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Preface

This textbook is an introduction to the ideas and
techniques of linear algebra for first- or second-year
students with a working knowledge of high school
algebra. The contents have enough flexibility to present
a traditional introduction to the subject, or to allow for
a more applied course. Chapters 1-4 contain a one-
semester course for beginners whereas Chapters 5-9
contain a second semester course (see the Suggested
Course Outlines below). The text is primarily about real
linear algebra with complex numbers being mentioned
when appropriate (reviewed in Appendix A). Overall,
the aim of the text is to achieve a balance among
computational skills, theory, and applications of linear
algebra. Calculus is not a prerequisite; places where it is
mentioned may be omitted.

As a rule, students of linear algebra learn by studying
examples and solving problems. Accordingly, the
book contains a variety of exercises (over 1200, many
with multiple parts), ordered as to their difficulty. In
addition, more than 375 solved examples are included
in the text, many of which are computational in nature.

SUGGESTED COURSE OUTLINES

This text includes the basis for a two-semester course in
linear algebra.

* Chapters 1-4 provide a standard one-semester
course of 35 lectures, including linear equations,
matrix algebra, determinants, diagonalization, and
geometric vectors, with applications as time permits.
At Calgary, we cover Sections 1.1-1.3, 2.1-2.6, 3.1-3.3
and 4.1-4.4, and the course is taken by all science
and engineering students in their first semester.
Prerequisites include a working knowledge of high
school algebra (algebraic manipulations and some
familiarity with polynomials); calculus is not required.

* Chapters 5-9 contain a second semester course
including R”, abstract vector spaces, linear
transformations (and their matrices), orthogonality,
complex matrices (up to the spectral theorem) and

The examples are also used to motivate (and illustrate)
concepts and theorems, carrying the student from
concrete to abstract. While the treatment is rigorous,
proofs are presented at a level appropriate to the

student and may be omitted with no loss of continuity.
As a result, the book can be used to give a course that
emphasizes computation and examples, or to give a more
theoretical treatment (some longer proofs are deferred to
the end of the Section).

Linear Algebra has application to the natural sciences,
engineering, management, and the social sciences as well
as mathematics. Consequently, 18 optional “applications”
sections are included in the text introducing topics
as diverse as electrical networks, economic models,
Markov chains, linear recurrences, systems of differential
equations, and linear codes over finite fields. Additionally
some applications (for example linear dynamical systems,
and directed graphs) are introduced in context. The
applications sections appear at the end of the relevant
chapters to encourage students to browse.

applications. There is more material here than can
be covered in one semester, and at Calgary we cover
Sections 5.1-5.5, 6.1-6.4, 7.1-7.3, 8.1-8.6, and 9.1-
9.3, with a couple of applications as time permits.

* Chapter 5 is a “bridging” chapter that introduces
concepts like spanning, independence, and basis in
the concrete setting of R”, before venturing into the
abstract in Chapter 6. The duplication is balanced by
the value of reviewing these notions, and it enables
the student to focus in Chapter 6 on the new idea of
an abstract system. Moreover, Chapter 5 completes
the discussion of rank and diagonalization from
earlier chapters, and includes a brief introduction
to orthogonality in R”, which creates the possibility
of a one-semester, matrix-oriented course covering
Chapters 1-5 for students not wanting to study the
abstract theory.
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CHAPTER DEPENDENCIES

The following chart suggests how the material introduced in each chapter draws on concepts covered in certain earlier
chapters. A solid arrow means that ready assimilation of ideas and techniques presented in the later chapter depends
on familiarity with the earlier chapter. A broken arrow indicates that some reference to the earlier chapter is made but

the chapter need not be covered.
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Chapter 2: Matrix Algebra

<

Chapter 3: Determinants and Diagonalization -------------
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s

Chapter 7: Linear Transformations

N

N

Chapter 8: Orthogonality

v

Chapter 9: Change of Basis
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Chapter 10: Inner Product Spaces

N

Chapter 11: Canonical Forms

NEW IN THE SEVENTH EDITION

¢ Vector notation. Based on feedback from reviewers
and current users, all vectors are denoted by boldface

letters (used only in abstract spaces in earlier editions).
Thus x becomes x in R? and R? (Chapter 4), and in R”

the column X becomes x. Furthermore, the notation
[x; %, ... x,]7 for vectors in R” has been eliminated;

instead we write vectors as n-tuples (v, 2y, ..
X1

., X,) O
as columns |2 |. The result is a uniform notation for
xn

vectors throughout the text.

¢ Definitions. Important ideas and concepts are

identified in their given context for student’s
understanding. These are highlighted in the text when
they are first discussed, identified in the left margin, and
listed on the inside back cover for reference.

¢ Exposition. Several new margin diagrams have been

included to clarify concepts, and the exposition has
been improved to simplify and streamline discussion
and proofs.

OTHER CHANGES

* Several new examples and exercises have been added.

* The motivation for the matrix inversion algorithm has
been rewritten in Section 2.4.

e For geometric vectors in R?, addition (parallelogram
law) and scalar multiplication now appear earlier
(Section 2.2). The discussion of reflections in Section
2.6 has been simplified, and projections are now
included.

® The example in Section 3.3, which illustrates that x in

R? is an eigenvector of A if, and only if, the line R, is
A-invariant, has been completely rewritten.

e The first part of Section 4.1 on vector geometry in R*

and R® has also been rewritten and shortened.

¢ In Section 6.4 there are three improvements: Theorem

1 now shows that an independent set can be extended to
a basis by adding vectors from any prescribed basis; the
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proof that a spanning set can be cut down to a basis has
been simplified (in Theorem 3); and in Theorem 4, the
argument that independence is equivalent to spanning
for a set S € V' with |S| = dim V" has been streamlined
and a new example added.

HIGHLIGHTS OF THE TEXT

e Two-stage definition of matrix multiplication. First,
in Section 2.2 matrix-vector products are introduced

* In Section 8.1, the definition of projections has
been clarified, as has the discussion of the nature of
quadratic forms in R?.

the exercises in each section.

e Exercises. The text contains a variety of exercises

naturally by viewing the left side of a system of linear
equations as a product. Second, matrix-matrix products
are defined in Section 2.3 by taking the columns of a
product AB to be A times the corresponding columns
of B. This is motivated by viewing the matrix product
as composition of maps (see next item). This works
well pedagogically and the usual dot-product definition
follows easily. As a bonus, the proof of associativity of
matrix multiplication now takes four lines.

e Matrices as transformations. Matrix-column

muldplications are viewed (in Section 2.2) as
transformations R” — R”. These maps are then used
to describe simple geometric reflections and rotations
in R” as well as systems of linear equations.

Early linear transformations. It has been said that
vector spaces exist so that linear transformations

can act on them—consequently these maps are

a recurring theme in the text. Motivated by the

matrix transformations introduced earlier, linear
transformations R” — R” are defined in Section 2.6,
their standard matrices are derived, and they are then
used to describe rotations, reflections, projections, and
other operators on R?.

Early diagonalization. As requested by engineers

and scientists, this important technique is presented

in the first term using only determinants and matrix
inverses (before defining independence and dimension).
Applications to population growth and linear
recurrences are given.

Early dynamical systems. These are introduced

in Chapter 3, and lead (via diagonalization) to
applications like the possible extinction of species.
Beginning students in science and engineering can
relate to this because they can see (often for the first
time) the relevance of the subject to the real world.

Bridging chapter. Chapter 5 lets students deal with
tough concepts (like independence, spanning, and
basis) in the concrete setting of R” before having to
cope with abstract vector spaces in Chapter 6.

Examples. The text contains over 375 worked
examples, which present the main techniques of the
subject, illustrate the central ideas, and are keyed to

(nearly 1175, many with multiple parts), starting with
computational problems and gradually progressing
to more theoretical exercises. Exercises marked

with a ¢ have an answer at the end of the book or

in the Students Solution Manual (available online).
There is a complete Solution Manual is available for
instructors.

e Applications. There are optional applications at the

end of most chapters (see the list below). While some
are presented in the course of the text, most appear at
the end of the relevant chapter to encourage students
to browse.

e Appendices. Because complex numbers are needed

in the text, they are described in Appendix A, which
includes the polar form and roots of unity. Methods
of proofs are discussed in Appendix B, followed

by mathematical induction in Appendix C. A brief
discussion of polynomials is included in Appendix D.
All these topics are presented at the high-school level.

e Self-Study. This text is self-contained and therefore is

suitable for self-study.

e Rigour. Proofs are presented as clearly as possible

(some at the end of the section), but they are optional
and the instructor can choose how much he or she
wants to prove. However the proofs are there, so

this text is more rigorous than most. Linear algebra
provides one of the better venues where students
begin to think logically and argue concisely. To this
end, there are exercises that ask the student to “show”
some simple implication, and others that ask her

or him to either prove a given statement or give a
counterexample. I personally present a few proofs in
the first semester course and more in the second (see
the Suggested Course Outlines).

e Major Theorems. Several major results are presented

in the book. Examples: Uniqueness of the reduced row-
echelon form; the cofactor expansion for determinants;
the Cayley-Hamilton theorem; the Jordan canonical
form; Schur’s theorem on block triangular form,; the
principal axis and spectral theorems; and others. Proofs
are included because the stronger students should at
least be aware of what is involved.
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ANCILLARY MATERIALS

CONNECT
McGraw-Hill Connect™

@ connect
is a web-based assignment
and assessment platform that gives students the means to
better connect with their coursework, with their instructors,
and with the important concepts that they will need to
know for success now and in the future. With Connect,
instructors can deliver assignments, quizzes and tests easily
online. Students can practise important skills at their own
pace and on their own schedule. With Connect, students
also get 24/7 online access to an eBook—an online edition
of the text—to aid them in successfully completing their
work, wherever and whenever they choose.

INSTRUCTOR RESOURCES

Instructor Resources

¢ Instructor’s Solutions Manual

e Partial Student’s Solution Manual
¢ Computerized Test Bank

CHAPTER SUMMARIES

Chapter 1: Systems of Linear Equations.

A standard treatment of gaussian elimination is given.
The rank of a matrix is introduced via the row-echelon
form, and solutions to a homogenous system are
presented as linear combinations of basic solutions.
Applications to network flows, electrical networks, and
chemical reactions are provided.

Chapter 2: Matrix Algebra.

After a traditional look at matrix addition, scalar
multiplication, and transposition in Section 2.1, matrix-
vector multiplication is introduced in Section 2.2 by
viewing the left side of a system of linear equations as the
product Ax of the coefficient matrix 4 with the column

x of variables. The usual dot-product definition of a
matrix-vector multiplication follows. Section 2.2 ends by
viewing an 7z X n matrix A4 as a transformation R” — R™.
This is illustrated for R? — R? by describing reflection in
the x axis, rotation of R’ through 7, shears, and so on.

In Section 2.3, the product of matrices 4 and B is
defined by AB = [Ab; Ab, ... Ab,], where the b; are the
columns of B. A routine computation shows that this is
the matrix of the transformation B followed by A. This
observation is used frequently throughout the book, and
leads to simple, conceptual proofs of the basic axioms of
matrix algebra. Note that linearity is not required—all
that is needed is some basic properties of matrix-vector

SUPERIOR LEARNING SOLUTIONS
AND SUPPORT
McGraw-Hill | Solutions that make a difference.

kﬁ fyerson__ | Technology that fits.

Custom
Print &
Digital

The McGraw-Hill Ryerson team is ready to help you
assess and integrate any of our products, technology,

and services into your course for optimal teaching and
learning performance. Whether it’s helping your students
improve their grades, or putting your entire course
online, the McGraw-Hill Ryerson team is here to help
you do it. Contact your iLearning Sales Specialist today
to learn how to maximize all of McGraw-Hill Ryerson’s
resources!

For more information on the latest technology and
Learning Solutions offered by McGraw-Hill Ryerson and
its partners, please visit us online: www.mcgrawhill.ca/
he/solutions.

multiplication developed in Section 2.2. Thus the usual
arcane definition of matrix multiplication is split into two
well motivated parts, each an important aspect of matrix
algebra. Of course, this has the pedagogical advantage
that the conceptual power of geometry can be invoked to
illuminate and clarify algebraic techniques and definitions.
In Sections 2.4 and 2.5 matrix inverses are characterized,
their geometrical meaning is explored, and block
multiplication is introduced, emphasizing those cases needed
later in the book. Elementary matrices are discussed, and
the Smith normal form is derived. Then in Section 2.6,
linear transformations R” — R™ are defined and shown
to be matrix transformations. The matrices of reflections,
rotations, and projections in the plane are determined.
Finally, matrix multiplication is related to directed graphs,
matrix LU-factorization is introduced, and applications to
economic models and Markov chains are presented.

Chapter 3: Determinants and Diagonalization.

The cofactor expansion is stated (proved by induction
later) and used to define determinants inductively and

to deduce the basic rules. The product and adjugate
theorems are proved. Then the diagonalization algorithm
is presented (motivated by an example about the possible
extinction of a species of birds). As requested by our
Engineering Faculty, this is done earlier than in most texts
because it requires only determinants and matrix inverses,
avoiding any need for subspaces, independence and
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dimension. Eigenvectors of a 2 x 2 matrix 4 are described
geometrically (using the A-invariance of lines through

the origin). Diagonalization is then used to study discrete
linear dynamical systems and to discuss applications to
linear recurrences and systems of differential equations. A
brief discussion of Google PageRank is included.

Chapter 4: Vector Geometry.

Vectors are presented intrinsically in terms of length and
direction, and are related to matrices via coordinates.
Then vector operations are defined using matrices and
shown to be the same as the corresponding intrinsic
definitions. Next, dot products and projections are
introduced to solve problems about lines and planes. This
leads to the cross product. Then matrix transformations
are introduced in R®, matrices of projections and
reflections are derived, and areas and volumes are
computed using determinants. The chapter closes with an
application to computer graphics.

Chapter 5: The Vector Space R”.

Subspaces, spanning, independence, and dimensions
are introduced in the context of R” in the first two
sections. Orthogonal bases are introduced and used to
derive the expansion theorem. The basic properties of
rank are presented and used to justify the definition
given in Section 1.2. Then, after a rigorous study of
diagonalization, best approximation and least squares
are discussed. The chapter closes with an application to
correlation and variance.

As in the sixth edition, this is a “bridging” chapter,
easing the transition to abstract spaces. Concern about
duplication with Chapter 6 is mitigated by the fact that
this is the most difficult part of the course and many
students welcome a repeat discussion of concepts like
independence and spanning, albeit in the abstract setting.
In a different direction, Chapters 1-5 could serve as
a solid introduction to linear algebra for students not
requiring abstract theory.

Chapter 6: Vector Spaces.

Building on the work on R” in Chapter 5, the basic
theory of abstract finite dimensional vector spaces is
developed emphasizing new examples like matrices,
polynomials and functions. This is the first acquaintance
most students have had with an abstract system, so

not having to deal with spanning, independence and
dimension in the general context eases the transition to
abstract thinking. Applications to polynomials and to
differential equations are included.

Chapter 7: Linear Transformations.

General linear transformations are introduced, motivated
by many examples from geometry, matrix theory, and
calculus. Then kernels and images are defined, the

dimension theorem is proved, and isomorphisms are
discussed. The chapter ends with an application to linear
recurrences. A proof is included that the order of a
differential equation (with constant coefficients) equals
the dimension of the space of solutions.

Chapter 8: Orthogonality.

The study of orthogonality in R”, begun in Chapter

5, is continued. Orthogonal complements and
projections are defined and used to study orthogonal
diagonalization. This leads to the principal axis theorem,
the Cholesky factorization of a positive definite matrix,
and QR-factorization. The theory is extended to C”

in Section 8.6 where hermitian and unitary matrices

are discussed, culminating in Schur’s theorem and the
spectral theorem. A short proof of the Cayley-Hamilton
theorem is also presented. In Section 8.7 the field Z,

of integers modulo p is constructed informally for any
prime p, and codes are discussed over any finite field.
The chapter concludes with applications to quadratic
forms, constrained optimization, and statistical principal
component analysis.

Chapter 9: Change of Basis.

The matrix of general linear transformation is defined
and studied. In the case of an operator, the relationship
between basis changes and similarity is revealed. This is
illustrated by computing the matrix of a rotation about a
line through the origin in R’. Finally, invariant subspaces
and direct sums are introduced, related to similarity, and
(as an example) used to show that every involution is
similar to a diagonal matrix with diagonal entries +1.

Chapter 10: Inner Product Spaces.

General inner products are introduced and distance,
norms, and the Cauchy-Schwarz inequality are discussed.
The Gram-Schmidt algorithm is presented, projections
are defined and the approximation theorem is proved
(with an application to Fourier approximation). Finally,
isometries are characterized, and distance preserving
operators are shown to be composites of a translations
and isometries.

Chapter 11: Canonical Forms.

The work in Chapter 9 is continued. Invariant subspaces
and direct sums are used to derive the block triangular
form. That, in turn, is used to give a compact proof of
the Jordan canonical form. Of course the level is higher.

Appendices

In Appendix A, complex arithmetic is developed far
enough to find nth roots. In Appendix B, methods

of proof are discussed, while Appendix C presents
mathematical induction. Finally, Appendix D describes
the properties of polynomials in elementary terms.
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LIST OF APPLICATIONS

e Network Flow (Section 1.4) * Computer Graphics (Section 4.5)

® FElectrical Networks (Section 1.5) ¢ Least Squares Approximation (in Section 5.6)
® Chemical Reactions (Section 1.6) ¢ Correlation and Variance (Section 5.7)

¢ Directed Graphs (in Section 2.3) * Polynomials (Section 6.5)

¢ Input-Output Economic Models (Section 2.8) * Differential Equations (Section 6.6)

* Markov Chains (Section 2.9) ® Linear Recurrences (Section 7.5)

* Polynomial Interpolation (in Section 3.2) * Error Correcting Codes (Section 8.7)

* Population Growth (Examples 1 and 10, Section 3.3) * Quadratic Forms (Section 8.8)

* Google PageRank (in Section 3.3) ¢ Constrianed Optimization (Section 8.9)

® Linear Recurrences (Section 3.4; see also Section 7.5) ¢ Statistical Principal Component Analysis (Section 8.10)
¢ Systems of Differential Equations (Section 3.5) * Fourier Approximation (Section 10.5)
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SECTION 1.1

Systems of Linear
Equations

Solutions and Elementary Operations

Practical problems in many fields of study—such as biology, business, chemistry,
computer science, economics, electronics, engineering, physics and the social
sciences—can often be reduced to solving a system of linear equations. Linear
algebra arose from attempts to find systematic methods for solving these systems,
so it is natural to begin this book by studying linear equations.

If 4, b, and ¢ are real numbers, the graph of an equation of the form

ax + by =c¢

is a straight line (if # and 4 are not both zero), so such an equation is called a /inear
equation in the variables x and y. However, it is often convenient to write the
variables as &y, x5, ..., ,, particularly when more than two variables are involved.
An equation of the form

axy + arxy + - + ax, = b

is called a linear equation in the » variables xy, &y, ..., x,. Here a1, a5, ..., a, denote
real numbers (called the coefficients of xy, x3, ..., x,, respectively) and & is also a
number (called the constant term of the equation). A finite collection of linear
equations in the variables xy, x,, ..., x, is called a system of linear equations in
these variables. Hence,

2.96’1 — 3.96'2+ 5.%’3 =7

is a linear equation; the coefficients of xy, x,, and x3 are 2, —3, and 5, and the
constant term is 7. Note that each variable in a linear equation occurs to the first
power only.

Given a linear equation a1x; + a4,x; + -+ + a,x, = b, a sequence sy, 3, ..., s, of n
numbers is called a solution to the equation if

asy + arsy + o+ as, = b

that is, if the equation is satisfied when the substitutions x; = 1, 4, = 5, ..., x, = s,
are made. A sequence of numbers is called a solution to a system of equations if it
is a solution to every equation in the system.

For example,x = =2,y = 5,2 =0and x = 0, y = 4, 2 = —1 are both solutions
to the system

x+y+ z=3
x+y+3z=1
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A system may have no solution at all, or it may have a unique solution, or it may
have an infinite family of solutions. For instance, the systemx +y =2, x +y =3
has no solution because the sum of two numbers cannot be 2 and 3 simultaneously.
A system that has no solution is called inconsistent; a system with at least one
solution is called consistent. The system in the following example has infinitely
many solutions.

Show that, for arbitrary values of s and ¢,

xy=t—s+1

.X'2=t+5+2
X3 =S
Xq4 =1

is a solution to the system

x1 — 2005 + 303 + x4 = =3
2.%'1— x2+3x3—x4= 0

Solution » Simply substitute these values of x1, x;, 43, and x4 in each equation.

X1 =20+ 33+ =@ —s5+1) -2 +s5s+2)+3s+¢t=-3
2.%‘1— x2+3x3—x4=2(t—3+1)—(t+5+2)+3s—t=0

Because both equations are satisfied, it is a solution for all choices of s and z.

The quantities s and # in Example 1 are called parameters, and the set of
solutions, described in this way, is said to be given in parametric form and
is called the general solution to the system. It turns out that the solutions to
every system of equations (if there are solutions) can be given in parametric
form (that is, the variables x, x,, ... are given in terms of new independent
variables s, #, etc.). The following example shows how this happens in the
simplest systems where only one equation is present.

Describe all solutions to 3x — y + 22 = 6 in parametric form.

Solution P Solving the equation for y in terms of x and z, we gety = 3x + 22 — 6.
If s and # are arbitrary then, setting x = 5, z = #, we get solutions

xX=s
y=3s+2t—6 sandrarbitrary
Z=10

Of course we could have solved for x: x = %( y — 2z + 6). Then, if we take
y = p, z = ¢, the solutions are represented as follows:

x=Xp—29+06)

y=p p and ¢ arbitrary

z=gq

The same family of solutions can “look” quite different!
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(c) Infinitely many solutions
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When only two variables are involved, the solutions to systems of linear
equations can be described geometrically because the graph of a linear equation
ax + by = ¢ is a straight line if # and & are not both zero. Moreover, a point P(s, )
with coordinates s and 7 lies on the line if and only if as + bz = c—that is when
x =5,y = tis a solution to the equation. Hence the solutions to a systezz of linear
equations correspond to the points P(s, 7) that lie on #// the lines in question.

In particular, if the system consists of just one equation, there must be infinitely
many solutions because there are infinitely many points on a line. If the system has
two equations, there are three possibilities for the corresponding straight lines:

1. The lines intersect at a single point. Then the system has a unique solution
corresponding to that point.

2. The lines are parallel (and distinct) and so do not intersect. Then the system has
no solution.

3. The lines are identical. Then the system has infinitely many solutions—one for
each point on the (common) line.

These three situations are illustrated in Figure 1. In each case the graphs of two
specific lines are plotted and the corresponding equations are indicated. In the last
case, the equations are 3x — y = 4 and —6x + 2y = —8, which have identical graphs.

When three variables are present, the graph of an equation ax + by + ¢z = d can
be shown to be a plane (see Section 4.2) and so again provides a “picture” of the set
of solutions. However, this graphical method has its limitations: When more than
three variables are involved, no physical image of the graphs (called hyperplanes) is
possible. It is necessary to turn to a more “algebraic” method of solution.

Before describing the method, we introduce a concept that simplifies the
computations involved. Consider the following system

3w 4+ 22 — a3+ wg=—1
2x — x3+2x0= 0
336‘1 + X+ 2.76‘3 + 5.96’4 = 2

of three equations in four variables. The array of numbers'

32 -11|-1
20-12|0
31 25| 2

occurring in the system is called the augmented matrix of the system. Each

row of the matrix consists of the coefficients of the variables (in order) from the
corresponding equation, together with the constant term. For clarity, the constants
are separated by a vertical line. The augmented matrix is just a different way of
describing the system of equations. The array of coefficients of the variables

32 -11
20 -12
31 25
-1
is called the coefficient matrix of the system and | ( |is called the constant
2

matrix of the system.

1 Arectangular array of numbers is called a matrix. Matrices will be discussed in more detail in Chapter 2.
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Elementary Operations

The algebraic method for solving systems of linear equations is described as follows.
Two such systems are said to be equivalent if they have the same set of solutions. A
system is solved by writing a series of systems, one after the other, each equivalent
to the previous system. Each of these systems has the same set of solutions as the
original one; the aim is to end up with a system that is easy to solve. Each system in
the series is obtained from the preceding system by a simple manipulation chosen so
that it does not change the set of solutions.

As an illustration, we solve the system x + 2y = —2, 2x + y = 7 in this manner.
At each stage, the corresponding augmented matrix is displayed. The original
system is

x+2y=-2 {1 2| -2]
v+ y= 7 [2 1] 7]

First, subtract twice the first equation from the second. The resulting system is

x+2y==2 71 2|27
—3y=11 [0 -3 11
which is equivalent to the original (see Theorem 1). At this stage we obtain y = —1

by multiplying the second equation by —3. The result is the equivalent system

x+2y= =2 1 21 -2
= o1y
Finally, we subtract twice the second equation from the first to get another

equivalent system.
_ 16
=3 10
y=-% |01

Now this system is easy to solve! And because it is equivalent to the original system,
it provides the solution to that system.

Observe that, at each stage, a certain operation is performed on the system (and
thus on the augmented matrix) to produce an equivalent system.

—_

—

The following operations, called elementary operations, can routinely be performed
on systems of linear equations to produce equivalent systems.

(I) Interchange two equations.
(II) Multiply one equation by a nonzero number.

(II) Add a multiple of one equation to a different equation.

Suppose that a sequence of elementary operations is performed on a system of linear
equations. Then the resulting system has the same set of solutions as the original, so the
two systems are equivalent.

The proof is given at the end of this section.
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Elementary operations performed on a system of equations produce
corresponding manipulations of the rows of the augmented matrix. Thus,
multiplying a row of a matrix by a number ¥ means multiplying every entry of the
row by k. Adding one row to another row means adding each entry of that row to
the corresponding entry of the other row. Subtracting two rows is done similarly.
Note that we regard two rows as equal when corresponding entries are the same.

In hand calculations (and in computer programs) we manipulate the rows of
the augmented matrix rather than the equations. For this reason we restate these
elementary operations for matrices.

The following are called elementary row operations on a matrix.
(I) Interchange two rows.
(II) Multiply one row by a nonzero number.
(ITI) Add a multiple of one row to a different row.

In the illustration above, a series of such operations led to a matrix of the form
1 0=
0 1f]=

where the asterisks represent arbitrary numbers. In the case of three equations in
three variables, the goal is to produce a matrix of the form

100]=
0 10]=
00 1]=

"This does not always happen, as we will see in the next section. Here is an example
in which it does happen.

Find all solutions to the following system of equations.

x+4y+2= 1
2% + 3y = 0
4+ 3y —z=—2

Solution » The augmented matrix of the original system is

34 1 1
23 0] 0
4 3 -1|-2

To create a 1 in the upper left corner we could multiply row 1 through by L.
However, the 1 can be obtained without introducing fractions by subtracting
row 2 from row 1. The result is

+ o =

W W =
S =
(e
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The upper left 1 is now used to “clean up” the first column, that is create zeros
in the other positions in that column. First subtract 2 times row 1 from row 2
to obtain

11 1 1
01 -2|-2
43 -1|-2

Next subtract 4 times row 1 from row 3. The result is

1 1 1 1
0 1-2|-2
0 -1 -5|-6

This completes the work on column 1. We now use the 1 in the second
position of the second row to clean up the second column by subtracting row 2
from row 1 and adding row 2 to row 3. For convenience, both row operations
are done in one step. The result is

10 3| 3
01-2|-2
00 -7|-8

Note that these manipulations did not affect the first column (the second row has
a zero there), so our previous effort there has not been undermined. Finally we
clean up the third column. Begin by multiplying row 3 by —1 to obtain

10 3| 3
01 -2]|-2
8
00 1] 3
Now subtract 3 times row 3 from row 1, and add 2 times row 3 to row 2 to get
3
100]|-5
2
010 7
8
001 %
The corresponding equations are x = —%, y = %, and z = % which give the

(unique) solution.

Every elementary row operation can be reversed by another elementary row
operation of the same type (called its inverse). To see how, we look at types I, II,
and III separately:

Type I Interchanging two rows is reversed by interchanging them again.
Typell — Multiplying a row by a nonzero number k is reversed by multiplying by 1/k.

TypeIIl ~ Adding k times row p to a different row q is reversed by adding —k times
row p to row ¢ (in the new matrix). Note that p # q is essential here.

To illustrate the Type III situation, suppose there are four rows in the original
matrix, denoted R;, R,, Rz, and Ry, and that k times R, is added to Rs. Then the
reverse operation adds —k times R, to R;. The following diagram illustrates the
effect of doing the operation first and then the reverse:
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R, R, R, R,
R, R, R, R,
Ry | T |Ry+kRy| | Ry + kRy) — kR, |~ | Ry
R4 R4 R4 R4

The existence of inverses for elementary row operations and hence for
elementary operations on a system of equations, gives:

PROOF OF THEOREM 1

Suppose that a system of linear equations is transformed into a new system by a

sequence of elementary operations. Then every solution of the original system
is automatically a solution of the new system because adding equations, or
multiplying an equation by a nonzero number, always results in a valid equation.
In the same way, each solution of the new system must be a solution to the
original system because the original system can be obtained from the new one
by another series of elementary operations (the inverses of the originals). It
follows that the original and new systems have the same solutions. This proves

Theorem 1.

EXERCISES 1.1

1. In each case verify that the following are 3. Regarding 2x = 5 as the equation 2x + Oy = 5
solutions for all values of s and 7. in two variables, find all solutions in parametric
(@) » = 19¢ — 35 form.

y=25-13 +4. Regarding 4x — 2y = 3 as the equation
2=t 4x — 2y + 0z = 3 in three variables, find all
is a solution of solutions in parametric form.
26+ 3y+ z=95
Sx+7y—42=0 +5. Find all solutions to the general system ax = & of
2b) xy = 25+ 120 + 13 ?1?)6 \5}(11;1:1120;1 ion one variable (a) when 2 = 0 and
Xy =S
X3 =—s—3t—3 6. Show that a system consisting of exactly one
Xg=t linear equation can have no solution, one
is a solution of solution, or infinitely many solutions. Give
2x1 + 525 + 9x3 + 3xy = —1 examples.
x1 4 2005 + 4o =
) . o ) 7. Write the augmented matrix for each of the

2. Find all solutions to the following in parametric following systems of linear equations.
form in two ways.

@ x—3y=5 ob) x+2y=0

@ 3x+y=2 ob) 20 +3y=1 v+ y=1 y=1
©3x—y+22=5 ob)x—2y+52=1 @ax—y+ 2=2 odr+y=1
x— z=1 y+z2=0

y+2x=0 z—x=2

2 A e indicates that the exercise has an answer at the end of the book.



10.

11.

12.

13.

14.

Chapter 1

. Write a system of linear equations that has each

of the following augmented matrices.

@ [1-16]0 b)) [ 2 -1 0]-1
0 103 3 21| 0
2 -1 0|1 0 11| 3

. Find the solution of each of the following

systems of linear equations using augmented
matrices.

@ x—=3y=1 ob) x+2y= 1
2x—Ty =3 3+ 4y = -1
(©) 2x+3y=-1 od) 3x+4= 1
3x+4y= 2 4x + 5y = -3

Find the solution of each of the following
systems of linear equations using augmented
matrices.

@ x+ y+2z=—1e¢b) 2x+ y+ z=-1

x4+ y+3z2=0 x+2y+ z= 0
—2y4+ z=2 3x —2z= 5

Find all solutions (if any) of the following

systems of linear equations.

(@ 3x—2y= 5 «(b)
—12x + 8y = =20

3v—2y= 5
—12x + 8y =16

x+2y—- z=ua
Show that the system {Zx + y+3z2=0

x—4y+9z2=c¢
is inconsistent unless ¢ = 26 — 3a.

By examining the possible positions of lines

in the plane, show that two equations in two
variables can have zero, one, or infinitely many
solutions.

In each case either show that the statement is
true, or give an example’ showing it is false.

(a) If a linear system has 7 variables and
equations, then the augmented matrix has
71 FOWS.

3

15.

+16.

o17.

18.

+19.

20.

Systems of Linear Equations

+(b) A consistent linear system must have

infinitely many solutions.

(c) If a row operation is done to a consistent
linear system, the resulting system must be
consistent.

+(d) If a series of row operations on a linear

system results in an inconsistent system, the
original system is inconsistent.

Find a quadratic # + bx + cx such that the graph
of y = a + bx + e’ contains each of the points
(_17 6)’ (2’ 0)7 and (3a 2)

3x+2y=5 .
Solve the system by changing
Tx+ 5y =1
. x= Sx' =2y )
variables and solving the
y=—7x"+ 3y

resulting equations for «" and y'.

Find 4, b, and ¢ such that
¥ —x+3 _ax+ b c
@ +2)Qx—1) «of+2 220-1
[Hint: Multiply through by (¥’ + 2)(2x — 1) and
equate coefficients of powers of x.]

A zookeeper wants to give an animal 42 mg of
vitamin A and 65 mg of vitamin D per day. He
has two supplements: the first contains 10%
vitamin A and 25% vitamin D; the second
contains 20% vitamin A and 25% vitamin D.
How much of each supplement should he give
the animal each day?

Workmen John and Joe earn a total of $24.60
when John works 2 hours and Joe works 3 hours.
If John works 3 hours and Joe works 2 hours,
they get $23.90. Find their hourly rates.

A biologist wants to create a diet from fish and
meal containing 183 grams of protein and 93
grams of carbohyrate per day. If fish contains
70% protein and 10% carbohydrate, and meal
contains 30% protein and 60% carbohydrate,
how much of each food is required each day?

Such an example is called a counterexample. For example, if the statement is that “all philosophers have beards”, the existence of

a non-bearded philosopher would be a counterexample proving that the statement is false. This is discussed again in Appendix B.
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Gaussian Elimination

Definition 1.3

The algebraic method introduced in the preceding section can be summarized
as follows: Given a system of linear equations, use a sequence of elementary row
operations to carry the augmented matrix to a “nice” matrix (meaning that the
corresponding equations are easy to solve). In Example 3 Section 1.1, this nice
matrix took the form

1 00|=
01 0]=*
00 1]=

The following definitions identify the nice matrices that arise in this process.

A matrix is said to be in row-echelon form (and will be called a row-echelon
matrix) if it satisfies the following three conditions:

1. All zero rows (consisting entirely of zeros) are at the bottom.

2. The first nonzero entry from the left in each nonzero row is a 1, called the

leading 1 for that row.

3. Each leading 1 is to the right of all leading 1s in the rows above it.
A row-echelon matrix is said to be in reduced row-echelon form (and will be called
a reduced row-echelon matrix) if, in addition, it satisfies the following condition:

4. Each leading 1 is the only nonzero entry in its column.

The row-echelon matrices have a “staircase” form, as indicated by the following
example (the asterisks indicate arbitrary numbers).

IIEEEEE
0001 = = =
00001 = =
000000]|1
0000000

The leading 1s proceed “down and to the right” through the matrix. Entries above
and to the right of the leading 1s are arbitrary, but all entries below and to the left
of them are zero. Hence, a matrix in row-echelon form is in reduced form if, in
addition, the entries directly above each leading 1 are all zero. Note that a matrix in
row-echelon form can, with a few more row operations, be carried to reduced form
(use row operations to create zeros above each leading one in succession, beginning

from the right).

The following matrices are in row-echelon form (for any choice of numbers in
*-positions).
01 % = 1 % % % 1 % %
Lo 001 = 01 == 01 =
001
0000] LOOOI1] [OO1
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The following, on the other hand, are in reduced row-echelon form.

001L=[|01L=0|]|010
0000JLO001]1LOO1

The choice of the positions for the leading 1s determines the (reduced) row-
echelon form (apart from the numbers in *-positions).

1%0 010=*=[|10==0|]|100
001

The importance of row-echelon matrices comes from the following theorem.

Every matrix can be brought to (reduced) row-echelon form by a sequence of elementary
row operations.

In fact we can give a step-by-step procedure for actually finding a row-echelon
matrix. Observe that while there are many sequences of row operations that will
bring a matrix to row-echelon form, the one we use is systematic and is easy to
program on a computer. Note that the algorithm deals with matrices in general,
possibly with columns of zeros.

Gaussian®* Algorithm®

Step 1. If the matrix consists entirely of zeros, stop—it is already in row-echelon form.

Step 2. Otherwise, find the first column from the left containing a nonzero entry (call
it a), and move the row containing that entry to the top position.

Step 3. Now multiply the new top row by 1/a to create a leading 1.

Step 4. By subtracting multiples of that row from rows below it, make each entry
below the leading 1 zero.

This completes the first row, and all further row operations are carried out on the
remaining rows.

Step 5. Repeat steps 1-4 on the matrix consisting of the remaining rows.

The process stops when either no rows remain at step 5 or the remaining rows consist
entirely of zeros.

Observe that the gaussian algorithm is recursive: When the first leading 1 has
been obtained, the procedure is repeated on the remaining rows of the matrix. This
makes the algorithm easy to use on a computer. Notes that the solution to Example 3
Section 1.1 did not use the gaussian algorithm as written because the first leading 1
was not created by dividing row 1 by 3. The reason for this is that it avoids fractions.
However, the general pattern is clear: Create the leading 1s from left to right, using
each of them in turn to create zeros below it. Here are two more examples.

4 Carl Friedrich Gauss (1777-1855) ranks with Archimedes and Newton as one of the three greatest mathematicians of all time. He
was a child prodigy and, at the age of 21, he gave the first proof that every polynomial has a complex root. In 1801 he published
a timeless masterpiece, Disquisitiones Arithmeticae, in which he founded modern number theory. He went on to make ground-
breaking contributions to nearly every branch of mathematics, often well before others rediscovered and published the results.

5  The algorithm was known to the ancient Chinese.
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Solve the following system of equations.

3w +y— 4z=-1
x +10z= 5
+y+ 62= 1

Solution » The corresponding augmented matrix is

31 4|-1
1 010 5
41 6 i
Create the first leading one by interchanging rows 1 and 2.
[1 0 10| 5]
31 4-1
141 6] 1

Now subtract 3 times row 1 from row 2, and subtract 4 times row 1 from
row 3. The result is

1 0 10 5
0 1 -34|-16
L0 1 —34|-19 |
Now subtract row 2 from row 3 to obtain
[1 0 10| 5]
0 1 -34|-16
00 0 -3]
"This means that the following system of equations
5 + 10z = 5
y— 34z = —16
0= -3

is equivalent to the original system. In other words, the two have the samze
solutions. But this last system clearly has 7o solution (the last equation requires
that x, y and z satisfy Ox + Oy 4+ 0z = —3, and no such numbers exist). Hence
the original system has 7o solution.

Solve the following system of equations.

x1—2x2— x3+3x4=1
201 — 4o, + 3 =
x1—2x2+2x3—3x4=4



12

Chapter 1 Systems of Linear Equations

Solution » The augmented matrix is

1 -2 -1 3|1
2 -4 1 05
1 =2 2 3|4
Subtracting twice row 1 from row 2 and subtracting row 1 from row 3 gives
1 -2 -1 31
0 0 3 63
0 0 3 -63
Now subtract row 2 from row 3 and multiply row 2 by § to get
1 2 -1 3|1
0 0 1-2]|1
0 0 0 0J0

"This is in row-echelon form, and we take it to reduced form by adding row 2 to
row 1:

1 20 1|2
0 01-2]1
0 00 010

The corresponding system of equations is

x1—2x2 +x4=2
x3—2x4:1
0=0

The leading ones are in columns 1 and 3 here, so the corresponding variables
x1 and &3 are called leading variables. Because the matrix is in reduced row-
echelon form, these equations can be used to solve for the leading variables

in terms of the nonleading variables x, and x4. More precisely, in the present
example we set ¥, = s and x4 = 7 where s and # are arbitrary, so these equations
become

x1—2s+t=2 and x3—2t=1.
Finally the solutions are given by

51 = 2 o P — [

X) =S
x3=1+2t
Xq4 =1

where s and 7 are arbitrary.

"The solution of Example 3 is typical of the general case. To solve a linear
system, the augmented matrix is carried to reduced row-echelon form, and the
variables corresponding to the leading ones are called leading variables. Because
the matrix is in reduced form, each leading variable occurs in exactly one equation,
so that equation can be solved to give a formula for the leading variable in terms
of the nonleading variables. It is customary to call the nonleading variables “free”
variables, and to label them by new variables s, 7, ..., called parameters. Hence, as
in Example 3, every variable «; is given by a formula in terms of the parameters s
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and 7. Moreover, every choice of these parameters leads to a solution to the system,
and every solution arises in this way. This procedure works in general, and has come
to be called

Gaussian Elimination

To solve a system of linear equations proceed as follows:

1. Carry the augmented matrix to a reduced row-echelon matrix using elementary
row operations.

2. Ifarow[0 O O --- O 1] occurs, the system is inconsistent.

Otherwise, assign the nonleading variables (if any) as parameters, and use the
equations corresponding to the reduced row-echelon matrix to solve for the
leading variables in terms of the parameters.

There is a variant of this procedure, wherein the augmented matrix is carried
only to row-echelon form. The nonleading variables are assigned as parameters as
before. Then the last equation (corresponding to the row-echelon form) is used
to solve for the last leading variable in terms of the parameters. This last leading
variable is then substituted into all the preceding equations. Then, the second last
equation yields the second last leading variable, which is also substituted back.

The process continues to give the general solution. This procedure is called back-
substitution. This procedure can be shown to be numerically more efficient and so
is important when solving very large systems.®

Find a condition on the numbers #, 4, and ¢ such that the following system of
equations is consistent. When that condition is satisfied, find all solutions (in
terms of 4, b, and ¢).

x1+3.X'2+JC3=ﬂ
—x1—2x2+x3=b
3.%'1+7.X'2—.X‘3=C

Solution » We use gaussian elimination except that now the augmented matrix

1 3 1|a
-1 =2 1|b
3 7-1l¢c

has entries 4, b, and ¢ as well as known numbers. The first leading one is in
bl b
place, so we create zeros below it in column 1:

1 3 1| a
0 1 2|a+b
0 -2 —-4|c-3a

6  With nequations where nis large, gaussian elimination requires roughly /2 multiplications and divisions, whereas this number is
roughly 7*/3 if back substitution is used.
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The second leading 1 has appeared, so use it to create zeros in the rest of
column 2:

1 0-5|-2a-3b

01 2| a+b

00 O|c—a+2b

Now the whole solution depends on the number ¢ — 2 + 26 = ¢ — (a — 2b).
The last row corresponds to an equation 0 = ¢ — (@ — 2b). If ¢ # a — 2b, there
is 70 solution (just as in Example 2). Hence:

The system is consistent if and only if ¢ = 2 — 2.

In this case the last matrix becomes

1 0-5|-2a-3b
01 2| a+b
00 O 0

Thus, if ¢ = @ — 2b, taking x3 = r where # is a parameter gives the solutions

x1:5t—(2ﬂ+3l7) x2=(ﬂ+b)—2t x3 = 1.

Rank

It can be proven that the reduced row-echelon form of a matrix A4 is uniquely
determined by A4. That is, no matter which series of row operations is used to
carry A to a reduced row-echelon matrix, the result will always be the same matrix.
(A proof is given at the end of Section 2.5.) By contrast, this is not true for row-
echelon matrices: Different series of row operations can carry the same matrix 4 to
1 -14

5 _1 2} can be carried

different row-echelon matrices. Indeed, the matrix 4 = [

1 _2 }, and then by another

) 1=
(by one row operation) to the row-echelon matrix

row operation to the (reduced) row-echelon matrix Ll) | -6
that the number 7 of leading 1s must be the same in each of these row-echelon
matrices (this will be proved in Chapter 5). Hence, the number 7 depends only
on A and not on the way in which A is carried to row-echelon form.

}. However, it is true

The rank of matrix A is the number of leading 1s in any row-echelon matrix to which A
can be carried by row operations.

11 -14
Compute the rankof A =|> {1 3 ¢}
01-58
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Solution » The reduction of A to row-echelon form is

11 -14 1 1 -1 4 11-14
A=|21 30(—=|0 -1 5 -8/—|01-58
01 -5 8 0 1-5 8 00 00O

Because this row-echelon matrix has two leading 1s, rank 4 = 2.

Suppose that rank 4 = 7, where A is a matrix with 7z rows and » columns. Then
7 < m because the leading 1s lie in different rows, and 7 < 7 because the leading 1s
lie in different columns. Moreover, the rank has a useful application to equations.
Recall that a system of linear equations is called consistent if it has at least one
solution.

Suppose a system of m equations in n variables is consistent, and that the rank of the
augmented matrix is 7.

(1) The set of solutions involves exactly n — r parameters.
(2) Ifr < n, the system has infinitely many solutions.

(3) Ifr = n, the system has a unique solution.

The fact that the rank of the augmented matrix is 7 means there are exactly

7 leading variables, and hence exactly » — » nonleading variables. These
nonleading variables are all assigned as parameters in the gaussian algorithm, so
the set of solutions involves exactly #» — 7 parameters. Hence if 7 < #, there is
at least one parameter, and so infinitely many solutions. If » = #, there are no
parameters and so a unique solution.

Theorem 2 shows that, for any system of linear equations, exactly three
possibilities exist:

1. No solution. This occurs when arow [0 O --- O 1] occurs in the row-echelon
form. This is the case where the system is inconsistent.

2. Unique solution. This occurs when every variable is a leading variable.

3. Infinitely many solutions. This occurs when the system is consistent and there
is at least one nonleading variable, so at least one parameter is involved.

Suppose the matrix 4 in Example 5 is the augmented matrix of a system
of 72 = 3 linear equations in # = 3 variables. As rank 4 = 7 = 2, the set of
solutions will have » — 7 = 1 parameter. The reader can verify this fact directly.
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Many important problems involve linear inequalities rather than linear
equations. For example, a condition on the variables x and y might take the form of
an inequality 2o — 5y < 4 rather than an equality 2x — 5y = 4. There is a technique
(called the simplex algorithm) for finding solutions to a system of such inequalities
that maximizes a function of the form p = ax + by where @ and b are fixed constants.
This procedure involves gaussian elimination techniques, and the interested reader
can find an introduction on Connect by visiting www.mcgrawhill.ca/college/
nicholson and then selecting this text.

EXERCISES 1.2

1. Which of the following matrices are in reduced ©712 13 111
row-echelon form? Which are in row-echelon 01 -10 11
>
form: 00 01 -1{0
@71 -1 2 o(b)21—13} 00 00 0l0
0 00 00 00 (D1 -124 6|2
[0 01 0 121 -1}|-1
©r 235 «dr1roo31 0 001 0f1
0 00 00011 L0 000 OO0
L0 00O 1 ) ) . .
11 0 4. Find all solutions (if any) to each of the following
©) 0 J «®)T0 01 systems of linear equations.
001
{ @ x—2y= 1 ob) 3x — y=0
L0 0 4y— x=-2 2w—3y=1
2. Carry each of the following matrices to reduced © 2+ y=5 od) 3x— y= 2
row-echelon form. 3+ 2y=6 2y — 6x = —4
@0 -1 2121-1 € 3x— y=4 of) 2x =3y =5
0 1-2272 4 2y —6x =1 3y—2x0=2
0 -2 43 1 0
0 3 -6 1 Z 4 1 5. Find all solutions (if any) to each of the following
- B systems of linear equations.
by [0 —
«®fo -1 3 1 32 1 @ x4 y+2z= 8 ofb) —2x+3y+3z= -9
0-2 6 1-50-1 3x— y+ z= 0 3x—4y+ z= 5
0 3-9 2 41-1 —x+3y+4z=—4 —Sx+7y+22=—14
01 =3 -1 301 © x4+ y— 2=10 od) x+2y— z2=2
3. The augmented matrix of a system of linear —x+4y+5z=-5 e+ 5y—32=1
equations has been carried to the following by x+6y+3z2=15 x+4y—32=3
row operations. In each case solve the system. © Sv+y _) of) 3r—2y+ z=—2
@[120 3101 3x—y+2z=1 x— y+3z= 5§
000 0O0T1]3 @ x+ y+ z2=2  oh) x+2y—42=10
000 0000 x + z=1 o— y+22= 5
2v+5y+2z= —2z=
o1 2020 1] 1 FHy+2=T *h Y=
0 0150 -3]-1
0 0001 o6f°1
L0 0000 OO0
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6. Express the last equation of each system as a sum

of multiples of the first two equations. [Hint:
Label the equations, use the gaussian algorithm.]

@ v+ v+ =1
2x1—x2+3x3=3
x1—2x2+2x3=2

o) xy + 20y — 305 = =3
X1 + 336‘2 — 5.96'3 = 5
X1 — Z.X'z + 5.96'3 = -35

7. Find all solutions to the following systems.

(a) 3o; + 8xy — 3u3 — 14wy =2
201 + 330y — a3 — 2y =1
x1— 20+ x5+ 1004 =0
xp 4 Sx) — 2003 — 1204 =1

O(b) xl—x2+x3—x4=0
—x1 4+ +a3+a3=0
X1+ x—x3+x4=0
x14+x a3 +x4=0

© x— v+ x3—2x4= 1
—x1+ o+ w3+ oay=-—1
—xy 4+ 20 + 303 — w4 = 2

X1 — X+ 203+ 4= 1

od) xp+ wm+2u— = 4
3.96'2— X3+4.X'4: 2

x1 4 20 — 3034+ Seg = 0
X1+ x — Sx5 4 6y = =3

8. In each of the following, find (if possible)
conditions on # and 4 such that the system
has no solution, one solution, and infinitely
many solutions.

@ x—2y=1 ob) x+by=-1
ax + by =5 ax +2y= 5

©x—by=-1 od) ax+y=1
x+ay= 3 x+y=0b

9. In each of the following, find (if possible)
conditions on #, b, and ¢ such that the system
has no solution, one solution, or infinitely many
solutions.

@3+ y— z=a ob)2x+ y— z=u

x— y+22=0 2y+3z=1b

Se+3y—4z=c¢ x — z=c
(€ —x+3y+22=-8 od) x+ay=0

x + z= 2 y+0bz=0

3x+3y+az= b z4+wa=0

17

(e 3x— y+2z2=3
x+ y— z2=2
20— 2y +3z=1b

of) x4+ ay — z= 1
—x+ (a—2)y+ z=—1
2x + y+@—2)z= 1

+10. Find the rank of each of the matrices in
Exercise 1.

11. Find the rank of each of the following matrices.

@71 12 eb)y[-2 33
3 -1 1 3 -4 1
-1 3 4 -5 7 2
©f 11 -1 317 od[ 3 21 =2
-1 4 -2 1 =13 5
16 3 4 -1 11 -1
et 2 -1 0
0 a4 1-a A*+1
1 2-4 -1 =24°
«®r1 1 2 A
1 1-a 2 0
12 2—a 6—a 4

12. Consider a system of linear equations with
augmented matrix 4 and coefficient matrix C. In
each case either prove the statement or give an
example showing that it is false.

(a) If there is more than one solution, A has a
row of zeros.

+(b) If A has a row of zeros, there is more than
one solution.

(c) If there is no solution, the row-echelon form
of C has a row of zeros.

+(d) If the row-echelon form of C has a row of
zeros, there is no solution.

(e) There is no system that is inconsistent for
every choice of constants.

+(f) If the system is consistent for some choice of
constants, it is consistent for every choice of
constants.

Now assume that the augmented matrix A4 has
3 rows and 5 columns.

(g) If the system is consistent, there is more than
one solution.
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+(h) The rank of A is at most 3.
(1) If rank A = 3, the system is consistent.

() If rank C = 3, the system is consistent.

13. Find a sequence of row operations carrying

bl + (o bz +€2 b3 +C3 a ay a3
a+a o +ay, cg+ay (O b by by
ﬂl +b1 ﬂz +h2 ﬂ3 +b3 G 6 G

14. In each case, show that the reduced row-echelon
form is as given.

(p 0 a
(@ | & 0 0 |with abc # 0
g ¢ 7
(1 a2 b+c

1 b c+a|wherec# aorb + a
11 ¢ a+b

ax+ by + =0
always

100
010
001

*

+(b)

S O
S = O
S *

15. Show that {
ax + by +cz2=0

has a solution other than x = 0,y = 0,z = 0.

16. Find the circle &* + y* + ax + by + ¢ = 0 passing
through the following points.

(@) (=2,1),(50),and (4, 1)
+(b) (1, 1), (5, =3), and (-3, =3)

17. Three Nissans, two Fords, and four Chevrolets
can be rented for $106 per day. At the same rates
two Nissans, four Fords, and three Chevrolets
cost $107 per day, whereas four Nissans, three
Fords, and two Chevrolets cost $102 per day.
Find the rental rates for all three kinds of cars.

A school has three clubs and each student is
required to belong to exactly one club. One

+18.

SECTION 1.3

19.

20.

21.

22.

Systems of Linear Equations

year the students switched club membership as
follows:

Club A. % remain in A, % switch to B,
5

o switch to C.

Club B. Z remain in B, = switch to A,

L) ’ 10

i switch to C.

Club C. % remain in C, 12—0 switch to A,
2 switch to B.

10

If the fraction of the student population in each
club is unchanged, find each of these fractions.

Given points (py, 41), (p2, 42), and (p3, g3) in

the plane with py, py, and p; distinct, show

that they lie on some curve with equation
y=a+bx+ cx’. [Hint: Solve for a, b, and ]
The scores of three players in a tournament have
been lost. The only information available is the
total of the scores for players 1 and 2, the total
for players 2 and 3, and the total for players 3
and 1.

(a) Show that the individual scores can be
rediscovered.

(b) Is this possible with four players (knowing
the totals for players 1 and 2, 2 and 3, 3 and
4, and 4 and 1)?

A boy finds $1.05 in dimes, nickels, and pennies.
If there are 17 coins in all, how many coins of
each type can he have?

If a consistent system has more variables than
equations, show that it has infinitely many
solutions. [Hint: Use Theorem 2.]

Homogeneous Equations

A system of equations in the variables xy, x5, ..

., %, is called homogeneous if all the

constant terms are zero—that is, if each equation of the system has the form

axy + ayxey + oo+ a,x, =0

Clearly x; = 0,2, =0, ..., x, = 0 is a solution to such a system; it is called the
trivial solution. Any solution in which at least one variable has a nonzero value
is called a nontrivial solution. Our chief goal in this section is to give a useful
condition for a homogeneous system to have nontrivial solutions. The following

example is instructive.
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Show that the following homogeneous system has nontrivial solutions.

X1 — .X'2+2.X’3—.X'4=O
2.76’1+23€2 +.X'4=O
3.X'1+ .X'2+2.X'3—.X’4=0

Solution » The reduction of the augmented matrix to reduced row-echelon
form is outlined below.

1 -12 10 1 -1 2 1|0 10 100
2 20 -1{0|—(0 4 -4 -3/0|—|0 1 -10]0
312 1]0 0 4 -4 =210 00 0 1/0

The leading variables are xy, x,, and x4, so x5 is assigned as a parameter—say
x3 = t. Then the general solution is x; = —¢, x; = #, x3 = £, ¥4 = 0. Hence,
taking 7 = 1 (say), we get a nontrivial solution: x; = —1, 20, = 1,23 = 1, x4 = 0.

The existence of a nontrivial solution in Example 1 is ensured by the presence of a
parameter in the solution. This is due to the fact that there is a nonleading variable
(%3 in this case). But there 7ust be a nonleading variable here because there are four
variables and only three equations (and hence at mzost three leading variables). This
discussion generalizes to a proof of the following fundamental theorem.

If a homogeneous system of linear equations has more variables than equations, then it
has a nontrivial solution (in fact, infinitely many).

Suppose there are 7 equations in 7 variables where 7 > 7, and let R denote

the reduced row-echelon form of the augmented matrix. If there are » leading
variables, there are # — 7 nonleading variables, and so # — 7 parameters. Hence,
it suffices to show that » < z. But 7 < m because R has 7 leading 1s and 7 rows,
and 7 < n by hypothesis. So 7 < m < n, which gives r < n.

Note that the converse of Theorem 1 is not true: if a homogeneous system has
nontrivial solutions, it need not have more variables than equations (the system
x1 + 2, = 0, 2, + 22, = 0 has nontrivial solutions but 7z = 2 = n.)

Theorem 1 is very useful in applications. The next example provides an
illustration from geometry.
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We call the graph of an equation ax” + bxy + ¢ + dx + ey + f = 0 a conic if
the numbers #, b, and ¢ are not all zero. Show that there is at least one conic
through any five points in the plane that are not all on a line.

Solution > Let the coordinates of the five points be (p1, ¢1), (02, 72), (35 ¢3),
(P4, 44), and (ps, g5). The graph of ax” + bxy + ¢y* + dv + ey + f= 0 passes
through (p;, ¢;) if

api + bpigi + cqi + dp; + eq;i + f=0

This gives five equations, one for each 7, linear in the six variables 4, b, ¢, d, e,
and f. Hence, there is a nontrivial solution by Theorem 1. If 2 = = ¢ = 0, the
five points all lie on the line dx + ey + = 0, contrary to assumption. Hence,
one of 4, b, ¢ is nonzero.

Linear Combinations and Basic Solutions

Naturally enough, two columns are regarded as equal if they have the same number
of entries and corresponding entries are the same. Let x and y be columns with

the same number of entries. As for elementary row operations, their sum x + y is
obtained by adding corresponding entries and, if 4 is a number, the scalar product
kx is defined by multiplying each entry of x by k. More precisely:

* N rt kxy

+ k
Ifx = x:2 andy = 322 thenx +y = xZ:yZ and kx =| "3
xn y?l xn + yn kxn

A sum of scalar multiples of several columns is called a linear combination of these
columns. For example, sx + ty is a linear combination of x and y for any choice of
numbers s and z.

Ifx = [_ﬂandyz[_ﬂthenb{ﬁ- 5y:[ 6}+[_5}:M.

1 2 3 0 1
Letx=|0,y=|1|andz=|1| Ifv=|—1|andw =1,
1 0 1 2 1

determine whether v and w are linear combinations of x and y.

Solution » For v, we must determine whether numbers 7, s, and ¢ exist such that
vV = 71X + sy + 1z, that is, whether
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0] [11 [2] [3] [r+2s+3¢
—1|=r|0|+s|1|+t[1|=]| s+
2 1l lol 1 r+t

Equating corresponding entries gives a system of linear equations
r+2s+3t=0,5s+¢t=—1,and » + t = 2 for 7, 5, and 7. By gaussian
elimination, the solutionis » =2 — k, s = —1 — k, and # = k& where k is a
parameter. Taking & = 0, we see that v = 2x — y is indeed a linear combination
of x, y, and z.

Turning to w, we again look for 7, s, and 7 such that w = 7x + sy + 7z; that is,

1 1 2 3 r+ 25 + 3t
NENEDIEEE R s+t .
1 1 0 1 r+t

leading to equations 7 + 25 + 3¢ = 1, s + ¢ = 1, and 7 + ¢ = 1 for real numbers
7, 5, and . But this time there is 70 solution as the reader can verify, so w is not
a linear combination of x, y, and z.

Our interest in linear combinations comes from the fact that they provide one
of the best ways to describe the general solution of a homogeneous system of linear
equations. When solving such a system with » variables xy, x, ..., x,, write the

X1 0

7

variables as a column’ matrix: x = :2 . The trivial solution is denoted 0 =

x’l O
As an illustration, the general solution in Example 1 isx; = —#, 4 = £, 3 = ¢, and
x4 = 0, where 7 is a parameter, and we would now express this by saying that the

—t
o t . .
general solution isx =| |, where ¢ is arbitrary.
t

0
Now let x and y be two solutions to a homogeneous system with 7 variables.
Then any linear combination sx + y of these solutions turns out to be again a
solution to the system. More generally:

Any linear combination of solutions to a homogeneous system is again a solution. (%)

In fact, suppose that a typical equation in the system is

Xy N
— _| "2 _| )

ayxy + axy; + -+ + a,x, = 0, and suppose thatx =| " |andy =| - |are
xn _yﬂ

solutions. Then ayx; + ayx; + -+ + a,x, = 0 and a1y, + a3y, + -+ + a,y, = 0.
Sxp 1y

$Xy +1y;

Hence sx + ty = is also a solution because

jxﬂ + l:yn

7 The reason for using columns will be apparent later.
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ay(sxy + ty) + ax(sxy + tys) + -+ + a,(sx, + 1y,,)
= [ﬂl(sxl) + ﬂz(&%‘z) + o+ ﬂn(sxn)] + [ﬂl(t)’l) + ﬂz(l‘)’z) + o+ ﬂn(lyn)]
= ‘Y(ﬂlxl + a)x) + e+ ﬂnxn) + t(”]yl + ayy> + o+ ﬂnyn)
= 5(0) + #(0)
=0.

A similar argument shows that (x) is true for linear combinations of more than two
solutions.

The remarkable thing is that every solution to a homogeneous system is a linear
combination of certain particular solutions and, in fact, these solutions are easily
computed using the gaussian algorithm. Here is an example.

Solve the homogeneous system with coefficient matrix

1 -2 3 -2
A=[-3 61 0
—2 4 4 -2

Solution » The reduction of the augmented matrix to reduced form is

1-23-2/0 1-20-%|0
-3 61 0(0|—=|0 o ER )

5

so the solutions are x; = 2s + %t, Xy =S, 03 = %t, and x4 = t by gaussian
elimination. Hence we can write the general solution x in the matrix form

X 25 + %t 2 %
%
X = = 35 =X(1)+t(3)=S'X1+th

x 3

3 3t :
1
2 5

where x; = 1land x| = (3) are particular solutions determined by the

0 5
0 1

gaussian algorithm.

The solutions x; and x, in Example 5 are denoted as follows:

The gaussian algorithm systematically produces solutions to any homogeneous linear
system, called basic solutions, one for every parameter.

Moreover, the algorithm gives a routine way to express every solution as a
linear combination of basic solutions as in Example 5, where the general
solution x becomes



SECTION 1.3  Homogeneous Equations 23

— e O wi—

1
0

3

5
Hence by introducing a new parameter 7 = #/5 we can multiply the original basic
solution x; by 5 and so eliminate fractions. For this reason:

Amny nonzero scalar multiple of a basic solution will still be called a basic solution.

In the same way, the gaussian algorithm produces basic solutions to every
homogeneous system, one for each parameter (there are zo basic solutions if the
system has only the trivial solution). Moreover every solution is given by the
algorithm as a linear combination of these basic solutions (as in Example 5). If 4
has rank 7, Theorem 2 Section 1.2 shows that there are exactly » — 7 parameters,
and so # — 7 basic solutions. This proves:

Let A be an m X n matrix of rank r, and consider the homogeneous system in n variables
with A as coefficient matrix. Then:

1. The system has exactly n — r basic solutions, one for each parameter.

2. Every solution is a linear combination of these basic solutions.

Find basic solutions of the homogeneous system with coefficient matrix 4, and
express every solution as a linear combination of the basic solutions, where

1 -3 02 2
A:—2612—5
3-9-10 7
-3 9 26 -8

Solution » The reduction of the augmented matrix to reduced row-echelon
form is

1 -3 02 2|0 1 =302 210
-2 6 12 -5|0 0 016 -10
3-9-10 710 0O 000 0/0
-3 9 26 -8|0 0 000 0f0
so the general solution is x4y = 37 — 25 — 2, 0y = 7, 03 = —065 + £, x4 = 5, and
x5 = t where 7, 5, and 7 are parameters. In matrix form this is
X 3r—2s—2t 3 -2 -2
% ” 1 0 0
X=|a3|=| =65+t |=70|+5-6|T1 1
X4 s 0 1 0
Xs t 0 0 1
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Hence basic solutions are x;

EXERCISES 1.3

1. Consider the following statements about a
system of linear equations with augmented
matrix 4. In each case either prove the statement
or give an example for which it is false.

(a) If the system is homogeneous, every solution
is trivial.
+(b) If the system has a nontrivial solution, it
cannot be homogeneous.

(c) If there exists a trivial solution, the system is
homogeneous.

+(d) If the system is consistent, it must be
homogeneous.

Now assume that the system is bomogeneous.

(e) If there exists a nontrivial solution, there is
no trivial solution.

+(f) If there exists a solution, there are infinitely
many solutions.

(g) If there exist nontrivial solutions, the row-
echelon form of A has a row of zeros.

+(h) If the row-echelon form of 4 has a row of
zeros, there exist nontrivial solutions.

(i) If a row operation is applied to the system,
the new system is also homogeneous.

2. In each of the following, find all values of # for
which the system has nontrivial solutions, and
determine all solutions in each case.

@ x—2y4+ z=0¢b) x+2y+ z2=0
x+ay—32=0 x+3y+62=0
—x+6y—52=0 20+ 3y +az=0

©x+ y— z2=0
ay— z=0
x+ y+az=0

od)ax+y+ 2=0
x+y— z2=0
x+y+az=0

3

1
=|l0hx=|—-6|and x3 =

0

0

Systems of Linear Equations

2 1 1
3. Letx=| 1,y=|0,andz=| 1| Ineach
—1 1 =2

case, either write v as a linear combination of
X, y, and z, or show that it is not such a linear
combination.

0 4
@v=| 1 ob) v=| 3
-3 L—4
13 3
(o) v=|1 od) v=1|0
L0 13

4. In each case, either express y as a linear

combination of a;, a,, and a3, or show that it is
not such a linear combination. Here:

-1 3 1
a = é,azzé,andm:i
1 0 1
1 -1
_ 12 _1 9
@y=|2 ® x=| 9
0 6

5. For each of the following homogeneous systems,
find a set of basic solutions and express the
general solution as a linear combination of these
basic solutions.

(@) x+20— x34+2054+x5=0
x1+2x2+2x3 +x5=0
2001 + 4oy — 203 + 3s + x5 =0

ob) X +2x— x3+ay+ x5=0
—x1—2x2+2x3 + x5=0
—x1—2x2+3x3+x4+3x5=0
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© x4+ v— a34+204+ x5=0
14+ 20— w3+ a4+ x5=0
236'1+3.X‘2— x3+2x4+ x5=0
436'1+5.X‘2—2.X‘3+5.X’4+2x'5=0

old) w4+ x;— 203 — 2x4+205=0
Z.X'I + 2.%'2 - 4X3 - 4’.76'4. + .X'5 = 0
xl—x2+2x3+ 4.X'4+ .X'5=0

—le — 4.76'2 + 8.76'3 —+ 10.96'4 + X5 = 0

6. (a) Does Theorem 1 imply that the
{—z +3y=0 b il
system q , 6y =0 as nontrivia
solutions? Explain.

+(b) Show that the converse to Theorem 1 is
not true. That is, show that the existence of
nontrivial solutions does nor imply that there
are more variables than equations.

7. In each case determine how many solutions
(and how many parameters) are possible for a
homogeneous system of four linear equations in
six variables with augmented matrix 4. Assume
that 4 has nonzero entries. Give all possibilities.

(a) Rank A = 2.
+(b) Rank A4 = 1.
(¢) A has a row of zeros.

+(d) The row-echelon form of A has a row
of zeros.

8. The graph of an equation ax + by + cz=01isa

plane through the origin (provided that not all
of 4, b, and ¢ are zero). Use Theorem 1 to show
that two planes through the origin have a point
in common other than the origin (0, 0, 0).

9. (a) Show that there is a line through any pair

10.

oll1.

12.

of points in the plane. [Hint: Every line has
equation ax + by + ¢ = 0, where 4, b, and ¢
are not all zero.]

+(b) Generalize and show that there is a plane

ax + by + cz + d = 0 through any three
points in space.

The graph of a(x® + y*) + bx + cy + d = 0 is
a circle if 2 # 0. Show that there is a circle
through any three points in the plane that are
not all on a line.

Consider a homogeneous system of linear
equations in # variables, and suppose that the
augmented matrix has rank 7. Show that the
system has nontrivial solutions if and only if
n>r.

If a consistent (possibly nonhomogeneous)
system of linear equations has more variables
than equations, prove that it has more than
one solution.

An Application to Network Flow

There are many types of problems that concern a network of conductors along
which some sort of flow is observed. Examples of these include an irrigation
network and a network of streets or freeways. There are often points in the system
at which a net flow either enters or leaves the system. The basic principle behind
the analysis of such systems is that the total flow into the system must equal the
total flow out. In fact, we apply this principle at every junction in the system.

Junction Rule

At each of the junctions in the network, the total flow into that junction must equal the

total flow out.

This requirement gives a linear equation relating the flows in conductors emanating

from the junction.
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A network of one-way streets is shown in the accompanying diagram. The rate
of flow of cars into intersection A is 500 cars per hour, and 400 and 100 cars
per hour emerge from B and C, respectively. Find the possible flows along
each street.

Solution » Suppose the flows along the streets are f1, /5, f3, f4, 5, and f4 cars per
hour in the directions shown. Then, equating the flow in with the flow out at
each intersection, we get

Intersection 4 500=fi+f+f
Intersection B f; + f3 + f5 = 400
Intersection C 3+ fs =fs + 100
Intersection D h=f+f

These give four equations in the six variables f1, f, ..., fs.

A+h+1f =500
fi + fa + fs = 400
f + fs — fs = 100

f —fa—fs =0

The reduction of the augmented matrix is

111 0 0 0]500 100 1 0 1]400
100 1 0 1[400] |0 10-1-1 0| 0
001 0 1-1/100] |oo1 0 1 -1]100
010-1-1 0| 0] 000 0 0 0| 0

Hence, when we use f3, f5, and f as parameters, the general solution is
h=40~faimfs  Hh=ht+fs  f[=100-f+f

"This gives all solutions to the system of equations and hence all the possible
flows.

Of course, not all these solutions may be acceptable in the real situation. For
example, the flows f1, f, ..., f are all positive in the present context (if one
came out negative, it would mean traffic flowed in the opposite direction).
This imposes constraints on the flows: f; = 0 and f3 = 0 become

fa+fs<400  f; —fs <100

Further constraints might be imposed by insisting on maximum values on the
flow in each street.
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EXERCISES 1.4

1. Find the possible flows in each of the following
networks of pipes.

(@)

60

50
h f
5 :
40 N -
Ja fs
50 (a) Find the possible flows.
25
fi f
la ;

+(b) If canal BC is closed, what range of flow on
AD must be maintained so that no canal
carries a flow of more than 30?

+(b)

3. A traffic circle has five one-way streets, and
vehicles enter and leave as shown in the
accompanying diagram.

50

2. A proposed network of irrigation canals is
described in the accompanying diagram. At peak
demand, the flows at interchanges 4, B, C, and D
are as shown.

(a) Compute the possible flows.
+(b) Which road has the heaviest flow?

An Application to Electrical Networks®

In an electrical network it is often necessary to find the current in amperes (A)
flowing in various parts of the network. These networks usually contain resistors
that retard the current. The resistors are indicated by a symbol M-, and the
resistance is measured in ohms (). Also, the current is increased at various
points by voltage sources (for example, a battery). The voltage of these sources is
measured in volts (V), and they are represented by the symbol 4. We assume
these voltage sources have no resistance. The flow of current is governed by the
following principles.

The current I and the voltage drop V across a resistance R are related by the equation
V'=RL

8  This section is independent of Section 1.4
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Kirchhoff’s Laws

1. (Junction Rule) The current flow into a junction equals the current flow out of
that junction.

2. (Circuit Rule) The algebraic sum of the voltage drops (due to resistances) around
any closed circuit of the network must equal the sum of the voltage increases
around the circuit.

When applying rule 2, select a direction (clockwise or counterclockwise) around
the closed circuit and then consider all voltages and currents positive when in
this direction and negative when in the opposite direction. This is why the term
algebraic sum is used in rule 2. Here is an example.

Find the various currents in the circuit shown.

Solution P First apply the junction rule at junctions 4, B, C, and D to obtain

Junction A L=L+£L
Junction B Iy=1 + I
Junction C L+ 1L=1I
Junction D L+L=1

Note that these equations are not independent (in fact, the third is an easy
consequence of the other three).

Next, the circuit rule insists that the sum of the voltage increases (due to
the sources) around a closed circuit must equal the sum of the voltage drops
(due to resistances). By Ohm’s law, the voltage loss across a resistance R (in the
direction of the current /) is RI. Going counterclockwise around three closed
circuits yields

Upper left 10+ 5 =201
Upper right =5 4+ 20 = 10 + 51,
Lower —10 = =205 — 51,

Hence, disregarding the redundant equation obtained at junction C, we have six

equations in the six unknowns [y, ..., Is. The solution is
L=% [ =2
L= ;—3 I, = %
L= =2

The fact that [, is negative means, of course, that this current is in the opposite
direction, with a magnitude of - amperes.
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EXERCISES 1.5

In Exercises 1-4, find the currents in the circuits. +4. All resistances are 10 €.

1. VW
6Q I

410V
20 L T‘L
N

*2.
5. Find the voltage x such that the current I; = 0.

A
I 2Q

10
A 5V

I . VW—e |I_—
5V 200 20V
L Is
100 I
5V 5V
L 10Q 200
10V 4
IR AMA A

An Application to Chemical Reactions

When a chemical reaction takes place a number of molecules combine to produce
new molecules. Hence, when hydrogen H, and oxygen O, molecules combine, the
result is water H,O. We express this as

H, + 0, — H,0

Individual atoms are neither created nor destroyed, so the number of hydrogen
and oxygen atoms going into the reaction must equal the number coming out

(in the form of water). In this case the reaction is said to be balanced. Note that
each hydrogen molecule H; consists of two atoms as does each oxygen molecule
O,, while a water molecule H,O consists of two hydrogen atoms and one oxygen
atom. In the above reaction, this requires that twice as many hydrogen molecules
enter the reaction; we express this as follows:

2H, + 0, — 2H,0

"This is now balanced because there are 4 hydrogen atoms and 2 oxygen atoms on
each side of the reaction.
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Balance the following reaction for burning octane CgHg in oxygen O;:
CgH]g ar OZ i C02 A Hzo

where CO, represents carbon dioxide. We must find positive integers , y, z,
and w such that

ngng +_)/OZ — ZC02 A szO

Equating the number of carbon, hydrogen, and oxygen atoms on each side
gives 8x = z, 18x = 2w and 2y = 2z + w, respectively. These can be written
as a homogeneous linear system

8x -z =0
18« —2w=0
2y—2z— w=0

which can be solved by gaussian elimination. In larger systems this is necessary
but, in such a simple situation, it is easier to solve directly. Set w = ¢, so that
%= %t, % = %t, 2y = %t +t= %t. But «, y, 2, and w must be positive integers,
so the smallest value of # that eliminates fractions is 18. Hence, x = 2, y = 25,
z = 16, and w = 18, and the balanced reaction is

2C8H18 + 2502 — 16C02 + 18H20

The reader can verify that this is indeed balanced.

It is worth noting that this problem introduces a new element into the theory of
linear equations: the insistence that the solution must consist of positive integers.

EXERCISES 1.6

In each case balance the chemical reaction. 3. CO; + H,O — C4H,04 + O,. This is called
the photosynthesis reaction—CgH1,0g is

1. CH4 + O, — CO; + H;,0. This is the burning ghucose.

of methane CHy.

+4. Pb(N3), + Cr(MnOQOy), — Cr,03; + MnO, +
+2. NH; + CuO — N, + Cu + H,0. Here NH; Pb;0, + NO.

is ammonia, CuO is copper oxide, Cu is copper,
and N, is nitrogen.

SUPPLEMENTARY EXERCISES FOR CHAPTER 1

1. We show in Chapter 4 that the graph of an a unique solution? Give reasons for your
equation #x + by + cz = d is a plane in space answer.

when not all of 4, b, and ¢ are zero.
2. Find all solutions to the following systems of

(a) By examining the possible positions of planes linear equations.

in space, show that three equations in three
variables can have zero, one, or infinitely @ w4+ v+ x3— xy= 3
many solutions. 3y 4 S0y — 203+ wy = 1

3wy — Ty + T3 — Sy = 7
+(b) Can two equations in three variables have xp + 325 — 4o + 3ay = =5



SECTION 1.6  An Application to Chemical Reactions 3

ob) x4+ 4v— a3+ a3=2
3x1+ 2.96'2“1‘ .X'3+2.X'4=5
X1 — 636‘2 + 3.96'3 = 1
X1 + 14.%‘2 — 5.%’3 + 2.76‘4 = 3

3. In each case find (if possible) conditions on 4,
b, and ¢ such that the system has zero, one, or
infinitely many solutions.

@ x+2y— 4z2= 4
3x— y+13z2= 2
e+ y+ dz=a+3

ob) x+ y+3z=u
ax+ y+5z2=4
x+ay+4z=ua

+4. Show that any two rows of a matrix can be

interchanged by elementary row transformations

of the other two types.

5. If ad # bc, show that V Z} has reduced
c

lﬂ
01/

+6. Find 4, b, and ¢ so that the system

row-echelon form

x+ay+cz=0
bx 4+ ¢y —32=1
ax + 2y + bz =5

has the solutionx = 3,y = -1,z = 2.

7. Solve the system

x4+ 2y +22=-3
v+ y+ z=-4
xX— y+iz= i

where # = —1. [See Appendix A.]

+8. Show that the real system

x4+ y+ z=95
{ v— y— z=1
—3x+2y+22=0
has a complex solution: x =2,y =i,z =3 — i
where # = —1. Explain. What happens when
such a real system has a unique solution?

9. A man is ordered by his doctor to take 5 units
of vitamin A, 13 units of vitamin B, and 23
units of vitamin C each day. Three brands of
vitamin pills are available, and the number of
units of each vitamin per pill are shown in the
accompanying table.

10.

11.

12.

13.

Vitamin
Brand A B C
1 1 2 4
2 1 1 3
3 0 1 1

(a) Find all combinations of pills that provide
exactly the required amount of vitamins
(no partial pills allowed).

+(b) If brands 1, 2, and 3 cost 3¢, 2¢, and
5S¢ per pill, respectively, find the least
expensive treatment.

A restaurant owner plans to use x tables
seating 4, y tables seating 6, and z tables
seating 8, for a total of 20 tables. When fully
occupied, the tables seat 108 customers. If
only half of the x tables, half of the y tables,
and one-fourth of the z tables are used, each
fully occupied, then 46 customers will be
seated. Find «, y, and 2.

(a) Show that a matrix with two rows and two
columns that is in reduced row-echelon form
must have one of the following forms:

10] [0 1} 0 0} [1 *}

01 00J] LOO] LOO

[Hint: The leading 1 in the first row must be

in column 1 or 2 or not exist.]

(b) List the seven reduced row-echelon forms for
matrices with two rows and three columns.

(c) List the four reduced row-echelon forms for
matrices with three rows and two columns.

An amusement park charges $7 for adults, $2
for youths, and $0.50 for children. If 150 people
enter and pay a total of $100, find the numbers
of adults, youths, and children. [Hinz: These
numbers are nonnegative integers.]

Solve the following system of equations for x
and y.
¥+ xy — yz =1
25— xy+3y =13
43y +2y = 0

[Hint: These equations are linear in the new
variables x; = 2°, 1, = xy, and a3 = yz.]
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SECTION 2.1

Matrix Algebra

In the study of systems of linear equations in Chapter 1, we found it convenient

to manipulate the augmented matrix of the system. Our aim was to reduce it to
row-echelon form (using elementary row operations) and hence to write down all
solutions to the system. In the present chapter we consider matrices for their own
sake. While some of the motivation comes from linear equations, it turns out that
matrices can be multiplied and added and so form an algebraic system somewhat
analogous to the real numbers. This “matrix algebra” is useful in ways that are
quite different from the study of linear equations. For example, the geometrical
transformations obtained by rotating the euclidean plane about the origin can be
viewed as multiplications by certain 2 x 2 matrices. These “matrix transformations”
are an important tool in geometry and, in turn, the geometry provides a “picture”
of the matrices. Furthermore, matrix algebra has many other applications, some of
which will be explored in this chapter. This subject is quite old and was first studied
systematically in 1858 by Arthur Cayley."

Matrix Addition, Scalar Multiplication, and

Transposition

A rectangular array of numbers is called a matrix (the plural is matrices), and
the numbers are called the entries of the matrix. Matrices are usually denoted by
uppercase letters: A, B, C, and so on. Hence,

1
:12—1} :[1 —1} c=l
05 6 0 2 5

are matrices. Clearly matrices come in various shapes depending on the number of
rows and columns. For example, the matrix 4 shown has 2 rows and 3 columns. In
general, a matrix with 7 rows and 7 columns is referred to as an m X 7 matrix or
as having size m X n. Thus matrices 4, B, and C above have sizes 2 x 3,2 x 2, and
3 x 1, respectively. A matrix of size 1 X # is called a row matrix, whereas one of

1 Arthur Cayley (1821-1895) showed his mathematical talent early and graduated from Cambridge in 1842 as senior wrangler. With no
employment in mathematics in view, he took legal training and worked as a lawyer while continuing to do mathematics, publishing
nearly 300 papers in fourteen years. Finally, in 1863, he accepted the Sadlerian professorship at Cambridge and remained there for
the rest of his life, valued for his administrative and teaching skills as well as for his scholarship. His mathematical achievements
were of the first rank. In addition to originating matrix theory and the theory of determinants, he did fundamental work in group
theory, in higher-dimensional geometry, and in the theory of invariants. He was one of the most prolific mathematicians of all time
and produced 966 papers.
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size m X 1 is called a column matrix. Matrices of size n x n for some 7 are called
square matrices.

Each entry of a matrix is identified by the row and column in which it lies. The
rows are numbered from the top down, and the columns are numbered from left to
right. Then the (4, j)-entry of a matrix is the number lying simultaneously in row i
and column j. For example,

The (1, 2)-entry of

! _1} is —1.
0 1
lz‘ﬂsa
05 6

A special notation is commonly used for the entries of a matrix. If 4 is an 7 X n
matrix, and if the (4 j)-entry of 4 is denoted as #;;, then A is displayed as follows:

The (2, 3)-entry of

ij7
ayp Ay 43 ot Ay,

= ﬂ?l ﬂ?z ﬂ?z ﬂZ.n

Dl Om2 D3 " D

This is usually denoted simply as 4 = [4;]. Thus 4;; is the entry in row i and column
j of A. For example, a 3 X 4 matrix in this notation is written
M1 4y 43 Mg
A=\ ay ay ay; 4y
A3y d3y 33 34
It is worth pointing out a convention regarding rows and columns: Rows are
mentioned before columns. For example:

o If a matrix has size m X n, it has m rows and n colummns.

o Ifwe speak of the (i, j)-entry of a matvix, it lies in row i and column j.

* Ifan entry is denoted ay, the first subscript i vefers to the row and the second subscript
] to the colummn in which ay; lies.

Two points (x1, y;) and (xy, y,) in the plane are equal if and only if? they have the
same coordinates, that is «; = x; and y; = y,. Similarly, two matrices 4 and B are
called equal (written 4 = B) if and only if:

1. They have the same size.
2. Corresponding entries are equal.

If the entries of 4 and B are written in the form A = [4;], B = [b;], described earlier,
then the second condition takes the following form:

[#j] = [bj] means a; = bj; for all 7 and j

ﬂb,B:[
cd

A=BB=CA=C

-1

Given 4 = 12
30 1

}, and C = [ i g}, discuss the possibility that

2 If pand q are statements, we say that p implies q if g is true whenever p is true. Then “p if and only if ¢” means that both p implies
g and g implies p. See Appendix B for more on this.
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Solution » A = B is impossible because A and B are of different sizes: A is 2 x 2

whereas B is 2 x 3. Similarly, B = C is impossible. But 4 = C is possible
abl [ 10

cdl 1-12

provided that corresponding entries are equal: [ means

a=1,b=0,c=—1,and d = 2.

Matrix Addition

If A and B are matrices of the same size, their sum A + B is the matrix formed by
adding corresponding entries.

If A = [4;] and B = [b;], this takes the form
A+ B = [a; + by]

Note that addition is zot defined for matrices of different sizes.

and B =

{1 L=l , compute 4 + B.
20 6

241 1+1 3—1}:[322}
142 240 0+6 126/

Solution» 4 + B = {

Find 4, b,and cif [a b ¢] + [c « b] = [3 2 —1].

Solution » Add the matrices on the left side to obtain
[a+c b+a c+b=[32 —1]

Because corresponding entries must be equal, this gives three equations:
a+c=3,b+a=2andc+ b= —1. Solving these yields z = 3, b = —1,
c=0.

If A, B, and C are any matrices of the same size, then

A+B=B+ 4 (commutative law)
A+B+C)=A+ B+ 0 (associative law)

In fact, if A = [4;] and B = [4;], then the (i, j)-entries of A + B and B + A are,

respectively, #; + b;; and b;; + a;. Since these are equal for all 7 and 7, we get
A+ B=[a+ byl =[b+a)]l =B+ A4

The associative law is verified similarly.

The m x n matrix in which every entry is zero is called the 7 X # zero matrix
and is denoted as 0 (or 0, if it is important to emphasize the size). Hence,

0+X=X
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holds for all 72 x # matrices X. The negative of an 7z X n matrix 4 (written —A) is
defined to be the 7 x n matrix obtained by multiplying each entry of A by —1. If
A = [a], this becomes —A = [—a;]. Hence,

A+ (=4 =0

holds for all matrices A where, of course, 0 is the zero matrix of the same size as A.
A closely related notion is that of subtracting matrices. If 4 and B are two 7z X n
matrices, their difference 4 — B is defined by

A—B=A+ (—B)
Note that if 4 = [4;] and B = [b;], then

is the 72 x n matrix formed by subtracting corresponding entries.

LetA:{3 —1 O}, :[ I 1}, andC:[1 0 -2 . Compute —4,
1 2 -4 2 06 31 1
A—B,and 4 + B — C.
Soluion  —A=| 3 1‘1
-1 -2 4
31 1 — (=1 1 _
4_p=|? =n 0 ZVO 1}
1-(=2) 2-0 —4-6] [32-10
B341-1 —1-1— 1 — (=2 _
Ad+p—c=|"* 0 0+1—( 1:{3 21
1-2-3 240—-1 —4+6—1 4 11

32
11
Solution » We solve a numerical equation # + x = b by subtracting the number
a from both sides to obtain x = & — 4. This also works for matrices. To solve

32}+X=
—11

Solve

, where X is a matrix.

oL

: g , simply subtract the matrix

i ﬂ from both sides to get

10}_[ 32}= 1-3 0-2 :[—2 —2}
—12) 11 | —1—(1 2-1 0 1
The reader should verify that this matrix X does indeed satisfy the original
equation.

X =

The solution in Example 5 solves the single matrix equation A + X = B directly
via matrix subtraction: X = B — A. This ability to work with matrices as entities lies
at the heart of matrix algebra.
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It is important to note that the sizes of matrices involved in some calculations are
often determined by the context. For example, if

A+C:{13—1}
20 1

then 4 and C must be the same size (so that 4 + C makes sense), and that size must
be 2 x 3 (so that the sum is 2 x 3). For simplicity we shall often omit reference to
such facts when they are clear from the context.

Scalar Multiplication

In gaussian elimination, multiplying a row of a matrix by a number & means
multiplying every entry of that row by k.

More generally, if A is any matrix and k is any number, the scalar multiple %A is the
matrix obtained from A by multiplying each entry of A by k.

If A = [a;], this is
kA = [kaj)
Thus 14 = A4 and (—1)4 = —A for any matrix 4.

The term scalar arises here because the set of numbers from which the entries are
drawn is usually referred to as the set of scalars. We have been using real numbers
as scalars, but we could equally well have been using complex numbers.

A =3 = Hand B =1 2 7| compute 54,18, and 34 — 2B.
2 01 03 2
15 —5 20 51 =
Solution » 5A=[ - } % _ 12 2
10030 01 1
3A—ZB={9 -3 12}_[24—2}:[7 —7 14}
6 018 o6 4 l6 —6 14

If A is any matrix, note that #4 is the same size as 4 for all scalars k. We also have
04=0 and k0=0

because the zero matrix has every entry zero. In other words, 4 = 0 if either # = 0
or A = 0. The converse of this statement is also true, as Example 7 shows.

If k4 = 0, show that either # = 0 or A = 0.

Solution » Write A = [4;] so that k4 = 0 means ka; = 0 for all ; and ;. If £ = 0,
there is nothing to do. If £ # 0, then ks;; = 0 implies that #;; = 0 for all / and j;
thatis, 4 = 0.
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For future reference, the basic properties of matrix addition and scalar
multiplication are listed in Theorem 1.

Let A, B, and C denote arbitrary m X n matrices where m and n are fixed. Let k and p
denote arbitrary real numbers. Then

1. A+ B=B+A.

A+B+C=A+B)+C.

There is an m X n matrix 0, such that 0 + A = A for each A.

For each A there is an m X n matrix, —A, such that A + (—=A) = 0.
k(A + B) = kA + kB.

(k + p)A = kA + pA.

(kp)A = k(pd).

14 = A.

e N & R LD

Properties 1-4 were given previously. To check property 5, let 4 = [4;] and
B = [b;] denote matrices of the same size. Then 4 + B = [a;; + b;j], as before,
so the (7, j)-entry of k(4 + B) is

But this is just the (i, j)-entry of k4 + kB, and it follows that
k(A + B) = kA + kB. The other properties can be similarly verified; the details
are left to the reader.

The properties in Theorem 1 enable us to do calculations with matrices in
much the same way that numerical calculations are carried out. To begin, property
2 implies that the sum (4 + B) + C = A + (B + C) is the same no matter how it
is formed and so is written as A + B + C. Similarly, the sum A4 + B+ C + D is
independent of how it is formed; for example, it equals both (4 + B) + (C + D)
and 4 + [B + (C + D)]. Furthermore, property 1 ensures that, for example,
B+D+ A+ C=A+ B+ C+ D.In other words, the order in which the
matrices are added does not matter. A similar remark applies to sums of five
(or more) matrices.

Properties 5 and 6 in Theorem 1 are called distributive laws for scalar
multiplication, and they extend to sums of more than two terms. For example,

kA+ B—C)=kA+ kC — kC
(k+p—mA=kA+ pA —mA

Similar observations hold for more than three summands. These facts, together
with properties 7 and 8, enable us to simplify expressions by collecting like terms,
expanding, and taking common factors in exactly the same way that algebraic
expressions involving variables and real numbers are manipulated. The following
example illustrates these techniques.
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Simplify 2(4 + 3C) — 3QC — B) — 32QA4 + B — 4C) — 4(A — 2C)] where 4,
B, and C are all matrices of the same size.

Solution P The reduction proceeds as though A4, B, and C were variables.

2(4 +3C) — 3Q2C — B) — 32QA + B — 4C) — 4(4 — 20)]
=24 + 6C — 6C + 3B — 3[44 + 2B — 8C — 44 + 8C]
=24 + 3B — 3[2B]
=24 - 3B

Transpose of a Matrix

Many results about a matrix A involve the 7ows of A4, and the corresponding result
for columns is derived in an analogous way, essentially by replacing the word

row by the word colummn throughout. The following definition is made with such
applications in mind.

Definition 2.3 If A is anm x n matrix, the transpose of A, written A”, is the n X m matrix whose
rows are just the columns of A in the same order.

In other words, the first row of A is the first column of A4 (that is it consists of the

entries of column 1 in order). Similarly the second row of A” is the second column
of A, and so on.

Write down the transpose of each of the following matrices.

1 12 31 -1
A=3| B=[526] C=|34| D=| 13 2
2 56 12 1
5
Solution » A7 =[1 3 2, B = 2|, ¢"=|! 3 | and DT = D.
y 246

If A = [a;] is a matrix, write AT = [6;]. Then b;; is the jth element of the ith row

of A" and so is the jth element of the ith column of A. This means bjj = aj;, so the
definition of A” can be stated as follows:

If A = [a;], then AT = [a;) (*)

"This is useful in verifying the following properties of transposition.



SECTION 2.1  Matrix Addition, Scalar Multiplication, and Transposition 39

Let A and B denote matrices of the same size, and let k denote a scalar.
1. IfAis anm X n matrix, then AT is an n X m matrix.
2. AHT=4.
3. (kAT = kAT
4 A+BT=A"+B".

Property 1 is part of the definition of A7, and property 2 follows from (x). As to
property 3: If A = [a;], then kA = [kay], so (x) gives
kA)" = [kaj] = kla;) = kA"
Finally, if B = [b;], then A + B = [¢;] where ¢; = a;; + b;; Then (x) gives property 4:
A+ B)" = [g1" = 6 = [a + bl = lo;) + 1] = A" + BT

There is another useful way to think of transposition. If 4 = [#;] is an 7 X n
matrix, the elements a1, #5,, 433, ... are called the main diagonal of 4. Hence
the main diagonal extends down and to the right from the upper left corner of
the matrix A; it is shaded in the following examples:

My Ay My Ay Ay

My 4, 43 2]
4y . @ My 3 a
4 4 21y 3 2 21
31 4 31 43y a3

Thus forming the transpose of a matrix 4 can be viewed as “flipping” 4 about its
main diagonal, or as “rotating” A through 180° about the line containing the main
diagonal. This makes property 2 in Theorem 2 transparent.

T
Solve for A if (ZAT— 3{ 1 ZD :[ 2 3}.
—11 —12

Solution P Using Theorem 2, the left side of the equation is

=33} ~ae=s[ 3 ~2a~3f; 7]

Hence the equation becomes

ool -

ThusZA:{ 2 3}+3[1 —1}:{5 0
12 5

2 1

Note that Example 10 can also be solved by first transposing both sides, then
solving for A7, and so obtaining A = (4”)”. The reader should do this.
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The matrix D in Example 9 has the property that D = D”. Such matrices are
important; a matrix A is called symmetric if 4 = A”. A symmetric matrix 4 is
necessarily square (if A is 72 X n, then ATisn x m, so A = A" forces n = m). The
name comes from the fact that these matrices exhibit a symmetry about the main
diagonal. That is, entries that are directly across the main diagonal from each other
are equal.
abc
b de
def

For example, is symmetric when b = ', c = ¢, and e = ¢'.

If A and B are symmetric » X # matrices, show that 4 + B is symmetric.

Solution » We have A7 = 4 and B” = B, so, by Theorem 2, we have
A+B"'=A"+B"=A4 + B.Hence A + Bis symmetric.

Suppose a square matrix A satisfies A = 24”. Show that necessarily A = 0.

Solution P If we iterate the given equation, Theorem 2 gives
A=24" = 212407 = 2124H7] = 44
Subtracting A from both sides gives 34 = 0, so A = %(3/1) = %(0) = 0.

EXERCISES 2.1

0 -1 27
1. Find 4, b, ¢, and d if @) B —i g (6)}T a1 04
(a)[””:[f—ﬁ —d} 2 4 0
cd 20 +d a+b (g) [3 _1}_2{1 _Z}T
pl[a—b b—=c]_5f 11 2 1 11
O, —al Tl- 217 1 -1
c—d d—a 31 o(h) 3 5
~10 2 3
© 3[11]_'_2{17}: [1} o(d) [ﬂ b _ [17 c
b al™ 2 cdl lda 3LetA_{z 1}8_{3 —12}0_{3 _1}
' “lo—1r" o 142 of
2. Compute the following: 13
[ [ 101
- D=|- dE = ,
@ zf(ﬂ‘si_? ﬂ Lar [010}
+(b) 3[ 3}— 5{6} n 7[ 1} Compute the following (where possible).
o el (2) 34 — 2B o(b) 5C
© _i ;}_4 (1) ﬂ* 3“ :ﬂ () 3E" od) B+ D
_ i . :
od) 3 -12]-2[93 4 +[3 11 —6] (e) 44" —3C of) A+ 0O
(g) 2B -3E o(h) A—D

() B -2E)"
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4. Find 4 if:

(@) 5A—{ 2]:3/1_[52

1 |
2 61
2

o(b) 34 + M: 54 — zm
5. Find 4 in terms of B if:
(@) A+ B=3A4+ 2B
+(b) 24 — B=5(A4 + 2B)

6. If X, Y, A, and B are matrices of the same size,
solve the following equations to obtain X and V'
in terms of A and B.

(a) SX+3Y =4
2X+ Y=8

o(b) 4X +3Y =4
SX+4Y =8B

7. Find all matrices X and Y such that:
(@) 3X —2Y=[3 —1]
ob) 2X — 5V =1 2]

8. Simplify the following expressions where A, B,
and C are matrices.

(a) 2[9(4 — B) + 72B — A)]
—23QB +A) — 2(4 + 3B) — 5(4 + B)]

+(b) S[3(4 — B+ 2C) — 23C — B) — A]
+2B3A - B+ C)+ 2B —24) — 2C)

9. If A is any 2 x 2 matrix, show that:

10 01 00 00

A=l o+t o+ ) o]+ 4o 1)

@ A=aly o]0 ol o) 0 1
for some numbers #, b, ¢, and 4.

101 [11] [10] [01
b) A=
*«® p[o JM{OO 10}“{1 0}

for some numbers p, ¢, 7, and s.

+ 7

10. LetA=[11-1],B=[012],and C=[301].
If A + sB + tC = 0 for some scalars r, s, and t,
show that necessarily » = s =t = 0.

11. (a) If Q + A = A holds for every 7 x n matrix
A, show that Q = 0,,,.

o) If Aisan m X n matrixand A + A" = 0,,,,
show that A" = —A.

12. If A denotes an 7 X n matrix, show that 4 = —A4
ifand only if 4 = 0.

13. A square matrix is called a diagonal matrix if
all the entries off the main diagonal are zero.

Matrix Addition, Scalar Multiplication, and Transposition

4

If A and B are diagonal matrices, show that the
following matrices are also diagonal.

(g A+ B o(b) A—B
(¢) kA for any number &

14. In each case determine all s and ¢ such that the
given matrix is symmetric:

1s st
b
@® -2 t} *®) L‘t 1}
s 2s st 2 s t
© |t -1s od) [ 25 0 s+7
PR . 33 ¢t

15. In each case find the matrix A.

(a)<A+31_10)T= ?)i
1 24T T s

o) <3AT+ 2 OD =8 0}
02 31

© 4-3[120p'=34T+121 11"
T 10
o(d) <2A - 5[_1

T
ol
2 -10

16. Let A and B be symmetric (of the same size).
Show that each of the following is symmetric.

@@ A -B)
+(b) kA for any scalar k&

17. Show that A + A" is symmetric for any square
matrix A.

18. If A is a square matrix and 4 = k4" where
k # £1, show that 4 = 0.

19. In each case either show that the statement is
true or give an example showing it is false.

(@) If A+ B=A + C, then B and C have the

same size.
o) If A+ B =0, then B=0.

(¢) If the (3, 1)-entry of 4 is 5, then the
(1, 3)-entry of A" is —5.

+(d) A and A" have the same main diagonal for
every matrix 4.

(e) If B is symmetric and A" = 3B, then A = 3B.

o(f) If A and B are symmetric, then k4 + mB is
symmetric for any scalars & and .



42

Chapter 2 Matrix Algebra

20. A square matrix I is called skew-symmetric if 23. Let A, Ay, A, ..., A, denote matrices of the same
WT = —W. Let A be any square matrix. size. Use induction on 7 to verify the following

(a) Show that 4 — AT is skew-symmetric.

extensions of properties 5 and 6 of Theorem 1.

(a) k(Al +A2 + e +An)

(b) Find a sy.mmetric matrix S and a skew- = kA, + kA + -+ + kA, for any number k
symmetric matrix W such that 4 = S + W.

(b) by + by + -+ + kA

+(c) Show that S and W in part (b) are uniquely = kA + JoA + - + kA for any

determined by 4.

21. If Wis skew-symmetric (Exercise 20), show that 24
the entries on the main diagonal are zero.

22. Prove the following parts of Theorem 1.

numbers &y, k5, ..., k,

. Let A be a square matrix. If 4 = pB” and
B = gA" for some matrix B and numbers p
and ¢, show that either 4 = 0 = Bor pg = 1.
[Hint: Example 7.]

@) (k + p)A = kA + pA

+(b) (kp)A = k(pA)

SECTION 2.2

Equations, Matrices, and Transformations

Definition 2.4

Up to now we have used matrices to solve systems of linear equations by
manipulating the rows of the augmented matrix. In this section we introduce a
different way of describing linear systems that makes more use of the coefficient
matrix of the system and leads to a useful way of “multiplying” matrices.

Vectors

It is a well-known fact in analytic geometry that two points in the plane with
coordinates (#1, ;) and (b1, b,) are equal if and only if 4; = b; and 4, = b,.
Moreover, a similar condition applies to points (41, 4, 43) in space. We extend
this idea as follows.

An ordered sequence (41, 45, ..., 4,) of real numbers is called an ordered z-tuple.
The word “ordered” here reflects our insistence that two ordered 7-tuples are equal
if and only if corresponding entries are the same. In other words,

(a1, @y ooy ,) = (b1, bay ..y b)) if and only if ay = by, 0y = by, ..., and 4, = b,,.

Thus the ordered 2-tuples and 3-tuples are just the ordered pairs and triples familiar
from geometry.

Let R denote the set of all real numbers. The set of all ordered n-tuples from R has a
special notation:

R” denotes the set of all ordered n-tuples of real numbers.

There are two commonly used ways to denote the n-tuples in R": As rows
1

r .

(r1, 73, ..., 7;,) or columns | '? |; the notation we use depends on the context. In any
T

event they are called vectors or z-vectors and will be denoted using bold type such

as x or v. For example, an 7z X # matrix 4 will be written as a row of columns:

A =[a; a, --- a,] where a; denotes column j of A for each ;.
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If x and y are two n-vectors in R”, it is clear that their matrix sum x + y is also
in R" as is the scalar multiple kx for any real number k. We express this observation
by saying that R” is closed under addition and scalar multiplication. In particular,
all the basic properties in Theorem 1 Section 2.1 are true of these n-vectors. These
properties are fundamental and will be used frequently below without comment. As
for matrices in general, the n X 1 zero matrix is called the zero z-vector in R” and,
if x is an n-vector, the n-vector —x is called the negative x.

Of course, we have already encountered these z-vectors in Section 1.3 as the
solutions to systems of linear equations with # variables. In particular we defined the
notion of a linear combination of vectors and showed that a linear combination of
solutions to a homogeneous system is again a solution. Clearly, a linear combination
of n-vectors in R” is again in R”, a fact that we will be using.

Matrix-Vector Multiplication

Given a system of linear equations, the left sides of the equations depend only on
the coefficient matrix A and the column x of variables, and not on the constants.
"This observation leads to a fundamental idea in linear algebra: We view the left
sides of the equations as the “product” Ax of the matrix 4 and the vector x. This
simple change of perspective leads to a completely new way of viewing linear
systems—one that is very useful and will occupy our attention throughout this book.

To motivate the definition of the “product” Ax, consider first the following
system of two equations in three variables:

ax + bxz + X3 = 171

él‘/xl + b./xz + Cf?é'} = 171 (*)
ab ¢ o1l by
andlet 4 =| " ool x=|x|,and b = [ denote the coefficient matrix, the
a c X 2
3]

variable matrix, and the constant matrix, respectively. The system (x) can be
expressed as a single vector equation

by

by[

by
+u5 =1
x{c’} [bz}
Now observe that the vectors appearing on the left side are just the columns

Z ,and a3 = V/]

[axy + bxy + cx3

_ﬂ./x‘l + b./x’z + 656'3
which in turn can be written as follows:

b

’

xl[ ﬂ,] + X
a

a
= [ ,} 1=
a
of the coefficient matrix 4. Hence the system (x) takes the form
x1a; + xa; + x3a3 = B. ()

This shows that the system (x) has a solution if and only if the constant matrix b

is a linear combination® of the columns of 4, and that in this case the entries of
the solution are the coefficients xy, x,, and a3 in this linear combination.
Moreover, this holds in general. If A is any 7 X » matrix, it is often convenient to

view A as a row of columns. That is, if a;, a,, ..., a, are the columns of A, we write
A= [31 a - an]
and say that 4 = [a; a, --- a,] is given in terms of its colummns.

3 Linear combinations were introduced in Section 1.3 to describe the solutions of homogeneous systems of linear equations. They will
be used extensively in what follows.
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Now consider any system of linear equations with 7 X 7 coefficient matrix 4. If
X1

b is the constant matrix of the system, and if x = | *? | is the matrix of variables then,
xﬂ
exactly as above, the system can be written as a single vector equation

x1a; + 2,2, + -+ + x,a, = b. (kx%)

3x1 +2x2 —496'3 =0
Wirite the system{ x—3x,+ a3 = 3 in the form given in (sx:x).

20y =500 ==
3 2 —4 0
Solution » x| 1 |+ x| —3 |+ a3 1|=| 3}
0 1 -5 -1

As mentioned above, we view the left side of (x*x) as the product of the matrix A
and the vector x. This basic idea is formalized in the following definition:

Definition 2.5  Matrix-Vector Products Let A = [a; a, --- a,] be an m X n matrix, written in
X1
X2

terms of its columns aj, ay, ..., a,. Ifx = is any n-vector, the product Ax is defined

X
to be the m-vector given by: !

Ax = X1y aF X1y AP X14,.

In other words, if A is 7 x n and x is an n-vector, the product Ax is the linear
combination of the columns of A where the coefficients are the entries of x (in order).

Note that if 4 is an 7z X » matrix, the product Ax is only defined if x is an
n-vector and then the vector Ax is an m-vector because this is true of each column
a; of A. But in this case the systen of linear equations with coefficient matrix 4 and
constant vector b takes the form of a single matrix equation

Ax = b.

The following theorem combines Definition 2.5 and equation (x##) and summarizes
the above discussion. Recall that a system of linear equations is said to be consistent if
it has at least one solution.

(1) Every system of linear equations has the form Ax = b where A is the coefficient
matrix, b is the constant matrix, and X is the matrix of variables.

(2) The system Ax = b is consistent if and only if b is a linear combination of the
columns of A.

o1
(3) Ifay, ay, ..., a, are the columns of A and if x = e | then x is a solution to the
X,
linear system Ax = b if and only if x, x5, ..., x,, are a solution of the vector

equation x;a; + x,a; + -+- + x,a, = b.
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A system of linear equations in the form Ax = b as in (1) of Theorem 1 is said to be
written in matrix form. This is a useful way to view linear systems as we shall see.

Theorem 1 transforms the problem of solving the linear system Ax = b into the
problem of expressing the constant matrix B as a linear combination of the columns
of the coefficient matrix A. Such a change in perspective is very useful because one
approach or the other may be better in a particular situation; the importance of the
theorem is that there is a choice.

2 -1 35 2
IfA=| 0 2 —3 1|landx= l,computeAx.
0
-3 4 12 _
2 -1 3 5 -7
Solution P By Definition 2.5: Ax =2 0|+ 1] 2|+ 0 =3|—-2[1|=| 0}
-3 4 1 2 -6

Given columns aj, ay, a3, and a4 in R®, write 2a; — 3a, + 5a; + a4 in the form
Ax where A is a matrix and x is a vector.

2
3
5
1

Ax = 2a; — 3a, + Sa3 + a4

Solution P Here the column of coefficients is x = | ~ 2 | Hence Definition 2.5 gives

where A = [a; a, a3 ay] is the matrix with a;, a,, a3, and a4 as its columns.

Let A = [a; a, a3 a4] be the 3 X 4 matrix given in terms of its columns

2 1 3 3
ai=| 0a=|1],as=|—1}and a; = |1 | In each case below, either express
-1 1 -3 0

b as a linear combination of a;, a,, a3, and a4, or show that it is not such a
linear combination. Explain what your answer means for the corresponding
system Ax = b of linear equations.

1 4
@b =2 b b=|2|
3 1

Solution » By Theorem 1, b is a linear combination of aj, a,, a3, and a4 if and
only if the system Ax = b is consistent (that is, it has a solution). So in each
case we carry the augmented matrix [4|b] of the system Ax = b to reduced
form.
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21 33|1] [10 2 1]|0]
(@)Here| 01 -1 1{2|—|0 1 =1 1[0}, so the system Ax = b has no
-1 1 -30(3] [00 O Of1]
solution in this case. Hence b is 70z a linear combination of a;, a,, a3, and a,.
21 3 3|4 10 2 1|1
(b)Now| 01 -1 1{2|—[0 1 -1 1|2] so the system Ax = b is
11-30[1] 00 00]0
consistent.

Thus b is a linear combination of a;, a,, a3, and a4 in this case. In fact the
general solutionisxy =1 — 2s — t, 0y = 2 + 5 — t, 23 = 5, and x4 = ¢ where s
4
2
1
any choice of s and 7. If we take s = 0 and ¢ = 0, this becomes a; + 2a, = b,
whereas taking s = 1 = 7 gives —2a; + 2a; + a; + a, = b.

and ¢ are arbitrary parameters. Hence xja; + x,a; + x3a3 + v4a4 = b = |2 | for

Taking A to be the zero matrix, we have Ox = 0 for all vectors x by
Definition 2.5 because every column of the zero matrix is zero. Similarly,
A0 = 0 for all matrices A because every entry of the zero vector is zero.

100
IfI=1{0 1 0}, show that Ix = x for any vector x in R’
001
X1
Solution P If x = |x2 | then Definition 2.5 gives
X3
1 0 0 X1 0 0 X1
k=0 +2|1|+x50[=|0|+|%2]+|0|=|22]=x
0 0 1 0 0 X3 X3

The matrix I in Example 6 is called the 3 x 3 identity matrix, and we will
encounter such matrices again in Example 11 below.

Before proceeding, we develop some algebraic properties of matrix-vector
multiplication that are used extensively throughout linear algebra.

Let A and B be m x n matrices, and let x and'y be n-vectors in R". Then:
(1) Ax +y) = Ax + Ay.
(2) A(ax) = a(Ax) = (aA)x for all scalars a.
(3) (A + B)x = Ax + Bx.
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We prove (3); the other verifications are similar and are left as exercises. Let
A=1[a; a, --- a,]and B = [b; b, --- b,] be given in terms of their columns.
Since adding two matrices is the same as adding their columns, we have

A+B=[a+b;, ay+b;, --- a,+b,]
X1
If we write x = x:2 Definition 2.5 gives
Xy
(A + B)x = x(a; + b)) + x(@a; + by) + --- + x,(a, + b,)

= (xja; + xay + -+ + x,3,) + (¢;b; + by + -+ + x,b,)
= Ax + Bx.

Theorem 2 allows matrix-vector computations to be carried out much as in ordinary
arithmetic. For example, for any 7z X n matrices A and B and any n-vectors x and y,
we have:

A@2x — 5y) =24x — 54y and (34 — 7B)x = 34x — 7Bx

We will use such manipulations throughout the book, often without mention.
Theorem 2 also gives a useful way to describe the solutions to a system

Ax=b
of linear equations. There is a related system
Ax=0

called the associated homogeneous system, obtained from the original system
Ax = b by replacing all the constants by zeros. Suppose x; is a solution to Ax = b
and x; is a solution to Ax = 0 (that is Ax; = b and Axy, = 0). Then x; + xq is
another solution to Ax = b. Indeed, Theorem 2 gives

A(X1+X()):AX1+AX0=b+0=b

This observation has a useful converse.

Suppose x; is any particular solution to the system Ax = b of linear equations. Then
every solution x, to Ax = b has the form

X; = Xp + Xj

for some solution x of the associated homogeneous system Ax = 0.

Suppose x; is also a solution to Ax = b, so that Ax, = b. Write xy = x; — x;.
Then x;, = xy + x; and, using Theorem 2, we compute

Axg = Ax; — x)) = Ax; — Ax; =b —b = 0.

Hence x, is a solution to the associated homogeneous system Ax = 0.



Chapter 2 Matrix Algebra

Note that gaussian elimination provides one such representation.

Express every solution to the following system as the sum of a specific solution
plus a solution to the associated homogeneous system.

X1 — % — X3+ 3x4=2
21 —x; — 303 + 4x4 =6
X1 — 203+ xp—4

Solution » Gaussian elimination gives x; =4 + 25 — #, 0, = 2 + 5 + 2t, 23 = 5,
and x, = t where s and ¢ are arbitrary parameters. Hence the general solution
can be written

xq 4+ 25—t 4 2 -1
_ % _|24+s5+2¢|_|2 1 2
X= 0| T s [Tlol T o
X4 t 0 0 1
4 2 —1
Thus x = % is a particular solution (where s = 0 = 7), and xozxi + ¢ é

0 0 1
gives al/ solutions to the associated homogeneous system. (To see why this is

so, carry out the gaussian elimination again but with all the constants set equal
to zero.)

The Dot Product

Definition 2.5 is not always the easiest way to compute a matrix-vector product Ax
because it requires that the columns of A be explicitly identified. There is another
way to find such a product which uses the matrix 4 as a whole with no reference to its
columns, and hence is useful in practice. The method depends on the following notion.

Definition 2.6  If (4}, 45, ..., a,,) and (b, by, ..., b,) are two ordered n-tuples, their dot product is
defined to be the number
mby + mby + -+ + ayb,

obtained by multiplying corresponding entries and adding the results.

To see how this relates to matrix products, let 4 denote a 3 x 4 matrix and let x be
a 4-vector. Writing

'il- ayy ayp 43 44
X = x§ and A = |ay a4y ay3 a4
EN 31 432 433 d34

in the notation of Section 2.1, we compute

ap a4y a3 414 'il' apy ap a3 a4
Ax = |ay1 ay r3 dry xi = X da1 |+ X dan |+ X3\ da3 | + Xyl 24
a31 43y 433 434] 5, a31 a3 a33 434

a11X1 412Xy 413X3 A14%4
a31X1 Xy A3X3 A4X4
a31X1 432Xy A33X3 A34X4




row 7

entry

SECTION 2.2  Equations, Matrices, and Transformations 49

From this we see that each entry of Ax is the dot product of the corresponding row
of A with x. This computation goes through in general, and we record the result in
Theorem 4.

Dot Product Rule
Let A be an m X n matrix and let x be an n-vector. Then each entry of the vector Ax is
the dot product of the corresponding row of A with x.

"This result is used extensively throughout linear algebra.

If A is m x n and x is an n-vector, the computation of Ax by the dot product rule
is simpler than using Definition 2.5 because the computation can be carried out
directly with no explicit reference to the columns of 4 (as in Definition 2.5). The
first entry of Ax is the dot product of row 1 of 4 with x. In hand calculations this
is computed by going across row one of A, going down the column x, multiplying
corresponding entries, and adding the results. The other entries of Ax are computed
in the same way using the other rows of 4 with the column x.

In general, compute entry & of Ax as follows (see the diagram):

Go across row k of A and down column x, multiply
corresponding entries, and add the results.

As an illustration, we rework Example 2 using the dot product rule instead of
Definition 2.5.

221 35 2
A= 0 2 -3 1|andx=| 1}
-3 4 12 )

compute Ax.

Solution > The entries of Ax are the dot products of the rows of 4 with x:

2 -1 357 2 22 + (D1 + 30 + 5(=2) =7
A= 0 231 o= 02 + 21 + (30 + 1(-2)|= ~
=3 4 12]]_5] [32 + 41 + 10 + 2-2)] L-6

Of course, this agrees with the outcome in Example 2.

Write the following system of linear equations in the form Ax = b.

Sy —x) + 2x3 + x4 — 35 = 8
X1 + a0 + 3wz — Sy + 205 = —2

—x1 + x5 — 203 + —3x= 0
X1
512 13 8 P
Solution » Write A=| 1 1 3 -5 2| b=|—-2|,andx= |3 Then the
-1 1-2 03 0 4
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le — X + 236'3 ar X4 — 3x5
dot product rule gives Ax =| ¥y +x, +3x5 —5x4 + 2x5 |, so the entries of
—X +x2 —2.7C3 —3.76'5

Ax are the left sides of the equations in the linear system. Hence the system
becomes Ax = b because matrices are equal if and only corresponding entries
are equal.

If A is the zero 72 X n matrix, then Ax = 0 for each n-vector x.

Solution > For each k, entry k£ of Ax is the dot product of row % of A with x, and
this is zero because row k of A consists of zeros.

For each n > 2, the identity matrix [, is the n X n matrix with 1s on the main
diagonal (upper left to lower right), and zeros elsewhere.

The first few identity matrices are

R X N
122{0 1}’ b= 8(1)? L=loo10p
0001

In Example 6 we showed that I;x = x for each 3-vector x using Definition 2.5. The
following result shows that this holds in general, and is the reason for the name.

For each » > 2 we have I,x = x for each n-vector x in R”.

Il
Solution » We verify the case n = 4. Given the 4-vector x = 2 the dot
product rule gives o
1000 2 +0+0+0
X X1
10100 |x| |[O0+x,+0+0 L -
“lo010]|* 0+0+x;+0 | [¥3]
X. X4

000 1 * 0+0+0+xy

In general, I,x = x because entry k of I, x is the dot product of row & of I, with
x, and row k of [, has 1 in position k and zeros elsewhere.

Let A = [a; a, --- a,] be any 7 X 7 matrix with columns aj, ay, ..., a,. If ¢;
denotes column j of the # x 7 identity matrix [,, then Ae; = a; for each
j=L2,..,n
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51
Solution » Write e; = t:Z where #; = 1, but ; = 0 for all  # j. Then Theorem 4
t
gives
Aej=ta; + - +ta+ - +12,=0+--+a,+ - +0=a;

Example 12 will be referred to later; for now we use it to prove

Let A and B be m X n matrices. If Ax = Bx for all x in R", then A = B.

Write A = [a; a, --- a,] and B = [b; b, --- b,] and in terms of their columns.
It is enough to show that a;, = by, holds for all k. But we are assuming that Ae;, =
Be,, which gives a;, = by, by Example 12.

We have introduced matrix-vector multiplication as a new way to think about
systems of linear equations. But it has several other uses as well. It turns out that
many geometric operations can be described using matrix multiplication, and we
now investigate how this happens. As a bonus, this description provides a geometric
“picture” of a matrix by revealing the effect on a vector when it is multiplied by 4.
"This “geometric view” of matrices is a fundamental tool in understanding them.

Transformations

The set R? has a geometrical interpretation as the euclidean plane where a vector
ap]. . . . .
[ﬂ ] in R? represents the point (21, 4;) in the plane (see Figure 1). In this way we
2

regard R” as the set of all points in the plane. Accordingly, we will refer to vectors
in R? as points, and denote their coordinates as a column rather than a row. To

enhance this geometrical interpretation of the vector

Zl}, it is denoted graphically
2

.. 10 P—
by an arrow from the origin { to the vector as in Figure 1.

Similarly we identify R’ with 3-dimensional space by writing a point (a4, 43, a3) as
ay
)
a3

the vector |4 | in R?, again represented by an arrow* from the origin to the point as

in Figure 2. In this way the terms “point” and “vector” mean the same thing in the
plane or in space.
We begin by describing a particular geometrical transformation of the plane R?.

4 This “arrow” representation of vectors in R? and R® will be used extensively in Chapter 4.
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Consider the transformation of R? given by reflection in the x axis. This

. . ay
operation carries the vector P
2

: ] 4] S~
to its reflection [ p ] as in Figure 3. Now
—a

observe that
ay
a

ﬂl} _ [1 0
—a 0 —1

so reflecting [Zl} in the x axis can be achieved by multiplying by the matrix [(1) ﬂ
2 —

If we write A = [(1) ﬂ, Example 13 shows that reflection in the x axis carries

each vector x in R? to the vector Ax in R%. Tt is thus an example of a function
T:R* >R’ where T(x)= Ax for all xin R%.

As such it is a generalization of the familiar functions f: R — R that carry a number
x to another real number f(x).

More generally, functions 7: R” — R™ are called transformations from R” to
R™. Such a transformation 7 is a rule that assigns to every vector x in R” a uniquely
determined vector 7(x) in R called the image of x under 7. We denote this state of
affairs by writing

T:R">R"” or R"LR”

The transformation 7 can be visualized as in Figure 4.

To describe a transformation 7": R” — R" we must specify the vector 7(x) in
R™ for every x in R". This is referred to as defining 7, or as specifying the action
of T. Saying that the action defines the transformation means that we regard two
transformations S : R” — R” and 7': R” — R" as equal if they have the same
action; more formally

S=T ifandonlyif S(x) = T() for all x in R".
Again, this what we mean by f'= g where f, g: R — R are ordinary functions.

Functions f: R — R are often described by a formula, examples being f(x) =" + 1
and f(x) = sin x. The same is true of transformations; here is an example.

X1 5 ar &8
x .

The formula T xi = |4, + x5 | defines a transformation R* — R,
X4 X3 + X4

Example 13 suggests that matrix multiplication is an important way of defining
transformations R” — R™. If A is any » X n matrix, multiplication by 4 gives a
transformation

T,:R" - R"” defined by T,4(x) = Ax for every x in R”.
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Definition 2.8 T, is called the matrix transformation induced by A.

Thus Example 13 shows that reflection in the x axis is the matrix transformation

R? — R? induced by the matrix (1) o Also, the transformation R : R* — R’ in

Example 13 is the matrix transformation induced by the matrix

1100 1100]* X+ X
A=0110|because|0 1 1 0|32 |=|x2+a5,
0011 001 1l|xy X3+ x4
y Let Rr : R* — R’ denote counterclockwise rotation about the origin through
Rz |= [_Z] 2 0 —1
b q = radians (that is, 90°).° Show that R= is induced by the matrix | ~ |
b 2 2 0
! : - [Z] Solution » The effect of R% is to rotate the vector x = {Z} counterclockwise
= a — through 7 to produce the vector Rx(x) shown in Figure 5. Since triangles
M FIGURE 5 Opx and Ong(x) are identical, we obtain Rg(x) = {_ﬂb]. But
{_b] = [O — [ﬂ], so we obtain Rr(x) = Ax for all x in R* where 4 = [0 _1}.
a 1 0l 2 1 0

In other words, R~ is the matrix transformation induced by A.
2

If A is the m X n zero matrix, then 4 induces the transformation
T:R"—>R"” givenby T(x)=Ax =0 forallxinR"

This is called the zero transformation, and is denoted 7 = 0.

Another important example is the identity transformation

Igr : R" = R" given by 1y (x) = x for all x in R".

That is, the action of 1g» on x is to do nothing to it. If I, denotes the » X # identity
matrix, we showed in Example 11 that [, x = x for all x in R”. Hence 1g/(x) = I, x
for all x in R”; that is, the identity matrix I, induces the identity transformation.

Here are two more examples of matrix transformations with a clear geometric
description.

If 2 > 0, the matrix transformation TB,C} = [?x] induced by the matrix

A=|%
0

(1)} is called an x-expansion of R” if # > 1, and an x¥-compression if

0 < # < 1. The reason for the names is clear in the diagram below. Similarly,

if b > 0 the matrix “) 0 gives rise to y-expansions and y-compressions.

5 Radian measure for angles is based on the fact that 360° equals 27 radians. Hence 7 = 180° and 7 = 90°.
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x-compression ’ x-expansion

Gx
S
il
[1[%)
<
L—%_]

matrix A =

if 2 < 0). Its effect is illustrated below when 2 = % and 2z = —

(SIS
[S1[9%}

If # is a number, the matrix transformation T{x] = {x v ) } induced by the

L 2|5 called an x-shear of R? (positive if # > 0 and negative

1
e

J Y

Positive x-shear Negative x-shear

B] [x +y%y] \ | [x _y% y]

We hasten to note that there are important geometric transformations that are

not matrix transformations. For example, if w is a fixed column in R”, define the
transformation 7, : R” — R” by

To(x) =x+w forallxin R".

Then T, is called translation by w. In particular, if w = [ﬂ in R?, the effect of

T, on [ﬂ is to translate it two units to the right and one unit up (see Figure 6).

The translation Ty, is not a matrix transformation unless w = 0. Indeed, if 7,

were induced by a matrix 4, then Ax = T, (x) = x + w would hold for every x in
R”. In particular, taking x = 0 gives w = 40 = 0.

EXERCISES 2.2

1. In each case find a system of equations that is 2. In each case find a vector equation that is
equivalent to the given vector equation. (Do not equivalent to the given system of equations.
solve the system.) (Do not solve the equation.)

[ 2 1 2 5
_ (a) xp— x4+ 3= 5
@ x| 3|+ x|1|+x5] 0= g “3x+ 4 x3=—6
- 0 4 -1 N Sx; — 8x, =
1 -3 =3 3 5
o(b) %, 0 + 2 8 + x5 0 +ay 20 |1 o) x —2x— a3+ x4= 5
1 2 2 0 2 —X1 =+ X3 — 2.76’4 = —3
LO 1 2 =2 0

2.%’1 — 296’2 + 796’3 = 8
3.76’1 — 496’2 + 996’3 — 2x4 = 12
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3. In each case compute Ax using: (i) Definition

2.5. (ii) Theorem 4.

_ X1
(a) A = 3-20 and x = |,
_ X1
+o(b) A= L2 3}andx— X
10 —4 5 X3
-20 54 X
@©A=| 12 03]andx= 32}
-56 =78 x4
3—-4 16 X1
odA=| 0 2 1Sandx=§§.
8§ 730 o

4. Let A = [a; a, a3 a4] be the 3 X 4 matrix
1 2 a3 A4
given in terms of its columns

1 3 2 0
a; = 1,32:0,33:—1,31'1(134: -3
-1 2 3 5

In each case either express b as a linear
combination of a;, a,, a3, and a4, or show that
it is not such a linear combination. Explain
what your answer means for the corresponding
system Ax = b of linear equations.

0 -
@ b=|3 (b) b=11
5 1

. In each case, express every solution of the system
as a sum of a specific solution plus a solution of
the associated homogeneous system.

@ x+y+ z2=2 ob)x— y—4z=-4
2x +y =3 x+2y+5z2= 12
x—y—32=0 x4+ y+2z= 0

© x+x— i —Sxs= 2

X+ a3 — 4us = —1

X4+ x5+ ag— w5 =—1

2x; —dv;+ x4+ 5= 6
od) 2x14+x— x3— x4=-1

3x1 42 + a3 — 2004 = =2
w0 — X+ 2x3+ x4= 2
—2&6‘1 — X + 296’4 = 3

+6. If x5 and x; are solutions to the homogeneous
system of equations Ax = 0, use Theorem 2 to
show that sxy + 7x; is also a solution for any scalars
s and ¢ (called a linear combination of x, and x;).

1 2
7. Assume that 4| —1|= 0 = A|(|. Show that
2 3

9

55
2
-1
3

two-parameter family of solutions to Ax = b.

Xy = is a solution to Ax = b. Find a

. In each case write the system in the form

Ax = b, use the gaussian algorithm to solve
the system, and express the solution as a
particular solution plus a linear combination
of basic solutions to the associated
homogeneous system Ax = 0.

(a) 8
—1
= 1

11

x1— 204+ a3+ 4wy —  xs
—2x1 4+ 4wy + a3 — 2wg — 4
3x1 — Ox; + 8x3 + 4wy — 13x;5
8y — 160y + 7a3 + 1224 — 6w

ob)  x;— 200+ a3+ 2x4+ 3x5=—4
—3xy + 6x; — 203 — 3oy — 1lws = 11
=201+ 40, — 34+ xg— 8Bws= 7

—xy + 2% + 3x4— Sws= 3

. Given vectors

0
0 1 -1
| 0 1
b that is zot a linear combination of a;, a,,

and a;3. Justify your answer. [Hinz: Part (2) of
Theorem 1.]

1 1

a; =10, a, =1, and a3 = , find a vector

. In each case either show that the statement is

true, or give an example showing that it is false.
o o]

+(b) If Ax has a zero entry, then A has a row of
Z€ros.

(¢) If Ax = 0 where x # 0, then 4 = 0.

is a linear combination of

+(d) Every linear combination of vectors in R”
can be written in the form Ax.

(e) If A = [a; a, a3] in terms of its columns, and
if b = 3a; — 2a,, then the system Ax = b has
a solution.

o(f) If A = [a; a, a3] in terms of its columns,
and if the system Ax = b has a solution, then
b = sa; + ra, for some s, t.

(g) If Aism x nand m < n, then Ax = b has a
solution for every column b.

+(h) If Ax = b has a solution for some column b,
then it has a solution for every column b.

(i) If x; and x, are solutions to Ax = b, then
X; — X is a solution to Ax = 0.
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() Let A = [a; a; a3] in terms of its columns.

s
t }
-1

11. Let T: R — R’ be a transformation. In each
case show that T is induced by a matrix and find
the matrix.

If a3 = sa; + ra,. then Ax = 0, where x =

(a) T'is a reflection in the y axis.
+(b) T'is a reflection in the line y = .
(¢) Tis a reflection in the line y = —u.

+(d) T'is a clockwise rotation through 7.
12. The projection P : R® — R” is defined by

x x
y y |in R®. Show that P is
z z
induced by a matrix and find the matrix.

P

= [ﬂ for all

13. Let T: R® — R’ be a transformation. In each
case show that T is induced by a matrix and find
the matrix.

(a) T'is a reflection in the x-y plane.

+(b) T'is a reflection in the y-z plane.
14. Fixa > 0 in R, and define 7, : R* — R* by
T,(x) = ax for all x in R*. Show that 7'is induced

by a matrix and find the matrix. [T is called a
dilation if # > 1 and a contraction if z < 1.]

15. Let A be m x n and let x be in R". If A has a row
of zeros, show that Ax has a zero entry.

SECTION 2.3

+16. If a vector B is a linear combination of the
columns of A, show that the system Ax = b is
consistent (that is, it has at least one solution.)

17. If a system Ax = b is inconsistent (no solution),
show that b is not a linear combination of the
columns of A.

18. Let x; and x;, be solutions to the homogeneous
system Ax = 0.

(a) Show that x; + x; is a solution to Ax = 0.

+(b) Show that tx; is a solution to Ax = 0 for any
scalar ¢.

19. Suppose x; is a solution to the system Ax = b.
If x, is any nontrivial solution to the associated
homogeneous system Ax = 0, show that x; + x,
t a scalar, is an infinite one parameter family of
solutions to Ax = b. [Hint: Example 7 Section 2.1.]

20. Let A and B be matrices of the same size. If x
is a solution to both the system Ax = 0 and the
system Bx = 0, show that x is a solution to the
system (4 + B)x = 0.

21. If Aism x n and Ax = 0 for every x in R”, show
that A = 0 is the zero matrix. [Hint: Consider
Ae; where e; is the jth column of ,; that is, e; is
the vector in R” with 1 as entry j and every other
entry 0.]
+22. Prove part (1) of Theorem 2.

23. Prove part (2) of Theorem 2.

Matrix Multiplication

In Section 2.2 matrix-vector products were introduced. If 4 is an 7 X 7 matrix, the
product Ax was defined for any z-column x in R” as follows: If 4 = [a; a, --- a,]

X1

where the A; are the columns of A, and if x = x:z , Definition 2.5 reads

xﬂ

Ax = X1ap + xay + -0+ X3, (*)

"This was motivated as a way of describing systems of linear equations with
coefficient matrix 4. Indeed every such system has the form Ax = b where b is

the column of constants.

In this section we extend this matrix-vector multiplication to a way of multiplying
matrices in general, and then investigate matrix algebra for its own sake. While
it shares several properties of ordinary arithmetic, it will soon become clear that
matrix arithmetic is different in a number of ways.

Matrix multiplication is closely related to composition of transformations.
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Composition and Matrix Multiplication
Sometimes two transformations “link” together as follows:

R* L R" 5 R™.
In this case we can apply T first and then apply S, and the result is a new
transformation

SoT:RF S R”,
called the composite of S and 7, defined by

(S o T)x) = S[Tx)] for all xin R*.

The action of S o T can be described as “first 7 then S ” (note the order!)®. This

new transformation is described in the diagram. The reader will have encountered
composition of ordinary functions: For example, consider R % R 4 R where
flw) = «” and g(x) =« + 1 for all ¥ in R. Then

(fo () = fleW] = flxr + 1) = (x + 1)’
(g2 @) = glf)] = gt’) = o’ + 1.
for all x in R.

Our concern here is with matrix transformations. Suppose that 4 is an 72 X n
matrix and B is an z X k matrix, and let R I, g7 14, R” he the matrix
transformations induced by B and A respectively, that is:

T,(x) = Bx for all x in R* and T4(y) = By for all y in R".

Write B = b, --- b;] where b; denotes column j of B for each j. Hence each
1 by k ) J J

b; is an n-vector (B is 7 X k) so we can form the matrix-vector product Ab;. In

particular, we obtain an 7z X k matrix

[4b, Ab, --- Aby]

X1
with columns Aby, Ab,, ---, Ab;. Now compute (T4 o Tp)(x) for any x = x:2 in RY:
b
(T4 0 Tp)(x) = T4[Tpx)] Definition of Ty o Ty
= A(Bx) A and B induce T4 and Ty
= A(x;by + x,by + -+ + x;by) Equation (%) above

= A(x;by) + A(x;b,) + «-- + A(xby)  Theorem 2, Section 2.2
= x1(4by) + x,(4b,) + -+ + xx(Aby)  Theorem 2, Section 2.2
= [Ab; Ab, --- Ab]x. Equation (%) above

Because x was an arbitrary vector in R”, this shows that T4 o T}y is the matrix
transformation induced by the matrix [Ab;, Ab,, ---, Ab,]. This motivates the
following definition.

Matrix Multiplication

Let A be an m X n matrix, let B be an n X k matrix, and write B = [b; b, --- by]
where b; is column j of B for each j. The product matrix AB is the m X k matrix defined
as follows:

AB :A[bh bZ, R bk] = [AbhAbZ, 7Abk]

6  When reading the notation S o T, we read S first and then T even though the action is “first Tthen S”. This annoying state of affairs
results because we write T(x) for the effect of the transformation 7on x, with T on the left. If we wrote this instead as (x)7, the
confusion would not occur. However the notation 7(x) is well established.
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Thus the product matrix AB is given in terms of its columns Aby, Ab,, ..., Ab,:
Column j of AB is the matrix-vector product Ab; of 4 and the corresponding
column b; of B. Note that each such product Ab; makes sense by Definition 2.5
because A is 7 x n and each b; is in R” (since B has z rows). Note also that if B
is a column matrix, this definition reduces to Definition 2.5 for matrix-vector
multiplication.

Given matrices A and B, Definition 2.9 and the above computation give
A(Bx) = [Aby Ab, --- Ab,]x = (AB)x

for all x in R¥. We record this for reference.

Let A be an m X n matrix and let B be an n X k matrix. Then the product matrix AB is
m X k and satisfies

A(Bx) = (AB)x for all x in R*.

Here is an example of how to compute the product AB of two matrices using
Definition 2.9.

235 89
Compute ABifA=|14 7|and B=|7 2
018 6 1
8 9
Solution » The columns of B are b; = [7|and b, = |2, so Definition 2.5 gives
6 1
2 3 5]8 67 2 3579 29
Aby=1|1 4 7||7|=|78|and Ab, = |1 4 7|[2|=|24]
01 8ll6 55 01 8il1 10
67 29
Hence Definition 2.9 above gives AB = [Ab; Ab,] = |78 24|
55 10

While Definition 2.9 is important, there is another way to compute the matrix
product AB that gives a way to calculate each individual entry. In Section 2.2
we defined the dot product of two n-tuples to be the sum of the products of
corresponding entries. We went on to show (Theorem 4 Section 2.2) that if 4
is an 7z X n matrix and x is an n-vector, then entry j of the product Ax is the dot
product of row j of A with x. This observation was called the “dot product rule” for
matrix-vector multiplication, and the next theorem shows that it extends to matrix
multiplication in general.
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Theorem 2

Dot Product Rule
Let A and B be matrices of sizes m X n and n X k, respectively. Then the (i, j)-entry of
AB is the dot product of row i of A with column j of B.

Write B = [b; b, --- b,] in terms of its columns. Then Ab; is column ; of AB
for each j. Hence the (7, j)-entry of AB is entry i of Abj, which is the dot product
of row 7 of A with b;. This proves the theorem.

Thus to compute the (7, j)-entry of AB, proceed as follows (see the diagram):

Go across row i of A, and down column j of B,
multiply corresponding entries, and add the results.

Note that this requires that the rows of 4 must be the same length as the columns
of B. The following rule is useful for remembering this and for deciding the size of
the product matrix AB.

Compatibility Rule

Let A and B denote matrices. If 4 is w2 x n and B is n’ X k, the product AB can be
formed if and only if # = »". In this case the size of the product matrix AB is m X k,
and we say that 4B is defined, or that 4 and B are compatible for multiplication.

The diagram provides a useful mnemonic for remembering this. We adopt the
following convention:

Convention

Whenever a product of matrices is written, it is tacitly assumed that the sizes of the
factors are such that the product is defined.

To illustrate the dot product rule, we recompute the matrix product in Example 1.

89

72
6 1

Solution » Here A is 3 x 3 and B is 3 X 2, so the product matrix AB is defined
and will be of size 3 X 2. Theorem 2 gives each entry of AB as the dot product
of the corresponding row of A with the corresponding column of B; that is,

Compute AB if 4 = and B =

235
147
018

235189 2:843:74+56 2:9+3.2+45-1 67 29
AB=|147||7 2|=[1-8+4:7+7:6 1-94+4.247-1|=78 24|
01861 0.84+1:74+86 0:9+1:2+4+8-1 55 10

Of course, this agrees with Example 1.
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Compute the (1, 3)- and (2, 4)-entries of AB where

2160
A:[z_iiandB: 023 4|
105 8

Then compute AB.

Solution » The (1, 3)-entry of AB is the dot product of row 1 of A and column
3 of B (highlighted in the following display), computed by multiplying
corresponding entries and adding the results.

3 -1 2 2160
{0 _1 4} 0234 (1,3)-enry=36+(-1):3+2-5=25
-1 05 8
Similarly, the (2, 4) entry of AB involves row 2 of 4 and column 4 of B.

2160

[(3) ‘i i] 0234 @%-entry=0-0+1-4+4.8=36
-1 05 8
Since 4 is 2 x 3 and Bis 3 x 4, the productis 2 X 4.
3 —12 2160 41 25 12
AB:[_}0234={ }
0 14 —4 2 23 36
-1 0 5 8 * 33
5
IfA=1[13 2]land B=|6 ,ComputeAz,AB, BA, and B* when they are defined.’
4

Solution » Here, Aisa 1 x 3 matrix and Bis a 3 x 1 matrix, so 4> and B* are
not defined. However, the rule reads
A B B A
and
1 x3 3x1 3x1 1x3
so both AB and BA can be formed and these are 1 x 1 and 3 x 3 matrices,
respectively.

5
AB =113 2]l¢|=[1-5+3-6+2-4] =[31]
4
5 §.1 5.3 5.2] 7[5 15 10
BA=|¢6|132]=|6-1 6:3 6-2|=|6 18 12
4 4.1 4.3 4.2] (412 8

Unlike numerical multiplication, matrix products AB and BA need not be equal.
In fact they need not even be the same size, as Example 4 shows. It turns out to be
rare that AB = BA (although it is by no means impossible), and 4 and B are said to
commute when this happens.

7 As for numbers, we write A2 = A+ A A= A A+ A etc. Note that A% is defined if and only if A is of size n x n for some n.
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LetA = { & 0 and B = { . . Compute A%, AB, BA.
—4 -6 -10
Solution » 4° = [ @ QH @ 9} = {0 v , s0 A> = 0 can occur even if
—4 —6Jl—4 -6 00
A # 0. Next,

az=[ 3 g10-[5
R I ]

Hence AB # BA, even though AB and BA are the same size.

If A is any matrix, then [4 = A and Al = A, and where I denotes an identity
matrix of a size so that the multiplications are defined.

Solution » These both follow from the dot product rule as the reader should

verify. For a more formal proof, write 4 = [a; a, --- a,] where a; is column ;
of A. Then Definition 2.9 and Example 11 Section 2.2 give

IA=[Ia; Ia; --- In,] =[a; 2, --- a,] =4

If e; denotes column j of 7, then Ae; = a; for each j by Example 12 Section 2.2.
Hence Definition 2.9 gives:

Al =Ale, e, -+ e,] = [Ae; Ae; -+ Ae,] =[a; a, -+ a,] =4

The following theorem collects several results about matrix multiplication that
are used everywhere in linear algebra.

Assume that a is any scalar, and that A, B, and C are matrices of sizes such that the
indicated matrix products are defined. Then:

1. 1A = A and AI = A where I denotes an identity matrix.
2. ABC) = AB)C.

3. AB+C)=A4B+ AC.

4. (B+ O)A = BA + CA.

5. a(AB) = (aA)B = A(aBb).

6. (AB)" = BTAT.
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(1) is Example 6; we prove (2), (4), and (6) and leave (3) and (5) as exercises.

Q) IfC=1lc; ¢ -+ ¢] in terms of its columns, then BC = [Be; Bc, -+ Bey] by
Definition 2.9, so

A(BC) = [A(Bc,) A(Bcy) --- A(Bcy)] Definition 2.9
= [(AB)c; (AB)c; -+ (AB)cy] Theorem 1

= AB)C Definition 2.9
(4) We know (Theorem 2 Section 2.2) that (B + C)x = Bx + Cx holds for every
column x. If we write 4 = [a; a, --- a,] in terms of its columns, we get

B+0COA=[B+Ca; B+ Ca, --- (B+ O)a,) Definition 2.9
= [Ba; + Ca; Ba, + Ca, .-+ Ba, + Ca,]  Theorem 2 Section 2.2
= [Ba; Ba, --- Ba,] + [Ca; Ca, --- Ca,] Adding Columns

=BA + CA Definition 2.9

(6) As in Section 2.1, write A = [#;] and B = [;], so that A" = [4}] and B" = [b}]
ii = @ and bj; = bj; for all i and j. If ¢; denotes the (7, j)-entry of BTAT,
then ¢; is the dot product of row 7 of B” with column j of A”. Since row i of B"
is [b; U b,] and column j of ATis (@i ajp a3,;], we obtain

where a

’ ’ ’ 4 / ’
C,*]' = bilﬂlj + b,'zﬂzj + -+ bimﬂmj
= buaj + byap + - + byt
= apbi + apby; + -+ + Wby

But this is the dot product of row ;j of A with column 7 of B; that is, the
(j, ))-entry of AB; that is, the (i, j)-entry of (AB). This proves (6).

Property 2 in Theorem 3 is called the associative law of matrix multiplication.
It asserts that A(BC) = (AB)C holds for all matrices (if the products are defined).
Hence this product is the same no matter how it is formed, and so is written simply
as ABC. This extends: The product ABCD of four matrices can be formed several
ways—for example, (AB)(CD), [A(BC)]D, and A[B(CD)]—but the associative law
implies that they are all equal and so are written as ABCD. A similar remark applies
in general: Matrix products can be written unambiguously with no parentheses.

However, a note of caution about matrix multiplication must be taken: The fact
that 4B and BA need not be equal means that the order of the factors is important in
a product of matrices. For example ABCD and ADCB may not be equal.

Warning
If the order of the factors in a product of matrices is changed, the product matrix

may change (or may not be defined). Ignoring this warning is a source of many
errors by students of linear algebra!

Properties 3 and 4 in Theorem 3 are called distributive laws. They assert that
AB + C) = AB + AC and (B + )4 = BA + CA hold whenever the sums and
products are defined. These rules extend to more than two terms and, together
with Property 5, ensure that many manipulations familiar from ordinary algebra
extend to matrices. For example

AQB —3C + D — 5E) = 24B — 3AC + AD — SAE
(A +3C —2D)B = AB + 3CB — 2DB



SECTION 2.3  Matrix Multiplication 63

Note again that the warning is in effect: For example A(B — C) need not equal
AB — CA. These rules make possible a lot of simplification of matrix expressions.

Simplify the expression A(BC — CD) + A(C — B)D — AB(C — D).

Solution » A(BC — CD) + A(C — B)D — AB(C — D)
= A(BC) — A(CD) + (AC — AB)D — (AB)C + (AB)D
= ABC — ACD + ACD — ABD — ABC + ABD
= 0.

Examples 8 and 9 below show how we can use the properties in Theorem 2 to
deduce other facts about matrix multiplication. Matrices A and B are said to
commute if AB = BA.

Suppose that A, B, and C are n X n matrices and that both 4 and B commute
with C; that is, AC = CA and BC = CB. Show that AB commutes with C.

Solution » Showing that AB commutes with C means verifying that
(AB)C = C(AB). The computation uses the associative law several times,
as well as the given facts that AC = CA and BC = CB.

(AB)C = A(BC) = A(CB) = (AC)B = (CA)B = C(4B)

Show that AB = BA if and only if (4 — B)(A + B) = 4> — B

Solution » The following always holds:
(A—B)(A+B) =AA + B) — B + B)=A* + AB —BA — B* (%)

Hence if AB = BA, then (4 — B)(A + B) = A> — B’ follows. Conversely, if this
last equation holds, then equation (x) becomes

A —B=4+A4B-BA-F
This gives 0 = AB — BA, and AB = BA follows.

In Section 2.2 we saw (in Theorem 1) that every system of linear equations has
the form

Ax=Db
where A is the coefficient matrix, x is the column of variables, and b is the constant

matrix. Thus the syster of linear equations becomes a single matrix equation. Matrix
multiplication can yield information about such a system.
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Consider a system Ax = b of linear equations where A is an 7 X » matrix.
Assume that a matrix C exists such that C4 = I,,. If the system Ax = b has a
solution, show that this solution must be Cb. Give a condition guaranteeing
that Cb s in fact a solution.

Solution P Suppose that x is any solution to the system, so that Ax = b. Multiply
both sides of this matrix equation by C to obtain, successively,

CAx) = Cb, (CAx=Cb, ILx=Cb, x=Cb

This shows that if the system has a solution x, then that solution must be
x = (b, as required. But it does not guarantee that the system Aas a solution.
However, if we write x; = Cb, then

Ax, = A(Cb) = (AC)b.

Thus x; = Cb will be a solution if the condition AC = I,, is satisfied.

The ideas in Example 10 lead to important information about matrices; this will
be pursued in the next section.

Block Multiplication

It is often useful to consider matrices whose entries are themselves matrices (called
blocks). A matrix viewed in this way is said to be partitioned into blocks.
For example, writing a matrix B in the form
B =[b; b, --- by] where the b; are the columns of B

is such a block partition of B. Here is another example.
Consider the matrices

where the blocks have been labelled as indicated. This is a natural way to partition 4
into blocks in view of the blocks I, and 0,3 that occur. This notation is particularly
useful when we are multiplying the matrices 4 and B because the product AB can be
computed in block form as follows:

4 -2
AB - zom_[zxwxf}_ X 1_|5 6
_[P Q} Yl |PX+ QY _LDXJr QY}_ 30 8

8 27

This is easily checked to be the product AB, computed in the conventional manner.
In other words, we can compute the product AB by ordinary matvix multiplication,
using blocks as entries. The only requirement is that the blocks be compatible. That
is, the sizes of the blocks must be such that all (matvix) products of blocks that occur make

sense. This means that the number of columns in each block of A must equal the
number of rows in the corresponding block of B.
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Block Multiplication
If matrices A and B are partitioned compatibly into blocks, the product AB can be
computed by matrix multiplication using blocks as entries.

We omit the proof.

We have been using two cases of block multiplication. If B = [b; b, --- by isa
matrix where the b; are the columns of B, and if the matrix product 4B is defined,
then we have

AB:A[bI bz e b}e] == [Abl Abz e Abk]

"This is Definition 2.9 and is a block multiplication where 4 = [4] has only one
block. As another illustration,

X1
Bx=1[b; by - byl| "2 | = ayby + xyby + - + aybyl.
X
where x is any # X 1 column matrix (this is Definition 2.5).

It is not our intention to pursue block multiplication in detail here. However, we
give one more example because it will be used below.

B, X,
Suppose matrices A = [B o and A; = { Pl

0C 0 C

B are square matrices of the same size, and C and C are also square of the same size.
These are compatible partitionings and block multiplication gives

B X} B, X BB, BX; + XC,
0Cl]o0 C 0 cc, |

} are partitioned as shown where B and

AA]Z

Obtain a formula for A* where 4 = [{) )(ﬂ is square and [ is an identity matrix.

Solution » We have 4> = [

2
IX[I X}:F IX + X0 :{IX}ZA.Hence

00100 0 0> 00
A> = AA* = AA = A* = A. Continuing in this way, we see that A = A for
every k > 1.

Block multiplication has theoretical uses as we shall see. However, it is also useful
in computing products of matrices in a computer with limited memory capacity.
The matrices are partitioned into blocks in such a way that each product of blocks
can be handled. Then the blocks are stored in auxiliary memory and their products
are computed one by one.
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Directed Graphs

The study of directed graphs illustrates how matrix multiplication arises in ways
other than the study of linear equations or matrix transformations.

A directed graph consists of a set of points (called vertices) connected by
arrows (called edges). For example, the vertices could represent cities and the
edges available flights. If the graph has # vertices vy, vy, ..., v,, the adjacency
matrix A = [a;] is the » X n matrix whose (7, j)-entry 4 is 1 if there is an edge
from v; to v; (note the order), and zero otherwise. For example, the adjacency
110
101
100
r-path) from vertex j to vertex i is a sequence of 7 edges leading from v; to v;.
Thus v; — v; — v; — v; — w3 is a 4-path from v; to v; in the given graph. The
edges are just the paths of length 1, so the (i, j)-entry 4;; of the adjacency matrix
A is the number of 1-paths from v; to v;. This observation has an important
extension:

If A is the adjacency matrix of a directed graph with n vertices, then the (i, j)-entry of A"
is the number of r-paths v; — v;.

matrix of the directed graph shown is 4 =

. A path of length 7 (or an

As an illustration, consider the adjacency matrix A in the graph shown. Then

110 211 421
A=|101, 4 =[210) and £ =[32 1}
100 110 211

Hence, since the (2, 1)-entry of A? is 2, there are two 2-paths v; — v, (in fact
v; — vy — v; and v; — v3 — vy). Similarly, the (2, 3)-entry of A% is zero, so there
are no 2-paths v — v, as the reader can verify. The fact that no entry of A is zero
shows that it is possible to go from any vertex to any other vertex in exactly three
steps.

To see why Theorem 6 is true, observe that it asserts that

the (3, j)-entry of A" equals the number of -paths v; — v, (%)

holds for each » = 1. We proceed by induction on 7 (see Appendix C). The case

7 = 1 is the definition of the adjacency matrix. So assume inductively that (x) is true
for some 7 = 1; we must prove that (%) also holds for » + 1. But every (» + 1)-path
v; — v; is the result of an r-path v; — v; for some £, followed by a 1-path v, — ;.
Writing 4 = [4;] and A" = [b;], there are by, paths of the former type (by induction)
and a;;, of the latter type, and so there are #;4;; such paths in all. Summing over £,
this shows that there are

ﬂilblj + ﬂiZhZ]‘ + -+ ﬂinbnj (7" + 1)—paths v — V).
But this sum is the dot product of the ith row [4;; 4 --- 4;,] of A with the jth
column [ by; -+ b,,]-]T of A". As such, it is the (i, j)-entry of the matrix product
A’A = A", This shows that (%) holds for 7 + 1, as required.
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EXERCISES 2.3

1. Compute the following matrix products.

) 7231
1 32 -1 1 —12
(@) ][ } o(bﬂ 197
0 —=2Jlo0 1 2 04 145
- 3 30
(© ig_;}{ 1] od) 13 =3]=2 1
. -1 L 06
100]3 =2 )
() [0 105 =7 of) [1 =1 3] 1
001l 7 —3
2 317 2 -1
1 -13 h{ H —}
@ 1 =13 w5
.231400 a00]a 00
(1)574]0170 «G) |0 50|00
- 00c¢ 00¢cllOoO(

2. In each of the following cases, find all possible
products A%, AB, AC, and so on.

-10
a=[1238=[} e 2
2 05
12 4 16 0
.(b)A:[ },B:T },C: 11
01 —1 10 12
3. Find 4, b, ay, and b, if:
@[ ? 3—5}:[1 —1}
_ﬂl [71 ,_]. 2 2 0
’(b)' 21a b :[ 72}
,_1 2_ ﬂl 171 _14
4. Verify that 4> — A — 61 = 0 if:
3 —1] 2 2
5[
(@ 0 —2) +(b) 5 _1
10
5. GivenA:[1 _1],B={1 0 _2},C= 2 1),
0 1 31 0 5 g

i -1 i , verify the following facts

from Theorem 1.

() AB — D) = AB — AD
+(b) A(BC) = (AB)C

(o) (cD)" =D'cT

and D =

67

6. Let A be a2 x 2 matrix.
01

(a) If A commutes with of show that
A= b for some # and b.
a

+(b) If A commutes with , show, that

00
1

A= [i 2] for some # and ¢.

(c¢) Show that A commutes with every 2 X 2

a 0

matrix if and only if 4 = [O for some 4.
a

7. (a) If A can be formed, what can be said about
the size of A?

+(b) If AB and BA can both be formed, describe
the sizes of 4 and B.

(¢) If ABC can be formed, A is 3 x 3, and C'is
5 X 5, what size is B?

8. (a) Find two 2 x 2 matrices 4 such that 4> = 0.

+(b) Find three 2 x 2 matrices A such that
WA =L G A =A.

(¢) Find 2 x 2 matrices A and B such that
AB = 0 but BA # 0.

100
9. Write P=|0 0 1|, andlet Abe 3 x nand B
010
be m x 3.

(a) Describe PA in terms of the rows of A.

(b) Describe BP in terms of the columns of B.
10. Let A, B, and C be as in Exercise 5. Find the

(3, 1)-entry of CAB using exactly six numerical
multiplications.

11. Compute AB, using the indicated block
partitioning.

|
—_
o
—| o o

—_
|

—_

(=]

12. In each case give formulas for all powers 4,
A A, . of A using the block decomposition
indicated.
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13.

14.

15.

16.

17.

18.

19.

+20.

21.
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110 0
@A=11-1
-1 1

Compute the following using block
rnultiplication (all blocks are & X k).

o ilvl 0l

© [ X1 x1"

R

«d) [I X1[-x N7

(e) [O _ﬂ ,any 2 = 1 o(f) B) ﬂn, any n > 1

Let A denote an 7z X » matrix.

(a) If AX = 0 for every #» x 1 matrix X, show
that 4 = 0.

+(b) If YA = 0 for every 1 x m matrix ¥, show
that 4 = 0.

(@) If U= [(1) ﬂ, and AU = 0, show that A = 0.

(b) Let U be such that AU = 0 implies that
A =0.I1f PU= QU, show that P = Q.

Simplify the following expressions where 4, B,
and C represent matrices.

(2) AGB — C) + (4 — 2B)C + 2B(C + 24)

o(b) AB+C—D)+ B(C—A+D)—(A+BC
+(—B)D

(©) AB(BC — CB) + (CA — AB)BC + CAA — B)C

o(d) (A4 —B)Y(C—A) + (C—BYA—C) + (C— A

It4 =

“ b} where 2 # 0, show that A factors
‘ 1 0} y =
x 1J0 w/

If A and B commute with C, show that the same
is true of:

(2 A+ B

in the form A = {

+(b) kA, k any scalar
If A is any matrix, show that both 44" and A”A4

are symmetric.

If A and B are symmetric, show that AB is
symmetric if and only if AB = BA.

If Ais a2 x 2 matrix, show that 474 = AA" if
and only if 4 is symmetric or 4 = Z b for
—b a

some # and b.

22.

23.

*24.

25.

+26.

27.

(a) Find all symmetric 2 x 2 matrices 4 such
that 4% = 0.

+(b) Repeat (a)if Ais3 x 3.
(c) Repeat (a) if A is n X n.

Show that there exist no 2 X 2 matrices A and
B such that AB — BA = I. [Hint: Examine the
(1, 1)- and (2, 2)-entries.]

Let B be an » X 7 matrix. Suppose AB = 0 for
some nonzero 72 X n matrix A. Show that no
n X n matrix C exists such that BC = I.

An autoparts manufacturer makes fenders,
doors, and hoods. Each requires assembly and
packaging carried out at factories: Plant 1, Plant
2, and Plant 3. Matrix 4 below gives the number
of hours for assembly and packaging, and matrix
B gives the hourly rates at the three plants.
Explain the meaning of the (3, 2)-entry in the
matrix AB. Which plant is the most economical
to operate? Give reasons.

Assembly Packaging

Fenders 12 b
Doors 21 3 =A
Hoods 10 2

Plant 1 Plant2 Plant3
Assembly 21 18 20
Packaging [ 14 10 13 ] =B
For the directed graph at the a .
right, find the adj jacency X ’
matrix A, compute A°, and
determlne the number of
paths of length 3 from v to
v4 and from v, to vs. A o5

In each case either show the
statement is true, or give an example showing
that it is false.

(@) IfA* =1 then A =1

o(b) If A = A, then J = I.
(¢) If A is square, then (A7)’ = (4*)T.

+(d) If A is symmetric, then I + A4 is symmetric.
(e) If AB=AC and A # 0, then B = C.

o(f) If A # 0, then 4% # 0.

(2) If A has a row of zeros, so also does BA for
all B.
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o(h) If A commutes with 4 + B, then A
commutes with B.
(1) If B has a column of zeros, so also does AB.
+(j) If AB has a column of zeros, so also does B.
(k) If A has a row of zeros, so also does AB.

+(1) If AB has a row of zeros, so also does A.

28. (a) If A and B are 2 X 2 matrices whose rows sum
to 1, show that the rows of AB also sum to 1.
+(b) Repeat part (a) for the case where A and B
are 7 X 7.

29. Let A and B be n x n matrices for which the
systems of equations Ax = 0 and Bx = 0 each
have only the trivial solution x = 0. Show that the
system (AB)x = 0 has only the trivial solution.

30. The trace of a square matrix A, denoted tr 4, is
the sum of the elements on the main diagonal of
A. Show that, if A and B are » X » matrices:

(@) r(d + B)=tr A + tr B.

o(b) tr(kA) = k tr(A4) for any number 4.
() (A" = tr(A).
(d) r(4B) = tr(BA).

o(e) tr(AA7) is the sum of the squares of all
entries of A.

31. Show that AB — BA = I is impossible.
[Hint: See the preceding exercise.]

32. A square matrix P is called an idempotent if

P’ = P. Show that:

Matrix Inverses
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(a) 0 and I are idempotents.

() [1 1} {1 O}’ and% 11

00/1l10 11

(c) If Pis an idempotent, so is I — P. Show
further that P(l — P) = 0.

(d) If Pis an idempotent, so is pr.

, are idempotents.

+(e) If P is an idempotent, so is
Q = P + AP — PAP for any square
matrix A (of the same size as P).

(f) IfAisn X m and Bis m X n, and if AB = I,
then BA is an idempotent.

33. Let A and B be » x n diagonal matrices (all
entries off the main diagonal are zero).

(a) Show that AB is diagonal and AB = BA.
(b) Formulate a rule for calculating X4 if X is

m X 7n.

(¢) Formulate a rule for calculating AY'if V'is
n X k.

34. If A and B are » X n matrices, show that:
(a) AB = BA if and only if
(A + B = A* + 24B + B~
+(b) AB = BA if and only if
(A+ B)A—-B)=(4— B4 + B).
35. In Theorem 3, prove
(a) part 3; +(b) part 5.

+36. (V. Camillo) Show that the product of two
reduced row-echelon matrices is also reduced
row-echelon.

Three basic operations on matrices, addition, multiplication, and subtraction,
are analogs for matrices of the same operations for numbers. In this section we
introduce the matrix analog of numerical division.

To begin, consider how a numerical equation

ax =1b

is solved when # and # are known numbers. If z = 0, there is no solution (unless

b = 0). Butif # # 0, we can multiply both sides by the inverse 2~

I = % to obtain

the solution x = #~'b. Of course multiplying by 2" is just dividing by 4, and
the property of 7" that makes this work is that 2~ '2 = 1. Moreover, we saw in
Section 2.2 that the role that 1 plays in arithmetic is played in matrix algebra by

the identity matrix /.
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This suggests the following definition. If A is a square matrix, a matrix B is called an
inverse of A if and only if

AB=1 and BA=1

A matrix A that has an inverse is called an invertible matrix.®

Show that B = [_} (IJ is an inverse of 4 = [0 1}.

11
Solution » Compute AB and BA.

AB:{O 1[-1 1}2{1 O} Bq—|1 IHO 1}2{1 0}
11 10 01 1 0Jl1 1 01
Hence AB = I = BA, so B is indeed an inverse of A.
00 .

Show that A = 3 has no inverse.
Solution » Let B = [ﬂ Z} denote an arbitrary 2 X 2 matrix. Then

¢

4p =100 [ﬂ bl_[ 0 0

1 3llcd a+3c b+ 3d

so AB has a row of zeros. Hence AB cannot equal [ for any B.

The argument in Example 2 shows that no zero matrix has an inverse. But
Example 2 also shows that, unlike arithmetic, iz is possible for a nonzero matrix to
have no inverse. However, if a matrix does have an inverse, it has only one.

Theorem 1

If B and C are both inverses of A, then B = C.

Since B and C are both inverses of 4, we have CA = I = AB.
Hence B = IB = (CA)B = C(AB) = CI = C.

If A is an invertible matrix, the (unique) inverse of A is denoted 4~'. Hence A"
(when it exists) is a square matrix of the same size as 4 with the property that

AA =1 and A7'4A=1

8  Only square matrices have inverses. Even though it is plausible that nonsquare matrices A and B could exist such that AB = /,, and
BA = I,, where Ais m x nand Bis n x m, we claim that this forces n = m. Indeed, if m < n there exists a nonzero column x
such that Ax = 0 (by Theorem 1 Section 1.3), so x = /,x = (BAx = B(AX) = B(0) = 0, a contradiction. Hence m > n. Similarly, the
condition AB = I, implies that n > m. Hence m = nso Ais square.
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These equations characterize A~ in the following sense: If somehow a matrix B can
be found such that AB = I = BA, then A is invertible and B is the inverse of A; in
symbols, B = A~". This gives us a way of verifying that the inverse of a matrix exists.
Examples 3 and 4 offer illustrations.

IfA = {(1) _i , show that 4® = I and so find A~ L.
Solution » We have 4% = {0 _IHO — =[_1 1}, and so
1 —1]l1 —1 —-10

—1 0Jl1 —1 01

Hence A° = I, as asserted. This can be written as 4’4 = I = AA?, so it shows

that 4% is the inverse of 4. Thatis, 4 = 4> = [_1 (IJ

The next example presents a useful formula for the inverse of a 2 X 2 matrix
4|4 b
¢

of the matrix 4 as follows:

ab =ad — be, and adj[ﬂ
d c

. To state it, we define the determinant det A4 and the adjugate adj A4

b

e

det

c

ab

IfA4A = [ b show that 4 has an inverse if and only if det 4 # 0, and in this case

¢

A_l = @ad] A

Solution » For convenience, write e = det A = ad — bcand B = adj A = {_‘f _ﬂ.
Then AB = el = BA as the reader can verify. So if e # 0, scalar multiplication
by 1/e gives ALB) = I = (:B)A. Hence A is invertible and A7 =1B. Thus it
remains only to show that if A" exists, then e # 0.

We prove this by showing that assuming ¢ = 0 leads to a contradiction. In fact,
if e = 0, then 4B = eI = 0, so left multiplication by A~ gives A~'AB = A~'0;
that is, IB = 0, so B = 0. But this implies that 4, 4, ¢, and d are all zero, so

A = 0, contrary to the assumption that 4™ exists.

As an illustration, if 4 = [ 2 4}

g thendetA =28 —4.(-3) =28 # 0. Hence 4

1 ., I8 =
did=1
et 28[3

The determinant and adjugate will be defined in Chapter 3 for any square matrix,
and the conclusions in Example 4 will be proved in full generality.

is invertible and A~ = i ﬂ, as the reader is invited to verify.
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Inverses and Linear Systems

Matrix inverses can be used to solve certain systems of linear equations. Recall that a
system of linear equations can be written as a single matrix equation

Ax=b

where A and b are known matrices and x is to be determined. If A is invertible, we
multiply each side of the equation on the left by 4™ to get

A 'Ax = A7'b
Ix=A"b
x=A"b

This gives the solution to the system of equations (the reader should verify that

x = A™'b really does satisfy Ax = b). Furthermore, the argument shows that if x
is any solution, then necessarily x = A™'b, so the solution is unique. Of course the
technique works only when the coefficient matrix 4 has an inverse. This proves
Theorem 2.

Suppose a system of n equations in n variables is written in matrix form as
Ax=Db
If the n X n coefficient matrix A is invertible, the system has the unique solution

x=A"b

5.76‘1 — 3.76’2 =—4

Ty + 4w, = 8

Solution » In matrix form this is Ax = b where A = B _‘3‘_ ,X = [il}, and
2

e [_‘81 Thendet4 =5-4 —(=3) -7 =41, s0 A is invertible and

Use Example 4 to solve the system {

At =1 { u 3} by Example 4. Thus Theorem 2 gives

3 I_IS

x=A'b= i[
—75

41

68
4

so the solution is x; = % and x, =
An Inversion Method

If a matrix 4 is » X 7 and invertible, it is desirable to have an efficient technique for
finding the inverse matrix 4™ In fact, we can determine A~ from the equation

AA =1,
Write A7 in terms of its columns as A = [x; x, -+- x,], where the columns X;
are to be determined. Similarly, write I, = [ey, €5, ..., €,] in terms of its columns.

Then (using Definition 2.9) the condition A4 = I becomes
[Ax; Axy -+ Ax,] = [e; €; -+ €]
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Equating columns gives

Ax;=e; foreach;j=1,2,..., n

These are systems of linear equations for the x;, each with A as a coefficient matrix.
Since A is invertible, each system has a unique solution by Theorem 2. But this
means that the reduced row-echelon form R of A cannot have a row of zeros,

so R = I, (R is square). Hence there is a sequence of elementary row operations
carrying 4 — I,. This sequence carries the augmented matrix of each system

Ax; = e; to reduced row-echelon form:

i
[4]e]l — [, |x] foreach;j=1,2,..,n

This determines the solutions x;, and hence determines Al =[x x; - x,]. But the
fact that the same sequence 4 — I, works for each j means that we can do all these
calculations simultaneously by applying the elementary row operations to the double
matrix [4 I]:

(A1 —[IAY.

This is the desired algorithm.

Matrix Inversion Algorithm

If A is an invertible (square) matrix, there exists a sequence of elementary row operations
that carry A to the identity matrix I of the same size, written A — I. This same series

of row operations carries I to A™"; that is, I — A~". The algorithm can be summarized
as follows:

[A 10— A"

where the row operations on A and I are carried out simultaneously.

Use the inversion algorithm to find the inverse of the matrix

27 1
A=|1 4 -1
1 3 0
Solution > Apply elementary row operations to the double matrix
27 1100
[A11=|14 -1]0 10
13 0/0 0 1
so as to carry A to I. First interchange rows 1 and 2.
14 -1/0 10
27 1{100
1 3 0(00 1

Next subtract 2 times row 1 from row 2, and subtract row 1 from row 3.

1 4 -1|10 10
0 -1 3/1 -20
0 -1 1/0 -1 1



74 Chapter 2 Matrix Algebra

Continue to reduced row-echelon form.

(10 11| 4 -7 0

01 -3|-1 20

100 =2|-1 11

i -3 -3

100|=5 =5 %

-3

010 % % =

-1 -1

00 1|5 13
-3 -3 11

Hence 47" =1 1 1 -3 asis readily verified.
1 -1 -1

Given any 7 X 7 matrix 4, Theorem 1 Section 1.2 shows that A can be carried
by elementary row operations to a matrix R in reduced row-echelon form. If R = I,
the matrix A4 is invertible (this will be proved in the next section), so the algorithm
produces A" If R # I, then R has a row of zeros (it is square), so no system of
linear equations Ax = b can have a unique solution. But then A is not invertible by
Theorem 2. Hence, the algorithm is effective in the sense conveyed in Theorem 3.

If A is an n X n matrix, either A can be reduced to I by elementary row operations or it
cannot. In the first case, the algorithm produces A™"; in the second case, A™" does not exist.

Properties of Inverses

The following properties of an invertible matrix are used everywhere.

Cancellation Laws Let A be an invertible matrix. Show that:
(1) If AB = AC, then B = C.
2)If BA = CA, then B = C.

Solution » Given the equation AB = AC, left multiply both sides by 4" to
obtain A~' AB = A™' AC. This is IB = IC, that is B = C. This proves (1) and
the proof of (2) is left to the reader.

Properties (1) and (2) in Example 7 are described by saying that an invertible matrix
can be “left cancelled” and “right cancelled”, respectively. Note however that
“mixed” cancellation does not hold in general: If A is invertible and AB = CA, then
B and C may not be equal, even if both are 2 x 2. Here is a specific example:

A:[1 1},8:[0 0},andC:[1 1}.
01 12 11
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Sometimes the inverse of a matrix is given by a formula. Example 4 is one
illustration; Examples 8 and 9 provide two more. The idea in both cases is that,
given a square matrix A, if a matrix B can be found such that AB = [ = BA, then
A is invertible and A~ = B.

If A is an invertible matrix, show that the transpose A” is also invertible.
Show further that the inverse of A” is just the transpose of 4™; in symbols,
(AT)fl — (Afl)T.

Solution » A" exists (by assumption). Its transpose (A~YH7 is the candidate
proposed for the inverse of A”. Using Theorem 3 Section 2.3, we test it
as follows:

AlAa Y =’ =1"=1
(A—I)TAT _ (AA—I)T =7

Hence (A~Y7 is indeed the inverse of A; thatis, (41! = (4~ HT.

If A and B are invertible #» X »n matrices, show that their product 4B is also
invertible and (4B)~! = B~'47".

Solution » We are given a candidate for the inverse of 4B, namely B~'4~".
We test it as follows:

B 'ANYAB) =B ' A 'AB=B"'IB=B"'B=1
ABB A =ABB WA ' = Al =447 =1

Hence B~'A™" is the inverse of AB; in symbols, (4B)~' = B4~

We now collect several basic properties of matrix inverses for reference.

All the following matrices are square matrices of the same size.

1.

2
3.
4

“

Iis invertible and 1 ~' = 1.

If A is invertible, so is ALand A H =4

If A and B are invertible, so is AB, and (AB)™ = B~'A~".

IfAy, A, ..., Ay are all invertible, so is their product A1A---Ay, and

Ay AY~ = A AT A

If A is invertible, so is Akfor any k =1, and (45" = (A7~

If A is invertible and a # 0 is a number, then aA is invertible and (ad)~ ' =147,
If A is invertible, so is its transpose AT, and AH = (A_I)T.

75
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1. This is an immediate consequence of the fact that I* = I.
2. The equations AA~" = I = A™'4 show that A is the inverse of A~'; in
symbols, AH =4
3. This is Example 9.
4. Use induction on k. If £ = 1, there is nothing to prove, and if ¥ = 2, the
result is property 3. If # > 2, assume inductively that
(A1Ay---Ap_) = A7 oA, A7 We apply this fact together with
property 3 as follows:
iy Ay A = Ay A A
=dAy (A1 Ady---Ap_y)”
= Ay ity A7 AT
So the proof by induction is complete.
5. This is property 4 with 4 = A, = -+ = A, = A.
6. This is left as Exercise 29.
7. This is Example 8.

The reversal of the order of the inverses in properties 3 and 4 of Theorem 4 is
a consequence of the fact that matrix multiplication is not commutative. Another
manifestation of this comes when matrix equations are dealt with. If a matrix
equation B = C'is given, it can be left-multiplied by a matrix A to yield AB = AC.
Similarly, right-multiplication gives BA = CA. However, we cannot mix the two: If
B = C, it need not be the case that AB = CA even if A is invertible, for

11}32 OO}ZC‘
01 10

Part 7 of Theorem 4 together with the fact that (47)" = A gives

Corollary 1

A square matrix A is invertible if and only if AT is invertible.

example, 4 = [

Find A if (47 — 21)"! =[ 2 1].

-10
Solution » By Theorem 4(2) and Example 4, we have

d - = -2 =| 2= [0 7]

Hence AT = 21 + [O _1] = {2 -1

1 2/ [1 4

,s0A4 = [ i H by Theorem 4(2).
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The following important theorem collects a number of conditions all equivalent’
to invertibility. It will be referred to frequently below.

Inverse Theorem
The following conditions are equivalent for an n X n matrix A:

1. A is invertible.

The homogeneous system Ax = 0 has only the trivial solution x = 0.

2

3. A can be carried to the identity matrix I,, by elementary row operations.

4. The system Ax = b has at least one solution x for every choice of column b.
5

There exists an n X n matrix C such that AC = 1,,.

We show that each of these conditions implies the next, and that (5) implies (1).
(1) = (2). If A" exists, then Ax = 0 givesx = [x = A"'Ax = A7'0 = 0.

(2) = (3). Assume that (2) is true. Certainly 4 — R by row operations where R
is a reduced, row-echelon matrix. It suffices to show that R = I,,. Suppose that
this is not the case. Then R has a row of zeros (being square). Now consider the
augmented matrix [A4 | 0] of the system Ax = 0. Then [A | 0] — [R | 0] is the
reduced form, and [R | 0] also has a row of zeros. Since R is square there must
be at least one nonleading variable, and hence at least one parameter. Hence the
system Ax = 0 has infinitely many solutions, contrary to (2). So R = I, after all.

(3) = (4). Consider the augmented matrix [4 | b] of the system Ax = b. Using
(3), let A — I, by a sequence of row operations. Then these same operations carry
[4 | b] — [I, | c] for some column c. Hence the system Ax = b has a solution (in
fact unique) by gaussian elimination. This proves (4).

4) = (5). Write I, = [e; e, --- e,] where ey, €, ..., €, are the columns of I,.
Foreachj =1, 2, ..., n, the system Ax = e; has a solution ¢; by (4), so Ac; = e;.
Now let C = [¢; ¢, -+ ¢,] be the n X » matrix with these matrices ¢; as its

7
columns. Then Definition 2.9 gives (5):

AC = Alcy ¢, -+ ¢,] = [Ac; Ac; -+ Ac,) = [e; e, --- ¢,] =1,

(5) = (1). Assume that (5) is true so that AC = I, for some matrix C. Then
Cx = 0 implies x = 0 (because x = [,x = ACx = A0 = 0). Thus condition (2)
holds for the matrix C rather than 4. Hence the argument above that (2) =
(3) = 4) = (5) (with A replaced by C) shows that a matrix C" exists such that
CC’ = I,,. But then

A= Al, = A(CC) = (AC)C' = I,C' = C’

Thus CA = CC'= I, which, together with AC = I, shows that C is the inverse of
A. This proves (1).

9 If pand g are statements, we say that p implies q (written p = ¢) if g is true whenever p is true. The statements are called
equivalent if both p = gand g = p (written p < g, spoken “p if and only if g”). See Appendix B.
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The proof of (5) = (1) in Theorem 5 shows that if AC = I for square matrices,
then necessarily C4 = I, and hence that C and A are inverses of each other. We
record this important fact for reference.

Corollary 1

If A and C are square matrices such that AC = I, then also CA = 1. In particular, both
A and C are invertible, C = A™", and A = C".

Observe that Corollary 2 is false if 4 and C are not square matrices. For example,

we have
-1 1 -1 1
H A
0 1 0 1

In fact, it is verified in the footnote on page 70 that if AB = I,, and BA = I,, where A
ism X nand Bis n X m, then m = n and A and B are (square) inverses of each other.
An n x n matrix 4 has rank 7 if and only if (3) of Theorem 5 holds. Hence

Corollary 2

Ann X n matrix A is invertible if and only if rank A = n.

Here is a useful fact about inverses of block matrices.

Let P =

4 )1 and Q = [A 0} be block matrices where A is 7z X 7z and B is
0B Y B

n X n (possibly m + n).
(a) Show that P is invertible if and only if 4 and B are both invertible. In

=il =il 5=l
this case, show that P! = [A —A7XB |
0 B!
(b) Show that Q is invertible if and only if 4 and B are both invertible. In
=i
this case, show that Q™! = { 4 0
-B'vA™' B!
Solution » We do (a) and leave (b) for the reader.
-1 —il 5=l
(a) If 47! and B! both exist, write R = [A = X;B
0 B
multiplication, one verifies that PR = I,,,,, = RP, so P is invertible,
and P! = R. Conversely, suppose that P is invertible, and write

p! :{p{ggin block form, where Cis 7 X m and D is n X .

}. Using block

Then the equation PP = I,.,,, becomes
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[A}ﬂ{CV}ZVCJFXW AV+XD}=I _ I 0
0 BIlw D BW BD o,

using block notation. Equating corresponding blocks, we find

AC+XW =1, BW=0, and BD =1,

Hence B is invertible because BD = I, (by Corollary 1), then W = 0
because BW = 0, and finally, AC = I, (so A4 is invertible, again by
Corollary 1).

Inverses of Matrix Transformations
Let T=T4:R" — R” denote the matrix transformation induced by the #» X # matrix
A. Since A is square, it may very well be invertible, and this leads to the question:

What does it mean geometrically for 7" that A is invertible?

To answer this, let 7" = T, : R” — R” denote the transformation induced by 47"
Then

TTx)] =A'4x] = k =x

for all x in R” (*)
TIT'®)] = A[A7'x] = k =x

The first of these equations asserts that, if 7 carries x to a vector 7(x), then
T’ carries T(x) right back to x; that is 7" “reverses” the action of 7. Similarly
T “reverses” the action of 7". Conditions (x) can be stated compactly in terms
of composition:

T oT=1g and ToT = lp (%)

When these conditions hold, we say that the matrix transformation 7" is an
inverse of T, and we have shown that if the matrix 4 of T is invertible, then T'
has an inverse (induced by A™").

The converse is also true: If 7 has an inverse, then its matrix 4 must be
invertible. Indeed, suppose S : R” — R” is any inverse of T, so that So T'= 1
and T o S = 1 . If B is the matrix of S, we have

BAx = S[Tx)] = (So T)(x) = lg(x) =x =[x forall xin R”

It follows by Theorem 5 Section 2.2 that BA = I, and a similar argument shows
that AB = I,. Hence A is invertible with A~! = B. Furthermore, the inverse
transformation S has matrix 4™, so S = T" using the earlier notation. This proves
the following important theorem.

Let T': R" — R" denote the matrix transformation induced by an n X n matrix A. Then
A is invertible if and only if T has an inverse.

In this case, T has exactly one inverse (which we denote as T and T7':R" — R" is
the transformation induced by the matrix A™". In other words

(T = Ty
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The geometrical relationship between T"and T ' is embodied in equations (x) above:
TUTx)] =x and T[T '®)]=x forallxinR"

These equations are called the fundamental identities relating 7'and 7" ~". Loosely
speaking, they assert that each of T'and T~ “reverses” or “undoes” the action of
the other.

This geometric view of the inverse of a linear transformation provides a new
way to find the inverse of a matrix 4. More precisely, if A is an invertible matrix,
we proceed as follows:

1. Let T be the linear transformation induced by A.
2. Obtain the linear transformation T ~" which “reverses” the action of T.
3. Then A" is the matrix of T .

Here is an example.

01

Find the inverse of A = 1 by viewing it as a linear transformation R* — R’.

0 1fra7 _ [}’ ] is the result of reflecting
1 0lly x

x in the line y = x (see the diagram). Hence, if Q; : R? — R’ denotes reflection
in the line y = «, then A is the matrix of Q;. Now observe that Q; reverses itself
because reflecting a vector x twice results in x. Consequently Q7' = Q. Since
A" is the matrix of Q7! and A4 is the matrix of Q, it follows that 4~! = 4. Of
course this conclusion is clear by simply observing directly that 4> = I, but

the geometric method can often work where these other methods may be less
straightforward.

Solution b If x = [ﬂ the vector Ax =

EXERCISES 2.4

1. In each case, show that the matrices are inverses 2 41 31 -1
of each other. (g (332 +h) (52 0
351 2 =5 30144 0 414 L1 -1
Sl ] B N I :
12/-1 3 1 —4 1 -3 . -1 4 5 2
12017 7 26 P 00 0-1
- ;0 @1 -13 +()) -
©1[023)]-3 -1 3 (@[32}311 1 24 1-2-20
131)0L 2 1-=2 05 L 0-1-1 0
2. Find the inverse of each of the following 1 075 12000
matrices. 0 136 01300
i - (k) s 00150
() 1_1} o(b)41} L1502 00017
-1 3 13 2 11 -151
1 0-—1 1-1 2 L0000
©] 3 2 0 od) =5 7 —11 3. In each case, solve the systems of equations by
-1 -1 0 2 3 _5 finding the inverse of the coefficient matrix.
350 31 -1 @) 3cx— y=5 o(b) 2x —3y =0
(1371 «f) |21 0 20+ 2y=1 x—dy=1
1121 115 -1
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©ax+ y+2z= 5 od) x+4+22=

x+ y+ z= 0 24+ 3y + 3z = -1
X+ 2y +4z2=-2 v+ y+4z= 0

1
—1l
3

4, Given A™' =

1 —-13
2 05
-1 10

(a) Solve the system of equations Ax =

1 —12
+(b) Find a matrix Bsuch that AB=1{0 1 1|
1 00

(c) Find a matrix C such that C4 = B i -1

5. Find A when

_ 1 -1 T _[1 =11
34 1:[ } b) A) = ]
(@) (34) 0 1 +(b) (24) 5 3
© a+347 =7 7
1 -1
d I_ZAT—IZ[Z 1}
*(d) ( 11
1 —17\"! {2 3}
A =
@ (s =1
@ (3111 =1 2]
21 22
@ @ -2 =21 ]
23
oh) (A7 =207 = —2[1 1}
10
6. Find A when:
1 -1 3 01 -1
@A'=02 1 1|« A =12 1
0 2 =2 10 1
X1 3 =1 2N
7. Given [x2|=|1 0 4]/Y2|and
X3 2 1 0]
2] 1 -1 1[N
Zy|=| 2 =3 0|2}, express the variables
Z3 -1 1 =2]l)

X1, X2, and a3 in terms of z;, 2z,, and z;3.

e +4y=7
4r +Sy=1
the new variables x” and y’ given by

= —Sx+4
N ;x+ )/,.Then find x and y.
y =4 — 3y

8. (a) In the system substitute

81

+(b) Explain part (a) by writing the equations as

A x]: [qand[x ]:B v . What is the
y 1 y y
relationship between 4 and B?

9. In each case either prove the assertion or give an
example showing that it is false.

(a) If A # 0 is a square matrix, then A is
invertible.

+(b) If A and B are both invertible, then 4 + B is
invertible.

(¢) If A and B are both invertible, then (47'B)T

is invertible.
o(d) If A* = 31, then A is invertible.
(e) If A2 = Aand A # 0, then A is invertible.
+(f) If AB = B for some B # 0, then A is invertible.

(g) If A is invertible and skew symmetric
(A" = —A), the same is true of A7 \.

+(h) If A% is invertible, then A is invertible.

(i) If AB = I, then A and B commute.

10. (a) If 4, B, and C are square matrices and
AB = I = CA, show that 4 is invertible
andB=C=A".

+(b) If C' = A, find the inverse of C” in terms of A.

11. Suppose CA = 1, where Cis m X n and A is
n x m. Consider the system Ax = b of n
equations in 7z variables.

(a) Show that this system has a unique solution
CB if it is consistent.

2 =3
o(b) IfC:{O =3 l}andA= 1 _2],
3 0-—1 6 —10
find x (if it exists) when
1 7
@ b=|0}andG)b=| 4l
3 22

12. Verify that A = [(1) _; satisfies 4 — 34 + 21 = 0,

and use this fact to show that A~! = 131 - A).

a—-b —c—d

13. Let Q = boa-d ¢|. Compute Q0" and
c d a-b
d—-c b a

so find Q7'if Q # 0.
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14. Let U = (1) (1) . Show that each of U, —U, and

—I, is its own inverse and that the product of any
two of these is the third.

1 1}32{0 _1},C=
~10 10

010
001
500
Find the inverses by computing (a) 4% «(b) B *;
and (c) C°.

15. Consider A = [

101

clec
3¢2

+16. Find the inverse of in terms of ¢.

1 —-11
2 —12
0 2¢
18. Show that A has no inverse when:

17. If ¢ # 0, find the inverse of

in terms of c.

(a) A has a row of zeros.
+(b) A has a column of zeros.
(c) each row of A sums to 0. [Hint: Theorem 5(2).]
+(d) each column of A sums to 0.
[Hint: Corollary 2, Theorem 4.]

19. Let A denote a square matrix.

(a) Let YA = 0 for some matrix ¥ # 0. Show
that 4 has no inverse. [Hint: Corollary 2,

Theorem 4.]
(b) Use part (a) to show that
1 —-11 21 -1
M0 1 1pande@|11 0
1 02 10 -1

have no inverse.

[Hint: For part (ii) compare row 3 with the
difference between row 1 and row 2.]

20. If A is invertible, show that
@@ A*#0. o(b) A"+ 0forallk=1,2,....
21. Suppose AB = 0, where A and B are square

matrices. Show that:

(a) If one of A and B has an inverse, the other
is zero.

+(b) Itis impossible for both 4 and B to have
inverses.

(©) (BA)* = 0.

+22. Find the inverse of the X-expansion in Example
16 Section 2.2 and describe it geometrically.

23. Find the inverse of the shear transformation in
Example 17 Section 2.2 and describe it geometically.

24. In each case assume that A4 is a square matrix
that satisfies the given condition. Show that 4
is invertible and find a formula for 4™ in terms

of A.
() A =34+ 21=0.
ob) Ar+24°—A—4I=0.
25. Let A and B denote # X n matrices.

(a) If A and AB are invertible, show that
B is invertible using only (2) and (3) of
Theorem 4.

+(b) If AB is invertible, show that both 4 and B
are invertible using Theorem 5.

26. In each case find the inverse of the matrix A4
using Example 11.

11 2 31 0
@A=| 02 1| «b)A=|52 0
01 -1 13 -1
3 4 0 0]
©A=[2 300
1 -1 13
3 1 1 4]
21 5 27
W A=| 11710
00 1 -1
00 1 -2]

27. If A and B are invertible symmetric matrices such
that AB = BA, show that A~%, AB, AB™!, and

A7'B7! are also invertible and symmetric.

28. Let A be an # x n matrix and let [ be the n X =
identity matrix.

(a) If A = 0, verify that [ — A) ™' = I + A.
(b) If A* = 0, verify that [ — A) ™' =T+ A + A
12 -1

01 3}
00 1

+(d) If 4" = 0, find the formula for (I — 4)~".

(¢) Find the inverse of

29. Prove property 6 of Theorem 4: If A is
invertible and # # 0, then 44 is invertible

and (24)~' = 1471,
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30. Let A, B, and C denote 7 x n matrices. Using
only Theorem 4, show that:

(a) If A, C, and ABC are all invertible, B is
invertible.

+(b) If AB and BA are both invertible, A and B

are both invertible.

31. Let A and B denote invertible # X »# matrices.

(a) If 47" = B7!, does it mean that 4 = B?
Explain.

(b) Show that 4 = Bif and only if A™'B = I.

32. Let A, B, and C be n x n matrices, with 4 and B
invertible. Show that

+(a) If A commutes with C, then A~' commutes
with C.

(b) If A commutes with B, then A~! commutes
with B~
33. Let 4 and B be square matrices of the same size.
(a) Show that (4B)* = A’B* if AB = BA.

+(b) If A and B are invertible and (4B)* = A*B’,
show that AB = BA.
11

(c) If4 = [1 0} and B = { , show that
00 00
(AB)* = A*B* but AB + BA.

+34. Let A and B be n X n matrices for which AB is

invertible. Show that A and B are both invertible.

1 3 -1 11 2
35. Consider4 =2 1 5,B=| 30 =3}
1 -7 13 -2 5 17

(a) Show that 4 is not invertible by finding a
nonzero 1 X 3 matrix ¥ such that Y4 = 0.
[Hint: Row 3 of A equals 2(row 2) — 3 (row 1).]

+(b) Show that B is not invertible.
[Hint: Column 3 = 3(column 2) — column 1.]
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36. Show that a square matrix A is invertible if and
only if it can be left-cancelled: AB = AC implies
B=C.

37. If U7 = I, show that I + U is not invertible
unless U = I.

38. (a) If Jis the 4 x 4 matrix with every entry
1, show that I — 1] is self-inverse and
symmetric.

o(b) If Xis n x m and satisfies X’X = I,,, show
that I, — 2XX” is self-inverse and symmetric.

39. Ann X n matrix P is called an idempotent if
P’ = P. Show that:

(a) I1is the only invertible idempotent.

+(b) Pisan idempotent if and only if I — 2P is
self-inverse.

(c) Uis self-inverse if and only if U = I — 2P for
some idempotent P.

(d) I — 4P is invertible for any # # 1, and
-1 _ a
I—aP)y ' =1+ (1 )P

—a
40. If A> = kA, where k # 0, show that A is
invertible if and only if 4 = k1.

41. Let A and B denote # X #n invertible matrices.
(a) Show that A™' + B! = 47'4 + BB~".

+(b) If A + B is also invertible, show that
A" + B7!is invertible and find a
formula for (47! + B~H~L.

42. Let A and B be n x n matrices, and let I be the
n x n identity matrix.

(a) Verify that A + BA) = (I + AB)A and that
(I + BA)B = B(I + AB).

(b) If I + AB is invertible, verify that I + B4
is also invertible and that
(I+ BA)™'=1-BUJ+ AB)'A.

Elementary Matrices

It is now clear that elementary row operations are important in linear algebra:
They are essential in solving linear systems (using the gaussian algorithm) and in
inverting a matrix (using the matrix inversion algorithm). It turns out that they can
be performed by left multiplying by certain invertible matrices. These matrices are

the subject of this section.
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Definition 2.12
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Ann x n matrix E is called an elementary matrix if it can be obtained from the identity
matrix I, by a single elementary row operation (called the operation corresponding to
E). We say that E is of type I, II, or III if the operation is of that type (see page 6).

Hence

E, :[0 1} 3 :[1 0} and F = {1 5}
10 09 01
are elementary of types I, II, and III, respectively, obtained from the 2 X 2 identity
matrix by interchanging rows 1 and 2, multiplying row 2 by 9, and adding 5 times

row 2 to row 1.
abc

Suppose now that a matrix 4 = g

} is left multiplied by the above elementary

matrices Ey, E,, and E3. The results are:

E1A=_0 1—-61176-:-1777/
L1O0IP g7 labc
EZAZ'IO"abc':Jz b ¢
L0 9llp g 7] |9p 9g 9r
E3A=_1 5"ﬂbc'z'ﬂ+5p b+ 5¢ ¢+ 57
o 1ipgqgry, [ P q r

In each case, left multiplying A4 by the elementary matrix has the same eftect as
doing the corresponding row operation to A. This works in general.

Lemma 1'°

If an elementary row operation is performed on an m X n matrix A, the result is EA
where E is the elementary matrix obtained by performing the same operation on the
m X m identity matrix.

We prove it for operations of type III; the proofs for types I and II are left as
exercises. Let I be the elementary matrix corresponding to the operation that
adds k times row p to row ¢ # p. The proof depends on the fact that each row of
EA is equal to the corresponding row of E times A. Let Ki, K, ..., K,, denote the
rows of 1,,. Then row 7 of E is K; if i # ¢, while row ¢ of E is K, + kK. Hence:

If i # ¢ then row i of EA = K;A = (row 7 of A).

Row ¢ of EA = (K, + kK,)A = KA + k(K,A)
= (row ¢ of A) plus % (row p of A).

Thus EA is the result of adding  times row p of A to row ¢, as required.

The effect of an elementary row operation can be reversed by another such
operation (called its inverse) which is also elementary of the same type (see the
discussion following Example 3 Section 1.1). It follows that each elementary
matrix E is invertible. In fact, if a row operation on I produces E, then the inverse
operation carries E back to . If F is the elementary matrix corresponding to the
inverse operation, this means FE = I (by Lemma 1). Thus F = E" and we have
proved

10 A /lemmais an auxiliary theorem used in the proof of other theorems.
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Every elementary matrix E is invertible, and E~" is also a elementary matrix (of the same
type). Moreover, E~" corresponds to the inverse of the row operation that produces E.

The following table gives the inverse of each type of elementary row operation:

Type Operation Inverse Operation
I Interchange rows p and ¢ Interchange rows p and ¢
II Multiply row p by k£ # 0 Multiply row p by 1/k
I Add % times row p to row ¢ # p | Subtract k times row p from row ¢

Note that elementary matrices of type I are self-inverse.

Find the inverse of each of the elementary matrices

010 100 105
Ei=|100, E;=|010], and E5=[{01 0|
001 009 001

Solution b Ey, E,, and Ej; are of Type I, II, and III respectively, so the table gives

010 100 10 -5
Et'=|100|=E, E'=[010, and E;'=|01 o0}
001 001 00 1

Inverses and Elementary Matrices

Suppose that an 7z X # matrix A is carried to a matrix B (written 4 — B) by a
series of k elementary row operations. Let Ey, E;, ..., E; denote the corresponding
elementary matrices. By Lemma 1, the reduction becomes

A g EIA — EzElA b d E3E2E1A —_—> e —> E/eEk—l"'EZElA = B
In other words,

A— UA=B where U= E/E, ---EE,

The matrix U = E,E;_;---E,E; is invertible, being a product of invertible matrices
by Lemma 2. Moreover, U can be computed without finding the E; as follows: If
the above series of operations carrying 4 — B is performed on 1, in place of 4, the
result is I,, — UL, = U. Hence this series of operations carries the block matrix

[4 I,] — [B U]. This, together with the above discussion, proves

Suppose A is m X n and A — B by elementary row operations.
1. B = UA where U is an m X m invertible matrix.
2. U can be computed by [A 1,] — [B U] using the operations carrying A — B.

3. U=EE, {---EE; where Ey, E;, ..., E, are the elementary matrices
corresponding (in order) to the elementary row operations carrying A to B.
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231
121
where U is invertible.

If4 = { , express the reduced row-echelon form R of 4 as R = UA

Solution » Reduce the double matrix [4 I] — [R U] as follows:

[AI]:[ZSI‘IO}_)[IZI‘O 1}_{1 2 1(; ﬂ

12101 2311 0] [0 -1-1
10 -1] 2 -3

N
[01 1‘—1 2}

HenceR:[1 0 _1}and U:[ 2 _3}.
01 1 -1 2

Now suppose that A4 is invertible. We know that 4 — [ by Theorem 5 Section
2.4, so taking B = I in Theorem 1 gives [4 I] — [I U] where I = UA. Thus
U=A7" sowehave [4 I] — [I A7"]. This is the matrix inversion algorithm,
derived (in another way) in Section 2.4. However, more is true: Theorem 1
gives A'= U= E,E,_,---E,E, where E|, E,, ..., E}, are the elementary matrices
corresponding (in order) to the row operations carrying 4 — 1. Hence

A=A"N" = EEEE) " = ET'Ey B B (*)

By Lemma 2, this shows that every invertible matrix A4 is a product of elementary
matrices. Since elementary matrices are invertible (again by Lemma 2), this proves
the following important characterization of invertible matrices.

A square matrix is invertible if and only if it is a product of elementary matrices.

It follows that A — B by row operations if and only if B = UA for some
invertible matrix B. In this case we say that 4 and B are row-equivalent.
(See Exercise 17.)

Express A = {_i (3)} as a product of elementary matrices.

Solution » Using Lemma 1, the reduction of 4 — I is as follows:

Az[‘z 3}—>E1A={ 10 —>E2E1A=[1 0}_>E3E2E1A=[1 0}
10 3 03 01

where the corresponding elementary matrices are
EIZ[O 1]’ EZ:[I 0} B = 10
10 21 0!
Hence (E; E; E)A = 1, so:

A = (B-EE _1=E_1E_1E_1=[0 IH 1 OHI 0
(EsE,E) 1 Lo L 1oll=2 1llo

(U8
-
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Smith Normal Form

Let A be an 72 X n matrix of rank 7, and let R be the reduced row-echelon form of
A. Theorem 1 shows that R = UA where U is invertible, and that U can be found
from [4 I,] — [R U].
The matrix R has r leading ones (since rank A = 7) so, as R is reduced, the n X m
matrix R’ contains each row of I, in the first 7 columns. Thus row operations will
L 0} = U,R" where
nXm

”

00
U, is an # X » invertible matrix. Writing V' = UT, we obtain

carry RT — . Hence Theorem 1 (again) shows that

nXm

L0 T
UAV:RV:RUlT:(UlRTTzqr } ) =
0 0luxm

I 0}
0 Olmxn

I, 0
Moreover, the matrix U; = 7 can be computed by [R” I,] — H ! } 17
This proves 0 0lnxm

Let A be an m X n matrix of rank 7. There exist invertible matrices U and V of size
m X m and n X n, respectively, such that

I, O}

0 Ol

Moreover, if R is the reduced row-echelon form of A, then:

1. U can be computed by [A I,] — [R UJ;
I.0

L.”
0 0lnxm

UAV =

2.V can be computed by [R” I,] — H

is called the Smith normal

If A is an m X n matrix of rank 7, the matrix

form'' of A. Whereas the reduced row-echelon form of A is the “nicest” matrix to
which A can be carried by row operations, the Smith canonical form is the “nicest”
matrix to which A4 can be carried by row and column operations. This is because doing
row operations to R’ amounts to doing column operations to R and then transposing.

1 -11 2
GivenA =| 2 —2 1 —1 | find invertible matrices U and V" such that
-1 10 3

UAV = ﬁ; 8}, where 7 = rank A.

Solution » The matrix U and the reduced row-echelon form R of A are
computed by the row reduction [4 5] — [R UJ:

11 Named after Henry John Stephen Smith (1826-83).
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1 -1 1 2100 1 -10 -3|-1 10
2 -21-1/{010[—|0 01 5|2-10
-1 10 3(001 0 00 O0|-1 11
Hence
1 -10 -3 -1 10
R=|l0 01 5| and U=| 2 -1 0
0 00 O -1 11
. T L.0]
In particular, » = rank R = 2. Now row-reduce [R" I4] _)HO 0 |28
1001 0O00O0 10010 00O
-100(0100f_ /01000 10]
010(00T1O0 000|L 1 00
-3 500001 00030 =51
whence
10 00 101 3
T — 00 10 o V= 001 0
11 00 010 =5
30 -51 000 1

L0
Then UAV = {02 O} as is easily verified.

Uniqueness of the Reduced Row-echelon Form
In this short subsection, Theorem 1 is used to prove the following important theorem.

If a matrix A is carried to reduced row-echelon matrices R and S by row operations, then
R=S.

Observe first that UR = S for some invertible matrix U (by Theorem 1 there
exist invertible matrices P and Q such that R = P4 and S = QA; take U = QP ).
We show that R = S by induction on the number 7 of rows of R and S. The case
m = 11is left to the reader. If R; and S; denote column j in R and S respectively,
the fact that UR = S gives

UK =S,

for each ;. (%)
Since U is invertible, this shows that R and S have the same zero columns.
Hence, by passing to the matrices obtained by deleting the zero columns from R
and S, we may assume that R and S have no zero columns.

But then the first column of R and S is the first column of I,, because R and S
are row-echelon so (%) shows that the first column of U is column 1 of [,,. Now

write U, R, and S in block form as follows.
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v R=lo )
0 R

oo

89

and S =

12}
0S8/

Since UR = S, block multiplication gives VR’ = S’ so, since V' is invertible (U
is invertible) and both R" and S are reduced row-echelon, we obtain R = S by
induction. Hence R and S have the same number (say 7) of leading 1s, and so

both have 72— zero rows.

In fact, R and S have leading ones in the same columns, say 7 of them.
Applying () to these columns shows that the first 7 columns of U are the first »
columns of I,,. Hence we can write U, R, and S in block form as follows:

U=

_[lez
1o o

, and S=

S, sz}
00

where Ry and S are 7 x 7. Then block multiplication gives UR = R; that is,
S = R. This completes the proof.

EXERCISES 2.5

1. For each of the following elementary matrices,

describe the corresponding elementary row
operation and write the inverse.

10 3]
@E=|010
00 1]
100]
(@ E=|010
00 1]
0107
e E=|100
00 1]

+b) E =

+d) E =

of) E=

—o o
o~ o

oo~

[ —

no o O oo~
—_o o

o~ o 9O =

2. In each case find an elementary matrix E such

that B = EA.

@A=|3 |
ob) A= _‘(1) i
@d=| |,
od) A= _‘3‘ ;

(© A= _‘} B
of) A= _i ;

p=[2 1]
1 -2
B[l 2]
0 1l
p=[172]
1 1]

3. LetA:{ i ﬂandC:[_l 1}.

21
(a) Find elementary matrices E; and E, such that
C = EzElA.

+(b) Show that there is 70 elementary matrix £
such that C = EA.

4. If E is elementary, show that 4 and EA differ in
at most two rows.

5. (a) Is I an elementary matrix? Explain.

+(b) Is 0 an elementary matrix? Explain.

6. In each case find an invertible matrix U such that
UA = R is in reduced row-echelon form, and
express U as a product of elementary matrices.

| —12 121
(a)A_[—z 10 ’(b)A_[s 12 —1}
1 2-10 2 1-10
@©A=]3 1 12| odAd=|3-1 21
1-3 32 1-2 31

7. In each case find an invertible matrix U such
that UA = B, and express U as a product of
elementary matrices.

@a=] k=l

wa=[17) V=] o)
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+10.

11.

12.

13.

14.

15.

*16.

17.
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. In each case factor A as a product of elementary
matrices.
11 23
A= b) A = [ }
@ [2 1} OA=1,
102 10 -3
©A=011 odA=| 01 4
216 -22 15

. Let E be an elementary matrix.

(a) Show that ET is also elementary of the same
type.

(b) Show that E = Eif E is of type I or IL.

Show that every matrix 4 can be factored

as A = UR where U is invertible and R is in
reduced row-echelon form.

5

IfA:{1 Z}ande[ 2},ﬁndan
1 -3 3

elementary matrix F' such that AF = B.
[Hint: See Exercise 9.]

In each case find invertible U and V" such that

UAV = K; 8}, where 7 = rank A4.

11 -1 32

® A_[—z 2 4} *®) A_[z J
121 21 110-1
©A=|2-1 03] od)A=]321 1
0 1-41 101 3

Prove Lemma 1 for elementary matrices of:

(a) type I (b) type 1L

While trying to invert A, [4 ] is carried to [P Q]
by row operations. Show that P = QA.

If A and B are n x n matrices and AB is a
product of elementary matrices, show that the
same is true of 4.

If U is invertible, show that the reduced
row-echelon form of a matrix [U 4] is [[ U"'A].

Two matrices A and B are called row-
equivalent (written 4 ~ B) if there is a sequence
of elementary row operations carrying A to B.

(a) Show that A ~ B if and only if A = UB for
some invertible matrix U.

+(b) Show that:
(i) A £ A for all matrices A.

18.

19.

20.

21.

22.

23.

(i) If4 ~ B, then B ~ A.
(iii) If A ~ Band B ~ C, then 4 ~ C.

(¢) Show that, if 4 and B are both row-
equivalent to some third matrix, then 4 ~ B.

1-132 1-1 4 5
(d) Show that|0 14 1|and| -2 1-11-8
1 086 -1 2 2 2

are row-equivalent. [Hint: Consider (c) and
Theorem 1 Section 1.2.]

If U and IV are invertible #» X » matrices, show
that U ~ V. (See Exercise 17.)

(See Exercise 17.) Find all matrices that are row-
equivalent to:
000 000
b
(a)ooo} ’(){001}
100 120
o)
(C)[mo] Do

Let A and B be m x n and # X 7 matrices,
respectively. If m > n, show that AB is not
invertible. [Hint: Use Theorem 1 Section 1.3 to
find x # 0 with Bx = 0.]

Define an elementary column operation on a matrix
to be one of the following: (I) Interchange two
columns. (II) Multiply a column by a nonzero
scalar. (II) Add a multiple of a column to
another column. Show that:

(a) If an elementary column operation is done to
an 7 X n matrix A, the result is AF, where F
is an 7 X n elementary matrix.

(b) Given any 7 x n matrix A, there exist 7 X m
elementary matrices E, ..., £, and 7 X n

elementary matrices Fy, ..., F, such that, in
block form,
L0
Ey--E\AFy---F, = [O 0}.

Suppose B is obtained from A by:
(a) interchanging rows 7 and j;
+(b) multiplying row i by & # 0;
(c) adding k times row 7 to row j (i # /).

In each case describe how to obtain B! from A~
[Hint: See part (a) of the preceding exercise.]

Two m x n matrices A and B are called
equivalent (written A < B if there exist
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invertible matrices U and V' (sizes 72 X m and (i) IfA4 < B, then B < A.
n X n) such that 4 = UBV.
(iii) fAL Band B2 C,thenA < C.

(b) Prove that two 7 X n matrices are equivalent

if they have the same rank. [Hint: Use part
(i) A £ A for all m x n matrices A. (a) and Theorem 3.]

(a) Prove the following the properties of
equivalence.

Linear Transformations

If A is an 72 X n matrix, recall that the transformation 7,;: R” — R defined by
T 4(x) = Ax for all x in R”

is called the matrix transformation induced by A. In Section 2.2, we saw that many
important geometric transformations were in fact matrix transformations. These
transformations can be characterized in a different way. The new idea is that of

a linear transformation, one of the basic notions in linear algebra. We define
these transformations in this section, and show that they are really just the matrix
transformations looked at in another way. Having these two ways to view them
turns out to be useful because, in a given situation, one perspective or the other
may be preferable.

Linear Transformations

Definition 2.13 A transformation T : R” — R™ is called a linear transformation if it satisfies the
following two conditions for all vectors x and y in R" and all scalars a:

Tl Tx+vy) =Tx) + Ty)
T2 T(ax) = al(x)
Of course, x + y and #x here are computed in R”, while 7(x) + 7(y) and 2#7(x)

are in R”. We say that T preserves addition if T1 holds, and that T preserves scalar
multiplication if T2 holds. Moreover, taking 2 = 0 and 2 = —1 in T2 gives

TO)=0 and T(—x) = —T(x)

Hence T preserves the zero vector and the negative of a vector. Even more is true.
Recall that a vector y in R” is called a linear combination of vectors xy, Xy, ..., X;
if y has the form

y= a1X1 + @)Xy + -+ apXy

for some scalars 4y, a3, ..., a;. Conditions T'1 and T2 combine to show that every linear
transformation 7 preserves linear combinations in the sense of the following theorem.

If T :R" — R" is a linear transformation, then for eachk =1, 2, ...
Tax; + ;X% + - + yxp) = i T(x)) + 5 T(x)) + - + 4, T(xy)

for all scalars a; and all vectors x; in R".
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If £ = 1, it reads T{a;x;) = 4;T(x;) which is Condition T'1. If £ = 2, we have

T(ﬂlxl + ﬂzXz) = T(alxl) + T(ﬂzXz) by Condition T'1
= a,T(x)) + 2,T(x;) by Condition T2
If £ = 3, we use the case # = 2 to obtain
T(ax1 + arxy + a3x3) = T[(a1x1 + 13%;) + azx;3] collect terms
= Tla1x; + 1%9) + T(a3x3) by Condition T'1

[a;T(x1) + 2, T(x)] + T(a3x3) by the case k =2
[a;T(x1) + 1, T(xy)] + a3T(x;3) by Condition T2

The proof for any # is similar, using the previous case ¥ — 1 and Conditions T'1
and T2.

The method of proof in Theorem 1 is called mathematical induction (Appendix C).

Theorem 1 shows that if 7T'is a linear transformation and 7(x;), 7(x,), ..., T(x})
are all known, then 7(y) can be easily computed for any linear combination y of
X1, X, ..., X;. L'his is a very useful property of linear transformations, and is
illustrated in the next example.

2
—3)

AHEEHN

for convenience. Then we

If T: R — R’ is a linear transformation, T[ ” = [ } and T[

4

Solution » Writez = | |, x =

pendy =]

know 7(x) and 7(y) and we want 7(z), so it is enough by Theorem 1 to express
z as a linear combination of x and y. That is, we want to find numbers # and &
such that z = 4x + by. Equating entries gives two equations 4 = # + b and

3 =4 — 2b. The solution is, 2 = % and b = %, SO Z = 13—1X + %y. Thus

Theorem 1 gives

A

This is what we wanted.

If A is m X n, the matrix transformation 7 : R” — R”, A4, is a linear
transformation.
Solution » We have T 4(x) = Ax for all x in R”, so Theorem 2 Section 2.2 gives
Tyx+y) =Ax+y) =Ax + Ay = Tyx) + TAy)
and
T 4(ax) = A(ax) = a(Ax) = aT 4(x)

hold for all x and y in R” and all scalars 2. Hence 74 satisfies T'1 and T2, and
so is linear.
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The remarkable thing is that the converse of Example 2 is true: Every linear
transformation 7" : R” — R™ is actually a matrix transformation. To see why, we
define the standard basis of R” to be the set of columns

{eh €2 -y en}
X1
of the identity matrix I,. Then each e; is in R” and every vector x = | °? |in R" is a
xn

linear combination of the e;. In fact:
X =x1€; + xe + -0 + x,€,
as the reader can verify. Hence Theorem 1 shows that
T(x) = T(x1e; + x7€5 + -+ + x,e,) = a1 1(e)) + x21(e;) + -+ + x,71(e,)
Now observe that each 7{(e;) is a column in R", so
A =[T(er) T(ey) -+ T(e,)]

is an 7z X n matrix. Hence we can apply Definition 2.5 to get
X1
Tx) = i T(ey) + 1, T(e)) + -+ + x,T(e,) = [Tley) T(ex) -+ T(e,)]| 7 | = Ax.
X
Since this holds for every x in R”, it shows that 7" is the matrix transformation
induced by A4, and so proves most of the following theorem.

Let T: R" — R" be a transformation.
T is linear if and only if it is a matrix transformation.

2. Inthis case T = T 4 is the matrix transformation induced by a unique m X n
matrix A, given in terms of its columns by

A = [T(e)) Tle,) - T(e,)]

where {ey, €y, ..., €,} is the standard basis of R".

It remains to verify that the matrix 4 is unique. Suppose that 7 is induced by
another matrix B. Then 7(x) = Bx for all x in R”. But 7{x) = Ax for each x, so
Bx = Ax for every x. Hence A = B by Theorem 5 Section 2.2.

Hence we can speak of the matrix of a linear transformation. Because of
Theorem 2 we may (and shall) use the phrases “linear transformation” and
“matrix transformation” interchangeably.

X1
X2
X3
transformation and use Theorem 2 to find its matrix.

i
Define 7;: R® — R” by T}, in R®. Show that T is a linear
x

= [xl} for all
X2
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X1 Y1 X1 +)’1
Solution » Write x = |%; |and y = | )2, so thatx + y = |, + ¥, | Hence
X3 y3 x3 + 3
¥4y (%] | [N
& +y) X + {xz] * bz &) + 1)

Similarly, the reader can verify that 7(sx) = 47(x) for all # in R, so T is a linear
transformation. Now the standard basis of R’ is

1 0 0
e, =|0, e =1, and e;3=|0
0 0 1
so, by Theorem 2, the matrix of 7 is
100
14—[Tk0'ﬂw)7kﬁ]—[01 ol
2]
Of course, the fact that T|x; | = [iﬂ [(1) (1) 8} xz shows directly that 7'is a
&g

matrix transformation (hence linear) and reveals the matrix.

To illustrate how Theorem 2 is used, we rederive the matrices of the

transformations in Examples 13 and 15 in Section 2.2.

Let Qp: R? — R? denote reflection in the x axis (as in Example 13 Section 2.2)
and let R R’ — R? denote counterclockwise rotation through = 7 about the

origin (as in Example 15 Section 2.2). Use Theorem 2 to find the matrices of
QO and Rl

Solution b Observe that Qg and Rx are linear by Example 2 (they are matrix
transformations), so Theorem 2 apphes to them. The standard basis of R? is

e, €} where e; = oints
1 € 1

(1) points along the positive x axis, and e, = [(1)

along the positive y axis (see Figure 1).

The reflection of e, in the x axis is e, itself because e; points along the x axis,
and the reflection of e, in the x axis is —e; because e, is perpendicular to the x
axis. In other words, Q(e;) = e; and Qy(e,) = —e,. Hence Theorem 2 shows
that the matrix of Q) is

[Qoer) Qufea)] = o1 —e3] =|
which agrees with Example 13 Section 2.2.

1 0}
0 -1

Similarly, rotating e, through T counterclockwise about the origin produces
e, and rotating e, through T counterclockwise about the origin gives —e;.
That is, R(e)) = e, and Rs(e;) = —e,. Hence, again by Theorem 2, the
matrix of R is

[Rg(el) R%(ez)] = [CZ _el] = {0 —1:|

1 0
agreeing with Example 15 Section 2.2.
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Let Q;: R? — R’ denote reflection in the line y = x. Show that Q; is a matrix
transformation, find its matrix, and use it to illustrate Theorem 2.

01

10 B,c}’
0 1}
10
Hence Q is linear (by Example 2) and so Theorem 2 applies. If e; = [(1)} and

Solution > Figure 2 shows that Ql[ﬂ = [ﬂ Hence QIB

so Qq is the matrix transformation induced by the matrix 4 = [

€ =

(1)} are the standard basis of R?, then it is clear geometrically that

Q1(e7) = e; and Q;(e;) = e;. Thus (by Theorem 2) the matrix of Q; is
[Qi(er) Qi(ey)] = [e, €] = A as before.

Recall that, given two “linked” transformations
R* LR S R”,
we can apply T first and then apply S, and so obtain a new transformation
SoT:R'—R”,
called the composite of S and 7, defined by
(S o T)(x) = S[T(x)] for all x in R.

If S and T are linear, the action of S o T can be computed by multiplying their matrices.

Let R¥ L, R" 5, R™, be linear transformations, and let A and B be the matrices of S
and T respectively. Then S o T is linear with matrix AB.

(S o D(x) = S[T(x)] = A[Bx] = (AB)x for all x in R*.

Theorem 3 shows that the action of the composite S o T'is determined by the
matrices of S and 7. But it also provides a very useful interpretation of matrix
multiplication. If 4 and B are matrices, the product matrix 4B induces the
transformation resulting from first applying B and then applying 4. Thus the
study of matrices can cast light on geometrical transformations and vice-versa.
Here is an example.

Show that reflection in the x axis followed by rotation through 7 is reflection in
the line y = «.
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Solution » The composite in question is Rx 0 Qp where Qy is reflection in the

x axis and Rx is rotation through . By Example 4, Rx has matrix 4 = ﬁ) _(1)}

and Q, has matrix B = Ll) 0}. Hence Theorem 3 shows that the matrix of

Rx o Qqis AB =

0—1}
1 0

line y = x by Example 3

[1 01= [(1) (1)}, which is the matrix of reflection in the
o 1)

This conclusion can also be seen geometrically. Let x be a typical point in R?,
and assume that x makes an angle o with the positive x axis. The effect of first
applying Qp and then applying Rx is shown in Figure 3. The fact that Rx[Qy(x)]

makes the angle a with the positive y axis shows that Rz[Qy(%)] is the reflection
of x in the line y = x. “

Y y

Q®)
M FIGURE 3

In Theorem 3, we saw that the matrix of the composite of two linear
transformations is the product of their matrices (in fact, matrix products were
defined so that this is the case). We are going to apply this fact to rotations,
reflections, and projections in the plane. Before proceeding, we pause to present
useful geometrical descriptions of vector addition and scalar multiplication in the
plane, and to give a short review of angles and the trigonometric functions.

Some Geometry

.. . . . 2
As we have seen, it is convenient to view a vector x in R” as an arrow from the
origin to the point x (see Section 2.2). This enables us to visualize what sums and

scalar multiples mean geometrically. For example consider x = Uin R2. Then
1 1
2x = i , %x = i and —%x = i , and these are shown as arrows in Figure 4.

Observe that the arrow for 2x is twice as long as the arrow for x and in the same
direction, and that the arrows for %x is also in the same direction as the arrow for

x, but only half as long. On the other hand, the arrow for —x is half as long as
the arrow for x, but in the opposite direction. More generally, we have the following
geometrical description of scalar multiplication in R*:
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Scalar Multiple Law

Let x be a vector in R, The arrow for kx is |k| times'? as long as the arrow for x, and is
in the same direction as the arrow for x if k > 0, and in the opposite direction if k < 0.

Now consider two vectors x = [ﬂ andy =

ﬂ in R?. They are plotted in

Figure 5 along with their sum x +y = | | It is a routine matter to verify that the

four points 0, x, y, and x + y form the vertices of a parallelogram—that is opposite
sides are parallel and of the same length. (The reader should verify that the side
from 0 to x has slope of 1, as does the side from y to x + y, so these sides are
parallel.) We state this as follows:

Parallelogram Law

Consider vectors x and y in R2. If the arrows for x and y are drawn (see Figure 6), the
arvow for X +y corvesponds to the fourth vertex of the parallelogram determined by the
points X, 'y, and 0.

We will have more to say about this in Chapter 4.

We now turn to a brief review of angles and the trigonometric functions. Recall
that an angle 6 is said to be in standard position if it is measured counterclockwise
from the positive x axis (as in Figure 7). Then 6 uniquely determines a point p on
the unit circle (radius 1, centre at the origin). The radian measure of 6 is the length
of the arc on the unit circle from the positive x axis to p. Thus 360° = 27 radians,
180° = m, 90° = 7, and so on.

"The point p in Figure 7 is also closely linked to the trigonometric functions
cosine and sine, written cos 6 and sin 6 respectively. In fact these functions are

defined to be the x and y coordinates of p; that is p = | “°° 9] This defines cos 6 and

sin
sin 6§ for the arbitrary angle 6 (possibly negative), and agrees with the usual values
when 6 is an acute angle (0 < 6 < 7) as the reader should verify. For more discussion
of this, see Appendix A.

Rotations

We can now describe rotations in the plane. Given an angle 6, let
Ry: R’ > R?

denote counterclockwise rotation of R? about the origin through the angle 6. The
action of Ry is depicted in Figure 8. We have already looked at Rg (in Example 15

Section 2.2) and found it to be a matrix transformation. It turns out that Ry is a
matrix transformation for every angle 6 (with a simple formula for the matrix), but it
is not clear how to find the matrix. Our approach is to first establish the (somewhat
surprising) fact that Ry is linear, and then obtain the matrix from Theorem 2.

Let x and y be two vectors in R%. Then x + y is the diagonal of the parallelogram
determined by x and y as in Figure 9. The effect of Ry is to rotate the entire
parallelogram to obtain the new parallelogram determined by Ry(x) and Ry(y), with
diagonal Ry(x + y). But this diagonal is Ry(x) + Ry(y) by the parallelogram law
(applied to the new parallelogram). It follows that

Ry(x +y) = Ro(x) + Ry(y)-

12 If kis a real number, || denotes the absolute value of k; that is, |k| = kif k> 0 and |k| = —kif k< 0.
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A similar argument shows that Re(ax) = aRy(x) for any scalar 4, so Ry: R® — R is
indeed a linear transformation.

With linearity established we can find the matrix of Ry. Let e; = [1} and e; = [O
denote the standard basis of R*. By Figure 10 we see that 0 1

—sin 0

and Ry(e;) =

Ry(e;) = zps 0

cos 6]
Hence Theorem 2 shows that Ry is induced by the matrix

[Ry(e1) Ry(er)] =

cos 8 —sin 0

sin® cos 6
We record this as

The rotation Ry : R? — R? is the linear transformation with matrix e

sin @ cos 6

For example, R= and Ry have matrices ﬁ) _(1)} and [_1 O}, respectively, by

0 -1
Theorem 4. The first of these confirms the result in Example 15 Section 2.2. The

. X .
second shows that rotating a vector x = [ } through the angle T results in

—1 Ollx —x
R = =
n(x) { 0o —1ly) T 1~y

fact that is evident without Theorem 4.

= —x. Thus applying R is the same as negating x, a

Let 0 and ¢ be angles. By finding the matrix of the composite Ry o R, obtain
expressions for cos(f + ¢) and sin(f + ¢).

Solution » Consider the transformations R> %3 R? 24 R?. Their composite
Ry o Ry is the transformation that first rotates the plane through ¢ and then
rotates it through 6, and so is the rotation through the angle 0 + ¢ (see
Figure 11). In other words

Rois=Ryo R,
Theorem 3 shows that the corresponding equation holds for the matrices of
these transformations, so Theorem 4 gives:
cos(0 + ¢) —sin(f + @)
sin(f@ + ¢)  cos(f + @)

If we perform the matrix multiplication on the right, and then compare first
column entries, we obtain

__[cos @ —sin 0| cos ¢ —sin ¢

sin) cos @] sin ¢ cos ¢

cos(f + ¢) = cos 0 cos ¢ — sin 0 sin ¢
sin(@ + ¢) = sin 6 cos ¢ + cos 6 sin ¢

These are the two basic identities from which most of trigonometry can

be derived.
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Reflections

The line through the origin with slope 7 has equation y = 7, and we let
0, R? — R? denote reflection in the line y = mx.

This transformation is described geometrically in Figure 12. In words, Q,,(x) is
the “mirror image” of x in the line y = mwx. If m = 0 then Qy is reflection in the x
axis, so we already know Q is linear. While we could show directly that Q,, is linear
(with an argument like that for Ry), we prefer to do it another way that is instructive
B FIGURE 12 and derives the matrix of Q,, directly without using Theorem 2.

Let 6 denote the angle between the positive « axis and the line y = mzx. The key
observation is that the transformation Q,, can be accomplished in three steps: First
rotate through —6 (so our line coincides with the x axis), then reflect in the x axis,
and finally rotate back through 6. In other words:

Qn=RyoQpoR_4
Since R_y, Qy, and Ry are all linear, this (with Theorem 3) shows that Q,, is linear
and that is matrix is the product of the matrices of Ry, Qy, and R_y. If we write
¢ = cos 6 and s = sin 0 for simplicity, then the matrices of Ry, R_4, and Q, are
V _"V}, { ¢ s], and [(1) _(1)} respectively.'’

s c —5 C

Hence, by Theorem 3, the matrix of Q,, = Ryo Qyo R_,is

i ] B

=5 2sc }
2 2
c
We can obtain this matrix in terms of 7z alone. Figure 13 shows that

1 . m
————and sin § = ———,
V1 + w? V1 + w?

1 {l—mz 2m }
1+ w’

2sc 57—

cos 0 =

2sc

et —
so the matrix , of Q,, becomes

2s¢ s~ —¢

Let Q,, denote reflection in the line y = mx. Then Q,, is a linear transformation with
1 {1 —m’  2m
1+m?

2m m — 1

M FIGURE 13

matrix

2m m — 1

Note that if 7 = 0, the matrix in Theorem 5 becomes B (1)}, as expected. Of

course this analysis fails for reflection in the y axis because vertical lines have no
slope. However it is an easy exercise to verify that reflection in the y axis is indeed
-1 0} 14

o1l

linear with matrix

Let T: R? — R? be rotation through —7 followed by reflection in the y axis.
Show that T is a reflection in a line through the origin and find the line.

13 The matrix of R_, comes from the matrix of R, using the fact that, for all angles 6, cos(—6) = cos 6 and sin(—6) = —sin(f).
-1 0} fim 1 {1—:772 2m }

14 Notethat[ =
01 2m g —q

= lim ——
o=y 4o
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cos(=%) —sin(—=% )}

Solution » The matrix of R_=is| . [ 01
> | sin(=%) cos(=%) —

} and the matrix of
10

0 . Hence the matrix of 7T is

reflection in the y axis is {_(1)

[—1 ol 0 1} { 0 -1
0 1]l-10 -1 0
(take 7 = —1 in Theorem 5).

} and this is reflection in the line y = —x

Projections
y The method in the proof of Theorem 5 works more generally. Let P,,: R> — R?
y=mx denote projection on the line y = m. This transformation is described
P, (x) &2 geometrically in Figure 14. If 2 = 0, then POB,C] = %] for all [ﬂ in R?, so Py is
; linear with matrix 8} Hence the argument above for Q,, goes through for P,,.
First observe that
0 ¥ P, =RyoPyoR_y
M FIGURE 14 as before. So, P, is linear with matrix
{c —y} 1 O[ cy]_ & s
soodlooll=sc ] 2
where ¢ = cos = ——2 and s = sin § = —22___ This gives:
1+ w’ 1+ w’

Let P, R? — R? be projection on the line y = mx. Then P,, is a linear transformation

with matrix 5 [ 1 m}
1+ m |m

04 expected.

Again, if m = 0, then the matrix in Theorem 6 reduces to 1
As the y axis has no slope, the analysis fails for projection on the y axis, but this

transformation is indeed linear with matrix

O} as is easily verified.

Given x in R?, write y = P,,(x). The fact that y lies on the line y = mx means
that P,(y) = y. But then

(P, o P,)x)=P,(y) =y =P,x) for all x in R?, thatis, P,, o P,, = P,

In particular, if we write the matrix of P, as 4 = 1 5 [ L }, then A4° = A.
1+ m \m m

The reader should verify this directly.
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EXERCISES 2.6

1. Let T, : R*> — R? be a linear transformation.

8 o, 2
(@) Find 7|3 [if T| 0 ={ }andTl =~ }
7l ) B 30 L0

5 3 2
o(b) Findlté13 ifTLzl :B}andlt_) =[‘21}.

2. Let T, : R* — R’ be a linear transformation.

1 1 2
() FindT_; if T (1)= 3 |and
-3 -1} =1
01 715
T‘%:o.
o
5 1 5
«(b) FindT_% ifT% :{ 1 |and
—4 1 -3
T (1)_0.
5] 1

3. In each case assume that the transformation 7 is
linear, and use Theorem 2 to obtain the matrix 4
of T.

() T:R* — R is reflection in the line y = —x.
+(b) T:R? — R?is given by T(x) = —x for each x
in R,
(¢) T:R* — R?is clockwise rotation through T
+(d) T:R*> — R?is counterclockwise rotation

through 7.

4. In each case use Theorem 2 to obtain the matrix
A of the transformation 7. You may assume that
T is linear in each case.

(a) T:R® — R’ is reflection in the x-z plane.
o(b) T:R* — R’ is reflection in the y-z plane.
5. Let T: R" — R be a linear transformation.

(a) Ifxisin R”, we say that x is in the kernel of T
if T(x) = 0. If x; and x, are both in the kernel
of T, show that ax; + bx; is also in the kernel
of T for all scalars # and &.

+(b) If yisin R", we say thaty is in the image of T
ify = T(x) for some x in R”. If y; and y; are

101

both in the image of 7, show that ay; + by,
is also in the image of T for all scalars #z and &.

6. Use Theorem 2 to find the matrix of the
identity transformation 1g: R" — R”
defined by 1g+: (x) = x for each x in R".

7. In each case show that 7': R> — R? is not a
linear transformation.

o 15)-[7}

0

2
y

8. In each case show that T is either reflection in a
line or rotation through an angle, and find the
line or angle.

w1

"X —3x+ 4
@ T =4 "7
] 3| 4x+ 3y
+(b) T_J’A = —x+y}'
- V3
© T[¥]=L" "
LY ﬁ\/?x+y
fxT 8x + 6
od) T[¥]= T
L] 6x — 8y
9. Express reflection in the line y = —x as the

composition of a rotation followed by reflection
in the line y = «.

10. In each case find the matrix of 7: R® — R’

(a) T is rotation through 6 about the x axis (from
the y axis to the z axis).

+(b) T is rotation through 6 about the y axis (from
the x axis to the z axis).

11. Let T, : R?> — R? denote reflection in the line
making an angle 0 with the positive x axis.

(a) Show that the matrix of T
. [cos26  sin 20
s for all 6.

! sin 260 —cos 26
(b) Show that Ty o Ry, =T_; for all # and ¢.
12. In each case find a rotation or reflection that

equals the given transformation.

(a) Reflection in the y axis followed by rotation
through 7.

+(b) Rotation through 7 followed by reflection in
the x axis.
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(¢) Rotation through T followed by reflection in
the line y = «.

+(d) Reflection in the x axis followed by rotation
through 7.

(e) Reflection in the line y = x followed by
reflection in the x axis.

+(f) Reflection in the x axis followed by reflection
in the line y = «.

13. Let R and S be matrix transformations R” — R”
induced by matrices 4 and B respectively. In
each case, show that T is a matrix transformation
and describe its matrix in terms of A and B.

(a) T(x) = R(x) + S(x) for all x in R”.

+(b) T(x) = aR(x) for all x in R” (where « is a fixed
real number).

14. Show that the following hold for all linear
transformations 7": R” — R™:

(a) T(0) = 0. «(b) T(—x) = —T{x) for all x in R”".

15. The transformation 7": R” — R” defined
by T(x) = 0 for all x in R” is called the zero
transformation.

(a) Show that the zero transformation is linear
and find its matrix.

(b) Letey, ey, ..., €, denote the columns of the
n X n identity matrix. If 7: R” — R" is
linear and 7{e;) = 0 for each 7, show that T is
the zero transformation. [Hint: Theorem 1.]

16. Write the elements of R” and R™ as rows. If
A is an m X n matrix, define 7: R” — R” by
T(y) = yA for all rows y in R”. Show that:

(a) T'is a linear transformation.

(b) the rows of A are T(f)), T(f), ..., T(£,,)
where f; denotes row 7 of I,,. [Hint: Show

that f; A is row 7 of A.]

17. Let S: R" — R"and T': R” — R" be linear
transformations with matrices 4 and B respectively.

(a) Show that B> = Bifand only if 72 = T
(where T? means T o 7).
+(b) Show that B* = I if and only if 7% = 1.

(c¢) Show that AB = BA if and only if
SoT=ToS.

[Hint: Theorem 3.]

18. Let Qp: R? — R? be reflection in the x axis,
let Q;: R*? — R? be reflection in the line y = x,
let Q_;: R* = R? be reflection in the line
y = —ux, and let R=: R? — R? be counterclockwise

rotation through 7.
(a) Show that Q; o R- = Q.
+(b) Show that Q; o Q, = Rx.
(c) Show that Rx0Qp= Q.
+(d) Show that Qy o Rx = Q_;.
19. For any slope 7z, show that:
@ QpoP,=P, (b) P, 0 Q, =P,

Define 7: R" — R by

T(rp, 29y oy ) =07 + 25 + -+ + X,
Show that T'is a linear transformation
and find its matrix.

+20.

21. Given cin R, define 7. : R” — R by T(x) = x
for all x in R". Show that 7 is a linear
transformation and find its matrix.

22. Given vectors w and x in R”, denote their dot
product by w - x.

(a) Given w in R”, define 7y,: R” — R by
Tw(x) = w - x for all x in R”. Show that
T is a linear transformation.

+(b) Show that every linear transformation
T:R" — R is given as in (a); that is
T = T, for some w in R”".

23. Ifx # 0 and y are vectors in R”, show that there
is a linear transformation 7" : R” — R” such that
T(x) = y. [Hint: By Definition 2.5, find a matrix
A such that Ax = y.]

24. Let R” L R” 5 R* be two linear
transformations. Show directly that S o T'is
linear. That is:

(a) Show that (SoeT)(x+y) = (SoT)x + (SoT)y
for all x, y in R".

+(b) Show that (S o T")(ax) = a[(S o T)x] for all x

in R” and all z in R.

25. Let R” L R” 5 R* & R be linear
transformations. Show that
Ro(SoT)=(RoS)o Tbyshowing directly
that [R o (S o T)]|(x) = [(R o S) o T)](x) holds

for each vector x in R”.
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LU-Factorization®

The solution to a system Ax = b of linear equations can be solved quickly if 4 can
be factored as 4 = LU where L and U are of a particularly nice form. In this section
we show that gaussian elimination can be used to find such factorizations.

Triangular Matrices

As for square matrices, if A = [4;] is an 7 x n matrix, the elements 4y, 455, 433, ...
form the main diagonal of A. Then A4 is called upper triangular if every entry
below and to the left of the main diagonal is zero. Every row-echelon matrix is
upper triangular, as are the matrices

1 -1 037021057 |1 11
0 2 11/]o00031| (011
0 030/loo1o01]]9 00

0 00

By analogy, a matrix A is called lower triangular if its transpose is upper triangular,
that is if each entry above and to the right of the main diagonal is zero. A matrix is
called triangular if it is upper or lower triangular.

Solve the system

X1+ 2x, — 33 — ay + Sws =3
Sz + x4 + x5 =8
2.96'5:6

where the coefficient matrix is upper triangular.
Solution > As in gaussian elimination, let the “non-leading” variables be

parameters: &, = s and x4 = . Then solve for x5, x3, and x; in that order
as follows. The last equation gives

_6_
X5 = 7= 3
Substitution into the second last equation gives
=1-=1
X3 = 1 St
Finally, substitution of both x5 and x5 into the first equation gives

x1:—9—23+%t.

The method used in Example 1 is called back substitution because later
variables are substituted into earlier equations. It works because the coefficient
matrix is upper triangular. Similarly, if the coefficient matrix is lower triangular the
system can be solved by forward substitution where earlier variables are substituted
into later equations. As observed in Section 1.2, these procedures are more efficient
than gaussian elimination.

15 This section is not used later and so may be omitted with no loss of continuity.
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Now consider a system Ax = b where A can be factored as 4 = LU where L is
lower triangular and U is upper triangular. Then the system Ax = b can be solved
in two stages as follows:

1. First solve Ly = b for'y by forward substitution.
2. Then solve Ux =y for x by back substitution.

Then x is a solution to Ax = b because Ax = LUx = Ly = b. Moreover, every
solution x arises this way (take y = Ux). Furthermore the method adapts easily for
use in a computer.

This focuses attention on efficiently obtaining such factorizations 4 = LU. The
following result will be needed; the proof is straightforward and is left as Exercises 7
and 8.

Let A and B denote matrices.
1. IfA and B are both lower (upper) triangular, the same is true of AB.

2. IfAisn x n and lower (upper) triangular, then A is invertible if and only if every
main diagonal entry is nonzero. In this case A™" is also lower (upper) triangular.

LU-Factorization

Let A be an m X n matrix. Then A can be carried to a row-echelon matrix U (that
is, upper triangular). As in Section 2.5, the reduction is

A e EIA b d EZEIA b d E3E2E1A —> e —> El’Ek—l'“EZElA = U

where E;, Es, ..., E, are elementary matrices corresponding to the row operations
used. Hence

A=LU

where L = (EyE,_,-+-E,E) " = ET'Ey - -Ex 1 E; " If we do not insist that U is
reduced then, except for row interchanges, none of these row operations involve
adding a row to a row above it. Thus, if no row interchanges are used, all the E; are
lower triangular, and so L is lower triangular (and invertible) by Lemma 1. This
proves the following theorem. For convenience, let us say that 4 can be lower
reduced if it can be carried to row-echelon form using no row interchanges.

If A can be lower reduced to a row-echelon matrix U, then
A=LU

where L is lower triangular and invertible and U is upper triangular and row-echelon.

A factorization A = LU as in Theorem 1 is called an LU-factorization of A.

Such a factorization may not exist (Exercise 4) because A cannot be carried to
row-echelon form using no row interchange. A procedure for dealing with this
situation will be outlined later. However, if an LU-factorization 4 = LU does exist,
then the gaussian algorithm gives U and also leads to a procedure for finding L.
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Example 2 provides an illustration. For convenience, the first nonzero column from
the left in a matrix A is called the leading column of A.

[0 2-6-2 4
Find an LU-factorization of 4 =|{0 -1 3 3 2|
10-1 3 710

Solution » We lower reduce 4 to row-echelon form as follows:

0(2)-6 -2 4 [01-3-1 2 01-3-12

A=O—1332—>0004—>000 12|=U

0l 3 710 L00 0 W12 00 0 00
The circled columns are determined as follows: The first is the leading column
of A, and is used (by lower reduction) to create the first leading 1 and create
zeros below it. This completes the work on row 1, and we repeat the procedure
on the matrix consisting of the remaining rows. Thus the second circled

column is the leading column of this smaller matrix, which we use to create the
second leading 1 and the zeros below it. As the remaining row is zero here, we

are finished. Then A4 = LU where

200
L=|-120]|
-1 6 1

This matrix L is obtained from 5 by replacing the bottom of the first two
columns by the circled columns in the reduction. Note that the rank of A is 2
here, and this is the number of circled columns.

The calculation in Example 2 works in general. There is no need to calculate the
elementary matrices Ej; and the method is suitable for use in a computer because the
circled columns can be stored in memory as they are created. The procedure can be
formally stated as follows:

LU-Algorithm

Let A be an m X n matrix of rank 7, and suppose that A can be lower reduced to a
row-echelon matrix U. Then A = LU where the lower triangular, invertible matrix L is
constructed as follows:

1. IfA=0,take L =1, and U= 0.

2. IfA+ 0, write Ay = A and let ¢| be the leading column of A,. Use c; to create
the first leading 1 and create zeros below it (using lower reduction). When this is
completed, let A, denote the matrix consisting of rows 2 to m of the matrix just
created.

3. IfA;, # 0, let ¢, be the leading column of A, and repeat Step 2 on A, to create A;.

4. Continue in this way until U is reached, where all rows below the last leading 1
consist of zeros. This will happen after r steps.

5. Create L by placing ¢y, ¢, ..., ¢, at the bottom of the first r columns of 1,,,
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A proof of the LU-algorithm is given at the end of this section.

LU-factorization is particularly important if, as often happens in business and
industry, a series of equatons Ax = By, Ax = B;, ..., Ax = By, must be solved, each with
the same coefficient matrix 4. It is very efficient to solve the first system by gaussian
elimination, simultaneously creating an LU-factorization of 4, and then using the
factorization to solve the remaining systems by forward and back substitution.

5-510 05

. .. -3 32 21
Find an LU-factorization for A = 2 2 0-10t

1-110 25

Solution » The reduction to row-echelon form is

N-510 05] [1-12 0 1]
3132 21 0 08 24
-2l 2 0-10|"|0 0l4]|-12
-110 251 [0 olg 24]
[1-12 0 1]
0 01 11
R 4 2
0 000
Lo 00L 0ol
1-1201
0 0111
4 2
~lo 0o010|7Y
0 0000
If U denotes this row-echelon matrix, then A = LU, where
50 00
L 38 00
=24 -20
18 01

The next example deals with a case where no row of zeros is present in U (in fact, 4
is invertible).

242
Find an LU-factorization for4 =| 1 12|

-102

Solution » The reduction to row-echelon form is

2\4 2 1 21 12 1 12 1
1112|—=|0F0N1|—=|01-1|—|01-1|=U

=10 2 023 00 (9 00 1
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2 00
Hence A = LUwhere L=| 1-10 |
-1 25

There are matrices (for example {(1) (1)}) that have no LU-factorization and so

require at least one row interchange when being carried to row-echelon form via
the gaussian algorithm. However, it turns out tha, if all the row interchanges
encountered in the algorithm are carried out first, the resulting matrix requires
no interchanges and so has an LU-factorization. Here is the precise result.

Suppose an m X n matrix A is carried to a row-echelon matrix U via the gaussian
algorithm. Let Py, P, ..., P, be the elementary matrices corresponding (in order) to
the row interchanges used, and write P = P,---P,P;. (If no interchanges are used take
P=1,.) Then:

1. PA is the matrix obtained from A by doing these interchanges (in order) to A.
2. PA has an LU-factorization.

The proof is given at the end of this section.

A matrix P that is the product of elementary matrices corresponding to row
interchanges is called a permutation matrix. Such a matrix is obtained from the
identity matrix by arranging the rows in a different order, so it has exactly one 1 in
each row and each column, and has zeros elsewhere. We regard the identity matrix as a
permutation matrix. The elementary permutation matrices are those obtained from I by
a single row interchange, and every permutation matrix is a product of elementary ones.

0 0-12
-1-1 12 : .
IfA = ) 136! find a permutation matrix P such that P4 has an
0 1-14

L U-factorization, and then find the factorization.

Solution » Apply the gaussian algorithm to A:
-1 -1 1 2 [1 1 -1 -2]
x| 0 0 -1 2 0 0 -1 2|«
A=12 136[7[0 -1 -1 10
0 1 -1 4 1 -1 4

O OO R O O O -
—
|
—_
N

S OO = O O
—_
—
|
—_
S
O O = =
—_
|
[\
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Two row interchanges were needed (marked with ), first rows 1 and 2 and
then rows 2 and 3. Hence, as in Theorem 2,

1000|/0100 0100
p={0010[f100O0|_{00T10
0100|0010 1000
000T1JLOOOT1 0001
If we do these interchanges (in order) to 4, the result is PA. Now apply the
LU-algorithm to PA:
-h-1 12 [1 1-1-2 11-1 -2

20 1-36 0(AD)-1 10 01 1-10
PA=| g 0—12_’0—1 2 _’00 2
0 1-14 Lo\)-1 4 002 14
[11-1 -2 11-1 =27
01 1-10 01 1-10
00 1 -2 00 1 -2

L00 0 00 0 1

11-1 =2 -1 0 0 0]

Hence, PA = LU, where L = 01 1-10|, quU= 2-10 0‘
00 1 -2 0 0-10

00 0 1 0 1-210]

Theorem 2 provides an important general factorization theorem for matrices.
It A is any 7 x n matrix, it asserts that there exists a permutation matrix P and an
LU-factorization PA = LU. Moreover, it shows that either P = [ or P = P, --- P,P,
where Py, P,, ..., P; are the elementary permutation matrices arising in the
reduction of A to row-echelon form. Now observe that P,”! = P, for each i (they
are elementary row interchanges). Thus, P! = P,P,---P, so the matrix A can be
factored as

A=P'LU

where P~ is a permutation matrix, L is lower triangular and invertible, and U'is a
row-echelon matrix. This is called a PLU-factorization of A.
The LU-factorization in Theorem 1 is not unique. For example,

IOHI -23 10{1 -2 3}
320 00 3 1/l0 00
However, it is necessary here that the row-echelon matrix has a row of zeros. Recall
that the rank of a matrix A4 is the number of nonzero rows in any row-echelon
matrix U to which A can be carried by row operations. Thus, if A is 7 X n, the
matrix U has no row of zeros if and only if A has rank 7.

Let A be an m X n matrix that has an LU-factorization
A=LU

If A has rank m (that is, U has no row of zeros), then L and U are uniquely determined by A.
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Suppose A = MV is another LU-factorization of 4, so M is lower triangular

and invertible and V" is row-echelon. Hence LU = MV, and we must show

that L = M and U = V. We write N = M~ 'L. Then N is lower triangular and
invertible (Lemma 1) and NU = V so it suffices to prove that N = . If N is

m X m, we use induction on 7. The case 7z = 1 is left to the reader. If m > 1,
observe first that column 1 of Vis N times column 1 of U. Thus if either column
is zero, so is the other (V is invertible). Hence, we can assume (by deleting zero
columns) that the (1, 1)-entry is 1 in both U and V.

Now we write N = | 0 , U= 1 Y,and V= 1z in block form.
X N; 0 U 017
Then NU = V becomes | # 24 —|1 Z.Hencea:l,Y:Z,X:O,
X XY+ N U 01

and N U; = V1. But N{U; = V| implies N| = I by induction, whence N = I.

If A is an 72 X m invertible matrix, then A4 has rank 7 by Theorem 5 Section 2.4.
Hence, we get the following important special case of Theorem 3.

Corollary 1

If an invertible matrix A has an LU-factorization A = LU, then L and U are uniquely
determined by A.

Of course, in this case U is an upper triangular matrix with 1s along the main diagonal.

Proofs of Theorems

PROOF OF THE LU-ALGORITHM

If ¢y, ¢y, ..., ¢, are columns of lengths 7z, m — 1, ..., m — r + 1, respectively,
write L"(cy, ¢, ..., ¢,) for the lower triangular 7z X 7 matrix obtained from 1,
by placing ¢y, ¢, ..., ¢, at the bottom of the first 7 columns of I,,.

Proceed by induction on 7. If 4 = 0 or 7 = 1, it is left to the reader. If 7 > 1, let
c; denote the leading column of 4 and let k; denote the first column of the 7z x m
identity matrix. There exist elementary matrices Ey, ..., £}, such that, in block form,

X
kl ’711:| where (Ele"'EZEl)cl = kl'

Moreover, each E; can be taken to be lower triangular (by assumption). Write

G = (Ey+-E,E) "' = ET'E7 " -E}!

(B -BEDA = {0

Then G is lower triangular, and GK; = ¢;. Also, each E; (and so each Ej_l) is the
result of either multiplying row 1 of I,, by a constant or adding a multiple of row
1 to another row. Hence,

0
G=(EIIE51---E/:1>Im={c1 i }
m—1
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in block form. Now, by induction, let A4; = L;U; be an LU-factorization of A,

where L; = L~ 1)[cz, ..., ¢,] and Uj is row-echelon. Then block multiplication
gives
§ X, 110 1[0[1]X,
G Az{o ki LIUI}: o[z, || ololu,

1
Hence A = LU, where U = {*\6‘7] is row-echelon and
110 -
0 L |: ’>i|:L ’[CI,CZ,...,C,,].

"This completes the proof.

PROOF OF THEOREM 2

Let A be a nonzero 72 x n matrix and let k; denote column j of I,,. There is a
permutation matrix P; (where either Py is elementary or P; = I,,) such that the
first nonzero column c¢; of P;A4 has a nonzero entry on top. Hence, as in the

1 1 Ty p

LU-algorithm,

(1) -1 0|1
L™l - Pr-A = 515

Xi
4

in block form. Then let P, be a permutation matrix (either elementary or I,,)

such that
0

Py L™e] ™ P - A= [ 5

11X,
0|4

and the first nonzero column ¢, of A’ has a nonzero entry on top. Thus,

L™k, ¢ e Py« L[e] ™ - Py - A =

in block form. Continue to obtain elementary permutation matrices Py, P,, ..., P,
and columns ¢y, ¢, ..., ¢, of lengths 7z, m — 1, ..., such that

(L PLy\Py_y---Lo P L PYA = U

where U is a row-echelon matrix and L; = L™k, ..

- ki, ] ~! for each j, where

the notation means the firstj —1 columns are those of IL,.. It is not hard to verify
that each L; has the form L; = L™k, ..., k;_j, ¢j] where ¢; is a column of length

7

m—j+ 1. We now claim that each permutation matrix P, can be “moved past”

each matrix L; to the right of it, in the sense that
Pl = L/P;

where [j = L™k, .. ., kj_1, /] for some column cj of length 7 — j + 1. Given
that this is true, we obtam a factorlzatlon of the form

(LyLy—y---LLy)(PP,_y---PoP) A = U

If we write P = P.P,_;---P,P;, this shows that P4 has an LU-factorization
because L,L,_;---LjL} is lower triangular and invertible. All that remains is to

prove the following rather technical result.
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Let Py result from interchanging row k of I, with a row below it. Ifj < k, let c; be a column of
length m — j + 1. Then there is another column ¢/ of length m — j + 1 such that

Py« LP0ky, . kiy, 6] = L™ [k, .y iy, €]+ P

The proof is left as Exercise 11.

EXERCISES 2.7

1. Find.an LU-factorization of the following (=2 00011 =12 1 1
matrices. © A= 1-100ll0 11-4 b= -1
@[ 2 6-2 02] «O[ 2 4 2 -1 020[|0 01 —3

3 9-3 31 -1 3 L 0O 102JL0 00 1 0
|-1-3 1-31] -1 7-7 2 00 0]ft-1 0 1 4
©f 2 6-2 02] «@[-1-3 1 0-1] od) A=| L0 0O L=l 16
[ 5.1 25 L4111 1 12 offo 0 1 1 4
3 7-3-25 1 2-3-11 L3 01-1J{0 O O O 5
-1 = L 0-2-4-2 0]
- bol 23 - 4. Show that{o 1}zLUis impossible where L is
@©[ 2 2 4 6 02] «f)|2 2-242 10
1-1 2 1 31 1-1 021 lower triangular and U is upper triangular.
“2 2ol 31-263 +5. Show that we can accomplish any row
0203 48 I3=221 interchange by using only row operations of
(-2 4-4 1-26 other types.

2. Find a permutation matrix P and an

LU-factorization of P4 if 4 is: 6. (a) Let L and L; be invertible lower triangular

matrices, and let U and U, be invertible

@0 02 «®[ 0-12 upper triangular matrices. Show that
0-14 0 04 LU = LU, if and only if there exists an
3051 1 21 invertible diagonal matrix D such that

B - L, = LD and U, = D™'U. [Hint: Scrutinize
©f 0-1 213] *d|-1-2 30 L7'L, = vUu,71)
-1 1 314 24 =65 +(b) Use part (a) to prove Theorem 3 in the case
; _; _i ? (2) ; ; I(l) i that A4 is invertible.

+7. Prove Lemma 1(1). [Hint: Use block

. In each iven LU- mposition of . :
3 each case use the given LU-decomposition o multiplication and induction.]

A to solve the system Ax = b by finding y such

that Ly = b, and then x such that Ux = y: 8. Prove Lemma 1(2). [Hint: Use block
M o00ll1001 1 multiplication and induction.]
@A=10-1010012b=)-1 9. A triangular matrix is called unit triangular if it
LT 13J10001 2 is square and every main diagonal elementis a 1.
20041101 -2 (a) If A can be carried by the gaussian algorithm to
¢b) A=| 130[|010 1pb=|-1 row-echelon form using no row interchanges,
L-121]JL000 O 1 show that 4 = LU where L is unit lower

triangular and U is upper triangular.
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+(b) Show that the factorization in (a) is unique. as in the proof of Theorem 2. [Hint: Use
induction on 7z and block multiplication.]
10. Let ¢y, ¢y, ..., ¢, be columns of lengths 7,
m — 1, ...,m —r + 1. If k; denotes column ; 11. Prove Lemma 2. [Hint: P,~! = P,. Write
) = I, 0
Of I)’”’ sho(w)that L [(C 1)’ €2 -+ &l P, = * " |in block form where Py is an
L™[e] L™ [ky, €] L™ [ky, ky, 3] -+ 0 Py . .
L™k, ky, ..., k,_y, ¢,]. The notation is (m — k) X (m — k) permutation matrix.]

An Application to Input-Output Economic Models'®

In 1973 Wassily Leontief was awarded the Nobel prize in economics for his work on
mathematical models.!” Roughly speaking, an economic system in this model consists
of several industries, each of which produces a product and each of which uses some
of the production of the other industries. The following example is typical.

A primitive society has three basic needs: food, shelter, and clothing. There are thus
three industries in the society—the farming, housing, and garment industries—that
produce these commodities. Each of these industries consumes a certain proportion
of the total output of each commodity according to the following table.

ouTPUT
Farming | Housing | Garment
Farming 0'4 0.2 0.3
CONSUMPTION Housing 0.2 0.6 0.4
Garment 0.4 0.2 0.3

Find the annual prices that each industry must charge for its income to equal its
expenditures.

Solution » Let py, py, and p; be the prices charged per year by the farming,
housing, and garment industries, respectively, for their total output. To see
how these prices are determined, consider the farming industry. It receives p;
for its production in any year. But it consumes products from all these industries
in the following amounts (from row 1 of the table): 40% of the food, 20% of
the housing, and 30% of the clothing. Hence, the expenditures of the farming
industry are 0.4p; + 0.2p, + 0.3p3, so

04p1 + 02172 + 0.3]73 = Pl

A similar analysis of the other two industries leads to the following system of
equations.

04p1 + 021)2 + 0.3])3 = Pl
04p1 + 02172 + 0.3]73 = p3

"This has the matrix form Ep = p, where

16 The applications in this section and the next are independent and may be taken in any order.
17 See W. W. Leontief, “The world economy of the year 2000,” Scientific American, Sept. 1980.
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0.4 0.2 03 D1
E=102 0.6 04| and p=|p
04 0.2 0.3 3
The equations can be written as the homogeneous system
(-Bp=0
where [ is the 3 X 3 identity matrix, and the solutions are
2t
p=|3t
2t

where 7 is a parameter. Thus, the pricing must be such that the total output
of the farming industry has the same value as the total output of the garment
industry, whereas the total value of the housing industry must be 3 as much.

In general, suppose an economy has 7 industries, each of which uses some
(possibly none) of the production of every industry. We assume first that the
economy is closed (that is, no product is exported or imported) and that all
product is used. Given two industries 7 and /, let ¢; denote the proportion of the
total annual output of industry ; that is consumed by industry i. Then E = [¢;] is
called the input-output matrix for the economy. Clearly,

0<e;<1 foralliandj @

Moreover, all the output from industry j is used by somze industry (the model is
closed), so

ejj+ e+ - +e;=1 foreach; @)

"This condition asserts that each column of E sums to 1. Matrices satisfying
conditions 1 and 2 are called stochastic matrices.

As in Example 1, let p; denote the price of the total annual production of industry
i. Then p; is the annual revenue of industry i. On the other hand, industry 7 spends
eip1 + eppy + -+ + e;,p, annually for the product it uses (e;p; is the cost for product
from industry 7). The closed economic system is said to be in equilibrium if the
annual expenditure equals the annual revenue for each industry—that is, if

eypr + eypy + - +eyp, =p; foreachi=1,2,...,n

)41
P

If we write p = ||, these equations can be written as the matrix equation

| Ep=p
This is called the equilibrium condition, and the solutions p are called
equilibrium price structures. The equilibrium condition can be written as

(I-Ep=0
which is a system of homogeneous equations for p. Moreover, there is always a
nontrivial solution p. Indeed, the column sums of I — E are all 0 (because E is

stochastic), so the row-echelon form of I — E has a row of zeros. In fact, more
is true:
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Let E be any n X n stochastic matrix. Then there is a nonzero n X 1 matrix p with
nonnegative entries such that Ep = p. If all the entries of E are positive, the matrix p
can be chosen with all entries positive.

Theorem 1 guarantees the existence of an equilibrium price structure for any
closed input-output system of the type discussed here. The proof is beyond the
scope of this book.'

Find the equilibrium price structures for four industries if the input-output
matrix is

6.2 .1 .1
E=|1375 2
0.1.2.7
Find the prices if the total value of business is $1000.
2
Solution b If p = % is the equilibrium price structure, then the equilibrium
4

condition is Ep = p. When we write this as (I — E)p = 0, the methods of
Chapter 1 yield the following family of solutions:

44t
— |39t
P51
47t
where 7 is a parameter. If we insist that p; + p, + p; + p4 = 1000, then
t = 5.525 (to four figures). Hence

243.09
p = |21547
281.76

259.67
to five figures.

The Open Model

We now assume that there is a demand for products in the open sector of the
economy, which is the part of the economy other than the producing industries
(for example, consumers). Let d; denote the total value of the demand for product

i in the open sector. If p; and ¢;; are as before, the value of the annual demand for
product 7 by the producing industries themselves is e;;p; + eppy + -+ + ¢€;,p,, SO the
total annual revenue p; of industry 7 breaks down as follows:

pi = (eapr + eapr + -+ + epupy) +d; foreachi=1,2,...,n

18 The interested reader is referred to P. Lancaster’s Theory of Matrices (New York: Academic Press, 1969) or to E. Seneta’s
Non-negative Matrices (New York: Wiley, 1973).
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d,
The column d = | : |is called the demand matrix, and this gives a matrix equation
dﬂ
p=Ep+d
or
(I—-Ep=d (%)

This is a system of linear equations for p, and we ask for a solution p with every
entry nonnegative. Note that every entry of E is between 0 and 1, but the column
sums of £ need not equal 1 as in the closed model.

Before proceeding, it is convenient to introduce a useful notation. If 4 = [4;] and
B = [b;] are matrices of the same size, we write 4 > B if a;; > b;; for all i and j, and
we write A > B if a; > b for all  and j. Thus P > 0 means that every entry of P is
nonnegative. Note that 4 > 0 and B > 0 implies that 4B > 0.

Now, given a demand matrix d = 0, we look for a production matrix p = 0
satisfying equation (x). This certainly exists if I — E is invertible and (I — E)™' = 0.
On the other hand, the fact that d > 0 means any solution p to equation (x) satisfies
p = Ep. Hence, the following theorem is not too surprising.

Let E > 0 be a square matrix. Then I — E is invertible and (I — E)™' = 0 if and only if
there exists a column p > 0 such that p > Ep.

HEURISTIC PROOF

If I — E)™' = 0, the existence of p > 0 with p > Ep is left as Exercise 11.
Conversely, suppose such a column p exists. Observe that

I-EI+E+E+ - +E")=1-F

holds for all % = 2. If we can show that every entry of E* approaches 0 as &
becomes large then, intuitively, the infinite matrix sum

U=I+E+FE + -

exists and (I — E)U = I. Since U = 0, this does it. To show that E* approaches
0, it suffices to show that EP < pP for some number p with 0 < p < 1 (then
E*'P < pfPforall k> 1 by induction). The existence of y is left as Exercise 12.

The condition p > Ep in Theorem 2 has a simple economic interpretation. If p is

a production matrix, entry 7 of Ep is the total value of all product used by industry i
in a year. Hence, the condition p > Ep means that, for each 7, the value of product
produced by industry 7 exceeds the value of the product it uses. In other words, each
industry runs at a profit.

0.6 0.2 0.3
0.1 0.4 0.2
0.2 0.5 0.1

Solution » Use p = (3, 2, Z)T in Theorem 2.

IfE = , show that I — E is invertible and (I — E)~!' = 0.
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Ifpy=(1, 1, )7, the entries of Epy are the row sums of E. Hence py > Ep, holds
if the row sums of E are all less than 1. This proves the first of the following useful
facts (the second is Exercise 10).

Corollary 1

Let &£ = 0 be a square matrix. In each of the following cases, I — E is invertible and

I-E~'=0:

1. All row sums of E are less than 1.

2. All column sums of E are less than 1.

EXERCISES 2.8

1.

°2.

o4

Find the possible equilibrium price structures
when the input-output matrices are:

0.1 0.2 0.3 0.50 0.5
(@ 0.6 0.2 0.3 +(b) 0.1 0.9 0.2
103 0.6 0.4 104 0.1 0.3
3112 5 0.1.1
2310 2.7 0.1
©137373 3 @15 g5
123.6.7 2.1.1.6

Three industries A, B, and C are such that all the
output of 4 is used by B, all the output of B is
used by C, and all the output of C is used by A.
Find the possible equilibrium price structures.

. Find the possible equilibrium price structures

for three industries where the input-output
100
001

010
parameters here.

matrix is . Discuss why there are two

Prove Theorem 1 for a 2 x 2 stochastic
matrix E by first writing it in the form
E=| ¢ b

,where 0 <2 < 1 and
1-b

1—ua
0<b<l.

. If Eis an n X n stochastic matrix and c is an

n X 1 matrix, show that the sum of the entries
of ¢ equals the sum of the entries of the n x 1
matrix Fc.

Let W=[111---1]. Let E and F denote n X =
matrices with nonnegative entries.

(a) Show that E is a stochastic matrix if and only
if WE = W.

7

*8

10.

11.
12.

(b) Use part (a) to deduce that, if E and F are both

stochastic matrices, then EF is also stochastic.

. Find a 2 X 2 matrix E with entries between 0

and 1 such that:
(a) I — E has no inverse.

+(b) I — E has an inverse but not all entries of
(I — E)~" are nonnegative.

. If Eis a 2 X 2 matrix with entries between 0

and 1, show that I — E is invertible and
(I-E7'=0ifand onlyif tr E < 1 + det E.

Here, if £ = [ﬂ Z}, then tr E = 2 + d and
¢
det E = ad — be.
. In each case show that I — E is invertible and
I-E~"'>o.
(0.6 0.5 0.1] [0.7 0.1 0.3]
(@) (0.1 0.3 0.3 +(b) 0.2 0.5 0.2
10.2 0.1 0.4] 10.1 0.1 0.4]
0.6 0.2 0.1] [0.8 0.1 0.1]
(©) 103 0.4 0.2 +(d) 0.3 0.1 0.2
10.2 0.5 0.1] 10.3 0.3 0.2]

Prove that (1) implies (2) in the Corollary to
Theorem 2.

If { — E)™' = 0, find p > 0 such that p > Ep.

If Ep < p where E = 0 and p > 0, find a number
w such that Ep < upand 0 < p < 1.

[Hint: If Ep = (q1, ..., ) and p = (1, ..., p)',
take any number 4 such that

91 qn
ey < < 1.
pl pn} a ]

max {
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An Application to Markov Chains

Definition 2.15

Many natural phenomena progress through various stages and can be in a variety of
states at each stage. For example, the weather in a given city progresses day by day
and, on any given day, may be sunny or rainy. Here the states are “sun” and “rain,”
and the weather progresses from one state to another in daily stages. Another
example might be a football team: The stages of its evolution are the games it plays,
and the possible states are “win,” “draw,” and “loss.”

The general setup is as follows: A “system” evolves through a series of “stages,”
and at any stage it can be in any one of a finite number of “states.” At any given stage,
the state to which it will go at the next stage depends on the past and present history
of the system—that is, on the sequence of states it has occupied to date.

A Markov chain is such an evolving system wherein the state to which it will go next

depends only on its present state and does not depend on the earlier history of the system."®

Even in the case of a Markov chain, the state the system will occupy at any stage
is determined only in terms of probabilities. In other words, chance plays a role. For
example, if a football team wins a particular game, we do not know whether it will
win, draw, or lose the next game. On the other hand, we may know that the team
tends to persist in winning streaks; for example, if it wins one game it may win the
next game 1 of the time, lose -+ of the time, and draw -5 of the time. These fractions
are called the probabilities of these various possibilities. Similarly, if the team
loses, it may lose the next game with probability I (that is, half the time), win with
probability 1, and draw with probability 1. The probabilities of the various
outcomes after a drawn game will also be known.

We shall treat probabilities informally here: The probability that a given event will
occur is the long-run proportion of the time that the event does indeed occur. Hence, all
probabilities are numbers between 0 and 1. A probability of 0 means the event is
impossible and never occurs; events with probability 1 are certain to occur.

If a Markov chain is in a particular state, the probabilities that it goes to
the various states at the next stage of its evolution are called the transition
probabilities for the chain, and they are assumed to be known quantities. To
motivate the general conditions that follow, consider the following simple example.
Here the system is a man, the stages are his successive lunches, and the states are the
two restaurants he chooses.

A man always eats lunch at one of two restaurants, 4 and B. He never eats at 4
twice in a row. However, if he eats at B, he is three times as likely to eat at B
next time as at 4. Initially, he is equally likely to eat at either restaurant.

(a) What s the probability that he eats at A on the third day after the initial one?
(b) What proportion of his lunches does he eat at 4?

Solution > The table of transition probabilities follows. The A column indicates

that if he eats at 4 on one day, he never eats there again on the next day and so
is certain to go to B.

19 The name honours Andrei Andreyevich Markov (1856—1922) who was a professor at the university in St. Petersburg, Russia.
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Present Lunch

A B
Next A 0 0.25
Lunch B 1 0.75

The B column shows that, if he eats at B on one day, he will eat there on the
next day 3 of the time and switches to 4 only 1 of the time.

The restaurant he visits on a given day is not determined. The most that we
can expect is to know the probability that he will visit 4 or B on that day.
()
s
Lets,, = { (1

denote the state vector for day m. Here 5, denotes the
m
92

probability that he eats at 4 on day 7z, and 5, is the probability that he eats at
B on day m. It is convenient to let sy correspond to the initial day. Because he
is equally likely to eat at 4 or B on that initial day, 59 =05and 5,? = 0.5, so

so=| "~ | Now let

[0 0.25
1 0.75

denote the transition matrix. We claim that the relatonship

Sm+1 = Psm

holds for all integers 7 = 0. This will be derived later; for now, we use it as
follows to successively compute sy, S, S3, -...

) = poy = {o 0.25}[0.5} _ [0.125}
1 0.75)l0.5] l0.875

) = ps = {0 0.25][0.125} _ {0.21875}
1 0.75)10.875] " 10.78125

6 = ps, = {0 0.25}[0.21875} _ [0.1953125}
1 0.75]10.78125] " [0.8046875

Hence, the probability that his third lunch (after the initial one) is at 4 is
approximately 0.195, whereas the probability that it is at B is 0.805.

If we carry these calculations on, the next state vectors are (to five figures):

0.20117} _[0.19971
0.79883

Sq =

E [0.80029}
. - {0.20007} .o [0.19998
0.79993 0.80002

Moreover, as 7 increases the entries of s, get closer and closer to the

corresponding entries of [gé} Hence, in the long run, he eats 20% of his

lunches at 4 and 80% at B.‘

Example 1 incorporates most of the essential features of all Markov chains. The
general model is as follows: The system evolves through various stages and at each
stage can be in exactly one of # distinct states. It progresses through a sequence
of states as time goes on. If a Markov chain is in state j at a particular stage of its
development, the probability p;; that it goes to state 7 at the next stage is called the
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transition probability. The # x » matrix P = [p;] is called the transition matrix
for the Markov chain. The situation is depicted graphically in the diagram.

We make one important assumption about the transition matrix P = [p;]: It
does not depend on which stage the process is in. This assumption means that the
transition probabilities are independent of time—that is, they do not change as time
goes on. It is this assumption that distinguishes Markov chains in the literature of

this subject.

Suppose the transition matrix of a three-state Markov chain is

Present state
1 2 3

P P2 P13 0.3 0.1 0.6 |1
P=|py pr p3|=]0.50.9 0.2 |2 Nextstate
D31 P32 P33 0.2 0.0 0.2 3

If, for example, the system is in state 2, then column 2 lists the probabilities of
where it goes next. Thus, the probability is p;, = 0.1 that it goes from state 2 to
state 1, and the probability is p,, = 0.9 that it goes from state 2 to state 2. The
fact that p3, = 0 means that it is impossible for it to go from state 2 to state 3 at
the next stage.

Consider the jth column of the transition matrix P.
Dij
D2y
pnj
If the system is in state ;j at some stage of its evolution, the transition probabilities
Pij b2jp ---» Py represent the fraction of the time that the system will move to state

1, state 2, ..., state 7, respectively, at the next stage. We assume that it has to go to
some state at each transition, so the sum of these probabilities equals 1:

pyj+py+ - +p,=1 foreachj

Thus, the columns of P all sum to 1 and the entries of P lie between 0 and 1. Hence
P is called a stochastic matrix.

As in Example 1, we introduce the following notation: Let 5 denote the
probability that the system is in state 7 after 7 transitions. The » X 1 matrices

x(lm)

m)
S, = 5% m=0,1,2, ...

s
are called the state vectors for the Markov chain. Note that the sum of the entries
of s,, must equal 1 because the system must be in somze state after 7 transitions. The

matrix sg is called the initial state vector for the Markov chain and is given as part
of the data of the particular chain. For example, if the chain has only two states,

then an initial vector s, = “)} means that it started in state 1. If it started in state 2,
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0.5

the initial vector would be sy = {ﬂ If sy = [0 s

}, it is equally likely that the system

started in state 1 or in state 2.

Theorem 1

Let P be the transition matrix for an n-state Markov chain. If s, is the state vector at
stage m1, then

Sm+1 = Psm

foreachm =0,1,2, ...

HEURISTIC PROOF

Suppose that the Markov chain has been run N times, each time starting with the
same initial state vector. Recall that p;; is the proportion of the time the system
goes from state j at some stage to state 7 at the next stage, whereas 5" is the
proportion of the time it is in state 7 at stage 7z. Hence

sTHIN

is (approximately) the number of times the system is in state 7 at stage 7 + 1.
We are going to calculate this number another way. The system got to state
at stage 7z + 1 through somze other state (say state j) at stage 72. The number of

times it was 7z state j at that stage is (approximately) sj(m)N, so the number of

times it got to state 7 via state j is p,-j(sj(mN). Summing over j gives the number of
times the system is in state 7 (at stage 7 + 1). This is the number we calculated
before, so

sPEON = pisN + ppsS)N + - + pisUN

Dividing by N gives s"*1 = s + pps¥ + - + p;,s for each i, and this can
be expressed as the matrix equation s, = Ps,,,.

If the initial probability vector s and the transition matrix P are given,

Theorem 1 gives sy, s;, 3, ..., one after the other, as follows:
s; = Ps
S; = PSl

S;IP52

Hence, the state vector s, is completely determined for each m = 0, 1, 2, ... by P
and s,

A wolf pack always hunts in one of three regions R, R;, and R;. Its hunting
habits are as follows:

1. If it hunts in some region one day, it is as likely as not to hunt there
again the next day.

2. If it hunts in Ry, it never hunts in R, the next day.
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3. Ifit hunts in R; or Ry, it is equally likely to hunt in each of the other
regions the next day.

If the pack hunts in R; on Monday, find the probability that it hunts there on
Thursday.

Solution P The stages of this process are the successive days; the states are the
three regions. The transition matrix P is determined as follows (see the table):
The first habit asserts that p;; = pyy = p33 = % Now column 1 displays what
happens when the pack starts in R;: It never goes to state 2, so p,; = 0 and,
because the column must sum to 1, p3; = 1. Column 2 describes what happens
if it starts in Ry: py; = 1 and p;; and ps; are equal (by habit 3), so py, = p3, =1
because the column sum must equal 1. Column 3 is filled in a similar way.

1
Now let Monday be the initial stage. Then sy = |0 | because the pack hunts

0
in Ry on that day. Then sy, s,, and s; describe Tuesday, Wednesday, and
Thursday, respectively, and we compute them using Theorem 1.

1

w
N Nl»—-

51=PS(): 52=P51: S3=PSZ:3f2
15
32

|4 o|— oo|w

Hence, the probability that the pack hunts in Region Ry on Thursday is 37.

Another phenomenon that was observed in Example 1 can be expressed in
general terms. The state vectors s, sy, s, ... were calculated in that example and

. This means that the first component of s,,

were found to “approach” s = {8;

becomes and remains very close to 0.2 as 72 becomes large, whereas the second
component gets close to 0.8 as 7z increases. When this is the case, we say that s,
converges to s. For large 7, then, there is very little error in taking s,, = s, so the
long-term probability that the system is in state 1 is 0.2, whereas the probability
that it is in state 2 is 0.8. In Example 1, enough state vectors were computed for
the limiting vector S to be apparent. However, there is a better way to do this that
works in most cases.

Suppose P is the transition matrix of a Markov chain, and assume that the state
vectors s,, converge to a limiting vector s. Then s,, is very close to s for sufficiently
large 2, s0 s,,,1 is also very close to s. Thus, the equation s, = Ps,, from
Theorem 1 is closely approximated by

s=DPs
so it is not surprising that s should be a solution to this matrix equation. Moreover,

it is easily solved because it can be written as a system of homogeneous linear
equations

(I—Ps=0

with the entries of s as variables.
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In Example 1, where P = ﬁ) giﬂ, the general solution to (I — P)s = 0 is
s = [41, where 7 is a parameter. But if we insist that the entries of S sum to 1
t
(as must be true of all state vectors), we find # = 0.2 and so s = 8;] as before.

All this is predicated on the existence of a limiting vector for the sequence of
state vectors of the Markov chain, and such a vector may not always exist. However,
it does exist in one commonly occurring situation. A stochastic matrix P is called
regular if some power P” of P has every entry greater than zero. The matrix

0 0.25
P= [

1 0.75
the general theorem is as follows:

Let P be the transition matrix of a Markov chain and assume that P is regular. Then
there is a unique column matrix s satisfying the following conditions:

1. Ps=s.

of Example 1 is regular (in this case, each entry of P is positive), and

2. The entries of s are positive and sum to 1.
Moreover, condition 1 can be written as

(I—Ps=0

and so gives a homogeneous system of linear equations for s. Finally, the sequence of
state vectors S, Sy, S, ... converges to s in the sense that if m is large enough, each entry
of s,, is closely approximated by the corresponding entry of s.

This theorem will not be proved here.””

If P is the regular transition matrix of a Markov chain, the column s satisfying
conditions 1 and 2 of Theorem 2 is called the steady-state vector for the Markov
chain. The entries of s are the long-term probabilities that the chain will be in each
of the various states.

A man eats one of three soups—beef, chicken, and vegetable—each day. He
never eats the same soup two days in a row. If he eats beef soup on a certain
day, he is equally likely to eat each of the others the next day; if he does not eat
beef soup, he is twice as likely to eat it the next day as the alternative.

(a) If he has beef soup one day, what is the probability that he has it again
two days later?

(b) What are the long-run probabilities that he eats each of the three soups?

Solution b The states here are B, C, and V, the three soups. The transition
matrix P is given in the table. (Recall that, for each state, the corresponding
column lists the probabilities for the next state.) If he has beef soup initially,
then the initial state vector is

20 The interested reader can find an elementary proof in J. Kemeny, H. Mirkil, J. Snell, and G. Thompson, Finite Mathematical
Structures (Englewood Cliffs, N.J.: Prentice-Hall, 1958).
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1
Sy = O
0
Then two days later the state vector is s,. If P is the transition matrix, then
0 4
SIZPSOZ%I, SZZPSIZéI
1 1
glcl v so he eats beef soup two days later with probability 2 This answers (a) and also
shows that he eats chicken and vegetable soup each with probability .
210 12 > h hat h hick d vegetabl p each with probability X
X 3 ? To find the long-run probabilities, we must find the steady-state vector s.
Cl2]0]53 Theorem 2 applies because P is regular (P* has positive entries), so s satisfies
Vit ]3]0 Ps = s. That is, (I — P)s = 0 where
6 —4 —4
I-P=¢-3 6 -2
-3 =2 6
4t 0.4
The solution is s = | 3¢|, where 7 is a parameter, and we use s = | (.3 | because
3t 0.3

the entries of S must sum to 1. Hence, in the long run, he eats beef soup 40%
of the time and eats chicken soup and vegetable soup each 30% of the time.

EXERCISES 2.9

1. Which of the following stochastic matrices is in C the next day. If he hunts in B or C, he is
regular? twice as likely to hunt in A4 the next day as in the
00 % % 0 % other territory.
(@ [10 % +(b) % 1 % (a) What proportion of his time does he spend
010 e in A4, in B, and in C?
373

(b) If he hunts in 4 on Monday (C on Monday),

2. In each case find the steady-state vector and, what is the probability that he will hunt in B
assuming that it starts in state 1, find the on Thursday?

probability that it is in state 2 after 3 transitions.

i ML 4. Assume that there are three social classes—
(a) 0.5 0‘3} o) |’ upper, middle, and lower—and that social
10.5 0.7 130 mobility behaves as follows:
014 0.4 01 0.5] 1. Of the children of upper-class parents, 70%
@101 o(d) 0' 5 0' 6 0' 5 remain upper-class, whereas 10% become
4 PO middle-class and 20% become lower-class.
011 L0.4 0.3 0.3]
-2 2. Of the children of middle-class parents, 80%
[0.8 0.0 0.2 [0.1 0.3 0.3] remain middle-class, whereas the others are
(e) 0.1 0.6 0.1 +(f) 10.3 0.1 0.6 evenly split between the upper class and the
L0.1 0.4 0.7 10.6 0.6 0.1] lower class.
3. A fox hunts in three territories A, B, and C. 3. For the children of lower-class parents, 60%
He never hunts in the same territory on two remain lower-class, whereas 30% become

successive days. If he hunts in A4, then he hunts middle-class and 10% upper-class.
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(a) Find the probability that the grandchild of

lower-class parents becomes upper-class.

+(b) Find the long-term breakdown of society
into classes.

. The prime minister says she will call an election.

"This gossip is passed from person to person with
a probability p # 0 that the information is passed
incorrectly at any stage. Assume that when a
person hears the gossip he or she passes it to one
person who does not know. Find the long-term
probability that a person will hear that there is
going to be an election.

+6. John makes it to work on time one Monday out

*8.

of four. On other work days his behaviour is as
follows: If he is late one day, he is twice as likely
to come to work on time the next day as to be
late. If he is on time one day, he is as likely to
be late as not the next day. Find the probability
of his being late and that of his being on time
Wednesdays.

. Suppose you have 1¢ and match coins with a

friend. At each match you either win or lose

l¢ with equal probability. If you go broke

or ever get 4¢, you quit. Assume your friend
never quits. If the states are 0, 1, 2, 3, and

4 representing your wealth, show that the
corresponding transition matrix P is not regular.
Find the probability that you will go broke after
3 matches.

A mouse is put into a maze
of compartments, as in the 1
diagram. Assume that he
always leaves any
compartment he enters and
that he is equally likely to 4
take any tunnel entry.

5

10.

11.

e12.

(a) If he starts in compartment 1, find the
probability that he is in compartment 1 again
after 3 moves.

(b) Find the compartment in which he spends
most of his time if he is left for a long time.

. If a stochastic matrix has a 1 on its main

diagonal, show that it cannot be regular. Assume
itisnot I x I.

If s, is the stage-m state vector for a Markov
chain, show that s,,,, = P's,, holds for all 7 > 1
and & > 1 (where P is the transition matrix).

A stochastic matrix is doubly stochastic if all
the row sums also equal 1. Find the steady-state
vector for a doubly stochastic matrix.

Consider the 2 x 2 stochastic matrix
{1 - q
p 1—¢

(a) Show that 5 _}_ J Lﬂ is the steady-state vector
for P.

}, where 0<p<land O0<g<1.

(b)

Show that P” converges to the matrix

1%9 [[q) Z} by first verifying inductively that
=L[4 q M{ P —q}
pralpp P+q |-p ¢

form =1, 2, .... (It can be shown that
the sequence of powers P, P*, P°, ...of any
regular transition matrix converges to the
matrix each of whose columns equals the
steady-state vector for P.)

SUPPLEMENTARY EXERCISES FOR CHAPTER 2

1

. Solve for the matrix X if:

(a) PXQ = R; (b) XP = S;

where
1 0 -11 -4
0 3 6 6 —6

qt

31

2.

3.

Consider p(X) = X* — 5X* + 11X — 4L
13

If p(U) =
@ pwy =

+(b) If p(U) = 0 where Uis z x n, find U™ in
terms of U.

, compute p(U7).

Show that, if a (possibly nonhomogeneous)
system of equations is consistent and has more
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variables than equations, then it must have
infinitely many solutions. [Hint: Use Theorem 2
Section 2.2 and Theorem 1 Section 1.3.]

. Assume that a system Ax = b of linear equations
has at least two distinct solutions y and z.

(a) Show thatx;, =y + k(y — z) is a solution for
every k.

+(b) Show that x;, = x,, implies k¥ = m. [Hint: See
Example 7 Section 2.1.]

(¢) Deduce that Ax = b has infinitely many
solutions.

5. (a) Let A be a 3 x 3 matrix with all entries on
and below the main diagonal zero. Show that

A =o.

(b) Generalize to the n X 7 case and prove your
answer.

6. Let I, denote the # x n matrix with (p, ¢)-entry
equal to 1 and all other entries 0. Show that:

(a) In = Ill + IZZ + e+ Inn'
L, itg=r
— P
() Lyl = 0 ifg#r
(©) If A = [a;] isn X n, then A = > ZJﬁIg.
i=1j=1
+(d) If A = [a)], then I, AL, = a,,1, for all p, ¢, r,

and s.

7. A matrix of the form «l,, where  is a number, is
called an 7 x 7 scalar matrix.

(a) Show that each 7 X 7 scalar matrix
commutes with every » X 7z matrix.

+(b) Show that A is a scalar matrix if it commutes
with every » X n matrix. [Hint: See part (d)
of Exercise 6.]

8.

10.

11.

12.

13.

Let M = [A B}, where A, B, C, and D are all
C D

n X n and each commutes with all the others.

If M? = 0, show that (4 + D) = 0. [Hint: First

show that 4> = —BC = D? and that

BA+D)=0=CA + D).]

. If Ais 2 x 2, show that 4~ = A" if and only if

cos 0 sin 0
—sin 0 cos 6
sin 0

A= for some 0 or

cos 0
for some 6.

sin  —cos
[Hint: If * + #* = 1, then a = cos 6,

b = sin 6 for some 6. Use

cos(f — ¢) = cos 6 cos ¢ + sin 0 sin ¢.]

(a) If 4 = {(1) (1) , show that 4> = I.

(b) What is wrong with the following argument?
IfA> =1, then 4> — =0, so
A—-DA+1D)=0,whence A =ITorA=—1.

Let E and F be elementary matrices obtained
from the identity matrix by adding multiples of
row k to rows p and ¢. If £ # p and k& # ¢, show
that EF = FE.

If Ais a2 x 2 real matrix, 4> = A and
AT = A, show that either A is one of
{00}10{00}{10} _a b
b b b ’OrA_
00/1l00J[01]01 b 1—a
whereﬂz+b2:ﬂ,—%sb§%andb¢0.

Show that the following are equivalent for
matrices P, Q:

(1) P, Q,and P + Q are all invertible and
P+Q'=P'+0Q"

(2) Pis invertible and Q = PG where
G'+G+1=0.
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Determinants and
Diagonalization

With each square matrix we can calculate a number, called the determinant of the
matrix, which tells us whether or not the matrix is invertible. In fact, determinants
can be used to give a formula for the inverse of a matrix. They also arise in
calculating certain numbers (called eigenvalues) associated with a matrix. These
eigenvalues are essential to a technique called diagonalization that is used in many
applications where it is desired to predict the future behaviour of a system. For
example, we use it to predict whether a species will become extinct.

Determinants were first studied by Leibnitz in 1696, and the term “determinant”
was first used in 1801 by Gauss in his Disquisitiones Arithmeticae. Determinants are
much older than matrices (which were introduced by Cayley in 1878) and were
used extensively in the eighteenth and nineteenth centuries, primarily because of
their significance in geometry (see Section 4.4). Although they are somewhat less
important today, determinants still play a role in the theory and application of
matrix algebra.

The Cofactor Expansion

In Section 2.5 we defined the determinant of a 2 X 2 matrix 4 = [ﬂ b} as follows:'
ab ‘
¢
and showed (in Example 4) that A4 has an inverse if and only if det 4 # 0. One
objective of this chapter is to do this for any square matrix A. There is no difficulty
for 1 x 1 matrices: If 4 = [4], we define det A = det[a] = 2 and note that 4 is
invertible if and only if # # 0.

If A is 3 x 3 and invertible, we look for a suitable definition of det A by trying to
carry A to the identity matrix by row operations. The first column is not zero (A is
invertible); suppose the (1, 1)-entry # is not zero. Then row operations give

det A = =ad — bc

a b ¢ a b < a b ¢ a b ¢
A=|d ¢ f|—|ad ae af |—|0 ae—bd af —cd |=|0 u af — cd
g h i ag ab ai 0 ab—bg ai—cg 0 v ai —cg

where # = ae — bd and v = ab — bg. Since A is invertible, one of # and v is nonzero
(by Example 11 Section 2.4); suppose that # # 0. Then the reduction proceeds

1 Determinants are commonly written |A| = det A using vertical bars. We will use both notations.
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a b ¢ a b ¢ a b ¢
A—=|0 u af —cd |0 u af —cd |—|0 u af —cd
0 v ai —cg 0 wv u(ai — cg) 00 w
where w = u(ai — cg) — v(af — cd) = a(aei + bfg + cdbh — ceg — afb — bdi). We define
det A = aei + bfg + cdb — ceg — afb — bdi (%)
and observe that det 4 # 0 because 2 det A = w # 0 (is invertible).

T'o motivate the definition below, collect the terms in (x) involving the entries 4,
b, and ¢ in row 1 of A:

a b ¢
detA=|d e f| =uaei+ bfg+ cdb — ceg — afh — bdi
g b i
= a(ei — fh) — b(di — fg) + c(dh — eg)
d
=ﬂ€f—b j_f+cd€
b g gh

"This last expression can be described as follows: To compute the determinant of a
3 x 3 matrix A, multiply each entry in row 1 by a sign times the determinant of the
2 x 2 matrix obtained by deleting the row and column of that entry, and add the
results. The signs alternate down row 1, starting with +. It is this observation that
we generalize below.

237
det| -4 0 6 :2’0 © _3‘—46 +7‘—40
Ls ol Iso 10 15
= 2(=30) — 3(=6) + 7(~20)
- _182.

This suggests an inductive method of defining the determinant of any square
matrix in terms of determinants of matrices one size smaller. The idea is to define
determinants of 3 X 3 matrices in terms of determinants of 2 X 2 matrices, then we
do 4 x 4 matrices in terms of 3 X 3 matrices, and so on.

To describe this, we need some terminology.

Definition 3.1 Assume that determinants of (n — 1) X (n — 1) matrices have been defined. Given the
n X n matrix A, let

Ajj denote the (n — 1) X (» — 1) matrix
obtained from A by deleting row 7 and column ;.

Then the (i, j)-cofactor ¢;i(A) is the scalar defined by
ci(d) = (=1)" det(4;).
Here (—1)"7 is called the sign of the (i, j)-position.

The sign of a matrix is clearly 1 or —1, and the following diagram is useful for
remembering the sign of a position:
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Note that the signs alternate along each row and column with + in the upper
left corner.

Find the cofactors of positions (1, 2), (3, 1), and (2, 3) in the following matrix.

3 -16
A=|5 27
8 9 4

Solution » Here A, is the matrix g

ﬂ that remains when row 1 and column 2

are deleted. The sign of position (1, 2) is (=1)'*2 = —1 (this is also the
(1, 2)-entry in the sign diagram), so the (1, 2)-cofactor is

cpd) = (- 1)1+2

57—— . = . = (— = =
84’_(1)(5 4-7.8)=(=1)(=36) = 36

Turning to position (3, 1), we find

c1(A) = (—1)3+1det/131 = (—1)3+1

—16
= 1)(=7 —12) = —19
27\ (+1)( )

Finally, the (2, 3)-cofactor is
03(A) = (=17 det Ay3 = (=1)""

31, _
: 9’_( D@27 + 8) = —35

Clearly other cofactors can be found—there are nine in all, one for each
position in the matrix.

We can now define det A for any square matrix A.

Definition 3.2 Assume that determinants of (n — 1) X (n — 1) matrices have been defined. If A = [a;]
isn X n define
det 4 = ay1011(A) + arpc(A) + -+ + a1,61,(A)

This is called the cofactor expansion of det A along row 1.

It asserts that det A can be computed by multiplying the entries of row 1 by the
corresponding cofactors, and adding the results. The astonishing thing is that det 4
can be computed by taking the cofactor expansion along any row or column: Simply
multiply each entry of that row or column by the corresponding cofactor and add.
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Cofactor Expansion Theorem
The determinant of an n X n matrix A can be computed by using the cofactor expansion
along any row or column of A. That is det A can be computed by multiplying each entry
of the row or column by the corresponding cofactor and adding the results.

2

The proof will be given in Section 3.6.

34 5
Compute the determinantof 4 =| 1 7 2|
9 8 -6

Solution » The cofactor expansion along the first row is as follows:
det 4 = 3[‘11(14) + 4[12(14) + 5[‘13(14)
=37 2’_4’1 2‘+3‘1 7
8 —6 9 —6 98
= 3(—58) — 4(—24) + 5(-55)
= =52

Note that the signs alternate along the row (indeed along #ny row or column).
Now we compute det A by expanding along the first column.

dCtA = 36‘11(14) ar ICZI(A) ar 9[31(14)

_ 3|7 2‘_ 4 5‘+945

8 -6 I8 —6 72
= 3(=58) — (—64) + 9(=27)
=353

The reader is invited to verify that det A4 can be computed by expanding along
any other row or column.

The fact that the cofactor expansion along any row or column of a matrix A always
gives the same result (the determinant of A) is remarkable, to say the least. The
choice of a particular row or column can simplify the calculation.

300 O
512 0
Compute det A where 4 = 560 -1l
-631 0

2 The cofactor expansion is due to Pierre Simon de Laplace (1749-1827), who discovered it in 1772 as part of a study of linear
differential equations. Laplace is primarily remembered for his work in astronomy and applied mathematics.
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Solution » The first choice we must make is which row or column to use in the
cofactor expansion. The expansion involves multiplying entries by cofactors, so
the work is minimized when the row or column contains as many zero entries
as possible. Row 1 is a best choice in this matrix (column 4 would do as well),
and the expansion is

det A = 3¢1(A) + Ocy2(A) + 0cy3(A) + 0cp4(A)

12 0
=3l6 0 -1
31 0

"This is the first stage of the calculation, and we have succeeded in expressing the
determinant of the 4 X 4 matrix A4 in terms of the determinant of a 3 X 3 matrix.
The next stage involves this 3 x 3 matrix. Again, we can use any row or column for
the cofactor expansion. The third column is preferred (with two zeros), so

detA=3(O’6 v —(—1)’1 . +0‘1 2)
31 3 6 0

1
=3[0 + 1(=5) + 0]
=15

"This completes the calculation.

Computing the determinant of a matrix A can be tedious.’ For example, if A is a
4 x 4 matrix, the cofactor expansion along any row or column involves calculating
four cofactors, each of which involves the determinant of a 3 X 3 matrix. And if 4 is
5 x 5, the expansion involves five determinants of 4 x 4 matrices! There is a clear
need for some techniques to cut down the work.

The motivation for the method is the observation (see Example 4) that
calculating a determinant is simplified a great deal when a row or column consists
mostly of zeros. (In fact, when a row or column consists entirely of zeros, the
determinant is zero—simply expand along that row or column.)

Recall next that one method of creating zeros in a matrix is to apply elementary
row operations to it. Hence, a natural question to ask is what effect such a row
operation has on the determinant of the matrix. It turns out that the effect is easy
to determine and that elementary colummn operations can be used in the same way.
These observations lead to a technique for evaluating determinants that greatly
reduces the labour involved. The necessary information is given in Theorem 2.

Let A denote an n X n matrix.
1. IfA has a row or column of zeros, det A = 0.

2. Iftwo distinct rows (or columns) of A are interchanged, the determinant of the
resulting matrix is —det A.

3 abc
IfA=|d e f|, we can calculate det A by considering

abcab
defde
ghi ghigh
det A = aei + bfg + cdh — ceg — afh — bdi, where the positive terms aei, bfg, and cdh are the products down and to the right
starting at a, b, and ¢, and the negative terms ceg, afh, and bdi are the products down and to the left starting at ¢, a, and b.
Warning: This rule does not apply to n x n matrices where n > 3 or n = 2.

obtained from A by adjoining columns 1 and 2 on the right. Then
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3. Ifarow (or column) of A is multiplied by a constant u, the determinant of the
resulting matrix is u(det A).

If two distinct rows (or columns) of A are identical, det A = 0.

5. If a multiple of one row of A is added to a different row (or if a multiple of a column is
added to a different column), the determinant of the resulting matrix is det A.

We prove properties 2, 4, and 5 and leave the rest as exercises.

Property 2. If A is n X n, this follows by induction on 7. If n = 2, the verification
is left to the reader. If » > 2 and two rows are interchanged, let B denote the
resulting matrix. Expand det A and det B along a row other than the two that
were interchanged. The entries in this row are the same for both A4 and B, but
the cofactors in B are the negatives of those in A (by induction) because the
corresponding (7 — 1) X (n — 1) matrices have two rows interchanged. Hence,
det B = —det A4, as required. A similar argument works if two columns are
interchanged.

Property 4. If two rows of A are equal, let B be the matrix obtained by
interchanging them. Then B = A4, so det B = det A. But det B = —det 4 by
property 2, so det A = det B = 0. Again, the same argument works for columns.

Property 5. Let B be obtained from A = [4;] by adding « times row p to row

g- Then row g of Bis (a, + uayy, a,, + uay, ..., a,, + uay,). The cofactors of
these elements in B are the same as in 4 (they do not involve row ¢): in symbols,
¢,i(B) = ¢,(A) for each j. Hence, expanding B along row ¢ gives

det B = (ﬂql + ”ﬂpl)cql(A) + (ﬂqZ + uﬂpZ)CqZ(A) + e+ (ﬂqn + ”ﬂpn)cqn(A)
= [ﬂqlcql(A) + ﬂqZCqZ(A) + o+ ﬂqncqn(A)]
+ Zl[ﬂplcql(lél) + ﬂpZCqZ(A) + oo+ ﬂpncqn(A)]
=detA + udet C

where C is the matrix obtained from A by replacing row ¢ by row p (and both
expansions are along row ¢). Because rows p and ¢ of C are equal, det C = 0 by
property 4. Hence, det B = det A, as required. As before, a similar proof holds
for columns.

To illustrate Theorem 2, consider the following determinants.

3 times the second row of the matrix on the right)

3 -1 2

2 5 1/=0 (because the last row consists of zeros)
0 00

3 -1 5 5-13

2 8 7/=-]7 8 2| (because two columns are interchanged)
1 2 -1 -1 21

8 1 2 8 1 2

30 9= 3 10 3 (because the second row of the matrix on the left is
1

2

4

1

0 4/=0 (because two columns are identical)
31



132 Chapter 3 Determinants and Diagonalization

252 09 20
-1 29(=|-12 9 (because twice the second row of the matrix on the
311 31 1 left was added to the first row)

The following four examples illustrate how Theorem 2 is used to evaluate determinants.

1 -1 3
Evaluate det A when A =1 0 -1}
2 1 6

Solution » The matrix does have zero entries, so expansion along (say) the
second row would involve somewhat less work. However, a column operation
can be used to get a zero in position (2, 3)—namely, add column 1 to column 3.
Because this does not change the value of the determinant, we obtain

1 -1 3 1 -1 4

detd=|1 0 -1|=|1 oo:—‘_ ’=12
2 1 6 2 18
where we expanded the second 3 x 3 matrix along row 2.
a b c atx bty ctz
If det| p g 7 |= 6, evaluate det A where A =| 3y 3y 32
ryz P g T

Solution P First take common factors out of rows 2 and 3.

atx bty ctz
det A = 3(—1) det| « y z

p q v
Now subtract the second row from the first and interchange the last two rows.

a b ¢ a b ¢
dCtA=—3detxyz=3d€tpqr=3'6=18
pq?" xyz

The determinant of a matrix is a sum of products of its entries. In particular, if
these entries are polynomials in x, then the determinant itself is a polynomial in x. It
is often of interest to determine which values of x make the determinant zero, so it
is very useful if the determinant is given in factored form. Theorem 2 can help.

Find the values of « for which det A = 0, where 4 =

K 8
K —~ R
—_K] R
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Solution » To evaluate det A4, first subtract x times row 1 from rows 2 and 3.

L& & Lo g -2 x—a?
detA=|x 1 x|=|0 1-4> x—4"|= 5 5
v x 1 0 x—o 1-4 roa dow

At this stage we could simply evaluate the determinant (the result is

2x° — 3%* + 1). But then we would have to factor this polynomial to
find the values of x that make it zero. However, this factorization can
be obtained directly by first factoring each entry in the determinant and
taking a common factor of (1 — x) from each row.

1-2)0+x) x(0-w)
x(1—x) A—-2)1+ )

1+
det 4 = v

=1 — )’
( %) x 14+

=1 -2)’Qx+1)
Hence, det 4 = 0 means (1 — x)°Qx + 1) = 0, thatisa = 1 or x = —

1
Ph

If 41, @y, and a5 are given show that

1 o af

det|1 o a3 |= (a3 — ay)(az — ay)(a; — ay)
1 o 43

Solution > Begin by subtracting row 1 from rows 2 and 3, and then expand
along column 1:

2 2
1 o 4 1 m ai a2
2 (G i
det|1 @ a3 |=det|0 a, —a; 4} — af |=det S
Zy = th T G
2 2 2
1 5 n 0 a3 —m a5 — af

Now (2, — a1) and (43 — a1) are common factors in rows 1 and 2, respectively, so

1 a4 af L
a a
det| 1 175) ﬂ% = (ﬂz — ﬂ])(ﬂ3 = ﬂl) det ! !

1 o a3

1 a3+ m

= (@ — a))az — ay)(az — ay)

The matrix in Example 8 is called a Vandermonde matrix, and the formula for its
determinant can be generalized to the # X 7 case (see Theorem 7 Section 3.2).

If A is an # X »n matrix, forming z4 means multiplying every row of A by .
Applying property 3 of Theorem 2, we can take the common factor # out of each
row and so obtain the following useful result.

If A is ann X n matrix, then det(uA) = u"det A for any number u.
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The next example displays a type of matrix whose determinant is easy to compute.

a 0 00
Evaluate det A if 4 = | " b 00 I
v w0
x y 2z d
b 00
Solution » Expand along row 1 to get det 4 = a/w ¢ 0. Now expand this along the
vz d

top row to get det A = ab| ¢ O‘ = abed, the product of the main diagonal entries.
z

A square matrix is called a lower triangular matrix if all entries above the main
diagonal are zero (as in Example 9). Similarly, an upper triangular matrix is one
for which all entries below the main diagonal are zero. A triangular matrix is one
that is either upper or lower triangular. Theorem 4 gives an easy rule for calculating
the determinant of any triangular matrix. The proof is like the solution to Example 9.

If A is a square triangular matrix, then det A is the product of the entries on the
main diagonal.

Theorem 4 is useful in computer calculations because it is a routine matter to carry
a matrix to triangular form using row operations.

Block matrices such as those in the next theorem arise frequently in practice, and
the theorem gives an easy method for computing their determinants. This dovetails
with Example 11 Section 2.4.

Consider matrices Kl) ‘);] and [A 0

Y B

} in block form, where A and B are square

matrices. Then
det{A X} = det A det B and det{A 0} = det A det B
0B Y B

Write T'= KI) }lﬂ and proceed by induction on # where 4 is k X k. If k =1, it

is the Laplace expansion along column 1. In general let S{7") denote the matrix
obtained from T by deleting row 7 and column 1. Then the cofactor expansion of
det T along the first column is

det T = ay,det(S\(T)) — ay,det(Sy(T)) + -+ + apdet(S(T)) (%)
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where 411, 451, ..., 431 are the entries in the first column of A. But

SiA) X; .
S(T) = foreachi =1, 2, ..., k, so det(S(T")) = det(S;(A)) - det B
by induction. Hence, equation () becomes

det T = {a;det(S|(T)) — ay;det(Sy(T)) + -++ + a4,;det(S,(T))} det B
= {det A} det B

as required. The lower triangular case is similar.

203 13] |21 33
L2 -1 1| 121 2o
det =— =_‘ H ‘z__3 —-3)= -9
Mo 1 01" "o o 1177 <1lls 1| =D
04 01] 100 41

The next result shows that det A is a linear transformation when regarded as a
function of a fixed column of A. The proof is Exercise 21.

Given columns ¢y, ..., €, Cjyy, ..., C, in R, define T: R" — R by
T(x) = det[e; -+ ¢ X ¢y -+

Then, for all x and y in R"” and all a in R,
Tx +y) = T(x) + T(y) and T(ax) = a1(x)

¢c,] for all x in R”".

EXERCISES 3.1

1. Compute the determinants of the following 01 -10 10 31
matrices. ® (3) (1) (2) i o) ? 2 60
(2 -1 [6 9 103
(@ s +(b) 812] 50 07 41120
[ 2 i 31 -5 2 4 -1 3 -1
a” ab atl a
©1 bz} O w13 0 1] 302
: 0 3 10 5 2 0 1 2 2
0 —sinf — -
© 0950 sme} W12 s :1 1 2 -1 1 2 -1 1
|sm 6 cos 03 0 1-15 5 000«
(123 [0 2 0] |3 12 4 ‘(p)OObp
@456 o) |5 ¢ 4 -1 38 0 0 cgqk
L7 89 0eO 12 -1 d st u
1 b (0 4 b 2. Show that det A = 0 if 4 has a row or column
G o) |a 0 consisting of zeros.
¢
Le 10 Lo 0] 3. Show that the sign of the position in the last row

and the last column of 4 is always +1.
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4. Show that det I = 1 for any identity matrix L.

5. Evaluate the determinant of each matrix by
reducing it to upper triangular form.

Determinants and Diagonalization

of) det(d”) = —det A.
(g) det(—A) = —det A.

o(h) If det A = det B where A and B are the same
size, then 4 = B.

10. Compute the determinant of each matrix, using
Theorem 5.

1 -12 -1 31
@13 11 «b)| 2 53
12 -1 3 | 1-21
(-1 -1 10 23 11

2 1 13 02 -13
C +(d
()0112 ()0511
13 -12 111 25

6. Evaluate by cursory inspection:

a b c
(@) det| g+1 b+1 c+1
|a—1 b—1 ¢c—-1

a b ¢
o(b) det| s+b 26 c+b
2 2 2

1 -120 -2 12 030
0 104 1 -13 140
@1 150 of «®| 00 211
0 003 -1 00 -102
0 001 1 00 301
11. If det A = 2, det B = —1, and det C = 3, find:
(4 X Y] (4 0 0]
(@) det| 0 B Z +(b) det| X B 0
L0 0 C] Y 7z C|]
(4 X Y (4 X 0]
() detfo B 0 o(d) det| 0 B 0
10 Z C| LY Z CJ

a

b
7. If det 7
y

1 K]

—X

¢
» | = —1, compute:

pe

-y -z

(a) det

3p+a 3q+b 3r+c

12. If A has three columns with only the top two
entries nonzero, show that det 4 = 0.

13. (a) Find det A if A is 3 x 3 and det(24) = 6.
(b) Under what conditions is det(—A4) = det A?

| 2p 2q 2r

[ 22 20 -2

o(b) det| 2p+x 2g+y 2r+z

L 3x 3y 3z

8. Show that:

[p+x qg+y r+z

@ det| y4x bty c+z|=2det
la+p b+q c+r

® X
SIS

_2ﬂ+p 2b+q 2c+r
+(b) det ptx 2ty Wtz =9 det »
| 2x+a 2y+b 2z2+c¢ x

¢
,
z
b
q
Y

[N B T

9. In each case either prove the statement or give
an example showing that it is false:

(a) det(A + B) = det A + det B.
+(b) If det A = 0, then A has two equal rows.
(c) If A is 2 x 2, then det(4”7) = det A.

+(d) If R is the reduced row-echelon form of A,
then det 4 = det R.

(e) If Ais 2 x 2, then det(74) = 49 det A.

14. Evaluate by first adding all other rows to the first

row.
[x=1 2 3
(a) det| 2 -3 x-2
| =2 x 2
(-1 =3 1
o(b) det| 2 -1 x-1
L =3 «xt2 -2
5-1«
15. (a) Findbifdet] 2 6 y|=ax+by+ cz.
-5 4 =z
2 x —1]
+(b) Find cif det| 1 y 3|=ax+by+cz
-3z 4
16. Find the real numbers x and y such that
det 4 = 0 if:
0 x y 1 «x
@A=|y0 x o(b) A=|-x -2
xy 0 X X~



17.

18.

19.

20.

21.

22.
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2,3

1 x x « x y00
2 .3
©A=|% > * 1 ‘(d)A:OxyO
231 x 00« y
21 x a? y0 0«
(0111
Show that det 10w = —34%.
1x 0«
L1 xx O
_Ixxz x
a1 x &
Show that det
pb 1 «
qr ¢ 1

= = a1 — b)(1 — ).

Given the polynomial p(x) = & + bx + o + dv’ + &,

0O 1 0 O
. 0O 0 1 O

h =
the matrix C 0 0 0 1
—a —b —c —d

is called the companion matrix of p(x).

Show that det(x] — C) = p(x).

a+x b+x c+x
Show that det| b+x c+x a+x
c+x a+x b+x
=@+ b+ c+30)[@b+ ac+ bd) — (@ + B + ).

Prove Theorem 6. [Hint: Expand the
determinant along column ;]

Show that
0 0 0 4
0 0 ey %
det| : = (=D*a1ay-+-a,
0 ay-1 * *
an * * ES

23.

*24.

25.

26.

27.

where either n = 2k or » = 2k + 1, and *-entries
are arbitrary.

By expanding along the first column, show that:

110000
011000
e
0000 --11
100001
if the matrixis # X n, n > 2.

Form matrix B from a matrix A4 by writing the
columns of A in reverse order. Express det B in
terms of det A4.

Prove property 3 of Theorem 2 by expanding
along the row (or column) in question.

Show that the line through two distinct points
(%1, y1) and (xy, y,) in the plane has equation
x oy 1
det| » y 1|=0.
x 1
Let A be an 7 X » matrix. Given a polynomial

px) =ag + ayx + -+ + a,x”, we write

pA) = apl + ;A + -+ + a,,A”.

For example, if p(x) = 2 — 3x + 54, then

p(A) = 21 — 34 + 5A°. The characteristic
polynomial of A is defined to be

c4() = det[x] — A], and the Cayley-Hamilton
theorem asserts that ¢4(4) = 0 for any matrix A.

(a) Verify the theorem for

(i)A:B _ZJ and (i) A =

D O =
N =
N O =

ab

(b) Prove the theorem for A = f
c

Determinants and Matrix Inverses

In this section, several theorems about determinants are derived. One consequence
of these theorems is that a square matrix A is invertible if and only if det 4 # 0.
Moreover, determinants are used to give a formula for A~! which, in turn, yields
a formula (called Cramer’s rule) for the solution of any system of linear equations
with an invertible coefficient matrix.

We begin with a remarkable theorem (due to Cauchy in 1812) about the
determinant of a product of matrices. The proof is given at the end of this section.

137
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Product Theorem
If A and B are n X n matrices, then det(4AB) = det A det B.

The complexity of matrix multiplication makes the product theorem quite
unexpected. Here is an example where it reveals an important numerical identity.

ab cd ac—bd  ad + be
—b a —d ¢ —(ad + bo) ac — bd]|
Hence det A det B = det(4B) gives the identity

@ + )@ + &) = (ac — bd)* + (ad + be)’

IfA:{ }andB:

}, then AB =

Theorem 1 extends easily to det(4BC) = det A det B det C. In fact, induction gives
det(A1A2 .. 'Ak—lAk) = det Al det Az ---det Ale—l det A/e

for any square matrices Ay, ..., A of the same size. In particular, if each 4; = A4,
we obtain
det(4") = (det A* for any k > 1

We can now give the invertibility condition.

Ann X n matrix A is invertible if and only if det A # 0. When this is the case,

det(4~!) = dei )

If A is invertible, then A4~" = I so the product theorem gives
1 =det=det(447") = det A det A"

Hence, det 4 # 0 and also det 47! = 1
det A

Conversely, if det 4 # 0, we show that 4 can be carried to I by elementary
row operations (and invoke Theorem 5 Section 2.4). Certainly, A can be
carried to its reduced row-echelon form R, so R = E---E,E,A where the E; are
elementary matrices (Theorem 1 Section 2.5). Hence the product theorem gives

det R = det B}, --- det E, det E; det A

Since det £ # 0 for all elementary matrices E, this shows det R # 0. In
particular, R has no row of zeros, so R = I because R is square and reduced
row-echelon. This is what we wanted.
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10 —¢
For which values of cdoes A =|—1 3 1 |have an inverse?
0 2c 4

Solution » Compute det A by first adding ¢ times column 1 to column 3 and
then expanding along row 1.

1 0 —¢ 1 0 O
detA=det| -1 3 1|=det|-1 3 1-¢|=2(+ 2)c—3).
0 2c —4 0 2c —4

Hence, det 4 = 0 if c = —2 or ¢ = 3, and A has an inverse if ¢ # —2 and ¢ # 3.

If a product 4,4, --A;, of square matrices is invertible, show that each A4; is
invertible.

Solution » We have A4A;---A; = det(A,4;---Ay;) by the product theorem, and
det(4,A4,---Ay) # 0 by Theorem 2 because AA4,---A, is invertible. Hence

det A; det A, --- det A, # 0,

so det A; #+ 0 for each 7. This shows that each 4, is invertible, again by
Theorem 2.

If A is any square matrix, det A" = det A.

Consider first the case of an elementary matrix E. If E is of type I or II, then
E" = E; so certainly det E = det E. If E is of type III, then E” is also of type
IIT; so det E” = 1 = det E by Theorem 2 Section 3.1. Hence, det E” = det E
for every elementary matrix E.

Now let A be any square matrix. If 4 is not invertible, then neither is A”; so
det AT =0=detA4 by Theorem 2. On the other hand, if 4 is invertible, then
A = Ey---E,Eq, where the E; are elementary matrices (Theorem 2 Section 2.5).

Hence, AT = ETET...ET so the product theorem gives
det AT = det ETdet ET -+ det Ef = det E, det E, --- det E,

= det E}, --- det E, det E;
=detA

"This completes the proof.
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If det A = 2 and det B = 5, calculate det(4’B~'4"B?).

Solution » We use several of the facts just derived.
det(A’B'ATB?) = det(A4?) det(B)det(4T)det(B?)

= (det A)} delt - det A(der B)
=23, % .2 .52
= 80

A square matrix is called orthogonal if A~' = A”. What are the possible values
of det A if A is orthogonal?

Solution b If A is orthogonal, we have I = AA4". Take determinants to obtain
1 = det I = det(4A4") = det A det AT = (det A)*. Since det A is a number, this
means det 4 = 1.

Hence Theorems 4 and 5 of Section 2.6 imply that rotation about the origin
and reflection about a line through the origin in R* have orthogonal matrices with
determinants 1 and —1 respectively. In fact they are the only such transformations
of R?. We have more to say about this in Section 8.2.

Adjugates

In Section 2.4 we defined the adjugate of a 2 x 2 matrix A =
¢
adj4) = [ d _b}. Then we verified that A(adj A) = (det A)I = (adj A)A4 and hence

—C a

a b to be

that, if det 4 # 0, 4" = i 114 adj A. We are now able to define the adjugate of an
e

arbitrary square matrix and to show that this formula for the inverse remains
valid (when the inverse exists).

Recall that the (4, j)-cofactor ¢;(A) of a square matrix A4 is a number defined for
each position (7, 7) in the matrix. If A is a square matrix, the cofactor matrix of A
is defined to be the matrix [¢;(4)] whose (i, j)-entry is the (4, j)-cofactor of A.

The adjugate® of A, denoted adj(A), is the transpose of this cofactor matrix; in symbols,
adj() = [e()]”

This agrees with the earlier definition for a 2 x 2 matrix 4 as the reader can verify.

4 This is also called the classical adjoint of A, but the term “adjoint” has another meaning.
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1 3 =2
Compute the adjugate of A =| 0 1 5 |and calculate A(adj A) and (adj A)A.
-2 =6 7
Solution b We first find the cofactor matrix.
|1 s o s 0 1]
a1(A) ax(d) e3(A) g _Z 21 _; i 2
e1(A) en(Ad) o3(d) |=|- -6 7 -2 70 T|-2 =6
61(A) 62(A) 53(A) 3 -2 1 =2 1 3
115l To s 0 1/
[37 -10 2
=-9 30
L17 =5 1

Then the adjugate of A is the transpose of this cofactor matrix.
37 -10 217 37 -9 17
adjd=|-9 30 =-10 3 -5
17 =51 2 0 1
The computation of A(adj A) gives
1 3 -2 37 -9 17 300
A@djd)=| 0 1 5(|-10 3 =5|=|0 3 0|=3I
-2 -6 7 2 0 1 003

and the reader can verify that also (adj A)4 = 3I. Hence, analogy with the
2 x 2 case would indicate that det A = 3; this is, in fact, the case.

The relationship A(adj A) = (det A)I holds for any square matrix 4. To see why
this is so, consider the general 3 x 3 case. Writing ¢;(4) = ¢; for short, we have

T

a1 62 a3 1 €1 631
adjd=\c;; 3y o3| =|ey cm o5
€31 €32 €33 3 €3 €33

If A = [4;] in the usual notation, we are to verify that A(adj 4) = (det A)I. That is,

ap my M3 || €1 631 detA 0 0
A@djA) = | ay ayn a3 || o (=] 0 detd 0
a3y a3y 433 || €13 €23 €33 0 0 detAd

Consider the (1, 1)-entry in the product. It is given by a11c11 + a15¢12 + a13¢13, and
this is just the cofactor expansion of det 4 along the first row of A. Similarly, the
(2, 2)-entry and the (3, 3)-entry are the cofactor expansions of det 4 along rows 2
and 3, respectively.

So it remains to be seen why the off-diagonal elements in the matrix product
A(adj A) are all zero. Consider the (1, 2)-entry of the product. It is given by
a11621 + a1262; + ag363. This looks like the cofactor expansion of the determinant of
some matrix. To see which, observe that ¢;y, ¢35, and ¢,3 are all computed by deleting
row 2 of A (and one of the columns), so they remain the same if row 2 of 4 is
changed. In particular, if row 2 of A4 is replaced by row 1, we obtain
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41 4y 413
a6y + ane + apes = det| 4y ayy a3 (=0
a3y 43y 433
where the expansion is along row 2 and where the determinant is zero because two rows

are identical. A similar argument shows that the other off-diagonal entries are zero.
This argument works in general and yields the first part of Theorem 4. The

second assertion follows from the first by multiplying through by the scalar

Adjugate Formula
If A is any square matrix, then

A(adj A) = (det A)I = (adj A)A
In particular, if det A # 0, the inverse of A is given by

1
det A

= deiA adj 4

It is important to note that this theorem is not an efficient way to find the inverse
of the matrix 4. For example, if 4 were 10 x 10, the calculation of adj 4 would
require computing 10* = 100 determinants of 9 x 9 matrices! On the other hand,
the matrix inversion algorithm would find A~" with about the same effort as finding
det 4. Clearly, Theorem 4 is not a practical result: its virtue is that it gives a
formula for A~" that is useful for theoretical purposes.

2 1 3
Find the (2, 3)-entry of A" if A =|5 -7 1|
30 -6
201 3 2 17 -
Solution P First compute det 4 =|5 =7 1|=1(5 =7 11|= 3‘ 2 11’ = 180.
306 (3 00 B
Since A~ = deiA adj A = LJe,(A)]7, the (2, 3)-entry of A" is the (3, 2)-entry
of the matrix ;1[¢;(A)]; that is, it equals 515¢32(A4) = 75 (— ? i D =2

If Ais n x n, n = 2, show that det(adj A) = (det A)"~".

Solution » Write d = det A; we must show that det(adj 4) = &"~'. We have
A(adj A) = dI by Theorem 4, so taking determinants gives d det(adj A) = d".
Hence we are done if d # 0. Assume 4 = 0; we must show that det(adj A) = 0,
that is, adj A is not invertible. If 4 +# 0, this follows from A(adj A) = dI = 0; if
A = 0, it follows because then adj 4 = 0.
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Cramer’s Rule

Theorem 4 has a nice application to linear equations. Suppose

Ax=Db
is a system of 7 equations in 7 variables xy, x3, ..., x,. Here A is the n x 7 coefficient
matrix, and x and b are the columns
X1 bl
x b
x=|"2 and b=|"?
xn bﬂ

of variables and constants, respectively. If det A # 0, we left multiply by 4" to
obtain the solution x = A~'b. When we use the adjugate formula, this becomes

X1
%= L adj )b
: detA(a 14
xn
a1 o) oAb
_ 1 [ o - @) || b
det A : : : :
Cln(A) CZn(A) Gy (A) hn
Hence, the variables xy, xy, ..., x,, are given by
w1 = L lhen () + ben() + -+ byen ()]
3y = 2 [biep() + baen(A) + - + by A)]
det A . .
2= by (A + baeo(A) + - + by A)]
det A

Now the quantity byc;1(A) + byer1(A) + -+ + bye,1(A) occurring in the formula for
x1 looks like the cofactor expansion of the determinant of a matrix. The cofactors
involved are ¢;1(A4), &1(A4), ..., ¢,1(A), corresponding to the first column of A. If A,

is obtained from A by replacing the first column of A by b, then ¢;;(4;) = ¢;;(A) for
each 7 because column 1 is deleted when computing them. Hence, expanding det(4;)
by the first column gives

det Ay = byey(Ay) + byery(Ay) + -+ + byen(Ay)
= biep(A) + byeyy(A) + -+ + bye,(A)
= (det A)x;

det Al, and similar results hold for the other variables.

det A

Cramer’s Rule’
If A is an invertible n X n matrix, the solution to the system

Hence, x; =

Ax=Db
of n equations in the variables x1, x, ..., X, is given by
xl:detAl xz:detAz . :detA,,
det A’ det A’ " det A

where, for each k, Ay is the matrix obtained from A by replacing column k by b.

5  Gabriel Cramer (1704-1752) was a Swiss mathematician who wrote an introductory work on algebraic curves. He popularized the
rule that bears his name, but the idea was known earlier.
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Find x4, given the following system of equations.
5.76‘1 AP Gy = X3 = 4
9.76‘1 + X) — .X'3 = 1
X1 — X + 5.76’3 = 2
Solution » Compute the determinants of the coefficient matrix 4 and the matrix
A; obtained from it by replacing the first column by the column of constants.

[5 1 ~1]
detA=det|9 1 -1|=-16
11 -1 5]
(4 1 -1]
detA; =det|1 1 -1|=12
L2 -1 5]
Hence, x; = iﬁcttill = —% by Cramer’s rule.

Cramer’s rule is 7ot an efficient way to solve linear systems or invert matrices.
True, it enabled us to calculate x| here without computing x, or x3. Although
this might seem an advantage, the truth of the matter is that, for large systems
of equations, the number of computations needed to find 4/ the variables by
the gaussian algorithm is comparable to the number required to find one of the
determinants involved in Cramer’s rule. Furthermore, the algorithm works when
the matrix of the system is not invertible and even when the coefficient matrix
is not square. Like the adjugate formula, then, Cramer’s rule is zot a practical
numerical technique; its virtue is theoretical.

Polynomial Interpolation

A forester wants to estimate the age (in years) of a tree by measuring the
diameter of the trunk (in cm). She obtains the following data:

Treel | Tree2 | Tree 3
Trunk Diameter 5 10 15
Age 3 5 6

Estimate the age of a tree with a trunk diameter of 12 cm.

Solution » The forester decides to “fit” a quadratic polynomial
p@) = 7o + rix + 7y’

to the data, that is choose the coefficients 7y, 71, and 7, so that p(5) = 3,

p(10) = 5, and p(15) = 6, and then use p(12) as the estimate. These conditions
give three linear equations:

ro+ Sri+ 251, =3
7o + 107 + 1007, =5
7o+ 157 + 2251, = 6
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. . . _ _ 7 _ 1
The (unique) solution is 7y = 0, 7y = {5, and 7, = —;, so

plx) = %x — %xz = %x(35 — x).

Hence the estimate is p(12) = 5.52.

As in Example 10, it often happens that two variables x and y are related but
the actual functional form y = f(x) of the relationship is unknown. Suppose that
for certain values xy, x5, ..., x, of x the corresponding values yy, y, ..., y, are
known (say from experimental measurements). One way to estimate the value of y
corresponding to some other value  of x is to find a polynomial®

pE) = 7o + rix x4 )

that “fits” the data, that is p(x;) = y; holds for each 7 = 1, 2, ..., n. Then the estimate

for y is p(a). As we will see, such a polynomial always exists if the x; are distinct.
The conditions that p(x;) = y; are

2 =2
70 + 71X + X7 + -+ 7’,2_196'711 :_)/1
2 =2
70 + 71Xy + 1X5 + -+ Vn_lxizz ="
) ) 2 R
7o+ X, X e Xy =Jn
In matrix form, this is
2 n—1
1 X1 Xp ot oX
0 )1
1 2 n—1 ’
X3 X2 *2 1|02 (%)
1 2 n—-1 Tpn—1 In
Xy Xy ot Xy

It can be shown (see Theorem 7) that the determinant of the coefficient matrix
equals the product of all terms (x; — x;) with 7 > ; and so is nonzero (because the «;

are distinct). Hence the equations have a unique solution 7y, 74, ..., 7,_;. This proves
Let n data pairs (x1, y1), (X2, ¥2), ---, (X, ¥») be given, and assume that the x; are distinct.

Then there exists a unique polynomial

plx) =7 + 1 + rzxz + -+ Tn_lx"_l

such that p(x;) = y; foreachi =1, 2, ..., n.

The polynomial in Theorem 6 is called the interpolating polynomial for the data.
We conclude by evaluating the determinant of the coefficient matrix in (x).
If 4y, a5, ..., a, are numbers, the determinant

6 A polynomial is an expression of the form &, + a,x + @X° + --- + a,X" where the a,are numbers and xis a variable. If a, # 0,
the integer n s called the degree of the polynomial, and a, is called the leading coefficient. See Appendix D.
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_ , o1
1 ay af - @
2 n—1
1 ay a5 -+ a5
-1
det 1 as ﬂ% 4737
2 n—1
_1 Ay @y - dy

is called a Vandermonde determinant.” There is a simple formula for this
determinant. If # = 2, it equals (a, — ay); if n = 3, itis (a3 — ay)(a3 — @)@ — ay)
by Example 8 Section 3.1. The general result is the product

H15j<i5n(ﬂi - ﬂj)

of all factors (#; — ;) where 1 < j < i < n. For example, if n = 4, it is

(a4 — @3)ag — m)(ay — ar)az — ay)(a3 — ay)(ay — ay).

Let ay, ay, ..., a, be numbers where n > 2. Then the corresponding Vandermonde
determinant is given by

~17

1 a ai - af
-1

1 a, a3 - 4}

; 1| _
det|1 a3 a3 - a3 |= H1sj<i5n(ﬂi—ﬂj)

-1

1 a, a2 - a,

We may assume that the 4; are distinct; otherwise both sides are zero. We
proceed by induction on z > 2; we have it for » = 2, 3. So assume it holds for
n — 1. The trick is to replace 4, by a variable x, and consider the determinant

~17
1 o a4 - 4
-1
1 o & - &
plx) = det|: : :
2 n—1
1 Ay-1 dy_y oo Ay
1 2 n—1
L x x “en x i

Then p(x) is a polynomial of degree at most z — 1 (expand along the last row),
and p(a;) = 0 fori =1, 2, ..., » — 1 because in each case there are two identical
rows in the determinant. In particular, p(#;) = 0, so we have p(x) = (x — 2)p;(x)
by the factor theorem (see Appendix D). Since 4, # 47, we obtain p;(4;) = 0, and
s0 p1(x) = (x — ap)py(x). Thus p(x) = (x — a1)(x — ay)pr(x). As the 4; are distinct,

this process continues to obtain

p) = (v — a)x — ay)---(v — @,1)d ()

7 Alexandre Théophile Vandermonde (1735-1796) was a French mathematician who made contributions to the theory of equations.
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where d is the coefficient of & !

the last row we get

in p(x). By the cofactor expansion of p(x) along

1 o & a7
1 o & - &7
d= (_1)n+7z det . ‘Z .2 2.
2 n—2
1 a4, O Ay
Because (—1)"*" = 1, the induction hypothesis shows that 4 is the product of all

factors (#; — a)) where 1 <j <i <n — 1. The result now follows from (x*) by
substituting #,, for x in p(x).

PROOF OF THEOREM 1

If A and B are » x n matrices we must show that
det(4B) = det A det B. (%)

Recall that if E is an elementary matrix obtained by doing one row operation

to 1,, then doing that operation to a matrix C (Lemma 1 Section 2.5) results in
EC. By looking at the three types of elementary matrices separately, Theorem 2
Section 3.1 shows that

det(EC) = det E det C  for any matrix C. (x%)
Thus if £y, E,, ..., E are all elementary matrices, it follows by induction that
det(Ey--E,EC) = det E, --- det E; det Ey det € for any matrix C.  (sskx)
Lemma. If A has no inverse, then det A = 0.

Proof. Let A — R where R is reduced row-echelon, say E,---E,E1A = R. Then
R has a row of zeros by Theorem 5(4) Section 2.4, and hence det R = 0. But
then (xxx) gives det 4 = 0 because det E # 0 for any elementary matrix E. This
proves the Lemma.

Now we can prove (x) by considering two cases.

Case 1. A has no inverse. Then AB also has no inverse (otherwise A[B(AB)™'] = I
so A is invertible by the Corollary 2 to Theorem 5 Section 2.4). Hence the above
Lemma (twice) gives

det(AB) = 0 = 0 det B = det A det B.
proving () in this case.

Case 2. A bas an inverse. Then A is a product of elementary matrices by Theorem
2 Section 2.5, say A = EE;...E;. 'Then (x%x) with C = [ gives

det A = det(E\E;---E;) = det E; det E; --- det E,.
But then (xxx) with C = B gives
det(AB) = det[(E\E;---E;)B] = det E; det E, --- det E, det B = det A det B,

and (x) holds in this case too.
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EXERCISES 3.2

1. Find the adjugate of each of the following

matrices.
513 1 -12
@ -1 2 3 «®) |3 10
| 148 0 -1 1
1 0 -1 -1 2 2
©-1 1 0 od 3 2 -1 2
L0 -1 1 2 2 -1

2. Use determinants to find which real values of ¢
make each of the following matrices invertible.

1 03 [0 ¢ -¢
@[3 -4 ¢ «b) -1 2 1
12 58 L ¢ —¢c ¢
c 10 (4 ¢ 3
©) 02 ¢ od) ¢ 2 ¢
-1 ¢ 5 15 ¢ 4
(1 2 -1 (1 ¢ -1
© 10 -1 ¢ o) lc1 1
12 ¢ 1 101 ¢

3. Let A, B, and C denote n X n matrices and
assume that det 4 = —1, det B = 2, and

det C = 3. Evaluate:
(@) det(4’BCTB™Y)  o(b) det(B*C'AB'CT)

4. Let A and B be invertible #» X # matrices.
Evaluate:

(a) det(B~'4B) +(b) det(4~'B~'4B)

5. IfAis 3 x 3 and det24™") = —4 = det(A* B,

find det A and det B.
a b ¢
6. LetA=|p ¢ r |and assume that det 4 = 3.
u v ow
Compute:
4u 2a —p
(a) det2B~") where B =| 49 2 —q
4w 2¢ —r

2p —atu 3u
29 —=b+v 3v
2r —ctw 3w

+(b) det2C™") where C =

Determinants and Diagonalization

ab
C
(2 -2 0
() det| c+1 -1 24
ld=2 2 2

[ 20 0 44
ob) det| 1 2 -2
La+1 2 2(c-1)

(c) det(34~") where A :[3c ﬂ+c}
3d b+d

7. If det

= —2, calculate:

8. Solve each of the following by Cramer’s rule:

ob) 3x+4 = 9
2x— y=-1

@ 2x+ y= 1
3w +7y=-2
© Se+y— z2==7 ¢d) 4x— y+3z= 1
2x—y—2z= 6 6x+2y— z= 0
3x + 22 =7 3x 4+ 3y + 2z =~1

9. Use Theorem 4 to find the (2, 3)-entry of A7V

321 1 2 -1
@A=| 112 sb) A=13 1 1
-121 04 7
10. Explain what can be said about det A if:
() A* =4 ob) A =1
() A =4

+(d) PA =P and Pisinvertible
(e) A =uA andAisn X n
of) A=—-A" andAisn x n
(g)A2+I=O and Aisn X n

11. Let A be n X n. Show that uA = (ul)A, and use
this with Theorem 1 to deduce the result in
Theorem 3 Section 3.1: det(uA) = " det A.

12. If A and B are n X n matrices, AB = —BA, and n
is odd, show that either 4 or B has no inverse.

13. Show that det AB = det BA holds for any two
n X n matrices A and B.

14. If A* = 0 for some & > 1, show that 4 is not
invertible.

o15. If A" = A7, describe the cofactor matrix of 4 in
terms of A.
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16. Show that no 3 x 3 matrix A exists such that
A +I1=0.Find a2 x 2 matrix A with this

property.

17. Show that det(4 + B”) = det(4” + B) for any
n X n matrices A and B.

18. Let A and B be invertible # X n matrices. Show
that det 4 = det B if and only if A = UB where
U is a matrix with det U = 1.

+19. For each of the matrices in Exercise 2, find the
inverse for those values of ¢ for which it exists.

20. In each case either prove the statement or give
an example showing that it is false:

(a) If adj A exists, then A is invertible.

+(b) If A is invertible and adj 4 = A~", then
det4 = 1.

(c) det(4AB) = det(B"A).
o(d) If det A + 0 and AB = AC, then B = C.
(e) If AT = —A, then det 4 = —1.
o) Ifadj4 =0, then 4 = 0.
(g) If A is invertible, then adj A is invertible.
+(h) If A has a row of zeros, so also does adj 4.
(i) det4’4) > 0.
+(j) det(I + A) =1 + det A.

(k) If AB is invertible, then 4 and B are
invertible.

o() If det 4 = 1, then adj A = A.

21. If Ais 2 x 2 and det A = 0, show that one column
of A is a scalar multiple of the other. [Hinz:
Definition 2.5 and Theorem 5(2) Section 2.4.]

22. Find a polynomial p(x) of degree 2 such that:
@ p(0) = 2,p(1) = 3,p(3) = 8
+(b) p(0) =5, p(1) =3,p(2) =5
23. Find a polynomial p(x) of degree 3 such that:
@ p0) =p(1) = 1, p(=1) = 4, p(2) = =5
+(b) p(0) = p(1) = 1, p(=1) = 2, p(=2) = =3

24. Given the following data pairs, find the
interpolating polynomial of degree 3 and
estimate the value of y corresponding to x = 1.5.

@ 0, 1),,2),@2,5), G, 10)

«(b) (0, 1), (1, 1.49), 2, —0.42), (3, —11.33)
© (0,2), (1,2.03), 2, —0.40), (—1, 0.89)

1 ab
25. IfA=|-; 1 (|show that
b —c 1

detA =1+ 4" + b + . Hence, find A~ for
any 4, b, and c.

a pq
26. (a) Show that A =|( } ;|hasan inverse if and

00 ¢
only if abc # 0, and find A" in that case.

+(b) Show that if an upper triangular matrix is
invertible, the inverse is also upper triangular.

27. Let A be a matrix each of whose entries are
integers. Show that each of the following
conditions implies the other.

(1) A is invertible and A~ has integer entries.

(2) detA=1or —1.

30 1
#28. IfA7' =|0 2 3| find adj 4.
31-1

29. If Ais 3 x 3 and det A = 2, find
det(A™" + 4 adj A).

30. Show that det[0 A}

B X

are 2 X 2. Whatif A and B are 3 x 3?

[Hint: Block multiply by {(I) (ﬂ]

= det A det B when A and B

31. Let Aben x n, n > 2, and assume one column
of A consists of zeros. Find the possible values of

rank(adj A).

32. If Ais 3 x 3 and invertible, compute
det(—A*(adj A)™).

33. Show that adj(zA) = «"'adj A for all » x n

matrices A.

34. Let A and B denote invertible # X # matrices.
Show that:

(a) adj(adj A) = (det A" 724 (here n = 2)
[Hint: See Example 8.]

+o(b) adj4™") = (adj A) ™"
(© adjd") = (adj A)"

+(d) adj(4B) = (adj B)(adj A) [Hint: Show that AB
adj(AB) = AB adj B adj A.]
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Diagonalization and Eigenvalues

The world is filled with examples of systems that evolve in time—the weather in a
region, the economy of a nation, the diversity of an ecosystem, etc. Describing such
systems is difficult in general and various methods have been developed in special cases.
In this section we describe one such method, called diagonalization, which is one of the
most important techniques in linear algebra. A very fertile example of this procedure
is in modelling the growth of the population of an animal species. This has attracted
more attention in recent years with the ever increasing awareness that many species are
endangered. To motivate the technique, we begin by setting up a simple model of a bird
population in which we make assumptions about survival and reproduction rates.

Consider the evolution of the population of a species of birds. Because the
number of males and females are nearly equal, we count only females. We
assume that each female remains a juvenile for one year and then becomes an
adult, and that only adults have offspring. We make three assumptions about
reproduction and survival rates:

1. The number of juvenile females hatched in any year is twice
the number of adult females alive the year before (we say the
reproduction rate is 2).

2. Half of the adult females in any year survive to the next year (the adult
survival rate is J).

3. One quarter of the juvenile females in any year survive into adulthood
(the juvenile survival rate is ).

If there were 100 adult females and 40 juvenile females alive initially, compute
the population of females & years later.

Solution » Let 4, and j, denote, respectively, the number of adult and juvenile
females after £ years, so that the total female population is the sum #;, + j;.
Assumption 1 shows that j, 1 = 24;, while assumptions 2 and 3 show that
Appy = %ﬂk + % 7r Hence the numbers #;, and j;, in successive years are related

by the following equations:

_ 1 s
Wey1 = 30 + 3Tk
Jer1 = 24
11

If we write v, = [jk] and 4 = [; 8], these equations take the matrix form
I3

Vg1 = Avy, foreach £ =0, 1, 2, ...

Taking k = 0 gives v; = Av,, then taking £ = 1 gives v, = Av; = A*vy, and
taking k = 2 gives v; = Av, = A’v,. Continuing in this way, we get

vy =Akvo foreachk=0,1, 2, ....
)

Since vy = [
Jo

} = [128} is known, finding the population profile v;, amounts to

computing A* for all # = 0. We will complete this calculation in Example 12
after some new techniques have been developed.
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Let A be a fixed » X 7 matrix. A sequence vg, vy, V3, ... of column vectors in R”
is called a linear dynamical system® if v, is known and the other v, are determined
(as in Example 1) by the conditions

Vigr = Av, foreachk=0,1,2, ...

These conditions are called a matrix recurrence for the vectors v,. As in
Example 1, they imply that

vy =A%, forall k>0,

so finding the columns v amounts to calculating A* for & = 0.

Direct computation of the powers A* of a square matrix 4 can be time-
consuming, so we adopt an indirect method that is commonly used. The idea is
to first diagonalize the matrix A, that is, to find an invertible matrix P such that

P'AP =D is a diagonal matrix (*)

This works because the powers D of the diagonal matrix D are easy to compute,
and (x) enables us to compute powers A* of the matrix 4 in terms of powers D
of D. Indeed, we can solve (x) for A to get A = PDP~". Squaring this gives

A* = (PDP~YPDPY = PD*P!
Using this we can compute A° as follows:
A = A4* = (PDP~YPD’P™") = PD’P!

Continuing in this way we obtain Theorem 1 (even if D is not diagonal).

IfA = PDP~" then A* = PD*P~! foreach k=1, 2, ....

Hence computing A* comes down to finding an invertible matrix P as in equation
(*). To do this it is necessary to first compute certain numbers (called eigenvalues)
associated with the matrix 4.

Eigenvalues and Eigenvectors

Definition 3.4  If A is an n X n matrix, a number X is called an eigenvalue of A if
Ax = Ax for some column x # 0 in R”

In this case, x is called an eigenvector of A corresponding to the eigenvalue )\, or a
A-eigenvector for short.

If4 = >

and x =

3 _5}

, then Ax = 4x so A\ = 4 is an eigenvalue of 4 with

corresponding eigenvector X.

8 More precisely, this is a linear discrete dynamical system. Many models regard v, as a continuous function of the time £, and replace
our condition between v, 1 and Av, with a differential relationship viewed as functions of time.
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The matrix 4 in Example 2 has another eigenvalue in addition to A = 4. To find
it, we develop a general procedure for any n X n matrix A.

By definition a number ) is an eigenvalue of the # X # matrix 4 if and only if
Ax = Xx for some column x # 0. This is equivalent to asking that the homogeneous
system

O\ — A)x =0

of linear equations has a nontrivial solution x # 0. By Theorem 5 Section 2.4 this
happens if and only if the matrix Al — A is not invertible and this, in turn, holds if
and only if the determinant of the coefficient matrix is zero:

detO\ — A) = 0

"This last condition prompts the following definition:

If A is an m X n matrix, the characteristic polynomial c4(x) of A is defined by
cy(x) = det(xl — A)

Note that ¢4(x) is indeed a polynomial in the variable x, and it has degree » when A
is an 7 X 7 matrix (this is illustrated in the examples below). The above discussion
shows that a number A is an eigenvalue of A if and only if ¢,(\) = 0, that is if

and only if \ is a root of the characteristic polynomial ¢ (x). We record these
observations in

Let A be an n X n matrix.
1. The eigenvalues \ of A are the roots of the characteristic polynomial c4(x) of A.
2. The \-eigenvectors x are the nonzero solutions to the homogeneous system
M—-ADx=0

of linear equations with \I — A as coefficient matrix.

In practice, solving the equations in part 2 of Theorem 2 is a routine application of
gaussian elimination, but finding the eigenvalues can be difficult, often requiring
computers (see Section 8.5). For now, the examples and exercises will be constructed
so that the roots of the characteristic polynomials are relatively easy to find (usually
integers). However, the reader should not be misled by this into thinking that
eigenvalues are so easily obtained for the matrices that occur in practical applications!

Find the characteristic polynomial of the matrix 4 = H 5} discussed in

Example 2, and then find all the eigenvalues and their eigenvectors.

Solution » Since «f — 4 = |* © —F ofp=2 = },Weget
0 x 1 —1 -1 x+1
x—3 =5

cq(x) = det =2’ -2 —8=(@x—PDx+2)

-1 x+1
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Hence, the roots of ¢4(x) are A\; = 4 and \; = —2, so these are the eigenvalues
of A. Note that A\; = 4 was the eigenvalue mentioned in Example 2, but we
have found a new one: \; = —2.

To find the eigenvectors corresponding to A, = —2, observe that in this case
M—3 =5 -5 —
Ol — A)x = |2 ={ 5 5}
T VI S |

so the general solution to (\;/ — A)x = 0 is x = t{_l} where ¢ is an arbitrary

real number. Hence, the eigenvectors x corresponding to A, are x = t[_ ﬂ

where ¢ # 0 is arbitrary. Similarly, A\; = 4 gives rise to the eigenvectors

X = t[ﬂ, t # 0, which includes the observation in Example 2.

Note that a square matrix A has many eigenvectors associated with any given
eigenvalue \. In fact every nonzero solution x of (Al — A)x = 0 is an eigenvector.
Recall that these solutions are all linear combinations of certain basic solutions
determined by the gaussian algorithm (see Theorem 2 Section 1.3). Observe that
any nonzero multiple of an eigenvector is again an eigenvector,” and such multiples
are often more convenient.'” Any set of nonzero multiples of the basic solutions of
(M — A)x = 0 will be called a set of basic eigenvectors corresponding to \.

Find the characteristic polynomial, eigenvalues, and basic eigenvectors for

20 0
A=|12 —1|
13 -2

Solution » Here the characteristic polynomial is given by

x—2 0 0
cx)=det|] -1 x-2 1 |=@—2)x— Dx+1)
-1 -3 x+2
so the eigenvalues are \; = 2, \; = 1, and A\; = —1. To find all eigenvectors for
A; = 2, compute

MN—2 0 0 0 00

)\II—A: _1 )\1_2 1 = _1 0 1

-1 =3 \t+2 -1 -3 4

9 In fact, any nonzero linear combination of A-eigenvectors is again a \-eigenvector.
10 Allowing nonzero multiples helps eliminate round-off error when the eigenvectors involve fractions.
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We want the (nonzero) solutions to (A — A)x = 0. The augmented matrix
becomes

0 0 0]0 10 -1/0
-1 0 1|0|—|0 1 —-1/0
-1 =3 4]0 00 0]0

using row operations. Hence, the general solution x to (Al — A)x = 0 is

1 1
x = t| 1|, where ¢ is arbitrary, so we can use x; = |1 |as the basic
1 1
eigenvector corresponding to A; = 2. As the reader can verify, the gaussian
0 0
. . . . _ _ 1 .
algorithm gives basic eigenvectors x, = | 1 |and x3 = | 5 | corresponding to
1 1
Ay = 1 and A\; = —1, respectively. Note that to eliminate fractions, we could
0
instead use 3x; = | 1 | as the basic \;-eigenvector.
3

If A is a square matrix, show that A and A” have the same characteristic
polynomial, and hence the same eigenvalues.

Solution » We use the fact that xI — A7 = (xI — A)". Then
c () = det(el — A7) = det[(x] — A)'] = det(x] — A) = c4(x)

by Theorem 3 Section 3.2. Hence ¢47(x) and c4(x) have the same roots, and so
A" and A have the same eigenvalues (by Theorem 2).

The eigenvalues of a matrix need not be distinct. For example, if 4 = [(1) H the

characteristic polynomial is (x — 1)? so the eigenvalue 1 occurs twice. Furthermore,
eigenvalues are usually not computed as the roots of the characteristic polynomial.
There are iterative, numerical methods (for example the QR-algorithm in Section
8.5) that are much more efficient for large matrices.

A-Invariance

If A is a2 x 2 matrix, we can describe the eigenvectors of A geometrically using the
following concept. A line L through the origin in R? is called A-invariant if Ax is in
L whenever x is in L. If we think of A as a linear transformation R?> — R?, this asks
that A4 carries L into itself, that is the image Ax of each vector x in L is again in L.

The x axis L = {[:ﬂ | xin R} is A-invariant for any matrix of the form

[x} = [gx} is L for all x = [x] in L.
0 0 0

ab
0c¢

Azﬂb
0c¢

} because
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To see the connection with eigenvectors, let x # 0 be any nonzero vector in R?
and let L, denote the unique line through the origin containing x (see the diagram).
By the definition of scalar multiplication in Section 2.6, we see that L, consists of all
scalar multiples of x, that is

L, =Rx = {rx|tin R}.

Now suppose that x is an eigenvector of A, say Ax = Ax for some A in R. Then if #x
is in L, then

A(tx) = t(Ax) = 1(Ax) = (zA\)x is again in L,.

That is, Ly is A-invariant. On the other hand, if L, is A-invariant then Ax is in L,
(since x is in L,). Hence Ax = #x for some 7 in R, so x is an eigenvector for A (with
eigenvalue #). This proves:

Let A be a 2 X 2 matrix, let x # 0 be a vector in R?, and let L, be the line through the
origin in R’ containing x. Then

x is an eigenvector of A if and only if L, is A-invariant.

cos O —sin 0
sin § cos 6

1. If 0 is not a multiple of T, show that 4 = has no real

eigenvalue. )
o 1T e o e e 2{1_7” 2m }hasalasan
14+ m 2m m — 1
eigenvalue.
Solution »

(1) A induces rotation about the origin through the angle 6 (Theorem 4
Section 2.6). Since 6 is not a multiple of 7, this shows that no line
through the origin is A-invariant. Hence A4 has no eigenvector by
Theorem 3, and so has no eigenvalue.

(2) B induces reflection Q,, in the line through the origin with slope 7z by
Theorem 5 Section 2.6. If x is any nonzero point on this line then it is
clear that Q,x = x, thatis Q,,x = 1x. Hence 1 is an eigenvalue (with
eigenvector x).

If 6 = T in Example 7(1), then A = ﬁ) B

has no root in R, so A has no (real) eigenvalue, and hence no eigenvector. In
fact its eigenvalues are the complex numbers 7 and —7, with corresponding

1_}and[1,

—1 1

(1)}, s0 cy(x) = 2 + 1. This polynomial

eigenvectors . In other words, 4 has eigenvalues and eigenvectors, just

not real ones.

Note that every polynomial has complex roots,'! so every matrix has complex
eigenvalues. While these eigenvalues may very well be real, this suggests that we
really should be doing linear algebra over the complex numbers. Indeed, everything

11 This is called the Fundamental Theorem of Algebra and was first proved by Gauss in his doctoral dissertation.
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we have done (gaussian elimination, matrix algebra, determinants, etc.) works if all
the scalars are complex.

Diagonalization

An n x n matrix D is called a diagonal matrix if all its entries off the main diagonal
are zero, that is if D has the form

N O o 0
0 M\ ---
D=|. 7. |=diaghy, Ay, ey )
0 0 - A,
where Aj, Ay, ..., A, are numbers. Calculations with diagonal matrices are very easy.

Indeed, if D = diag(\y, Ay, ..., A,) and E = diag(uy, o, ..., p,) are two diagonal
matrices, their product DE and sum D + E are again diagonal, and are obtained by
doing the same operations to corresponding diagonal elements:

DE = diag()‘lﬂla )\ZMZ, EEE) )‘n/Jn)
D+ E= dlag()‘l + K1, )\2 + Hy e )‘n + /Ln)

Because of the simplicity of these formulas, and with an eye on Theorem 1 and the
discussion preceding it, we make another definition:

Ann X n matrix A is called diagonalizable if
P7'AP s diagonal for some invertible n X n matrix P
Here the invertible matrix P is called a diagonalizing matrix for A.
To discover when such a matrix P exists, we let x;, x5, ..., x,, denote the columns

of P and look for ways to determine when such x; exist and how to compute them.
To this end, write P in terms of its columns as follows:

P= [X17 X2y eeey Xﬂ]
Observe that P~'AP = D for some diagonal matrix D holds if and only if

AP = PD
If we write D = diag(\j, Ay, ..., A,), where the \; are numbers to be determined, the
equation AP = PD becomes
N O - 0
0 A - 0
A[Xla Xy, ’Xn] = [XI’XZ’ sy X17]
0 0 - A,

By the definition of matrix multiplication, each side simplifies as follows
[Ax) Axy -+ Ax,] = [Ax) Axy -+ AX,]
Comparing columns shows that Ax; = \x; for each 7, so
P'AP =D ifandonlyif Ax; = \x; for each i.

In other words, P~'AP = D holds if and only if the diagonal entries of D are
eigenvalues of 4 and the columns of P are corresponding eigenvectors. This proves
the following fundamental result.
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Let A be an n X n matrix.

1. A is diagonalizable if and only if it has eigenvectors Xy, X;, ..., X, such that the
matrix P = [x; x, --- X,] is invertible.

2. When this is the case, P"'AP = diag(\y, Ay, ..., A,) where, for each i, \; is the
eigenvalue of A corresponding to x;.

20 0
Diagonalize the matrix 4 =| 1 2 -1 |in Example 4.
13 -2
Solution > By Example 4, the eigenvalues of 4 are \; = 2, A\, = 1, and \; = —1,
1 0 0
with corresponding basic eigenvectors x; = |1}, x; = |1, and x3 = |1},
1 1 3

100
respectively. Since the matrix P = [x; x; -+ x,] =|11 1 |is
113

AN 007 [20 0
invertible, Theorem 4 guarantees that PlAP=|0 X 0|=[01 0|=D.
0 0 X 00 -1

The reader can verify this directly—easier to check AP = PD.

In Example 8, suppose we let Q = [x, x; x3] be the matrix formed from the
eigenvectors Xxi, X,, and x3 of A, but in a different order than that used to form P.
Then Q7 '4Q = diag(\;, A1, A3) is diagonal by Theorem 4, but the eigenvalues
are in the new order. Hence we can choose the diagonalizing matrix P so that the
eigenvalues \; appear in any order we want along the main diagonal of D.

In every example above each eigenvalue has had only one basic eigenvector. Here
is a diagonalizable matrix where this is not the case.

Diagonalize the matrix 4 =

—_—— O

11
01}
10

Solution » To compute the characteristic polynomial of A first add rows 2 and 3
of xI — A to row 1:



158 Chapter 3 Determinants and Diagonalization

[ x -1 -1 (=2 x=2 x-2
cqyx) =det| =1 «x —1| =det| -1 x -1
-1 -1 « L -1 -1 5
(=2 0 0 ]
=det| -1 x+1 0 |=@-=2@+1)
L —1 0 x+1]
Hence the eigenvalues are A\; = 2 and \; = —1, with A, repeated twice (we say

that A, has multiplicity two). However, A4 is diagonalizable. For A\; = 2, the

as the reader

1
system of equations (A — A)x = 0 has general solution x = t{l

| 1
1]
1

can verify, so a basic A\ -eigenvector is x; =

Turning to the repeated eigenvalue \; = —1, we must solve (A\[ — A)x = 0.
—1 —1
By gaussian elimination, the general solutionisx =s| 1|+ # 0|wheresand ¢
0 1
are arbitrary. Hence the gaussian algorithm produces two basic A,-eigenvectors
-1 -1 1-1-1
x;=| l|landy, =| 0| Ifwetake P=[x; x, yo] =|1 1 0 |we find that P
0 1 1 01

is invertible. Hence P~'4P = diag(2, —1, —1) by Theorem 4.

Example 9 typifies every diagonalizable matrix. To describe the general case, we
need some terminology.

Definition 3.7  An eigenvalue \ of a square matrix A is said to have multiplicity 2 if it occurs m times
as a root of the characteristic polynomial ¢ (x).

Thus, for example, the eigenvalue \; = —1 in Example 9 has muldiplicity 2. In
that example the gaussian algorithm yields two basic \;-eigenvectors, the same
number as the multiplicity. This works in general.

Theorem 5

A square matrix A is diagonalizable if and only if every eigenvalue X of multiplicity
m yields exactly m basic eigenvectors; that is, if and only if the general solution of the
system (AI — A)x = 0 has exactly m parameters.

One case of Theorem 5 deserves mention.

Theorem 6

An n X n matrix with n distinct eigenvalues is diagonalizable.
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The proofs of Theorems 5 and 6 require more advanced techniques and are given in
Chapter 5. The following procedure summarizes the method.

Diagonalization Algorithm

To diagonalize an n X n matrix A:
Step 1. Find the distinct eigenvalues \ of A.

Step 2. Compute the basic eigenvectors corresponding to each of these eigenvalues \ as
basic solutions of the homogeneous system (\I — A)x = 0.

Step 3. The matrix A is diagonalizable if and only if there are n basic eigenvectors
in all.

Step 4. If A is diagonalizable, the n X n matrix P with these basic eigenvectors as its
columns is a diagonalizing matrix for A, that is, P is invertible and P~ AP is
diagonal.

The diagonalization algorithm is valid even if the eigenvalues are nonreal complex
numbers. In this case the eigenvectors will also have complex entries, but we will
not pursue this here.

Show that 4 = [(1) H is not diagonalizable.

Solution 1 » The characteristic polynomial is ¢4(x) = (x — 1)%, so A has only one
eigenvalue \; = 1 of multiplicity 2. But the system of equations (A — A)x = 0

has general solution t[(l)

eigenvector B ] Hence A is not diagonalizable.

], so there is only one parameter, and so only one basic

Solution 2 » We have c4(x) = (x — 1) so the only eigenvalue of 4 is A = 1.
Hence, if A4 were diagonalizable, Theorem 4 would give P lap = [(1) ﬂ = [ for

some invertible matrix P. But then 4 = PIP~! = I, which is not the case.
So A cannot be diagonalizable.

Diagonalizable matrices share many properties of their eigenvalues. The
following example illustrates why.

If X’ = 5) for every eigenvalue of the diagonalizable matrix A, show that
A’ =54.
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Solution b Let P~'AP = D = diag(\y, ..., \,). Because A} = 5\, for each i, we
obtain

D* = diag(\3, ..., A)) = diag(5\y, ..., 5),) = 5D

Hence A4* = (PDP™")’ = PD’P™' = PGD)P~! = 5(PDP™") = 54 using
Theorem 1. This is what we wanted.

If p(x) is any polynomial and p(\) = 0 for every eigenvalue of the diagonalizable
matrix A, an argument similar to that in Example 11 shows that p(4) = 0.

Thus Example 11 deals with the case p(x) = &* — Sx. In general, p(A) is
called the evaluation of the polynomial p(x) at the matrix 4. For example, if
p(x) = 2x° — 3x + 5, then p(4) = 24° — 34 + 5I—note the use of the identity
matrix.

In particular, if ¢4(x) denotes the characteristic polynomial of A, we certainly
have ¢4(\) = 0 for each eigenvalue A of A (Theorem 2). Hence ¢4(A4) = 0 for every
diagonalizable matrix 4. This is, in fact, true for any square matrix, diagonalizable
or not, and the general result is called the Cayley-Hamilton theorem. It is proved
in Section 8.6 and again in Section 9.4.

Linear Dynamical Systems

We began Section 3.3 with an example from ecology which models the evolution of
the population of a species of birds as time goes on. As promised, we now complete
the example—Example 12 below.
The bird population was described by computing the female population profile

a
T
females present k years after the initial values #; and j, were observed. The model
assumes that these numbers are related by the following equations:

v, = of the species, where #;, and j, represent the number of adult and juvenile

1 1
A1 = 34k + 3Tk

Jie1 = 2ay
11

If we write A = [2 +
20

, the columns vy, satisfy v, = Av; foreach k=0, 1, 2, ....

Hence v;, = A*v, for each k = 1, 2, .... We can now use our diagonalization
techniques to determine the population profile v, for all values of # in terms of the
initial values.

Assuming that the initial values were 2y = 100 adult females and j, = 40
juvenile females, compute #; and j;, for k=1, 2, ...
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1

1
Solution » The characteristic polynomial of the matrix 4 = [2 4} is

20
cqw) = 2% — 12 — 1= (v — I)(x + ), so the eigenvalues are A\; = 1 and
A, = —1 and gaussian elimination gives corresponding basic eigenvectors
1 _1
?land| *| For convenience, we can use multiples x; = B} and x, = [_ﬂ

respectively. Hence a diagonalizing matrix is P = B _ﬂ and we obtain

1 0

PAP =D where D = {

This gives A = PDP™" so, for each k = 0, we can compute A explicitly:

k_ ppkp-t _[1 =11 0 1[41]
A =FDP [z 4”0 ()t fel—2 4

_a| 44200 1-hf
1 G PR

Hence we obtain
W gk 4+2-HF 1--H* 100
L (EYe=4Y0=5 1Nk 1Nk
Je 8-8(—=3)" 2+4(-3)" |L 40
3
~ 1[44O+160(—%) ]

=% k|

880 — 640(—1)
Equating top and bottom entries, we obtain exact formulas for #, and jj:

ak=2§—0+83—0(—%)k and jk=@+3§—°(—%)k fork=1,2,...

In practice, the exact values of #;, and j;, are not usually required. What is
needed is a measure of how these numbers behave for large values of k. This is
easy to obtain here. Since (—%)k is nearly zero for large k, we have the following
approximate values

@ =20 andjp =~ if kis large.

Hence, in the long term, the female population stabilizes with approximately
twice as many juveniles as adults.

Definition 3.8  If A4 is an n X n matrix, a sequence v, vy, V5, ... of columns in R” is called a linear
dynamical system if v, is specified and vy, v, ... are given by the matrix recurrence
Vi1 = Avy for each k = 0.

As before, we obtain
v, = Atvy foreach k=1, 2, ... (%)

Hence the columns v, are determined by the powers 4* of the matrix 4 and, as we
have seen, these powers can be efficiently computed if 4 is diagonalizable. In fact (x)
can be used to give a nice “formula” for the columns v, in this case.

Assume that A is diagonalizable with eigenvalues A, A, ..., A, and corresponding
basic eigenvectors xy, Xy, ..., X,. If P = [x; x; --- x,] is a diagonalizing matrix with
the x; as columns, then P is invertible and
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P7'AP = D = diag(\, Ay, -y M)
by Theorem 4. Hence A = PDP™" so () and Theorem 1 give
v, = Ay = (PDP~ Yy, = (PD'P~ Yy = PD*(P'vy)

for each k = 1, 2, ... For convenience, we denote the column P~ v, arising here
as follows:
by
_ b
b = P 1Vo = .2
b,

Then matrix multiplication gives

v, = PDK(P1vy)

C\k
] ()K 0 by
<. b
=[x x - x,] O )\:2 . 0 ;2
0 0 - A by
KX
b
=[x oox,]|
b
= bNix + b + -+ b X, (%%)

for each & > 0. This is a useful exact formula for the columns v;. Note that, in
particular, vo = bixy + byxp + -+ + b,x,.

However, such an exact formula for v, is often not required in practice; all that is
needed is to estimate vy, for large values of k (as was done in Example 12). This can
be easily done if A has a largest eigenvalue. An eigenvalue A of a matrix A is called a
dominant eigenvalue of A if it has multiplicity 1 and

[A| > |p| for all eigenvalues u # A

where |\| denotes the absolute value of the number \. For example, A\; = 1 is
dominant in Example 12.

Returning to the above discussion, suppose that A has a dominant eigenvalue. By
choosing the order in which the columns x; are placed in P, we may assume that A
is dominant among the eigenvalues Aj, X, ..., A, of A (see the discussion following
Example 8). Now recall the exact expression for V, in (%) above:

vV, = bl)\/fxl + bz)\IZ?XZ + -+ b,,)\ﬁxw

Take A% out as a common factor in this equation to get
k k
Vk=>\}f b1X1+b2ﬁ X2+"'+bnﬁ X,
A1 Al

for each k£ = 0. Since \; is dominant, we have |\;] < || for each i > 2, so each

of the numbers (\/\;)* become small in absolute value as % increases. Hence v,

is approximately equal to the first term A¥5;x;, and we write this as v, ~ A x,.

These observations are summarized in the following theorem (together with the
above exact formula for v).
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Consider the dynamical system vy, vy, Va, ... with matrix recurrence
Vi1 ZAVk for k>0

where A and v, are given. Assume that A is a diagonalizable n X n matrix with
eigenvalues \i, \,, ..., \, and corresponding basic eigenvectors Xy, Xy, ..., X,,, and
let P =[x x; -+ X,] be the diagonalizing matrix. Then an exact formula for v;, is

vi = biM% 4+ b + - + bk, foreach k>0
where the coefficients b; come from ”
1
b=Ply, = bf i
b,
Moreover, if A has dominant eigenvalue \y,' then v, is approximated by

v, = b \x, for sufficiently large 4.

Returning to Example 12, we see that A; = 1 is the dominant eigenvalue, with

. 1 1 -1 100 il 220
eigenvector x; = [2} Here P = 4 and vy = [ a0) so P vy = %[—80}'
Hence b; = % in the notation of Theorem 7, so

Vk == 171/\1fX1 = %1]?[1}
Tk 2

220

220 and j; ~ *, as in Example 12.

where k is large. Hence #;, = .

"This next example uses Theorem 7 to solve a “linear recurrence.” See also
Section 3 .4.

Suppose a sequence x, x1, &y, ... is determined by insisting that
xg = 1,27 = —1, and ay,, = 2x, — x4 for every k£ = 0.

Find a formula for «;, in terms of k.

Solution » Using the linear recurrence x;,, = 2x;, — x;, 1 repeatedly gives
JCZZZ.X'O—.X'123, x3=2x1—x2=5, X4 = 11, x5=21,...

so the x; are determined but no pattern is apparent. The idea is to find

Xk

V=
Xpet1

for each # instead, and then retrieve x; as the top component

of v;. The reason this works is that the linear recurrence guarantees that these

v are a dynamical system:

163

12 Similar results can be found in other situations. If for example, eigenvalues \; and ), (possibly equal) satisfy |A{| = | Ao > |A] for

all i > 2, then we obtain v, =~ b1)\fx1 + b2A§x2 for large k.
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x x
Vgl = = ki =Av, where A = [O 1}.
Xk+2 20, — Xp4q 2 -1
The eigenvalues of 4 are A\; = —2 and \, = 1 with eigenvectors
x| = [ ; and x; = H , so the diagonalizing matrix is P = ; ”
Moreover, b = Pylv, = % i so the exact formula for v, is
e 1oy —pk ke 20 o[ 1] 1¢#1
[xk-{_l} =V,= bl)\lxl ol l?z)\zXz = ?(—2) {_2:| a4 §1 {1}

Equating top entries gives the desired formula for x;:
x=12(=2)" + 1]forall k=0, 1,2, ....
The reader should check this for the first few values of k.

Graphical Description of Dynamical Systems

If a dynamical system v, | = Av, is given, the sequence vy, v, v, ... is called the
trajectory of the system starting at vy. It is instructive to obtain a graphical plot of

o Xk . . S
the system by writing v, = [)/ and plotting the successive values as points in the
k

plane, identifying v, with the point (xy, y;) in the plane. We give several examples
which illustrate properties of dynamical systems. For ease of calculation we assume
that the matrix 4 is simple, usually diagonal.

1

Letd=|’
05
eigenvectors x; = {(1)} and x, = [(1)} The exact formula is

. Then the eigenvalues are 1 and 1, with corresponding

ve= b |+ 80 {]

for k=0, 1, 2, ... by Theorem 7, where the coefficients #; and #, depend
on the initial point v,. Several trajectories are plotted in the diagram and,
for each choice of vy, the trajectories converge toward the origin because
both eigenvalues are less than 1 in absolute value. For this reason, the
origin is called an attractor for the system.

3
z g g .
LetA = . Here the eigenvalues are 3 and %, with corresponding

W

eigenvectors x; = {(1)} and x, = [(1)] as before. The exact formula is

ve= 0G|+ @[]



SECTION 3.3 Diagonalization and Eigenvalues 165

for k=0, 1, 2, .... Since both eigenvalues are greater than 1 in absolute value,
the trajectories diverge away from the origin for every choice of initial point V.
For this reason, the origin is called a repellor for the system.'?

1

2 3
2

LetAd = . Now the eigenvalues are 3 and 1, with corresponding

eigenvectors x; = [_” and x, = {” The exact formula is

—1 1
vie= Q)| [+ ]
for k=0, 1, 2, .... In this case % is the dominate eigenvalue so, if b; # 0, we
have v, =~ bl(%)k[_i for large k and v, is approaching the line y = —u.

However, if #; = 0, then v, = bz(%)k

line y = x. In general the trajectories appear as in the diagram, and the origin
is called a saddle point for the dynamical system in this case.

H and so approaches the origin along the

1
z o s oy
y LetA = . Now the characteristic polynomial is ¢4(x) = x + %, so the
2
L Vo eigenvalues are the complex numbers £ and —4 where i* = —1. Hence 4 is not
diagonalizable as a real matrix. However, the trajectories are not difficult to
v describe. If we start with vg = H], then the trajectory begins as
3
o = 1 _1 _1 1 1 1
1 | 2 4 |78 |16 | 3 | T
V2 Vl__l’ VZ—_l, V3 = 1) V4_L’ VS__L, V6 = P
vi 2 4 8 16 32 64

Five of these points are plotted in the diagram. Here each trajectory spirals in
toward the origin, so the origin is an attractor. Note that the two (complex)
eigenvalues have absolute value less than 1 here. If they had absolute value
greater than 1, the trajectories would spiral out from the origin.

Google PageRank

Dominant eigenvalues are useful to the Google search engine for finding
information on the Web. If an information query comes in from a client, Google
has a sophisticated method of establishing the “relevance” of each site to that
query. When the relevant sites have been determined, they are placed in order of
importance using a ranking of #// sites called the PageRank. The relevant sites with
the highest PageRank are the ones presented to the client. It is the construction of
the PageRank that is our interest here.

. o b
13 Infact, P= / here, s0 vy = [bj
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The Web contains many links from one site to another. Google interprets a link
from site j to site 7 as a “vote” for the importance of site 7. Hence if site / has more
links to it than does site j, then 7 is regarded as more “important” and assigned a
higher PageRank. One way to look at this is to view the sites as vertices in a huge
directed graph (see Section 2.2). Then if site j links to site 7 there is an edge from ;
to 7, and hence the (7, j)-entry is a 1 in the associated adjacency matrix (called the
connectivity matrix in this context). Thus a large number of 1s in row 7 of this matrix
is a measure of the PageRank of site 7.'*

However this does not take into account the PageRank of the sites that link to
i. Intuitively, the higher the rank of these sites, the higher the rank of site 7. One
approach is to compute a dominant eigenvector x for the connectivity matrix.

In most cases the entries of x can be chosen to be positive with sum 1. Each site
corresponds to an entry of x, so the sum of the entries of sites linking to a given site
i is a measure of the rank of site 7. In fact, Google chooses the PageRank of a site so
that it is proportional to this sum."

1. In each case find the characteristic polynomial, (100 1
eigenvalues, eigenvectors, and (if possible) an ©A=]123} vw=|1
invertible matrix P such that P~'4P is diagonal. 141 1
(a)A:lz] o(b) A= 2‘4] 1 3 2 2
L3 2 -1 1 o A=|-1 2 1Lwvw=]|0
70 —4 I 1-3 | 4 -1 -1 1
©@A=|05 of +d4A={2 0 6
50 =2 1 -1 5 3. Show that 4 has A = 0 as an eigenvalue if and
- { =9 3 010 only if 4 is not invertible.
@A=|2 6 -6| B A4={3 0 1] +4. Let A denote an 7 X » matrix and put
11 2 -1 1200 Ay = A — al, o in R. Show that ) is an
r 3 1 1 2 11 eigenvalue of A if and only if A — o is an
@ A=|_4 -2 —s|eh)yA=|0 10 eigenvalue of A;. (Hence, the eigenvalues of
> 2 s 1 -1 2 Ay are just those of A “shifted” by «.) How do
:)\ 0 0 ) the eigenvectors compare?
A A=[0 XN 0| XNy 5. Show that the eigenvalues of cos 0 —sin ¢
00 p sinf) cos 6

Theorem 7.

it o]
2} Y= [—31

.(b)A:[S

-2

. Consider a linear dynamical system v, | = Av;
for k = 0. In each case approximate v, using

are ¢ and ¢, (See Appendix A.)

. Find the characteristic polynomial of the z x »
identity matrix I. Show that I has exactly one
eigenvalue and find the eigenvectors.

ab
¢

(a) cy(x) = &% — tr Ax + det A, where
tr A = a + d is called the trace of A.

1
2

|

. Given 4 = , show that:

)

14 For more on PageRank, visit http://www.google.com/technology/.

15 See the articles “Searching the web with eigenvectors” by Herbert S. Wilf, UMAP Journal 23(2), 2002, pages 101-103, and “The
worlds largest matrix computation: Google’s PageRank is an eigenvector of a matrix of order 2.7 billion” by Cleve Moler, Matlab
News and Notes, October 2002, pages 12-13.
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(b) The eigenvalues are
Y+ d) £ \(a — dy + 4bc]
8. In each case, find P~'4P and then compute A”.

=[5 b=l

-7 —12}’1):{—3 4}
6 10 2 -3

[Hint: (PDP~Y" = PD"P~' for eachn =1, 2, ....]

.(b)A:[

9. (@) If A = {1 3} and B = F 0}, verify that A4
02 01
and B are diagonalizable, but 4B is not.
o) If D = [(1) (1) , find a diagonalizable matrix A
such that D + A is not diagonalizable.

10. If A is an » X » matrix, show that A is
diagonalizable if and only if A” is diagonalizable.

11. If 4 is diagonalizable, show that each of the
following is also diagonalizable.
(@ A", n=1 +(b) kA, k any scalar.
(©) p(A), p(x) any polynomial (Theorem 1)
o(d) U'AU for any invertible matrix U.
(e) kI + A for any scalar k.

+12. Give an example of two diagonalizable matrices
A and B whose sum A + B is not diagonalizable.

13. If 4 is diagonalizable and 1 and —1 are the only
eigenvalues, show that A7 = A.

+14. If A is diagonalizable and 0 and 1 are the only
eigenvalues, show that 4% = A.

15. If 4 is diagonalizable and A = 0 for each
eigenvalue of A, show that 4 = B for some
matrix B.

16. If P~'AP and P~'BP are both diagonal, show that
AB = BA. [Hint: Diagonal matrices commute.]

17. A square matrix A is called nilpotent if 4” = 0
for some » > 1. Find all nilpotent diagonalizable
matrices. [Hint: Theorem 1.]

18. Let A be any # X 7 matrix and 7 # 0 a real number.

(a) Show that the eigenvalues of 74 are precisely
the numbers 7\, where A is an eigenvalue

of A.

+(b) Show that ¢,4(x) = r"c4(2).

19. (a) If all rows of A have the same sum s, show
that s is an eigenvalue.

(b) If all columns of A have the same sum s,
show that s is an eigenvalue.

20. Let A be an invertible #» X # matrix.
(a) Show that the eigenvalues of A are nonzero.

+(b) Show that the eigenvalues of A~ are
precisely the numbers 1/), where X is an
eigenvalue of A.

(=)'

Show that ¢4-1(x) = )

(c) Show that c4-1(x) Tecd cq(1)

21. Suppose A is an eigenvalue of a square matrix 4
with eigenvector x # 0.

(a) Show that A’ is an eigenvalue of A? (with the
same x).

+(b) Show that \* — 2X + 3 is an eigenvalue of
A =24 +31.

(c¢) Show that p()) is an eigenvalue of p(4) for
any nonzero polynomial p(x).

22. If A is an n X n matrix, show that
() = (= 1)eq(@)cy(—2).

23. An n X n matrix A is called nilpotent if A” = 0
for some m2 > 1.

(a) Show that every triangular matrix with zeros
on the main diagonal is nilpotent.

+(b) If A is nilpotent, show that A = 0 is the only
eigenvalue (even complex) of 4.

(c) Deduce that c4(x) = &”,if Ais n x n and
nilpotent.

24. Let A be diagonalizable with real eigenvalues and
assume that 4™ = I for some m > 1.

+(a) Show that 4> = I.
(b) If m is odd, show that A = L.

[Hint: Theorem 3 Appendix A.]
25. Let A* = I, and assume that 4 # I and A # —I.

(a) Show that the only eigenvalues of A are
A=1land A = —-1.

(b) Show that A is diagonalizable.
[Hint: Verity that A4 + 1) = A + I and
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26.

*27.

28.

29.
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AA — 1) = —(A — ), and then look at
nonzero columns of A + [ and of A — ]

(©) If Q,, : R? — R’ is reflection in the line
y = mx where m # 0, use (b) to show that the
matrix of Q,, is diagonalizable for each 7.

(d) Now prove (c) geometrically using
Theorem 3.

233 010
LetA=|10-1|and B=|3 0 1| Show that
112 200

c(x) = cp(x) = (x + 1)° (v — 2), but A is
diagonalizable and B is not.

(a) Show that the only diagonalizable matrix 4
that has only one eigenvalue A is the scalar
matrix A = AL

(b) Is B _ﬂ diagonalizable?

Characterize the diagonalizable # X » matrices
A such that A* — 34 + 2I = 0 in terms of their
eigenvalues. [Hint: Theorem 1.]

Letd=|8 0
0

}Where B and C are square matrices.

(a) If Band C are diagonalizable via Q and R
(that is, Q"'BQ and R™'CR are diagonal),

show that A is diagonalizable via

(b) Use (a) to diagonalize A if B = B ﬂ and

7 —1}.

C:[
17
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30. Let4 = [g (C)'}’ where B and C are square matrices.

31.

(a) Show that ¢ (x) = cp(x)ccx).

(b) If x and y are eigenvectors of B and
0
/
are eigenvectors of 4, and show how

every eigenvector of A arises from such
eigenvectors.

C, respectively, show that ﬁ)(] and

Referring to the model in Example 1, determine
if the population stabilizes, becomes extinct, or
becomes large in each case. Denote the adult
and juvenile survival rates as A and J, and the
reproduction rate as R.

R J

SN

(@)
+(b)
©
+(d)

W W N

W B B =
Ui o= =t

32. In the model of Example 1, does the final

33.

*34.

outcome depend on the initial population of
adult and juvenile females? Support your answer.

In Example 1, keep the same reproduction

rate of 2 and the same adult survival rate of %,
but suppose that the juvenile survival rate is

p. Determine which values of p cause the
population to become extinct or to become large.

In Example 1, let the juvenile survival rate be %,

and let the reproduction rate be 2. What values
of the adult survival rate o will ensure that the
population stabilizes?

An Application to Linear Recurrences

It often happens that a problem can be solved by finding a sequence of numbers x,
X1, %3, ... where the first few are known, and subsequent numbers are given in terms
of earlier ones. Here is a combinatorial example where the object is to count the

number of ways to do something.

An urban planner wants to determine the number x;, of ways that a row of &
parking spaces can be filled with cars and trucks if trucks take up two spaces
each. Find the first few values of x.
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Solution > Clearly, xy = 1 and «; = 1, while &, = 2 since there can be two cars
or one truck. We have x; = 3 (the 3 configurations are cc, ¢7, and 7¢) and
x4 =5 (ceee, T, cTt, Tee, and TT). The key to this method is to find a way to

express each subsequent x; in terms of earlier values. In this case we claim that
Xpy2 = X + x4 forevery k=0 (*)

Indeed, every way to fill £ + 2 spaces falls into one of two categories: Either a
car is parked in the first space (and the remaining 4 + 1 spaces are filled in x4
ways), or a truck is parked in the first two spaces (with the other  spaces filled
in &y, ways). Hence, there are x| + a;, ways to fill the # + 2 spaces. This is ().

The recurrence (*) determines «;, for every £ = 2 since & and x; are given.
In fact, the first few values are

x0=1
x1=1
x2=x0+x1=2
x3=x1+x2=3
x4=x2+x3=5

x5=x3+x4=8

Clearly, we can find &y, for any value of &, but one wishes for a “formula”
for xy, as a function of 4. It turns out that such a formula can be found using
diagonalization. We will return to this example later.

A sequence xy, x1, ¥y, ... of numbers is said to be given recursively if each
number in the sequence is completely determined by those that come before it.
Such sequences arise frequently in mathematics and computer science, and also
occur in other parts of science. The formula x;,, = x,,; + «; in Example 1 is an
example of a linear recurrence relation of length 2 because &y is the sum of
the two preceding terms x| and «xy; in general, the length is 7 if x;,,, is a sum
of multiples of xy, X441, vy Xpprm_1-

The simplest linear recursive sequences are of length 1, thatis x;,; isa
fixed multiple of xy, for each #, say x| = axy. If ay is specified, then x; = ax,,
xy = axy = a*xg, and a3 = ax, = dxg, ... Continuing, we obtain x;, = d*x, for each
k = 0, which is an explicit formula for x;, as a function of £ (when x, is given).

Such formulas are not always so easy to find for all choices of the initial values.
Here is an example where diagonalization helps.

Suppose the numbers &y, x4, 5, ... are given by the linear recurrence relation
Xpyr = Xpy1 + 6, for k=0

where xg and x; are specified. Find a formula for x;, when xy = 1 and &y = 3,
and also when xy = 1 and &; = 1.

Solution » If xy = 1 and oy = 3, then ay, = &y + 639 = 9, 43 = &y + 6y = 27,
x4 = a3 + 6, = 81, and it is apparent that
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x, =3 fork=0,1,2,3,and 4.

"This formula holds for all £ because it is true for £ = 0 and # = 1, and it

satisfies the recurrence x;,) = 23,1 + 6y for each k as is readily checked.
However, if we begin instead with xg = 1 and x; = 1, the sequence

continues x, = 7, a3 = 13, 04 = 55, 5 = 133, ... . In this case, the sequence is

uniquely determined but no formula is apparent. Nonetheless, a simple device

transforms the recurrence into a matrix recurrence to which our diagonalization

techniques apply.
The idea is to compute the sequence vy, vq, V5, ... of columns instead of the
numbers x, ¥, x5, ..., where

for each £ > 0

V, =
B
X0 1. ] q
Then vy = {x } = {1}15 specified, and the numerical recurrence
1

Xpyr = Xpyq + 6 transforms into a matrix recurrence as follows:

Xk+1 Xk+1 . [0 1

K42

Xk

— = = AVk

Vit1 = 6 1

69€k + Xp4q X1

where 4 = [2 H Thus these columns vy, are a linear dynamical system, so

Theorem 7 Section 3.3 applies provided the matrix A is diagonalizable.
We have c4(x) = (x — 3)(x + 2) so the eigenvalues are A\; = 3 and X\, = —2 with

corresponding eigenvectors x; =

H and x, = {_H as the reader can check.

Since P = [x; x| =

o } is invertible, it is a diagonalizing matrix for 4. The
3
coefficients 4; in Theorem 7 Section 3.3 are given by ’

b

b
1} = P_IVO =
by

=2
so that the theorem gives 5

X
Xp+1

1 _ —1
=V, = bl)\/fxl P bz)\éXz = %3/({3} aF Tz(—Z)k[ 2}

Equating top entries yields

_ 1 [qk+1 k+1
=134 — (=] fork >0
This gives xy = 1 = xy, and it satisfies the recurrence xy,; = x3,1 + 6y, as is
easily verified. Hence, it is the desired formula for the x;.

Returning to Example 1, these methods give an exact formula and a good
approximation for the numbers x;, in that problem.

In Example 1, an urban planner wants to determine «x;, the number of ways that
a row of k parking spaces can be filled with cars and trucks if trucks take up two
spaces each. Find a formula for x; and estimate it for large 4.
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Solution » We saw in Example 1 that the numbers x;, satisfy a linear recurrence

Xpp2 =X + x4 forevery k=0

If we write v, = as before, this recurrence becomes a matrix recurrence

k+1
for the vy
Xe+1 Xk

Xp + Xpy1

Xyl
Y42

for all # = 0 where 4 = Fl) i . Moreover, A is diagonalizable here. The

Virl = = = AV

:[01
11

Xet1

characteristic polynomial is c4(x) = * — x — 1 with roots %[1 +/5 | by the
quadratic formula, so A has eigenvalues

M =1+V5] and A =11 —V5]

Corresponding eigenvectors are x; =

! and X; = [ 1} respectively as the
1 A

reader can verify. As the matrix P = [x; a;] = is invertible, it is a

At A
diagonalizing matrix for 4. We compute the coefficients 4; and 4, (in
Theorem 7 Section 3.3) as follows:

by 1 A =111 AL
— plyy = 1| { }: Bl

bj v -ﬁ{—xl 1} 17 [,

where we used the fact that A\; + A\; = 1. Thus Theorem 7 Section 3.3 gives

1 1

A A

Comparing top entries gives an exact formula for the numbers x:

= 2= (M = M for k=0

X

Ay R
7 5
k+1

V5

k k Ay k
} =V, = bl)\lxl aF bz)\zXz = T;)\l

Finally, observe that A\; is dominant here (in fact, \; = 1.618 and A\, = —0.618
to three decimal places) so 5! is negligible compared with A{*1 if £ is large.
Thus,

Xy = %/\]f+1 for each £ > 0

"This is a good approximation, even for as small a value as ¥ = 12. Indeed,
repeated use of the recurrence &y, = x; + a1 gives the exact value xy; = 233,

13
while the approximation is x, =~ (1'31;) = 232.94.

The sequence xg, x1, 47, ... in Example 3 was first discussed in 1202 by Leonardo
Pisano of Pisa, also known as Fibonacci,'® and is now called the Fibonacci
sequence. It is completely determined by the conditions xy = 1, x; = 1 and the
recurrence x> = &3 + x4 for each k£ = 0. These numbers have been studied for
centuries and have many interesting properties (there is even a journal, the Fibonacci
Quarterly, devoted exclusively to them). For example, biologists have discovered
that the arrangement of leaves around the stems of some plants follow a Fibonacci
pattern. The formula x;, = % [A4*+1 — A%*1]in Example 3 is called the Binet

16 The problem Fibonacci discussed was: “How many pairs of rabbits will be produced in a year, beginning with a single pair, if in every
month each pair brings forth a new pair that becomes productive from the second month on? Assume no pairs die.” The number of
pairs satisfies the Fibonacci recurrence.
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formula. It is remarkable in that the x; are integers but A\; and A; are not. This
phenomenon can occur even if the eigenvalues )\; are nonreal complex numbers.
We conclude with an example showing that nonlinear recurrences can be very

complicated.

Suppose a sequence xg, x1, &3, .

1
2%k
Xpt1 =

. satisfies the following recurrence:
if ay, is even

3a, + 1 if ay is odd

If xy = 1, the sequence is 1,4, 2, 1,4, 2, 1, ... and so continues to cycle
indefinitely. The same thing happens if xy = 7. Then the sequence is

7,22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8,4, 2, 1, ...

and it again cycles. However, it is not known whether every choice of x will
lead eventually to 1. It is quite possible that, for some x, the sequence will
continue to produce different values indefinitely, or will repeat a value and
cycle without reaching 1. No one knows for sure.

EXERCISES 3.4

1. Solve the following linear recurrences.

(@) xp42 = 3y + 22,1, where xg = 1 and x; = 1.
o) x4y = 22, — x4, where g = 1 and xy = 2.
(¢) xp42 = 224 + x4y, where g = 0 and xy = 1.

o(d) xpyr = 6y — x4, where g = 1 and xy = 1.

2. Solve the following linear recurrences.

(@) ap43 = 60347 — 1lagy g + 6y, where ag = 1,
x; =0,and x, = 1.

o(b) xpp3 = —204,5 + 2441 + 2y, where xy = 1,
x; =0,and x, = 1.
X

[Hint: Use v, = ]

K41
K42

. In Example 1 suppose busses are also allowed to

park, and let «;, denote the number of ways a row
of k parking spaces can be filled with cars, trucks,
and busses.

(a) If trucks and busses take up 2 and 3
spaces respectively, show that
Xpp3 = X + X541 + x40 for each &,
and use this recurrence to compute xy.
[Hint: The eigenvalues are of little use.]

4

°5.

o7.

+(b) If busses take up 4 spaces, find a recurrence
for the x; and compute xy.

. A man must climb a flight of % steps. He always

takes one or two steps at a time. Thus he can
climb 3 steps in the following ways: 1, 1, 1; 1, 2;
or 2, 1. Find s;, the number of ways he can climb
the flight of & steps. [Hint: Fibonacci.]

How many “words” of k letters can be made
from the letters {a, b} if there are no adjacent #’s?

. How many sequences of k flips of a coin are

there with no HH?

Find x;, the number of ways to make a stack of

k poker chips if only red, blue, and gold chips are
used and no two gold chips are adjacent. [Hint:
Show that x;,, = 2%, 1 + 2x; by considering how
many stacks have a red, blue, or gold chip on top.]

. A nuclear reactor contains «- and (-particles.

In every second each a-particle splits into three
B-particles, and each [(-particle splits into an
a-particle and two (-particles. If there is a single
a-particle in the reactor at time # = 0, how
many «-particles are there at # = 20 seconds?
[Hint: Let x; and y, denote the number of a- and
B-particles at time # = k seconds. Find x;,; and
Yiy1 in terms of ay, and y;.]
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+9. The annual yield of wheat in a certain country
has been found to equal the average of the
yield in the previous two years. If the yields
in 1990 and 1991 were 10 and 12 million tons
respectively, find a formula for the yield & years
after 1990. What is the long-term average yield?

10. Find the general solution to the recurrence
Xpy1 = 72 + ¢ where 7 and ¢ are constants.
[Hint: Consider the cases » = 1 and » # 1
separately. If 7 # 1, you will need the identity

ltrd2 g = 11_’7 forn > 1.

-7

11. Consider the length 3 recurrence
Xpy3 = axy + bxy,q + CXppy2-

X}, 010
(a) If v, = |%¢41{and A = |0 0 1|, show that
X2 ab c
Vil = AVk.

+(b) If X is any eigenvalue of 4, show that
1

X =| )\ |is a A-eigenvector.
)\2
[Hint: Show directly that Ax = Ax.]

(¢) Generalize (a) and (b) to a recurrence
Xppq = axp + bxpyy + gy + dugys of
length 4.

SECTION 3.5

12. Consider the recurrence xy,, = axy, 1 + bxy + ¢
where ¢ may not be zero.

(a) If 2 + b # 1 show that p can be found
such that, if we set y, = ay, + p, then
Yir2 = @Yy + by, [Hence, the sequence
x; can be found provided y, can be
found by the methods of this section
(or otherwise).]

+(b) Use (a) to solve the recurrence
Xppr = Xy + 6xp + 5 where g = 1
and x; = 1.

13. Consider the recurrence
Xpyr = @xpy1 + by + o(k) (%)

where c(k) is a function of %, and consider the
related recurrence

X2 = axpyy + by ()
Suppose that a;, = p, is a particular solution of (x).

+(a) If ¢4 is any solution of (xx), show that ¢, + p;
is a solution of (x).

(b) Show that every solution of (x) arises as in
(a) as the sum of a solution of (xx) plus the
particular solution p,, of (x).

An Application to Systems of Differential

Equations

A function f of a real variable is said to be differentiable if its derivative exists and,
in this case, we let /" denote the derivative. If fand g are differentiable functions,

a system

= 3f+5g
§=-f+2%

is called a system of first order differential equations, or a differential system for short.
Solving many practical problems often comes down to finding sets of functions
that satisfy such a system (often involving more than two functions). In this section
we show how diagonalization can help. Of course an acquaintance with calculus

is required.

The Exponential Function

The simplest differential system is the following single equation:

f'=af where 4 is a constant. (%)

It is easily verified that f(x) = ¢” is one solution; in fact, equation () is simple
enough for us to find #// solutions. Suppose that fis any solution, so that
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f(x) = af(x) for all x. Consider the new function g given by g(x) = f(x)e™™.
Then the product rule of differentiation gives

§@) = f@l—ae ] + fe ™
= —af(x)e ™ + [af(w)]e™™
=0

for all x. Hence the function g(x) has zero derivative and so must be a constant, say

g(@) = c. Thus ¢ = g(x) = fx)e™™, thatis
flw) = ce™.

In other words, every solution f(x) of (x) is just a scalar multiple of ¢**. Since every
such scalar multiple is easily seen to be a solution of (x), we have proved

The set of solutions to f'= af is {ce" | ¢ any constant} = Re™.

Remarkably, this result together with diagonalization enables us to solve a wide
variety of differential systems.

Assume that the number 7(z) of bacteria in a culture at time # has the property
that the rate of change of  is proportional to # itself. If there are n, bacteria
present when 7 = 0, find the number at time 7.

Solution > Let k denote the proportionality constant. The rate of change of
n(t) is its time-derivative 7'(z), so the given relationship is #'(¢) = kn(z). Thus
Theorem 1 shows that all solutions 7 are given by n(z) = ce"’, where ¢ is a
constant. In this case, the constant ¢ is determined by the requirement that

there be 7, bacteria present when ¢ = 0. Hence 7y = n(0) = c¢** = ¢, so

n(t) = e
gives the number at time #z. Of course the constant # depends on the strain
of bacteria.

The condition that 7(0) = ny in Example 1 is called an initial condition or a
boundary condition and serves to select one solution from the available solutions.

General Differential Systems

Solving a variety of problems, particularly in science and engineering, comes down
to solving a system of linear differential equations. Diagonalization enters into this
as follows. The general problem is to find differentiable functions fi, f3, ..., f, that

satisfy a system of equations of the form
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fi= aufi +anfr+ - +anf,
fr= anfi +anfr + - + af,
7/1 = ﬂnl,fl + ﬂnZ,fZ + -+ ﬂnnﬁl

where the #;; are constants. This is called a linear system of differential equations
or simply a differential system. The first step is to put it in matrix form. Write

h fi M1 a2 iy
£ = f £ = I3 A =% 22
: g S :
f;l fn Ayl Ay 0 Ay
Then the system can be written compactly using matrix multiplication:
f' = Af

Hence, given the matrix 4, the problem is to find a column f of differentiable
functions that satisfies this condition. This can be done if A is diagonalizable.
Here is an example.

Find a solution to the system

fi= fi+3f
fa=2f+2f

that satisfies f1(0) = 0, /,(0) = 5.

fi

Solution » This is £’ = Af, where f = [f L3

}. The reader can
22

2
verify that cy(x) = (x — 4)(x + 1), and that x; = H

eigenvectors corresponding to the eigenvalues 4 and —1, respectively. Hence

}and/]:[

are

and x, = [

the diagonalization algorithm gives P~'AP = [g (1)}, where
P=[x x| = H ; . Now consider new functions g; and g, given by f = Pg

(equivalently, g = P~'f), where g = gﬂ Then

=g +3
m _ {1 3“@} tais, 11838
L) 1 =218 fr=8-2¢

Hence f| = g} + 3g5 and [} = g{ — 2g5 so that

o=[f]- L 25

If this is substituted in £’ = Af, the result is Pg’ = APg, whence
g’ =P '4Pg
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But this means that
g1 =4g

, SO

{gi} _ [4 oMgl

g] 10 -1l& g =&

Hence Theorem 1 gives gi(x) = ce®, 2>(x) = de™™, where ¢ and 4 are constants.
Finally, then,

fi@)
f2 (%)
so the general solution is
fi@) = ce™ + 3de™
f@) = ™ — 2de™™
It is worth observing that this can be written in matrix form as

1O o 3

g1(x)
2 (%)

_ {1 3}[ 6‘641 _ e + 3de™™
1 =21l de™™ ce™ — 2de™

¢ and d constants.

That is,
f(x) = cxe™ + dxye™

This form of the solution works more generally, as will be shown.
Finally, the requirement that f1(0) = 0 and 3(0) = 5 in this example
determines the constants ¢ and 4:

0=£0) =ce® +3de’ = ¢+ 3d
5=1£(0)=c® —2de® = ¢ — 24

These equations give c = 3 and d = —1, so

filx) = 3¢ — 37
f@) = 3e™ + 27

satisfy all the requirements.

The technique in this example works in general.

Consider a linear system
f'=Af

of differential equations, where A is an n x n diagonalizable matrix. Let P"'AP be
diagonal, where P is given in terms of its columns

P = [Xl’ X2y oey Xn]

and {x1, Xy, ..., X,} are eigenvectors of A. If x; corresponds to the eigenvalue \; for each i,
then every solution f of ' = Af has the form

£(x) = cx16M + %6 + - + o xpe™

where ¢y, ¢, ..., ¢, are arbitrary constants.
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By Theorem 4 Section 3.3, the matrix P = [xy, x,, ..., X,] is invertible and

N O - 0

Plap = 0 A‘Z 0 .
0 0 - A,

2 81

. |and define g = gf by g = P~'f; equivalently,
7 &
f = Pg. If P = [p;], this gives
fi=pag1 + pag + -+ + Pindn-
Since the p;; are constants, differentiation preserves this relationship:
11 =pagh + pagh + - + pingn-
so £’ = Pg’. Substituting this into f’ = Af gives Pg’ = APg. But then

multiplication by P~ gives g’ = P~'4Pg, so the original system of equations
f’ = Af for f becomes much simpler in terms of g:

gil N O - 0 @l
2 10 X - 0|

As in Example 2, write f =

il Lo o o lé

Hence g/ = Ag; holds for each i, and Theorem 1 implies that the only solutions are

g{®) = ;™ ¢; some constant.
Then the relationship f = Pg gives the functions f3, f3, ..., f, as follows:
Clex\lx
Y A A A
f() =[x, %9, ooy X,] |2 | = ox™ 4 0% + - 4 0%
c,,ek””

This is what we wanted.

The theorem shows that every solution to f' = Af is a linear combination

Aox

£(x) = e + %6 + o+ o x0e™

where the coefficients ¢; are arbitrary. Hence this is called the general solution

to the system of differential equations. In most cases the solution functions f3(x)

are required to satisfy boundary conditions, often of the form f{(#) = b;, where

a, by, ..., b, are prescribed numbers. These conditions determine the constants ;.
The following example illustrates this and displays a situation where one eigenvalue
has multiplicity greater than 1.
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Find the general solution to the system

fi= 5f +8f + 16f;
fi= 4+ fi+ 8fs
fi=—-4h—-4L-11f
Then find a solution satisfying the boundary conditions f1(0) = 5(0) = 5(0) = 1.

5 8 16
Solution P The system has the form ' = Af, where A =| 4 1 8| Then
-4 -4 -11

cs(®) = (x + 3)’(x — 1) and eigenvectors corresponding to the eigenvalues —3,
—3, and 1 are, respectively,

—1 —2 2
X = 1| %= 0| x3= 1
0 1 —1
Hence, by Theorem 2, the general solution is
—1 =2 2
f@)=c| 1+l 0 +al 1§, ¢ constants.
0 1 —1
The boundary conditions f1(0) = 3(0) = f3(0) = 1 determine the constants ;.
1 —1 -2 2
11=t0)=¢c| 1|+ 0|+a 1]
1 0 1 —1
-1 =2 2||la
=1 0 1|l
0 1 -1lls
The solution is ¢; = =3, c; = 5, ¢ = 4, so the required specific solution is
filw) = —7e7* + 8¢*
@) = =3¢ 4+ 4¢°
fil@) = S — 4
1. Use Theorem 1 to find the general solution to od) f1=2+ £ +2f
each of the following systems. Then find a specific fr=2f1+2/ -2/
solution satisfying the given boundary condition. =3+ HL+ £
(@) fi =2 + 4, fO) =0 HO =0 =£0 =1
fr=3f+3h H0) =1 2. Show that the solution to f'= af
ob) fi=—fi + 5h LO) = 1 satisfying f(xo) = k is f(x) = k")

fa= fi+ 30 £0)
© f1= A1 + 45
fa= h+ =2
fi=—-h+ fi+4;

£10) = £(0) = £0) = 1

=-1 . .
3. A radioactive element decays at a rate

proportional to the amount present. Suppose an
initial mass of 10 g decays to 8 g in 3 hours.

(a) Find the mass ¢ hours later.

+(b) Find the half-life of the element—the time
taken to decay to half its mass.
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4. The population N(z) of a region at time ¢ 7. Writing " = (f”')’, consider the third order
increases at a rate proportional to the population. differential equation

If the population doubles every 5 years and is
3 million initially, find N(z).

" — af" — aof — ayf =0

where a1, 45, and a3 are real numbers. Let f; = f;

5. Let A be an invertible diagonalizable n X » f=f—afandfs = — aff — arf”.
matrix and let b be an z-column of constant
functions. We can solve the system f' = Af + b fi
as follows:

(a) Show that | f; |is a solution to the system

+(a) If g satisfies g’ = Ag (using Theorem 2), f

show that f = g — A™'b is a solution to

f'=Af + b.

(b) Show that every solution to

fi=afi+1 f] [a 10]f
fr=afi +f,thatis | f3 =4 01 || A |

f’ = Af + b arises as in (a) for some f3=aih f3 a3 0 0] f5
solution g to g’ = Ag.

6. Denote the second derivative of fby f” = (f7)".
Consider the second order differential equation

h
(b) Show further that if | 5 | is any solution to

" —a)f’ — ay f = 0, a; and 4, real numbers.  (x) £

(a) If fis a solution to (x) let f; = fand
f» =f"— af- Show that

{f’l =afi + 12
f2=mfi

+(b) Conversely, if h

, that is

this system, then /= fi is a solution to (x).

Remark. A similar construction casts every

linear differential equation of order 7 (with

fi fi constant coefficients) as an #» X z linear

15 ' system of first order equations. However, the
matrix need not be diagonalizable, so other

is a solution to the system methods have been developed.

élll

6120 2

2
in (a), show that f] is a solution to (x).

SECTION 3.6

Proof of the Cofactor Expansion Theorem

Recall that our definition of the term determinant is inductive: The determinant of
any 1 X 1 matrix is defined first; then it is used to define the determinants of 2 x 2
matrices. Then that is used for the 3 x 3 case, and so on. The case of a 1 x 1 matrix
[#] poses no problem. We simply define

detlz] = a
as in Section 3.1. Given an 7 x # matrix A, define 4;; to be the (7 — 1) X (n — 1)
matrix obtained from A by deleting row 7 and column j. Now assume that

the determinant of any (n — 1) X (» — 1) matrix has been defined. Then the
determinant of A is defined to be

det A = ap detAH — a1 dCtA21 + -+ (—1)n+1ﬂn1 detA,,l
7 .
= z;(—l)l-'—lélil det Ail
=
where summation notation has been introduced for convenience.'” Observe that,

in the terminology of Section 3.1, this is just the cofactor expansion of det A along
the first column, and that (—1)""/ det Ajj is the (i, j)-cofactor (previously denoted

— 4
17 Summation notation is a corg}venient shorthand way to write sums of sgmilar expressions. For example & + & + a; + @, = »_a;
=1
ashs + agbs + @by + aghy = S ab, and 12 + 22 4 32 4+ 42 4 52 = S 12 '
k=5 =
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as ci]-(A)).18 To illustrate the definition, consider the 2 x 2 matrix 4 = [ﬂll ﬂ12].

. . a1 422
Then the definition gives

ayy 412
a1 4

} = ayy det[ay,] — ay; detfayy] = ay1ay; — 43141,

and this is the same as the definition in Section 3.1.

Of course, the task now is to use this definition to prove that the cofactor
expansion along any row or column yields det A (this is Theorem 1 Section 3.1).
The proof proceeds by first establishing the properties of determinants stated in
Theorem 2 Section 3.1, but for 7ows only (see Lemma 2). This being done, the full
proof of Theorem 1 Section 3.1 is not difficult. The proof of Lemma 2 requires the
following preliminary result.

Let A, B, and C be n X n matrices that are identical except that the pth row of A is the
sum of the pth rows of B and C. Then

det A = det B + det C

We proceed by induction on 7, the cases 7 = 1 and » = 2 being easily checked.
Consider #;; and A;;:

Case 1: If i # p,
a; = 171'1 = (1 and det Ail = det Bil = det Cil

by induction because A;;, B;;, C;; are identical except that one row of A;; is the
sum of the corresponding rows of B;; and Cj;.

Case 2: If i = p,
ﬂpl = bpl + Cpl and Apl = Bpl = Cpl

Now write out the defining sum for det A, splitting off the pth term for special
attention.

det A = > ay(— 1) det Ay + a,(— 1" det 4,
#
= > an(—1)"" [det B,y + det B,] + (b1 + Cp1)(—1)P+1 det 4,

7
where det 4;; = det B;; + det C;; by induction. But the terms here involving B;
and b,; add up to det B because 4;; = b;; it i # p and A,; = B,;. Similarly, the
terms involving Cj; and ¢,; add up to det C. Hence det A = det B + det C, as
required.

18 Note that we used the expansion along row 1 at the beginning of Section 3.1. The column 1 expansion definition is more
convenient here.
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Let A = [a;] denote an n X n matrix.

1. If B = [b] is formed from A by multiplying a row of A by a number u, then
det B =udet A.

If A contains a row of zeros, then det A = 0.
If B = [bj] is formed by interchanging two rows of A, then det B = —det A.
If A contains two identical rows, then det A = 0.

S

If B = [bj] is formed by adding a multiple of one row of A to a different row,
then det B = det A.

| PROOF |

For later reference the defining sums for det 4 and det B are as follows:

det A = znjéll'l(—l)ﬂ—l det Ail (*)
i=1

det B = 3 b, (—1)*! det B, (%)
i=1

Property 1. The proof is by induction on 7, the cases 7 = 1 and # = 2 being easily
verified. Consider the ith term in the sum (%) for det B where B is the result of
multiplying row p of A by u.

(a) If 7 # p, then b;; = 4;; and det B;; = u det A;; by induction because B;; comes
from A;; by multiplying a row by .

(b) If i = p, then by, = ua, and B,; = A4,

In either case, each term in equation (xx) is # times the corresponding term in
equation (x), so it is clear that det B = u det A.

Property 2. This is clear by property 1 because the row of zeros has a common
factor = 0.

Property 3. Observe first that it suffices to prove property 3 for interchanges of
adjacent rows. (Rows p and ¢ (g > p) can be interchanged by carrying out

2(q — p) — 1 adjacent changes, which results in an odd number of sign changes

in the determinant.) So suppose that rows p and p + 1 of A are interchanged to
obtain B. Again consider the /ith term in (xx).

(@ Ifi #pandi # p + 1, then b;; = 4; and det B;; = —det A;; by induction
because B;; results from interchanging adjacent rows in 4,;. Hence the ith
term in (xx) is the negative of the /th term in (x). Hence det B = —det 4 in
this case.

b)Ifi=pori=p+1,thenb, =a,.,;and B, = A4,,,, whereas b, = a,,
and B, = 4, Hence terms p and p + 1 in (xx) are
bpl(_l)P+1 det Bpl = _ﬂp+1,1(_1)(p-'—1)+1 det(ApH,l)
by (=D det(By g1 1) = —ap (=17 det 4y
This means that terms p and p + 1 in (xx) are the same as these terms in (%),

except that the order is reversed and the signs are changed. Thus the sum (xx) is
the negative of the sum (x); that is, det B = —det 4.
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Property 4. If rows p and ¢ in A are identical, let B be obtained from A by
interchanging these rows. Then B = A4 so det A = det B. But det B = —det 4 by
property 3 so det A = —det A. This implies that det 4 = 0.

Property 5. Suppose B results from adding # times row ¢ of A to row p. Then
Lemma 1 applies to B to show that det B = det A4 + det C, where C is obtained
from A by replacing row p by « times row ¢. It now follows from properties 1
and 4 that det C = 0 so det B = det A, as asserted.

These facts are enough to enable us to prove Theorem 1 Section 3.1. For

convenience, it is restated here in the notation of the foregoing lemmas. The only
difference between the notations is that the (7, j)-cofactor of an n X » matrix 4 was
denoted earlier by

cid) = (—1)" det 4

IfA = [a;] is an n X n matrix, then

1. detAd= Zﬂ (—1)" det Ajj  (cofactor expansion along column j).
2. detd= E ai(—1)*" det A; (cofactor expansion along row i).
j=1

Here Aj; denotes the matrix obtained from A by deleting row i and column j.

Lemma 2 establishes the truth of Theorem 2 Section 3.1 for rows. With this
information, the arguments in Section 3.2 proceed exactly as written to establish
that det A = det A” holds for any # x » matrle Now suppose B i is obtained
from A by interchanging two columns. Then B’ is obtained from A" by
interchanging two rows so, by property 3 of Lemma 2,

det B = det B = —det AT = —det 4

Hence property 3 of Lemma 2 holds for columns too.

This enables us to prove the cofactor expansion for columns. Given an 7 X
n matrix A = [a;], let B = [b;] be obtained by moving column ; to the left side,
using j — 1 1nterchanges of ad]acent columns. Then det B = (—1y"'det A and,
because B;; = A;; and b;; = a;; for all 7, we obtain

det A = (—1Y " 'det B = (=1)~ 121;1( 1)"*! det B;
= Za,( 1" det 4

This is the cofactor expansion of det 4 along column ;.



SECTION 3.6 Proof of the Cofactor Expansion Theorem 183

Finally, to prove the row expansion, write B = A”. Then B = (4 ZJT) and b;; = aj,
for all 7 and j. Expanding det B along column j gives

det A = det A” = det B = 3 b,(~1)"* det B,
i=1
= izzlﬂji(_l)j+i det [(A]’{‘)] = izzlﬂji(—l)j-” dCt A]l

"This is the required expansion of det A along row ;.

EXERCISES 3.6

1. Prove Lemma 1 for columns. 3. If wis a number and A is an # X » matrix, prove
) ) ) that det(zA) = #" det A by induction on 7, using
+2. Verify that interchanging rows p and ¢ (g > p) only the definition of det A.
can be accomplished using 2(g — p) — 1 adjacent
interchanges.
SUPPLEMENTARY EXERCISES FOR CHAPTER 3
1. Show that 4. Show that
a+px b+qre c+rx Lo d
det| p+ux g+ox r+wx
3= — - — .
Ut ae Db w4 e det| 1 5 » G—a)c—a)c—ba+b+c
ab ¢ e C;
= (1 +ad)det| p g 7 5. Let A :{ 1} be a 2 x 2 matrix with rows R
uwvw 2
2. (a) Show that (Al-j)T = (AT)ﬁ for all 4, 7, and all and R;. If detA = 5, find det B where
square matrices A. B= {3R1 + 28 }
+(b) Use (a) to prove that det A7 = det A. 2Ry + 3K
[Hint: Induction on 7 where A is n X n.] 6. Let A= B _4], and let v, = A*v, for each & > 0.
0 I, (a) Show that A4 has no dominant eigenvalue.

3. Show that det =(—=1)"foralln > 1 and

m=> 1.

I, 0 (b) Find v, if vg equals: (i) m @ m

[l

or




Vector Geometry

Vectors and Lines

In this chapter we study the geometry of 3-dimensional space. We view a point in
3-space as an arrow from the origin to that point. Doing so provides a “picture” of
the point that is truly worth a thousand words. We used this idea earlier, in Section
2.6, to describe rotations, reflections, and projections of the plane R?. We now apply
the same techniques to 3-space to examine similar transformations of R*. Moreover,
the method enables us to completely describe all lines and planes in space.

Vectors in R®

Introduce a coordinate system in 3-dimensional space in the usual way. First choose
a point O called the origin, then choose three mutually perpendicular lines through
O, called the , y, and z axes, and establish a number scale on each axis with zero at
the origin. Given a point P in 3-space we associate three numbers w, y, and z with
P, as described in Figure 1. These numbers are called the coordinates of P, and we
denote the point as (x, y, z), or P(x, y, ) to emphasize the label P. The result is
called a cartesian' coordinate system for 3-space, and the resulting description of
3-space is called cartesian geometry.

As in the plane, we introduce vectors by identifying each point P(x, y, 2) with the

Py, 2)
x
v :m vector v = | Y| in R?, represented by the arrow from the origin to P as in Figure 1.
z P4

Informally, we say that the point P has vector v, and that vector v has point P. In this
y. y p

way 3-space is identified with R?, and this identification will be made throughout
Sy this chapter, often without comment. In particular, the terms “vector” and

X Py, y, 0) “point” are interchangeable.2 The resulting description of 3-space is called vector
0

M FIGURE 1 geometry. Note that the originis 0 = {0 |
0

Length and Direction

We are going to discuss two fundamental geometric properties of vectors in R’:
length and direction. First, if v is a vector with point P, the length ||v|| of vector

1 Named after René Descartes who introduced the idea in 1637.

2 Recall that we defined R” as the set of all ordered n-tuples of real numbers, and reserved the right to denote them as rows or as
columns.
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v is defined to be the distance from the origin to P, that is the length of the arrow
representing v. The following properties of length will be used frequently.

x
¥

b4

@) IVl =V +y +2.°
(2)v=0ifand only if ||v|| = 0

(3) |lav|| = |a| ||v|| for all scalars a.*

Let v have point P = (x, y, 2).

Letv = be a vector.

(1) In Figure 2, ||v|| is the hypotenuse of the right triangle OQP, and so
|v||* = b* + 2 by Pythagoras’ theorem.’ But 4 is the hypotenuse of the
right triangle ORQ, so * = * + y°. Now (1) follows by eliminating 5
and taking positive square roots.

Q) If ||v]| = 0, then &* + y* + 2% = 0 by (1). Because squares of real numbers
are nonnegative, it follows that x = y = z = 0, and hence that v = 0. The

converse is because ||0]] = 0.

¥ FIGURE 2 (3) We have av = (ax, ay, az) so (1) gives llav])* = (ax)* + (ﬂy)2 + (a2)’ = &*||v|*
Hence ||av|| = \/;2||V||, and we are done because Va? = |#| for any real
number 4.

Of course the R*>-version of Theorem 1 also holds.

2
Ifv=|_1 |then ||v]| =V&+ 1 + 9 = VI4. Similarly if v = ﬂ i Dy
3 _

then ||v|| =V9 + 16 = 5.

When we view two nonzero vectors as arrows emanating from the origin, it is
clear geometrically what we mean by saying that they have the same or opposite
direction. This leads to a fundamental new description of vectors.

3 When we write \/p we mean the positive square root of p.

4 Recall that the absolute value || of a real number is defined by |al = a_ifaaizfzag 0
5  Pythagoras’ theorem states that if a and b are sides of right triangle with hypotenuse c, then & + & = ¢ A proof is given at the
end of this section.
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Theorem 2

Letv # 0 and w # 0 be vectors in R®. Then v = w as matrices if and only if v and w
have the same direction and the same length.®

If v = w, they clearly have the same direction and length. Conversely, let v and
w be vectors with points P(x, y, ) and Q(xy, y;, 21) respectively. If v and w have
the same length and direction then, geometrically, P and Q must be the same

X X1
point (see Figure 3). Hence x = x1, y = y;, and 2 = z, thatisv= |y |=|)1| =wW.
P4 21

M FIGURE 3

A characterization of a vector in terms of its length and direction only is called
an intrinsic description of the vector. The point to note is that such a description
does nor depend on the choice of coordinate system in R*. Such descriptions are
important in applications because physical laws are often stated in terms of vectors,
and these laws cannot depend on the particular coordinate system used to describe
the situation.

Geometric Vectors

If A and B are distinct points in space, the arrow from A4 to B has length and
direction. Hence:

Definition 4.1 Suppose that A and B are any two points in R>. In Figure 4 the line segment from A to
z B is denoted AB and is called the geometric vector from A to B. Point A is called the
tail of AB, B is called the tip of AB, and the length of AB is denoted 7:]}

A.//ﬁv b Note that if v is any vector in R with point P then v = OP is itself a geometric
vector where O is the origin. Referring to AB as a “vector” seems justified by
0 Theorem 2 because it has a direction (from A4 to B) and a length |4B]. However
" 3y there appears to be a problem because two geometric vectors can have the same
B FIGURE 4 lglgth and direction even if the tips and tails are different. For example AB and
PQ in Figure 5 have the same length V/5and the same direction (1 unit left and 2
y units up) so, by Theorem 2, they are the same vector! The best way to understand

this apparent paradox is to see AB and PQ as different representations of the same

1 B(2,3)
underlying vector 1}. Once it is clarified, this phenomenon is a great benefit
(0, 2) . .
because, thanks to Theorem 2, it means that the same geometric vector can be
1 AB,1)  positioned anywhere in space; what is important is the length and direction, not
P, 0) the location of the tip and tail. This ability to move geometric vectors about is very
o— : useful as we shall soon see.
0 x
M FIGURE 5

6 Itis Theorem 2 that gives vectors their power in science and engineering because many physical quantities are determined by
their length and magnitude (and are called vector quantities). For example, saying that an airplane is flying at 200 km/h does not
describe where it is going; the direction must also be specified. The speed and direction comprise the velocity of the airplane, a
vector quantity.

7 Fractions provide another example of quantities that can be the same but /ook different. For example and ; certainly appear
different, but they are equal fractions—both equal 3 2in “lowest terms”.



M FIGURE 6

M FIGURE 7

SECTION 4.1  Vectors and Lines 187

The Parallelogram Law

We now give an intrinsic description of the sum of two vectors v and w in R?, that
is a description that depends only on the lengths and directions of v and w and
not on the choice of coordinate system. Using Theorem 2 we can think of these
vectors as having a common tail 4. If their tips are P and Q respectively, then they
both lie in a plane P contalmngA P, and Q, as shown in Figure 6. The vectors v
and w create a parallelogram® in P, shaded in Figure 6, called the parallelogram
determined by v and w.

If we now choose a coordinate system in the plane P with A4 as origin, then
the parallelogram law in the plane (Section 2.6) shows that their sum v + w is
the diagonal of the parallelogram they determine with tail 4. This is an intrinsic
description of the sum v + w because it makes no reference to coordinates. This
discussion proves:

The Parallelogram Law

In the parallelogram determined by two vectors v and w, the vector v + w is the
diagonal with the same tail as v and w.

Because a vector can be positioned with its tail at any point, the parallelogram
law leads to another way to view vector addition. In Figure 7(a) the sum v + w of
two vectors v and w is shown as given by the parallelogram law. If w is moved so its
tail coincides with the tip of v (Figure 7(b)) then the sum v + w is seen as “first v
and then w. Similarly, moving the tail of v to the tip of w shows in Figure 7(c) that
v + w is “first w and then v.” This will be referred to as the tip-to-tail rule, and it
gives a graphic illustration of why v + w = w + v.

—
Since AB denotes the vector from a point 4 to a point B, the tip-to-tail rule takes
the easily remembered form
— — —
AB + BC = AC
for any points A, B, and C. The next example uses this to derive a theorem in
geometry without using coordinates.

Show that the diagonals of a parallelogram bisect each other.

Solution > Let the parallelogram have vertices 4, B, C, and D, as shown; let E
denote the intersection of the two diagonals; and let M denote the midpoint
of diagonal AC. We must show that M = E and that this is the midpoint of

diagonal BD. This is accomplished by showing that BM = MD. (Then the fact
that these vectors have the same direction means that M = E, and the fact that
they have the same length means that M = E is the mldpomt of BD.) Now

AM = MC because M is the midpoint of AC, and BA = CD because the figure
is a parallelogram. Hence

BM = BA + AM = CD + MC = MC + CD = MD

where the first and last equalities use the tip-to-tail rule of vector addition.

8 Recall that a parallelogram is a four-sided figure whose opposite sides are parallel and of equal length.
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One reason for the importance of the tip-to-tail rule is that it means two or
more vectors can be added by placing them tip-to-tail in sequence. This gives a
useful “picture” of the sum of several vectors, and is illustrated for three vectors
in Figure 8 where u + v + w is viewed as first u, then v, then w.

There is a simple geometrical way to visualize the (matrix) difference v — w
of two vectors. If v and w are positioned so that they have a common tail 4 (see
Flgure 9), and if B and C are the1r respective tips, then the tip-to-tail rule gives

w + CB = v. Hence v — w = CB is the vector from the tip of w to the tip of v.
Thus both v — w and v + w appear as diagonals in the parallelogram determined
by v and w (see Figure 9). We record this for reference.

Theorem 3

If v and w have a common tail, then v — w is the vector from the tip of w to the tip of v.

One of the most useful applications of vector subtraction is that it gives a simple
formula for the vector from one point to another, and for the distance between the points.

Theorem 4

Let Pi(x1, y1, z1) and Py(x, 5, 25) be two points. Then:

X2 — X
1. P1P2= Y2 =01}
2 — 2

2. The distance between P; and P, is \/(xz — )+ (g2 — ) + (22 — 2)

X1 X2
If O is the origin, write vi = OP; = |y1 |and v, = OPZ ¥2 | as in Figure 10.
z1 22

Then Theorem 3 gives Pl_)Pz = v, — vy, and (1) follows. But the distance between
P1 andpz is HP?% y

Of course the R?-version of Theorem 4 is also valid: If P;(x, yp) and Py(x2, y2)
BY)

are points in R?, then PI_P)Z = {yz

: ji }, and the distance between P; and P, is

\/(xz - xl)z + (0 —)’1)2-

The distance between P;(2, —1, 3) and P(1, 1, 4) is \/(—1)2 + Q) + (1) =6,

-1
21
1

—>
and the vector from P; to P, is PP, =
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As for the parallelogram law, the intrinsic rule for finding the length and direction
of a scalar multiple of a vector in R* follows easily from the same situation in R,

Scalar Multiplication

Scalar Multiple Law
If a is a real number and v #+ 0 is a vector then:

(1) The length of av is ||av|| = |a|||v]|.

the same as v if a > 0,

9 N ;
(2) Ifav # 0, the direction of av is [ el

(1) This part of Theorem 1.

(2) Let O denote the origin in R?, let v have point P, and choose any plane
containing O and P. If we set up a coordinate system in this plane with O as

origin, then v= OP so the result in (2) follows from the scalar multiple law in
the plane (Section 2.6).

1
/( DY origin O, and let p = OP. If 1 # 0, then 7p is a point on L because it has direction
the same or opposite as that of p. Moreover 7 > 0 or ¢ < 0 according as the point p
M FIGURE 11 lies on the same or opposite side of the origin as P. This is illustrated in Figure 12.
1 0 0
0 1 0

0 0 1
are unit vectors, called the coordinate vectors. We discuss them in more detail in

Section 4.2.

v Figure 11 gives several examples of scalar multiples of a vector v.
/ -~ e Consider a line L through the origin, let P be any point on L other than the
1v

A vector u is called a unit vector if ||[u|| = 1. Theni =

,j=|1and k =

M FIGURE 12

If v # 0 show that ﬁv is the unique unit vector in the same direction as v.
v

Solution » The vectors in the same direction as v are the scalar multiples av

where 2 > 0. But ||av|| = |4|||v|| = 4||v|| when 2 > 0, so av is a unit vector if

and only if z = _

v

The next example shows how to find the coordinates of a point on the line
segment between two given points. The technique is important and will be used
again below.

9 Since the zero vector has no direction, we deal only with the case av + 0.
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Let p; and p; be the vectors of two points Py and P,. If M is the point one third
the way from P; to P,, show that the vector m of M is given by

m = %Pl + %Pz

Conclude that if Py = Pi(xy, y1, 21) and P, = Ps(x3, ¥2, 22), then M has
coordinates

M= M(§x1 + %xz, %}’1 + %)’27 %Z1 + %Zz)-
Solution » The vectors py, p;, and m are shown in the diagram We have

PlM —P1P2 because PlM is in the same direction as P1P2 and -+ as long. By
Theorem 3 we have P1P2 P2 — P1, so tip-to-tail addition glves

m=P1+P1M=P1+%(P2—P1)=§P1+%Pz

X X2
as required. For the coordinates, we have p; = | Y1 |and p; = |72, so
2] 22
2 1
Xy X 50 5t
_2 1y | |2 1
=301+ 302|= |50 + 302
2] 22
%Zl 2 %Zz

by matrix addition. The last statement follows.

Note tha.t in Example 5 m = %pl + 1p; is a “weighted average” of p; and p, with
more weight on p; because m is closer to p;.

The point M halfway between points P; and P; is called the midpoint between
these points. In the same way, the vector m of M is

m = 2P1 + ZPz 1(Pl +p2)

as the reader can verify, so m is the “average” of p; and p; in this case.

Show that the midpoints of the four sides of any quadrilateral are the vertices
of a parallelogram. Here a quadrilateral is any figure with four vertices and
straight sides.

Solution » Suppose that the vertices of the quadrilateral are A4, B, C, and D (in
that order) and that E, F, G, and H are the midpoints of the sides as shown in

the diagram. It suffices to show EF = HG (because then sides EF and HG are
parallel and of equal length) Now the fact that E is the midpoint of AB means

that EB = 1AB Similarly, BF = 1BC SO
EF = EB + BF = 4B + 1BC = (4B + BC) = 14C

A similar argument shows that HG = %A_C)' too, so EF = HG as required.
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Definition 4.2  Two nonzero vectors are called parallel if they have the same or opposite direction.

Many geometrical propositions involve this notion, so the following theorem will
be referred to repeatedly.

Two nonzero vectors v and w are parallel if and only if one is a scalar multiple of the other.

If one of them is a scalar multiple of the other, they are parallel by the scalar
multiple law.

, v
Conversely, assume that v and w are parallel and write d = H for
w

convenience. Then v and w have the same or opposite direction. If they have
the same direction we show that v = dw by showing that v and dw have the
same length and direction. In fact, ||dw|| = |d| ||w|| = ||v|| by Theorem 1; as to
the direction, dw and w have the same direction because 4 > 0, and this is the
direction of v by assumption. Hence v = dw in this case by Theorem 2. In the
other case, v and w have opposite direction and a similar argument shows that
v = —dw. We leave the details to the reader.

Given points P2, —1, 4), Q(3, —1, 3), A(0, 2, 1), and B(1, 3, 0), determine if
P—Q> and AB are parallel.

Solution » By Theorem 3, PQ = (1, 0, —1) and AB = (1, 1, —1). If PQ = tAB
then (1, 0, —=1) = (z, ¢, —t),_s)o 1 = tand 0 = ¢, which is impossible. Hence PQ
is not a scalar multiple of 4B, so these vectors are not parallel by Theorem 5.

Lines in Space

These vector techniques can be used to give a very simple way of describing straight
lines in space. In order to do this, we first need a way to specify the orientation of
such a line, much as the slope does in the plane.

Definition 4.3  With this in mind, we call a nonzero vector d # 0 a direction vector for the line if it is
parallel to AB for some pair of distinct points A and B on the line.

Of course it is then parallel to CD for any distinct points C and D on the line. In
particular, any nonzero scalar multiple of d will also serve as a direction vector of
the line.

We use the fact that there is exactly one line that passes through a particular
a

b 1. We want to describe
¢

M FIGURE 13 this line by giving a condition on , y, and z that the point P(x, y, 2) lies on

point Py(xg, yo, Z0) and has a given direction vector d =
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Xo X
this line. Let py = | Yo |and p = |y | denote the vectors of Py and P, respectively
20 zZ
(see Figure 13). Then
p = po + PoP

Hence P lies on the line if and only if Zﬁ’ is parallel to d—that is, if and only if

Iﬁ) = td for some scalar ¢ by Theorem 5. Thus p is the vector of a point on the
line if and only if p = py + #d for some scalar 7. This discussion is summed up
as follows.

Vector Equation of a Line

The line parallel to d # 0 through the point with vector py is given by
p=po+td tany scalar

In other words, the point p is on this line if and only if a real number t exists such that
p=po+td

In component form the vector equation becomes

X X0 a
Y=Y+ 1b
Z 20 c

Equating components gives a different description of the line.

Parametric Equations of a Line

a
The line through Py(xo, Yo, 2o) with direction vector d = | | # 0 is given by
c
X =xy+ ta
y=yo+tb t any scalar
2 =20+ I

In other words, the point P(x, y, 2) is on this line if and only if a real number t exists
such that x = xy + ta, y = yo + tb, and z = zq + tc.

Find the equations of the line through the points Py(2, 0, 1) and P;(4, —1, 1).

2
Solution b Let d = PyP; = |1 | denote the vector from P, to P;. Then d is
0

parallel to the line (Py and P; are o the line), so d serves as a direction vector
for the line. Using Py as the point on the line leads to the parametric equations

x =2+ 2t
y=—t t a parameter
z =l

Note that if P; is used (rather than P), the equations are
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x=4+2s
W= =il =g § a parameter
z=1

These are different from the preceding equations, but this is merely the result
of a change of parameter. In fact,s = — 1.

Find the equations of the line through Py(3, —1, 2) parallel to the line with
equations

w= =l 4 2
y=1+1
z=-=34+4
2
Solution b The coefficients of ¢ give a direction vector d = | 1 | of the given
4

line. Because the line we seek is parallel to this line, d also serves as a direction
vector for the new line. It passes through P, so the parametric equations are

x =3+ 2t
y=—1+1
z2=2+4

Determine whether the following lines intersect and, if so, find the point of
intersection.

x=1-—3t x=—1+s
y=2+5t y=3—4s
z=1+1¢ z=1—=s

Solution » Suppose p = P(x, y, 2) lies on both lines. Then

1 — 3¢ X —1+s
2+ 5¢|=1|Y|=|3 — 45 | for some ¢ and s,
1 +1¢ % 1 —s

where the first (second) equation is because P lies on the first (second) line.
Hence the lines intersect if and only if the three equations

1 -3t =—-1+s

2+5t =3—4s
1+t =1-—=5
have a solution. In this case, 7 = 1 and s = —1 satisfy all three equations, so the
lines do intersect and the point of intersection is
L= 2% =/’
P=1(2+5t|=| 7
1 +1¢ 2
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-1+
3 —4s
1—5

using ¢ = 1. Of course, this point can also be found from p = using

s=—1.

Show that the line through Py(xy, y) with slope 72 has direction vector d = [”ﬂ

and equation y — yo = m2(x — xp). This equation is called the point-slope formula.

y Solution » Let Py(xy, y1) be the point on the line one unit to the right of Py (see the
diagram). Hence x; = &y + 1. Then d = PyP; serves as direction vector of the line,
P (xy, X] — X
) 1)’1?/ andd = { ' O] = [ ! } But the slope 7z can be computed as follows:
P,y Ji—Xo Y1 = Yo
O
i1 —=Yo _ D1 —DJo _
m_xl_xo_ 1 _.)’l_yo
Ol xp xy=wg+l ¥

Hence d = L}Z] and the parametric equations are x = x + t, y = yo + #mt.

Eliminating ¢ gives y — yo = mt = m(x — x;), as asserted.

Note that the vertical line through Py(xy, yo) has a direction vector d = [(ﬂ that is

not of the form L}J for any m2. This result confirms that the notion of slope makes

no sense in this case. However, the vector method gives parametric equations for
the line:

X = Xq

y=yt+t
Because y is arbitrary here (¢ is arbitrary), this is usually written simply as x = x,.

Pythagoras’ Theorem

The pythagorean theorem was known earlier, but Pythagoras (c. 550 B.c.) is credited
with giving the first rigorous, logical, deductive proof of the result. The proof we
give depends on a basic property of similar triangles: ratios of corresponding sides
are equal.

Pythagoras’ Theorem
Given a right-angled triangle with hypotenuse ¢ and sides a and b, then a® + b* = ¢.

Let A, B, and C be the vertices of the triangle as in Figure 14. Draw a perpendicular
from C to the point D on the hypotenuse, and let p and ¢ be the lengths of BD

and DA respectively. Then DBC and CBA are similar triangles so% =4

c

M FIGURE 14
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This means #° = pe. In the same way, the similarity of DCA and CBA gives 7_ é,
2 G
whence /° = ¢c. But then
AV =petqg=0p+qc=7
because p + ¢ = ¢. This proves Pythagoras’ theorem.
EXERCISES 4.1
1. Compute [|v|| if v equals: 7. Determine whether u and v are parallel in each
2 1 of the following cases.
(@) {—1 +(b) —1] -3 5
2 2 @ u=|-65v=|10
1 -1 L3 =5
@1 0 «(d] o 3 -1
-1 2 O(b) u=|—-6v= 2
1 1 3 3 1—1
(e) 2| -1 +(f) =31 B
2 2 (C) u=|0pv= 0
L1 1
2. Find a unit vector in the direction of: ) _3
[ 7] -2 odu=| ofv=| 0
(@ |-1 +(b) | -1 -1 4
. o . _ _ 2 ) 8. Let p and q be the vectors of points P and
3. (a) ch! a unit vector in the direction from Q, respectively, and let R be the point whose
3 1 vector is p + q. Express the following in terms
—1|to]|3} of pand q.
L 4] 15 — —
(b) If u # 0, for which values of # is #u a unit (@) Q_Pi +(b) %
vector? (¢) RP +(d) RO where O is the origin

4. Find the distance between the following pairs of 9. In each case, find P_Q> and Hp_é H

points.
3 2 2 2 (a) P(17 _1) 3)’ Q(B’ 1) O)
(@) |—1]and | —1 +b) |—1]and |0 +(b) P2,0,1),Q(1, —1, 6)
0 1 2 1
-3 1 4 3 (C) P(17 0’ 1)7 Q(17 0’ _3)
(C) 5 and 3 Q(d) 0 and 2 ’(d) P(17 _1) 2)7 Q(17 _17 2)
2B -0 (&) P(1,0,-3), Q(-1,0,3)
5. Use vectors to show that the line joining the o) PG, —1,6), 01, 1, 4)
midpoints of two sides of a triangle is parallel to o .
the third side and half as long. 10. In each case, find a point Q such that PQ has

(i) the same direction as v; (ii) the opposite

6. Let A, B, and C denote the three vertices of a direction to v

triangle. 1
(a) If E is the midpoint of side BC, show that (@ P(=1,2,2),v= 3]
AE = %(@ + /TC‘). I 5
+(b) If F is the midpoint of side AC, show that «(b) PG, 0, —1),v = _1]
FE = 14B. 3
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3 4 -1
11. Letu=|—-1|,v=|0,andw=| 1|
0 1 5

In each case, find x such that:
@ 3Cu+x)+w=2x—v
o) 2Bv—x) =5w+u — 3x

1 0 1]
12. Letu=|1|,v=|1,andw =| 0} In each
2 2 —1]

case, find numbers 4, #, and ¢ such that
X =au + bv + cw.

2 1]
(a) x=1|—-1 +b) x =13
6 0l
3 4 1
13. Letu=|—-1,,v=|0,and z = |1 In each
0 1 1
case, show that there are no numbers 4, b, and ¢
such that:

(@) au + bv + cz =

1
4
1
5
6
-1

14. Let P, = P,(2, 1, —2) and P, = Py(1, —2, 0).
Find the coordinates of the point P:

(b) au + bv + cz =

(a)  the way from P; to P,
+(b)  the way from P, to Py

15. Find the two points trisecting the segment
between P(2, 3, 5) and Q(8, —6, 2).

16. Let Pl = Pl(xl,yl, Zl) and PZ = Pz(xz,yz, Zz) be
two points with vectors p; and p,, respectively. If
7 and s are positive integers, show that the point

P lying - the way from P; to P, has vector

P =GP + P2

17. In each case, find the point Q:
2
(@ PQ = { 0
-3
-1
4
7

and P = P2, -3, 1)

+(b) P—Q) = and P = P(1, 3, —4)

2 2
18. Letu=| (Olandv =] 1/ In each case find x:
-4 -2

(@) 2u—||v|v= %(u — 2x)

o(b) 3u + 7v = |lul’@x + V)

19. Find all vectors u that are parallel to v =

3
-2
1

20. Let P, Q, and R be the vertices of a parallelogram
with adjacent sides PQ and PR. In each case, find
the other vertex S.

(@ PG, —1,-1),Q0(1, —-2,0), R(1, -1, 2)
+(b) P2,0,-1), Q(-2,4, 1), R3, —1,0)

and satisty ||ul| = 3]|v]|.

21. In each case either prove the statement or give
an example showing that it is false.

(a) The zero vector 0 is the only vector of
length 0.

o(b) It ||v — w|| =0, then v = w.
(c) Ifv= —v, thenv=0.

o(d) If ||v]| = [|w]|, then v = w.
(e) If ||v|| = ||wl|, then v = +w.

o(f) If v = tw for some scalar ¢, then v and w
have the same direction.

(2) If v, w, and v + w are nonzero, and v and
v + w parallel, then v and w are parallel.

o(h) ||=5v|| = =5]|v]|, for all v.
@ If |Ivll = ||2v]|, then v = 0.
+() |lIv+ w| = |Iv|]| + ||w]|, for all vand w.

22. Find the vector and parametric equations of the
following lines.

2
(a) The line parallel to | —1 | and passing through
0
P, -1, 3).
+(b) The line passing through P(3, —1, 4) and
Q(la 07 _1)
(¢) The line passing through P(3, —1, 4) and
QG, -1, 5). 1
+(d) The line parallel to | 1 | and passing
1

through P(1, 1, 1).
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(e) The line passing through P(1, 0, —3) and
parallel to the line with parametric equations
x=—-14+2t,y=2—t,andz =3 + 3r.

+(f) The line passing through P2, —1, 1) and
parallel to the line with parametric equations
x=2—t,y=1l,andz =1

(2) The lines through P(1, 0, 1) that meet the

1 2
line with vector equation p = |2 |+ ¢ _1] at
0 2

points at distance 3 from Py(1, 2, 0).

23. In each case, verify that the points P and Q lie

on the line.
(@) x=3 -4 P(—1,3,0),Q(1,0,3)
y=2+t
z2=1-—1¢
ob) x=4—-1r PQ2,3,-3),Q(-1,3,-9
y=3
z2=1-—2t

24. Find the point of intersection (if any) of the
following pairs of lines.

(@ x=3+1 x=4+42s
y=1-2t y=6+3s
z=343t z=1+s

o) x=1-—1 x=2s
y=24+2t y=1+s
z=—-143t 2=3
el [ 3] !

© |y =|=-1|+1 1]

Lzl | 2] 1
ra 17 (2
Y|i=1| 1|+s0
lz] | =2] 13
el [ 4] 1

od) |y|=|=1]+1[0
lzl | 5] 11
e [2] [0
Y= |=7|+s=-2
Lzl 1 12] L 3

25. Show that if a line passes through the origin,
the vectors of points on the line are all scalar
multiples of some fixed nonzero vector.

26. Show that every line parallel to the z axis has
parametric equations x = xp, y = y, 2 = t for

some fixed numbers x; and yj.

27.

28.

+29.

30.

31.

32.

197
a

b
C
nonzero. Show that the equations of the line

through Py(x, yo, 20) with direction vector d
can be written in the form
X—Xy )Y —Yo_2z2—2
a b 3
"This is called the symmetric form of the
equations.

Letd =

be a vector where 4, b, and ¢ are all

A parallelogram has sides AB, BC, CD, and DA.
Given A(1, -1, 2), C(2, 1, 0), and the midpoint

M1, 0, —3) of AB, find BD.
Find all points C on the line through A(1, —1, 2)
and B = (2, 0, 1) such that HA—C)'” = 2||B—C)'H

Let A, B, C, D, E, and F be the vertices of a
regular hexagon, taken in order. Show that

AB + AC + AD + AE + AF = 3AD.

(a) Let Py, Py, Ps, P4, Ps, and Py be six points
equally spaced on a circle with centre C.

Show that
CP, + CP, + CP; + CP, + CP; + CP; = 0.

+(b) Show that the conclusion in part (a) holds for
any even set of points evenly spaced on the
circle.

(¢) Show that the conclusion in part (a) holds for
three points.

(d) Do you think it works for any finite set of
points evenly spaced around the circle?

Consider a quadrilateral with vertices 4, B, C,
and D in order (as shown in the diagram).

A B

D C

If the diagonals AC and BD bisect each other,
show that the quadrilateral is a parallelogram.
(This is the converse of Example 2.) [Hint: Let E
be the intersection of the diagonals. Show that

AB = D—)bewritingA—é = AE + E_B)]
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+33. Consider the parallelogram ABCD (see diagram),
and let E be the midpoint of side AD.

c

E
A
Show that BE and AC trisect each other; that is,
show that the intersection point is one-third of
the way from E to B and from A to C. [Hint: If
F is one-third of the way from A4 to C, show that

2EF = FB and argue as in Example 2.]

34. The line from a vertex of a triangle to the
midpoint of the opposite side is called a median
of the triangle. If the vertices of a triangle have

SECTION 4.2

35.

vectors u, v, and w, show that the point on each
median that is § the way from the midpoint to
the vertex has vector %(u + v + w). Conclude
that the point C with vector %(u + v + w) lies
on all three medians. This point C is called the

centroid of the triangle.

Given four noncoplanar points in space, the
figure with these points as vertices is called a
tetrahedron. The line from a vertex through
the centroid (see previous exercise) of the
triangle formed by the remaining vertices is
called a median of the tetrahedron. If u, v,
w, and x are the vectors of the four vertices,
show that the point on a median one-fourth
the way from the centroid to the vertex has
vector 2(u + v + w + x). Conclude that the
four medians are concurrent.

Projections and Planes

hUI

Any student of geometry soon realizes that the notion of perpendicular lines is
fundamental. As an illustration, suppose a point P and a plane are given and it is
desired to find the point Q that lies in the plane and is closest to P, as shown in

Figure 1. Clearly, what is required is to find the line through P that is perpendicular
to the plane and then to obtain Q as the point of intersection of this line with the
plane. Finding the line perpendicular to the plane requires a way to determine when
two vectors are perpendicular. This can be done using the idea of the dot product of

M FIGURE 1

Definition 4.4

two vectors.

The Dot Product and Angles

a1 L
Given vectors v = |1 |and w = | Y2 |, their dot product v - w is a number defined
2] )

T.
Vew=ux1a+9y1)2 +2120=VW

Because v + w is a number, it is sometimes called the scalar product of v and w.'°

2 1
Ifv=|—1|andw=| 4| thenvew=2:1+(=1)-4+3.(—1)=-5.
3 —1

The next theorem lists several basic properties of the dot product.

. . Xi X, 2
10 Similarly, if v = ¥ andw = ¥ in R, thenv - w = X0 + yy1)o.
1 2
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Let u, v, and w denote vectors in R® (or R’ ).
1. v+ wisareal number.

2. Ve-W=W=-V.

3. v.0=0=0-w.

4. vev=|v|~

5. (kv) « w = k(w - v) = v - (kw) for all scalars k.
6

u-(vtw)=u-.-vtu-w

(1), (2), and (3) are easily verified, and (4) comes from Theorem 1 Section 4.1.
The rest are properties of matrix arithmetic (because w « v = v'w, and are left
to the reader.

The properties in Theorem 1 enable us to do calculations like
3u-2v—-3w+4z)=6u-v) —9%u-w) + 12(u - z)

and such computations will be used without comment below. Here is an example.

Verify that ||v — 3w||* = 1 when ||v|| = 2, |w|| = 1, and v - w = 2.

Solution » We apply Theorem 1 several times:

Iv—3w|>=w—3w) - (v—3w)
=ve(v—3w)—3w. (v—3w)
=v.v—3v.w)—3(W-v)+ 9(w-w)
= [IvlI* = 6(v + W) + 9|I¥v|’
=4—-12+9=1.

There is an intrinsic description of the dot product of two nonzero vectors in R’.
To understand it we require the following result from trigonometry.

If a triangle has sides a, b, and ¢, and if 6 is the interior angle opposite ¢ then

& =a + b — 2ab cos 6.
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We prove it when is 0 acute, that is 0 < 6 < J; the obtuse case is similar. In

Figure 2 we have p = 4 sin 6 and ¢ = # cos 0. Hence Pythagoras’ theorem gives
E=p+ b — g =dsin’ 0+ (b — acos 0)
= #*(sin® 0 + cos’ 0) + b* — 2ab cos 6.

The law of cosines follows because sin® 6 + cos® 6 = 1 for any angle 6.

Note that the law of cosines reduces to Pythagoras’ theorem if € is a right angle
(because cos T = 0).

Now let v and w be nonzero vectors positioned with a common tail as in
Figure 3. Then they determine a unique angle ¢ in the range

0<f<m

This angle § will be called the angle between v and w. Figure 2 illustrates when 6
is acute (less than 7) and obtuse (greater than 7). Clearly v and w are parallel if 6 is
either 0 or . Note that we do not define the angle between v and w if one of these
vectors is 0.

The next result gives an easy way to compute the angle between two nonzero
vectors using the dot product.

Let v and w be nonzero vectors. If 0 is the angle between v and w, then

v w = [|v]|[[w][cos

We calculate ||v — w]|” in two ways. First apply the law of cosines to the triangle
in Figure 4 to obtain:
2 2 2
v —wll” = Ivll” + lIwll” = 2[Ivll[[wl[cos 6
On the other hand, we use Theorem 1:
v =wl=@-w-F-w
=VeV—V W—W+V+W-+W
= IVIP = 267+ w) + [[wl)

Comparing these we see that — 2||v||||w]|cos § = —2(v « w), and the result follows.

If v and w are nonzero vectors, Theorem 2 gives an intrinsic description of v « w
because ||v||, ||w]|, and the angle 6 between v and w do not depend on the choice of
coordinate system. Moreover, since ||v|| and ||v|| are nonzero (v and w are nonzero
vectors), it gives a formula for the cosine of the angle 6:

cos = VW (%)
[l {lwll

Since 0 < 6 < T, this can be used to find 6.
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=] 2
Compute the angle betweenu =| 1 |andv = 1].
2 —1
Solution » Compute cos = ——2_ = =2+41-2 _ 1 Now recall that
[Iv]l 1wl V6V6 2

cos  and sin 6 are defined so that (cos 6, sin 6) is the point on the unit circle
determined by the angle 6 (drawn counterclockwise, starting from the positive
x axis). In the present case, we know that cos § = —1 and that 0 < 6 < .

Because cos T = 1, it follows that § = 2 (see the diagram).

If v and w are nonzero, (x) shows that cos 6 has the same sign as v « w, so

vew>0 ifandonlyif 6isacute(0<0<7)
vew <0 ifandonlyif 6isobtuse (7 <0 <0)
vew=0 ifandonlyif 6=7F

In this last case, the (nonzero) vectors are perpendicular. The following terminology
is used in linear algebra:

Two vectors v and w are said to be orthogonal if v = 0 or w = 0 or the angle between

them is 7.

Since v « w = 0 if either v = 0 or w = 0, we have the following theorem:

Two vectors v and w are orthogonal if and only if v « w = 0.

Show that the points P(3, —1, 1), Q(4, 1, 4), and R(6, 0, 4) are the vertices of a
right triangle.

Solution > The vectors along the sides of the triangle are

N B R . 2
PQ=|2, PR=|1|, and QR=|-1
3 3 0

Evidently P—Q) . @é =2-2+4+0=0,s0 P—(j and @é are orthogonal vectors.
This means sides PQ and QR are perpendicular—that is, the angle at Q is a
right angle.

Example 5 demonstrates how the dot product can be used to verify geometrical
theorems involving perpendicular lines.
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A parallelogram with sides of equal length is called a rhombus. Show that the
diagonals of a rhombus are perpendicular.

Solution P Let u and v denote vectors along two adjacent sides of a rhombus, as
shown in the diagram. Then the diagonals are u — v and u + v, and we compute

u—v)e(u+v)=u-u+v)—ve@u-+v
=u-.u+u-.v—veu—VevV
2 2
llall” = Ivll
=0

because ||lu|| = ||v|| (itis a rhombus). Hence u — v and u + v are orthogonal.

Projections

In applications of vectors, it is frequently useful to write a vector as the sum of two
orthogonal vectors. Here is an example.

Suppose a ten-kilogram block is placed on a flat surface inclined 30° to the
horizontal as in the diagram. Neglecting friction, how much force is required
to keep the block from sliding down the surface?

Solution > Let w denote the weight (force due to gravity) exerted on the block.
Then [|w|| = 10 kilograms and the direction of w is vertically down as in the
diagram. The idea is to write w as a sum w = w; + w, where wy is parallel to
the inclined surface and wj is perpendicular to the surface. Since there is no
friction, the force required is —w; because the force w; has no effect parallel to
the surface. As the angle between w and w; is 30° in the diagram, we have
[[wi
[[wli
force has a magnitude of 5 kilograms weight directed up the surface.

= sin 30° = 1. Hence [lwy|| = 3|lw|| = 310 = 5. Thus the required

If a nonzero vector d is specified, the key idea in Example 6 is to be able to write
an arbitrary vector u as a sum of two vectors,

u=u +w

where uy is parallel to d and u; = u — u; is orthogonal to d. Suppose that u and
d # 0 emanate from a common tail Q (see Figure 5). Let P be the tip of u, and let
P, denote the foot of the perpendicular from P to the line through Q parallel to d.

Then u; = Q_P)l has the required properties:
1.y is parallel to d.

2. w, =u — uy is orthogonal to d.

M FIGURE 5 3 u=u t+u

Definition 4.6  The vectoru; = Q—P)l in Figure 5 is called the projection of u on d. It is denoted

u; = projgu
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In Figure 5(a) the vector u; = projgq u has the same direction as d; however, u;
and d have opposite directions if the angle between u and d is greater than 7.

(Figure 5(b)). Note that the projection u; = projq u is zero if and only if u and d
are orthogonal.

Calculating the projection of u on d # 0 is remarkably easy.

Let u and d #+ 0 be vectors.
1. The projection of u on d is given by projq u =

u-dg
]l

2. The vector u — projq u is orthogonal to d.

The vector u; = projq u is parallel to d and so has the form u; = td for some
scalar z. The requirement that u — u; and d are orthogonal determines z. In fact,
it means that (u — u;) « d = 0 by Theorem 3. If u; = #d is substituted here, the
condition is

0=u—-td)+d=u-d—td-d)y=u-d—7d|}
u-d

It follows that t = >
|d]l

|d||* # 0.

where the assumption that d # 0 guarantees that

2 1
Find the projection of u = | -3 |ond = | —1 | and express u = u; + u, where
1 3

u is parallel to d and wu, is orthogonal to d.

Solution » The projection u; of u on d is

1 1
. u- d 2 + 3 aF 3 8
u; = projgu = d= —i|l=2& =3
i 1P (=1 + 3 s
14
Hence u, = u — u; = ;| —25 |, and this is orthogonal to d by Theorem 4
=5

(alternatively, observe that d « u; = 0). Since u = u; + u,, we are done.

P(1,3,-2)
Find the shortest distance (see diagram) from the point P(1, 3, —2) to the line
1
through Py(2, 0, —1) with direction vector d = | —1 |. Also find the point Q that
0

lies on the line and is closest to P.
P.,2,0,-1)
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1 2 —1
Solution » Letu=| 3|— { 0|=| 3 |denote the vector from P, to P, and let
-2 —1 —1
u; denote the projection of u on d. Thus
=2
w=Udgo 12340 g g,
(ld]| "+ (=1)"+0 0

by Theorem 4. We see geometrically that the point Q on the line is closest to
P, so the distance is

07
[Pl = fu - will = | 1 H —V3
~1J
To find the coordinates of Q, let py and q denote the vectors of Py and Q,
2 [0
respectively. Then py=| 0|and q = pg + u; = 2].
-1 L—1

Hence Q(0, 2, —1) is the required point. It can be checked that the distance
from Q to P isV/3, as expected.

Planes

It is evident geometrically that among all planes that are perpendicular to a given
straight line there is exactly one containing any given point. This fact can be used to
give a very simple description of a plane. To do this, it is necessary to introduce the
following notion:

Definition 4.7 A nonzero vector n is called a normal for a plane if it is orthogonal to every vector in
the plane.

For example, the coordinate vector k is a normal for the x-y plane.
P Given a point Py = Py(xo, Yo, 29) and a nonzero vector n, there is a unique plane

n
- through Py with normal n, shaded in Figure 6. A point P = P(x, y, 2) lies on this
= plane if and only if the vector PyP is orthogonal to n—that is, if and only if
0 X — Xo
n « PyP = 0. Because PyP = | ¥ — Yo | this gives the following result:
Z — 2
M FIGURE 6

Scalar Equation of a Plane

a

b

c

alx = x0) + b(y = yo) + ez = 29) = 0

The plane through Py(xy, yo, 20) with normaln = | p | # 0 as a normal vector is given by

In other words, a point P(x, y, 2) is on this plane if and only if x, y, and z satisfy this
equation.
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3
—1
2

Find an equation of the plane through Py(1, —1, 3) withn = as normal.

Solution > Here the general scalar equation becomes
3 — 1) — (y + DI+ 2(z — 3) =0
This simplifies to 3x — y + 2z = 10.

If we write d = axy + by + czo, the scalar equation shows that every plane with
a
b

c

normal n = || has a linear equation of the form

ax + by +cz=d (%)
a

b

c

for some constant d. Conversely, the graph of this equation is a plane with n =

as a normal vector (assuming that 4, 4, and ¢ are not all zero).

Find an equation of the plane through Py(3, —1, 2) that is parallel to the plane
with equation 2x — 3y = 6.

2
=3

0
the two planes are parallel, n serves as a normal for the plane we seek, so the
equation is 2x — 3y = d for some d by equation (x). Insisting that Py(3, —1, 2)
lies on the plane determines d; thatis, d = 23 — 3(—1) = 9. Hence, the
equation is 2x — 3y = 9.

Solution > The plane with equation 2x — 3y = 6 has normal n = . Because

X0 X
Consider points Py(xg, o, o) and P(x, y, z) with vectors py = | Yo |and p = |¥ |
20 Z
Given a nonzero vector n, the scalar equation of the plane through Py(xy, yo, 29) with
a
normal n = |} | takes the vector form:
c

Vector Equation of a Plane

The plane with normal n # 0 through the point with vector py is given by

n.(p—py)=0
In other words, the point with vector p is on the plane if and only if p satisfies this condition.

Moreover, equation () translates as follows:
Every plane with normal n has vector equation n « p = d for some number d.

This is useful in the second solution of Example 11.
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Find the shortest distance from the point P(2, 1, —3) to the plane with equation
3x —y + 4z = 1. Also find the point Q on this plane closest to P.
3
—1
4
Py on the plane—say Py(0, —1, 0)—and let Q(x, y, 2) be the point on the plane
2
2
-3
n with its tail at Py. Then QP = u; and u; is the projection of u on n:

3 3
~1 ~1
4 4

Solution 1 » The plane in question has normal n = . Choose any point

closest to P (see the diagram). The vector from P to Pisu = . Now erect

n-u_ _ -8

Sl

= =4
13

uy

Hence the distance is H @6” = |lwy| = @. To calculate the point Q, let
0
—1
0

X

q=1y

Z

and py = be the vectors of Q and P,. Then

3
-1
4

0
—1
0

2

2
=3

q=potu—u = + +

"This gives the coordinates of Q(%, %, ’1—233 .
2
1
-3
the line through P with direction vector n, so q = p + tn for some scalar z. In
addition, Q lies on the plane, so n - q = 1. This determines #:

X

J
%

Solution2 P Letq = |y |and p = be the vectors of Q and P. Then Q is on

l=n-q=n-(+m)=n-p+t|n|> = -7 + #26)

This gives r = & = 1, so
x 2 3 38
Y=q=p+m=| 1|+H-1(=1 9
& -3 & =23

as before. This determines Q (in the diagram), and the reader can verify that
the required distance is H Q_ﬁH = %\/26, as before.

The Cross Product

If P, Q, and R are three distinct points in R? that are not all on some line, it is clear
—

geometrically that there is a unique plane containing all three. The vectors PQ and

—

PR both lie in this plane, so finding a normal amounts to finding a nonzero vector

orthogonal to both PQ and PR. The cross product provides a systematic way to
do this.
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X X2
Definition 4.8  Given vectors vi = |)1|and v, = |)2|, define the cross product v; X v, by
2] 22
Y122 — 212
Vi X V) = | —(w125 — 2142) |-
X1)2 — )1%2

(Because it is a vector, v; X v; is often called the vector product.) There is an easy
way to remember this definition using the coordinate vectors:

1 0 0
i=|0,j=|1,and k=0
0 0 1

They are vectors of length 1 pointing along the positive x, y, and z axes,
respectively, as in Figure 7. The reason for the name is that any vector can be

M FIGURE 7 written as

X

y

z

=ui+yj + zk.

With this, the cross product can be described as follows:

Determinant Form of the Cross Product

X1 EY)
If vy = |1 |and v, = | Y2 | are two vectors, then
21 2)
i X1 X
)1 )2, X1 X2, X1 X3
= d 1 = —
VixXva=detj oy Z1 % Z1 2 3’1)’2’
k Z1 23
where the determinant is expanded along the first column.
2 1
Ifv=|_1|and w = |3, then
4 7
Pl 13 21 21
=] 1 5] =L 2l '+‘ ‘k
Vi j —13 47 47” ~13
k 47
=—19i — 10j + 7k
[—19
=|-10
7

Observe that v x w is orthogonal to both v and w in Example 12. This holds in
general as can be verified directly by computing v « (v X w) and w « (v X w), and
is recorded as the first part of the following theorem. It will follow from a more



208

Chapter 4 Vector Geometry

general result which, together with the second part, will be proved in Section 4.3
where a more detailed study of the cross product will be undertaken.

Let v and w be vectors in R’
1. v X w is a vector orthogonal to both v and w.

2. Ifvandw are nonzero, then v X w = 0 if and only if vand w are parallel.

It is interesting to contrast Theorem 5(2) with the assertion (in Theorem 3) that

v.w =0 ifand only if vand w are orthogonal.

Find the equation of the plane through P(1, 3, —2), Q(1, 1, 5), and R(2, -2, 3).

0 1
Solution » The vectors PQ = | —2 |and PR = | —5 |lie in the plane, so
7 5
i 0 1 25
PQ x PR = det j =2 -5 =251+ 7j+ 2k = 7]
kK 7 5 2

is a normal for the plane (being orthogonal to both P—Q> and ﬁé). Hence the
plane has equation

25x 4+ 7y + 2z =d for some number d.

Since P(1, 3, —2) lies in the plane we have 25+1 + 7+3 + 2(—2) = d. Hence
d = 42 and the equation is 25x + 7y 4+ 2z = 42. Incidentally, the same

equation is obtained (verify) if @; and Q—R), or RP and R—Q), are used as the
vectors in the plane.

Find the shortest distance between the nonparallel lines

x 1 2 x 3 1
Yi=| 0|+¢t0| and |[¥|=|1]|+s 1
= -1 1 2zl 10 -1
Then find the points 4 and B on the lines that are closest together.
2 1
Solution » Direction vectors for the two lines are d; = |0|and d, =| 1}, so
L1 -1
i 2 1] 4
n=d; xdy=det| j 0 1|=]| 3
k 1-1] ' 2
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EXERCISES 4.2

1. Compute u - v where:

2] -1
@u=|—1|v= 1]
3] 1
1
o) u=| 2[v=u
[—1]
(1] 2
@Qu=| 1,v= —1]
-3 1
3] 6
odu=|_1,v=|—7
L 5] -5
roc a
e)u=|y,v=1|p
Lz ¢
ra
of)y u=|p,v=0
Lc

is perpendicular to both lines. Consider the plane shaded in the diagram
containing the first line with n as normal. This plane contains P;(1, 0, —1)
and is parallel to the second line. Because P,(3, 1, 0) is on the second line, the
distance in question is just the shortest distance between P,(3, 1, 0) and this

2
—
plane. The vector u from P to P, isu = P;P; = |1 |and so, as in Example 11,
1
the distance is the length of the projection of u on n.
lu-n| ViE
distance = n = =3 — 4
” In H LIRS

Note that it is necessary that n = d; x d; be nonzero for this calculation to be
possible. As is shown later (Theorem 4 Section 4.3), this is guaranteed by the
fact that d; and d, are not parallel.

The points 4 and B have coordinates A(1 + 2z, 0, # — 1) and
. 2 +5—2¢
B3 + 5,1 + 5, —s) for some s and ¢, so AB = 1 +s | This vector is
l—s5s—1¢
orthogonal to both d; and d;, and the conditions AB - d, =0 and AB - dz =0
give equations 57 — s = 5 and # — 35 = 2. The solution is s = = and # = 12, s0
the points are A(?g’ 0, Ii) and B(iz, 194, 14) We have ||AB” 14 , as before.

2. Find the angle between the following pairs of

vectors.
(1 2 3
@ u=0,v=10 eb)u=|_1,v=
13 1 0
7 1
u=|—-1,v=| 4
3 -1
2 3 1 0
sdu=| 1,v=16 (@u=|-1|v=|1
[—1 3 0 1
0 5V2
s u=3,v=| -7
14 -1
3. Find all real numbers x such that:
2 x
(a) | —1|and | —2 |are orthogonal.
3 1
2 1
+(b) | —1|and |« |are at an angle of .
1 2

-6

209
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0




210 Chapter 4

x
4. Find all vectors v = |y | orthogonal to both:
2z
[—1] [0
@ u=|-3u=|]
2] L1
3] 2
b))y =|-1,wm=\0
2] L1
2] [—4
©@u=| 0jwm=| 0
L—1] L 2
[ 2] [0
o(du=-1,wm=\0
3] L0
5. Find two orthogonal vectors that are both
1
orthogonal tov =2 |
0

6. Consider the triangle with vertices P(2, 0, —3),
Q@5, =2, 1),and R(7, 5, 3).

(a) Show that it is a right-angled triangle.

+(b) Find the lengths of the three sides and verify
the Pythagorean theorem.

7. Show that the triangle with vertices 44, —7, 9),
B(6, 4, 4), and C(7, 10, —6) is not a right-angled
triangle.

8. Find the three internal angles of the triangle
with vertices:

(a) A(—?” 17 _2)’ B(?” 0’ _1)’ and C(S, 27 _1)
’(b) A(—?” 17 _2)’ B(S’ 2’ _1)’ and C(4, 37 _3)

9. Show that the line through Py(3, 1, 4) and
Py(2, 1, 3) is perpendicular to the line through
Py(1, —1, 2) and P5(0, 5, 3).

10. In each case, compute the projection of u on v.

(5 2
@u=|7,v= —1]
L1 3

[ 3 (4
eb)u=|-2v=|1
1 L1

1 3
ou=|—-1v=|-1

odu=|2,v=| 4

Vector Geometry

11. In each case, write u = u; + uy, where u; is
parallel to v and u, is orthogonal to v.

(@) u=

+(b) u=

(c) u=

o(d) u=

3

L0

2
—1
1

’V:

1

7V:

2
-1
0
3
-2
1

)V:

’V:

=2

1
-1
3

1
4

3
1
-1

—6
4
-1

12. Calculate the distance from the point P to the
line in each case and find the point Q on the line
closest to P.

x 2 3
(a) P(3,2,—1) line:|y|=|1|+ ¢ -1
z 3 -2
x 1 3
+b) P, —1,3) line:|y|=| 0|+ 121
z -1 4
13. Compute u x v where:
(1 1
@u=2,v=|1
13 2
[ 3] [—6
eb)u=|-1,v=]| 2
L 0. L 0
[ 3] (1
(c)u=|=2|v= 1]
1] [—1
2] (1
od)u=| o,v=1|4
[—1] L7

14. Find an equation of each of the following planes.

(a) Passing through A2, 1, 3), B3, —1, 5), and

(1,2, =3).
+(b) Passing through A(1, —1, 6), B(0, 0, 1), and
C#4,7,—11).

(c) Passing through P(2, —3, 5) and parallel to
the plane with equation 3x — 2y — 2z = 0.

+(d) Passing through P(3, 0, —1) and parallel to
the plane with equation 2x — y + z = 3.
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(e) Containing P(3, 0, —1) and the line

x 0 1
YI=10]+ 10}
lz] |2 1
+(f) Containing P(2, 1, 0) and the line
el [ 3] (1
Yi=|-1|+¢t 0}
lzl | 2] =1
(g) Containing the lines
e [ 17 1 x 0 1
Y|l=|=1|+¢1]|and |¥|=|0 +t_1].
Lzl L 2] L1 z 2 0
x 3 1
+(h) Containing the lines |y |=|1|+ 7 _1]
z 0 3
x 0 2
and |V |=|—2|+ ¢ 1].
z 5 -1

(i) Each point of which is equidistant from
PQ, —1,3)and Q(1, 1, —1).

+(j) Each point of which is equidistant from
P, 1, —1) and Q(, —1, —3).
15. In each case, find a vector equation of the line.

(a) Passing through P(3, —1, 4) and
perpendicular to the plane 3x — 2y — 2 = 0.

+(b) Passing through P2, —1, 3) and
perpendicular to the plane 2x + y = 1.

(¢) Passing through P(0, 0, 0) and perpendicular
to the lines

x 1 2 x 2 1
YI=|1|+¢ Oland |y|=| 1|+ -1}
z 0 -1 z -3 5
+(d) Passing through P(1, 1, —1), and
perpendicular to the lines
x 2] 1 x S 1
Yi=|0|+¢ 1|and|y|=| 5|+t z].
z 1] -2 2 =2 -3
(e) Passing through P(2, 1, —1), intersecting
r 1 3
the line |y |=| 2|+ #0|, and
E3 0 D I

perpendicular to that line.

+(f) Passing through (1, 1, 2), intersecting the line

x 2 1
Y|=|1|+ t|1|, and perpendicular
z 0 1

to that line.

1

16. In each case, find the shortest distance from the
point P to the plane and find the point Q on the
plane closest to P.

(a) P2, 3, 0); plane with equation 5x +y + z = 1.
+(b) P(3, 1, —1); plane with equation

2x+y—z=6.
17. (a) Does the line through P(1, 2, —3) with
1
direction vector d =| 2 |lie in the plane
-3

2x —y — z = 3? Explain.

+(b) Does the plane through P4, 0, 5), Q(2, 2, 1),
and R(1, —1, 2) pass through the origin?
Explain.

18. Show that every plane containing P(1, 2, —1) and
Q(2, 0, 1) must also contain R(—1, 6, —5).

19. Find the equations of the line of intersection of
the following planes.

(@ 2x—3y+2z=5andx + 2y — 2 =4
ob) 3x+y—2z=1landx +y+2=>5.

20. In each case, find all points of intersection of the

X 1 2
given plane and the line |y |=|-2|+ 1 5|
z 3 -1

@ x—3y+2z2=4 ob) 2x—y—2=35

©3x—y+z2=8 od) —x—4y—-32=6

21. Find the equation of 4// planes:
x 2 2
(a) Perpendicular to the line |y |=|—1|+#|1|
z 3 3
x 1 3
+(b) Perpendicular to the line |y [=| 0|+ #0|
2 —1 2

(¢) Containing the origin.
+(d) Containing P(3, 2, —4).

(e) Containing P(1, 1, —1) and Q(0, 1, 1).
+(f) Containing P2, —1, 1) and Q(1, 0, 0).

X 2 1

(2) Containing the line |y |= 1|4+ # 1|
2 0 0
X 3 1

+(h) Containing the line |y |[=|0|+ ¢ _2].
2 2 -1
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22. If a plane contains two distinct points Py and

P,, show that it contains every point on the line
through P; and P;.

23. Find the shortest distance between the following
pairs of parallel lines.

X 2 1] rx 1 1

(@ |Y]|=|=1|+1t=1}|Y|=|0|+ -1

z 3 4) Lzl |1 4
X 3 37 1x -1 3
o) [y[=|0|+t1}|y|=| 2[+11
zl 2 0] Lz 2 0

24. Find the shortest distance between the following
pairs of nonparallel lines and find the points on
the lines that are closest together.

a1 [3 2 x 1] 1]
@ |y[=|0|+s 1} [Y|=]| 1|+1¢0
2] 1 -3 L=l -1 1]
rxT 1 1 X 2] (3]
ob) |y|=|=1|+s1} |[¥]=|-1|+11
2] 0 1 Lz 3] o]
"X 3 17 7 [17 T1]
© |Y[=| L|+s 1} |[Y|=|2|+10
2l -1 -1 =l lo] [2]
1 [1 2 x 3] 1]
od) |y|=1|2]+3 0 |¥|=|-1|+11
2l (3 -1) L=z ol Lol

25. Show that two lines in the plane with slopes 7z
and 2, are perpendicular if and only if
mymy = —1. [Hint: Example 11 Section 4.1.]

26. (a) Show that, of the four diagonals of a cube,
no pair is perpendicular.

+(b) Show that each diagonal is perpendicular to
the face diagonals it does not meet.

27. Given a rectangular solid with sides of lengths 1,
1, and V2, find the angle between a diagonal and
one of the longest sides.

+28. Consider a rectangular solid with sides of lengths
a, b, and ¢. Show that it has two orthogonal
diagonals if and only if the sum of two of 4%, /%,
and ¢ equals the third.

29. Let A, B, and C(2, —1, 1) be the vertices of a
1

triangle where A—B) is parallel to | —1, A—(} is
1
2
parallel to | (], and angle C = 90°. Find the
-1

equation of the line through B and C.

30. If the diagonals of a parallelogram have equal
length, show that the parallelogram is a

rectangle.
x

Y

z
projections of v on i, j, and k are «i, yj, and zk,
respectively.

31. Given v = | |in component form, show that the

32. (a) Canu+v=—7if [Jul]| =3 and ||v|| = 2?
Defend your answer.

2
-1
2
angle between u and v is

(b) Findu -vifu= , |Iv|l = 6, and the

pi
o

33. Show that (u + v) « (w — v) = |[u|* — ||v||’
for any vectors u and v.

34. (a) Show that
lw+vI* + [lu = vII* = 2(Jul* + IvI1%)
for any vectors u and v.

+(b) What does this say about parallelograms?

35. Show that if the diagonals of a parallelogram
are perpendicular, it is necessarily a rhombus.
[Hint: Example 5.]

36. Let A and B be the end points of a diameter of a
circle (see the diagram). If C' is any point on the
circle, show that AC and BC are perpendicular.

[(Hint: Express AC and BC in terms of u = OA
and v = OC, where O is the centre.]

C

37. Show that u and v are orthogonal, if and only if
lw + vl = flull® + (vl

38. Letu, v, and w be pairwise orthogonal vectors.

(a) Show that
2 2 2 2
lu + v+ wll* = [lull” + [Iv]" + [Iw]|".

+(b) If u, v, and w are all the same length, show
that they all make the same angle with
u+v+w.
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39. (a) Show thatn = [Z} is orthogonal to every
vector along the line ax + by + ¢ = 0.

+(b) Show that the shortest distance from
. axy + byy + ¢

Po(x9, yo) to the line is

Vadt + .
[Hint: If Py is on the line, project u = PP,
on n.]

40. Assume u and v are nonzero vectors that are
not parallel. Show that w = ||u||lv + ||v||uis a
nonzero vector that bisects the angle between u
and v.

41. Let o, 3, and  be the angles a vector
v # 0 makes with the positive x, y, and z axes,
respectively. Then cos «, cos 3, and cos v are

called the direction cosines of the vector v.

a
(a) If v =|p|, show that cos a = —%,
c lIvll
cos 3 = L, and cos y = -
[Ivll [Ivll

+(b) Show that cos’ o + cos’ 3 + cos® v = 1.

42. Let v # 0 be any nonzero vector and suppose
that a vector u can be written asu = p + q,
where p is parallel to v and q is orthogonal to v.
Show that p must equal the projection of u on v.
[Hint: Argue as in the proof of Theorem 4.]
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43. Let v # 0 be a nonzero vector and let # # 0 be a
scalar. If u is any vector, show that the projection
of u on v equals the projection of u on av.

44. (a) Show that the Cauchy-Schwarz inequality
|u - v| < ||u||||v|| holds for all vectors u and
v. [Hint: |cos 6| < 1 for all angles 6.]

(b) Show that |u « v| = |jul|||v|| if and only if
u and v are parallel.
[Hint: When is cos 0 = £17]

(¢c) Show that
vy + y1y2 + 212

7, 2 2./ 2, 2 2
<\l 4y +2Vad + 9] + 23
holds for all numbers xy, x5, y1, y2, 21, and 2,.

+(d) Show that |xy + yz + 2x| < & +y* + 2 for
all v, y, and =.

(e) Show that (v + y + 2)* < 3(x* +y* + 29
holds for all «, y, and z.

45. Prove that the triangle inequality
|[a-v| < ||l + ||v]| holds for all vectors u
and v. [Hint: Consider the triangle with u and v

as two sides.]

More on the Cross Product

The cross product v x w of two R*-vectors v =

X1 X2
Y1 |and w = | Y2 | was defined in
21 2)

Section 4.2 where we observed that it can be best remembered using a determinant:

ix1

vxw=det|j y

k 21
1 0
Herei=|0},j=|1),andk =
0 0

X2
J1 2. Xy X2, X1 X

”|= - )
21 2 21 2 Y10

22

1

0 | are the coordinate vectors, and the determinant

0

is expanded along the first column. We observed (but did not prove) in Theorem 5
Section 4.2 that v X w is orthogonal to both v and w. This follows easily from the
next result.
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X0

Yo
20

X1

B
21

X2

¥
2)

Ay Ay Ay
Ifu=|Yo|,v=|)1}|andw = ,thenu-(vxw)=detyo i Doy

Ey E %

Recall that u « (v x w) is computed by multiplying corresponding components of
uand v X w and then adding. Using (x), the result is:

Xy X X

SV X W) = )12 n % * + X1 X2 — det
weVXwW) =20\ |5, Yo\ 7|z, 2, 2|y y,| )T 9€H Jo 02
20 21 %

where the last determinant is expanded along column 1.

The result in Theorem 1 can be succinctly stated as follows: If u, v, and w are three
vectors in R?, then

u-(vxw) =detluvw]

where [u v w] denotes the matrix with u, v, and w as its columns. Now it is clear
that v x w is orthogonal to both v and w because the determinant of a matrix is
zero if two columns are identical.

Because of (%) and Theorem 1, several of the following properties of the cross
product follow from properties of determinants (they can also be verified directly).

Letu, v, and w denote arbitrary vectors in R,
u X v is a vector.
u X v is orthogonal to both u and v.
ux0=0=0xu

uxu=_0.

(ku) X v = k(u X v) = u X (kv) for any scalar k.
uxX (vV+w) =xv)+ (uxw).

1
2
3
4
5 uxv=—(vxu).
6
7.
8 (v+w)Xxu=(vxu + (wxu).

(1) is clear; (2) follows from Theorem 1; and (3) and (4) follow because the
determinant of a matrix is zero if one column is zero or if two columns are
identical. If two columns are interchanged, the determinant changes sign, and
this proves (5). The proofs of (6), (7), and (8) are left as Exercise 15.
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We now come to a fundamental relationship between the dot and cross products.

Lagrange Identity"!

Ifu and v are any two vectors in R®, then

2 2 2 2
[lu > v||” = [[al[*[|v]]” = (a - v)

Given u and v, introduce a coordinate system and write u = |¥1|and v = |2 |in
21 22

X1 X2

component form. Then all the terms in the identity can be computed in terms of
the components. The detailed proof is left as Exercise 14.

An expression for the magnitude of the vector u X v can be easily obtained
from the Lagrange identity. If 0 is the angle between u and v, substituting
u + v = ||ul|||v]| cos @ into the Lagrange identity gives

2 210112 21012 el 21012 cin?

[ > vl = [lal["[[vII® = fal[*v]}" cos” & = [lu["|[v][" sin” &
using the fact that 1 — cos” = sin® 6. But sin 6 is nonnegative on the range
0 < 0 <, so taking the positive square root of both sides gives

llw > v][ = [lulliv] sin 6

"This expression for ||u X v|| makes no reference to a coordinate system and,
moreover, it has a nice geometrical interpretation. The parallelogram determined
by the vectors u and v has base length ||v|| and altitude ||ul| sin 0 (see Figure 1).
Hence the area of the parallelogram formed by u and v is

(I[ull sin 6) fIv]l = [lu x v]|

This proves the first part of Theorem 4.

Ifu and v are two nonzero vectors and 6 is the angle between u and v, then
L. |la x v|| = ||ul||||v]| sin @ = area of the parallelogram determined by u and v.

2. uandv are parallel if and only ifu X v.= 0.

11 Joseph Louis Lagrange (1736-1813) was born in Italy and spent his early years in Turin. At the age of 19 he solved a famous
problem by inventing an entirely new method, known today as the calculus of variations, and went on to become one of the greatest
mathematicians of all time. His work brought a new level of rigour to analysis and his Mécanique Analytique is a masterpiece in
which he introduced methods still in use. In 1766 he was appointed to the Berlin Academy by Frederik the Great who asserted
that the “greatest mathematician in Europe” should be at the court of the “greatest king in Europe.” After the death of Frederick,
Lagrange went to Paris at the invitation of Louis XVI. He remained there throughout the revolution and was made a count
by Napoleon.
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PROOF OF (2)

By (1), u x v = 0 if and only if the area of the parallelogram is zero. By Figure 1
the area vanishes if and only if u and v have the same or opposite direction—that
is, if and only if they are parallel.

Find the area of the triangle with vertices P(2, 1, 0), Q(3, —1, 1), and R(1, 0, 1).

1 . 2
Solution » We have RP =| 1 |and RQ = | —1 | The area of the triangle is half
—1 0

the area of the parallelogram (see the diagram), and so equals %H RP x R—Q)H We
have

o i 1 2 -1
RP x RQ = det i 1 -1 =[—§],
k -1 0

so the area of the triangle is %Hﬁ X R—Q)H =Vi+4+9=1V14

If three vectors u, v, and w are given, they determine a “squashed” rectangular
solid called a parallelepiped (Figure 2), and it is often useful to be able to find the
volume of such a solid. The base of the solid is the parallelogram determined by
u and v, so it has area 4 = ||u X v|| by Theorem 4. The height of the solid is the
length A of the projection of w on u X v. Hence
_wemxwv)

I

[wexv)| |we-(uxv)
lux vl = =
[la x v A

|la x v

Thus the volume of the parallelepiped is 4 = |w « (u X v)|. This proves

The volume of the parallelepiped determined by three vectors w, u, and v (Figure 2) is
given by |[w « (u X v)|.

Find the volume of the parallelepiped determined by the vectors

1 1 -2
w=| 2 u=|1|,andv=| 0
-1 0 1
112
Solution » By Theorem I, w-(u xv)=det|] 2 1 0|=-3.
-1 0 1

Hence the volume is |[w « (u X v)| = |[=3| = 3 by Theorem 5.
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0 We can now give an intrinsic description of the cross product u x v. Its
xw magnitude ||u X v|| = |Jul|||v] sin 6 is coordinate-free. If u X v # 0, its direction
is very nearly determined by the fact that it is orthogonal to both u and v and so
2 points along the line normal to the plane determined by u and v. It remains only
to decide which of the two possible directions is correct.
Before this can be done, the basic issue of how coordinates are assigned must be
. clarified. When coordinate axes are chosen in space, the procedure is as follows: An
origin is selected, two perpendicular lines (the x and y axes) are chosen through the
origin, and a positive direction on each of these axes is selected quite arbitrarily.
Then the line through the origin normal to this x-y plane is called the z axis,

¥ 0 ¥ but there is a choice of which direction on this axis is the positive one. The two

possibilities are shown in Figure 3, and it is a standard convention that cartesian
Right-hand system coordinates are always right-hand coprdinate systems. Th.e reason for this ’

B FIGURE 3 terminology is that, in such a system, if the z axis is grasped in the right hand with
the thumb pointing in the positive z direction, then the fingers curl around from
the positive x axis to the positive y axis (through a right angle).

Suppose now that u and v are given and that 6 is the angle between them
(s0 0 < 0 < 7). Then the direction of ||u X v]|| is given by the right-hand rule.

Right-hand Rule

If the vector u X v is grasped in the right hand and the fingers curl around from u to v
through the angle 6, the thumb points in the direction for u X v.

Left-hand system

To indicate why this is true, introduce coordinates in R* as follows: Let u and v

have a common tail O, choose the origin at O, choose the x axis so that u points in
the positive x direction, and then choose the y axis so that v is in the x-y plane and
the positive y axis is on the same side of the x axis as v. Then, in this system, u and

a b
v have component form u = |( |and v = c] where 2 > 0 and ¢ > 0. The situation
0 0
M FIGURE 4 is depicted in Figure 4. The right-hand rule asserts that u x v should point in the
positive z direction. But our definition of u X v gives
ialb 0
u x v = det j O c|=]0 = (ak
ko o]
and (ac)k has the positive z direction because 2c > 0.
EXERCISES 4.3
1. If i, j, and k are the coordinate vectors, verify 3. Find two unit vectors orthogonal to both u and
thatix j=k,jxk=iandk xi=}j. vif:
1 2 1 3
2. Show that u x (v X w) need not equal @ u=2v=|_1]| s®) u=| 2| v=]1
(u X v) X w by calculating both when 5 ’ 7 1 ’ 5
1 1 0
u=|1,v=|1andw=10|
1 0 1
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4. Find the area of the triangle with the following

vertices.

(@) A(, —1,2), B(1, 1, 0), and C(1, 2, —1)
+(b) A@G, 0, 1), B(5, 1, 0), and C(7, 2, —1)

(¢) A1, 1, —1), B2, 0, 1), and C(1, —1, 3)
+(d) AG3, -1, 1), B4, 1, 0), and C(2, -3, 0)

5. Find the volume of the parallelepiped
determined by w, u, and v when:

2 1 2

@ w=|1,v=|0,andu=| 1
1 2 -1

1 2 1

ob) w=|0,v=]| 1andu=]|1
3 -3 1

6. Let Py be a point with vector py, and let

ax + by + cz = d be the equation of a plane with
a
bl

c

normal n =

(a) Show that the point on the plane closest to
Py has vector p given by

d—(po- n)n.
[In?

[Hint: p = po + m for some ¢, and

p-n=d]

P=pPo+

+(b) Show that the shortest distance from P to
|4 — (po - m)|
([l
(¢) Let Py denote the reflection of Py in the
plane—that is, the point on the opposite side
of the plane such that the line through P,
and Py is perpendicular to the plane.
d— (py -
Show that py + 2 %
n

the plane is

n is the vector
Of PO/.
7. Simplify (su + bv) X (cu + dv).

8. Show that the shortest distance from a point P
to the line through P, with direction vector d

i<l
1d]]

9. Let u and v be nonzero, nonorthogonal vectors.
If 6 is the angle between them, show that
[[u x ]|

tan 0 = ——~—

+10. Show that points A, B, and C are all on one line
if and only if AB x AC = 0.

11. Show that points A4, B, C, and D are all on one
plane if and only if AB - (AB X AC) =0.

+12. Use Theorem 5 to confirm that, if u, v, and w
are mutually perpendicular, the (rectangular)
parallelepiped they determine has volume
l[alll[vIlliwll-

13. Show that the volume of the parallelepiped
determined by u, v, and u x v is |Ju x v|°.

14. Complete the proof of Theorem 3.

15. Prove the following properties in Theorem 2.

(a) Property 6 +(b) Property 7

(c) Property 8

16. (a) Show that
weuXv)=u-{vVXw=vX(WXu
holds for all vectors w, u, and v.

+(b) Show that v — w and
(u X v) + (v X w) + (w X u) are orthogonal.

17. Show thatu X (v X w) = (u - w)v — (u X v)w.
[Hint: First do it for u = i, j, and k; then write
u = xi + yj + zk and use Theorem 2.]

18. Prove the Jacobi identity:
uX (vXW+vXx(wxu +wx(uxv)=0.
[Hint: The preceding exercise.]

19. Show that W -z
(uXV)-(WXZ)zdet[V.W V.Z].

[Hint: Exercises 16 and 17.]

20. Let P, Q, R, and S be four points, not all on one
plane, as in the diagram. Show that the volume
of the pyramid they determine is

[Hint: The volume of a cone with base area
A and height 4 as in the diagram below right
is LA4h.]

Q
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21. Consider a triangle with vertices A, B, and
C, as in the diagram below. Let «, 3, and
denote the angles at 4, B, and C, respectively,
and let 4, b, and ¢ denote the lengths of the
sides opp051teA B, and C, respectlvely Write

u—AB V—BC and w = CA

(a) Deduce thatu + v+ w = 0.

(b) Show thatu X v=w X u =v X w. [Hint:

Compute u X (u + v + w) and
v u+v+w).

(c) Deduce the law of sines:

sin o _ sin /3 sin 7y
a b c
+22. Show that the (shortest) distance between two
planesn«p =4d;andn - p = 4, with n as
|d, — d,|
[[n]]

SECTION 4.4

normal is

23.

24.

25.
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Let A and B be points other than the origin, and
let a and b be their vectors. If a and b are not
parallel, show that the plane through A4, B, and
the origin is given by

{P(x, y, 2)||Y | = sa + tb for some s and #}.
2z

Let A be a 2 x 3 matrix of rank 2 with rows
r; and r;. Show that P = {XA|X = [x y]; x, y
arbitrary} is the plane through the origin with
normal r; X r,.

Given the cube with vertices P(x, y, 2), where
each of x, y, and z is either 0 or 2, consider the
plane perpendicular to the diagonal through
P(0, 0, 0) and P(2, 2, 2) and bisecting it.

(a) Show that the plane meets six of the edges of
the cube and bisects them.

(b) Show that the six points in (a) are the vertices
of a regular hexagon.

Linear Operators on R®

Recall that a transformation 7": R” — R" is called Jinear if T(x + y) =

Tx) + T(y)

and T(ax) = aT(x) holds for all x and y in R” and all scalars 4. In this case we showed
(in Theorem 2 Section 2.6) that there exists an 7z X 7 matrix A such that T(x) =
for all x in R”, and we say that T is the matrix transformation induced by 4.

Definition 4.9 A linear transformation

is called a linear operator on R”.

T:R" - R”

In Section 2.6 we investigated three important linear operators on R?: rotations
about the origin, reflections in a line through the origin, and pro]ectlons on this line.
In this section we 1nvest1gate the analogous operators on R’: Rotations about a

line through the origin, reflections in a plane through the origin, and projections
onto a plane or line through the origin in R?. In every case we show that the
operator is linear, and we find the matrices of all the reflections and projections.
To do this we must prove that these reflections, projections, and rotations
are actually linear operators on R’. In the case of reflections and rotations, itis
convenient to examine a more general situation. A transformation T : R — R’ is
said to be distance preserving if the distance between 7(v) and 7(w) is the same as
the distance between v and w for all v and w in R’; that is,

ITv) —

Tw)|| = ||[v — w]| for all v and w in R’ (*)

Clearly reflections and rotations are distance preserving, and both carry 0 to 0, so
the following theorem shows that they are both linear.
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If T: R® — R’ is distance preserving, and if T(0) = 0, then T is linear.

Since 7T(0) = 0, taking w = 0 in (%) shows that ||7(v)|| = ||v|| for all v in R?,
that is 7 preserves length. Also, || T(v) — T(w)||* = ||v — w||* by (%). Since
Iv—wl|*=|[v||* = 2v - w + ||w||* always holds, it follows that

T(v) « T(w) = v« w for all vand w. Hence (by Theorem 2 Section 4.2) the
angle between 7(v) and T{w) is the same as the angle between v and w for
all (nonzero) vectors v and w in R®.

With this we can show that T is linear. Given nonzero vectors v and w in R?,
the vector v + w is the diagonal of the parallelogram determined by v and w. By
the preceding paragraph, the effect of T'is to carry this entire parallelogram to the
parallelogram determined by 7(v) and 7T{w), with diagonal 7(v + w). But this
diagonal is T(v) + T(w) by the parallelogram law (see Figure 1).

In other words, T(v + w) = T(v) + T(w). A similar argument shows that
T(av) = a’T(v) for all scalars 4, proving that T is indeed linear.

Distance-preserving linear operators are called isometries, and we return to them
in Section 10.4.

Reflections and Projections

In Section 2.6 we studied the reflection Q,,: R? — R” in the line y = 7x and
projection P,,: R> — R? on the same line. We found (in Theorems 5 and 6,
Section 2.6) that they are both linear and

1 — 2m
2m m* — 1

Q,,, has matrix

2

and P,, has matrix 1 [ 1 mz }

1 +m L+w? m m

We now look at the analogues in R*.

Let L denote a line through the origin in R’. Given a vector v in R’ the
reflection Q;(v) of vin L and the projection P;(v) of v on L are defined in Figure 2.
In the same figure, we see that

Pr(v) = v +3[Q1(v) — v] = 3[QL(¥) + V] (%)
so the fact that Q, is linear (by Theorem 1) shows that Py is also linear.'? However,
a
Theorem 4 Section 4.2 gives us the matrix of Py directly. In fact, ifd = [p|# O isa
X C
direction vector for L, and we write v = |y |, then
z
2
a ab ac
. +by + 2|’ v
Pw=Ydg -T2 L 5 aey
Id]| a+b+ce] S+ 4o C e Al

as the reader can verify. Note that this shows directly that Py is a matrix
transformation and so gives another proof that it is linear.

12 Note that Theorem 1 does ot apply to P, since it does not preserve distance.
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a
Let L denote the line through the origin in R® with direction vectord = | p| # 0. Then
P and Qp, are both linear and ¢
at ab ac
Py, has matrix % i e
a + b+ 5
ac be ¢
] at —bt = 2ab 2ac
Q; has matrix —————— 2_ 2 _ 2
2Lt d 2ab b” —a @ 2 21725 :
2ac 2bc " —a” —b

It remains to find the matrix of Q;. But (xx) implies that Q;(v) = 2P;(v) — v for

x
each vin R’ so if v = |y | we obtain (with some matrix arithmetic):
z
a> ab oac 10 0]|ry
QW) =3 —2——|ab b be|-[0 1 0py
coEre ac be o 00 1]
Py 2ab 2ac ¥
2+22+ A 2w R-s-d e |
a ¢
2ac 2be A

as required.

In R® we can reflect in planes as well as lines. Let M denote a plane through
the origin in R®. Given a vector v in R?, the reflection Q,(v) of v in M and the
projection Py(v) of von M are defined in Figure 3. As above, we have

Py(v) = v + 3[Qu(v) — vl = 3[Qu(¥) + V]

so the fact that Q) is linear (again by Theorem 1) shows that Py is also linear.
Again we can obtain the matrix directly. If n is a normal for the plane M, then
Figure 3 shows that

* 1 for all vectors v.

Py(v) = v — proj,(v) = v — ‘|’

n||’
a x
Ifn=|p|# 0and v =|y| a computation like the above gives
¢ 2z
P+ —ab —ac

1O Ol e ax + by + cz|” 1 , x
Pyv) =301 0\ |= 55 —5|b| =57 —| @ atc b |7
P a + b+ a + b+ z

001 —ac ~be B+
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This proves the first part of

a
Let M denote the plane through the origin in R® with normaln = | p| # 0. Then Py,
and Qyy are both linear and ¢
: b2 +c?  —ab —ac
PM has matrlx ﬁ _ﬂb ﬂz +['2 _bf ’
a + b+
—ac b a4’ +b?
P+ -a —2ab —2ac
QM haS matrix m —Zﬂb ﬂz +62 _bz _sz
—2ac —2bc A+ -

It remains to compute the matrix of Q,;. Since Qy(v) = 2Py, (v) — v for each
vin R?, the computation is similar to the above and is left as an exercise for
the reader.

Rotations

In Section 2.6 we studied the rotation R, : R> — R? counterclockwise about the
origin through the angle 6. Moreover, we showed in Theorem 4 Section 2.6 that
cos f —sin 6

Ry is linear and has matrix |
sin® cos 6

. One extension of this is given in the

following example.

Let R4 : R’ — R’ denote rotation of R® about the z axis through an angle ¢
from the positive x axis toward the positive y axis. Show that R, y is linear and
find its matrix.

Solution P First R is distance preserving and so is linear by Theorem 1.
Hence we apply Theorem 2 Section 2.6 to obtain the matrix of R, 4.

1 0 0
Leti=|0},j =|1|, and k = |0 | denote the standard basis of RB; we must find
0 0 1

R, o), R. ¢(j), and R, 4(k). Clearly R, 4(k) = k. The effect of R, y on the x-y plane
is to rotate it counterclockwise through the angle 0. Hence Figure 4 gives

cos 0 —sin 6
R, (i) = |sin 0], R,p()=| cosb
0 0
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so, by Theorem 2 Section 2.6, R, y has matrix

cosf —sinf 0

[Rzﬁ(i) Rz,&(j) Rz,ﬁ(k)] =|sinf cos@ O}
0 0 1

Example 1 begs to be generalized. Given a line L through the origin in R?, every
rotation about L through a fixed angle is clearly distance preserving, and so is a
linear operator by Theorem 1. However, giving a precise description of the matrix
of this rotation is not easy and will have to wait until more techniques are available.

Transformations of Areas and Volumes

Let v be a nonzero vector in R’. Each vector in the same direction as v whose
length is a fraction s of the length of v has the form sv (see Figure 5). With this,
scrutiny of Figure 6 shows that a vector u is in the parallelogram determined by v
and w if and only if it has the form u = sv + rw where 0 <s < 1and 0 <7 < 1. But
then, if 7: R* — R’ is a linear transformation, we have

T(sv + tw) = T(sv) + Taw) = sTw) + tT(w).

Hence T(sv + tw) is in the parallelogram determined by 7(v) and 7T{w). Conversely,
every vector in this parallelogram has the form 7(sv + tw) where sv + tw is in the
parallelogram determined by v and w. For this reason, the parallelogram determined
by T(v) and T(w) is called the image of the parallelogram determined by v and w.
We record this discussion as:

IfT:R® — R’ (or R — R?) is a linear operator, the image of the parallelogram
determined by vectors v and w is the parallelogram determined by T(v) and T(w).

This result is illustrated in Figure 7, and was used in Examples 15 and 16 Section
2.2 to reveal the effect of expansion and shear transformations.

Now we are interested in the effect of a linear transformation 7': R* — R’ on
the parallelepiped determined by three vectors u, v, and w in R? (see the discussion
preceding Theorem 5 Section 4.3). If T has matrix A, Theorem 4 shows that this
parallelepiped is carried to the parallelepiped determined by T(u) = Au, T(v) = Av,
and T(w) = Aw. In particular, we want to discover how the volume changes, and it
turns out to be closely related to the determinant of the matrix A4.

Let vol(u, v, w) denote the volume of the parallelepiped determined by three vectors u, v,
and w in R, and let area(p, q) denote the area of the parallelogram determined by two
vectors p and q in R”. Then:

1. IfAisa3 X 3 matrix, then vol(Au, Av, Aw) = |det(A)
2. IfAisa?2 X 2 matrix, then area(Ap, Aq) = |det(A)

- vol(u, v, w).

- area(p, Q).
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1. Let [u v w] denote the 3 x 3 matrix with columns u, v, and w. Then

. Given p = [ﬂ in ]Rz, write p; =

Vector Geometry

vol(Au, Av, Aw) = |Au « (Av x Aw)|
by Theorem 5 Section 4.3. Now apply Theorem 1 Section 4.3 twice to get

Au - (Av x Aw) = det[Au Av Aw] = det{A[u v w]}
= det(4)det[u v w]
= det(4)(u - (v X w))

where we used Definition 2.9 and the product theorem for determinants.
Finally (1) follows from Theorem 5 Section 4.3 by taking absolute values.
x
¥ |in R*. By the diagram,
0
area(p, q) = vol(py, qi, k) where k is the (length 1) coordinate vector

along the z axis. If A is a 2 X 2 matrix, write 4; = {1(4)1 ﬂ in block form,

and observe that (4v); = (4,v,) for all v in R? and 4,k = k. Hence

part (1) if this theorem shows

area(Ap, Aq) = VOl(Alpl, Alch, Alk)

as required.

= |det(4;)|vol(py, qi, k)
= |det(4)| area(p, q)

Define the unit square and unit cube to be the square and cube corresponding
to the coordinate vectors in R? and R, respectively. Then Theorem § gives a
geometrical meaning to the determinant of a matrix A:

o IfAisa 2 X 2 matrix, then |det(A)| is the area of the image of the unit square

under multiplication by A;

o IfAisa 3 X 3 matrix, then |det(A)| is the volume of the image of the unit cube

under multiplication by A.

These results, together with the importance of areas and volumes in geometry, were
among the reasons for the initial development of determinants.

EXERCISES 4.4

1. In each case show that that 7 is either projection
on a line, reflection in a line, or rotation through
an angle, and find the line or angle.

o + 2 o rx —
@ T =1 77 Loy 7[¥]=17 y}
LY 2x+ 4y Lyl Ay
Fa] —x—y 1 =3+ 4y
szL[ } d) 7]*|=1L
O T 1= % x—y "D TL=5 4013
R e =y
@ 7(M=[2]  «® T[}]=}
L] o D NV3Bx+y

2. Determine the effect of the following
transformations.

(a) Rotation through 7, followed by projection
on the y axis, followed by reflection in the

line y = «.

+(b) Projection on the line y = x followed by
projection on the line y = —x.

(c) Projection on the x axis followed by
reflection in the line y = .
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3. In each case solve the problem by finding the 5. Find the matrix of the rotation in R* about the x
matrix of the operator. axis through the angle 0 (from the positive y axis
M7 to the positive z axis).
(a) Find the projection of v = | —2 | on the plane ) ] ) )
3 +6. Find the matrix of the rotation about the y axis
with equation 3x — Sy + 2z = 0. through the angle 6 (from the positive x axis to
T 07 the positive z axis).
+(b) Find the projection of v = ; on the plane 7. If Ais 3 x 3, show that the image of the line in

R’ through p, with direction vector d is the line

with equation 2x — y + 4z_= 0 through Ap, with direction vector Ad, assuming

) ) 1 ) that Ad # 0. What happens if Ad = 0?
(c) Find the reflection of v = | —2 |in the plane
. . L 3 8. If Ais 3 x 3 and invertible, show that the image
with equation x — y + 3z = 0-_ of the plane through the origin with normal
. . 0] n is the plane through the origin with normal
+(d) Find the reflection of v=| 1|in the plane n; = Bn where B = (4~Y)’. [Hint: Use the fact
. . [—3] that v+ w = v/w to show thatn; + (Ap) =n - p
with equation 2x +y — 5z = 0. for each p in R’.]
s
(e) Find the reflection of v =| 5|in the line 9. Let L be the line through the origin in R? with
L—1] direction vector d = V] +0.
x 1 b
with equation |y | =14 1| +(a) If P; denotes projection on L, show that P;,
. =2 [ 2
1 has matrix 3 “ ﬂl; A
+(f) Find the projection of v =| —1 |on the line @’ +blab b
7 (b) If Q; denotes reflection in L, show that Q;,
x 3 [ 2 52
with equation [y | =10 |. has matrix 5 1 5 a—b ) Zﬂbz}-
2 4 a+ bl 2ab b —a
' o 1 ’ 10. Let n be a nonzero vector in R?, let L be the
(g) Find the projection of v =| 1 |on the line line through the origin with direction vector n,
=3 and let M be the plane through the origin with
) o [* 2 normal n. Show that P;(v) = Qr(v) + Py(v) for
with equation g =1 0} all v in R’. [In this case, we say that
=30 Pr = Qr + Pyl
h) Find the reflection of v =| —5 |in the li
+(b) Find the reflection of v (5) in the fine 11. If M is the plane through the origin in R* with
; ra
with equation § _, i ' normal n = [Z , show that Q;; has matrix
z - (12, 2_ 2
F 1 b*+c —a —2ab —2uac
- | _ 2, 2 32
4. (a) Find the rotation of v =| 3 |about the P+ b+ E 2ab & tc—h . ch 5
1 —2ac —2bc  a”+b -
z axis through 6 = 7.
(1
+(b) Find the rotation of v = | | about the z axis
13

through 6 = 7.
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Chapter 4 Vector Geometry

An Application to Computer Graphics
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Computer graphics deals with images displayed on a computer screen, and so

arises in a variety of applications, ranging from word processors, to Star Wars
animations, to video games, to wire-frame images of an airplane. These images
consist of a number of points on the screen, together with instructions on how to
fill in areas bounded by lines and curves. Often curves are approximated by a set of
short straight-line segments, so that the curve is specified by a series of points on
the screen at the end of these segments. Matrix transformations are important here
because matrix images of straight line segments are again line segments."* Note that
a colour image requires that three images are sent, one to each of the red, green,
and blue phosphorus dots on the screen, in varying intensities.

Consider displaying the letter A. In reality, it is depicted on the screen, as in
Figure 1, by specifying the coordinates of the 11 corners and filling in the interior.
For simplicity, we will disregard the thickness of the letter, so we require only five
coordinates as in Figure 2. This simplified letter can then be stored as a data matrix

Vertex 12345
06513
D_[00339}

where the columns are the coordinates of the vertices in order. Then if we want to
transform the letter by a 2 X 2 matrix 4, we left-multiply this data matrix by A (the
effect is to multiply each column by A4 and so transform each vertex).

For example, we can slant the letter to the right by multiplying by an x-shear

matrix A = {(1) (1)'2}—566: Section 2.2. The result is the letter with data matrix
AD = {1 O.ZHO 651 3} _ [0 6 5.6 1.6 4.8}
01 /00339 003 3 9
which is shown in Figure 3. If we want to make this slanted matrix narrower, we can
now apply an x-scale matrix B = {0'8 0} that shrinks the x-coordinate by 0.8. The
result is the composite transforma?ion1

0.8 OHI O.ZMO 651 3}_ [O 4.8 4.48 1.28 3.84}

0 1J01 “loo 3 3 9

BAD:[
003309

which is drawn in Figure 4.
On the other hand, we can rotate the letter about the origin through % (or 30°)

o

cos(%) —sin(%) _
by multiplying by the matrix Rx = | | 6 ¢ :[0'866 0.5 }
P [sin(g)  cos(y) 0.5 0.866
This gives
RD = [0.866 —0.5 HO 651 3}: [O 5.196 2.83 —0.634 —1.902}
? 0.5 0.866J10 0 3 39 03 5.098 3.098 9.294

and is plotted in Figure 5.

This poses a problem: How do we rotate at a point other than the origin? It
turns out that we can do this when we have solved another more basic problem. It
is clearly important to be able to translate a screen image by a fixed vector w, that is
apply the transformation T}, : R? — R? given by Ty,(v) = v + w for all v in R%. The
problem is that these translations are not matrix transformations R?> — R? because
they do not carry 0 to 0 (unless w = 0). However, there is a clever way around this.

13 If vy and v, are vectors, the vector from vg to v is d = v; — v,. So a vector v lies on the line segment between v, and v if and only
if v. = vy + fd for some number t in the range 0 < t < 1. Thus the image of this segment is the set of vectors Av = Avy + tAd with
0 < t< 1, that is the image is the segment between Avg and Av,.
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x
¥ |, called the
1

can be achieved

"The idea is to represent a point v = B} asa 3 x 1 column

homogeneous coordinates of v. Then translation by w = P
by multiplying by a 3 x 3 matrix:

1 0 pil« xtp
01 glly|=|y+ty
00 1]L1 1

Thus, by using homogeneous coordinates we can implement the translation 75, in
the top two coordinates. On the other hand, the matrix transformation induced by

TW(v)
1

A=1|" z is also given by a 3 x 3 matrix:
¢
a b 0l x ax + by v
cd Olly|T|aw+dy|= 1
0 0 1][1 1

So everything can be accomplished at the expense of using 3 x 3 matrices and
homogeneous coordinates.

Rotate the letter 4 in Figure 2 through % about the point

4

Solution » Using homogenous coordinates for the vertices of the letter results in
| a data matrix with three rows:

—_— 9 =
— O W

06
K;={0 0
11
€ac

- Origin

If we write w = [ﬂ, the idea is to use a composite of transformations: First

translate the letter by —w so that the point w moves to the origin, then rotate
M FIGURE 6 this translated letter, and then translate it by w back to its original position.
The matrix arithmetic is as follows (remember the order of composition!):

1 0 4({0866—0.5 01|10 4|06 513
01 5(]0.5 0.866 00 1 =5{/0 0 3 3 9
00 1JL0 0 1jJf0 0 111111
3.036 8.232 5.866 2.402 1.134
=|-1.33 1.67 3.768 1.768 7.964
1 1 1 1 1

"This is plotted in Figure 6.

"This discussion merely touches the surface of computer graphics, and the
reader is referred to specialized books on the subject. Realistic graphic rendering
requires an enormous number of matrix calculations. In fact, matrix multiplication
algorithms are now embedded in microchip circuits, and can perform over 100
million matrix multiplications per second. This is particularly important in the
field of three-dimensional graphics where the homogeneous coordinates have four
components and 4 X 4 matrices are required.
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EXERCISES 4.5

1.

2.

3.

Consider the letter 4 described in Figure 2.
Find the data matrix for the letter obtained by:

(2) Rotating the letter through 7 about the
origin.
+(b) Rotating the letter through 7 about the
1
2 }
Find the matrix for turning the letter 4 in
Figure 2 upside-down in place.

point

Find the 3 x 3 matrix for reflecting in the line

y =mx + b. Use [711] as direction vector for the
line.

4

5

. Find the 3 x 3 matrix for rotating through the

angle 6 about the point P(a, b).

. Find the reflection of the point P in the line

y =1+ 2xinR?if
@ P=P(1,1)
+(b) P=P(1,4)

(¢) What about P = P(1, 3)? Explain.
[Hint: Example 1 and Section 4.4.]

SUPPLEMENTARY EXERCISES FOR CHAPTER 4

1.

4.

Suppose that u and v are nonzero vectors. If u
and v are not parallel, and au + bv = aju + by,
show that 2 = 4; and b = b,.

. Consider a triangle with vertices 4, B, and

C. Let E and F be the midpoints of sides AB
and AC, respectively, and let the medians

EC and FB meet at O. Write EO = s EC

and F—O) = tﬁiz, where s and ¢ are scalars. Show
that s = 7 = 1 by expressing A0 two ways in

the form ¢ EO + bA—(}, and applying Exercise 1.
Conclude that the medians of a triangle meet
at the point on each that is one-third of the
way from the midpoint to the vertex (and so are
concurrent).

. A river flows at 1 km/h and a swimmer moves

at 2 km/h (relative to the water). At what angle
must he swim to go straight across? What is his
resulting speed?

A wind is blowing from the south at 75 knots,
and an airplane flies heading east at 100 knots.
Find the resulting velocity of the airplane.

. An airplane pilot flies at 300 km/h in a direction

30° south of east. The wind is blowing from the
south at 150 km/h.

(a) Find the resulting direction and speed of the
airplane.

+0.

10.

(b) Find the speed of the airplane if the wind is
from the west (at 150 km/h).

A rescue boat has a top speed of 13 knots. The
captain wants to go due east as fast as possible

in water with a current of 5 knots due south.
Find the velocity vector v = (x, y) that she must
achieve, assuming the x and y axes point east and
north, respectively, and find her resulting speed.

. A boat goes 12 knots heading north. The current

is 5 knots from the west. In what direction does
the boat actually move and at what speed?

. Show that the distance from a point 4 (with

vector a) to the plane with vector equation
n-p:dis”—i“|n~a—d|.

. If two distinct points lie in a plane, show that

the line through these points is contained in
the plane.

The line through a vertex of a triangle,
perpendicular to the opposite side, is called
an altitude of the triangle. Show that the
three altitudes of any triangle are concurrent.
(The intersection of the altitudes is called the
orthocentre of the triangle.) [Hinz: If P is the
intersection of two of the altitudes, show that
the line through P and the remaining vertex is
perpendicular to the remaining side.]



SECTION 1

The Vector Space R"

Subspaces and Spanning

Definition 5.1

In Section 2.2 we introduced the set R” of all z-tuples (called vectors), and began our
investigation of the matrix transformations R” — R" given by matrix multiplication
by an 7 x n matrix. Particular attention was paid to the euclidean plane R? where
certain simple geometric transformations were seen to be matrix transformations.
Then in Section 2.6 we introduced linear transformations, showed that they are all
matrix transformations, and found the matrices of rotations and reflections in R”.
We returned to this in Section 4.4 where we showed that projections, reflections,
and rotations of R? and R* were all linear, and where we related areas and volumes
to determinants.

In this chapter we investigate R” in full generality, and introduce some of the
most important concepts and methods in linear algebra. The z-tuples in R” will
continue to be denoted x, y, and so on, and will be written as rows or columns
depending on the context.

Subspaces of R"

A set' U of vectors in R” is called a subspace of R” if it satisfies the following properties:
S1. The zero vector Q is in U.
S2. Ifx andy are in U, then x + y is also in U.

S3. Ifx is in U, then ax is in U for every real number a.

We say that the subset U is closed under addition if S2 holds, and that U is closed
under scalar multiplication if S3 holds.

Clearly R” is a subspace of itself. The set U = {0}, consisting of only the zero
vector, is also a subspace because 0 + 0 = 0 and 20 = 0 for each # in R; it is called
the zero subspace. Any subspace of R” other than {0} or R” is called a proper
subspace.

1 We use the language of sets. Informally, a set Xis a collection of objects, called the elements of the set. The fact that x is an
element of Xis denoted x € X. Two sets X'and Y are called equal (written X = ¥) if they have the same elements. If every element of
Xis in the set ¥, we say that Xis a subset of ¥, and write X C Y. Hence X € Yand Y < X both hold if and only if X = V.
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We saw in Section 4.2 that every plane M through the origin in R’ has equation

a
ax + by + cz = 0 where 4, b, and ¢ are not all zero. Here n = | | is a normal for the
¢
plane and
M={inR|n.v=0}
x
where v = |y |and n -+ v denotes the dot product introduced in Section 2.2 (see the
z

diaglram).2 Then M is a subspace of R®. Indeed we show that M satisfies S1, S2, and
S3 as follows:

S1. 0is in M becausen « 0 = 0;
S2. If vandvyarein M, thenn+«(v+v))=n.v+n.-vi=04+0=0,s0v + vy is
in M;
S3. Ifvisin M, thenn « (av) = a(n « v) = a(0) = 0, so av is in M.
"This proves the first part of

Planes and lines through the origin in R’ are all subspaces of R®.

Solution » We dealt with planes above. If L is a line through the origin with
direction vector d, then L = {rd | 7 in R} (see the diagram). We leave it as an
exercise to verify that L satisfies S1, S2, and S3.

Example 1 shows that lines through the origin in R? are subspaces; in fact, they are the
only proper subspaces of R? (Exercise 24). Indeed, we shall see in Example 14 Section
5.2 that lines and planes through the origin in R? are the only proper subspaces of R’
Thus the geometry of lines and planes through the origin is captured by the subspace
concept. (Note that every line or plane is just a translation of one of these.)

Subspaces can also be used to describe important features of an 7 X » matrix 4.
The null space of A, denoted null A4, and the image space of 4, denoted im A, are
defined by

null 4 ={xinR"|Ax =0} and imA = {Ax|xin R"}

In the language of Chapter 2, null A consists of all solutions x in R” of the
homogeneous system Ax = 0, and im A is the set of all vectors y in R” such that
Ax =y has a solution x. Note that x is in null A4 if it satisfies the condition Ax = 0,
while im A4 consists of vectors of the form Ax for some x in R”. These two ways to
describe subsets occur frequently.

If A is an 7 X n matrix, then:
1. null A is a subspace of R”.

2. im A is a subspace of R™.

2 We are using set notation here. In general {g | p} means the set of all objects g with property p.
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Solution »

1. The zero vector 0 in R” lies in null 4 because A0 = 0.” If x and x,
are in null 4, then x + x; and #x are in null A because they satisfy the
required condition:

Ax+x)=Ax+Ax; =0+ 0=0 and A(ex) = a(Ax) = a0 = 0
Hence null A4 satisfies S1, S2, and S3, and so is a subspace of R”.

2. The zero vector 0 in R™ lies in im A because 0 = A0. Suppose that y and
y; are in im A, say y = Ax and y; = Ax; where x and x; are in R”. Then

y+y =Ax + Ax; = AX + x;) and ay = a(Ax) = A(ax)

show that'y + y; and #y are both in im A (they have the required
form). Hence im A is a subspace of R™.

There are other important subspaces associated with a matrix A that clarify basic
properties of A. If A is an » X » matrix and X is any number, let

E\A) = {xinR" | Ax = Ax}.
A vector x is in E\(A4) if and only if (\] — A)x = 0, so Example 2 gives:

E\(A) = null(\I — A) is a subspace of R” for each # X 7 matrix A and
number \.

E\(A) is called the eigenspace of A corresponding to A. The reason for the name
is that, in the terminology of Section 3.3, X is an eigenvalue of A if E,(A4) # {0}.
In this case the nonzero vectors in Ey(A4) are called the eigenvectors of 4
corresponding to A.

The reader should not get the impression that every subset of R” is a subspace.
For example:

U, = {[ﬂ | o = 0} satisfies S1 and S2, but not S3;
U, = ﬂﬂ | xz :yz} satisfies S1 and S3, but not S2;

Hence neither U; nor U, is a subspace of R (However, see Exercise 20.)

Spanning Sets

Let v and w be two nonzero, nonparallel vectors in R? with their tails at the
origin. The plane M through the origin containing these vectors is described in
Section 4.2 by saying that n = v X w is a normal for M, and that M consists of all
vectors p such that n « p = 0.* While this is a very useful way to look at planes,
there is another approach that is at least as useful in R* and, more importantly,
works for all subspaces of R” for any # > 1.

3 We are using 0 to represent the zero vector in both R” and R". This abuse of notation is common and causes no confusion once
everybody knows what is going on.

4 The vector n = v x w is nonzero because v and w are not parallel.
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The idea is as follows: Observe that, by the diagram, a vector p is in M if and
only if it has the form

p=av+bw

for certain real numbers # and & (we say that p is a linear combination of v and w).
Hence we can describe M as

M = {ax + bw | a, b in R}.

and we say that {v, w} is a spanning set for M. It is this notion of a spanning set that
provides a way to describe all subspaces of R”.
As in Section 1.3, given vectors Xy, X, ..., X; in R”, a vector of the form

X + 6Hx; + -+ + 1%, where the ¢, are scalars

is called a linear combination of the x;, and ¢; is called the coefficient of x; in the
linear combination.

The set of all such linear combinations is called the span of the x; and is denoted
span{xl, X% 0oog X/e} = {tlxl + HX) + - + 11X, | 1 in ]R}

If V = span{xy, Xy, ..., X}, we say that V is spanned by the vectors X, X5, ..., X;, and
that the vectors Xy, Xy, ..., X, span the space V.

Two examples:
span{x} = {tx | #in R},
which we write as span{x} = Rx for simplicity.
span{x, y} = {ix + sy| r, s in R}.

In particular, the above discussion shows that, if v and w are two nonzero,
nonparallel vectors in R?, then
M = span{v, w}

is the plane in R’ containing v and w. Moreover, if d is any nonzero vector in R’

(or R?), then
L = span{v} = {td | rin R} = Rd

is the line with direction vector d (see also Lemma 1 Section 3.3). Hence lines and
planes can both be described in terms of spanning sets.

Letx=(2,—-1,2,1)andy = (3,4, —1, 1) in R*. Determine whether
p=(,—-11,8,1)or q = (2, 3, 1, 2) are in U = span{x, y}.

Solution » The vector p is in U if and only if p = sx + ty for scalars s and z.
Equating components gives equations

2s+3t=0, —s+4=-11, 2s—t=8, and s+t=1.

"This linear system has solution s = 3 and t = —2, so p is in U. On the other
hand, asking that q = sx + ty leads to equations

2s+3t=2, —s+4=3, 2s—t=1, and s+t=2

and this system has no solution. So q does not lie in U.

5 In particular, this implies that any vector p orthogonal to v x w must be a linear combination p = av + bw of v and w for some a
and b. Can you prove this directly?
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Let U = span{xy, xy, ..., x3} in R". Then:
1. Uis a subspace of R" containing each X;.
2. If Wis a subspace of R” and each X; is in W, then U C W.

Write U = span{xy, x,, ..., x;} for convenience.

1. The zero vector 0 is in U because 0 = 0x; + Ox, + -+ + 0x; is a linear
combination of the x;. If x = ;x| + t;%x, + -+ + ;% and
y = $1X; + % + -+ + g are in U, then x + y and ax are in U because
X+y=( +s5s)x + (B +5)x + - + (# +5px;, and
ax = (ﬂtl)Xl + (ﬂtz)Xz + .- + (ﬂtk)Xl.
Hence S1, S2, and S3 are satisfied for U, proving (1).
2. Letx = t;x; + 5%, + -+ + ;%3 where the #; are scalars and each x; is in .

Then each tx; is in W because W satisfies S3. But then x is in  because W
satisfies S2 (verify). This proves (2).

Condition (2) in Theorem 1 can be expressed by saying that span{x;, x,, ..., x;} is
the smallest subspace of R” that contains each x;. This is useful for showing that two
subspaces U and W are equal, since this amounts to showing that both U € ¥ and
W < U. Here is an example of how it is used.

If x and y are in R”, show that spanfx, y} = span{x + y, x — y}.

Solution > Since both x + y and x — y are in span{x, y}, Theorem 1 gives

span{x + y, x — y} € span{x, y}.
Butx = 1(x +y) + 1(x —y) and y = X(x + y) — 1(x — y) are both in
span{x + y, X — y}, so

span{x, y} C span{x +y, x — y}
again by Theorem 1. Thus span{x, y} = span{x + y, x — y}, as desired.

It turns out that many important subspaces are best described by giving a
spanning set. Here are three examples, beginning with an important spanning set
for R” itself. Column j of the 7 x 7 identity matrix I, is denoted e; and called the jth
coordinate vector in R”, and the set {e|, e,, ..., ¢,} is called the standard basis of

X1
R Ifx = x:2 is any vector in R”, then x = xje; + xye; + -+ + x,€,, as the reader
xn

can verify. This proves:
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R” = spanfey, e,, ..., €,} where ey, e, ..., e, are the columns of ,.

If A is an 7 x n matrix 4, the next two examples show that it is a routine matter
to find spanning sets for null 4 and im A.

Given an 7 X n matrix A, let x;, x,, ..., x; denote the basic solutions to the
system Ax = 0 given by the gaussian algorithm. Then

null A4 = spanfxy, x,, ..., xz}.
Solution P If x is in null A, then Ax = 0 so Theorem 2 Section 1.3
shows that x is a linear combination of the basic solutions; that is,

null A4 € spanfxy, x,, ..., x;}. On the other hand, if x is in span{xy, x,, ..., X4},
then x = ;x; + 6%, + -+ + ;% for scalars 2, so

Ax = tlAXI S tzAXz aF oco qF t]eAXk = t10 aF t20 aF eo0 qp tkO =0.

"This shows that x is in null 4, and hence that span{xy, x, ..., x;} € null 4.
Thus we have equality.

Let ¢y, ¢y, ..., ¢, denote the columns of the 7 X n matrix A. Then

im A = span{cy, ¢, ..., C,}.

Solution b If {e}, e,, ..., e,} is the standard basis of R”, observe that
[Ae, Ae; --- Ae,| = Ale; e; - e,] =Al, =A=[c; ¢; -+ ¢,].

Hence ¢; = Ae; is in im A for each 4, so span{c, ¢, ..., ¢,} € im A.
X1

Conversely, let y be in im A4, say y = Ax for some x in R". If x = x:Z , then
%
Definition 2.5 gives

y = Ax = x1¢1 + 2,6, + -+ + x,¢, 1s in span{cy, ¢y, ..., C,}.

This shows that im 4 € span{cy, ¢, ..., ¢,}, and the result follows.

EXERCISES 5.1

We often write vectors in R” as rows. © U={@,s1)|r,sand rin R, —r + 35 + 2t = O}
1. In each case determine whether U is a subspace o(d) U={@,3s,7—2)| rand sin R}.
3
of R’. Support your answer. (€ U=1{(r,0,5 |7+ =0,randsin R},

@ U={{ls2|sandzin R}. of) U={Qr, =%, 1) | r, 5, and ¢ in R},
+b) U={0,s, 1) |sandrin R}.
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2. In each case determine if x lies in U = spanly, z}.
If x is in U, write it as a linear combination of
y and z; if x is not in U, show why not.

(a) X = (z’ _17 0, l)’ y = (17 0, 07 1)7 and
z=1(0,1,0,1).
o(b) x=(1,2,15,11),y = (2, -1, 0, 2), and
z=(1,—-1,-3,1).
(©) x=(8,3,-13,20),y= (2,1, =3,5), and
z=(-1,0,2,=3).

’(d) X = (2, 57 87 3), y= (27 _1, 0, 5)7 and
z=(-1,2,2,-3).

3. In each case determine if the given vectors
span R*. Support your answer.

(@ {(1,1,1,1),(0, 1,1, 1), (0, 0, 1, 1), (0, 0, 0, 1)}

’(b) {(1’ 3) _57 O)) (_2; 1) 0’ 0)) (07 2, 1) _1)’
(1’ _47 57 0)}

4. Is it possible that {(1, 2, 0), (2, 0, 3)} can span the
subspace U = {(r, 5, 0) |  and s in R}? Defend

your answer.
5. Give a spanning set for the zero subspace {0} of R".
6. Is R? a subspace of R*? Defend your answer.

7. If U = span{x, y, z} in R”, show that
U = span{x + 1z, y, z} for every ¢ in R.

8. If U = span{x, y, z} in R”, show that
U=span{x +y,y + z,z + x}.

9. If # # 0 is a scalar, show that
span{ax} = span{x} for every vector x in R".

+10. If 4y, ay, ..., 4, are nonzero scalars, show that
span{a Xy, 4,%, ..., 4;X;} = span{xy, Xy, ..., X}
for any vectors x; in R”.

11. If x # 0 in R”, determine all subspaces of
span{x}.

+12. Suppose that U = span{xy, x,, ..., x;} where each
x;is in R”. If A is an m X »n matrix and Ax; = 0
for each 7, show that Ay = 0 for every vector y
in U.

13. If A is an m X » matrix, show that, for each
invertible 772 X 7z matrix U, null(4) = null(UA).

14. If A is an m X »n matrix, show that, for each
invertible # X n matrix V, im(A4) = im(AV).
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15. Let U be a subspace of R”, and let x be a vector
in R”.

(a) If ax is in U where # # 0 is a number, show
that x is in U.

+(b) Ifyand x + y are in U where y is a vector in
R”, show that xis in U.

16. In each case either show that the statement is
true or give an example showing that it is false.

(a) If U # R" is a subspace of R” and x + y is in
U, then x and y are both in U.

+(b) If Uis a subspace of R” and 7x is in U for all
7in R, then x is in U.

(c) If Uis a subspace of R” and x is in U, then
—x is also in U.

+(d) Ifxisin Uand U = spanly, z}, then
U = span{x, y, z}.

(e) The empty set of vectors in R” is a subspace
of R".

0 i }3]

17. (a) If A and B are m X n matrices, show that
U = {xin R" | Ax = Bx} is a subspace of R".

(b) Whatif Aism X n, Bis k X n, and m + k?

18. Suppose that xy, x;, ..., x; are vectors in R”. If
y = a1x; + 4% + -+ + ayx;, where a; # 0, show
that span{xy, x, ..., X;} = spanfyy, x5, ..., Xz}.

19. If U # {0} is a subspace of R, show that U = R.

+20. Let U be a nonempty subset of R”. Show that U
is a subspace if and only if S2 and S3 hold.

21. If S and T are nonempty sets of vectors in R,
and if S € 7, show that span{S} < span{7}.

22. Let U and W be subspaces of R”. Define their
intersection U N W and their sum U + W as
follows:

Un W= {xinR" | x belongs to both U and I}

U+ W= {xinR"|xisasum of a vector in U
and a vector in W}.

(a) Show that U N Wis a subspace of R”.
+(b) Show that U + I is a subspace of R”".

23. Let P denote an invertible # X 7 matrix. If \ is
a number, show that E\(PAP™") = {Px | x is in
E\(A)} for each n X n matrix A.
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24. Show that every proper subspace U of R is a the line with direction vector d. If u is in U but
line through the origin. [Hinz: If d is a nonzero not in L, argue geometrically that every vector v
vector in U, let L. = Rd = {rd | » in R} denote in R? is a linear combination of u and d.]

SECTION 5.2

Independence and Dimension

Definition 5.3

Some spanning sets are better than others. If U = span{x;, x,, ..., X} is a subspace of
R", then every vector in U can be written as a linear combination of the x; in at least
one way. Our interest here is in spanning sets where each vector in U has a exactly
one representation as a linear combination of these vectors.

Linear Independence

Given xq, X3, ..., X in R”, suppose that two linear combinations are equal:
71X+ Xy + s+ Xy = 51Xy + 95X + o0+ X

We are looking for a condition on the set {x;, x,, ..., X} of vectors that guarantees
that this representation is unigue; that is, 7; = s; for each 7. Taking all terms to the
left side gives

(ry = s)x1 + (1 — )% + - + (1 — s)x = 0.

so the required condition is that this equation forces all the coefficients 7; — s; to be zero.

With this in mind, we call a set {X{, X5, ..., X3} of vectors linearly independent (or
simply independent) if it satisfies the following condition:

If t1X1+Z’2X2+"'+thk:0 then t1=t2="'=tk:0.

We record the result of the above discussion for reference.

If{xy, X3, ..., X} is an independent set of vectors in R", then every vector in
span{xy, X,, ..., X;} has a unique representation as a linear combination of the x;.

It is useful to state the definition of independence in different language. Let us
say that a linear combination vanishes if it equals the zero vector, and call a linear
combination trivial if every coefficient is zero. Then the definition of independence
can be compactly stated as follows:

A set of vectors is independent if and only if the only
linear combination that vanishes is the trivial one.

Hence we have a procedure for checking that a set of vectors is independent:

Independence Test

To verify that a set {X{, X5, ..., X3} of vectors in R" is independent, proceed as follows:
1. Set a linear combination equal to zero: t;x; + 1%, + -+ + t;x;, = 0.
2. Show that t; = 0 for each i (that is, the linear combination is trivial).

Of course, if some nontrivial linear combination vanishes, the vectors are not independent.
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Determine whether {(1, 0, =2, 5), (2, 1, 0, —1), (1, 1, 2, 1)} is independent
in RY.

Solution P Suppose a linear combination vanishes:
(1,0, =2, 5) + 52, 1,0, —=1) + #(1, 1,2, 1) = (0, 0, 0, 0).
Equating corresponding entries gives a system of four equations:
r+2s+t=0, s+t=0, —2r+2t=0, and 5r—s+t=0.

The only solution is the trivial one » = s = ¢ = 0 (verify), so these vectors are
independent by the independence test.

Show that the standard basis {ey, e,, ..., €;} of R” is independent.
Solution » The components of te; + e, + --- + t,e, are ty, t, ..., t,, (see the

discussion preceding Example 6 Section 5.1) So the linear combination vanishes
if and only if each #; = 0. Hence the independence test applies.

If {x, y} is independent, show that {2x + 3y, x — Sy} is also independent.
Solution b If s(2x + 3y) + #(x — 5y) = 0, collect terms to get
(25 + )x + (3s — 5t)y = 0. Since {x, y} is independent this combination

must be trivial; that is, 25 + ¢ = 0 and 3s — 57 = 0. These equations have
only the trivial solution s = # = 0, as required.

Show that the zero vector in R” does not belong to any independent set.

Solution » No set {0, x;, x,, ..., x;} of vectors is independent because we have a
vanishing, nontrivial linear combination 1 - 0 + 0x; + 0x; + --- + Ox;, = 0.

Given x in R”, show that {x} is independent if and only if x # 0.

Solution > A vanishing linear combination from {x} takes the form #x = 0,
¢ in R. This implies that # = 0 because x # 0.
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v
w

M
{u, v, w} independent

M
{u, v, w} not independent
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The next example will be needed later.

Show that the nonzero rows of a row-echelon matrix R are independent.

Solution » We illustrate the case with 3 leading 1s; the general case is

0 1 % *x *x =x*

analogous. Suppose R has the form R = 00 01 % here % indicates
000 0 1 =
000 0O0O

a nonspecified number. Let Ry, Ry, and R; denote the nonzero rows of R. If
1Ry + R, + t3R; = 0 we show that 7; = 0, then #, = 0, and finally #; = 0.
The condition #1R; + ©,R, + 3R; = 0 becomes

(0’ tl’ *7 *’ *’ *) + (0’ O’ 0’ tZ) *’ *) + (0’ 0’ O’ O’ t}’ *) = (O’ O’ 07 O’ O’ 0)'

Equating second entries show that #; = 0, so the condition becomes
1R, + t3R; = 0. Now the same argument shows that #, = 0. Finally,
this gives #3R; = 0 and we obtain #; = 0.

A set of vectors in R” is called linearly dependent (or simply dependent) if it is

not linearly independent, equivalently if some nontrivial linear combination vanishes.

If v and w are nonzero vectors in R?, show that {v, w} is dependent if and only
if v and w are parallel.

Solution > If v and w are parallel, then one is a scalar multiple of the other
(Theorem 4 Section 4.1), say v = aw for some scalar 2. Then the nontrivial
linear combination v — aw = 0 vanishes, so {v, w} is dependent.

Conversely, if {v, w} is dependent, let sv + tw = 0 be nontrivial, say s # 0.
Then v = —iw, so v and w are parallel (by Theorem 4 Section 4.1). A similar
argument works if 7 # 0.

With this we can give a geometric description of what it means for a set {u, v, w}

in R’ to be independent. Note that this requirement means that {v, w} is also
independent (#v + bw = 0 means that Ou + av + bw = 0), so M = span{v, w} is the
plane containing v, w, and 0 (see the discussion preceding Example 4 Section 5.1).
So we assume that {v, w} is independent in the following example.

Let u, v, and w be nonzero vectors in R® where {v, w} independent. Show that
{u, v, w} is independent if and only if u is not in the plane M = span{v, w}.
This is illustrated in the diagrams.
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Solution P If {u, v, w} is independent, suppose u is in the plane M = span{v, w},
say u = av + bw, where # and b are in R. Then 1lu — av — bw = 0,
contradicting the independence of {u, v, w}.

On the other hand, suppose that u is not in M; we must show that {u, v, w} is
independent. If 7u + sv + tw = 0 where 7, 5, and 7 are in R?, then 7 = 0 since
otherwise u = v + Zfw is in M. But then sv + tw = 0, so s = ¢ = 0 by our
assumption. This shows that {u, v, w} is independent, as required.

By Theorem 5 Section 2.4, the following conditions are equivalent for an z X #
matrix A4:

1. A is invertible.
2. IfAx = 0 wherex is in R”, thenx = 0.
3. Ax = b has a solution x for every vector b in R”.

While condition 1 makes no sense if A4 is not square, conditions 2 and 3 are

meaningful for any matrix 4 and, in fact, are related to independence and spanning.
X1

Indeed, if ¢, ¢, ..., ¢, are the columns of A, and if we write x = x:2 , then
x,
Ax = x1¢1 + 156 + -+ + x,¢,
by Definition 2.5. Hence the definitions of independence and spanning show,
respectively, that condition 2 is equivalent to the independence of {cy, ¢, ..., ¢}

and condition 3 is equivalent to the requirement that spanfcy, ¢, ..., ¢,} = R”.
"This discussion is summarized in the following theorem:

If A is an m X n matrix, let {c1, ¢,, ..., ¢,} denote the columns of A.
L. {cy, ¢ ..., ¢} is independent in R™ if and only if Ax = 0, x in R”, implies x = 0.

2. R” = spanfcy, ¢, ..., ¢,} if and only if Ax = b has a solution x for every vector
b in R™.

For a square matrix A, Theorem 2 characterizes the invertibility of A in terms
of the spanning and independence of its columns (see the discussion preceding
Theorem 2). It is important to be able to discuss these notions for rows. If
X1, X, ..., X are 1 X n rows, we define span{xy, x,, ..., x;} to be the set of all linear
combinations of the x; (as matrices), and we say that {x;, x, ..., x;} is linearly
independent if the only vanishing linear combination is the trivial one (that is, if
{xlT, xZT, e x[} is independent in R”, as the reader can Verify).6

The following are equivalent for an n X n matrix A:
1. A is invertible.

6 Itis best to view columns and rows as just two different notations for ordered n-tuples. This discussion will become redundant in
Chapter 6 where we define the general notion of a vector space.
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The columns of A are linearly independent.
The columns of A span R".
The rows of A are linearly independent.

SN

The rows of A span the set of all 1 X n rows.

Let ¢y, ¢y, ..., ¢, denote the columns of A.

(1) & (2). By Theorem 5 Section 2.4, A4 is invertible if and only if 4x = 0
implies x = 0; this holds if and only if {c, c,, ..., ¢,} is independent by
Theorem 2.

(1) & (3). Again by Theorem 5 Section 2.4, A is invertible if and only if
Ax = b has a solution for every column B in R”; this holds if and only if
span{cy, ¢y, ..., ¢,} = R” by Theorem 2.

(1) & (4). The matrix A is invertible if and only if AT is invertible (by the
Corollary to Theorem 4 Section 2.4); this in turn holds if and only if A” has
independent columns (by (1) < (2)); finally, this last statement holds if and
only if A has independent rows (because the rows of A are the transposes of
the columns of A%).

(1) < (5). The proof is similar to (1) < (4).

Show that S = {(2, =2, 5), (=3, 1, 1), (2, 7, —4)} is independent in R’.

2 =2 5
Solution » Consider the matrix 4 =|—3 1 1 |with the vectors in S as its
2 7 -4

rows. A routine computation shows that det 4 = —117 # 0, so A is invertible.
Hence S is independent by Theorem 3. Note that Theorem 3 also shows that
R’ = span S.

Dimension

It is common geometrical language to say that R? is 3-dimensional, that planes are
2-dimensional and that lines are 1-dimensional. The next theorem is a basic tool
for clarifying this idea of “dimension”. Its importance is difficult to exaggerate.

Fundamental Theorem
Let U be a subspace of R”. If U is spanned by m vectors, and if U contains k linearly
independent vectors, then k < m.

"This proof is given in Theorem 2 Section 6.3 in much greater generality.
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If Uis a subspace of R", a set {xy, Xy, ..., X,,} of vectors in U is called a basis of U if it
satisfies the following two conditions:

1. {xy, X, ..., X,,} is linearly independent.
2. U= span{xy, x;, ..., X,,,}.

The most remarkable result about bases’ is:

Theorem 5

Invariance Theorem
If{xy, X3, ..., X,,} and {y1, 2, ..., yi} are bases of a subspace U of R, then m = k.

We have k < m by the fundamental theorem because {x;, x,, ..., X,,} spans U,
and {yy, y2, ..., yi} is independent. Similarly, by interchanging xs and ys we get
m < k. Hence m = k.

The invariance theorem guarantees that there is no ambiguity in the following
definition:

If Uis a subspace of R" and {xy, x5, ..., X,,,} is any basis of U, the number, m, of vectors
in the basis is called the dimension of U, denoted

dim U = m.

The importance of the invariance theorem is that the dimension of U can be
determined by counting the number of vectors in ny basis.®

Let {ej, e, ..., e,} denote the standard basis of R”, that is the set of columns of
the identity matrix. Then R” = span{ey, e, ..., €,} by Example 6 Section 5.1, and
{ey, ey, ..., €,} is independent by Example 2. Hence it is indeed a basis of R” in the
present terminology, and we have

dim(R”) = # and {e, e,, ..., €,} is a basis.

This agrees with our geometric sense that R? is two-dimensional and R? is
three-dimensional. It also says that R' = R is one-dimensional, and {1} is a basis.
Returning to subspaces of R”, we define

dim {0} = 0.

This amounts to saying {0} has a basis containing 7o vectors. This makes sense
because 0 cannot belong to any independent set (Example 4).

7 The plural of “basis” is “bases”.
8  We will show in Theorem 6 that every subspace of R" does indeed have a basis.
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,
Let U :{ s} | 7, s in ]R}. Show that U is a subspace of R?, find a basis, and
7
calculate dim U.
P 1 0
Solution » Clearly, [s} =u + svwhere u =|(|and v=|1| It follows that
7 1 0
U = spanf{u, v}, and hence that U is a subspace of R®. Moreover, if
0
,
7a +sv =0, then |s|=|0|so 7 =s = 0. Hence {u, v} is independent, and so a
7
0

basis of U. This means dim U = 2.

Let B = {x;, x5, ..., x,,} be a basis of R”. If A is an invertible » X # matrix, then
D = {Ax,, Ax;, ..., Ax,} is also a basis of R”.

Solution » Let x be a vector in R”. Then A~ 'x is in R” so, since B is a basis,

we have A7'x = t;x; + £:%, + -+ + 1,X, for #; in R. Left multiplication by A
gives x = t1(Axy) + t,(Ax;) + --+ + 1,(4x,), and it follows that D spans R". To
show independence, let s;(Ax;) + 5,(Ax;) + -+ + 5,(Ax,) = 0, where the s; are
in R. Then A(six; + 5% + -+ + 5,%,) = 0 so left multiplication by A7l gives
$1X1 + 5% + -+ + 5,%, = 0. Now the independence of B shows that each s; = 0,
and so proves the independence of D. Hence D is a basis of R”.

While we have found bases in many subspaces of R”, we have not yet shown that
every subspace has a basis. This is part of the next theorem, the proof of which is
deferred to Section 6.4 where it will be proved in more generality.

Let U + {0} be a subspace of R". Then:
U has a basis and dim U < n.

2. Any independent set in U can be enlarged (by adding vectors from the standard
basis) to a basis of U.

3. Any spanning set for U can be cut down (by deleting vectors) to a basis of U.

Find a basis of R containing S = {u, v} whereu = (0, 1, 2, 3)and v = (2, —1, 0, 1).

Solution » By Theorem 6 we can find such a basis by adding vectors from the
standard basis of R* to S. If we try e; = (1, 0, 0, 0), we find easily that {e;, u, v}
is independent. Now add another vector from the standard basis, say e,.
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Again we find that B = {ey, e,, u, v} is independent. Since B has 4 = dim R*
vectors, then B must span R* by Theorem 7 below (or simply verify it directly).
Hence B is a basis of R*.

Theorem 6 has a number of useful consequences. Here is the first.

Let U be a subspace of R” where dim U = m and let B = {x, x5, ..., X,,} be a set of m
vectors in U. Then B is independent if and only if B spans U.

Suppose B is independent. If B does not span U then, by Theorem 6, B can be
enlarged to a basis of U containing more than 7 vectors. This contradicts the
invariance theorem because dim U = m, so B spans U. Conversely, if B spans U
but is not independent, then B can be cut down to a basis of U containing fewer
than 7 vectors, again a contradiction. So B is independent, as required.

As we saw in Example 13, Theorem 7 is a “labour-saving” result. It asserts
that, given a subspace U of dimension 7 and a set B of exactly » vectors in U, to
prove that B is a basis of U it suffices to show either that B spans U or that B is
independent. It is not necessary to verify both properties.

Let U € W be subspaces of R". Then:
1. dim U < dim W.
2. Ifdim U= dim W, then U= W.

Write dim W = k, and let B be a basis of U.

1. If dim U > k, then B is an independent set in /¥ containing more than
vectors, contradicting the fundamental theorem. So dim U < k = dim W.

2. If dim U = k, then B is an independent set in W containing k¥ = dim W
vectors, so B spans W by Theorem 7. Hence W = span B = U, proving (2).

It follows from Theorem 8 that if U is a subspace of R”, then dim U is one of the
integers 0, 1, 2, ..., n, and that:

dim U= 0 ifand onlyif U= {0},

dim U=#n ifandonlyif U=R"

The other subspaces are called proper. The following example uses Theorem 8
to show that the proper subspaces of R? are the lines through the origin, while the
proper subspaces of R® are the lines and planes through the origin.
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1. If Uis a subspace of R? or R?, then dim U = 1 if and only if Uis a line
through the origin.

2. If Uis a subspace of R’, then dim U = 2 if and only if U is a plane
through the origin.

1. Since dim U = 1, let {u} be a basis of U. Then U = span{u} = {ru | # in R}, so
U is the line through the origin with direction vector u. Conversely each line
L with direction vector d # 0 has the form L = {td | # in R}. Hence {d} is a
basis of U, so U has dimension 1.

2. If U € R has dimension 2, let {v, w} be a basis of U. Then v and w are not
parallel (by Example 7) son =v X w# 0. Let P = xin R’ | n « x = 0}
denote the plane through the origin with normal n. Then P is a subspace of
R’ (Example 1 Section 5.1) and both v and w lie in P (they are orthogonal to
n), so U = span{v, w} C P by Theorem 1 Section 5.1. Hence

UcCPCR.

Since dim U = 2 and dim(R*) = 3, it follows from Theorem 8 that dim P = 2
or 3, whence P = U or R’. But P # R’ (for example, n is not in P) and so
U = P is a plane through the origin.

Conversely, if U is a plane through the origin, then dim U= 0, 1, 2, or 3
by Theorem 8. But dim U # 0 or 3 because U # {0} and U # R?, and dim
U # 1 by (1). Sodim U = 2.

Note that this proof shows that if v and w are nonzero, nonparallel vectors in
R?, then span{v, w} is the plane with normal n = v x w. We gave a geometrical
verification of this fact in Section 5.1.

EXERCISES 5.2

In Exercises 1-6 we write vectors R” as rows. ob) x+y,y+zz+x}

1. Which of the following subsets are independent? © &x—-yvy—z,z—w,w—x}
Support your answer.

() {1, —1,0),(3,2,-1), 3,5, =2)}in R’
«0b) {1, 1,1),d,-1,1),,0, 1)} in R>.

od) x+y,y+z,z+w,w+x}

3. Find a basis and calculate the dimension of the
following subspaces of R*,

© {0, =1, 1, 1), 2,0, 1,0, (0, =2, 1, =2} in R, (@) span{(1, —1,2,0),(2,3,0,3), (1,9, =6, 6)}.
+(d) §(01’11’00’1(;§"(13R9*’ 1,0), (0,0, 1, 1), +(b) span{(2, 1,0, =1), (=1, 1, 1, 1), 2, 7, 4, 1)}.
, 1,0, Dlin R,
(C) Span{(_l’ 27 11 0)’ (2$ 0, 3, _l)a (47 4: 11, _3)?
2. Let{x,y, z, w} be an independent set in R". (3,-2,2, -1}

Which of the following sets is independent?

Support yOllI‘ answer. ’(d) Span{(—Z, 0, 3’ 1)’ (1, 2, _1$ 0), (_2’ 87 5a 3),

(_l, 27 2’ 1)}
@ x-yy—-zz-x



SECTION 5.2

4. Find a basis and calculate the dimension of the
following subspaces of R*.

4
a+b
a—b

b

(@ + b]

a—b
b

a
a

b

c+a
L ¢

(@) U= | #and bin R.

| #and bin R .

| 4, b, and ¢ in R}.

(@ — b

b;c | 4, b, and cin R .
Lb+¢

ra
b
c
Ld

a
b
¢
d

(e) U=

|ﬂ+b—c+d:0in]R}.

of) U= |la+b=c+dinR

5. Suppose that {x, y, z, w} is a basis of R*. Show
that:

(a) {x + aw,y, z, w} is also a basis of R* for any
choice of the scalar 4.

+(b) {x +w,y +w, z+ w, w}is also a basis
of R,

© Xx+y,x+y+z,x+y+z+ whisalso
a basis of R*.

6. Use Theorem 3 to determine if the following
sets of vectors are a basis of the indicated space.

@) {3, 1), (2,2)}in R%.
«(b) {(1,1, 1), (1, =1, 1), (0, 0, 1)} in R’.
© {(=1,1,=1),(1, —1,2), (0,0, 1)} in R.
o(d) {5,2,-1), (1,0, 1), 3, =1, 0)} in R’

(e) {(2, 17 _la 3)7 (17 la 07 2), (O, 1, 07 _3)’
(-1,2,3, D}in R*.
’(f) {(la 07 _Za 5)7 (4a 4a _3’ Z)a (07 1’ Oa _3)7
(1, 3,3, —10)} in R*.

7. In each case show that the statement is true or
give an example showing that it is false.

(a) If {x, y} is independent, then {x, y, x + y} is
independent.

Independence and Dimension

+10.

11.

e12.

13.

14.

15.
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+(b) If {x, y, z} is independent, then {y, z} is
independent.

(¢) If {y, z} is dependent, then {x, y, z} is
dependent for any x.

o(d) Ifall of xq, x5, ..

{x1, %, ..

., X; are nonzero, then
., X} is independent.

(e) If one of x, x, ..
{x1, %, ..

o(f) If ax + by + cz = 0, then {x, y, z} is
independent.

., X;, is zero, then
., X} is dependent.

() If {x, y, z} is independent, then
ax + by + cz = 0 for some 4, b, and ¢ in R.

o(h) If {x, Xy, ..., x4} is dependent, then
Hhx, + HXy; + - + %, = 0 for some
numbers ¢; in R not all zero.

@) If {xy, x5, ..., x4} is independent, then
Hhx, + Hxy; + --- + ;x;, = 0 for some ¢; in R.

. If A is an n X n matrix, show that det 4 = 0

if and only if some column of A is a linear
combination of the other columns.

Let {x, y, z} be a linearly independent set in R*.
Show that {x, y, z, e;} is a basis of R* for some e,
in the standard basis {e;, e, €3, €4}.

If {x1, x5, X3, X4, Xs5, X4} is an independent set of
vectors, show that the subset {x,, x3, x5} is also
independent.

Let A be any 7 X n matrix, and let by, b,

b;, ..., b, be columns in R” such that the
system Ax = b; has a solution x; for each 7. If
{by, by, bs, ..., by} is independent in R”, show
that {xi, X, x3, ..., X3} is independent in R”.

If {x1, x5, X3, ..., X} is independent, show that
{Xh X1 + Xy, X1 + X7 + X3, ooy X + X7 + - 4+ X/e}
is also independent.

If {y, x1, x5, x3, ..., X;} is independent, show
that {y + x;, y + X0, y + X3, ..., ¥ + x¢} is also
independent.

If {x, X3, ..., X;} is independent in R”, and if y is
not in span{x;, X, ..., X3}, show that
{x1, X3, ..., X}, y} is independent.

If A and B are matrices and the columns of AB
are independent, show that the columns of B are
independent.
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16. Suppose that {x, y} is a basis of R?, and let 18. Let A denote an 7z X n matrix.
A=[20 } (a) Show that im A = im(4V) for every
cd invertible » X 7 matrix V.
(a) If A is invertible, show that {#x + by, cx + dy} o o
is a basis of R%. (b) Show .that d.1m(1m A) = dlm(.1m(UA)). for
) _ , every invertible 7 X m matrix U. [Hinz: If
+(b) If {ax + 17.}’, x+ dy} is a basis of R", show {¥1, Y2, .-+, Y&} is a basis of im(UA), show that
that A is invertible. {U 'y, Uy, ..., U”ly,} is a basis of im A.]
17. Let A denote an X n matrix. 19. Let U and W denote subspaces of R”, and
(a) Show that null 4 = null(UA) for every assume that UC W. If dim U = n — 1, show
invertible 72 X m matrix U. that either W= Uor W =R".
+(b) Show that dim(null A) = dim(null(4})) +20. Let U and W denote subspaces of R”, and
for every invertible » x # matrix V. [Hint: assume that U € W. If dim W = 1, show that
If {xq, x5, ..., X;} is a basis of null A, show either U = {0} or U = WV.

that (I 'x;, V'xy, ..., V" 'x} is a basis of

null(A7).]

SECTION 5.3

Orthogonality

Definition 5.6

Length and orthogonality are basic concepts in geometry and, in R? and R?, they
both can be defined using the dot product. In this section we extend the dot product
to vectors in R”, and so endow R” with euclidean geometry. We then introduce the
idea of an orthogonal basis—one of the most useful concepts in linear algebra, and
begin exploring some of its applications.

Dot Product, Length, and Distance

Ifx = (xf, x5, ..., x,) and 'y = (y1, ¥2, ---, V) are two n-tuples in R”, recall that their
dot product was defined in Section 2.2 as follows:

Xey=x1y; + 2392 + -0 + X,

Observe that if x and y are written as columns then x « y = x’y is a matrix product
(and x - y = xy if they are written as rows). Here x « yis a 1 x 1 matrix, which we
take to be a number.

As in R®, the length ||x|| of the vector is defined by
Ixl| =vE =Vl + 23+ o+

Where /() indicates the positive square root.

A vector x of length 1 is called a unit vector. If x # 0, then ||x|| # 0 and it follows

easily that -L-x is a unit vector (see Theorem 6 below), a fact that we shall use later.

I

Ifx=(,-1,-3,Dandy=(2,1,1,0)inR*, thenx e y=2—1-3 + 0= -2
and ||x|| =V1+1+9+1=V12 =2V3. Hence %xisaunitvector;

similarly %y is a unit vector.



SECTION 5.3  Orthogonality 247

These definitions agree with those in R? and R?, and many properties carry over to R":

Let x, y, and z denote vectors in R”. Then:

X y=y-X

X (y+z)=x-y+x-2

(ax) <y = a(x + y) = x « (ay) for all scalars a.
x]? =x - x

||| = 0, and ||x|| = 0 if and only if x = 0.

ISR SRS

||ax|| = | a| ||x]| for all scalars a.

(1), (2), and (3) follow from matrix arithmetic because x « y = xTy; (4) is clear
from the definition; and (6) is a routine verification since |2| = Vi If

x = (x1, 23, ..., %), then ||x|| =V/x} + 23 + -+ + 22, so0 ||x|| = 0 if and only if
xt + x5 + -+ + 22 = 0. Since each x; is a real number this happens if and only

if &; = 0 for each 7; that is, if and only if x = 0. This proves (5).

Because of Theorem 1, computations with dot products in R” are similar to those
in R*. In particular, the dot product

X1+ % + o+ %) s (1 +Hy2 + o )
equals the sum of 72k terms, x; - yj, one for each choice of 7 and j. For example:

(3x — 4y) - (7x + 2y) = 21(x+ %) + 6(x - y) — 28(y - ) — 8y - y)
= 21[Ixll? - 22(x - y) — 8llyIP

holds for all vectors x and y.

Show that ||x + y||* = ||x]|* + 2(x - y) + |ly||* for any x and y in R”.

Solution » Using Theorem 1 several times:

||X+Y||2=(X";Y)'(X+y)=x-2x+x-y+y-x+y-y
= [IxlI” + 2 - y) + llyl

Suppose that R” = span{fj, f,, ..., f;} for some vectors f;. If x « f; = 0 for each 7
where x is in R”, show that x = 0.
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Solution » We show x = 0 by showing that ||x|| = 0 and using (5) of Theorem 1.
Since the f; span R”, write x = #©1f] + 1,f;, + -+ + £, where the #; are in R. Then

Ix[|* =x-x=x- (tf; + tofs + -+ + 1)
=ti(x-f) +rx6H) + -+ px- )
= tl(O) SI tz(O) 4F eco qF tk(O)
=0.

We saw in Section 4.2 that if u and v are nonzero vectors in R?, then
u-v
[lal{Iv]

angle 0, this shows that |u « v| < |Jul|||v|]. In this form the result holds in R".

Cauchy Inequality’
Ifx and y are vectors in R”, then

= cos 0 where 0 is the angle between u and v. Since |cos 0] < 1 for any

-yl < [Ix[lllyll-
Moreover |x « y| = ||x||||yll if and only if one of x and'y is a multiple of the other.

Augustin Louis Cauchy "The inequality holds if x = 0 or y = 0 (in fact it is equality). Otherwise,
Photo © Corbis. ’ write ||x|]| =2 > 0 and |ly]| = & > 0 for convenience. A computation like
that preceding Example 2 gives

lbx — ay||* = 2ab(ab — x +y) and ||bx — ay||* = 2ab(ab + x - y). (%)

It follows that #b — x + y = 0 and #b + x + y = 0, and hence that —ab < x -y < ab.
Hence |x - y| < ab = ||x||||yl|, proving the Cauchy inequality.

If equality holds, then |x + y| = ab, sox «y = ab or x - y = —ab. Hence (x)
shows that bx — a2y = 0 or bx + ay = 0, so one of x and y is a multiple of the
other (even if 2 = 0 or b = 0).

The Cauchy inequality is equivalent to (x  y)* < ||x||*||ly||*. In R’ this becomes

2
(e1y1 + oy2 + a3y3 + xqy4 + x5Y5)
2 2 2 2 2Y. 2 2 2 2 2
S(x1 + a3+ a3+ x5 +x5XJ1 ty2+ystys "‘J’s)
for all x; and y; in R.

There is an important consequence of the Cauchy inequality. Given x and y in
R", use Example 2 and the fact that x - y < ||x]|||y]| to compute

Ix + ylI* = lIxll® + 26« y) + liyll* < [1xI* + 2lIxllllyll + lIyll* = dllx + yl)*

Taking positive square roots gives:

9 Augustin Louis Cauchy (1789-1857) was born in Paris and became a professor at the Ecole Polytechnique at the age of 26. He was
one of the great mathematicians, producing more than 700 papers, and is best remembered for his work in analysis in which he
established new standards of rigour and founded the theory of functions of a complex variable. He was a devout Catholic with a long-
term interest in charitable work, and he was a royalist, following King Charles X into exile in Prague after he was deposed in 1830.
Theorem 2 first appeared in his 1812 memoir on determinants.
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Corollary 1

Triangle Inequality
Ifx andy are vectors in R”, then ||x + y|| < ||x|| + |ly]|-

The reason for the name comes from the observation that in R’ the inequality
asserts that the sum of the lengths of two sides of a triangle is not less than the
length of the third side. This is illustrated in the first diagram.

Ifx and'y are two vectors in R”, we define the distance d(x, y) between x and'y by
d(x, y) = [lx = yll

The motivation again comes from R as is clear in the second diagram. This
distance function has all the intuitive properties of distance in R’ including
another version of the triangle inequality.

Ifx,y, and z are three vectors in R" we have:
1. dxy) =0 forallxandy.
2. dx, y)=0ifandonlyifx =y.
3. dx y) = d(y, x).
4. dx, z) <dx,y) + dly, z). Triangle inequality.

(1) and (2) restate part (5) of Theorem 1 because d(x, y) = ||x — y||, and (3)
follows because ||u|| = ||—u]| for every vector u in R”. To prove (4) use the
Corollary to Theorem 2:

dx,z) = x —zl| =[x —y) + (y — 2)|
<[[x=yl + Iy — 2l = dx,y) + dy, z)

Orthogonal Sets and the Expansion Theorem

We say that two vectors x and y in R" are orthogonal ifx - y = 0, extending the
terminology in R® (See Theorem 3 Section 4.2). More generally, a set {x;, X, ..., X;}
of vectors in R” is called an orthogonal set if

x;+x;j=0foralli#; and x; # 0 for all '
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Note that {x} is an orthogonal set if x #+ 0. A set {x, X, ..., X3} of vectors in R" is called

orthonormal if it is orthogonal and, in addition, each x; is a unit vector:

||x;|| = 1 for each i.

10 The reason for insisting that orthogonal sets consist of nonzero vectors is that we will be primarily concerned with orthogonal bases.
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The standard basis {e;, e, ..., €,} is an orthonormal set in R”.

The routine verification is left to the reader, as is the proof of:

If {xy, x5, ..., x;} is orthogonal, so also is {#1x1, #%;, ..., 4;x;} for any nonzero
scalars a;.

If x # 0, it follows from item (6) of Theorem 1 that 1 4 is a unit vector,

that is it has length 1. [l
Definition 5.9  Hence if {x;, x,, ..., X} is an orthogonal set, then{ 1 X1, 1 > ST 1 Xk} is an
il x|l [

orthonormal set, and we say that it is the result of normalizing the orthogonal set

{x1, x5, ..., X3}
1 1 -1 -1
Iff,=| Ll|f= ,f = ?,and £, = _"{ then {f;, 5, f;, £} is an
—1 z 0 1

orthogonal set in R as is easily verified. After normalizing, the corresponding
orthonormal set 15{ fi, \/_fz, \/_f3, 2\/_f4}

W The most important result about orthogonality is Pythagoras’ theorem Given
orthogonal vectors v and w in R?, it asserts that ||v + w]|* = ||v||* + ||w]|® as in the
diagram. In this form the result holds for any orthogonal set in R”.

Pythagoras’ Theorem
If{xy, X3, ..., X3} is a orthogonal set in R”, then

V+w

2 2 2 2
%+ %0 + -+ xll” = lxall” + ™ + -+ el

The fact that x; - x; = 0 whenever i # j gives
ki + %+ xl = x4 X)X X+ e+ X
=(x1-x1+x2-x2+---+Xk-xk)+2xi-)(]
2 2 2 i#]
= Ilxill” + [l + - + [Ixll” + 0.

This is what we wanted.
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If v and w are orthogonal, nonzero vectors in R?, then they are certainly not
parallel, and so are linearly independent by Example 7 Section 5.2. The next
theorem gives a far-reaching extension of this observation.

Every orthogonal set in R” is linearly independent.

Let {xy, X3, ..., X} be an orthogonal set in R” and suppose a linear combination
vanishes: #;x; + %, + -+ + £;x, = 0. Then
0=x;-0=x;-(t1x; + 1% + - + ;%)
=1(x1 + x1) + H(X1 X)) + oo + (X 2 xp)
= tillxi I’ + 1(0) + -+ + 1(0)
= 1lx[|?

Since ||x;]|* # 0, this implies that #; = 0. Similarly #; = 0 for each i.

Theorem 5 suggests considering orthogonal bases for R”, that is orthogonal sets
that span R”. These turn out to be the best bases in the sense that, when expanding
a vector as a linear combination of the basis vectors, there are explicit formulas for
the coefficients.

Expansion Theorem
Let {f}, 5, ..., £,} be an orthogonal basis of a subspace U of R". If x is any vector in U,

we hal/e

Since {f}, 5, ..., £,,} spans U, we have x = tf; + ©,f, + --- + 1,f,, where the 7; are
scalars. To find #; we take the dot product of both sides with f;:

x-fi =@f + 66 + - +t,£,) - fi
=t(f; - £) + r(fy - £) + - + 2, - £)
= tllfill” + 50) + - + 1,(0)
= 1Ify]|?

X f;. Similarly, ; = X—z’ for each i.
11l £

Since f; # 0, this gives t; =

The expansion in Theorem 6 of x as a linear combination of the orthogonal

basis {f}, f5, ..., f,,} is called the Fourier expansion of x, and the coefficients
= fz’ are called the Fourier coefficients. Note that if {f}, 5, ..., f,} is actually

I
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orthonormal, then #; = x « {; for each 7. We will have a great deal more to say about

this in Section 10.5.

Expand x = (4, b, ¢, d) as a linear combination of the orthogonal basis
{f, 6, £, £} of R given in Example 6.

Solution » We have f; = (1,1, 1, —1), £, = (1,0, 1, 2), f; = (-1, 0, 1, 0), and
f, = (=1, 3, —1, 1) so the Fourier coefficients are

X'fl 1 X'f3 1
i = =A(a+b+c+4d 3= =—(—a+ 9
I£° [
x-f x - f.
= ; i:%(ﬂ+€+2d) Iy = . :=%(—ﬂ+3b—f+d)
Il [1£41l

The reader can verify that indeed x = #,f; + »f; + 5y + nfs.

A natural question arises here: Does every subspace U of R” have an orthogonal
basis? The answer is “yes”; in fact, there is a systematic procedure, called the Gram-
Schmidt algorithm, for turning any basis of U into an orthogonal one. This leads
to a definition of the projection onto a subspace U that generalizes the projection
along a vector used in R” and R®. All this is discussed in Section 8.1.

EXERCISES 5.3

We often write vectors in R” as row z-tuples.

1. Obtain orthonormal bases of R® by normalizing
the following.

(a) {(17 _1’ 2)7 (07 2’ 1)) (57 1’ _2)}
’(b) {(17 17 1)’ (4a 17 _S)a (27 _3a 1)}

2. In each case, show that the set of vectors is
orthogonal in R*.

(a) {(1’ _1’ 2’ 5)’ (47 ]-’ 1’ _1)’ (_77 287 5’ 5)}
(b) {(2’ _1’ 4’ 5)’ (07 _17 17 _1)7 (07 3’ 27 _1)}

3. In each case, show that B is an orthogonal basis
of R* and use Theorem 6 to expand x = (4, b, ¢)
as a linear combination of the basis vectors.

@ B=1{1,-1,3),(-2,1,1),&,7, 1)}
+b) B={1,0,-1), (1,4, 1), 2, -1, 2)}

(o B=1{(1,2,3),(-1,-1,1), (5, -4, 1)}
od) B={1,1,1),(, —-1,0), (1, 1, =2)}

4. In each case, write x as a linear combination of
the orthogonal basis of the subspace U.

@) x = (13, =20, 15);
U= span{(l, _21 3)7 (_1’ 17 1)}
’(b) X = (14’ 17 _81 5)7
U: span{(27 _11 07 3)7 (2’ 17 _21 _1)}

5. In each case, find all (4, &, ¢, d) in R* such that
the given set is orthogonal.

(a) {(1’ 2’ 1’ 0)’ (17 _]-’ 1’ 3)7 (2’ _17 0’ _1)7

(a, b, c, d)}
+(b) {(1,0,-1,1),(2, 1,1, -1),(1, =3, 1, 0),
(a, b, ¢, d)}
6. If ||x]] =3, |lyll = 1, and x  y = —2, compute:
@ 3% = Syl +(b) [|2x + Ty]|

© Gx-y)-Qy—x
o(d) (x—2y) - Bx + 5y)

7. In each case either show that the statement is
true or give an example showing that it is false.

(a) Every independent set in R” is orthogonal.

+(b) If {x, y} is an orthogonal set in R”, then
{x, x + y} is also orthogonal.
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(0) If {x, y} and {z, w} are both orthogonal in R”,
then {x, y, z, w} is also orthogonal.

o(d) If {xq, xo} and {yy, y3, y3} are both orthogonal
and x; - y; = 0 for all / and /, then
{x1, X2, Y1, ¥2, ¥3} is orthogonal.

(e) If {xy, xy, ..., x,,} is orthogonal in R”, then
R" = span{xy, x5, ..., X,}.

o) If x # 0 in R”, then {x} is an orthogonal set.

8. Let v denote a nonzero vector in R”.

(a) Show that P={xinR" |x-v=10}isa
subspace of R".

(b) Show that Rv = {#v | # in R} is a subspace of R".

(¢) Describe P and Rv geometrically when
n=3.

+9. If A is an m X n matrix with orthonormal
columns, show that 474 = I,.

[Hint: If ¢, ¢, ..., ¢, are the columns of A,
show that column j of 4”4 has entries
Cp - C]*, Cy e Cj, ey Gy 0 C]]

10. Use the Cauchy inequality to show that
VA < 2 +y) forall x = 0 and y = 0. Here
@y and 1(x + y) are called, respectively, the
geometric mean and arithmetic mean of x and y.

j_j?, and 'y = [zg]]

11. Use the Cauchy inequality to prove that:

[Hint: Use x =

@ (1 + 7+ 1) <t 475+ )
forall 7;in R and all » > 1.
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o(b) 77y 4+ 773 + rary < 71+ 73 4 73 for all 7,
7y, and 73 in R. [Hint: See part (a).]

12. (a) Show that x and y are orthogonal in R” if
and only if [}x + y|| = x — y]I.

+(b) Show that x + y and x — y are orthogonal in
R” if and only if ||x|| = ||y]|.

13. (2) Show that ||x + y||* = ||x||* + |ly||® if and
only if x is orthogonal to y.
1 1
b 1Fx=| 1|y =
v ! yz 0 2 2 2
Ix +y +z[I” = [[x]" + llyll” + l|z[|" but
x.y#0,x-z#0,andy -z # 0.

_§ , show that

and z =

14. (a) Show thatx -y = %[”X + y||2 —|Ix = y||2] for
all x, y in R".
(b) Show that
I + lIyll* = 5% + vl + [Ix =yl
for all x, y in R".
#15. If A is n x n, show that every eigenvalue of 4”4

is nonnegative. [Hint: Compute ||4x||* where x is
an eigenvector.]

16. If R" = span{xy, ..., x,,} and x « x; = 0 for all 4,
show that x = 0. [Hint: Show ||x|| = 0.]

17. If R" = span{xy, ..., x,,} and x - x; = y - x; for all
i, show that x = y. [Hint: Preceding Exercise.]

18. Let {ey, ..., e,} be an orthogonal basis of R".
Given x and y in R", show that
_ (X * el)(y ° el) oot (X ° en)(y * en)

X e
2 2
lledll lleall

In this section we use the concept of dimension to clarify the definition of the rank
of a matrix given in Section 1.2