (ethylene, propylene) and naphthene
polymers, diolefins, benzene & toluene etc (Sourander et al, 1984). It is carried
out at high temperature (650-7000C) and low pressure.

12.3.2 Problem Description

This problem (Edgar and Himmelblau, 1989) deals with maximization of profit
while operating within furnace and down stream process equipment constraints.



358 12 Applications in Reaction Engineering

DNG Gas oil Propane Ethane

Recycle

Fuel (Ethane)

(Propane)
Methane

Fuel oil
Ethylene Propylene Butadiene Gasoline

Thermal Cracker

Fig. 12.8. Thermal Cracker

Fig 12.8 lists various feeds & corresponding product distribution for a thermal
cracker, which produces olefins. The capacity to run gas feeds through the
cracker is 200,000 lb/stream hr. (total flow based on an average mixture). Ethane
uses the equivalent of 1.1 lb of capacity per pound of ethane; propane uses 0.9 lb
of capacity per pound of propane; gas-oil uses 0.9 lb/lb; and DNG has a ratio of
1.0.

Based on the plant data, eight products are produced in varying proportions ac-
cording to the following matrix as given in Table-12.6:

Table 12.6. Yield structure (Weight fraction):

FeedProduct
Ethane Propane Gas-oil DNG

Methane 0.07 0.25 0.10 0.15
Ethane 0.40 0.06 0.04 0.05
Ethylene 0.50 0.35 0.20 0.25
Propane - 0.10 0.01 0.01
Propylene 0.01 0.15 0.15 0.18
Butadiene 0.01 0.02 0.04 0.05
Gasoline 0.01 0.07 0.25 0.30
Fuel oil - - 0.21 0.01

Down stream processing limits exists of 50,000 lb/stream hr. on the ethylene
and 20,000 lb/stream hr. on the propylene. The fuel requirements to run the crack-
ing system for each feedstock type are as follows:

• Ethane 8364 Btu/lb.
• Propane 5016 Btu/lb.
• Gas oil 3900 Btu/lb.
• DNG 4553 Btu/lb.
Methane and fuel oil produced by the cracker are recycled as fuel. All the eth-

ane and propane produced is recycled as feed. Heating values are as follows:



12.3 Thermal Cracking Operation 359

• Natural gas 21,520 Btu/lb.
• Methane 21,520 Btu/lb.
• Fuel oil 18,000 Btu/lb.
Because of heat losses and the energy requirements for pyrolysis, a fixed fuel

requirement of 20.0×106 Btu/stream hr. occurs.
The price structure on the feeds and products and fuel costs is (all values are in

cents per pound):

Feeds: Ethane 6.55
Propane 9.73
Gas-oil 12.50
DNG 10.14

Products: Methane 5.38 (fuel value)
Ethylene 17.75
Propylene 13.79
Butadiene 26.64
Gasoline 9.93
Fuel-oil 4.50 (fuel value)

Assume an energy (fuel) cost of $2.5/106 Btu.

The variables to be optimized are the amounts of the four feeds (viz. Gas-oil,
Propane, Ethane & Debutanized natural gasoline (DNG)). This problem was
solved using both the Linear Programming Simplex method and Differential Evo-
lution (DE). The assumption used in formulating the objective function and con-
straints are:

1. 20.0×106 Btu/hr. fixed fuel requirement (methane) to compensate for the
heat-loss.

2. All propane and ethane are recycled with the feed, and all methane and fuel
oil will be recycled as fuel.

12.3.2.1 Objective Function

Objective function for the profit is given by:

.51.939.909.133.322.084.2 654321 xxxxxxf +++−−= (12.19)

where,
f = Profit function (cents/ hr.)

1x = Fresh ethane feed (lb/hr.)

2x = Fresh propane feed (lb/hr.)

3x = Gas-oil feed (lb/hr.)

4x = DNG feed (lb/hr.)



360 12 Applications in Reaction Engineering

5x = Ethane recycle (lb/hr.)

6x = Propane recycle (lb/hr.)

7x = Fuel added (lb/hr.)

12.3.2.2 Constraints

(a) Cracker capacity of 200,000 lb/hr,

000,2009.01.10.19.09.01.1 654321 ≤+++++ xxxxxx (12.20)

(b) Ethylene processing limitation of 50,000lb/hr,

000,5035.05.025.02.035.05.0 654321 ≤+++++ xxxxxx (12.21)

(c) Propylene processing limitation of 20,000lb/hr,

000,2015.001.018.015.015.001.0 654321 ≤++++ xxxxxx (12.22)

(d) Ethane recycle

006.06.005.004.006.04.0 654321 =+−+++ xxxxxx (12.23)

(e) Propane recycle

09.001.001.01.0 6432 =−++ xxxx (12.24)

(f) Heat Constraints

000,000,20520,21364

6.6857114520323646.6857

76

54321

=++
−−++−

xx

xxxxx
(12.25)

12.3.3 Problem Reformulation

When DE was applied to the above problem, it was found that the equality con-
straints were difficult to deal with. Hence, the problem was reformulated by elimi-
nating the equality constraints and incorporating them in inequality constraints
thereby reducing the number of constraints and parameters. The reformulated
problem is as follows:

12.3.3.1 Objective Function

Max. 4321 9886.15879.288.11.9 xxxxf +−+= (12.26)



12.3 Thermal Cracking Operation 361

12.3.3.2 Constraints

(a) Cracker capacity of 200,000 lb/hr,

1800000926.9861.81.105.16 4321 ≤+++ xxxx (12.27)

(b) Ethylene processing limitation of 50,000lb/hr,

450000665.214.20.45.7 4321 ≤+++ xxxx (12.28)

(c) Propylene processing limitation of 20,000lb/hr,

1800006426.13711.151.115.0 4321 ≤+++ xxxx (12.29)

12.3.4 Simulated Results and Discussion

The reformulated problem was solved using both the Differential Evolution (DE)
& LP Simplex method and the following results (Table 12.7) were obtained:

Table 12.7. Results of LP Simplex and DE

S No Stream
Flow Rate (lb\hr.) using
DE

Flow rate (lb\hr.) using LP
Simplex

1 Fresh Ethane feed (x1) 60,000 60,000
2 Fresh propane feed (x2) 0 0
3 Gas-oil feed (x3) 0 0
4 DNG feed (x4) 0 0
5 Ethane recycle (x5) 40,000 40,000
6 Propane recycle (x6) 0 0
7 Fuel added (x7) 32795.539 32795.539
8 Ethylene 50,000 50,000
9 Propylene 1000 1000
10 Butadiene 1000 1000
11 Gasoline 1000 1000
12 Methane 7000 7000
13 Fuel oil 0 0
14 Objective function

(cents\hr.)
369560.00 369560.00

It may be noted that the maximum possible amount of ethylene is produced. As
the ethylene production constraint is relaxed, the objective function value in-
creases. Once the constraint is raised above 90,909.0909 lb\hr, the objective func-
tion remains constant at 676018.1875 cents/hr. LP simplex solution was cross-
checked using a software package named TORA, (Taha, 1997), and the same
results were obtained as shown in Table-12.7.

Table-12.8 presents the comparison, in terms of the number of objective func-
tion evaluations, CPU-time and proportion of convergences to the optimum, be-
tween the different DE strategies. In this table, FA , NRC and CPU-time represents,
respectively the mean number of objective function evaluations over all the 10



362 12 Applications in Reaction Engineering

executions, the percentage of convergences to the global optimum and the average
CPU time per execution (key parameters used are NP=40, CR=0.9, F=0.6, accu-
racy=0.0001%).

Table 12.8. Results of DE with all ten strategies

S No Strategy FA CPU- time NRC
1 DE/rand/1/bin 6268 0.28 100
2 DE/best/1/bin 3168 0.145 100
3 DE/best/2/bin 9076 0.418 100
4 DE/rand/2/bin 11696 0.539 100
5 DE/rand-to-best/1/bin 6052 0.28 100
6 DE/rand/1/exp 5252 0.22 100
7 DE/best/1/exp 2796 0.126 100
8 DE/best/2/exp 10132 0.44 100
9 DE/rand/2/exp 12600 0.55 100
10 DE/rand-to-best/1/exp 6536 0.275 100

From the above Table-12.8 it is evident that the strategy number 7 is the best
strategy. It takes least average CPU-time, maximum NRC and minimum FA.
However the best key parameters for strategy no.7 are NP=40, CR=0.8, F=0.5 giv-
ing CPU-time of 0.113 s, NRC=95 and FA=2656.

12.3.5 Conclusions

The best key parameters for the present problem are: NP=40, CR=0.8, F=0.5. The
strategy that took minimum CPU-time with highest NRC is strategy no. 7. The re-
sults obtained by two methods (viz. DE & LP Simplex) are same and matches
with that reported in literature. Differential Evolution exhibits difficulties in deal-
ing with equality constraint problems but in general, they are the most efficient in
terms of function evaluations.



12.3 Thermal Cracking Operation 363

References

Angira, R. and Babu,B.V. (2003). “Evolutionary Computation for Global Optimization of
Non-Linear Chemical Engineering Processes”, Proceedings of International Sympo-
sium on Process Systems Engineering and Control (ISPSEC ’03) - For Productivity
Enhancement through Design and Optimization, IIT-Bombay, Mumbai, January 3-4,
2003, Paper No. FMA2, pp 87-91. Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#56.

Annable, D. (1952). “Application of the Temkin kinetic equation to ammonia synthesis in
large – scale reactors”. Chemical Engineering Science, 1 (4), 145.

Babu, B.V. (2001). “Evolutionary Computation-At a Glance”, NEXUS, Annual Magazine
of Engineering Technology Association, BITS-Pilani, 3-7. Also available via Internet
as .pdf file at http://bvbabu.50megs.com/custom.html/#36.

Babu, B.V. and Angira, R. (2001a). “Optimization of Non-Linear Functions Using Evolu-
tionary Computation”, Proceedings of 12th ISME Conference on Mechanical Engineer-
ing, Crescent Engineering College, Chennai, January 10-12, 2001, Paper No. CT07,
153-157. Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#34.

Babu, B.V. and Angira, R. (2001b). “Optimization of Thermal Cracker Operation using
Differential Evolution”, Proceedings of International Symposium & 54th Annual Ses-
sion of IIChE (CHEMCON-2001), CLRI, Chennai, December 19-22, 2001. Also avail-
able via Internet as .pdf file at http://bvbabu.50megs.com/custom.html/#38 & Applica-
tion No. 20, Homepage of Differential Evolution, the URL of which is:
http://www.icsi.berkeley.edu/~storn/code.html

Babu, B.V. and Angira, R. (2002a). "A Differential Evolution Approach for Global Optimi-
zation of MINLP Problems", Proceedings of 4th Asia-Pacific Conference on Simulated
Evolution And Learning (SEAL-2002), Singapore, November 18 - 22, 2002, Paper No.
1033, Vol. 2, pp 880-884. Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#46.

Babu, B.V. and Angira, R. (2002c). “Optimization of Non-Linear Chemical Processes Us-
ing Evolutionary Algorithm”, Proceedings of International Symposium & 55th Annual
Session of IIChE (CHEMCON-2002), OU, Hyderabad, December 19-22, 2002. Also
available via Internet as .pdf file at http://bvbabu.50megs.com/custom.html/#54.

Babu, B.V. and Chaturvedi, G. (2000). “Evolutionary Computation strategy for optimiza-
tion of an Alkylation Reaction”, Proceedings of International Symposium & 53rd An-
nual Session of IIChE (CHEMCON-2000), Science City, Calcutta, December 18-21,
2000. Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#31. & Application No. 19, Homepage of Dif-
ferential Evolution, the URL of which is:
http://www.icsi.berkeley.edu/~storn/code.html



364 References

Babu, B.V. and Gautam, K. (2001). “Evolutionary Computation for Scenario-Integrated
Optimization of Dynamic Systems”, Proceedings of International Symposium & 54th

Annual Session of IIChE (CHEMCON-2001), CLRI, Chennai, December 19-22, 2001.
Also available via Internet as .pdf file at http://bvbabu.50megs.com/custom.html/#39
& Application No. 21, Homepage of Differential Evolution, the URL of which is:
http://www.icsi.berkeley.edu/~storn/code.html.

Babu, B.V. and Mohiddin, S.B. (1999). “Automated Design of Heat Exchangers using Arti-
ficial Intelligence based Optimization”, Proceedings of International Symposium &
52nd Annual Session of IIChE (CHEMCON-1999), Panjab University, Chandigarh, De-
cember 20-23, 1999. Also available via Internet as .htm file at
http://bvbabu.50megs.com/custom.html/#27.

Babu, B.V. and Munawar, S.A. (2000). “Differential Evolution for the Optimal Design of
Heat Exchangers”, Proceedings of All India Seminar on Chemical Engineering Pro-
gress on Resource Development: A Vision 2010 and Beyond, organized by IE (I),
Orissa State Centre Bhuvaneshwar, March 13, 2000. Also available via Internet as .pdf
file at http://bvbabu.50megs.com/custom.html/#28.

Babu, B.V. and Munawar, S.A. (2001). “Optimal Design of Shell-and-Tube Heat Exchang-
ers using Different Strategies of Differential Evolution”, PreJournal.com – The Faculty
Lounge, Article No. 003873, posted on website Journal http://www.prejournal.com,
March 03, 2001. Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#35 & Application No. 18, Homepage of Dif-
ferential Evolution, the URL of which is:
http://www.icsi.berkeley.edu/~storn/code.html.

Babu, B.V. and Sastry, K.K.N. (1999). “Estimation of Heat Transfer Parameters in a
Trickle Bed Reactor using Differential Evolution and Orthogonal Collocation”, Com-
puters & Chemical Engineering, 23, 327-339. Also available via Internet as .pdf file at
http://bvbabu.50megs.com/custom.html/#24. & Application No. 13, Homepage of
Differential Evolution, the URL of which is:
http://www.icsi.berkeley.edu/~storn/code.html

Babu, B.V. and Singh, R.P. (2000). “Optimization and Synthesis of Heat Integrated Distil-
lation Systems Using Differential Evolution”, Proceedings of All India Seminar on
Chemical Engineering Progress on Resource Development: A Vision 2010 and Be-
yond, organized by IE (I), Orissa State Centre Bhuvaneshwar, March 13, 2000.

Babu, B.V. and Vivek, N. (1999). “Genetic Algorithms for Estimating Heat Transfer Pa-
rameters in Trickle Bed Reactors”, Proceedings of International Symposium & 52nd

Annual Session of IIChE (CHEMCON-99), Panjab University, Chandigarh, December
20-23, 1999. Also available via Internet as .htm file at
http://bvbabu.50megs.com/custom.html/#26.

Babu, B.V., Angira, R. and Nilekar, A. (2002b). “Differential Evolution for Optimal Design
of an Auto-Thermal Ammonia Synthesis Reactor”, Computers & Chemical Engineer-
ing (Communicated).

Chiou, J.P. and Wang, F.S. (1999). “Hybrid method of evolutionary algorithms for static
and dynamic optimization problems with application to a fed-batch fermentation proc-
ess”, Computers & Chemical Engineering, 23, 1277-1291.

Dollena S. Hawkins, David M. Allen and Arnold J. Stromberg (2001). “Determining the
number of components in mixtures of linear models”. Computational Statistics & Data
Analysis, 38, 15-48.



12.3 Thermal Cracking Operation 365

Dyson, D. C. (1965). Optimal Design of Reactors for Single Exothermic Reversible Reac-
tions, Ph.D. Thesis, London University.

Edgar, T.F. and Himmelblau, D.M. (1989). Optimization of Chemical Processes, McGraw-
Hill Book Company, New York.

Eymery, J. (1964). Dynamic Behavior of an Ammonia Synthesis Reactor, D. Sc. Thesis,
M.I.T.

Gupta, O.P. (1994). Elements of Fuels, Furnaces and Refractories, Khanna Publishers,
New Delhi.

Hobson, G.D. (1975). Modern Petroleum Technology, Applied Science Publisher, Great
Britain.

Joshi, R. and Sanderson, A. C. (1999). “Minimal representation multi-sensor fusion using
differential evolution”. IEEE Transactions on Systems, Man and Cybernetics, Part A
29, 63-76.

Kyprianou, A., Worden, K. and Panet, M. (2001). “Identification of hysteretic systems us-
ing the differential evolution algorithm”. Journal of Sound and Vibration, 248 (2),
289-314.

Lee, M. H., Han, C. and Chang, K. S. (1999). “Dynamic optimization of a continuous
polymer reactor using a modified differential evolution”. Industrial & Engineering
Chemistry Research, 38 (12), 4825-4831.

Lu, J. C. and Wang, F. S. (2001). “Optimization of Low Pressure Chemical Vapour Deposi-
tion Reactors Using Hybrid Differential Evolution”. Canadian Journal of Chemical
Engineering, 79 (2), 246-254.

Murase, A., Roberts, H. L. and Converse, A. O. (1970). “Optimal Thermal Design of an
Autothermal Ammonia Synthesis Reactor”. Industrial & Engineering Chemistry Re-
search, 9, 503- 513.

NAG (2002). Web site of Numerical Algorithm Group as on February 2002.
http://www.nag.com/numeric/FL/manual/html/genint/FLwithdrawn.asp

Price, K. and Storn, R. (1997). “Differential Evolution – A simple evolution strategy for
fast optimization”, Dr. Dobb’s Journal, 22 (4), 18-24 & 78.

Price, K. and Storn, R. (2002). Home Page on Differential Evolution as on July 2002.
http://www.ICSI.Berkeley.edu/~storn/code.html.

Sastry, K.K.N., Behera, L. and Nagrath, I.J. (1998). “Differential evolution based fuzzy
logic controller for nonlinear process control”, Fundamenta Informaticae: Special Is-
sue on Soft Computation.

Shah, M. J. (1967). “Control simulation in ammonia production”. Industrial & Engineering
Chemistry, 59, 72.

Singh, C. P. P., and Saraf, D. N. (1979). “Simulation of Ammonia Synthesis Reactors”. In-
dustrial & Engineering Chemistry Process Design Development, 18 (3), 364-370.

Sourander, M.L., Kolari, M., Cugini, J.C., Poje, J.B. and White, D.C. (1984). “Control and
Optimization of Olefin-Cracking Heaters”, Hydrocarbon Processing, 63, 63-69.

Storn, R. (1995). “Differential evolution design of an IIR-filter with requirements for mag-
nitude and group delay”, International Computer Science Institute, TR-95-018.

Taha, H.A. (1997). Operations Research – An Introduction, Prentice-Hall of India Limited,
New Delhi.

Upreti, S.R., and Deb, K. (1997). “Optimal design of an ammonia synthesis reactor using
Genetic Algorithms”. Computers & Chemical Engineering, 21, 87 - 92.



366 References

Wang, F. S. and Cheng, W. M. (1999) “Simultaneous optimization of feeding rate and op-
eration parameters for fed-batch fermentation processes”. Biotechnology Progress, 15
(5), 949-952.

Wang, F. S., Su, T. L. and Jang, H. J. (2001). “Hybrid Differential Evolution for Problems
of Kinetic Parameter Estimation and Dynamic Optimization of an Ethanol Fermenta-
tion Process”. Industrial and Engineering Chemistry Research, 40 (13), 2876-2885.

Wang, F.S. and Cheng, W.M. (1999). “Simultaneous optimization of feeding rate and op-
eration parameters for fed-batch fermentation processes”, Biotechnology Progress, 15
(5), 949-952.

Wang, F.S., Jing, C.H. and Tsao, G.T. (1998). “Fuzzy-decision-making problems of fuel
ethanol production using genetically engineered yeast”, Industrial & Engineering
Chemistry Research, 37, 3434-3443.



13 New Ideas and Applications of Scatter
Search and Path Relinking

Fred Glover, Manuel Laguna and Rafael Martí

Practical elements of Scatter Search and Path Relinking are illustrated by seven
recent applications. The computational outcomes, based on comparative tests in-
volving real world and experimental benchmark problems, demonstrate that these
methods provide useful alternatives to more established search procedures. The
designs in these applications are straightforward, and can be readily adapted to
other optimization problems of varied structures.

13.1 Introduction

Scatter Search (SS) and Path Relinking (PR) have recently been investigated in a
number of studies. In this chapter we disclose some of the practical performance
aspects of these methods by examining the following seven recent applications:

a. Neural Network Training
b. Multi-Objective Routing Problem
c. OptQuest: A Commercial Implementation
d. A Context-Independent Method for Permutation Problems
e. Classical Vehicle Routing
f. Matrix Bandwidth Minimization
g. Arc Crossing Minimization

The designs in these applications are straightforward, and can be readily
adapted to other optimization problems of similarly diverse structures.

SS and PR may be viewed as evolutionary algorithms that construct solutions
by combining others, and derive their foundations from strategies originally pro-
posed for combining decision rules and constraints (Glover, 1963, 1965). Chapter
4 describes the fundamental principles and processes underlying these methodolo-
gies. We limit our attention here to sketching specific applications that demon-
strate the scope and impact of these procedures.

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



368 13 New Ideas and Applications of Scatter Search and Path Relinking

13.2 Scatter Search Applications

The descriptions that follow are edited versions of reports by researchers and prac-
titioners who are responsible for the applications of SS cited in this section. Defi-
nitions of terms and basic procedural components employed are taken from Chap-
ter 4.

13.2.1 Neural Network Training

A highly effective adaptation of Scatter Search to the neural network training
problem has been developed by Laguna and Martí (2000). The improvement pro-
cedure embedded in the SS method consists in this case of the well known Nelder
and Mead (1965) Simplex method for unconstrained nonlinear optimization.
Given a set of weights w, the Simplex method starts by perturbing each weight to
create an initial simplex from which to begin the local search. The algorithm uses
the implementation of the Nelder-Mead method described in Press, et al. (1992).

The SS procedure itself begins by generating the appropriate data normaliza-
tions, and then creates an initial reference set (RefSet) of b solutions. A set P of
PSize solutions (bounded between wlow and whigh) is built with the diversifica-
tion method, based on a controlled randomization scheme, given in Glover, La-
guna and Martí (1999). RefSet is filled with the best b/2 solutions in P that result
by applying the improvement method.Then b/2 additional solutions are generated
as perturbations of the first b/2 and are added to RefSet. The perturbation consists
of multiplying each weight by 1 + U[-0.05,0.05], where U is the uniform distribu-
tion.

In step 2, the solutions in RefSet are ordered according to quality, where the
best solution is the first one in the list. Then, the NewPairs set is constructed con-
sisting of all the new pairs of solutions that can be obtained from RefSet, where a
“new pair” contains at least one new solution. The pairs in NewPairs are selected
one at a time to create linear combinations. The improvement method is applied
to the best b solutions created as linear combinations. Each improved solution is
then tested for admission into RefSet. If a newly created solution improves upon
the worst solution currently in RefSet, the new solution replaces the worst and
RefSet is reordered.

In step 3 the procedure intensifies the search around the best-known solution.
At each intensification iteration, the best-known solution is perturbed (multiplied
by 1 + U[-0.05,0.05] ) and the improvement method is applied. The best solution
is updated if the perturbation plus the improvement generates a better solution.
After IntLimit intensification iterations without improving the best solution, the
procedure abandons the intensification phase and returns to step 2. Previously, the
improvement method is applied to the best b/2 solutions in RefSet and the worst
b/2 solutions are replaced with perturbations of the best b/2 (now, each improved
solution is multiplied by 1+U[-0.01,0.01]). The training procedure stops when the
number of objective function evaluations reaches the total allowed. Preliminary



13.2 Scatter Search Applications 369

experimentation determined that reasonable values for the parameters wlow,
whigh, b and IntLimit are –2, 2, 10 and 20 respectively.

Computational experiments on the neural network training problem, applied to
benchmark problems previously reported in the literature, show that the scatter
search implementation compares very favorably with the best known methods for
these problems (which include simulated annealing, tabu search, and genetic algo-
rithms). SS reaches a prediction accuracy that that makes it possible to filter out
potentially bad solutions generated during the optimization of a simulation, and
does so within a computational time that is practical for on-line training.

13.2.2 Multi-Objective Routing Problem

Corberán et al. (2001) address the problem of routing school buses in a rural area.
The authors approach this problem with a node routing model with multiple objec-
tives that arise from conflicting viewpoints. From the point of view of cost, it is
desirable to minimize the number of buses (m) used to transport students from
their homes to school and back. And from the point of view of service, it is desir-
able to minimize the time that a given student spends in route. The current litera-
ture deals primarily with single-objective problems and the models with multiple
objectives typically employ a weighted function to combine the objectives into a
single one.

The solution procedure considers each objective separately and search for a set
of efficient solutions instead of a single optimum. The SS approach for construct-
ing, improving and then combining solutions consists of the following elements:

H1 and H2: Two constructive heuristics to generate routes
SWAP: An exchange procedure to find a local optimal

value for the length of each route
INSERT: An exchange procedure to improve upon the

value of tmax, which identifies the maximum
time in the bus.

COMBINE: A mechanism to combine solutions in a refer-
ence set of solutions in order to generate new
ones.

The overall procedure operates as follows. (See the outline in Figure 1.) The
constructive heuristics H1 and H2 are applied with several values for tmax and the
resulting solutions are stored in separate pools, one for each value of m. The lar-
ger the value of tmax the larger the frequency in which the heuristics construct so-
lutions with a small number of routes. Conversely, solutions with a large number
of routes are obtained when the value of tmax is decreased. The procedure then
attempts to improve upon the solutions constructed by H1 and H2. The improve-
ment consists of first applying SWAP to each route and then applying INSERT to
the entire solution. If any route is changed during the application of INSERT then
we apply SWAP one more time to all the changed routes. The procedure now it-
erates within a main loop, in which a search is launched for solutions with a com-



370 13 New Ideas and Applications of Scatter Search and Path Relinking

mon number of routes. The main loop terminates when all the m-values have been
explored.

From all the solutions with m routes, the best b are chosen to initialize the ref-
erence set (RefSet). The criterion for ranking the solutions at this step is tmax,
since all solutions have the same number of routes. The procedure performs itera-
tions in an inner-loop that consists of searching for a solution with m routes with
an improved tmax value. The combination procedure COMBINE is applied to all
pairs of solutions in the current reference set RefSet. The combined solutions are
improved in the same way as described above, that is, by applying SWAP then
INSERT and finally SWAP to the routes that changed during the application of
INSERT. We refer to the resulting set of distinct solutions as ImpSet. The refer-
ence set is then updated by selecting the best b solutions from the union of RefSet
and ImpSet. Steps 5, 6 and 7 in the outline of Figure 1.13 are performed as long as
at least one new solution is admitted in the reference set.

1. Construct solutions — Apply constructions heuristics H1 and H2 with sev-
eral values of TMAX.

2. Improve solutions — Apply SWAP to each route in a solution and INSERT
to the entire solution. Finally, apply SWAP o any route changed during the
application of INSERT.

3. Build solution pools — Put all solutions with the same number of routes in
the same pool.

for ( each solution pool ) do
4. Build the reference set — Choose the best b solutions in the pool to
build the initial RefSet.
while ( new solutions in RefSet ) do
5. Combine solutions — Generate all the combined solutions from pairs
of reference solutions where at least one solution in the pair is new.
6. Improve solutions — Apply SWAP to each route in a solution and
INSERT to the entire solution. Finally, apply SWAP o any route changed
during the application of INSERT.
7. Update reference set — Choose the best b solutions from the union
of the current reference set and the combined-improved solutions to update
the RefSet.
end while

end for

Fig. 13.1. SS for Multi-Objective Vehicle Routing

After the reference set is updated, the combination procedure may be applied to
the same solution pairs more than once. Since the combination procedure includes
some randomized elements, the combination of two solutions may result in a dif-
ferent outcome every time COMBINE is applied. Also, the size of the reference
set is increased if the updating procedure fails to add at least one new solution.
The additional solutions come from the original pool of solutions generated with
the construction heuristics. The reference set size is increased up to 2*b, where b
is the initial size.

The computational testing on a real-world problem with 42 primary (elemen-
tary) schools and 16 (middle) secondary schools in the Province of Burgos
(Spain), reveals the procedure is capable of generating a highly effective approxi-



13.2 Scatter Search Applications 371

mation of the efficient frontier for each routing problem. Decision makers may
use efficient solutions to estimate the best service level (given by the maximum
route length) that can be obtained with each level of investment (given by the
number of buses used). The results show that several of the solutions imple-
mented in practice are not efficient and can be improved by the SS methodology
of the study.

13.2.3 OptQuest: A Commercial Implementation

OptQuest, a registered trademark of OptTek Systems Inc., is commercial software
designed for optimizing complex systems, such as those formulated as simulation
models. Many real world optimization problems in business, engineering and sci-
ence are too complex to be given tractable mathematical formulations. Multiple
non-linearities, combinatorial relationships and uncertainties often render chal-
lenging practical problems inaccessible to modeling except by resorting to more
comprehensive tools (like computer simulation). Classical optimization methods
encounter grave difficulties when dealing with the optimization problems that
arise in the context of complex systems. In some instances, recourse has been
made to itemizing a series of scenarios in the hope that at least one will give an
acceptable solution. Due to the limitations of this approach, a long-standing re-
search goal has been to create a way to guide a series of complex evaluations to
produce high quality solutions, in the absence of tractable mathematical structures.
(In the context of optimizing simulations, a “complex evaluation” refers to the
execution of a simulation model.)

The OptQuest Callable Library (OCL) is designed to search for optimal solu-
tions to the following class of optimization problems:

Max or Min F(x,y)

Subject to Ax < b (Constraints)
gl < G(x,y) < gu (Requirements)
l < x < u (Bounds)
y = alldifferent

where x can be continuous or discrete with an arbitrary step size and y repre-
sents a permutation.

In a general-purpose optimizer such as OCL, it is desirable to separate the solu-
tion procedure from the complex system to be optimized. The disadvantage of
this “black box” approach is that the optimization procedure is generic and has no
knowledge of the process employed to perform evaluations inside of the box and
therefore does not use any problem-specific information. The main advantage, on
the other hand, is that the same optimizer can be applied to complex systems in
many different settings. The optimization procedure uses the outputs from the
system evaluator, which measures the merit of the inputs that were fed into the
model. On the basis of both current and past evaluations, the optimization proce-



372 13 New Ideas and Applications of Scatter Search and Path Relinking

dure decides upon a new set of input values (see Figure 2.13). The optimization
procedure is designed to carry out a special “strategic search,” where the succes-
sively generated inputs produce varying evaluations, not all of them improving,
but which over time provide a highly efficient trajectory to the best solutions. The
process continues until an appropriate termination criterion is satisfied (usually
based on the user’s preference for the amount of time to be devoted to the search).

Optimization
Procedure

Input

Output

System
Evaluator

Fig. 13.2. Coordination between optimization and system evaluation

It is assumed that the user has a system evaluator that, given a set of input val-
ues, it returns a set of output values that can used to guide a search. For example,
the evaluator may have the form of a computer simulation that, given the values of
a set of decision variables, it returns the value of one or more performance meas-
ures (that define the objective function and possibly a set of requirements). The
user-written application uses OCL functions to define an optimization problem
and launch a search for the optimal values of the decision variables.

The scatter search method implemented in OCL begins by generating a starting
set of diverse points. This is accomplished by dividing the range of each variable
into 4 sub-ranges of equal size. Then, a solution is constructed in two steps. First,
a sub-range is randomly selected. The probability of selecting a sub-range is in-
versely proportional to its frequency count (which keeps track of the number of
times the sub-range has been selected). Second, a value is randomly chosen from
the selected sub-range.

A subset of diverse points is chosen as members of the reference set. A set of
points is considered diverse if its elements are “significantly” different from one
another. OCL uses a Euclidean distance measure to determine how “close” a po-
tential new point is from the points already in the reference set, in order to decide
whether the point is included or discarded.

When the optimization model includes discrete variables, a rounding procedure
is used to map fractional values to discrete values. When the model includes lin-
ear constraints newly created points are subjected to a feasibility test before they
are sent to the evaluator (i.e., before the objective function value F(x) and the re-
quirements G(x) are evaluated). If the solution is infeasible with respect to one or
more constraints, OCL formulates and solves a linear programming (LP) problem.
The LP (or mixed-integer program, when x contains discrete variables) has the
goal of finding a feasible solution x* that minimizes a deviation between x and x*.



13.2 Scatter Search Applications 373

Once the reference set has been created, a combination method is applied to ini-
tiate the search for optimal solutions. The method consists of finding linear com-
binations of reference solutions. The number of solutions created from the linear
combination of two reference solutions depends on the quality of the solutions be-
ing combined.

In the process of searching for a global optimum, the combination method may
not be able to generate solutions of enough quality to become members of the ref-
erence set. If the reference set does not change and all the combinations of solu-
tions have been explored, a diversification step is triggered. This step consists of
rebuilding the reference set to create a balance between solution quality and diver-
sity. To preserve quality, a small set of the best (elite) solutions in the current ref-
erence set is used to seed the new reference set. The remaining solutions are
eliminated from the reference set. Then, the diversification generation method is
used to repopulate the reference set with solutions that are diverse with respect to
the elite set. This reference set is used as the starting point for a new round of
combinations.

In Laguna and Martí (2002), the functionality of the library is illustrated with
an example in the context of nonlinear optimization. The authors tested OCL by
comparing its performance with Genocop III, a third-generation genetic algorithm.
Experiments with 30 nonlinear optimization problems show that OCL is a search
method that is both aggressive and robust, finding high-quality solutions early in
the search and continuing to improve upon the best solution when allowed to
search longer. The quality of solutions obtained by OCL uniformly dominated
that of solutions obtained by Genocop III, with marked superiority on the more
difficult problems. In addition, OCL obtained these improved solutions with
speeds ranging from one to three orders of magnitude faster than the genetic algo-
rithm approach. These characteristics make OCL especially useful for applications
in which the evaluation of the objective function requires a non-trivial computa-
tional effort. OCL has now been used to solve complex optimization problems in
more than 20,000 real world applications. More details can be found on the web-
site www.opttek.com .

13.2.4 A Context-Independent Method for Permutation Problems

Campos, Laguna and Martí (2001) develop a context-independent method for
solving problems whose solutions can be represented with a permutation. As in
the case of OCL, described in the previous section, this general-purpose heuristic
is based on a model that treats the objective function evaluation as a black box,
making the search algorithm context-independent. The procedure is a scatter
search/tabu search hybrid. The scatter search framework provides a means for di-
versifying the search throughout the exploration of the permutation solution space.
Two improvement methods are used to intensify the search in promising regions
of the solution space: a simple local search based on exchange moves and a short-
term memory tabu search. Improved solutions are then used for combination pur-
poses within the scatter search design.



374 13 New Ideas and Applications of Scatter Search and Path Relinking

The solver is designed in such a way that the user must specify whether the ob-
jective function evaluation is more sensitive to the “absolute” positioning of the
elements in the permutation or to their “relative” positioning. Hence, we differen-
tiate between two classes of problems:

A-permutation problems ⎯ for which absolute positioning of
the elements is more important

R-permutation problems ⎯ for which relative positioning of
the elements is more important

The distance between two permutations p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn)
depends on the type of problem being solved. For A-permutation problems, the
distance is given by:

∑
=

−=
n

i
ii qpqpd

1

),( .

The distance for R-permutation problems is defined as: d(p,q) = number of
times pi+1 does not immediately follow pi in q, for i = 1, …, n-1.

In order to design a context-independent combination methodology that per-
forms well across a wide collection of different problems, the authors propose a
set of 10 combination methods from which one is probabilistically selected ac-
cording to its performance in previous iterations. Solutions in the RefSet are or-
dered according to their objective function value. So, the best solution is in the
first one in RefSet and the worst is the last one. When a solution obtained with
combination method i (referred to as cmi) qualifies to be the jth member of the cur-
rent RefSet, we add b-j+1 to score(cmi). Therefore, combination methods that
generate good solutions accumulate higher scores and increase proportionally their
probability of being selected. Other SS elements in the method follow the stan-
dard description given in Chapter 4. Two different solvers are proposed, the first
one implements a local search phase as the improvement method, the second one
uses a short term memory tabu search as the improvement method.

The performance of the procedure has been assessed using 157 instances of
four different permutations problems. Solutions to these problems are naturally
represented as permutations: the bandwidth reduction problem (BRP), the linear
ordering problem (LOP), the traveling salesman problem (TSP), and a single ma-
chine sequencing problem (SMS). Solutions obtained with the scatter search/tabu
search method have been compared with the best-known solutions to each prob-
lem. The procedure has been shown competitive with methods specifically de-
signed for the LOP and SMS problems. The method also provides reasonable re-
sults for TSP problems, although not competitive with those obtained by methods
that are customized to exploit the special structure of the TSP. The method also is
not highly appropriate for the BRP due to the min-max nature of the objective
function calculation associated with this class of problems.

For the permutation problems considered, the method was shown superior to
comparable procedures that are commercially available. (In all cases, the method
produces substantial improvements). The experimentation shows that context-



13.2 Scatter Search Applications 375

independent methods can be useful in the context of permutation problems, when
the associated objective function is capable of discriminating among solutions in a
given neighborhood

13.2.5 Classical Vehicle Routing

Rego and Leão (2002) identify a general design for solving vehicle routing prob-
lems using scatter search that has proved exceptionally effective. The vehicle rout-
ing problem (VRP) is a classic application in Combinatorial Optimization that can
be defined as follows. Let )A,V(G = be a graph where { }nv,,v,vV �10= is a

vertex set, and { }jiV,,vv|),v(vA jiji ≠∈= is an arc set. Vertex 0v denotes a

depot, where a fleet of m identical vehicles of capacity Q are based, and the re-
maining vertices { }0v\V’V = represent n cities (or client locations). A nonnega-

tive cost or distance matrix )c(C ij= that satisfies the triangle inequality

( k jikij ccc +≤ ) is defined on A. It is assumed that [ ]m,mm ∈ with 1=m and

1−= nm . The value of m can be a decision variable or can be fixed depending
on the application.

Vehicles make pickups or deliveries but not both. With each vertex iv is asso-

ciated a quantity iq 0( 0)q = of some goods to be delivered by a vehicle and a

service time iδ 0( 0)δ = required by a vehicle to unload the quantity iq at iv .

The VRP consists of determining a set of m vehicle routes of minimal total cost,
starting and ending at a depot 0v , such that every vertex in ∈iv ’V is visited ex-

actly once by one vehicle, the total quantity assigned to each route does not ex-
ceed the capacity Q and the total duration of any vehicle route does not surpass a
given bound D.

The algorithm implementation is structured into five basic components, follow-
ing the characteristic scatter search design:

13.2.5.1 Diversification Generation Method

To start with an initial set of trial solutions that differ significantly from each
other, the generator of combinatorial objects described in Glover (1997) is used to
generate permutations in n-vectors where components are all vertices

iv ∈ { }0v\V . For a given permutation P(h), each cluster of vertices in a route is

obtained by successively assigning a vertex ))h(Pi(v i ∈ to a route
khR (initially

k=1) until any of the cumulative values for kQ = ∑ ∈
khi Rv iq or

kD =
( , )

( )
i j hk

ij iv v R
c δ

∈
+∑ does not exceed Q or D, respectively, with the insertion

of a new vertex
jkv . As soon as such a cutoff limit is attained a new assignment



376 13 New Ideas and Applications of Scatter Search and Path Relinking

is created by incrementing k by one unit, and the process goes on until all vertices
have been assigned.

The result obtained can be viewed as a generalized assignment process that
does not rely on the order in which clients are visited, though it ensures that all the
initial solutions that can be created are feasible and different (since they derive
from distinct permutations). Vehicle routes are then determined by using the stem-
and-cycle ejection chain algorithm for the traveling salesman problem described in
Rego (1998a).

13.2.5.2 Improvement Method

The improvement method is based on the Flower Ejection Chain (FEC) algorithm
described in Rego (1998b). For the purpose of the proposed scatter search algo-
rithm, the original FEC procedure has been modified as in the scatter search phase
this improvement method is required to deal with infeasible solutions. The method
works in two stages. The first stage is concerned with making the solution feasible
while choosing the most favorable move and the second stage is the improvement
process that operates only on feasible solutions. The method considers varying
penalty factors associated with the problem constraints to drive the search toward
the feasible region.

13.2.5.3 Reference Set Update Method

A set of reference solutions is created and maintained as follows. Intensification is
achieved by the selection of high-quality solutions (in terms of the objective func-
tion value) and diversification is induced by including diverse solutions from the
current candidate set CS. Thus the reference set RS is defined by two distinct sub-
sets B and D, representing respectively the subsets of high-quality and diverse so-

lutions, hence DBRS ∪= . A diversity measure, )SS(\)SS(d jijiij ∩∪=

is used to express the distance between solutions Si and Sj, identifying the number
of edges by which the two solutions differ from each other. Candidate solutions
are included in RS according to the Maxmin criterion that maximizes the minimum
distance of each candidate solution to all the solutions currently in the reference
set.

13.2.5.4 Subset Generation Method

Subsets of reference solutions are generated to create structured combinations in
the next step. The method is typically designed to organize subsets of solutions to
cover different promising regions of the solution space. In a spatial representation,
the convex-hull of each subset delimits the solution space in subregions containing
all possible convex combinations of solutions in the subset. In order to achieve a
suitable intensification and diversification of the solution space, three types of
subsets are required to be organized:

1. subsets containing only solutions in B,



13.2 Scatter Search Applications 377

2. subsets with only solutions in D, and
3. subsets mixing in solutions in B and D in different proportions.
Subsets defined by solutions of type 1 are conceived to intensify the search in

regions of high-quality solutions while subsets of type 2 are created to diversify
the search to unexplored regions. Finally, subsets of type 3 integrate both high-
quality and diverse solutions with the aim of exploiting solutions across these two
types of subregions.

13.2.5.5 Solution Combination Method

The solution combination method is designed to explore subregions within the
convex-hull of the reference set. Solutions consist of vectors of variables ijx rep-

resenting edges )v,v( ji . New solutions are generated by weighted linear combi-

nations that are structured by the subsets defined in the last step. In order to re-
strict the number of solutions only one solution is generated in each subset by a
convex linear combination. Nevertheless, the set of the generated edges does not
necessarily (and usually does not) represent a feasible graph structure for a VRP
solution insofar as it may produce a subgraph containing vertices with a degree
different from two. Such subgraphs can be viewed as fragments of solutions (or
partial routes). Structural feasibility is restored by either linking vertices of degree
1 directly to the depot or dropping edges with the smallest scores, from among
those incident at vertices of degree greater than 2, until the degree of each vertex
becomes equal to two. While the resulting subgraphs are feasible for the VRP
routing structure, they may not yield a feasible solution in relation to the capacity
or route length constraints. This latter form of infeasibility is handled by the im-
provement method as previously indicated.

Computational testing was performed on a set of 26 standard benchmark in-
stances taken from Christofides, Mingozzi and Toth (1972) and Rochat and Tail-
lard (1995). Comparisons with previous VRP algorithms in the literature show the
scatter search algorithm not only is competitive with the best of them across a
broad spectrum of problems but is highly robust. For example, in 7 out of the 14
instances from the Christofides, Mingozzi and Toth’s testbed, the SS approach ob-
tains a solution that succeeds in matching the best solution previously found by
any method. For Rochat and Taillard’s instances, the SS algorithm dominates all
other methods in all instances. Moreover, the approach offers an additional impor-
tant advantage. Because the problem constraints are handled separately from the
solution generation procedures, and are therefore independent of the problem con-
text, this scatter search design can be directly used to solve other classes of vehicle
routing problems by applying any domain-specific (local search) heuristic that is
able to start from infeasible solutions.



378 13 New Ideas and Applications of Scatter Search and Path Relinking

13.3 Path Relinking Applications

13.3.1 Matrix Bandwidth Minimization

The matrix bandwidth minimization problem (MBMP) has been the subject of
study for at least 32 years, beginning with the Cuthill - McKee algorithm in 1969.
The problem consists of finding a permutation of the rows and the columns of a
matrix that keeps all the non-zero elements in a band that is as close as possible to
the main diagonal. This problem has generated considerable interest over the
years because of its practical relevance for a significant range of global optimiza-
tion applications. They include preprocessing the coefficient matrix for solving
the system of equations, finite element methods for approximating solutions of
partial differential equations or large-scale power transmission systems.

Given a matrix A={aij}nxn the problem can be stated in terms of graphs consid-
ering a vertex for each row (column) and an edge in E as long as either aij ≠0 or aji

≠0. The problem consists of finding a labeling f of the vertices that minimizes the
maximum difference between labels of adjacent vertices. In mathematical terms,
given a graph G=(V,E) with vertex set V (|V|=n) and edge set E, we seek to mini-
mize ( ) ( ){ }VvvBGB ff ∈= :m a x where ( ) ( ) ( ) ( ){ }vNuufvfvB f ∈−= :m a x .

In this expression, N(v) is the set of vertices adjacent to v, f(v) is the label of
vertex v and Bf(v) is the bandwidth of vertex v. A labeling f of G assigns the inte-
gers {1, 2, …, n} to the vertices of G; thus, it is simply a renumbering of these
vertices. Then, the bandwidth of a graph is B(G), the minimum Bf(G) value over
all possible labelings f. The MBMP consists of finding a labeling f that minimizes
Bf(G).

Piñana et al. (2001) propose a PR implementation for this problem consisting of
two phases. The first phase uses a GRASP method to generate an initial set of
elite (high quality) solutions. Instead of retaining only the best solution overall
when running GRASP, this phase stores the 10 best solutions obtained with the
method. In the second phase a relinking process is applied to each pair of solu-
tions in the elite set. Given the pair (A,B), two paths are considered: from A to B
(where A is the initiating solution and B the guiding one), and from B to A (where
they interchange their roles).

The relinking process implemented in the search may be summarized as fol-
lows: Let C be the candidate list of vertices to be examined. At each step, a vertex
v is chosen from C and labeled in the initiating solution with its label g(v) in the
guiding solution. To do this, we look in the initiating solution for the vertex u
with label g(v) and perform move(u,v), then vertex v is removed from C. The can-
didate set C is initialized with a randomly selected vertex. In subsequent itera-
tions, each time a vertex is selected and removed from C, its adjacent vertices are
included in C.

In a primitive version, the method employs no improvement procedure, but
simply operates on the initial elite set of solutions generated by GRASP method
(first building a large set of solutions from which the n_best are included in the
elite set). The relinking process is then applied to all pairs of solutions in the elite



13.3 Path Relinking Applications 379

set. Each time the relinking process produces a solution that is better than the
worst in the elite set, the worst solution is replaced by the new one. The procedure
terminates when no new solutions are admitted to the elite set.

It is shown that in most cases this primitive version (which lacks an improve-
ment method) does not produce better solutions than the initiating and guiding so-
lutions. Upon adding a local search exploration from some of the visited solutions
in order to produce improved outcomes, the results are in line with those reported
in Laguna and Martí (1999) for the arc crossing problem. Specifically, a local
search method is applied to some of the solutions generated in the path. Two con-
secutive solutions after a relinking step differ only in the label of two vertices and
hence it is not efficient to apply the local search exploration at every step of the re-
linking process. The parameter n_improves controls the application of the ex-
change mechanism. In particular, the exchange mechanism is applied n_improves
times in the relinking process.

Overall experiments with 211 instances were performed to assess the merit of
the procedures. Three methods were considered: the acclaimed GPS approach, a
tabu search procedure (Martí et al., 2001) that has previously obtained the best
known results for this problem, and the proposed PR method. The experiments
reveal that the performance of the GPS approach was clearly inferior, with aver-
age deviations several orders of magnitude larger than those obtained with the
other methods. The PR procedure outperforms the TS method in small instances.
In large instances, the TS method obtains better solutions than the PR, although it
employs longer running times. The PR procedure has been shown to be robust in
terms of solution quality within a reasonable computational effort.

13.3.2 Arc Crossing Minimization

Researches in the graph-drawing field have proposed several aesthetic criteria that
attempt to capture the meaning of a “good” map of a graph. Although readability
may depend on the context and the map’s user, most authors agree that crossing
reduction is a fundamental aesthetic criterion in graph drawing. In the context of a
2-layer graph and straight edges, the bipartite drawing problem or BDP consists of
ordering the vertices in order to minimize the number of crossings.

A bipartite graph G=(V,E) is a simple directed graph where the set of vertices
V is partitioned into two subsets, V1 (the left layer) and V2 (the right layer) and
where E ⊆ V1×V2. The direction of the arcs has no effect on crossings so G is con-
sidered to be an undirected graph, the arcs to be edges and denote G by the triple
(V1, V2, E). Let n1 = |V1|, n2 = |V2|, m = |E|, and let N(v) = {w ∈ V | e = {v, w} ∈ E}
denote the set of neighbors of v ∈ V. A solution is completely specified by a per-
mutation π1 of V1 and a permutation π2 of V2, where π1(v) or π2(v) is the position
of v in its corresponding layer.

Laguna and Martí (1999) propose a PR procedure for arc crossing minimization
in the context of GRASP. This is the first implementation of PR for the purpose
of improving the performance of GRASP (as opposed to accompanying it, as in



380 13 New Ideas and Applications of Scatter Search and Path Relinking

the study previously cited). In the proposed path relinking implementation, the
procedure stores a small set of high quality (elite) solutions to be used for guiding
purposes. Specifically, after each GRASP iteration, the resulting solution is com-
pared to the best three solutions found during the search. If the new solution is
better than any one in the elite set, the set is updated. Instead of using attributes of
all the elite solutions for guiding purposes, one of the elite solutions is randomly
selected to serve as a guiding solution during the relinking process. The relinking
in this context consists of finding a path between a solution found after an im-
provement phase and the chosen elite solution. Therefore, the relinking concept
has a different interpretation within GRASP, since the solutions found from one
GRASP iteration to the next are not linked by a sequence of moves (as in the case
of tabu search). The relinking process implemented in our search may be summa-
rized as follows:

The set of elite solutions is constructed during the first three GRASP iterations.
Starting with the fourth GRASP iteration, every solution after the improvement
phase (called the initiating solution) is subject to a relinking process by perform-
ing moves that transform the initiating solution into the guiding solution (i.e., the
elite solution selected at random). The transformation is relatively simple, at each
step, a vertex v is chosen from the initiating solution and is placed in the position

occupied by this vertex in the guiding solution. So, if g
1π (v) is the position of ver-

tex v in the guiding solution, then the assignment i
1π (v) = g

1π (v) is made. We as-

sume that an updating of the positions of vertices in V1 of the initiating solution
occurs. After this is done, an expanded neighborhood from the current solution

defined by i
1π (v) and i

2π (v) is examined. The expanded neighborhood consists of

a sequence of position exchanges of vertices that are one position away from each
other, which are performed until no more improvement (with respect to crossing
minimization) can be found. Once the expanded neighborhood has been explored,

the relinking continues from the solution defined by i
1π (v) and i

2π (v) before the

exchanges were made. The relinking finishes when the initiating solution matches
the guiding solution, which will occur after n1+ n2 relinking steps.

Two consecutive solutions after a relinking step differ only in the position of

two vertices (after the assignment i
1π (v) = g

1π (v) is made). Therefore, it is not ef-

ficient to apply the expanded neighborhood exploration (i.e., the exchange mecha-
nism) at every step of the relinking process. The parameter β is used to control
the application of the exchange mechanism, by applying the mechanism every β
steps of the relinking process.

Overall, experiments with 3,200 graphs were performed to assess the merit of
the procedure. The proposed method is shown competitive in a set of problem in-
stances for which the optimal solutions are known. For a set of sparse instances,
the method performed remarkably well outperforming the best procedures re-
ported in the literature.



Acknowledgments 381

Acknowledgments

Fred Glover’s research partially supported by the Office of Naval Research Con-
tract N00014-01-1-0917 in connection with the Hearin Center of Enterprise Sci-
ence at the University of Mississippi. Rafael Marti’s research is partially sup-
ported by the Spanish Government (PR2002-0060 and TIC2000-1750-C06-01).



382 References

References

Campos, V., M. Laguna and R. Martí (2001) “Context-Independent Scatter and Tabu
Search for permutation problems”, technical report TR03-2001, University of Valen-
cia. http://matheron.uv.es/investigar/tr03-01.ps.

Christofides, N., A. Mingozzi, P. Toth (1972) “The Vehicle Routing Problem,” Combinato-
rial Optimization, Vol 11, pp 315-338.

Corberán, A., E. Fernández, M. Laguna and R. Martí (2001), “Heuristic Solutions to the
Problem of Routing School Buses with Multiple Objectives” Journal of the Opera-
tional Research Society, 53 (4), 427-435.

Fleurent, C. and F. Glover (1997) “Improved Constructive Multistart Strategies for the
Quadratic Assignment Problem Using Adaptive Memory,” University of Colorado.

Glover, F. (1963), “Parametric combination of local job shop rules”, chapter IV, ONR Re-
search memorandum n. 117, GSIA, Carnegie Mellon University, Pittsburgh, PA.

Glover, F. (1965), “A Multi-Phase Dual algorithm for the zero-one integer programming
problem”, Operations Research, 13, (6), 879.

Glover, F. (1997) “A Template for Scatter Search and Path Relinking,” in Lecture Notes in
Computer Science, 1363, J.K. Hao, E. Lutton, E. Ronald, M. Schoenauer, D. Snyers
(Eds.), pp 13-54.

Laguna, M. and Martí R. (2000) “Neural Network Prediction in a System for Optimizing
Simulations,” IIE Transaction on Operations Engineering, forthcoming.

Laguna, M. and Martí R. (2002) “The OptQuest Callable Library”, Optimization Software
Class Libraries, Stefan Voss and David L. Woodruff (Eds.) 193-218, Kluwer, Boston.

Laguna, M. and Martí, R. (1999), GRASP and Path Relinking for 2-Layer straight line
crossing minimization”, INFORMS Journal on Computing, vol. 11 (1), pp. 44 – 52.

Martí, R., Laguna, M., Glover, F. and Campos, V. (2001) “Reducing the Bandwidth of a
Sparse Matrix with Tabu Search”, European Journal of Operational Research, 135(2),
pp. 211-220.

Nelder, J. A. and R. Mead (1965) “A Simplex Method for Function Minimization,” Com-
puter Journal, vol. 7., pp. 308-313.

Piñana, E., I. Plana, V. Campos and R. Martí (2001), “GRASP and Path Relinking for the
Matrix Bandwidth Minimization”, European Journal of Operational Research, forth-
coming.

Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (1992) Numerical Reci-
pes: The Art of Scientific Computing, Cambridge University Press (www.nr.com).

Rego, C. (1998a) “Relaxed Tours and Path Ejections for the Traveling Salesman Problem,”
in Tabu Search Methods for Optimization, European Journal of Operational Research,
106, pp 522-538.

Rego, C. (1998b) “A Subpath Ejection Method for the Vehicle Routing Problem, Manage-
ment Science,” Vol. 44, No 10, pp 1447-1459.



Acknowledgments 383

Rego, C. and P. Leão (2002) “A Scatter Search for the Vehicle Routing Problem” Research
Report HCES-08-02, Hearin Center for Enterprise Science, School of Business Ad-
ministration, University of Mississippi.

Rochat, Y, E. Taillard (1995) “Probabilistic Diversification and Intensification in Local
Search for Vehicle Routing,” Journal of Heuristics, Vol 1, pp 147-167.



14 Improvement of Search Process in Genetic
Algorithms: An Application of PCB Assembly
Sequencing Problem

Nguyen Van Hop and Mario T Tabucanon

14.1 Introduction

The challenge of modeling real-world problems, especially the class of NP-
complete problems, is that the solution space is usually very large. It often re-
quires very large time to examine all possible solutions to choose the best one. It is
sometimes impossible to find the real optimum solution and we have to be satis-
fied with a certain pseudo-optimum one. There are many optimization and search
methods to obtain the pseudo-optimum solutions. In general, these procedures
start by checking some given number of variants, then change the search direction
towards the more promising area, and finally pick up the best among the examined
ones. In these methods, the key point is on how to guide the search process.

Among the existing search techniques, Genetic Algorithms (GAs) are popular
and have been applied to many problems because of its ability in escaping local
optimum. Therefore, GAs are very suitable to problems with heterogeneous
(multi-hill) search space. A genetic algorithm is a search paradigm that mimics the
natural evolutionary processes in living organisms. A genetic algorithm searches
through an iterative process to find better solutions in the search space. It starts
with a randomly initialized population of candidate solutions and implements
probabilistic and parallel exploration in the search space using the domain-
independent genetic operators of selection, crossover and mutation. A solution of
the real-world problem is encoded as a string of symbols. The string is referred to
as chromosomes and the symbols as genes. The selection process chooses individ-
ual chromosomes, probabilistically, according to their fitness, which measures the
quality of a solution. The higher the fitness, the more likely it is for an individual
to be selected. The genetic algorithm often manipulates crossover and mutation to
produce new individuals. The crossover operator exchanges genetic information
between their selected parents. Mutation randomly changes one gene value to the

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



386 14Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem

generated offspring. The process of one generation involving selection, crossover
and mutation is called one cycle of iteration and is repeated until convergence is
reached or the number of generations achieves the established limit. A general
form of genetic algorithm is given as follows (see Figure 14.1).

Fig. 14.1 Typical Genetic Algorithm

There are many variants of this general form of genetic algorithms. Basically,
the effectiveness of genetic algorithm depends on the encoding scheme of solu-
tions and the solution diversity. The problem structure which reflects the nature of
decision variables and the relationship among them will decide the encoding
scheme of solutions. For example, we should use integer values instead of binary
numbers to indicate the traveling sequence in the encoding chromosome of the
Traveling Salesman Problem’s solution. The vital role of genetic operators is to
increase the diversity, which allows the searching processes to find better solu-
tions and avoid falling to the local optimum. However, these operators also partly
destroy the structure of solutions. Therefore, keeping feasibility of chromosomes
is an important issue when applying genetic operators (Gen, 1996). The search
process in GAs tries to look for the solutions in a most efficient way to get closer
and closer to the optimal solution. The GAs search for the optimal solution
through the evolution processes in which only superior chromosome can survive
from a set of random solutions in the solution space. Several schemes have pro-
posed their own rule to define how to move to a better solution (Melanie et al.,
1991; Salomon, 1997; Thierens and Goldberg, 1994). For instance, the GA per-
formance is improved by transforming it into a "deterministic" GA with fixed
number of nested loops of fixed sizes (Salomon, 1997). Through these attempts,
the performance of GA has been improved for some specific classes of problems.
However, in the general case when we do not know beforehand the class or the
kind of the search space, which can be any, it is difficult to improve GA perform-
ance by some fixed scheme. On the other hand, some GAs often avoid local traps
by diversifying the population of solutions, based on pure random search proc-
esses. However, keeping a rigid random search may increase searching efforts
(Goldberg et al., 1990; Melanie et al., 1991, 1994; Justinian, 1997; Salomon,
1996, 1997; Schwefel, 1995; Srinivas and Patnaik, 1994) because we can not
avoid revisiting the same or the similar variants. Thus, the computation time of

1. Randomly initialize population
2. Evaluate initial population
3. Repeat

• Select parents
• Crossover
• Mutation
• Evaluate new population
• Substitute old population.

Until a stopping criterion is met



14 Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem 387

GA is usually long. To speed up the searching processes, it is better to “guide” the
GA to look for the optimal solution.

In this chapter, we follow the approach of guiding the GA. However, unlike the
mentioned methods we modify the GA in a more flexible way to guide the search
instead of letting it go randomly. The search is not led by a rigid and fixed scheme
but by an adaptive mechanism. The adaptation approach in GA is not new and
there is a recent classification of works on this topic (Hinterding et al., 1997).
However, some branches in the hierarchy of this classification are still empty. We
adopt in this chapter the two-stage guiding strategy that is initially presented in re-
cent work of VanHop and Hanh (2000) with the enhancement on the diversifica-
tion and guiding capabilities. The search in the current Guided Genetic Algorithm
(GGA) is still carried out in two stages: survey and evolution. The search process
in GGA is not only more powerful by the mechanism which collects the data for
adaptation evolution by a GA itself but also more diversified in the survey stage
by efficient genetic operators (roulette wheel selection, weighted recombination
crossover and shift mutation) and more oriented in the fine-tuning search of evolu-
tion stage with a new guiding drive. The purpose of the survey stage is to collect
as much as possible the information of the solution space by diversifying the
population. This information is then used to guide the search process in the evolu-
tion stage to find out the optimal solution. In the survey stage, a short searching
life GA with a large population is built to investigate the behaviour of the solution
space: what structure would probably fit to the given search space, what direction
the search process could move to obtain good children (what solu-
tion/chromosome should be selected for the evolution stage). In order to collect
complete information about the solution space, a large population could be used to
search. This large search space could lead to increase the computation efforts. For-
tunately, in this stage, we do not need to have the detailed information of the solu-
tion space. Only a rough evaluation is necessary to collect the good search direc-
tion in terms of good children. Thus the short iteration life GA is suitable to save
the computation time. After each generation, the best chromosome is selected for
the next stage. This chromosome indicates for a solution at a certain hill in search
space. In order to force the searching process to move to another hill, the next
population should be diversified to be as much different as possible with the cur-
rent population. The diversification could be secured by the pure random selection
and the shift mutation that modifies strongly the structure of the chromosomes to
create a different population. In addition, the investigation could be strengthened
with the introduction of a new crossover operation, weight recombination cross-
over. These operators, together with the fitness function, are used to filter the good
solution. After the survey stage, we have information about the good hill in the
form of selected chromosomes for initial population of the evolution stage. Thus,
in the evolution stage, another GA is used to search for the optimal solution. The
requirement is that the searching process should converge to the optimal solution
as fast as possible. A smaller size population, longer life GA is directed by the
schemes obtained from the first stage. In this stage, the search process is rein-
forced to increase the convergence speed by keeping a certain number of best



388 14Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem

chromosomes in the new generation. Only the best solutions are deterministically
transmitted into the next generation. Thus, by spending some extra generations in
the survey stage, we yield much more information in reducing the number of gen-
erations in the evolution stage by making the evolution faster and more oriented
(see Figure 14.2)

This strategy could be used to solve any applied-GA problem such as grouping,
facility layout and scheduling problems. For illustration, the printed circuit board
(PCB) assembly sequencing problem on multiple non-identical parallel machines
is solved by applying the GGA. The following section will describe the GGA in
general. Then, Section 3 presents the PCB sequencing problem on multiple non-
identical parallel machines in detail and its GGA solution. The final section pre-
sents the conclusion remarks and some future research recommendations.

14.2 Guided Genetic Algorithm (GGA)

The search in the Guided Genetic Algorithm (GGA) is carried out in two stages:
the survey stage and the evolution stage. In the survey stage, a GA with a big
population Ps and small number of generations Gs is created. The fitness function
fs is used to measure not the evolution of the whole population as usual but to in-
vestigate the behavior of the mating pairs, the pairs of chromosomes which are se-
lected to generate the new children (chromosomes) of the next generation by ap-
plying GA operators. This is to spread members of the population over the search
space by using the power of randomness. These members play the roles of agents
who will help us to gather the information about the possible distribution of hills
in the given search space. Therefore, the more random the population is generated
and is reproduced, the more accurate the survey is. Hence, the goal of the first
stage is not to make the population evolved but give them freedom and let it re-
produce as it is so that we can examine and explore its nature which shows us the
structure of the search space. Once we know about the search space we can always
exploit this knowledge to find shorter ways to evolve the population in the evolu-
tion stage. In this stage, a GA with a smaller population size Pe (Pe < Ps ) and

Survey result

Survey result

Evolution search

Survey
diversification

Fig. 14.2 Guiding the GA



14 Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem 389

longer life in terms of the number of generations Ge (Ge >Gs) is built. The fitness
function fe is used to measure the evolution of the whole population as usual while
the search process is directed by the obtained solutions of the first stage represent-
ing the hills of the search space. In addition, while the survey GA tries to diversify
the solution population as much as possible, the evolution GA guides the search-
ing drive faster by keeping back a certain percentage of elite solutions αS in each
generation, where α is the percentage of elite solutions being kept in each popula-
tion of S chromosomes. This percentage is predetermined and serves as a guiding
factor for the searching process. The remaining (1-α)S chromosomes are used for
diversifying purpose. The pairs of chromosomes are randomly chosen from these
chromosomes to create (1-α)S new children by using genetic operators. The αS
elite solutions of the previous generation and (1-α)S obtained children combine to
form S chromosomes of the next generation. The process is repeated until a close
optimum solution is found. The main components of the GGA are described be-
low.

14.2.1 Coding scheme

The solutions are often encoded as strings of genes. Each string is called as a
chromosome (from now onward, the terms of solution and chromosome are used
exchangeable). There are two kinds of chromosome, the binary and sequencing
chromosomes corresponding to the binary or sequencing GAs, respectively. The
binary chromosomes represent for the 0-1 decision problems’ solutions where
each gene stands for a binary decision variable. Each sequencing chromosome is a
sequence of natural numbers where each gene indicates an assignment decision
variable of the job order or the processing position. It is noticed that the chromo-
some representation should be feasible. It means that the structure of the chromo-
somes should satisfy constraints of the concerned problem. An example of binary
chromosome is the solution of the grouping problem in which each grouping solu-
tion is presented as a string of (m x n) binary digits, which includes m segments
representing for m groups. The length of each segment is n genes, which each
gene stands for an object of the group. If object j (j=1,…,n) belongs to group g
then gene j has a value of 1 in segment g. Otherwise, this gene has a value of 0
(see Figure 14.3). A chromosome is feasible if all genes appear in a string only
one value of 1 because each object can be assigned to one group only.

1 0 1 0 0 1 0 1
Fig. 14.3 Binary Coding Scheme

The example of sequencing is illustrated in Figure 14.4. The string “364198”
represents for a job sequence in which job “3” is processed before job “6”, job “6”
is processed before job “4” and so on. This sequence is feasible if a job can not be
appeared twice in the sequence



390 14Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem

3 6 4 1 9 8
Fig. 14.4 Sequencing Coding Scheme

14.2.2 Fitness function

Fitness function will be the objective function of the concerned problem. Its value
is determined from the structure of the corresponding chromosome. For example,
the objective function of the grouping problem is the total dissimilarity between
objects in the group. Thus the fitness value of the above chromosome is the total
dissimilarity of objects 1 and 3 in group 1 plus the total dissimilarity of objects 2
and 4 in group 2. For the sequencing chromosome, the fitness value could be the
total processing time of the job sequence “364198”.

14.2.3 Genetic Operators

The genetic operators for Survey GA should guarantee to generate high degree of
diversity solutions without destroying good solutions. Random selection based on
roulette wheel principle is selected to diversify the population of solutions for the
survey GA because the main purpose of this stage is to generate as much random
population of solutions as possible to examine the characteristic search space. In
roulette-wheel drawings, individuals are randomly chosen according to their fit-
ness value, the high-fitted individuals being often selected. The roulette-wheel se-
lection is represented by a pseudo-code as follows.

Procedure roulette_wheel_selection
Begin
sumfitness = 0;
for index1 = 0 to popsize do

begin
fitness[index1]=objfunc(chromosome[index1]);
sumfitness=sumfitness+fitness[index1];

end
randvalue= random(sumfitness); index2 = 0; sum = 0;

do
sum=sum+fitness[index2];
index2 = index2 +1;

while((sum<randvalue)&&(index2<popsize-1));
select chromosome[index2]
End

In this procedure, the sum of fitness values is accumulated by variable sum. The
variable randvalue contains the location where the wheel has landed after a ran-
dom spin generated by the random() function. The do-while loop searches



14 Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem 391

through the weighted roulette wheel until the searching variable index2 reaches
the maximum index of the population popsize or the sum value is not less than the
stopping point randvalue. The function returns the selected chromosome of the
current population controlled by searching variable index2.

For evolution GA, the selection operator is used to guide the search process.
This “guided” selection is known as the biased selection. In the biased selection, a
certain fraction α of the best solutions at each generation will survive for the next
generation. The remaining (1-α) solutions are randomly selected and placed in a
mating pool, a term given to the place where the selected chromosomes are stored
before genetic operators are applied.

The other genetic operators, crossover and mutation, should modify as much as
possible the structure of the parent chromosomes to generate the new population
of solutions for the next generation. There are a wide range of these operators,
such as single point crossover, multi-point crossover, edge recombination cross-
over, random mutation, shift mutation, inversion mutation, etc. In fact, some op-
erators are not efficient in terms of diversification. For instance, one point cross-
over operator often creates new similar chromosomes and the population of
solutions tends to converge to a homogeneous state. This fact increases the danger
of being trapped into sub-optimal solutions. In nature, genetic diversity is main-
tained by other processes besides mutation and crossover such as inversion, trans-
formation, conjugation, translocation and transposition, etc. (Gould et al., 1996,
reported by Simões and Costa, 1999). Among these operations, asexual transposi-
tion (crossover) seems to be a superior mechanism for binary genetic algorithm
(Simões and Costa, 1999, 2000a, 2000b). The asexual transposition crossover
(ATC) is directly inspired from the biology processes. After selecting one individ-
ual for reproduction, an asexual transposition is performed. Asexual transposition
is characterized by the presence of mobile genetic units inside the chromosomes,
moving themselves to new locations or duplicating and inserting themselves else-
where. These mobile units are called transposons. One or several genes or just a
control unit can form transposons. The movement can take place in the same
chromosome or to a different one. The beginning of the transposon will be ran-
domly chosen (gene T). The transposons within a chromosome are flanked by
identical or inverse repeated sequences with a fixed length, FSL, defined as flank-
ing sequences. According to the flanking sequence length, the FSL bits before the
gene T make the first flanking sequence. The search for the second flanking se-
quence begins after gene T and stops when an equal or inverse sequence is found.
The genes enclosed by gene T and the last gene of the second flanking sequence
constitute the transposon. The insertion point is searched in the same chromosome
and this process starts in the bit after the second flanking sequence. The insertion
point is defined when an equal or inverse sequence of bits is found in the chromo-
some. Notice that the chromosome is viewed as having a circular form. Therefore
after reaching the end of the chromosome the search continues in its first bit.
When the insertion point is found, the transposon excises from its original position
and will integrate in the insertion point. Figure 14.5 illustrates this operation as
follows.



392 14Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem

Fig. 14.5 Asexual Transposition

The Edge Recombination Crossover (ERC) is often used as an efficient cross-
over operator for scheduling problems (Cheng et al., 1999). ERC builds offspring
using only the edges present in both parents. The best genes of parents in terms of
number of edges are recombined into new off-springs. However, the number of
edges in scheduling problems does not play such an important role, but the
weights (processing time, setup time, costs, etc.) do. Therefore, a new crossover is
developed that recombines the best genes of parents in terms of these weights in-
stead of number of edges in the normal ERC.

Table 14.1 Weights of Jobs
Job 1 2 3 4 5 6 7 8 9 10
1 - 1 1 1 1 2 0 2 2 0
2 1 - 2 0 1 0 2 1 1 1
3 1 2 - 0 0 1 1 2 1 2
4 1 0 0 - 2 1 1 1 0 1
5 1 1 0 2 - 1 0 2 0 1
6 2 0 1 1 1 - 1 2 0 0
7 0 2 1 1 0 1 - 0 0 0
8 2 1 2 1 2 2 0 - 2 1
9 2 1 1 0 0 0 0 2 - 1
10 0 1 2 1 1 0 0 1 1 -

1. Selected Chromosome
0 0 1 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1

2. Building the Transposon
0 0 1 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1

�
gene T (random)

3. Finding the insertion point
0 0 1 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1

�
insertion point

4. Transposon excision
0 0 1 1 0 0 1 1 1 1 1 1

1 1 0 0 0 0 0 1

5. Transposon integration
0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1

6. Obtained chromosome after asexual transposition
0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1



14 Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem 393

This new crossover is labeled as Weighted Recombination Crossover (WRC).
The following section will describe the principle of WRC. Suppose the edges be-
tween jobs in the sequence are weighted by the job’s processing time given in Ta-
ble 14.1.

First, we calculate the total weights of each job in parents (see Figure 14.6 and
Table 14.2).

Parent 1 3 5 7 9 2 4 6 8 10 1

Parent 2 2 4 1 5 9 10 8 6 7 3

Fig. 14.6 Parents for WRC Example

Table 14.2 Computation of Weights
Job Total weights Job Total weights
1 (1, 10) + (1,8) +(1,2) + (1,4) = 4 6 (6, 4) + (6,7) + (6, 3) = 3
2 (2, 9) + (2,4) + (2,1) = 2 7 (7,3) + (7, 5) + (7,6) = 2
3 (3, 5) + (3, 7) + (3,6) = 2 8 (8, 10) + (8,1) = 3
4 (4, 6) + (4,1) + (4,2) = 2 9 (9, 2) + (9,5) = 1
5 (5, 3) + (5, 7) + (5,9) = 0 10 (10, 8) + (10, 1) = 1

Pick a job that has smallest weight to add to the child. Check the feasibility
constraints, if it is not violated then the job is selected as a member of the child.
Otherwise, the job with the next least weight is picked. From the above table it can
be seen that job 5 with a total weight of 0 has the minimum weight. Hence it is se-
lected to be a member of next generation (Figure 14.7).

5
Fig. 14.7 The First Node Selected in the WRC Method

For all the remaining jobs we remove the weights associated with the job se-
lected above. The updated table is shown as Table 14.3.

Table 14.3 Weights after Removing the Selected Job and Its Weights
Job Total Weights Job Total Weights
1 (1, 10)+(1,8)+(1,2) + (1,4) = 4 6 (6, 4) + (6,7) + (6, 3) = 3
2 (2, 9) + (2,4) + (2,1) = 2 7 (7,3)+ (7, 5)+(7,6) = 2 – 0 = 2
3 (3, 5)+(3, 7)+(3,6)= 2 – 0 = 2 8 (8, 10) + (8,1) = 3
4 (4, 6) + (4,1) + (4,2) = 2 9 (9, 2) + (9,5) = 1 – 0 = 1
5 (5, 3) + (5, 7) + (5,9) = 0 10 (10, 8) + (10, 1) = 1

Repeat the process until all of the jobs have been selected (Table 14.4). The
Figure 14.8 shows the final child.



394 14Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem

Table 14.4 Weights Calculation Process
Job Total Weights Job Total Weights
1 (1, 10) + (1,8) +(1,2) + (1,4)

= 4→3→3→2→0
6 (6, 4) + (6,7) + (6, 3)

= 3→ 2→1→0
2 (2, 9) + (2,4) + (2,1) = 2→1→0 7 (7,3) + (7, 5) + (7,6) = 2 –

0 = 2→1→0
3 (3, 5) + (3, 7) + (3,6)= 2→ 0 8 (8, 10) + (8,1) = 3→2→0
4 (4, 6)+ (4,1) + (4,2) = 2→2→1→0 9 (9, 2) + (9,5) = 1→0
5 (5, 3) + (5, 7) + (5,9) = 0 10 (10, 8) + (10, 1) = 1→0

5 9 2 10 3 7 6 4 1 8
Fig. 14.8 Final Child of the WRC Process

Mutation operator brings random changes in a parent solution to generate an
offspring. This change should satisfy the constraints of the problem. The inversion
mutation is the most popular for binary GA because it is simple (Figure 14.9).

Parent 0 0 1 1 0 0 1 1 1 0 0 0 0 0 1 1

Child 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 1
Fig. 14.9 Binary Inversion Mutation

For sequencing, studies have shown that the shift mutation may give good re-
sults (Goldberg, 1989; Sikora, 1996.). Therefore, we will employ these operators
to generate new offspring. In this mutation, a gene at one position is removed and
replaced at another position as shown in Figure 14.10. The two positions are ran-
domly chosen.

* *
3 6 9 2 8 7 1 4

→ → → →
3 6 1 9 2 8 7 4

Fig 14.10 Sequencing Shift Mutation

14.2.4 Input parameters

Other input parameters of genetic algorithm are selected based on De Jong’s
(1975) suggestion: ”…good GA performance requires the choice of a high cross-
over probability, a low mutation probability (inversely proportional to the popula-
tion size), and a moderate population size…” (Also referred by Goldberg, 1989).
The following parameter values are initially chosen:

• Survey population size Ps = 100



14 Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem 395

• Evolution population size Pe = 20
• Probability of mutation , pm = 0.04
• Probability of crossover, pc = 0.8
• Number of survey generations Gs = 20
• Number of evolution generations Ge = 50.
• Stopping condition: when the number of iterations reaches Ge

The remaining parameter, α, (0<α<1) will be selected based on the experiments
that will be discussed in Section 3.4. The complete algorithm is described in the
following form.

14.2.5 Guided Genetic Algorithm (GGA)

Step 1. Let s = 0; s is the generation count of survey stage.
Step 2. Initialize survey population with the size of Ps.
Step 3. Evaluate initial survey population
Repeat

Step 4. Generate new survey population using GA operators
�� Roulette-wheel selection
�� ATC for binary GA and WRC for sequencing GA with probabil-

ity pc.
�� Inversion and shift mutations for binary and sequencing GA, re-

spectively with mutation probability pm.
�� Perform the correction of the chromosome’s structure for satis-

fying the feasibility conditions (if any).
Step 5. Evaluate new population using fitness function fs ⇒ determine
the best children for evaluation population. If (number of selected chil-
dren<Pe), increase Gs to (Gs +1). Otherwise, break.
Step6. Substitute old population by new population. Increase s to (s+1).

Until (s = Gs)
Step 6. Let e = 0, e is the generation count of evolution stage.
Step 7. Form the initial evaluation population from the results of survey stage
with the size of Pe (Pe<Ps)
Step 8. Evaluate initial evolution population by the fitness function fe

Repeat
Step 9. Generate the next evolution generation using genetic operators.

• Select the (α*Pe) best solutions for next generation
Repeat

�� Take pairs of chromosomes from the remaining (1-α)* Pe chro-
mosomes of the old evolution population into the mating pool
using the roulette rule.

�� ATC for binary GA and WRC for sequencing GA take place for
chromosomes in the mating pool with crossover probability pc.

�� Inversion and shift mutations for binary and sequencing GA, re-
spectively with mutation probability pm.



396 14Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem

�� Perform the correction of the chromosome’s structure for satis-
fying the feasibility conditions (if any).

Until (1-α)* Pe children are generated
Step 10. Combine (α*Pe) best solutions and (1-α)* Pe new generated chil-
dren into new evolution population
Step 11. Evaluate new population using fitness function fe ⇒ determine the
best child of the evaluation population.
Step 12. Substitute old population by new population. Increase e to (e+1).

Until ( e = Ge )

14.3 The GGA for the PCB Assembly Sequencing
Problem

14.3.1 The PCB Sequencing Problem on Multiple Non-identical
Parallel Machines

We consider the printed circuit board (PCB) scheduling problem on multiple non-
identical parallel machines. The set of n PCBs and their component requirements
are given in the form of incidence matrix. In the present case, each board is con-
sidered as a job. The jobs must be sequenced on a set of m parallel machines such
that the total setup time and load variation between machines are minimized. The
general requirement of the problem is to find the optimum grouping and board se-
quence for each machine in order to minimize total setup of the system. This re-
quirement is often achieved through exploiting similarities between boards, or be-
tween board and current setup on magazine of a machine. In addition, balancing of
the load is to be considered. When the assumption of identical parallel machines
is relaxed to non-identical parallel machines, capacities of machines have to be in-
cluded in the model. Hence a multiple criteria formulation becomes a necessity.

Each PCB j (j = 1, .., n) requires SIZEj number of components or component
types. The capacity Ct of machine t (t = 1,…m) is presented as the number of slots
on the magazine of that machine. It is assumed that components of a given type
occupy only one slot on a magazine and that any machine capacity Ct is always
greater than any SIZEj of a PCB j. Furthermore, the setup time of a board in the
sequence cannot be predetermined as in a regular scheduling situation, as it de-
pends on the previous jobs. That is, it depends on the current set of components on
the magazine, and the additional requirements for the incoming job. For the as-
sembly, total setup time on a machine would include the time to fix all PCBs on
the machine, and the time to exchange components. It is expressed as

mtswsSnTS
tn

k
kttt ,...1;

1

0

=+= ∑
−

=

(14.1)



14 Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem 397

Where TSt is the total setup time for machine t; t = 1,…,m
nt is the number of boards allocated to machine t

swkt is the number of component changeovers between board (k)th to
board (k+1)th in the board sequence for machine t. And so, sw0t is
the first loading.

s is the time to load and unload a component type on the feeder rack
S is the time to fix a PCB on machine table, PCB setup time.

The overall problem considers the three inter-related issues of board grouping,
sequencing, and component switching and it is modeled as a multi-objective opti-
mization problem, with three objectives. The first objective looks at the similarity
between boards in a group, the second balances the load, and then the third one
minimizes the setup times at individual groups. Appropriate priority weights are
given to the objectives. The solution will simultaneously yield the groupings, se-
quencing and component switching for each individual group.

We formulate a composite model with all the related issues and objectives as
Minimize Z =

332211 fff λλλ ++ (14.2)

Subject to:

njx
m

t
jt ,...,1;1

1

==∑
=

(14.3)

∑
=

===
p

i
tjtij mtnjCxw

1

,...,1;,...,1; (14.4)

mtnkjpiwxya ikjtjkij ,...,1;,...,1,;,...,1; ===≤ (14.5)

mtnkxy
n

j
jtjk ,..,1;,...,1;1

1

===∑
=

(14.6)

mtnjxy
n

k
jtjk ,...,1;,....,1;1

1

===∑
=

(14.7)

mtpinkxwxwb ktiktkkiik ,...,1;,...,1;1,...,1;)1()1( ==−=−≤ ++ (14.8)

mtnjnkbxyaswsw
p

i
ikjtj

p

i
ijktt ,...,1;,...,1;1,...,1;*2

1
1

1
0 ==−=+⎟⎟⎠

⎞
⎜⎜⎝

⎛
=+ ∑∑

==

(14.9)

1321 =++ λλλ (14.10)

Where
n Total number of PCBs
m Number of machines
p Total number of required components.
i Component index, i =1,…, p
j Board index, j = 1,…, n
k Sequence position index, k = 1, 2,…,n
t Machine (or group) index, t = 1, …,m
Ct Capacity of machine t, as number of slots in the magazine.
A={aij}=PCB component incidence matrix.
S Time to fix one board on the machine table



398 14Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem

s Component setup time (for loading or unloading of one component)
swkt Number of component changeovers between board (k)th to board (k+1)th

in the board sequence for machine t, and sw0t is the first loading.
TS Total set-up time
SIZEj Size of PCB j (number of component types required).
λ1 Weight for similarities criterion
λ2 Weight for load balancing criterion
λ3 Weight for setup time criterion
f1 Similarities function
f2 Load balancing function
f3 Setup time function
xjt = 1, if board j belongs to group t; 0, otherwise.
wij = 1, if setup j contains component type i; 0, otherwise.
yjk = 1, if board j is assembled in the kth job in the sequence; 0, otherwise.
bik = 1, if component type i has to load on the machine right after kth job; 0,

otherwise.
Note:

k = sequence position is a relative position in each group. The real position will
be converted based on this relative position. For example, if the solution for group
t = 1 is x21=1, y25=1; x61=1, y62=1; x71=1, y79=1 then the board sequence for boards
in group 1 is 6-2-7 because its relative positions are 2-5-9, respectively.

Each of the objectives can be developed as per its requirements. For f1, the simi-
larities function which addresses the grouping problem, the computation is based
on the Jarcard’s similarity coefficient. The coefficient is defined as

jk

jk
jk TOTAL

COM
SIM = (14.11)

Where COMjk is the number of common components between board j and board k
TOTALjk is the number of components in both board j and board k

So, the total similarities between boards in group t is

∑∑
= =

=
n

j

n

k
ktjtjk

t
s xxSIMf

1 1

(14.12)

Where
xjt equals to 1 if board j belongs to group t; otherwise xjt = 0
xkt equals to 1 if board k belongs to group t; otherwise xkt = 0

The similarities function is given by
},...,1;min{1 mtfBIGf t

s =−= (14.13)

Where BIG is a very large positive number
The second component of (14.2), representing the load balancing criterion, will be



14 Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem 399

},...,1;max{

},...,1;min{},...,1;max{

},...,1;max{

},...,1;min{},...,1;max{

1

11

2

mtxSIZE

mtxSIZEmtxSIZE

mtf

mtfmtf
f

n

j
jtj

n

j
jtj

n

j
jtj

t
l

t
l

t
l

=

⎟⎟⎠

⎞
⎜⎜⎝

⎛
=−=

=

=
=−=

=

∑

∑∑

=

==

(14.14)

Where ∑
=

=
n

j
jtj

t
l xSIZEf

1

is the total number of components loaded on machine t.

This function expresses the difference between maximum and minimum loads for
the machines. This loading variance should be minimized.

Now, the total setup time is expressed (based on (14.1)) as follows:

},...1;*max{},...,1;max{
1

0
3 mtswsSnmtTSTSf

tn

k
ktt =+==== ∑

−

=

(14.15)

mtnjnksbxyaSx
p

i
ikjtj

p

i
ij

n

j
jt ,..,1;,..,1;1,..,1;**2*max

1
1

11

==−=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟⎠

⎞
⎜⎜⎝

⎛
+⎟⎟⎠

⎞
⎜⎜⎝

⎛
+⎟⎟⎠

⎞
⎜⎜⎝

⎛
= ∑∑∑

===

The first component of (14.15) indicates total board fixing time of machine t.
Hence, it relies on the total number of boards assigned to that machine. The sec-
ond element is constraint (14.9). This constraint determines the total component
exchange time, which depends on the total number of component switches. Func-
tion (14.15) needs to be minimized.

The remaining elements of the objective function are the weights of the criteria.
The weights are given subjectively, based on their relative importance. These
weights also need to satisfy condition (14.10). As our main concern is the total
setup time, λ3 dominates the other objectives. We take λ1 = 0.2, λ2 = 0.2, and λ3 =
0.6.

Other equations are explained as follows. Constraint (14.3) expresses the
grouping condition, in which each board belongs to only one group. Constraint
(14.4) assures that exactly Ct component types are placed on machine t for any
PCB of group t. Constraint (14.5) indicates that if PCB j is assembled as the kth job
on the machine t, then all the component types needed for PCB j must be set up on
that machine. Constraints (14.6) and (14.7) assign exactly one PCB to exactly one
position in the sequence for each machine. Constraint (14.8) expresses the loading
components relationship with the setup status. The number of component change-
overs is counted in the next constraint (14.9). The last constraint (14.10) is a nor-
malizing constraint for the priority weights of the multiple objectives.

14.3.2 Related works

The PCB scheduling problems have also been considered in several works, under
different types of machine settings. Most of the current research works emphasize
on a single machine configuration. Since the PCB assembly is characterized by



400 14Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem

small batches and high speed assembly, the main concern even at scheduling is the
setup time including setup of the boards, and loading and unloading of compo-
nents. Hence, most of the related research works in PCB assembly select setup
time as the main criterion (Maimon and Braha, 1998; Smed et al., 1999; Rajkumar
and Narendran, 1998; etc.).

Tang and Denardo (1988) propose a greedy heuristic to determine job sequence
in a flexible manufacturing systems (FMS) environment, which can be applied for
the case of PCB assembly. Rajkumar and Narendran (1998) present another
greedy heuristic, which exploits the similarities between boards and current set up
on the magazine of the machine. Some local search heuristics (2-opt, tabu search,
genetic algorithm, simulated annealing) are also used to solve the problem. Mai-
mon and Braha (1998) develop a genetic algorithm and compare it with a TSP-
based spanning tree algorithm. Gronalt et al. (1997) focus on the component
switching problem and the feeder assignment problem with the assumption that
the sequence of board types to be processed on a single machine is given. They
model the combined set-up (loading) and feeder assignment problem, called a
component-switching problem, as a mixed-integer linear program. A recursive
heuristic was proposed to solve this combined problem. Gunther et al. (1998) ex-
tend the PCB assembly setup problem for single machine when a feeder requires
more slots in the magazine. They solve three related sub-problems of board se-
quence, component switching, and feeder assignment, sequentially by a TSP
(Traveling Salesman Problem) -based heuristics. Their heuristic first constructs
the board sequence using the upper bound on component changeovers between
two consecutive boards. The “keep tool needed soon” (KTNS) rule developed by
Tang and Denardo (1988) is implemented to evaluate the performance of the
board sequence. Then an iterative procedure with a heuristic to improve the solu-
tion is developed. A drawback of this approach is that it does not take into account
the current status of the magazine.

For the single problem of component switching, Tang and Denardo (1988) pro-
pose a heuristic, called KTNS (Keep Tool Needed Soon) rule, and provide a proof
of its optimality. According to KTNS rule, the tool magazine is kept in full and at
any instance g tool u is

• Inserted if L(u,g) =g; Ju = 0;
• Kept if : L(u,g) = g ; Ju =1;

• Removed if
⎭
⎬
⎫

⎩
⎨
⎧=

=1:
),(max

Jqq

gqLu

Where L(u,g) is the first instant at or after instant g at which tool u is needed.
Ju =1 (0) if tool u is (is not) on the machine at a given instant g

There are considerable extensions for the case of non-uniform tool sizes includ-
ing the works of Crama et al. (1994); Privault and Finke (1995); Gunther et al.
(1998); Matzliach and Tzur (1998); Djellab et al. (2000); Matzliach and Tzur
(2000). Some beginning attempts have been made to handle the non-uniform tool
sizes issue using different formulations such as an integer programming (Cramma
et al., 1994) and network flows (Privault and Finke, 1995) which are solved by
greedy algorithms. Recently, Matzliach and Tzur (2000) have shown the complex-



14 Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem 401

ity of this case to be NP-complete. They also propose two constructive heuristics,
which provide solutions that are extremely close to the optimal solution (within
less than two percent). Matzliach and Tzur (1998) analyze another aspect of the
tool switching problem, when parts that need to be processed on the machine ar-
rive randomly and tool sizes are non-uniform. Djelab et al. (2000) present an it-
erative best insertion procedure (IBI) using hypergraph representation for the tool-
switching problem which gives quite good solutions. In another direction, Rupe
and Kuo (1997) relax the assumption of tool magazine capacity where jobs may
require more tools than the magazine’s capacity can hold while the uniform tool-
sizes assumption is still maintained. Hence, job splitting is taken into account.
When jobs are split into sub-jobs to allow tool changes at any instant between tool
uses, the KTNS policy still yields an optimal solution. When jobs are split com-
pletely into sub-jobs such that each sub-job requires one tool and tools are permit-
ted to change concurrently with job changes, the “Get Tool Needed Soon
(GTNS)” policy developed by the authors is proved to give optimal solution.

For the case of multiple machines setting, Ben Arieh and Maimon (1992) use a
Simulated Annealing algorithm to sequence PCBs on two serial machines. Van
Hop and Tabucanon (2001) attempt to solve PCB assembly setup problem for a
line of machines from a multiple criteria viewpoint. They propose an approach us-
ing both multi-attribute decision-making and multi-objective decision-making
technique together to solve the problem. So far, there has not been any literature
addressing the scheduling problem of PCBs for multiple non-identical machines.
A similar work of Rajkumar and Narendran (1997) tries to allocate PCBs to ma-
chines but their work was developed for the case of multiple identical parallel ma-
chines only. Moreover, they focus on assigning PCBs to a machine and assume
that the boards sequence is already given.

The present case is an effort to consider the combined problem of scheduling n
PCBs for m non-identical parallel machines, which includes all three issues of
board grouping, board sequencing and component switching. The following sec-
tion will describe GGA solution for this problem.

14.3.3 The GGA Solution

Solving the integrated problem described above is difficult since its sub-problems
are complex even when tackled in isolation. The board grouping problem belongs
to the class of partitioning problems which are NP-hard in strong sense. Once the
grouping is done, the optimal board sequence for each machine is still hard to be
determined as the setup time for each board is sequence dependent. The compo-
nent switching problem is even more complicated as the loading needs to be de-
termined by the current and future requirements. The computational time increases
exponentially as the problem size gets larger. Hence, searching techniques like
genetic algorithms are attractive. In this case, solving the integrated problem is
used as an example to illustrate the efficiency of the Guided Genetic Algorithm



402 14Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem

(GGA). The main components of the GGA do not change as described above but
the following items should be adapted to the characteristics of the problem.

14.3.3.1 Coding scheme

In this case, a solution is presented as a string of paired numbers. The string con-
tains m sections, each section representing a group of boards allocated to a specific
machine. A section is further divided into n genes indicating n boards. Each gene
has a pair of numbers. The first number in gene k of section t is a binary number
with a “1” if board k belongs to group t (corresponding to machine t), and “0”
otherwise. The second value in gene k represents the relative position of board k
in the sequence of its group. Figure 14.11 illustrates a sample chromosome. For
this chromosome structure, we have 7 boards and 2 machines (groups). The first
group includes board 1, 3, 6 with the relative positions 4, 6, 2, respectively. Order-
ing the boards according to their relative positions, the sequence for the first group
is obtained as 6-1-3. Similarly, in the second group the board sequence is 4(1)-
5(3)-2(4) -7(7).

1,4 0,3 1,6 0,1 0,5 1,2 0,7 0,5 1,4 0,2 1,1 1,3 0,6 1,7

Fig. 14.11 A Sample Chromosome

14.3.3.2 Fitness function

The fitness value is calculated based on the objective function (14.2) and defini-
tions (14.11) – (14.15). The only exception is, instead of calculating number of
component changeovers as in (14.15), we apply KTNS principle to determine total
number of component switches for each machine t.

14.3.3.3 Genetic operators

In this problem, the genetic operators of the GGA are implemented for both
grouping and sequencing at the same time. In addition, since the nature of the
problem is different, the weight of the kth job in the PCB sequences is calculated as
the total setup time when job k is loaded on the machine plus the total setup time
when job k is unloaded from the machine (see figure 14.12) because the loading
depends on the current (job k) and future component (job k+1) requirements as
well as the current status of the magazine.

��

��

⎯→⎯⎯⎯ →⎯⎯⎯ →⎯⎯→⎯

⎯→⎯⎯⎯ →⎯⎯⎯ →⎯⎯→⎯

+

+−

−

+

+−

−

222

111

1

2
1,

2
,1

1

1

1
1,

1
,1

1

2Parent

1Parent

k

kk

k

kk

k

k

kk

k

kk

k

JJJ

JJJ

ww

ww

Where (*)
,1 kkw − = TS(*, k) – TS(*, k-1) and 2

1,
1

1,
2

,1
1

,1 ++−− +++= kkkkkkkkk wwwww

TS(*, k) = total setup time of the sequence (*) until job k



14 Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem 403

Fig. 14.12 Weight Calculation for Job k in the Parent Chromosomes

14.3.4 Experimental Results

The proposed GGA is encoded in C++ language. Several data sets have been used
to test the performance of our GGA. Six groups of data sets have been used to ver-
ify influence of parameters on the performance of the GGA as presented in Table
14.7. The first group of data (Random 1) is randomly generated to verify the influ-
ence of searching drive α (percentage of best solutions). The second set of ran-
dom data (Random 2) is then used to investigate the performance of our genetic
algorithms with the varying of population size of survey and evolution stages. The
third group of random data set (Random 3) checks the effect of the number of
generation steps in each stage on the performance of the GGA. Using the results
of the first three investigations, we may have conclusion about the best compro-
mise between parameters of the GGA. Then, the last three groups of data set are
used to investigate the performance of GGA when the number of components is
randomly generated by a uniform distribution function with a mean value of 100
and three levels of low, medium and high variances, respectively. In order to se-
cure the assumption that magazine’s capacity of the machines can hold all compo-
nent types for any PCB, the magazine’s capacities C1, C2, C3 are set to be the
maximum component requirement for a board plus two. The ratio between the
time to fix a board on machine table and time to load/unload one component (S/s)
is assumed to be equal to three. For each case, the experiments are run for ten
times, with number of board types ranging from 30 to 100.

Table 14.7 Test Problems
Data set Name Ps / Pe Ge/Gs α p m n S/s
1 Random 1 100/20 50/20 [0,1] [80,120] 3 30 3
2 Random 2 [1,10] 50/20 0.3 [80,120] 3 30 3
3 Random 3 100/20 [1,10] 0.3 [80,120] 3 30 3
4 Random 4 100/20 100/20 0.3 [80,120] 3 [30,100] 3
5 Random 5 100/20 100/20 0.3 [70,130] 3 [30,100] 3
6 Random 6 100/20 100/20 0.3 [60,140] 3 [30,100] 3

For evaluating the GGA, we use the most important objective that is, minimiz-
ing of total setup time. The evaluation is carried out by comparing the solution of
each problem to the possible upper and lower bounds on the setup time for that
problem. The lower bound is obtained by relaxing the constraint on the capacity of
a machine. In such case, all the required components can be loaded simultane-
ously. Thus the total number of component changeovers is p, and the total number
of PCBs set up would be n. Therefore, the average setup time on each machine
would be given by (n*S+p*s)/m. The upper bound is attained from the case when
each PCBs processing is completed, all components are removed from the maga-



404 14Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem

zine and remounted for another PCBs. In such case, the number of component
switches is the total number of required components for all PCBs. Thus, the aver-

age setup time on each machine would be (n*S + ∑
=

n

j
jSIZE

1

*s)/m.

The performance of the algorithm is now computed as Quality Index (QI), in
terms of the total setup time (TS) of the obtained solution. The Quality Index is
measured as the percentage ratio of the difference between the upper bound and
the obtained solution, and the difference between upper and lower bounds.

%100×
−
−=

LBUB

TSUB
QI (14.16)

First, the algorithm is tested with the first group of random data to analyse the
influence of the searching drive α (fraction of best solutions carried over to next
generation). The first set of random data has been used. For illustration, Random1
has 30 board types (n = 30), survey population size Ps = 100, evolution population
size Pe = 20, number of survey generations Gs = 20, number of evolution genera-
tions Ge = 50, and the distribution of component requirement of the boards in the
range of (80, 120). We need to choose an appropriate value for searching drive α.
If this value is too small, then the search procedure will be closer to pure random
search. It may reach global optimum, but may take very long time to converge on
the solution. If α is larger, then the solution may move in the direction of global
optimum. However if α is too close to 1, the search procedure may get stuck at a
local optimum, as some good solutions may dominate the population. They will be
used several times to form new offsprings. The entities of the population gradually
become more and more similar. The algorithm will converge to a generation that
is completely homogeneous, and therefore, the search engine of GA falls into a lo-
cal trap. Therefore, it is better to investigate a suitable value for α. We run the
program on the same data set (Random1) with different values of α. Other input
parameters were kept unchanged. Figure 14.13 illustrates the influence of α on the
optimality. As we can see, with the value of α in the range of 0.05- 0.35, better so-
lutions can be achieved. For the rest of problem sets, we select α = 0.3.

0.79

0.8

0.81

0.82

0.83

0.84

0.
05

0.
15

0.
25

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

0.
95

Alpha

Q
I

Fig. 14.13 The Effect of Searching Drive α



14 Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem 405

Next, we investigate the performance of the GGA by varying the Ps/Pe ratio
while keeping the value of α = 0.3 and other parameters as constants as in the
random data set Random 2 (see Table 14.7). As the results presented in Figure
14.14, when the population size of the survey stage is closed to the evolution
stage, the survey GA do not have enough information of the solution stage. Thus
the search procedure may easily get stuck at local optimal hill. The searching
mechanism can not move further to other hills of the solution space. When the
value of Ps is larger relative to the evolution population size, Pe, the survey GA
has a large enough searching space. It can collect enough information of the solu-
tion hills of the solution space. Thus, the quality of the solution is better. However,
the searching time may increase because the population space is larger but the
number of generations of survey GA is still limited. Thus, it is better to select a
reasonable value of Ps/Pe ratio to secure the ability of survey without increasing
the computation time. The value of Ps/Pe = 5 could be appropriate.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 3 4 5 6 7 8 9 10

Ps/Pe

Q
I a

nd
 T

im
e

QI(%)

Time(h)

Fig. 14.14 The Effect of Ps/Pe Ratio

With the selection of searching drive factor ��	������
	������5���	����Ps/Pe in
hand, we move forward to test the influence of Ge/Gs ratio by using the random
data set Random 3. In this case, if the life of the survey search is as large as evolu-
tion search, the searching time will be longer although the quality of the solution
may be better. Otherwise, if the life of the survey GA is very short compared with
the evolution search, the survey GA does not have enough time to collect enough
information of the solution space. Thus the quality of the solution may be reduced.
Figure 14.15 shows these results. Therefore, the ratio of 5 could be an appropriate
value of Ge/Gs



406 14Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem

0

0.2

0.4
0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Ge/Gs

Q
I 

an
d 

T
im

e

QI(%)

Time(h)

Fig. 14.15 The Effect of Ge/Gs Ratio

After selecting the suitable input parameter for the GGA, we investigate the
performance of the GGA for the considered PCB sequencing problem on multiple
non-identical parallel machines with three random data set: Random 4, Random 5
and Random 6 corresponding to three varying level of component requirements:
low, medium and high variations, respectively. The results are presented in Figure
14.16. In all cases, the quality of the GAs is quite good in terms of proximity of
convergence to optimum solutions. As we can see, the overall performance of our
GGA is QI > 80%.

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

30 40 50 60 70 80 90 100

Number of boards,n

Q
I

QI_low_variance

QI_medium_variance

QI_high_variance

Fig. 14.16 Performance of GGA with Selected Parameters

These results have shown the advantage of the proposed approach in solving
PCB scheduling problem in specific and the NP-hard problems in general. On an
average, the proposed approach provides a good quality solution in terms of set up
time in a reasonable computation time. In case a company has a computerized da-
tabase containing information about daily production plans, the algorithm can



14 Improvement of Search Process in Genetic Algorithms: An Application of PCB
Assembly Sequencing Problem 407

quickly generate daily grouping and schedules to help the planners. The savings in
total setup time would increase the value added for such high flexibility produc-
tion systems, adding productivity to flexibility.

14.4 Concluding Remarks

In the present chapter, the guided genetic algorithm (GGA) has been presented. In
this algorithm, the search process is carried out in two stages: the survey and evo-
lution stages. The survey stage collects information of the search space by a large
population and short generation life GA. This GA explores the structure of the
search space in terms of selected good children after each generation. In order to
have complete information of the search space, the search process should visit as
many hills as possible by diversifying the next population as much as possible.
This is done by the efficient genetic operators such as roulette wheel selection,
weighted recombination crossover and shift mutation. After the survey stage, the
information about the good hill in the form of selected chromosomes is used to
form the initial population for the evolution stage. In the evolution stage, another
GA is used to search for the optimal solution. The search process in the evolution
GA should converge to the optimal solution as fast as possible with smaller size
populations, longer generation life GA by keeping a certain number of best chro-
mosomes in the new generation. Thus, by spending some extra generations in the
survey stage we yield much more information to reduce the number of generations
in the evolution stage by making the evolution faster and more oriented. This
GGA can be used to solve any kind of NP-hard problems. For illustration, the
PCB scheduling problem on multiple non-identical parallel machines is solved by
the GGA. The obtained results are quite promising in terms of good quality solu-
tion with a reasonable computation time. However, in order to improve further the
search process, the similar guiding framework could be used but the problem spe-
cific genetic operators should be developed in future applications. In addition,
large-scale numerical experiments are needed to be conducted to determine the
appropriate parameters for the GGA on the other applications. The effect of other
parameters such as rates and probabilities of operators should also be investigated
because a drawback for GA in general and GGA in specific is the difficulty in se-
lection of parameters and to combine these operators in an efficient way (see
Muhlenbein, 1997 for further analysis on GAs).



408 References

References

Ben-Arieh D, Maimon O (1992) Annealing method for PCB assembly scheduling on two
sequential machines. IJ Computer Integrated Manufacturing 5: 361-367.

Cheng R, Gen M, Tsujimura Y (1999) A tutorial survey of job-shop scheduling problems
using genetic algorithms, part II: hybrid genetic search strategies Computers and In-
dustrial Engineering 36: 343-364.

Crama Y, Kolen AWJ, Oerlemans AG, Spieksma FCR (1994) Minimizing the number of
tool switches on a flexible machine. IJ Flexible Manufacturing Systems 6: 33-54.

DeJong KA (1975) An analysis of the behavior of a class of genetic adaptive systems.
Ph.D. dissertation, University of Michigan, USA.

Djellab H, Djellab K, Gourgand M (2000) A new heuristic based on a hypergraph represen-
tation for the tool switching problem. IJ Production Economics 64: 165-176.

Gen M, Tsujimura Y, Li Y (1996) Fuzzy assembly line balancing using genetic algorithms.
Computers and Industrial Engineering 31: 631-634.

Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning.
Wiley, Massachusetts.

Goldberg DE, Deb K, Korb B (1990) Messy genetic algorithms revisited: studies in mixed
size and scale. Complex Systems 4:415--444.

Gould JL, Keeton WT (1996) Biological Science. W.W. Norton & Company
Gronalt M, Grunow M, Gunther HO, Zeller R (1997) A heuristic for component switching

on SMT placement machines. IJ Production Economics 53: 181-190.
Gunther HO, Gronalt M, Zeller R (1998) Job sequencing and component set-up on a sur-

face mount placement machine. Production Planning and Control 9: 201-211.
Hinterding R, Michalewicz Z, Eiben AE (1997) Adaptation in evolutionary computation: a

survey. In: proceedings of the 4th IEEE international conference on evolutionary com-
putation. Indianapolis, pp 65-69.

Justinian R (1997) Analysis of complexity drift in genetic programming, In: genetic pro-
gramming 1997: proceedings of the second annual conference. pp 28-31.

Maimon OZ, Braha D (1998) A genetic algorithm approach to scheduling PCBs on a single
machine. IJ Production Research 36: 761-784.

Matzliach B, Tzur M (1998) The online tool switching problem with non-uniform tool size.
IJ Production Research 36: 3407 –3420.

Matzliach B, Tzur M (2000) Storage management of items in two levels of availability.
European Journal of Operational Research 121: 363 –3379.

Melanie M, Forrest S, Holland J (1991) The Royal Road for genetic algorithms: fitness
landscapes and GA performance. In: proceedings of the first European conference on
artificial life. MIT Press, Cambridge.



References 409

Melanie M, Holland J, Forrest S (1994) When will a genetic algorithm outperform hill
climbing ? In: Cowan J, Tesauro G, Alspector J (eds) Advances in neural information
processing systems. Morgan Kauffman, San Francisco.

Muhlenbein H. (1997) Genetic algorithms. In: Aarts A, Lenstra JK (Eds.) Local search in
combinatorial optimization. Wiley, Chichester, pp 137-171.

Privault C, Finke G (1995) Modeling a tool switching problem on a single NC- machine. J
Intelligent Manufacturing 6: 87-94.

Rajkumar K, Narendran TT (1997) A bi-criteria model for loading on PCB assembly ma-
chines. Production Planning & Control 8: 743-752.

Rajkumar K, Narendran TT (1998) A heuristic for sequencing PCB assembly to minimize
set-up times. Production Planning and Control 9: 465-476.

Rupe J, Kuo W (1997) Solutions to a modified tool loading problem for a single FMM. IJ
Production Research 35: 2253 –2268.

Salomon R (1996) Reevaluating genetic algorithm performance under coordinate rotation
of benchmark functions; a survey of some theoretical and practical aspects of genetic
algorithms. BioSystems 39: 263-278.

Salomon R (1997) Improving the performance of genetic algorithms through derandomiza-
tion. In: software concept and tools, Springer, Berlin.

Schwefel HP (1995) Evolution and optimum seeking. Wiley, New York.
Sikora R (1996) A genetic algorithm for integrating lot-sizing and sequencing in scheduling

a capacitated flow line. Computers and Industrial Engineering 30: 969-981.
Simões AB, Costa E (1999) Transposition versus crossover: an empirical study. In: pro-

ceedings of the genetic and evolutionary computation conference, GECCO 1999, Flor-
ida, USA.

Simões AB, Costa E (2000a) Using genetic algorithms with sexual or asexual transposition:
a comparative study. In: proceedings of the congress on evolutionary computation,
CEC 2000, San Diego, USA.

Simões AB, Costa E (2000b) Using genetic algorithms with asexual transposition. In: pro-
ceedings of the genetic and evolutionary computation conference, GECCO 2000, Las
Vegas, USA.

Smed J, Johnsson M, Puranen M, Leipala T, Nevalainen O (1999) Job grouping in surface
mounted component printing. Robotics and Computer-Integrated Manufacturing 15:
39-49.

Srinivas M, Patnaik L (1994) Genetic algorithms: a survey. IEEE Press.
Tang CS, Denardo EV (1988) Models arising from a flexible manufacturing machine, part

I: minimization of the number of tool switches. Operations Research 36: 767-777.
Thierens D, Goldberg DE (1994) Convergence models of genetic algorithm selection

schemes. In: Davidor Y, Schwefel HP, Manner R (eds.) Proceedings of parallel prob-
lem solving from nature . Springer, Berlin, pp 119-129.

VanHop N, Hanh PH (2000) A self- guiding derandomized genetic algorithm for setup
problem in PCB assembly. In: the 2000 international conference on artificial intelli-
gence, IC-AI'2000. Las Vegas, Nevada, USA.

VanHop N, Tabucanon MT (2001) Set-up problem for a line of machines in PCB assembly
process planning: a multiple criteria decision making approach. IJ Computer Integrated
Manufacturing 14: 343-352.



15 An ANTS Heuristic for the Long - Term Car
Pooling Problem

Vittorio Maniezzo, Antonella Carbonaro, Hanno Hildmann

Abstract

The rising auto usage deriving from growth in jobs and residential population is
making traffic congestion less tolerable in urban and suburban areas. This results
in air pollution, energy waste and unproductive and unpleasant consumption of
people’s time. Public transport cannot be the only answer to this increasing trans-
port demand. Car pooling has emerged to be a viable possibility for reducing pri-
vate car usage in congested areas. Its actual practice requires a suitable informa-
tion system support and, most important, the capability of effectively solving the
underlying combinatorial optimization problem. This paper presents an applica-
tion of the ANTS approach, one of the approaches which follow the Ant Colony
Optimization (ACO) paradigm, to the car pooling optimization problem. Compu-
tational results are presented both on datasets derived from the literature about
problems similar to car pooling and on real-world car pooling instances.

15.1 Introduction

The rising auto usage deriving from growth in jobs and residential population is
making traffic congestion less tolerable in urban and suburban areas. In fact, traf-
fic results in air pollution, energy waste and unproductive and unpleasant con-
sumption of people’s time. Public transport cannot be the only answer to this in-
creasing transport demand, and it becomes necessary to develop alternative
mobility systems which can provide intermediate solutions, in terms of costs and
flexibility, between public transport and private cars.

Among the most promising solutions so far tested are the car pooling and car
sharing services, which have shown to have the potential to attack a mobility seg-
ment badly satisfied by public transport.

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



412 15 An ANTS Heuristic for the Long - Term Car Pooling Problem

Car pooling is a mobility service proposed and controlled by large organiza-
tions, such as large companies or public administrations, which encourage their
citizens or employees to pick up colleagues while driving to/from work in order to
minimize the number of private cars traveling to/from a common destination site.
The benefits which can be obtained are relevant both in terms of reduction of the
use of private vehicles and of the parking space required. In particular, for indi-
viduals the reduced traveling expenses and need for a second car are evident; for
the community there are reductions in vehicle emissions, traffic volumes, noise
and congestion; there are fuel savings and fewer accidents. Moreover, the benefits
for companies that adopt a car pooling service are multiple: this service permits to
maximize the use of employee parking, to encourage sociability between the em-
ployees, to reduce stress in driving to work and to improve the company image.

To foster the acceptance of a car pooling service among employees, a benefit
policy is usually in order. Benefits can be very diverse and can span from reserved
parking areas to reserved road lanes. A carpool lane, or high occupancy lane
(HOV - High Occupancy Vehicle lane), is in fact a lane reserved to carpoolers.
HOV lanes are common in the USA and Asia, less so in Europe.

Car pooling appears in two different forms: it can be either a Daily Car Pooling
Problem (DCPP) or a Long - term Car Pooling Problem (LCPP).

In the case of DCPP on each day a number of users (servers) declare their
availability for picking up and later bringing back colleagues (clients) on that par-
ticular day. The problem asks to assign clients to servers and to identify the routes
to be driven by the servers in order to minimize a penalty due to unassigned cli-
ents, subject to time window and car capacity constraints.

In the case of LCPP each user is available to act both as a server and as a client
and the objective is to define crews - or user pools - where each user will in turn,
on different days, pick up the remaining pool members. The objective becomes
that of maximizing pool sizes and minimizing the total distance traveled by all us-
ers when acting as servers, again subject to car capacity and time window con-
straints.

As mentioned, car pooling is enjoying a rising interest as an alternative trans-
portation service throughout the world. For example, in Australia the New South
Wales Government [8] is pursuing a range of initiatives in accordance with its in-
tegrated transport plan. One such initiative is car pooling, particularly for journeys
to work in areas where public transport is limited. Also in Europe initiatives are
starting. For example, Zurich and surrounding towns are involved in CARPLUS
[7], a European research project on carpooling. The aim of CARPLUS is to find
methods for setting up services which promote organized carpooling services.

The U.S.A. have probably the most relevant carpooling applications. In fact
there are experiences, such as those in [1] or [17], and even companies, such as
Trapeze software [18] or ATC [3], which propose specialized software for car-
pooling management support.

Despite the increasing actual interest of the application, the car pooling prob-
lem has so far received little attention from the optimization community. To the
best of our knowledge, the only mathematically founded contributions are in [2]
and [15] for the DCPP and in [5] or the LCPP.



15.2 Problem Definition and Formulation 413

This paper presents an ANTS heuristics for the LCPP, where ants construct
complete problem solutions. In particular, Section 2 describes the problem and its
mathematical formulation, the reduction rules we used to simplify the overall
complexity, the used cost function and the derived lower bounds; Section 3 re-
views the ANTS approach, while Section 4 presents at the adaptation of ANTS to
the LCPP, specifying lower bounds and local search procedures. Section 5 de-
scribes some elements of the actual decision support system embedding the ANTS
heuristic, that we implemented for solving real world LCPP instances. Finally,
Section 6 contains the obtained computational results.

15.2 Problem Definition and Formulation

The LCPP can be defined as follows. A number n of users must reach their com-
mon destination and later on the day get back home. The problem objective is to
partition the set of users into subsets, or pools, such that each pool member in
turns will pick up the remaining members in order to drive together to the work-
place and back.

Each user i enlisted in the car pooling program specifies:
• the maximal driving extratime Ti user i is willing to accept, when picking up

colleagues, in addition to the time needed to drive directly from home to the
workplace or back;

• the minimum time ei acceptable for leaving home;

• the maximum time ui acceptable for arriving at work;

• the minimum time ei′ acceptable for leaving work;

• the maximum time ui′ acceptable for getting back home.

• the capacity Qi of his1 car.

One further parameter associated with each user is the penalty pi incurred when

the user cannot be pooled with anyone else.
The objective is to define user pools such that as few cars as possible are used

and that the routes to be driven by the drivers are as short as possible, subject to
the operational constraints listed above. Note that pools are supposed to be stable
over a period of time and will not change every day. This entails that the number
of people in a pool will be at most equal to the capacity of the smallest car among
those owned by pool members, since each member will eventually pick up all
other ones.

The LCPP problem can be modeled by means of a directed graph G = (V,A),
where V = {0, … , n} is the set of nodes and A the set of arcs.

1 Here and in the following we use the convention of denoting the employee by the pro-
noun "he". This is only because the notation "he/she" or "his/her" seems awkward to us,
and any other denotation is as arbitrary as "he".



414 15 An ANTS Heuristic for the Long - Term Car Pooling Problem

The set V is partitioned as V = {0} ∪ V′, where 0 is the node associated with
the workplace, and V′ is the subset of nodes associated with the houses of the em-
ployees.

The set A is a set of directed weighted arcs (ij), where each arc (ij) ∈ A is asso-
ciated with a non-negative cost cij and a travel time tij.

Figure 15.1 shows a part of a feasible solution of problem instance LCPP50
(see section 15.6 for a description of the instances), where the optimal pools are
shown only for upper-right employees.

The LCPP problem can be formulated as an integer program in different ways,
each of which permits to make evident different characteristics of the problem it-
self. In the following we will present two of them.

Fig. 15.1. Example of user data and of a part of a LCPP solution

15.2.1 The objective function

The LCPP as defined above is actually a multiobjective problem, requiring to:



15.2 Problem Definition and Formulation 415

1. maximize car usage, thereby minimizing the number of cars travelling
to/from work;

2. minimize the length of the path to be driven by each employee, when act-
ing as a driver.

However, the analysis of the problem structure suggests that it is possible to
combine these two objectives in a single objective function, as follows.

Let k be a pool of clients. Each of them, on different days, will use his car to
pick up the other pool members and go to work (and later come back), thus he has
to define an Hamiltonian path on the partial subgraph of G identified by k, starting
from the node associated to his house, passing through all other nodes and ending
at the workplace.

Let Hpath(i,k) be such an Hamiltonian path, starting from i ∈ k, connecting all j
∈ k\{i} and ending in 0.

Hpath(i,k) is a feasible path iff |k| ≤ Qj, ∀j ∈ k, and all user constraints are met.

The minimum path, min_path(i,k), for i ∈ k is the shortest feasible Hamiltonian
path for i.

Fig. 15.2. Elements defining the cost of a pool

Computing the example in Figure 15.2:
k = {1,2,3,4}
min_path(1,k) = (20+25+25+30) = 100
min_path(2,k) = (20+45+25+30) = 120
min_path(3,k) = (25+20+40+30) = 115
min_path(4,k) = (25+25+20+35) = 105
cost(k) = (100+120+115+105)/|k| = 110

In the computation of the cost of a pool, it is assumed that the shortest paths are
chosen. The cost of a pool k is then defined to be:



416 15 An ANTS Heuristic for the Long - Term Car Pooling Problem

⎪⎩

⎪
⎨
⎧

+

>
=

∑
∈

otherwisepc

kif(i,k)/|k|min_path
kcost

ii
ki

0

1||
)( (15.1)

Notice that a pool of one single person has a cost increased by a penalty, whose
amount is associated with him. For example, in Figure 15.1 the pool comprising
the single employee 2 has a penalty value equal to 40.

The cost of a complete LCPP solution σ is then defined to be the sum of the

costs of the pools in it, that is, cost(σ) = ∑k∈σ cost(k). This view, originally pro-

posed in [13], optimizes at the same time both objective functions. In fact, pro-
vided that the penalty pi of a client is sufficiently bigger than 0, it is more conven-

ient to pool clients together than to leave them alone (see subsection 15.2.3 for a
discussion). Moreover, pool costs are directly minimized by the objective func-
tion.

In Figure 15.2 we graphically show an example of minimum paths and we indi-
cate how to compute the cost of the presented pool.

15.2.2 A four-indices mathematical formulation

The first proposed formulation makes use of the following variables:

• hk
ijx : binary variable equal to 1 iff arc (ij) ∈ A is in the shortest Hamiltonian

path of a server h of a pool k.
• yik: binary variable equal to 1 iff client i is in pool k.

• ξi: binary variable equal to 1 iff client i is not pooled with any other client;

• h
is : non negative integer variable denoting the pick-up time of client i by

server h.

• fh: non negative integer variable denoting the arrival time of server h at the
workplace.

• li: latest arrival time of client i.

• K: index set of all pools.
• C: index set of all clients.

(LCPP) zLCPP = min ∑∑ ∑∑ ∑
∈∈ ∈∈ ∈

+
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

CK CC i
ii

k i
ik

h ij

hk
ijij pyxc ξ

A)(

(15.2)

s.t. ik
hj

hk
ij yx =∑

∈ }{\C
i,h∈C, k∈K (15.3)



15.2 Problem Definition and Formulation 417

jk
i

hk
ij yx =∑

∈ }0{\C
j,h∈C, k∈K (15.4)

∑∑
∈∈

=
CC j

hk
ij

j

hk
ji xx i,h∈C, k∈K (15.5)

1=+∑
∈

i
k

iky ξ
K

i∈C (15.6)

h
Aij

hk
ij Qx ≤∑

∈)(

h∈C, k∈K (15.7)

h
Aij

hk
ijij Txt ≤∑

∈)(

h∈C, k∈K (15.8)

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
−+≤− ∑

∈Kk

hk
ijij

h
i

h
j xMtss 1 (ij)∈A, h∈C (15.9)

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
−−+≥ ∑

∈Kk

hk
ii

h
i

h xMtsf 00 1 i,h∈C (15.10)

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−+≤ ∑ ∑

∈ Γ∈Kk ij

hk
iji

h xMlf 1 i,h∈C (15.11)

i
h
i es ≥ i,h∈C (15.12)

{ }1,0∈hk
ijx h∈C, k∈K, (i,j)∈A (15.13)

}1,0{∈iky i∈C, k∈K (15.14)

ξi∈{0,1} i∈C (15.15)

0≥hf h∈C (15.16)

where �i denotes the adjacency set of vertex i ∈ C.

Equations (15.3) force a client i to be declared to be in pool k, if there is a path
originated in h going from i to j, equations (15.4) do the same for client j and
equations (15.5) are continuity constraints. Equations (15.6) force each client to be
assigned to a pool or to be penalized, while constraints (15.7) and (15.8) are the
car capacity and the maximum travel time constraints, respectively.

Constraints (15.9) and (15.12), where M is a big constant, collectively set fea-
sible pick-up times, compatible with the paths denoted by the x and y variables,
while constraints (15.10) and (15.11) set minimum and maximum values of feasi-
ble arrival times, respectively.

Constraints (15.13), (15.14) and (15.15) are binary integrality constraints while

constraints (15.16) are the non-negativity constraints for the fh variables.



418 15 An ANTS Heuristic for the Long - Term Car Pooling Problem

15.2.3 A set partitioning formulation

A second formulation can be designed using binary variables which represent
whole pools. In this case, assuming it is possible to a priori enumerate all feasible
pools, the problem is that of selecting the set of pools that collectively satisfy the
transportation request the best: the problem turns into a Set Partitioning problem.

Let P be the index set of all feasible pools, that is of all pools that meet capacity
and time windows constraints. Each feasible pool k contains a number of nodes of
V’ ranging from 1 to minj∈kQj. Let Pi ⊂ P be the subset of pools containing

node i, i∈V′, and let cl be the cost of pooll ∈ P.

The cost cl is computed as follows. For each member of pool l we compute

both the minimum cost feasible path starting from his house, connecting all other
members and reaching the workplace, and the minimum cost return path leading
the same members to their houses. The average, over the number of members of
pool l, of the sum of the costs of the outward and return trips gives the cost cl.

Let xl be a binary variable that is equal to 1 if and only if pool l is in the so-

lution. A set partitioning formulation of the problem is as follows.

(SP) z(SP) = min
Pl∈

∑ cl xl (15.17)

s.t.

iPl∈
∑ xl = 1 ∀i∈V′ (15.18)

xl ∈ {0,1} ∀l∈P (15.19)

Notice that single - member pools are considered, as well as pools of any feasible
cardinality. Notice moreover that the used objective function implicitly maximizes
pool sizes, since a pool in a solution satisfies a number of constraints equal to the
number of its members, therefore the marginal cost of a user is lower in a big size
pool than in a smaller one as long as intra-pool distances are smaller than user
penalties.

15.2.4 Reduction rules

It is possible to remove from the graph representing an LCPP instance a number of
arcs which cannot belong to any feasible solution.

15.2.4.1 Definition

An arc (ij)∈A can be part of a feasible LCPP solution (is a feasible arc iff:
(ei + tij + tj0) ≤ ui (15.20)



15.2 Problem Definition and Formulation 419

(ej + tj0) ≤ ui (15.21)

(tij + tj0) ≤ ti0+Ti (15.22)

Since the problem graph is potentially fully connected, the number of arcs

grows as n2, with n the number of nodes. Many of the arcs are however not feasi-
ble and should not be considered when trying to construct a solution. To filter
those out and thus reduce the complexity of the problem we used the three con-
strains on feasibility presented above, which results in the following reduction
rules for arc (ij), ∀(ij)∈ A.

15.2.4.2 Reduction 1

Unless at least one path connecting node i with node j and the workplace can meet
the latest arrival time of i or of j, arc (ij) can be removed from A.

15.2.4.3 Reduction 2

Unless at least one path connecting node i with node j and the workplace can meet
the maximum driving time of i, arc (ij) can be removed from A.

15.2.5 Lower bounds

Different lower bounds can be derived from the presented formulations.
Two simple bounds can be derived from formulation LCPP following the ob-

servation that

∑ ∑∑ ∑
∑ ∑

∈ ∈∈∈
∈

∈ ∈

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
≥

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

K CK
C

C

k Aij

hk
ijij

hk
i

ik

h Aij

hk
ijij

xcminmin
y

xc

min

)(

)(
(15.23)

By making this substitution in the objective function, two computationally effi-
cient bounds can be derived as follows.

15.2.5.1 Lower bound LB1

We relax path time constraints (15.7) (thus all constraints (15.8) through (15.11)),
capacity (15.6) and connectivity (15.4).
LB1 is the cost of the least cost partial graph where:

• at most 2 arcs are incident to each client;
• at most n arcs are incident to the workplace.

This problem can be solved, with minor modifications, as a balanced transporta-
tion problem.



420 15 An ANTS Heuristic for the Long - Term Car Pooling Problem

15.2.5.2 .Lower bound LB2

We relax time constraints (15.7) (thus all constraints (15.8) through (15.12)), ca-
pacity (15.6) and max-degree constraints (15.3). Degree constraints can be later
reintroduced in a Lagrangean fashion.
Lower bound LB2 is the cost of a minimum spanning arborescence rooted at the
workplace, obtained using as cost associated with the arcs the reduced costs pro-
duced by lower bound LB1.

15.3 The ANTS metaheuristic

ANTS (an acronym of Approximated Non-deterministic Tree Search) is an exten-
sion of the Ant System proposed in [10], and described in the ACO chapter of this
collection, which specifies some underdefined elements of the original algorithm,
such as the attractiveness function to use or the initialization of the trail distribu-
tion. This turns out to be a variation of the general ACO framework that makes the
resulting algorithm similar in structure to tree search algorithms. In this paper we
assume that the reader is already familiar with the general ACO structure, and in
particular, with the Ant System algorithm. We refer the reader to the ACO chapter
and to [4] and [12] for details on these algorithms. In fact, the essential trait which
distinguishes ANTS from a tree search algorithm is the lack of a complete back-
tracking mechanism, which is substituted by a probabilistic one, hence the name.
In the following, we will outline two distinctive elements of the ANTS paradigm
within the ACO framework, namely the attractiveness function and the trail updat-
ing mechanism. See [11] and [12] for a more detailed discussion.
In ACO and ANTS alike an ant is defined to be a simple computational agent,
which iteratively constructs a solution for the problem to solve. Partial problem
solutions are seen as states; each ant moves from state ι to state ψ, corresponding

to a more complete partial solution. At each step σ, each ant k computes a set Ak
σ  

of feasible expansions to its current state, and moves to one of these in probability.

For ant k, the probability pk
ι ψ of moving from state ι to state ψ depends on the

combination of two values:

i) the attractiveness η of the move, as computed by some heuristic indicating the
a priori desirability of that move. Specifically, a variable ηιψ quantifies the at-

tractiveness of moving from state ι to state ψ.

ii) the trail level τ of the move, indicating how proficient it has been in the past to

make that particular move: it represents therefore an a posteriori indication of
the desirability of that move. Specifically, a variable τιψ quantifies the past

proficiency of moving from state ι to state ψ.



15.3 The ANTS metaheuristic 421

The elements where ANTS essentially differs from general ACO are in how to
compute attractiveness and trail levels.

15.3.1 Attractiveness

The attractiveness of a move can be effectively estimated by means of lower
bounds (upper bounds in case of maximization problems) to the cost of the com-
pletion of a partial solution. In fact, if a state corresponds to a partial problem so-
lution it is possible to compute a lower bound to the cost of a complete solution
containing it. Therefore, for each feasible move (ιψ), it is possible to compute the
lower bound to the cost of a complete solution containing ψ: the lower the bound
the better the move. Since large part of research in combinatorial optimization is
devoted to the identification of tight lower bounds for the different problems of in-
terest, good lower bounds are usually available.

A further advantage of lower bounds is that in many cases the values of the de-
cision variables, as appearing in the bound solution, can be used as an indication
of whether each variable will appear in good solutions. This provides an effective
way for initializing the trail values. For more details see [12].

Notice finally that the attractiveness computed this way corresponds to a look-
ahead procedure, where the cost of the incumbent partial solution is increased by a
quantity depending on the possible future expansions.

15.3.2 Trail update

A good trail updating mechanism avoids stagnation, the undesirable situation in
which all ants repeatedly construct the same solutions making any further explo-
ration in the search process impossible. Stagnation derives from an excessive trail
level on the moves of one solution, and can be observed in advanced phases of the
search process, if parameters are not well tuned to the problem.

The trail updating procedure evaluates each solution against the last k ones
globally constructed by ANTS. As soon as k solutions are available, their moving
average z is computed; each new solution zcurr is compared with z (and then

used to compute the new moving average value). If zcurr is lower than z , the trail

level of the last solution’s moves is increased, otherwise it is decreased. Since, as
in the case of the TSP, a state ι can be represented by the last node i visited by the
ant, and the next state ψ is defined by the solution containing i plus the arc con-
necting i to the new visited node, say j, it is possible to represent states with the
nodes corresponding to the last visited node of the associated partial solution. This
observation is used in formula (15.24), which specifies how trail update is imple-
mented:

⎟
⎠
⎞⎜

⎝
⎛

−
−−⋅=Δ
LBz

LBzcurr
ij 10ττ (15.24)



422 15 An ANTS Heuristic for the Long - Term Car Pooling Problem

where τ0 is a user-defined parameter.

Based on the described elements, the ANTS metaheuristic is the following.

1. compute a (linear) lower bound LB to the problem to solve; 
initialize τij (∀i,j) with the optimal bound variable values; 

2. For k=1,m (m= number of ants) do

repeat

2.1 compute ηij ∀(ij);     
2.2 choose in probability the state to move into;

2.3 append the chosen move to the k-th ant’s tabu list;

until ant k has completed its solution;

2.4 carry the solution to its local optimum;

end for

3. For each ant move (ij)

compute Δτij and update the trace matrix;

4. If not(end_test) goto step 2.

It can be noticed that the general structure of the ANTS algorithm is closely akin
to that of a standard tree-search procedure. At each stage we have in fact a partial
solution which is expanded by branching on all possible offspring; a bound is then
computed for each offspring, possibly fathoming dominated ones. The current par-
tial solution is selected on the basis of lower bound considerations among those
associated to the surviving offspring.

By simply adding backtracking and eliminating the Montecarlo choice of the
node to move to, we revert to a standard branch and bound procedure. An ANTS
code can therefore be easily turned into an exact procedure.

15.4 ANTS approaches for the LCPP

In this section we describe an ANTS procedure for solving the LCPP. To this end,
it is necessary to adapt the general ANTS scheme to the LCPP, specifying two
components: the lower bound to use to compute the η values and the local search
to use at the end of the loop at step 2.

15.4.1 Attractiveness quantification

A valid lower bound for LCPP can be computed in different ways, for example as
the solution of a linear assignment problem or of a minimal spanning tree problem
suitably defined over graph G, as introduced in Section 2. Using different bounds



15.4 ANTS approaches for the LCPP 423

guarantees the possibility of analyzing different aspects of the problem, thus ob-
taining diverse contributions. In the case of linear lower bounds, as the two men-
tioned ones, it is possible to integrate the specific contribution of each single
bound in an additive framework [6], where each successive bound contributes in
refining the estimate of the dual costs associated to the original problem con-
straints, thus of the reduced costs of the problem variables.

The complete attractiveness quantification procedure becomes therefore a pro-
cedure that computes the ηιψ as follows. First, given the partial solution corre-

sponding to state ψ, the corresponding cost zψ is calculated. Then, all nodes al-
ready in ψ and of all arcs incident into them are deleted from the problem graph
G. Finally, a lower bound is computed on the resulting partial subgraph, obtaining
a cost zLB. The attractiveness of the move (ιψ) is then defined to be ηιψ = zψ +

zLB.

15.4.2 Local optimization

The local optimization module makes use of five different neighborhoods of the
current solution, thus it implements a Variable Neighborhood Search procedure,
as proposed in [16]. The overall structure is very simple, as it consists of a main
loop considering each neighborhood in turns. Each neighborhood is used to obtain
its local optimum, then the next neighborhood is considered. The optimization
stops when no neighborhood is capable of improving the current solution.

The five implemented neighborhoods are the following.

1. split(pool1):
Calculate the resulting cost when pooling any number of members of pool1 into
a new pool. If the cost of the two new pools decreases the overall solution cost,
then accept the new solution.

2. merge(pool1, pool2):
Calculate the cost of a pool that contains all members of pool1 and pool2. If the
resulting cost is lower than the sum of the costs of pool1 and pool2, then accept
the new solution.

3. insert(pool1):
Calculate the cost of inserting any pool with only one member into pool1. If the
overall cost decreases, then accept the new solution.

4. swap_1vs1(pool1, pool2):
Calculate the cost of swapping any two members of pool1 and pool2. If the
overall cost decreases, then accept the new solution.

5. swap_1vs0(pool1, pool2):



424 15 An ANTS Heuristic for the Long - Term Car Pooling Problem

Calculate the resulting cost when moving any member from pool1 to pool2. If
the overall cost decreases, then accept the new solution.

Insert is a particular case of merge, but it is considered separately for computa-
tional reasons.

15.5 A DSS for the LCPP

The method described in this paper was designed for actual use in real world set-
tings. To make use practical, the ANTS algorithm was embedded in a decision
support system, whose general architecture is presented in figure 15.3. The archi-
tecture is a standard DSS architecture [14] [19], consisting of a graphical user in-
terface (GUI), a data management subsystem and a model management subsys-
tem.

Fig. 15.3. DSS architecture

In the case of our specific application, the three subsystem were implemented
as follows.

The Model Management subsystem contains two main algorithms: ANTS and a
bucket-based implementation of the Dijkstra’s shortest path algorithm.
Dijkstra is used, once the set of all clients to pool is defined, to identify the short-
est time path between each pair of clients (subject to minor operational con-
straints, such as which types of road to avoid, if any, or maximum global travel
time or distance), and between each client and the workplace. The result of this
computation is stored in a time/distance matrix which will then be used by ANTS.
ANTS uses the matrix defined above, and data about user constraints, in order to
generate the pools.

The Data Management subsystem is implemented by means of a standard rela-
tional DBMS and of spatial management structures. The relevant functionalities



15.5 A DSS for the LCPP 425

were ensured by making use of a Geographic Information System, specifically
ESRI’s ArcView 3.1, which maintains relational tables in .dbf format and spatial
data in shapefile format.
Relational data contains all elements relevant to specify user constraints, plus
some accounting statistics. Spatial data consists of a detailed road map of the re-
gion of interest (a graph of about 150,000 arcs and 120,000 nodes) and of the loca-
tion of clients’houses and of the workplace.

The Graphic User Interface was implemented as a customization of ArcView’s
GUI. It permits to insert all relevant data (or to download them from a company
legacy system, in case they are already present), to access the DBMS and to export
data and import results from the Model Management subsystem. A screenshot of
our GUI is shown in figure 15.4.

Fig. 15.4. The user interface

The only nonstandard characteristic worth mentioning is about data flow. As
shown in Figure 15.3 in fact, there is no direct link between the DBMS and the op-
timization modules, but every communication is mediated by the GUI. This is to
accommodate for data type conversions which increase computational efficiency.
Moreover, there is a (thin) direct link between the user and the DBMS. This is be-
cause the user is assumed to be the system administrator, therefore it is possible
for him to bypass the GUI and work directly on the stored relations.



426 15 An ANTS Heuristic for the Long - Term Car Pooling Problem

15.6 Computational results

This section reports about the computational results obtained by applying ANTS
to different sets of test problems. ANTS was implemented in C, under Microsoft
Visual Studio 6, and all results were obtained running the code on a Windows ME
Pentium III 733 MHz machine equipped with 512 Mb of RAM.

The computational testing was carried out on three sets of structurally different
problem instances, named LCPP, B and I, respectively.

The LCPP instances were originally derived from VRP hard instances pre-
sented in the literature and adapted as DCPP instances [2]. We could use the same
data files used in [2], simply ignoring the additional elements that differentiate
DCPP from LCPP.

The I instances were also used in [2]. These are real-world instances, in that
they are derived by taking random subsets from a big-size case study proposed by
a company in northern Italy.

The B instances were generated by us as follows. We studied the space and
time distribution of clients in the I instances, as a function of the distance from the
workplace and of the distribution of the density of the population in the region,
and designed a sample generator following a gravitational model which produces
instances having the same aggregate distribution found in the I instances. We then
applied this generator to the region around Bologna, in northern Italy. This permits
to obtain instances where the clients are scattered all around the workplace, which
is not the case in the I instances because there the workplace is located close to a
major lake, thus the clients are all on one side of the workplace.

To test the algorithm, we underwent a parameters setting stage. The parameters
to define (see an ACO introduction for those undefined in this paper) are: m, num-
ber of ants in the population, ��������#	���	����������������	�����������
	��#���m-
portance of visibility versus trail. To set them, we arranged a coeteris paribus test

campaign, where the tested values were: m },
3

1
,

6

1
,

20

1
{ nnnn∈ , ��∈{0, 0.05, 0.1}

and ��∈{0, 0.25, 0.5, 0.75, 1}. The tests, whose details can be found in [9] showed

that a promising setting is m = n
6

1
, ������	��������6��1�����
���������rprising that

the best value for �� ��� ��� ���� �����er that the dynamic scaling implemented by
formula (15.24) prevents unlimited accumulation of trail, and in fact makes evapo-
ration non essential.

The algorithm was run three times on each problem instance, each run lasting
1200 seconds. The following tables report the best results obtained by these runs.
In particular, the tables show the following columns (Table-15.1):



15.6 Computational results 427

Table 15.1. The columns in the tables.

prob problem name: the number at the end of the name indicates the number of clients
in the instance;

reduct number of arcs removed by the reduction rules;
Lb1 lower bound LB1;
Lb2 lower bound LB2;
lbzub upper bound provided by the LB2 heuristic;
Tzub cpu time to compute the lower bounds and the LB2 heuristic;
Zub best result produced by ANTS;
Avg average of the best results found in the three runs;
Avgt average of the three CPU times taken to get the results in avg;
Bks best known solution value.

Notice that the results presented in columns bks were themselves obtained by
ANTS. In fact for each problem we kept track of the overall best solution found
obtained trying to solve it (we actually ran the algorithm many times on each
problem: for parameters setting, to test the impact of longer CPU times etc. Most
of the results presented in column bks were obtained by 7200 sec. long runs).

Table 15.2 shows the results obtained on the LCPP instances. On these ficti-
tious problems, the reduction rules often remove about 80% of the arcs, the actual
data ranging from 80.91% in LCPP150 to 55.93% in LCPP120. The lower bounds
are quite poor, but a significant improvement is expected by their combination in
an additive framework, as introduced in Section 15.2.4. However, the indication
they provide is essential for the correct functioning of ANTS. Moreover, they pro-
vide a means to quickly initialize an upper bound, which unfortunately proves to
be of mediocre quality. ANTS itself on the contrary is capable of consistently pro-
ducing good quality solutions.

Table 15.2. ANTS results on the set of LCPP test problems

Prob reduct lb1 lb2 lb zub t zub zub avg avg t bks
Lcpp50 2015 691 939 2458 0.06 1327.50 1327.50 1 1327.50
Lcpp75 4460 734 1209 3718 0.00 1354.00 1354.00 372 1354.00
Lcpp100 8034 770 1425 5098 0.06 1564.43 1567.20 487 1528.27
Lcpp120 8054 469 989 12354 0.06 2352.98 2388.32 520 1882.72
Lcpp150 18204 921 1733 7524 0.16 2130.00 2136.89 493 1984.92
Lcpp170a 17475 843 1724 15738 0.22 3348.58 3388.20 161 2863.08
Lcpp170b 19966 920 1687 12652 0.16 3032.88 3075.47 377 2703.07
Lcpp195 22916 956 1921 17966 0.22 3725.47 3768.68 707 3140.93
Lcpp199 31787 1032 1995 9822 0.22 2657.92 2672.64 155 2507.30
Lcpp225 40828 1137 2145 11258 0.28 3007.75 3028.11 518 2841.15

Table 15.3 shows the results on what turned out to be the hardest instances. Al-
ready the reduction rules are much less effective than on the LCPP set, being able
to remove from 19.68% of the arcs of B50a to 52.44% of the arcs of B400. This
trend is maintained on all columns, where the lower bounds provide comparatively
lower values and the upper bounds comparatively worse values than in the LCPP



428 15 An ANTS Heuristic for the Long - Term Car Pooling Problem

case. Also ANTS suffers on some instances, even though usually the distance be-
tween best known solution and best ANTS solution (often obtained in one fourth
of the cpu time) is not great.

Table 15.3. ANTS results on the set of B test problems

prob reduct lb1 lb2 lb zub t zub zub avg avg t bks
B50a 492 685 901 3754 0.00 1128.32 1136.39 353 1106.25
B50b 569 679 857 3790 0.05 1222.43 1222.92 404 1181.42
B50c 577 606 690 3944 0.00 1140.10 1143.27 242 1072.38
B75a 2268 719 948 5608 0.00 1476.67 1499.04 450 1426.40
B75b 2342 589 1012 5682 0.00 1518.35 1530.93 432 1398.95
B75c 2535 989 1230 5732 0.05 1745.00 1750.42 432 1658.43
B100a 4561 901 1384 7434 0.06 2153.07 2153.89 201 2012.67
B100b 4578 1020 1287 7376 0.06 2083.47 2091.90 632 1920.13
B100c 5060 1034 1286 7474 0.11 2246.50 2255.87 372 2090.77
B150a 11252 1440 1746 11288 0.11 3144.28 3153.75 134 2838.42
B150b 10381 1001 1569 11018 0.11 2895.38 2903.94 602 2528.67
B200a 20950 1966 2441 15530 0.22 4669.90 4676.71 822 4161.33
B200b 19633 1852 2292 15218 0.27 4218.73 4266.25 558 3795.98
B250 32703 2121 2854 19124 0.39 5233.03 5259.63 550 3852.60
B300 45870 1927 2996 22492 0.49 5702.13 5712.11 894 4848.98
B400 83903 2456 3410 30342 0.98 7906.56 7906.56 78 6642.48

Table 15.4 shows the results on the only real-world data we could use. It ap-
pears that the difficulty of these instances is more similar to that of the LCPP set
than to that of the B set.

Table 15.4. ANTS results on the set of I test problems

prob reduct lb1 lb2 lb zub t zub zub avg avg t bks
I50a 1507 331 388 1134 0.00 532.95 532.95 432 532.95
I50b 1581 296 365 1138 0.00 458.65 458.67 248 458.65
I50c 1541 335 407 1152 0.06 569.23 569.23 277 569.23
I75a 4319 474 514 1500 0.05 696.97 696.97 405 696.97
I75b 4409 529 556 1504 0.06 814.18 814.18 56 805.28
I75c 4278 469 544 1530 0.00 657.37 657.37 614 657.37
I100a 8321 609 685 2078 0.06 855.35 858.88 714 849.10
I100b 8300 578 652 2058 0.11 901.20 904.29 224 891.17
I100c 8065 581 715 2094 0.05 878.20 881.65 696 877.43
I150A 18933 856 1046 3352 0.17 3144.28 3144.28 291 1320.68
I150B 19023 863 1010 3314 0.16 1360.50 1360.50 3 1288.60
I200A 34170 995 1354 4560 0.27 1737.46 1737.46 6 1609.52
I200B 34328 1112 1430 4568 0.22 1893.98 1893.98 7 1779.02
I250 53759 1367 1898 6202 0.44 2479.92 2479.92 10 2286.57
I300 76360 1498 2110 7564 0.61 2754.07 2754.07 19 2636.50
I400 136101 1868 2666 10024 1.26 3603.48 3603.48 32 3253.35

Again, the reduction rules are able to often remove more than 80% of the arcs
(85.43 in the case of I200a) and the quality of lower and upper bounds improves.



15.7 Conclusions 429

Most significantly, the quality of the best ANTS solution is never too far from the
best known solution. Notice how the best ANTS solution for the bigger instance is
usually obtained in the earliest stages of the search process. This indicates that the
allowed CPU time was not sufficient to permit an identification of an effective
trail distribution, thus the randomization mechanism implemented within ANTS
still worked as a diversification procedure, preventing the (premature) focusing on
a specific subspace.

15.7 Conclusions

This paper presented an application of an ANTS metaheuristic to the Long-term
Car Pooling Problem, with the objective of maximizing the size of user pools and
of minimizing the cost of the paths to be driven by the drivers.

We presented two different mathematical formulations of the problem, and we
used them to derive lower bounds to the cost of an optimal solution of the prob-
lem. These lower bounds, albeit rather loose, provide the basis for the definition of
an ANTS approach to the LCPP. Further components of the algorithm include an
effective local search procedure, in this case implemented as a variable neighbor-
hood local search, and reduction rules to a priori reduce the search space.

The algorithm presented represents the first attempt to use acknowledged opti-
mization techniques for solving the LCPP, thus we had to define also a representa-
tive problem base for testing. To this end, we adapted two testsets originally pro-
posed for a similar problem, the Daily Car Pooling Problem, consisting of some
real world instances and of adaptations of VRP instances very well-known in the
literature. Moreover, we generated some new instances using a detailed road map
and a gravitational model for user distribution defined after the real world case.

The computational results are interesting, even though we can reliably compare
the ANTS results only against themselves: the lower bounds are in fact still loose
and the initialization heuristic is not effective.

Our research effort on LCPP is however still ongoing. We are currently work-
ing trying to combine the two lower bounds presented in an additive framework,
and to use the resulting bound as an initialization of a dual-based procedure for
formulation SP. This should provide an effective lower bound. Moreover, we are
implementing an exact procedure to assess the distance from optimality, at least
for the smallest problems, and we are modifying the local search procedure in or-
der to obtain a tabu search and other local descent based heuristics to be used for
comparison.



430 References

References

1. Valley Metro Regional Public Transportation Authority.
http://www.valleymetro.maricopa.gov/Rideshare/index.html, 2000.

2. R. Baldacci, V. Maniezzo, and A. Mingozzi. An exact algorithm for the car pooling
problem. In Proceedings of CASPT - 2000, 8th International Conference "Computer-
Aided Scheduling of Public Transport", 2000.

3. ATC Corporate. http://www.intelitran.com, 2000.
4. M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: optimization by a colony of

cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics-Part B,
26(1):29–41, 1996.

5. D.Vigo. Heuristic approaches for the car pooling problem. Technical Report DEIS - OR
- 00 - 02, University of Bologna, Italy, 2000.

6. M. Fischetti and P. Toth. An additive bounding procedure for combinatorial optimiza-
tion problems. Operations Research, 37, 1989.

7. Telematics for car pooling. http://195.65.25.24, 1999.
8. The New South Wales Government. http://www.rta.nsw.gov.au./index.htm, 1999.
9. H. Hildmann. An ants metaheuristic to solve car pooling problems. M.Sc. AI thesis,

University of Amsterdam, Faculty of Science, Department of Artificial Intelligence,
2001.

10. V. Maniezzo. Exact and approximate nondeterministic tree-search procedures for the
quadratic assignment problem. INFORMS Journal on Computing, 11(4):358 – 369,
1999.

11. V. Maniezzo and A. Carbonaro. An ants heuristic for the frequency assignment prob-
lem. In Proceedings of MIC’99, 1999.

12. V. Maniezzo and A. Carbonaro. Ant Colony Optimization: an Overview, volume Re-
cent Advances in Metaheuristics. Kluwer, 2001.

13. V. Maniezzo, A. Carbonaro, D. Vigo, and H. Hildmann. An ants algorithm for the car
pooling problem. In Proceedings of ANTS’2000, 2nd International Conference "Ant
Colony Optimization", 2000.

14. V. Maniezzo, Mendes I., and Paruccini M. Decision support for siting problems. Int.
Journal of Decision Support Systems, 23:273 – 284, 1998.

15. A. Mingozzi, R. Baldacci, and V. Maniezzo. Lagrangean column generation for the car
pooling problem. Technical Report WP-CO0002, University of Bologna, S.I., Cesena,
Italy, 2000 (Operations Research, to appear).

16. N. Mladenovic and P. Hansen. Variable Neighborhood Search, volume Recent Ad-
vances in Metaheuristics. Kluwer, 2001.

17. Land of Sky Regional Council. Commute connections project report., 1999.
18. Inc. Trapeze Software Group. http://www.trapezesoftware.com, 2001.
19. E. Turban. Decision support and expert systems. Macmillan Publishing Company,

1990.



16 Genetic Algorithms in Irrigation Planning: A
Case Study of Sri Ram Sagar Project, India

K Srinivasa Raju and D Nagesh Kumar

Abstract

The present study deals with application of Genetic Algorithms (GA) in the field of irriga-
tion planning. The GA technique is used to achieve efficient operating policy with the ob-
jective of maximum net benefits for the case study of Sri Ram Sagar Project, Andhra
Pradesh, India. Constraints include continuity equation, land and water requirements, crop
diversification considerations, and restrictions on storage capacities. Penalty function ap-
proach is used to convert constrained problem into unconstrained one. For fixing GA pa-
rameters, namely, crossover and mutation probabilities, the model is run for 7 values of
crossover and 6 values of mutation probabilities. It is found that appropriate parameters
such as number of generations, population size, crossover probability, and mutation prob-
ability are 200, 50, 0.6 and 0.01 respectively for the present study. Maximum benefits ob-
tained by LP solution is 2.4893 Billion Rupees where as these are 2.3903 Billion Rupees by
GA (with a fitness function value of 2.3678 Billion Rupees). Results obtained by GA are
compared with Linear Programming solution and found to be reasonably close.

Keywords: Genetic Algorithms, Irrigation Planning, Linear Programming, Sri Ram Sagar
Project, India

16.1 Introduction

Many real world problems involve two types of problem difficulties i.e., multiple,
conflicting objectives (instead of a single optimal solution, competing goals give
rise to a set of compromise solutions denoted as pareto-optimal) and a highly
complex search space which is difficult to be solved by exact methods. Thus effi-
cient optimization strategies are required that can deal with both difficulties. Ge-
netic Algorithms (GA) possess several characteristics that are desirable for this
type of problems and make them preferable to classical optimization methods.
Goldberg (1989) described the nature of genetic algorithms of choice by combin-

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



432 16 Genetic Algorithms in Irrigation Planning: A Case Study of Sri Ram Sagar
Project, India

ing a Darwinian survival of the fittest procedure with a structured, but random-
ized, information exchange to form a canonical search procedure that is capable of
addressing a broad spectrum of problems. Genetic Algorithms are search proce-
dures based on the mechanics of natural genetics and natural selection. They com-
bine the concept of artificial survival of fittest with genetic operators abstracted
from nature to form a robust search mechanism. Goldberg (1989) identified the
following significant differences between GAs and more traditional optimization
methods:
• GAs work with a coding of the parameter set, not with the parameters them-

selves.
• GAs search from a population of points, not a single point.
• GAs use objective function information, not derivatives or other auxiliary

knowledge.
• GAs use probabilistic transitions rules, not deterministic rules.

16.1.1 Working Principle of Genetic Algorithms

Any nonlinear optimization problem without constraints is solved using Genetic
Algorithms involving basically three tasks, namely, Coding, Fitness evaluation
and Genetic operation. First of all, decision variables are identified for the given
optimization problem. These decision variables are coded into some string like
structures. For coding the decision variables, binary coding is used. This coded
string is called Chromosome. The length of chromosome depends on the desired
accuracy of the solution. It is not necessary to code all the decision variables in the
same sub string length.

Fitness function is first derived from objective function and is used in succes-
sive genetic operations. Genetic operators require that the fitness function should
be nonnegative. If the problem is of maximization, fitness function is taken as di-
rectly proportional to the objective function. The fitness function value of a string
is known as the string’s fitness.

Once the fitness of each string is evaluated, the population is operated by three
common operators for creating new population of points. They are reproduction,
crossover and mutation. Reproduction selects good strings in a population and
forms a mating pool. In this paper Roulette wheel simulation is used for the selec-
tion of good strings. In crossover operator, two strings are picked from the mating
pool at random and some portions of the strings are exchanged between the
strings. A single point crossover operation is performed by randomly choosing a
crossing site along the string and by exchanging all bits on the right side of the
crossing site. The mutation operator changes 1 to 0 and 0 to 1 with a small muta-
tion probability, pm, within the string. Mutation creates points in the neighborhood
of the current point, which help in local search around the current solution. It is
also used to maintain diversity in the population.

The newly created population using the above operators is further evaluated
and tested for termination. If the termination criterion is not met, the population is



433

iteratively operated by the above three mentioned GA operators and evaluated.
This process is continued until termination criterion is met. One cycle of these
operations and the subsequent evaluation procedure is known as a generation. The
constrained problem, if any, is converted into unconstrained problem by using
penalty function method. In this process, the solution falling outside the restricted
solution region is considered at a very high penalty. This penalty forces the solu-
tion to adjust itself in such a way that after some generations it will fall into re-
stricted solution space. In penalty function method a penalty term, corresponding
to the constraint violation is added to the objective function. Generally bracket op-
erator penalty term is used.

2

1

)()( j

k

j
ji xfF φδ∑

=

∈+= (16.1)

Where Fi is fitness value, f(x) is objective function value, k is total numbers of
constraints, ∈ is -1 for maximization and +1 for minimization,

jδ is penalty co-

efficient and
jφ is amount of violation. Once the problem is converted into uncon-

strained problem, the rest of the procedure remains the same. Excellent description
of Genetic Algorithms is given by Deb (1995, 1999).

16.1.2 Necessity of Mathematical Modeling in Irrigation Planning

Need for efficient integrated management of an irrigation system is keenly felt due
to growing demand for agricultural products, escalating cost of supplying water to
farmer’s fields and stochastic nature of water resources. Due to dwindling supply
of irrigation water the profit conscious irrigators wish to so allocate the water as to
maximize the net benefits with competing alternative crops. Investor’s choice is
further complicated by the fact that the allocation of water is required to be opti-
mized over time, among the crops and also among the competing units of the same
crop simultaneously. To meet the requirements, mathematical models and irriga-
tion management methodologies are essential for optimum command area plan-
ning. In the present study, the concept of Genetic algorithms and irrigation plan-
ning problem are integrated for the case study of Sri Ram Sagar Project, Andhra
Pradesh, India. The study is divided into four sections. Section 16.2 gives a brief
literature review. Section 16.3 describes the case study followed by mathematical
modeling. Section 16.4 analyses results obtained from mathematical model. Sec-
tion 16.5 gives conclusions followed by references.

16.2 Literature Review

Various authors reported applications of various models in irrigation planning
which are explained in brief. Lakshmi Narayana and Rajagopalan (1977) used
Linear Programming (LP) model for maximizing the irrigation benefits for Bari



434 16 Genetic Algorithms in Irrigation Planning: A Case Study of Sri Ram Sagar
Project, India

Doab basin in North India. Sensitivity analysis on the tube well capacity, the area
available for irrigation, the operation costs for canals and tube wells etc., are also
carried out. Loucks et al. (1981) discussed in detail the micro level irrigation plan-
ning with a detailed example. Multiobjective analysis is also reported in their stud-
ies. Irrigation planning studies using LP are reported by Maji and Heady (1980),
Tandaveswara et al. (1992), Garg and Ali (1998). Srinivasa Raju and Nagesh
Kumar (1999) proposed a crop-planning model with the objective of maximizing
irrigation benefits for a typical irrigation system. Vedula and Nagesh Kumar
(1996) developed an integrated model for irrigation planning for a reservoir sys-
tem in Karnataka, India. Sabu Paul et al. (2000) proposed a multilevel approach
based on stochastic dynamic programming for irrigation planning in Punjab, India.
Kuo et al (2000) used Genetic Algorithm based model for irrigation project plan-
ning for a case study of Delta, Utah with the objective of maximization of net eco-
nomic benefits for a culturable command area of 394.6 ha. They identified the op-
timum number of generations, population, crossover and mutation probabilities as
200, 50, 0.6 and 0.02 respectively. The present study deviates at least in two as-
pects (1) this study uses GA model for irrigation planning in Indian context. (2) A
comparison is made between the solution obtained from GA model and that ob-
tained by Linear Programming model.

16.3 Irrigation System and Mathematical Modeling

Sri Ram Sagar Project (SRSP) is a state sector major irrigation project located in
Godavari River basin in Andhra Pradesh, India. Its head works are located in
Pochampadu village in Nizamabad district of Andhra Pradesh at 18058’ N latitude
and 70020’ E longitude. Salient features of Sri Ram Sagar project are presented in
Table 16.1. Location map of SRSP is presented in Fig 16.1.

Table 16.1. Salient Features of Sri Ram Sagar Project

Item Value
Type of Dam Gravity
Length of Earth Dam 13.640 km
Length of Masonry Dam 0.958 km
Total Length of Dam 14.598 km
Maximum height of Masonry Dam 42.67 m
Gross Storage Capacity 3173 Mm3

Full Reservoir Level (FRL) 332.5 m
Water Spread Area at FRL 434.8 Mm3

Design flood Discharge 45300 cumecs
Culturable Command Area (stage 1) 1,78,100 ha



435

Fig 16.1. Location Map of Sri Ram Sagar Project

The climate of the area is subtropical and semi-arid. There is an extreme varia-
tion in temperature with average maximum and minimum values of 42.20 C and
28.60 C. The average relative humidity for the period from July to September re-
mains above 80% whereas for April to June it is 65%. The evaporation loss varies
from 124.3 mm in October to 386.3 mm in April. Rainfall is the primary source of
water. The average rainfall of the study area is 944 mm out of which 800 mm falls
during June to October. The culturable command area (CCA) of the project
(stage 1) is 178,100 ha. Crops grown in the command area are Paddy (rice), Sor-
ghum, Maize, Groundnut, Chillies and Sugarcane in both summer (Kharif) and
winter (Rabi) seasons.

Mathematical modelling of the objective function with the corresponding con-
straints is explained below. The net benefits (BE) under different crops from
command area of SRSP are to be maximized. Mathematically it can be expressed
as

i
i

i ABBE ∑
=

=
10

1

(16.2)

Where i = Crop index [1 = Paddy (S), 2=Maize (S), 3= Sorghum (S),
4=Groundnut (S), 5=Paddy (W), 6= Maize (W), 7=Sorghum (W), 8=Groundnut
(W), 9= Chilies (TS), 10=Sugarcane (P)].
S = Summer, W = Winter, TS =Two season, P = Perennial, t = Time index
(1=January, ....., 12=December). BE = Net benefits from the whole planning re-
gion (Indian Rupees); Bi = Net benefits from the crops (excluding costs of water,

fertilizers, labour employment etc) in Indian Rupees per hectare; Ai = Area of

crop i grown in the command area (ha).



436 16 Genetic Algorithms in Irrigation Planning: A Case Study of Sri Ram Sagar
Project, India

The model is subject to the following constraints.

16.3.1 Continuity equation

Reservoir operation includes water transfer, storage, inflow and spillage activities.
Water transfer activities consider transport of water from the reservoir to the pro-
ducing areas through canals to meet the water needs. A monthly continuity equa-

tion for the reservoir storage (Mm3) (neglecting evaporation and other losses) can
be expressed as

12,.......2,1;1 =−+=+ tRISS tttt (16.3)

Where S t+1 = Reservoir storage in the reservoir at the end of month t (Mm3);

It = Monthly net inflows into the reservoir (Mm3); Rt = Monthly releases from

reservoir (Mm3).

16.3.2 Crop area restrictions

The total cropped area allocated for different crops in the command area in a par-
ticular season should be less than or equal to the Culturable Command Area
(CCA).

CCAA
i

i ≤∑ i = 1, 2, 3, 4, 9, 10 Summer season (16.4)

CCAA
i

i ≤∑ ; i = 5, 6, 7, 8, 9, 10 Winter season (16.5)

Where CCA = Culturable Command area (Ha). Crops of two seasons, namely,
Chillies and Sugarcane (indices 9 and 10) are included in both the equations be-
cause they occupy the land in both the seasons.

16.3.3 Crop water diversions

Crop water diversions for crop i in month t (CWRit ) are obtained from the project

reports. During the absence of any crop activity, CWRit is taken as zero. Total wa-

ter releases from Sri Ram Sagar reservoir must satisfy the irrigation demands of
the region.

12;......2,1;0
10

1

12

1

=≤−∑∑
==

tRACWR ti
i

it
t

(16.6)

Where CWRit= Crop water diversions for crop i in month t (meters)



437

16.3.4 Canal capacity restrictions

Releases from reservoirs cannot exceed the canal capacity.

12,.........2,1; =≤ tCCRt (16.7)

The maximum volume of water the canal can transport each month is calculated as
CC = 0.0864 x 30.4 x (canal capacity in cumecs)

16.3.5 Live storage restrictions

Reservoir storage volume St in any month t must be less than or equal to the

maximum live storage capacity of the reservoir.

12..,..........1,2,t;LSP =≤tS (16.8)

Where LSP= Maximum live storage capacity of Sri Ram Sagar reservoir (Mm3)

16.3.6 Crop diversification considerations

Since the command area lies in a region, which predominantly depends on agricul-
tural economy, the planners want to ensure production of certain cash crops in ad-
dition to food crops. The targets are based on the existing cropping pattern.

10,.........2,1;min. =≥ iAA ii (16.9)

10,.........2,1;max. =< iAA ii (16.10)

Where Ai.min and Ai.max are minimum and maximum allowable limits of the area
under crops. All the above information including inflows are obtained from re-
ports and from discussion with officials of the project. Additional information is
also obtained from agricultural department and Marketing society etc.

16.4 Results and Discussion

Penalty function approach is used to convert constrained problem into uncon-
strained problem with a reasonable penalty function value. For fixing the GA pa-
rameters, namely, crossover and mutation probabilities, the model is run for dif-
ferent values of crossover and mutation probabilities. Seven values of crossover
probability i.e., 0.6, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0 and six values of mutation prob-
abilities i.e., 0.01, 0.03, 0.05, 0.07, 0.1, 0.12 are chosen with a population size of
50 and maximum number of generations 200. Fig 16.2 presents maximum fitness



438 16 Genetic Algorithms in Irrigation Planning: A Case Study of Sri Ram Sagar
Project, India

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Crossover Probability

F
it

n
es

s 
F

u
n

ct
io

n
 (

 B
ill

io
n

 R
s.

)
Mutation probability 0.01 Mutation probability 0.03
Mutation probability 0.05 Mutation probability 0.07
Mutation probability 0.1 Mutation probability 0.12

Fig 16.2. Comparison of Fitness Function Values for Various Crossover and Mutation
Probabilities

function values for above mutation and crossover probabilities. Results obtained
are compared in terms of total fitness function values in Fig 16.2 and number of
generations in Fig. 16.3. It is observed from Fig 16.2 that for mutation probability
value of 0.01 and for various crossover probabilities, each solution maintains its
identity by deviating from other sets of solutions. Among these, the maximum fit-
ness function value of 2.3678 Billion Rupees is achieved for crossover probability
value of 0.6 and mutation probability value of 0.01 and this combination is used
for further analysis.

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0 20 40 60 80 100 120 140 160 180 200 220

Generations

F
it

n
es

s 
F

u
n

ct
io

n
 (

B
ill

io
n

 
R

s.
)

Fig 16.3. Comparison of Fitness Function Values for various Generations.



439

Fig 16.3 presents number of generations and corresponding fitness function
values for the above selected probabilities. Maximum fitness function value oc-
curred at generation 192 with a population of 50.

Efforts are also made to compare the solution of Genetic Algorithm (GA) with
Linear Programming (LP) algorithm. Table 16.2 presents cropping pattern ob-
tained by both the methods, which are self-explanatory.

Table 16.2. Crop Plans from the Planning Model for Maximization of Net Benefits

Solution fromS .No. Crops and related
parameters

Unit
GA LP

% deviation between
GA and LP

1 Paddy (s) 1000ha 29.43 30.00 1.90
2 Maize (s) 1000ha 29.37 30.00 2.10
3 Sorghum (s) 1000ha 49.71 50.00 0.58
4 Groundnut (s) 1000ha 8.950 9.000 0.55
5 Paddy (w) 1000ha 21.71 22.00 1.32
6 Maize (w) 1000ha 27.38 30.00 8.73
7 Sorghum (w) 1000ha 42.11 50.00 15.7
8 Groundnut (w) 1000ha 9.831 10.00 1.70
9 Chillies (ts) 1000ha 6.130 6.200 1.13
10 Sugarcane (ts) 1000ha 8.140 8.200 0.73

Irrigated area 1000ha 247.0 259.8 4.92
Net Benefits Billion Rs. 2.3903 2.4893 3.97

s = Summer; w = Winter; ts=Two season

It is observed from Table 16.2 that maximum percentage crop acreage devia-
tion of 15.78 and 8.73 occurs for Sorghum (w) and Maize (w) when comparing so-
lution of LP with GA where as these are 1.9 % and 2.1% for Paddy (s) and Maize
(s). Maximum benefits obtained by LP solution is 2.4893 Billion Rupees where as
these are 2.3903 Billion Rupees by GA (with a fitness function value of 2.3678
Billion Rupees). Irrigated area and net benefits are deviated by 4.92% and 3.97%
as compared to LP solution. Fig 16.4 presents graphical representation of crop
acreages. Fig 16.5 presents release policy obtained by both the methods. It is ob-
served that LP solution yields more releases in the months of January, February,
May, August and September and releases obtained by the solution of GA is more
for other months.



440 16 Genetic Algorithms in Irrigation Planning: A Case Study of Sri Ram Sagar
Project, India

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10

Crops

A
cr

ea
g

es
 (

 ’0
0 

h
a 

)

GA LP

Fig 16.4. Comparison of Cropping Pattern

0

100

200

300

400

500

600

0 1 2 3 4 5 6 7 8 9 10 11 12

Months

R
el

ea
se

s 
(M

.C
u

.m
)

GA LP

Fig 16.5. Comparison of Monthly Release



441

Fig 16.6 presents storage policy for the reservoir as obtained by both the meth-
ods. It is observed that reservoir reaches zero storage in the month of June and
July as observed from the solution of LP whereas these are 49.46 and 782.40 as
observed with GA solution. It is observed from above analysis and results that so-
lutions obtained by both GA and LP are reasonably close. However, the solution
obtained by GA for irrigation planning problem is to be further refined and inves-
tigated for number of factors such as penalty function values, efficient selection of
mutation and crossover probabilities, generation and population which are targeted
for further study.

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6 7 8 9 10 11 12

Months

S
to

ra
g

es
 (

M
.C

u
.m

)

GA LP

Fig 16.6. Comparison of Monthly Storage

16.5 Conclusions

The present study develops a GA based mathematical model for thecase study of
Sri Ram Sagar Project, Andhra Pradesh, India for optimising net benefits from an
irrigation system with the constraints such as continuity equation, land and water
requirements, crop diversification considerations, canal capacity and storage re-
strictions. The results obtained from the GA model are compared with those ob-
tained from Linear Programming optimisation model. The observations from the
above study are as follows.
1. Maximum benefits obtained by LP solution is 2.4893 Billion Rupees where as

these are 2.3903 Billion Rupees by GA (with a fitness function value of 2.3678
Billion Rupees).



442 16 Genetic Algorithms in Irrigation Planning: A Case Study of Sri Ram Sagar
Project, India

2. It is observed that solutions obtained by both GA and LP are reasonably close.
Irrigated area and net benefits obtained by GA are deviated by 4.92% and
3.97% as compared to LP solution.

3. Appropriate GA parameters identified from this study are: Number of genera-
tions =200, Population size=50, Crossover probability =0.6 and Mutation Prob-
ability=0.01.



443

References

Deb K (1996) Optimization for engineering design: algorithms and examples, Prentice Hall
of India, New Delhi.

Deb K (1999) An introduction to genetic Algorithms. Sadhana 24: 293-315
Garg NK, Ali A (1998) Two level optimization model for lower Indus basin. Agricultural

Water Management 36: 1-20
Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning,

Addison-Wesley.
Kuo SF, Merkley GP, Liu CW (2000) Decision support for irrigation project planning using

a genetic algorithm. Agricultural Water Management 45: 243-266
Lakshminarayana V, Rajagopalan P (1977) Optimal cropping pattern for basin in India.

Journal of Irrigation and Drainage Engineering, ASCE 103 : 53-70
Loucks DP, Stedinger JR, Haith DA (1981) Water resources systems planning and analysis,

Prentice-Hall, New Jersey.
Maji CC, Heady EO (1980) Optimal reservoir management and crop planning using deter-

ministic and stochastic inflows. Water Resources Bulletin 16: 438-443
Sabu Paul, Panda SN, Nagesh Kumar D (2000) Optimal irrigation planning - A multilevel

approach. Journal of Irrigation and Drainage Engineering, ASCE 126 : 149-156
Srinivasa Raju K, Nagesh Kumar D (1999) Multicriterion decision making in irrigation de-

velopment strategies. Journal of Agricultural Systems 62: 117-129
Tandaveswara BS, Srinivasan K, Amarendra Babu N, Ramesh, S.K. (1992) Modelling an

over developed irrigation systems in south India. International Journal of Water Re-
sources Development 8: 17-29

Vedula S, Nagesh Kumar D (1996) An integrated model for optimal reservoir operation for
irrigation of multiple crops. Water Resources Research 34 : 1101-1108



17 Optimization of Helical Antenna
Electromagnetic Pattern Field

Ivan Zelinka

17.1 Introduction

Antennas and antenna systems play important role in today’s communication
technologies. Their use is thus vitally important for communication as well as for
everything related to communication. These systems contain a rich set of antennas
such as parabolic, linear, helical, etc. Each type of antenna usually has specific
properties, which predestine the given antenna to the specific problems in the
communication. This chapter will focus attention on helical antenna electro-
magnetic pattern fields designed to demonstrate the use and performance of the
SOMA algorithm. It will also compare results obtained from a differential evolu-
tion (DE).

17.2 Problem description

This application of the SOMA algorithm is focused on the optimization of the
helical antenna electromagnetic pattern field. Examples of problems about anten-
nas, construction and their use can be for example found in [1] – [8]. The main
aim of optimizations here is to find such parameters of construction, which satisfy
“attributes“ the electromagnetic field of a helical antenna is focused in one direc-
tion with a minimum of secondary “dew-lap”. The principle of the helical antenna
is depicted in Fig. 17.1. The parameters of the antenna, which were optimized
here, are described in 17.1.

Table 17.1. Optimized parameters

Parameters Interval of optimization Description
�

<1 o, 80 o> raising angle
n <1, 100> number of coils

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



446 17 Optimization of Helical Antenna Electromagnetic Pattern Field

Both parameters determine the quality of the final shape of the optimized elec-
tro-magnetic field.

Principle of helical antenna…

…and its real example

Fig. 17.1. Helical antenna – basic principle and its realization (© - [3]). The main dew-lap
of the electromagnetic field is along the main spiral axe

The cost function, which determines the final shape of the antenna electromag-
netic field, is given by 17.1 [9].

>∈<

−−−

−−−−
= ∑

°≈

°≈=

+

πθ

ππθαπ

ππθαπθπ

θ

�
�

�

� �
�

����� � � � 	 �
 � � ���
�

�
	  � �

� �
�

����� � � � 	 �
 � � ���
�

�
	  � ��� � 	 ��

�
	  � ����� � �� ���

� ���

�

� � �

� � � � �

�
��

�

�
(16.1)

Its minimization should lead to the optimal parameters “n” and “� � "����
Table 17.1). In fact, the optimization of equation (17.1) represents a search for the
global extreme on the hyperplane in 3D. This hyperplane is depicted in Fig. 16.3.
The cost function was designed so that its minimization should produce an an-
tenna pattern as optimal as possible. Optimal here means one “dew-lap” (if possi-
ble) in the main direction of the antenna radiation.

The process of optimization was thus searching for a global extreme on 2D hy-
perplane in 3D space (third dimension was costvalue as it is graphically depicted
in Fig. 17.3. the main aim during this optimization was to minimize the plane of



17.2 Problem description 447

the radiation field in the interval 0.5-5.78 (28º-338º), see Fig. 16.2. Intervals <0,
0.5> and <5.78, 6.28> were excluded from the minimization – maximal values
were allowed in this interval. The main axe of antenna radiation is in this interval,
which in this case is identical with axe “x” (see Fig. 16.2 and
Fig. 16.4). The maximum in this interval <5.78, 0.5> then guarantees a helical an-
tenna with a narrow main dew-lap.

The cost function (16.1) was two-parameters: the parameter “n” (the number of
spirals) and „� � "���� �	����� 	�
���� ���� ����� ������� ���� ���#����� ���� ��5�� ���
gray area from Fig. 17.2. These three numbers can be used to depict the cost func-
tion surface as it is done in Fig 17.3. The optimization process in this example was
focused on a global minimum localization. Its coordinates were then the optimal
parameters of the helical antenna.

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1

Fig. 17.2. Cost function principle. Every point of “z” axis of plane in Fig. 16.3 is the gray
plane depicted here.

The used cost function (16.1) including the original parameter setting was taken
from „Electrical Engineering Toolbox for Mathematica” which is a specialized
tool for electrical engineering in the Mathematica® environment. The shape of the
radiation field is depicted in Fig. 16.4.

From Fig. 16.4 it is clearly visible that the antenna field of radiation is quite
wide with some small and medium sized dew-laps in others quadrants. These sec-
ondary dew-laps (especially in quadrant II and III) do not promote the main dew-
lap and thus are useless. They just consume energy and money. For the minimiza-
tion and contraction (from the sides, the “amplitude” of main dew-lap was con-
served) of the main dew-lap two algorithms- SOMA and DE were used.



448 17 Optimization of Helical Antenna Electromagnetic Pattern Field

20

40

60

80

100

n

20
40

60
80

a°

0

100

200 Cost
Value

0

100

200 Cost
Value

Fig. 17.3. Surface of all possible solutions.

Fig. 17.4. Radiation antenna with original parameters n=12 coils and raising angle � � � � º,
see also Fig. 17.2.

17.3 Simulations

Simulations were done in the Mathematica® environment with C++ code linked
into the Mathematica® like an internal library. On [10] the same code for the DOS
environment is accessible. The optimization was repeated 100 times and was done
by means of algorithms SOMA and DE.

When the SOMA algorithm was used (see all 100 histories on Fig. 16.6), a con-
figuration was found, which is depicted in Fig. 17.5. According to Fig. 16.5,
which is based on optimal parameters, is visible that the main dew-lap including
the secondary dew-laps were narrow, focused in the same direction as the primary
one. The small dew-laps in quadrants II and III can be ignored.



17.3 Simulations 449

Fig. 17.5. Antenna radiation field optimized by algorithm SOMA (n = 99 coils and raising
angle � � � � � � º) and comparison with original dew-lap from Fig. 17.4 with n = 12 coils and
raising angle � � � � º

0 10000 20000 30000 40000 50000 60000 70000
Number of Cost Function Evaluation

5

6

7

8

9

10

ts
oC

eu
la

V

a)

Fig. 17.6. History of 100 times repeated optimization by SOMA.



450 17 Optimization of Helical Antenna Electromagnetic Pattern Field

0 100002000030000400005000060000
Number of CostFunction Evaluation

5

6

7

8

9

t
s
oC

e
u
l
aV

Fig. 17.7. History of 100 times repeated optimization by DE.

In the case of differential evolution the same results were obtained as in the
case of the SOMA algorithm, (see 17.7, 17.8) with only mirror differences (10-2).
From 17.7 it is visible that DE has found the global extreme sooner than SOMA;
however, the faster convergence also means a higher probability that the algorithm
will stop in the local extreme. In contrast the slower convergence means that the
hyperplane was more properly searched (see for example Chapter 7, especially
„Test function – egg holder“, „Rana's function“ and „Pathological function“.).

Fig. 17.8. Antenna radiation field optimized by DE (n = 99 coils and raising angle
� � � 0.5º, the same as in the case of SOMA) and comparison with original dew-lap from
Fig. 16.4.

Each simulation of all 100 took a few seconds on a PC with Pentium III
800 MHz with the parameters described in Table 17.2.



17.4 Software support 451

17.4 Software support

To allow any reader to repeat these simulations including its modifications, a
source code in C++ of this problem was released on the Internet pages, see [10].
The cost function in C++ is described in Table 17.3. The increment “0.01” in the
loop is a sampling of the minimized plane (Fig.17.2) for 0.5º. Basically this loop is
the “Sum” from (17.1). The cost function is in file “Antena.h” (Table 17.3) and
the configuration file (Table 17.2) is „deantena.txt“ or „soantena.txt“ according to
which algorithm was used.

Optimization can be started by DOS command

1. „Aasoma soantena“ – SOMA, strategy AllToAll
2. „Aorsoma soantena“ – SOMA, strategy AllToOne Randomly
3. „Aosoma soantena“ – SOMA, strategy AllToOne
4. „Arsoma soantena“ – SOMA, strategy AllToAll Adaptive
5. „Der1b deantena“ – differential evolution, version DeRand1Bin

After optimization has finished two files will be created with extensions *.HST
and *.OUT. “Soantena” or “deantena” will be found rather than *. In the HST file,
the history of the cost value evolution with its dependence on migration loops (or
generations for DE) is found, and in the OUT file there is a detailed report about
the optimization and its results.

Table 17.2. Initial file „??antena.txt“

deantena.txt Description soantena.txt Description
50
2
1336
.9
.3
0.
100.
0.
0.
6.28
0.

PopSize
Dim
Generations
F
CR
Lo
Hi
Typ (real)
Lo
Hi
Typ (real)

3.
.11
.1
50
2
50
-1.
0.
100.
0.
0.
6.28
0.

PathLength
Step
PRT
PopSize
D
Migrations
MinDiv
Lo
Hi
Typ (real)
Lo
Hi
Typ (real)



452 17 Optimization of Helical Antenna Electromagnetic Pattern Field

Table 17.3. Cost function in C++ (Antena.h)

//Antenna Field Patterns
//For more please see http://www.ft.utb.cz/people/zelinka/soma.htm

double Pi,theta,s,temp,temp1;
int n;

n = getIntPopulation(0,Individual);
s = getPopulation(1,Individual);

temp=temp1=0;
Pi = 3.14159;

for(theta=.5;theta<=5.78;theta=theta+0.01)
{
temp = ((2*Pi)*s*(cos(theta)-1)-2*Pi-Pi/n)/2;

temp1 = temp1 + fabs((pow(-1,(n+1))*sin(Pi/(2*n))*cos(theta)*sin(n*temp))/sin(temp));
}

CostValue = temp1;

More detailed information about SOMA software support on different plat-
forms (DOS, Unix, Mathematica®, Matlab®) and its use is easily accessible on
[10].

17.5 Conclusion

The helical antenna pattern field optimization dealt with here was a rather sim-
ple task. However despite this simplicity, it is visible from Fig. 16.3 that the hy-
perplane, which represents a given problem is quite complicated, and thus the use
of such algorithms as SOMA, DE etc. is well founded. A more important applica-
tion of the antenna pattern field design would be in what is called a “dipoles field”
[11]. In this case the antenna is created by dipoles organized into a matrix field of
dimension N x M. Each dipole can have its own size, orientation, and currency
with different phases and amplitudes. Such a system usually contains hundreds of
variables whose settings influence the optimality of a given antenna system. Such
problems are clearly predestined for evolutionary algorithms.

Acknowledgements

This work was supported by the grant No. MSM 26500014 of the Ministry of
Education of the Czech Republic and by grants of Grant Agency of Czech Repub-
lic GACR 102/03/0070 and GACR 102/02/0204.

Special thanks belong to Jason Hecker [3] for his agreement allowing me to
use pictures in Fig. 16.1 and for additional information about helical antennas.



Acknowledgements 453

References

[1] Bob Atkins KA1GT, Helical Antena Design, The ARRL
UHF/Microwave Experimenters Handbook, ISBN 0-87259-312-6

[2] Karl Rothammel Y21BK, Die Helical-Antenne, Antennenbuch,
Telekosmos Verlag, ISBN 3-440-04791-1

[3] Jason Hecker, How to Make a Simple 2.425GHz Helical Antenna,
http://www.wireless.org.au/~jhecker/helix/helical.html

[4] Salema, C.; Fernandes, C. A.; Jha, R., Solid Dielectric Horn Antennas,
Artech House, Boston, Mar 1998

[5] Fernandes, C. A., "Lens Antennas for mm-W applications", Contribution
in Wireless Flexible Personalised Communications, L. M. Correia (Ed.),
John Wiley & Sons, Mar 2001.

[6] Fernandes, C. A., "Shaped-Beam Antennas", Chapter in Handbook of
Antennas in Wireless Communications, L. Godara (Ed.), CRC Press,
August 2001

[7] Fernandes, C. A., "Complex modes on an Helical Antenna fed by a Cur-
rent Disk", (in Portuguese), Master Thesis, Dep. Electrical and Com-
puter Engineering, IST, Feb. 1985.

[8] Fernandes, C. A., "Radiation from an Helical Antenna fed by Circular
Waveguide", (in Portuguese), Doctor Thesis, Dep. Electrical and Com-
puter Engineering, IST, Nov. 1990.

[9] Electrical Engineering Toolbox for Mathematica, sw tool for Mathe-
matica® environment, see also www.wolfram.com

[10] Articles about SOMA algorithm (source codes, graphics animated gal-
lery, bibliography, see http://www.ft.utb.cz/people/zelinka/soma

[11] )��$���+���(�$��$	�+��� * �*��
�$����	�����$4���#
�	�	�.���
SNTL/Alfa, Praha 1980, ISBN 04-521-80



18 VLSI design: gate matrix layout problem

Pablo Moscato, Alexandre Mendes and Alexandre Linhares

18.1 Introduction

With applications ranging from fields as distinct as fuzzy modeling (Xiong 2001),
autonomous robot behavior (Luk et al. 2001), learning with backpropagation (Foo
et al. 1999), and multicriteria optimization (Viennet et al. 1996), evolutionary
methods have become an indispensable tool for systems scientists. Although al-
ready studied in the past, an interesting emerging issue is the use of multiple popu-
lations, which is gaining increased momentum from the conjunction of two tech-
nologies. On the hardware side, computer networks, multi-processor computers
and distributed processing systems (such as workstations clusters) are increasingly
becoming widespread. Regarding the software issues, the introduction of Parallel
Virtual Machine1 (PVM), and later the Message Passing Interface Standard2

(MPI), as well as web-enabled, object-oriented languages (such as Java3) have also
had their role. Most Evolutionary Algorithms (EAs) are methods that are easy to
parallelize as well as naturally suitable for heterogeneous systems. For most EAs
the distribution of the tasks is relatively easy for most applications. The workload
can be distributed at an individual or a population level; the final choice depend-
ing on the complexity of the computations involved.

The application presented in this chapter is motivated by the availability of
these computer environments. However, here we do not report results on the use
of parallel computers, or networks of workstations. The proposed memetic algo-
rithm (MA) runs in a sequential way on a single processor, but a set of populations
evolve separately, an approach that can be easily mapped to a parallel environ-
ment.

Species evolve naturally grouped in sub-populations, with boundaries defined
by some specific features like distance or geographical barriers. The role of closed
(or nearly closed) populations in biological evolution is extremely important. Con-

1 http://www.csm.ornl.gov/pvm/pvm_home.html
2 http://www-unix.mcs.anl.gov/mpi/
3 JAVA is a general programming language developed by SUN Microsystems.

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



456 18 VLSI design: gate matrix layout problem

sider for instance the Galapagos Islands, an example of notorious inspirational role
for Darwin’s ideas when aboard the HMS Beagle (Darwin 1993). A set of islands
separated by several kilometers of water can be colonized by a single species of
birds. In the beginning of such colonization, all animals will share the same char-
acteristics (and genetic pool), but as evolution takes place, the groups concentrated
in each island will start to differentiate by adapting themselves to the particular
characteristics present in each island (Weiner 1995). This independent adaptation
may eventually lead to having different species after a sufficient number of gen-
erations, given very little or no migration at all exists between the islands. Even if
the islands share the same characteristics, different species might arise, due to the
relative isolation and the genetic drift phenomenon (Weiner 1995).

The genetic drift concept states that if two identical populations are separated
and submitted to equal conditions, due to the random nature of the processes in-
volved in evolution, they may still follow different evolutionary paths and become
different species after a large number of generations. Analogously, it is quite
common in EAs to find that, due to the random nature of the approach, if the same
algorithm is run twice it may generate different final solutions. Usually viewed as
a setback, this characteristic can actually be very useful when multiple populations
are used. With several populations evolving in parallel, larger portions of the
search space can be sampled, and any particularly important new features found
could be spread among them through migration of individuals. This mechanism
makes the parallel search potentially more powerful than single population ap-
proaches (Cantú-Paz 1997, 1999).

18.2 The gate matrix layout problem

The Gate Matrix Layout problem (GMLP) belongs to the NP-hard class (Lengauer
1990; Linhares 1999; Nakatani et al. 1986) and arises in the context of the physi-
cal layout of Very Large Scale Integration (VLSI) systems. Formally we can state
the problem as:

Instance: A matrix M having Boolean coefficients.

Parameter: p > 0, integer.

Question: Is there a permutation of the columns of M so that if in each row we
change to ‘*’ every 0 lying between the row’s leftmost and rightmost 1, then no
column contains more than p 1’s and *’s?

This problem has appeared in the literature in a number of combinatorially
equivalent forms. The form given above was defined in (Lopez and Law 1980). It
has been known as ‘Weinberger arrays’ or ‘PLAs with multiple folding’. The
problem is solvable in O(n) for fixed p (Bodlaender 1993, 1996; Fellows and
Langston 1989).

We can now state the problem in the terms of the familiar VLSI setting. Sup-
pose that there are g gates (they can be described as vertical wires holding transis-



18.2 The gate matrix layout problem 457

tors at specific positions) and n nets (horizontal wires interconnecting all the dis-
tinct gates that share transistors at the same position). As described above, an in-
stance of the GMLP can be represented as 0-1 matrix, with g columns and n rows.
An entry ‘1’ in the position (i, j) means a transistor must be implemented at gate i
and net j; 0 means that no such connection is to be made. The VLSI architecture
requires that all transistors in the same net must be interconnected. Given a spe-
cific gate sequence, whenever two nets overlap, their implementation needs two
separated physical tracks. This superposition of interconnections defines the num-
ber of tracks needed to build the circuit.

Both types of formulation are equivalent. The objective in the GMLP is to find
the minimal p. In other words, is to find a permutation of the g columns so that the
superposition of interconnections is minimal, thus minimizing the number of
tracks and the overall circuit area. The Fig. 18.1 shows a possible solution for an
instance composed of seven gates and five nets, and how to go from the binary
matrix representation to the circuit itself.

Fig. 18.1. The figure shows in clockwise order beginning in the upper-left: An instance ma-
trix; a permutation of the matrix columns (a feasible solution); the correspondent circuit and
the real circuit with only the necessary tracks.

The Fig. 18.1 represents a circuit with seven gates and five nets. Usually, real
circuit matrices are very sparse, like the one in the example. Based on the in-
stance, we created a feasible solution, represented by the columns permutation
(2-4-3-1-5-7-6). The translation from the 0-1 representation into the circuit dia-
gram is very simple. All the values ‘1’ in the same net must be interconnected
(represented by the horizontal lines). In the lower part of this diagram there is the
sum of the transistors in each gate. Finally, the real circuit with only three tracks
remaining, after the transistor-grouping routine was applied, is shown in the
lower-left part of the Fig. 18.1.

For more information on this problem, including other industrial settings in
which it arises, please refer to (Wong et al. 1988; Yanasse 1997; Linhares and Ya-



458 18 VLSI design: gate matrix layout problem

nasse 2002). The reader should be aware that this is not just an ordinary NP-hard
problem: it was in fact one of the first problems identified as being fixed-
parameter tractable, and this result eventually led to the creation of a new, large
class of problems under the label FPT, for fixed parameter tractability (Downey
and Fellows 1995; Fellows and Langston 1987). In the next section we introduce a
new MA for the GMLP.

18.3 The memetic algorithm

Since the publication of John Holland’s book, ‘Adaptation in Natural and Artifi-
cial Systems’ (Holland 1975), the field of Genetic Algorithms (GAs), and the
broader field of Evolutionary Computation (EC), were clearly established as new
research areas. However, other pioneering works could also be cited, as they be-
came increasingly conspicuous in many engineering fields and in industrial prob-
lems. In the mid 80’s, a new class of knowledge-augmented GAs, also called hy-
brid GAs, began to appear in the computer science and engineering literature. The
main idea supporting these methods is that of making use of other forms of knowl-
edge, i.e., other solution methods already available for the problem at hand. As a
consequence, the resulting algorithms had little resemblance with biological evo-
lution analogies. Recognizing important differences and similarities with other
population-based approaches, some of them were categorized as Memetic Algo-
rithms in 1989 (Moscato 1989; Moscato and Norman 1992), a denomination in-
spired from the term meme introduced by Dawkins (Dawkins 1976). The field of
cultural evolution was suggested as being more relevant, as a working metaphor,
to understand the performance and find inspiration sources to improve these new
methods. Next we will describe the main aspects of the MA implemented.

18.3.1 Population structure

The use of structured populations in evolutionary algorithms is still quite rare.
Nevertheless, previous tests (França et al. 2001; Mendes et al. 2001) in different
types of NP optimization problems have shown that this feature can generate a big
leap in the method’s performance. It was verified that the number of individuals
utilized by the method is dramatically reduced when population structures such as
binary or ternary trees are employed. The consequence is a reduction in the com-
putational effort and a considerable performance improvement, when compared to
ordinary non-structured population approaches (França et al. 2001; Mendes 1999).

It is illustrative to show how some MAs resemble more the cooperative prob-
lem solving techniques that can be found in some organizations. For instance, in
the approach being described, we use a hierarchically structured population based
on a complete ternary tree. In contrast with a non-structured population, the com-
plete ternary tree can also be understood as a set of overlapping sub-populations
(which we will refer to as clusters). The choice of the ternary tree structure was



18.3 The memetic algorithm 459

based mainly on empirical aspects. The first is motivated by the fact that any hier-
archical tree behaves like a set of overlapping clusters, as said before. Therefore,
the dynamics is similar to several populations evolving in parallel – each cluster
acts as an independent population – and exchanging individuals at a given rate.
This exchange of individuals comes as a consequence of the tree-restructuring
phase, carried out to maintain a specific hierarchical consistence. Now, consider
the use of trees with other degrees of complexity. A binary tree-based population,
for instance, would be formed by 3-individual clusters only, with only two recom-
binations possibilities. This would degrade the ‘multiple population’ character of
the tree structure. Trees with a greater order – quaternary or more – increase the
multiple population character, but initial tests indicated that the performance does
not improve at all and moreover, the number of individuals rapidly jumps to pro-
hibiting levels in terms of computational effort requirements. The best trade-off
points to the selected ternary tree structure.

Fig. 18.2. Diagram of the ternary tree hierarchical structure utilized by the MA populations

In Fig. 18.2, we can see that each cluster consists of one single leader and three
supporter individuals. Any leader individual in an intermediate layer has both
leader and supporter roles. The hierarchy states that the leader individual must al-
ways contain the best solution – considering the number of tracks – present in the
cluster. The number of individuals in the population is equal to the number of
nodes in the ternary tree, i.e., we need 13 individuals to make a ternary tree with
three levels and 40 individuals to have four levels. For this experiment, we fixed
the population size to be 13. This value might seem too low at a first glance, but
after several tests with 40 and 121 individuals, we concluded that 13 individuals
are sufficient to make the algorithm keep its convergence speed under control. The
use of 40 or more individuals does not deteriorate the algorithm’s behavior, but
the computational effort increases considerably, as well as the CPU time. More-
over, the MA with the 13-individual configuration had a very competitive per-
formance with other types of problems (França et al. 2001; Mendes et al. 1999).

18.3.2 Representation and crossover

The success of a MA relies very much on the representation chosen to encode for
feasible solutions, and to follow the terminology of genetic algorithms we will call



460 18 VLSI design: gate matrix layout problem

them “chromosomes”. It is preferable to use representations that are compact,
complete and stable. A compact representation requires very few variables to rep-
resent a solution in a unique way. A complete representation must be able to rep-
resent all the possible solutions of the problem, including, of course, the optimal
one. A stable representation is one in which small changes in the chromosome
structure would result in solutions with small modifications in the individual’s fit-
ness. If small disturbances generate large fitness modifications, the MA might
have trouble to evolve the population because important information learned dur-
ing the evolutionary process is continually lost. The representation chosen for the
problem is quite intuitive. A solution is represented as a chromosome in which the
genes4 assume different integer values in the [1, g] interval, where g is the number
of columns of the associated binary matrix. These values will define the sequence
(permutation) of the gates.

The recombination algorithm used to address the GMLP is a variant of the
well-known Order Crossover (OX) (Goldberg 1989) called Block Order Cross-
over (BOX). The OX is very simple and easy to implement, but lacks an essential
feature for the GMLP. It begins by copying a piece of the chromosome from one
of the parents into the offspring. This can already be a major limitation if the good
features of the individuals are not grouped together, but separated in many blocks.
In this case, a better-tailored crossover should be able to copy several parts of the
chromosome into the offspring. This is the motivation for the BOX, where instead
of just one piece, several pieces of the parent are copied. The BOX resembles the
second variant of the OX crossover presented in (Syswerda 1991).

The rest of the BOX crossover is the same of the OX: The loci5 in the offspring
that were not filled with the information of the first parent are sequentially filled
out with the alleles inherited from the second parent. Both procedures – OX and
BOX – tend to perpetuate the relative order of the gates, but the BOX can better
communicate separated blocks to the offspring. Nevertheless, given the stochastic
characteristic of the crossover process, undesirable alterations might – and will –
appear during the evolutionary process, as it happens in nature.

Fig. 18.3. Block Order Crossover (BOX) example

4 Chromosomes are composed of ordered sequences of genes.
5 Loci (plural of locus) is the name given to the positions of the chromosome

where the alleles are placed.



18.3 The memetic algorithm 461

In Fig. 18.3, Parent A contributes with two pieces of its chromosome to the off-
spring – one with a single allele and the other with three alleles. These parts are
copied in the same positions that they occupy in the parent. The blank spaces are
then filled with the information from Parent B, going from left to right. The values
in Parent B already present in the offspring are skipped; being copied only the
new ones. In the structured population approach, Parent A is always a leader and
Parent B a supporter belonging to the same cluster.

The contribution from each parent to the offspring is another important issue. In
nature, parents contribute in different proportions to the offspring’s genetic mate-
rial, given the randomized characteristics of the genetic recombination. It is
somewhat common to see GA/MA work where the genetic inheritance is propor-
tional to the parent’s fitness. In other words, parents better adapted will influence
more their offspring’s genetic conformation. In this implementation we decided
that each parent contributes with a fixed 50% of its genetic material. The decision
of not using the fitness was based on the little influence it had on the results. This
has probably occurred due to the use of a very strong local search6. The local
search capacity to improve the individuals’ fitness has made any little modifica-
tion in the crossover characteristics be a negligible factor in the algorithm’s per-
formance. Nevertheless, we must emphasize that the crossover is a crucial step of
the evolutionary process; a situation confirmed by the considerable difference of
performance between the OX and BOX crossovers in our preliminary tests.

The number of descendants created every generation is another important issue
and can strongly influence the quality of the algorithm. Generally the number of
descendants has a close relation to the percentage of them that will be included in
the population, replacing the old ones. If all new individuals are accepted, the
crossover rate shall be set at low levels, otherwise good information already pre-
sent in the gene pool might be lost. If the offspring’s insertion policy is more re-
strictive, more individuals should be created, since only a few of them will sur-
vive. As the policy adopted is indeed very restrictive7, we assumed that the
crossover rates should be higher than normal. In fact, after tests with values rang-
ing from 0.5 up to 2.5 times the population size, the best value found for the
crossover rate was 2.0. This number corroborates the relation described before,
characterizing a high offspring mortality selection process.

18.3.3 Mutation

Mutation plays a critical role in evolutionary algorithms and in memetic algo-
rithms design in particular (Merz and Freisleben 1999). It consists of a random
change in a part, or parts, of the individual’s genetic code. This random nature
makes the mutation be much more destructive than constructive. Indeed, the great
majority of mutations are destructive, creating worse or non-viable individuals.
Such individuals are usually eliminated through natural selection and the results of

6 The local search is described in Sect. 18.3.4.
7 The offspring’s insertion policy is described in Sect. 18.3.6.



462 18 VLSI design: gate matrix layout problem

disastrous mutations are not perpetuated. But the strong point is that, when suc-
cessful, mutation can create good, complex features, or even make the individual
jump out of evolution traps by improving its fitness. When a population is very
similar in terms of genetic characteristics, making any further improvement almost
impossible, we can say it became stuck in an evolution trap. A good mutation
movement can put an end to this situation by creating a new better individual that
could be virtually unreachable through recombination alone.

Two mutation strategies are utilized in the MA. The first is a light mutation,
which makes slight changes in the chromosome. It is based on the swapping of
gates. Two positions of the chromosome are selected uniformly at random and the
values of their alleles are swapped. This mutation procedure is applied (in aver-
age) on 10% of all new individuals every generation (see Fig. 18.4).

Fig. 18.4. Swap mutation example. Two positions of the chromosome are selected uni-
formly at random and their alleles are swapped

The second mutation strategy is called heavy mutation. Since the population
continuously loses diversity during the evolutionary process, after a sufficient
number of generations all individuals will share almost the same genetic code.
When that happens, we say that the population has converged to a low-diversity
situation8. In such a situation, any further improvement is too costly. A heavy mu-
tation procedure makes the population be filled with new individuals and a diver-
sified genetic load, allowing the MA to continue its search. The procedure adopted
executes a light mutation move exactly 10.g times in each individual, except the
best one9. The resulting population will thus be composed of several randomized,
low-quality individuals, and a highly adapted one.

18.3.4 Local search

The local search is one of the main differences between this chapter’s MA and an
ordinary GA. Its influence on the algorithm’s performance is overwhelming, being
quite hard to think of a method that does not utilize a neighborhood-based search
and can deal with problems as complex as the GMLP.

8 The definition of population convergence adopted this work is based on the individual’s
replacement rate, rather than on chromosome similarities. Both criteria are related but the
first is less restrictive. Please refer to Sect. 18.3.6.

9 The preservation of the best individual is a kind of elitism. It guarantees that the valuable
genetic information present in its chromosome will not be lost during the evolutionary
process.



18.3 The memetic algorithm 463

The design of local searches strategies is a rather complicated job. On one
hand, we try to get as much search power as possible and on the other we must
keep an eye on the increasing computational complexity. Next there is a step-by-
step description of the local search construction, highlighting the mistakes and
successes during the process.

Local search algorithms for combinatorial optimization problems generally rely
on a neighborhood definition that establishes a relationship between solutions in
the configuration space. Two neighborhood definitions were utilized in this spe-
cific local search. The first one was the all-pairs. It consists of swapping pairs of
columns/gates from a given solution. A hill-climbing algorithm can be defined by
reference to this neighborhood; i.e., starting with an initial permutation of all col-
umns, every time a proposed swap reduces the number of tracks utilized, it is con-
firmed and another cycle of swaps takes place, until no further improvement can
be achieved. The second neighborhood implemented is named insertion. It con-
sists of removing a column from one position and inserting it in another position
(which could include any point between a pair of gates, or the left/right extremes
of the permutation). The hill-climbing iterative procedure is the same regardless
the neighborhood definition. Both neighborhoods have an O(n2) complexity10. For
small instances, with less than 30 gates, it is possible to evaluate every swap or in-
sertion possibility, but since the goal was to develop a local search capable of run-
ning on a wide spectrum of instances, the use of neighborhood reductions became
imperative.

Reduction techniques are designed to work with smaller neighborhood sizes
without considerable loss of performance. Most reductions are based on general
empirical conclusions and special characteristics of the problem. The first type
utilizes less problem-specific information and its performance tends to be worse.
Nevertheless, it is easier to implement them and can serve as an initial step to
more complex reductions. That is the reason why we started with a simple reduc-
tion rule allowing the swap and insertion moves only between columns that are
close enough to each other. The motivation for such approach is that the crossover
and mutation operators are relatively successful in finding the region where each
gate should be placed. No local search must be applied to make an allele swap its
position with another allele on the opposite side of the chromosome. The evolu-
tionary operators will sometime make such a change. But when a fine-tuning is
required, crossover and mutation are useless. Local search must be employed in
this case and the search can be concentrated only in the region being adjusted. In
fact, the distance that characterizes such fine-tuning region is a critical parameter
and should vary proportionally to the instance’s size. For instance, suppose there
is an instance with 50 gates. A good choice observed in our preliminary tests was
to fix the distance at k = 10, meaning that every column should be tested for
swap/insertion with the 10 nearest columns to the right and the left, totaling 20
tests. Of course, larger values for k, like 20 or 30, should yield to better perform-
ances, but the computational complexity increases proportionally. This tradeoff

10 The O(n2) means that the computational complexity of visiting the entire neighborhood is
proportional to the square of the instance’s size.



464 18 VLSI design: gate matrix layout problem

analysis is a very stressing and time-consuming issue but also a necessary step.
During this analysis, we experienced some problems with the largest instance,
with 141 gates. The minimum k values necessary to reach optimal solutions for it
were still very high, making the search process too sluggish.

After the definition of the first reduction strategy, it became clear that a some-
what ‘smarter’ technique, utilizing specific GMLP information should be created.
The resulting reduction is named Critical Column Based Local Search (CCBLS).
This new local search reduction scheme prohibits useless swaps and insertion tries
by using information of the so-called critical columns. The critical columns define
the maximum number of tracks required by the solution. In any given solution,
every gate will have to implement a specific number of transistors. This number is
given by the sum of the transistor-interconnecting horizontal lines that pass
through the gate. After calculating this value for every column, we can define that
column i is critical if it satisfies the equation:

[ ])(max)( knin t
Gk

t ∈∀
= (18.1)

where nt(·) denotes the number of tracks in gate (·) and G is the set of gates.
In other words, the critical columns define the solution’s maximum number of

tracks. The Fig. 18.5 shows an example of such columns in a given instance.

Fig. 18.5. Illustration of a critical column utilized in the CCBLS to reduce the overall com-
putational effort

In the Fig. 18.5, the critical column is given by gate number two, which re-
quires six tracks to be implemented. The local search reduction policy works by
prohibiting any swap or insertion that cannot affect the critical column(s). In the
example shown, movements involving any pair of gates extracted from the set {1,
8, 7, 4, 9} are not allowed, since they cannot decrease the number of tracks re-
quired by gate 2. Likewise, movements between gates belonging to the set {3, 6,
5} are also prohibited. If the movement does not affect the critical column, any re-
duction in the number of required tracks will be only a local improvement, not
global. For instance, suppose the gates 8 and 9 are swapped in Fig. 5. The number
of tracks needed to implement the gates 8, 7, 4 and 9 might be changed, but the



18.3 The memetic algorithm 465

value corresponding to the critical column will continue to be six, making the in-
dividual require at least the same number of tracks.

The reduction in the number of swap and insertion tries when the CCBLS is
utilized is considerable. In the example described in Fig. 18.5, the number of pos-
sible swaps and insertions without any reduction is 108. With the CCBLS reduc-
tion scheme only, this number drops to 49. The case in which there is more than
one critical column is analogous. Since the movements must affect all critical col-
umns, the prohibited movements are the ones in which both columns belong to the
following regions:

• Before the leftmost critical column.
• After the rightmost critical column.
As said before, since the computational complexity of the local search

neighborhoods is O(n2), the reduction will become particularly more appealing in
the larger instances. Concerning the MA performance in practice, the reduction
strongly improved it, making the algorithm reach better values with a much lower
number of individual’s evaluations. The use of critical columns information has
also allowed an increase in the number of nearest neighbors to be tested – the k-
value. In other words, as the use of the CCBLS concentrated the computational ef-
fort only on movements that could improve the individual’s fitness, it opened up
space to increase the search horizon while maintaining the computational com-
plexity at a low level.

After a well-suited local search is developed, the next step is to determine how
to better use it. There are several possibilities, such as applying the local search
operator in:

• All new individuals created during the generation.
• A percentage of the new individuals.
• The best individual of the population.
The first possibility is the most natural, since the offspring generally evolve in

equal conditions. The problem is that depending on the complexity of the individ-
ual evaluation, the number of local searches becomes prohibitively large. In fact,
we dropped this possibility after the first test, where the algorithm took more than
five minutes to execute just one generation using the 141-gate instance. This
might be a good example where distributed processing could be successfully em-
ployed, since the local search in an independent process.

The use of local search in a percentage of the new individuals appeared to be
more realistic. Nevertheless, we had the same problem of wasting too much com-
putational time applying local searches in individuals that did not return satisfac-
tory results. The results were still disappointing, regardless of the percentage util-
ized (tests ranged from 10% to 90% of the new individuals, with 10% steps).

The very best results came when we concentrated the local search on the best
individual only. There is only one local search per evolutionary cycle11 and more-
over, it is always concentrated on the most promising individual, what increases
the chances to find higher quality solutions in a shorter CPU time. However, we

11 An evolutionary cycle begins with the initial population creation and ends when it con-
verges to a low-diversity state.



466 18 VLSI design: gate matrix layout problem

should emphasize that this choice was strongly influenced by the problem struc-
ture, as well as the fitness function. It is not recommended to make a direct rela-
tion between the local search complexity and its level of application into the indi-
viduals. This is a much more complex issue, being always necessary thorough
tests considering a broad set of possibilities.

The use of the two neighborhood definitions – swap and insertion – together
with the two reduction schemes, contributed to obtain a general superior perform-
ance, continuously surpassing the best previous approach to the problem12. More-
over, the use of local search only in the best individual also helped to reduce the
number of fitness evaluations, a second criterion utilized to compare the results.

18.3.5 Selection for recombination

The selection for recombination is one of the two processes that play the role of
natural selection in the MA – the other one is the offspring insertion. There are
many ways of selecting parents to give birth to an offspring. Among them, we
must cite:

• Uniformly at random selection.
• Biased random selection (e.g., roulette wheel or tournament selections).
• Restrictive selection operators are usually used in structured populations (or

breed-separated populations) or when there is a limit in the number of re-
combinations a given individual can take part in.

The unbiased random selection was the first approach utilized by a GA, in the
original algorithm proposed by Holland (Holland 1975). It is very simple to be
implemented, but lacks an important nature-related feature. Nature always privi-
leges the best-fitted individuals to generate descendants. The reason is that such
individuals tend to live longer, having a more numerous offspring than worse fit-
ted ones. The biased random selections are successful in simulating such condi-
tions. For instance, the roulette wheel approach selects parents with a frequency
that is proportional to their fitness, meaning that the best individuals will have
their genetic information transmitted to a larger number of descendants. This is a
more realistic scenario, and usually leads to better results compared to the first op-
tion.

The restrictive selection operators are better suited for special reproduction
scenarios. The tree-structure separates the population in different clusters and re-
production occurs only between individuals belonging the same cluster. In con-
trast with more static schemes, our clustered environment is more flexible, since
individuals from different clusters can swap places if one becomes better than the
other. This adds a different dynamics to the population.

In the hierarchically tree-structured population, the reproduction algorithm can
only involve a leader and one of its supporters within the same cluster. The re-
combination procedure selects any leader uniformly at random and then chooses –
also uniformly at random – one of the three supporters. The adoption of a uni-

12 The best previous results for the GMLP were obtained by (Linhares et al. 1999).



18.3 The memetic algorithm 467

formly-at-random cluster selection is related to the ‘multiple population’ character
of the hierarchical tree approach. By choosing the clusters in an unbiased fashion,
we put the same ‘evolutionary pressure’ in all clusters. The use of biased selection
operators is not necessary, since the evolutionary pressure on the best individuals
is carried out by the population hierarchy adopted and by the offspring-acceptance
policy. After an individual was created and went through – or not – a mutation
process, the algorithm decides whether or not it should be discarded. This phase is
described next, in Sect. 18.3.6.

18.3.6 Offspring insertion

The offspring insertion into the population is the second mechanism that plays the
role of natural selection in the MA13. Among the several existing insertion poli-
cies, at least three should be highlighted:

• Always accept the offspring.
• Accept the offspring with a probability that is proportional to its fitness.
• Accept the offspring only if is better fitted than one of the parents.
The always accept policy has both strong and weak points. The strong one is

that diversity is preserved for much longer and premature convergence is not a
problem. The weak side is that since the population has a fixed size and all off-
spring are accepted, a situation where a good individual is replaced by a worse one
might be possible, and even common. This could be partially overcome by setting
the crossover rate at low levels and replacing individuals sequentially from the
worse to the best one, in an elitist fashion.

The second policy is a more realistic representation of what happens in nature.
In many species, the offspring has very limited parental support to survive its early
days. The image of thousands of little turtles swarming over the beach heading to
the sea just after being born is a somewhat suitable example. Predators are every-
where, choosing their preys among literally thousands of possibilities, in a
strongly randomized process. The turtles that shall survive are the best fitted to
reach the water as soon as possible and, of course, the lucky ones. The policy of
accepting an offspring with a probability proportional to its fitness represents ex-
actly this situation and shall improve the algorithm’s performance in comparison
to the first one.

The third policy, which was utilized in the MA tests, states that the offspring
will only be inserted if it is better than one of its parents, replacing the leader of
the supporter that took part in the recombination. If the new individual is better
than the leader of the cluster, it takes the leader’s place; otherwise it takes the sup-
porter’s. This is an extremely elitist and restrictive policy, which generates a very
fast loss of diversity. The positive side is that the algorithm becomes more “fo-
cused” early on and evolves faster. This characteristic was especially beneficial
when no local search was employed. Although our tests are concentrated in the
MA, we decided to make a few tests with a population-structured GA version, i.e.,

13 The first mechanism is the selection for recombination, described in Sect. 18.3.5.



468 18 VLSI design: gate matrix layout problem

the same MA without the use of local search. The use of this third policy strongly
improved the performance of the algorithm, compared to the use of the two previ-
ous ones. This improvement was also noticeable in the MA, but with a lower in-
tensity.

In order to deal with the accelerated loss of diversity, a more sensitive popula-
tion-convergence checking had to be developed. Generally, population conver-
gence is evaluated by the similarity degree of the individuals’ chromosomes
and/or fitness. In this work we adopted a criterion stating that if during an entire
generation no individual was accepted for insertion, we conclude that the popula-
tion has converged. In such case, the heavy mutation procedure is applied thereaf-
ter.

During the recombination phase, after each generation, the population goes
through a restructuring procedure. The hierarchy described in Sect. 18.3.1 states
that the fitness of the leader of a cluster must be lower than the fitness of the
leader of the cluster just above it. Following this rule, the higher clusters will have
leaders with better fitness and the best solution will be the leader of the root clus-
ter. The adjustment is done comparing the supporters of each cluster with the
leader. If any supporter turns out to be better than its respective leader, they swap
their places. Considering the GMLP, the higher is the position that an individual
occupies in the tree, the fewer is the number of tracks it requires.

18.3.7 Pseudo-code of the MA

The Fig. 18.6 shows the pseudo-code of the MA described in the previous sec-
tions. The internal repeat-loop is responsible for the population evolution. Just be-
fore it starts, there is an initialization step, where all individuals are created and
evaluated. Then, the processing enters the recombination for-loop itself, where ini-
tially, parents are selected and an offspring is created from these parents. The off-
spring is then mutated, evaluated and inserted into the population. This process is
repeated until the last offspring is created. The population is then restructured and,
if a convergence criterion is not satisfied, the process continues, otherwise the
processing exits the internal repeat-loop. After the internal loop finishes, the local
search is applied on the best individual and another population cycle begins. After
all the populations were processed, the individual-migration phase takes place and
afterwards, the restart of all populations. This process is repeated until a time limit
is reached and the best solution ever found is reported.

Method MultiPopMemeticAlg;
begin

repeat
for i = 1 to numberOfPopulations do

initializePopulation(pop(i));
evaluatePopFitness(pop(i));
restructurePop(pop(i));
repeat



18.3 The memetic algorithm 469

for j = 1 to numberOfRecombinations do
selectParents(individualA, individualB) ⊆ pop(i);
newInd = recombine(individualA, individualB);
if (makeMutation newInd) then newInd = mutation(newInd);
evaluteIndFitness(newInd);
insertIntoPop(newInd, pop(i));

end
restructurePop(pop(i));

until (populationHasConverged pop(i));
end
for i = 1 to numberOfPopulations do

makeMigration(pop(i));
end

until(stopCriterion);
end

Fig. 18.6. Diagram of the implemented MA’s pseudo-code

18.3.8 Migration policies

The MA uses an island-type migration model. Consider several populations evolv-
ing separately in parallel, with little or no migration at all between them. Due to
the genetic drift, explained in the Sect. 18.1, it is reasonable to conclude that after
several generations, the final populations will differ a lot. This differentiation can
be very useful for the MA search process. Since the populations will be composed
of high quality, different individuals, the migration can create a precious synergy,
leading the algorithm to solutions otherwise unreachable (Gordon and Whitley
1993; Levine 1994).

The island model needs a definition of a communication topology between is-
lands, according to which individuals will migrate. One of the most studied and
used topologies is the so-called ring structure. The populations are located at
nodes over a ring, restricting migration to adjacent populations only. This ap-
proach apparently works better than the topology where all populations are con-
nected. This second choice reduces the action of the genetic drift, worsening over-
all performance.

The next factor to be defined is the migration rate. It determines how many in-
dividuals will migrate after the population convergence. This is also a critical pa-
rameter since a too high migration rate might influence the genetic drift effect in
the same way the topology does. We defined three options for it.

• 0-Migrate: No migration is used and all populations evolve in parallel without
any kind of individual exchange.

• 1-Migrate: Migration occurs in all populations and a copy of the best individ-
ual from each one migrates to the population right next to it, replacing a ran-
domly chosen individual – except the best one. Every population receives only
one new individual.



470 18 VLSI design: gate matrix layout problem

• 2-Migrate: Migration does also occur in all populations, but two copies of each
one’s best individual migrate to the adjacent populations, replacing randomly
chosen individuals – except the best one. Every population receives two new
individuals.

Fig. 18.7. The figure displays the diagrams of the 1-Migrate and 2-Migrate policies in an
example with four populations arranged in a ring structure. The arrows indicate migratory
movements.

The Fig. 18.7 shows the diagrams of two migration policies. The four popula-
tions are placed in a ring structure. In 1-Migrate we have only one external indi-
vidual being received by each population. In 2-Migrate, this number rises to two
individuals. The migration phase occurs always after all populations have con-
verged and comparing the three policies is, in fact, a comparison between none,
weak and strong migration, given the difference of communication intensity.

The last step is to determine the individuals to migrate. There are at least two
choices: a randomly selected individual or the best one. Preliminary tests indicated
that selecting a random individual is worse. The population’s best individual car-
ries the best genetic information available and shall be more valuable in a future
recombination with individuals from another population. Therefore, the migration
was set to exchange only the best individuals among the populations. After migra-
tion occurs, all populations will go through a heavy mutation process that will re-
start them, leaving only the best individuals untouched, including the ones that
were migrated. Therefore, after the migration and heavy mutation phases, the con-
formation of the populations will be as follows:

• In the 0-Migrate every population will restart from the heavy mutation with
just one high quality individual - the best one before the heavy mutation
process.

• In the 1-Migrate policy, every population will restart with two high quality
individuals. The original best individual and the one received from the adja-
cent population.

• In the 2-Migrate, the number of high quality individuals jumps to three. The
original one and two received from the neighbor populations.



18.4 Computational experiments 471

18.4 Computational experiments

The computational tests covered two aspects of the migration policies. The first
was the influence of the number of populations on the overall performance. For
this evaluation the number of populations varied from one up to five. The second
aspect was the influence of migration intensity on the algorithm’s performance:
for each number of populations, the three migration policies were tested, totaling
13 configurations – with only one population its not necessary to test 1-Migrate
and 2-Migrate. The tests were applied into five instances, for which we tested the
whole set of configurations, ten times each one. In Table 18.1 we show some in-
formation about the instances utilized in this work.

Table 18.1. Information on the instances utilized in the computational tests

Instance name Number of gates Number of nets Best known solution
W2 33 48 14
V4470 47 37 9
X0 48 40 11
W3 70 84 18
W4 141 202 27

There is one small instance, three medium-sized, and a large one. The work
with the most extensive tests available in the literature (Linhares et al. 1999) pre-
sented 25 instances in total. However, most of them were too small and easy to
solve either to optimality or to the best-known solution with the MA. Considering
the instances’ sizes, only V4470, X0, W2, W3 and W4 had more than 30 gates and
for this reason we concentrated the study on them. The stop criterion for the MA
was a time limit, fixed as follows:

• 10 seconds for the instance W2.
• 30 seconds for the instances V4470 and X0.
• 90 seconds for the instance W3.
• 40 minutes for the instance W4.
The difference between CPU times is due to the dimension of the instances and

takes into account the average time to find high quality solutions. The increase in
the CPU time from W3 to W4 reflects an explosive growth in the computational
complexity. Although the instance size has just doubled, the time required to solve
it was multiplied by more than 25. All tests were executed in a Pentium 366 MHz
Celeron14 computer, using Sun JDK 2.0 Java language running under Windows
9815 environment. For comparison reasons, we estimate that the Pentium Celeron
processor’s performance lies somewhere between a Pentium and a Pentium II
processor. The Java 2.0 is a just-in-time native compiler, much faster than previ-
ous Java versions.

14 Pentium and Celeron are trademarks of Intel Microsystems.
15 Windows is a trademark of Microsoft Inc.



472 18 VLSI design: gate matrix layout problem

The experimental results are shown next. Four figures describe the results for
each configuration (see Fig. 18.8). In clockwise order we have in boldface the best
number of tracks found for that instance. Next in the sequence we display the
number of times this solution was found out of ten tries, the worst value found,
and finally, in the lower-left part of the cell, is the average number of tracks.

Fig. 18.8. Data fields for each configuration of number of populations and migration type

The instance W2 has reached the presumed optimal value of 14 tracks in all
configurations of migration policy and number of populations. However, we could
still conclude that the best configuration was the 1-Migrate with four populations
because it required the lowest number of individual’s evaluations. The other in-
stances have shown more noticeable differences in performance and their results
were thus detailed in the Tables 18.2 to 18.5.

Since the tests take into account two parameters – migration policy and number
of populations – we will analyze them separately. At first, two aspects of random-
ized search algorithms must be pointed out: exploitation and exploration. Exploi-
tation is the property of the algorithm to thoroughly explore a specific region of
the search space, looking for any improvement in the current best available solu-
tion(s). Exploration is the property to explore wide portions of the search space,
looking for promising regions, where exploitation procedures should be employed.
In general, the island model of migration privileges exploration, with each popula-
tion searching in a different part of the solution’s space. Moreover, when an indi-
vidual is migrated, the intention is to explore the region between the ones covered
by the populations. The exploitation job, carried out mainly by the local search
operator, is thus simultaneous with the exploration.

Table 18.2. Results for the V4470 instance

Number of populations
1 2 3 4 5
9 2 9 1 9 4 9 1 9 5

0-Migrate
10.1 11 10.1 11 9.6 10 10.0 11 9.5 10

9 2 9 6 9 5 9 41-Migrate
9.9 11 9.5 11 9.6 11 9.6 10
9 5 9 4 9 2 9 52-Migrate
9.5 10 9.7 11 9.8 10 9.5 10



18.4 Computational experiments 473

Table 18.3. Results for the X0 instance

Number of populations
1 2 3 4 5
11 6 11 9 11 8 11 9 11 9

0-Migrate
11.6 13 11.1 12 11.2 12 11.1 12 11.1 12

11 10 11 10 11 10 11 91-Migrate
11.0 11 11.0 11 11.0 11 11.1 12
11 8 11 9 11 8 11 92-Migrate
11.2 12 11.1 12 11.2 12 11.1 12

Table 18.4. Results for the W3 instance

Number of populations
1 2 3 4 5
18 3 18 3 18 5 18 7 18 50-Migrate
20.0 23 20.0 23 19.1 20 18.4 20 18.8 20

18 3 18 5 18 6 18 91-Migrate
20.0 22 18.9 20 18.6 21 18.1 19
18 4 18 7 18 6 18 42-Migrate
20.1 23 18.6 21 18.5 20 18.9 22

Table 18.5. Results for the W4 instance

Number of populations
1 2 3 4 5
29 4 28 1 28 1 28 2 28 20-Migrate
30.5 34 30.9 36 30.6 34 30.4 35 30.3 34

29 2 28 2 27 2 27 11-Migrate
30.9 34 30.6 35 29.4 34 30.2 34
28 1 28 4 28 2 28 32-Migrate
31.2 36 30.0 34 29.7 32 29.4 30

The first parameter – migration policy – has a trifling influence on the algo-
rithm’s performance. Nevertheless, the 1-Migrate appears to be the logical choice,
since the best configuration for each instance utilized it. The other two policies
have also had a good performance but were slightly worse. The 1-Migrate appar-
ently better-balanced exploitation and exploration, returning the W4 presumed op-
timal solution – 27 tracks – in two different configurations. The other instance
where migration has impacted the results was the V4470, which revealed to be a
rather difficult problem. The 0-Migrate option was clearly worse than the other
two, on average.

The second aspect to be analyzed is the number of populations. Although it is
also not clear which configuration was the best, the use of only one is surely not
the best choice since several multi-population configurations gave better final val-
ues. Based on the results, the conclusion is that when multiple populations are util-
ized, at least three of them should be employed. With only two populations, the
algorithm does not seem to take advantage of the genetic drift effect. The use of



474 18 VLSI design: gate matrix layout problem

more populations allows the exploration of much larger portions of the search
space, being necessary at least three of them to make this feature noticeable.

The other characteristic of the method was its high efficiency. The number of
individual’s evaluations was very low. Compared to the best previous work (Lin-
hares et al. 1999), the improvement is striking. Initially, we shall briefly explain
that approach. The Microcanonical Optimization (MO) presented in (Linhares et
al. 1999) is based on a fast variant of the well-known Simulated Annealing (SA)
(Kirkpatrick et al. 1983) approach, which divides the search into two alternating
phases, initiation and sampling. These phases have dual objectives: in initiation,
the system strives to rapidly obtain a new locally optimum solution, while at the
sampling phase the system moves out of the local optimum while retaining similar
cost values (as controlled by parameters analogous to the temperature in SA). The
proposed algorithm was able to outperform five previous approaches in all previ-
ously tested instances. The MO is also fully described in (Linhares et al. 1999).
The Table 18.6 shows the results for both methods.

Table 18.6. Number of individual’s evaluations required by the memetic algorithm and by
the microcanonical optimization approaches to reach the presumed optimal solutions

Number of evaluations
Memetic Algorithm Microcanonical Optimization
Minimum Average Maximum Minimum Average Maximum

W2 3,125 3,523 5,398 12,892 19,839 26,541
V4470 32,509 176,631 451,377 102,976 1,109,036 2,714,220
X0 18,136 43,033 117,384 52,126 95,253 187,335
W3 79,089 203,892 495,306 1,700,667 7,143,872 21,289,846
W4 3,213,532 9,428,591 15,643,651 24,192,291 167,986,282 405,324,093

Analyzing the results presented in Table 18.6, we conclude that the MA ob-
tained much better values than the MO approach, in all instances. Taking the aver-
age results, the reduction is better than 80%, depending on the instance size. For
the largest instance, W4, we had an outstanding 94% average reduction in the
number of evaluations. Such results were absolutely unexpected, and thus we de-
cided to check for any bugs in the software code. After discarding this possibility,
we ran both algorithms – MA and MO – on the same machine. The result was fi-
nally confirmed by the difference of CPU time. For instance, the MO required
over six hours of CPU time to find the W4 optimal value, while the MA found it
within less than 20 minutes.

The comparison of the number of evaluations has also brought some light into
the V4470 instance results. Although the V4470 is smaller than the X0, the MA
had some difficulties in finding the optimal value. This was reflected in the num-
ber of evaluations, much larger than for the X0 instance. Initially, we thought this
was a problem of the MA, but after checking the MO results we concluded this in-
stance is intrinsically difficult, deserving a more careful study on its structure.

There are at least three reasons for these outstanding results. First, the local
search embedded on the MA does not consider all possible movements, as a
neighborhood reduction enables considerable computational gains (without major



18.5 Discussion 475

loss of search power). Second, the idea of discarding all possible movements that
do not affect critical columns (and hence cannot improve solution quality) also is
a major step towards greater efficiency. Finally, the application of local search is
carried out only to the best individual of each population. These factors, taken in
combination, help to explain the superior performance of this algorithm. Of
course, all other factors – migration policy, crossover strategy, mutation, popula-
tion structure and offspring’s insertion policy – also played an important role.
Nevertheless, the local search is by far, the most performance-influencing feature
of the MA. Now, in order to give more information about the speed of the algo-
rithm, the Table 18.7 presents some MA-related statistics.

Table 18.7. Statistics on the MA related to the number of individual’s evaluations – the
figures represent average values

Instance name k-value Evaluations per
local search

Evaluations
per second

W2 10 379 6,906
V4470 20 548 5,702
X0 20 585 5,557
W3 30 749 3,374
W4 60 3,242 662

The k-values presented in Table 18.7 are the same used in the computational
tests. Next to them we have the number of evaluations per local search. This num-
ber does already take into account the two local search reductions – the k-based
limit and the CCBLS. Finally, the fourth column shows the number of evaluations
per second. The evaluation procedure requires the entire 0-1 matrix to be scanned
and its complexity order is O(g.n). There is little space for optimization and thus
two different implementations of that procedure cannot differ too much in terms of
complexity. We believe this value might be a good performance measure between
different computer systems, facilitating future comparisons.

18.5 Discussion

This chapter presented a memetic algorithm (MA) application to the gate matrix
layout problem (GMLP), which belongs to the NP-hard class. The main features
of the MA were described, including:

• A hierarchically structured population and its specific selection for recombi-
nation procedure.

• The BOX crossover – a variant of the well-known OX crossover.
• The local search and two neighborhood-reduction policies.
• An island-model migration.
The items cited above were critical for the better performance of the MA, com-

pared to the previous best method for the GMLP. Many questions might arise at
the end of this chapter. Is the ternary-tree structure really the best choice? Can the



476 18 VLSI design: gate matrix layout problem

local search be improved even further? Should the ring structure of the island-
model be replaced by another one?

Every time a general method is specified and used on a given problem, ques-
tions related to the finally specification naturally start to pop-up. Nevertheless, the
main goal of this implementation was to join new ideas, like the hierarchical popu-
lation, the BOX crossover and the CCBLS local search, with “consecrated” ideas,
such the island-model migration, with the intention to solve a complex combinato-
rial problem.

A conclusion derived from this implementation, which is worth emphasizing, is
that local search is very important. No matter how hard is the problem being
solved, if a GA was already developed for it, it seems reasonable to attempt a MA
adding an ad hoc local search procedure to the GA.

The use of a standard set of “industrial-sized” real-world instances was very
important in our study. Their sizes varied from 33 up to 141 gates. The solutions
obtained have rivaled with the ones from previous methods’, matching all the
best-known solutions, while dramatically decreasing the computational effort. In
all cases, the number of evaluations was reduced by at least a factor of eight.

This algorithm is included in a framework for general optimization, called
NP-Opt (Mendes et al. 2001). This framework is an object-oriented, Java-based
software. At present, it includes five different NP-problems: Single Machine
Scheduling, Parallel Machine Scheduling, Flowshop Scheduling, Gate Matrix
Layout and Gene Ordering. The framework is updated and improved continuously
by a team of collaborators. For more information, please refer to the NP-Opt
Homepage16, where the latest version is always available for download, as well as
the software guide and a set of test instances. This guide describes technical as-
pects of the framework including the classes’ structure. It will also help the user to
change the software code, adjusting it to different needs. More complex issues like
how to add new methods, problems, and changing the graphical interfaces are also
discussed in the user manual.

Although the MA used to address the GMLP contains several specially tailored
features, it runs in this general optimization environment. The use of the NP-Opt
framework facilitates the programming of optimization methods. We believe that
further development and study of such frameworks may ultimately provide an in-
valuable tool to the field of systems science.

16 http://www.densis.fee.unicamp.br/~smendes/NP-Opt.html



18.5 Discussion 477

References

Bodlaender HL (1986) Classes of graphs with bounded tree-width. Technical Report RUU-
CS-86-22. Department of Computer Science, University of Utrecht

Bodlaender HL (1993) A Tourist Guide through Treewidth. Acta Cybernetica 11:1–21
Cantú-Paz E (1997) A Survey of Parallel Genetic Algorithms. Technical Report 97003, Il-

linois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign
Cantú-Paz E (1999) Topologies, Migration Rates, and Multi--Population Parallel Genetic

Algorithms. Technical Report 97007, Illinois Genetic Algorithms Laboratory, Univer-
sity of Illinois at Urbana-Champaign

Darwin CR (1993) The origin of the species. Random House, New York
Dawkins R (1976) The selfish gene. Oxford University Press, Oxford
Downey RG, Fellows MR (1995) Fixed parameter tractability and completeness 1. Basic

results. SIAM Journal on Computing 24:873–921
Fellows MR, Langston MA (1987) Non-constructive advances in polynomial--time com-

plexity. Information Processing Letters 26:157–162
Fellows MR, Langston MA (1989) An analog of the Myhill-Nerode theorem and its use in

computing finite basis characterizations. Proceedings of the 30th Annual Symposium
on Foundations of Computer Science, pp 520–525

Foo SK, Saratchandran P, Sundararajan N (1999) An evolutionary algorithm for parallel
mapping of backpropagation learning on heterogeneous processors. International Jour-
nal of Systems Science 30:309–321

França PM, Mendes AS, Moscato P (2001) A Memetic Algorithm for the total tardiness
Single Machine Scheduling Problem. European Journal of Operational Research 132:
224–242

Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley

Gordon VS, Whitley D (1993) Serial and Parallel Genetic Algorithms as Function Optimiz-
ers. Proceedings of the ICGA’93 – 5th International Conference on Genetic Algo-
rithms, pp 177–183

Holland J (1975) Adaptation in Natural and Artificial Systems. The University of Michigan
Press

Kirkpatrick S, Gellat DC, Vecchi M (1983) Optimization by simulated annealing. Science
220: 671–680

Lengauer T (1990) Combinatorial algorithms for integrated circuit layout. John Wiley &
Sons, New York

Levine D (1994) A Parallel Genetic Algorithm for the Set Partitioning Problem. Technical
Report ANL-94/23. Illinois Institute of Technology

Linhares A (1999) Synthesizing a Predatory Search Strategy for VLSI Layouts. IEEE
Transactions on Evolutionary Computation 3:147–152



478 References

Linhares A, Yanasse H, Torreão J (1999) Linear Gate Assignment: a Fast Statistical Me-
chanics approach. IEEE Transactions on Computer-Aided Design on Integrated Cir-
cuits and Systems 18:1750–1758

Linhares A, Yanasse HH (2002) Connections between cutting-pattern sequencing, VLSI
design, and flexible machines. Computers & Operations Research 29: 1759–1772

Lopez A, Law H (1980) A dense gate matrix layout method for MOS VLSI. IEEE Transac-
tions Electron. Devices 27:1671–1675

Luk BL, Galt S, Chen S (2001) Using genetic algorithms to establish efficient walking gaits
for an eight-legged robot. International Journal of Systems Science 32:703–713

Mendes AS (1999) Algoritmos Meméticos Aplicados aos Problemas de Sequenciamento
em Máquinas (in Portuguese). Master Thesis. State University of Campinas, Brazil

Mendes AS, Muller FM, França PM, Moscato P (1999) Comparing Metaheuristic Ap-
proaches for Parallel Machine Scheduling Problems with Sequence-Dependent Setup
Times. Proceedings of the CARS & FOF’99 – 15th International Conference on
CAD/CAM Robotics & Factories of the Future, pp 1–6

Mendes AS, França PM, Moscato P (2001) NP-Opt: An Optimization Framework for NP
Problems. Proceedings of the POM2001 – International Conference of the Production
and Operations Management Society, pp 82–89

Merz P, Freisleben B (1999) Fitness landscapes and memetic algorithm design. In: New
Ideas in Optimization. McGraw-Hill, pp 245–260

Moscato P (1989) On evolution, search, optimization, genetic algorithms and martial arts:
towards memetic algorithms. Technical Report C3P 826, Caltech Concurrent Compu-
tation Program, California Institute of Technology, Pasadena, USA

Moscato P, Norman M (1992) A Memetic Approach for the Traveling Salesman Problem.
Implementation of a Computational Ecology for Combinatorial Optimization on
Message-Passing Systems. In: Parallel Computing and Transputer Applications. IOS
Press, pp 177–186

Nakatani K, Fujii T, Kikuno T, Yoshida N (1986) A heuristic algorithm for gate matrix
layout. Proceedings of the International Conference of Computer-Aided Design, pp
324–327

Syswerda G (1991) Schedule optimization using genetic algorithms. In: Handbook of Ge-
netic Algorithms. Van Nostrand Reinhold, New York, pp 332–349

Viennet R, Fonteix C, Marc I (1996) Multicriteria optimisation using a genetic algorithm
for determining a Pareto set. International Journal of Systems Science 27:255–260

Weiner J (1995) The beak of the finch. Vintage Books, New York
Wong DF, Leong HW, Liu CL (1988) Simulated Annealing for VLSI Design. Kluwer,

Norwell
Xiong N (2001) Evolutionary learning of rule promises for fuzzy modelling. International

Journal of Systems Science 32:1109–1118
Yanasse HH (1997) On a pattern-sequencing problem to minimize the number of open

stacks. European Journal of Operational Research 100:454–463



19 Parametric Optimization of a Fuzzy Logic
Controller for Nonlinear Dynamical Systems
using Evolutionary Computation

Laxmidhar Behera

Abstract

Fuzzy logic controllers (FLC) have long been successfully implemented for effec-
tive tracking control and regulation of nonlinear dynamical systems. The optimi-
zation of parameters of a fuzzy logic controller is the focus of research in the do-
main of evolutionary computation (EC). The parameters include membership
functions and rule sets. In this chapter we solve this optimization problem using
three different algorithms. These are simple genetic algorithm (SGA), differential
evolution (DE) algorithm and univariate marginal distribution algorithm (UMDA).
Like simple genetic algorithm, differential evolution is an exceptionally simple,
fast, and robust population based search algorithm that is able to locate near-
optimal solutions to difficult problems. In contrast, univariate marginal distribu-
tion algorithm is a purely probabilistic search strategy over the possible solution
space. We have selected two nonlinear control system problems for application. In
the domain of process control, control of pH poses a difficult problem because of
inherent nonlinearities and frequently changing process dynamics. The efficacy of
DE over SGA is shown through the design of FLC for a pH neutralization process.
This result is also verified through successful implementation on a laboratory
scale pH plant setup. The next problem is the control of an one-link robot manipu-
lator. The fuzzy model of the robot inverse dynamics in conjunction with a fuzzy
PD (proportional plus derivative) controller is optimized using univariate marginal
distribution algorithm and compared with SGA. Fuzzy UMDA model is found to
be more accurate as compared to fuzzy SGA model. However, fuzzy SGA and
UMDA controllers do fare well on equal footing and their performances are accu-
rate and robust to model uncertainties.

Key words: Adaptive Control, Differential Evolution, Fuzzy Logic Control, Ge-
netic Algorithms, Nonlinear Control, pH Control, Process Control

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



480 19Parametric Optimization of a Fuzzy Logic Controller for Nonlinear Dynamical
Systems using Evolutionary Computation

19.1 Introduction

An evolutionary algorithm is a non-gradient method and a very promising direc-
tion for global search in nonlinear optimization problems. These algorithms do not
need the gradient and differentiable information to update the parameters. We find
many applications of evolutionary algorithms to find optimal parameters (or
weights) of fuzzy logic controllers (FLC)[Karr 93,Nordvik 91,Park 94], neural net-
works[Meeden 96,Whitley 90,Yang 00], and fuzzy neural networks [Tetta 01] in the
field of system modeling and intelligent control. Although evolutionary algorithms
became popular with the success of simple genetic algorithm (SGA) [Goldberg 89],
the field is maturing with the inventions of novel evolutionary paradigms. Just as
competition drives each species to adapt to a particular environmental niche, so
too, has the pressure to find efficient solutions across the spectrum of real-world
problems forced genetic algorithms to diversify and specialize. A GA that is well
adapted to solving a combinatorial task like the traveling salesman problem may
fail miserably when used to minimize functions with real variables and many local
minima.

Evolutionary computation [Fogel95] and other variants [Back96] use real valued
representation and focus on self-adaptive Gaussian mutation. Recently, a new evo-
lutionary optimisation technique, called Particle Swam, has been developed by
[Kenn01]. This technique is inspired by the population dynamics of "bird flocks"
and "fish schools" and it is able to work within disjoint search spaces and on non-
differentiable objective functions, since it uses only function values and no deriva-
tives. Given the enormous scope of evolutionary computation, we limit our atten-
tion to differential evolution [Price 97] and univariate marginal distribution algo-
rithm (UMDA) [Heinz98, Heinz01] apart from SGA to optimize the parameters of
a fuzzy logic controller and fuzzy inverse dynamics in the context of nonlinear
control.

Differential Evolution is a search procedure similar to a genetic algorithm ap-
plied on real variables which is significantly faster at numerical optimization than
the traditional GA. DE is also more likely to find a function’s true global optimum.
DE is a design tool of great utility that is immediately accessible for practical ap-
plications. Among DE’s advantages are its simple structure, ease of use, speed and
robustness. DE has been used to design several complex digital filters. [Price 97].

In contrast, univariate marginal distribution algorithm has been proposed by
[Heinz 98] where GA has been extended to population based search methods using
probability distributions instead of string recombination/crossover.

Since the introduction of the basic methods of fuzzy reasoning by Zadeh [Zadeh
73], Fuzzy logic controllers (FLC’s) [Lee 90, Mamdani 74] are being used success-
fully in an increasing number of application areas - such as in washing machines,
elevators and automobiles. There is a considerable interest in applying fuzzy logic
systems to process control [Karr 93, Qin 94, Morgan 96] including cement kiln con-
trol, task scheduling and robot arm manipulation. One such application is in the
control of pH, which exemplifies the need for an adaptive controller [Gustaffson 92,
Saraf 94]. [Qin 94] proposed a multiregion FLC for pH control, in which the proc-



19.1 Introduction 481

ess to be controlled is divided into fuzzy regions such as high-gain, low-gain,
large-time-constant, and small-time-constant based on prior knowledge of the
process. But this technique suffers miserably in the constantly changing pH sys-
tems and prior knowledge of the system is not always possible. We have proposed
a novel control algorithm for pH control using fuzzy neural networks [Behera 99].
Fuzzy neural networks can solve the process of parameter optimization since these
networks can be trained using back propagation algorithms. However, evolution-
ary algorithms also provide an excellent opportunity to optimize parameters in an
efficient manner.

Karr & Gentry developed a technique wherein they used GA to generate the
membership functions for the pH control process [Karr 93]. But since membership
functions and rule sets are interrelated, using a hand-designed rule set with a GA
designed membership function does not use the GA to the fullest extent. Previous
work using GA for designing FLC’s [Karr 93,Nordvik 91,Park 94] has focused on the
development of rule sets or high performance membership functions, when GA’s
have been used to develop both, it has been done serially. However, the interde-
pendence between these two components suggests a simultaneous design proce-
dure would be more appropriate methodology [Homaifar 95]. Homaifar & McCor-
mick [Homaifar 95] proposed a technique for simultaneous design of membership
functions and the rule sets. This technique suffers from the fact that convergence
is not fast enough for real-time implementation and it is susceptible for getting
trapped in a local optimum. It has been proved that by using a search smoothing
function, the convergence becomes faster and global optimization is assured [Gu
94]. The search space smoothing technique can be a powerful aid for a SGA FLC
for application in real-time.

We have selected two nonlinear control system problems for application. In the
domain of process control, control of pH poses a difficult problem because of in-
herent nonlinearities and frequently changing process dynamics. The efficacy of
DE over SGA is shown through the design of FLC for a pH neutralization process.
This result is also verified through successful implementation on a laboratory
scale pH plant setup.

The design of FLC had been a laborious task done by human experts or by trial-
and-error or iteratively. The use of DE, in simultaneous design of the membership
functions and the rule sets of a FLC for the real-time control of pH, was the main
objective of our present work. This technique was used to produce an adaptive DE
FLC for a laboratory pH control system. Nonlinearities in the system are associ-
ated with the logarithmic pH scale, and changing process dynamics are introduced
by altering the system parameters such as the desired set point and the concentra-
tion and the buffering capacity of input solutions. The results are compared with a
GA based FLC developed by Homaifar & McCormick [Homaifar 95], with a slight
modification that a search space smoothing function [Gu 94] is used for faster con-
vergence. After search space smoothing, some local minimum points are tempo-
rarily filled and thus the problem of getting trapped in these points is solved. The
results show that FLCs augmented with the DE offer a powerful alternative to
conventional adaptive control techniques. They demonstrate the potential of adap-
tive FLC’s in the volatile environment associated with pH systems.



482 19Parametric Optimization of a Fuzzy Logic Controller for Nonlinear Dynamical
Systems using Evolutionary Computation

The next problem is the control of an one-link robot manipulator. The fuzzy
model of the robot inverse dynamics in conjunction with a fuzzy PD (proportional
plus derivative) controller is optimized using univariate marginal distribution al-
gorithm and compared with SGA. Fuzzy UMDA model is found to be more accu-
rate as compared to fuzzy SGA model. However, fuzzy SGA and UMDA control-
lers do fare well on equal footing and their performances are accurate and robust
to model uncertainties.

This chapter is organized as follows. In Section 2, we briefly discuss the basics
of Differential Evolution. An account of Genetic Algorithms with Search Space
Smoothing is given in Section 3. Section 4 compares DE and GA incorporated
with a search space smoothing technique. The physical setup on which the FLCs
were implemented and tested is described in Section 5. Simulation and the algo-
rithm description of both DE FLC and GA FLC are described in Section 6. Sec-
tion 7 contains a brief note on the experiments conducted and the results obtained.
The univariate marginal distribution algorithm is presented in section 8 and strate-
gies for robot control using UMDA and SGA are described in section 9. Finally,
Section 10 concludes with a brief summary.

19.2 Differential Evolution

The overall structure of the Differential Evolution (DE) algorithm developed by
Price & Storn (1997) resembles that of most other population-based searches. It
utilizes N parameter vectors of dimension D,

1,....,2,1,0,, −= NiGix (19.1)

as a population for each generation G. N remains constant during the optimization
process. The initial population is chosen randomly if nothing is known about the
system. In case a preliminary solution is available, the initial population is often
generated by adding normally distributed random deviations to the nominal solu-
tion 0,nomx . The crucial idea behind DE is a new scheme for generating trial pa-

rameter vectors. DE generates new parameter vectors by adding the weighted dif-
ference vector between two population members to a third member. If the
resulting vector yields a lower objective function value than a predetermined
population member, the newly generated vector replaces the vector with which it
was compared. The comparison vector can, but need not be part of the generation
process mentioned above. In addition the best parameter vector Gbest ,x is evalu-

ated for every generation G in order to keep track of the progress that is made dur-
ing the minimization process.

Extracting distance and direction information from the population to generate
random deviations results in an adequate scheme with excellent convergence
properties. The two operators used are mutation, and recombination. The mutation
step size is a function of the parameter to which it is being applied and a function
of time. Any source of mutating noise must also adapt to a vector populations



19.3 Simple Genetic Algorithm with Search Space Smoothing 483

evolving shape in solution space. Such a source is the population itself and the
vector differential of every pair of randomly chosen vectors can be used to perturb
another vector. By mutating vectors with population-derived noise, DE ensures
that the solution space will be efficiently searched in each dimension.

For each vector, Gi,x , a trial vector v is generated according to,

( ) ( )GrGrGiGbestGi ,,,,, 21
xxFxxxV −⋅+−⋅+= λ (19.2)

with

[ ]1,0, 21 −∈ Nrr , integer and mutually different, 0>λ , and 0>F (19.3)

The integers 1r and 2r are chosen randomly from the interval [0, N-1] and are

different from the running index i. F is a real and constant factor that controls the
amplification of the differential variation. The idea behind λ is to provide a means
to enhance the greediness of the scheme by incorporating the current best
value Gbest ,x .

In order to increase the diversity of the parameter vectors, the vector

( )T
Duuu ,,, 21 �=u (19.4)

with

( )⎪⎩

⎪
⎨
⎧

=
jGi

j

j

v
u

,x otherwise

Mnnnj
DDD

1,,1, −++= � (19.5)

is formed where the acute brackets
D

denote the modulo function with
modulus D. A certain sequence of the vector elements of u are identical to the
elements of v, the other elements of u acquire the original values of Gi,x . Choos-
ing a subgroup of parameters for mutation is similar to a process known as cross-
over in evolution theory. The integer M is drawn from the interval [0,D-1] with the
probability P(M= γ )= [ ]1,0, ∈δδ γ is the crossover probability and constitutes a
control variable for the above mentioned scheme. The random decisions for both n
and M are made anew for each trial vector v. Unlike many GA’s, DE does not use
proportional selection, ranking or even an annealing criterion that would allow oc-
casional uphill moves. Instead the cost of each trial vector is compared to that of
its parent target vector. The vector with the lower cost is rewarded by being se-
lected to the next generation.

19.3 Simple Genetic Algorithm with Search Space
Smoothing

Genetic algorithms are powerful search and optimization algorithms, based on
semblance of natural genetics. They ensure the proliferation of quality solutions



484 19Parametric Optimization of a Fuzzy Logic Controller for Nonlinear Dynamical
Systems using Evolutionary Computation

while investigating new solutions via a systematic information exchange that util-
izes probabilistic decisions. GAs require the problem of maximization (or minimi-
zation) to be stated in the form of an objective function. In GAs, a set of variables
is encoded into a binary string, analogous to a chromosome in nature. Each string
therefore contains the solution to the problem and has to be broken into individual
substrings to evaluate the cost function, which yields the fitness of that string. GAs
select parents from a pool of strings (population) according to the criteria of sur-
vival of the fittest. They create new strings by recombining parts of the selected
parents in a random manner.

The re-population of the next generation is done using three methods: reproduc-
tion, crossover, and mutation [Goldberg 89]. Through reproduction, strings with
high fitness duplicate into multiple copies in the next generation while strings with
low fitness receive fewer copies or none. Crossover refers to taking a string, split-
ting it into two parts at a randomly generated point and recombining it with an-
other string, which has also been split at the same crossover point. This operation
brings about change in the strings and exchanges information between them. Mu-
tation is the random alteration of a bit in the string, which assists in keeping diver-
sity in the population.

The criteria of survival of the fittest can some times lead to premature conver-
gence when used to optimize multi-modal convergence, as the string, which repre-
sents a local minimum, might duplicate. Simple GAs also suffer from the problem
that convergence is too slow to apply it to optimize a controller (adaptation) for
real-time control. This drawback can be eliminated to some extent by using a
search space smoothing technique [Gu 94]. The smoothing function used has dif-
ferent levels of strength, resulting in a search space with varying degrees of
smoothness. We used a smoothing factor,α , to characterize the degree of a
smoothing operation and the smoothness of the resulting search space. If 1=α ,
no smoothing is done and the search space is same as the original search space. If

1>α , a smoothing operation is applied and the smoothed search space is flatter
than the original search space. If 1>>α , the smoothing effect is very strong and
gives rise to a nearly flat search space as shown in Figure 19.1. The smoothing
procedure is dealt with in Section 6 Simulation.

Fig. 19.1. A series of smoothed search spaces is generated. The smoother search spaces are
used to guide the search of those of the original search spaces



19.4 Simple Genetic Algorithm Vs Differential Evolution 485

19.4 Simple Genetic Algorithm Vs Differential Evolution

A SGA uses binary strings to code the parameters; however this choice limits the
resolution with which an optimum can be located to the precision set by the num-
ber of bits in the integer. DE uses Floating-point numbers, which not only uses
computer resources efficiently but also reduces the computational time, which is
very crucial for control applications. while use of search space smoothing aids
faster convergence of a SGA, it still takes substantially more time to converge as
compared to a DE. Figure 19.2 plots the average cost/fitness in each generation.
The algorithm is said to have converged if

<∈− −1GG σσ (19.6)

where∈ is a constant (in the present study 40.1 −∈= e ) and Gσ is the cost/fitness
variance given by,

( )
1

1

2

,

−

−
= ∑ =

N

FF
N

i GGi

Gσ
(19.7)

As clearly depicted the DE converges almost in three generations and also to a
much lower value.

Fig. 19.2. The convergence of DE is much faster than a SGA

Just as floating-point numbers are more appropriate than integers for represent-
ing points in continuous space, addition is more appropriate than random bit flip-
ping as used for mutation in a SGA for searching the continuum. Consider for ex-
ample the consequences of using the logical exclusive OR (XOR) operator for
mutation integers. To change a binary 15 (01111) into a binary 16 (10000) with an



486 19Parametric Optimization of a Fuzzy Logic Controller for Nonlinear Dynamical
Systems using Evolutionary Computation

XOR operation requires inverting all the five bits. In most bit flipping schemes, a
mutation of this magnitude is very rare even though the mutation operator is
meant for fine-tuning. The easiest way to restore the adjacency of neighboring
points is addition. Using addition, 15 becomes 16 by just adding 1. The magnitude
of the mutation increments is automatically scaled by the simple adaptive scheme
used by DE.

Recombination (crossover) provides an alternative and complementary means
of creating viable vectors from the components of existing vectors. The SGA uses
a uniform crossover. However, a DE uses a nonuniform crossover that can take
child vector parameters from one parent more often than it does from the other.
The selection of the individuals to the next generation resembles tournament se-
lection except that each child that is pitted against one of its parents, not against a
randomly chosen competitor. Only the fitter of the two is then allowed to advance
into the next generation

19.5 pH Neutralization Process

The laboratory pH system considered here was selected to be representative of pH
systems present in industries and is schematically depicted in Figure 19.3. It con-
tains both nonlinearities and changing process dynamics. The nonlinearities are
due to the fact that the output of the pH sensor is proportional to the logarithm of
concentration. While the changing process dynamics are brought about by intro-
ducing a buffer into the system, which significantly alters the response of the sys-
tem, by changing the concentration of the control reagents and by changing the set
point.

Fig. 19.3. Schematic of the physical pH control setup

The system consists of a continuous stirred tank reactor (CSTR) of 20 L vol-
ume; two control reagents, acid (HCl) and base (NaOH), which are manipulated
by stepper motor driven needle valves, one input stream, whose pH has to be con-
trolled; and another stream through which a buffer (acetic acid) can be introduced.
The metering range of the control valves is 0.0-0.02 L/s with an increment of
0.0002 L/s. The objective of the control problem is to drive the pH of the system
to the desired set point in the shortest time possible by adjusting the valves of the



19.5 pH Neutralization Process 487

control reagents. Three industrial pH electrodes were used to account for spatial
non-uniformity within the reactor. The pH value of the process stream was taken
to be the median of the three sensor signals. The pH sensor signals were transmit-
ted through a 12 bit add-on ADC card (Dynalog Microsystems, PCL 207) to a 33
MHz 386 IBM PC, which controlled the entire process. A sampling time of 30 ms
was used throughout the study.

Fig. 19.4. Block Diagram of DE FLC structure

To develop an adaptive FLC using DE, a computer model of the physical sys-
tem is required. Figure 19.4 shows a schematic of the basic design of an adaptive
FLC that uses a DE for membership function and rule set selection. Fortunately,
the dynamics of pH system are well understood and can be modeled by using con-
ventional techniques for buffered reactions. The mathematical equations of the
CSTR can be described as follows [McAvoy 72]:

ξξ
outinin FCF

dt

Vd −= (19.8)

[ ] [ ]+
+

−= NaFCF
dt

NaVd
outinbb ,

(19.9)

[ ] [ ]−
−

−= ClFCF
dt

ClVd
outinaa ,

(19.10)

[ ] ( )[ ] ( )( )[ ] 0
23

=−−−+++ +++
awwaa KKHKKHKH ξςς (19.11)

[ ]+−= HpH 10log (19.12)

where

bainout FFFF ++= (19.13)

[ ] [ ]−+= AcHAcξ (19.14)

[ ] [ ]−+ −= ClNaς (19.15)



488 19Parametric Optimization of a Fuzzy Logic Controller for Nonlinear Dynamical
Systems using Evolutionary Computation

The cubic equation must be solved for [ ]+H ions, which directly yields the pH

of the solution. The symbols are defined in the Nomenclature section (Appendix
B). One of the strong points of fuzzy controllers is the fact that they do not require
mathematical models. However, to obtain the cost for a given controller, the DE
must have a method to evaluate the controller’s performance. In this sense we have
negated one of the fuzzy controller advantages in order to use the power of DE’s to
optimize this controller.

19.6 Simulation

The input parameters for the FLC viz the errorε , and derivative of error
tδ

δε
had

their base lengths determined by the DE, while the location of the peaks were kept
constant. The rules used were of the form, IF (ε is {NH, NM, NS, NZ, ZE, PZ,

PS, PM, PH}) and (
tδ

δε
is {NM, NS, ZE, PS, PM}) THEN { output }, where

output is the acid or base flow rate. The acronyms are defined in the Abbreviations
section (Appendix A). The two input spaces use a total of fourteen triangles, so the
dimension D of each parameter vector is (9+5+9×5) = 59. The outputs were sin-
gletons to ease the computational burden, and no additional parameters were re-
quired for them. The first forty five vectors of each parameter vector form the rule
set and the next nine vectors form the base lengths of error membership functions
and the rest the base lengths of the derivative of error membership functions. The
rule set consisted of the flowrates of the control reagents, which were classified as
{VLA, LA, MA, SA, ZF, SB, MB, LB, VLB}. The minimum overlap between
two adjacent membership functions was chosen to be 0.2 and the maximum to be
0.8 to ensure that at least two membership functions exist through out state space.
Thus the two main ingredients of a fuzzy controller, the rule set and the member-
ship functions, are incorporated into a single individual which the DE will seek to
optimize.

The task of defining a cost function is always application specific; it always
comes down to accurately describing the goal of the controller. In this case, the
objective of the controller is to drive the pH to the desired set point in the shortest
possible time and to maintain the pH at the desired set point. The ability of the
FLC to achieve these objectives can be represented by a cost

function that specifies how well the controller has reduced the error over some
finite time period. To ensure that a robust FLC is obtained, the cost function
should reflect the controller’s ability to reach the set point from a number of initial
condition cases. Mathematically, this fitness function is expressed as

∑ ∑
= =

=
4

1

30

0

2
case

casei

s

sj

F ε (19.16)



19.6 Simulation 489

The initial condition cases were selected from different regions of the state
space of the pH control system.

The coding of the membership functions was same in the case of GA except
that the base lengths were coded as binary strings. The fitness function used was
also same, but was incorporated with a search space smoothing technique. The
smoothing function applied to the GA is expressed mathematically as,

( ) ( )
( )⎪⎩

⎪
⎨
⎧

−−
−+= α

α

α
FFF

FFF
F

i

i
i

FF

FF

i

i

<
≥

if

if (19.17)

where iF is the fitness of the thi individual, F is the average fitness,

and 1≥α .α is decreased gradually from a large number, for eg. from 10 to 1. A
search space generated by a largerα exhibits a smoother terrain surface, and that
generated by a smaller α exhibits a more rugged terrain surface. The two extreme

cases of the function are: 1) If α >> 1, then ( ) FFi →α , this is a trivial case; 2) If

1=α , then ( ) ii FF =α , which is the original problem. The above-mentioned algo-

rithm of DE FLC produced the membership functions as shown in Figure 19.5 and
the simulation result is shown in Figure 19.6.

Fig. 19.5. Final Membership Function at which the DE converged



490 19Parametric Optimization of a Fuzzy Logic Controller for Nonlinear Dynamical
Systems using Evolutionary Computation

Fig. 19.6. Simulation of the response of DE FLC for perturbances like addition of buffer,
acid and base

19.7 Experiments & Results

Using the aforementioned algorithm, an adaptive DE FLC was developed. The DE
was used for off-line adaptation of the FLC. The performance of this adaptive DE
FLC is demonstrated for three different situations, which provide a challenging
test-bed for any control system. First the pH system is perturbed with the external
addition of an acid, a base and a buffer along with a continuous input stream of pH
8.0. In this case the process dynamics are dramatically altered by the addition of
buffer. Second, the desired set point is altered, which for all intents and purposes
changes the objective of the controller. Third, the concentrations of the control re-
agents are changed, which causes the system to handle differently.



19.7 Experiments & Results 491

Consider the first case where the pH system is perturbed with a buffer, acid and
base. Figure 19.7 compares the performance of a FLC developed by a DE in the
third iteration with that of a FLC, which is designed by a GA after hundred itera-
tions. The results show that the DE FLC is more efficient in terms of faster set-
tling, lesser overshoot and steady-state error. Next consider a situation where the
set point is changed, which implies that the objective of the controller is being
changed. As shown in Figure 19.8 the DE FLC outperforms the GA FLC. Finally
consider the case wherein the concentrations of the control reagents are changed.
This is the most disruptive perturbance since it changes the system response com-
pletely. The DE FLC is able to maintain a high degree of control over the process
despite the drastic change in the environment, which is clearly depicted in Figure
19.9. The results presented in this paper depict the scope of Differential Evolution
in designing a FLC. The FLC augmented with DE is able to maintain a high de-
gree of control over a bench scale pH setup despite the nonlinearities and the dra-
matic perturbations.

Fig. 19.7. Perturbation by the addition of buffer, acid and base: DE FLC shows better per-
formance than the SGA FLC



492 19Parametric Optimization of a Fuzzy Logic Controller for Nonlinear Dynamical
Systems using Evolutionary Computation

Fig. 19.8. Change of set point: DE FLC performs effeciently compared to SGA FLC

Fig. 19.9. Change of concentration of control reagents from 0.5N to 0.1N: DE FLC has less
effect of parameter changes as compared to SGA FLC



19.9 Robot arm control 493

19.8 The Univariate Marginal Distribution Algorithm

The univariate marginal distribution algorithm UMDA estimates the distribution
of gene frequencies using mean-field approximation. Each string in the population
is represented by a binary vector x . The algorithm generates new points according
to following distribution:

( ) ( )∏
=

=
n

i

i
s
i txptp

1

,,x (19.18)

The UMDA algorithm is given as follows:
• Step 1: Set t = 1, Generate N >> 0 binary strings randomly.
• Step 2: Select M<N strings according to a selection method.

• Step 3: Compute the marginal frequencies ( )txp i
s
i , from the selected

strings.
• Step 4: Generate new N points according to the distribution

( ) ( )∏
=

=
n

i

i
s
i txptp

1

,,x .

• Set t=t+1. If the termination criteria are not met, go to Step 2.
For infinite populations and proportionate selection, it has been shown

[Mhlenbein and Mahnig 2001] that average fitness never decreases for maximization
problem (increases for minimization problem).

19.9 Robot arm control

The multi-link robot dynamics have been represented by single link and double
link robot equations to study the effects of nonlinearity in fuzzy and neuro-fuzzy
learning models. We focus on a single link manipulator whose dynamics is gov-
erned by the following equation [Behera et al., 1994]:

τ=+ qmglqml cos2 �� (19.19)

where q and q�� are respectively link position and link acceleration, m is the link

mass, l is the link length, g is the gravity and τ the applied torque. The parameters
are given as m=11.36 and l=0.432.

19.9.1 Control Architecture

The general approach to control a nonlinear system like robot arm is to actuate a
feed-forward torque which is computed based on inverse dynamics model of the
robot arm and a feedback torque that is computed using position and velocity
feed-back terms [Behera, 1995]. The schematic diagram for such control architec-
ture is given in Figure 10.



494 19Parametric Optimization of a Fuzzy Logic Controller for Nonlinear Dynamical
Systems using Evolutionary Computation

Fig. 19.10. A general control architecture for a robot manipulator

19.9.2 Inverse Dynamics Model

There are various methods available in the literature to compute the inverse dy-
namics of a robot arm. In the absence of dynamic and parametric uncertainties, the
inverse model can be directly computed in terms of desired link position, velocity
and acceleration. However, the inherent uncertainties compel a control engineer to
estimate the model. The generic form of the inverse dynamics for a robot manipu-
lator is given as follows:

( )qqqf ���,,=τ (19.20)

whereτ is the required torque, and q, q� , q�� are respectively the link position,

velocity and acceleration. Neural networks [Behera, 1995], fuzzy neural networks
[Behera, 1999] and fuzzy models have become popular tools to estimate the inverse
dynamic model (19). In this section, we derive a fuzzy model of the inverse dy-
namics using SGA and UMDA. Since the objective is to evaluate the performance
of evolutionary computational approaches, we keep the model very simple. The
generic form of the fuzzy model is given as follows:

ByAxAxAx nn isthen,is,,is,isif 2211 �

where ix is the fuzzy input variables for the model, iA is the fuzzy attribute

of ix , y is the fuzzy output and B is the fuzzy attribute of y . We have only two

fuzzy input variables, q and q�� , and one fuzzy output variable,τ , required to

model the inverse dynamics for a single link manipulator. Each input variable is



19.9 Robot arm control 495

fuzzy partitioned into 6 regions: NB (negative big), NM (negative medium), NS
(negative small), PS (positive small), PM (positive medium) and PB (positive big).
Thus we have maximum possible 36 rules to describe the dynamics. For simplic-
ity, we assume that the output fuzzy variable is a fuzzy singleton. The output of
the fuzzy model is computed using center of gravity method:

( )
∑

∑ ==
r r

R

r rr yB
y

μ

μ
1

(19.21)

where r is the index for a rule, R is the total number of rules and
( ) ( ) ( )( )nnr xAxAxA �,,min 2211=μ .

Fuzzy parameters: Given that we have two input variables, each is fuzzy parti-
tioned into 6 regions, and each region is characterized by two parameters, mean
and variance, the total number of parameters in the input space are 24. There are
36 singleton parameters in the output space, one for each of the 36 rules. Thus it is
required to estimate 60 parameters. Since the output is a nonlinear function in
terms of these 60 parameters, the resulting nonlinear optimization problem is a
good candidate within the evolutionary computation approaches. We select both
SGA and UMDA to estimate these parameters.

We select binary string. Each parameter is represented by 8 bits. Initial popula-
tion consists of 1000 strings. In SGA, proportional selection was adopted and
multi-point crossover was done. The mutation rate was kept at 0.01.

In UMDA, 20% of the population is selected according to fitness. The univari-
ate frequency of each bit is computed over the selected strings and a new popula-
tion is generated according to these univariate frequencies.

Data for the inverse dynamics are generated using two following position tra-

jectories: ( )tttqtq 3cos2coscos
3

1
and3cos ++== . The data set has 500 data

points. Both SGA and UMDA are evolved over 100 generations. We show the fit-
ness of the best string in Figure 11. Here the fitness is the squared error between
the desired output and predicted output. Our result shows that UMDA converges
much faster compared to SGA with far better accuracy.



496 19Parametric Optimization of a Fuzzy Logic Controller for Nonlinear Dynamical
Systems using Evolutionary Computation

Fig. 19.11. Error convergence in parametric evolution using UMDA and SGA while model-
ing the inverse dynamics;UMDA is faster than SGA.

The accuracy of the predicted model is tested by comparing with the desired
torque corresponding to two different trajectories. The model prediction for
UMDA is shown in Figure 12. The model prediction for SGA is shown in Figure
13. The figures clearly show that UMDA does better as compared to SGA.

Fig. 19.12. Inverse dynamics model prediction in fuzzy parametric evolution using UDMA,
actual-1 refers to the desired output corresponding to the trajectory tq 3cos= and similarly
the output actual-2 corresponds to the trajectory ( )tttq 3cos2coscos

3

1 ++= .



19.9 Robot arm control 497

Fig. 19.13. Inverse dynamics model prediction in fuzzy parametric evolution using SGA,
actual-1 refers to the desired output corresponding to the trajectory tq 3cos= and similarly
the output actual-2 corresponds to the trajectory ( )tttq 3cos2coscos

3

1 ++= .

19.9.3 Feedback fuzzy PD Controller

With reference to Figure 10, the fuzzy PD controller or a simple PD controller is
necessary to guarantee the stability of the closed loop control system. The generic
form of a rule in a fuzzy logic controller is as follows:

nn AxAxAx isand,is,isif 2211 � , then the control action Bfb isτ
The final control action is computed using center of gravity method. In case of

single link manipulator, two input variables are link position and link velocity and
are fuzzy partitioned into 6 regions each (NB, NM, NS, PS, PM, PB). So also the
only control variable is fuzzy partitioned into 8 regions (NC, NB, NM, NS, PS,
PM, PB, PC) where NC stands for negative critical and PC stands for positive
critical. We represent each variable by two parameters, its mean and variance.
Thus we have 40 variables. However, by fixing mean of some fuzzy attributes
such as NS and PS at zero, we reduced the parameter size to 30. As before each
parameter is represented by 8 bits. We show the results of error convergence as
parameters are optimized in Figure 14. The figure shows that UMDA converges
after 6 generations while SGA takes 25 generations to reach the same level of per-
formance.



498 19Parametric Optimization of a Fuzzy Logic Controller for Nonlinear Dynamical
Systems using Evolutionary Computation

Fig. 19.14. Error convergence in parametric evolution using UMDA and SGA while de-
signing fuzzy PD controller

We run the closed loop system using fuzzy UMDA inverse dynamics and fuzzy
UMDA PD controller since UMDA performs better than SGA. In the first case,
we used exact inverse dynamics along with fuzzy PD controller for a set-point
tracking. The response was shown in curve 1 of Figure 15. Then we assumed 20%
model uncertainties in the actual model and the control scheme was implemented
using fuzzy PD control and a conventional PD controller. The respective re-
sponses are shown by curve 2 and 3 in Figure 15. The results show that FLC is ro-
bust to parametric uncertainties.

Fig. 19.15. Set point response (1) FLC without model uncertainty, (2) FLC with model un-
certainty, (3) PD with model uncertainty.



19.10 Conclusions 499

19.10 Conclusions

This chapter shows the efficacy of using DE, UMDA and SGA in designing con-
trollers without the previously needed human expert. We have earlier imple-
mented DE for designing FLC’s for the first time [Sastry, 1999]. In most of the
works done earlier in the design of a self-organizing FLC, researchers have fo-
cused on using a SGA for altering the rule-set or the membership functions. Since
the parameters are floating point and also due to its simple structure, ease of use,
speed and robustness, it has been shown that a DE is the more appropriate choice.
This methodology allows the complete design of both the membership functions
and the rule-set, leading to high performance controllers. The technique has been
applied to a bench scale pH setup in which the process dynamics change to a large
extent. The system was subjected to perturbations like the introduction of a buffer,
changes in the desired set point, and the alterations in the concentrations of the
control reagents. In all instances, the adaptive DE FLC was able to successfully
drive the system pH to the desired set point in a reasonable time. The results were
compared with that of a SGA based FLC with a search space smoothing function.
Though the smoothing function ensures faster convergence and global optimiza-
tion, the results presented demonstrate that a DE FLC is more effective in terms of
faster convergence, accurate control and robustness. We extended our work in this
chapter by implementing fuzzy UMDA inverse dynamics and fuzzy PD controller
for effective control of a robot arm. Like DE FLC, UMDA FLC and UMDA in-
verse dynamics achieved faster convergence in comparison to SGA FLC and SGA
inverse dynamics.



500 References

References

Back T (1996), Evolutionary algorithms in Theory and Practice, Oxford University Press,
New York, USA

Behera L, Gopal M, Chaudhury S (1994), Trajectory Tracking of a Robot Manipulator us-
ing Gaussian Networks, Robotics and Autonomous Systems, 13:107-115

Behera L (1995), Neural Controllers for Robot Manipulators, PhD Thesis, Indian Institute
of Technology, Delhi

Behera L, Anand KK (1999), Guaranteed Tracking and Regulatory Performance of Nonlin-
ear Dynamic Systems using Fuzzy Neural Networks, IEE Proc. Control Theory and
Applications, 146:484-491

Fogel DB (1995), Evolutionary Computation: Toward a new Philosophy of Machine Intel-
ligence, IEEE Press, Piscataway, NJ, USA

Gu J, Huang X (1994), Efficient Local Search with Search Space Smoothing: A Case Study
of the Travelling Salesman Problem (TSP), IEEE Trans. on Systems, Man and Cyber-
netics, 24:728-735

Goldberg DE (1989), Genetic Algorithms in Search, Optimization, and Machine Learning,
Reading, MA: Addison-Wesley

Gustaffson TK, Waller KV (1992), Nonlinear and Adaptive Control of pH, Ind. Eng. Chem.
Res., 31:2681-2693

Mühlenbein H, Mahnig T (2001), Evolutionary Computation and Beyond, In: Foundations
of Real-world Intelligence, ed. Uesaka et al, CSLI Publications, 123-188

Muhlenbein H (1998), The equation of response to selection and its use for Prediction, Evo-
lutionary Computation, 5:303-346

Homaifar A, McCormick E (1995), Simultaneous Design of Membership Functions and
Rule Sets for Fuzzy Controllers Using Genetic Algorithms, IEEE Trans. Fuzzy Sys-
tem, 3:129-138

Karr CL, Gentry EJ (1993), Fuzzy Control of pH Using Genetic Algorithms, IEEE Trans.
Fuzzy Systems, 1:46-53

Kennedy J, Eberhart RC (2001), Swarm Intelligence, Morgan Kauffman
Lee CC (1990), Fuzzy Logic in Control Systems: Fuzzy Logic Controller, parts I and II,

IEEE Trans. Syst. Man Cybern.,20:404-435
Maiti SN, Kapoor N, Saraf DN (1994), Adaptive Dynamic Matrix Control of pH, Ind. Eng.

Chem. Res., 33:641-646
Mamdani EH (1974), Application of Fuzzy Algorithms for the Control of a Dynamic Plant,

Proc. IEEE, 121:1585-1588
McAvoy TJ (1972), Dynamics of pH in Controlled Stirred Tank Reactor, Ind. Eng. Chem.

Res. Process Des. Dev., 11:1254-1259
Meeden LA (1996), An increamental approach to developing inteligent neural network con-

trollers for robots, IEEE Trans. on Syst. Man Cybern., 26: 474-485
Morgan P (1996), A Clear Look at Fuzzy PI Control, InTech, 50-54



19.10 Conclusions 501

Nordvik JP, Renders JM (1991), Genetic Algorithms and their Potential for Use in Process
Control: A Case Study, In: Proc. of the Fourth Int. Conf. Genetic Algorithms, 260-265

Park D, et al (1994), Genetic-Based New Fuzzy Reasoning Models with Application to
Fuzzy Control, IEEE Trans. on Syst. Man Cybern., 24:39-47

Price K, Storn R (1997), Differential Evolution, Dr. Dobb’s Journal}, April:18-24
Qin SJ, Borders G (1994), A Multiregion Fuzzy Logic Controller for Nonlinear Process

Control, IEEE Trans. Fuzzy Systems, 2:74-81
Sastry KKN, Behera L, Nagrath IJ (1999), Differential evolution based fuzzy logic control-

ler for nonlinear process control, Fundamenta Informaticae, 37:121-136
Tettamanzi A, Tomassini M (2001), Soft Computing: Integrating Evolutionary, Neural, and

Fuzzy Systems, Springer-Verlag.
Whitley D, Starkweather T, Bogart C (1990), Genetic algorithms and neural networks: Op-

timizing connections and connectivity, Parallel Computing, 14:347-361
Yang JM, Horng JT, Kao CY (2000), A genetic algorithm with adaptive mutations and

family competition for training neural networks, International Journal of Neural Sys-
tems, 10:333-352

Zadeh LA (1973), Outline of A New Approach to the Analysis of Complex Systems and
Decision Processes, IEEE Trans. Syst. Man Cybern., 3:28-44



20 DNA Coded GA: Rule Base Optimization of
FLC for Mobile Robot

Prahlad Vadakkepat, Xiao Peng and Lee Tong Heng

20.1 Introduction

In recent years, the new concept of DNA (deoxyribonucleic acid) computing has
drawn intensive research interests. The idea of DNA computing, proposed by
Leonard Adleman (Leonard 1994) in 1994, is to express a problem in the form of
DNA molecules and to realize the computation by operating on those DNA mole-
cules. There are two major advantages of DNA computing: the great parallel com-
putation power and the mega information storage ability. DNA computing is
quick, as it can perform many calculations simultaneously or in parallel (Boneh et
al 1995; Winfree 1995). Some of the very complex problems which are hard even
for supercomputers can be solved by DNA computing (Lipton 1995; Boneh et al
1995). DNA computing also provides a huge storage media since it stores the in-
formation in DNA molecules (Baum 1995). DNA computing is such a novel idea
that its future applications still remain unknown. However, it seems that DNA
computing will make great changes in the fields of computer science, biology,
chemistry and medicine (Leonard 1996; Beaver 1995).

Compared to the novel DNA computing, Fuzzy logic controllers (FLCs) have
already been successfully applied in many industrial control systems. FLCs can
exhibit better performance than the conventional controllers. Experience and
knowledge about the plant are usually used in the design of FLCs. FLCs are espe-
cially suitable when the plant dynamics is uncertain or too complex to analyze.

The kernel of the FLC is a linguistic control rule base. The rule base deter-
mines the control decisions for the plant and plays a key role. Conventionally,
fuzzy control rules are established based on the engineering knowledge and ex-
perience of experts and/or skilled operators. The design and fine-tuning work of
rule base are usually accomplished by “trail and error” approach. There are some
drawbacks associated with such an approach. As the method is human dependent,
the resulted rule base can be far from optimal when the expert's knowledge and/or
experience are not so reliable. Furthermore, the method is time consuming and
even more inefficient when the design work must be accomplished on-line as in
some adaptive systems. Due to these reasons, the recent research has focused on
fuzzy-evolutionary systems (Karr 199; Thrift 1991), which can improve the FLC's

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



504 20 DNA Coded GA: Rule Base Optimization of FLC for Mobile Robot

performance by the automatic and efficient design of rule base. The evolutionary
method mostly used in such systems is the genetic algorithm (GA).

Genetic algorithms are optimum searching algorithms that are based on con-
cepts of natural selections and genetics (Holland 1975). Genetic algorithm is in-
spired by observing the natural phenomenon of evolution. Darwinian rule of “the
survival of the fittest” is the spirit inside the mechanism behind GA. For problems
that cannot be handled by traditional methods due to the lack of some specific
knowledge, GA is useful as a black-box method. It is even more suitable in dy-
namic situations where the goal and constraints are changing all the time. Addi-
tionally, it is convenient to incorporate GA with other algorithms in the artificial
intelligence field. Studies (Park et al 1994; Wong and Feng 1995; Homaifar and
McCormick 1995; Surmann 1996) have shown that genetic algorithms have the
ability to optimize the rule base of the conventional FLC.

The performance of GA is closely associated with the population size. The
larger the population, the better is the chance to find a global optimum. However,
a large population size increases the computational load. A trade-off must be made
between the population size and computation time. The parallel computation po-
tential and high information density of DNA computing may enable to handle a
population size that is too big for the conventional computers to handle. It may
then greatly increase the performance of GAs. Meanwhile, GA may be tolerant to
the errors, which are prone to occur in the biological operations of DNA comput-
ing, by considering them as a kind of mutation. As a result, genetic algorithms are
likely to provide a promising line of research in DNA computing.

In this article, a fuzzy logic controller is designed for Khepera robots to per-
form the obstacle avoidance task. A DNA coded GA is proposed in (Xiao et al
2001, 2002) to generate and optimize the FLC rule base. In the proposed algo-
rithm, every individual is coded as a DNA chromosome. Simulation result shows
that the GA optimized FLC works well on the Khepera robot. It seems that this
method can be applied to robots with more complex tasks such as, “navigation and
mapping” and “predator and evader” directions of study.

The organization of this article is as follows. The basics of DNA computing
are provided in Section 2. The Khepera robot and the associated Webots simula-
tion software are outlined in Section 3. The basic building blocks of a fuzzy logic
controller and the block diagram of the designed FLC for the Khepera robots are
described in Section 4. Section 5 deals with the DNA coded GA. The coding
method and the correspondence between the amino acids and the linguistic vari-
able of the FLC are discussed. Simulation results are included in Section 6 fol-
lowed by discussions in Section 7.

20.2 DNA Computing

The idea of DNA computing is to use strands of DNA to encode the problem, and
to manipulate the strands using techniques commonly available in any molecular
laboratory, in order to simulate the operations that lead to the solution.



20.2 DNA Computing 505

Fig. 20.1. Autoreplication of DNA

The name of DNA computing is easy to confuse with biocomputing. Usually,
biocomputing refers to everything that the computer scientists can do, to help the
biologists in the study of genes. In DNA computing, instead, molecular biology is
suggested to solve the problems that computer scientists face. The DNA comput-
ing is different from the Genetic Algorithm as well. GA simulates the rules of the
nature of evolution in computation. In this way, GA searches for the optimal solu-
tion of a problem. As to DNA computing, it dose not “simulate” anything in mo-
lecular biology, but actually uses DNA strands to perform the computation. The
basis of DNA computing lies in the fact that DNA molecule is a natural born in-
formation container. The genetic information of life is encoded in DNA.

The special feature of DNA is determined by its chemical structure. A single
strand of DNA is a concatenation of four kinds of nucleotides, differing only in
the nitrogenous base: adenine (A), guanine (G), cytosine (C) and thymine (T).
These nucleotides are also known as bases. The chemical structure of DNA, the
famous double helix, consists of a particular bond of two single strands. This bond
occurs between bases and follows the property of complementarity: adenine (A)
bonds with thymine (T) and vice versa; cytosine (C) bonds with guanine (G) and
vice versa. This is known as the Watson-Crick complementarity, denoted as:

TA = ; TA = ; CG = ; CG = . This complementarity enables the storage
of information in DNA and thus forms a basis to perform the computations.

Single nucleotides are linked together, end to end, to form the DNA strands in
a process called polymerization. This linking occurs via the reaction between the
5’ phosphate of one nucleotide and the 3’ hydroxyl of another. Every DNA strand
has two distinct ends: one with a free 5’

4PO group and the other with a free 3’ OH

group, referred to as the 5’ and 3’ ends, respectively. The 3’ and the 5’ ends de-
termine the strand's polarity. Only two complementary strands of opposite polarity
(also known as, in antiparallel fashion) can bond together to form the final double
helix. Fig. 20.1 shows how a DNA autoreplicates itself.



506 20 DNA Coded GA: Rule Base Optimization of FLC for Mobile Robot

Ordinary biological operations are employed to realize the computation on
DNA strands. The DNA strand can be separated into two single chains at first and
fused together later by heating up and cooling down the DNA solution through the
process named “melting and annealing”. DNA strands can be linked, cut or modi-
fied with the help of special enzymes. The length of a DNA strand can be meas-
ured using gel electrophoresis and its content can be read by sequencing. Just like
the mathematical and logical operators (“ADD”, “MINUS”, “AND” and “OR”) in
the conventional computation, these biological operations (together with others
not mentioned) constitute the operators handling the information encoded in DNA
strands.

While a biological operation is performed, it works on all the DNA molecules
in a container at the same time. Since there may be trillions of DNA molecules,
DNA computing is massively parallel. With the current biological technology, it is
possible to reach a speed of 1810 operations per second in DNA computing (Leo-
nard 1996). It is approximately 1,200,000 times faster than a digital super com-
puter. As the DNA molecules are smaller and information is stored in the form of
nucleotides, an information density of the order of 1 bit per 2nm is attainable,
while the existing storage media can store at a density of about 1 bit per 1210 2nm
(Leonard 1994).

As DNA computing is in a state of infancy, there are several problems un-
solved. The errors in the biological operations and the decay of DNA strands are
among the major difficulties. The improvements in fields including biology,
chemistry, computer science, engineering, mathematics, and physics are all valu-
able for the appearance of a feasible DNA computer in the future.

20.3 The Khepera Robot and Webots Software

20.3.1 The Khepera Robot

The Khepera robot (K-team 1999) is one of the most popular robots used for re-
search in universities and research centers. It is a miniature mobile robot with two
wheels, each controlled by a DC motor with an incremental encoder (Fig. 20.2a).
With the program downloaded to its memory, the Khepera can run autonomously.
With 2 radio modem turrets or via a serial cable, the robot can communicate with
a host computer. The basic Khepera has a diameter of 55 mm, height of 30 mm
and weight of 70g. It supports a large number of hardware extension modules,
such as gripper, vision turret and radio turret. Included in the associated Webots
software is a useful library of on-board applications. The programs for Khepera
can be developed within the standard and well known tools, such as C/C++ and
Matlab.



20.3 The Khepera Robot and Webots Software 507

(a) The robot (b) Eight infrared sensors

Fig. 20.2. The Khepera Robot

Khepera has eight infrared proximity and ambient light sensors to detect its
surroundings (Fig. 20.2b). Each sensor returns a value from 0 to 512 (a higher
value means darker) for ambient light and, from 0 to 1023 (a higher value means
nearer to obstacles) for proximity to obstacles. The object can be detected within
the range of 5 cm.

Although the maximum speed of the Khepera robot is 60 cm/s, the speed range
can be set from -20 units to 20 units, with each unit referring to 8 mm/s. The speed
of the left and right wheels can be set separately.

20.3.2 The Webots Software

Khepera supports many simulation packages. Webots is the most powerful 3D
mobile robot simulator (Cyberbotics 1999; Cyberbotics2 1999). Developed by
Cyberbotics, Webots supports Khepera robots as well as other robots such as Al-
ice and Koala robots. The user can program virtual robots using the C/C++ library.
Webots also provides facility to control the real robot through a serial port com-
munication.

A 3D environment editor (Fig. 20.3) allows the user to customize the robot
world. It is possible to add objects such as walls, balls, cans and lamps into the
world. The object properties such as size, color, position, orientation, etc are also
definable.

Webots provides three kinds of Application Programming Interfaces (API) for
users to construct the programs. The Khepera API provides control functions on
robots. These functions are used to read the proximity and light measurements of
the infrared sensors, to read and set the speeds of the motors, and so on. The su-
pervisor API can control experiments, record experimental data such as robot tra-
jectories, and implement inter-robot communications. The controller API enables
the users to design a graphic user interface (GUI).



508 20 DNA Coded GA: Rule Base Optimization of FLC for Mobile Robot

Fig. 20.3. World editor of the Webots software

In this work, a training environment is constructed in Webots for the optimiza-
tion of fuzzy logic controller.

20.4 The Fuzzy logic controller

Unlike Boolean logic, fuzzy logic can deal with uncertain and imprecise situa-
tions. Linguistic variables (SMALL, MEDIUM, LARGE, etc.) are used to repre-
sent the domain knowledge, with their membership values lying between 0 and 1.
Basically, a fuzzy logic controller (FLC) consists of the following components
(Lee 1990).

Fig. 20.4. Structure of fuzzy logic controller for Khepera robot

• A fuzzification interface, to scale and map the measured variables to suit-
able linguistic variables.

• A knowledge base, comprising of the linguistic control rule base.
• A decision making logic, to infer the fuzzy logic control action(s) based

on the measured variables, which is much akin to the human decision
making.



20.4 The Fuzzy logic controller 509

• A defuzzification interface, to scale and map the linguistic control actions
inferred, to yield a non-fuzzy control input to the plant/process being
controlled.

The fuzzy logic controller is designed to control the moving direction of the
Khepera robot (Fig. 20.4). The proximity values received from the 8 sensors are
used to generate inputs to the FLC. These 8 sensors, marked from 0 to 7, are di-
vided into 4 groups to detect obstacles in 4 directions, which are left, front, right
and back. The grouping is as follows:

Left = Sensor0 + Sensor1 Front= Sensor2 + Sensor3
Right = Sensor4 + Sensor5 Back = Sensor6 + Sensor7

For instance, the proximity value of an obstacle on the left side is the sum of
the reading values from sensors 0 and 1. The “Left”, “Front”, “Right” and “Back”
are the inputs to the FLC and their values range from 0 to 1024. Based on the in-
put values, three linguistic variables, “Large”, “Medium” and “Small”, are used to
represent each input. The input linguistic variables form the antecedents of the
fuzzy rules. There are four output linguistic variables: “Forward”, “Small Turn”,
“Large Turn” and “Backward”. These variables form the consequents of the rules.
The logic operation used is “AND”. A typical fuzzy rule is:

If Left is Large AND Front is Large AND Right is Large AND Back is Small, the
action is Backward.

Fig. 20.5. Membership functions for the input and output variables

From the combination of three variables for four inputs, there are 8134 = states
for the robot to encounter. The FLC rule base thus consists of 81 such rules.

The consequent variable indicates the angle by which the robot should turn to.
This angle, with a scope of 0 to 180 degree, is the final output of the FLC. The di-
rection the robot to turn to is determined as follows. Readings from sensors on the
left (sensor 0, 1, 2) and right (sensor 3, 4, 5) are summed up separately. If the sum



510 20 DNA Coded GA: Rule Base Optimization of FLC for Mobile Robot

value from the left group is bigger than the right, the robot turns to the right side
and vice versa.

Bell-shaped membership functions are used to fuzzify the inputs into linguistic
variables and to defuzzify the consequent variable. In fuzzification the four input
variables utilize the same membership functions (Fig. 20.5a). The membership
functions in Fig. 20.5b are employed in the defuzzification stage. In this work, the
parameters of the membership functions are simple and are manually tuned.

20.5 DNA coded Genetic Algorithm for FLC

DNA computing is a newly developed computation method that has potential
massive parallelism and power. A typical test tube can contain a large number of
DNA molecules, and biological operations can be performed simultaneously.
Meanwhile, the population size is an important factor, which affects the perform-
ance of GAs. Bigger population sizes always lead to better results. However, usu-
ally a trade-off between the size and computing time has to be made. On the other
hand, with the application of DNA computing to GAs, the computation time will
not explode with the increase in population size.

Table 20.1. The genetic code of amino acids

U C A G
UPhenylalaine

(Phe)
Tyrosine
(Tyr)

Cysteine
(Cys) C
Ter A

U

Leucine

Serine
(Ser)

Terminator
(Ter) Tryptophan(Trp) G

UHistidine
(His) C

A

C Leu Proline
(Pro)

Clutamine
(Gln)

Arginie
(Arg)

G
UAsparagine

(Asn)
Ser

C
Iseleusine)
(Ile)

A

A

Methionine(Met)

Threonine
(Thr)

Lysine
(Lys)

Arg
G
UAspartic acid

(Asp) C
A

G Valine
(Val)

Alanine
(Ala)

Glutamic acid
(Glu)

Glycine
(Gly)

G

In this article the DNA coding method to encode the rule base of a FLC is dis-
cussed and then the DNA coded GA is used to optimize the FLC rule base (Xiao
2001, 2002).

It is known that the messenger Rribonucleic acid (mRNA) is first synthesized
from DNA during the synthesis of proteins. In the mRNA three successive bases
called codons are allocated sequentially. These codons are the codes for amino ac-



20.5 DNA coded Genetic Algorithm for FLC 511

ids. Sixty four (64) kinds of codons correspond to 20 kinds of amino acids. The
codons are expressed as Leu, Arg, Thr, etc., which are the abbreviations for the re-
lated amino acids. For example, Leu stands for leucine, Arg for arginine and Thr
for threonine. Table 20.1 shows the correspondence between the codons and
amino acids. Based on the three bases of a codon, the corresponding amino acid
can be identified. The “AUG” along the left-top-right direction in Table 20.1 cor-
responds to “Met”. The special Terminator codon (Ter) is the stop codon. The
transcription, which is the process of synthesizing the RNA based on the DNA
strand, is terminated when the “Ter” is found. Amino acids can be synthesized ar-
tificially. The meaning of each codon can be defined as desired, such as a variable
or in the form of a function. In this way, problems under consideration can be en-
coded as DNA strand (Furuhashi 1997; Yoshikawa and Uchikawa 1996; Lee
2000).

The coding scheme differs depending on the application needs. A typical fuzzy
rule often consists of antecedents (or premise variables), consequent variables (or
conclusion) and fuzzy relations. All these parts can be encoded as DNA strands.
For instance, some coding methods (Furuhashi 1997) encode the whole “IF--
THEN” rule into chromosomes. Such a method is similar to the “broadcast lan-
guage” (Holland 1975). DNA codons are used as alphabets and symbols to con-
struct a presentation string. A parser scans the string to extract the fuzzy rules.
However, in this work, the antecedent and fuzzy relation of a rule are fixed. Only
the consequent part for each rule is needed to develop and the associated computa-
tional load is rather low. There are 4 consequent linguistic variables for each rule:
Forward, Small Turn, Large Turn and Backward. Four amino acids are mapped to
these variables as follows:

Phe ←⎯→ Forward, Leu ←⎯→ SmallTurn,
Ile ←⎯→ LargeTurn, Val ←⎯→ Backward

There are totally 81 rules in the rule table. The 81 consequent linguistic vari-
ables are combined into one chromosome as an individual of GA. The 81 rules are
sorted in a certain sequence and thus each rule has its associated consequent part
at a fixed position of the chromosome. Furthermore, the rule table has a kind of
symmetry, resulting in part of the rules to have the same consequent part. For ex-
ample, if the two rules have antecedents as,

Left is Large AND Front is Large AND Right is Small AND Back is Small ...
Left is Small AND Front is Large AND Right is Large AND Back is Small ...,

then the rules should have the same consequent (the same degree value to turn).
Due the symmetry, the length of the chromosome is shortened to 54 simplifying
the computations. One of the DNA chromosomes can be denoted as:

PheLeuIleValValPhePheIleIleLeu...
...LeuIleLeuValPheValIlePhePheLeu

Another issue worth mention is that when there are no obstacles around, the robot
should always move forward. Then the consequent part of the rule for such a



512 20 DNA Coded GA: Rule Base Optimization of FLC for Mobile Robot

situation is “Forward” which means turning by 0 degree. This prevents the robot
from spinning about its axis unnecessarily.

The fitness of the chromosome is initialized to zero. In each step, based on the
sensor readings, the robot decides the angle to turn to by the FLC and then moves
along this direction for a certain distance. The fitness is decreased by unity if an
obstacle is detected in that step; otherwise the fitness is increased by unity. If the
robot keeps approaching the obstacle and receives a very large proximity value
from any of its sensors, it is considered as a crash and the fitness is decreased by
10. In addition, there is a penalty function associated with the angle turned by the
robot. The fitness is decreased by a value, which is k times of the degree of angle.
Based on simulation results, it seems that the suitable range of k is from 0.0055 to
0.0111. This function encourages the robot to act more efficiently, i.e. just turn by
the necessary angle to avoid obstacles.

The evolution operations on the chromosomes are similar to those of the stan-
dard GA. Replication, cross-over, and mutation operations are used. With the help
of enzymes (such as restriction enzymes and ligase), these operations can be car-
ried out in a biological lab. In each generation, individuals are sorted by their fit-
ness. Those with higher fitness values are selected as elite and are candidates for
the evolution operations. The evolution stops when the best individual does not
receive any improvements for a certain time.

20.6 Simulation Results

The 3D simulation software, Webots, is used in this work. The program is coded
using MS C/C++. The Khepera robot is placed in the same position and orienta-
tion in the training world as shown in Fig. 20.6a. The fitness of an individual DNA
strand is evaluated for 400 steps. In each step, the robot makes a turn and then
moves forward for 64ms. The turn angle is decided by the FLC, which uses the
rule base represented by the individual under evaluation. The speed of forward
motion is set to 12 units (about 96 mm/s).

A small population size of 60 is used and it turns out to be enough for the “ob-
stacle avoidance” task. The elite population size is 20. Out of the 40 children gen-
erated by cross-over, 20 of them are mutated. The rather high mutation rate avoids
the “premature convergence” which often happens with a smaller population size.
The searching is terminated when no improvement is reported in 20 successive
generations.

The trajectories of the robot in the evolution process are shown and compared
in Fig. 20.6b, 20.6c, and 20.6d. At the beginning, the individuals are generated by
arbitrarily assigning the four consequent variables to each rule. As a result, the ro-
bot exhibited random behaviors and crashed frequently. It also leaned to linger at
the corners of the obstacles for a long time before moving out. As the evolution
continued, the robot gained the ability to avoid the obstacle “effectively” and
crashes seldom took place. At the end of the evolution process, the best individual
enabled the robot to avoid obstacles elegantly and escape from trap points quickly.



20.6 Simulation Results 513

(a) Training world (b) Trajectory before evolution

(c) Trajectory after 50 generations (d) Trajectory after evolution

Fig. 20.6. Simulation Results on Webots software

The optimized rule base resulted from simulation training world is tested in a
real experimental scenario which is much different from the training world. In the
experiment, the robot successfully navigated around and avoided the obstacles.
However, the robot could not move around so elegantly as in the simulation.
Sometimes it just turned by an angle that is more than necessary. The decrease in
efficiency is due to errors coming from the real world environment. For instance,
the environment’s color and lighting condition can disturb the sensor reading and
the inertia and friction can affect robot’s mechanic motion. However, the FLC’s
performance is not tampered that much by the disturbances, depicting some grade
of robustness and noise tolerance.



514 20 DNA Coded GA: Rule Base Optimization of FLC for Mobile Robot

20.7 Discussion

The discussed DNA coded genetic algorithm constructed an optimized rule base
of the FLC for the Khepera robot. The FLC enables the robot to perform well in
the “obstacle avoidance” task. The optimized FLC enabled the robot to move
around in an unknown world with full of obstacles without being trapped or stuck.
Since the “obstacle avoidance” is a fairly simple task, the FLC designed is rather
simple. Further work cases on more complex problems and further combination of
algorithm with DNA computation to exploit the power of evolutionary method is
suggested.



20.7 Discussion 515

References

Baum, E. (1995) Building an Associative Memory Vastly Larger Than the Brain. Science,
268:583--585.

Beaver, D. (1995) A universal molecular computer. Technical Report CSE-95-01, Penn
State University.

Boneh, D., Dunworth, C., Lipton, R.J. and Sgall, J. (1995) On the computational power of
DNA. Technical Report CS-TR-499-95, Princeton University.

Boneh, D., Dunworth, C. and Lipton, R.J. (1995) Breaking DES using a molecular com-
puter. Technical Report CS-TR-489-95, Princeton University.

Cyberbotics. (1999) Webots 2.0 User Guide.
Cyberbotics. (1999) Webots 2.0 Reference Manaul.
Furuhashi, T. (1997) Development of IF

�
HEN rules with the use of dna coding. in: W.

Pedrycz (Ed.), Fuzzy Evolutionary Computation, Kluwer Academic Publishers, Bos-
ton.

Karr, C.L. (1997) Fuzzy-evolutionary Systems. In T. Back, D.B.Fogel, and Z.Michalewicz
(eds) Handbook of Evolutionary Computation, Oxford University Press.

Holland, J. (1975) Adaptation in Natural and Artificial Systems. University of Michigan
Press.

Homaifar, A. and McCormick. E. (1995) Simultaneous design of membership functions and
rule sets for fuzzy controllers using genetic algorithms. IEEE Trans. Fuzzy Syst., vol.3,
pp.129--139.

K-team. (1999) Khepera User Manual. Version 5.02.
Lee, C.C. (1990) Fuzzy logic control systems: fuzzy logic controller--Part 1. IEEE Trans.

System Man Cybernet. SMC-20 404--418.
Lee, K.Y., Lee, D.W. and Sim,. K.B. (2000) Evolutionary neural networks for time series

prediction based on l-system and dna coding method. in: IEEE. Proc. of the 2000 Con-
gress on Evolutionary Computation, Vol. 1.2, pp. 1467--1474.

Leonard, A. (1994) Molecular Computation of Solutions to Combinatorial Problems. Sci-
ence, 266, 1021-1024.

Leonard, A. (1996) On constructing a molecular computer. In proceedings of the first
DIMACS workshop on DNA computing.

Lipton, R.J. (1995) Using DNA to solve NP-complete problems. Science, 268:542--545,
Apr.28.

Park, D., Kandel, A. and G. Langholz. (1994) Genetic-based new fuzzy reasoning models
with application to fuzzy control. IEEE Trans. Syst., Man, Cybern., vol. 24, pp. 39--47.

Surmann, H. (1996) Genetic optimization of a fuzzy system for charging batteries. IEEE
Trans. Ind. Electron., vol. 43, pp. 541--548.

Thrift, P. (1991) Fuzzy logic synthesis with genetic algorithms. In proceedings of 4th Int.
Conf. on Genetic Algorithms pp509--513.



516 References

Winfree, E. (1995) On The Computational Power of DNA Annealing and Ligation. Tech-
nical report, California Institute of Technology, USA.

Wong, C.C. and Feng, S.M. (1995) Switching type fuzzy controller design by genetic algo-
rithm. Fuzzy Sets Syst., vol.74, no. 2, pp. 175C185.

Xiao, P., Prahald, V. and Tong H. L. (2001) DNA coded GA for the rule base optimization
of a fuzzy logic controller, in: Proceedings of the 2001 Congress on Evolutionary
Computation CEC2001, IEEE Press, COEX, Seoul, Korea, 2001, pp. 1191--1196.

Xiao P., Prahlad, V. and Tong H. L. (2002) Mobile robot obstacle avoidance: DNA coded
GA for FLC optimization, in: Proceedings of the Congress on FIRA Robot World Cup
2002, Seoul, Korea, 2002.

Yoshikawa, T. and Uchikawa, Y. (1996) Effect of new mechanism of development from ar-
tificial dna and discovery of fuzzy control rules. in: Proc. of IIZUKA’96, pp. 498--501.



21 TRIBES application to the flow shop
scheduling problem

Godfrey C Onwubolu

Hyper-spheres instead of hyper-parallelepipeds for proximity areas, and adapta-
tion of the swarm size as well as the relationships between the particles offer an
elegant and powerful theoretical framework for design and analysis of autono-
mous adaptive search heuristics. This chapter describes an autonomous adaptive
search heuristic known as TRIBES, which in its current formulation is biased to-
ward solving problems defined as rational points, and the transformation processes
involved in realizing a version for solving combinatorial optimization problems.
We apply the TRIBES methodology to the well-known flow shop-scheduling
problem, and report simulation results. To demonstrate its effectiveness, we com-
pare the solutions of the TRIBES with other emerging optimization techniques.
The results show that TRIBES is promising for solving combinatorial optimization
problems, which are of significant importance in the manufacturing sector.

21.1 Introduction

The concepts of migration in which birds fly together in flocks, and assemblages
or communities in which a whole variety of birds gather together in one
area/region have been of much interest to researchers in optimization. An analogy
with the way birds flock has suggested the definition of a new computational
paradigm, which is known as particle swarm optimization (Kennedy and Eberhart
1999). The main characteristics of this model are cognitive influence, social influ-
ence, and the use of constriction parameters. Cognitive influence accounts for a
particle moving towards its best previous position, social influence accounts for a
particle moving towards the best neighbor, and constriction parameters control the
explosion of the systems’ velocities and positions. Particle swarm optimization
(PSO) heuristics usually need some predefined parameters, such as numerical co-
efficients, swarm size, neighborhood size and topology. Adaptive PSO is not a
new concept; some adaptive PSO versions have already been designed (Carlisle

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



518 21 TRIBES application to the flow shop scheduling problem

and Dozier 1998; Clerc 1999; Kennedy and Eberhart 1999; Shi and Eberhart 2001;
Hu and Eberhart 2002; Angeline 1998). Some use selection, some modify a coef-
ficient during the process, some use clustering techniques or fuzzy rules, but all of
them do need some predefined parameters, such as swarm size, weighting coeffi-
cient, or neighborhood size and topology. A framework for more complete adap-
tive versions has been defined in Clerc (2002), but there was still the problem of
an initial weighting coefficient, and no neighborhood adaptation was suggested.

This chapter presents an autonomous version of PSO referred to as TRIBES
(Clerc 2003) which does not require any parameter at all. TRIBES uses two tech-
niques, namely hyper-spheres instead of hyper-parallelepipeds for proximity ar-
eas, and adaptation of the swarm size, as well as the relationships between the
particles. First, we introduce the concepts of tribes and informer groups (i-groups)
and then each of the key elements is then described in some details in the subse-
quent sections. Further, we show how to remove weighting coefficients by using
uniform random distribution in hyper-spheres. An important point is that this first
improvement can be used even for non-adaptive methods. In the adaptation part
we present some rules to generate/remove not only particles themselves but also
relationships between particles.

In its current formulation, TRIBES is biased toward solving problems defined
as rational points. Consequently, we present the transformation processes involved
in realizing a version for solving combinatorial optimization problems. The con-
tribution of the current article consists of the strategies which have been devised
for inclusion in TRIBES, for transforming particle positions normally in the form
of rational numbers into a sequence, which is made up of discrete numbers. More-
over, a local search engine is included to improve the solution quality. It should be
noted that in the original TRIBES, no local search is needed to improve differenti-
able functions since the particle position, which is a rational form is exceptionally
adequate to obtain very good solution quality, but which cannot be used for com-
binatorial optimization problems. The overall strategy, the individual components
of which are then discussed, can be summarized as follows:

• after initialization, transform rational position into discrete position;
• evaluate the objective function of the position;
• access the local search routine to obtain better solution; and
• memorize the best solution so far.

Finally, we apply the TRIBES methodology to the well-known flow shop-
scheduling problem, and report simulation results. To demonstrate its effective-
ness, we compare the solutions of the particle swarm optimization with other
emerging optimization techniques.

21.2 Flow-shop scheduling problem (FSP)

A flow-shop problem (FSP) is one in which all jobs must visit machines or work
centers in the same sequence. The flow shop can be formatted generally by the se-



21.3 TRIBES approach 519

quencing of n jobs on m machines under the precedence condition. Typical objec-
tive functions include the minimizing of average flow time, minimizing the time
required to complete all jobs or makespan, minimizing maximum tardiness, and
minimizing the number of tardy jobs. If the number of jobs is relatively small,
then the problem can be solved without using any generic optimizing algorithm.
Every possibility can be checked to obtain results and then sequentially compared
to capture the optimum value. But, more often, the number of jobs to be processed
is large, which leads to big-O order of n! Consequently, some kind of algorithm is
essential in this type of problem to avoid combinatorial explosion. We define one
basic objective function for minimization of the completion time for the flowshop
problem using PSO.

The minimization of completion time for a flow shop schedule is equivalent to
minimizing the objective function F.

ℑ = ∑
=

n

j
jmC

1
, (21.1)

Where, Cm,j = the completion time of job j. To calculate Cm,j the recur-
sion procedure is followed for any ith machine jth job as follow:

( ) jijijiji PCCC ,1,,1, ,max += −− (21.2)

Where, C1,1 = k ( any given value) and Ci,j = ∑
=

j

k
kC

1
,1 ; Cj,i = ∑

=

i

k
kC

1
1,

⇒i machine number, ⇒j job in sequence, ⇒jiP , processing time of job j

on machine i.

21.3 TRIBES approach

A tribe is just a sub-swarm (Clerc 2003). Any particle belongs to one and only one
tribe. An informer for a given particle P is a particle Q that can "give P" some in-
formation. Typically this information includes the best position of Q found so far,
and the function value at this best position. The key elements of TRIBES, which
are hereafter discussed after terminology is given, are:

• Informers;
• Hyper-spheres for defining promising search area; and
• Adaptations.

21.3.1 Terminology and concepts

At the very beginning, there are n particles {0, 1, 2,...,n}, n = 3 for the complete
adaptive version. So we have at the same time: the swarm, a tribe T0, and three i-
groups I0, I1, and I2 (informers group). Each particle belongs to the tribe T0. For



520 21 TRIBES application to the flow shop scheduling problem

each particle, its i-group contains (i) the particle itself; and (ii) the best particle of
the tribe.

At each time-step each particle moves towards a more promising area, using its
knowledge )_,_,( gpipx . Let us define the following:

• )_( iH be the hyper-sphere radius = norm )__( gpip − , center

)_( ip
• )_( gH be the hyper-sphere radius = norm )__( gpip − , center

)_( gp
• a point p )_( ip is randomly chosen in )_( iH
• a point p )_( gp is randomly chosen in )_( gH
• x(t+1) is a weighted combination of p )_( ip and p )_( gp , according to

the f values on )_( ip and )_( gp .

If we do not use adaptive version, it means we have a global PSO (the neigh-
borhood of each particle is the whole swarm). For each particle, we have

))(_),(_),(()()1( tgptiptwtxtx +=+ (21.3)

where )(tx = position at time t, )(_ tip = previous best position of the parti-

cle (at time t), )(_ tgp = previous best position found so far in the i-group (in-

former group) of the particle (at time t), including the particle itself, and

),,( 321 xxxw = a vectorial function of three positions.

Unlike the classical PSO, TRIBES has no explicit velocity and w is not at all
depending on some more or less arbitrary "weights" cognitive or social coeffi-
cients (often called alpha, phi_1, phi_2). A promising area is defined using hyper-
spheres.

21.3.2 Informers

The set of informers of a particle, its i-group, contains, but is not necessarily lim-
ited to, its tribe. Also, the relation "to be an informer of" does not need to be
symmetric. The present version of TRIBES is symmetric.

21.3.3 Hyper-spheres, and promising areas

21.3.3.1 Hyper-spheres



21.3 TRIBES approach 521

A hyper-sphere is the set of all points in n-dimensional space ( nℜ ) which are
equidistant from a given point (for our purposes, the origin). Clearly circles and
spheres fall into this definition as the two- and three-dimensional hyper-spheres.
Interestingly, a 1-sphere takes the form of two points and encloses a line segment.
Though hyper-spheres of dimension greater than four cannot be visualized directly
by inhabitants of our three-dimensional space, they can be imaged by cross-
sections. The planar cross-sections of a sphere are circles whose radii progress
from 0 to r, the radius of the sphere, and back to 0. Similarly, the cross-sections of
a glome (the 4-sphere) are 3 spheres whose radii progress from 0 to r and back to
0. This method of constructing hyper-spheres lends itself well to answering the
natural questions that arise from such considerations. Such considerations include
the formulae for the enclosed hyper-volume by (or "content" of) and surface "hy-
per-area" of hyper-spheres in terms of their dimension n and radius r. Relevant lit-
erature on hyper-sphere are well documented (Conway 1993; Peterson 1988;
Somerville 1958; and Wells 1986).

For the area enclosed by a circle (see Fig. 21.1), we will employ the tools of in-
tegration, which are capable of giving even our first result. The area is found by
summing up the height of the circle (off the x-axis) from x = 0 to r and then multi-
plying by 4 for the entire circle. We use trigonometric substitution in this integra-
tion.

( )∫ −=
r

xrrA
0

224)( (21.4)

( ) θθθθ drdxrxrxr sin;cos;sin22 −===− (21.5)

2
2

0

2
2

0

2
2

0

22 2
2

1
2

2

21
44 rrdrdrrA πθθθθθθ

πππ

=⎥⎦
⎤

⎢⎣
⎡ −=−== ∫∫

///

)sin(
)cos(

sin)(

(21.6)

Fig. 21.1 A circle



522 21 TRIBES application to the flow shop scheduling problem

To find the circumference we merely take the derivative of the area with re-
spect to r, for the area could also have been found by integrating over circles of
radii 0 to r, and differentiating reverses the process, giving the circumference of
the outermost circle:

r
dr

dA
rC π2)( == (21.7)

The volume enclosed by a sphere, now, is found by integrating the areas of its
composite circles:

( )( ) 3

0

32

0

2
223

3

4

3

1
22)( rxxrdxxrrV

rr πππ =⎟
⎠
⎞⎜

⎝
⎛ −=−= ∫ (21.8)

And the surface area is the derivative of the volume:

23 4)( r
dr

dV
rA π== (21.9)

Continuing this process of integrating over the content of (n–1)-spheres would

give us the hyper-volume nV of any n-sphere:

( )( ) ( )( ) dxxrVdxxrVrV
r n

n
r n

nn ∫∫
−

−
−

− −=−=
0

1
221

0

1
221 )1(22)( (21.10)

For general hyper-spheres, the challenge arises in developing a general formula

for nV . Differentiating the hyper-volume nV of any n-sphere, the surface hyper-
volume An) is given as a function of r in Table 21.1. We note that the rate

volumehpercube

volumeehyperspher

−
−

is rapidly decreasing with the dimension (for a sphere

of radius r and a cube of ridge 2r).

Table 21.1. Hyper-sphere volume/area

n nV (r) nA (r)
1 2r
2 �2 2 ��
3 4 7���3 4 �2

4 2/2 r4 2 2r3

5 8 2/15 r5 8 2/3 r4

6 3/6 r6 3r5

7 16 3/105 r7 16 3/15 r6

8 4/24 r8 4/3 r7

9 32 4/945 r9 32 4/105 r8

10 5/120 r10 5/12 r9



21.3 TRIBES approach 523

21.3.3.2 Promising search areas

We first describe the non-adaptive part of the method, i.e. how to define promising
search-areas by using hyper-spheres. Let the hyper-sphere }{xH = be the search

space, the set of the possible positions, and let D be its number of dimensions. Let
φ be the objective function on H, S the target and ε the maximum admissible er-

ror (or minimum wanted accuracy). Let Sf −= φ be the error function. We do

not examine here the important problem of the stopping criterion for the iterations,
and we assume we have at least one. When S is known, this stopping criterion is
simply ε<)(xf but usually it is just a given maximum number of function

evaluations or a maximum processing time.
Let us define some components of a particle P:

)(. txP is the particle position at time t (i.e. a D-vector),

)(. tpP is the best position found so far by the particle,

)(. tgP is the best position found so far by its informers.

When there is no ambiguity, we will simply write x, p, and g.

All particles are generated in H in a purely random manner. Once generated,
each particle moves according to the following equation

( )gpxwtx ,,)1( =+ (21.11)

where w is a vector function of three positions.

Unlike classical PSOs, TRIBES has no explicit velocity, although, of course,
)(txw − could be seen as such a velocity, to support intuition. The main differ-

ence is in the way w is defined to hopefully generate a good sample of positions in
H. We now explain this inexplicit velocity concept, more clearly as in Clerc
(2003).

Let pH be the hyper-sphere centered on p and of radius gp −=φ . Let

gH be the hyper-sphere centered on g and of radius ρ . We choose a random

point p′ in pH by using a uniform distribution (it is not that easy, see the appen-

dix). We also choose a random point g ′ in gH . Then w is defined as a

weighted combination of p′ and g ′ , according to their respective performances:



524 21 TRIBES application to the flow shop scheduling problem

( )⎪
⎩

⎪
⎨

⎧

+•+′•=
=
=

)/(

)(/1

)(/1

gpgp

g

p

wwgpwpww

gfw

pfw

(21.12)

For all possible values of p′ and g ′ , w describes a domain in the search

space that can be seen as a promising area. Fig. 21.2 shows such a promising area
for a two dimensional problem. We note that although this domain is also a hyper-
sphere, the distribution-probability for w in it is not uniform (see Fig. 21.3).

Fig. 21.2 Typical promising search-area for a 2D-problem (in Grey).

Fig. 21.3 Probability distribution of probability for a promising search-area (Clerc,
2003).

As can be seen, Fig. 21.3 looks like a normal one, or at least a softball. The
multi-dimensional Gaussian distribution is a bit more complicated, and results do
not seem to be better (Clerc, 2003). We notice that with the Gaussian variant, the
non-divergence can be proved only if the standard deviation is smaller than the
non-divergence can be proved only if the standard deviation is smaller than
power(1.392,1/D)*norm(p-g) (probability 50% to be nearer of g than of p). In
other words, it rapidly tends towards norm(p-g) when dimension D increases. We
note that all previous PSO versions define a "moving" term such as

))(...0())(...0( 21 xgrandxprand −+− φφ . The promising area is then an



21.3 TRIBES approach 525

intersection of hyper-parallelepipeds and this introduces two biases: it is bigger
than really necessary (and the higher the dimension, the more important is this
bias), and it depends on the co-ordinates.

21.3.4 Adaptations

Adaptation rules are defined when a tribe or a particle is generated or removed,
and when a particle becomes an informer for another. Using hyper-spheres instead
of hyper-parallelepipeds is an improvement that any PSO can take advantage of.
However, to be completely parameter free, a PSO also needs some rules to auto-
matically define the number of particles and the relationships between them. Here,
it means we have to define when a tribe or a particle is generated or removed, and
when an informer is added to or removed from an i-group. The following compo-
nents of adaptation, each of which, is described in the following sub-sections are
as follows (Clerc 2003):

• Good particle and bad particle;
• Best particle and worst particle;
• Classification of good tribe and bad tribe;
• Rule for adding a tribe; and
• Rule for removing a tribe.

21.3.4.1 Good particle and bad particle

A particle improves its performance, and is said to be good, when the new position
is strictly better than the best it has found so far

)())1(( pftxf <+ (21.13)

Of course, as soon as it happens, we replace p by )1( +tx . A particle that is not

good is said to be bad.

21.3.4.2 Best particle and worst particle

In a given set of particles E (tribe or i-group), a particle bestP is the best if its per-

formance is better than all the others are

EPpPfpPf best ∈∀≤ ),.().( (21.14)

If there are several candidates, one is chosen at random. A particle worstP is the

worst if it is bad and its performance is worse than all the others particles



526 21 TRIBES application to the flow shop scheduling problem

⎩
⎨
⎧

≤
∈∀≥+

EsPfxPf

EPpPftxPf

worst

worstworst

).().(

),.())1(.(
(21.15)

If there are several candidates, one is chosen at random. Note that if all parti-
cles have improved their performance, there is no worst one at all, according to
this definition.

21.3.4.3 Classification of good tribe and bad tribe

A tribe is said to be bad if its best particle is bad (none of its particles is good). A

tribe is said to be good if at least half of its particles are good. Let T be a tribe, T

its number of particles, and +T the subset of its good particles. We have then

⎪⎩

⎪
⎨
⎧

≥⇔
=⇔

+

+

2/

0

TTgoodisT

TbadisT
(21.16)

We note that a tribe can perfectly be neither bad nor good. In fact (21.16) is just
a simplification of a fuzzy rule saying that the quality of T is an increasing func-

tion of +T . Also, a good mono particle tribe has no worst particle.

21.3.4.4 Rule for adding a tribe

When at least one tribe is bad (at time step t), a new empty tribe T ′ is generated.
Then, each bad tribe "generates" a particle in T ′ , whose position is a random one
in the search space, with a probability equal to

∑
tribes

kT

T
(21.17)

We note that the denominator is simply the swarm size, and thus this rule does
not respect the "think locally, act locally" principle (Clerc 2002). So it is not very
satisfying, and we believe an improvement is certainly possible. The i-group of the
new particle contains T’ (see the i-group definition), but also the best particle of
the generating tribe, and vice versa in this "symmetric" version (i.e. the generated
particle is added to the i-group of this best particle).



21.3 TRIBES approach 527

21.3.4.5 Rule for removing a tribe

When a tribe is good, its worst particle is removed, and the best one "plays its
role". It means the i-group of the worst particle is merged into the one of the best
particle, and, in all i-groups. If this worst particle is present, it is replaced by the
best (if it is not already here).

21.3.5 Adaptive scheme

From time to time social adaptation is performed:
• for each tribe, the count of how many particles have improved their best per-

formance (n) is made, such that
if n = 0, the tribe is said bad
if ( ≥n size(tribe)/2) then the tribe is said good

• if there is at least one bad tribe, a new tribe is generated
• for each bad tribe:

- the best particle is found and "generates" a new particle
in the new tribe, for the moment purely at random,

- this new particle is added to the i-group of this best particle
• for each particle of the new tribe, the i-group contains

i) the particle itself
ii) the best particle of the new tribe,
iii) the particle that has generated it (a case of symmetry; we note

that with the i-group concept, one could build non symmetrical
relationships)

• for each "good" tribe
- the worst particle is removed (if it is bad)
- in all i-groups it is replaced by the best one of the tribe (general case)

or by the best particle of the i-group of the removed particle (mono-
particle tribe case)

- its i-group (except of course this removed particle itself) is merged to
the one

that replaces it.

21.3.6 Transformer

The position of a particle obtained from the TRIBES formulation is a rational one;
it is not in an integer form. For combinatorial optimization problems the position
of a particle must be converted into an integer form. Therefore, we do some trans-
formation to obtain sequence that is of integer form, which enables us to find the
solution from an objective function. The solutions obtained from the transformer
are as good as those of PSO.

In TRIBES, the position of a particle, is a rational one defined as



528 21 TRIBES application to the flow shop scheduling problem

Dtux ℜ∈][. (21.18)

The steps involved in the transformer are as follows:
Step 1: arrange ][. tux in an array ][. tutemp , in a non-descending order

Step 2: for each value of x in ][. tux , find its position i in ][. tutemp and store

in ][. tup
Step 3: the rational position ][. tux now has transformed sequence of ][. tup

21.3.7 Local search

As a search heuristic, TRIBES does not have a local search; hence the result for
combinatorial optimization problems is not satisfactory. After accessing the trans-
former to obtain discrete positions, the result of the objective function value ob-
tained is not satisfactory. This is the motivation for including a local search en-
gine to give a better result. The steps involved in the local search engine are as
follows:

Step 1: generate two random permutations, pr and ps

Step 2: for each pair of permutation ipr and jps , calculate the change in ob-

jective function due to a ’move’
Step 3: If the change in objective function due to a ’move’ is negative, swap the

positions of ipr and jps in the TRIBES sequence, which was submitted to the

local search engine.

21.3.8 The transformer-local search scheme

The transformer-local search strategies are carefully included in some segments of
the TRIBES procedure in order to be effective. Three areas were identified, al-
though further study will improve results. In order to transform particle positions
of TRIBES normally in the form of rational numbers into a sequence, which is
made up of discrete numbers, the transformer-local search strategies are inserted
in the following positions

• after initialization;
• when swarm moves;
• during adaptation, when there is no enough improvement; and
• before every new iteration after adaptation.



21.3 TRIBES approach 529

21.3.9 Illustrating Tribes

At the very beginning the initial tribe is launched with three particles. The tribe
definition, particle designation and the informer group are given as follows:

T0 = {0,1,2}

i-group table
Particle i-group

0 {0, 1, 2}
1 {0, 1, 2}
2 {0, 1, 2}

In adaptation 1, T0 is "bad", best particle 1. Therefore, a new tribe T1 is gener-
ated. Particle 3 is generated by particle 1 in the new tribe T1. The latest informa-
tion becomes

T0 = {0,1,2}
T1 = {3}

i-group table
Particle i-group

0 {0, 1, 2}
1 {0, 1, 2, 3}
3 {1, 3}

In adaptation 2, T0 is good, best particle 0, worst 1, T1 is bad, best particle 3.
T2 is generated. Accordingly, particle 1 is removed (and replaced by 0 for the i-
groups) and particle 4 is generated by particle 0 into T2. The latest information
becomes

T0 = {0,2}
T1 = {3}
T2 = {4}

i-group table
particle i-group
0 {0, 2, 3}
2 {0, 2}
3 {0, 3, 4}
4 {3, 4}



530 21 TRIBES application to the flow shop scheduling problem

In adaptation 3, T0 is bad (best particle 2, worst particle 0), T1 is good, and T2
is bad. T3 is generated. Particle 0 is removed (replaced by 2 for i-groups); particle
6 is generated by particle 2 in T3; and particle 8 is generated by particle 4 in T3.
The latest information becomes

T0 = {2,5}
T1 = {3}
T2 = {4}
T3 = {6,8}

i-group table
particle i-group
2 {2,5,6}
3 {3,7}
4 {4,8}
5 {2,5}
6 {2,6,8}
7 {3,7}
8 {4,8}

This process continues until adaptation n, and as we can see, the size of the
tribe is dynamic.

21.4 The TRIBES Algorithm

In this sub-section, we bring together all the ingredients discussed above and for-
mally present the TRIBES algorithm as follows.

Step 1. Initialize:
Set two_pi: = 2Cos(�)
Set best_result.size: = 0 {still no “best result” at all}
Set zzz: = 0 {to be returned by the main program}
Set nb_eval_max: = 0 {maximum number of evaluations}
Set nb_eval_min: = -3200 {minimum number of evaluations}
Set begin: = 0 {just a counter}
Read data description

Set
⎩
⎨
⎧

−
=

methodadaptivenonforadapt

methodadaptivecompletefor
sizeinit

3
_

{initial size}
Set param N: = init_size {record initial size}
Set cycle_size: = param. N {cycle size}
Set times: = 0 { }
Set duration_tot:= 0 { }
Set failure_tot:= 0 {number of failures}



21.4 The TRIBES Algorithm 531

Set infinite:= 999999999 {very large number}
Set min_eps:= infinite {minimum admissible error}
Set max_eps:= 0 { maximum admissible error }
Set mean_eps:= 0 { mean admissible error }
Set chance: = 0 {equal to 1 if a solution is found}
Set eval_f_tot: = 0 {number of objective function evaluations}
Set label: = 0 {label for the first particle: mainly for later visualization}
Set almostzero:= 0.0000001 {to avoid overflow by dividing by
too small a value}
Set eval_f_max:= 1/almostzero {high number of evaluations }
Set eval_f:= 0 {number of evaluation counter}
Set nb_no_progress:= 0 {implies failure if this number > parpet}
Set Iter:= Iter + 1 {number of iterations}
Set n_add:= 0 {number of swarms added}
Set n_remove:= 0 {number of swarms removed}
Set mean_swarm_size: = 0 {mean size of swarm}

Step 2. Swarm initialization:
Set best_result.f:= infinite {999999999}
Set TR_size:= 1 {number of tribes}
Set TR_tr[0].size:= param.N {Tribe size}
For i: = 1 to param.N do {Generate particles & keep the best

result found so far}
Tribe T0 is initialized with n distinct particles

If the position of particle i < the best position so far then the
best position so far then best_result:= position of particle

end For
Transform rational position to discrete position with discrete sequence
Access local search engine to refine the solution
Memorize the best solution so far
If the best position so far < min_esp then min_esp:= best position
Initialize the i-group of the first particle

Set all other particles to have the same i-group as the first particle
Initialize the rank_label table

Set cycle:= 0 {number of iterations since last adaptive update}

Step 3. Swarm moves
Set Ite:= Iter + 1 {increment number of iterations}

For i: = 1 to TR.size do {for each tribe}
For j: = 1 to TR.tr[i].size do {for each particle}
Find the best particle p that gives useful information in all the
tribes {“informer”}
Transform rational position to discrete position with discrete sequence
Access local search engine to refine the solution
Memorize the best solution so far
Move each particle in each tribe



532 21 TRIBES application to the flow shop scheduling problem

If the position of particle is better than the best so far then the best
so far becomes this particle {updating the best result}
If best_result.f < min_eps then min_eps:= best_result.f

{keep the min. eps}
If best_result.f > max_eps then max_eps:= best_result.f

{keep the max. eps}
If (chance = 1) goto end_by_chance {a solution has been found}
If failure condition is met then
{

failure_tot := failure_tot + 1
goto the_end {arbitrary stop condition}

}
end For j

end For i
Step 4. Adaptation:

Set cycle_size:= init_size+ n_add_n_remove
Set mean_swarm_size:= mean_swarm_size + cycle_size

If (adapt = 0) goto end_adapt {end adaptation}
Set cycle:= cycle + 1

If (2*cycle < cycle_size) goto end_adapt {end adaptation}
Set Trsize0:= TR.size {memorize the current number of tribes}
For i: = 1 to TR.size0 do {check each tribe}
Find the best in the current tribe
Count how many particles in he current tribe that have improved
their position

If improve = 0 {if not enough improvement}
then {

Transform rational position to discrete position with
discrete sequence

Access local search engine to refine the solution
Memorize the best solution so far
Calculate probability of generation
If it is the first bad tribe, generate a new empty one
Generate a particle in the new tribe
Begin to build its i-group with the label of the best particle that
has generated he new particle and add it to the i-group of
the new particle
Increase the (new) tribe size
Update the i-group of the “generating” best particle
}

If improve ≥ TR.tr[i].size/2 then {if enough improvement}
{
Find the worst particle in the current tribe

If the worst particle is good goto exit_good {exit condition }
Remove the worst particle from the tribe
Replace the worst particle by the best particle in all i-groups



21.5 Experimental results 533

Merge the worst particle’s i-group into the i-groups of the
best particle

}
End For i tribes
Complete the i-groups of each particle of the new tribe (if there is one)
with all particles of the tribe
Remove empty tribes

Set cycle:= 0 {initialize number of cycles}
Transform rational position to discrete position with discrete sequence
Access local search engine to refine the solution
Memorize the best solution so far
end_adapt: {end of adaptation}
Goto Step 3

end_by_chance:
the_end:

Output solution
Stop

21.5 Experimental results

21.5.1 Parameter setting

TRIBES, does not need any parameters at all, except, of course, the ones defining

the problem. These parameters are function, dimension, minx , manx , granularity

(normally required for the hyper-parallepipedic search space), target, and admis-
sible error. The parameter, all_different is required if all components of the solu-
tion have to be different, as in most combinatorial problems. For a solution, where
on some dimensions, is an integer point, or where it is even a rational one, the
granularity information has to be given. For example, if for a given dimension, the
solution is an integer then the user can set granularity to 1 for this dimension; the
process may be faster. A positive granularity g on a given dimension is required if
component values for this dimension are not continuous. More precisely, for any
pair of values (x, x’), you must have abs(x-x’) = k*d, where k is an integer. As you
point out, for an integer dimension, g=1 In fact, for combinatorial problems, we
must use dimension = MM (the size of the problem), granularity =1, all_different
=1. Additionally, there is a parameter adapt, which describes the nature of adapta-
tion used in the search. If adapt = n, it means a swarm of constant size n (and the
neighborhood of each particle is the whole swarm) is being used. For classical test
functions, and with n equal about 20, this TRIBES version is often better than the
other adaptive PSO versions that do not use hyper-spheres. If adapt = 0, it means
you want to use complete adaptive method. This condition is not always better



534 21 TRIBES application to the flow shop scheduling problem

than the previous one, but the user does not even have to "guess" what the right
swarm size is.

21.5.2 Comparison with other heuristics

In Table 21.2 we compare the results given by TRIBES to the ones given by PSO
Type-1, as defined and used in Clerc and Kennedy (2002) and Kennedy and Eber-
hart (2001), together with other competitive search heuristics such as genetic algo-
rithm (Goldberg 1989) and differential evolution (Storn and Price1995). For all
our experiments, TRIBES is launched with full adaptation. With adaptation, i.e.
when the user has no parameter at all to define, the mean swarm size tends to get
somewhat large. In our examples the swarm size increased as much as 10, less
than 20, which probably would have been closer to the optimum (Clerc 2002).
When the size of swarm increases more than 20, then it means either particles are
too easily generated or too rarely removed, or both. In such a case, it would be in-
teresting to find better rules. In our case, the swarm size seems reasonable. The re-
sults show that results of TRIBES compared to its competitors are reasonable, al-
though further work is possible to fine-tune the solutions.

Table 21.2: Comparison between DE, GA, PSO and TRIBES

Problem DE GA PSO TRIBES
8 x 15 139 143 139 134
10 x 25 208 205 201 219
15 x 25 258 248 246 268
20 x 50 475 468 464 490
25 x 75 715 673 710 726

21.6 Conclusion

In the work reported in this chapter, we have shown that it is possible to define a
completely parameter free particle swarm optimizer, at least as good as a carefully
tuned non-adaptive one. The research builds on the parameter free optimizer,
which Clerc (2002) proposed for rational problems as a starting point, although
some pseudo-discrete optimization problems could be solved using the version
(fifty-fifty problem, etc.). The results show that results of TRIBES compared to its
competitors are reasonable, although further work is possible to fine-tune the solu-
tions. Further work includes finding better local search engines, which performs
better than the currently implemented version. Extension of the applications of
TRIBES to some other combinatorial optimization problems such as TSP and
QAP is in progress; the results so far shows that opting for a better local search
engine will give promising results.



Acknowledgement 535

Acknowledgement

Maurice Clerc is the initiator of TRIBES, and the work reported here extends
his native version, which currently does not solve explicit discrete optimization
problems such as flow shop, TSP and QAP problems.



536 References

References

Angeline PJ (1998) Using selection to improve particle swarm optimization, presented at
IEEE International Conference on Evolutionary Computation, Anchorage, Alaska,
May 4-9.

Carlisle A, Dozier G (1998) Adapting particle swarm optimization to dynamics environ-
ments, presented at International Conference on Artificial Intelligence, Monte Carlo
Resort, Las Vegas, Nevada, USA.

Clerc M (1999) The swarm and the queen: towards a deterministic and adaptive particle
swarm optimization, presented at Congress on Evolutionary Computation, Washington
DC.

Clerc M, Kennedy J (2002) The Particle Swarm-Explosion, Stability, and Convergence in a
Multidimensional Complex Space, IEEE Transactions on Evolutionary Computation,
(6), 58-73.

Clerc M (2002) Think locally, act locally: a framework for adaptive particle swarm opti-
mizers, IEEE Journal of Evolutionary Computation, (submitted).

Clerc M (2003) L’optimisation par essaim particulaire, 5ème congrès de la Société, Fran-
çaise de Recherche, Opérationnelle et d'Aide à la Décision, 26, 27 et 28 février 2003,
Avignon, Université d'Avignon et des Pays de Vaucluse, 74 rue Louis Pasteur 84000
AVIGNON.

Conway J H, Sloane N JA (1993) Sphere Packings, Lattices, and Groups, 2nd ed. New
York: Springer-Verlag, p. 9.

Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning,
Reading, MA: Addison-Wesley

Hu X, Eberhart RC (2002) Adaptive particle swarm optimization: detection and response to
dynamic systems, presented at Congress on Evolutionary Computation, Hawaii.

Kennedy J, Eberhart RC (1999) The particle swarm: social adaptation in information proc-
essing systems, in New ideas in Optimization, D. Corne, Dorigo, M., and Glover, F.,
Ed. London: McGraw-Hill.

Kennedy J, Eberhart RC, and Shi Y (2001) Swarm Intelligence: Morgan Kaufmanns Aca-
demic Press.

Peterson I (1988) The Mathematical Tourist: Snapshots of Modern Mathematics. New
York: W. H. Freeman, p. 96-101.

Shi Y, Eberhart RC (2001) Fuzzy adaptive particle swarm optimization, presented at Con-
gress on Evolutionary Computation, Seoul, Korea.

Somerville DMY (1958) An Introduction to the Geometry of n Dimensions. New York:
Dover, p. 136.

Storn R, Price K (1995) Differential evolution - a simple and efficient adaptive scheme for
global optimization over continuous spaces, Technical Report TR-95-012, ICSI, March
1999
(Available via ftp from ftp.icsi.berkeley.edu/pub/techreports/1995/tr-95-012.ps.Z).

Wells D (1986) The Penguin Dictionary of Curious and Interesting Numbers. Middlesex,
England: Penguin Books.



22 Optimizing CNC Drilling Machine
Operations: Traveling Salesman Problem-
Differential Evolution Approach

Godfrey C Onwubolu

This chapter describes the application of differential evolution algorithm to the
problem of minimizing the operating path of automated or computer numerically
controlled drilling operations. The operating path is first defined as a traveling
salesman problem. Then, the relatively new heuristic, differential evolution algo-
rithm is applied to the traveling salesman problem. In a batch production of a large
number of items to be drilled such as in printed circuit boards, the travel time of
the drilling device is a significant portion of the overall manufacturing process.
Hence, the differential evolution algorithm-traveling salesman problem heuristic,
can play a significant role in reducing production costs.

22.1 Introduction

The traveling salesman problem (TSP) is well known in optimization. A traveling
salesman has a number of N cities to visit. The sequence in which the salesperson
visits different cities is called a tour. A tour should be such that every city on the
list is visited once and only once, except that salesperson returns to the city from
which he/she starts. The goal is to find a tour that minimizes the total distance the
salesperson travel, among all the tours that satisfy this criterion. Much of the work
on the TSP is not motivated by direct applications, but rather by the fact that the
TSP provides an ideal platform for the study of general methods that can be ap-
plied to a wide range of discrete optimization problems. This is not to say, how-
ever, that the TSP does not find applications in many fields. Indeed, the numerous
direct applications of the TSP bring life to the research area and help to direct fu-
ture work. The TSP naturally arises as a sub-problem in many transportation and
logistics applications, for example the problem of arranging school bus routes to
pick up the children in a school district. More recent applications involve the

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



538 22Optimizing CNC Drilling Machine Operations: Traveling Salesman Problem-
Differential Evolution Approach

scheduling of service calls at cable firms, the delivery of meals to homebound per-
sons, the scheduling of stacker cranes in warehouses, the routing of trucks for par-
cel post pickup, and a host of others.

Although transportation applications are the most natural setting for the TSP,
the simplicity of the model has led to many interesting applications in other areas.
A classic example is the scheduling of a machine to drill holes in a circuit board or
other object. In this case the holes to be drilled are the cities, and the cost of
travel is the time it takes to move the drill head from one hole to the next. The
technology for drilling varies from one industry to another, but whenever the
travel time of the drilling device is a significant portion of the overall manufactur-
ing process then the TSP can play a role in reducing costs. In a recent work by one
of the authors of this article, TSP was applied to the scheduling of a computer-
controlled machine to drill holes in a circuit board; this machine was designed and
fabricated in-house.

Similar application is in complete and partial changeover times in numerically
controlled (NC) tool machine problem. Suppose we are given N jobs to be per-
formed on one machine. Total processing time, is fixed by unit processing time
and batch size. Total set-up time depends on the sequence in which jobs will be
run. For instance, in group-technology, parts in the same family may require little
or no changeover. Parts in different families may require complete breakdown
and rebuilding of machine tooling. Changing sizes in a packaging line may be
relatively easy, but changing package contents may require extensive cleaning and
switching of machinery. Common to both these examples is the fact that individ-
ual changeover times depend only on the current and next product. For bottleneck
facilities, maximising the production of saleable product is the prime objective.
This situation corresponds to the travelling salesman problem (TSP). In the TSP,
a salesman must visit each city in his territory and then return home. In our case,
the worker must perform each job and then return to the starting condition. The
problem can be visualised on a graph. Each city (job) becomes a node. Arc
lengths correspond to the distance between the attached cities (job changeover
times). The salesman wants to find the shortest tour of the graph. A tour is a
complete cycle. Starting at a home city, each city must be visited exactly one time
before returning home. Each leg of the tour travels on an arc between two cities.
If arc lengths differ depending on the direction of the arc, the TSP is said to be
asymmetric. Although TSP is one of the most studied problems in combinatorial
optimisation, it is NP-hard (Lawler et al. 1985; Reinelt 1994). For a broader col-
lection of papers the reader is referred to the excellent book (Lawler et al. 1985)
and to the more recent bibliography (Junger et al. 1995).

The effectiveness and efficiency of operating a manufacturing cell is affected
by the problem of machine tooling and production activities sequencing within the
cell (Askin and Standridge 1993). There are several ways productivity may be
maximised: (i) by sequencing batches to minimise tooling changeovers; (ii) by se-
quencing machining of jobs (a batch of one or more similar parts) to minimise idle
time of material handling devices; (iii) by optimising the layout of the work-cell.
This chapter addresses the first problem, which is that of sequencing batches to



22.2 Travelling Salesman Problem (TSP) 539

minimise tooling changeovers. For bottleneck work-centres, maximising the pro-
duction of goods that meet customer requirements is the prime objective of a
manufacturing enterprise. Therefore, any strategy that can be adopted to minimise
the production time will have much impact on achieving the firm’s objectives.

22.2 Travelling Salesman Problem (TSP)

In the TSP, a salesman must visit each city in his designated area and then return
home. In our case, the worker (tool) must perform each job and then return to the
starting condition. The problem can be visualised on a graph. Each city (job) be-
comes a node. Arc lengths correspond to the distance between the attached cities
(job changeover times). The salesman wants to find the shortest tour of the graph.
A tour is a complete cycle. Starting at a home city, each city must be visited ex-
actly one time before returning home. Each leg of the tour travels on an arc be-
tween two cities. The length of the tour is the sum of the lengths of the arcs se-
lected. Figure 22.1 illustrates a five-city TSP. Trip lengths are shown on the arcs
in Figure 22.1a, the distance from city i to j is denoted by cij. We have assumed in
the figure that all paths (arcs) are bi-directional. If arc lengths differ depending on
the direction of the arc the TSP-formulation is said to be asymmetric, otherwise it
is symmetric. A possible tour is shown in Figure 22.1b. The cost of this tour is
c12 + c24 + c43 + c35 + c51.

Several mathematical formulations exist for the TSP. One approach is to let xij

be 1 if city j is visited immediately after i, and be 0 if otherwise. A formal state-
ment of TSP is given as follows:

minimise c xij ij
j

N

i

N

==
∑∑

11

(22.1)

subject to xij
j

N

=
=

∑ 1
1

; ∀i (22.2)

xij
i

N

=
=
∑ 1

1

; ∀j (22.3)

No subtours (22.4)

xij = 0 or 1



540 22Optimizing CNC Drilling Machine Operations: Traveling Salesman Problem-
Differential Evolution Approach

c15 1 c12 n City n
c14 c13 cij = cji

5 2

c45 c35 c24

c23

4 3

c34 (a) Complete TSP Graph

1
c51 c12

5 2

c35 c24

4 3
c43

(b) One possible tour

Fig. 22.1 TSP illustrated on a graph

No subtours mean that there is no need to return to a city prior to visiting all
other cities. The objective function accumulates time as we go from city i to j.
Constraint 22.2 ensures that we leave each city. Constraint 22.3 ensures that we
visit (enter) each city. A subtour occurs when we return to a city prior to visiting
all other cities. Restriction 22.4 enables the TSP-formulation, differ from a linear
assignment programming (LAP) formulation. Unfortunately, the non-subtour con-
straint significantly complicates model solution. One reasonable construction pro-
cedure for solving TSP is the closest insertion algorithm. This is now discussed.

22.3 TSP using Closest Insertion Algorithm

The closest insertion algorithm starts by selecting any city. We then proceed
through N – 1 stages, adding a new city to the sequence at each stage. Thus a par-
tial sequence is always maintained, and the sequence grows by one city each
stage. At each stage we select the city from those currently unassigned that is
closest to any city in the partial sequence. We add the city to the location that
causes the smallest increase in the tour length. The closest insertion algorithm can
be shown to produce a solution with a cost no worse than twice the optimum when
the cost matrix is symmetric and satisfies the triangle inequality. In fact, the clos-
est insertion algorithm may be a useful seed-solution for combinatorial search



22.3 TSP using Closest Insertion Algorithm 541

methods when large problems are solved. Symmetric implies cij = cji where cij is
the cost to go from city i directly to city j. Unfortunately, symmetry need not exist
in our changeover problem. Normally, the triangular inequality (cij ≤ cik + ckj) will
be satisfied, but this alone does not suffice to ensure the construction of a good so-
lution. We may also try repeated application of the algorithm choosing a different
starting city each time and then choose the best sequence found. Of course, this
increases our workload by a factor of N. Alternatively, a different starting city
may be chosen randomly for a specific number of times, less than the total number
of cities. This option is preferred for large problem instances.

We now state the algorithm formally. Let Sa be the set of available (unas-
signed) cities at any stage. Sp will be the partial sequence in existence at any stage
and is denoted Sp = {s1, s2, ..., sn}, implying that city s2 immediately follows s1.
For each unassigned city j, we use r(j) to keep track of the city in the partial se-
quence that is closest to j. We store r(j) only to avoid repeating calculations at
each stage. Last, bracketed subscripts [i] refer to the ith city in the current partial
sequence. The steps involved are:

STEP 0. Initialize. N = 1. Sp = {1}. Sa = {2, ..., N}. For j = 2,...,
N. r(j) = 1.

STEP 1. Select new city. Find j* = ( ) ( ){ }arg min , ., ,
j S

j c j c j j
a

c or c
∈

Set n = n + 1.
STEP 2. Insert j*, update r(j). Sa = Sa – j*. Find city i*∈ Sp such that i*

= argmin[i]∈Sp {c[i]j* + cj*,[i + 1] – c[i], [i + 1]}. Update Sp = {s1,..,i*,
j*, i* + 1,...,sn}. For all j ∈ Sa, if min{cj,j*, cj*,j}< cj,r(j) then r(j) =
j*. If n < N, go to 2.

As can be seen, the closest insertion algorithm is a constructive method. In order
to understand the steps involved, let us consider an example related to change
overtimes for a flexible manufacturing cell (FMC).

Example 22.1

Table 22.1 shows the changeover times for a flexible manufacturing-cell. A ma-
chine is finishing producing batch T1 and other batches are yet to be completed.
Use the closest insertion heuristic to find a job sequence, treating the problem as a
TSP.



542 22Optimizing CNC Drilling Machine Operations: Traveling Salesman Problem-
Differential Evolution Approach

Table 22.1. Changeover times

Changeover times (hrs)

From/To T1 T2 T3 T4 T5

T1 - 8 14 10 12

T2 4 - 15 11 13

T3 12 17 - 1 3

T4 12 17 5 - 3

T5 13 18 15 2 -

Solution

Step 0: Sp = {1}, Sa = {2, 3, 4, 5}, r j
j Sa

( ) =
∈

1 ; j = 2,…,5. This is equiva-

lent to choosing the first city from the partial-list and eliminat-
ing this city form the available list.

Step 1: Select the new city: find { }j c
j S

j r j
a

* arg min , [ ]=
∈

and set n = n + 1
min
j Sa∈

{c12, c13, c14, c15, c21, c31, c4,1, c5,1} = min {8, 14, 10, 12, 0,

0, 0, 0} = 8; j* = 2

But ignore c21, c31, c4,1, and c5,1 because city 1 is already consid-
ered in Sa.

Step 2: Insert city 2, and update r(j) for the remaining jobs
3, 4, and 5
Sp = {1, 2} ; Sa = {3, 4, 5} c12 + c21 – c11 = 8 + 4 – 0 = 12

Step 1: Select new city
min {c23, c24, c25, c32, c42, c52} = {15, 11, 13, 17, 17, 18} = 11 ;

j* = 4 ; n = 3. So we have job 4 after job 1 or 2

Step 2: Insert job 4
There are the following possibilities from {1, 2}: {1, 2, 4}

or {1, 4, 2}

For {1, 2, 4}, c12 + c24 – c14 = 8 + 11 – 10 = 9



22.3 TSP using Closest Insertion Algorithm 543

For {1, 4, 2}, c14 + c42 – c12 = 10 + 17 – 8 = 19
The minimum occurs for inserting job 2 after job 4. Update

r(j) for remaining jobs 3, 5 i.e., r(3) = r(5) = 4

Step 1: Select new job
min
j Sa∈

{c34, c5,4, c4,3, c4,5} = min{1, 2, 5, 3} ; j* = 3

min = C34, but 4 is already considered. Hence, j* = 3.
Step 2: Insert job 3

There are the following possibilities from {1, 2, and 4}:
{1, 2, 4, 3} : c43 + c31 – c41 = 5 + 12 – 12 = 5
{1, 2, 3, 4} : c23 + c34 – c24 = 15 + 1 – 11 = 5
{1, 3, 2, 4} : c13 + c32 – c12 = 14 + 17 – 8 = 25
Choosing {1, 2, 4, and 3} breaks the tie. Updating r[5] = 3

Step 1: Select new job.
Since job 5 remains, j* = 5

Step 2: Insert job 5
There are the following possibilities from {1, 2, 4, and 3}
{1, 2, 4, 3, 5} : c35 + c51 – c31 = 3 + 13 – 12 = 4
{1, 2, 4, 5, 3} : c45 + c53 – c43 = 3 + 15 – 5 = 13
{1, 2, 5, 4, 3} : c25 + c54 – c24 = 13 + 2 – 11 = 4
{1, 5, 2, 4, 3} : c15 + c52 – c12 = 12 + 18 – 8 = 22

Choosing {1, 2, 4, 3, and 5} breaks the tie as the final sequence.
The cost = c12 + c24 + c43 + c35 = 8 + 11 + 5 + 3 = 27.

The TSP construction is shown in Figure 22.2. The meaning of this solution is
that batch 1 is first produced, followed by batch 2, then batch 4, then batch 3, and
finally batch 5.

4
5 11

3
3 5

1 2
8

Fig. 22.2 TSP solution for Example 22.1



544 22Optimizing CNC Drilling Machine Operations: Traveling Salesman Problem-
Differential Evolution Approach

22.4 TSP using Differential Evolution

In recent years, several search procedures have emerged as having great potential
to address practical optimisation problems. These emerging optimisation tech-
niques include simulated annealing (Kirkpatrick et al. 1983), genetic algorithms
(Goldberg, 1989), tabu search (Glover, 1989, 1990), and ant colony optimisation
(Dorigo, 1992). Consequently, over the past few years, several researchers have
demonstrated the applicability of these methods, to combinatorial optimisation
problems such as the travelling salesman problem. The travelling salesman prob-
lem has been solved using simulated annealing (Lin et al. 1993), genetic algo-
rithms (Whitlely et al. 1989), ant colony optimisation (Dorigo, 1993; Dorigo and
Gambardella 1997), evolutionary programming (Fogel, 1993), and elastic net
method (Durbin and Willshaw, 1987).

More recently, a novel optimization method based on differential evolution
(exploration) algorithm (Storn and Price, 1995) has been developed, which origi-
nally focused on solving non-linear programming problems containing continuous
variables. Since Storn and Price (1995) invented the differential evolution (explo-
ration) algorithm, the challenge has been to employ the algorithm to different ar-
eas of problems other than those areas that the inventors originally focussed on.
Differential evolution (exploration) algorithm was invented by Storn and Price
(1995) initially to solve possibly nonlinear and on differentiable continuous space
functions. However, recently there has been scarce research to apply the new op-
timization technique to discrete problems such as design of gear train, pressure
vessels and springs (Lampinen and Zelinka, 1999) and flow-shop scheduling
(Onwubolu, 2001).

This paper presents a new approach based on differential evolution (explora-
tion) algorithm (Storn and Price, 1995) for solving the travelling salesman prob-
lem. To date, the authors are not aware of any published work on the application
of differential evolution (exploration) algorithm for solving the travelling sales-
man problem. TSP is a discrete optimisation problem, which can be readily solved
using the formulation presented by Onwubolu (2001).

22.4.1 Differential Evolution Method

Whether in industry or in research, users generally demand that a practical optimi-
zation technique should fulfill three requirements:

(1) the method should find the true global minimum, regardless of the initial sys-
tem parameter values;

(2) convergence should be fast; and

(3) the program should have a minimum of control parameters so that it will be
easy to use.



22.4 TSP using Differential Evolution 545

Storn and Price (1995) invented the differential evolution (exploration) algo-
rithm in a search for a technique that would meet the above criteria. DE is a
method, which is not only astonishingly simple, but also performs extremely well
on a wide variety of test problems. It is inherently parallel because it is a popula-
tion based approach and hence lends itself to computation via a network of com-
puters or processors. The basic strategy employs the difference of two randomly
selected parameter vectors as the source of random variations for a third parameter
vector. In the following subsection, we follow a more graphical approach of Storn
and Price (1995) for presenting the new optimization method which, we have em-
ployed in TSP. The parameters used are ℑ = cost or the value of the objective
function, D = problem dimension, NP = population size, P = population of X-
vectors, G = generation number, Gmax = maximum generation number, X =
vector composed of D parameters, V = trial vector composed of D parameters, CR
= crossover factor. Others are F = scaling factor (0 < F ≤ 1.2), (U) = upper

bound, (L) = lower bound, u, and v = trial vectors, )(G
bestx = vector with minimum

cost in generation G, )(G
ix = ith vector in generation G, )(G

ib = ith buffer

vector in generation G, )(
2

)(
1 , G

r
G

r xx = randomly selected vector, L = random integer

(0 < L < D - 1). In the formulation, N = number of cities. Some integers used are i,
j.

Differential Evolution (DE) is a novel parallel direct search method, which util-
izes NP parameter vectors

)(G
ix , i = 0, 1, 2, ... , NP-1. (22.5)

as a population for each generation, G. The population size, NP does not change
during the minimization process. The initial population is generated randomly as-
suming a uniform probability distribution for all random decisions if there is no
initial intelligent information for the system. The crucial idea behind DE is a new
scheme for generating trial parameter vectors. DE generates new parameter vec-
tors by adding the weighted difference vector between two population members to
a third member. If the resulting vector yields a lower objective function value than
a predetermined population member, the newly generated vector replaces the vec-
tor with which it was compared. The comparison vector can, but need not be part
of the generation process mentioned above. In addition the best parameter vector

)(G
bestx , is evaluated for every generation G in order to keep track of the progress

that is made during the minimization process. Extracting distance and direction in-
formation from the population to generate random deviations results in an adap-
tive scheme with excellent convergence properties (Storn and Price 1995).

Descriptions for the earlier two most promising variants of DE (later known as
DE2 and DE3) are presented in order to clarify how the search technique works,
then a complete list of the variants to date are given thereafter.



546 22Optimizing CNC Drilling Machine Operations: Traveling Salesman Problem-
Differential Evolution Approach

22.4.1.1 Scheme DE2

Initialization

As with all evolutionary optimization algorithms, DE works with a population of
solutions, not with a single solution for the optimization problem. Population P of
generation G contains NP solution vectors called individuals of the population and
each vector represents potential solution for the optimization problem:

max
)()( ,...,1;,...,1 GGNPiXP G

i
G === (22.6)

Additionally, each vector contains D parameters:

DjNPixX G
ij

G
i ,...,1;,...,1)(

,
)( === (22.7)

In order to establish a starting point for optimum seeking, the population must
be initialized. Often there is no more knowledge available about the location of a
global optimum than the boundaries of the problem variables. In this case, a natu-
ral way to initialize the population P (0) (initial population) is to seed it with ran-
dom values within the given boundary constraints:

( ) ( ) ( )( ) ],1[];,1[]1,0[)0(
,

)0( DjNPixxrandxxP L
j

U
jj

L
jij ∈∀∈∀−•+==

(22.8)

where ]1,0[jrand represents a uniformly distributed random value that

ranges from zero to one. The lower and upper boundary constraints are, x(L) and
x(U), respectively:

( ) ( ) ],1[ Djxxx U
jj

L
j ∈∀≤≤ (22.9)

For this scheme and other schemes, three operators are crucial: mutation, cross-
over and selection. These are now briefly discussed.

Mutation

The first variant of DE works as follows: for each vector )(G
ix , i = 0, 1, 2, ... ,

NP-1, a trial vector v is generated according to

( ) ( ) ( )( )G
rj

G
rj

G
rj

G
ij xxFxv 3,2,1,

)1(
, −•+=+ (22.10)

where ],1[];,1[ DjNPi ∈∈ , F > 0, and the integers

],1[3,2,1 NPrrr ∈ are generated randomly selected, except:

irrr ≠≠≠ 321 .



22.4 TSP using Differential Evolution 547

Three randomly chosen indexes, r1, r2, and r3 refer to three randomly chosen
vectors of population. They are mutually different from each other and also differ-
ent from the running index i. New random values for r1, r2, and r3 are assigned
for each value of index i (for each vector). A new value for the random number

]1,0[rand is assigned for each value of index j (for each vector parameter). F

is a real and constant factor, which controls the amplification of the differential
variation. A two dimensional example that illustrates the different vectors which

play a part in DE2 are shown in Figure 22.3.

Fig. 22.3. Contour lines and the process for generating v in scheme DE1.

Crossover

In order to increase the diversity of the parameter vectors, the vector

( )TDuuuu ,...,, 21= (22.11)

with

( )⎪⎩

⎪
⎨
⎧ −++=

=
otherwisex

Lnnnjforv
u

j
G

i

DDD

G
jG

j )(

)(
)( 1,...,1,

(22.12)

is formed where the acute brackets
D

denote the modulo function with

modulus D. This means that a certain sequence of the vector elements of u are



548 22Optimizing CNC Drilling Machine Operations: Traveling Salesman Problem-
Differential Evolution Approach

identical to the elements of v, the other elements of u acquire the original values of
)(G

ix . Choosing a subgroup of parameters for mutation is similar to a process

known as crossover in genetic algorithm. This idea is illustrated in Figure 22.4 for
D = 7, n = 2 and L = 3. The starting index n in (22.12) is a randomly chosen inte-
ger from the interval [0, D-1]. The integer L is drawn from the interval [0, D-1]

with the probability ( )vCRvL == )Pr( �89�∈[0,1] is the crossover probability

and constitutes a control variable for the DE2-scheme. The random decisions for
both n and L are made anew for each trial vector v.

Fig. 22.4. Crossover process for D = 7, n = 2 and L = 3.

Selection

In order to decide whether the new vector u shall become a population member of

generation G+1, it will be compared to )(G
ix . If vector u yields a smaller objec-

tive function value than )(G
ix , )1( +G

ix is set to u, otherwise the old value )(G
ix is

retained.

22.4.1.2 Scheme DE3

Basically, scheme DE3 works the same way as DE2 but generates the vector v ac-
cording to



22.4 TSP using Differential Evolution 549

( ) ( ))(
3

)(
2

)()()( G
r

G
r

G
i

G
best

G
i xxFxxxv −•+−•+= λ (22.13)

introducing an additional control variable λ. The idea behind λ is to provide a
means to enhance the greediness of the scheme by incorporating the current best

vector )(G
bestx . This feature can be useful for non-critical objective functions. Figure

22.5 illustrates the vector-generation process defined by (22.13). The construction

of u from v and )(G
ix as well as the decision process are identical to DE2.

Fig. 22.5 Contour lines and the process for generating v in scheme DE3.

22.4.1.3 DE Strategies

Price and Storn (2001) have suggested ten different working strategies of DE and
some guidelines in applying these strategies for any given problem (see Table
22.2). Different strategies can be adopted in the DE algorithm depending upon the
type of problem for which it is applied. The strategies can vary based on the vector
to be perturbed, number of difference vectors considered for perturbation, and fi-
nally the type of crossover used.

The general convention used above is as follows: DE/x/y/z. DE stands for dif-
ferential evolution algorithm, x represents a string denoting the vector to be per-
turbed, y is the number of difference vectors considered for perturbation of x, and
z is the type of crossover being used. Other notations are exp: exponential; bin: bi-
nomial). Thus, the working algorithm outline by Price and Storn (1997) is the sev-
enth strategy of DE, that is, DE/rand/1/bin. Hence the perturbation can be either in
the best vector of the previous generation or in any randomly chosen vector. Simi-



550 22Optimizing CNC Drilling Machine Operations: Traveling Salesman Problem-
Differential Evolution Approach

larly for perturbation, either single or two vector differences can be used. For per-
turbation with a single vector difference, out of the three distinct randomly chosen
vectors, the weighted vector differential of any two vectors is added to the third
one. Similarly for perturbation with two vector differences, five distinct vectors
other than the target vector are chosen randomly from the current population. Out
of these, the weighted vector difference of each pair of any four vectors is added
to the fifth one for perturbation.

Table 22.2 Ten different working strategies

Strategy Formulation

1: DE/best/1/exp: ( ))(
3

)(
2

)( G
r

G
r

G
best xxFxv −•+=

2: DE/rand/1/exp: ( ))(
3

)(
2

)(
1

G
r

G
r

G
r xxFxv −•+=

3: DE/rand-to-best/1/exp: ( ) ( ))(
2

)(
1

)()()( G
r

G
r

G
i

G
best

G
i xxFxxxv −•+−•+= λ

4: DE/best/2/exp: ( ))(
4

)(
3

)(
2

)(
1

)( G
r

G
r

G
r

G
r

G
best xxxxFxv −−+•+=

5: DE/rand/2/exp: ( ))(
4

)(
3

)(
2

)(
1

)(
5

G
r

G
r

G
r

G
r

G
r xxxxFxv −−+•+=

6: DE/best/1/bin: ( ))(
3

)(
2

)( G
r

G
r

G
best xxFxv −•+=

7: DE/rand/1/bin: ( ))(
3

)(
2

)(
1

G
r

G
r

G
r xxFxv −•+=

8: DE/rand-to-best/1/bin: ( ) ( ))(
2

)(
1

)()()( G
r

G
r

G
i

G
best

G
i xxFxxxv −•+−•+= λ

9: DE/best/2/bin: ( ))(
4

)(
3

)(
2

)(
1

)( G
r

G
r

G
r

G
r

G
best xxxxFxv −−+•+=

10: E/rand/2/bin: ( ))(
4

)(
3

)(
2

)(
1

)(
5

G
r

G
r

G
r

G
r

G
r xxxxFxv −−+•+=

In exponential crossover, the crossover is performed on the D (the dimension or
number of variables to be optimized) variables in one loop until it is within the CR
bound. For discrete optimization problems, the first time a randomly picked num-
ber between 0 and 1 goes beyond the CR value, no crossover is performed and the
remaining D variables are left intact. In binomial crossover, the crossover is per-
formed on each the D variables whenever a randomly picked number between 0
and 1 is within the CR value. Hence, the exponential and binomial crossovers
yield similar results.



22.4 TSP using Differential Evolution 551

22.4.2 Differential Evolution Method for TSP

The problem formulation is already discussed in Section 22.1. Solving TSP re-
quires discrete variables. To achieve this, we enhanced the capability of DE by
developing two strategies known as forward and backward transformation tech-
niques respectively.

22.4.2.1 Forward Transformation and Backward
Transformation Technique

The forward transformation method transforms integer variables into continuous
variables for the internal representation of vector values since in its canonical
form, the DE algorithm is only capable of handling continuous variables. We also
present a backward transformation method for transforming a population of con-
tinuous variables obtained after mutation back into integer variables for evaluating
the objective function. Onwubolu (2001) proposed both forward and backward
transformations for dealing with the DE floating-point features when solving dis-
crete, combinatorial optimization problems. Both forward and backward transfor-
mations are utilized in implementing the DE algorithm used in the present study
for the travelling salesman problem. For more information on the application of
the forward and backward transformations in DE, see Davendra (2001).

Forward Transformation

In integer variable optimization a set of integer number is normally generated ran-
domly as an initial solution. Let this set of integer number be represented as:

’’ zzi ∈ (22.14)

The equivalent continuous variable for ’
iz is given as

2322 1010105101 xxx ≤< (22.15)

Then
110

5**
1

3

’

−
+−=

fz
z i

i (22.16)

Applying a scaling factor, f = 100 gives

110

500*
1

110

5**
1

3

’

3

’

−
+−=

−
+−= ii

i

zfz
z (22.17)

Equation (22.17) is used to transform any integer variable into an equivalent
continuous variable, which is then used for the DE internal representation of the
population of vectors. Without this transformation, it is not possible to make use-



552 22Optimizing CNC Drilling Machine Operations: Traveling Salesman Problem-
Differential Evolution Approach

ful moves towards the global optimum in the solution space using the mutation
mechanism of DE, which works better on continuous variables.

For example in a five-city problem, suppose the sequence of visits given as {2,
4, 3, 1, 5 and back to 2}. This sequence is not directly used in DE internal repre-
sentation. Rather, applying equation (22.16), the sequence is transformed into a
continuous form. The floating-point equivalence of the first entry of the given se-

quence, 2’ =iz , is 001001.0
110

500*2
1

3
=

−
+−=iz . Other values are similarly

obtained and the sequence is therefore represented internally in the DE scheme as
{0.001001, 1.002, 0.501502, -0.499499, 1.5025}.

In the technique we present, no rounding-off or truncation is required since
such a truncation method often gives less than optimal results because no attempt
is made during optimization to evaluate only realizable systems (Price and Storn,
1999).

Backward Transformation

Integer variables are used to evaluate the objective function. The DE self-
referential population mutation scheme is quite unique. After the mutation of each
vector, the trial vector is evaluated for its objective function in order to decide
whether or not to retain it. This means that the objective function values of the
current vectors in the population need to be also evaluated. These vector variables
are continuous (from the forward transformation scheme) and have to be trans-
formed into their integer number equivalence. It is not enough to round off these
values for the class of problems we are solving. The backward transformation
technique is used for converting floating point numbers to their integer number
equivalence. The scheme is given as follows:

( ) ( )
500

110)1(

*5

110)1( 33
’ −∗+

=
−∗+

= ii
i

z

f

z
z (22.18)

In this present form the backward transformation function is not able to prop-
erly discriminate between variables. Some modifications are required as follows:

)5.0int( ’ += izα (22.19)

’
iz−= αβ (22.20)

( )
⎩
⎨
⎧

<
>−

=
5.0

5.01*

βα
βα

if

if
zi (22.21)

Equation (22.21) gives *
iz , which is the transformed value used for computing

the objective function.



22.4 TSP using Differential Evolution 553

As an example, we consider a set of trial vector, such as this one

{ }5.1,84.0,67.0,17.0,33.0 −−=iz obtained after mutation. The integer

values corresponding to the trial vector values are obtained using equation (22.21)
as follows:

33866.1500/)110(*)33.01( 3’
1 =−−=z

3367.3500/)110(*)67.01( 3’
2 =−+=z

65834.1500/)110(*)17.01( 3’
3 =−−=z

9950.4500/)110(*)50.11( 3’
4 =−+=z

6763.3500/)110(*)84.01( 3’
5 =−+=z

2)5.0333866.1int(1 =+=α
5.066134.033866.121 >=−=β

112*
1 =−=z

4)5.03367.3int(2 =+=α
5.06633.03367.342 >=−=β

314*
2 =−=z

2)5.065834.1int(3 =+=α
5.034166.065834.123 <=−=β

2*
3 =z

5)5.0995.4int(4 =+=α
5.0005.0995.454 <=−=β

5*
4 =z

4)5.0673.3int(5 =+=α
5.03237.0673.345 <=−=β

4*
5 =z

The set of integer values is given as { }4,5,2,3,1* =iz . This set is used to

obtain the objective function values.



554 22Optimizing CNC Drilling Machine Operations: Traveling Salesman Problem-
Differential Evolution Approach

22.4.3 Parameter Setting

The values of NP, CR, λ and F parameters are fixed empirically following certain
heuristics (Price and Storn, 1997). F and λ are usually equal and are between 0.5
and 1.0. CR usually should be 0.3, 0.6, 0.8 or 1.0 to start with. NP should be of the
order of 10*D and should be increased in case of mis-convergence. If NP is in-
creased then usually F has to be decreased. In the present study, some trials were
carried out and the best parameter values obtained from combining these parame-
ters during experimentation are NP =150, F = 0.3, and CR = 0.6. Although the
value of NP = 150 is adequate for small-size problems, a more general approach
used for experimentation of NP being equal to the ten times the number of jobs.
This problem-size dependent value of NP caters for small, medium and large
problem sizes. Tests also show that the best strategy is strategy 7.

22.4.4 An Example

A simple 9x9-problem data set is shown in Figure 22.6 for depicting the conver-
gence of DE. Both DE and ACS find the optimum value of 135. Figure 22.7
shows the corresponding graph of the objective function value as a function of the
generation number. The maximum number of iterations was kept as 100; however,
in all the runs during experimentation the algorithm converged within 10 genera-
tions. It is seen from Figure 22.7 that DE converges very well, reaching the opti-
mum solutions before 10 generations.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−
−

−
−

−

2020283242405060

2030222230504050

2030202020203040

282220512282032

32222058322028

423020128423020

4050202832421020

5040302020301010

6050403228202010

Fig. 22.6 The 9x9-problem data



22.4 TSP using Differential Evolution 555

Convergence of DE

0

50

100

150

200

1 9 17 25 33 41 49

Generation Number

D
is

ta
n

ce

9x9 Problem

Fig. 22.7 Convergence of DE

22.4.5 Experimentation

In order to compare the DE method with other global minimizing strategies, we
looked for an approach that has been accepted as one of the best in the literature,
where the source code is readily available, and which is capable of coping with
variants of TSP problems. Accordingly we chose ant colony system (ACS) by
Dorigo and Gambardella (1997). Table 22.3 shows the results of five different
types of 50x50 problems reported in Dorigo and Gambardella (1997). It can be
seen that DE performs well compared to ant colony system (ACS), simulated an-
nealing (SA), elastic net (EN), and self-organizing map (SOM).

Table 22.3 DE compared with other heuristics: random, symmetric instances

nxn DE+ ACS SA EN SOM

City set 1 2.237 5.88 5.88 5.98 6.06

City set 2 2.243 6.05 6.01 6.03 6.25

City set 3 2.318 5.58 5.56 5.70 5.83

City set 4 2.132 5.74 5.81 5.86 5.87

City set 5 2.392 6.18 6.33 6.49 6.70
+Averages are over 5 trials



556 22Optimizing CNC Drilling Machine Operations: Traveling Salesman Problem-
Differential Evolution Approach

22.5 TSP/Differential Evolution Application in CNC
Drilling of PCB

This section of the chapter describes the application of TSP/Differential Evolution
to the optimization of drilling of holes in an automated drilling machine, which the
author and others produced in-house (see Onwubolu et al. 2002). The application
considered here is that of drilling holes on printed circuit board (PCBs). The PC
based drilling system developed in-house at the Department of Engineering, Uni-
versity of the South Pacific, Fiji, was funded by the University Research Grant.
The machine operates on the movement of the work-piece placed on a rigid and
stable work-holder in x and y directions. This combination of process along with
drilling are controlled by a set of program codes linked to actuators (stepper mo-
tors) via electronic interfacing circuits (interfacing card). The basic framework of
the machine is shown in Figure 22.8. The remaining part of this chapter describes
the production of PCBs, the differential evolution/TSP optimization techniques,
and an example of how the optimization technique is applicable to the automated
drilling machine drilling operations for PCBs, which has the potentials of cost re-
duction in manufacturing enterprises.

Fig. 22.8 PC based drilling machine framework

A PCB is a laminated flat panel of insulated material (usually polymer compos-
ites reinforced with glass fabrics or paper) designed to provide electrical intercon-
nections between electronic components attached to it. The conducting paths are
made of copper and are known as tracks. Other copper areas for attaching and
electrically connecting components are also available and are called lands. Thin
conducting paths on the surface of the board or in alternate layers sandwiched be-
tween layers of insulating material are used for interconnecting electronic compo-
nents.

There are basically three principal types of PCB. They are (i) single-sided
board, in which copper foil is only on one side of the insulating substrate; (ii) dou-

Artificial
Neural
Network

X

Y

Interfacing
Card

Interfacing
Program

Drill
Machine



22.5 TSP/Differential Evolution Application in CNC Drilling of PCB 557

ble-sided board, in which copper foil is only on both sides of the insulating sub-
strate; and (iii) multi-layer board, in which layers of copper foil and insulating
substrates alternate. The insulating materials in PCB are usually polymer compos-
ites reinforced with glass fabrics or paper. Polymers commonly used include phe-
nolic, and polyamide. In epoxy PCBs, E-glass is the usual fiber used in glass-
reinforcing fabrics. In phenolic PCBs, paper is a common reinforcing layer used.

22.5.1 PCB Manufacturing

The manufacturing processes involved in PCB are (1) starting boards, (2) board
preparation, (3) circuit pattern imaging and etching, (4) hole drilling, (5) plating,
and (6) testing. These are now discussed.

22.5.1.1 Starting Boards

Production of starting boards consists of pressing multiple sheets of woven glass
fiber that have been impregnated with partially cured thermosetting polymer such
as epoxy. The number of sheets determines thickness of the final board used in the
starting sandwich. Copper foil is placed on one, both sides and alternate layer of
the epoxy-glass laminated stack, depending on whether single-sided board, dou-
ble-sided board, or multi-layer boards are to be produced. The copper foil used to
clad the starting boards is produced by a continuous electro-forming process, in
which a rotating smooth metal drum is partially submerged in an electrolytic bath
containing copper ions. In this arrangement the drum is the cathode so that the
copper plates on its surface. Thin copper foil is peeled from the board, which con-
sists of a glass-fabric-reinforced epoxy panel, clad with copper over its surface
area on one or more sides is now ready for the circuit fabrication.

22.5.1.2 Board Preparation

The starting panel may have to be sheared to size to fit fabricator’s equipment.
Drilling or punching are used for making tooling holes for positioning the PCB
during subsequent processing. Tabs, slots, and similar features may be made on
the PCB to facilitate handling subsequent processing. Usually, three tooling holes
per PCB are sufficient. In this preparation stage, bar coding is used to identify
PCBs. The board surface is then cleaned to remove small particles of dirt, which
could lower the performance of the PCB.

22.5.1.3 Circuit Pattern Imaging and Etching

Photolithography is a commonly used method by which the circuit pattern is trans-
ferred to the copper surface of the board. CAD packages such as Circuit Maker®

facilitate the design of circuit patterns. Photolithography is a method in which a



558 22Optimizing CNC Drilling Machine Operations: Traveling Salesman Problem-
Differential Evolution Approach

light-sensitive resist material coated on the board surface is exposed through a
mask to determine where etching of the copper will occur to create the tracks and
lands of the circuit.
Most circuit fabricators use negative photoresists, which may be in the form of a
liquid or dry film. Dry film resists consists of three layers. A polyester support
sheet and a removable plastic cover sheet sandwich a film of photosensitive poly-
mer. During use, the cover sheet is peeled off, and the resist film is placed on the
copper surface to which it readily adheres. The resist should be uniformly pressed
to the surface using a hot roll. Contact printing is used to expose the resist, which
is beneath the mask. The resist is then developed, which involves removal of the
unexposed regions of the negative resist from the surface. After resist develop-
ment, certain areas of the copper surface remain covered by resist while other ar-
eas are now uncovered. The covered areas correspond to the circuit tracks and
land, while the uncovered areas correspond to the open region between circuit
tracks and land.

Etching is the process that removes the copper cladding in the uncovered re-
gions from the surface of the board, leaving the covered regions to form the inter-
connections for an electrical circuit. Etching is carried out in an etching chamber
by immersing the board in a solution of etchant. Several etchants in use include
ammonium hydroxide (NH4OH), ammonium persulfate ((NH4) 2S2O4), and ferric
chloride (FeCl3). The controlling parameters, which must be controlled, are
etchant concentration, duration of etching, and temperature to avoid over-etching
or under-etching, which is certainly undesirable in IC fabrication. Thereafter, the
board is rinsed to remove any solution and the remaining resist is chemically
stripped from the surface of the board.

22.5.1.4 Hole Drilling

Different types of holes are drilled on the PCB once the tracks have been formed.
Insertion holes are drilled for inserting component leads in through-hole PCBs.
Via holes are drilled to act as conducting paths from the outer boards to the sand-
wich boards; these holes are copper-plated to enhance conductivity. Fastening
holes are drilled to fasten certain components such as connectors and heat sinks to
the PCB.

Some operational issues that must be addressed in PCB hole drilling are (1)
quality, (2) drill size, (3) unique work material, (4) high accuracy in hole-location,
and (5) drill speed.

The quality requirement in drilling hole includes producing cleaner holes
smooth hole wall, and absence of burrs on the holes. Thin sheets of material are
often placed on both sides of the stack of boards to reduce burr formation on the
boards themselves.

One of the main challenges in PCB hole drilling is the small hole-size involved,
since such drill bits lack strength. Drill bits of less than 1.27mm or 0.05inch is
common, requiring a tight tolerance of about ±0.01mm. The small hole-size com-



22.5 TSP/Differential Evolution Application in CNC Drilling of PCB 559

bined with the stacking of several boards result in a high depth-to-diameter ratio,
which increases the problem of chip extraction from the hole.

The unique work material, which is a composite of epoxy-glass, is coated with
copper foil. The drill bit must pass through the metal (copper) foil and then also cu
through the epoxy-glass composite. In normal drilling practice, different drills
would be used for the different materials, but in PCB drilling, a single drill has to
be specified.

High accuracy in hole-location is required in PCB hole drilling because the
holes determine where the electronic components have to be placed. Electronic
components must be accurately placed to make the PCB circuitry perform well. In
order to automate PCB hole drilling, a computer numerically controlled (CNC)
drill press is used. This automated equipment has a moveable worktable, which
moves in x and y directions using stepper motors. The worktable, which carries
the PCB, brings a particular point to be drilled directly underneath a drill, which is
supported on a gantry structure. The CNC drill press receives its programming in-
structions from the design database; this has the advantage that the holes located
are accurate according to the geometry of the PCB.

Cutting speed is one of the cutting parameters that have to be carefully chosen
for a cutting tool. The very small drill-sizes used for hole drilling require that high
speeds be chosen. This creates some problems when the speed is exceptionally
high because special motors and spindle bearing would be needed.

22.5.1.5 Plating

Plating is needed on the hole-surfaces of PCBs in order to facilitate conduction in
the conductive path via-holes. Electroplating and electroless plating are the two
plating processes commonly used. Electroplating requires that the coated surface
is conductive, while electroless plating does not require a conductive surface.

The walls of the via-holes and insertion holes after drilling consist of epoxy-
glass insulation material, which hinders conduction. Therefore, electroless plating
must be used to provide conductive path. Thereafter, the copper coating thickness
is increased by means of electroplating process.

22.5.1.6 Testing

Before a fabricated PCB is dispatched from the production lien for use in elec-
tronic assembly, it must be tested to ensure that it conforms to the design specifi-
cations. Visual inspection and continuity testing are the two commonly used test-
ing procedures. The PCB is visually checked for any defect at various stages of
production. For continuity testing, contact probes are brought simultaneously into
contact with track and land areas on the PCB surface. This procedure can inform
the fabricator whether or not electrical connections exist between contact points.



560 22Optimizing CNC Drilling Machine Operations: Traveling Salesman Problem-
Differential Evolution Approach

22.5.1.7 Finishing Operations

After testing the PCB for proper functionality, two finishing operations are neces-
sary: (i) application of a thin solder layer on the track and land surfaces, and (ii)
application of a coating of solder resist to all areas of the PCB surface except the
land. Applying a thin solder layer on the track and land protects the copper from
oxidation and contamination. The practice used is to bring the copper track and
landing in contact with rotating roller, which is partially submerged in molten sol-
der; alternatively, electroplating process is used. Application of a coating of solder
resist to all areas of the PCB surface except the land ensures that solder adheres
only to land areas in subsequent soldering process.

The remaining of this chapter describes the application of TSP/DE to the hole-
drilling operation of PCB since this is an important step in the production of
PCBs.

22.5.2 Automated Drilling Location and Hit Sequencing using DE

Consider an automated drilling machine that drills holes on a flat sheet. The turret
has to be loaded with all the tools required to hit the holes. There is no removing
or adding of tools. The machine bed carries the flat plate and moves from home,
locating each scheduled hit on the flat plate under the machine turret. Then the tur-
ret rotates and aligns the proper tool under the hit. This process continues until all
hits are completed and the bed returns to the home position.

There are two problems to be solved here. One is to load tools to the turrets and
the other is to locate or sequence hits. The objective is to minimize the cycle time
such that the appropriate tools are loaded and the best hits-sequence is obtained.
The problem can therefore be divided into two: (i) solve a TSP for the inter-hit se-
quencing; (ii) solve a quadratic assignment problem (QAP) for the tool loading.
Walas and Askin (1984) developed a mathematical formulation to this problem
and iterated between the TSP and QAP. Once the hit sequence is known, the se-
quence of tools to be used is then fixed since each hit requires specific tool. On the
other hand, if we know the tool assignment on the turret, we need to know the in-
ter-hit sequence. Connecting each hit in the best sequence is definitely a TSP,
where we consider the machine bed home as the home for the TSP, and each hit, a
city. Inter-hit travel times and the rotation of the turret are the costs involved and
we take the maximum between them, i.e. inter-hit cost = max (inter-hit travel time,
turret rotation travel time). The cost to place tool k in position i and tool l in posi-
tion j is the time it takes the turret to rotate from i to j multiplied by the number of
times the turret switches from tool k to l.

The inter-hit travel times are easy to estimate from the geometry of the plate to
be punched and the tools required per punch. The inter-hits times are first esti-
mated and then adjusted according to the turret rotation times. This information
constitutes the data for solving the TSP. Once the hit sequence is obtained from



22.5 TSP/Differential Evolution Application in CNC Drilling of PCB 561

the TSP, the tools are placed, by solving the QAP. Let us illustrate the TSP-QAP
solution procedure by considering an example.

Example 22.3

A numerically controlled (NC) machine is to punch holes on a flat metal sheet
and the hits are shown in Figure 22.9. The inter-hit times are shown in Table
22.4. There are four tools {a, b, c, and d} and the hits are {1, 2, 3, 4, 5, 6, and
7}. The machine turret can hold five tools and rotates in clockwise or anti-
clockwise direction. When the turret rotates from one tool position to an adja-
cent position, it takes 60 time units. It takes 75 time units and 90 time units to
two locations and three locations respectively. The machine bed home is
marked 0. Assign tools to the turret and sequence the hits.

100

2a 5b 7a

100 1c 4d

3a 6c
0

Fig. 22.9 Flat metal sheet to be punched

Table 22.4 Inter-hit travel times

Inter-hit travel times

Hit

Hit 0 1 2 3 4 5 6 7

0 - 50 100 50 100 150 100 200

1 50 - 50 100 50 100 150 150

2 100 50 - 150 100 50 200 100

3 50 100 150 - 50 100 50 150

4 100 50 100 50 - 50 100 100

5 150 100 50 100 50 - 150 50

6 100 150 200 50 100 150 - 100

7 200 150 100 150 100 50 100 -



562 22Optimizing CNC Drilling Machine Operations: Traveling Salesman Problem-
Differential Evolution Approach

Solution

From the given inter-hit times, modified inter-hit times have to be calculated using
the condition: inter-hit cost = max (inter-hit travel time, turret rotation travel
time). For example, for inter-hit between locations 1 and 2, the inter-hit travel time
is 50 time units. Now, the tool for hit 1 is c while the tool for hit 2 is a. This means
there is change in tools because that the turret will rotate. The cost of rotation is 60
time units, which exceeds the 50 inter-hit time unit. This means that the modified
inter-hit time between locations 1 and 2 is 60 time units. From the home to any hit
is not affected. The modified inter-hit times are shown in Table 22.5. This infor-
mation is used for TSP. One TSP solution for Table 22.4 is {0, 1, 2, 3, 4, 5, 6, and
7}, with a cost of 830. We used the DE heuristic to obtain tool sequence of c� d
� b � a � c � a, and the cost is 410. As can be seen a better solution is obtain
by the latter. Let us explain how we obtained the tool sequence. Solving the TSP
using DE, the sequence obtaineed is {2, 5, 6, 8, 7, 4, 1, and 3} or {1, 4, 5, 7, 6, 3,
0, and 2}. What we do is to refer to Figure 22.9 and get the labels that corrspond
to this sequence as {c, d, b, a, c, a, a }. Hence the optimum sequence is c-d-b-a-c.

Table 22.5 Modified inter-hit travel times (considering turrent movements)

Modified inter-hit travel times

Hit

Hit 0 1 2 3 4 5 6 7

0 - 50 100 50 100 150 100 200

1 50 - 60 100 60 100 150 150

2 100 60 - 150 100 60 200 100

3 50 100 150 - 60 100 60 150

4 100 60 100 60 - 60 100 100

5 150 100 60 100 60 - 150 60

6 100 150 200 60 100 150 - 100

7 200 150 100 150 100 60 100 -

22.6 Summary

The Differential Evolution method (DE) for minimizing discrete space functions
has been introduced and shown to compete with other emerging optimization ap-
proaches. Since DE is inherently parallel, a further significant speedup can be ob-
tained if the algorithm is executed on a parallel machine or a network of com-
puters. This is especially true for real world problems where computing the



22.6 Summary 563

objective function requires a significant amount of time. Despite these already
promising results, DE is still in its infancy and can most probably be improved.
Further research might include a mathematical convergence proof like the one that
exists for simulated annealing. A theoretically sound analysis to determine why
DE converges so well would also be of great interest. Whether or not an annealed
version of DE, or the combination of DE with other optimization approaches is of
practical use, is still unanswered. Finally, it is important for practical applications
to gain more knowledge on how to choose the control variables for DE.



564 References

References

Askin RG, Standridge CR (1993) Modeling and Analysis of Manufacturing Systems, John
Wiley & Sons: Toronto

Davendra D (2001) Differential Evolution Algorithm for flow shop scheduling, Unpub-
lished Report, The University of the South Pacific

Dorigo M (1992) Optimisation, Learning and Natural Algorithms (Ottimizzazione,
aprendimento automatico, et algoritmi basati su metafora naturale), PhD. Dissertation,
Dipartimento Elettronica e Informazione, Politecnico di Milano, Italy

Dorigo M, Gambardella L (1997) Ant colony system: a cooperative learning approach otthe
traveling salesman problem, IEEE Transactions on Evolutionary Computation, 1, 53-
66

Durbin R, Willshaw D (1987) An analogue approach to the traveling salesman problem us-
ing an elastic net method, Nature, 326, 689-691

Fogel DB (1993) Applying evolutionary programming to selected traveling salesman prob-
lem, Cybernetic System: International Journal, 24, 27-36

Glover F (1989) Tabu search-Part, ORSA Journal of Computing1/3, 190-206.
Glover F (1990) Tabu search-Part II, ORSA Journal of Computing 2/1, 4-32.
Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning,

Reading, MA: Addison-Wesley
Jünger M, Reinelt G, Rinaldi G (1995) The traveling salesman problem, in: Handbooks in

Operations Research and Management Science, Volume 7, Ball, M. O., Magnanti, T.,
Monma, C. L. and Nemhauser, G. (eds.), Elsevier Science B. V., 225-330.

Kirkpatrick S, Gelatt CD, Vechhi MP (1983) Optimization by simulated annealing, Sci-
ence, 220 (4568), 671-680.

Lampinen J, Zelinka I (1999) Mechanical engineering design optimization by differential
evolution, New Ideas in Optimization, (Eds.) Corne, D., Dorigo, M., and Glover,
McGraw Hill, International (UK), 127-146.

Lawler EL, Lenstra JK, Rinnoy-Kan AGH, Shmoys DG (Eds.), (1985), The Traveling
Salesman Problem: A Guided Tour of combinatorial Optimization, Chichester, U.K:
Wiley

Lin F-T, Kao C-Y, Hsu C-C (1993) Applying the genetic approach to simulated annealing
in solving some NP-hard problems, IEEE Transaction Systems, Man, Cybernetics, 23,
1752-1767

Onwubolu GC (2001) Optimization using differential evolution, The University of the
South Pacific Institute of Applied Science Technical Report, TR-2001/05.

Onwubolu GC, Aborhey S, Singh R, Reddy H, Prasad M, Kumar S, Singh S (2002) Devel-
opment of a PC-based computer numerical control drilling machine, to appear in Jour-
nal of Engineering Manufacture, Short Communications in Manufacture & Design.

Price K, Storn R (2001) Differential evolution homepage (Web site of Price and Storm) as
at 2001. http://www.ICSI.Berkeley.edu/~storn/code.html



22.6 Summary 565

Reinelt G (1994) The Traveling Salesman Problem: computational solutions for TSP appli-
cations, Berlin: Springer-Verlag

Storn R, Price K (1995) Differential evolution - a simple and efficient adaptive scheme for
global optimization over continuous spaces, Technical Report TR-95-012, ICSI, March
1999 (Available via ftp from ftp.icsi.berkeley.edu/pub/techreports/1995/tr-95-012.ps.Z)

Whitely D, Starkweather T, Fuquay D (1989) Scheduling problems and traveling salesman:
the genetic edge recombination operator, in Proceedings of the 3rd International Con-
ference on Genetic Algorithms, Palo Alto, CA: Morgan Kaufmanns, 133-140



23 Particle Swarm Optimization for the
Assignment of Facilities to Locations

Godfrey C Onwubolu and Anuraganand Sharma

This chapter describes a new heuristic approach, for minimizing discrete space
functions. The new heuristic, particle swarm optimization is applied to the
quadratic assignment problem. It is observed from experimentation that the
particle swarm optimization approach delivers competitive solutions when
compared to ant system, ant system with non-deterministic hill climbing,
simulated annealing, tabu search, genetic algorithm, evolutionary strategy, and
sampling & clustering for the quadratic assignment problem. By comparing results
from the particle swarm optimization and the results of these other best-known
heuristics, it will be demonstrated that the particle swarm optimization method
converges as much as best-known heuristics for the QAP. The new method
requires few control variables, is versatile, is robust, easy to implement and easy
to use.

23.1 Introduction

In a standard industrial engineering problem in location theory, we are given a set
of n locations and n facilities, and the goal is to assign each facility to a location.
To measure the cost of each possible assignment, there are n! of them. We multi-
ply the prescribed flow between each pair of facilities by the distance between
their assigned locations, and sum over all the pairs. Our aim is to find the assign-
ment that minimizes this cost, and this problem is precisely a quadratic assignment
problem. In practice, as the problems get larger, it becomes much, much more dif-
ficult to find the optimal solution. As n grows large it becomes impossible to
enumerate all the possible assignments, even by fast computers. Consequently,
heuristics are used which do not need to find optimal solutions, but are good

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



568 23 Particle Swarm Optimization for the Assignment of Facilities to Locations

enough to find solutions very close to the optimum within reasonable computation
time.

The quadratic assignment problem (QAP) is an important problem in theory
and practice. Many practical problems like backboard wiring (Steinberg, 1961),
campus and hospital layout (Dickey and Hopkin, 1972; Elshafei, 1977), schedul-
ing (Geoffrion and Graves, 1976) and many others (Eiselt & Larporte, 1991; Lar-
porte and Mercure, 1988) can be formulated as QAPs.

The QAP is a NP -hard optimization problem (Sahni and Gonzale, 1976); even
finding a solution within a factor of 1 + ε of the optimal one remains NP -hard. It
is considered as one of the hardest optimization problems as general instances of
size n ≥ 20 cannot be solved to optimality (Dorigo et al. 1996). Therefore, in order
to practically solve the QAP one has to apply heuristic algorithms which find very
high quality solutions in short computation time. Several such heuristic algorithms
have been proposed, which include algorithms like iterative improvement, ant al-
gorithms (Dorigo et al. 1996), evolution strategies (Nissen, 1994), genetic algo-
rithms (Fleurent and Ferland, 1994; Merz and Freisleben, 1997), and greedy ran-
domized adaptive search procedure (Li et al. 1994). Others include scatter search
(Cung et al. 1997), simulated annealing (Burkard and Rendl, 1984; Connolly,
1990), and tabu search (Battiti and Tecchiolli, 1994; Skorin-Kapov, 1990; Tail-
lard, 1991).

More recently, a novel optimization method based on particle swarm optimiza-
tion (Kennedy and Eberhart, 1995) has been developed. Since Kennedy and Eber-
hart (1995) invented the particle swarm optimization, the challenge has been to
employ the algorithm to different areas of problems other than those areas that the
inventors originally focused on.

In this chapter we give an overview of the existing applications of the PSO
adaptive search heuristic to the QAP and present computational results which con-
firm that PSO algorithms are among the best performing algorithms for this prob-
lem. The chapter is structured as follows. We first outline how the PSO adaptive
search heuristic can be applied to solve QAPs. To exemplify the computational re-
sults obtained with PSO algorithm, we compare its performance and other algo-
rithms proposed for the QAP.

23.2 Problem Formulation

More formally, given n facilities and n locations, two n x n matrices [ ]ijaA =
and [ ]rsbB = , where aij is the distance between locations i and j and brs is the

flow between facilities r and s, the QAP can be stated as follows:

∑∑
= =∈

n

i
jpip

n

j
ij

nSp
ab

1
)()(

1
)(

min (23.1)



23.3 Application of the PSO to the QAP 569

where S(n) is the set of all permutations (corresponding to the assignments) of
the set of

{1,...,n} , and p(i) gives the location of facility i in the current solution p∈ S(n).

Here )()( jpipijab describes the cost contribution of simultaneously assigning facil-

ity i to location p(i) and facility j to location p(j). In the following we denote with
ℑp the objective function value of permutation p.

The term quadratic stems from the formulation of the QAP as an integer opti-
mization problem with a quadratic objective function. Let xij be a binary variable,
which takes value 1 if facility i is assigned to location j and 0 otherwise. Then the
problem can be formulated

as:

ℑp = ∑∑∑∑
= = = =∈

n

i

n

j

n

k

n

l
jlikklij

nSp
xxba

1 1 1 1
)(

min (23.2)

s.t. ∑ =
=n

i ijx
1

1 (23.3)

∑ =
=n

j ijx
1

1 (23.4)

x∈ {0,1}

23.3 Application of the PSO to the QAP

Whether in industry or in research, users generally demand that a practical optimi-
zation technique should fulfill three requirements:
(1) the method should find the true global minimum, regardless of the initial sys-

tem parameter values;
(2) convergence should be fast; and
(3) the program should have a minimum of control parameters so that it will be

easy to use.
Kennedy and Eberhart (1995) invented the particle swarm optimization algo-

rithm in a search for a technique that would meet the above criteria. PSO is a
method, which is not only astonishingly simple, but also performs extremely well
on a wide variety of test problems. It is inherently parallel because it is a popula-
tion based approach and hence lends itself to computation via a network of com-
puters or processors. In the following subsection, we follow a more graphical ap-
proach for presenting the new optimization method which, we have employed in
TSP.

Particle swarm optimization (PSO) is a novel parallel direct search method,
which utilizes NP parameter vectors



570 23 Particle Swarm Optimization for the Assignment of Facilities to Locations

)(G
ix , i = 0, 1, 2, ... , NP-1. (23.5)

as a population for each generation, G. The initial population is generated ran-
domly assuming a uniform probability distribution for all random decisions if
there is no initial intelligent information for the system.

As with all evolutionary optimization algorithms, PSO works with a population
of solutions, not with a single solution for the optimization problem. Population P
of generation G contains NP solution vectors called individuals of the population
and each vector represents potential solution for the optimization problem:

max
)(

,
)()( ,...,1;,...,1 GGNPixXP G

ij
G

i
G ==== (23.6)

Each particle also maintains a memory of its previous best position, represented as

( )iDiii pppp ,...,, 21= (23.7)

A particle in a swarm is moving hence it must have a velocity, which can be rep-
resented as (Carlisle and Dozier, 1998)

( )iDiii vvvv ,...,, 21= (23.8)

At each iteration the velocity of each particle is adjusted so that it can move
towards the best position in the neighborhood and the global best position that any
particle present in the swarm attains.

A simple theorem of vector addition and constant multiplication is used to de-
fine the new position and new velocity. We are considering a particle i whose cur-
rent position at time t is represented as xi(t), previous best position pi(t) [cogni-
tive], neighborhood’s best position pg(t) [social] and the particle i is moving with
velocity vi(t).

The next position after the iteration (i.e. at time (t+1)) can be given by

)()()1( tvtxtx iii +=+ (23.9)

But velocity can also be represented as

)()1()( txtxtv iii −+= or

iiiii ptxwheretxptv =+−= )1();()( (23.10)

Hence, equation 23.7 can be modified to



23.3 Application of the PSO to the QAP 571

))(()()1( txptxtx iiii −+=+ (23.11)

By observing the equation 23.11, it can be deduced that the particle would re-
turn immediately to the previous best and search would be ended. A new vector is
introduced to the velocity of change and a vector of difference is weighted by a
random number c whose upper limit is a constant parameter of the system, usually
set to value of 2.0 (Kennedy and Eberhart, 1997). The new change of velocity vec-
tor is given as follows:

))(()()1( txpctvtv iiii −•+=+ (23.12)

The change of vector introduces a tendency to return towards the previous best
position (Kennedy and Eberhart, 1997).
But this procedure is not much effective too. Some new constraints have to be in-
troduced into the equation 12. Thus far the operations have no social component,
but rather individual search focusing on region of the problem space and hence do
not perform very well. Social influence makes the particle swarm work (Kennedy,
1999). These new equations will involve social component. Social/cognitive coef-
ficients are usually randomly chosen, at each time step, in given intervals. Of
course, a number of researcher have done considerable amount of work to study
and to generalize this method (Eberhart and Kennedy 1995; Kennedy and Eberhart
1997; Kennedy 1997; Angeline 1998; Kennedy and Spears 1998; Shi and Eberhart
1998). In particular, we use a no-hope/re-hope technique as defined in (Clerc
1999), and the convergence criterion proved in Clerc and Kennedy (2002).

At each time step, the behavior of a given particle is a compromise between
three possible choices:
• To follow its own way
• To go towards its best previous position
• To go towards the best neighbor’s best previous position, or towards the best

neighbor (variant)
The social/cognitive influence that makes the PSO algorithm to work is now

presented:

( ) ( ))()()()1( 21 txpctxpctvtv igiiii −•+−•+=+ (23.13)

)1()()1( ++=+ tvtxtx iii (23.14)

where c1 = cognitive influence factor, c2 = social influence factor, pi is the par-
ticle’s best so far, and pg is the best in the neighborhood.

We have used Figure 23.1 to get the velocity vector vi(t+1), and by observing
the Figure 23. It can be stated that particle i has moved towards the neighbor-
hood’s best position and its own best position.



572 23 Particle Swarm Optimization for the Assignment of Facilities to Locations

minimum

xi

vi

x
i(t) p

i
p
gvi(t)

x
x

x

vi(t+1)

x
i(t+1)

c1( p
i - x i

(t))

c2( pg - x i
(t))

c1( p
i

- x i
(t)) c2( pg - x i

(t))+

Fig. 23.1. Contour lines and the process for generating new x in PSO scheme

We note that from Figure 23.1 the operators’ modification has been observed
until the finest form is obtained. Few points are noted during the modification: (1)
the new position is converging towards the best positions region; (2) the velocity
could explode towards infinity. Hence new position on that situation is undefined.

23.3.1 Explosion Control

Constriction parameters have a great impact on the operations. Varying these pa-
rameters has the effect of varying the strength of the pull “towards” the two best
positions, which could be verified by observing Figure 23.1. If accidentally the
coefficients c1 and c2 exceeds the value 4.0, both the velocities and positions ex-
plode towards infinity. Thus almost all implementation of the PSO limit each of
the two coefficients c1 and c2 to 2.0 (Kennedy and Eberhart, 1997). To control the
explosion of the system a new constriction coefficient is used, which is called “in-
ertia weight”. A large inertial weight facilitates global exploration while a small
inertial weight tends to facilitate local exploration to fine-tune the current search
area (Kennedy, 1997). Hence, equation 23.13 can be modified to have a place for
new constriction constant, inertial weight ( χ ) (Clerc and Kennedy, 2002).

( ) ( ){ })()()()1( 21 txpctxpctvtv igiiii −•+−•+•=+ χ (23.15)

where inertial weight ( χ ), is given as



23.3 Application of the PSO to the QAP 573

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −−−
=

2

|4|
2

1 2 βββ
χ

abs

k

( ]1,0∈k and 21 cc +=β such that 4>β .

Equation 23.15 is generic operator for all types of objective functions. This is to
tune up these coefficients for any particular kind of problem domain.

23.3.2 Particle Swarm Optimization Operators

The detailed descriptions of the four basic operators involved in the PSO algo-
rithm (Clerc 2002) are discussed; we note that the time is discrete: time step = 1:

23.3.2.1 Position minus Position: subtraction

position, position( ) minus⎯ → ⎯ ⎯ ⎯ velocity

Particles move from one place to another in search for a better position. To move a
particle it must have some velocity to move in specified direction (towards better
position).

Let say particle p has position x and particle ’p has position ’x . To move

the particle p from position x to ’x velocity v is given.

xxv Θ= ’ (23.16)

with Θ defined as follows.

Suppose position x and ’x are represented in the form of array of dimension-
4:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

3

2

1

0

x ,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1

3

2

0

’x

then the velocity v will be:



574 23 Particle Swarm Optimization for the Assignment of Facilities to Locations

⎥
⎦

⎤
⎢
⎣

⎡
↔
↔

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Θ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
31

21

3

2

1

0

1

3

2

0

v .

meaning: on x , exchange 1 and 2, then exchange 1 and 3. It is easy to see that the

final result is indeed ’x . More generally, knowing x and ’x , a simple and small
algorithm builds a correct sequence of transpositions (not necessarily the shortest
one).

The mathematical idea behind this procedure to calculate velocity of the parti-
cle is clear. We just memorize what kind of transformation the velocity will even-
tually do when applied to a position (see below “Position plus velocity”). Another
important operator is coefficient times velocity. Detail of this operator is described
next.

23.3.2.2 Coefficient times velocity:

external multiplication real _ number,velocity( ) times⎯ → ⎯ ⎯ velocity

This operator is stochastic, and defined only for a coefficient between 0 and 1. For
a coefficient greater than 1, say coeff = k + c, with k is integer part and c is deci-
mal part, then simply k times velocity plus velocity and one times coefficient times
velocity is used (Clerc, 2002).

Suppose a velocity v and coefficient c are given, then c x v can be computed for
a coefficient c given as

( )
( )⎪⎩

⎪
⎨
⎧

↔→↔⇒>′
↔→↔⇒≤′

=′∈

)(

)(

)1,0(],1,0[

jijicc

iijicc

randomcc

(23.17)

An example is given below to have a better idea about how this operator works.
For a given v then 0.5xv (c < 1 = 0.5) is given as

⎥
⎦

⎤
⎢
⎣

⎡
↔
↔

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

↔
↔
↔
↔
↔
↔

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

↔
↔
↔
↔
↔
↔

⊗
20

10

11

20

44
33

22

10

01

20

44
03

32

10

50.

newvv



23.3 Application of the PSO to the QAP 575

This operator is mainly used to change the velocity. The size of velocity is also
changed when this operator is imposed. This operator is helpful when velocity of a
particle needs to be changed. Either move away or move closer to another particle.
From the previous sections the velocity of the particle was deduced. Now particle
has a velocity to move into new position. One other important operator is velocity
plus velocity, which is now discussed.

23.3.2.3 Velocity plus velocity: addition

velocity,velocity( ) plus⎯ → ⎯ ⎯ velocity

Suppose a particle p, has two velocity components 1v and 2v , then the new ve-
locity vnew will be:

newvvv =⊕ 21 (23.18)

The technique of addition is as follows. The sequence of transpositions describ-

ing 2v is simply “added” to the one describing 1v . An example of this operator
is now described.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

↔
↔
↔

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

↔
↔
↔
↔
↔

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

↔
↔
↔

⊕⎥
⎦

⎤
⎢
⎣

⎡
↔
↔

41

21

30

13

43

20

32

10

13

43

20

32

10

21 newvvv

Note that as this operator is not commutative, we usually do not have

1221 vvvv ⊕=⊕ .

23.3.2.4 Position plus velocity:

move position,velocity( ) move (plus)⎯ → ⎯ ⎯ ⎯ ⎯ position

Particles can be moved according to their current velocity. Suppose particle p has
position x and velocity v then the new position becomes

vxxnew += (23.19)



576 23 Particle Swarm Optimization for the Assignment of Facilities to Locations

This function is used to obtain the global best particle of the swarm. Let say
particle p has position x, velocity v and new position xnew. Suppose position x has
some arbitrary values of independent variables (a, b, c, d, e, f) and velocity v has
values (b, d) in first component and values (a, f) in second component, with then
the xnew is shown as

newxvx

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
↔
↔

⊕

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

a

e

b
c
d

f

fa

db

f

e

d
c
b

a

The technique of transformation is that each component of the velocity (that is
a transposition) is successively applied, first to x, then to the position obtained.

23.3.3 Particle Swarm Optimization Neighborhood

The particle swarm algorithm is an adaptive algorithm based on a social-
psychological metaphor. Each particle is influenced by a success of their topologi-
cal neighbors (Kennedy and Spear, 1998). This external function provides a parti-
cle its neighbor of a given type. Also, there are many ways to define a "neighbor-
hood" (Kennedy 1999), but we can distinguish three classes:

23.3.3.1 Social Neighborhood

The social neighborhood, just takes relationships into account. In practice, for
each particle, its neighborhood is defined as a list of particles at the very begin-
ning, and does not change. Note that, when the process converges, a social neigh-
borhood becomes a physical one. A social neighborhood is a type when a particle
chooses k nearest particles according to its location. Mathematically, social neigh-

borhood is defined for a particle to simply get 2
k particles on each side of 1-D

array.

23.3.3.2 Physical Neighborhood

The physical neighborhood, takes distances into account. In practice, distances are
recomputed at each time step, which is quite costly, but some clustering tech-
niques need this information In this type of neighborhood, a particle “chooses” k



23.3 Application of the PSO to the QAP 577

best particles from the entire swarm; the distance between a particle and k parti-
cles in the globe is normally calculated. Normally the social neighborhood be-
comes a physical neighborhood during the process of algorithm.

23.3.3.3 Queens

Instead of using the best neighbor/neighbor’s previous best of each particle, we
can use an extra-particle, which "summarizes" the neighborhood. This method is a
combination of the (unique) queen method defined in (Clerc 1999) and of the
multi-clustering method described in (Kennedy 2000). For each neighborhood, we
iteratively build a gravity center and take it as best neighbor. This method needs
some mathematical computations. The coefficient is obtained as follows:

( ) ( )
( )∑ +++

+
=

j jo

o
i ff

f
c

)1(1

1
(23.20)

Since PSO is an adaptive algorithm based on social-psychological metaphor.
The population of individuals adapt by returning stochastically towards previous
successful regions in the search space. Move towards is the most important exter-
nal function in PSO, because it explains the movement of the particles (Kennedy
and Spears, 1998).

23.3.4 Particle Swarm Optimization Improvement Strategies

As in other generic optimization techniques such as genetic algorithm, differential
evolution, ant colony optimization, etc., PSO has some strategies to avoid being
stuck in local maximum or minimum. For PSO, in particular, the No-Hope/Re-
Hope process is used in order to improve search performances; in other words, for
the search to be adaptive.

23.3.4.1 No-Hope tests

For any objective function of any type, the decision has to be made regarding the
optimum value. The PSO algorithm has a task to decide whether the optimum
value is achievable or not, and if achievable then how good is it.

If the PSO algorithm is unable to output the desired or expected value, then the
swarm is in no hope state. There are some conditions for the swarm to be in this
status. Firstly, if individual particles are not moving then there is no question of
movement of swarm, hence no better position is expected. Secondly, a situation
may arise in which no effective movement is occurring i.e. either the swarm has
reduced very much or the movement is extremely slow, hence there is no need to
move the swarm. Finally when the PSO algorithm is producing the same best
value for a number of times greater than the threshold value, then the better solu-
tion than the same best value is unexpected and the swarm is in no hope state.
When the PSO algorithm gets into a no-hope state, the only way out is to either



578 23 Particle Swarm Optimization for the Assignment of Facilities to Locations

accept the result of the current situation or re-hope for better result. The following
criteria are useful for the no-hope tests (Clerc 1999).

Criterion 0

If a particle has to move toward another one, which is at distance 1, either it
does not move at all or it goes exactly to the same position as this other one, de-
pending on the social/confidence coefficients. It may be possible that all moves
computed according to equation 16 are null. In this case there is absolutely no
hope to improve the current best solution.

Criterion 1

The No-Hope test defined in (Clerc 1999) is swarm too small. In this test, the
swarm diameter is computed at each time step, which is costly. But in a discrete
case, as soon as the distance between two particles tends to become too small, the
two particles become identical, usually first by positions and then by velocities.
Hence, at each time step, a reduced swarm is computed, in which all particles are
different, which is not very expensive, and the No-Hope test becomes swarm too
reduced, say by half the original size.

Criterion 2

Another criterion has been added to the no-hope test criterion is the swarm too
slow. This criterion compares the velocities of all particles to a threshold, either
individually or globally. In one version of the algorithm, this threshold is in fact
modified at each time step, according to the best result obtained so far and to the
statistical distribution of arc values.

Criterion 3

Another very simple criterion that is defined is the no improvement for too
many times. In practice, it appears that criteria 1 and 2 are sufficient.

23.3.4.2 Re-Hope Process

PSO has a well-defined procedure to move out from the no-hope state; this is
called re-hope. As soon as there is no hope, the swarm is re-expanded. The idea
behind this method is to check if there is still hope to reach the better solution. If
there is no hope, then swarm is moved (Clerc, 1999). The particles are moving
slowly and continuously to get better position. The movement of particles is cate-
gorized in four: (i) lazy descent method, (ii) energetic descent method, (iii) local
iterative leveling, and (iv) adaptive re-hope method. There are a number of re-
hope strategies defined for PSO. The re-hope strategies in Clerc (1999) and He et
al. (1999) inspire the first two methods described here.



23.3 Application of the PSO to the QAP 579

23.3.4.2.1 Lazy Descent Method (LDM)

Each particle goes back to its previous best position and, from there, moves ran-
domly and slowly (i.e. size of velocity is 1) and stop as soon as it finds a better po-
sition or when a maximal number of moves (problem size) is reached. If the cur-
rent swarm is smaller than the initial one, it is completed by a new set of particles
randomly chosen.

23.3.4.2.2 Energetic Descent Method (EDM)

Each particle goes back to its previous best position and, from there moves slowly
(i.e. velocity size is 1) as long as it finds a better position in at most maximum
number of move (problem size). If the current swarm is smaller than the initial
one, it is completed by a new set of particles randomly chosen. The only drawback
of this method is it is more expensive than LDM.

23.3.4.2.3 Local Iterative Leveling (LIL)

This method is more expensive and more powerful. This method is used when
EDM fails to find a better position. For each immediate physical neighbor y (at

distance 1) of the particle p, a temporary objective function value ( )yf is com-

puted by using the following algorithm:
find all neighbors at a distance 1;
find the best distance, i.e. ymin ;

assign y to the temporary objective function value ( ) ( ) ( )
2

min xfyf
yf

+= ;

move p towards its best neighbor ;

Usually this algorithm’s big O order ranges from polynomial to exponential
hence this procedure is only used when the swarm is in no-hope state (Clerc,
1999).

23.3.4.2.4 Adaptive Re-Hope Method (ARM)

The three above methods can be automatically used in an adaptive way, according
to how long (number of time steps) the best solution has not been improved. An
example of adaptive re-hope strategy is shown in Table 23.1.

Table 23.1: Adaptive Re-Hope conditions
Same best+ Re-Hope type

0 No Re-Hope

1 Lazy Descent Method (type = 0)

2 Energetic Descent Method (type = 1)



580 23 Particle Swarm Optimization for the Assignment of Facilities to Locations

�3 Local Iterative Leveling (type = 2)
+Number of time steps without improvement

23.3.4.2.5 Parallel and Sequential Versions

The algorithm can run either in (simulated) parallel mode or in sequential mode.
In the parallel mode, at each time step, new positions are computed for all parti-
cles and then the swarm is globally moved. In sequential mode, each particle is
moved at a time on a cycling way. So, in particular, the best neighbor used at time
t+1 may be not anymore the same as the best neighbor at time t, even if the itera-
tion is not complete. We note that equation 14 implicitly supposes a parallel mode,
but in practice there is no clear difference in performances, and the sequential
method is a bit less expensive.

23.4 Experimentation

In this section we report on the experimental results obtained with PSO on some
QAP instances of QAPLIB (accessible via the WWW at address
http://www.opt.math.tu-graz.ac.at/qaplib/inst.html) and compare them with some
known heuristics which have a reputation for being very powerful in solving the
QAP. The heuristics chosen for comparison are ant system (AS), ant system with
non-deterministic hill climbing (ASN), simulated annealing (SA), tabu search
(TS), genetic algorithm (GA), evolutionary strategy (ES), and sampling & cluster-
ing (SC). In (Taillard, 1995) it has been argued that the type of problem instance
has a strong influence on the performance of the different algorithmic approaches
proposed for solving the QAP. We present the computational results of PSO and
compare them to the above mentioned algorithms.

23.4.1 Parameter settings

The original PSO by Kennedy and Eberhert (1995) requires extensive experimen-
tation for parameter setting. However, the version by Clerc (1999) which, we have
adopted in the work reported in this chapter requires minimal experimentation for
parameter setting. Only three parameters need to be set. These are: the number of
iterations, convergence-case and move-type. From experimentation, we have set
number of iterations = 50, convergence-case = 4 and move-type = 1.

23.4.2 Computational results

The test problems used are those known as Elshafei (1977), Krarup (1978), and
Nugent (1968). These problems are classified as real-life instances from practical
applications of the QAP (Taillard, 1995). For example, Elshafei (1977), and Kra-



23.5 Conclusion 581

rup (1978) instances define the layout problem for a hospital. The real-life in-
stances have in common that the flow matrices have (in contrast to the previously
mentioned randomly generated instances) many zero entries and the remaining en-
tries are clearly not uniformly distributed.

As can be seen in Table 23.2, the performance of the particle swarm optimiza-
tion heuristic competes well with other heuristics except for the Nugent 30 and
Krarup 30 problems.

Table 23.2: Comparison of the PSO with other heuristic approaches+

Nugent
(15)

Nugent
(20)

Nugent
(30)

Elshafei
(19)

Krarup
(30)

Best known 1150 2570 6124 17212548 88900
Particle swarm opt. (PSO) 1162 2592 6204 20000000 93500
Ant System (AS) 1150 2598 6232 18122850 92490
ASN 1150 2570 6128 17212548 88900
Simulated Annealing (SA) 1150 2570 6128 17937024 89800
Tabu Search (TS) 1150 2570 6124 17212548 90090
Genetic Algorithm (GA) 1160 2688 6784 17640548 108830
Evolution Strategy (ES) 1168 2654 6308 19600212 97880
Sampling & Cluster (SC) 1150 2570 6154 17212548 88900
+Results are averaged over five runs

23.5 Conclusion

This chapter presents a particle swarm optimization for the quadratic assignment
problem. It is observed from experimentation that the particle swarm optimization
approach delivers competitive solutions when compared to ant system (AS), ant
system with non-deterministic hill climbing (ASN), simulated annealing (SA),
tabu search (TS), genetic algorithm (GA), evolutionary strategy (ES), and sam-
pling & clustering (SC). The successful implementation of the particle swarm op-
timization approach is demonstrated by addressing a problem data set. The data
set problem instances, which are classified as real-life instances from practical ap-
plications of the QAP, were taken from the QAPLIB, which contains standard
problems and their optimum solutions for benchmarking of heuristics. Specifi-
cally, the Elshafei (1997), Kraup (1978), and Nugent (1968) problems were used
for comparing the PSO with other proven heuristics listed above.

In summary, the computational results show that algorithms based on the PSO
adaptive search heuristic are currently among the best available algorithms for
real-life, structured QAP instances. It will be interesting to continue to explore
other areas of applications of PSO for discrete optimization problems.



582 References

References

Angeline PJ (1998) Using selection to improve particle swarm optimization, IEEE Interna-
tional Conference on Evolutionary Computation, Anchorage, Alaska, May, 4-9.

Battiti R, Tecchiolli G (1994) The reactive tabu search. ORSA Journal on Computing, 6(2),
126-140.

Burkard RE, Rendl F (1984) A thermodynamically motivated simulation procedure for
combinatorial optimization problems, European Journal of Operational Research, 17,
169-174.

Carlisle A, Dozier G (1998) Adapting Particle Swarm Optimization to Dynamics Environ-
ments,” presented at International Conference on Artificial Intelligence, Monte Carlo
Resort, Las Vegas, Nevada, USA.

Clerc M (1999) The swarm and the queen: towards a deterministic and adaptive particle
swarm optimization, Congress on Evolutionary Computation, Washington D. C., IEEE
Service Center, Piscataway, NJ, 1951-1957.

Clerc M, Kennedy J (2002) The particle swarm: explosion, stability, and convergence in a
multidimensional complex space, IEEE Transactions on Evolutionary Computation, 6,
58-73.

Connolly DT (1990) An improved annealing scheme for the QAP, European Journal of
Operational Research, 46, 93-100.

Cung V-D, Mautor T, Michelon P, Tavares A (1997) A scatter search based approach for
the quadratic assignment problem. In Baeck, T., Michalewicz, Z., and Yao, X., editors,
Proceedings of ICEC’97, 165-170, IEEE Press.

Dickey JW, Hopkins JW (1972) Campus building arrangement using TOPAZ. Transporta-
tion Science, 6, 59-68.

Dorigo M, Maniezzo V, Colorni A (1996) The Ant System: optimization by a colony of co-
operating agents, IEEE Transactions on Systems, Man, and Cybernetics, Part B, 26(1),
29-41.

Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory, Proceedings,
Sixth International Symposium on Micro Machine and human science, Nagoya, Japan,
IEEE Service Center, Piscataway, NJ, 39-43.

Eberhart RC, Shi Y (1998) Evolving artificial neural networks, presented at International
Conference on Neural Networks and Brain, Beijing, P.R.C., PL5-PL13.

Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle
swarm optimization, presented at International Congress on Evolutionary Computa-
tion, San Diego, California, 84-88.

Eiselt HA, Laport G (1991), A combinatorial optimization problem arising in dartboard de-
sign, Journal of the Operational Research Society, 42, 113-118.

Elshafei AN (1977) Hospital layout as a quadratic assignment problem, Operations Re-
search Quarterly, 28, 167-179.



23.5 Conclusion 583

Fleurent C Ferland JA (1994) Genetic hybrids for the quadratic assignment problem. In
Pardalos, P. M., and Wolkowicz, H., editors, Quadratic assignment and related prob-
lems, DIMACS Series on Discrete Mathematics and Theoretical Computer Science, 16,
American Mathematical Society 173-187.

Geoffrion AM, Graves GW (1976) Scheduling parallel production lines with changeover
costs: practical applications of a quadratic assignment/LP approach, Operations Re-
search, 24, 595-610.

He Z, Wei, C (1999) A new population-based incremental learning method for the traveling
salesman problem, Congress on Evolutionary Computation, Washington D.C., IEEE.

Johnson DS, McGeoch LA (1997) The travelling salesman problem: a case study in local
optimization. In Aarts, E. H. L., and Lenstra, J.K., editors, Local Search in Combina-
torial Optimization, John Wiley & Sons 215-310.

Kennedy J (1997) The particle swarm: social adaptation of knowledge, IEEE International
Conference on Evolutionary Computation, Indianapolis, Indiana, IEEE Service Cen-
ter, Piscataway, NJ.

Kennedy J (1999) Small worlds and mega-minds: effects of neighborhood topology on par-
ticle swarm performance, Congress on Evolutionary Computation, Washington D.C,
IEEE.

Kennedy J (2000) Stereotyping: Improving Particle Swarm Performance With Cluster
Analysis,” presented at Congress on Evolutionary Computation.

Kennedy J, Eberhart RC (1995) Particle swarm optimization, IEEE Proceedings of the In-
ternational Conference on Neural Networks IV (Perth, Australia), IEEE Service Cen-
ter, Piscataway, NJ, 1942-1948.

Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm,
International Conference on Systems, Man, and Cybernetics.

Kennedy J (1999) Small worlds and mega-minds: effects of neighborhood topology on par-
ticle swarm performance, Proceedings of the Congress on Evolutionary Computation,
Washington D.C, IEEE Service Center, Piscataway, NJ, 1931-1938.

Krarup J, Pruzan PM (1978) Computer-aided layout design, Mathematical Programming
Study, 9, 75-94.

Laporte G, Mercure H (1988) Balancing hydraulic turbine runners: a quadratic assignment
problem, European Journal of Operational Research, 35, 378-381.

Li Y, Pardalos PM, Resende MGC (1994) A greedy randomized adaptive search procedure
for the quadratic assignment problem. In Pardalos, P. M., and Wolkowicz, H., editors,
Quadratic assignment and related problems, DIMACS Series on Discrete Mathematics
and Theoretical Computer Science, 16, 237-261, American Mathematical Society,
1994.

Merz P, Freisleben B (1997) A genetic local search approach to the quadratic assignment
problem. In BÄack, T., editor, Proceedings of the Seventh International Conference on
Genetic Algorithms (ICGA’97), Morgan Kaufmann 465-472.

Nissen V (1994) Solving the Quadratic assignment problem with clues from nature, IEEE
Transactions on Neural Networks, 5(1), 66-72.

Nugent CE, Vollman TE, Ruml J (1968) An experimental comparison of techniques for the
assignment of facilities to locations, Operations Research, 16, 150-173.

Sahni S, Gonzalez T (1976) P-complete approximation problems, Journal of the ACM, 23,
555-565.

Shi Y, Eberhart RC (1998) A modified particle swarm optimizer, IEEE International Con-
ference on Evolutionary Computation, Anchorage, Alaska, May 4-9.



584 References

Skorin-Kapov J (1990) Tabu Search applied to the quadratic assignment problem, ORSA
Journal on Computing, 2, 33-45.

Steinberg L (1961) The backboard wiring problem: a placement algorithm, SIAM Review,
3, 37-50.

Taillard ED (1991) Robust taboo search for the quadratic assignment problem, Parallel
Computing, 17, 443-455.

Taillard ED (1995) Comparison of iterative searches for the quadratic assignment problem,
Location Science, 3, 87-105.

Tate DM, Smith AE (1995) A genetic approach to the quadratic assignment problem, Com-
puters & Operations Research, 22(1), 73-83.



24 Differential Evolution for the Flow Shop
Scheduling Problem

Godfrey C Onwubolu

The classical problem of scheduling n jobs on m machines in a flow shop is to
minimize the throughput time of all the jobs under the assumption that all jobs are
processed on all machines at the same sequence. This scheduling problem leads to
the permutation situation in which there are n-factorial possible sequences to be
considered which, for large number of jobs leads to combinatorial explosion. The
flow shop scheduling-problem is among the combinatorial optimization problems
because for large number of jobs, the search for the best job-sequence can be very
demanding in terms of computational time. A summary of different methods for
scheduling flow shop problem is found in Dudek et al (1992). Optimization algo-
rithm such as branch-and-bound, has been employed by some researchers (see, for
instance, Ignall and Linus (1965), and Hariri (1981)). Due to the difficulties asso-
ciated with the computational requirements of optimization algorithms for large-
sized problems, many researchers have opted for heuristic methods, which though
do not guarantee optimal solutions, do produce satisfactory and reliable solutions
with a reasonably small amount of computational efforts.

24.1 Introduction

In general, when discussing non-linear programming, the variables of the object
function are usually assumed to be continuous. However, in practical real-life en-
gineering applications it is common to have the problem variables under consid-
eration being discrete or integer values. Real-life, practical engineering optimiza-
tion problems are commonly integer or discrete because the available values are
limited to a set of commercially available standard sizes. For example, the number
of automated guided vehicles, the number of unit loads, the number of storage
units in a warehouse operation are integer variables, while the size of a pallet, the
size of billet for machining operation, etc., are often limited to a set of commer-
cially available standard sizes. Another class of interesting optimization problem

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



586 24 Differential Evolution for the Flow Shop Scheduling Problem

is finding the best order or sequence in which jobs have to be machined. None of
these engineering problems has a continuous objective function rather each of
these engineering problems has either an integer objective function or discrete ob-
jective function. In this paper we deal with the scheduling of jobs in a flow-shop
manufacturing system.

In manufacturing, production scheduling comprises of the important tasks of
dispatching jobs and allocating resources. Production scheduling is the key link in
carrying out the production plan and process. The larger the production scale or
wider the product variety, the more important the action of scheduling becomes.
Although the objects to be produced are different in manufacturing industries, the
basic attributes of production schedule are the same. The main goal is to seek an
optional program for allocating resources under a production goal and related con-
straint conditions. There are several different production goals, e.g., shortest pro-
duction time, minimum production cost, JIT mode, which all will seriously effect
the production management and organization.

The constraint conditions, e.g., operation time, product priority, equipment im-
plementation, production rate, production batch, due date, etc., are dependent upon
the enterprise features including objects, environment, technology and process.
The production scheduling includes the pre-process schedule for initiating the
production process as static requirement, as well as the post-process schedule to
feed new products on the production line for maintaining the continuous running
of the production process as a dynamic requirement. The former is usually called
the static schedule and the latter the dynamic schedule. Operations research, com-
binatorial mathematics, especially the branch and bound method and heuristic in-
ference method, have all made a great contribution to production scheduling, it is
still problematic to meet the modern production demands of increasing variety,
expanding production scale, responding promptly, reforming production mode,
etc. There is no unified model to deal with the problems with success.

The flow-shop scheduling-problem is a production planning-problem in which
n jobs have to be processed in the same sequence on m machines. The assump-
tions are that there are no machine breakdowns and that all jobs are pre-emptive.
This is commonly the case in many manufacturing systems where jobs are trans-
ferred from machine to machine by some kind of automated material handling sys-
tems.

For large problem instances, typical of practical manufacturing settings, most
researchers have focused on developing heuristic procedures that yield near opti-
mal-solutions within a reasonable computation time. Most of these heuristic pro-
cedures focus on the development of permutation schedules and use makespan as
a performance measure. Some of the well-known scheduling heuristics, which
have been reported in the literature, include Palmer (1965), Campbell, Dudek, and
Smith (1970), Gupta (1971), Dannenbring (1977), Hundal and Rajgopal (1988)
and Ho and Chang (1991). Cheng and Gupta (1989) and Baker and Scudder
(1990) presented a comprehensive survey of research work done in flow shop
scheduling.



587 24 Differential Evolution for the Flow Shop Scheduling Problem

In recent years, a growing body of literature suggests the use of heuristic search
procedures for combinatorial optimisation problems. Several search procedures
that have been identified as having great potential to address practical optimisation
problems include simulated annealing (Kirkpatrick et al. 1983), genetic algorithms
(Goldberg, 1989), tabu search (Glover, 1989, 1990), and ant colony optimisation
(Dorigo, 1992). Consequently, over the past few years, several researchers have
demonstrated the applicability of these methods, to combinatorial optimisation
problems such as the flow-shop scheduling (see for example, Widmer and Hertz
(1989), Ogbu and Smith (1990), Taillard (1990), Chen et al. (1995) and Onwubolu
(2000)). More recently, a novel optimization method based on differential evolu-
tion (exploration) algorithm (Storn and Price, 1995) has been developed, which
originally focused on solving non-linear programming problems containing con-
tinuous variables. Since Storn and Price (1995) invented the differential evolution
(exploration) algorithm, the challenge has been to employ the algorithm to differ-
ent areas of problems other than those areas that the inventors originally focussed
on. Although application of DE to combinatorial optimization problems encoun-
tered in engineering is scarce, researchers have used DE to design complex digital
filters (Storn, 1999), and to design mechanical elements such as gear train, pres-
sure vessels and springs (Lampinen and Zelinka, 1999). Onwubolu (2001) applied
the differential evolution approach to solving the flow shop minimum makespan
problem, and the total tardiness flow shop scheduling problem. This approach is
now discussed.

This chapter presents a new approach based on differential evolution algorithm
for solving the problem of scheduling n jobs on m machines when all jobs are
available for processing and the objective is to minimise the makespan. Other ob-
jective functions considered in the present work include mean flowtime and total
tardiness.

24.2 Problem Formulation for the flow shop schedules

Machine idleness and/or job waiting are the two situations that constantly arise in
a flow shop schedule (see Figure 24.1). Machine idleness occurs when the second
machine waits for a unit of time (machine slack) during which the second job
completes processing on the first machine. Job-waiting can be illustrated by the
third job, which after completion of processing on the first machine, waits for unit
time on the second machine until the second job completes processing on the sec-
ond machine.

Let t(i, m) represent the processing time of the i-th job on the m-th machine, SM

(i,m) represent the machine slack on the last machine between the (i-1)th and the i-
th jobs, SJ (n,m) represent the job slack experienced by the n-th job on the m-th
machine, then the total makespan TS(n,m) can be formulated in two possible ways:



588 24 Differential Evolution for the Flow Shop Scheduling Problem

∑∑∑
==

−

=
++=

n

i
M

n

i

m

k
S miSmitktmnT

21

1

1

),(),(),1(),( (24.1)

∑∑∑
==

−

=
++=

n

i
M

n

i

m

k
S miSmitktmnT

21

1

1

),(),(),1(),( (24.2)

The standard three-field notation (Lawler et al. 1995) used is that for representing

a scheduling problem as α|β|F(C), where α describes the machine environment, β
describes the deviations from standard scheduling assumptions, and F(C)

describes the objective C being optimised. In the work reported in this chapter, we

are solving the )(||// maxCFFmn problem. Other problems solved include

)()( ∑= iCFCF and )()( jTFCF ∑= . Here α = n/m/F describes the multiple-

machines flowshop problem, β = null, and

),,()( max ji TandCCFCF ∑∑= for makespan, mean flowtime, and total

tardiness respectively. The following notation applies: m = number of

machines, n = number of jobs, ∑ iC = flowtime, maxC = makespan, and ∑ jT =

total tardiness.

n-1

i=2

Sm (i,m )
m-1

k=1

n

i=1
t (i,m ) +

n

i=2

n
t(i,1)

2

m

1

1 1 2

k=1

2 n

1 2 3

n-13

3 n-1 n

m
+

m

n

t( n,k ) Sj (n,k )
k=2

Fig. 24.1: Gantt chart for sequence {1,2........, n} in flow shop



589 24 Differential Evolution for the Flow Shop Scheduling Problem

24.3 Differential Evolution

The differential evolution (exploration) [DE] algorithm introduced by Storn and
Price (1995) is a novel parallel direct search method, which utilizes NP parameter
vectors as a population for each generation G. DE can be categorized into a class
of floating-point encoded, evolutionary optimization algorithms. Currently, there
are several variants of DE. The particular variant used throughout this investiga-
tion is the DE/rand/1/bin scheme. This scheme will be discussed here only briefly,
since more detailed descriptions are provided (Price and Storn 1995). Since the
DE algorithm was originally designed to work with continuous variables, the op-
timization of continuous problems is discussed first. Handling discrete variables is
explained later. In this sections the parameters used are ℑ = cost or the value of
the objective function, D = problem dimension, NP = population size, P = popu-
lation of X-vectors, G = generation number, Gmax = maximum generation number,
X = vector composed of D parameters, V = trial vector composed of D pa-
rameters, and CR = crossover factor. Other parameters are F = scaling factor (0 <

F ≤ 1.2), (U) =upper bound, (L) = lower bound, u, and v = trial vectors, )(G
bestx

= vector with minimum cost in generation G. Finally, we have )(G
ix = ith vector

in generation G, )(G
ib = ith buffer vector in generation G, )(

2
)(

1 , G
r

G
r xx = randomly

selected vector, and L = random integer (0 < L < D - 1), and i, j = integers.

Generally, the function to be optimized, ℑ , is of the form:

RRX D →ℑ :)( (24.3)

The optimization target is to minimize the value of this objective function

( )Xℑ ,

( ))(min Xℑ (24.4)

by optimizing the values of its parameters:

{ } D
D RXxxxX ∈= ,,...,, 21 (24.5)

where X denotes a vector composed of D objective function parameters. Usu-
ally, the parameters of the objective function are also subject to lower and upper
boundary constraints, x(L) and x(U), respectively:



590 24 Differential Evolution for the Flow Shop Scheduling Problem

( ) ( ) ],1[ Djxxx U
jj

L
j ∈∀≤≤ (24.6)

As with all evolutionary optimization algorithms, DE works with a population
of solutions, not with a single solution for the optimization problem. Population P
of generation G contains NP solution vectors called individuals of the population
and each vector represents potential solution for the optimization problem:

max
)()( ,...,1;,...,1 GGNPiXP G

i
G === (24.7)

Additionally, each vector contains D parameters:

DjNPixX G
ij

G
i ,...,1;,...,1)(

,
)( === (24.8)

In order to establish a starting point for optimum seeking, the population must
be initialized. Often there is no more knowledge available about the location of a
global optimum than the boundaries of the problem variables. In this case, a natu-
ral way to initialize the population P (0) (initial population) is to seed it with ran-
dom values within the given boundary constraints:

( ) ( ) ( )( ) ],1[];,1[]1,0[)0(
,

)0( DjNPixxrandxxP L
j

U
jj

L
jij ∈∀∈∀−•+==

(24.9)

where ]1,0[jrand represents a uniformly distributed random value that

ranges from zero to one.
The self-referential population recombination scheme of DE is different from

the other evolutionary algorithms. From the first generation onward, the popula-
tion of the subsequent generation P(G+1) is obtained on the basis of the current
population P(G). First a temporary or trial population of candidate vectors for the

subsequent generation, )1(
,

)1()1( +++ ==′ G
ij

GG vVP , is generated as follows:

( ) ( ) ( )( )

⎪
⎩

⎪
⎨

⎧ =∨<−•+
=+

otherwiseifx

kjCRrandifxxFx

v
G
ji

j
G
rj

G
rj

G
rj

G
ij

)(
,

2,1,3,
)1(

,

]1,0[

(24.10)

where ],1[];,1[ DjNPi ∈∈ , F = greediness scaling factor (0 < F < 1.2)

],1[3,2,1 NPrrr ∈ , randomly selected, except: irrr ≠≠≠ 321



591 24 Differential Evolution for the Flow Shop Scheduling Problem

( )( )1]1,0[int +•= Drandk i

]1,0(],1,0[ ∈∈ FCR
Three randomly chosen indexes, r1, r2, and r3 refer to three randomly chosen

vectors of population. They are mutually different from each other and also differ-
ent from the running index i. New random values for r1, r2, and r3 are assigned
for each value of index i (for each vector). A new value for the random num-

ber ]1,0[rand is assigned for each value of index j (for each vector parameter).

The index k refers to a randomly chosen vector parameter and it is used to en-

sure that at least one vector parameter of each individual trial vector ( )1+GV dif-

fers from its counterpart in the previous generation ( )GX . A new random integer

value is assigned to k for each value of the index i (prior to construction of each
trial vector). F and CR are DE control parameters. Both values remain constant
during the search process. Both values as well as the third control parameter, NP
(population size), remains constant during the search process. F is a real-valued
factor in range [0.0, 1.0] that controls the amplification of differential variations.
CR is a real-valued crossover factor in the range [0.0, 1.0] that controls the prob-
ability that a trial vector will be selected form the randomly chosen, mutated vec-

tor, )1(
,

+G
ijV instead of from the current vector, )(

,
G
ijx . Generally, both F and CR af-

fect the convergence rate and robustness of the search process. Their optimal
values are dependent both on objective function characteristics and on the popula-
tion size, NP. Usually, suitable values for F, CR and NP can be found by experi-
mentation after a few tests using different values. Practical advice on how to select
control parameters NP , F and CR can be found in Storn and Price (1995, 1996,
1997).

The selection scheme of DE also differs from the other evolutionary algo-

rithms. On the basis of the current population ( )GP and the temporary population
( )1+′ GP , the population of the next generation ( )1+GP is created as follows:

( ) ( )

⎪
⎩

⎪
⎨

⎧ ℑ≤ℑ
=

++

+

otherwiseifX

XVifV

X
G

i

G
i

G
i

G
i

G
i

)(

)()1()1(

)1( (24.11)

Thus, each individual of the temporary or trial population is compared with its
counterpart in the current population. The one with the lower value of cost func-
tion ℑ (X) to be minimized will propagate the population of the next generation.
As a result, all the individuals of the next generation are as good or better than
their counterparts in the current generation. The interesting point concerning the



592 24 Differential Evolution for the Flow Shop Scheduling Problem

DE selection scheme is that a trial vector is only compared to one individual vec-
tor, not to all the individual vectors in the current population.

24.3.1 Constraint Handling

24.3.1.1 Boundary constraints

It is important to notice that the recombination operation of DE is able to extend
the search outside of the initialized range of the search space (Equations 23.9 and
23.10). It is also worthwhile to notice that sometimes this is a beneficial property
in problems with no boundary constraints because it is possible to find the opti-
mum that is located outside of the initialized range. However, in boundary con-
strained problems, it is essential to ensure that parameter values lie inside their al-
lowed ranges after recombination. A simple way to guarantee this is to replace
parameter values that violate boundary constraints with random values generated
within the feasible range:

( ) ( ) ( )( ) ( ) ( )

⎪
⎩

⎪
⎨

⎧ >∨<−•+
=

+

++

+

otherwiseifu

xuxuifxxrandx

u
G
ji

U
j

G
ij

L
j

G
ij

L
j

U
jj

L
j

G
ij

)1(
,

)1(
,

)1(
,

)1(
,

]1,0[

(24.12)

where ],1[];,1[ DjNPi ∈∈ .

This is the method that was used for this work. Another simple but less efficient
method is to reproduce the boundary constraint violating values according to
Equation 9 as many times as is necessary to satisfy the boundary constraints. Yet
another simple method that allows bounds to be approached asymptotically while
minimizing the amount of disruption that results from resetting out of bound val-
ues (Storn and Price, 1999) is:

( ) ( )

( ) ( )

⎪
⎩

⎪
⎨

⎧
>+
<+

=
+

+

+

+

otherwiseifu

xuifxx

xuifxx

u
G
ij

U
j

G
ij

U
j

G
ij

L
j

G
ij

L
j

G
ij

G
ij

)1(
,

)1(
,

)(
,

)1(
,

)(
,

)1(
, 2/)(

2/)(

(24.13)



593 24 Differential Evolution for the Flow Shop Scheduling Problem

24.3.1.2 Constraint functions

Storn (1999), and Lampinen and Zelinka (1999) elaborate soft-constraint (penalty)
handling approaches for constraint functions. The constraint function introduces a
distance measure from the feasible region, but is not used to reject unrealizable so-
lutions, as it is in the case of hard-constraints. One possible soft-constraint ap-
proach is to formulate the cost-function as follows:

( )( ) ∏
=

•+ℑ=ℑ
m

i

b
i

icaXX
1

)( (24.14)

where
( ) ( )

⎩
⎨
⎧ >•+

=
otherwise

XgifXgs
c iii

i 1

00.1

( )( ) 0min

1

1

>+ℑ
≥
≥

aX

b

s

i

i

The constant, a, is used to ensure that only non-negative values will be assigned
to ℑ . When the value of a is set high enough, it does not otherwise affect the
search process. The constant, s, is used for appropriate scaling of the constraint
function value. The exponent, b, modifies the shape of the optimization surface.
Generally, higher values of s and b are used when the range of the constraint func-
tion, g(X), is expected to be low. Often setting s =1 and b=1 works satisfactorily
and only if one of the constraint functions, gi(X), remains violated after the opti-
mization run, it will be necessary to use higher values for si or/and bi.

In many real-world engineering optimization problems, the number of con-
straint functions is relatively high and the constraints are often non-trivial. It is
possible that the feasible solutions are only a small subset of the search space.
Feasible solutions may also be divided into separated islands around the search
space. Furthermore, the user may easily define totally conflicting constraints so
that no feasible solutions exist at all. For example, if two or more constraints con-
flict, so that no feasible solution exists, DE is still able to find the nearest feasible
solution. In the case of non-trivial constraints, the user is often able to judge which
of the constraints are conflicting on the basis of the nearest feasible solution. It is
then possible to reformulate the objective function in order to address these issues
or reconsider the problem setting itself to resolve the conflict.

Another benefit of the soft-constraint approach is that the search space remains
continuous. Multiple hard constraints often split the search space into many sepa-
rated islands of feasible solutions. This discontinuity introduces stalling points for



594 24 Differential Evolution for the Flow Shop Scheduling Problem

some genetic searches and also raises the possibility of new, locally optimal areas
near the island borders. For these reasons a soft-constraint approach is considered
essential. It should be mentioned that many traditional optimization methods are
only able to handle hard-constraints. For evolutionary optimization, the soft-
constraint approach was found to be a natural approach.

24.3.2 Integer and Discrete Optimization by Differential Evolution
Algorithm

Several approaches have been used to deal with discrete variable optimization.
Most of them round off the variable to the nearest available value before evaluat-
ing each trial vector. To keep the population robust, successful trial vectors must
enter the population with all of the precision with which they were generated
(Price and Storn, 1997).

24.3.2.1 Conventional Technique

In its canonical form, the differential evolution algorithm is only capable of han-
dling continuous variables. Extending it for optimization of integer variables,
however, is rather easy. Lampinen and Zelinka (1999) discuss how to modify DE
for mixed variable optimization. They suggest that only a couple of simple modi-
fications are required. First, integer values should be used to evaluate the objective
function, even though DE itself may still works internally with continuous float-
ing-point values. Thus,

],1[),( Diyi ∈ℑ (24.15)

where
⎩
⎨
⎧

=
iablesegerforxINT

iablescontinuousforx
y

i

i
i varint)(

var

Xxi ∈

INT() is a function for converting a real value to an integer value by truncation.
Truncation is performed here only for purposes of cost-function value evaluation.
Truncated values are not elsewhere assigned. Thus, DE works with a population of
continuous variables regardless of the corresponding object variable type. This is
essential for maintaining the diversity of the population and the robustness of the
algorithm. Second, in case of integer variable, instead of Equation 23.9, the popu-
lation should be initialized as follows:

( ) ( ) ( )( ) ],1[];,1[]1,0[)0(
,

)0( DjNPixxrandxxP L
j

U
jj

L
jji ∈∀∈∀−•+==

(24.16)



595 24 Differential Evolution for the Flow Shop Scheduling Problem

Additionally, instead of Equation 11, the boundary constraint handling integer
variables should be performed as follows:

( ) ( ) ( )( ) ( ) ( )

⎪
⎩

⎪
⎨

⎧ >∨<+−•+
=

+

++

+

otherwiseifu

xuINTxuINTifxxrandx

u
G
ji

U
j

G
ji

L
j

G
ji

L
j

U
jj

L
j

G
ji

)1(
,

)1(
,

)1(
,

)1(
,

)()(1]1,0[

(24.17)
where ],1[];,1[ DjNPi ∈∈ .

Discrete values can also be handled in a straightforward manner. Suppose that
the subset of discrete variables, X(d) , contains l elements that can be assigned to
variable x:

( ) ( ) ],1[, lixX d
i

d ∈= (24.18)

where ( ) ( )d
i

d
i xx 1+<

Instead of the discrete value xi itself, we may assign its index, i, to x. Now the
discrete variable can be handled as an integer variable that is boundary constrained
to range 1,…,l. To evaluate the objective function, the discrete value, xi , is used
instead of its index i. In other words, instead of optimizing the value of the dis-
crete variable directly, we optimize the value of its index i. Only during evaluation
is the indicated discrete value used. Once the discrete problem has been converted
into an integer one, the previously described methods for handling integer vari-
ables can be applied (Equations 24.15–24.17).

24.3.2.2 Forward Transformation and Backward
Transformation Technique

In this paper, we present a forward transformation method for transforming integer
variables into continuous variables for the internal representation of vector values
since in its canonical form, the DE algorithm is only capable of handling continu-
ous variables. We also present a backward transformation method for transform-
ing a population of continuous variables obtained after mutation back into integer
variables for evaluating the objective function (Onwubolu, 2001). Both forward
and backward transformations are utilized in implementing the DE algorithm used
in the present study for the flowshop scheduling problems.



596 24 Differential Evolution for the Flow Shop Scheduling Problem

Forward Transformation

In integer variable optimization a set of integer number is normally generated ran-
domly as an initial solution. Let this set of integer number be represented as:

’’ zzi ∈ (24.19)

The equivalent continuous variable for ’
iz is given as

2322 1010105101 xxx ≤< (24.20)

then
110

5**
1

3

’

−
+−=

fz
z i

i (24.21)

Applying a scaling factor, f = 100 gives

110

500*
1

110

5**
1

3

’

3

’

−
+−=

−
+−= ii

i

zfz
z (24.22)

Equation (24.2) is used to transform any integer variable into an equivalent
continuous variable, which is then used for the DE internal representation of the
population of vectors. Without this transformation, it is not possible to make use-
ful moves towards the global optimum in the solution space using the mutation
mechanism of DE, which works better on continuous variables.

For example in a five-job problem, suppose the sequence is given as {2, 4, 3, 1,
and 5}. This sequence is not directly used in DE internal representation. Rather,
applying equation (24.22), the sequence is transformed into a continuous form.

The floating-point equivalence of the first entry of the given sequence, 2’ =iz , is

001001.0
110

500*2
1

3
=

−
+−=iz . Other values are similarly obtained and the

sequence is therefore represented internally in the DE scheme as {0.001001,
1.002, 0.501502, -0.499499, 1.5025}.

In the technique we present, no rounding-off or truncation is required since
such a truncation method often gives less than optimal results because no attempt
is made during optimization to evaluate only realizable systems (Price 1999).

Backward Transformation

Integer variables are used to evaluate the objective function. The DE self-
referential population mutation scheme is quite unique. After the mutation of each
vector, the trial vector is evaluated for its objective function in order to decide
whether or not to retain it. This means that the objective function values of the



597 24 Differential Evolution for the Flow Shop Scheduling Problem

current vectors in the population need to be also evaluated. These vector variables
are continuous (from the forward transformation scheme) and have to be trans-
formed into their integer number equivalence. It is not enough to round off these
values for the class of problems we are solving. The backward transformation
technique is used for converting floating point numbers to their integer number
equivalence. The scheme is given as follows:

( ) ( )
500

110)1(

*5

110)1( 33
’ −∗+

=
−∗+

= ii
i

z

f

z
z (24.23)

In this present form the backward transformation function is not able to prop-
erly discriminate between variables. Some modifications are required as follows:

)5.0int( ’ += izα (24.24)

’
iz−= αβ (24.25)

( )
⎩
⎨
⎧

<
>−

=
5.0

5.01*

βα
βα

if

if
zi (24.26)

In these expressions, ’
iz = intermediate integer number equivalence of a floating

point (not rounded off), *
iz = integer number equivalence of a floating point, iz =

floating point equivalence of an integer number, and α, and β = parameters.
Equation (24.26) gives *

iz , which is the transformed value used for computing the
objective function.

As an example, we consider a set of trial vector,

{ }5.1,84.0,67.0,17.0,33.0 −−=iz obtained after mutation. The integer

values corresponding to the trial vector values are obtained using equation (24.26)
as follows:

33866.1500/)110(*)33.01( 3’
1 =−−=z

3367.3500/)110(*)67.01( 3’
2 =−+=z

65834.1500/)110(*)17.01( 3’
3 =−−=z

9950.4500/)110(*)50.11( 3’
4 =−+=z



598 24 Differential Evolution for the Flow Shop Scheduling Problem

6763.3500/)110(*)84.01( 3’
5 =−+=z

2)5.0333866.1int(1 =+=α

5.066134.033866.121 >=−=β

112*
1 =−=z

4)5.03367.3int(2 =+=α

5.06633.03367.342 >=−=β

314*
2 =−=z

2)5.065834.1int(3 =+=α

5.034166.065834.123 <=−=β

2*
3 =z

5)5.0995.4int(4 =+=α

5.0005.0995.454 <=−=β

5*
4 =z

4)5.0673.3int(5 =+=α

5.03237.0673.345 <=−=β

4*
5 =z

The set of integer values is given as { }4,5,2,3,1* =iz . This set is used to

obtain the objective function values.



599 24 Differential Evolution for the Flow Shop Scheduling Problem

24.3.2.3 DE Strategies

Price and Storn (2001) have suggested ten different working strategies of DE and
some guidelines in applying these strategies for any given problem. Different
strategies can be adopted in the DE algorithm depending upon the type of problem
for which it is applied. The strategies can vary based on the vector to be perturbed,
number of difference vectors considered for perturbation, and finally the type of
crossover used. The following are the ten different working strategies proposed by
Price and Storn (2001):

(1) DE/best/1/exp
(2) DE/rand/1/exp
(3) DE/rand-to-best/1/exp
(4) DE/best/2/exp
(5) DE/rand/2/exp
(6) DE/best/1/bin
(7) DE/rand/1/bin
(8) DE/rand-to-best/1/bin
(9) DE/best/2/bin
(10) DE/rand/2/bin

Strategy 1: DE/best/1/exp: ( ))(
3

)(
2

)( G
r

G
r

G
best xxFxv −•+=

Strategy 2: DE/rand/1/exp: ( ))(
3

)(
2

)(
1

G
r

G
r

G
r xxFxv −•+=

Strategy 3: DE/rand-to-best/1/exp:

( ) ( ))(
2

)(
1

)()()( G
r

G
r

G
i

G
best

G
i xxFxxxv −•+−•+= λ

Strategy 4: DE/best/2/exp: ( ))(
4

)(
3

)(
2

)(
1

)( G
r

G
r

G
r

G
r

G
best xxxxFxv −−+•+=

Strategy 5: DE/rand/2/exp: ( ))(
4

)(
3

)(
2

)(
1

)(
5

G
r

G
r

G
r

G
r

G
r xxxxFxv −−+•+=

Strategy 6: DE/best/1/bin: ( ))(
3

)(
2

)( G
r

G
r

G
best xxFxv −•+=

Strategy 7: DE/rand/1/bin: ( ))(
3

)(
2

)(
1

G
r

G
r

G
r xxFxv −•+=

Strategy 8: DE/rand-to-best/1/bin:

( ) ( ))(
2

)(
1

)()()( G
r

G
r

G
i

G
best

G
i xxFxxFxv −•+−•+=

Strategy 9: DE/best/2/bin: ( ))(
4

)(
3

)(
2

)(
1

)( G
r

G
r

G
r

G
r

G
best xxxxFxv −−+•+=

Strategy 10: DE/rand/2/bin: ( ))(
4

)(
3

)(
2

)(
1

)(
5

G
r

G
r

G
r

G
r

G
r xxxxFxv −−+•+=

The general convention used above is as follows: DE/x/y/z. DE stands for dif-
ferential evolution algorithm, x represents a string denoting the vector to be per-
turbed, y is the number of difference vectors considered for perturbation of x, and
z is the type of crossover being used (exp: exponential; bin: binomial). Thus, the
working algorithm outline by Price and Storn (1997) is the seventh strategy of DE,



600 24 Differential Evolution for the Flow Shop Scheduling Problem

that is, DE/rand/1/bin. Hence the perturbation can be either in the best vector of
the previous generation or in any randomly chosen vector. Similarly for perturba-
tion, either single or two vector differences can be used. For perturbation with a
single vector difference, out of the three distinct randomly chosen vectors, the
weighted vector differential of any two vectors is added to the third one. Similarly
for perturbation with two vector differences, five distinct vectors other than the
target vector are chosen randomly from the current population. Out of these, the
weighted vector difference of each pair of any four vectors is added to the fifth
one for perturbation.

In exponential crossover, the crossover is performed on the D (the dimension or
number of variables to be optimized) variables in one loop until it is within the CR
bound. For discrete optimization problems, the first time a randomly picked num-
ber between 0 and 1 goes beyond the CR value, no crossover is performed and the
remaining D variables are left intact. In binomial crossover, the crossover is per-
formed on each the D variables whenever a randomly picked number between 0
and 1 is within the CR value. Hence, the exponential and binomial crossovers
yield similar results.

The various ingredients of DE discussed so far are put together into a pseudo-
code.

Pseudo-code of the DE Algorithm

The pseudo-code of the DE algorithm used in the present study is shown below:
• Initialize the values of D, NP, CR, F, λ and maximum number of generations

Gmax.
• Initialize all the vectors of the population randomly between a given lower

bound (L), and upper bound (U)
for i =1 to NP

for j = 1 to D
(bi,0 )j = (L) + rand[0, 1]•( (U) – (L) ) /* for i for j ..end */

• Forward transformation: convert buffer discrete variables to floating point
variables

( ) ( )
jiji bx 0,0, ←

• Evaluate the cost of each buffer vector. Cost here is the value of the objective
function to be minimized.
for i = 1 to NP

( )( )
0,max,//

ixii CCFFmn ∑=ℑ
• Find out the vector with lowest cost i.e., the best vector so far

1min ℑ=ℑ and best = 1

for i = 2 to NP

if ( minℑ<ℑi )



601 24 Differential Evolution for the Flow Shop Scheduling Problem

then iℑ=ℑmin and best = i

• While the current generation is less than the maximum number of generations
perform recombination, mutation, recombination and evaluation of the objec-
tive function.
while (G < Gmax) do

{
for i =1 to NP

{
• Select two distinct vectors randomly from the population other than the

vector )(G
ix

do r1 = rand[0, 1]•NP while(r1 = i)
do r2 = rand[0, 1]•NP while( (r2 = i) OR (r2 = r1 ) )

• Perform D binomial trails, change at least one parameter of the trial vec-

tor )(G
iu and perform mutation.

j = rand[0, 1]•D
for n = 1 to D
{

if ( (rand[0, 1] < CR) OR (n = (D-1)) ) then

( ) ( ) ( ) ( )( ) ( ) ( )( )j
G

rj
G

rj
G

ij
G

bestj
G

ij
G

i xxFxxxu )(
2

)(
1

)()()()( −•+−•+= λ

else ( ) ( )j
G

ij
G

i xu )()( =

D
nj 1+=

} /* n = 1 to D ends */
• Backward transformation: convert floating point trial vector variables

( )j
Gu )( to discrete vector variables

• Evaluate the cost of the trial vector.

( )( ) )(max,// G
iuitrial CCFFmn ∑=ℑ

• If the cost of the trial vector is less than the parent vector then select the trial
vector to the next generation.

if ( )itrial ℑ≤ℑ
{

triali ℑ=ℑ
if ( )minℑ<ℑtrial

trialℑ=ℑmin and best = i

} /* if ends */



602 24 Differential Evolution for the Flow Shop Scheduling Problem

} /* for i = 1 to NP ends */

• Copy the new vectors )(G
iu to )(G

ix and increment G

G =G + 1
• Check for convergence and stop if converged

} /* while G ... ends */
• Print the results.

24.4 Illustrative Example

In order to understand the details outlined in this paper regarding the operations of
DE for flowshop scheduling, a 5-machine, 5-job problem is given as an example.
The processing times and due dates are given in Table 24.1.

Table 24.1: Processing times and due dates for a 5x5 problem
Job

Machine 1 2 3 4 5
1 5 7 4 3 6
2 6 5 7 6 7
3 7 8 3 8 5
4 8 6 5 5 8
5 4 4 8 7 3
Due date 30 30 46 50 55

Since the number of jobs is 5, then the number of parameters, (D), in the object
vector is also 5. The population size, NP, is selected to be 150. Strategy 7, which
is defined as DE/rand/1/bin, is selected along with the values of F = 0.3 and CR =
0.9. These values are used based on experimentation of different combinations,
which is discussed in detail in Section 5. The value for NP also satisfies the crite-
rion for NP > 2D as stated by Price (1999).

The initial population is randomly generated. Since the random number genera-
tor only generates floating-point numbers between [0,1], equation 8 is used to
transform the values into discrete numbers within the lower bound 1 and upper
bound 5. The discrete values are passed to the array, but all the values are checked
against the values already in the array. If a repeated value is detected, that value is
rejected. The completed initial population will look somewhat as in the Figure
24.2. Vector-1 has a sequence of {3, 5, 2, 1, and 4}, while Vector-150 has a se-
quence of {3, 1, 4, 5, and 2}.



603 24 Differential Evolution for the Flow Shop Scheduling Problem

i � NP
1 2 3 4 5 - - 1

47
1

48
1

49
15

0
3 5 4 4 2 - - 1 5 2 3
5 2 1 2 5 - - 3 3 4 1
2 4 5 3 4 - - 5 4 3 4
1 3 3 5 1 - - 4 2 5 5
4 1 2 1 3 - - 2 1 1 2

Fig. 24.2. Discrete population array.

At this point the objective function is calculated. The completion time matrix
shown below has a makespan value of 58, which is the last entry in the matrix:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

58

51

46
35

25

50

46

38
29

22

41

37

31
23

17

34

31

23
18

10

27

19

14
11

4

][C

Similar objective function values are calculated for all the vectors in the in the
initial population. These objective function values are shown in Figure 24.3.

i →……………………………………………………………………………….NP
1 2 3 4 5 - - 147 148 149 150
58 58 57 56 62 - - 57 62 58 55
Fig. 24.3. Objective function array.

At this point the lowest makespan for the initial population is obtained, for ex-
ample 55, for Vector-150. Another population is also obtained for the floating-
point numbers from the original array. The mutation scheme for DE only works on
floating point numbers so a separate array for the equivalent floating point num-
bers is obtained.

24.4.1 Mutation Scheme

For the mutation scheme the discrete numbers of the object array are passed to the
function for conversion. The first array is {3, 5, 2, 1, and 4}. The conversion is
done using equation 21 as previously discussed. The transformed values for the
discrete values {3, 5, 2, 1, and 4} are {0.5015, 1.5035, 0.001, –0.4995, 1.002}.



604 24 Differential Evolution for the Flow Shop Scheduling Problem

Thus the floating-point array is shown in Figure 24.4. The mutation scheme acts
upon the population at this point.

i →……………………………………………………….…………NP
1 2 3 - 149 150
0.5015 1.5035 1.002 - 0.001 0.5015
1.5035 0.001 -0.499 - 1.002 -0.499
0.001 1.002 1.5035 - 0.5015 1.002
-0.499 0.5015 0.5015 - 1.5035 1.5035
1.002 -0.499 0.001 - -0.499 0.001

Fig. 24.4. Initial floating-point population.

The one hundred and forty eighth vector of object parameters i = 148, is used
to illustrate the mutation scheme. The self referential mutation scheme is used to
mutate the object vector with respect to the whole population. A random number
rnd is generated between the bounds [0,1], for example 0.467 and checked against
the value for CR, 0.9. If the random generated number rnd is less than CR, as in
the case for this array, the value in the object array can then be acted upon by the
mutation scheme.

The value n of the object array is chosen at random between 1 and 5. The value
chosen is 3. Thus the first vector-member to be mutated is vector-member 3 in the
one hundred and forty eighth vector as shown in Figure 24.5.

i =148 D
1.5035
0.5015
1.002
0.001
-0.499

1
2

3
= n

4
5

Fig. 24.5 Vector for mutation operation.

Thus the first value to be mutated is 1.002. For Strategy 7 three random num-
bers r1, r2, and r3 are generated. These numbers are within the population range
[0, 150]. The number generated are r1 = 3, r2 = 5 and r3 = 149. The mutation
scheme is outlined in Figure 24.6. First the value pointed to by r1 and n is ob-
tained as shown in Figure 24.6.

i = 3 i = 5 i = 149
1.002 0.001 0.001
-0.499 1.5035 1.002
1.5035 1.002 0.5015
0.5015 -0.499 1.5035
0.001 0.5015 -0.499

Fig. 24.6 Mutation for (r1,n), (r2,n) and (r3,n)



605 24 Differential Evolution for the Flow Shop Scheduling Problem

Since r1 is 3 and i = 3 the value is 1.5035. Secondly the value pointed to by r2
and n is obtained is also shown. Since r2 is 3 and i is 5, the value is 1.002. Finally
the value pointed to by r3 and n is obtained as also shown. Since r3 is 3 and i is
149, the value is 0.5015. The weighted-mutation now takes place through the
equation for Strategy 7, which is reproduced below.

Mutated Value = (r1,n) + F x ( (r2,n) - (r3,n) )

The value obtained for the first mutation is:

1.5035 + 0.3*(1.002 - 0.5015) = 1.65365

Now the value of n is incremented by 1, i.e. n = 4. The whole process of obtaining
the values of (r1,n), (r2,n) and (r3,n) are then repeated. This is done till n has
looped through all the values D meaning that n = 1, 2, 3, 4, 5.

The trial mutated values for the rest of objects are given as follows:

n = 4: 0.5015 + 0.3*( -0.499 - 1.5035 ) = -0.09925

n = 5: 0.001 + 0.3*( 0.5015 - (-0.499) ) = 0.30115

n = 1: 1.002 + 0.3*( 0.001 - 0.001) = 1.002

n = 2: -0.499 + 0.3*( 1.5035 - 1.002 ) = -0.34855

The trial mutated array obtained after the mutation is shown in Figure 24.7.

1.00200
-0.34855
1.65365
-0.09925
0.30115

Fig. 24.7 Trial mutated array for i = 148.

The mutated trial array is then transformed back into discrete values. This is
achieved through the formulation of Onwubolu (2001) as outlined in Section 3.2
using equations 22 to 25. For example,

9999.3500/)110(*)002.11( 3’
1 =−+=z



606 24 Differential Evolution for the Flow Shop Scheduling Problem

4)5.09999.3int(1 =+=α

5.00001.09999.341 <=−=β

4*
1 =z

Other conversions are similarly made, leading to the trial vector sequence {4, 1,
5, 2, and 3}.

24.4.2 Selection

Selection is the mechanism for determining whether the trial vector replaces the
current vector or not according to the criterion already outlined in Section 3, equa-
tion 10. The objective function of the trial-vector {4, 1, 5, 2, and 3}is now deter-
mined as follows.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

59

51

40
34

25

43

46

37
27

21

41

40

29
22

14

36

32

24
15

8

29

22

17
9

3

][C

The makespan value for this trial vector is 59. Since this value is less than the
objective function value, 62, of the current vector-148 being examined, the trial
vector replaces vector-148. This results in the objective function array of Figure 2
being updated as shown in Figure 24.8. The mutated value is in bold in position
148 of the updated array.

i� NP
1 2 3 - - 148 149 150
58 58 57 - - 59 58 55

Fig. 24.8 Updated objective function array.

24.5 Experimentation

The differential evolution algorithm was written in C++ and runs on a PC with a
Pentium, 65MB, 733MHz processor. The flowshop scheduling-problem was
solved using flowtime, makespan, and tardiness as objective functions. The set of
problem types, which were used for experimentation include randomly generated
data set used in a previous study.



607 24 Differential Evolution for the Flow Shop Scheduling Problem

24.5.1 Parameter Setting

The values of NP, CR, λ and F are fixed empirically following certain heuristics
(Price and Storn, 1997). F and λ are usually equal and are between 0.5 and 1.0.
CR usually should be 0.3, 0.7, 0.9 or 1.0 to start with. NP should be of the order of
10*D and should be increased in case of mis-convergence. If NP is increased then
usually F has to be decreased. In the present study, eighteen trials were carried out
consisting of two levels of NP (50 and 150), three levels of F (0.3, 0.5, and 0.9)
and three levels of CR (0.8, 0.9, and 1.0). The best values obtained from combin-
ing these parameters during experimentation are NP =150, F = 0.3, and CR = 0.9.
Although the value of NP = 150 is adequate for small-size problems, a more gen-
eral approach used for experimentation of NP being equal to the ten times the
number of jobs. This problem-size dependent value of NP caters for small, me-
dium and large problem sizes. Table 24.2 shows the comparison of the 10 DE-
strategies using the 10x25-problem data set. The table shows the best strategy is
strategy 7, while strategies 5 and 6 are found to compete with each another and
closely follow strategy 7. Figure 24.9 shows the graph of the objective function
value as a function of the generation number for the 10x25-problem data set. The
maximum number of iterations was kept as 50; however, in all the runs during ex-
perimentation the algorithm converged within 30 generations. Tables 3, 4, and 5
show the comparison between GA developed in a previous study for flow-shop
scheduling (Onwubolu and Mutingi, 1999) and the DE developed in the present
study discussed in this paper. Table 24.3 shows the results for makespan as the ob-
jective function. Table 24.4 shows the results for total tardiness as the objective
function, while Table 24.5 shows the results for mean flowtime as the objective
function.

As can be seen, the differential evolution algorithm performs better than ge-
netic algorithm for small-sized problems, and competes appreciably with genetic
algorithm for medium to large-sized problems.

Convergence of DE

205

210

215

220

1 9 17 25 33 41 49

Generation Number

M
ak

es
p

an

10x25
Problem

Fig. 24.9 Convergence of DE



608 24 Differential Evolution for the Flow Shop Scheduling Problem

Table 24.2 Comparison of 10 DE-strategies using the 10x25 problem data set
Strategy

1 2 3 4 5 6 7+

Make-
span

211.8 209.2 212.2 212.4 208.6 210.6 207.8

Total
tardiness

3001.8 3034.6 3021.4 3089.2 3008.0 2987.8 2936.4

Mean
flowtime

105.75 105.11 105.52 107.71 104.68 103.03 103.17

8 9 10
212.4 210.0 207.2
3034.2 2982.8 2990.6
105.32 104.70 104.16
+Strategy 7 is the best

Table 24.3 Makespan
mxn Generated

problems
GA DE (Solution)GA/DE

4x4 5 44.00 39.00 -
5x10 5 79.00 79.00 -
8x15 5 143.00 138.00 -
10x25 5 205.00 202.00 -
15x25 5 248.00 253.00 98.02
20x50 5 468.00 470.00 99.57
25x75 5 673.00 715.40 94.07
30x100 5 861.00 900.40 95.62

Table 24.4 Total tardiness
mxn Generated

problems
GA DE (Solution)GA/DE

4x4 5 54.00 52.60 -
5x10 5 285.00 307.00 92.83
8x15 5 1072.00 1146.00 93.54
10x25 5 2869.00 2957.00 97.02
15x25 5 3726.00 3839.40 97.06
20x50 5 13683.00 14673.6 93.25
25x75 5 30225.00 33335.6 90.67
30x100 5 51877.00 55735.6 93.07



609 24 Differential Evolution for the Flow Shop Scheduling Problem

Table 24.5 Mean flowtime
mxn Generated

problems
GA DE (Solution)GA/DE

4x4 5 21.38 22.11 -
5x10 5 35.30 36.34 97.14
8x15 5 63.09 66.41 95.00
10x25 5 98.74 103.89 95.04
15x25 5 113.85 122.59 93.03
20x50 5 216.00 234.32 92.18
25x75 5 317.00 354.77 89.35
30x100 5 399.13 435.49 91.56

24.6 Summary

This chapter presents a differential evolution algorithm for flow shop scheduling
problem in which makespan, mean flowtime, and total tardiness are the perform-
ance measures. It is observed from experimentation that the differential evolution
approach delivers competitive makespan, mean flowtime, and total tardiness when
compared to genetic algorithm. The successful implementation of the differential
evolution approach is demonstrated by addressing a problem data set. The data set
problem instances were randomly generated for processing times of jobs on ma-
chines. From experimentation, the differential evolution algorithm is found to per-
form better than genetic algorithm for small-sized problems, and competes appre-
ciably with genetic algorithm for medium to large-sized problems.

In this chapter, it is shown that the differential evolution algorithm was success-
fully applied to the makespan, mean flowtime, and total tardiness for flow shop
scheduling problems. The described method is relatively simple, easy to imple-
ment and easy to use. It is, however, capable of optimizing all integer, discrete and
continuous variables and capable of handling non-linear objective functions with
multiple non-trivial constraints. Further research need to be carried out by compar-
ing solution quality of DE with other emerging optimization techniques such as
tabu search and ant colony optimization techniques. It will be also useful to inves-
tigate the application of DE to other combinatorial optimization problems such as
traveling salesman problem, etc., since up till date these problems have not dealt
with.



610 References

References

Baker, K.R., and Scudder, G.D., 1990, Sequencing with earliness and tardiness penalties: a
review, Operations Research, 38, 22-36.

Campbell, H.G., Dudek, R.A., and Smith, M. L., 1970, A heuristic algorithm for the n job,
m - machine sequencing problem, Management Science 16/B, 630-637.

Chen, C., Vempati, V. S., and Aljaber, N., 1995, An application of genetic algorithms for
the flow shop problems, European Journal of Operations Research, 80, 359-396.

Cheng, T.C.E., and Gupta, M.C., 1989, Survey of scheduling research involving due-date
determination decisions, European Journal of Operations Research 38, 156-166.

Dannenbring, D.G., 1977, An evaluation of flow-shop sequencing heuristics, Management
Science 23, 1174-1182

Dorigo, M., 1992, Optimisation, Learning and Natural Algorithms (Ottimizzazione,
aprendimento automatico, et algoritmi basati su metafora naturale), PhD. Dissertation,
Dipartimento Elettronica e Informazione, Politecnico di Milano, Italy

Dudek, R.A., Panwalkar, S. S., and Smith, M.L., 1992, The lessons of flowshop scheduling
research. Operations Research, 40 (1), 7-13

Glover, F., 1989, Tabu search-Part, ORSA Journal of Computing1/3, 190-206.
Glover, F., 1990, Tabu search-Part II, ORSA Journal of Computing 2/1, 4-32.
Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization, and Machine Learn-

ing, Reading, MA: Addison-Wesley
Gupta, J.N.D., 1971, A functional heuristic algorithm for the flow-shop scheduling prob-

lem, Operational Research Quarterly 22, 39-47.
Hariri, A. M. A., 1981, Scheduling using branch and bound techniques, Ph.D. thesis, Uni-

versity of Keele, Keele, 1981
Ho, Y.C., and Chang, Y-L., 1991, A new heuristic method for the n job, m - machine flow-

shop problem, European Journal of Operational Research. 52, 194-202
Hundal, T.S., and Rajagopal, J., 1988, An extension of Palmers’ heuristic for the flow-shop

scheduling problem, International Journal of Production Research 26, 1119-1124.
Kirkpatrick, S., Gelatt, C. D., and Vechhi, M. P., 1983, Optimization by simulated anneal-

ing, Science, 220 (4568), 671-680.
Ignall, E., and Linus, S., 1965, Application of the Branch and Bound technique to some

flowshop scheduling problems. Operations Research, 13, 400-412
Lampinen, J. and Zelinka, I., 1999, Mechanical engineering design optimization by differ-

ential evolution, New Ideas in Optimization, (Eds.) Corne, D., Dorigo, M., and Glover,
McGraw Hill, International (UK), 127-146.

Lawler, E. L., Lensta, J. K., Rinnooy Kan, A. H. G., and Shmoys, D. B., 1995, Sequencing
and scheduling: algorithms and complexity. In Logistics of Production and Inventory,
Graves, S. C., Rinnooy Kan, A. H. G., and Zipkin, P. H., (eds.). (Amsterdam, The
Netherlands: North Holland), 445-522.



611 References

Ogbu, F. A., and Smith, D. K., 1990, The application of the simulated annealing algorithm
to the solution of the n/m/Cmax flowshop problem, Computers in Operations Research,
17 (3), 243-253.

Onwubolu, G. C., and Mutingi, M., 1999, Genetic algorithm for minimizing tardiness in
flow-shop scheduling, Production Planning & Control, 10 (15), 462-471.

Onwubolu, G. C., 2000, Ants can schedule, Industrial Engineering Research Conference,
Cleveland Ohio: USA, May 22-24, 2000, In CDROM.

Onwubolu, G. C., 2001, Optimization using differential evolution, Institute of Applied Sci-
ence Technical Report, TR-2001/05.

Palmer, D.S., 1965, Sequencing jobs through a multi-stage process in the minimum total
time - A quick method of obtaining a near optimum, Operational Research Quarterly
16, 101-107

Price, K., 1999, An introduction to differential evolution. New Ideas in Optimization, (Eds.)
Corne, D., Dorigo, M., and Glover, McGraw Hill, International (UK), 79-108.

Price, K., and Storn, R., 2001, Differential evolution homepage (Web site of Price and
Storm) as at 2001. http://www.ICSI.Berkeley.edu/~storn/code.html

Storn, R., 1996, On the usage of differential evolution for function optimization, NAFIPS,
1996, Berkeley, 519 - 523.

Storn, R. and Price, K., 1995, Differential evolution - a simple and efficient adaptive
scheme for global optimization over continuous spaces, Technical Report TR-95-012,
ICSI, March 1999
(Available via ftp from ftp.icsi.berkeley.edu/pub/techreports/1995/tr-95-012.ps.Z).

Storn, R. and Price, K., 1997, Differential evolution – a simple evolution strategy for fast
optimization. Dr. Dobb’s Journal, April 1997, 18–24 and 78.

Storn, R., 1999, Designing digital filters with differential evolution, New Ideas in Optimiza-
tion, (Eds.) Corne, D., Dorigo, M., and Glover, McGraw Hill, International (UK), 109-
125.

Taillard, E., 1990, Some efficient heuristic methods for the flow shop sequencing problem,
European Journal of Operational Research, 47, 65-74

Widmer, M., and Hertz, A., 1989, A new heuristic method for the flow shop sequencing
problem, European Journal of Operational Research, 41, 186-193



25 Evaluation of Form Errors to Large
Measurement Data Sets Using Scatter Search

Mu-Chen Chen and Kai-Ying Chen

25.1 Introduction

The automatic acquisition and interpretation of the information of product features
is an important procedure in modern manufacturing systems. Roundness and
sphericity are the basic geometric forms expected from part features. There is a
requirement to develop an automatic inspection method that will cater the needs of
assessing roundness and sphericity. To produce better quality parts, manufacturers
can adequately control the production process and accurately evaluate the form er-
rors. The assessment algorithms for form errors are typically applied to meet the
intent of the ASME Y14.5M standard (1994). This standard identifies that a sub-
stitute feature (geometric form that best fits the measured points) must be estab-
lished from the sampled data to minimize the maximum deviation between the
substitute (reference) feature and the actual feature concerned.

For evaluating the roundness error from the actual measurement, a reference
circle must be established from the measurement data to minimize the maximum
deviation between the reference circle and the actual one. The roundness error is
then defined as the maximum peak-to-valley distance from the reference circle.
Sphericity is a type of form error, which is broadly used in industry for the geo-
metrical measurement of precision balls. The sphericity is defined as the minimum
shell width (minimum zone) between the concentric circumscribed and inscribed
spheres enclosing all the measurement data. The roundness and sphericity assess-
ments involve the optimization step to find the center coordinates and radii of the
reference features. The evaluation of roundness and sphericity based on the mini-
mum zone condition is a non-linear and non-convex problem that is difficult to
solve mathematically. Therefore, the efficient and accurate assessment of round-
ness and sphericity is an important issue.

The data sampled from measuring instruments are treated by an evaluation al-
gorithm to accurately estimate the form errors. There exists no precise mathemati-
cal definition of the constraints implied by tolerance specifications in the ASME

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



614 25Evaluation of Form Errors to Large Measurement Data Sets Using Scatter Search

Y14.5M standard. Tolerance is not interpreted in agreement by different measur-
ing systems, which leads to inconsistency between the requirements of tolerances
and the results of software. Current evaluation algorithms are based on the least-
squares solution, which minimizes the sum of the squared errors of the measured
points from the reference feature. The least-squares solution is only capable of ob-
taining an approximate solution that does not guarantee to meet the minimum zone
criterion. The least-squares solution can result in a possible overestimation of the
form error. While evaluation algorithms successfully reject bad parts, they may
also reject some good parts (Gass et al. 1998). An approximate method for calcu-
lating the least-squares center and radius is given in ANSI B89.3.1 (1972). Chen
and Papadoupoulos (1996) compared the linear and non-linear least-squares fitting
algorithm and concluded that there is no practical difference between the two al-
gorithms. The method of least-squares is not necessarily optimal if the irregularity
significantly departs from a Gaussian distribution (2000).

The least-squares circle (LSC) is the most widely used reference circle for the
assessment of roundness error (Takiyama and Ono, 1989; Thomas and Chan,
1989; Chaudhuri and Kundu, 1993; Cooper 1993) due to its computational sim-
plicity. However, the deviations obtained using LSC may be large. For example,
the result of LSC can be larger than the actual roundness error by 20% (ANSI
B89.3.1, 1972). For the roundness assessment, estimating the limacon circle in a
2D inspection plane is a linear programming problem (Chetwynd, 1979; Chet-
wynd and Phillipson, 1980; Carpinetti and Chetwynd, 1994). The major limitation
of the limacon approximation is that the workpiece must be well centered for a
roundness measuring instrument or the radial coordinate data representing the pro-
file must be expressed relative to an origin that lies not far from the best fit center.
The adequacy of the limacon circle is completely determined by the ratio of the
center eccentricity to other radius.

For the sphericity assessment, Gass et al. (1998) developed a linear program-
ming approach for determining reference spheres and minimum zone sphericity
based on coordinate measuring machine (CMM) measurements of spherical parts.
Kanada (1995) modeled the minimum zone sphere (MZS) as non-linear programs
and applied simplex search to estimate the sphericity. Kanada compared the
minimum zone method in which simplex search is applied to the iterative least-
squares method. Observing from the results in Kanada, the minimum zone ap-
proach is comparably superior to the least-squares one. Fan and Lee (1999) evalu-
ated the minimum zone sphericity based on a direct search method starting from
the least-squares results. Using the 3D Voronoi diagram, Huang (1999) solved the
minimum zone solution for sphericity problems. Chen and Liu (2000) evaluated
sphericity errors by directly resolving the simultaneous linear algebraic equations.

Form fitting algorithms have become increasingly important in modern dimen-
sional measurement systems. This is particularly true for coordinate measuring
systems in which a large set of measurement data are sampled (Hopp 1993). The
algorithms for form fitting which convert measured data to the reference geometry
can be major source of error in a measurement system. Form fitting can be viewed
as an optimization problem: find the parameters of reference geometry that mini-
mize a particular fitting objective for a set of points.



25.2 Mathematical Models for Roundness 615

Algorithms for estimating the reference circle and sphere involve constrained
nonlinear constraints. The constrained optimization of geometric dimensioning
and tolerancing (GD&T) attempts to preserve functionality from the design (Yeh
and Ni 1996). The formulated constrained optimization models for reference fea-
tures simulate functional gauging processes described in current standards. Engi-
neers who are familiar with current GD&T standards can utilize the optimization
models as easily as they use GD&T symbols.

Roundness and sphericity play an important role in industry, and their design
standards can be found in ASME (1994). The evaluation of roundness and
sphericity based on the minimum zone criterion is a non-linear and non-convex
problem that is hard to handle in mathematics (Huang 1999). Assessment algo-
rithms apply linear approximation approaches can give incorrect results to non-
linear form-fitting problems (Phillips et al. 1993). By building the mathematical
models for the circular and spherical form errors, Scatter Search (SS), which is a
robust non-linear optimization method, can be introduced to assess roundness and
sphericity. SS is comparably simple; it does not require differential information
for the objective function, and it has a good convergence feature (Glover 1997,
Glover 1999, Glover et al. 2000).

25.2 Mathematical Models for Roundness

25.2.1 Roundness

For evaluating the roundness error from the actual measurement, a reference circle
must be established from the measurement data to minimize the maximum devia-
tion between the reference circle and the actual one. The roundness error is then
defined as the maximum peak-to-valley distance from the reference circle. Four
reference circles are internationally accepted for roundness measurement (ASME
Y14.5M 1994): (1) least-squares circles (LSC), (2) maximum inscribing circles
(MIC), (3) minimum circumscribing circles (MCC), and (4) minimum zone circles
(MZC).

The specification of geometric tolerances on the above basis is given in the
standard (ASME Y14.5M 1994). However, it does not specify the methods by
which the reference geometrical features are to be established. The LSC is the cir-
cle chosen so that the sum of the squares of the radial distance of all data points
from the fitting circle is a minimum. Given a set of data points in two dimensions

},,2,1),,({ Niyxp iii ⋅⋅⋅==M which represents the profile of a work-

piece, it is possible to find explicitly the circle parameters by minimizing the least-
squares errors between the given set of data points and the curve (Thomas and
Chan 1989).



616 25Evaluation of Form Errors to Large Measurement Data Sets Using Scatter Search

The normal deviation ( ei ) between a data point ( , )x yi i and the circle of ra-

dius R and center ( , )x yc c is given by

[ ]e x x y y Ri i c i c= − + − −( ) ( )
/2 2 1 2

(25.1)

A close-form solution to the circle fitted by the MIC, MCC or MZC does not
exist. However, for a well centered trace of the profile, the deviation can be ap-
proximated by a linear relation (Chetwynd 1979)

e r R x yi i c i c i’ ( cos sin )= − + +θ θ (25.2)

where ei ’ is the linear deviation and ( , )ri iθ is the polar coordinates of the point

( , )x yi i . Eq. (25.2) is known as the limacon approximation. In the form of Eq.

(25.2), the limacon is linear in its parameters ( , , )x y Rc c .

Four roundness evaluation methods are suggested for roundness measurements.
They are: least-squares circle (LSC) method, maximum inscribed circle (MIC)
method, minimum circumscribed circle (MCC) method and minimum zone circle
(MZC) method. The LSC method has been sufficiently described in the literature.
The mathematical formalization of MIC, MCC and MZC methods can be restruc-
tured as follows (Chen et al. 1999, Chen 2000).

25.2.2 The maximum inscribed circle

The MIC method attempts to inscribe the given set of measured points,

Niyxp iii ,,2,1),,( ⋅⋅⋅= , using a maximum circle, and then estimate its

center ( , )x yc c and radius R . Using the center point and radius of MIC, this ap-

proach can find the minimum circular zone, which all the data points are exterior
to this circle. The mathematical model of MIC can be formulated as follows:
Maximize R

Subject to: [ ]( ) ( )
/

x x y y Ri c i c− + − − ≥2 2 1 2
0 ,

i N= ⋅⋅ ⋅1 2, , , ;

R R RL U≤ ≤ ; x x xL c U≤ ≤ ; y y yL c U≤ ≤

(25.3)

where N is the number of measured points, RL , xL and yL are the lower bounds

of R, xc and yc ; RU , xU and yU are the upper bounds of R, xc and yc .

The roundness error for MIC, MICe , is then estimated by measuring the maxi-

mal peak-to-valley deviation between the measurement data and the reference cir-
cle. It can be expressed as

}])()[({max 2/122

,...,2,1
Ryyxxee cicii

Ni
MIC −−+−==

=
(25.4)



617

25.2.3 The minimum circumscribed circle

Unlike the MIC method, the MCC method attempts to circumscribe the given set
of measured points, using a minimum circle. Using the center point and radius of
MCC, this method can obtain the minimum circular zone, which encloses all the
measured points. Mathematically, the model of MCC takes the following form
Minimize R

Subject to: [ ]( ) ( )
/

x x y y Ri c i c− + − − ≤2 2 1 2
0 ,

i N= ⋅⋅ ⋅1 2, , , ;

R R RL U≤ ≤ ; x x xL c U≤ ≤ ; y y yL c U≤ ≤ .

(25.5)

The roundness error for MCC, MCCe , can be defined as

}])()[({max 2/122

,...,2,1
cicii

Ni
MCC yyxxRee −+−−==

=
(25.6)

25.2.4 The minimum zone circle

The MZC method is proposed to comply with the ANSI tolerancing definition
(ASME Y14.5M 1994) for form tolerances. For MZC method, a pair of concentric
circles C1 and C2 with the minimum radius separation are determined, such that

the measured points are contained between C1 and C2 , where R1 and R2 are

the radii of C1 and C2 , respectively, as well as the center is positioned at a point

( , )x yc c . The mathematical model can be formulated as

Minimize R R1 2−

Subject to: [ ] 1

2/122 )()( Ryyxx cici ≤−+− ,

i N= ⋅⋅ ⋅1 2, , , ;

[ ]( ) ( )
/

x x y y Ri c i c− + − ≥2 2 1 2

2 ,

i N= ⋅⋅ ⋅1 2, , , ;

R R1 2 0− ≥ ;

R R R RL U≤ ≤1 2, ; x x xL c U≤ ≤ ; y y yL c U≤ ≤ .

(25.7)

The roundness error for MZC, MZCe , can be simply expressed as

21 RReMZC −= . (25.8)



618 25Evaluation of Form Errors to Large Measurement Data Sets Using Scatter Search

25.3 Mathematical Models for Sphericity

25.3.1 Sphericity

The sphericity error is determined by selecting a center point for the reference
sphere, with the value being difference between the largest and smallest radii to
the measured points (ASME Y14.5M 1994). To allow for presumed differences in
function, four criteria for the substitute sphere fitting are internationally defined
(ASME Y14.5M 1994). They are: (1) least-squares sphere (LSS); (2) maximum
inscribing sphere (MIS); (3) minimum circumscribing sphere (MCS); and (4)
minimum zone sphere (MZS).

A LSS is the sphere chosen so that the sum of the squares of the radial distance
of all data points from the fitting sphere is a minimum. Given a set of data points

in 3-D, },,2,1),,,({ Nizyxp iiii ⋅⋅⋅==M which represents the surface of

a workpiece, it is possible to find the sphere parameters by minimizing the least-
squares errors between the given set of data points and the surface. The normal

deviation ( ei ) between a data point ),,( iii zyx and the sphere of radius R and

center ),,( ccc zyx is given by

[ ] Rzzyyxxe cicicii −−+−+−= 2/1222 )()()( (25.9)

A shell is formed by the minimum inscribed sphere and the maximum circum-
scribed sphere having the least-squares center. Just about all CMMs compute the
sphericity from LSS (Gass et al. 1998). However, the deviations obtained using
LSS may be large.

For sphericity assessments, there exists a distinction between the specification
of tolerances in design and the assessment methods in metrology community. By
using the normal deviation defined in Eq. (25.9), the fitting methods for estimating
substitute sphere of MIS, MCS and MZS involve nonlinear constraints. Provided
that numerous measured points on the part surfaces are obtained, the fitting opti-
mization models for MIS, MCS and MZS are non-linear programs with a huge set
of constraints. These mathematical models hence have a high degree of computa-
tional complexity. To evaluate the sphericity error, a substitute sphere has to be
established from the collected data. The mathematical models of MIS, MCS and
MZS for sphericity assessments are formulated as follows (Chen 2002).

25.3.2 Maximum inscribed sphere

The MIS attempts to find a sphere which is the largest sphere being inscribed

within the set of measured points, },,2,1),,,({ Nizyxp iiii ⋅⋅⋅==M . The

center coordinates ),,( ccc zyx and radius R are then can be estimated. Using



25.3 Mathematical Models for Sphericity 619

the center coordinates and radius of MIS, this approach can find the minimum
shell width, which all the measured points are exterior to this sphere. Common
practice seeks to maximize the reference radius R while maintaining the condition
that the profile is disclose, that is, subject to the geometrical constraints. The con-
strained non-linear program of MIS takes the form as
Maximize R

Subject to:
[ ] Rzzyyxx cicici ≥−+−+− 2/1222 )()()(

,

i N= ⋅⋅ ⋅1 2, , , ;

R R RL U≤ ≤ ;

x x xL c U≤ ≤ ; y y yL c U≤ ≤ ; UcL zzz ≤≤

(25.10)

where RL , xL , Ly and Lz are the lower bounds of R, xc , yc and cz ; RU ,

xU , yU and Uz are the upper bounds.

The optimization algorithm resolves the MIS model to find the reference

sphere. The sphericity error for MIS, MISe , is then estimated by measuring the

maximal peak-to-valley deviation between the measurement data and the refer-
ence sphere. It can be expressed as

}])()()[({max 2/1222

,...,2,1
Rzzyyxxee cicicii

Ni
MIS −−+−+−==

=
. (25.11)

25.3.3 Minimum circumscribed sphere

The MCS attempts to find a sphere, which circumscribes the given set of meas-
ured points, using a smallest sphere. Using the center coordinates and radius of
MCS, we can obtain the minimum shell width, which encloses all the measured
points. Mathematically, the MCS model tries to minimize the reference radius R
while maintaining the condition that the profile is enclosed. The mathematical
programming model of MCS can be formulated as
Minimize R

Subject to:
[ ] Rzzyyxx cicici ≤−+−+− 2/1222 )()()(

,

i N= ⋅⋅ ⋅1 2, , , ;

R R RL U≤ ≤ ;

x x xL c U≤ ≤ ; y y yL c U≤ ≤ ; UcL zzz ≤≤ .

(25.12)

Similarly, the sphericity error for MCS, MCSe , can be defined as

}])()()[({max 2/1222

,...,2,1
cicicii

Ni
MCS zzyyxxRee −+−+−−==

=
(25.13)



620 25Evaluation of Form Errors to Large Measurement Data Sets Using Scatter Search

25.3.4 Minimum zone sphere

The MZS method is proposed to comply with the ANSI tolerancing definition
(ASME Y14.5M 1994) for form tolerances. The MZS defines a pair of concentric

spheres, a circumscribed sphere 1S and an inscribed sphere 2S that just contains

the measured points with a minimum shell width. The mathematical problem of
finding the minimum zone can be formulated as a constrained non-linear program.
This is a rather complicated non-linear problem, and exact algorithms for solving
it are not readily available (Gass et al. 1998). The center of this pair of concentric

spheres is positioned at a point ),,( ccc zyx . The mathematical model can be

formulated as

Minimize R R1 2−

Subject to: [ ] 1

2/1222 )()()( Rzzyyxx cicici ≤−+−+− ,

i N= ⋅⋅ ⋅1 2, , , ;

[ ] 2

2/1222 )()()( Rzzyyxx cicici ≥−+−+− ,

i N= ⋅⋅ ⋅1 2, , , ;

R R1 2 0− ≥ ; R R R RL U≤ ≤1 2, ;

x x xL c U≤ ≤ ; y y yL c U≤ ≤ ; UcL zzz ≤≤

(25.14)

where R1 and R2 are the radii of 1S and 2S , respectively.

The sphericity error for MZS, MZSe , is the minimum shell zone. It can be sim-

ply expressed as

21 RReMZS −= . (25.15)

After the form error has been obtained, one can check the conformance of
measured features and design specifications, and then make the acceptance/ rejec-
tion decision for the inspected part.

25.4 Scatter Search

25.4.1 Overview of scatter search

In this section, a general description of scatter search (SS) is presented. For a more
detailed description of the SS methodology, readers are referred to references
(Glover 1997, Glover 1999, Glover et al. 2000, Laguna and Marti 2003). SS pro-
vides a way of considerably improving the performance of simple heuristic proce-



25.4 Scatter Search 621

dures. The search strategies proposed by SS result in iterative-procedures with the
ability to escape local optimal points. Metaheuristics such as Simulated Annealing
and Tabu Search typically maintain only one solution by applying mechanisms to
change this solution iteratively. On the other hand, Genetic Algorithms (GAs) and
SS are search approaches designed to operate on a set of solutions that is main-
tained from iteration to iteration.

SS operates with a population of solutions, rather than with a single solution at
a time, and applies the solution combination procedures to generate new ones by
exploiting the combinations of solutions (Glover 1997). One of the main distin-
guished features of SS is its close connection with the Tabu Search, and it there-
fore can benefit by incorporating special forms of adaptive memory (Glover and
Laguna 1997). SS operates on a population of solutions, namely reference set, by
combining these solutions to generate new ones. A new solution is created from
the linear combination of two or more other solutions such that the reference set
evolves. The process of SS is designed to (1) capture information not contained
separately in the original vectors, (2) take advantage of auxiliary heuristic solution
methods (to evaluate the combinations produced and to actively generate new vec-
tors), and (3) make dedicated use of strategy instead of randomization to carry out
component steps (Glover et al. 2000).

The SS is designed to maintain a set of reference points. New reference points
are added by applying the linear combination method. The SS approach may be
sketched in basic outline as follows (Glover 1997):
1. An initial set of solutions is generated to guarantee a significant level of diver-

sity, and sequentially heuristic processes designed for the optimization problem
are applied to improve these solutions. Particularly, a solution may be added to
the reference set if the diversity of the set improves even when the objective
value of the solution is inferior to other solutions competing for admission into
the reference set.

2. New solutions are generated such that they consist of structured combinations
of subsets of the current reference solutions. The structured combinations in-
clude creating solutions both inside and outside the convex regions spanned by
the reference solutions, and modifying these solutions to yield acceptable solu-
tions.

3. The designated heuristic processes are applied to further improve the newly
generated solutions. These heuristic processes must be able to operate on infea-
sible solutions and may or may not yield feasible solutions.

4. A set of the “best” improved solutions is added into the reference set. The
search procedure is repeated until the reference set does not change. The notion
of “best” is not limited to a measure given exclusively by the evaluation of the
objective function. Particularly, a solution may be added to the reference set if
the diversity of the set improves.



622 25Evaluation of Form Errors to Large Measurement Data Sets Using Scatter Search

25.4.2 Scatter search template

The mechanisms within SS are not restricted to a single standardized design. The
operations that take place within each of the methods in the framework of SS have
been illustrated above. The following notations are used in SS.

P = the set of solutions generated by the Diversification Generation
Method;

RefSet = the set of solutions in the reference set;
RefSet1 = the subset of the reference set that contains the best solutions as

measured by the objective function value;
RefSet2 = the subset of the reference set that contains the diverse solutions;
Psize = the size of the set of diverse solutions generated by the Diversifica-

tion Generation Method;
b = the size of the reference set;

1b = the size of the high quality subset;

2b = the size of the diverse subset;
MaxIter = maximum number of iterations.

The template including five methods for implementing SS is described as fol-
lows. Specific processes for carrying out these methods are described in Glover
(1997) and Laguna and Marti (2003).

1. Diversification Generation Method: It generates a collection of diverse trial so-
lutions by using an arbitrary trial solution (or seed solution) as an input. The di-
versification generator is used at the beginning of the search to generate a set of
solutions P, the cardinality of the set PSize, generally set at max (100, 5b) di-
verse solutions in which b is the size of the reference set.

2. Improvement Method: It transforms a trial solution into one or more improved
trial solutions. This method must be able to handle starting solutions that are ei-
ther feasible or infeasible. The Nelder and Mead’s simplex search (Nelder and
Mead 1965) is recommended as the Improvement Method by Glover (Glover et
al. 2000).

3. Reference Set Update Method: This method is used to build and maintain a ref-
erence set consisting of the b “best” solutions found in which the value of b is
typically small (e.g., no more than 20). The reference set is organized to pro-
vide efficient accessing by other parts of the method. The reference set RefSet

consists of both high quality solutions (RefSet1 with size 1b ) and diverse solu-

tions (RefSet2 with size 2b ). The reference solutions are used to generate new

solutions. The construction of initial reference set begins with the selection of

the best 1b solutions from P. For each improved solution in P – RefSet, the

minimum of the Euclidean distances, ),( yxd , to the solutions in RefSet is

computed. Then, the solution with the maximum of these minimum distances,



25.4 Scatter Search 623

)},({min)(min yxdxd
RefSety∈

= , is selected. The reference set is dynamically up-

dated during the application of the Solution Combination Method. A newly cre-
ated solution may gain membership to the reference set according to their qual-
ity (the new solution has a better objective function value) or their diversity (the

new solution has a worse )(min xd ).
4. Subset Generation Method: This method operates on the reference set to pro-

duce a subset of solutions as a basis for creating solutions with Solution Com-
bination Method. Typically, this method generates the following types of sub-
sets: all 2-element subsets, 3-element subsets, 4-element subsets and the subsets
consisting of the best i elements, for i = 5 to b.

5. Solution Combination Method: This method transforms a given subset of solu-
tions produced by the Subset Generation Method into one or more combined
solution vectors. In general, the Solution Combination Method is problem-
specific due to the various solution representations. For the non-linear optimi-
zation problem, Glover and Laguna (1997) suggest the linear combination ap-
proach. Three types of combinations are utilized herein, assuming that the ref-

erence solutions are 1x and 2x :

C1: dxx −= 1 ;

C2: dxx += 1 ;

C3: dxx += 2 ;

where
2

12 xx
rd

−= and r is a random number in the range (0, 1). The fol-

lowing rules are applied to create solutions with these three types of linear
combinations:

� If both 1x and 2x are elements of RefSet1, then generate 4 solutions by

applying C1 and C3 once and C2 twice.
� If only one of 1x and 2x is a member of RefSet1, then generate 3 solu-

tions by applying C1, C2 and C3 once.
� If neither 1x nor 2x is a member of RefSet1, then generate 2 solutions by

applying C2 once and randomly choosing between applying C1 or C3.

SS is designed to maintain a set of reference points. New reference points are
added by applying the linear combination method. The solution procedure of SS
continues in a loop that consists of applying the Solution Combination Method fol-
lowed by the Improvement Method and the Reference Update Method. The proce-
dure terminates when the reference set does not change and all the subsets have al-
ready been subjected to the Solution Combination Method. At this point, the
Diversification Generation Method is used to construct a new RefSet2 and the
search restart.



624 25Evaluation of Form Errors to Large Measurement Data Sets Using Scatter Search

25.4.3 The scatter search procedure

By implementing the above SS template, the overall view of the procedure is now
can be introduced as follows (Glover et al. 2000):

Step 1. (Initial solution generation) Create one or more initial solutions in a ran-
dom manner to initiate the search procedure.

Step 2. (Diversification generation) Apply the Diversification Generation
Method to create diverse trial solutions from the initial solutions.

Step 3. (Solution improvement and reference set update) For each trial solution
created in Step 2, generate one or more enhanced trial solutions by the
Improvement Method. During successive applications of this step, main-
tain and update a reference set consisting of the b best solutions by the
Reference Set Update Method.

Step 4. (Repeat) Execute Steps 2 and 3 until generating some designated total
number of enhanced trial solutions as a source of candidates for the refer-
ence set.

Step 5. (Subset generation) Generate subsets of the reference set as a basis for
creating combined solutions.

Step 6. (Solution combination) For each subset X generated in Step 5, generate a
set C(X) that consists of one or more combined solutions by the Solution
Combination Method. Treat each member of C(X) as a trial solution for
the following step.

Step 7. (Solution improvement and reference set update) For each solution
generated in Step 6, generate one or more enhanced trial solutions by the
Improvement Method, while continuing to maintain and update the refer-
ence set.

Step 8. (Repeat) Executes Steps 5-7 in repeated sequence, until the specified
maximum number of iterations MaxIter is reached or the reference set
does not change.

According to the above procedure steps, SS contrasts with GAs by providing
unifying principles for joining solutions based on generalized path constructions in
Euclidean space and by utilizing strategic designs in which GAs resort to ran-
domization. Additionally, SS provides intensification and diversification mecha-
nisms that exploit adaptive memory, drawing on foundations that link SS to Tabu
search. There exist significant differences between classical GAs implementations
and SS. While classical GAs heavily rely on randomization and a somewhat limit-
ing operation to create new solutions (e.g., one-point crossover on binary strings),
SS employs strategic choices and memory along with (convex and non-convex)
linear combinations of solutions to create new solutions. SS explicitly encourage
the use of additional heuristics to process selected reference points in search for
improved solutions. This is advantageous in settings where heuristics that exploit
the problem structure can either be developed or are already available. SS has
been proved highly successful for solving a diverse array of complex optimization
problems (Glover 1999, Glover et al. 2000).



25.5 Computational Experience 625

The algorithm-specific parameters of SS are set with regarding to the sugges-
tion by Glover (1999) and Glover et al. (2000), and they are as follows: PSize (the

size of the reference set) = 100, 1b (the size of the reference set) = 10, 2b (the size

of the diverse subset) = 10, and MaxIter (maximum number of iterations) = 20.
The SS-based evaluation approach for roundness and sphericity is implemented
with the C codes presented in Laguna and Marti (2003). All experiments of the
SS-based evaluation approach are run on an IBM compatible PC with a Pentium
III 800 MHz processor.

25.5 Computational Experience

25.5.1 Roundness measurement

The proposed SS-based algorithm is tested by using a real part for the roundness
measurement (Chen 2000). The real data of an oil seal (refer to Fig. 25.1) are ob-
tained by a machine vision system. The machine vision techniques for inspection
are gaining recognition as the trend in industry. The development of a machine vi-
sion system for inspection has received considerable attention (Chin 1988, Hard-
ing, 1996). The advantages of using machine vision include a decrease in the time
required for measurement as well as the greater accuracy of measurement and bet-
ter flexibility than the conventional methods. Furthermore, machine vision sys-
tems can provide a non-contact measurement process of 100% inspection for
measuring a wide class of objects in small-batch and mass production.

The machine vision system adopted herein for the roundness inspection con-
sists of one TOSHIBA CCD camera, one FF1 DSP frame grabber, one digitizer
and one lighting mechanism. The contour of tested object is used to test the pro-
posed SS-based algorithm for MIC, MCC and MZC under the conditions of large
data sets. The material of the oil seal is rubber. The size of the inspected oil seal is
small for investigating the viability of the machine vision-based system and the
SS-based evaluation algorithms.

The computational results of the real object are summarized in Table 25.1. Due
to the measurement data of the machine vision are given in pixel (integer value),
the computational results of real parts are also presented in pixel. However, the re-
sults (roundness error and radius) can be easily transformed into units in mm. The
results shown in Table 25.1 indicate that SS compares favorably with GAs (Chen
2000). The CPU time is between 8-11 seconds for the real object with large
boundary points (say 413 sampled points). The required computational time indi-
cates the propriety of the proposed SS-based approach for MIC and MCC and
MZC.



626 25Evaluation of Form Errors to Large Measurement Data Sets Using Scatter Search

25.5.2 Sphericity measurement

The proposed SS-based evaluation approach for sphericity measurement is tested
using a CMM measurement data set taken from Huang (1999). This data set is il-
lustrated in Table 25.2. Since manufacturers have realized the utilities and eco-
nomic advantages of geometric dimensioning and tolerancing (GD&T), CMMs
are widely used in manufacturing to verify and control the dimensional accuracy
of the manufactured parts. Through an assortment of mechanisms, CMMs collect
the measurement data sets, and the form errors are then estimated. The precision
of a CMM in measurement depends not only on its design and construction, but
also the evaluation algorithms used to deal with the sampled data.

Fig. 25.1. The oil seal.

Table 25.1. The results for roundness measurements.
SS GA a

MIC

R
),( cc yx

e
T

63.92
(266.91, 184.48)
2.464
8.4

63.87
(266.87, 184.03)
2.796
11.0

MCC

R
),( cc yx

e
T

65.93
(266.11, 184.38)
2.812
8.3

66.04
(266.16, 184.33)
2.872
11.4

MZC

1R

2R
),( cc yx

e
T

66.36
63.91
(266.91, 184.46)
2.454
10.8

65.98
63.27
(266.28, 184.44)
2.711
14.4

a The CPU times (T) of GA are based on an IBM compatible PC with a Pentium II processor.

CMMs have emerged to be important inspection tools owing to the recent ad-
vancements in numerical control and precision machining. However, CMMs are
slowed down by three difficult problems (Walker 1988):



25.6 Summary 627

1. Develop suitable measurement techniques to obtain the data points, which ac-
curately represent the parts being inspected.

2. Correctly and unambiguously interpret the definition of tolerances given in
ASME Y14.5M standard, and formulate the problems precisely and systemati-
cally as optimization problems.

3. Develop evaluation algorithms which are consistent with ASME Y14.5M stan-
dard, highly efficient, robust, and easy to use.
The results are summarized in Table 25.3. As shown in this table, the SS-based

approach performs equal or comparably better than GAs reported in Huang (1999)
and Chen (2002). The CPU times of SS are between 2.6-3.4 seconds for these ex-
amples. Based on the experimental results described above, the proposed SS-based
optimization algorithm is effective for sphericity measurements in CMMs. Addi-
tionally, the evaluation algorithms developed by previous studies (e.g., Chen and
Liu 2000, Fan and Lee 1999, Huang 1999) are only suited to MZS, and not to MIS
and MCS. However, the SS-based evaluation approach is a general method for
MIS, MCS and MZS.

25.6 Summary

With the advent of low-cost computational hardware, the modern measuring sys-
tems such as machine visions and coordinate measuring machines (CMMs) have
emerged as the financially feasible devices in automated inspection. The meas-
urement data set must be analyzed and condensed to yield the desired parameters
to fit the geometry. The coordinate measuring systems can potentially generate a
large set of boundary coordinates. As the functionality of products becomes more
complicated and their tolerance becomes more rigid, speed and accuracy of meas-
urement methods grow to be an essential basis in manufacturing industries. The
measurement errors depend on many factors including systematic and pseudo-
random machine error, thermal error, form error, surface finish, evaluation algo-
rithm correctness, sampling method and sampling density. The effect of these er-
rors on the measurements can be minimized by cautiously modeling the process
leading to errors (Yang et al. 1999). Form fitting algorithms have become increas-
ingly important in modern dimensional measurement systems, which generate
large measurement data sets. SS has been demonstrated highly successful for solv-
ing a diverse array of complex optimization problems. It is a population-based ap-
proach that shares features with the evolutionary methods. A form error evaluation
approach based on SS is a viable tool for roundness and sphericity. The results re-
ported in the experimental study show the effectiveness of SS in evaluating form
errors.



628 25Evaluation of Form Errors to Large Measurement Data Sets Using Scatter Search

Table 25.2. Data set for sphericity assessment.

No. X Y Z No. X Y Z
1 8.42055 3.46726 1.19323 51 4.80000 6.40000 6.00000
2 -2.12100 -8.61568 2.36505 52 -1.36655 -2.55289 8.57942
3 0.86853 5.11876 8.40479 53 1.89727 -4.47838 -8.04041
4 3.17803 1.82449 9.29814 54 -7.94820 4.58889 -1.09601
5 -4.75718 8.23602 -0.01232 55 -2.73783 1.44044 8.67116
6 -0.00288 -0.00001 -9.22020 56 7.26417 2.57809 -5.19624
7 8.02534 2.43064 -3.34796 57 6.73556 3.02284 -6.53863
8 -0.77363 -1.36294 9.73536 58 -3.23473 7.59841 -4.09855
9 -0.42047 -0.05775 9.89921 59 -7.91122 -3.08604 -3.61944
10 -2.48279 -1.09659 9.20123 60 -0.94722 1.19895 8.94372
11 -1.32236 -0.33044 8.94394 61 4.53577 -5.59322 -5.70760
12 -8.65863 -2.71179 2.06558 62 -4.80000 6.40000 6.00000
13 6.94724 4.54788 4.56109 63 -6.29337 4.51725 5.89396
14 1.23285 -4.10410 8.21792 64 -1.84698 -0.03353 9.58379
15 -4.98020 -8.66566 -0.00066 65 2.31123 -2.20250 8.46912
16 9.55234 0.02726 -0.01951 66 6.79260 5.21214 -2.80259
17 0.01829 0.00006 9.63208 67 1.47478 5.43919 7.04760
18 2.18897 8.46413 3.92633 68 0.16864 -5.92638 7.31883
19 -3.91959 8.01503 -1.25551 69 8.77527 2.10675 1.40999
20 2.35189 -6.47936 -5.90072 70 0.00000 -9.00000 0.00000
21 -4.93565 -6.79583 3.45841 71 -3.76405 -3.05133 -7.83327
22 6.91250 2.39367 5.84698 72 0.49092 9.03545 0.68276
23 7.54898 3.28552 4.06809 73 0.75328 -6.19756 6.88526
24 3.21574 8.02367 4.36928 74 -6.04510 7.58341 -0.86041
25 5.43679 -5.10013 5.28983 75 0.32479 9.39478 -2.96664
26 2.93158 2.45466 -8.24089 76 8.91620 1.36278 -0.15665
27 -3.06343 4.81048 -7.94254 77 -8.40008 1.03735 3.90549
28 7.24483 4.85365 -4.62014 78 -1.19949 -9.61640 -2.36150
29 -3.57018 1.37046 8.96134 79 0.00000 0.00000 -10.0000
30 -0.00414 0.11571 9.21327 80 3.05448 3.63890 7.67445
31 -5.50164 7.07481 3.52308 81 0.23151 -0.47424 9.12475
32 3.59470 3.35799 -8.69633 82 -5.67083 -7.29763 -3.60701
33 5.77727 7.19318 3.81492 83 -5.54879 2.48093 6.93936
34 1.09155 5.21130 -7.36348 84 -1.67709 -6.77174 5.92368
35 1.05627 9.86747 -0.86997 85 -4.66332 1.19213 8.29668
36 1.69428 6.09696 7.46172 86 1.82616 8.61360 3.44446
37 0.33632 -6.18998 -6.86310 87 -0.98304 -3.28498 -9.05523
38 -1.36144 -7.06321 5.74638 88 -6.80116 5.56668 3.16158
39 1.21537 -3.61139 9.02052 89 2.66568 -3.94312 7.86528
40 2.67713 -4.21685 -8.13177 90 -1.78909 2.91725 -8.51074
41 -8.50578 -2.75549 -2.48880 91 1.94884 2.94550 -9.05638
42 4.36823 -3.35307 7.41081 92 -0.67512 0.22825 9.94209
43 -3.40167 -6.65031 -5.24305 93 6.10308 5.99957 -3.17171
44 0.77619 1.66759 9.25988 94 -5.38958 3.65589 6.78410
45 6.40027 -6.67380 -3.49152 95 0.00000 9.00000 0.00000
46 -4.47850 -7.55166 -2.62989 96 2.06263 -8.17541 3.89862
47 -0.01253 0.03167 9.51814 97 -0.04665 -0.34500 9.67874
48 -4.24576 -8.30408 0.54593 98 7.15160 6.27399 2.33940
49 9.21459 0.78511 -0.27609 99 -5.54207 6.67783 2.70456
50 4.23950 -8.49940 1.74151 100 3.74134 -7.56337 3.36648



25.6 Summary 629

Table 25.3. The results for sphericity measurements.

SS a GA a Huang’s
method

MIS

R
),,( ccc zyx

e
T

9.0000
(-0.0146, 0.0000, -0.0035)
1.0090
2.6

9.0000
(0.0009, 0.0000, 0.0011)
1.0003
1.3

MCS

R
),,( ccc zyx

e
T

9.9800
(-0.0092, 0.0069, -0.0010)
0.9868
2.7

10.0000
(0.0000, 0.0000, 0.0000)
1.0004
1.5

MZS

1R

2R

),,( ccc zyx e
T

8.9938
9.9800
(-0.0046, -0.0002, -0.0086)
0.9862
3.4

10.0000
9.0000
(0.0000, 0.0000, 0.0000)
1.0000
2.0

1.0000

a The CPU times (T) of both SS and GA are based on an IBM compatible PC with a Pentium III proc-
essor.



630 References

References

ANSI B89.3.1 (1972) Measurement of out of Roundness. American Society of Mechanical
Engineers, New York

ASME Y14.5M (1994) Dimensioning and Tolerancing. American Society of Mechanical
Engineers, New York

Carpinetti LCR, Chetwynd DG (1994) A new strategy for inspecting roundness features.
Precision Engineering: 16 283-289

Chaudhuri BB, Kundu P (1993) Optimum circular fit to weighted data in multidimensional
space. Pattern Recognition Letters: 14 1-6

Chen M-C (2000) Roundness inspection strategies for machine visions using nonlinear pro-
grams and genetic algorithms. International Journal of Production Research: 38 2967-
2988

Chen M-C 2002 Analysis of spherical form errors to coordinate measuring machine data.
JSME International Journal Series C: 45 647-656

Chen C-K, Liu C-H (2000) A study on analyzing the problem of the spherical form error.
Precision Engineering: 24 119-126

Chen KW, Papadoupoulos AS (1996) Comparison of linear least-squares and nonlinear
least-squares spheres. Microelectronics Reliability: 36 37-46

Chen M-C, Tsai D-M, Tseng H-Y (1999) A stochastic optimization approach for roundness
measurements. Pattern Recognition Letters: 20 207-219

Chetwynd DG (1979) Roundness measurement using limacons. Precision Engineering: 1
137-141

Chetwynd DG, Phillipson PH (1980) An investigation of reference criteria used in round-
ness measurement. Journal of Physics E: Scientific Instruments: 13 530-538

Chin RT (1988) Survey of automated visual inspection: 1981 to 1987. Computer Vision,
Graphics and Image Processing: 41 346-381

Cooper LD (1993) Circle fitting by linear and nonlinear least squares. Journal of Optimiza-
tion Theory and Applications: 76 381-388.

Fan K-C, Lee J-C (1999) Analysis of minimum zone sphericity error using minimum po-
tential energy theory. Precision Engineering: 23 65-72

Gass SI, Witzgall C, Harary HH (1998) Fitting circles and spheres to coordinate measuring
machine data. The International Journal of Flexible Manufacturing Systems:10 5-25

Glover F (1997) A template for scatter search and path relinking. In: Hao JK, Lutton E,
Ronald E, Schoenauer M, Snyers D (eds.) Lecture Notes in Computer Science 1363,
Springer-Verlag, Berlin, pp 13-54

Glover F (1999) Scatter search and path relinking. In: Corne D, Dorigo M, Glover F (eds.)
New Ideas in Optimization, Wiley, New York

Glover F, Laguna M, Marti R (2000) Fundamentals of scatter search and path relinking.
Control and Cybernetics: 39 653-684

Glover F, Laguna M (1997) Tabu Search, New York, Kluwer Academic Publishers



25.6 Summary 631

Harding K (1996) Machine vision based gaging of manufactured parts. Vision, MVA/SME
quarterly: 12 1-6

Hopp TH (1993) Computational metrology. Manufacturing Review: 6 295-304
Huang J (1999) An exact minimum zone solution for sphericity evaluation. Computer-

Aided Design: 31 845-853
Kanada T (1995) Evaluation of spherical form errors-computation of sphericity by means

of minimum zone method and some examinations with using simulated data. Precision
Engineering,: 17 281-289

Laguna M, Marti R (2003) Scatter Search, Kluwer Academic Publishers, Boston.
Nelder JA, Mead R (1965) A Simplex method for function minimization. Computer Jour-

nal: 7 308-313
Phillips SD, Borchardt B, Gaskey G (1993) Measurement uncertainty considerations for

coordinate measuring machines. NISTIR 5170, NIST, Gaithersburg, MD
Takiyama R, Ono N (1989) A least square error estimation of the center and radii of con-

centric arcs. Pattern Recognition Letters: 10 237-242
Thomas SM, Chan YT (1989) A simple approach for estimation of circular arc center and

its radius. Computer Vision, Graphics and Image Processing: 45 362-370
Walker R (1988) GIDEP Alert No. X1-A-88-01. Technical Report, Government-Industry

Data Exchange Program, August 22
Yang CC, Marefat MM, Ciarallo FW (1999) Modeling errors for dimensional inspection

using active vision. Robotics and Computer-Integrated Manufacturing: 15 23-37



26 Mechanical engineering problem
optimization by SOMA

Ivan Zelinka and Jouni Lampinen

26.1 Mechanical engineering problem optimization by
SOMA

To discover the effectiveness of the techniques just proposed in Chapter 7, three
numerical examples were optimized using SOMA (Table 26.1). These non-linear,
engineering design optimization problems with discrete, integer and continuous
variables were first investigated by Eric Sandgren [1] and subsequently by many
other researchers [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11] and [12] who applied a variety of optimization techniques
(Table 26.2). These problems represent optimization situations involving discrete,
integer and continuous variables that are similar to those encountered in everyday
mechanical engineering design tasks. Because the problems are clearly defined
and relatively easy to understand, they form a suitable basis for comparing alterna-
tive optimization methods

Table 26.1. Test problems

Summary of Test Problems
Number of variablesExample Description
Total Discrete Integer Continuous

1 Gear Train 4 0 4 0
2 Pressure Vessel 4 2 0 2
3 Coil Spring 3 1 1 1

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



634 26 Mechanical engineering problem optimization by SOMA

Table 26.2. Alternative methods used to solve the test problems.

Compared Methods
Reported by Solution technique Reference
Sandgren Branch & Bound using Sequential Quadratic

Programming
[1]

Fu, Fenton & Gleghorn Integer-Discrete-Continuous Non-Linear Pro-
gramming

[2]

Loh & Papalambros Sequential Linearization Algorithm [3], [4]
Zhang & Wang Simulated Annealing [5]
Chen & Tsao Genetic Algorithm [6]
Li & Chow Non-Linear Mixed-Discrete Programming [7]
Wu & Chow Meta-Genetic Algorithm [8]
Lin, Zhang & Wang Modified Genetic Algorithm [9]
Thierauf & Cai Two-level Parallel Evolution Strategy [10]
Cao & Wu Evolutionary Programming [11]
Lampinen & Zelinka Differential Evolution [12]
Zelinka &Lampinen SOMA This article

26.1.1 Designing a gear train

In the first example the problem is to optimize the gear ratio for the compound
gear train arrangement shown in Fig. 26.1. The gear ratio for a reduction gear train
is defined as the ratio of the angular velocity of the output shaft to that of the input
shaft. In order to produce the desired overall gear ratio, the compound gear train is
constructed out of two pairs of gearwheels, d-a and b-f. The overall gear ratio, itot,
between the input and output shafts can be expressed as:

(26.1)

Variables ωo and ωi are the angular velocities of the output and input shafts, re-
spectively, and z denotes the number of teeth on each gearwheel.

The optimization problem is to find the number of teeth for gearwheels d, a, b
and f in order to produce a gear ratio, itot, as close as possible to the target ratio: itrg

= 1/6.931 (= 0.1443). For each gear, the minimum number of teeth is 12 and the
maximum is 60.

fa

bd

i

o
tot zz

zz
i ==

ω
ω



26.1 Mechanical engineering problem optimization by SOMA 635

Fig. 26.1. Compound gear train for Example 1.

The problem is formulated as follows:

( ) ( ) { }

( ) ( )

Find

,

to minimize

subject to

,

X x x x x z z z z x

f X i i
x x

x x

x i

d b a f

trg tot

i

= = ∈

= − = −
⎛
⎝
⎜

⎞
⎠
⎟

≤ ≤ =

1 2 3 4

2
1 2

3 4

2

12 13 60

1
6 931

12 60 1 2 3 4

, , , , , , , ,...,

.

, , , .

(26.2)

Thus, the goal is to find optimum values for four integer variables that will
minimize the squared difference between the desired gear ratio, itrg, and the cur-
rent gear ratio, itot. For this problem, each variable is subject only to upper and
lower boundary constraints.

The gear train problem was solved using the SOMA (see Table 26.4), i.e. by
AllToOne and All ToAll strategies. The integer techniques described in Chapter 7



636 26 Mechanical engineering problem optimization by SOMA

were invoked to handle boundary constraints. Because no constraint functions
were involved, the objective (cost) function was simply defined to be the squared
error, i.e., f(X):

)()( XfXfcost = (26.3)

Table 26.3 lists the various gear train solutions and compares DE’s result with
those reported in [1], [2], [4], [5], [9], [8] and [11]. In Table 26.4 are the results of
the SOMA algorithm for mutual comparison.

Table 26.3. Optimal solutions for the gear train problem.

Optimum solution TypeItem

Sandgren
[1]

Fu et al.
[2]

Loh and
Papalambros
[4]

Zhang and
Wang
[5]

x1 (zd) 18 14 19 30 integer

x2 (zb) 22 29 16 15 integer

x3 (za) 45 47 42 52 integer

x4 (zf) 60 59 50 60 integer

f(x) 5.7×10-6 4.5×10-6 0.233×10-6 2.36×10-9

Gear Ratio 0.146666 0.146411 0.144762 0.144231

Optimum solution TypeItem

Lin et al.
[9]

Wu and
Chow
[8]

Cao & Wu
[11]

Lampinen &
Zelinka
[12] *

x1 (zd) 19 19 30 16 integer

x2 (zb) 16 16 15 19 integer

x3 (za) 49 43 52 43 integer

x4 (zf) 43 49 60 49 integer

f(x) 2.7×10-12 2.7×10-12 2.36×10-9 2.7×10-12

Gear Ratio 0.144281 0.144281 0.144231 0.144281
* Also alternative solutions with an equal target function value were obtained from run to run.



26.1 Mechanical engineering problem optimization by SOMA 637

Table 26.4. Optimal solutions for the gear train problem by SOMA.

Optimum solution by SOMA*

AllToOne
PathLength=3, Step=0.3, PopSize
=100, PRT=0.61, Migrations=20,
MinDiv = negative
Average cost value = 2.05×10-10

AllToAll
PathLength=3, Step=0.3, Pop-
Size=100, PRT=0.61, Migra-
tions=5,
MinDiv = negative
Average cost value = 2.7×10-12

TypeItem

the worst case the best case the worst case the best case

x1 (zd) 24 19 16 19 integer

x2 (zb) 13 16 19 16 integer

x3 (za) 47 43 49 43 integer

x4 (zf) 46 49 43 49 integer

f(x) 9.9x10-10 2.7×10-12 2.7×10-12 2.7×10-12

Gear
Ratio

0.14311 0.144281 0.144231 0.144281
* Also alternative solutions with an equal target function value were obtained from run to run as in the
case of DE, see [12].

Solutions obtained by SOMA in Table 26.6 were obtained after 100 simulations
for each SOMA version. From Table 26.4 it is visible that the solution found by
SOMA was equally as good as the best solution in the literature or in the DE solu-
tions. In addition, it should be noted that SOMA as well as DE provided different
results from run to run with the same objective function value
(Table 26.5).

Table 26.5. Alternative solutions for the gear train problem found by SOMA.

Alternative solutions for gear train problem by SOMA
Version Solution zd zb za zf

1 24 13 47 46
AllToOne

2 13 24 46 47
1 19 16 43 49

AllToAll
2 16 19 43 49

Trough close inspection Eq. (26.2), it is obvious that there are four global op-
tima. Because SOMA as well as any evolutionary algorithm in general can work
with a population of solutions rather than just a single solution, it is capable of
finding multiple global optima for this problem. By using a sufficiently large



638 26 Mechanical engineering problem optimization by SOMA

population, it is possible to obtain all four alternative solutions in a single run. De-
spite that, only one solution was extracted from the population of the last genera-
tion because the other three solutions can be found in a trivial way based on one
solution and the symmetry of Eq. (26.2). In practice, however, there exist optimi-
zation tasks with multiple global optima that cannot be detected so simply. One
may wonder why finding a single, globally optimal solution is not always suffi-
cient when multiple global optima exist. One reason is that the sensitivity of the
objective function to small changes in its variables may be different at the alterna-
tive optimal points. In practice, it is often important to select the most robust solu-
tion, i.e., the global optima with the least sensitivity to noise. For example, if a
machine design is subject to optimization, it is possible that the optimized design
variables cannot effectively be manufactured. Alternatively it may be that the de-
sign parameters change during the lifetime of the machine due, for example, to
normal wear of its components. In such cases, robust global optima are to be pre-
ferred over those that exhibit a high sensitivity to design implementation errors.

Results for SOMA were repeated 100 times (see Fig. 26.2) and are based on pa-
rameters of the SOMA algorithm (Table 26.4). All runs yielded the reported value
of f(X). As mentioned, different solutions were obtained from run to run because
of the existence of multiple global optima (Table 26.5).

0 20 40 60 80 100
Numberof Experiments

0

5´ 10-10

1´ 10- 9

1.5́ 10- 9

2´ 10- 9

Fig. 26.3. Typical result of repeated optimization by SOMA (AllToOne)

26.1.2 Designing a pressure vessel

The second test problem is to design a compressed air storage tank with a working
pressure of 3,000 psi and a minimum volume of 750 ft3. As Fig. 26.3 shows, the
cylindrical pressure vessel is capped at both ends by hemispherical heads. Using
rolled steel plate, the shell is to be made in two halves that are joined by two lon-



26.1 Mechanical engineering problem optimization by SOMA 639

gitudinal welds to form a cylinder. Each head is forged and then welded to the
shell.

Fig. 26.3. Pressure vessel.

The objective is to minimize the manufacturing cost of the pressure vessel. The
cost is a combination of the material cost, welding cost and forming cost. Refer to
[1] for more details.

The design variables are shown in Fig 26.3. Variables L and R are continuous
while Ts and Th are discrete. The thickness of the shell, Ts, and the head, Th, are
both required to be standard sizes. For this example, steel plates were available in
multiples of 0.0625 inch.

The problem can be formulated as follows:



640 26 Mechanical engineering problem optimization by SOMA

( ) ( )

06.0)(

01.1)(

00.240)(

0
3

4
0.17280.750)(

000954.0)(

00193.0)(

subject to

84.191611.37781.16224.0)(

minimizeto

,,,,,,

Find

26

15

44

3
34

2
33

232

131

3
2
14

2
1

2
32431

4321

≤−=
≤−=

≤−=

≤−−×=

≤−=
≤−=

+++=

==

xXg

xXg

xXg

xxxXg

xxXg

xxXg

xxxxxxxxxXf

LRTTxxxxX hs

ππ

(26.4)

The objective function, f(X), represents the total manufacturing cost of the pres-
sure vessel as a function of the design variables. The constraints, g1,…,g6, quantify
the restrictions to which the pressure vessel design must adhere. These limits arise
from a variety of sources. For example, the minimal wall thickness of the shell, Ts

(g1), and heads, Th (g2), with respect to the shell radius are limited by the pressure
vessel design code. The volume of the vessel must be at least the specified 750 ft3

(g3). Available rolling equipment limits the length of the shell, L, to no more than
20 feet (g4). According to the pressure vessel design code, the thickness of the
shell, Ts, is not to be less than 1.1 inches (g5) and the thickness of the head, Th, is
not to be less than 0.6 inches (g6).

The SOMA control variables used to solve the pressure vessel design problem
are described in Table 26.8 (Case A), Table 26.10 (Case B) and Table 26.12
(Case C). The problem statements do not define the boundaries for the design
variables, but the constraints, g4, g5 and g6 are pure boundary constraints, so they
were handled as lower boundary constraints for x1 and x2, and as an upper bound-
ary constraint for x4, respectively. The lower boundaries for x3 and x4 can be set to
zero, since common sense demands that they must be non-negative values. The
upper boundaries for x1, x2 and x3, however, must still be specified in order to de-
fine the search space. Consequently, these bounds were arbitrarily set high enough
to make it highly probably that the global optimum lies inside of the defined
search space. Since the possibility existed that the global optimum was outside of
the initially defined search space, these estimated bounds were used only for ini-
tializing the population. SOMA was then allowed to extend the search beyond
these boundaries. The possibility of using this kind of “loose“ boundary constraint
for variables are one of the advantages of modern evolutionary algorithms such as
is for example DE. In practical engineering design work, it is not unusual for one
or more boundaries to be unknown so that the distance to the optimum cannot be



26.1 Mechanical engineering problem optimization by SOMA 641

reliably estimated. The boundary constraints used for each variable are shown in
Table 5. The other constraints, g1, g2 and g3 were handled as constraint functions.

Table 26.6. Boundary constraints used for the pressure vessel example.

Boundary constraints for pressure vessel example
Lower limitation Constraint Upper limitation

Constraint g5 ≤≤ 11.1 x 12.5 Roughly guessed *

Constraint g6 ≤≤ 26.0 x 12.5 Roughly guessed *

non-negative value of x3 0.2400.0 3 ≤≤ x Roughly guessed *

non-negative value of x4 0.2400.0 4 ≤≤ x Constraint g4
* The value of this boundary is not given among the problem statements. Thus, the value is estimated
roughly and used only for initialization of population. SOMA was allowed to extend the search beyond
this limit.

The cost function for optimization was formulated as follows:

0.1,100.1

otherwise1

0)(if)(0.1

where

)()(

32
10

1

3

1

2
cost

==⋅=
⎩
⎨
⎧ >⋅+

=

⋅= ∏
=

sss

XgXgs
c

cXfXf

iii
i

i
i

(26.5)

Notice that it is not necessary to evaluate the constraint functions, g4, g5 and g6,
because they were handled as boundary constraints, and thus there was no reason
to generate a candidate vector that violated any of them.

In researching this problem, at least three different formulations were found in
the literature. To enable a more comprehensive comparison with the other meth-
ods, all three cases were solved using SOMA. Case A is an exception to the prob-
lem statements above, since all of the variables are treated as continuous. Table
26.8 contains results for SOMA (Case A) and can be compared with
Table 26.7. Case B is formulated according to the original problem statements and
results are in Table 26.10. Case C, reported in Table 26.12, also differs from the
original problem statements. For some unknown reason, [7], [10] and [11] have
used a slightly reformulated constraint-function, g5:

������ �� ≤−= ��� (26.6)

This modification extends the region of feasible solutions and also makes it
possible to obtain a significantly lower objective function value. All of the solu-
tions of [7], [10] and [11] lie in the extended region of the search space. Because
of that, the results of [7], [10] and [11] cannot be fairly compared with the results



642 26 Mechanical engineering problem optimization by SOMA

obtained using Sandgren’s original problem statements [1]. Thus, Cases A, B and
C are not comparable because they represent differently formulated problems.

As Table 26.8, Table 26.10 and Table 26.12, show, SOMA, usually similar to
DE, found a better solution for each pressure vessel design problem than the best
solution found in the literature. Computations were based on parameters as men-
tioned in these tables and were repeated 100 times. In addition, all solutions were
within the feasible design domain

Table 26.7. Optimal solutions for the pressure vessel problem. Case A: all variables are
treated as continuous.

Optimum solution, Case AItem

Sandgren
[1]

Fu et al.
[2]

Lampinen & Ze-
linka
[12]

Type

x1 (Ts) [inch] 1.1 1.100001 1.100000 continuous

x2 (Th) [inch] 0.6 0.600016 0.600000 continuous

x3 (R) [inch] 47.7008 48.35145 56.99482 continuous

x4 (L) [inch] 117.701 111.9893 51.00125 continuous

f(X) [$] 7867.0 7790.588 7019.031

Table 26.8. Optimal solutions for the pressure vessel problem by SOMA. Case A: all vari-
ables are treated as continuous.

Optimum solution by SOMA – Case A

AllToOne
PathLength=3, Step=0.11, Pop-
Size=20, PRT=0.1, Migra-
tions=100,
MinDiv = negative
Average cost value = 7057.77

AllToAll
PathLength=3, Step=0.11, Pop-
Size=20, PRT=0.9, Migra-
tions=20,
MinDiv = negative
Average cost value = 7030.4

TypeItem

the worst case the best case the worst case the best case

x1 (Ts) 1.10019 1.10015 1.1791 1.1 cont.

x2 (Th) 0.600052 0.600001 0.6 0.6 cont.

x3 (R) 54.5505 57.0024 61.0933 56.9948 cont.

x4 (L) 65.923 50.9591 29.069 51.0012 cont.

f(x) 7199.75 7019.32 7098.15 7019.03



26.1 Mechanical engineering problem optimization by SOMA 643

Table 26.9. Optimal solutions for the pressure vessel problem. Case B: solved according to
Sandgren’s original problem statements [1].

Optimum solution, Case B *Item

Sand-
gren
[1]

Fu et al.
[2]

Loh and Pa-
palambros
[4]

Wu and
Chow
[8]

Lampinen
& Zelinka
[12]

Type

X1 (Ts) 1.125 1.125 1.125 1.125 1.125 discrete

X2 (Th) 0.625 0.625 0.625 0.625 0.625 discrete

X3 (R) 48.97 48.38070 58.2901** 58.1978 58.29016 continuous

X4 (L) 106.72 111.7449 43.693 44.2930 43.69266 continuous

f(x) 7982.5 8048.619 7197.734 ** 7207.497 7197.729
* In [5] and [9] it is reported that the value of f(X) = 7197.7 was reached. Because neither a more accu-
rate result, nor details of the result were provided, they are not included in this comparison.
** No values for constraint functions were reported in [4]. Also, the optimum solution was too inaccu-
rately reported to reconstruct the results properly. The reported value, x3 = 58.290, causes a violation of
constraint g3. Because of that, 58.2901 was used here for reconstructing the constraint functions and
target function values. In [4], a value of f(X) = 7197.7 was originally reported.

Table 26.10. Optimal solutions for the pressure vessel problem. Case B: solved according
to Sandgren’s original problem statements [1].

Optimum solution by SOMA – Case B

AllToOne
PathLength=3, Step=0.11, Pop-
Size=20, PRT=0.5, Migra-
tions=20,
MinDiv = negative
Average cost value = 7256.71

AllToAll
PathLength=3, Step=0.11, PopSize
=20, PRT=0.5, Migrations=20,
MinDiv = negative
Average cost value = 7197.73

TypeItem

the worst case the best case the worst case the best case

x1 (Ts) 1.125 1.125 1.125 1.125 discr.

x2 (Th) 0.625 0.625 0.625 0.625 discr.

x3 (R) 55.8592 55.8592 58.2902 58.2902 cont.

x4 (L) 57.7315 57.7315 43.6927 43.6927 cont.

f(x) 7359.2 7197.73 7197.73 7197.73



644 26 Mechanical engineering problem optimization by SOMA

Table 26.11. Optimal solutions for the pressure vessel problem. Case C: different formula-
tion of constraint-function, g5, with respect to Sandgren’s original problem statements [1].

Optimum solution, Case CItem

Li and Chou
[7]

Cao & Wu
[11]

Thierauf and
Cai [10]

Lampinen &
Zelinka
[12]

Type

x1 (Ts) 1.000 1.000 1.000 1.000 discrete

x2

(Th)
0.625 0.625 0.625 0.625 discrete

x3 (R) 51.250 51.1958 51.812 51.81347 continuous

x4 (L) 90.991 90.7821 84.591 84.57853 Continuous

f(x) 7127.3 7108.6160 7006.9 7006.358

Table 26.12. Optimal solutions for the pressure vessel problem. Case C: different formula-
tion of constraint-function, g5, with respect to Sandgren’s original problem statements [1].

Optimum solution by SOMA – Case C

AllToOne
PathLength=3, Step=0.11, PopSize
=20, PRT=0.5, Migrations=20,
MinDiv = negative
Average cost value = 7050.45

AllToAll
PathLength=3, Step=0.11, PopSize
=20, PRT=0.5, Migrations=20,
MinDiv = negative
Average cost value = 7006.36

TypeItem

the worst case the best case the worst case the best case

x1 (Ts) 1.000 1.000 1.000 1.000 discr.

x2 (Th) 0.625 0.625 0.625 0.625 discr.

x3 (R) 51.8128 51.8128 51.8135 51.8135 cont.

x4 (L) 84.5839 84.5839 84.5785 84.5785 cont.

f(x) 7106.53 7006.42 7006.36 7006.36

26.1.3 Designing a coil compression spring

The third example involves the design of a coil compression spring (Fig. 26.4).
The spring is to be a helical compression spring to which a strictly axial and con-
stant load will be applied.



26.1 Mechanical engineering problem optimization by SOMA 645

Fig. 26.4. Coil spring for Example 3.

The objective is to minimize the volume of spring steel wire needed to manu-
facture the spring. The design variables are the number of spring coils, N, the out-
side diameter of the spring, D, and the spring wire diameter, d. This example con-
tains integer, discrete and continuous variables. The number of spring coils, N, is
an integer variable and the outside diameter, D, is a continuous variable. Addi-
tionally, the spring wire diameter, d, is only available in the standard (discrete)
sizes shown in Table 26.13.

Table 26.13. Allowable spring steel wire diameters for the coil spring design problem.

Allowable wire diameters [inch]
0.009 0.0095 0.0104 0.0118 0.0128 0.0132
0.014 0.015 0.0162 0.0173 0.018 0.020
0.023 0.025 0.028 0.032 0.035 0.041
0.047 0.054 0.063 0.072 0.080 0.092
0.105 0.120 0.135 0.148 0.162 0.177
0.192 0.207 0.225 0.244 0.263 0.283
0.307 0.331 0.362 0.394 0.4375 0.500

The problem is formulated as follows:



646 26 Mechanical engineering problem optimization by SOMA

( ) ( )

( )

( )
( )

( ) 31
max

3
21

4
3

2

3

32

32

max
8

31
max

7

6

3

2
5

max24

3min3

max2

3
3

2max
1

1
2
32

2

321

205.1

8

0
615.0

4/4

1/4

where

0)(

0)2(05.1)(

0)(

00.3)(

0)(

0)(

0)(

0
8

)(

subject to
4

2
)(

minimizeto

,,,,

Find

xx
K

F
l

K

F

xx

Gx
K

x

x

xx

xx
C

K

FF
Xg

lxx
K

FF
Xg

Xg

x

x
Xg

DxXg

xdXg

llXg

S
x

xFC
Xg

xxx
Xf

dDNxxxX

f

p
p

f

p
w

f
p

p

pmp

f

f

++=

=

=

≤+
−
−

=

≤
−

−=

≤−++
−

+=

≤−=

≤−=

≤−=
≤−=

≤−=

≤−=

+
=

==

σ

σ

σ

σσ

π

π

(26.7)

The objective function, f(X), computes the volume of spring steel wire as a
function of the design variables. The design constraints are specified as follows:



26.1 Mechanical engineering problem optimization by SOMA 647

a) The maximum working load is: Fmax = 1000.0 lb.
b) The allowable maximum shear stress is: S = 189000.0 psi (g1).
c) The maximum free length is: lmax = 14.0 inch (g2).
d) The minimum wire diameter is: dmin = 0.2 inch (g3).
e) The maximum outside diameter of the spring is: Dmax = 3.0 inch (g4).
f) The pre-load compression force is: Fp = 300.0 lb.
g) The allowable maximum deflection under pre-load is: σpm = 6.0 inch

(g6).
h) The deflection from pre-load position to maximum load position is: σw

= 1.25 inch (g8).
i) The combined deflections must be consistent with the length, i.e., the

spring coils should not touch each other under the maximum load at which
the maximum spring deflection occurs (g7).

j) The shear modulus of the material is: G = 11.5×106.
k) The spring is guided, so the buckling constraint is bypassed.
l) The outside diameter of the spring, D, should be at least three times greater

than the wire diameter, d, to avoid lightly wound coils (g5).

A more detailed explanation about the coil spring design procedure can be
found in [1], [8] and in [13]. The SOMA control variable settings that solved the
coil spring problem are described in Table 26.16 (Case A) and Table 26.18
(Case B). Although the problem statements do not define the boundaries for de-
sign variables, the constraints, g3 and g4 are pure boundary constraints and were
treated as a lower boundary constraint for x3 and as an upper boundary constraint
for x2, respectively. Furthermore, g5 can also be handled as a boundary constraint.
In order to define the search space, the other boundary constraints were chosen
based on the problem statements and the simple geometric space limitations elabo-
rated in Table 26.14. The remaining constraints were handled as soft-constraint
functions.

Table 26.14. Boundary constraints used for the coil spring example.

Boundary constraints for coil spring example
Lower limitation Constraint Upper limitation

At least one spring coil is re-
quired to form a spring.

min

max
11

d

l
x ≤≤

Upper and lower surfaces of
unloaded spring coils touch
each other.

Constraints g3 and g5 together max2min3 Dxd ≤≤ constraint g4

Constraint g3
3
max

3min

D
xd ≤≤ Constraints g4 and g5 to-

gether



648 26 Mechanical engineering problem optimization by SOMA

The cost function for optimization was formulated as follows:

10
87621

8

6

3
2

1

3

100.1,0.1

otherwise1

0)(if)(0.1

where

)()(

⋅=====
⎩
⎨
⎧ >⋅+

=

⋅⋅= ∏∏
==

sssss

XgXgs
c

ccXfXf

iii
i

i
i

i
icost

(26.8)

Constraint functions: g3, g4 and g5 did not have to be evaluated because they
were handled as boundary constraints and SOMA was not allowed to generate a
candidate vector that violated any of them.

Table 26.15. Optimal solutions for the coil spring problem. Case A: continuous solution.

Optimum solution, Case AItem

Sandgren
[1]

Lampinen & Zelinka
[12]

Type

x1 (N) 9.1918 7.117621 Continuous

x2 (D) 1.2052 1.372407 Continuous

x3 (d) 0.2814 0.2909652 Continuous

f(x) 2.6353 2.61388

Table 26.16. Optimal solutions for the coil spring problem by SOMA. Case A: continuous
solution.

Optimum solution by SOMA – Case A

AllToOne
PathLength=3, Step=0.14, PopSize
=40, PRT=0.3, Migrations=30,
MinDiv = negative
Average cost value = 2.65614

AllToAll
PathLength=3, Step=1.5, PopSize
=40, PRT=0.1, Migrations=30,
MinDiv = negative
Average cost value = 2.61389

TypeItem

the worst case the best case the worst case the best case

x1 (N) 12.6744 7.11045 7.08773 7.11854 cont.

x2 (D) 1.02875 1.37328 1.37538 1.37232 cont.

x3 (d) 0.270741 0.291027 0.291131 0.29096 cont.

f(X) 2.73034 2.6146 2.61393 2.61388



26.1 Mechanical engineering problem optimization by SOMA 649

Table 26.17. Optimal solutions for the coil spring problem. Case B: discrete solution.

Optimum solution, Case BItem

Sandgren
[1]

Chen and
Tsao
[6]

Wu and
Chow [8]

Lampinen &
Zelinka
[12]

Type

X1 (N) 10 9 9 9 integer

X2 (D) 1.180701 1.2287 1.227411 1.2230410 continuous

x3 (d) 0.283 0.283 0.283 0.283 discrete

f(X) 2.7995 2.6709 2.6681 2.65856

Table 26.18. Optimal solutions for the coil spring problem by SOMA. Case B: discrete so-
lution.

Optimum solution by SOMA – Case B

AllToOne
PathLength=3, Step=0.14, Pop-
Size =40, PRT=0.5, Migra-
tions=30,
MinDiv = negative
Average cost value = 2.71043

AllToAll
PathLength=3, Step=1.5, PopSize
=40, PRT=0.5, Migrations=30,
MinDiv = negative
Average cost value = 2.66346

TypeItem

the worst case the best case the worst case the best case

x1 (N) 3 9 9 9 integer

x2 (D) 2.17372 1.22304 1.22305 1.22304 cont.

x3 (d) 0.331 0.283 0.283 0.283 discr.

f(X) 2.93811 2.65855 2.67599 2.65859

Table 26.15 and Table 26.17 compare SOMA’s solution with results obtained
by other researchers. Table 26.16 and Table 26.18 shows results from the SOMA
algorithm. Two different versions of the coil spring problem were solved. Case A
(Table 26.15 and Table 26.16) reports the solutions generated when all variables
are assumed to be continuous. Case B (Table 26.17 and Table 26.18) reports the
mixed-variable solution according to the problem statements above. In both cases,
SOMA generally obtained a better solution than the best solution found in the lit-
erature (except and comparable mostly with DE). In order to demonstrate the ro-
bustness of the SOMA algorithm, 100 independent optimization trials were per-
formed for both Case A and Case B. All trials yielded the reported value of f(X) or
better. All of the solutions were also within the feasible region of the design space.



650 26 Mechanical engineering problem optimization by SOMA

26.2 Conclusion

This chapter describes the use of SOMA in mechanical engineering problems: it is
a new algorithm for global optimization. The basic principles of this algorithm
were introduced in Chapter 7, including versions of the algorithm, an overview of
selected applications, as well as testing for robustness and the handling of various
constraints. The methods described for handling constraints are relatively simple,
easy to implement and easy to use. SOMA is capable of optimizing integer, dis-
crete and continuous variables and capable of handling non-linear objective func-
tions with multiple non-trivial constraints as well as differential evolution or the
other evolutionary algorithms which use techniques described in Chapter 7.

A soft-constraint (penalty) approach is applied for the handling of constraint
functions. Some optimization methods require a feasible initial solution as a start-
ing point for a search. Preferably, this solution should be rather close to a global
optimum to ensure convergence to it instead of to a local optimum. If non-trivial
constraints are imposed, it may be difficult or impossible to provide a feasible ini-
tial solution.

The efficiency, effectiveness and robustness of many methods are often highly
dependent on the quality of the starting point. The combination of the SOMA al-
gorithm and the soft-constraint approach does not require any initial solution, but
yet it can take advantage of a high quality initial solution if one is available.

For example, this initial solution can be used for initialization of the population
in order to establish an initial population that is biased towards a feasible region of
the search space. If there are no feasible solutions in the search space, as is the
case for totally conflicting constraints, SOMA algorithms with the soft-constraint
approach are still able to find the nearest feasible solution. This is often important
in practical engineering optimization applications, because many non-trivial con-
straints are involved.

After using SOMA to optimize the well-known test functions (Chapter 7), it
was then used on three optimization problems from the field of mechanical engi-
neering. This set of problems is useful for testing because 11 other algorithms
(Table 26.2) from the EA domain were already used there. Hence, it offers quite a
rich source of information for comparing new algorithms. All these problems
comprised variables from the continual, integer and discrete domain for the cost
function arguments. All tests have shown that results from SOMA are fully com-
parable with other algorithms especially with DE, which was proven here to be the
best of all methods used. For all problems, 100 simulations were carried out for
two versions of SOMA (AllToOne and AllToAll). All these results are described
discussed in this chapter.

The SOMA algorithm is undoubtedly one of the most promising and novel
methods for non-linear optimization that can be applied generally, and they work
with minimum assumptions with respect to the objective function.

The algorithm requires only the cost value returned from the objective function
for guidance of its seeking for the optimum. No derivatives or other auxiliary in-
formation are needed. Including the algorithm’s extensions discussed in this arti-



Acknowledgements 651

cle, the SOMA algorithm can be applied to a wide range of optimization prob-
lems, which practitioners in the field of modern optimization would like to solve.

All results described here can be very easy checked and repeated by means of C
source code and Mathematica software - all is accessible at [14]. All examples are
predefined there and thus it is easy to use them.

Acknowledgements

This work was supported by the grant No. MSM 26500014 of the Ministry of
Education of the Czech republic and by grants of Grant Agency of Czech Repub-
lic GACR 102/03/0070 and GACR 102/02/0204.



652 References

References

[1] Sandgren, E. (1990). Nonlinear integer and discrete programming in me-
chanical design optimization. Transactions of the ASME, Journal of Me-
chanical Design, 112(2):223–229, June 1990. ISSN 0738-0666

[2] Fu, J.-F., Fenton, R. G. and Cleghorn, W. L. (1991). A mixed integer-
discrete-continuous programming method and its application to engineer-
ing design optimization. Engineering Optimization, 17(4):263–280, 1991.
ISSN 0305-2154

[3] Loh, Han Tong and Papalambros, P. Y. (1991). A sequential linearization
approach for solving mixed-discrete nonlinear design optimization prob-
lems. Transactions of the ASME, Journal of Mechanical Design,
113(3):325–334, September 1991.

[4] Loh, Han Tong and Papalambros, P. Y. (1991). Computational implemen-
tation and tests of a sequential linearization algorithm for mixed-discrete
nonlinear design optimization. Transactions of the ASME, Journal of Me-
chanical Design, 113(3):335–345, September 1991.

[5] Zhang, Chun and Wang, Hsu-Pin (1993). Mixed-discrete nonlinear opti-
mization with simulated annealing. Engineering Optimization, 21(4):277–
291, 1993. ISSN 0305-215X

[6] Chen, J. L. and Tsao, Y. C. (1993). Optimal design of machine elements
using genetic algorithms. Journal of the Chinese Society of Mechanical
Engineers, 14(2):193–199, 1993.

[7] Li, H.-L. and Chou, C.-T. (1994). A global approach for nonlinear mixed
discrete programming in design optimization. Engineering Optimization,
22():109–122, 1994.

[8] Wu, S.-J. and Chow, P.-T. (1995). Genetic algorithms for nonlinear mixed
discrete-integer optimization problems via meta-genetic parameter optimi-
zation. Engineering Optimization, 24(2):137–159, 1995. ISSN 0305-215X

[9] Lin, Shui-Shun, Zhang, Chun and Wang, Hsu-Pin (1993). On mixed-
discrete nonlinear optimization problems: A comparative study. Engineer-
ing Optimization, 23(4):287–300, 1995. ISSN 0305-215X

[10] Thierauf, G. and Cai, J. (1997). Evolution strategies – parallelisation and
application in engineering optimization. In B.H.V. Topping (ed.) (1997).
Parallel and distributed processing for computational mechanics. Saxe-
Coburg Publications, Edinburgh (Scotland). ISBN 1-874672-03-2

[11] Cao, Y. J. and Wu, Q. H. (1997). Mechanical design optimization by mixed-
variable evolutionary programming. Proceedings of the 1997 IEEE Confer-



Acknowledgements 653

ence on Evolutionary Computation, IEEE Press, pp. 443–446.
[12] Lampinen Jouni, ZELINKA, Ivan. New Ideas in Optimization - Mechanical

Engineering Design Optimization by Differential Evolution. Volume 1.
London : McGraw-Hill, 1999. 20 p. ISBN 007-709506-5.

[13] Siddall, James N. (1982). Optimal engineering design: principles and ap-
plications. Mechanical engineering series / 14. Marcel Dekker Inc. ISBN 0-
8247-1633-7

[14] Articles about SOMA algorithm (source codes, graphics animated gallery,
bibliography, see http://www.ft.utb.cz/people/zelinka/soma



27 Scheduling and Production & Control: MA

Pablo Moscato, Alexandre Mendes and Carlos Cotta

27.1 Introduction

This chapter addresses three main problems of the production planning area: Sin-
gle Machine Scheduling (SMS), Parallel Machine Scheduling (PMS) and Flow-
shop Scheduling (FS). Many situations in production environments found in in-
dustries around the world can be modelled as one or a set of them (Baker 1974). It
is easy to find dozens of problem variants in the literature due to different produc-
tion constraints and objective functions. Due to the overwhelming number of
combinations, we focused our discussion on only one of each problem class. They
are:

• SMS with sequence-dependent setup times and with the objective of minimiz-
ing of the total tardiness.

• PMS with sequence-dependent setup times and minimization of the makespan.
• FS with families of jobs, sequence-dependent setup times and minimization of

the makespan.

The three problems are NP-hard. That means finding that under the current con-
jecture that the computational complexity classes P and NP are not equal, it is
widely conjectured that the optimal solution of an arbitrary instance of these prob-
lems cannot be found in polynomial time (Lawler et al. 1993). They also share se-
quence-dependent setup times, which are common in industrial environments and
dramatically increase the complexity of the problem. These times come from the
fact that the machinery usually requires some kind of maintenance (cleaning,
alignment, tooling change, etc.) before starting the production of a given job, or
sets of jobs. The objective functions treated are the total tardiness and the
makespan.

The total tardiness obliges the scheduling to respect production due dates, de-
fined by the clients that make the orders. They are utilized when the industry
wants to deliver the customers’ orders on time, or with the least delay. Moreover,

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



656 27 Scheduling and Production & Control: MA

no penalty is applied if products are completed before their due dates. In other
words, no after-production inventory costs are considered.

The makespan measures the total time of production, marked by the time span
between the production start and the time when the last job leaves the shop floor.
When no setup times are considered, the makespan is constant, but with setup
times, the minimization of this value becomes a challenge. Other important con-
siderations of the problems addressed are as follows:

• A set on independent, single-operation, non-preemptive jobs is available with
ready-time1 zero.

• The machines are continuously available and have no limitation of resources.
• Tooling availability is not a production-limitation factor.
• No machine breakdowns or other contingencies are considered.
• All parameters defining the production environment – processing times, setup

times and due dates – are previously known.

27.2 The single machine scheduling problem

The Single Machine Scheduling is one of the first studied class of problems in the
scheduling area (Graham et al. 1979; Graves 1981). There are many different
types of SMS problems (generally due to different input data and objective func-
tions). One of the simplest to state, but not easy to solve at all, is the problem of
sequencing n jobs, given its processing times and due dates (distinct for each job),
and with the objective function being to minimize the total tardiness. Tardiness is
a regular performance measure, which means that an optimal schedule cannot
have idle times between jobs. Moreover, the tardiness increases only if at least one
of the completion times2 in the schedule also increases. Under these circum-
stances, a valid solution of the problem can be defined as a simple permutation of
the jobs. Using the permutation space representation, the solution space has n!
configurations, all of them representing valid solutions of the problem.

The SMS problem addressed can be extended by the inclusion of precedence
constraints for the jobs, ready-times, resources limitations, etc. From an objective
function’s point-of-view, we may want to minimize the makespan, the total tardi-
ness, the mean tardiness, the number of tardy jobs, or even a combination of these
objectives, which would characterize a multi-criteria3 problem.

It is easy to see the large variety of problems that we may face in practice (Gen
and Cheng 1997). Even looking at very complex industrial manufacturing sys-

1 Ready-time is the time that the job becomes ready to start being processed.
2 Completion time is the time when a given job finishes its processing.
3 In multi-criteria problems, two or more performance criteria, sometimes confronting ones,

shall be optimised. These problems are harder to solve, mainly because of the difficulty
to compare the solutions’ quality. In such cases, Pareto’s optimality criteria should be
employed.



27.2 The single machine scheduling problem 657

tems, it is not hard to find situations in which a simple SMS should be solved (Ow
and Morton 1989). In multiple-operation processes, a single part usually goes
through several machines, where each machine performs a specific job at the part.
Depending on the processes involved, there might be bottlenecks in this sequence,
which can be modelled as SMS problems. Intricate jobs, performed by dedicated
machines fit in that category. These machines are usually very expensive and
probably there will be only one of them in the production environment, being used
continuously. This situation represents a bottleneck and the schedule determina-
tion for this machine will affect the production as a whole. Next, it is shown the
description of the SMS problem addressed in this chapter:

Input: Let n be the number of jobs to be processed in one machine. Let P = {p0,
p2, ..., pn} be the list of processing times, D = {d1, d2, ..., dn} be the list of due
dates for each job and S0 = {s01, s02, ..., s0n} be the list of initial setup times. Let
{Si,j} be a matrix of setup times, where si,j is the time required to set up job j after
the machine has just finished processing job i.

Task: Find a permutation that minimizes the total tardiness of the schedule. Sup-
pose that the jobs are scheduled in the order {π(1), π(2), ..., π(n)}. Then the total
tardiness can be calculated using the Eq. 27.1.

[ ]∑
=

−=
n

k
kktardiness dcTotal

1
)()(,0max ππ (27.1)

Where cπ(k) represents the completion time of job π(k). The cπ(k) values can be cal-
culated using the Eq. 27.2.

( ) [ ]∑
=

− +++=
k

i
iiik pspsc

2
)()(),1()1()1(0 ππππππ (27.2)

It is well known that the problem of sequencing jobs in one machine without
setup times is already NP-hard (Du and Leung 1990). Despite its application to
real world settings, the SMS problem addressed in this chapter has received little
attention in the scheduling literature. In (Ragatz 1993) a branch-and-bound
(B&B) method is proposed, but only small instances could be solved to optimality.
The papers of (Raman et al. 1989) and (Lee et al. 1997) use dispatch rules based
on the calculation of a priority index to build an approximate schedule, which is
then improved by the application of a local search procedure. The ATCS heuristic
presented in (Lee et al. 1997) had an impressive performance for this problem,
considering its simplicity. Three papers using metaheuristics have been proposed
so far. In (Rubin and Ragatz 1995) a new crossover operator was developed and a
genetic algorithm (GA) was applied to a set of test problems. The results obtained
by the GA approach were compared with the ones from a B&B and with a multi-
ple start (MS) algorithm and they concluded that MS outperformed the B&B and
the GA in many instances, considering running time and quality of solutions as
performance measures. Of course, the instances in which MS outperformed B&B
were the ones where the exact method did not find an optimal solution before a
limit on the number of nodes was reached. The B&B was truncated in such cases,



658 27 Scheduling and Production & Control: MA

returning sub-optimal schedules. Given these results, (Tan and Narasimhan 1997)
chose the MS technique as a baseline benchmark for conducting comparisons with
the simulated annealing (SA) approach they proposed. Their conclusion was that
SA outperformed MS in all but three instances, with percentage improvements not
greater than 6%. More recently, (França et al. 2001) proposed a new memetic al-
gorithm (MA) that outperformed the previous approaches. The results presented in
this chapter are an improvement over previously reported results. The BOX cross-
over, together with the multi-population approach (both equal to those described
in Chap. 18) produced a big performance leap.

27.2.1 The test instances

The test set used for the experimental analysis consists of instances that vary from
17 to 100 jobs. This set was constructed from Asymmetric Travelling Salesman
Problem (ATSP) instances which optimal solutions are available in the literature.
All ATSP instances used for this purpose in this work, as well as their optimal so-
lutions, are available at the TSPLIB website4.

It is clear that the ATSP and the SMS problems share similarities and they have
been highlighted for decades. The most important relates the SMS’s setup times
with the ATSP’s distance matrix. This correspondence suggests a transformation
procedure to create an “interesting set” of SMS instances starting from an arbitrary
ATSP instance with known optimal solution. We propose a three-step procedure
to generate such SMS instances. Each SMS instance is composed of a matrix of
setup times and three lists of n integers. In the transformation, the setup times ma-
trix will be equal or be a multiple of the ATSP’s distance matrix. Then, a simple
procedure generates the three lists required to complete the SMS instance. Sup-
pose that the permutation {π(1), π(2), ..., π(n)} represents the sequence of cities in
the optimal tour for the ATSP instance.

Step 1 - Generation of the S0 list: Let [π(k), π(k+1)] be the pair of adjacent nodes
of the ATSP optimal tour with the largest distance between cities (named dist). Let
s0,π(k+1) be equal to the cost of this arc, distπ(k),π(k+1). Let all other s0j, j ≠ π(k+1) be
greater than s0,π(k+1). Moreover, the initial job of the optimal SMS solution will be
π(k+1).
Step 2 - Generation of the P list: Initially, re-enumerate the nodes so that π(1) ⇒
π(k+1); π(2) ⇒ π(k+2); ...; π(n) ⇒ π(k). Then, construct the list {pπ(1), pπ(2), ...,
pπ(n)} in such a way that pπ(1) < pπ(2) < ... < pπ(n).
Step 3 - Generation of the D list: Construct the due dates in such a way that dπ(1) <
dπ(2) < ... < dπ(n) and dπ(i) ∈ [cπ(i) - pπ(i), cπ(i)] ∀ π(i): i = 1, ..., n, where cπ(i) is the
completion time of job π(i) following the ATSP optimal sequence.

It is worth emphasizing that we are not stating that the transformation proce-
dure described above preserves the ATSP optimal tour permutation as the SMS

4 http://www.crpc.rice.edu/softlib/tsplib/



27.2 The single machine scheduling problem 659

optimal sequence. Consequently, it is an open problem to find the optimal tardi-
ness value of the resulting SMS instances. Nevertheless, in all tests we have exe-
cuted (using the TSPLIB instances as the basis of the transformation) we have
never reached a better tardiness than the one obtained with the jobs in the ATSP
optimal permutation. As a consequence, we will assume that such values can be
considered at least as very high-quality upper bounds.

We will now describe the intuition behind the suggested transformation. The
direct use of the distance matrix as the setup times between jobs is pretty clear.
Suppose that all processing times are zero in the SMS problem. In this case, the
SMS problem is basically a generalization of the ATSP on which we have the ex-
tra constraint of due dates to visit each city.

The idea of starting the sequence with the setup corresponding to the largest
distance belonging to the optimal ATSP tour aims to avoid that a change in the
initial job produces a reduction in the sum of the completion times, what could
make the optimal sequence be lost. Another important point is the requirement
that distπ(k+1),π(k) < distπ(k),π(k+1). However, these rules are not enough. Let us show
an example where the transformation does not preserve optimality (see Fig. 27.1).

Fig. 27.1. An example where the optimal solution of the ATSP instance is not the optimal
permutation of the SMS instance.

In Fig. 27.1, on the left side there is an ATSP instance composed of four cities.
As the internal arcs are valued “infinite”, the only two tours that avoid using one
of these edges are [B C D A] – with a total length of 800 – and [A D C B] – with a
total lenght 1003. Therefore, consider the optimal tour [B C D A]. For the sake of
simplicity, ignore the processing times and due dates of the corresponding SMS
problem as we are interested only in the effect caused by the setup times. On the
upper-right portion of the Fig. 27.1, the presumed optimal sequence is shown, with
a makespan of 800 – equal to the optimal ATSP tour length. Consider the situation
where the initial arc has a very high value in the opposite direction. In this case,
according to the transformation procedure, it could be replaced by a value greater
than s0,π(k+1) but smaller than the original. In the example, it was substituted by
201, what is much smaller that 1000. The consequence is that the real optimum
makespan becomes lower than the presumed one and the transformation fails to
preserve optimality. If in Step 1, the restriction distπ(k+1),π(k) < distπ(k),π(k+1) is not ob-
served, the transformation might not be valid. Thus, a necessary condition is that



660 27 Scheduling and Production & Control: MA

the initial arc must always have a larger value when it is considered in the direc-
tion of the presumed optimal solution than when it is considered in the opposite
direction.

The steps 2 and 3 have the same function. When we order the processing times
and the due dates following an increasing sequence, we avoid that any change in a
job position leads to a reduction in total tardiness. The way that the P and D lists
are generated produces instances that are solvable to optimality by the Shortest
Processing Time (SPT) and by the Earliest Due Date (EDD) heuristics. Methods
that use such procedures, or their variants, will solve the instances instantly, con-
sequently producing biased results. Nevertheless, in order to evaluate the memetic
algorithm, which does not employ any such heuristics in its operators, the in-
stances are absolutely adequate.

27.2.2 The memetic algorithm approach

The MA utilized in the SMS problem is very similar to that presented for the Gate
Matrix Layout problem (see Chap. 18). Therefore, we refer the reader to that chap-
ter and we will focus only on a few minor differences between them.

The representation chosen is quite intuitive, with a solution being represented
as a chromosome with the alleles assuming different integer values in the [1, n] in-
terval. In other words, a solution is a permutation of n integers.

Two crossover operators were tested: BOX and OX. In the first one, after
choosing two parents, several fragments of the chromosome from one of them are
randomly selected and copied into the offspring. In a second phase, the offspring’s
empty positions are sequentially filled with the alleles present in the chromosome
of the other parent, from left to right. The procedure tends to perpetuate the rela-
tive order of the jobs and has a better overall performance over the original OX
crossover (Goldberg 1989), which selects a single block of one of the parents to be
copied into the offspring. In this implementation, the parent that copies its block(s)
into the offspring is the leader of the cluster, and the supporter will complete the
empty positions (see Fig. 27.2).

Fig. 27.2. Crossover operators for the SMS problem – OX and BOX

The number of individuals created in every generation is very high – two times
the number of individuals in the population. This value is consequence of the ac-



27.2 The single machine scheduling problem 661

ceptance policy for the offspring, which is very restrictive. Therefore in order to
balance the large number of discarded individuals, we must create many of them
every generation.

In this implementation, we employed the all-pairs and the insertion neighbour-
hoods, just like in the VLSI problem. Due to the complexity of each individual
evaluation, a neighbourhood reduction based on the setup times’ values had to be
developed. It was observed that most good schedules have a common characteris-
tic: the setup times between jobs in these solutions are very small. This is reason-
able, since schedules with small setup times between jobs will be less lengthy,
generating fewer delays. Next, we show two diagrams illustrating how the sched-
ule is modified if jobs i and j swap their positions (see Fig. 27.3) and if job i is in-
serted immediately before job j (see Fig. 27.4).

Fig. 27.3. Diagram of a swap move in an all-pairs neighbourhood and its implications on
the schedule

Fig. 27.4. Diagram of a move in an insertion neighborhood and its implications on the
schedule



662 27 Scheduling and Production & Control: MA

Based on the δ variations, it is possible to create rules to determine if a given
move should be evaluated or not. Among the several possibilities of combinations,
the best results came, for the all-pairs neighbourhood, if we evaluate the swap
move only if ‘at least one δ value improves in both modified regions’. For the in-
sertion neighbourhood, the best policy is to test an insertion move only ‘if the sum
of the δ variables in at least one modified region improves’. In mathematical form,
these rules can be written as logical clauses:

• [(δ1a < δ1b) ∨ (δ2a < δ2b)] ∧ [(δ3a < δ3b) ∨ (δ4a < δ4b)], for the all-pairs neigh-
bourhood.

• (δ1a < δ1b + δ2b) ∨ (δ2a + δ3a < δ3b), for the insertion neighbourhood.

Since each individual evaluation requires a considerable computational effort5

reductions like these save a lot of time. In fact, although the reduction policies are
very strict, reducing the neighbourhoods to less than 10% of their original size,
they maintain the search focused on promising moves. More information on the
several reduction policies tested, as well as performance comparisons, can be
found in (França et al. 2001).

27.2.3 The SMS computational results

As said before, the SMS instances use the ATSP distance matrices. The only
flexible parameters are the processing times and the due dates. By combining
these two components of the input, we classified the instances in four groups. The
parameters are generated according to the rules:

Processing Times:

LOW: pk ∈ [0, ¼.max(sij)] ∀ k: k = 1, ..., n

HIGH: pk ∈ [0, 2.max(sij)] ∀ k: k = 1, ..., n

Due dates:

HARD: dk = ck ∀ k: k = 1, ..., n

SOFT: dk ∈ [ck - pk, ck] ∀ k: k = 1, ..., n

The LOW rule makes the setup times a more critical aspect in the problem, em-
phasizing its “ATSP-like character”. In these instances, the processing times are
small, compared to the setup times. The HIGH policy, on the other hand, makes
the processing times be more relevant in the schedule determination. Their values
can be up to two times larger than the maximum setup time.

The HARD policy generates instances in which the total tardiness of the sched-
ule that corresponds to the optimal ATSP solution equals to zero. This value in

5 Each individual evaluation is O(n) and the complete neighbourhoods are O(n2).



27.2 The single machine scheduling problem 663

guaranteed because the due dates are placed over the jobs’ completion times,
when the production follows the optimal ATSP tour. Nevertheless, it is a quite dif-
ficult problem, since only one – or perhaps a few – of the n! solutions has a zero
tardiness. The SOFT instances, on the other hand, have greater-than-zero optimal
total tardiness and are better suited for making relative comparisons, where per-
centage deviations from optimal value are numerically necessary. Next, in Table
27.1, we show some characteristics of the original ATSP instances such as number
of cities and distance between cities – minimum and maximum distij.

Table 27.1. Number of cities (jobs), and distance-between-cities interval (setup times) of
the ATSP instances

Instance name n Minimum distij Maximum distij

br17 17 0 74
ftv33 34 7 332
ftv55 56 6 324
ftv70 71 5 348
kro124p 100 81 4,545

The instances tried to cover a wide range of number of jobs. Moreover, the re-
sulting SMS setup times also cover a wide range. The Tables 27.2 and 27.3 show
all the results obtained for the set of instances created. The name of the instance is
in the first column and is divided in two parts. The initial part refers to the name of
the original ATSP instance. Then, the two capital letters indicate if the instance is
LOW or HIGH, and HARD or SOFT. The second column indicates the presumed
optimal tardiness. Next to it, we have the average total tardiness found using the
OX and the BOX recombination operators, considering 10 runs for each instance.
Written in bold letter, subscript, there is the number of times that the optimal solu-
tion was found, out of 10 trials. Finally, in the columns labeled ‘CPU time’ it is
shown the average CPU time.

27.2.3.1 Single population tests

The Table 27.2 shows the results for the single population memetic algorithm, us-
ing the OX and BOX crossovers. The maximum CPU time was fixed at four min-
utes, but several times the “presumed optimal” (i.e. the permutation corresponding
to the optimum ATSP tour) was reached before this limit. The equipment utilized
is a 366 MHz Pentium II Celeron with 128 MB RAM.

The results in Table 27.2 show that the memetic algorithm successfully solved
most of the instances. The OX crossover had a worse overall performance, com-
pared to the BOX, failing in many of the 100-job instances. Concerning this crite-
rion, the finding of 167 and 180 optimal solutions – out of 200 possible – for the
OX and BOX crossovers, respectively, can be considered a very reasonable rate of
success. Based on the results, we can also conclude that the 100-job instances are
in the threshold of the search capability of the algorithms, because the number of
optimal solutions decreased considerably. For the kro124pLS, for example, the
“presumed optimal” was found only once in twenty trials. Probably, for instances



664 27 Scheduling and Production & Control: MA

with more than 100 jobs, the method might fail to find any optimal solutions and
more features will have to be included in the algorithm in order to increase its
search power. Another important point is the CPU time required by each configu-
ration. In general, the BOX needs less CPU time than the OX to find the optimal
solutions. This characteristic becomes more evident in the ftv70 and kro124p sets
of instances.

Table 27.2. Results for the single population memetic algorithm

Instance
name

Presumed
optimal
tardiness

OX
Average
Tardiness

BOX
average
tardiness

OX CPU
time (sec.)

BOX CPU
time (sec.)

br17LH 0 010 010 0.1 0.1
br17LS 52 5210 5210 0.1 0.1
br17HH 0 010 010 0.1 0.1
br17HS 547 54710 54710 0.1 0.1
ftv33LH 0 010 010 2.1 2.1
ftv33LS 664 66410 66410 2.8 2.6
ftv33HH 0 010 010 1.3 1.3
ftv33HS 5,324 5,32410 5,32410 1.5 1.4
ftv55LH 0 010 010 17.4 13.8
ftv55LS 1,170 1,17010 1,17010 50.9 19.8
ftv55HH 0 010 010 6.9 8.0
ftv55HS 8,515 8,51510 8,51510 12.9 14.5
ftv70LH 0 918.67 010 148.5 46.0
ftv70LS 1,506 1,557.48 1,50610 165.0 70.1
ftv70HH 0 010 010 41.8 23.6
ftv70HS 12,368 12,36810 12,36810 40.3 35.3
kro124pLH 0 23,872.02 22,717.13 229.5 205.5
kro124pLS 26,111 74,636.30 68,618.81 240.0 224.3
kro124pHH 0 4,710.67 010 157.3 107.1
kro124pHS 223,890 238,114.23 231,997.56 220.4 185.5

* Total optimal solutions
found

*167 *180

27.2.3.2 Multiple population tests

The multiple population memetic algorithm aims to validate the use of multiple
populations for the SMS problem. Using the results presented in the Chap. 18 –
Gate Matrix Layout Problem – as a guideline, the number of populations was
fixed at four and the migration policy used was the so-called 1-Migrate. The
maximum CPU time remained at four minutes and the results are presented in Ta-
ble 27.3.

The multiple population approach had a better performance than the single
population one. The number of presumed optimal solutions found was greater –
170 and 189 against 167 and 180 in the single population version. With the use of
the BOX crossover, we attained very strong results even for the 100-job instances,
what makes us believe that the method could deal with larger problems. In this



27.3 The parallel machine scheduling problem 665

test, the relation between CPU time’s requirements was the same. The BOX is
much more efficient than the OX, reaching the optimal solutions much faster. Still
regarding the CPU time, sometimes the multiple population approach is slower
than the single population, especially for the smaller instances. This was already
expected since the algorithm had to evolve four populations instead of only one.
The problem must have a sufficient size – and complexity – in order to take ad-
vantage of the genetic drift effect (see Chap. 18) and be noticeable from computer
experiments.

Table 27.3. Results for the multiple population memetic algorithm

Instance
name

Presumed
optimal
tardiness

OX
average
tardiness

BOX
Average
Tardiness

OX CPU
time (sec.)

BOX CPU
time (sec.)

br17LH 0 010 010 0.1 0.1
br17LS 52 5210 5210 0.1 0.1
br17HH 0 010 010 0.1 0.1
br17HS 547 54710 54710 0.1 0.1
ftv33LH 0 010 010 1.7 2.1
ftv33LS 664 66410 66410 3.4 2.6
ftv33HH 0 010 010 1.2 1.6
ftv33HS 5,324 5,32410 5,32410 1.6 2.0
ftv55LH 0 010 010 43.8 13.6
ftv55LS 1,170 1,17010 1,17010 40.1 22.5
ftv55HH 0 010 010 8.4 8.1
ftv55HS 8,515 8,51510 8,51510 12.8 8.7
ftv70LH 0 010 010 122.7 48.3
ftv70LS 1,506 1,684.78 1,50610 172.9 53.6
ftv70HH 0 010 010 39.2 18.0
ftv70HS 12,368 12,36810 12,36810 50.8 35.1
kro124pLH 0 48,536.51 26,175.96 231.7 206.6
kro124pLS 26,111 72,553.70 53,807.44 240.0 227.7
kro124pHH 0 3,337.58 010 159.3 118.9
kro124pHS 223,890 240,213.13 233,074.39 228.1 141.3
* Total optimal solutions
found

*170 *189

27.3 The parallel machine scheduling problem

The second part of this chapter addresses the PMS problem. It consists of schedul-
ing a given set of n jobs to m identical parallel machines with the objective of
minimizing the makespan. As in the SMS problem, there are sequence-dependent
setup times between jobs. The PMS can be considered a generalization of the SMS
since it takes into account several machines, instead of only one. In fact, the solu-
tion found to deal with bottleneck situations like those described in Sect. 27.2 is
usually the addition of more machines, transforming the SMS problem into a PMS
one. Of course, sometimes this cannot be done, generally due to financial limita-



666 27 Scheduling and Production & Control: MA

tions. The resulting problem can be faced as two problems. The first is how to as-
sign the jobs to the several machines and the second is how to schedule the jobs in
each machine. The PMS with setup times is frequently found in real world settings
where the setups are not negligible, especially in the paper, chemical and textile
industries.

Previous PMS-related works are dated back to 1984. In that year, Dearing and
Henderson (1984) developed an integer linear programming model for loom as-
signment in a textile weaving operation. They reported results found through the
rounding of the solutions obtained by the linear relaxation of the integer model. In
1987, Sumichrast and Baker (1987) proposed a heuristic method based on the so-
lution of a series of 0-1 integer subproblems, improving the results obtained in
(Dearing and Henderson 1984). These two articles deal with a slightly different
problem because they assume that a job can be split among several machines. The
case being addressed in this chapter is combinatorially more complex. To the au-
thors’ knowledge, very few papers have reported computational results for this
problem. The work of Frederickson et al. (1978) present approximate algorithms
derived from an equivalence between the PMS and the Travelling Salesman Prob-
lem (TSP). França et al. (1996) used a tabu search-based (TS) heuristic in connec-
tion with a powerful neighborhood scheme that employs the concept of local and
global neighbors. Later, Mendes et al. (2002) proposed a MA approach for the
problem, comparing the results with the ones found in (França et al. 1996).

The PMS problem is a difficult combinatorial problem proved to be NP-hard in
a strong sense because it is equivalent to the TSP when the number of processors
equals one (Baker 1974). Next, it is shown the description of the PMS problem.

Input: Let n be the number of jobs to be processed in m identical machines. Let
P = {p1, p2, ..., pn} be the list of the jobs’ processing times, and S0 = {s01, s02, ...,
s0n} be the list of initial setup times. Let {Si,j} be a matrix of setup times, where si,j

is the time required to set up job j after the machine has just finished processing
job i.

Task: Assign the jobs to the machines and find the permutation in each machine
that minimizes the production makespan. In order to calculate the makespan, ini-
tially consider that π(k,l) represents the k-th job of machine l. The total production
time in machine l, represented by Γl, can be calculated by the Eq. 27.3.

[ ]∑
=

− +++=Γ
ln

i
lilililll psps

2
),(),(),,1(),1(),1(0 πππππ (27.3)

Where nl is the number of jobs processed by machine l. Thus, the makespan is the
maximum production time among all machines, being represented by the Eq. 27.4.

[ ]
i

iMakespan Γ= max (27.4)



27.3 The parallel machine scheduling problem 667

27.3.1 The test instances

The instances used in the computational experiments were randomly generated.
The number of jobs was fixed at 20, 40, 60 and 80, and the number of machines at
2, 4, 6 and 8. Processing times were generated following a discrete uniform distri-
bution DU(1, 100). Setup times were divided into two categories: small setup
times – with values in the interval [1, 10] – and large setup times – with values in
the interval [1, 100]. The setup times were also generated according to two possi-
bilities: structured and non-structured. The structured setup times follow the trian-
gular inequality, that is, sij ≤ sik + skj, ∀ i, j, k; k ≠ i, j. The non-structured setup
times do not follow the triangular inequality. We considered 10 replications for
each combination of number of jobs and machines.

27.3.2 The memetic algorithm approach

The MA utilized for the PMS problem is very similar to the GMLP (see Chap. 18,
this book) and the SMS. The differences are concentrated on the crossover type –
the BOX was replaced by the OX – and on the use of a single population, instead
of several ones. Now, let us begin by addressing the individual representation for
this problem.

The representation chosen for the PMS is a chromosome with its alleles assum-
ing different integer values in the [1, n] interval. In order to include information
about the m machines, m-1 cut-points (represented by a ‘*’ symbol) were intro-
duced to define the jobs assignment to each machine. For instance, a chromosome
[1 4 6 * 3 7 2 10 * 8 9 5] is a possible solution for a problem with 10 jobs and 3
machines. The cut-points are in positions 4 and 9. Thus, machine 1 executes op-
erations [1 4 6], in this order; machine 2 executes operations [3 7 2 10] and ma-
chine 3 performs operations [8 9 5]. As the machines are identical, no distinction
must be made between the cut-points.

As said before, the crossover operator implemented is the Order Crossover
(OX). Because of the cut-points’ role and their effect in the schedule, the OX in
this case behaves similarly to the BOX. The reason is that any cut-point position
change influences the job/machine assignment of the entire sequence, resembling
the kind of perturbation that would be caused by the BOX. The difference between
the OX implemented and the originally introduced by (Goldberg 1989), is that the
offspring is filled from the beginning of the sequence and not after the piece cop-
ied from the first parent. The Fig. 27.5 shows a diagram of how the crossover
works.



668 27 Scheduling and Production & Control: MA

Fig. 27.5. Diagram of the OX crossover used for the PMS problem

In the Fig. 27.5, the initial fragment inherited from the leader parent consists of
the alleles [2 10 * 8], and they are copied to the same positions in the offspring.
The offspring’s empty positions were then filled according to the order that the al-
leles appear in the chromosome of the supporter parent. Repeated alleles are
skipped as well as cut-points, if there are already m-1 cut-points present in the off-
spring.

The local search utilized is based on the all-pairs swap and the insertion neigh-
bourhoods and is applied to every new individual. No reduction scheme was em-
ployed for this problem, since the largest instance consisted of 80 jobs and 8 ma-
chines, which is still a computationally tractable size.

27.3.3 The PMS computational results

The previous best results in the literature on the PMS problem are presented in
(França et al. 1996) and (Mendes et al. 2002). In (França et al. 1996) it was also
introduced a set of instances for which optimal solutions or high quality lower
bounds were calculated. In Table 27.4, we compare the MA against these values
and also against upper bounds obtained by an intensively executed tabu search
(TS) algorithm, named long tabu. The long tabu usually required several hours of
execution, but at the end, high quality upper bounds were found.

The percentage deviation from the lower bound/optimal solution is the per-
formance measure for problems with 2 and 4 machines. The exception is the
4-machine problem with structured instances and sij ∈ [1, 10]. For this problem set
and also for all structured problems with 6 and 8 machines, the deviation is related
to the long tabu upper bounds.

A variant of the long tabu method is also presented in (França et al. 1996). It is
a faster, less complex TS named fast tabu. Although less powerful, the fast tabu
method is very efficient in finding good schedules for the PMS problem. Since the
computational time required by this algorithm was much lower compared to the
long tabu, we concluded it would be a fair opponent for the MA. Thus, the CPU
times utilized by the MA are the same of the fast tabu, which vary from a few sec-
onds up to five minutes, depending on the instance size.



27.3 The parallel machine scheduling problem 669

Table 27.4. Results for the PMS instances

Non-structured problems Structured problems
sij ∈ [1, 10] sij ∈ [1, 100] sij ∈ [1, 10] sij ∈ [1, 100]

n / m TS MA TS MA TS MA TS MA
20 / 2 1.6 1.8 2.1 3.4 0.5 0.5 0.6 0.3
40 / 2 3.8 3.0 4.6 4.4 0.9 0.6 0.7 0.3
60 / 2 5.1 3.9 5.2 5.2 0.9 0.5 0.5 0.3
80 / 2 5.4 4.3 5.1 4.7 1.1 0.5 0.5 0.2
20 / 4 5.3 4.4 6.0 6.6 0.3 0.0 1.9 1.7
40 / 4 6.5 8.4 6.8 8.9 0.2 -0.1 1.6 1.3
60 / 4 7.0 9.1 7.2 9.9 0.3 -0.1 1.1 0.9
80 / 4 6.7 8.6 6.9 9.5 0.3 -0.1 0.8 0.8
20 / 6 0.8 1.3 1.6 1.1 0.7 -0.2 0.4 -0.8
40 / 6 1.0 4.1 0.8 3.8 0.2 0.3 0.2 0.1
60 / 6 0.4 4.5 0.7 5.0 0.2 0.2 0.2 0.1
80 / 6 0.7 4.2 0.3 4.5 0.2 0.1 0.3 0.3
20 / 8 1.4 1.7 1.0 0.6 1.0 -0.2 1.4 -0.7
40 / 8 1.0 6.6 1.1 4.1 0.2 0.2 0.7 0.2
60 / 8 0.7 5.3 0.8 5.2 0.1 0.3 0.3 0.4
80 / 8 0.4 4.8 0.9 5.5 0.1 0.2 0.3 0.5
Average 3.0 4.7 3.3 5.1 0.5 0.2 0.7 0.4

The MA was programmed in Java JDK 2.0 and run using a 366 MHz Pentium
II Celeron. The TS were programmed in C and executed in a Sun Sparc 10 Work-
station. The Java JDK 2.0 and the C compiler are very similar in terms of speed,
with some advantage for the C compiler. On the other hand, the Sun Sparc 10 is a
little slower than the Pentium II Celeron. For this reason we believe the speeds of
both systems are somewhat equivalent, although this conclusion might not be ac-
curate.

The Table 27.4 shows a comparison between the fast tabu and the MA ap-
proaches for the PMS problem. Looking at the averages row, it is clear that the
methods had very different behaviours considering the instances structures. The
non-structured instances were easier for the TS than for the MA. The opposite oc-
curred for the non-structured ones. The deviations are very small in terms of per-
centage points, except for a few configurations where some figures are close to
10%. The negative figures in some of the MA columns mean that the makespans
found were better than the upper bounds provided by the long tabu strategy.

There is a clear degradation in the MA as the number of machines increases,
while the TS maintains an average performance, independently of the problem
size. There is a strong probability that this was due to the local search employed in
the MA. The simple all-pairs and insertion neighborhoods could be better suited
for this problem if they utilized information about the cut-points. In fact, both lo-
cal search and crossover operators are dealing with the PMS the same way they
would deal with a SMS problem; all alleles are being treated equally. There is no
distinction between jobs and cut-points from the genetic operators’ point-of-view.
More intelligent operators should use information of the problem’s structure and
the cut-points presence in the chromosome. For instance, the separation of the job-



670 27 Scheduling and Production & Control: MA

to-machine assignment and the intra-machine scheduling in the local search seems
to be a reasonable starting point. A neighborhood reduction similar to that em-
ployed in the SMS should also be a good choice. Nevertheless, despite the relative
lack of problem-driven properties, the general-use crossover and local search op-
erators performed quite well against the well-tailored fast tabu. That increases our
belief that the MA’s refined structure is playing an important role in the algo-
rithm’s performance. Furthermore, as there is plenty of space for improvement in
the operators, we believe that future contributions in this issue will probably make
the MA surpass the TS in most instances types.

27.4 The flowshop scheduling problem

The last part of this chapter addresses a flowshop problem (FS), which main char-
acteristic is to group the jobs in families. This is a quite common real-
manufacturing characteristic since manufacturers want to take advantage of group
technology (GT) environment (Schaller et al. 2000). In the GT scheduling prob-
lem, a part family is composed of several parts (in this work represented by the
jobs) that have similar requirements in terms of tooling, setup costs and operations
sequences. Usually, the families are assigned to a manufacturing cell based on op-
eration sequences so that materials flow and scheduling are simplified. This proc-
ess may result in a situation where each family is processed by a certain set of ma-
chines, and all jobs (parts) are processed following the same technological order.

In this production environment, the manufacturing cells resemble the traditional
flowshops except for the existence of multiple part families. Since the jobs in the
same family share similar tooling and setup requirements, usually a negligible or
minor setup is needed to change from one part to another and thus can be included
in the processing times of the jobs. However, a major sequence-dependent setup is
needed to change the processing environment between two part families.

The FS with families of jobs is a difficult combinatorial problem proved to be
NP-hard. When the number of jobs in each family equals one, the problem be-
comes a traditional FS problem with sequence-dependent setup times. This prob-
lem is proved to be NP-hard when the number of machines is greater than one
(Gupta and Darrow 1986). Next, it is shown the description of the FS problem be-
ing addressed in this section.

Input: Let n be the number of jobs and m be the number of machines. All the jobs
are processed following the same technological order, creating the flowshop struc-
ture. Let f be the number of families. Consider also a setup time to change the pro-
duction from one family to another. Let {Si,j

l} represent these setup times, where
si,j

l is the setup time of family j after family i was processed, in machine l. Finally,
let {Pi,j} be a matrix of processing times, where pi,j is the processing time of job i
in machine j.

Task: Find the permutation of the families, and of the jobs within these families,
which minimizes the production makespan. Calculating the makespan for this



27.4 The flowshop scheduling problem 671

problem is not an easy task. Let us initially suppose that the families are scheduled
in the order {π(1), π(2), ..., π(f)}and the order of the jobs within family f is given
by the sequence {σf(1), σf(2), ..., σf(nf)}, where nf is the number of jobs in family f.

Moreover, let m
if

tt )(σ be the total processing time within family f, until job σf(i), in

machine m; i.e., the time span from when the machine finished its setup and is
ready to process the first job of family f until the job σf(i) is finished. This value
can be calculated as:

∑
=

+=
i

z
mz

m
i

m
i fff

pittt
1

),()()( σσσ (27.5)

Where m
if

it )(σ is the idle time6 within family f accumulated until job σf(i). In the

first machine, no idle times are allowed, and the production flows without any in-
terruption. That simplifies the equation, making it become the sum of the job’s
processing times within family f. But in the other machines, idle times might oc-
cur, depending on the schedule. The completion time of the i-th job of the f-th

family in machine m, represented by m
if

c )()(πσ can thus be calculated as:

[ ]
��������� ������� ��

)(familywithintimetotal

)(

)(familybeforetimetotal

1

1
)1(),()()( )()()()(

f

m
i

f

f

z

m
zz

m
n

m
i fzzf

ttsttc

π

σ

π

ππσσ ππππ
++= ∑

−

=
+ (27.6)

The first part of the Eq. 27.6 calculates the total processing time before the f-th
family, taking into account all the setup times, processing times and idle times be-
fore it. The second part calculates the total processing time within family π(f)
(processing times + idle times) until job )()( ifπσ . Now let us explicit the idle

times calculation. Idle times occur always when a machine finishes processing a
certain job, or completes the family setup, and the next job is still being processed
in the previous machine. That creates a gap in the schedule, forcing the machine to
wait until the next job becomes available. The idle time within family π(f), accu-
mulated until job )()( ifπσ can be calculated as:

( )

( )
����� ������ ��

�������� ��������� ��

)(jobbeforeandjobswithintimesidle

1
)1(

1
)(

familyth-theofjobfirstthebeforejusttimeidle

)(),1()(
1

)1()(

)(

)()(

)1()1()()(

,0max

,0max

i

i

z

m
z

m
z

f

m
ff

m
n

mm
i

f

ff

ffff

cc

sccit

π

ππ

ππππ

σ

σσ

ππσσσ

∑
=

−
−

−
−

−++

++−=
−− (27.7)

The first part of the Eq. 27.7 calculates the idle time before the first job of the
f-th family. For doing so, it uses information about the completion time of the pre-
vious family’s last job, plus the setup time between the f-th family and its prede-

6 Idle times are periods when the machine is not operating because it is waiting for the next
job to become available.



672 27 Scheduling and Production & Control: MA

cessor. The second part adds up the idle times between every two consecutive jobs
of the f-th family, until job )()( ifπσ . The completion times of the previous job in

the present machine (m) and of the present job in the previous machine (m-1) are
utilized. The makespan is then calculated iteratively, job by job, machine by ma-
chine, being represented by the last job’s completion time in the last machine.

In view of the NP-hard nature of the general FS problem, most researchers have
focused on developing heuristic procedures that provide good permutation sched-
ules (in which the order of job processing is the same on all machines) within a
reasonable amount of computational time. However, there is no guarantee that a
permutation schedule will be optimal when the shop contains several machines. In
fact, it is very likely that the optimal schedule will have different job-permutations
in each machine. However, considering different job-permutations increases the
resulting computational complexity so much that the problem becomes intractable
even for very small instances. The usual approach is then to assume the same job-
permutation for all machines, reducing the problem’s complexity.

Recent reviews (Allahverdi et al. 1999; Cheng et al. 2000) showed that most
prior research on manufacturing cell scheduling has assumed sequence-
independent setup times. For the flowshop manufacturing cell scheduling problem
involving sequence-dependent setup times, (Hitomi et al. 1977) described a simu-
lation model and showed that the scheduling rules considering explicitly se-
quence-dependent setups outperformed rules which did not explicitly do so. Real-
izing this, (Schaller et al. 2000) developed and tested several heuristic algorithms
for minimizing the makespan in a FS with sequence-dependent family setup times.

27.4.1 The test instances

The instances utilized in this paper are the same presented in (Schaller et al. 2000)
and are divided into three classes. In each class, processing times are random inte-
gers following a discrete uniform distribution DU(1, 10). As in the previously pre-
sented scheduling problems, the hardness depends on the balance between average
processing times and the average setup times. Due to this processing times/setup
times relation, three different classes of problems were used in the computational
experiments. The setup times follow discrete uniform distributions in the ranges:

• Small setup times (SSU): DU(1, 20)
• Medium setup times (MSU): DU(1, 50)
• Large setup times (LSU): DU(1, 100)

According to these definitions, in the SSU-class instances, the ratio defined by
average family setup time/average job processing time is approximately 2:1; in the
MSU class, the ratio is 5:1, and in the LSU the ratio jumps to 10:1.

Moreover, problems were generated with the number of families varying be-
tween 3 and 10, and the number of jobs per family between 1 and 10. The number
of machines varied between 3 and 10. For each combination of problem parame-
ters, there are 30 problem instances. As an example of the notation, consider the



27.4 The flowshop scheduling problem 673

LSU108 set of problems: it consists of 30 instances with setup times in the [1, 100]
interval, 10 families of jobs, 10 jobs per family at maximum and 8 machines. Con-
sidering all configurations tested, we obtain a total of 900 problem instances.

27.4.2 The memetic algorithm approach

The MA utilized for the FS problem follows the same structure of the PMS one. In
order to describe the peculiarities of the algorithm for this specific problem, we
will begin with the individual representation.

The FS scheduling problem has a structure that allows its division into two
parts: the schedule of the families and the schedule of the jobs within the families.
The representation adopted takes this division into account and is illustrated in
Fig. 27.6. It consists of an arbitrary solution for a problem with twelve jobs and
four families. Family 1 consists of jobs [1, 2, 3]; family 2 consists of jobs [4, 5, 6,
7]; family 3 of jobs [8, 9] and family 4 consists of jobs [10, 11, 12]. The process-
ing sequence of the families is [1, 4, 2, 3]. Moreover, the jobs in family 1 are
processed in the sequence [2, 1, 3]; family 2 in the order [7, 4, 6, 5], family 3 in
the sequence [8, 9] and finally family 4 in the order [11, 12, 10].

Fig. 27.6. Diagram of the individual representation utilized in the FS problem

The representation divides the solution into f+1 independent parts making the
local search, crossover, mutation and other chromosome-level operators be exe-
cuted separately within each part, without affecting the rest of the solution – which
is reminiscent to divide-and-conquer strategies. The computational effort required
by the local search is especially reduced due to this chromosome division.

The crossover utilized was the OX, already described in previous sections. The
difference is that the OX is applied within each part of the chromosome, sepa-
rately (see Fig. 27.7).



674 27 Scheduling and Production & Control: MA

Fig. 27.7. Diagram of the OX crossover utilized in the FS problem

In Fig. 27.7, the OX crossover starts by selecting parts of the leader’s genetic
material to be copied into the offspring. In the example, these parts are circled.
This information is copied into the chromosome labeled as ‘Initial phase’. Note
that only one piece is copied from each part of the chromosome. In the final
phase, the supporter parent completes the offspring with its genetic information,
with each part being filled from left to right, following the sequence of non-
repeated alleles.

The local search scheme adopted is the same utilized in the PMS problem: all-
pairs plus insertion neighborhoods, without neighborhood reduction. In this prob-
lem, the separation of the chromosome into parts has reduced the local search
computational effort and no neighborhood reductions were necessary. Just to illus-
trate the effort-reduction effect when applying local search in an individual with
five families and 10 jobs per family, the algorithm had in fact to apply the local
search in six 10-allele sized individuals. A much easier task than applying a single
local search in an individual with 60 alleles.

27.4.3 The flowshop computational results

The previous best results for the FS problem available in the literature were pre-
sent in (Schaller et al. 2000). In that work, high quality lower bounds are provided,
and the best heuristic for the problem is named CMD. It employs a dispatch rule
together with a local search-based method.

The MA was programmed in Java JDK 2.0 and run using a Pentium II 266
MHz. Since the CMD is a constructive heuristic with a local search phase, it runs
very quickly. The CPU times are below three seconds. For the MA, after a few
considerations, we concluded that a 30-second limit was sufficient, given the in-
stances’ sizes. Therefore, the algorithm stops only if the lower bound is reached -
i.e., the optimal solution is found – or after 30 seconds of CPU time. The Tables
27.5, 27.6 and 27.7 show the results for the MA and the CMD algorithm consider-
ing the LSU, MSU and SSU-type instances, respectively.



27.4 The flowshop scheduling problem 675

Table 27.5. Results for the LSU-type flowshop instances

Memetic algorithm CMD heuristic

Instance Min. Ave. Max. CPU Min. Ave. Max. CPU
LSU33 0.0027 0.07 1.12 3.1 0.0021 0.91 8.41 0.04
LSU34 0.0020 0.32 2.43 10.1 0.0012 1.08 16.39 0.06
LSU44 0.0020 0.20 1.09 10.1 0.008 1.95 10.27 0.12
LSU55 0.0018 0.28 1.86 12.1 0.004 2.49 9.57 0.21
LSU56 0.009 0.51 2.42 21.1 0.004 3.37 17.07 0.26
LSU65 0.0015 0.31 2.42 15.1 0.003 3.29 10.02 0.30
LSU66 0.0015 0.19 1.36 15.3 0.003 3.03 10.47 0.44
LSU88 0.006 0.58 1.86 24.7 0.280 6.25 18.17 0.95
LSU108 0.001 0.47 1.19 29.8 0.120 6.22 11.25 1.82
LSU1010 0.001 0.77 2.27 29.5 0.530 6.30 11.42 2.37
Average 0.00132 0.37 1.80 17.1 0.0955 3.49 12.30 0.66

The results in Table 27.5 reveal an impressive performance for the MA. The
figures represent percentage deviations from the lower bounds. In the ‘Min’-
labeled columns, the subscript figure is the number of times that the algorithm
reached the lower bound, finding the optimal solution. In the ‘Average’ row, the
subscript marks the sum of all optimal solutions found. The MA surpassed the
CMD performance in all instance configurations. The large number of optimal so-
lutions found is an indicative of the high quality of the lower bounds presented in
(Schaller et al. 2000). We must emphasize that each instance configuration set was
composed of 30 different instances. The total number of instances tested in each
table is 300. Analyzing the MA against the CMD, the MA found 132 (44% of the
entire set) optimal instances, more than twice the number found by the CMD. All
the averages were better, except the CPU time, as expected. These results do not
cause surprise, since the MA employs much more problem-driven features than
the CMD algorithm.

An interesting characteristic is present in the results and is worth to be empha-
sized. The average percentage deviation from the lower bounds remains at low
levels for all instances’ sizes. Usually, the search methods lose performance for
the larger instances, in an indication that they are gradually getting beyond the al-
gorithm’s search capabilities. This has occurred with the CMD algorithm, which
began with an average deviation of 0.91% and ended with a 6.30% deviation.
However, this was not observed for the MA, leading to the conclusion that proba-
bly the algorithm is still very far from its limit and would be able to deal with in-
stances larger than the ones utilized. Although there is a slight increase in the
MA’s averages as the instances become larger, this is probably due to the declin-
ing lower bounds’ quality.



676 27 Scheduling and Production & Control: MA

Table 27.6. Results for the MSU-type flowshop instances

Memetic algorithm CMD heuristic

Instance Min. Ave. Max. CPU Min. Ave. Max. CPU
MSU33 0.0023 0.37 3.37 7.1 0.0021 0.92 11.46 0.04
MSU34 0.0017 0.56 2.29 13.1 0.0011 2.00 16.28 0.05
MSU44 0.0011 0.50 2.32 19.1 0.004 1.96 11.11 0.13
MSU55 0.0015 0.45 2.09 15.1 0.004 3.10 8.48 0.19
MSU56 0.006 0.87 3.12 24.1 0.001 3.58 13.13 0.27
MSU65 0.0014 0.36 1.22 16.2 0.003 3.68 8.88 0.30
MSU66 0.008 0.50 1.63 22.7 0.001 4.59 15.77 0.40
MSU88 0.003 0.99 2.98 27.3 0.630 5.68 12.68 0.97
MSU108 0.001 0.86 1.80 30.1 2.890 6.11 10.83 1.84
MSU1010 0.150 1.15 2.53 30.8 2.290 5.73 9.92 2.37
Average 0.0198 0.66 2.33 20.6 0.5845 3.73 11.85 0.65

The Table 27.6 shows a similar performance, with the MA surpassing the CMD
in all criteria but the CPU time. The MA has reached fewer optimal solutions (98
in total, almost 33% of the total), but that is a number still two times larger than
the one obtained by the CMD algorithm. The averages are a little worse than the
ones for the LSU-type instances, but we believe this is due to the decreasing qual-
ity of the lower bounds. Both instance sets (LSU and MSU) have similar charac-
teristics, such as number of machines and families. Moreover, the MA does not
employ any procedure, like local search reduction policies, which could be af-
fected by a change in the setup time’s interval. Therefore, no reduction in the
number of optimal solutions found should be observed at all. The lower bounds
might in fact work better with larger setup times. This vision is reinforced by a re-
duction in the number of optimal solutions found by the CMD algorithm, too.

Table 27.7. Results for the SSU-type flowshop instances

Memetic algorithm CMD heuristic

Instance Min. Ave. Max. CPU Min. Ave. Max. CPU
SSU33 0.0023 0.31 2.47 7.1 0.0018 0.67 4.13 0.04
SSU34 0.0015 0.83 2.94 15.1 0.008 1.85 8.46 0.05
SSU44 0.0015 0.57 2.90 15.0 0.008 1.94 8.33 0.12
SSU55 0.004 0.92 2.34 26.0 0.001 3.15 6.61 0.20
SSU56 0.003 1.56 3.08 27.4 0.001 4.02 8.93 0.25
SSU65 0.006 0.99 3.44 24.0 0.002 3.00 6.90 0.32
SSU66 0.001 1.28 2.72 29.1 1.240 4.06 9.16 0.44
SSU88 0.280 1.85 3.31 30.3 3.200 5.62 8.59 0.91
SSU108 0.720 1.77 2.90 30.7 2.580 5.63 8.96 1.82
SSU1010 0.590 2.33 3.65 30.6 4.070 6.86 9.11 2.21
Average 0.1667 1.24 2.98 23.5 1.1138 3.68 7.92 0.64



27.5 Discussion 677

In Table 27.7, one can see that the MA maintained its behaviour, obtaining
good general average performance followed by a decrease in the number of opti-
mal solutions found. The number dropped to 22% of all instances. The loss of per-
formance with the increasing instances’ size is now clear, with the MA being un-
able to reach the lower bounds for instances with eight or more families of jobs.

Given previous experiences with local searches and how they behave with dif-
ferent sizes of solution spaces, it is likely that the number of optimal solutions
found is much larger than the ones reported. Finding the optimal permutation in
10-allele sequences is an easy task when all-pairs and insertion neighbourhoods
are employed.

27.5 Discussion

This chapter presented three job scheduling problems: Single Machine Scheduling
(SMS), Parallel Machine Scheduling (PMS) and Flowshop Scheduling (FS). In
order to deal with these problems a MA was employed. The algorithm was very
similar to that introduced in Chap. 18 for the Gate Matrix Layout problem. The
MA had an impressive performance for the problems, what reinforces the belief
that the algorithm’s main features are general enough to deal with a much broader
variety of problems.

In the SMS section, a procedure to transform Asymmetrical Travelling Sales-
man Problem’s (ATSP) instances into SMS ones was described. By using it, one
can create a SMS instance with known high-quality solutions if an ATSP instance
with a known optimal tour is utilized as the starting point. Although this procedure
is not yet proved to create optimal SMS instances, during the tests using TSPLIB
instances, no counter-example was ever found. If the procedure is proved to be
correct – or under which circumstances it is correct – it would solve a problem
quite common is SMS tests: The lack of large optimal instances to test algorithms.
In the literature, there are ATSP instances with thousands of cities solved to opti-
mality. Such instances could be used to create SMS ones, also with thousands of
jobs and known optimal solution. The procedure has some drawbacks, like a limi-
tation on how the processing times and the due dates must be generated and the
fact that the resulting instances are EDD/SPT-optimally solvable. Nevertheless,
such instances can be very useful to test the performance of general-use metaheu-
ristics.

The MA was able to find optimal solutions for instances with up to 100 jobs,
with a high rate of success and CPU times no longer than four minutes, in average.
The instances with 71 jobs or less had an impressive 100% rate of success. The
100-job instances also had a high rate of success, but apparently, they mark the
beginning of the MA’s search power exhaustion. For larger instances, new fea-
tures will probably have to be added to the MA in order to sustain the perform-
ance, or more CPU time will have to be given.



678 27 Scheduling and Production & Control: MA

In the PMS problem, the MA is compared to a well-tailored tabu search (TS),
named fast tabu. The TS results were the best previously available in the literature
(França et al. 1996) for the problem. Instances with up to 80 jobs and 8 machines
were tested, as well as four setup times configurations. The MA performance was
comparable to the TS especially for the so-called structured instances, which setup
times follow the triangular inequality, and for problems with fewer machines, in-
dependently of the number of jobs. In this problem, the lack of a neighborhood-
reduction policy has weighted against the MA. Although the performance was not
disappointing, it could have been better with a reduction policy being applied.
This is the logical next step for this problem. Both MA and TS were evaluated
against lower bounds and optimal solutions for the smaller instances. For the lar-
ger instances, upper bounds obtained through a high-performance TS, named long
tabu, were the benchmark performance measure. However, it is important to em-
phasize that the long tabu algorithm requires long CPU times, usually hours,
against the few seconds or minutes required by the MA and the fast tabu.

The last problem addressed in the chapter was the flowshop scheduling (FS). In
addition to the ordinary FS problem, this one also considers that the jobs are
grouped in families, with jobs in the same family requiring similar tooling and
machinery. That makes the setup times between jobs within the same family be
very small, so that they can be added to the job’s processing time. However, major
setup times are required to change the production from one family to another. The
most remarkable feature of the MA for this problem was the representation util-
ized. It reduced the search space for the problem so much that even large-size in-
stances, with 10 families of jobs and 10 machines were still below the MA’s
search capability.

Although its importance for the industry, this FS-variant has received little at-
tention in the past, and the previous best method available in the literature was a
constructive rule followed by a local search procedure, named CMD (Schaller et
al. 2000). In this same paper, several lower bounds were calculated and utilized as
benchmarks. The MA presented in this chapter is probably the first metaheuristic
approach for it. The performance of the MA has dramatically surpassed the CMD
algorithm, as was expected. But most impressive was the number of optimal solu-
tions found, a situation resultant from the high quality of the lower bounds and the
superior performance of the MA.

The MA utilized in all problems presented in this chapter is available in the
NP-Opt Framework (Mendes et al. 2001). As said in the Chap. 18, the NP-Opt is
an object-oriented, Java-based software, which is updated and improved continu-
ously by a team of collaborators. For more information, please refer to the NP-Opt
homepage7, where the latest version is always available for download, as well as
the software guide and the instances utilized in this chapter.

7 http://www.densis.fee.unicamp.br/~smendes/NP-Opt.html.



27.5 Discussion 679

References

Allahverdi A, Gupta JND, Aldowaisan T (1999) A survey of scheduling research involving
setup considerations. OMEGA – International Journal of Management Science
27:219–239

Baker KR (1974) Introduction to Sequencing and Scheduling. John Wiley & Sons, New
York

Cheng TCE, Gupta JND, Wang G (2000) A review of flowshop scheduling research with
setup times. Production and Operations Management 9:283–302

Dearing PM, Henderson RA (1984) Assigning looms in a textile weaving operation with
changeover limitations. Production and Inventory Management 25:23–31

Du J, Leung JYT (1990) Minimizing total tardiness on one machine is NP-hard. Mathemat-
ics of Operations Research 15:483–495

França PM, Gendreau M, Laport G, Muller F (1996) A tabu search heuristic for the multi-
processor scheduling problem with sequence dependent setup times. International
Journal of Production Economics 43:79–89

França PM, Mendes AS, Moscato P (2001) A Memetic Algorithm for the total tardiness
Single Machine Scheduling Problem. European Journal of Operational Research
132:224–242

Frederickson G, Hecht MS, Kim CE (1978) Approximation algorithm for some routing
problems. SIAM Journal on Computing 7:178–193

Gen M, Cheng R (1997) Genetic Algorithms and Engineering Design. John Wiley & Sons,
New York

Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley

Graham RL, Lawler EL, Lenstra JK, Rinooy Kan AHG (1979) Optimization and approxi-
mation in deterministic sequencing and scheduling: A survey. Annals of Discrete
Mathematics 5:287–326

Graves SC (1981) A review of production scheduling. Operations Research 29:646–675
Gupta JND, Darrow WP (1986) The two-machine sequence dependent flowshop scheduling

problem. European Journal of Operational Research 24:439–446
Hitomi K, Nakamura N, Yoshida T, Okuda K (1977) An Experimental Investigation of

Group Production Scheduling. Proceedings of the 4th International Conference on Pro-
duction Research, pp 608–617

Lawler EL, Lenstra JK, Rinooy Kan AHG, Shmoys DB (1993) Sequencing and Scheduling:
Algorithms and Complexity. In: Handbooks in Operations Research and Management
Science Vol. 4. North-Holland, pp 445–522

Lee YH, Bhaskaran K, Pinedo M (1997) A heuristic to minimize the total weighted tardi-
ness with sequence-dependent setups. IIE Transactions 29:45–52



680 References

Mendes AS, França PM, Moscato P (2001) NP-Opt: An Optimization Framework for NP
Problems. Proceedings of the POM2001 – International Conference of the Production
and Operations Management Society, pp 82–89

Mendes AS, Muller F, França PM, Moscato P (2002) Comparing Meta-Heuristic Ap-
proaches for Parallel Machine Scheduling Problems. Production Planning and Control
13:143–154

Ow PS, Morton TE (1989) The single machine early/tardy problem. Management Science
35:177–191

Ragatz GL (1993) A branch-and-bound method for minimum tardiness sequencing on a
single processor with sequence dependent setup times. Proceedings of the 24th Annual
Meeting of the Decision Sciences Institute, pp 1375–1377

Raman N, Rachamadugu RV, Talbot FB (1989) Real time scheduling of an automated
manufacturing center. European Journal of Operational Research 40:222–242

Rubin PA, Ragatz GL (1995) Scheduling in a sequence dependent setup environment with
genetic search. Computers & Operations Research 22:85–99

Schaller JE, Gupta JND, Vakharia AJ (2000) Scheduling a Flowline Manufacturing Cell
with Sequence Dependent Family Setup Times. European Journal of Operational Re-
search 125:324–339

Sumichrast R, Baker JR (1987) Scheduling parallel processors: an integer linear program-
ming based heuristic for minimizing setup time. International Journal of Production
Research 25:761–771

Tan KC, Narasimhan R (1997) Minimizing tardiness on a single processor with sequence-
dependent setup times: a simulated annealing approach. OMEGA – International Jour-
nal of Management Science 25:619–634



28 Determination of Optimal Machining
Conditions Using Scatter Search

Mu-Chen Chen and Kai-Ying Chen

28.1 Introduction

The advent of modern computer technology and a new generation of manufactur-
ing equipment, particularly computer numerical control (CNC) machine, have
brought enormous changes to the manufacturing industry. The process planning of
CNC machining runs through all necessary steps and information to manufacture a
part. Process plans are established through rational determination of machines,
tools, cutting fluids, machining conditions (parameters), etc., for each operation of
a workpiece. In process planning of CNC machining, selecting reasonable machin-
ing parameters is necessary to satisfy requirements involving machining econom-
ics, machining quality and machining safety. The machining parameters in turning
operations consist of cutting speed, feed, depth of cut and number of passes. These
machining parameters significantly affect the cost, productivity and quality of ma-
chined parts.

Traditionally, machining parameters have been established using data delivered
by the tool manufacturer or cutting data handbooks. These handbooks include ta-
bles with recommended machining parameters for a wide variety of workpiece-
tool materials. This approach of selecting machining conditions has several draw-
backs (Boogert et al. 1996):

1. The storage space of all the data will grow very fast owing to a combinational
explosion.

2. It is difficult to ensure the consistency of the data.
3. The recommended values cover a wide range; the user needs to interpolate be-

tween the upper and lower values and only cutting experts know the mutual in-
fluences of the various machining conditions.

4. The handbook approach is not suitable for the automatic generation of optimal
machining conditions because the optimization criteria and machining con-
straints cannot be included in data table.

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



682 28 Determination of Optimal Machining Conditions Using Scatter Search

To overcome the aforementioned drawbacks, considerable research has been
done to establish an adequate description of the machining characteristics by
mathematical models. The machining models can reduce the storage requirements
and facilitate the automatic generation of machining conditions using optimization
techniques. Equations are used to predict the machining process characteristics,
such as cutting force, required power, surface finish, tool life and chip-tool inter-
face temperature. Generation of optimal machining conditions is generally based
on optimizing certain economic criteria, which are subjected to a set of machining
constraints. Using CNC machines, cutting processes can be repeated easily and the
improvements in modern shop floor control systems allow data acquisition during
processing from which machining models can be adopted.

Various solution approaches have been used to optimize turning operations.
However, there exists few generalized solution method for all machining optimi-
zation problems (Chang et al. 1991). The existing methods differ in their reliabil-
ity, efficiency and sensitivity to initial solution. Furthermore, they are only useful
for a specific problem or are inclined to obtain a local optimal solution. Simulated
annealing (SA) (Metropolis et al. 1953, Kirkpatrick et al. 1983) and genetic algo-
rithm (GA) (Holland 1975, Goldberg 1989) are two types of heuristic search tech-
niques, which are promising for investigation of complex optimization problems.
Both these techniques are modeled on processes in nature (thermodynamics and
natural evolution, respectively). They both can solve optimization problems pos-
sessing quite arbitrary degrees of nonlinearity, discontinuity and stochasticity.
Some general approaches based on SA and GA were successfully implemented in
machining condition optimization (Chen and Tsai 1996, Khan et al. 1996, Chen
and Su 1998, Chen and Tseng 1998, Su and Chen 1999).

More recently, Scatter Search (SS)(Glover 1997, Glover 1999, Glover et al.
2000, Laguna and Marti 2003) increasingly gets focus in the area of evolutionary
approach. SS originates from strategies for combining decision rules and surrogate
constraints. The advantages of this approach for solving a diverse array of com-
plex optimization problems (e.g., vehicle routing, arc routing quadratic assign-
ment, job shop scheduling and form error assessment) have been demonstrated in
the recent research (Glover 1999, Glover et al. 2000). The potential of SS for ma-
chining condition optimization is investigated herein.

28.2 Fundamentals of CNC Turning

Modern computer technology has a significant influence on engineering design
and manufacturing in terms of reducing design and manufacturing cost, inventory,
lead time as well as increasing productivity and product quality. The CNC turning
machines continue to be the mainstay of rotational-part metal-removal machine
tools. Before the topic of machining condition optimization for turning operations
is discussed, it is worthwhile to discuss the basic concepts of turning. Readers are
referred to Lin (1994) for the further details.



28.2 Fundamentals of CNC Turning 683

28.2.1 CNC turning machine axes

There are a variety of CNC turning machines, ranging from a simple two-axis
lathe to a multi-axis machining center. Most CNC controls for turning machines
provide for control of two basic axes and, with the expansion option, up to four
axes (Lin 1994). In this chapter, only two-axis CNC turning machine is discussed.

A basic CNC turning machine uses only two axes: Z and X. The Z-axis is par-
allel to the spindle axis and represents the carriage travel in the longitudinal direc-
tion. The X-axis is perpendicular to the Z-axis and represents the cross slide
travel. The direction designations for the Z and X axes are given as follows:

• +Z: Tool carriage moves away from the spindle head;
• -Z: Tool carriage moves toward the spindle head;
• +X: Cross slide moves away from the spindle axis;
• -X: Cross slide moves toward the spindle axis.

28.2.2 CNC turning operations

Various types of machining operations can be performed on a CNC turning ma-
chine. These operations generally are of seven types (Lin 1994): turning (straight,
taper, circular turning), facing, grooving, drilling, boring, parting off and thread-
ing. The most common type of turning operations is external turning, which re-
moves material by rotating the workpiece against a single-point cutter. Machined
parts on the CNC turning machines typically have continuous external profiles,
which require linear and circular interpolations. This chapter focuses on the opti-
mization of machining conditions for turned parts requiring external turning of
linear interpolation.

Turning using linear interpolation simply means machining in straight lines.
These lines may be horizontal, vertical or at an angle to Z direction. When turning,
each cut under linear interpolation is often followed by a rapid move, back to the
start point, ready to take a subsequent cut. Before returning to the start point, it is
practical to retract the tool slightly, from the surface of the workpiece, to avoid
scouring the work surface. Only straight turning is considered herein. Straight
turning involves the cutting of a workpiece in the longitudinal (Z) direction to
produce a constant stock diameter.

28.2.3 CNC turning conditions

The functions included in process planning are: raw material preparation, process
selection, process sequencing, machining parameter selection, tool path planning,
machine selection, tool selection and fixture selection (Lin 1994). The process
planner then uses part features to specify machining processes and their operation
sequence, types of cutting tools, cutter path, work holding devices or fixtures to be



684 28 Determination of Optimal Machining Conditions Using Scatter Search

used, and the machining parameters (number of cuts, cutting speed, feed and depth
of cut).

The two most important considerations in any CNC operations are accuracy
and efficiency (Lin 1994). Accuracy refers to the dimensional precision of the
workpiece, which is determined by two factors: program accuracy and machine
accuracy. Machine accuracy is a complex measure that relies on the quality of the
servo control system, measuring devices, machine drive system as well as the suit-
able selection of machining parameters. Efficiency refers to the production rate or
production cost, that is, the time or money it takes to produce a workpiece. The
determination of machining conditions (parameters) dictates the efficiency of the
machining process.

Machine tool manufacturers normally supply machining data, including cutting
speed, feed, and depth of cut, for their machine tools. This should be the starting
point for determining cutting speed and feed. A trial-and-error approach is then
followed to determine the machining conditions for a particular operation. This
approach of selecting machining conditions has several drawbacks as discussed in
the previous section. To overcome the aforementioned drawbacks, many research-
ers try to establish machining models and develop optimization algorithms, which
can reduce the storage requirements and facilitate the automatic generation of ma-
chining conditions using optimization techniques.

28.2.3.1 Cutting speed

Cutting speed in machining operations refers to the speed at which the cutting
edge of the tool passes over the surface of the workpiece (Lin 1994). It is also
called the surface speed, and defined as the maximum linear speed between the
tool and workpiece. The cutting speed for turning can be determined as a function
of the workpiece and rotation speed. The following formula is generally used to
determine cutting speed for turning operations:

1000

DN
V

π= (28.1)

where V = surface cutting speed, m/min (MPM);
D = diameter of rotating part, mm; and
N = rotation speed of the spindle, revolutions/min (RPM).

28.2.3.2 Feed and feed rate

Feed can be defined as the relative lateral movement between the tool and work-
piece during a machining operation (Lin 1994). It corresponds to the thickness of
the chip produced by the operation. In turning operations, feed is defined as the
advancement of the cutter per revolution of workpiece. The typical unit is MMPR
(mm per revolution). Feed rate is defined as the speed of feed; the unit is MMPM
(mm per minute). In turning operations, the following formula can be used to con-
vert feed to feed rate:



28.3 Literature Review 685

fNfm ×= (28.2)

where f m = feed rate, feed per minute; and

f = feed, feed per revolution.

28.2.3.3 Depth of cut

Depth of cut is the distance the cutter penetrates into the workpiece and is meas-
ured in the direction perpendicular to the cutter motion direction (Lin 1994). The
depth of cut for roughing cuts is generally larger than for finishing cuts.

28.3 Literature Review

28.3.1 Machining optimization for turning operations

Numerous researchers have formulated mathematical models and used optimiza-
tion techniques to select the optimal turning parameters. In the area of machining
optimization, the following three basic criteria are used for the selection of ma-
chining parameters.
1. The minimum production cost criterion: This refers to producing a piece at

minimum cost.
2. The minimum production time or the maximum production rate criterion: This

refers to producing a part at the fastest rate.
3. The maximum profit rate criterion: This refers to maximization of profit gener-

ated per unit time.
The earlier studies (Okushima and Hitomi 1964, Wu and Ermer 1966, Ermer

1971, Boothroyd and Rusek 1976) were limited to the single-pass turning opera-
tions without consideration of any constraints. It is now evident that various ma-
chining constraints should be satisfied in actual manufacturing applications. The
machining constraints usually consider the CNC machine specifications, CNC
machine dynamics, cutting tool dynamics and machined part design specifications.
Multi-pass operations are used if the total depth of cut to be removed in turning
exceeds the maximum allowable depth of cut. The maximum depth of cut for an
individual pass is usually restricted by either chatter or the physical dimensions of
a particular tool. In addition, the multi-pass operations are preferred to the single-
pass machining for economics reasons (Ermer and Kromodihardjo 1981, Tsai
1986, Kee 1994). However, the additional machining parameter, number of
passes, makes the solution procedure more difficult than that for a single-pass
problem. The more recent studies have been concentrated on determining the op-
timal machining conditions for multi-pass operations. In the machining models of
multi-pass operations (Hati and Rao 1976, Lambert and Walvekar 1978, Yellow-



686 28 Determination of Optimal Machining Conditions Using Scatter Search

ley 1978, Ermer and Kromodihardjo 1981, Gopalkrishnan and Al-Khayal 1991),
the number of passes and depth of cut for each pass are fixed a priori and are kept
outside the scope of optimization. Recently, the studies involving machining con-
dition optimization have been directed towards the simultaneous determination of
optimal values of cutting speed, feed, depth of cut for an individual pass and num-
ber of passes (Agapiou 1992a, Agapiou 1992b, Gupta et al. 1994, Gupta et al.
1995, Kee 1994, Kee 1995, Kee 1996, Mesquita et al. 1995, Narang and Fischer
1993, Shin and Joo 1992, Tan and Creese 1995, Yeo, 1995, Chen and Tsai 1996,
Chen and Su 1998, Chen and Tseng 1998, Su and Chen 1999).

28.3.2 Review of machining optimization techniques

There are a host of methods and algorithms in the literature, which can be used to
resolve machining optimization models. The solution methodologies used in the
previous machining optimization studies have been briefly reviewed in Chen and
Tseng (1998). Table 28-1 summaries these methods and algorithms.

Okushima and Hitomi (1964), Armarego and Russell (1966), Wu and Ermer
(1966), Yellowley (1978) and Philipson and Ravindran (1979) have developed op-
timization models for turning conditions and applied the calculus differential
based approaches to obtain the optimal conditions. These approaches can obtain
the truly optimal solutions. However, they are very restrictive for solving small
machining optimization problems.

The geometric programming (GP) (Ermer 1971, Petropoulos 1971, Philipson
and Ravindran 1979, Somlo and Nagy 1979, Narang and Fischer 1993) has been
frequently utilized to solve machining optimization problems. By introduction of
suitable variables and modification of the objective function and constraint set, the
machining model can be converted into posynomial form which becomes amena-
ble to solution by a hybrid method combining geometric and linear programming
(GP-LP) (Ermer and Kromodihardjo 1981, Gupta et al.1994). GP and GP-LP are
the special cases of the general nonlinear programs in which the objective function
and constraints are posynomials. The utility of GP and GP-LP for machining op-
timization problems has been demonstrated by applying these two methods to
relatively simple machining models. Somlo and Nagy (1979) stated that GP is
more powerful than other methods in optimizing the machining models in which
the optimal conditions are restricted by one or two constraints. As the number of
constraints increased, other optimization methods should be employed.

Iwata et al. (1974) proposed a probabilistic approach for selecting the optimal
cutting conditions and applied sequential unconstrained minimization technique
(SUMT) to solve the equivalent deterministic problem. Also, Hati and Rao (1976)
utilized SUMT to solve a probabilistic model and a deterministic model formu-
lated for a multi-pass turning operation. However, the number of passes and depth
of cut for each pass are prefixed and are not selected by the optimization algo-
rithm.

Iwata et al. (1977) have presented a multi-pass turning model as well as applied
an algorithm based on dynamic programming (DP) and stochastic programming to



28.3 Literature Review 687

simultaneously determine the optimal values of cutting speed, feed and depth of
cut for an individual pass along with the optimal number of passes. They have
considered the probabilistic nature of the objective function and constraints and
have applied stochastic programming to solve the single pass problem.

Lambert and Walvekar (1978) have also developed a machining model for the
multi-pass turning operation under constraints of cutting force, power and surface
finish. A two-stage solution procedure combining DP and GP has been utilized to
optimize this turning model under minimum production cost. However, they have
considered two-pass problems only. DP coupled with GP has also been used to op-
timize the multi-pass turning conditions by Unklesbay and Creighton (1978).
More recently, Agapiou (1992) has used a DP model similar to that of Iwata et al.
(1977) for optimizing machining conditions. They have presented a deterministic
model with a combined objective function (weighted sum of production cost and
time) and used simplex search to determine the optimal machining parameters and
objective function.

In addition, Shin and Joo (1992) have developed a machining model for multi-
pass turning operations. They have suggested DP coupled with Fibonacci search to
resolve this turning problem. DP has been used to the selection of depth of cut for
individual passes. The final finish pass is fixed on the basis of the minimal allow-
able depth of cut and the remaining depth of cut is divided into a number of rough
passes of equal sizes such that minimum production cost is obtained. It has been
noticed that the above multi-pass turning models are not simple DP problems
since the optimal numbers of passes (number of stages in a multi-stage decision
system) are not predetermined and they are to be determined during optimization.

Groover (1975) has introduced the Monte-Carlo simulation technique for de-
termining the optimal turning conditions. This technique is mainly based on a
mathematical model, which is described by some assumed probability distribution.
The actual machining process is replaced by its mathematical model (machining
model). The variables (machining parameters) in the mathematical model are then
sampled by means of the random number generator.

Some researchers have utilized the direct search techniques as general nonlin-
ear programming methods to select the optimal machining parameters. As men-
tioned previously, Agapiou (1992) has applied dynamic programming (DP) cou-
pled with simplex search to optimize the machining problems under a combined
objective function. Also, Mesquita et al. (1995) have presented an interactive sys-
tem, MECCANO2, for computer-aided selection of the optimum cutting condi-
tions in multi-pass rough turning operations. Combinations of three criteria includ-
ing minimum production cost, minimum production time and minimum number of
passes are considered simultaneously. Their priority is given by users. Mesquita et
al. have used a combination of the direct search methods, the random search and
Hooke-Jeeves pattern search. The solution procedure is performed three times
from different starting points chosen with respect to feasibility and criterion values
out of randomly generated points. Kee (1994, 1995, 1996) has put his efforts into
the development of optimization analysis and strategies for multi-pass rough turn-
ing on lathes with practical constraints. The multi-pass solution has been solved
by using a combination of mathematical analysis of the theoretical economic



688 28 Determination of Optimal Machining Conditions Using Scatter Search

trends approach and numerical search techniques. Nevertheless, numerical search
technique is only used in the final stage of the proposed solution procedure to op-
timize the integer number of passes and the depth of cut distribution.

Table 28.1. List of methods and algorithms for machining optimization.

Methods and algorithms References
Calculus differential approach

Lagrangian multiplier method

Geometric programming

GP + linear programming

Linear goal programming

SUMT

Sequential quadratic programming

Linear approximation method

Integer programming

Random search + pattern search

DP + Simplex search

Numerical search

DP + stochastic programming

DP + Fibonacci search

DP + geometric programming

Fuzzy nonlinear programming

Monte-Carlo simulation approach

Simulated annealing

Genetic algorithm

Okushima and Hitomi (1964), Armarego and Rus-
sell (1966), Wu and Ermer (1966), Yellowley
(1978), Philipson and Ravindran (1979)

Bhattacharyya et al. (1970)

Ermer (1971), Petropoulos (1971), Philipson and
Ravindran (1979), Somlo and Nagy (1979), Tsai
(1986), Narang and Fischer (1993), Gopalkrishnan
and Al-Khayal (1991), Choi and Bricker (1996)

Ermer and Kromodihardjo (1981), Gupta et al.
(1994), Prasad et al. (1997)
Sundaram (1978), Philipson and Ravindran (1979)

Iwata et al. (1974), Hati and Rao (1976)

Yeo (1995)

Tan and Creese (1995)

Gupta et al. (1995)

Mesquita et al. (1995)

Agapiou (1992a, 1992b)

Kee (1994), Kee (1995), Kee (1996)

Iwata et al. (1977)

Shin and Joo (1992)

Lambert and Walvekar (1978), Unklesbay and
Creighton (1978)

Chen et al. (1995)

Groover (1975)

Chen and Tsai (1996), Khan et al. (1996), Chen
and Su (1998), Su and Chen (1999)

Khan et al. (1996), Chen and Tseng (1998)

Yeo (1995) has proposed a multi-pass optimization strategy for CNC lathe op-
erations. He has applied sequential quadratic programming (SQP) to solve this



28.4 Notations in Machining Model 689

machining optimization problem. The optimization methodology is simplified and
it attempts to give near-optimal solutions. A machining parameter determination
model has been developed using multi-pass turning operation as a general type by
Tan and Creese (1995). An approximation optimization approach, linear approxi-
mation method, has been defined for the machining model. The premise condi-
tions for this solution technique are: (1) the initial point must be feasible, and (2)
variables are continuous in the defined boundary region around the starting point.
In the paper of Chen et al. (1995), a fuzzy expert system called Smart Assistant to
Machinist, has been introduced for cutter selection and cutting condition design in
turning operations. To accommodate the fuzzy information in their developed
model, the fuzzy nonlinear programming method has been adopted. In this system,
Chen et al. used Hill climbing method to solve the fuzzy nonlinear program. Re-
cently, SA and GA have been successfully implemented in machining condition
optimization (Chen and Tsai 1996, Su and Chen 1997, Chen and Su 1998, Su and
Chen 1999).

The existing approaches can be classified into two categories: exact and ap-
proximate methods. The exact approaches such as calculus differential method
and GP are only useful for a specific problem. The approximate approaches such
as SUMT and direct search method mostly obtain the local optimal solutions. Re-
cently, metaheuristics such as SA and GA have attracted attention due to their
broad success of applications on complex optimization problems. The potentials
of applying SA and GA to machining optimization problems have been investi-
gated in the recent literature. More recently, Scatter Search (SS) increasingly gets
focus in the area of metaheuristics. Owing to the high complexity in machining
condition optimization, SS is adopted as the solution approach herein.

28.4 Notations in Machining Model

0C constant of the tool-life equation

IC machine idle cost ($/piece)

MC cutting cost by actual time in cut ($/piece)

RC tool replacement cost ($/piece)
CT tool cost ($/piece)

rd , sd depths of cut for each pass of rough and finish machining (mm)

rLd , rUd lower and upper bounds of depth of rough cut (mm)

sLd , sUd lower and upper bounds of depth of finish cut (mm)

td total depth of metal to be removed (mm)

D diameter of workpiece (mm)
f feed (mm/rev)



690 28 Determination of Optimal Machining Conditions Using Scatter Search

rf , sf feeds in rough and finish machining (mm/rev)

rLf , rUf lower and upper bounds of feed in rough machining (mm/rev)

sLf , sUf lower and upper bounds of feed in finish machining (mm/rev)

rF , sF cutting forces during rough and finish machining (kgf)

UF maximum allowable cutting force (kgf)

1h , 2h constants pertaining to tool travel and approach/depart time

(min)

fk constant pertaining to cutting force

ok direct labor cost + overhead ($/min)

tk cutting edge cost ($/edge)

L length of the workpiece (mm)
n number of rough passes
N spindle speed (RPM)

LN , UN lower and upper bounds of n

rP , sP cutting power during roughing and finishing (kW)

UP maximum allowable cutting power (kW)

aR maximum allowable surface roughness ( μ m)

Rn nose radius of cutting tool (mm)
t tool life (min)

tc constant term of machine idling time (min)

et tool exchange time (min)

t p tool life (min) considering roughing and finishing

tr , ts tool lives (min) for roughing and finishing

tv variable term of machine idling time (min)
TI machine idling time (min)

LT , UT lower and upper bounds of tool life

T M cutting time by actual machining (min)

MrT , MsT cutting time by actual machining (min) for roughing and finish-

ing
TR tool replacement time (min)
UC unit production cost except material cost ($/piece)
V cutting speed (m/min)

V r , V s cutting speeds in rough and finish machining (m/min)

V rL , V rU lower and upper bounds of cutting speed in rough machining

(m/min)



28.5 The Multi-Pass Turning Model 691

V sL , V sU lower and upper bounds of cutting speed in finish machining

(m/min)
w weight of tool-life equation
X vector of machining parameters
α , β , γ constants of tool-life equation

η power efficiency

μ , υ constants of cutting force equation

28.5 The Multi-Pass Turning Model

The objective of this machining model is to determine the optimal machining pa-
rameters including cutting speed, feed, depth of cut and number of rough cuts in
order to minimize the unit production cost. In addition, such combination of ma-
chining parameters should not violate the imposed cutting constraints. A multi-
pass turning model taken from Shin and Joo (1992) and Chen and Tsai (1996) is
adopted as the test problem for the SS-based machining optimization approach.

28.5.1 The cost function

The unit production cost, UC, for multi-pass turning operations can be divided
into four basic cost elements (Shin and Joo 1992): (1) cutting cost by actual time

in cut, MC ; (2) machine idle cost due to loading and unloading operations and

idling tool motion, IC ; (3) tool replacement cost, RC ; and (4) tool cost, TC .
These four cost elements are defined as follows.

28.5.1.1 Cutting Cost

The turning process is divided into multi-pass roughing and finishing. The cutting

cost, MC , can be expressed as

MoM TkC = (28.3)

where MT is the actual cutting time, which is given by

MsMrM tTT += (28.4)

( ) ⎟
⎠
⎞⎜

⎝
⎛ −==

d

dd
fV

DL
n

fV

DL
T

r

st

rrrr
Mr

10001000

ππ (28.5)

ss
Ms fV

DL
T

1000

π= . (28.6)



692 28 Determination of Optimal Machining Conditions Using Scatter Search

Hence,

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟⎠

⎞
⎜⎜⎝

⎛ −=
ssr

st

rr
oM fV

DL

d

dd

fV

DL
kC

10001000

ππ
.

(28.7)

28.5.1.2 Machine idling cost

The machine idle time is divided into a constant term due to loading and unload-
ing operations and a variable term due to idle tool motion (Shin and Joo 1992).

The machine idle time IT is given by

vcI ttT += . (28.8)

where the variable term, idle tool motion time vt , can be represented in terms of

the number of passes and the length of workpiece, thus

( )( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ +−+=++= 11 2121

d

dd
hLhnhLht

r

st
v . (28.9)

Consequently, the machine idling cost, IC , can be expressed as

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ +−++= 121

d

dd
hLhtkoC

r

st
cI .

(28.10)

28.5.1.3 Tool replacement cost

The Taylor tool-life equation is given by (Armarego and Brown 1969)

CdftV =γβα . (28.11)

The above equation can be rewritten for t

dfV

C

dfV

Ct
rqp

o==
αγαβα

α

1

1

. (28.12)

It is assumed that the same tool is used for the entire machining process of both
roughing and finishing. The wear rate of tools usually differs between roughing
and finishing because the machining condition is different. The tool life in such a
situation can be expressed as

srp twwtt )1( −+= (28.13)

where
dfV

C
t

dfV

C
t r

s
q
s

p
s

o
sr

r
q
r

p
r

o
r == , . (28.14)

The tool replacement time can be written in terms of tool life ( pt ), time re-

quired to exchange a tool ( et ) and cutting time ( MT ). It is given by



28.5 The Multi-Pass Turning Model 693

t

T
teT

p

M
R = . (28.15)

The tool replacement cost, RC , is given by

RoR TkC = . (28.16)

By substituting Eqs. (28-4), (28-5), (28-6) and (28-15) into Eq. (28-16), the tool
replacement cost can be expressed as

⎥
⎦

⎤
⎢
⎣

⎡
+⎟⎟⎠

⎞
⎜⎜⎝
⎛ −=

fV

DL

d

dd
fV

DL

t

t
kC

ssr

st

rrp

e
oR

10001000

ππ
.

(28.17)

28.5.1.4 Tool cost

The tool cost, TC , can be defined by

t

T
kC

p

M
tT = . (28.18)

By using Eqs. (28-4), (28-5), (28-6) and (28-18), the tool cost can be expressed as

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞⎜

⎝
⎛ −=

fV

DL

d

dd
fV

DL

t

k
C

ssr

st

rrp

t
T

10001000

ππ
.

(28.19)

28.5.1.5 Unit production cost

Based on the above discussion, the unit production cost is defined as the sum of
cutting cost CM, machine idling cost CI, tool replacement cost CR, and tool cost
CT. The unit production cost takes the form as

CCCCUC TRIM +++=

+⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞⎜

⎝
⎛ −=

fV

DL

d

dd
fV

DL
k

ssr

st

rr
o

10001000

ππ

( ) +⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ +−++ 121

d

dd
hLhtk

r

st
co

+⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞⎜

⎝
⎛ −

fV

DL

d

dd
fV

DL

t

t
k

ssr

st

rrp

e
o

10001000

ππ

⎥
⎦

⎤
⎢
⎣

⎡
+⎟

⎠
⎞⎜

⎝
⎛ −

fV

DL

d

dd
fV

DL

t

k

ssr

st

rrp

t

10001000

ππ
.

(28.20)



694 28 Determination of Optimal Machining Conditions Using Scatter Search

28.5.2 Turning condition constraints

For the optimization of the unit production cost, practical constraints, which pre-
sent the states of machining process need to be considered. The constraints im-
posed during the roughing and finishing operations include (1) parameter bounds;
(2) tool-life constraint; (3) operating constraints consisting of surface finish con-
straint (only for finish machining); cutting force constraint and power constraint.
They are discussed as follows (Shin and Joo 1992, Chen and Tsai 1996).

28.5.2.1 Rough machining

Parameter bounds
Bounds on cutting speed: The available range of cutting speed is expressed in

terms of lower and upper bounds as
VVV rUrrL ≤≤ .

(28.21)

The lower bound is provided to avoid the formation of built-up edge, whereas the
upper bound is setup for the safety of the operator.

Bounds on feed: The feed is restricted as
fff rUrrL ≤≤ .

(28.22)

Bounds on depth of cut: The depth of cut is restricted as

ddd rUrrL ≤≤ .
(28.23)

The bounds on feed and depth of cut are related to the type of cutting tool and the
material of workpiece.
Tool-life constraint

Considering production economics and the quality of the machined part, the
tool life should be within an acceptable range. The constraint on the tool life is
taken as

TtT UrL ≤≤ .
(28.24)

Operating Constraints
Cutting force constraint: It is necessary to put a constraint on the cutting force

to limit the deflection of the workpiece or the cutting tool, which would result in
dimensional errors, and to reduce the power required for the cutting process. The
expression of cutting force constraint takes the form as

FdfkF Urrfr ≤= υμ
. (28.25)

Power constraint: The power required during the cutting operation should not
exceed the available power of the machine tool. The power is given by

η6120
VF

P
rr

r = . (28.26)

Hence, the power constraint becomes



28.5 The Multi-Pass Turning Model 695

P
Vdfk

P U
rrrf

r ≤=
η

υμ

6120
(28.27)

28.5.2.2 Finish machining

All the constraints other than the surface finish constraint are similar for rough and
finish machining.
Parameter bounds

Cutting speed: VVV sUssL ≤≤ (28.28)

Feed: fff sUssL ≤≤
(28.29)

Depth of cut: ddd sUssL ≤≤ (28.30)

Tool-life constraint: TtT UsL ≤≤ (28.31)

Operating Constraints

Cutting force constraint: FdfkF Ussfs ≤= υμ
(28.32)

Power constraint:
P

Vdfk
P U

sssf
s ≤=

η

υμ

6120
(28.33)

Surface finish constraint: The surface finish dominates the quality of the ma-
chined part, and is generally influenced by various factors such as speed, feed,
depth of cut, tool geometry and material of tool. Furthermore, some undesirable
machining conditions such as excessive tool wear, built-up edge or chatter, dete-
riorate the surface finish. Only feed and nose radius, however, are considered
since they have the most influential effect on surface finish (Narang and Fischer
1993). This constraint takes the form as

R
R

f
a

n

s ≤
8

2

.
(28.34)

In addition, an equality constraint needs to be manipulated here. The depth of

finish cut ( sd ) should be equal to the total depth of cut ( td ) minus the total depth

of the rough cut ( rnd ). Therefore, this equality equation can be defined as

dndd rts −= . (28.35)

Before formulating the final optimization model for this cutting problem, we
first eliminate the equality constraint by some mathematical manipulations. To a
certain extent, the optimal number of rough cuts, n, should not be determined by
the optimization algorithm as the valid range of n is small. The optimal value of n
can be obtained in an exhaustive manner with a given value of depth of finish cut.
From Eqs. (28-23) and (28-35) the number of rough cuts can be expressed as



696 28 Determination of Optimal Machining Conditions Using Scatter Search

d

ddn
r

st −= (28.36)

and restricted to

NnN UL ≤≤
(28.37)

where
d

dd
N

d

dd
N

rL

st
U

rU

st
L

−=−= , . (28.38)

Eq. (28-36) can be rewritten for depth of one rough cut, rd , as follow

n
dd

d
st

r

−= (28.39)

once the depth of finish cut sd is specified, the depth of rough cut rd can be

obtained from Eq. (28-39). Therefore, one variables rd and the equality con-

straint, Eq. (28-35), can be eliminated in the optimization algorithm.
Based upon the previous discussions, an optimization model for multi-pass

turning operations can be formulated. The multi-pass turning model is a con-
strained nonlinear programming problem with multiple variables (machining pa-
rameters). The complexity of machining optimization problem presents difficulties
for some solution techniques. SS is one of the optimization techniques recently
developed in the area of metaheuristics. SS provides a way of considerably im-
proving the performance of simple heuristic procedures. The search strategies
proposed by SS result in iterative-procedures with the ability to escape local opti-
mal points. The proposed SS-based optimization algorithm is described in Chapter
24. In the next section, the effectiveness of SS for the machining condition opti-
mization is investigated.

28.6 Computational Experience

An example for the multi-pass turning model taken from Shin and Joo (1992) and
Chen and Tsai (1996) is addressed to evaluate the viability of SS in machining
condition optimization. The data of this example is presented in Table 28-2. The
initial solutions (starting points) for SS are picked in a random way. The experi-
mental study takes 500 runs of this example for comparing to the results of simu-
lated annealing (Chen and Tsai 1996). The output statistics are computed every
100 runs. The SS-based method for machining optimization is implemented with
the C codes presented in Laguna and Marti (2003). The experimentation has been
run on the PC with a Pentium III 800 MHz processor. The user-specified parame-
ters of SS are presented in Table 28-3. The computational results are summarized
in Table 28-4.



28.6 Computational Experience 697

Table 28.2. Data of test example.

D = 50 mm

rUV = 500 m/min

rLf = 0.1 mm/rev

sUV = 500 m/min

sLf = 0.1 mm/rev

p = 5

fk = 108

η � � � � � �

qk = 132

tk = 2.5 $/edge

0C = 6x1011

UF = 5.0 kgf

L = 300 mm

rLV = 50 m/min

rUd = 3.0 mm

sLV = 50 m/min

sUd = 3.0 mm

q = 1.75

μ = 0.75

R = 1.2 mm

1h = 7x10-4

ct = 0.75 min/piece

UT = 45 min

aR = 10 μ

td = 6 mm

rUf = 0.9 mm/rev

rLd =1.0 mm

sUf = 0.9 mm/rev

sLd = 1.0 mm

r = 0.75
υ  = 0.95

ok = 0.5 $/min

2h = 0.3

et = 1.5 min/edge

LT = 25 min

UP = 200 kW

Based on the above results, SS performs competitively to simulated annealing
in machining condition optimization problems. The computational results validate
the advantage of SS in terms of solution quality and computational requirement.
Similar to simulated annealing and genetic algorithms, SS is a generalized optimi-
zation methodology for machining problems since it has no restrictive assump-
tions about the objective function, parameter set and constraint set.

Table 28.3. User specified parameters for SSa.

Psize = the size of the set of diverse solutions generated by the Diversification
Generation Method (100);

b = the size of the reference set (20);

1b = the size of the high quality subset (10);

2b = the size of the diverse subset (10);

MaxIter = maximum number of iterations (3).
aThe definitions for these parameters can be found in Chapter 24.



698 28 Determination of Optimal Machining Conditions Using Scatter Search

Table 28.4. Computational results of test example.

SS SA
Runs Avg. final function

values ($/piece)
Standard
deviation

Avg. final function
values ($/piece)

Standard
deviation

1 ~ 100 1.9730 0.02611 2.2973 0.00080
101 ~ 200 1.9652 0.02718 2.2975 0.00068
201 ~ 300 1.9610 0.02515 2.2974 0.00070
301 ~ 400 1.9646 0.02678 2.2975 0.00065
401 ~ 500 1.9659 0.02690 2.2974 0.00076
CPU timea

14.3 seconds/run 19.3 seconds/run
aSS and SA were run on a Pentium III based PC and an IBM PC 486/DX2, respectively.

28.7 Conclusions

Improving performance of multi-pass turning operations can lead to considerable
savings. In the area of machining condition optimization, determination of optimal
machining parameters is a substantial problem. The machining parameters in
multi-pass turning operations consist of cutting speed, feed, depth of cut and num-
ber of passes. In process planning of CNC machining, selecting reasonable ma-
chining parameters is necessary to satisfy requirements involving machining eco-
nomics, machining quality and machining safety. The machining models can
reduce the storage requirement and facilitate the automatic generation of machin-
ing conditions using optimization techniques.

The machining condition optimization problem for multi-pass turning opera-
tions is a constrained nonlinear program with a high degree of computational
complexity. Owing to the high complexity, a generalized optimization algorithm
based on Scatter Search (SS) is proposed to resolve the machining optimization
model. From the computational results of the test example, it is demonstrated that
the SS-based optimization method can adequately solve the complex machining
optimization problem.



28.7 Conclusions 699

The features of applying SS to machining condition optimization can be character-
ized as follows:
1. Machining optimization problems have been studied for quite a long time due

to their high degrees of complexity. It is more probable to have good algo-
rithms either efficient in computational time or excellent in optimality for these
problems. Due to the essence of high complexity, machining optimization prob-
lems can have only excellent approaches in optimality, or quick but approxi-
mate approaches with unsatisfactory local solutions. SS is completely general-
ized and problem-independent since it has no restrictive assumptions about the
objective function, parameter set and constraint set. Therefore, SS can be easily
modified to optimize the turning operations under various economic criteria
and numerous practical constraints. In addition, no special information regard-
ing the solution surface, e.g., gradient and local curvature, must be identified.

2. The obtained machining conditions can be easily applied in multi-pass turning
operations. SS can obtain a near-optimal solution within a reasonable execution
time on PC. Potentially, it can be extended as an on-line adjustment system of
machining parameters based on signals from sensors. In addition, the machin-
ing model and the SS-based optimization method can be integrated into a
CAD/CAM system for determining the optimal machining parameters, thereby
reducing the manufacturing cost in metal machining.



700 References

References

Agapiou JS (1992a) The optimization of machining operations based on a combined crite-
rion, Part 1: The use of combined objectives in single-pass operations. Transactions of
the ASME, Journal of Engineering for Industry: 114 500-506

Agapiou JS (1992b) The optimization of machining operations based on a combined crite-
rion, Part 2: Multi-pass operations. Transactions of the ASME, Journal of Engineering
for Industry: 114 507-513

Armarego EJA, Brown RH (1969) The Machining of Metal, Englewood Cliffs, New Jersey,
Prentice-Hall.

Bhattacharyya A, Faria-Gonzalez R, Ham I (1970) Regression analysis for predicting sur-
face finish and its applications in the determination of optimum machining conditions.
Transactions of the ASME, Journal of Engineering for Industry: 92 711-714

Boogert RM, Kals HJJ, van Houten FJAM (1996) Tool paths and cutting technology in
computer-aided process planning. International Journal of Advanced Manufacturing
Technology: 11 186-197

Boothroyd G, Rusek P (1976) Maximum rate of profit criteria in machining. Transactions
of the ASME, Journal of Engineering for Industry: 98 217-220

Chang TC, Wysk RA, Wang HP (1991) Computer-aided Manufacturing, Englewood Cliffs,
New Jersey, Prentice-Hall.

Chen Y, Hui, A, Du R (1995) A fuzzy expert system for the design of machining opera-
tions. International Journal of Machine Tool Design and Manufacturing: 35 1605-1621

Chen M-C, Su, C-T (1998) Optimization of machining conditions for turning cylindrical
stocks into continuous finished profiles. International Journal of Production Research:
36 2115-2130

Chen M-C, Tsai D-M (1996) A simulated annealing approach for optimization of multi-
pass turning operations. International Journal of Production Research: 34 2803-2825

Chen M-C, Tseng H-Y (1998) Machining parameters selection for stock removal turning in
process plans using a float encoding genetic algorithm. Journal of the Chinese Institute
of Engineers: 21 493-506

Choi JC, Bricker DL (1996) Effectiveness of a geometric programming algorithm for opti-
mization of machining economics models. Computers and Operations Research: 23
957-961

Ermer DS (1971) Optimization of the constrained machining economics problem by geo-
metric programming. Transactions of the ASME, Journal of Engineering for Industry:
93 1067-1072

Ermer DS, Kromodihardjo S (1981) Optimization of multipass turning with constraints.
Transactions of the ASME, Journal of Engineering for Industry: 103 462-468

Glover F (1997) A template for scatter search and path relinking. In: Hao JK, Lutton E,
Ronald E, Schoenauer M, Snyers D (eds.) Lecture Notes in Computer Science 1363,
Springer-Verlag, Berlin, pp 13-54



28.7 Conclusions 701

Glover F (1999) Scatter search and path relinking. In: Corne D, Dorigo M, Glover F (eds.)
New Ideas in Optimization, Wiley, New York

Glover F, Laguna M, Marti R (2000) Fundamentals of scatter search and path relinking.
Control and Cybernetics: 39 653-684

Goldberg DE (1989) Genetic Algorithms in Search, optimization, and Machine Learning.
Addison-Wesley, Reading, MA

Groover MP (1975) Monte Carlo simulation of the machining economics problem. Trans-
actions of the ASME, Journal of Engineering for Industry: 97 931-938

Gopalkrishnan B, Al-Khayal F (1991) Machining parameter selection for turning with con-
straints: an analytical approach based on geometric programming. International Journal
of Production Research: 29 1897-1908

Gupta R, Batra JL, Lal GK (1994) Profit rate maximization in multipass turning with con-
straints: a geometric programming approach. International Journal of Production Re-
search: 32 1557-1569

Gupta R, Batra JL, Lal GK (1995) Determination of optimal subdivision of depth of cut in
multipass turning with constraints. International Journal of Production Research: 33
2555-2565

Hati SK, Rao SS (1976) Determination of optimum machining conditions-deterministic and
probabilistic approaches. Transactions of the ASME, Journal of Engineering for Indus-
try: 98 354-359

Holland JH (1975) Adaptation in Natural and Artificial Systems. University of Michigan
press, Ann Arbor

Iwata K, Murotsu Y, Iwatsubo T, Fuju S (1972) A probabilistic approach to the determina-
tion of the optimum cutting conditions. Transactions of the ASME, Journal of Engi-
neering for Industry: 94 1099-1107

Iwata K, Murotsu Y, Oba F (1977) Optimization of cutting conditions for multipass opera-
tions considering probabilistic nature in machining process. Transactions of the
ASME, Journal of Engineering for Industry: 99 210-217

Kee PK (1994) Development of computer-aided machining optimization for multi-pass
rough turning operations. International Journal of Production Economics: 37 215-227

Kee PK (1995) Alternative optimization strategies and CAM software for multi-pass rough
turning operations. International Journal of Advanced Manufacturing Technology: 10
287-298

Kee PK (1996) Development of constrained optimization analyses and strategies for multi-
pass rough turning operations. International Journal of Machine Tools and Manufac-
ture: 36 115-127

Khan Z, Prasad B, Singh T (1997) Machining condition optimization by genetic algorithms
and simulated annealing. Computers and Operations Research: 24 647-657

Kirkpatrick S, Gelatt Jr CD, Vecchi MP (1983) Optimization by simulated annealing. Sci-
ence: 220 671-680

Lin SCJ (1994) Computer Numerical Control From Programming to Networking, Delmar
Publisher, New York

Laguna M, Marti R (2003) Scatter Search, Kluwer Academic Publishers, Boston
Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equation of state

calculations by fast computing machines. Journal of Chemical Physics: 21 1087-1092
Mesquita R, Krasteva E, Doytchinov S (1995) Computer-aided selection of optimum pa-

rameters in multipass turning. International Journal of Advanced Manufacturing Tech-
nology: 10 19-26



702 References

Narang RV, Fischer GW (1993) Development of a framework to automate process planning
functions and to determine machining parameters. International Journal of Production
Research: 31 1921-1942

Okushima K, Hitomi K (1964) A study of economic machining: an analysis of maximum
profit cutting speed. International Journal of Production Research: 3 73-78

Prasad AVSRK, Rao PN, Rao RK (1997) Optimal selection of process parameters for turn-
ing operations in a CAPP system. International Journal of Production Research: 35
1495-1522

Petropoulos PG (1973) Optimal selection of machine rate variables by geometric program-
ming. International Journal of Production Research: 11 305-314

Philipson RH, Ravindran A (1979) Application of mathematical programming to metal cut-
ting. Mathematical Programming Study: 11 116-134

Shin YC, Joo YS (1992) Optimization of machining conditions with practical constraints.
International Journal of Production Research: 30 2907-2919

Somlo J, Nagy J (1977) A new approach to cutting data optimization. Advances in Com-
puter-aided Manufacture, North-Holland

Su C-T, Chen M-C (1999) Computer-aided optimization of multi-pass turning operations
for continuous forms on CNC lathes. IIE Transactions: 31 583-596

Sundaram AM (1978) An application of goal programming technique in metal cutting. In-
ternational Journal of Production Research: 16 375-382

Tan FP, Creese RC (1995) A generalized multi-pass machining model for machining pa-
rameter selection in turning. International Journal of Production Research: 33 1467-
1487

Tsai P (1986) An optimization algorithm and economic analysis for constrained machining
model. Ph.D. thesis, West Virginia University.

Unklesbay K, Creighton DL (1978) The optimization of multi-pass machining processes.
Engineering Optimization: 3 229-238

van Laarhoven PJM, Aarts EHL (1987) Simulated annealing: Theory and Applications,
Reidel, Dordrecht, Holland

Walvekar AG, Lambert BK (1970) An application of geometric programming to machine
variable selection. International Journal of Production Research: 8 122-133

Wu SM, Ermer DS (1966) Maximum profit as the criterion in the determination of the op-
timum cutting conditions. Transactions of the ASME, Journal of Engineering for In-
dustry: 88 435-442

Yellowley I (1978) A fundamental examination of the economics of the two pass turning
operation. International Journal of Production Research: 18 617-626

Yellowley I, Gunn EA (1989) The optimal subdivision of cut in multi-pass machining op-
erations. International Journal of Production Research: 27 1573-1588

Yeo SH (1995) A multipass optimization strategy for CNC lathe operations. International
Journal of Production Economics: 40 209-218



29 Extended Frontiers in Optimization
Techniques

Sergiy Butenko and Panos M Pardalos

29.1 Recent Progress in Optimization Techniques

Optimization has been expanding in all directions at an astonishing rate during the
last few decades. New algorithmic and theoretical techniques have been devel-
oped, the diffusion into other disciplines has proceeded at a rapid pace, and our
knowledge of all aspects of the field has grown even more profound (Floudas and
Pardalos 2002; Pardalos and Resende 2002). At the same time, one of the most
striking trends in optimization is the constantly increasing emphasis on the inter-
disciplinary nature of the field. Optimization today is a basic research tool in all
areas of engineering, medicine and the sciences. The decision making tools based
on optimization procedures are successfully applied in a wide range of practical
problems arising in virtually any sphere of human activities, including biomedi-
cine, energy management, aerospace research, telecommunications and finance. In
this chapter we will briefly discuss the current developments and emerging chal-
lenges in optimization techniques and their applications.

The problems of finding the ``best’’ and the ``worst’’ have always been of a
great interest. For example, given n sites, what is fastest way to visit all of them
consecutively? In manufacturing, how should one cut plates of a material so that
the waste is minimized? Some of the first optimization problems were solved in
ancient Greece and are regarded among the most significant discoveries of that
time. In the first century A.D., the Alexandrian mathematician Heron solved the
problem of finding the shortest path between two points by way of the mirror.
This result, also known as the Heron’s theorem of the light ray, can be viewed as
the origin of the theory of geometrical optics. The problem of finding extreme
values gained a special importance in the seventeenth century when it served as
one of motivations in the invention of differential calculus. The soon after devel-
oped calculus of variations and the theory of stationary values lie in the foundation
of the modern mathematical theory of optimization.

G. C. Onwubolu et al., New Optimization Techniques in Engineering
© Springer-Verlag Berlin Heidelberg 2004



704 29 Extended Frontiers in Optimization Techniques

The invention of the digital computer served as a powerful spur to the field of
numerical optimization. During the World War II optimization algorithms were
used to solve military logistics and operations problems. The military applications
motivated the development of linear programming (LP), which studies optimiza-
tion problems with linear objective function and constraints. In 1947 George
Dantzig invented the simplex method for solving linear programs arising in U.S.
Air Force operations. Linear programming has become one of the most popular
and well studied optimization topics ever since. Although Dantzig is widely re-
garded as the father of linear programming, as early as 1939 the Soviet scientist
Leonid Kantorovich emphasized the importance of certain classes of linear pro-
grams for applications in use of complex resources management, equipment work
distribution, rational material cutting, the optimal use of sowing area, and trans-
portation. He also proposed the method of resolving multipliers to solve these
problems. Unfortunately, Kantorovich’s work remained unnoticed until the linear
programming methodology became a soundly developed and widely used disci-
pline. But eventually the Kantorovich’s contributions to the area of applied opti-
mization were recognized by the Nobel Prize in Economics in 1975.

Despite of a fine performance of the simplex method on a wide variety of prac-
tical instances, it has an exponential worst-case time complexity and therefore is
unacceptably slow in some large-scale cases. The question of existence of a theo-
retically efficient algorithm for LP remained open until 1979, when Leonid Kha-
chian published his polynomial-time ellipsoid algorithm for linear programming.
This theoretical breakthrough was followed by the interior point algorithm of Nar-
endra Karmarkar published in 1984. Not only this algorithm has a polynomial-
time theoretical complexity, it is also extremely efficient practically, allowing for
solving larger instances of linear programs. Nowadays, various versions of inte-
rior point methods are an integral part of the state-of-the-art optimization solvers.

In nonlinear optimization, one deals with optimizing a nonlinear function over
a feasible domain described by a set of, in general, nonlinear functions. The pio-
neering works on the gradient projection method by J. B. Rosen (Rosen 1960,
1961) generated a great deal of research enthusiasm in the area of for nonlinear
programming, resulting in a number of new techniques for solving large-scale
problems. This research resulted in several powerful nonlinear optimization soft-
ware packages, including MINOS (Murtagh and Saunders 1983) and Lancelot
(Conn et al. 1992).

In many practically important situations in linear, as well as nonlinear pro-
gramming, all or a fraction of variables are restricted to be integer, yielding inte-
ger or mixed integer programming problems. These problems are in general com-
putationally intractable, and it is unlikely that a universal polynomial-time
algorithm will be developed for integer programming. Linear and integer pro-
gramming can be considered as special cases of a broad optimization area called
combinatorial optimization. In fact, most of combinatorial optimization problems
can be formulated as integer programs. The most powerful integer programming
solvers used by modern optimization packages such as CPLEX (ILOG 2001) and
Xpress (Dash Optimization 2001) usually combine branch-and-bound algorithms



29.1 Recent Progress in Optimization Techniques 705

with cutting plane methods, efficient preprocessing schemes, including fast heuris-
tics, and sophisticated decomposition techniques.

It is fascinating to observe how naturally nonlinear and combinatorial optimiza-
tion are bridged with each other to yield new, better optimization techniques.
Combining the techniques for solving combinatorial problems with nonlinear op-
timization approaches is especially promising since it provides an alternative point
of view and leads to new characterizations of the considered problems. These
ideas also give a fresh insight into the complexity issues and frequently guide to
discovery of remarkable connections between problems of seemingly different na-
ture. For example, the ellipsoid and interior point methods for linear programming
mentioned above are based on nonlinear optimization techniques. Let us also men-
tion that an integrality constraint of the form x belongs to {0,1} is equivalent to
the nonconvex quadratic constraint x2-x = 0. This straightforward fact suggests
that it is the presence of nonconvexity, not integrality that makes an optimization
problem difficult (Horst et al. 2000).

Nonlinear programming techniques, in particular interior point methods, played
a key role in the recent foundation and development of semidefinite programming.
The remarkable result by Goemans and Williamson (Goemans and Williamson
1995) served as a major step forward in development of approximation algorithms
and proved a special importance of semidefinite programming for combinatorial
optimization.

The extensive field of global optimization copes with problems having multiple
locally optimal solutions, which arise in various important applications. Since
convexity of the objective function or the feasible region is difficult to verify for
many problems, it makes sense to assume that these problems are multi-extreme
and thus are of interest to the field of global optimization. Clearly, such problems
are extremely difficult to solve, which explains the fact that only in the last few
decades have solution techniques for global optimization problems been devel-
oped (Horst and Pardalos 1995). Recent advances in global optimization include
efficient solution methods for nonconvex quadratic programming, general concave
minimization, network optimization, Lipshchitz and DC (difference of convex)
programming, multi-level and multi-objective optimization problems. More detail
on these and other developments in global optimization can be found in (Horst and
Pardalos 1995; Horst et al. 2000; Pardalos and Romeijn 2002).

In many optimization problems arising in supply chain management, resource
allocation, inventory control, energy management, finance, and other applications,
the input data, such as demand or cost, are stochastic. In addition to the difficulties
encountered in deterministic optimization problems, the stochastic problems in-
troduce the additional challenge of dealing with uncertainties. To handle such
problems, one needs to utilize probabilistic methods alongside with optimization
techniques. This led to the development of a new area called stochastic program-
ming (Prekopa 1995), whose objective is to provide tools helping to design and
control stochastic systems with the goal of optimizing their performance.

Due to a large size of most practical optimization problems, especially of the
stochastic ones, the so-called decomposition methods were introduced. The de-
composition techniques (Lasdon 1970) are used to subdivide a large-scale problem



706 29 Extended Frontiers in Optimization Techniques

into subproblems of lower dimension which are easier to solve than the original
problem. The optimal solution of the large problem is then found using the opti-
mal solution of the subproblems. These techniques are usually applicable if the
problem at hand has some special structural properties. Say, the Dantzig-Wolfe
decomposition method (Dantzig and Wolfe 1960) applies to linear programs with
block diagonal or block angular constraint matrices. Another popular technique
used to solve large-scale linear programs of special structure is Benders decompo-
sition (Benders 1962). One of the advantages of the decomposition approaches is
that they can be easily parallelized and implemented in distributed computing en-
vironments.

The advances in parallel computing, including hardware, software, and algo-
rithms, increase the limits of the sizes of problems that can be solved (Migdalas et
al. 1997). In many cases, a parallel version of an algorithm allows for a reduction
of the running time by several orders of magnitude compared to the sequential
version. Recently, distributed computing environments were used to solve several
extremely hard instances of some combinatorial optimization problems, for in-
stance a 13,509-city instance of the traveling salesmen problem (Applegate et al.
1998) and an instance of the quadratic assignment problem of dimension 30 (An-
streicher et al. 2002). The increasing importance of parallel processing in optimi-
zation is reflected in the fact that modern commercial optimization software pack-
ages tend to incorporate parallelized versions of certain algorithms.

29.2 Heuristic Approaches

As a result of ongoing enhancement of the optimization methodology and of im-
provement of available computational facilities, the scale of the problems solvable
to optimality is continuously rising. However, many large-scale optimization
problems encountered in practice cannot be solved using traditional optimization
techniques. A variety of new computational approaches, called heuristics, have
been proposed for finding good sub-optimal solutions to difficult optimization
problems. Etymologically, the word ‘‘heuristic’’ comes from the Greek heuriskein
(to find). Recall the famous ‘‘Eureka, Eureka!’’ (I have found it! I have found it!)
by Archimedes (287-212 B.C.).

A heuristic in optimization is any method that finds an ``acceptable’’ feasible
solution. Many classical heuristics are based on local search procedures, which it-
eratively move to a better solution (if such solution exists) in a neighborhood of
the current solution. A procedure of this type usually terminates when the first lo-
cal optimum is obtained. Randomization and restarting approaches used to over-
come poor quality local solutions are often ineffective. More general strategies
known as metaheuristics usually combine some heuristic approaches and direct
them towards solutions of better quality than those found by local search heuris-
tics. Heuristics and metaheuristics play a key role in the solution of large difficult
applied optimization problems.



29.2 Heuristic Approaches 707

Sometimes in search for efficient heuristics people turn to nature, which seems
to always find the best solutions. In the recent decades, new types of optimization
algorithms have been developed and successfully tested, which essentially attempt
to imitate certain natural processes. The natural phenomena observed in annealing
processes, nervous systems and natural evolution were adopted by optimizers and
led to design of the simulated annealing (Kirkpatrick et al. 1983), neural networks
(Hopfield 1982) and evolutionary computation (Holland 1975) methods in the area
of optimization. The ant colony optimization method presented in Chapter Five of
this book is based on the behavior of natural ant colonies. Other popular metaheu-
ristics include greedy randomized adaptive search procedures or GRASP (Feo and
Resende 1995) and tabu search (Glover and Laguna 1997). Some of these and
other heuristics and their applications in engineering were discussed in detail in
previous chapters of this book. See also (Glover and Kochenberger 2003; Ribeiro
and Hansen 2002).

29.2.1 Parallel Metaheuristics

Although metaheuristic approaches, in general, do not guarantee optimality, very
often they offer the only practically feasible approach to solve large scale prob-
lems. However, with rapid growth of the scale of problems arising in science, en-
gineering and industry, even metaheuristics may require computing times exceed-
ing the limits of what is considered acceptable. Parallel metaheuristics are
designed to deal with this and other problems encountered in heuristic approaches.
In the remainder of this section we will give a brief review of developments and
challenges in the area of parallel metaheuristics. More detailed surveys and further
references can be found in (Correa et al. 2002; Glover and Kochenberger 2003;
Migdalas et al. 1997).

The core idea of the parallel computing is to break up the assignment among
several processors in order to accelerate the computation. In the case with meta-
heuristics, not only parallel computing helps to speed up finding good quality so-
lutions, it also enhances the robustness of the approaches. The availability of mul-
tiple processors provides more opportunities for diversification of the search
strategies thus widening the coverage of the solution space and yielding more reli-
able solutions. Improved robustness constitutes one of the most essential contribu-
tions of the parallel computing to metaheuristics.

The performance of a parallel algorithm depends on several key factors, such as
the architectures of parallel machines used, the employed parallel programming
environments, and the types of parallelism and models implemented.

The different architectures used in parallel computing include shared-memory
machines and distributed-memory machines. The number of processors in modern
shared memory multiprocessor machines (SMP) ranges from two to several hun-
dred. One of the most popular currently used alternatives in parallel computing is
represented by a cluster of computers, which is essentially a group of PCs or
workstations connected through a network. The main advantage of the cluster sys-



708 29 Extended Frontiers in Optimization Techniques

tems is their good cost/performance ratios comparing to other parallel machines
(Buyya 1999).

The basic choices of parallel computing environments consist of parallel pro-
gramming languages, communication libraries, and programming with lightweight
processes. Nowadays, there are many parallel computing tools available, such as
Parallel Virtual Machine (PVM) (Geist et al. 1994), Message Passing Interface
(MPI) (Gropp et al. 1998) and Linda (Carriero et al. 1994). In implementation of
parallel metaheuristics, a proper programming tool can be selected depending on
characteristics of a specific problem to be solved.

The two main types of parallelism are data parallelism and functional parallel-
ism. In data parallelism, the same sequence of commands is carried out on subsets
of the data, whereas in functional parallelism the program consists of cooperative
tasks, which use different codes and can run asynchronously.

Apart from the different programming environments, there are two basic paral-
lel programming models, namely centralized and distributed. The parallel imple-
mentations of metaheuristics are often based on hybrid models, in which a central-
ized model in shared memory multiprocessor machines is run under a distributed
model used in the machines cluster.

Description of successful parallel implementations strategies of many various
mataheuristics can be found in the literature. The metaheuristics that have been ef-
ficiently implemented in parallel environments include tabu search, GRASP, ge-
netic algorithms, simulated annealing, ant colonies, and others. Recent surveys
and references can be found in (Glover and Kochenberger 2003; Ribeiro and Han-
sen 2002).

29.3 Emerging Application Areas of Optimization

The fast pace of technological progress, the invention of Internet and wireless
communications have changed the way people communicate and do business. This
age of technology and electronic commerce creates new types of optimization
problems. The enormous amounts of data generated in government, military, as-
tronomy, finance, telecommunications, medicine, and other important applications
pose new problems which require special interdisciplinary efforts and novel so-
phisticated techniques for their solution.

The problems brought by massive data sets include data storage, compression
and visualization, information retrieval, nearest neighbor search, clustering, and
pattern recognition among many others. These and other problems arising in mas-
sive data sets create enormous opportunities and challenges for representatives of
many fields of science and engineering, including optimization. Some of these
challenges are beginning to be addressed (Abello et al. 2002). For example, opti-
mization algorithms on massive graphs have been recently applied to analyze the
data modeled by these graphs (Boginski et al. 2003). There are still many ques-
tions to be formulated and answered in this extremely broad and significant area.



29.4 Concluding Remarks 709

In many cases the data sets are too large to fit entirely inside the fast computer’s
internal memory, and a slower external memory (for example disks) needs to be
used. The input/output communication (I/O) between these memories can result in
an algorithm’s slow performance. External memory (EM) algorithms and data
structures are designed with aim to reduce the I/O cost by exploiting the locality.
The first EM graph algorithm was developed by Ullman and Yannakakis in 1991
and dealt with the problem of transitive closure. Many other researchers contrib-
uted to the progress in this area ever since. Recently, external memory algorithms
have been successfully applied for solving various problems, including finding
connected components in graphs, topological sorting, and shortest paths. For more
detail on external memory algorithms and data structures see (Abello and Vitter
1999; Vitter 2001).

Another area that has a huge potential for application of optimization tech-
niques is biomedicine. In the last few years there have been successful attempts to
employ optimization procedures in biomedical problems. For example, quadratic
integer programming has been applied to find the optimal positioning of elec-
trodes in the human brain used for detection and prediction of epileptic seizures
(Iasemidis et al. 2001); network flow algorithms have been utilized in order to
maximize efficiency and minimize risk in radiation therapy treatment; optimiza-
tion has been used to improve the efficiency of cancer detection and treatment
(Lee and Sofer 2003; Mangasarian et al. 1995). More references on applications of
optimization techniques in biomedicine can be found in (Du et al. 2000, Pardalos
and Principe 2002; Pardalos et al. 1996).

29.4 Concluding Remarks

The area of optimization is one in which recent developments have effected great
changes in many other disciplines. This trend it seems will continue for the next
several years. Taking into account the increasing demand for solving large scale
optimization problems we are going to witness the development of powerful heu-
ristics and their implementations in parallel computing environments in the near
future. Although we singled out massive data sets and biomedicine as examples of
extending applied optimization frontiers, many other important areas of human ac-
tivities provide exciting opportunities and challenges for optimization techniques.
In conclusion, we want to stress the greater than ever significance of optimization
in solving interdisciplinary problems.



710 References

References

J. Abello, P.M. Pardalos, and M.G.C. Resende (editors). Handbook of Massive Data Sets.
Kluwer Academic Publishers, 2002.

J. Abello and J. S. Vitter (editors). External Memory Algorithms. Vol. 50 of DIMACS Se-
ries in Discrete Mathematics and Theoretical Computer Science. American Mathe-
matical Society, 1999.

K.Anstreicher, N. Brixius, J.-P. Goux, and J. Linderoth. Solving large quadratic assignment
problems on computational girds. Mathematical Programming, Series B 91 563-588,
2002.

D. Applegate, R. Bixby, V. Chv´atal, and W. Cook. On the solution of traveling salesman
problems. Doc. Math. J. DMV, Extra ICM III:645–656, 1998.

J.F. Benders. Partitioning procedures for solving mixed variables programming problems.
Numerische Mathematik, 4, 1962.

V. Boginski, S. Butenko, and P.M. Pardalos. Modeling and optimization in massive graphs.
In P.M. Pardalos and H. Wolkowicz (editors), Novel Approaches to Hard Discrete
Optimization. American Mathematical Society, 2003.

R. Buyya (editor). High performance cluster computing: Architectures and systems (in 2
volumes). Prentice Hall, 1999.

N. Carriero, D. Gelernter, and T. Mattson. The Linda alternative to message-passing sys-
tems. Parallel Computing, 20: 458-633, 1994.

A.R. Conn, N.I.M. Gould, and Ph.L. Toint. LANCELOT: a Fortran packagefor large-scale
nonlinear optimization (Release A). Springer-Verlag, 1992.

R. Correa, I. Dutra, M. Fiallos, and F. Gomez (editors). Models for Parallel and Distrib-
uted Computation: Theory, Algorithmic Techniques and Applications. Kluwer Aca-
demic Publishers, 2002.

D.B. Dantzig and P. Wolfe. The decomposition principle for linear programs. Operations
Research, 8, 1960.

Dash Optimization. Xpress, 2001. http://www.dashoptimization.com.
D.-Z. Du, P.M. Pardalos, and J. Wang (editors). Discrete Mathematical Problems with

Medical Applications, DIMACS Series Vol. 55. American Mathematical Society,
2000.

T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Journal of
Global Optimization, 6, 1995.

C. Floudas and P.M. Pardalos (editors). Encyclopedia of Optimization (in 6 volumes). Klu-
wer Academic Publishers, 2002.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderman. PVM: Par-
allel Virtual Machine – A User’s Guide and Tutorial for Networked Parallel Comput-
ing. MIT Press, 1994. Also available at http://www.netlib.org/pvm3/book/pvm-
book.html.



29.4 Concluding Remarks 711

F. Glover and G.A. Kochenberger. Handbook of Metaheuristics. Kluwer Academic Pub-
lishers, 2003.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum

cut and satisfiability problems using semidefinite programming, Journal of ACM, 42:
1115-1145, 1995.

W. Gropp, S. Huss-Lederman, A. Lumsdane, E. Lusk, B. Nitzberg, W. Saphir, and M. Snir.
MPI: the Complete Reference. MIT Press, 1998. Also available at
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html.

J.H. Holland. Adaption in Natural and Artificial Systems. University of Michigan Press,
1975.

J.J. Hopfield. Neural networks and physical systems with emergent collective computa-
tional abilities. Proceedings of the National Academy of Sciences, 79: 2554-2558,
1982.

R. Horst and P.M. Pardalos. Handbook of Global Optimization. Kluwer Academic Publish-
ers, 1995.

R. Horst, P.M. Pardalos, and N.V. Thoai. Introduction to Global Optimization. Kluwer
Academic Publishers, 2nd edition, 2000.

L.D. Iasemidis, P.M. Pardalos, D.-S. Shiau, and J.C. Sackellares. Quadratic binary pro-
gramming and dynamic system approach to determine the predictability of epileptic
seizures. Journal of Combinatorial Optimization, 5: 9-26, 2001.

ILOG. ILOG CPLEX, 2001. http://www.ilog.com/products/cplex.
N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,

4: 373-395, 1984.
L.G. Khachian. A polynomial algorithm in linear programming. Soviet Mathematics Dok-

lady, 20:1093–1096, 1979.
S. Kirkpatrick, C.D. Gellat Jr., and M.P. Vecchi. Optimization by simulated annealing. Sci-

ence, 220:671–680, 1983.
L.S. Lasdon. Optimization Theory for Large Systems. MacMillan, 1970.
E. Lee and A. Sofer (editors). Optimization in Medicine. Volume 19 of Annals of Opera-

tions Research. Kluwer Academic Publishers, 2003.
O.L. Mangasarian, W.N. Street, and W.H. Wolberg. Breast cancer diagnosis and prognosis

via linear programming. Operations Research, 43: 570-577, 1995.
A. Migdalas, P.M. Pardalos, and S. Storøy (editors). Parallel Computing in Optimization.

Kluwer Academic Publishers, 1997.
B.A. Murtagh and M.A. Saunders. MINOS 5.0 User’s Guide. Technical Report 83-20R,

Systems Optimization Laboratory, Stanford University, Stanford, CA, 1983.
P.M. Pardalos and J. Principe (editors). Biocomputing. Kluwer Academic Publishers, 2002.
P.M. Pardalos and M.G.C. Resende (editors). Handbook of Applied Optimization. Oxford

University Press, 2002.
P.M. Pardalos and E. Romeijn. Handbook of Global Optimization. Volume 2: Heuristic Ap-

proaches. Kluwer Academic Publishers, 2002.
P.M. Pardalos, D. Shalloway, and G. Xue. Global Minimization of Nonconvex Energy

Functions: Molecular Conformation and Protein Folding, DIMACS Series Vol. 23.
American Mathematical Society, 1996.

A. Prekopa. Stochastic Programming. Kluwer Academic Publishers, 1995.
C. Ribeiro and P. Hansen (editors). Essays and Surveys in Metaheuristics. Kluwer Aca-

demic Publishers, 2002.



712 References

J.B. Rosen. The gradient projection method for nonlinear programming. Part I. Linear con-
straints. J. Soc. Ind. Appl. Math., 8, 1960.

J.B. Rosen. The gradient projection method for nonlinear programming. Part II. Non-linear
constraints. J. Soc. Ind. Appl. Math., 9, 1961.

J. D. Ullman and M. Yannakakis. The input/output complexity of transitive closure. Annals
of Mathematics and Artificial Intelligence, 3: 331-360, 1991.

J. S. Vitter. External memory algorithms and data structures: Dealing with MASSIVE
DATA. ACM Computing Surveys, 33:209-271, 2001.


