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This textbook is an introduction to the ideas and 
techniques of linear algebra for first- or second-year 
students with a working knowledge of high school 
algebra. The contents have enough flexibility to present 
a traditional introduction to the subject, or to allow for 
a more applied course. Chapters 1–4 contain a one-
semester course for beginners whereas Chapters 5–9 
contain a second semester course (see the Suggested 
Course Outlines below). The text is primarily about real 
linear algebra with complex numbers being mentioned 
when appropriate (reviewed in Appendix A). Overall, 
the aim of the text is to achieve a balance among 
computational skills, theory, and applications of linear 
algebra. Calculus is not a prerequisite; places where it is 
mentioned may be omitted.

As a rule, students of linear algebra learn by studying 
examples and solving problems. Accordingly, the 
book contains a variety of exercises (over 1200, many 
with multiple parts), ordered as to their difficulty. In 
addition, more than 375 solved examples are included 
in the text, many of which are computational in nature. 

The examples are also used to motivate (and illustrate) 
concepts and theorems, carrying the student from 
concrete to abstract. While the treatment is rigorous, 
proofs are presented at a level appropriate to the 
student and may be omitted with no loss of continuity. 
As a result, the book can be used to give a course that 
emphasizes computation and examples, or to give a more 
theoretical treatment (some longer proofs are deferred to 
the end of the Section).

Linear Algebra has application to the natural sciences, 
engineering, management, and the social sciences as well 
as mathematics. Consequently, 18 optional “applications” 
sections are included in the text introducing topics 
as diverse as electrical networks, economic models, 
Markov chains, linear recurrences, systems of differential 
equations, and linear codes over finite fields. Additionally 
some applications (for example linear dynamical systems, 
and directed graphs) are introduced in context. The 
applications sections appear at the end of the relevant 
chapters to encourage students to browse.

This text includes the basis for a two-semester course in 
linear algebra. 
• Chapters 1–4 provide a standard one-semester 

course of 35 lectures, including linear equations, 
matrix algebra, determinants, diagonalization, and 
geometric vectors, with applications as time permits. 
At Calgary, we cover Sections 1.1–1.3, 2.1–2.6, 3.1–3.3 
and 4.1–4.4, and the course is taken by all science 
and engineering students in their first semester. 
Prerequisites include a working knowledge of high 
school algebra (algebraic manipulations and some 
familiarity with polynomials); calculus is not required.

• Chapters 5–9 contain a second semester course 
including �n, abstract vector spaces, linear 
transformations (and their matrices), orthogonality, 
complex matrices (up to the spectral theorem) and 

applications. There is more material here than can 
be covered in one semester, and at Calgary we cover 
Sections 5.1–5.5, 6.1–6.4, 7.1–7.3, 8.1–8.6, and 9.1–
9.3, with a couple of applications as time permits.

• Chapter 5 is a “bridging” chapter that introduces 
concepts like spanning, independence, and basis in 
the concrete setting of �n, before venturing into the 
abstract in Chapter 6. The duplication is balanced by 
the value of reviewing these notions, and it enables 
the student to focus in Chapter 6 on the new idea of 
an abstract system. Moreover, Chapter 5 completes 
the discussion of rank and diagonalization from 
earlier chapters, and includes a brief introduction 
to orthogonality in �n, which creates the possibility 
of a one-semester, matrix-oriented course covering 
Chapters 1–5 for students not wanting to study the 
abstract theory.

S U G G E S T E D  C O U R S E  O U T L I N E S
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The following chart suggests how the material introduced in each chapter draws on concepts covered in certain earlier 
chapters. A solid arrow means that ready assimilation of ideas and techniques presented in the later chapter depends 
on familiarity with the earlier chapter. A broken arrow indicates that some reference to the earlier chapter is made but 
the chapter need not be covered.

Chapter 1: Systems of Linear Equations

Chapter 10: Inner Product Spaces Chapter 11: Canonical Forms

Chapter 7: Linear Transformations Chapter 8: Orthogonality

Chapter 9: Change of Basis

Chapter 6: Vector Spaces

Chapter 5: The Vector Space �n

Chapter 3: Determinants and Diagonalization Chapter 4: Vector Geometry

Chapter 2: Matrix Algebra

• Vector notation. Based on feedback from reviewers 
and current users, all vectors are denoted by boldface 
letters (used only in abstract spaces in earlier editions). 
Thus x becomes x in �2 and �3 (Chapter 4), and in �n 
the column X becomes x. Furthermore, the notation 
[x1 x2 … xn]

T for vectors in �n has been eliminated; 
instead we write vectors as n-tuples (x1, x2, …, xn) or 

as columns   S  
x1

 
 

 x2   
�
 
 

 
xn

  T . The result is a uniform notation for 

vectors throughout the text.

• Definitions. Important ideas and concepts are 
identified in their given context for student’s 
understanding. These are highlighted in the text when 
they are first discussed, identified in the left margin, and 
listed on the inside back cover for reference.

• Exposition. Several new margin diagrams have been 
included to clarify concepts, and the exposition has 
been improved to simplify and streamline discussion 
and proofs.

• Several new examples and exercises have been added.
• The motivation for the matrix inversion algorithm has 

been rewritten in Section 2.4.
• For geometric vectors in �2, addition (parallelogram 

law) and scalar multiplication now appear earlier 
(Section 2.2). The discussion of reflections in Section 
2.6 has been simplified, and projections are now 
included.

• The example in Section 3.3, which illustrates that x in 
�

2 is an eigenvector of A if, and only if, the line �x is 
A-invariant, has been completely rewritten. 

• The first part of Section 4.1 on vector geometry in �2 
and �3 has also been rewritten and shortened.

• In Section 6.4 there are three improvements: Theorem 
1 now shows that an independent set can be extended to 
a basis by adding vectors from any prescribed basis; the 

C H A P T E R  D E P E N D E N C I E S

N E W  I N  T H E  S E V E N T H  E D I T I O N

O T H E R  C H A N G E S
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proof that a spanning set can be cut down to a basis has 
been simplified (in Theorem 3); and in Theorem 4, the 
argument that independence is equivalent to spanning 
for a set S ⊆ V with |S| = dim V has been streamlined 
and a new example added.

• In Section 8.1, the definition of projections has 
been clarified, as has the discussion of the nature of 
quadratic forms in �2.

• Two-stage definition of matrix multiplication. First, 
in Section 2.2 matrix-vector products are introduced 
naturally by viewing the left side of a system of linear 
equations as a product. Second, matrix-matrix products 
are defined in Section 2.3 by taking the columns of a 
product AB to be A times the corresponding columns 
of B. This is motivated by viewing the matrix product 
as composition of maps (see next item). This works 
well pedagogically and the usual dot-product definition 
follows easily. As a bonus, the proof of associativity of 
matrix multiplication now takes four lines. 

• Matrices as transformations. Matrix-column 
multiplications are viewed (in Section 2.2) as 
transformations �n → �m. These maps are then used 
to describe simple geometric reflections and rotations 
in �2 as well as systems of linear equations. 

• Early linear transfor  mations. It has been said that 
vector spaces exist so that linear transformations 
can act on them—consequently these maps are 
a recurring theme in the text. Motivated by the 
matrix transformations introduced earlier, linear 
transformations �n → �m are defined in Section 2.6, 
their standard matrices are derived, and they are then 
used to describe rotations, reflections, projections, and 
other operators on �2.

• Early diagonalization. As requested by engineers 
and scientists, this important technique is presented 
in the first term using only determinants and matrix 
inverses (before defining independence and dimension). 
Applications to population growth and linear 
recurrences are given.

• Early dynamical systems. These are introduced 
in Chapter 3, and lead (via diagonalization) to 
applications like the possible extinction of species. 
Beginning students in science and engineering can 
relate to this because they can see (often for the first 
time) the relevance of the subject to the real world.

• Bridging chapter. Chapter 5 lets students deal with 
tough concepts (like independence, spanning, and 
basis) in the concrete setting of �n before having to 
cope with abstract vector spaces in Chapter 6.

• Examples. The text contains over 375 worked 
examples, which present the main techniques of the 
subject, illustrate the central ideas, and are keyed to 

the exercises in each section.
• Exercises. The text contains a variety of exercises 

(nearly 1175, many with multiple parts), starting with 
computational problems and gradually progressing 
to more theoretical exercises. Exercises marked 
with a � have an answer at the end of the book or 
in the Students Solution Manual (available online). 
There is a complete Solution Manual is available for 
instructors. 

• Applications. There are optional applications at the 
end of most chapters (see the list below). While some 
are presented in the course of the text, most appear at 
the end of the relevant chapter to encourage students 
to browse.

• Appendices. Because complex num bers are needed 
in the text, they are described in Appendix A, which 
includes the polar form and roots of unity. Methods 
of proofs are discussed in Appendix B, followed 
by mathematical induction in Appendix C. A brief 
discussion of polynomials is included in Appendix D. 
All these topics are presented at the high-school level.

• Self-Study. This text is self-contained and therefore is 
suitable for self-study.

• Rigour. Proofs are presented as clearly as possible 
(some at the end of the section), but they are optional 
and the instructor can choose how much he or she 
wants to prove. However the proofs are there, so 
this text is more rigorous than most. Linear algebra 
provides one of the better venues where students 
begin to think logically and argue concisely. To this 
end, there are exercises that ask the student to “show” 
some simple implication, and others that ask her 
or him to either prove a given statement or give a 
counterexample. I personally present a few proofs in 
the first semester course and more in the second (see 
the Suggested Course Outlines).

• Major Theorems. Several major results are presented 
in the book. Examples: Uniqueness of the reduced row-
echelon form; the cofactor expansion for determinants; 
the Cayley-Hamilton theorem; the Jordan canonical 
form; Schur’s theorem on block triangular form; the 
principal axis and spectral theorems; and others. Proofs 
are included because the stronger students should at 
least be aware of what is involved.

H I G H L I G H T S  O F  T H E  T E X T
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Chapter 1: Systems of Linear Equations.
A standard treatment of gaussian elimination is given. 
The rank of a matrix is introduced via the row-echelon 
form, and solutions to a homogenous system are 
presented as linear combinations of basic solutions. 
Applications to network flows, electrical networks, and 
chemical reactions are provided.

Chapter 2: Matrix Algebra.
After a traditional look at matrix addition, scalar 
multiplication, and transposition in Section 2.1, matrix-
vector multiplication is introduced in Section 2.2 by 
viewing the left side of a system of linear equations as the 
product Ax of the coefficient matrix A with the column 
x of variables. The usual dot-product definition of a 
matrix-vector multiplication follows. Section 2.2 ends by 
viewing an m × n matrix A as a transformation �n → �m. 
This is illustrated for �2 → �2 by describing reflection in 
the x axis, rotation of �2 through   π __ 2  , shears, and so on.

In Section 2.3, the product of matrices A and B is 
defined by AB = [Ab1 Ab2 … Abn], where the bi are the 
columns of B. A routine computation shows that this is 
the matrix of the transformation B followed by A. This 
observation is used frequently throughout the book, and 
leads to simple, conceptual proofs of the basic axioms of 
matrix algebra. Note that linearity is not required—all 
that is needed is some basic properties of matrix-vector 

multiplication developed in Section 2.2. Thus the usual 
arcane definition of matrix multiplication is split into two 
well motivated parts, each an important aspect of matrix 
algebra. Of course, this has the pedagogical advantage 
that the conceptual power of geometry can be invoked to 
illuminate and clarify algebraic techniques and definitions.

In Sections 2.4 and 2.5 matrix inverses are characterized, 
their geometrical meaning is explored, and block 
multiplication is introduced, emphasizing those cases needed 
later in the book. Elementary matrices are discussed, and 
the Smith normal form is derived. Then in Section 2.6, 
linear transformations �n → �m are defined and shown 
to be matrix transformations. The matrices of reflections, 
rotations, and projections in the plane are determined. 
Finally, matrix multiplication is related to directed graphs, 
matrix LU-factorization is introduced, and applications to 
economic models and Markov chains are presented.

Chapter 3: Determinants and Diagonalization.
The cofactor expansion is stated (proved by induction 
later) and used to define determinants inductively and 
to deduce the basic rules. The product and adjugate 
theorems are proved. Then the diagonalization algorithm 
is presented (motivated by an example about the possible 
extinction of a species of birds). As requested by our 
Engineering Faculty, this is done earlier than in most texts 
because it requires only determinants and matrix inverses, 
avoiding any need for subspaces, independence and 

A N C I L L A R Y  M A T E R I A L S

C H A P T E R  S U M M A R I E S

viii Preface



dimension. Eigenvectors of a 2 × 2 matrix A are described 
geometrically (using the A-invariance of lines through 
the origin). Diagonalization is then used to study discrete 
linear dynamical systems and to discuss applications to 
linear recurrences and systems of differential equations. A 
brief discussion of Google PageRank is included.

Chapter 4: Vector Geometry.
Vectors are presented intrinsically in terms of length and 
direction, and are related to matrices via coordinates. 
Then vector operations are defined using matrices and 
shown to be the same as the corresponding intrinsic 
definitions. Next, dot products and projections are 
introduced to solve problems about lines and planes. This 
leads to the cross product. Then matrix transformations 
are introduced in �3, matrices of projections and 
reflections are derived, and areas and volumes are 
computed using determinants. The chapter closes with an 
application to computer graphics.

Chapter 5: The Vector Space �n.
Subspaces, spanning, independence, and dimensions 
are introduced in the context of �n in the first two 
sections. Orthogonal bases are introduced and used to 
derive the expansion theorem. The basic properties of 
rank are presented and used to justify the definition 
given in Section 1.2. Then, after a rigorous study of 
diagonalization, best approximation and least squares 
are discussed. The chapter closes with an application to 
correlation and variance.

As in the sixth edition, this is a “bridging” chapter, 
easing the transition to abstract spaces. Concern about 
duplication with Chapter 6 is mitigated by the fact that 
this is the most difficult part of the course and many 
students welcome a repeat discussion of concepts like 
independence and spanning, albeit in the abstract setting. 
In a different direction, Chapters 1–5 could serve as 
a solid introduction to linear algebra for students not 
requiring abstract theory. 

Chapter 6: Vector Spaces.
Building on the work on �n in Chapter 5, the basic 
theory of abstract finite dimensional vector spaces is 
developed emphasizing new examples like matrices, 
polynomials and functions. This is the first acquaintance 
most students have had with an abstract system, so 
not having to deal with spanning, independence and 
dimension in the general context eases the transition to 
abstract thinking. Applications to polynomials and to 
differential equations are included.

Chapter 7: Linear Transformations.
General linear transformations are introduced, motivated 
by many examples from geometry, matrix theory, and 
calculus. Then kernels and images are defined, the 

dimension theorem is proved, and isomorphisms are 
discussed. The chapter ends with an application to linear 
recurrences. A proof is included that the order of a 
differential equation (with constant coefficients) equals 
the dimension of the space of solutions.

Chapter 8: Orthogonality.
The study of orthogonality in �n, begun in Chapter 
5, is continued. Orthogonal complements and 
projections are defined and used to study orthogonal 
diagonalization. This leads to the principal axis theorem, 
the Cholesky factorization of a positive definite matrix, 
and QR-factorization. The theory is extended to �n 
in Section 8.6 where hermitian and unitary matrices 
are discussed, culminating in Schur’s theorem and the 
spectral theorem. A short proof of the Cayley-Hamilton 
theorem is also presented. In Section 8.7 the field Zp 
of integers modulo p is constructed informally for any 
prime p, and codes are discussed over any finite field. 
The chapter concludes with applications to quadratic 
forms, constrained optimization, and statistical principal 
component analysis.

Chapter 9: Change of Basis.
The matrix of general linear transformation is defined 
and studied. In the case of an operator, the relationship 
between basis changes and similarity is revealed. This is 
illustrated by computing the matrix of a rotation about a 
line through the origin in �3. Finally, invariant subspaces 
and direct sums are introduced, related to similarity, and 
(as an example) used to show that every involution is 
similar to a diagonal matrix with diagonal entries ±1. 

Chapter 10: Inner Product Spaces.
General inner products are introduced and distance, 
norms, and the Cauchy-Schwarz inequality are discussed. 
The Gram-Schmidt algorithm is presented, projections 
are defined and the approximation theorem is proved 
(with an application to Fourier approximation). Finally, 
isometries are characterized, and distance preserving 
operators are shown to be composites of a translations 
and isometries.

Chapter 11: Canonical Forms.
The work in Chapter 9 is continued. Invariant subspaces 
and direct sums are used to derive the block triangular 
form. That, in turn, is used to give a compact proof of 
the Jordan canonical form. Of course the level is higher. 

Appendices
In Appendix A, complex arithmetic is developed far 
enough to find nth roots. In Appendix B, methods 
of proof are discussed, while Appendix C presents 
mathematical induction. Finally, Appendix D describes 
the properties of polynomials in elementary terms.
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• Network Flow (Section 1.4)
• Electrical Networks (Section 1.5)
• Chemical Reactions (Section 1.6)
• Directed Graphs (in Section 2.3)
• Input-Output Economic Models (Section 2.8)
• Markov Chains (Section 2.9)
• Polynomial Interpolation (in Section 3.2)
• Population Growth (Examples 1 and 10, Section 3.3)
• Google PageRank (in Section 3.3)
• Linear Recurrences (Section 3.4; see also Section 7.5)
• Systems of Differential Equations (Section 3.5)

• Computer Graphics (Section 4.5)
• Least Squares Approximation (in Section 5.6)
• Correlation and Variance (Section 5.7)
• Polynomials (Section 6.5)
• Differential Equations (Section 6.6)
• Linear Recurrences (Section 7.5)
• Error Correcting Codes (Section 8.7)
• Quadratic Forms (Section 8.8)
• Constrianed Optimization (Section 8.9)
• Statistical Principal Component Analysis (Section 8.10)
• Fourier Approximation (Section 10.5)
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Systems of Linear 
Equations

1
Solutions and Elementary Operations
Practical problems in many fields of study—such as biology, business, chemistry, 
computer science, economics, electronics, engineering, physics and the social 
sciences—can often be reduced to solving a system of linear equations. Linear 
algebra arose from attempts to find systematic methods for solving these systems, 
so it is natural to begin this book by studying linear equations.

If a, b, and c are real numbers, the graph of an equation of the form

ax + by = c

is a straight line (if a and b are not both zero), so such an equation is called a linear 
equation in the variables x and y. However, it is often convenient to write the 
variables as x1, x2, …, xn, particularly when more than two variables are involved. 
An equation of the form

a1x1 + a2x2 + � + anxn = b

is called a linear equation in the n variables x1, x2, …, xn. Here a1, a2, …, an denote 
real numbers (called the coefficients of x1, x2, …, xn, respectively) and b is also a 
number (called the constant term of the equation). A finite collection of linear 
equations in the variables x1, x2, …, xn is called a system of linear equations in 
these variables. Hence,

2x1 - 3x2 + 5x3 = 7

is a linear equation; the coefficients of x1, x2, and x3 are 2, -3, and 5, and the 
constant term is 7. Note that each variable in a linear equation occurs to the first 
power only.

Given a linear equation a1x1 + a2x2 + � + anxn = b, a sequence s1, s2, …, sn of n 
numbers is called a solution to the equation if

a1s1 + a2s2 + � + ansn = b

that is, if the equation is satisfied when the substitutions x1 = s1, x2 = s2, …, xn = sn 
are made. A sequence of numbers is called a solution to a system of equations if it 
is a solution to every equation in the system.

For example, x = -2, y = 5, z = 0 and x = 0, y = 4, z = -1 are both solutions 
to the system

 x + y +  z = 3
2x + y + 3z = 1

S E C T I O N  1 . 1



A system may have no solution at all, or it may have a unique solution, or it may 
have an infinite family of solutions. For instance, the system x + y = 2, x + y = 3 
has no solution because the sum of two numbers cannot be 2 and 3 simultaneously. 
A system that has no solution is called inconsistent; a system with at least one 
solution is called consistent. The system in the following example has infinitely 
many solutions.

EXAMPLE 1

Show that, for arbitrary values of s and t,

 x1 = t - s + 1
 x2 = t + s + 2
 x3 = s
 x4 = t

is a solution to the system

 x1 - 2x2 + 3x3 + x4 = -3
 2x1 -  x2 + 3x3 - x4 =   0

Solution ► Simply substitute these values of x1, x2, x3, and x4 in each equation.

 x1 - 2x2 + 3x3 + x4 = (t - s + 1) - 2(t + s + 2) + 3s + t = -3
 2x1 -  x2 + 3x3 - x4 = 2(t - s + 1) - (t + s + 2) + 3s - t = 0

Because both equations are satisfied, it is a solution for all choices of s and t.

The quantities s and t in Example 1 are called parameters, and the set of 
solutions, described in this way, is said to be given in parametric form and 
is called the general solution to the system. It turns out that the solutions to 
every system of equations (if there are solutions) can be given in parametric 
form (that is, the variables x1, x2, … are given in terms of new independent 
variables s, t, etc.). The following example shows how this happens in the 
simplest systems where only one equation is present.

EXAMPLE 2

Describe all solutions to 3x - y + 2z = 6 in parametric form.

Solution ► Solving the equation for y in terms of x and z, we get y = 3x + 2z - 6. 
If s and t are arbitrary then, setting x = s, z = t, we get solutions

 x = s
 y = 3s + 2t - 6 s and t arbitrary
 z = t

Of course we could have solved for x: x =   1 _ 3  ( y - 2z + 6). Then, if we take 
y = p, z = q, the solutions are represented as follows:

 x =   1 _ 3  (p - 2q + 6)
 y = p p and q arbitrary
 z = q

The same family of solutions can “look” quite different!
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When only two variables are involved, the solutions to systems of linear 
equations can be described geometrically because the graph of a linear equation 
ax + by = c is a straight line if a and b are not both zero. Moreover, a point P(s, t) 
with coordinates s and t lies on the line if and only if as + bt = c—that is when 
x = s, y = t is a solution to the equation. Hence the solutions to a system of linear 
equations correspond to the points P(s, t) that lie on all the lines in question.

In particular, if the system consists of just one equation, there must be infinitely 
many solutions because there are infinitely many points on a line. If the system has 
two equations, there are three possibilities for the corresponding straight lines:

1. The lines intersect at a single point. Then the system has a unique solution 
corresponding to that point.

2. The lines are parallel (and distinct) and so do not intersect. Then the system has 
no solution.

3. The lines are identical. Then the system has infinitely many solutions—one for 
each point on the (common) line.

These three situations are illustrated in Figure 1. In each case the graphs of two 
specific lines are plotted and the corresponding equations are indicated. In the last 
case, the equations are 3x - y = 4 and -6x + 2y = -8, which have identical graphs.

When three variables are present, the graph of an equation ax + by + cz = d can 
be shown to be a plane (see Section 4.2) and so again provides a “picture” of the set 
of solutions. However, this graphical method has its limitations: When more than 
three variables are involved, no physical image of the graphs (called hyperplanes) is 
possible. It is necessary to turn to a more “algebraic” method of solution.

Before describing the method, we introduce a concept that simplifies the 
computations involved. Consider the following system

 3x1 + 2x2 -  x3 +  x4 = -1
 2x1       -  x3 + 2x4 =     0
 3x1 +  x2 + 2x3 + 5x4 =     2

of three equations in four variables. The array of numbers1

3 2 1 1 1
2 0 1 2 0
3 1 2 5 2

− −
−

occurring in the system is called the augmented matrix of the system. Each 
row of the matrix consists of the coefficients of the variables (in order) from the 
corresponding equation, together with the constant term. For clarity, the constants 
are separated by a vertical line. The augmented matrix is just a different way of 
describing the system of equations. The array of coefficients of the variables

3 2 1 1
2 0 1 2
3 1 2 5

−
−

is called the coefficient matrix of the system and   S  -1
 

 
   0   

  2
   T  is called the constant 

matrix of the system.

1 A rectangular array of numbers is called a matrix. Matrices will be discussed in more detail in Chapter 2.

y

x

y

y

x

x

O

P(2, 1)

x + y = 3

x − y = 1

(a) Unique solution
(x = 2, y = 1)

O

x + y = 2

x + y = 4

(b) No solution

−6x + 2y = −8

3x − y = 4

O

(c) Infinitely many solutions
(x = t, y = 3t − 4)

� FIGURE 1
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Elementary Operations
The algebraic method for solving systems of linear equations is described as follows. 
Two such systems are said to be equivalent if they have the same set of solutions. A 
system is solved by writing a series of systems, one after the other, each equivalent 
to the previous system. Each of these systems has the same set of solutions as the 
original one; the aim is to end up with a system that is easy to solve. Each system in 
the series is obtained from the preceding system by a simple manipulation chosen so 
that it does not change the set of solutions.

As an illustration, we solve the system x + 2y = -2, 2x + y = 7 in this manner. 
At each stage, the corresponding augmented matrix is displayed. The original 
system is 

   
 x + 2y = -2

         
2x +  y =   7 

  
−1 2 2

2 1 7

First, subtract twice the first equation from the second. The resulting system is

 
 x + 2y = -2

        
- 3y =  11

  −
−

1 2 2
0 3 11

which is equivalent to the original (see Theorem 1). At this stage we obtain y = -  11
 __ 3   

by multiplying the second equation by -  1 _ 3  . The result is the equivalent system

 
 x + 2y =  -2

        
y = -  11

 __ 3   
  −

−
1 2 2

0 1 11
3

Finally, we subtract twice the second equation from the first to get another 
equivalent system.

 
 x =     16 __ 3       
y = -  11

 __ 3   
  

−

16
3
11
3

1 0

0 1

Now this system is easy to solve! And because it is equivalent to the original system, 
it provides the solution to that system.

Observe that, at each stage, a certain operation is performed on the system (and 
thus on the augmented matrix) to produce an equivalent system. 

The following operations, called elementary operations, can routinely be performed 
on systems of linear equations to produce equivalent systems.

(I) Interchange two equations.
(II) Multiply one equation by a nonzero number.
(III) Add a multiple of one equation to a different equation.

Theorem 1

Suppose that a sequence of elementary operations is performed on a system of linear 
equations. Then the resulting system has the same set of solutions as the original, so the 
two systems are equivalent.

The proof is given at the end of this section.

Definition 1.1
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Elementary operations performed on a system of equations produce 
corresponding manipulations of the rows of the augmented matrix. Thus, 
multiplying a row of a matrix by a number k means multiplying every entry of the 
row by k. Adding one row to another row means adding each entry of that row to 
the corresponding entry of the other row. Subtracting two rows is done similarly. 
Note that we regard two rows as equal when corresponding entries are the same.

In hand calculations (and in computer programs) we manipulate the rows of 
the augmented matrix rather than the equations. For this reason we restate these 
elementary operations for matrices.

The following are called elementary row operations on a matrix.
(I) Interchange two rows.
(II) Multiply one row by a nonzero number.
(III) Add a multiple of one row to a different row.

In the illustration above, a series of such operations led to a matrix of the form

1 0
0 1

∗
∗

where the asterisks represent arbitrary numbers. In the case of three equations in 
three variables, the goal is to produce a matrix of the form

1 0 0
0 1 0
0 0 1

∗
∗
∗

This does not always happen, as we will see in the next section. Here is an example 
in which it does happen.

EXAMPLE 3

Find all solutions to the following system of equations.

3x + 4y + z =   1
2x + 3y    =   0
4x + 3y - z = -2

Solution ► The augmented matrix of the original system is 

3 4 1 1
2 3 0 0
4 3 1 2− −

To create a 1 in the upper left corner we could multiply row 1 through by   1 _ 3  . 
However, the 1 can be obtained without introducing fractions by subtracting 
row 2 from row 1. The result is

1 1 1 1
2 3 0 0
4 3 1 2− −

Definition 1.2
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The upper left 1 is now used to “clean up” the first column, that is create zeros 
in the other positions in that column. First subtract 2 times row 1 from row 2 
to obtain

1 1 1 1
0 1 2 2
4 3 1 2

− −
− −

Next subtract 4 times row 1 from row 3. The result is

1 1 1 1
0 1 2 2
0 1 5 6

− −
− − −

This completes the work on column 1. We now use the 1 in the second 
position of the second row to clean up the second column by subtracting row 2 
from row 1 and adding row 2 to row 3. For convenience, both row operations 
are done in one step. The result is

1 0 3 3
0 1 2 2
0 0 7 8

− −
− −

Note that these manipulations did not affect the first column (the second row has 
a zero there), so our previous effort there has not been undermined. Finally we 
clean up the third column. Begin by multiplying row 3 by -  1 _ 7   to obtain

1 0 3 3
0 1 2 2

0 0 1 8
7

− −

Now subtract 3 times row 3 from row 1, and add 2 times row 3 to row 2 to get

1 0 0

0 1 0

0 0 1

3
7
2
7
8
7

−

The corresponding equations are x = -  3 _ 7  , y =   2 _ 7  , and z =   8 _ 7  , which give the 
(unique) solution.

Every elementary row operation can be reversed by another elementary row 
operation of the same type (called its inverse). To see how, we look at types I, II, 
and III separately:

Type I Interchanging two rows is reversed by interchanging them again.

Type II  Multiplying a row by a nonzero number k is reversed by multiplying by 1/k.

Type III  Adding k times row p to a different row q is reversed by adding -k times 
row p to row q (in the new matrix). Note that p ≠ q is essential here.

To illustrate the Type III situation, suppose there are four rows in the original 
matrix, denoted R1, R2, R3, and R4, and that k times R2 is added to R3. Then the 
reverse operation adds -k times R2, to R3. The following diagram illustrates the 
effect of doing the operation first and then the reverse: 
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R1

R2

R3

R4

 → 

R1

R2

R3 + kR3

R4

 → 

R1

R2

(R3 + kR2) - kR2

R4

 = 

R1

R2

R3

R4

The existence of inverses for elementary row operations and hence for 
elementary operations on a system of equations, gives:

PROOF OF THEOREM 1

Suppose that a system of linear equations is transformed into a new system by a 
sequence of elementary operations. Then every solution of the original system 
is automatically a solution of the new system because adding equations, or 
multiplying an equation by a nonzero number, always results in a valid equation. 
In the same way, each solution of the new system must be a solution to the 
original system because the original system can be obtained from the new one 
by another series of elementary operations (the inverses of the originals). It 
follows that the original and new systems have the same solutions. This proves 
Theorem 1.

E X E R C I S E S  1 . 1

 1. In each case verify that the following are 
solutions for all values of s and t.

 (a) x = 19t - 35
y = 25 - 13t
z = t
is a solution of
2x + 3y +  z = 5
5x + 7y - 4z = 0

 �
2(b) x1 = 2s + 12t + 13

x2 = s
x3 = -s - 3t - 3
x4 = t
is a solution of
2x1 + 5x2 + 9x3 + 3x4 = -1
 x1 + 2x2 + 4x3     =   1

 2. Find all solutions to the following in parametric 
form in two ways.

 (a) 3x + y = 2 �(b) 2x + 3y = 1

 (c) 3x - y + 2z = 5 �(b) x - 2y + 5z = 1

 3. Regarding 2x = 5 as the equation 2x + 0y = 5 
in two variables, find all solutions in parametric 
form.

 �4. Regarding 4x - 2y = 3 as the equation 
4x - 2y + 0z = 3 in three variables, find all 
solutions in parametric form.

 �5. Find all solutions to the general system ax = b of 
one equation in one variable (a) when a = 0 and 
(b) when a ≠ 0.

 6. Show that a system consisting of exactly one 
linear equation can have no solution, one 
solution, or infinitely many solutions. Give 
examples.

 7. Write the augmented matrix for each of the 
following systems of linear equations.

 (a)  x - 3y = 5 �(b) x + 2y = 0
2x +  y = 1        y = 1

 (c) x - y +  z = 2 �(d) x + y = 1
    x -  z = 1  y + z = 0
    y + 2x = 0  z - x = 2

2 A � indicates that the exercise has an answer at the end of the book.
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 8. Write a system of linear equations that has each 
of the following augmented matrices.

 (a)  1 1 6 0
0 1 0 3
2 1 0 1

−

−

 �(b) 2 1 0 1
3 2 1 0
0 1 1 3

− −
−

 9. Find the solution of each of the following 
systems of linear equations using augmented 
matrices.

 (a)  x - 3y = 1 �(b)  x + 2y =   1
2x - 7y = 3  3x + 4y = -1

 (c) 2x + 3y = -1 �(d) 3x + 4y =   1
3x + 4y =   2  4x + 5y = -3

 10. Find the solution of each of the following 
systems of linear equations using augmented 
matrices.

 (a)  x +  y + 2z = -1 �(b) 2x +  y +  z = -1
2x +  y + 3z = 0   x + 2y +  z =   0
   - 2y +  z = 2  3x      - 2z =   5

 11. Find all solutions (if any) of the following 
systems of linear equations.

 (a)   3x - 2y =   5 �(b)   3x - 2y =  5
-12x + 8y = -20  -12x + 8y = 16

 12. Show that the system u 
x y z a
x y z b
x y z c

+ − =
+ + =
− + =

2
2 3

4 9
 

is inconsistent unless c = 2b - 3a.

 13. By examining the possible positions of lines 
in the plane, show that two equations in two 
variables can have zero, one, or infinitely many 
solutions.

 14. In each case either show that the statement is 
true, or give an example3 showing it is false. 

 (a) If a linear system has n variables and m 
equations, then the augmented matrix has 
n rows. 

 �(b) A consistent linear system must have 
infinitely many solutions. 

 (c) If a row operation is done to a consistent 
linear system, the resulting system must be 
consistent. 

 �(d) If a series of row operations on a linear 
system results in an inconsistent system, the 
original system is inconsistent. 

 15. Find a quadratic a + bx + cx2 such that the graph 
of y = a + bx + cx2 contains each of the points 
(-1, 6), (2, 0), and (3, 2).

 �16. Solve the system e 3x + 2y = 5
        

7x + 5y = 1
  by changing 

variables e x = 5x′ - 2y′
         

y = -7x′ + 3y′
  and solving the 

resulting equations for x′ and y′.

 �17. Find a, b, and c such that

  
x2 - x + 3  ______________  

(x2 + 2)(2x - 1)
   =   ax + b

 ______ 
x2 + 2

   +   c ______ 
2x - 1

  

  [Hint: Multiply through by (x2 + 2)(2x - 1) and 
equate coefficients of powers of x.]

 18. A zookeeper wants to give an animal 42 mg of 
vitamin A and 65 mg of vitamin D per day. He 
has two supplements: the first contains 10% 
vitamin A and 25% vitamin D; the second 
contains 20% vitamin A and 25% vitamin D. 
How much of each supplement should he give 
the animal each day?

 �19. Workmen John and Joe earn a total of $24.60 
when John works 2 hours and Joe works 3 hours. 
If John works 3 hours and Joe works 2 hours, 
they get $23.90. Find their hourly rates.

 20. A biologist wants to create a diet from fish and 
meal containing 183 grams of protein and 93 
grams of carbohyrate per day. If fish contains 
70% protein and 10% carbohydrate, and meal 
contains 30% protein and 60% carbohydrate, 
how much of each food is required each day?

3 Such an example is called a counterexample. For example, if the statement is that “all philosophers have beards”, the existence of 
a non-bearded philosopher would be a counterexample proving that the statement is false. This is discussed again in Appendix B.
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Gaussian Elimination
The algebraic method introduced in the preceding section can be summarized 
as follows: Given a system of linear equations, use a sequence of elementary row 
operations to carry the augmented matrix to a “nice” matrix (meaning that the 
corresponding equations are easy to solve). In Example 3 Section 1.1, this nice 
matrix took the form

1 0 0
0 1 0
0 0 1

∗
∗
∗

The following definitions identify the nice matrices that arise in this process.

A matrix is said to be in row-echelon form (and will be called a row-echelon 
matrix) if it satisfies the following three conditions:

1. All zero rows (consisting entirely of zeros) are at the bottom.
2. The first nonzero entry from the left in each nonzero row is a 1, called the 

leading 1 for that row.
3. Each leading 1 is to the right of all leading 1s in the rows above it.

A row-echelon matrix is said to be in reduced row-echelon form (and will be called 
a reduced row-echelon matrix) if, in addition, it satisfies the following condition:

4. Each leading 1 is the only nonzero entry in its column.

The row-echelon matrices have a “staircase” form, as indicated by the following 
example (the asterisks indicate arbitrary numbers).

0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗

The leading 1s proceed “down and to the right” through the matrix. Entries above 
and to the right of the leading 1s are arbitrary, but all entries below and to the left 
of them are zero. Hence, a matrix in row-echelon form is in reduced form if, in 
addition, the entries directly above each leading 1 are all zero. Note that a matrix in 
row-echelon form can, with a few more row operations, be carried to reduced form 
(use row operations to create zeros above each leading one in succession, beginning 
from the right).

EXAMPLE 1

The following matrices are in row-echelon form (for any choice of numbers in 
∗-positions).

1
0 0 1

0 1
0 0 1
0 0 0 0

1
1

0 0 0 1

∗ ∗
∗ ∗

∗
∗ ∗ ∗

∗ ∗0  
1
0 1
0 0 1

∗ ∗
∗

S E C T I O N  1 . 2

Definition 1.3
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The following, on the other hand, are in reduced row-echelon form.

1 0
0 0 1

0

1 0 0
0 1 0
0 0 0 1

1 0 0
∗

∗
∗

∗
∗

0 1 0
0 0 1
0 0 0

00 1 0
0 0 1

The choice of the positions for the leading 1s determines the (reduced) row-
echelon form (apart from the numbers in ∗-positions).

The importance of row-echelon matrices comes from the following theorem.

Theorem 1

Every matrix can be brought to (reduced) row-echelon form by a sequence of elementary 
row operations.

In fact we can give a step-by-step procedure for actually finding a row-echelon 
matrix. Observe that while there are many sequences of row operations that will 
bring a matrix to row-echelon form, the one we use is systematic and is easy to 
program on a computer. Note that the algorithm deals with matrices in general, 
possibly with columns of zeros. 

Gaussian4 Algorithm5

Step 1.  If the matrix consists entirely of zeros, stop—it is already in row-echelon form.
Step 2.  Otherwise, find the first column from the left containing a nonzero entry (call 

it a), and move the row containing that entry to the top position.
Step 3. Now multiply the new top row by 1/a to create a leading 1.

Step 4.  By subtracting multiples of that row from rows below it, make each entry 
below the leading 1 zero.

This completes the first row, and all further row operations are carried out on the 
remaining rows.

Step 5.  Repeat steps 1–4 on the matrix consisting of the remaining rows.
The process stops when either no rows remain at step 5 or the remaining rows consist 
entirely of zeros.

45

Observe that the gaussian algorithm is recursive: When the first leading 1 has 
been obtained, the procedure is repeated on the remaining rows of the matrix. This 
makes the algorithm easy to use on a computer. Notes that the solution to Example 3 
Section 1.1 did not use the gaussian algorithm as written because the first leading 1 
was not created by dividing row 1 by 3. The reason for this is that it avoids fractions. 
However, the general pattern is clear: Create the leading 1s from left to right, using 
each of them in turn to create zeros below it. Here are two more examples.

4 Carl Friedrich Gauss (1777–1855) ranks with Archimedes and Newton as one of the three greatest mathematicians of all time. He 
was a child prodigy and, at the age of 21, he gave the first proof that every polynomial has a complex root. In 1801 he published 
a timeless masterpiece, Disquisitiones Arithmeticae, in which he founded modern number theory. He went on to make ground-
breaking contributions to nearly every branch of mathematics, often well before others rediscovered and published the results.

5 The algorithm was known to the ancient Chinese.

Carl Friedrich Gauss. Photo 
© Corbis.
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EXAMPLE 2

Solve the following system of equations.

 3x + y -  4z = -1
  x     + 10z =  5
 4x + y +  6z =  1

Solution ► The corresponding augmented matrix is

3
1
4

1
0
1

−4
10

6

−1
5
1

Create the first leading one by interchanging rows 1 and 2.

1
3
4

0
1
1

10
−4

6

5
−1

1

Now subtract 3 times row 1 from row 2, and subtract 4 times row 1 from 
row 3. The result is 

1 0 10
0 1 34
0 1 34

5
16
19

−
−

−
−

Now subtract row 2 from row 3 to obtain

1 0 10
0 1 34
0 0 0

5
16
3

− −
−

This means that the following system of equations

 x    + 10z =    5
 y - 34z = -16
 0 =  -3

is equivalent to the original system. In other words, the two have the same 
solutions. But this last system clearly has no solution (the last equation requires 
that x, y and z satisfy 0x + 0y + 0z = -3, and no such numbers exist). Hence 
the original system has no solution.

EXAMPLE 3

Solve the following system of equations.

  x1 - 2x2 -  x3 + 3x4 = 1
 2x1 - 4x2 +  x3        = 5
  x1 - 2x2 + 2x3 - 3x4 = 4
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Solution ► The augmented matrix is

1 2 1 3
2 4 1 0
1 2 2 3

1
5
4

− −
−
− −

Subtracting twice row 1 from row 2 and subtracting row 1 from row 3 gives

1 2 1 3
0 0 3 6
0 0 3 6

1
3
3

− −
−
−

Now subtract row 2 from row 3 and multiply row 2 by   1 _ 3   to get

1 2 1 3
0 0 1 2
0 0 0 0

1
1
0

− −
−

This is in row-echelon form, and we take it to reduced form by adding row 2 to 
row 1:

1 2 0 1
0 0 1 2
0 0 0 0

2
1
0

−
−

The corresponding system of equations is

 x1 - 2x2     +  x4 = 2
 x3 - 2x4 = 1
 0 = 0

The leading ones are in columns 1 and 3 here, so the corresponding variables 
x1 and x3 are called leading variables. Because the matrix is in reduced row-
echelon form, these equations can be used to solve for the leading variables 
in terms of the nonleading variables x2 and x4. More precisely, in the present 
example we set x2 = s and x4 = t where s and t are arbitrary, so these equations 
become

x1 - 2s + t = 2 and x3 - 2t = 1.

Finally the solutions are given by

 x1 = 2 + 2s - t
 x2 = s
 x3 = 1 + 2t
 x4 = t
where s and t are arbitrary.

The solution of Example 3 is typical of the general case. To solve a linear 
system, the augmented matrix is carried to reduced row-echelon form, and the 
variables corresponding to the leading ones are called leading variables. Because 
the matrix is in reduced form, each leading variable occurs in exactly one equation, 
so that equation can be solved to give a formula for the leading variable in terms 
of the nonleading variables. It is customary to call the nonleading variables “free” 
variables, and to label them by new variables s, t, …, called parameters. Hence, as 
in Example 3, every variable xi is given by a formula in terms of the parameters s 
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and t. Moreover, every choice of these parameters leads to a solution to the system, 
and every solution arises in this way. This procedure works in general, and has come 
to be called

Gaussian Elimination

To solve a system of linear equations proceed as follows: 
1. Carry the augmented matrix to a reduced row-echelon matrix using elementary 

row operations. 
2. If a row [0 0 0 � 0 1] occurs, the system is inconsistent. 
3. Otherwise, assign the nonleading variables (if any) as parameters, and use the 

equations corresponding to the reduced row-echelon matrix to solve for the 
leading variables in terms of the parameters.

There is a variant of this procedure, wherein the augmented matrix is carried 
only to row-echelon form. The nonleading variables are assigned as parameters as 
before. Then the last equation (corresponding to the row-echelon form) is used 
to solve for the last leading variable in terms of the parameters. This last leading 
variable is then substituted into all the preceding equations. Then, the second last 
equation yields the second last leading variable, which is also substituted back. 
The process continues to give the general solution. This procedure is called back-
substitution. This procedure can be shown to be numerically more efficient and so 
is important when solving very large systems.6

EXAMPLE 4

Find a condition on the numbers a, b, and c such that the following system of 
equations is consistent. When that condition is satisfied, find all solutions (in 
terms of a, b, and c).

  x1 + 3x2 + x3 = a
-x1 - 2x2 + x3 = b
 3x1 + 7x2 - x3 = c

Solution ► We use gaussian elimination except that now the augmented matrix 

1 3 1
1 2 1
3 7 1

− −
−

a
b
c

has entries a, b, and c as well as known numbers. The first leading one is in 
place, so we create zeros below it in column 1:

1 3 1
0 1 2
0 2 4 3− −

+
−

a
a b
c a

6 With n equations where n is large, gaussian elimination requires roughly n3/2 multiplications and divisions, whereas this number is 
roughly n3/3 if back substitution is used.
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The second leading 1 has appeared, so use it to create zeros in the rest of 
column 2:

1 0 5
0 1 2
0 0 0

2 3

2

− − −
+

− +

a b
a b

c a b

Now the whole solution depends on the number c - a + 2b = c - (a - 2b). 
The last row corresponds to an equation 0 = c - (a - 2b). If c ≠ a - 2b, there 
is no solution (just as in Example 2). Hence:

The system is consistent if and only if c = a - 2b.

In this case the last matrix becomes

1 0 5
0 1 2
0 0 0

2 3

0

− − −
+

a b
a b

Thus, if c = a - 2b, taking x3 = t where t is a parameter gives the solutions

x1 = 5t - (2a + 3b) x2 = (a + b) - 2t x3 = t.

Rank
It can be proven that the reduced row-echelon form of a matrix A is uniquely 
determined by A. That is, no matter which series of row operations is used to 
carry A to a reduced row-echelon matrix, the result will always be the same matrix. 
(A proof is given at the end of Section 2.5.) By contrast, this is not true for row-
echelon matrices: Different series of row operations can carry the same matrix A to 

different row-echelon matrices. Indeed, the matrix A = −
−

1 1
1

4
2 2

 can be carried 

(by one row operation) to the row-echelon matrix 1 1 4
0 1 6

−
−

, and then by another 

row operation to the (reduced) row-echelon matrix 1 0 2
0 1 6

−
−

. However, it is true 

that the number r of leading 1s must be the same in each of these row-echelon 
matrices (this will be proved in Chapter 5). Hence, the number r depends only 
on A and not on the way in which A is carried to row-echelon form.

The rank of matrix A is the number of leading 1s in any row-echelon matrix to which A 
can be carried by row operations.

EXAMPLE 5

Compute the rank of A = 
−

−

1 1 1 4
2 1 03
0 1 5 8

.

Definition 1.4
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Solution ► The reduction of A to row-echelon form is 

A = 
−

−

1 1 1 4
2 1 3 0
0 1 5 8

 → 
−

− −
−

1 1 1 4
0 1 5 8
0 1 5 8

 → 
−
−

1 1 1 4
0 1 55 8
0 0 0 0

Because this row-echelon matrix has two leading 1s, rank A = 2.

Suppose that rank A = r, where A is a matrix with m rows and n columns. Then 
r < m because the leading 1s lie in different rows, and r < n because the leading 1s 
lie in different columns. Moreover, the rank has a useful application to equations. 
Recall that a system of linear equations is called consistent if it has at least one 
solution. 

Theorem 2

Suppose a system of m equations in n variables is consistent, and that the rank of the 
augmented matrix is r.

(1) The set of solutions involves exactly n - r parameters.
(2) If r < n, the system has infinitely many solutions.
(3) If r = n, the system has a unique solution.

PROOF

The fact that the rank of the augmented matrix is r means there are exactly 
r leading variables, and hence exactly n - r nonleading variables. These 
nonleading variables are all assigned as parameters in the gaussian algorithm, so 
the set of solutions involves exactly n - r parameters. Hence if r < n, there is 
at least one parameter, and so infinitely many solutions. If r = n, there are no 
parameters and so a unique solution.

Theorem 2 shows that, for any system of linear equations, exactly three 
possibilities exist:

1. No solution. This occurs when a row [0 0 � 0 1] occurs in the row-echelon 
form. This is the case where the system is inconsistent.

2. Unique solution. This occurs when every variable is a leading variable.

3. Infinitely many solutions. This occurs when the system is consistent and there 
is at least one nonleading variable, so at least one parameter is involved.

EXAMPLE 6

Suppose the matrix A in Example 5 is the augmented matrix of a system 
of m = 3 linear equations in n = 3 variables. As rank A = r = 2, the set of 
solutions will have n - r = 1 parameter. The reader can verify this fact directly.
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Many important problems involve linear inequalities rather than linear 
equations. For example, a condition on the variables x and y might take the form of 
an inequality 2x - 5y ≤ 4 rather than an equality 2x - 5y = 4. There is a technique 
(called the simplex algorithm) for finding solutions to a system of such inequalities 
that maximizes a function of the form p = ax + by where a and b are fixed constants. 
This procedure involves gaussian elimination techniques, and the interested reader 
can find an introduction on Connect by visiting www.mcgrawhill.ca/college/
nicholson and then selecting this text.

E X E R C I S E S  1 . 2

 1. Which of the following matrices are in reduced 
row-echelon form? Which are in row-echelon 
form?

 (a) 1 1 2
0 0 0
0 0 1

−  �(b) 2 1 1 3
0 0 0 0

−

 (c) 2 3− 51
0 0 0 1

 �(d) 1 0 0 3 1
0 0 0 1 1
0 0 0 0 1

 (e)   S  1 1    
0 1

  T  �(f ) 0 0 1
0 0 1
0 0 1

 2. Carry each of the following matrices to reduced 
row-echelon form.

 (a) 1 2 1 2 1 1
0 1 2 2 7 2 4
0 2 4 3 7 1 0
0 3 6 1 6 4 1

0 − −
−

−
−

 �(b) 0 1 3 1 3− 22 1
0 2 6 1 5 0 1
0 3 9 2 4 1 1
0 1 3 1 3 0 1

− − −
− −
− −

 3. The augmented matrix of a system of linear 
equations has been carried to the following by 
row operations. In each case solve the system.

 (a) 1 2 0 3 1 0 1
0 0 1 1 1 0 2
0 0 0 0 0 1 3
0 0 0 0 0 0 0

−
−

 �(b) 1 2 0 2− 00 1 1
0 0 1 5 0 3 1
0 0 0 0 1 6 1
0 0 0 0 0 0 0

− −
 

 (c) 1 2 1 3 1 1
0 1 1 0 1 1
0 0

−
00 1 1 0

0 0 0 0 0 0
−

 �(d) 1 1 2 4 6 2
0 1 2 1 1 1
0 0 0 1 0 1
0 0 0 0 0 0

−
− −

 4. Find all solutions (if any) to each of the following 
systems of linear equations.

 (a)  x - 2y =   1 �(b) 3x -  y = 0
4y -  x = -2  2x - 3y = 1

 (c) 2x +  y = 5 �(d) 3x -  y =   2
3x + 2y = 6  2y - 6x = -4

 (e) 3x -  y = 4 �(f ) 2x - 3y = 5
2y - 6x = 1  3y - 2x = 2

 5. Find all solutions (if any) to each of the following 
systems of linear equations.

 (a)   x +  y + 2z =   8 �(b) -2x + 3y + 3z =  -9
 3x -  y +  z =   0    3x - 4y +  z =   5
-x + 3y + 4z = -4  -5x + 7y + 2z = -14

 (c)   x +  y -  z = 10 �(d)  x + 2y -  z = 2
-x + 4y + 5z = -5  2x + 5y - 3z = 1
  x + 6y + 3z = 15   x + 4y - 3z = 3

 (e) 5x + y   = 2 �(f )    3x - 2y +  z = -2
3x - y + 2z = 1    x -  y + 3z =   5
 x + y -  z = 5  -x +  y +  z = -1

 (g)  x +  y +  z = 2 �(h)  x + 2y - 4z = 10
 x   +  z = 1  2x -  y + 2z =  5
2x + 5y + 2z = 7   x +  y - 2z =  7
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 6. Express the last equation of each system as a sum 
of multiples of the first two equations. [Hint: 
Label the equations, use the gaussian algorithm.]

 (a)  x1 +  x2 +  x3 = 1
2x1 -  x2 + 3x3 = 3
 x1 - 2x2 + 2x3 = 2

 �(b) x1 + 2x2 - 3x3 =  -3
x1 + 3x2 - 5x3 =   5
x1 - 2x2 + 5x3 = -35

 7. Find all solutions to the following systems.

 (a) 3x1 + 8x2 - 3x3 - 14x4 = 2
2x1 + 3x2 -  x3 -  2x4 = 1
 x1 - 2x2 +  x3 + 10x4 = 0
 x1 + 5x2 - 2x3 - 12x4 = 1

 �(b)   x1 - x2 + x3 - x4 = 0
-x1 + x2 + x3 + x4 = 0
  x1 + x2 - x3 + x4 = 0
  x1 + x2 + x3 + x4 = 0

 (c)   x1 -  x2 +  x3 - 2x4 =   1
-x1 +  x2 +  x3 +  x4 = -1
-x1 + 2x2 + 3x3 -  x4 =   2
  x1 -  x2 + 2x3 +  x4 =   1

 �(d) x1 +  x2 + 2x3 -  x4 =   4
    3x2 -  x3 + 4x4 =   2
x1 + 2x2 - 3x3 + 5x4 =   0
x1 +  x2 - 5x3 + 6x4 = -3

 8. In each of the following, find (if possible) 
conditions on a and b such that the system 
has no solution, one solution, and infinitely 
many solutions.

 (a)  x - 2y = 1 �(b)  x + by = -1
ax + by = 5  ax + 2y =   5

 (c) x - by = -1 �(d) ax + y = 1
x + ay =   3  2x + y = b

 9. In each of the following, find (if possible) 
conditions on a, b, and c such that the system 
has no solution, one solution, or infinitely many 
solutions.

 (a) 3x +  y -  z = a �(b) 2x +  y -  z = a
 x -  y + 2z = b     2y + 3z = b
5x + 3y - 4z = c   x   -  z = c

 (c) -x + 3y + 2z = -8 �(d) x + ay = 0
  x    +  z =   2  y + bz = 0
 3x + 3y + az =   b  z + cx = 0

 (e) 3x -  y + 2z = 3
 x +  y -  z = 2
2x - 2y + 3z = b

 �(f )   x +    ay -    z =   1
-x + (a - 2)y +    z = -1
 2x +    2y + (a - 2)z =   1

 �10. Find the rank of each of the matrices in 
Exercise 1.

 11. Find the rank of each of the following matrices.

 (a) 1 1 2
3 1 1
1 3 4

−
−

 �(b) 2 3 3
3 4 1
5 7 2

−
−

−

 (c) 1 1 1 3
1 4 5 2
1 6 3 4

−
− −

 �(d) 3 2 1 2
1 1 3 5
1 1 1 1

− −
−

− −
 (e) −

− +
− − −

1 2 1 0

0 1 1

1 2 1 2

2

2

a a a

a a

 �(f ) 

−
1 1 2
1 1 2 0
2 2

2a
a

−− −a a6 4

 12. Consider a system of linear equations with 
augmented matrix A and coefficient matrix C. In 
each case either prove the statement or give an 
example showing that it is false.

 (a) If there is more than one solution, A has a 
row of zeros.

 �(b) If A has a row of zeros, there is more than 
one solution.

 (c) If there is no solution, the row-echelon form 
of C has a row of zeros.

 �(d) If the row-echelon form of C has a row of 
zeros, there is no solution. 

 (e) There is no system that is inconsistent for 
every choice of constants.

 �(f ) If the system is consistent for some choice of 
constants, it is consistent for every choice of 
constants.

  Now assume that the augmented matrix A has 
3 rows and 5 columns.

 (g) If the system is consistent, there is more than 
one solution.
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 �(h) The rank of A is at most 3.

 (i) If rank A = 3, the system is consistent.

 (j) If rank C = 3, the system is consistent.

 13. Find a sequence of row operations carrying

b c b c b c
c a c a c a
a b a b a b

1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

+ + +
+ + +
+ + +

 to 
a a a
b b b
c c c

1 2 3

1 2 3

1 2 3

 14. In each case, show that the reduced row-echelon 
form is as given.

 (a) 
p a
b
q c r

0
0 0  with abc ≠ 0; 

1 0 0
0 1 0
0 0 1

 �(b) 
a b c
b c

1
1

+
++
+

a
c a b1

 where c ≠ a or b ≠ a; 
1 0
0 1
0 0 0

∗
∗

 15. Show that e  ax +   by +   cz = 0
          

a1x + b1y + c1z = 0 
  always 

  has a solution other than x = 0, y = 0, z = 0.

 16. Find the circle x2 + y2 + ax + by + c = 0 passing 
through the following points.

 (a) (-2, 1), (5, 0), and (4, 1)

 �(b) (1, 1), (5, -3), and (-3, -3)

 17. Three Nissans, two Fords, and four Chevrolets 
can be rented for $106 per day. At the same rates 
two Nissans, four Fords, and three Chevrolets 
cost $107 per day, whereas four Nissans, three 
Fords, and two Chevrolets cost $102 per day. 
Find the rental rates for all three kinds of cars.

 �18. A school has three clubs and each student is 
required to belong to exactly one club. One 

year the students switched club membership as 
follows:

  Club A.   4 __ 10   remain in A,   1 __ 10   switch to B, 
  5 __ 10   switch to C.

  Club B.   7 __ 10   remain in B,   2 __ 10   switch to A, 
  1 __ 10   switch to C.

  Club C.   6 __ 10   remain in C,   2 __ 10   switch to A, 
  2 __ 10   switch to B.

  If the fraction of the student population in each 
club is unchanged, find each of these fractions.

 19. Given points (p1, q1), (p2, q2), and (p3, q3) in 
the plane with p1, p2, and p3 distinct, show 
that they lie on some curve with equation 
y = a + bx + cx2. [Hint: Solve for a, b, and c.]

 20. The scores of three players in a tournament have 
been lost. The only information available is the 
total of the scores for players 1 and 2, the total 
for players 2 and 3, and the total for players 3 
and 1.

 (a) Show that the individual scores can be 
rediscovered.

 (b) Is this possible with four players (knowing 
the totals for players 1 and 2, 2 and 3, 3 and 
4, and 4 and 1)?

 21. A boy finds $1.05 in dimes, nickels, and pennies. 
If there are 17 coins in all, how many coins of 
each type can he have?

 22. If a consistent system has more variables than 
equations, show that it has infinitely many 
solutions. [Hint: Use Theorem 2.]

Homogeneous Equations
A system of equations in the variables x1, x2, …, xn is called homogeneous if all the 
constant terms are zero—that is, if each equation of the system has the form

a1x1 + a2x2 + � + anxn = 0

Clearly x1 = 0, x2 = 0, …, xn = 0 is a solution to such a system; it is called the 
trivial solution. Any solution in which at least one variable has a nonzero value 
is called a nontrivial solution. Our chief goal in this section is to give a useful 
condition for a homogeneous system to have nontrivial solutions. The following 
example is instructive.

S E C T I O N  1 . 3
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EXAMPLE 1

Show that the following homogeneous system has nontrivial solutions. 

 x1 -  x2 + 2x3 - x4 = 0
2x1 + 2x2     + x4 = 0
3x1 +  x2 + 2x3 - x4 = 0

Solution ► The reduction of the augmented matrix to reduced row-echelon 
form is outlined below.

1 1 2 1 0
2 2 0 1 0
3 1 2 1 0

−
−  → 

1 1 2 1 0
0 4 4 3 0
0 4 4 2 0

−
− −
− −

 → 
1 0 1 00 0
0 1 1 0 0
0 0 0 1 0

−

The leading variables are x1, x2, and x4, so x3 is assigned as a parameter—say 
x3 = t. Then the general solution is x1 = -t, x2 = t, x3 = t, x4 = 0. Hence, 
taking t = 1 (say), we get a nontrivial solution: x1 = -1, x2 = 1, x3 = 1, x4 = 0.

The existence of a nontrivial solution in Example 1 is ensured by the presence of a 
parameter in the solution. This is due to the fact that there is a nonleading variable 
(x3 in this case). But there must be a nonleading variable here because there are four 
variables and only three equations (and hence at most three leading variables). This 
discussion generalizes to a proof of the following fundamental theorem.

Theorem 1

If a homogeneous system of linear equations has more variables than equations, then it 
has a nontrivial solution (in fact, infinitely many).

PROOF

Suppose there are m equations in n variables where n > m, and let R denote 
the reduced row-echelon form of the augmented matrix. If there are r leading 
 variables, there are n - r nonleading variables, and so n - r parameters. Hence, 
it suffices to show that r < n. But r ≤ m because R has r leading 1s and m rows, 
and m < n by hypothesis. So r ≤ m < n, which gives r < n.

Note that the converse of Theorem 1 is not true: if a homogeneous system has 
nontrivial solutions, it need not have more variables than equations (the system 
x1 + x2 = 0, 2x1 + 2x2 = 0 has nontrivial solutions but m = 2 = n.) 

Theorem 1 is very useful in applications. The next example provides an 
illustration from geometry.
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EXAMPLE 2

We call the graph of an equation ax2 + bxy + cy2 + dx + ey + f = 0 a conic if 
the numbers a, b, and c are not all zero. Show that there is at least one conic 
through any five points in the plane that are not all on a line.

Solution ► Let the coordinates of the five points be (p1, q1), (p2, q2), (p3, q3), 
(p4, q4), and (p5, q5). The graph of ax2 + bxy + cy2 + dx + ey + f = 0 passes 
through (pi, qi) if

api
2 + bpiqi + cqi

2 + dpi + eqi + f = 0

This gives five equations, one for each i, linear in the six variables a, b, c, d, e, 
and f. Hence, there is a nontrivial solution by Theorem 1. If a = b = c = 0, the 
five points all lie on the line dx + ey + f = 0, contrary to assumption. Hence, 
one of a, b, c is nonzero.

Linear Combinations and Basic Solutions
Naturally enough, two columns are regarded as equal if they have the same number 
of entries and corresponding entries are the same. Let x and y be columns with 
the same number of entries. As for elementary row operations, their sum x + y is 
obtained by adding corresponding entries and, if k is a number, the scalar product 
kx is defined by multiplying each entry of x by k. More precisely:

If x = 

x
x

xn

1

2

�
  and y =  

y
y

yn

1

2

�
 then x + y = 

xx y
x y

x yn n

1 1

2 2

+
+

+
�

 and kx = 

kx
kx

kxn

1

2

�
. 

A sum of scalar multiples of several columns is called a linear combination of these 
columns. For example, sx + ty is a linear combination of x and y for any choice of 
numbers s and t.

EXAMPLE 3

If x =   S   3   
-2

  T  and y =   S  -1   
1

  T  then 2x + 5y =   S   6   
-4

  T  +   S  -5   
5

  T  =   S   1     
1

   T .

EXAMPLE 4

Let x =   S  1 
 

 0   
1

  T  , y =   S  2 
 

 1   
0

  T   and z =   S  3 
 

 1   
1

  T . If v =   S     0
 

 
 -1   

  2
   T  and w =   S  1 

 
 1   

1
  T  ,

determine whether v and w are linear combinations of x and y.

Solution ► For v, we must determine whether numbers r, s, and t exist such that 
v = rx + sy + tz, that is, whether
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  S     0
 

 
 -1   

  2
   T  = r   S  1 

 
 0   

1
  T  + s   S  2 

 
 1   

0
  T  + t   S  3 

 
 1   

1
  T  =   S  r + 2s + 3t

 
    

 s + t      
r + t

   T .
Equating corresponding entries gives a system of linear equations 
r + 2s + 3t = 0, s + t = -1, and r + t = 2 for r, s, and t. By gaussian 
elimination, the solution is r = 2 - k, s = -1 - k, and t = k where k is a 
parameter. Taking k = 0, we see that v = 2x - y is indeed a linear combination 
of x, y, and z.
Turning to w, we again look for r, s, and t such that w = rx + sy + tz; that is,

  S  1 
 

 1   
1

  T  = r   S  1 
 

 0   
1

  T  + s   S  2 
 

 1   
0

  T  + t   S  3 
 

 1   
1

  T  =   S  r + 2s + 3t
 

    
 s + t      

r + t
   T  ,

leading to equations r + 2s + 3t = 1, s + t = 1, and r + t = 1 for real numbers 
r, s, and t. But this time there is no solution as the reader can verify, so w is not 
a linear combination of x, y, and z.

Our interest in linear combinations comes from the fact that they provide one 
of the best ways to describe the general solution of a homogeneous system of linear 
equations. When solving such a system with n variables x1, x2, …, xn, write the 

variables as a column7 matrix: x = 

x
x

xn

1

2
�

. The trivial solution is denoted 0 = 

0
0

0
�

. 

As an illustration, the general solution in Example 1 is x1 = -t, x2 = t, x3 = t, and 
x4 = 0, where t is a parameter, and we would now express this by saying that the 

general solution is x = 

t
t
t

−

0

, where t is arbitrary.

Now let x and y be two solutions to a homogeneous system with n variables. 
Then any linear combination sx + ty of these solutions turns out to be again a 
solution to the system. More generally:

Any linear combination of solutions to a homogeneous system is again a solution. (∗)

In fact, suppose that a typical equation in the system is 

a1x1 + a2x2 + � + anxn = 0, and suppose that x = 

x
x

xn

1

2
�

 and y = 

y
y

yn

1

2
�

 are

solutions. Then a1x1 + a2x2 + � + anxn = 0 and a1y1 + a2y2 + � + anyn = 0.

Hence sx + ty = 

sx ty
sx ty

sx tyn         n

+
+

+

1 1

2 2
�

 is also a solution because

7 The reason for using columns will be apparent later.
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a1(sx1 + ty1)  + a2(sx2 + ty2) + � + an(sxn + tyn)
= [a1(sx1) + a2(sx2) + � + an(sxn)] + [a1(ty1) + a2(ty2) + � + an(tyn)]
= s(a1x1 + a2x2 + � + anxn) + t(a1y1 + a2y2 + � + anyn)
= s(0) + t(0)
= 0.

A similar argument shows that (∗) is true for linear combinations of more than two 
solutions. 

The remarkable thing is that every solution to a homogeneous system is a linear 
combination of certain particular solutions and, in fact, these solutions are easily 
computed using the gaussian algorithm. Here is an example.

EXAMPLE 5

Solve the homogeneous system with coefficient matrix

A = 

− −
−
− −

1 2 3 2
3 6 1 0
2 4 4 2

Solution ► The reduction of the augmented matrix to reduced form is 

1 2 3 2 0
3 6 1 0 0
2 4 4 2 0

− −
−
− −

 → 
1 2 0 0

0 0 1 0
0 0 0 0 0

1
5
3
5

− −

−

so the solutions are x1 = 2s +   1 _ 5  t, x2 = s, x3 =   3 _ 5  t, and x4 = t by gaussian 
elimination. Hence we can write the general solution x in the matrix form 

x = 

x
x
x
x

1

2

3

4

 = 

s t
s

t
t

+2 1
5

3
5

 = s 

2
1
0
0

 + t 

1
5

3
5

0

1

 = sx1 + tx2

where x1 = 

2
1
0
0

 and x1 = 0

1

1
5

3
5

 are particular solutions determined by the 

gaussian algorithm.

The solutions x1 and x2 in Example 5 are denoted as follows:

The gaussian algorithm systematically produces solutions to any homogeneous linear 
system, called basic solutions, one for every parameter.

Moreover, the algorithm gives a routine way to express every solution as a 
linear combination of basic solutions as in Example 5, where the general 
solution x becomes

Definition 1.5
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x = s 

2
1
0
0

 + t 
0

1

1
5

3
5

 = s 

2
1
0
0

 +   1 _ 5  t 

1
0
3
5

Hence by introducing a new parameter r = t/5 we can multiply the original basic 
solution x2 by 5 and so eliminate fractions. For this reason:

Any nonzero scalar multiple of a basic solution will still be called a basic solution.

In the same way, the gaussian algorithm produces basic solutions to every 
homogeneous system, one for each parameter (there are no basic solutions if the 
system has only the trivial solution). Moreover every solution is given by the 
algorithm as a linear combination of these basic solutions (as in Example 5). If A 
has rank r, Theorem 2 Section 1.2 shows that there are exactly n - r parameters, 
and so n - r basic solutions. This proves:

Theorem 2

Let A be an m × n matrix of rank r, and consider the homogeneous system in n variables 
with A as coefficient matrix. Then: 

1. The system has exactly n - r basic solutions, one for each parameter. 
2. Every solution is a linear combination of these basic solutions.

EXAMPLE 6

Find basic solutions of the homogeneous system with coefficient matrix A, and 
express every solution as a linear combination of the basic solutions, where 

A = 

−
− −

− −
− −

1 3 0 2 2
2 6 1 2 5
3 9 1 0 7
3 9 2 6 8

Solution ► The reduction of the augmented matrix to reduced row-echelon 
form is 

1 3 0 2 2 0
2 6 1 2 5 0
3 9 1 0 7 0
3 9 2 6 8 0

−
− −

− −
− −

 → 

1 3 0 2 2 0
0 0 1 6 1 0

−
−

00 0 0 0 0 0
0 0 0 0 0 0

so the general solution is x1 = 3r - 2s - 2t, x2 = r, x3 = -6s + t, x4 = s, and 
x5 = t where r, s, and t are parameters. In matrix form this is 

x = 

x
x
x
x
x

1

2

3

4

5

 = 

r s t
r
s t
s
t

− −

− +

3 2 2

6  = r 

3
1
0
0
0

 + s 

2
0
6
1
0

−

−  + t 

2
0
1
0
1

−
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Hence basic solutions are x1 = 

3
1
0
0
0

, x2 = 

2
0
6
1
0

−

− , and x3 = 

2
0
1

−

00
1

.

E X E R C I S E S  1 . 3

 1. Consider the following statements about a 
system of linear equations with augmented 
matrix A. In each case either prove the statement 
or give an example for which it is false.

 (a) If the system is homogeneous, every solution 
is trivial.

 �(b) If the system has a nontrivial solution, it 
cannot be homogeneous.

 (c) If there exists a trivial solution, the system is 
homogeneous.

 �(d) If the system is consistent, it must be 
homogeneous.

  Now assume that the system is homogeneous.

 (e) If there exists a nontrivial solution, there is 
no trivial solution.

 �(f ) If there exists a solution, there are infinitely 
many solutions.

 (g) If there exist nontrivial solutions, the row-
echelon form of A has a row of zeros.

 �(h) If the row-echelon form of A has a row of 
zeros, there exist nontrivial solutions.

 (i) If a row operation is applied to the system, 
the new system is also homogeneous.

 2. In each of the following, find all values of a for 
which the system has nontrivial solutions, and 
determine all solutions in each case.

 (a)   x - 2y +  z = 0 �(b)  x + 2y +  z = 0
  x + ay - 3z = 0   x + 3y + 6z = 0
-x + 6y - 5z = 0  2x + 3y + az = 0

 (c) x +  y -  z = 0 �(d) ax + y +  z = 0
   ay -  z = 0   x + y -  z = 0
x +  y + az = 0   x + y + az = 0

 3. Let x =   S     2
 

 
   1   

-1
  T  , y =   S  1 

 
 0   

1
  T  , and z =   S     1

 
 

   1   
-2

  T  . In each 

case, either write v as a linear combination of 
x, y, and z, or show that it is not such a linear 
combination.

 (a) v =   S     0
 

 
   1   

-3
  T   �(b) v =   S     4

 
 

   3   
-4

  T  

 (c) v =   S  3 
 

 1   
0

  T   �(d) v =   S  3 
 

 0   
3

  T  
 4. In each case, either express y as a linear 

combination of a1, a2, and a3, or show that it is 
not such a linear combination. Here: 

a1 =   S  
-1

 
 

   3   
  0

 
 

 

  1

   T  , a2 =   S  
3

 
 

 1   
2

 
 

 

0

  T  , and a3 =   S  1 
 

 1   
1

 
 

 

1

  T 
 (a) y =   S  

1
 

 
 2   

4
 

 
 

0

  T  (b) x =   S  
-1

 
 

   9   
  2

 
 

 

  6

   T 
 5. For each of the following homogeneous systems, 

find a set of basic solutions and express the 
general solution as a linear combination of these 
basic solutions.

 (a)  x1 + 2x2 -  x3 + 2x4 + x5 = 0
 x1 + 2x2 + 2x3     + x5 = 0
2x1 + 4x2 - 2x3 + 3x4 + x5 = 0

 �(b)   x1 + 2x2 -  x3 + x4 +  x5 = 0
-x1 - 2x2 + 2x3    +  x5 = 0
-x1 - 2x2 + 3x3 + x4 + 3x5 = 0

24 Chapter 1 Systems of Linear Equations



 (c)  x1 +  x2 -  x3 + 2x4 +  x5 = 0
x1 + 2x2 -  x3 +  x4 +  x5 = 0

2x1 + 3x2 -  x3 + 2x4 +  x5 = 0
4x1 + 5x2 - 2x3 + 5x4 + 2x5 = 0

�(d)    x1 +  x2 - 2x3 -  2x4 + 2x5 = 0
  2x1 + 2x2 - 4x3 -  4x4 +  x5 = 0

x1 -  x2 + 2x3 +  4x4 +  x5 = 0
-2x1 - 4x2 + 8x3 + 10x4 +  x5 = 0

 6. (a) Does Theorem 1 imply that the 

system e  -z + 3y = 0
                        

  2x - 6y = 0
   has nontrivial 

solutions? Explain.

�(b) Show that the converse to Theorem 1 is 
not true. That is, show that the existence of 
nontrivial solutions does not imply that there 
are more variables than equations.

 7. In each case determine how many solutions 
(and how many parameters) are possible for a 
homogeneous system of four linear equations in 
six variables with augmented matrix A. Assume 
that A has nonzero entries. Give all possibilities.

 (a) Rank A = 2.

�(b) Rank A = 1.

 (c) A has a row of zeros.

�(d) The row-echelon form of A has a row 
of zeros.

 8. The graph of an equation ax + by + cz = 0 is a 
plane through the origin (provided that not all 
of a, b, and c are zero). Use Theorem 1 to show 
that two planes through the origin have a point 
in common other than the origin (0, 0, 0).

 9. (a) Show that there is a line through any pair 
of points in the plane. [Hint: Every line has 
equation ax + by + c = 0, where a, b, and c 
are not all zero.]

 �(b) Generalize and show that there is a plane 
ax + by + cz + d = 0 through any three 
points in space.

 10. The graph of a(x2 + y2) + bx + cy + d = 0 is 
a circle if a ≠ 0. Show that there is a circle 
through any three points in the plane that are 
not all on a line.

 �11. Consider a homogeneous system of linear 
equations in n variables, and suppose that the 
augmented matrix has rank r. Show that the 
system has nontrivial solutions if and only if 
n > r.

 12. If a consistent (possibly nonhomogeneous) 
system of linear equations has more variables 
than equations, prove that it has more than 
one solution.

An Application to Network Flow
There are many types of problems that concern a network of conductors along 
which some sort of flow is observed. Examples of these include an irrigation 
network and a network of streets or freeways. There are often points in the system 
at which a net flow either enters or leaves the system. The basic principle behind 
the analysis of such systems is that the total flow into the system must equal the 
total flow out. In fact, we apply this principle at every junction in the system.

Junction Rule

At each of the junctions in the network, the total flow into that junction must equal the 
total flow out.

This requirement gives a linear equation relating the flows in conductors emanating 
from the junction.

S E C T I O N  1 . 4

25SECTION 1.4 An Application to Network Flow



EXAMPLE 1

A network of one-way streets is shown in the accompanying diagram. The rate 
of flow of cars into intersection A is 500 cars per hour, and 400 and 100 cars 
per hour emerge from B and C, respectively. Find the possible flows along 
each street.

Solution ► Suppose the flows along the streets are f1, f2, f3, f4, f5, and f6 cars per 
hour in the directions shown. Then, equating the flow in with the flow out at 
each intersection, we get

Intersection A 500 = f1 + f2 + f3
Intersection B f1 + f4 + f6 = 400
Intersection C f3 + f5 = f6 + 100
Intersection D f2 = f4 + f5

These give four equations in the six variables f1, f2, …, f6.

 f1 + f2 + f3          = 500 
 f1     + f4   + f6 = 400
     f3   + f5 - f6 = 100
   f2   - f4 - f5    = 0

The reduction of the augmented matrix is

1 1 1 0 0 0 500
1 0 0 1 0 1 400
0 0 1 0 1 1 100
0 1 0 1 1 0 0

−
− −

 → 

1 0 0 1 0 1 4000
0 1 0 1 1 0 0
0 0 1 0 1 1 100
0 0 0 0 0 0 0

− −
−

Hence, when we use f4, f5, and f6 as parameters, the general solution is

f1 = 400 - f4 - f6  f2 = f4 + f5  f3 = 100 - f5 + f6

This gives all solutions to the system of equations and hence all the possible 
flows.
Of course, not all these solutions may be acceptable in the real situation. For 
example, the flows f1, f2, …, f6 are all positive in the present context (if one 
came out negative, it would mean traffic flowed in the opposite direction). 
This imposes constraints on the flows: f1 ≥ 0 and f3 ≥ 0 become

f4 + f6 ≤ 400  f5 - f6 ≤ 100

Further constraints might be imposed by insisting on maximum values on the 
flow in each street.

500 

100 

400 A 

C 

D 

B f 1 

f 2 

f 3 f 5 
f 6 

f 4 
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 1. Find the possible flows in each of the following 
networks of pipes.

 (a) 

50 

40 

50 

60 

f 2 

f 5 

f 3 

f 4 

f 1 

�(b) 

75 60 

25 

40 

50 f 3 f 4 

f 1 f 2 

f 7 f 6 f 5 

 2. A proposed network of irrigation canals is 
described in the accompanying diagram. At peak 
demand, the flows at interchanges A, B, C, and D 
are as shown.

C 

D 

A 

B 
20 

20 

15 55 

f 1 f 3 

f 5 

f 2 

f 4 

 (a) Find the possible flows.

�(b) If canal BC is closed, what range of flow on 
AD must be maintained so that no canal 
carries a flow of more than 30?

 3. A traffic circle has five one-way streets, and 
vehicles enter and leave as shown in the 
accompanying diagram.

B 

A 

E D 

C 
40 

30 

50 

35 
25 

f 3 

f 2 
f 1 

f 5 

f 4 

 (a) Compute the possible flows.

�(b) Which road has the heaviest flow?

An Application to Electrical Networks8

In an electrical network it is often necessary to find the current in amperes (A) 
flowing in various parts of the network. These networks usually contain resistors 
that retard the current. The resistors are indicated by a symbol , and the 
resistance is measured in ohms (Ω). Also, the current is increased at various 
points by voltage sources (for example, a battery). The voltage of these sources is 
measured in volts (V ), and they are represented by the symbol . We assume 
these voltage sources have no resistance. The flow of current is governed by the 
following principles.

Ohm’s Law

The current I and the voltage drop V across a resistance R are related by the equation 
V = RI.

8 This section is independent of Section 1.4
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Kirchhoff’s Laws

1. (Junction Rule) The current flow into a junction equals the current flow out of 
that junction. 

2. (Circuit Rule) The algebraic sum of the voltage drops (due to resistances) around 
any closed circuit of the network must equal the sum of the voltage increases 
around the circuit.

When applying rule 2, select a direction (clockwise or counterclockwise) around 
the closed circuit and then consider all voltages and currents positive when in 
this direction and negative when in the opposite direction. This is why the term 
algebraic sum is used in rule 2. Here is an example.

EXAMPLE 1

Find the various currents in the circuit shown.

Solution ► First apply the junction rule at junctions A, B, C, and D to obtain

Junction A I1 = I2 + I3
Junction B I6 = I1 + I5
Junction C I2 + I4 = I6
Junction D I3 + I5 = I4

Note that these equations are not independent (in fact, the third is an easy 
consequence of the other three).

Next, the circuit rule insists that the sum of the voltage increases (due to 
the sources) around a closed circuit must equal the sum of the voltage drops 
(due to resistances). By Ohm’s law, the voltage loss across a resistance R (in the 
direction of the current I) is RI. Going counterclockwise around three closed 
circuits yields

Upper left 10 +  5 = 20I1
Upper right -5 + 20 = 10I3 + 5I4
Lower -10 = -20I5 - 5I4

Hence, disregarding the redundant equation obtained at junction C, we have six 
equations in the six unknowns I1, …, I6. The solution is

I1 =   15 __ 20   I4 =   28 __ 20  

I2 =   -1 __ 20   I5 =   12 __ 20  

I3 =   16 __ 20   I6 =   27 __ 20  

The fact that I2 is negative means, of course, that this current is in the opposite 
direction, with a magnitude of   1 __ 20   amperes.

A

10 V

10 V

20 V
I3

I
2

I1 I6 I4

I5

B D

C

5 V

10 �

20 �

5 �

5 �
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In Exercises 1–4, find the currents in the circuits.

 1. 

10 V 

20 V 

I 1 

I 2 

I 3 

6 � 

4 � 

2 � 

 �2. 

10 V 

5 V  

I 3 

I 2 

I 1 

10 � 

5 � 

5 � 

 3. 

5 V  5 V  

5 V  

10 V 

20 V 

I 1 I 3 

I 2 

I 6 

I 4 

I 5 

20 � 

10 � 

10 � 20 � 

 �4. All resistances are 10 Ω.

  

10 V 

20 V 

I 2 

I 6 

I 5 

I 1 

I 3 

I 4 

 5. Find the voltage x such that the current I1 = 0.

  
x V 2 V  

5 V  I 2
I 3 

I 1 2 � 

1 � 
1 � 

An Application to Chemical Reactions
When a chemical reaction takes place a number of molecules combine to produce 
new molecules. Hence, when hydrogen H2 and oxygen O2 molecules combine, the 
result is water H2O. We express this as

H2 + O2 → H2O

Individual atoms are neither created nor destroyed, so the number of hydrogen 
and oxygen atoms going into the reaction must equal the number coming out 
(in the form of water). In this case the reaction is said to be balanced. Note that 
each hydrogen molecule H2 consists of two atoms as does each oxygen molecule 
O2, while a water molecule H2O consists of two hydrogen atoms and one oxygen 
atom. In the above reaction, this requires that twice as many hydrogen molecules 
enter the reaction; we express this as follows:

2H2 + O2 → 2H2O

This is now balanced because there are 4 hydrogen atoms and 2 oxygen atoms on 
each side of the reaction.

S E C T I O N  1 . 6
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EXAMPLE 1

Balance the following reaction for burning octane C8H18 in oxygen O2:

C8H18 + O2 → CO2 + H2O

where CO2 represents carbon dioxide. We must find positive integers x, y, z, 
and w such that 

xC8H18 + yO2 → zCO2 + wH2O

Equating the number of carbon, hydrogen, and oxygen atoms on each side 
gives 8x = z, 18x = 2w and 2y = 2z + w, respectively. These can be written 
as a homogeneous linear system

  8x   -  z    = 0
 18x          - 2w = 0
 2y - 2z -  w = 0

which can be solved by gaussian elimination. In larger systems this is necessary 
but, in such a simple situation, it is easier to solve directly. Set w = t, so that 
x =   1 _ 9  t, z =   8 _ 9  t, 2y =   16 __ 9  t + t =   25 __ 9  t. But x, y, z, and w must be positive integers, 
so the smallest value of t that eliminates fractions is 18. Hence, x = 2, y = 25, 
z = 16, and w = 18, and the balanced reaction is

2C8H18 + 25O2 → 16CO2 + 18H2O

The reader can verify that this is indeed balanced.

It is worth noting that this problem introduces a new element into the theory of 
linear equations: the insistence that the solution must consist of positive integers.

E X E R C I S E S  1 . 6

In each case balance the chemical reaction.

 1. CH4 + O2 → CO2 + H2O. This is the burning 
of methane CH4. 

 �2. NH3 + CuO → N2 + Cu + H2O. Here NH3 
is ammonia, CuO is copper oxide, Cu is copper, 
and N2 is nitrogen.

 3. CO2 + H2O → C6H12O6 + O2. This is called 
the photosynthesis reaction—C6H12O6 is 
glucose.

 �4. Pb(N3)2 + Cr(MnO4)2 → Cr2O3 + MnO2 + 
Pb3O4 + NO.

S U P P L E M E N TA R Y  E X E R C I S E S  F O R  C H A P T E R  1

 1. We show in Chapter 4 that the graph of an 
equation ax + by + cz = d is a plane in space 
when not all of a, b, and c are zero.

 (a) By examining the possible positions of planes 
in space, show that three equations in three 
variables can have zero, one, or infinitely 
many solutions.

 �(b) Can two equations in three variables have 

a unique solution? Give reasons for your 
answer.

 2. Find all solutions to the following systems of 
linear equations.

 (a)    x1 +  x2 +  x3 -  x4 =   3
  3x1 + 5x2 - 2x3 +  x4 =   1
-3x1 - 7x2 + 7x3 - 5x4 =   7
   x1 + 3x2 - 4x3 + 3x4 = -5
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 �(b)  x1 +  4x2 -  x3 +  x4 = 2
3x1 +  2x2 +  x3 + 2x4 = 5
 x1 -  6x2 + 3x3     = 1
 x1 + 14x2 - 5x3 + 2x4 = 3

 3. In each case find (if possible) conditions on a, 
b, and c such that the system has zero, one, or 
infinitely many solutions.

 (a)  x + 2y -  4z =    4
3x -  y + 13z =    2
4x +  y + a2z = a + 3

 �(b)  x +  y + 3z = a
ax +  y + 5z = 4
 x + ay + 4z = a

 �4. Show that any two rows of a matrix can be 
interchanged by elementary row transformations 
of the other two types.

 5. If ad ≠ bc, show that   S  a b
   

c d
  T  has reduced 

  row-echelon form   S  1 0    
0 1

  T .
 �6. Find a, b, and c so that the system 

  x +  ay +  cz = 0
 bx +  cy - 3z = 1
 ax + 2y + bz = 5

  has the solution x = 3, y = -1, z = 2.

 7. Solve the system

 x + 2y + 2z = -3
 2x +  y +  z = -4
  x -  y +    iz =   i

  where i2 = -1. [See Appendix A.]

 �8. Show that the real system 

 x +  y +  z = 5
 u 2x -  y -  z = 1
  -3x + 2y + 2z = 0
  has a complex solution: x = 2, y = i, z = 3 - i 

where i2 = -1. Explain. What happens when 
such a real system has a unique solution?

 9. A man is ordered by his doctor to take 5 units 
of vitamin A, 13 units of vitamin B, and 23 
units of vitamin C each day. Three brands of 
vitamin pills are available, and the number of 
units of each vitamin per pill are shown in the 
accompanying table.

Brand
Vitamin

A B C
1 1 2 4
2 1 1 3
3 0 1 1

 (a) Find all combinations of pills that provide 
exactly the required amount of vitamins 
(no partial pills allowed).

 �(b) If brands 1, 2, and 3 cost 3¢, 2¢, and 
5¢ per pill, respectively, find the least 
expensive treatment.

 10. A restaurant owner plans to use x tables 
seating 4, y tables seating 6, and z tables 
seating 8, for a total of 20 tables. When fully 
occupied, the tables seat 108 customers. If 
only half of the x tables, half of the y tables, 
and one-fourth of the z tables are used, each 
fully occupied, then 46 customers will be 
seated. Find x, y, and z.

 11. (a) Show that a matrix with two rows and two 
columns that is in reduced row-echelon form 
must have one of the following forms:

  S  1 0    
0 1

  T    S  0 1    
0 0

  T    S  0 0    
0 0

  T    S  1 ∗
    

0 0
  T 

  [Hint: The leading 1 in the first row must be 
in column 1 or 2 or not exist.]

 (b) List the seven reduced row-echelon forms for 
matrices with two rows and three columns.

 (c) List the four reduced row-echelon forms for 
matrices with three rows and two columns.

 12. An amusement park charges $7 for adults, $2 
for youths, and $0.50 for children. If 150 people 
enter and pay a total of $100, find the numbers 
of adults, youths, and children. [Hint: These 
numbers are nonnegative integers.]

 13. Solve the following system of equations for x 
and y.

 x2 +  xy -  y2 =  1
2x2 -  xy + 3y2 = 13
 x2 + 3xy + 2y2 =  0

  [Hint: These equations are linear in the new 
variables x1 = x2, x2 = xy, and x3 = y2.]
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Matrix Algebra

2
In the study of systems of linear equations in Chapter 1, we found it convenient 
to manipulate the augmented matrix of the system. Our aim was to reduce it to 
row-echelon form (using elementary row operations) and hence to write down all 
solutions to the system. In the present chapter we consider matrices for their own 
sake. While some of the motivation comes from linear equations, it turns out that 
matrices can be multiplied and added and so form an algebraic system somewhat 
analogous to the real numbers. This “matrix algebra” is useful in ways that are 
quite different from the study of linear equations. For example, the geometrical 
transformations obtained by rotating the euclidean plane about the origin can be 
viewed as multiplications by certain 2 × 2 matrices. These “matrix transformations” 
are an important tool in geometry and, in turn, the geometry provides a “picture” 
of the matrices. Furthermore, matrix algebra has many other applications, some of 
which will be explored in this chapter. This subject is quite old and was first studied 
systematically in 1858 by Arthur Cayley.1

Matrix Addition, Scalar Multiplication, and 
Transposition
A rectangular array of numbers is called a matrix (the plural is matrices), and 
the numbers are called the entries of the matrix. Matrices are usually denoted by 
uppercase letters: A, B, C, and so on. Hence,

A =   S  1 2 -1     
0 5   6

  T  B =   S  1 -1    
0   2

  T  C =   S  1 
 

 3   
2

  T 
are matrices. Clearly matrices come in various shapes depending on the number of 
rows and columns. For example, the matrix A shown has 2 rows and 3 columns. In 
general, a matrix with m rows and n columns is referred to as an m × n matrix or 
as having size m × n. Thus matrices A, B, and C above have sizes 2 × 3, 2 × 2, and 
3 × 1, respectively. A matrix of size 1 × n is called a row matrix, whereas one of 

1 Arthur Cayley (1821–1895) showed his mathematical talent early and graduated from Cambridge in 1842 as senior wrangler. With no 
employment in mathematics in view, he took legal training and worked as a lawyer while continuing to do mathematics, publishing 
nearly 300 papers in fourteen years. Finally, in 1863, he accepted the Sadlerian professorship at Cambridge and remained there for 
the rest of his life, valued for his administrative and teaching skills as well as for his scholarship. His mathematical achievements 
were of the first rank. In addition to originating matrix theory and the theory of determinants, he did fundamental work in group 
theory, in higher-dimensional geometry, and in the theory of invariants. He was one of the most prolific mathematicians of all time 
and produced 966 papers.

Arthur Cayley. Photo © 
Corbis.
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size m × 1 is called a column matrix. Matrices of size n × n for some n are called 
square matrices.

Each entry of a matrix is identified by the row and column in which it lies. The 
rows are numbered from the top down, and the columns are numbered from left to 
right. Then the (i, j)-entry of a matrix is the number lying simultaneously in row i 
and column j. For example, 

The (1, 2)-entry of   S  1 -1    
0   1

  T  is -1.

The (2, 3)-entry of   S  1 2 -1     
0 5   6

  T  is 6.

A special notation is commonly used for the entries of a matrix. If A is an m × n 
matrix, and if the (i, j)-entry of A is denoted as aij, then A is displayed as follows:

A = 

a a a a
a a a a

a a a a

n

n

m m m mn

11 12 13 1

21 22 23 2

1 2 3

This is usually denoted simply as A = [aij]. Thus aij is the entry in row i and column 
j of A. For example, a 3 × 4 matrix in this notation is written 

A = 
a a a a
a a a a
a a a a

11 12 13 14

21 22 23 24

31 32 33 34

It is worth pointing out a convention regarding rows and columns: Rows are 
mentioned before columns. For example:

• If a matrix has size m × n, it has m rows and n columns.

• If we speak of the (i, j)-entry of a matrix, it lies in row i and column j. 

• If an entry is denoted aij, the first subscript i refers to the row and the second subscript 
j to the column in which aij lies.

Two points (x1, y1) and (x2, y2) in the plane are equal if and only if 2 they have the 
same coordinates, that is x1 = x2 and y1 = y2. Similarly, two matrices A and B are 
called equal (written A = B) if and only if:

1. They have the same size.

2. Corresponding entries are equal. 

If the entries of A and B are written in the form A = [aij], B = [bij], described earlier, 
then the second condition takes the following form: 

[aij] = [bij] means aij = bij for all i and j

EXAMPLE 1

Given A =   S  a b
   

c d
  T  , B =   S  1 2 -1     

3 0   1
  T  , and C =   S   1 0    

-1 2
  T  , discuss the possibility that 

A = B, B = C, A = C.

2 If p and q are statements, we say that p implies q if q is true whenever p is true. Then “p if and only if q” means that both p implies 
q and q implies p. See Appendix B for more on this.
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Solution ► A = B is impossible because A and B are of different sizes: A is 2 × 2 
whereas B is 2 × 3. Similarly, B = C is impossible. But A = C is possible 
provided that corresponding entries are equal:   S  a b

   
c d

  T  =   S   1 0    
-1 2

  T  means 
a = 1, b = 0, c = -1, and d = 2.

Matrix Addition 

If A and B are matrices of the same size, their sum A + B is the matrix formed by 
adding corresponding entries.

If A = [aij] and B = [bij], this takes the form 

A + B = [aij + bij]

Note that addition is not defined for matrices of different sizes. 

EXAMPLE 2

If A =   S   2 1 3     
-1 2 0

  T  and B =   S  1 1 -1     
2 0   6

  T  , compute A + B.

Solution ► A + B =   S   2 + 1 1 + 1 3 - 1              
-1 + 2 2 + 0 0 + 6

  T  =   S  3 2 2    
1 2 6

  T .

EXAMPLE 3

Find a, b, and c if [a b c] + [c a b] = [3 2 -1].

Solution ► Add the matrices on the left side to obtain

[a + c b + a c + b] = [3 2 -1]

Because corresponding entries must be equal, this gives three equations: 
a + c = 3, b + a = 2, and c + b = -1. Solving these yields a = 3, b = -1, 
c = 0.

If A, B, and C are any matrices of the same size, then 

 A + B = B + A (commutative law)
 A + (B + C) = (A + B) + C) (associative law)

In fact, if A = [aij] and B = [bij], then the (i, j)-entries of A + B and B + A are, 
respectively, aij + bij and bij + aij. Since these are equal for all i and j, we get 

A + B = [aij + bij] = [bij + aij] = B + A

The associative law is verified similarly.
The m × n matrix in which every entry is zero is called the m × n zero matrix 

and is denoted as 0 (or 0mn if it is important to emphasize the size). Hence,

0 + X = X

Definition 2.1
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holds for all m × n matrices X. The negative of an m × n matrix A (written -A) is 
defined to be the m × n matrix obtained by multiplying each entry of A by -1. If 
A = [aij], this becomes -A = [-aij]. Hence, 

A + (-A) = 0

holds for all matrices A where, of course, 0 is the zero matrix of the same size as A. 
A closely related notion is that of subtracting matrices. If A and B are two m × n 

matrices, their difference A - B is defined by 

A - B = A + (-B)

Note that if A = [aij] and B = [bij], then

A - B = [aij] + [-bij] = [aij - bij]

is the m × n matrix formed by subtracting corresponding entries.

EXAMPLE 4

Let A =   S  3 -1   0     
1   2 -4

  T  , B =   S   1 -1 1     
-2   0 6

  T  , and C =   S  1 0 -2     
3 1   1

  T . Compute -A, 

A - B, and A + B - C.

Solution ►  -A =   S   -3   1 0     
-1 -2 4

  T 

 A - B =   S  3 - 1       -1 - (-1)   0 - 1
                

1 - (-2)   2 - 0     -4 - 6
  T  =   S   2 0  -1     

3 2 -10
  T 

A + B - C =   S   3 + 1 - 1 -1 - 1 - 0   0 + 1 - (-2)
                     

1 - 2 - 3   2 + 0 - 1 -4 + 6 - 1  
  T  =   S   3 -2 3     

-4   1 1
  T 

EXAMPLE 5

Solve   S   3 2    
-1 1

  T  + X =   S   1 0    
-1 2

  T  , where X is a matrix.

Solution ► We solve a numerical equation a + x = b by subtracting the number 
a from both sides to obtain x = b - a. This also works for matrices. To solve 
  S   3 2    
-1 1

  T  + X =   S   1 0    
-1 2

  T  , simply subtract the matrix   S   3 2    
-1 1

  T  from both sides to get 

X =   S   1 0    
-1 2

  T  -   S   3 2    
-1 1

  T  =   S   1 - 3  0 - 2          
-1 - (-1) 2 - 1 

  T  =   S  -2 -2     
0   1

  T 
The reader should verify that this matrix X does indeed satisfy the original 
equation.

The solution in Example 5 solves the single matrix equation A + X = B directly 
via matrix subtraction: X = B - A. This ability to work with matrices as entities lies 
at the heart of matrix algebra.
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It is important to note that the sizes of matrices involved in some calculations are 
often determined by the context. For example, if 

A + C =   S  1 3 -1     
2 0   1

  T 
then A and C must be the same size (so that A + C makes sense), and that size must 
be 2 × 3 (so that the sum is 2 × 3). For simplicity we shall often omit reference to 
such facts when they are clear from the context.

Scalar Multiplication
In gaussian elimination, multiplying a row of a matrix by a number k means 
multiplying every entry of that row by k. 

More generally, if A is any matrix and k is any number, the scalar multiple kA is the 
matrix obtained from A by multiplying each entry of A by k.

If A = [aij], this is 

kA = [kaij]

Thus 1A = A and (-1)A = -A for any matrix A.
The term scalar arises here because the set of numbers from which the entries are 

drawn is usually referred to as the set of scalars. We have been using real numbers 
as scalars, but we could equally well have been using complex numbers.

EXAMPLE 6

If A =   S  3 -1 4     
2   0 1

  T  and B =   S  1 2 -1     
0 3   2

  T  , compute 5A,   1 _ 2  B, and 3A - 2B.

Solution ►  5A =   S  15 -5 20      
10   0 30

  T  ,   1 _ 2  B =   S     
1 _ 2   1 -  1 _ 2       
0   3 _ 2     1

  T 
 3A - 2B =   S  9 -3 12     

6   0 18
  T  -   S  2 4 -2     

0 6   4
  T  =   S  7 -7 14     

6 -6 14
  T 

If A is any matrix, note that kA is the same size as A for all scalars k. We also have 

0A = 0 and k0 = 0

because the zero matrix has every entry zero. In other words, kA = 0 if either k = 0 
or A = 0. The converse of this statement is also true, as Example 7 shows. 

EXAMPLE 7

If kA = 0, show that either k = 0 or A = 0. 

Solution ► Write A = [aij] so that kA = 0 means kaij = 0 for all i and j. If k = 0, 
there is nothing to do. If k ≠ 0, then kaij = 0 implies that aij = 0 for all i and j; 
that is, A = 0.

Definition 2.2
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For future reference, the basic properties of matrix addition and scalar 
multiplication are listed in Theorem 1.

Theorem 1

Let A, B, and C denote arbitrary m × n matrices where m and n are fixed. Let k and p 
denote arbitrary real numbers. Then 

1. A + B = B + A.
2. A + (B + C) = (A + B) + C.
3. There is an m × n matrix 0, such that 0 + A = A for each A.
4. For each A there is an m × n matrix, -A, such that A + (-A) = 0.
5. k(A + B) = kA + kB.
6. (k + p)A = kA + pA.
7. (kp)A = k(pA).
8. 1A = A.

PROOF

Properties 1–4 were given previously. To check property 5, let A = [aij] and 
B = [bij] denote matrices of the same size. Then A + B = [aij + bij], as before, 
so the (i, j)-entry of k(A + B) is 

k(aij + bij) = kaij + kbij

But this is just the (i, j)-entry of kA + kB, and it follows that 
k(A + B) = kA + kB. The other properties can be similarly verified; the details 
are left to the reader.

The properties in Theorem 1 enable us to do calculations with matrices in 
much the same way that numerical calculations are carried out. To begin, property 
2 implies that the sum (A + B) + C = A + (B + C) is the same no matter how it 
is formed and so is written as A + B + C. Similarly, the sum A + B + C + D is 
independent of how it is formed; for example, it equals both (A + B) + (C + D) 
and A + [B + (C + D)]. Furthermore, property 1 ensures that, for example, 
B + D + A + C = A + B + C + D. In other words, the order in which the 
matrices are added does not matter. A similar remark applies to sums of five 
(or more) matrices. 

Properties 5 and 6 in Theorem 1 are called distributive laws for scalar 
multiplication, and they extend to sums of more than two terms. For example, 

k(A + B - C) = kA + kC - kC
(k + p - m)A = kA + pA - mA

Similar observations hold for more than three summands. These facts, together 
with properties 7 and 8, enable us to simplify expressions by collecting like terms, 
expanding, and taking common factors in exactly the same way that algebraic 
expressions involving variables and real numbers are manipulated. The following 
example illustrates these techniques. 
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EXAMPLE 8

Simplify 2(A + 3C) - 3(2C - B) - 3[2(2A + B - 4C) - 4(A - 2C)] where A, 
B, and C are all matrices of the same size. 

Solution ► The reduction proceeds as though A, B, and C were variables. 

2(A  + 3C) - 3(2C - B) - 3[2(2A + B - 4C) - 4(A - 2C)]
= 2A + 6C - 6C + 3B - 3[4A + 2B - 8C - 4A + 8C]
= 2A + 3B - 3[2B]
= 2A - 3B

Transpose of a Matrix
Many results about a matrix A involve the rows of A, and the corresponding result 
for columns is derived in an analogous way, essentially by replacing the word 
row by the word column throughout. The following definition is made with such 
applications in mind. 

If A is an m × n matrix, the transpose of A, written AT, is the n × m matrix whose 
rows are just the columns of A in the same order.

In other words, the first row of AT is the first column of A (that is it consists of the 
entries of column 1 in order). Similarly the second row of AT is the second column 
of A, and so on.

EXAMPLE 9

Write down the transpose of each of the following matrices.

A =   S  1 
 

 3   
2

  T  B = [5 2 6] C =   S  1 2
 

  
 3 4    

5 6
  T  D =   S    3 1 -1

 
   

   1 3   2     
-1 2   1

  T 

Solution ► AT = [1 3 2], BT =   S  5 
 

 2   
6

  T  , CT =   S  1 3 5    
2 4 6

  T  , and DT = D.

If A = [aij] is a matrix, write AT = [bij]. Then bij is the jth element of the ith row 
of AT and so is the jth element of the ith column of A. This means bij = aji, so the 
definition of AT can be stated as follows: 

 If A = [aij], then AT = [aji] (∗)

This is useful in verifying the following properties of transposition. 

Definition 2.3
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Theorem 2

Let A and B denote matrices of the same size, and let k denote a scalar. 
1. If A is an m × n matrix, then AT is an n × m matrix. 
2. (AT)T = A.
3. (kA)T = kAT.
4. (A + B)T = AT + BT.

PROOF

Property 1 is part of the definition of AT, and property 2 follows from (∗). As to 
property 3: If A = [aij], then kA = [kaij], so (∗) gives

(kA)T = [kaji] = k[aji] = kAT

Finally, if B = [bij], then A + B = [cij] where cij = aij + bij Then (∗) gives property 4:

(A + B)T = [cij]
T = [cji] = [aji + bji] = [aji] + [bji] = AT + BT

There is another useful way to think of transposition. If A = [aij] is an m × n 
matrix, the elements a11, a22, a33, … are called the main diagonal of A. Hence 
the main diagonal extends down and to the right from the upper left corner of 
the matrix A; it is shaded in the following examples:

a a
a a
a a

a a a
a a a

11 12

21 22

31 32

11 12 13

21 22 23

aa a a
a a a
a a a

a
a

11 12 13

21 22 23

31 32 33

11

21

Thus forming the transpose of a matrix A can be viewed as “flipping” A about its 
main diagonal, or as “rotating” A through 180° about the line containing the main 
diagonal. This makes property 2 in Theorem 2 transparent.

EXAMPLE 10

Solve for A if  a2AT - 3  S   1 2    
-1 1

  T  b
T

 =   S   2 3    
-1 2

  T .
Solution ► Using Theorem 2, the left side of the equation is

a2AT - 3  S   1 2    
-1 1

  T  b
T

 = 2(AT)T - 3   S   1 2    
-1 1

  T  T  = 2A - 3  S  1 -1    
2   1

  T 
Hence the equation becomes 

2A - 3   S  1 -1    
2   1

  T  =   S   2 3    
-1 2

  T 

Thus 2A =   S   2 3    
-1 2

  T  + 3  S  1 -1    
2   1

  T  =   S  5 0    
5 5

  T  , so finally A =   1 _ 2     S  5 0    
5 5

  T  =   5 _ 2     S  1 0    
1 1

  T .

Note that Example 10 can also be solved by first transposing both sides, then 
solving for AT, and so obtaining A = (AT)T. The reader should do this.
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The matrix D in Example 9 has the property that D = DT. Such matrices are 
important; a matrix A is called symmetric if A = AT. A symmetric matrix A is 
necessarily square (if A is m × n, then AT is n × m, so A = AT forces n = m). The 
name comes from the fact that these matrices exhibit a symmetry about the main 
diagonal. That is, entries that are directly across the main diagonal from each other 
are equal.

For example,   S   a  b c
 

  
 b′ d e    

c′ e′ f

   T  is symmetric when b = b′, c = c′, and e = e′.

EXAMPLE 11

If A and B are symmetric n × n matrices, show that A + B is symmetric. 

Solution ► We have AT = A and BT = B, so, by Theorem 2, we have
(A + B)T = AT + BT = A + B. Hence A + B is symmetric.

EXAMPLE 12

Suppose a square matrix A satisfies A = 2AT. Show that necessarily A = 0. 

Solution ► If we iterate the given equation, Theorem 2 gives 

A = 2AT = 2[2AT]T = 2[2(AT)T] = 4A

Subtracting A from both sides gives 3A = 0, so A =   1 _ 3  (3A) =   1 _ 3  (0) = 0.

E X E R C I S E S  2 . 1

 1. Find a, b, c, and d if

 (a)   S  a b
   

c d
  T  =   S   c - 3d   -d  

         
2a + d a + b

  T 

 �(b)   S   a - b b - c
        

c - d d - a
  T  = 2  S   1 1    

-3 1
  T 

 (c) 3  S   a    
b
   T  + 2  S   b    

a
   T  =   S  1   

2
  T  �(d)   S  a b

   
c d

  T  =   S   b c
    

d a
  T  

 2. Compute the following:

 (a)   S  3 2 1    
5 1 0

  T  - 5  S  3   0 -2     
1 -1   2

  T 
 �(b) 3  S   3   

-1
  T  - 5  S  6   

2
  T  + 7  S   1   

-1
  T 

 (c)   S  -2 1    
3 2

  T  - 4   S  1 -2    
0 -1

  T  + 3   S   2 -3     
-1 -2

  T 
 �(d) [3 -1 2] - 2[9 3 4] + [3 11 -6]

 (e)    S  1 -5 4 0      
2   1 0 6

  T  T  �(f )    S    0 -1   2
 

    
   1   0 -4      

-2   4   0
  T  
T

 

 (g)   S  3 -1    
2   1

  T  - 2   S  1 -2    
1   1

  T  T 

 �(h) 3   S   2 1    
-1 0

  T  T   - 2   S  1 -1    
2   3

  T 

 3. Let A =   S   2   1    
0 -1

  T  , B =   S  3 -1 2     
0   1 4

  T  , C =   S  3 -1    
2   0

  T  ,

  D =   S     1 3
 

  
 -1 0    

  1 4
   T  , and E =   S  1 0 1    

0 1 0
  T .

  Compute the following (where possible).

 (a) 3A - 2B �(b) 5C

 (c) 3ET 
�(d) B + D

 (e) 4AT - 3C �(f ) (A + C)T

 (g) 2B - 3E �(h) A - D

 (i) (B - 2E)T
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 4. Find A if: 

 (a) 5A -   S  1 0    
2 3

  T  = 3A -   S  5 2    
6 1

  T 

 �(b) 3A +   S   2     
1

   T  = 5A - 2  S   3     
0

   T 
 5. Find A in terms of B if:

 (a) A + B = 3A + 2B

 �(b) 2A - B = 5(A + 2B)

 6. If X, Y, A, and B are matrices of the same size, 
solve the following equations to obtain X and Y 
in terms of A and B. 

 (a) 5X + 3Y = A �(b) 4X + 3Y = A
2X +  Y = B  5X + 4Y = B

 7. Find all matrices X and Y such that:

 (a) 3X - 2Y = [3 -1]

 �(b) 2X - 5Y = [1 2]

 8. Simplify the following expressions where A, B, 
and C are matrices. 

 (a) 2[9(A - B) + 7(2B - A)]
- 2[3(2B + A) - 2(A + 3B) - 5(A + B)]

 �(b) 5[3(A - B + 2C) - 2(3C - B) - A]
+ 2[3(3A - B + C) + 2(B - 2A) - 2C]

 9. If A is any 2 × 2 matrix, show that:

 (a) A = a   S  1 0    
0 0

  T  + b   S  0 1    
0 0

  T  + c   S  0 0    
1 0

  T  + d   S  0 0    
0 1

  T 
  for some numbers a, b, c, and d.

 �(b) A = p   S  1 0    
0 1

  T  + q   S  1 1    
0 0

  T  + r   S  1 0    
1 0

  T  + s   S  0 1    
1 0

  T 
  for some numbers p, q, r, and s.

 10. Let A = [1 1 -1], B = [0 1 2], and C = [3 0 1]. 
If rA + sB + tC = 0 for some scalars r, s, and t, 
show that necessarily r = s = t = 0. 

 11. (a) If Q + A = A holds for every m × n matrix 
A, show that Q = 0mn.

 �(b) If A is an m × n matrix and A + A′ = 0mn, 
show that A′ = -A. 

 12. If A denotes an m × n matrix, show that A = -A 
if and only if A = 0. 

 13. A square matrix is called a diagonal matrix if 
all the entries off the main diagonal are zero. 

If A and B are diagonal matrices, show that the 
following matrices are also diagonal.

 (a) A + B �(b) A - B

 (c) kA for any number k 

 14. In each case determine all s and t such that the 
given matrix is symmetric: 

 (a)   S   1 s
    

-2 t
  T  �(b)   S   s t

    
st 1

  T 

 (c) 
2
1
2

s s st
t s

t s s

−   �(d) 
2
2 0
3 3

s t
s s t

t
+

 15. In each case find the matrix A. 

 (a) aA + 3  S  1 -1 0     
1   2 4

  T  b
T

 =   S  2 1
 

  
 0 5    

3 8
  T 

 �(b) a3AT + 2  S  1 0    
0 2

  T  b
T

 =   S  8 0    
3 1

  T 
 (c) (2A - 3[1 2 0])T = 3AT + [2 1 -1]T

 �(d) a2AT - 5  S   1 0    
-1 2

  T  b
T

 = 4A - 9  S   1 1    
-1 0

  T 

 16. Let A and B be symmetric (of the same size). 
Show that each of the following is symmetric. 

 (a) (A - B)

 �(b) kA for any scalar k

 17. Show that A + AT is symmetric for any square 
matrix A.

 18. If A is a square matrix and A = kAT where 
k ≠ ±1, show that A = 0.

 19. In each case either show that the statement is 
true or give an example showing it is false. 

 (a) If A + B = A + C, then B and C have the 
same size.

 �(b) If A + B = 0, then B = 0.

 (c) If the (3, 1)-entry of A is 5, then the 
(1, 3)-entry of AT is -5.

 �(d) A and AT have the same main diagonal for 
every matrix A. 

 (e) If B is symmetric and AT = 3B, then A = 3B.

 �(f ) If A and B are symmetric, then kA + mB is 
symmetric for any scalars k and m.
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 20. A square matrix W is called skew-symmetric if 
WT = -W. Let A be any square matrix.

 (a) Show that A - AT is skew-symmetric.

 (b) Find a symmetric matrix S and a skew-
symmetric matrix W such that A = S + W. 

 �(c) Show that S and W in part (b) are uniquely 
determined by A. 

 21. If W is skew-symmetric (Exercise 20), show that 
the entries on the main diagonal are zero. 

 22. Prove the following parts of Theorem 1. 

 (a) (k + p)A = kA + pA 

 �(b) (kp)A = k(pA)

 23. Let A, A1, A2, …, An denote matrices of the same 
size. Use induction on n to verify the following 
extensions of properties 5 and 6 of Theorem 1. 

 (a) k(A1 + A2 + � + An) 
= kA1 + kA2 + � + kAn for any number k

 (b) (k1 + k2 + � + kn)A 
= k1A + k2A + � + knA for any 
numbers k1, k2, …, kn 

 24. Let A be a square matrix. If A = pBT and 
B = qAT for some matrix B and numbers p 
and q, show that either A = 0 = B or pq = 1. 
[Hint: Example 7.]

Equations, Matrices, and Transformations
Up to now we have used matrices to solve systems of linear equations by 
manipulating the rows of the augmented matrix. In this section we introduce a 
different way of describing linear systems that makes more use of the coefficient 
matrix of the system and leads to a useful way of “multiplying” matrices.

Vectors
It is a well-known fact in analytic geometry that two points in the plane with 
coordinates (a1, a2) and (b1, b2) are equal if and only if a1 = b1 and a2 = b2. 
Moreover, a similar condition applies to points (a1, a2, a3) in space. We extend 
this idea as follows.

An ordered sequence (a1, a2, …, an) of real numbers is called an ordered n-tuple. 
The word “ordered” here reflects our insistence that two ordered n-tuples are equal 
if and only if corresponding entries are the same. In other words,

(a1, a2, …, an) = (b1, b2, …, bn) if and only if a1 = b1, a2 = b2, …, and an = bn.

Thus the ordered 2-tuples and 3-tuples are just the ordered pairs and triples familiar 
from geometry. 

Let � denote the set of all real numbers. The set of all ordered n-tuples from � has a 
special notation:

�
n denotes the set of all ordered n-tuples of real numbers.

There are two commonly used ways to denote the n-tuples in �n: As rows 

(r1, r2, …, rn) or columns   S   
r1

 
 

 r2   
	
 
 

 
rn

   T  ; the notation we use depends on the context. In any 

event they are called vectors or n-vectors and will be denoted using bold type such 
as x or v. For example, an m × n matrix A will be written as a row of columns:

 A = [a1 a2 � an] where aj denotes column j of A for each j.

S E C T I O N  2 . 2

Definition 2.4
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If x and y are two n-vectors in �n, it is clear that their matrix sum x + y is also 
in �n as is the scalar multiple kx for any real number k. We express this observation 
by saying that �n is closed under addition and scalar multiplication. In particular, 
all the basic properties in Theorem 1 Section 2.1 are true of these n-vectors. These 
properties are fundamental and will be used frequently below without comment. As 
for matrices in general, the n × 1 zero matrix is called the zero n-vector in �n and, 
if x is an n-vector, the n-vector -x is called the negative x.

Of course, we have already encountered these n-vectors in Section 1.3 as the 
solutions to systems of linear equations with n variables. In particular we defined the 
notion of a linear combination of vectors and showed that a linear combination of 
solutions to a homogeneous system is again a solution. Clearly, a linear combination 
of n-vectors in �n is again in �n, a fact that we will be using.

Matrix-Vector Multiplication
Given a system of linear equations, the left sides of the equations depend only on 
the coefficient matrix A and the column x of variables, and not on the constants. 
This observation leads to a fundamental idea in linear algebra: We view the left 
sides of the equations as the “product” Ax of the matrix A and the vector x. This 
simple change of perspective leads to a completely new way of viewing linear 
systems—one that is very useful and will occupy our attention throughout this book. 

To motivate the definition of the “product” Ax, consider first the following 
system of two equations in three variables:

 ax1 + bx2 + cx3 = b1

 a′x1 + b′x2 + c′x3 = b1 (∗)

and let A =   S   a  b  c
             

a′ b′ c′
   T  , x =   S  

x1

 
 

 x2   
x3

  T  , and b =   S   b1      
b2

   T  denote the coefficient matrix, the 

variable matrix, and the constant matrix, respectively. The system (∗) can be 
expressed as a single vector equation

  S   ax1 + bx2 + cx3                            
a′x1 + b′x2 + c′x3

   T  =   S   b1      
b2

   T  ,
which in turn can be written as follows:

x1  S   a     
a′

   T  + x2  S   b     
b′

   T  + x3  S   c     
c′

   T  =   S   b1      
b2

   T  .
Now observe that the vectors appearing on the left side are just the columns

a1 =   S   a     
a′

   T  , a2 =   S   b     
b′

   T  , and a3 =   S   c     
c′

   T 
of the coefficient matrix A. Hence the system (∗) takes the form

 x1a1 + x2a2 + x3a3 = B. (∗∗)

This shows that the system (∗) has a solution if and only if the constant matrix b 
is a linear combination3 of the columns of A, and that in this case the entries of 
the solution are the coefficients x1, x2, and x3 in this linear combination.

Moreover, this holds in general. If A is any m × n matrix, it is often convenient to 
view A as a row of columns. That is, if a1, a2, …, an are the columns of A, we write

A = [a1 a2 � an]

and say that A = [a1 a2 � an] is given in terms of its columns.

3 Linear combinations were introduced in Section 1.3 to describe the solutions of homogeneous systems of linear equations. They will 
be used extensively in what follows.
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Now consider any system of linear equations with m × n coefficient matrix A. If 

b is the constant matrix of the system, and if x =   S   
x1

 
 

 x2   
	
 
 

 
xn

   T  is the matrix of variables then, 

exactly as above, the system can be written as a single vector equation

 x1a1 + x2a2 + � + xnan = b. (∗∗∗)

EXAMPLE 1

Write the system •
3 4

3
5

1

1 3

32

32

2

x x
x

x
x

x
x

x

+ − =

− + =

− −1=

2
3
0

 in the form given in (∗∗∗).

Solution ► x1   S  3 
 

 1   
0

  T  + x2   S     2
 

 
 -3   

  1
   T  + x3   S  -4

 
 

   1   
-5

  T  =   S     0
 

 
   3   

-1
  T .

As mentioned above, we view the left side of (∗∗∗) as the product of the matrix A 
and the vector x. This basic idea is formalized in the following definition:

Matrix-Vector Products Let A = [a1 a2 � an] be an m × n matrix, written in 

terms of its columns a1, a2, …, an. If x =   S   
x1

 
 

 x2   
	
 
 

 
xn

   T  is any n-vector, the product Ax is defined 

to be the m-vector given by:

Ax = x1a1 + x1a2 + x1an.

In other words, if A is m × n and x is an n-vector, the product Ax is the linear 
combination of the columns of A where the coefficients are the entries of x (in order).

Note that if A is an m × n matrix, the product Ax is only defined if x is an 
n-vector and then the vector Ax is an m-vector because this is true of each column 
aj of A. But in this case the system of linear equations with coefficient matrix A and 
constant vector b takes the form of a single matrix equation

Ax = b.

The following theorem combines Definition 2.5 and equation (∗∗∗) and summarizes 
the above discussion. Recall that a system of linear equations is said to be consistent if 
it has at least one solution.

Theorem 1

(1) Every system of linear equations has the form Ax = b where A is the coefficient 
matrix, b is the constant matrix, and X is the matrix of variables.

(2) The system Ax = b is consistent if and only if b is a linear combination of the 
columns of A.

(3) If a1, a2, …, an are the columns of A and if x =   S   
x1

 
 

 x2   
	
 
 

 
xn

   T  , then x is a solution to the 

linear system Ax = b if and only if x1, x2, …, xn are a solution of the vector 
equation x1a1 + x2a2 + � + xnan = b.

Definition 2.5
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A system of linear equations in the form Ax = b as in (1) of Theorem 1 is said to be 
written in matrix form. This is a useful way to view linear systems as we shall see.

Theorem 1 transforms the problem of solving the linear system Ax = b into the 
problem of expressing the constant matrix B as a linear combination of the columns 
of the coefficient matrix A. Such a change in perspective is very useful because one 
approach or the other may be better in a particular situation; the importance of the 
theorem is that there is a choice.

EXAMPLE 2

If A =   S    2 -1   3 5
  

     
    0   2 -3 1         

-3   4   1 2
  T  and x =   S     2

 
 

   1   
  0

 
 

 

-2

  T  , compute Ax.

Solution ► By Definition 2.5: Ax = 2  S     2
 

 
   0   

-3
  T  + 1  S  -1

 
 

   2   
  4

   T  + 0  S     3
 

 
 -3   

  1
   T  - 2  S  5 

 
 1   

2
  T  =   S  -7

 
 

   0   
-6

  T .

EXAMPLE 3

Given columns a1, a2, a3, and a4 in �3, write 2a1 - 3a2 + 5a3 + a4 in the form 
Ax where A is a matrix and x is a vector.

Solution ► Here the column of coefficients is x =   S   
  2

 
 

 -3   
  5

 
 

 

  1

   T . Hence Definition 2.5 gives

Ax = 2a1 - 3a2 + 5a3 + a4

where A = [a1 a2 a3 a4] is the matrix with a1, a2, a3, and a4 as its columns.

EXAMPLE 4

Let A = [a1 a2 a3 a4] be the 3 × 4 matrix given in terms of its columns

a1 =   S    2
 
 

  0   
-1

  T  , a2 =   S  1 
 

 1   
1

  T  , a4 =   S    3
 
 

 -1   
-3

  T  , and a4 =   S  3 
 

 1   
0

  T . In each case below, either express 

b as a linear combination of a1, a2, a3, and a4, or show that it is not such a 
linear combination. Explain what your answer means for the corresponding 
system Ax = b of linear equations.

(a) b =   S  1 
 

 2   
3

  T    (b) b =   S  4 
 

 2   
1

  T .
Solution ► By Theorem 1, b is a linear combination of a1, a2, a3, and a4 if and 
only if the system Ax = b is consistent (that is, it has a solution). So in each 
case we carry the augmented matrix [A|b] of the system Ax = b to reduced 
form.
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(a) Here 
2 3 3 1
0 1 2
1 3 3

1
1 1
1 0

−
−−

 → 
1

1
1
1

2 0

0

0

0
0 1 0
0 0 1

− , so the system Ax = b has no 

solution in this case. Hence b is not a linear combination of a1, a2, a3, and a4.

(b) Now 
2 3 3 4
0 1 2
1 1 3 10

1
1 1−

− −
 → 

1 2 1
0 1

0

0

0 00

1
11 2

0
− , so the system Ax = b is 

consistent. 

Thus b is a linear combination of a1, a2, a3, and a4 in this case. In fact the 
general solution is x1 = 1 - 2s - t, x2 = 2 + s - t, x3 = s, and x4 = t where s 

and t are arbitrary parameters. Hence x1a1 + x2a2 + x3a3 + x4a4 = b =   S  4 
 

 2   
1

  T  for 

any choice of s and t. If we take s = 0 and t = 0, this becomes a1 + 2a2 = b, 
whereas taking s = 1 = t gives -2a1 + 2a2 + a3 + a4 = b.

EXAMPLE 5

Taking A to be the zero matrix, we have 0x = 0 for all vectors x by 
Definition 2.5 because every column of the zero matrix is zero. Similarly, 
A0 = 0 for all matrices A because every entry of the zero vector is zero.

EXAMPLE 6

If I =   S  1 0 0
 

  
 0 1 0    

0 0 1
  T  , show that Ix = x for any vector x in �3.

Solution ► If x =   S  
x1

 
 

 x2   
x3

  T  then Definition 2.5 gives

Ix = x1  S  1 
 

 0   
0

  T  + x2  S  0 
 

 1   
0

  T  + x3  S  0 
 

 0   
1

  T  =   S  
x1

 
 

 0   
0

   T  +   S   0 
 

 x2   
0

   T  +   S   0 
 

 0   
x3

  T  =   S  
x1

 
 

 x2   
x3

  T  = x.

The matrix I in Example 6 is called the 3 × 3 identity matrix, and we will 
encounter such matrices again in Example 11 below.

Before proceeding, we develop some algebraic properties of matrix-vector 
multiplication that are used extensively throughout linear algebra.

Theorem 2

Let A and B be m × n matrices, and let x and y be n-vectors in �n. Then:
(1) A(x + y) = Ax + Ay.
(2) A(ax) = a(Ax) = (aA)x for all scalars a.
(3) (A + B)x = Ax + Bx.
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PROOF

We prove (3); the other verifications are similar and are left as exercises. Let 
A = [a1 a2 � an] and B = [b1 b2 � bn] be given in terms of their columns. 
Since adding two matrices is the same as adding their columns, we have

A + B = [a1 + b1 a2 + b1 � an + bn]

If we write x =   S   
x1

 
 

 x2   
	
 
 

 
xn

   T  Definition 2.5 gives

(A + B)x  = x1(a1 + b1) + x2(a2 + b2) + � + xn(an + bn) 
= (x1a1 + x2a2 + � + xnan) + (x1b1 + x2b2 + � + xnbn) 
= Ax + Bx.

Theorem 2 allows matrix-vector computations to be carried out much as in ordinary 
arithmetic. For example, for any m × n matrices A and B and any n-vectors x and y, 
we have:

A(2x - 5y) = 2Ax - 5Ay and (3A - 7B)x = 3Ax - 7Bx

We will use such manipulations throughout the book, often without mention.
Theorem 2 also gives a useful way to describe the solutions to a system

Ax = b

of linear equations. There is a related system

Ax = 0

called the associated homogeneous system, obtained from the original system 
Ax = b by replacing all the constants by zeros. Suppose x1 is a solution to Ax = b 
and x0 is a solution to Ax = 0 (that is Ax1 = b and Ax0 = 0). Then x1 + x0 is 
another solution to Ax = b. Indeed, Theorem 2 gives

A(x1 + x0) = Ax1 + Ax0 = b + 0 = b

This observation has a useful converse.

Theorem 3

Suppose x1 is any particular solution to the system Ax = b of linear equations. Then 
every solution x2 to Ax = b has the form

x2 = x0 + x1

for some solution x0 of the associated homogeneous system Ax = 0.

PROOF

Suppose x2 is also a solution to Ax = b, so that Ax2 = b. Write x0 = x2 - x1. 
Then x2 = x0 + x1 and, using Theorem 2, we compute

Ax0 = A(x2 - x1) = Ax2 - Ax1 = b - b = 0.

Hence x0 is a solution to the associated homogeneous system Ax = 0.
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Note that gaussian elimination provides one such representation.

EXAMPLE 7

Express every solution to the following system as the sum of a specific solution 
plus a solution to the associated homogeneous system.

  x1 - x2 -  x3 + 3x4 = 2
 2x1 - x2 - 3x3 + 4x4 = 6
  x1      - 2x3 +  x4 = 4

Solution ► Gaussian elimination gives x1 = 4 + 2s - t, x2 = 2 + s + 2t, x3 = s, 
and x4 = t where s and t are arbitrary parameters. Hence the general solution 
can be written

x =   S  
x1

 
 

 x2   x3
 

 
 

x4

  T  =   S  4 + 2s - t
 

    
 2 + s + 2t      s      

t
   T  =   S  

4
 

 
 2   

0
 

 
 

0

  T  +  Q s   S  2 
 

 1   
1

 
 

 

0

  T  + t   S  -1
 

 
   2   

  0
 

 
 

  1

   T  R .
Thus x =   S  

4
 

 
 2   

0
 

 
 

0

  T  is a particular solution (where s = 0 = t), and x0 = s   S  2 
 

 1   
1

 
 

 

0

  T  + t   S  -1
 

 
   2   

  0
 

 
 

  1

   T 
gives all solutions to the associated homogeneous system. (To see why this is 
so, carry out the gaussian elimination again but with all the constants set equal 
to zero.)

The Dot Product
Definition 2.5 is not always the easiest way to compute a matrix-vector product Ax 
because it requires that the columns of A be explicitly identified. There is another 
way to find such a product which uses the matrix A as a whole with no reference to its 
columns, and hence is useful in practice. The method depends on the following notion.

If (a1, a2, …, an) and (b1, b2, …, bn) are two ordered n-tuples, their dot product is 
defined to be the number

a1b1 + a2b2 + � + anbn

obtained by multiplying corresponding entries and adding the results.

To see how this relates to matrix products, let A denote a 3 × 4 matrix and let x be 
a 4-vector. Writing

x =   S  
x1

 
 

 x2   x3
 

 
 

x4

  T  and A =   S  
a11 a12 a13 a14

  
     

  a21 a22 a23 a24         
a31 a32 a33 a34

  T 
in the notation of Section 2.1, we compute

Ax =   S  
a11 a12 a13 a14

  
     

  a21 a22 a23 a24         
a31 a32 a33 a34

  T    S  
x1

 
 

 x2   x3
 

 
 

x4

  T   = x1  S  
a11

 
 

 a21   
a31

  T  + x2  S  
a12

 
 

 a22   
a32

  T  + x3  S  
a13

 
 

 a23   
a33

  T  + x4  S  
a14

 
 

 a24   
a34

  T 

=   S  
a11x1 a12x2 a13x3 a14x4

  
       

  a21x1 a22x2 a23x3 a24x4           
a31x1 a32x2 a33x3 a34x4

  T .

Definition 2.6
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From this we see that each entry of Ax is the dot product of the corresponding row 
of A with x. This computation goes through in general, and we record the result in 
Theorem 4.

Theorem 4

Dot Product Rule
Let A be an m × n matrix and let x be an n-vector. Then each entry of the vector Ax is 
the dot product of the corresponding row of A with x.

This result is used extensively throughout linear algebra.
If A is m × n and x is an n-vector, the computation of Ax by the dot product rule 

is simpler than using Definition 2.5 because the computation can be carried out 
directly with no explicit reference to the columns of A (as in Definition 2.5). The 
first entry of Ax is the dot product of row 1 of A with x. In hand calculations this 
is computed by going across row one of A, going down the column x, multiplying 
corresponding entries, and adding the results. The other entries of Ax are computed 
in the same way using the other rows of A with the column x.

In general, compute entry k of Ax as follows (see the diagram):

Go across row k of A and down column x, multiply 
corresponding entries, and add the results.

As an illustration, we rework Example 2 using the dot product rule instead of 
Definition 2.5.

EXAMPLE 8

If A = 
−

−
−

2 3
0 3
3

1
2
4 1

5
1
2

 and x =   S     2
 

 
   1   

  0
 

 
 

-2

  T  , compute Ax.

Solution ► The entries of Ax are the dot products of the rows of A with x:

Ax =   S    2 -1   3 5
  

     
    0   2 -3 1         

-3   4   1 2
  T    S     2

 
 

   1   
  0

 
 

 

-2

  T  = 
+
+
+

+
+
+

+
+
+

2·2
0·2 2·1

4·1 1·0

3·0 5(−2)
1(−2)
2(−2)(−3)2

(−1)1
(−3)0  =   S  -7

 
 

   0   
-6

  T .
Of course, this agrees with the outcome in Example 2.

EXAMPLE 9

Write the following system of linear equations in the form Ax = b.

 5x1 - x2 + 2x3 +  x4 - 3x5 =   8
  x1 + x2 + 3x3 - 5x4 + 2x5 = -2
-x1 + x2 - 2x3 +      - 3x5 =   0

Solution ► Write A = 

−
−

−

−− − −

5
5

1 1

1
1

2

2

3
1 3 2
1 0 3

, b =   S     8
 

 
 -2   

  0
   T  , and x =   S  

x1

 

 

 
x2

 
 

 x3   
x4

 
 

 

x5

  T . Then the

=

A x Ax

row i entry i
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dot product rule gives Ax = 
x x x
x x x
x x

x
xx

x
x x

− +
+ −

− −
+

+

+
+

−

−

5 3
3 2
2

2
5

3

1 3 5

1 3 5

5

2

2

2

4

4

1 3

, so the entries of

Ax are the left sides of the equations in the linear system. Hence the system 
becomes Ax = b because matrices are equal if and only corresponding entries 
are equal.

EXAMPLE 10

If A is the zero m × n matrix, then Ax = 0 for each n-vector x.

Solution ► For each k, entry k of Ax is the dot product of row k of A with x, and 
this is zero because row k of A consists of zeros.

 For each n > 2, the identity matrix In is the n × n matrix with 1s on the main 
diagonal (upper left to lower right), and zeros elsewhere.

The first few identity matrices are

I2 =   S  1 0    
0 1

  T  , I3 = 
1 0 0
0 1 0
0 0 1

, I4 = 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, …

In Example 6 we showed that I3x = x for each 3-vector x using Definition 2.5. The 
following result shows that this holds in general, and is the reason for the name.

EXAMPLE 11

For each n ≥ 2 we have Inx = x for each n-vector x in �n.

Solution ► We verify the case n = 4. Given the 4-vector x =   S  
x1

 
 

 x2   x3
 

 
 

x4

  T  the dot 
product rule gives

I4x = 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

   S  
x1

 
 

 x2   x3
 

 
 

x4

  T  = 

x1 0+ + 00 0
0 0 0
0 0 0
0 0 0

2

3

4

+
+ + +
+ + +
+ + +

x
x

x

 =   S  
x1

 
 

 x2   x3
 

 
 

x4

  T  = x.

In general, Inx = x because entry k of Inx is the dot product of row k of In with 
x, and row k of In has 1 in position k and zeros elsewhere.

EXAMPLE 12

Let A = [a1 a2 � an] be any m × n matrix with columns a1, a2, …, an. If ej 
denotes column j of the n × n identity matrix In, then Aej = aj for each 
j = 1, 2, …, n.

Definition 2.7
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Solution ► Write ej =   S   
t1

 
 

 t2   
	
 
 

 

tn

   T  where tj = 1, but ti = 0 for all i ≠ j. Then Theorem 4 

gives

Aej = t1a1 + � + tjaj + � + tnan = 0 + � + aj + � + 0 = aj.

Example 12 will be referred to later; for now we use it to prove

Theorem 5

Let A and B be m × n matrices. If Ax = Bx for all x in �n, then A = B.

PROOF

Write A = [a1 a2 � an] and B = [b1 b2 � bn] and in terms of their columns. 
It is enough to show that ak = bk holds for all k. But we are assuming that Aek = 
Bek, which gives ak = bk by Example 12.

We have introduced matrix-vector multiplication as a new way to think about 
systems of linear equations. But it has several other uses as well. It turns out that 
many geometric operations can be described using matrix multiplication, and we 
now investigate how this happens. As a bonus, this description provides a geometric 
“picture” of a matrix by revealing the effect on a vector when it is multiplied by A. 
This “geometric view” of matrices is a fundamental tool in understanding them.

Transformations
The set �2 has a geometrical interpretation as the euclidean plane where a vector 

  S  a1   
a2

  T  in �2 represents the point (a1, a2) in the plane (see Figure 1). In this way we 

regard �2 as the set of all points in the plane. Accordingly, we will refer to vectors 
in �2 as points, and denote their coordinates as a column rather than a row. To 

enhance this geometrical interpretation of the vector   S  a1   
a2

  T  , it is denoted graphically 

by an arrow from the origin   S  0   
0

  T  to the vector as in Figure 1. 

Similarly we identify �3 with 3-dimensional space by writing a point (a1, a2, a3) as 

the vector   S  
a1

 
 

 a2   
a3

  T  in �3, again represented by an arrow4 from the origin to the point as 

in Figure 2. In this way the terms “point” and “vector” mean the same thing in the 
plane or in space.

We begin by describing a particular geometrical transformation of the plane �2.

4 This “arrow” representation of vectors in �2 and �3 will be used extensively in Chapter 4.

x2

x1a1

a2
a
a

1
2

⎡
⎣⎢

⎤
⎦⎥

0 0
0=

� FIGURE 1

x2

x3

x1

a2

a1

a3

0

a
a
a

1
2
3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

� FIGURE 2

51SECTION 2.2 Equations, Matrices, and Transformations



EXAMPLE 13

Consider the transformation of �2 given by reflection in the x axis. This 

operation carries the vector   S  a1   
a2

  T  to its reflection   S   a1    
-a2

  T  as in Figure 3. Now 

observe that

  S   a1    
-a2

  T  =   S   1   0    
0 -1

  T    S  a1   
a2

  T 

so reflecting   S  a1   
a2

  T  in the x axis can be achieved by multiplying by the matrix   S   1   0    
0 -1

  T .

If we write A =   S   1   0    
0 -1

  T  , Example 13 shows that reflection in the x axis carries 

each vector x in �2 to the vector Ax in �2. It is thus an example of a function

T : �2 → �2 where T(x) = Ax for all x in �2.

As such it is a generalization of the familiar functions f : � → � that carry a number 
x to another real number f (x). 

More generally, functions T : �n → �m are called transformations from �n to 
�

m. Such a transformation T is a rule that assigns to every vector x in �n a uniquely 
determined vector T(x) in �m called the image of x under T. We denote this state of 
affairs by writing 

T : �n → �m or �
n →T  �m

The transformation T can be visualized as in Figure 4.
To describe a transformation T : �n → �m we must specify the vector T(x) in 

�
m for every x in �n. This is referred to as defining T, or as specifying the action 

of T. Saying that the action defines the transformation means that we regard two 
transformations S : �n → �m and T : �n → �m as equal if they have the same 
action; more formally

S = T if and only if S(x) = T(x) for all x in �n.

Again, this what we mean by f = g where f, g : � → � are ordinary functions.
Functions f : � → � are often described by a formula, examples being f (x) = x2 + 1 

and f (x) = sin x. The same is true of transformations; here is an example.

EXAMPLE 14

The formula T   S  
x1

 
 

 x2   x3
 

 
 

x4

  T  =   S  
x1 + x2

 
   

 x2 + x3    
 

x3 + x4

  T  defines a transformation �4 → �3.

Example 13 suggests that matrix multiplication is an important way of defining 
transformations �n → �m. If A is any m × n matrix, multiplication by A gives a 
transformation

TA : �n → �m defined by TA(x) = Ax for every x in �n.

x

y
a
a

1
2

⎡
⎣⎢

⎤
⎦⎥

a
a1
2−

⎡
⎣⎢

⎤
⎦⎥

0

� FIGURE 3

x

�n
�m

T
T(x)

� FIGURE 4
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TA is called the matrix transformation induced by A.

Thus Example 13 shows that reflection in the x axis is the matrix transformation 

�
2 → �2 induced by the matrix   S   1   0    

0 -1
  T . Also, the transformation R : �4 → �3 in 

Example 13 is the matrix transformation induced by the matrix

A =   S  1 1 0 0
 

   
 0 1 1 0     

0 0 1 1
  T  because   S  1 1 0 0

 
   

 0 1 1 0     
0 0 1 1

  T    S  
x1

 
 

 x2   x3
 

 
 

x4

  T  =   S  
x1 + x2

 
   

 x2 + x3    
 

x3 + x4

  T .
EXAMPLE 15

Let  R   π __ 
2

    : �
4 → �3

 denote counterclockwise rotation about the origin through 

  π __ 2   radians (that is, 90°).5 Show that  R   π __ 
2

    is induced by the matrix   S  0 -1    
1   0

  T .

Solution ► The effect of  R   π __ 
2

    is to rotate the vector x =   S   a    
b
   T  counterclockwise 

through   π __ 2   to produce the vector  R   π __ 
2

   (x) shown in Figure 5. Since triangles 

0px and 0q R   π __ 
2

   (x) are identical, we obtain  R   π __ 
2

   (x) =   S   -b
       

a
   T . But 

  S   -b
       

a
   T  =   S  0 -1    

1   0
  T    S   a    

b
   T  , so we obtain  R   π __ 

2
   (x) = Ax for all x in �2 where A =   S  0 -1    

1   0
  T .

In other words,  R   π __ 
2

    is the matrix transformation induced by A.

5

If A is the m × n zero matrix, then A induces the transformation

T : �n → �m given by T(x) = Ax = 0 for all x in �n.

This is called the zero transformation, and is denoted T = 0.
Another important example is the identity transformation

 1 �n  : �n → �n given by  1 �n  (x) = x for all x in �n.

That is, the action of  1 �n  on x is to do nothing to it. If In denotes the n × n identity 
matrix, we showed in Example 11 that In x = x for all x in �n. Hence  1 �n (x) = Inx 
for all x in �n; that is, the identity matrix In induces the identity transformation.

Here are two more examples of matrix transformations with a clear geometric 
description.

EXAMPLE 16

If a > 0, the matrix transformation T   S    x     y   T  =   S   ax
      y   T  induced by the matrix 

A =   S   a 0    
0 1

  T  is called an x-expansion of �2 if a > 1, and an x-compression if 

0 < a < 1. The reason for the names is clear in the diagram below. Similarly, 

if b > 0 the matrix   S  1 0    
0 b

  T  gives rise to y-expansions and y-compressions.

5 Radian measure for angles is based on the fact that 360° equals 2π radians. Hence π = 180° and   π 
__ 2   = 90°.

Definition 2.8

0 x
a

a

b

b

p

q

y

x a
b= ⎡

⎣⎢
⎤
⎦⎥

R b
a�

2
(x) = ⎡⎣ ⎤⎦

−

� FIGURE 5
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1
2 x
y

⎡
⎣⎢

⎤
⎦⎥

x-compression x-expansion
y y y

x x x

x
y

⎡
⎣⎢

⎤
⎦⎥

3
2 x
y

⎡
⎣⎢

⎤
⎦⎥

a = 1
2

a = 3
2

0 0 0

EXAMPLE 17

If a is a number, the matrix transformation T    S   x     
y
   T  =   S   x + ay            

y
   T  induced by the 

matrix A =   S   1 a
    

0 1
  T  is called an x-shear of �2 (positive if a > 0 and negative 

if a < 0). Its effect is illustrated below when a =   1 _ 4   and a = -  1 _ 4  .

Positive x-shear Negative x-shear

0 0 0

y y y

x x x

x
y

⎡
⎣⎢

⎤
⎦⎥

x y
y

+⎡
⎣⎢

⎤
⎦⎥

1
4 x y

y
−⎡

⎣⎢
⎤
⎦⎥

1
4

a = −a = 1
4

1
4

We hasten to note that there are important geometric transformations that are 
not matrix transformations. For example, if w is a fixed column in �n, define the 
transformation Tw : �n → �n by 

Tw(x) = x + w for all x in �n.

Then Tw is called translation by w. In particular, if w =   S  2   
1

  T  in �2, the effect of 

Tw on   S  x   
y
  T  is to translate it two units to the right and one unit up (see Figure 6). 

The translation Tw is not a matrix transformation unless w = 0. Indeed, if Tw 
were induced by a matrix A, then Ax = Tw(x) = x + w would hold for every x in 
�

n. In particular, taking x = 0 gives w = A0 = 0.

E X E R C I S E S  2 . 2

 1. In each case find a system of equations that is 
equivalent to the given vector equation. (Do not 
solve the system.) 

 (a) x1   S     2
 
 

 -3   
  0

   T  + x2   S  1 
 

 1   
4

  T  + x3   S     2
 
 

   0   
-1

  T  =   S     5
 

 
   6   

-3
  T 

 �(b) x1   S  1 
 

 0   
1

 
 

 

0

  T  + x2   S  
-3

 
 

   8   
  2

 
 

 

  1

   T  + x3   S  -3
 

 
   0   

  2
 

 
 

  2

   T  + x4   S     3
 

 
   2   

  0
 

 
 

-2

  T  =   S  5 
 

 1   
2

 
 

 

0

  T 

 2. In each case find a vector equation that is 
equivalent to the given system of equations. 
(Do not solve the equation.) 

 (a)    x1 -  x2 + 3x3 =   5
-3x1 +  x2 +  x3 = -6
  5x1 - 8x2     =   9

 �(b)   x1 - 2x2 -  x3 +  x4 =   5
-x1    +  x3 - 2x4 = -3
 2x1 - 2x2 + 7x3       =   8
 3x1 - 4x2 + 9x3 - 2x4 =  12

y

0 x

x
x

y
= ⎡

⎣
⎤
⎦

Tw
x

y
(x) = ⎡

⎣
⎤
⎦

+
+

2

1

� FIGURE 6
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 3. In each case compute Ax using: (i) Definition 
2.5. (ii) Theorem 4. 

 (a) A =   S  3 -2 0     
5 -4 1

  T  and x =   S  
x1

 
 

 x2   
x3

  T .
 �(b) A =   S   1   2 3     

0 -4 5
  T  and x =   S  

x1

 
 

 x2   
x3

  T .
 (c) A =   S   -2 0   5 4

  
    

    1 2   0 3        
-5 6 -7 8

  T  and x =   S  
x1

 
 

 x2   x3
 

 
 

x4

  T .
 �(d) A =   S     3 -4   1 6

  
     

    0   2   1 5         
-8   7 -3 0

  T  and x =   S  
x1

 
 

 x2   x3
 

 
 

x4

  T .
 4. Let A = [a1 a2 a3 a4] be the 3 × 4 matrix 

given in terms of its columns 

  a1 =   S     1
 

 
   1   

-1
  T  , a2 =   S  3 

 
 0   

2
  T  , a3 =   S     2

 
 

 -1   
  3

   T  , and a4 =   S     0
 

 
 -3   

  5
   T . 

  In each case either express b as a linear 
combination of a1, a2, a3, and a4, or show that 
it is not such a linear combination. Explain 
what your answer means for the corresponding 
system Ax = b of linear equations. 

 (a) b =   S  0 
 

 3   
5

  T  (b) b =   S  4 
 

 1   
1

  T 
 5. In each case, express every solution of the system 

as a sum of a specific solution plus a solution of 
the associated homogeneous system. 

 (a)  x + y +  z = 2 �(b) x -  y - 4z = -4
2x + y    = 3  x + 2y + 5z =   2
 x - y - 3z = 0  x +  y + 2z =   0

 (c)   x1 + x2 -  x3    - 5x5 =   2
   x2 +  x3    - 4x5 = -1
   x2 +  x3 + x4 -  x5 = -1
2x1      - 4x3 + x4 +  x5 =  6

 �(d)   2x1 + x2 -  x3 -  x4 = -1
  3x1 + x2 +  x3 - 2x4 = -2
 -x1 - x2 + 2x3 +  x4 =   2
-2x1 - x2   + 2x4 =  3

 �6. If x0 and x1 are solutions to the homogeneous 
system of equations Ax = 0, use Theorem 2 to 
show that sx0 + tx1 is also a solution for any scalars 
s and t (called a linear combination of x0 and x1).

 7. Assume that A  S     1
 

 
 -1   

  2
   T  = 0 = A  S  2 

 
 0   

3
  T . Show that 

x0 =   S     2
 

 
 -1   

  3
   T  is a solution to Ax = b. Find a 

two-parameter family of solutions to Ax = b. 

 8. In each case write the system in the form 
Ax = b, use the gaussian algorithm to solve 
the system, and express the solution as a 
particular solution plus a linear combination 
of basic solutions to the associated 
homogeneous system Ax = 0.

 (a)     x1 -  2x2 +  x3 +  4x4 -   x5 =   8
 -2x1 +  4x2 +  x3 -  2x4 -  4x5 = -1
   3x1 -  6x2 + 8x3 +  4x4 - 13x5 =   1
   8x1 - 16x2 + 7x3 + 12x4 -  6x5 = 11

 �(b)     x1 - 2x2 +  x3 + 2x4 +  3x5 = -4
 -3x1 + 6x2 - 2x3 - 3x4 - 11x5 =  11
 -2x1 + 4x2 -  x3 +  x4 -  8x5 =   7
  -x1 + 2x2   + 3x4 -  5x5 =  3

 9. Given vectors 

  a1 =   S  1 
 

 0   
1

  T  , a2 =   S  1 
 

 1   
0

  T  , and a3 =   S     0
 

 
 -1   

  1
   T  , find a vector 

  b that is not a linear combination of a1, a2, 
and a3. Justify your answer. [Hint: Part (2) of 
Theorem 1.]

 10. In each case either show that the statement is 
true, or give an example showing that it is false.

 (a)   S   3     
2

   T  is a linear combination of   S   1     
0

   T  and   S   0     
1

   T . 
 �(b) If Ax has a zero entry, then A has a row of 

zeros.

 (c) If Ax = 0 where x ≠ 0, then A = 0.

 �(d) Every linear combination of vectors in �n 
can be written in the form Ax.

 (e) If A = [a1 a2 a3] in terms of its columns, and 
if b = 3a1 - 2a2, then the system Ax = b has 
a solution.

 �(f ) If A = [a1 a2 a3] in terms of its columns, 
and if the system Ax = b has a solution, then 
b = sa1 + ta2 for some s, t.

 (g) If A is m × n and m < n, then Ax = b has a 
solution for every column b.

 �(h) If Ax = b has a solution for some column b, 
then it has a solution for every column b.

 (i) If x1 and x2 are solutions to Ax = b, then 
x1 - x2 is a solution to Ax = 0.
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 (j) Let A = [a1 a2 a3] in terms of its columns. 

If a3 = sa1 + ta2. then Ax = 0, where x =   S   
s
 
 

 t   
-1

  T .
 11. Let T : �2 → �2 be a transformation. In each 

case show that T is induced by a matrix and find 
the matrix.

 (a) T is a reflection in the y axis.

 �(b) T is a reflection in the line y = x.

 (c) T is a reflection in the line y = -x.

 �(d) T is a clockwise rotation through   π __ 2  .

 12. The projection P : �3 → �2 is defined by 

P   S  
x
 

 
 y   

z
   T  =   S   x     y   T  for all   S  

x
 

 
 y   

z
   T  in �3. Show that P is 

induced by a matrix and find the matrix.

 13. Let T : �3 → �3 be a transformation. In each 
case show that T is induced by a matrix and find 
the matrix.

 (a) T is a reflection in the x-y plane.

 �(b) T is a reflection in the y-z plane.

 14. Fix a > 0 in �, and define Ta : �
4 → �4 by 

Ta(x) = ax for all x in �4. Show that T is induced 
by a matrix and find the matrix. [T is called a 
dilation if a > 1 and a contraction if a < 1.]

 15. Let A be m × n and let x be in �n. If A has a row 
of zeros, show that Ax has a zero entry.

 �16. If a vector B is a linear combination of the 
columns of A, show that the system Ax = b is 
consistent (that is, it has at least one solution.)

 17. If a system Ax = b is inconsistent (no solution), 
show that b is not a linear combination of the 
columns of A.

 18. Let x1 and x2 be solutions to the homogeneous 
system Ax = 0.

 (a) Show that x1 + x2 is a solution to Ax = 0.

 �(b) Show that tx1 is a solution to Ax = 0 for any 
scalar t.

 19. Suppose x1 is a solution to the system Ax = b. 
If x0 is any nontrivial solution to the associated 
homogeneous system Ax = 0, show that x1 + tx0, 
t a scalar, is an infinite one parameter family of 
solutions to Ax = b. [Hint: Example 7 Section 2.1.]

 20. Let A and B be matrices of the same size. If x 
is a solution to both the system Ax = 0 and the 
system Bx = 0, show that x is a solution to the 
system (A + B)x = 0.

 21. If A is m × n and Ax = 0 for every x in �n, show 
that A = 0 is the zero matrix. [Hint: Consider 
Aej where ej is the jth column of In; that is, ej is 
the vector in �n with 1 as entry j and every other 
entry 0.]

 �22. Prove part (1) of Theorem 2.

 23. Prove part (2) of Theorem 2.

Matrix Multiplication
In Section 2.2 matrix-vector products were introduced. If A is an m × n matrix, the 
product Ax was defined for any n-column x in �n as follows: If A = [a1 a2 � an] 

where the Aj are the columns of A, and if x =   S   
x1

 
 

 x2   
	
 
 

 
xn

   T  , Definition 2.5 reads 

 Ax = x1a1 + x2a2 + � + xnan (∗)

This was motivated as a way of describing systems of linear equations with 
coefficient matrix A. Indeed every such system has the form Ax = b where b is 
the column of constants. 

In this section we extend this matrix-vector multiplication to a way of multiplying 
matrices in general, and then investigate matrix algebra for its own sake. While 
it shares several properties of ordinary arithmetic, it will soon become clear that 
matrix arithmetic is different in a number of ways. 

Matrix multiplication is closely related to composition of transformations. 

S E C T I O N  2 . 3
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Composition and Matrix Multiplication
Sometimes two transformations “link” together as follows: 

�
k   T

 - -- →     �n   S
 - - →     �m.

In this case we can apply T first and then apply S, and the result is a new 
transformation 

S ◦ T : �k → �m,

called the composite of S and T, defined by

(S ◦ T )(x) = S[T(x)] for all x in �k.

The action of S ◦ T can be described as “first T then S ” (note the order!)6. This 
new transformation is described in the diagram. The reader will have encountered 
composition of ordinary functions: For example, consider �   g

 - - →     �   f
 - - →     � where 

f (x) = x2 and g(x) = x + 1 for all x in �. Then

( f ◦ g)(x) = f [g(x)] = f (x + 1) = (x + 1)2

(g ◦ f )(x) = g[ f (x)] = g(x2) = x2 + 1.

for all x in �.
Our concern here is with matrix transformations. Suppose that A is an m × n 

matrix and B is an n × k matrix, and let �k   TB
 - -- →     �n   TA

 - -- →     �m be the matrix 
transformations induced by B and A respectively, that is:

TA(x) = Bx for all x in �k and TA(y) = By for all y in �n.

Write B = [b1 b2 � bk] where bj denotes column j of B for each j. Hence each 
bj is an n-vector (B is n × k) so we can form the matrix-vector product Abj. In 
particular, we obtain an m × k matrix 

[Ab1 Ab1 � Abk]

with columns Ab1, Ab2, �, Abk. Now compute (TA ◦ TB)(x) for any x =   S   
x1

 
 

 x2   
	
 
 

 
xk

    T  in �k: 

 (TA ◦ TB)(x) = TA[TB(x)] Definition of TA ◦ TB

 = A(Bx) A and B induce TA and TB

 = A(x1b1 + x2b2 + � + xkbk) Equation (∗) above
 = A(x1b1) + A(x2b2) + � + A(xkbk) Theorem 2, Section 2.2
 = x1(Ab1) + x2(Ab2) + � + xk(Abk) Theorem 2, Section 2.2
 = [Ab1 Ab2 � Abk]x. Equation (∗) above

Because x was an arbitrary vector in �n, this shows that TA ◦ TB is the matrix 
transformation induced by the matrix [Ab1, Ab2, �, Abn]. This motivates the 
following definition. 

Matrix Multiplication 
Let A be an m × n matrix, let B be an n × k matrix, and write B = [b1 b2 � bk] 
where bj is column j of B for each j. The product matrix AB is the m × k matrix defined 
as follows:

AB = A[b1, b2, �, bk] = [Ab1, Ab2, �, Abk]

6 When reading the notation S ◦ T, we read S first and then T even though the action is “first T then S ”. This annoying state of affairs 
results because we write T(x) for the effect of the transformation T on x, with T on the left. If we wrote this instead as (x)T, the 
confusion would not occur. However the notation T(x) is well established.

�k �n

S ° T

�m

ST

Definition 2.9
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Thus the product matrix AB is given in terms of its columns Ab1, Ab2, …, Abn: 
Column j of AB is the matrix-vector product Abj of A and the corresponding 
column bj of B. Note that each such product Abj makes sense by Definition 2.5 
because A is m × n and each bj is in �n (since B has n rows). Note also that if B 
is a column matrix, this definition reduces to Definition 2.5 for matrix-vector 
multiplication. 

Given matrices A and B, Definition 2.9 and the above computation give 

A(Bx) = [Ab1 Ab2 � Abn]x = (AB)x

for all x in �k. We record this for reference. 

Theorem 1

Let A be an m × n matrix and let B be an n × k matrix. Then the product matrix AB is 
m × k and satisfies

A(Bx) = (AB)x for all x in �k.

Here is an example of how to compute the product AB of two matrices using 
Definition 2.9. 

EXAMPLE 1

Compute AB if A =   S  2 3 5
 

  
 1 4 7    

0 1 8
  T  and B =   S  8 9

 
  

 7 2    
6 1

  T 
Solution ► The columns of B are b1 =   S  8 

 
 7   

6
  T  and b2 =   S  9 

 
 2   

1
  T  , so Definition 2.5 gives

Ab1 =   S  2 3 5
 

  
 1 4 7    

0 1 8
  T    S  8 
 

 7   
6

  T  =   S  67
 

 
 78   

55
  T  and Ab2 =   S  2 3 5

 
  

 1 4 7    
0 1 8

  T    S  9 
 

 2   
1

  T  =   S  29
 

 
 24   

10
  T .

Hence Definition 2.9 above gives AB = [Ab1 Ab2] =   S  67 29
 

  
 78 24    

55 10
  T .

While Definition 2.9 is important, there is another way to compute the matrix 
product AB that gives a way to calculate each individual entry. In Section 2.2 
we defined the dot product of two n-tuples to be the sum of the products of 
corresponding entries. We went on to show (Theorem 4 Section 2.2) that if A 
is an m × n matrix and x is an n-vector, then entry j of the product Ax is the dot 
product of row j of A with x. This observation was called the “dot product rule” for 
matrix-vector multiplication, and the next theorem shows that it extends to matrix 
multiplication in general.
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Theorem 2

Dot Product Rule 
Let A and B be matrices of sizes m × n and n × k, respectively. Then the (i, j)-entry of 
AB is the dot product of row i of A with column j of B.

PROOF

Write B = [b1 b2 � bn] in terms of its columns. Then Abj is column j of AB 
for each j. Hence the (i, j)-entry of AB is entry i of Abj, which is the dot product 
of row i of A with bj. This proves the theorem.

Thus to compute the (i, j)-entry of AB, proceed as follows (see the diagram):

Go across row i of A, and down column j of B, 
multiply corresponding entries, and add the results.

Note that this requires that the rows of A must be the same length as the columns 
of B. The following rule is useful for remembering this and for deciding the size of 
the product matrix AB.

Compatibility Rule

Let A and B denote matrices. If A is m × n and B is n′ × k, the product AB can be 
formed if and only if n = n′. In this case the size of the product matrix AB is m × k, 
and we say that AB is defined, or that A and B are compatible for multiplication.

The diagram provides a useful mnemonic for remembering this. We adopt the 
following convention:

Convention

Whenever a product of matrices is written, it is tacitly assumed that the sizes of the 
factors are such that the product is defined.

To illustrate the dot product rule, we recompute the matrix product in Example 1.

EXAMPLE 2

Compute AB if A =   S  2 3 5
 

  
 1 4 7    

0 1 8
  T  and B =   S  8 9

 
  

 7 2    
6 1

  T .
Solution ► Here A is 3 × 3 and B is 3 × 2, so the product matrix AB is defined 
and will be of size 3 × 2. Theorem 2 gives each entry of AB as the dot product 
of the corresponding row of A with the corresponding column of Bj that is,

AB =   S  2 3 5
 

  
 1 4 7    

0 1 8
  T    S  8 9

 
  

 7 2    
6 1

  T  =   S  2 · 8 + 3 · 7 + 5 · 6 2 · 9 + 3 · 2 + 5 · 1
    

           
    1 · 8 + 4 · 7 + 7 · 6 1 · 9 + 4 · 2 + 7 · 1                   

0 · 8 + 1 · 7 + 8 · 6 0 · 9 + 1 · 2 + 8 · 1
  T  =   S  67 29

 
  

 78 24    
55 10

  T .
Of course, this agrees with Example 1.

=

A B AB

row i
(i,j)-entry

column j

A B
m × ×n n′ k

59SECTION 2.3 Matrix Multiplication



EXAMPLE 3

Compute the (1, 3)- and (2, 4)-entries of AB where 

A =   S  3 -1 2     
0   1 4

  T  and B = 
−

2 1 6 0
0 2 3 4
1 0 5 8

 .

Then compute AB. 

Solution ► The (1, 3)-entry of AB is the dot product of row 1 of A and column 
3 of B (highlighted in the following display), computed by multiplying 
corresponding entries and adding the results. 

3 1 2
0 1 4

2 1 6 0
0 2 3 4
1 0 5 8

−

−
 (1, 3)-entry = 3 · 6 + (-1) · 3 + 2 · 5 = 25

Similarly, the (2, 4) entry of AB involves row 2 of A and column 4 of B. 

3 1 2
0 1 4

2 1 6 0
0 2 3 4
1 0 5 8

−

−
 (2, 4)-entry = 0 · 0 + 1 · 4 + 4 · 8 = 36

Since A is 2 × 3 and B is 3 × 4, the product is 2 × 4. 

AB =   S  3 -1 2     
0   1 4

  T  
2 1 6 0
0 2 3 4
1 0 5 8−

 =   S   4 1 25 12        
-4 2 23 36

  T 

EXAMPLE 4

If A = [1 3 2] and B =   S  5 
 
 6   

4
  T  , compute A2, AB, BA, and B2 when they are defined.7

Solution ► Here, A is a 1 × 3 matrix and B is a 3 × 1 matrix, so A2 and B2 are 
not defined. However, the rule reads

  
A
           

1 × 3
     B

           
3 × 1

   and   B
           

3 × 1
     A

           
1 × 3

  

so both AB and BA can be formed and these are 1 × 1 and 3 × 3 matrices, 
respectively. 

AB = [1 3 2]  S  5 
 
 6   

4
  T  = [1 · 5 + 3 · 6 + 2 · 4] = [31]

BA =   S  5 
 
 6   

4
  T [1 3 2] =   S  5 · 1 5 · 3 5 · 2

  
     

  6 · 1 6 · 3 6 · 2         
4 · 1 4 · 3 4 · 2

  T  =   S  5 15 10
 

   
 6 18 12     

4 12  8
   T 

7

Unlike numerical multiplication, matrix products AB and BA need not be equal. 
In fact they need not even be the same size, as Example 4 shows. It turns out to be 
rare that AB = BA (although it is by no means impossible), and A and B are said to 
commute when this happens. 

7 As for numbers, we write A2 = A · A, A3 = A · A · A, etc. Note that A2 is defined if and only if A is of size n × n for some n.
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EXAMPLE 5

Let A =   S   6   9     
-4 -6

  T  and B =   S   1 2    
-1 0

  T . Compute A2, AB, BA.

Solution ► A2 =   S   6   9     
-4 -6

  T    S   6   9     
-4 -6

  T  =   S  0 0    
0 0

  T  , so A2 = 0 can occur even if 

A ≠ 0. Next,

AB =   S   6   9     
-4 -6

  T    S   1 2    
-1 0

  T  =   S  -3  12     
2 -8

  T 

BA =   S   1 2    
-1 0

  T    S   6   9     
-4 -6

  T  =   S  -2 -3     
-6 -9

  T 
Hence AB ≠ BA, even though AB and BA are the same size.

EXAMPLE 6

If A is any matrix, then IA = A and AI = A, and where I denotes an identity 
matrix of a size so that the multiplications are defined.

Solution ► These both follow from the dot product rule as the reader should 
verify. For a more formal proof, write A = [a1 a2 � an] where aj is column j 
of A. Then Definition 2.9 and Example 11 Section 2.2 give

IA = [Ia1 Ia2 � Ian] = [a1 a2 � an] = A

If ej denotes column j of i, then Aej = aj for each j by Example 12 Section 2.2. 
Hence Definition 2.9 gives:

AI = A[e1 e2 � en] = [Ae1 Ae2 � Aen] = [a1 a2 � an] = A

The following theorem collects several results about matrix multiplication that 
are used everywhere in linear algebra.

Theorem 3

Assume that a is any scalar, and that A, B, and C are matrices of sizes such that the 
indicated matrix products are defined. Then: 

1. IA = A and AI = A where I denotes an identity matrix. 
2. A(BC) = (AB)C. 
3. A(B + C) = AB + AC. 
4. (B + C)A = BA + CA. 
5. a(AB) = (aA)B = A(aB). 
6. (AB)T = BTAT.
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PROOF

 (1) is Example 6; we prove (2), (4), and (6) and leave (3) and (5) as exercises. 

 (2) If C = [c1 c2 � ck] in terms of its columns, then BC = [Bc1 Bc2 � Bck] by 
Definition 2.9, so

   A(BC) = [A(Bc1) A(Bc2) � A(Bck)] Definition 2.9 
 = [(AB)c1 (AB)c2 � (AB)ck] Theorem 1 
 = (AB)C Definition 2.9

 (4) We know (Theorem 2 Section 2.2) that (B + C)x = Bx + Cx holds for every 
column x. If we write A = [a1 a2 � an] in terms of its columns, we get

   (B + C)A = [(B + C)a1 (B + C)a2 � (B + C)an] Definition 2.9 
 = [Ba1 + Ca1 Ba2 + Ca2 � Ban + Can] Theorem 2 Section 2.2
 = [Ba1 Ba2 � Ban] + [Ca1 Ca2 � Can] Adding Columns 
 = BA + CA Definition 2.9

 (6) As in Section 2.1, write A = [aij] and B = [bij], so that AT = [a′ij] and BT = [b′ij] 
where a′ij = aji and b′ji = bij for all i and j. If cij denotes the (i, j)-entry of BTAT, 
then cij is the dot product of row i of BT with column j of AT. Since row i of BT 
is [b′i1 b′i2 b′im] and column j of AT is [a′i1 a′i2 a′mj], we obtain

cij  = b′i1a′1j + b′i2a′2j + � + b′im a′mj

= b1iaj1 + b2iaj2 + � + bmi ajm

= aj1b1i + aj2b2i + � + ajm bmi. 

  But this is the dot product of row j of A with column i of B; that is, the 
(j, i)-entry of AB; that is, the (i, j)-entry of (AB)T. This proves (6).

Property 2 in Theorem 3 is called the associative law of matrix multiplication. 
It asserts that A(BC) = (AB)C holds for all matrices (if the products are defined). 
Hence this product is the same no matter how it is formed, and so is written simply 
as ABC. This extends: The product ABCD of four matrices can be formed several 
ways—for example, (AB)(CD), [A(BC)]D, and A[B(CD)]—but the associative law 
implies that they are all equal and so are written as ABCD. A similar remark applies 
in general: Matrix products can be written unambiguously with no parentheses. 

However, a note of caution about matrix multiplication must be taken: The fact 
that AB and BA need not be equal means that the order of the factors is important in 
a product of matrices. For example ABCD and ADCB may not be equal.

Warning

If the order of the factors in a product of matrices is changed, the product matrix 
may change (or may not be defined). Ignoring this warning is a source of many 
errors by students of linear algebra!

Properties 3 and 4 in Theorem 3 are called distributive laws. They assert that 
A(B + C) = AB + AC and (B + C)A = BA + CA hold whenever the sums and 
products are defined. These rules extend to more than two terms and, together 
with Property 5, ensure that many manipulations familiar from ordinary algebra 
extend to matrices. For example 

  A(2B - 3C + D - 5E) = 2AB - 3AC + AD - 5AE

 (A + 3C - 2D)B = AB + 3CB - 2DB
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Note again that the warning is in effect: For example A(B - C) need not equal 
AB - CA. These rules make possible a lot of simplification of matrix expressions. 

EXAMPLE 7

Simplify the expression A(BC - CD) + A(C - B)D - AB(C - D).

Solution ►  A(B C - CD) + A(C - B)D - AB(C - D)
= A(BC) - A(CD) + (AC - AB)D - (AB)C + (AB)D
= ABC - ACD + ACD - ABD - ABC + ABD
= 0.

Examples 8 and 9 below show how we can use the properties in Theorem 2 to 
deduce other facts about matrix multiplication. Matrices A and B are said to 
commute if AB = BA.

EXAMPLE 8

Suppose that A, B, and C are n × n matrices and that both A and B commute 
with C; that is, AC = CA and BC = CB. Show that AB commutes with C. 

Solution ► Showing that AB commutes with C means verifying that 
(AB)C = C(AB). The computation uses the associative law several times, 
as well as the given facts that AC = CA and BC = CB. 

(AB)C = A(BC) = A(CB) = (AC)B = (CA)B = C(AB)

EXAMPLE 9

Show that AB = BA if and only if (A - B)(A + B) = A2 - B2.

Solution ► The following always holds:

 (A - B)(A + B) = A(A + B) - B(A + B) = A2 + AB -BA - B2  (∗)

Hence if AB = BA, then (A - B)(A + B) = A2 - B2 follows. Conversely, if this 
last equation holds, then equation (∗) becomes 

A2 - B2 = A2 + AB - BA - B2

This gives 0 = AB - BA, and AB = BA follows.

In Section 2.2 we saw (in Theorem 1) that every system of linear equations has 
the form 

Ax = b

where A is the coefficient matrix, x is the column of variables, and b is the constant 
matrix. Thus the system of linear equations becomes a single matrix equation. Matrix 
multiplication can yield information about such a system.
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EXAMPLE 10

Consider a system Ax = b of linear equations where A is an m × n matrix. 
Assume that a matrix C exists such that CA = In. If the system Ax = b has a 
solution, show that this solution must be Cb. Give a condition guaranteeing 
that Cb is in fact a solution. 

Solution ► Suppose that x is any solution to the system, so that Ax = b. Multiply 
both sides of this matrix equation by C to obtain, successively, 

C(Ax) = Cb, (CA)x = Cb, Inx = Cb, x = Cb

This shows that if the system has a solution x, then that solution must be 
x = Cb, as required. But it does not guarantee that the system has a solution. 
However, if we write x1 = Cb, then 

Ax1 = A(Cb) = (AC)b.

Thus x1 = Cb will be a solution if the condition AC = Im is satisfied.

The ideas in Example 10 lead to important information about matrices; this will 
be pursued in the next section. 

Block Multiplication

It is often useful to consider matrices whose entries are themselves matrices (called 
blocks). A matrix viewed in this way is said to be partitioned into blocks.

For example, writing a matrix B in the form

B = [b1 b2 � bk] where the bj are the columns of B

is such a block partition of B. Here is another example.
Consider the matrices 

A = 
−

−

1 0 0 0 0
0 1 0 0 0
2 1 4 2 1
3 1 1 7 5

 =   S   I2  023            
P  Q  

   T  and B = 

−2
6
3
0
6

4
5
7

−1
1

 =   S   X     
Y

   T 

where the blocks have been labelled as indicated. This is a natural way to partition A 
into blocks in view of the blocks I2 and 023 that occur. This notation is particularly 
useful when we are multiplying the matrices A and B because the product AB can be 
computed in block form as follows:

AB =   S   I 0         
P Q

   T    S   X     
Y

   T  =   S   IX + 0Y
                 

PX + QY
   T  =   S   X

                 
PX + QY

   T  = 

−2
6
8

27

4
5

30
8

This is easily checked to be the product AB, computed in the conventional manner. 
In other words, we can compute the product AB by ordinary matrix multiplication, 

using blocks as entries. The only requirement is that the blocks be compatible. That 
is, the sizes of the blocks must be such that all (matrix) products of blocks that occur make 
sense. This means that the number of columns in each block of A must equal the 
number of rows in the corresponding block of B. 

Definition 2.10
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Theorem 4

Block Multiplication 
If matrices A and B are partitioned compatibly into blocks, the product AB can be 
computed by matrix multiplication using blocks as entries.

We omit the proof. 
We have been using two cases of block multiplication. If B = [b1 b2 � bk] is a 

matrix where the bj are the columns of B, and if the matrix product AB is defined, 
then we have

AB = A[b1 b2 � bk] = [Ab1 Ab2 � Abk].

This is Definition 2.9 and is a block multiplication where A = [A] has only one 
block. As another illustration, 

Bx = [b1 b2 � bk]  S   
x1

 
 

 x2   
	
 
 

 
xk

    T   = x1b1 + x2b2 + � + xkbk].

where x is any k × 1 column matrix (this is Definition 2.5). 
It is not our intention to pursue block multiplication in detail here. However, we 

give one more example because it will be used below.

Theorem 5

Suppose matrices A =   S   B X
         

0 C
   T  and A1 =   S   B1 X1            

 0  C1
   T  are partitioned as shown where B and 

B1 are square matrices of the same size, and C and C1 are also square of the same size. 
These are compatible partitionings and block multiplication gives

AA1 =   S   B X
         

0 C
   T    S   B1 X1            

 0  C1
   T  =   S   BB1 BX1 + XC1                               

 0    CC1  
   T .

EXAMPLE 11

Obtain a formula for Ak where A =   S   I X
        

0 0
   T  is square and I is an identity matrix.

Solution ► We have A2 =   S   I X
        

0 0
   T    S   I X

        
0 0

   T  =   S  I2 IX + X0      
 0    02

   T  =   S   I X
        

0 0
   T  = A. Hence 

A3 = AA2 = AA = A2 = A. Continuing in this way, we see that Ak = A for 
every k ≥ 1.

Block multiplication has theoretical uses as we shall see. However, it is also useful 
in computing products of matrices in a computer with limited memory capacity. 
The matrices are partitioned into blocks in such a way that each product of blocks 
can be handled. Then the blocks are stored in auxiliary memory and their products 
are computed one by one.
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Directed Graphs 
The study of directed graphs illustrates how matrix multiplication arises in ways 
other than the study of linear equations or matrix transformations.

A directed graph consists of a set of points (called vertices) connected by 
arrows (called edges). For example, the vertices could represent cities and the 
edges available flights. If the graph has n vertices v1, v2, …, vn, the adjacency 
matrix A = [aij] is the n × n matrix whose (i, j)-entry aij is 1 if there is an edge 
from vj to vi (note the order), and zero otherwise. For example, the adjacency 

matrix of the directed graph shown is A =   S  1 1 0
 

  
 1 0 1    

1 0 0
  T . A path of length r (or an 

r-path) from vertex j to vertex i is a sequence of r edges leading from vj to vi. 
Thus v1 → v2 → v1 → v1 → v3 is a 4-path from v1 to v3 in the given graph. The 
edges are just the paths of length 1, so the (i, j)-entry aij of the adjacency matrix 
A is the number of 1-paths from vj to vi. This observation has an important 
extension:

Theorem 6

If A is the adjacency matrix of a directed graph with n vertices, then the (i, j)-entry of Ar 
is the number of r-paths vj → vi.

As an illustration, consider the adjacency matrix A in the graph shown. Then

A =   S  1 1 0
 

  
 1 0 1    

1 0 0
  T  , A2 =   S  2 1 1

 
  

 2 1 0    
1 1 0

  T  , and A3 =   S  4 2 1
 

  
 3 2 1    

2 1 1
  T .

Hence, since the (2, 1)-entry of A2 is 2, there are two 2-paths v1 → v2 (in fact 
v1 → v1 → v2 and v1 → v3 → v2). Similarly, the (2, 3)-entry of A2 is zero, so there 
are no 2-paths v3 → v2, as the reader can verify. The fact that no entry of A3 is zero 
shows that it is possible to go from any vertex to any other vertex in exactly three 
steps.

To see why Theorem 6 is true, observe that it asserts that 

 the (i, j)-entry of Ar equals the number of r-paths vj → vi (∗)

holds for each r ≥ 1. We proceed by induction on r (see Appendix C). The case 
r = 1 is the definition of the adjacency matrix. So assume inductively that (∗) is true 
for some r ≥ 1; we must prove that (∗) also holds for r + 1. But every (r + 1)-path 
vj → vi is the result of an r-path vj → vk for some k, followed by a 1-path vk → vi. 
Writing A = [aij] and Ar = [bij], there are bkj paths of the former type (by induction) 
and aik of the latter type, and so there are aikbkj such paths in all. Summing over k, 
this shows that there are

ai1b1j + ai2b2j + � + ainbnj (r + 1)-paths vj → vi.

But this sum is the dot product of the ith row [ai1 ai2 � ain] of A with the jth 
column [b1j b2j � bnj]

T of Ar. As such, it is the (i, j)-entry of the matrix product 
ArA = Ar+1. This shows that (∗) holds for r + 1, as required.

v2v1

v3
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 1. Compute the following matrix products.

 (a)   S   1   3    
0 -2

  T    S  2 -1    
0   1

  T  �(b)   S  1 -1 2     
2   0 4

  T    S     2 3 1
 

   
   1 9 7     

-1 0 2
  T 

 (c)   S  5 0 -7     
1 5   9

  T    S     3
 

 
   1   

-1
  T  �(d) [1 3 -3]  S     3 0

 
  

 -2 1    
  0 6

   T 
 (e)   S  1 0 0

 
  

 0 1 0    
0 0 1

  T    S  3 -2
 

  
 5 -7    

9   7
   T  �(f ) [1 -1 3]  S     2

 
 

   1   
-8

  T 
 (g)   S     2

 
 

   1   
-7

  T [1 -1 3] �(h)   S  3 1    
5 2

  T    S   2 -1     
-5   3

  T 

 (i)   S  2 3 1    
5 7 4

  T    S  a 0 0
 

  
 0 b 0    

0 0 c

   T  �(j)   S  a 0 0
 

  
 0 b 0    

0 0 c

   T    S  a′ 0 0
 

  
 0 b′ 0    

0 0 c′

   T 
 2. In each of the following cases, find all possible 

products A2, AB, AC, and so on. 

 (a) A =   S     1 2 3               
-1 0 0

   T  , B =   S   1 -2           
  1 _ 2     3

   T  , C =   S  -1 0
 

  
   2 5    

  0 5
   T 

 �(b) A =   S   1 2   4     
0 1 -1

  T  , B =   S  -1 6    
1 0

  T  , C =   S     2 0
 

  
 -1 1    

  1 2
   T 

 3. Find a, b, a1, and b1 if: 

 (a)   S    a    b 
    

a1 b1
  T    S   3 -5     

-1   2
  T  =   S  1 -1    

2   0
  T 

 �(b)   S   2 1    
-1 2

  T    S    a    b 
    

a1 b1
  T  =   S   7 2    

-1 4
  T 

 4. Verify that A2 - A - 6I = 0 if: 

 (a)   S  3 -1    
0 -2

  T  �(b)   S   2   2    
2 -1

  T 

 5. Given A =   S  1 -1    
0   1

  T  , B =   S  1 0 -2     
3 1   0

  T  , C =   S  1 0
 

  
 2 1    

5 8
  T  ,

  and D =   S  3 -1 2     
1   0 5

  T  , verify the following facts 

from Theorem 1.

 (a) A(B - D) = AB - AD 

 �(b) A(BC) = (AB)C

 (c) (CD)T = DTCT

 6. Let A be a 2 × 2 matrix. 

 (a) If A commutes with   S  0 1    
0 0

  T  , show that 

A =   S   a b
    

0 a
  T  for some a and b.

 �(b) If A commutes with   S  0 0    
1 0

  T  , show, that 

  A =   S  a 0    
c a

  T  for some a and c.

 (c) Show that A commutes with every 2 × 2 

matrix if and only if A =   S  a 0    
0 a

  T  for some a. 

 7. (a) If A2 can be formed, what can be said about 
the size of A?

 �(b) If AB and BA can both be formed, describe 
the sizes of A and B. 

 (c) If ABC can be formed, A is 3 × 3, and C is 
5 × 5, what size is B?

 8. (a) Find two 2 × 2 matrices A such that A2 = 0. 

 �(b) Find three 2 × 2 matrices A such that 
(i) A2 = I; (ii) A2 = A.

 (c) Find 2 × 2 matrices A and B such that 
AB = 0 but BA ≠ 0. 

 9. Write P =   S  1 0 0
 

  
 0 0 1    

0 1 0
  T  , and let A be 3 × n and B 

be m × 3. 

 (a) Describe PA in terms of the rows of A. 

 (b) Describe BP in terms of the columns of B. 

 10. Let A, B, and C be as in Exercise 5. Find the 
(3, 1)-entry of CAB using exactly six numerical 
multiplications. 

 11. Compute AB, using the indicated block 
partitioning. 

A = 

−2 1 3 1
1 0 1 2

1 0
0 1

0 0
0 0

 B = 
−

−

1 2 0
1 0 0
0 5 1
1 1 0

 12. In each case give formulas for all powers A, 
A2, A3, … of A using the block decomposition 
indicated.
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 (a) A = 
1 00
1 1
1 11

1 −
−

 �(b) A = 

1
0
0 0

0
1
1

1 1
1 0

2

00
1

0

− −

−
 

 13. Compute the following using block 
multiplication (all blocks are k × k).

 (a)   S   I X
    

-Y  I 
  T    S   I 0    

Y  I 
  T  �(b)   S   I X

    
0  I 

  T    S   I -X
    

0    I 
  T 

 (c) [I X ][I X ]T �(d) [I XT][-X I ]T

 (e)    S  I   X
    

0 -I
   T  

 n

 , any n ≥ 1 �(f )    S  0 X
    

I   0
   T  

 n

 , any n ≥ 1

 14. Let A denote an m × n matrix. 

 (a) If AX = 0 for every n × 1 matrix X, show 
that A = 0. 

 �(b) If YA = 0 for every 1 × m matrix Y, show 
that A = 0. 

 15. (a) If U =   S   1   2    
0 -1

  T  , and AU = 0, show that A = 0. 

 (b) Let U be such that AU = 0 implies that 
A = 0. If PU = QU, show that P = Q. 

 16. Simplify the following expressions where A, B, 
and C represent matrices. 

 (a) A(3B - C) + (A - 2B)C + 2B(C + 2A)

 �(b) A(B + C - D) + B(C - A + D) - (A + B)C 
+ (A - B)D

 (c) AB(BC - CB) + (CA - AB)BC + CA(A - B)C

 �(d) (A - B)(C - A) + (C - B)(A - C) + (C - A)2

 17. If A =   S  a b
   

c d
  T  where a ≠ 0, show that A factors 

  in the form A =   S  1 0    
x 1

  T    S   y z 
    

0 w
  T .

 18. If A and B commute with C, show that the same 
is true of: 

 (a) A + B �(b) kA, k any scalar 

 19. If A is any matrix, show that both AAT and ATA 
are symmetric. 

 �20. If A and B are symmetric, show that AB is 
symmetric if and only if AB = BA. 

 21. If A is a 2 × 2 matrix, show that ATA = AAT if 

  and only if A is symmetric or A =   S   a b
    

-b a
  T  for 

  some a and b. 

 22. (a) Find all symmetric 2 × 2 matrices A such 
that A2 = 0. 

 �(b) Repeat (a) if A is 3 × 3.

 (c) Repeat (a) if A is n × n. 

 23. Show that there exist no 2 × 2 matrices A and 
B such that AB - BA = I. [Hint: Examine the 
(1, 1)- and (2, 2)-entries.]

 �24. Let B be an n × n matrix. Suppose AB = 0 for 
some nonzero m × n matrix A. Show that no 
n × n matrix C exists such that BC = I. 

 25. An autoparts manufacturer makes fenders, 
doors, and hoods. Each requires assembly and 
packaging carried out at factories: Plant 1, Plant 
2, and Plant 3. Matrix A below gives the number 
of hours for assembly and packaging, and matrix 
B gives the hourly rates at the three plants. 
Explain the meaning of the (3, 2)-entry in the 
matrix AB. Which plant is the most economical 
to operate? Give reasons.

Assembly Packaging
Fenders
Doors
Hoods

12
21
10

2
3
2

= A

Plant 1 Plant 2 Plant 3
Assembly
Packaging

21
14

18
10

20
13

= B

 �26. For the directed graph at the 
right, find the adjacency 
matrix A, compute A3, and 
determine the number of 
paths of length 3 from v1 to 
v4 and from v2 to v3.

 27. In each case either show the 
statement is true, or give an example showing 
that it is false. 

 (a) If A2 = I, then A = I.

 �(b) If AJ = A, then J = I.

 (c) If A is square, then (AT)3 = (A3)T.

 �(d) If A is symmetric, then I + A is symmetric.

 (e) If AB = AC and A ≠ 0, then B = C.

 �(f ) If A ≠ 0, then A2 ≠ 0. 

 (g) If A has a row of zeros, so also does BA for 
all B.

v2v1

v3v4
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 �(h) If A commutes with A + B, then A 
commutes with B. 

 (i) If B has a column of zeros, so also does AB.

 �(j) If AB has a column of zeros, so also does B.

 (k) If A has a row of zeros, so also does AB.

 �(l) If AB has a row of zeros, so also does A.

 28. (a) If A and B are 2 × 2 matrices whose rows sum 
to 1, show that the rows of AB also sum to 1. 

 �(b) Repeat part (a) for the case where A and B 
are n × n. 

 29. Let A and B be n × n matrices for which the 
systems of equations Ax = 0 and Bx = 0 each 
have only the trivial solution x = 0. Show that the 
system (AB)x = 0 has only the trivial solution. 

 30. The trace of a square matrix A, denoted tr A, is 
the sum of the elements on the main diagonal of 
A. Show that, if A and B are n × n matrices: 

 (a) tr(A + B) = tr A + tr B.

 �(b) tr(kA) = k tr(A) for any number k.

 (c) tr(AT) = tr(A).

 (d) tr(AB) = tr(BA).

 �(e) tr(AAT) is the sum of the squares of all 
entries of A.

 31. Show that AB - BA = I is impossible. 
[Hint: See the preceding exercise.]

 32. A square matrix P is called an idempotent if 
P2 = P. Show that:

 (a) 0 and I are idempotents. 

 (b)   S  1 1    
0 0

  T  ,   S  1 0    
1 0

  T  , and   1 _ 2     S  1 1    
1 1

  T  , are idempotents. 

 (c) If P is an idempotent, so is I - P. Show 
further that P(I - P) = 0. 

 (d) If P is an idempotent, so is PT. 

 �(e) If P is an idempotent, so is 
Q = P + AP - PAP for any square 
matrix A (of the same size as P). 

 (f ) If A is n × m and B is m × n, and if AB = In, 
then BA is an idempotent. 

 33. Let A and B be n × n diagonal matrices (all 
entries off the main diagonal are zero). 

 (a) Show that AB is diagonal and AB = BA. 

 (b) Formulate a rule for calculating XA if X is 
m × n. 

 (c) Formulate a rule for calculating AY if Y is 
n × k. 

 34. If A and B are n × n matrices, show that:

 (a) AB = BA if and only if 

(A + B)2 = A2 + 2AB + B2.
 �(b) AB = BA if and only if 

(A + B)(A - B) = (A - B)(A + B).

 35. In Theorem 3, prove

 (a) part 3; �(b) part 5.

 �36. (V. Camillo) Show that the product of two 
reduced row-echelon matrices is also reduced 
row-echelon.

Matrix Inverses 
Three basic operations on matrices, addition, multiplication, and subtraction, 
are analogs for matrices of the same operations for numbers. In this section we 
introduce the matrix analog of numerical division. 

To begin, consider how a numerical equation 

ax = b

is solved when a and b are known numbers. If a = 0, there is no solution (unless 
b = 0). But if a ≠ 0, we can multiply both sides by the inverse a-1 =   1 __ a   to obtain 
the solution x = a-1b. Of course multiplying by a-1 is just dividing by a, and 
the property of a-1 that makes this work is that a-1a = 1. Moreover, we saw in 
Section 2.2 that the role that 1 plays in arithmetic is played in matrix algebra by 
the identity matrix I. 

S E C T I O N  2 . 4
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This suggests the following definition. If A is a square matrix, a matrix B is called an 
inverse of A if and only if

AB = I and BA = I

A matrix A that has an inverse is called an invertible matrix.8
8

EXAMPLE 1

Show that B =   S  -1 1    
1 0

  T  is an inverse of A =   S  0 1    
1 1

  T .
Solution ► Compute AB and BA.

AB =   S  0 1    
1 1

  T    S  -1 1    
1 0

  T  =   S  1 0    
0 1

  T  BA =   S  -1 1    
1 0

  T    S  0 1    
1 1

  T  =   S  1 0    
0 1

  T 
Hence AB = I = BA, so B is indeed an inverse of A.

EXAMPLE 2

Show that A =   S  0 0    
1 3

  T  has no inverse. 

Solution ► Let B =   S  a b
   

c d
  T  denote an arbitrary 2 × 2 matrix. Then 

AB =   S  0 0    
1 3

  T    S  a b
   

c d
  T  =   S   0    0          

a + 3c b + 3d
  T 

so AB has a row of zeros. Hence AB cannot equal I for any B.

The argument in Example 2 shows that no zero matrix has an inverse. But 
Example 2 also shows that, unlike arithmetic, it is possible for a nonzero matrix to 
have no inverse. However, if a matrix does have an inverse, it has only one. 

Theorem 1

If B and C are both inverses of A, then B = C.

PROOF

Since B and C are both inverses of A, we have CA = I = AB. 
Hence B = IB = (CA)B = C(AB) = CI = C.

If A is an invertible matrix, the (unique) inverse of A is denoted A-1. Hence A-1 
(when it exists) is a square matrix of the same size as A with the property that 

AA-1 = I and A-1A = I

8 Only square matrices have inverses. Even though it is plausible that nonsquare matrices A and B could exist such that AB = Im and 
BA = In, where A is m × n and B is n × m, we claim that this forces n = m. Indeed, if m < n there exists a nonzero column x 
such that Ax = 0 (by Theorem 1 Section 1.3), so x = Inx = (BA)x = B(Ax) = B(0) = 0, a contradiction. Hence m ≥ n. Similarly, the 
condition AB = Im implies that n ≥ m. Hence m = n so A is square.

Definition 2.11
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These equations characterize A-1 in the following sense: If somehow a matrix B can 
be found such that AB = I = BA, then A is invertible and B is the inverse of A; in 
symbols, B = A-1. This gives us a way of verifying that the inverse of a matrix exists. 
Examples 3 and 4 offer illustrations.

EXAMPLE 3

If A =   S  0 -1    
1 -1

  T  , show that A3 = I and so find A-1.

Solution ► We have A2 =   S  0 -1    
1 -1

  T    S  0 -1    
1 -1

  T  =   S  -1 1    
-1 0

  T  , and so 

A3 = A2A =   S  -1 1    
-1 0

  T    S  0 -1    
1 -1

  T  =   S  1 0    
0 1

  T  = I

Hence A3 = I, as asserted. This can be written as A2A = I = AA2, so it shows 

that A2 is the inverse of A. That is, A-1 = A2 =   S  -1 1    
-1 0

  T .

The next example presents a useful formula for the inverse of a 2 × 2 matrix 

A =   S  a b
   

c d
  T . To state it, we define the determinant det A and the adjugate adj A 

of the matrix A as follows:

det   S  a b
   

c d
  T  = ad - bc, and adj   S  a b

   
c d

  T  =   S   d -b
     

-c   a
  T 

EXAMPLE 4

If A =   S  a b
   

c d
  T  , show that A has an inverse if and only if det A ≠ 0, and in this case

A-1 =   1 _____ 
det A

   adj A

Solution ► For convenience, write e = det A = ad - bc and B = adj A =   S   d -b
     

-c   a
  T . 

Then AB = eI = BA as the reader can verify. So if e ≠ 0, scalar multiplication 
by 1/e gives A(  1 _ e  B) = I = (  1 _ e  B)A. Hence A is invertible and A-1 =   1 _ e  B. Thus it 
remains only to show that if A-1 exists, then e ≠ 0.
We prove this by showing that assuming e = 0 leads to a contradiction. In fact, 
if e = 0, then AB = eI = 0, so left multiplication by A-1 gives A-1AB = A-10; 
that is, IB = 0, so B = 0. But this implies that a, b, c, and d are all zero, so 
A = 0, contrary to the assumption that A-1 exists.

As an illustration, if A =   S   2 4    
-3 8

  T  then det A = 2 · 8 - 4 · (-3) = 28 ≠ 0. Hence A 

is invertible and A-1 =   1 _____ 
det A

   adj A =   1 __ 28     S  8 -4    
3   2

  T  , as the reader is invited to verify.

The determinant and adjugate will be defined in Chapter 3 for any square matrix, 
and the conclusions in Example 4 will be proved in full generality. 
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Inverses and Linear Systems
Matrix inverses can be used to solve certain systems of linear equations. Recall that a 
system of linear equations can be written as a single matrix equation

Ax = b

where A and b are known matrices and x is to be determined. If A is invertible, we 
multiply each side of the equation on the left by A-1 to get

 A-1Ax = A-1b
Ix = A-1b

 x = A-1b

This gives the solution to the system of equations (the reader should verify that 
x = A-1b really does satisfy Ax = b). Furthermore, the argument shows that if x 
is any solution, then necessarily x = A-1b, so the solution is unique. Of course the 
technique works only when the coefficient matrix A has an inverse. This proves 
Theorem 2.

Theorem 2

Suppose a system of n equations in n variables is written in matrix form as 

Ax = b 

If the n × n coefficient matrix A is invertible, the system has the unique solution 

x = A-1b

EXAMPLE 5

Use Example 4 to solve the system U  5x1 - 3x2 = -4
         

7x1 + 4x2 =   8
   .

Solution ► In matrix form this is Ax = b where A =   S  5 -3    
7   4

  T  , x =   S  x1   
x2

  T  , and 

b =   S  -4   
8

  T . Then det A = 5 · 4 - (-3) · 7 = 41, so A is invertible and 

A-1 =   1 __ 41     S   4 3    
-7 5

  T  by Example 4. Thus Theorem 2 gives

x = A-1b =   1 __ 41     S   4 3    
-7 5

  T    S  -4   
8

  T  =   1 __ 41     S    8   
68

  T  ,
so the solution is x1 =   8 __ 41   and x2 =   68 __ 41  .

An Inversion Method
If a matrix A is n × n and invertible, it is desirable to have an efficient technique for 
finding the inverse matrix A–1. In fact, we can determine A–1 from the equation 

AA–1 = In

Write A–1 in terms of its columns as A–1 = [x1 x2 � xn], where the columns xj 
are to be determined. Similarly, write In = [e1, e2, …, en] in terms of its columns. 
Then (using Definition 2.9) the condition AA–1 = I becomes 

[Ax1 Ax2 � Axn] = [e1 e2 � en]
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Equating columns gives

Axj = ej for each j = 1, 2, …, n.

These are systems of linear equations for the xj, each with A as a coefficient matrix. 
Since A is invertible, each system has a unique solution by Theorem 2. But this 
means that the reduced row-echelon form R of A cannot have a row of zeros, 
so R = In (R is square). Hence there is a sequence of elementary row operations 
carrying A → In. This sequence carries the augmented matrix of each system 
Axj = ej to reduced row-echelon form:

[A | ej] → [In | xj] for each j = 1, 2, …, n.

This determines the solutions xj, and hence determines A–1 = [x1 x2 � xn]. But the 
fact that the same sequence A → In works for each j means that we can do all these 
calculations simultaneously by applying the elementary row operations to the double 
matrix [A I]:

[A I] → [I A–1].

This is the desired algorithm. 

Matrix Inversion Algorithm

If A is an invertible (square) matrix, there exists a sequence of elementary row operations 
that carry A to the identity matrix I of the same size, written A → I. This same series 
of row operations carries I to A-1; that is, I → A-1. The algorithm can be summarized 
as follows:

[A I] → [I A-1]

where the row operations on A and I are carried out simultaneously.

EXAMPLE 6

Use the inversion algorithm to find the inverse of the matrix 

A = −
2 7 1
1 4 1
1 3 0

Solution ► Apply elementary row operations to the double matrix

[A I ] = −
2 7 1 1 0 0
1 4 1 0 1 0
1 3 0 0 0 1

so as to carry A to I. First interchange rows 1 and 2. 

1 4 1 0 1 0
2 7 1 1 0 0
1 3 0 0 0 1

−

Next subtract 2 times row 1 from row 2, and subtract row 1 from row 3. 

1 4 1 0 1 0
0 1 3 1 2 0
0 1 1 0 1 1

−
− −
− −
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Continue to reduced row-echelon form. 

1 0 11 4 7 0
0 1 3 1 2 0
0 0 2 1 1 1

1 0 0

0 1 0

0 0 1

3
2

3
2

11
2

1
2

1
2

3
2

1

−
− −
− −

− −

−

22
1
2

1
2

−−

Hence A-1 =   1 _ 2   
− −

−
1 −1

1
−1

3 3
3

11
1  , as is readily verified.

Given any n × n matrix A, Theorem 1 Section 1.2 shows that A can be carried 
by elementary row operations to a matrix R in reduced row-echelon form. If R = I, 
the matrix A is invertible (this will be proved in the next section), so the algorithm 
produces A-1. If R ≠ I, then R has a row of zeros (it is square), so no system of 
linear equations Ax = b can have a unique solution. But then A is not invertible by 
Theorem 2. Hence, the algorithm is effective in the sense conveyed in Theorem 3.

Theorem 3

If A is an n × n matrix, either A can be reduced to I by elementary row operations or it 
cannot. In the first case, the algorithm produces A-1; in the second case, A-1 does not exist.

Properties of Inverses
The following properties of an invertible matrix are used everywhere.

EXAMPLE 7

Cancellation Laws Let A be an invertible matrix. Show that: 

(1) If AB = AC, then B = C. 

(2) If BA = CA, then B = C. 

Solution ► Given the equation AB = AC, left multiply both sides by A-1 to 
obtain A-1 AB = A-1 AC. This is IB = IC, that is B = C. This proves (1) and 
the proof of (2) is left to the reader.

Properties (1) and (2) in Example 7 are described by saying that an invertible matrix 
can be “left cancelled” and “right cancelled”, respectively. Note however that 
“mixed” cancellation does not hold in general: If A is invertible and AB = CA, then 
B and C may not be equal, even if both are 2 × 2. Here is a specific example: 

A =   S  1 1    
0 1

  T  , B =   S  0 0    
1 2

  T  , and C =   S  1 1    
1 1

  T .

74 Chapter 2 Matrix Algebra



Sometimes the inverse of a matrix is given by a formula. Example 4 is one 
illustration; Examples 8 and 9 provide two more. The idea in both cases is that, 
given a square matrix A, if a matrix B can be found such that AB = I = BA, then 
A is invertible and A-1 = B.

EXAMPLE 8

If A is an invertible matrix, show that the transpose AT is also invertible. 
Show further that the inverse of AT is just the transpose of A-1; in symbols, 
(AT)-1 = (A-1)T. 

Solution ► A-1 exists (by assumption). Its transpose (A-1)T is the candidate 
proposed for the inverse of AT. Using Theorem 3 Section 2.3, we test it 
as follows:

AT(A-1)T = (A-1A)T = IT = I
(A-1)TAT = (AA-1)T = IT = I

Hence (A-1)T is indeed the inverse of AT; that is, (AT)-1 = (A-1)T.

EXAMPLE 9

If A and B are invertible n × n matrices, show that their product AB is also 
invertible and (AB)-1 = B-1A-1.

Solution ► We are given a candidate for the inverse of AB, namely B-1A-1. 
We test it as follows:

(B-1A-1)(AB) = B-1(A-1A)B = B-1IB = B-1B = I
(AB)(B-1A-1) = A(BB-1)A-1 = AIA-1 = AA-1 = I

Hence B-1A-1 is the inverse of AB; in symbols, (AB)-1 = B-1A-1.

We now collect several basic properties of matrix inverses for reference.

Theorem 4

All the following matrices are square matrices of the same size.
1. I is invertible and I -1 = I.
2. If A is invertible, so is A-1, and (A-1)-1 = A.
3. If A and B are invertible, so is AB, and (AB)-1 = B-1A-1.
4. If A1, A2, …, Ak are all invertible, so is their product A1A2�Ak, and 

(A1A2 � Ak)
-1 = Ak

-1
�A2

-1A1
-1.

5. If A is invertible, so is Ak for any k ≥ 1, and (Ak)-1 = (A-1)k.
6. If A is invertible and a ≠ 0 is a number, then aA is invertible and (aA)-1 =   1 _ a  A-1.
7. If A is invertible, so is its transpose AT, and (AT)-1 = (A-1)T.
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PROOF

 1. This is an immediate consequence of the fact that I2 = I. 

 2. The equations AA-1 = I = A-1A show that A is the inverse of A-1; in 
symbols, (A-1)-1 = A. 

 3. This is Example 9. 

 4. Use induction on k. If k = 1, there is nothing to prove, and if k = 2, the 
result is property 3. If k > 2, assume inductively that 

  (A1A2�Ak-1)
-1 = A-1

k-1�A2
-1A1

-1. We apply this fact together with 
property 3 as follows:

[A1A2�Ak-1Ak]
-1  = [(A1A2�Ak-1)Ak]

-1

=  A  k  
-1 (A1A2�Ak-1)

-1

=  A  k  
-1 ( A  k-1  

-1
  � A  2  

-1  A  1  
-1 )

  So the proof by induction is complete.

 5. This is property 4 with A1 = A2 = � = Ak = A.

 6. This is left as Exercise 29.

 7. This is Example 8.

The reversal of the order of the inverses in properties 3 and 4 of Theorem 4 is 
a consequence of the fact that matrix multiplication is not commutative. Another 
manifestation of this comes when matrix equations are dealt with. If a matrix 
equation B = C is given, it can be left-multiplied by a matrix A to yield AB = AC. 
Similarly, right-multiplication gives BA = CA. However, we cannot mix the two: If 
B = C, it need not be the case that AB = CA even if A is invertible, for 

example, A =   S  1 1    
0 1

  T  , B =   S  0 0    
1 0

  T  = C.

Part 7 of Theorem 4 together with the fact that (AT)T = A gives 

Corollary 1

A square matrix A is invertible if and only if AT is invertible.

EXAMPLE 10

Find A if (AT - 2I )-1 =   S   2 1    
-1 0

  T .
Solution ► By Theorem 4(2) and Example 4, we have

(AT - 2I ) = [(AT - 2I )-1]-1 =    S   2 1    
-1 0

  T  -1
  =   S  0 -1    

1   2
  T 

Hence AT = 2I +   S  0 -1    
1   2

  T  =   S  2 -1    
1   4

  T  , so A =   S   2 1    
-1 4

  T  by Theorem 4(2).
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The following important theorem collects a number of conditions all equivalent9 
to invertibility. It will be referred to frequently below. 

Theorem 5

Inverse Theorem
The following conditions are equivalent for an n × n matrix A:

1. A is invertible.
2. The homogeneous system Ax = 0 has only the trivial solution x = 0.
3. A can be carried to the identity matrix In by elementary row operations.
4. The system Ax = b has at least one solution x for every choice of column b.
5. There exists an n × n matrix C such that AC = In.

PROOF

We show that each of these conditions implies the next, and that (5) implies (1).

(1) ⇒ (2). If A-1 exists, then Ax = 0 gives x = Inx = A-1Ax = A-10 = 0.

(2) ⇒ (3). Assume that (2) is true. Certainly A → R by row operations where R 
is a reduced, row-echelon matrix. It suffices to show that R = In. Suppose that 
this is not the case. Then R has a row of zeros (being square). Now consider the 
augmented matrix [A | 0] of the system Ax = 0. Then [A | 0] → [R | 0] is the 
reduced form, and [R | 0] also has a row of zeros. Since R is square there must 
be at least one nonleading variable, and hence at least one parameter. Hence the 
system Ax = 0 has infinitely many solutions, contrary to (2). So R = In after all.

(3) ⇒ (4). Consider the augmented matrix [A | b] of the system Ax = b. Using 
(3), let A → In by a sequence of row operations. Then these same operations carry 
[A | b] → [In | c] for some column c. Hence the system Ax = b has a solution (in 
fact unique) by gaussian elimination. This proves (4).

(4) ⇒ (5). Write In = [e1 e2 � en] where e1, e2, …, en are the columns of In. 
For each j = 1, 2, …, n, the system Ax = ej has a solution cj by (4), so Acj = ej. 
Now let C = [c1 c2 � cn] be the n × n matrix with these matrices cj as its 
columns. Then Definition 2.9 gives (5): 

AC = A[c1 c2 � cn] = [Ac1 Ac2 � Acn] = [e1 e2 � en] = In

(5) ⇒ (1). Assume that (5) is true so that AC = In for some matrix C. Then 
Cx = 0 implies x = 0 (because x = Inx = ACx = A0 = 0). Thus condition (2) 
holds for the matrix C rather than A. Hence the argument above that (2) ⇒ 
(3) ⇒ (4) ⇒ (5) (with A replaced by C) shows that a matrix C′ exists such that 
CC′ = In. But then 

A = AIn = A(CC′) = (AC)C′ = InC′ = C′

Thus CA = CC′= In which, together with AC = In, shows that C is the inverse of 
A. This proves (1).

9 If p and q are statements, we say that p implies q (written p ⇒ q) if q is true whenever p is true. The statements are called 
equivalent if both p ⇒ q and q ⇒ p (written p ⇔ q, spoken “p if and only if q”). See Appendix B.
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The proof of (5) ⇒ (1) in Theorem 5 shows that if AC = I for square matrices, 
then necessarily CA = I, and hence that C and A are inverses of each other. We 
record this important fact for reference.

Corollary 1

If A and C are square matrices such that AC = I, then also CA = I. In particular, both 
A and C are invertible, C = A-1, and A = C-1.

Observe that Corollary 2 is false if A and C are not square matrices. For example, 
we have

  S  1 2 1    
1 1 1

  T    S   -1   1
 

   
   1 -1     

  0   1
   T  = I2 but   S   -1   1

 
   

   1 -1     
  0   1

   T    S  1 2 1    
1 1 1

  T  ≠ I3

In fact, it is verified in the footnote on page 70 that if AB = Im and BA = In, where A 
is m × n and B is n × m, then m = n and A and B are (square) inverses of each other.

An n × n matrix A has rank n if and only if (3) of Theorem 5 holds. Hence 

Corollary 2

An n × n matrix A is invertible if and only if rank A = n.

Here is a useful fact about inverses of block matrices.

EXAMPLE 11

Let P =   S  A X
    

0 B
  T  and Q =   S   A 0    

Y B
  T  be block matrices where A is m × m and B is 

n × n (possibly m ≠ n). 

(a) Show that P is invertible if and only if A and B are both invertible. In 

this case, show that  P −1  =   S  A-1 -A-1XB-1
         

0   B-1  
  T . 

(b) Show that Q is invertible if and only if A and B are both invertible. In 

this case, show that  Q −1  =   S   A-1    0          
-B-1YA-1 B-1

  T . 
Solution ► We do (a) and leave (b) for the reader.

(a) If A–1 and B–1 both exist, write R =   S  A-1 -A-1XB-1
         

0   B-1  
  T . Using block 

multiplication, one verifies that PR = Im+n = RP, so P is invertible, 
and P–1 = R. Conversely, suppose that P is invertible, and write 

P–1 =   S   C V
    

W D
  T  in block form, where C is m × m and D is n × n. 

Then the equation PP–1 = In+m becomes
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  S  A X
    

0 B
  T    S   C V

    
W D

  T  =   S  AC + XW AV + XD
           

BW     BD  
  T  = Im+n =   S  Im 0

    
0 In

  T 
 using block notation. Equating corresponding blocks, we find

AC + XW = Im, BW = 0, and BD = In

 Hence B is invertible because BD = In (by Corollary 1), then W = 0 
because BW = 0, and finally, AC = Im (so A is invertible, again by 
Corollary 1).

Inverses of Matrix Transformations
Let T = TA : �n → �n denote the matrix transformation induced by the n × n matrix 
A. Since A is square, it may very well be invertible, and this leads to the question:

What does it mean geometrically for T that A is invertible?

To answer this, let T ′ =  T A-1  : �n → �n denote the transformation induced by A-1. 
Then

   
T ′[T(x)] = A-1[Ax] = Ix = x

                                               
T [T ′(x)] = A[A-1x] = Ix = x

   for all x in �n (∗)

The first of these equations asserts that, if T carries x to a vector T(x), then 
T ′ carries T(x) right back to x; that is T ′ “reverses” the action of T. Similarly 
T “reverses” the action of T ′. Conditions (∗) can be stated compactly in terms 
of composition:

T ′ ◦ T =  1 �n  and T ◦ T ′ =  1 �n  (∗∗)

When these conditions hold, we say that the matrix transformation T ′ is an 
inverse of T, and we have shown that if the matrix A of T is invertible, then T 
has an inverse (induced by A-1).

The converse is also true: If T has an inverse, then its matrix A must be 
invertible. Indeed, suppose S : �n → �n is any inverse of T, so that S ◦ T =  1 �n

  
and T ◦ S =  1 �n

 . If B is the matrix of S, we have

BAx = S[T(x)] = (S ◦ T )(x) =  1 �n (x) = x = Inx for all x in �n 

It follows by Theorem 5 Section 2.2 that BA = In, and a similar argument shows 
that AB = In. Hence A is invertible with A-1 = B. Furthermore, the inverse 
transformation S has matrix A-1, so S = T ′ using the earlier notation. This proves 
the following important theorem.

Theorem 6

Let T : �n → �n denote the matrix transformation induced by an n × n matrix A. Then

A is invertible if and only if T has an inverse.

In this case, T has exactly one inverse (which we denote as T 
-1), and T 

-1 : �n → �n is 
the transformation induced by the matrix A-1. In other words

(TA)-1 =  T A-1 
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The geometrical relationship between T and T -1 is embodied in equations (∗) above:

T -1[T(x)] = x and T [T -1(x)] = x for all x in �n

These equations are called the fundamental identities relating T and T -1. Loosely 
speaking, they assert that each of T and T -1 “reverses” or “undoes” the action of 
the other.

This geometric view of the inverse of a linear transformation provides a new 
way to find the inverse of a matrix A. More precisely, if A is an invertible matrix, 
we proceed as follows:

1. Let T be the linear transformation induced by A.

2. Obtain the linear transformation T -1 which “reverses” the action of T. 

3. Then A-1 is the matrix of T -1.

Here is an example.

EXAMPLE 12

Find the inverse of A =   S  0 1    
1 0

  T  by viewing it as a linear transformation �2 → �2.

Solution ► If x =   S   x     y   T  the vector Ax =   S  0 1    
1 0

  T    S   x     
y
   T  =   S   y     

x
   T  is the result of reflecting 

x in the line y = x (see the diagram). Hence, if Q1 : �
2 → �2 denotes reflection 

in the line y = x, then A is the matrix of Q1. Now observe that Q1 reverses itself 
because reflecting a vector x twice results in x. Consequently  Q  1  

-1  = Q1. Since 
A-1 is the matrix of  Q  1  

-1  and A is the matrix of Q, it follows that A-1 = A. Of 
course this conclusion is clear by simply observing directly that A2 = I, but 
the geometric method can often work where these other methods may be less 
straightforward.

E X E R C I S E S  2 . 4

 1. In each case, show that the matrices are inverses 
of each other.

 (a)   S  3 5    
1 2

  T  ,   S   2 -5     
-1   3

  T  (b)   S   3   0    
1 -4

  T  ,   1 _ 2     S   4   0    
1 -3

  T 

 (c)   S  1 2 0
 

  
 0 2 3    

1 3 1
  T  ,   S     7  2 -6

 
    

 -3 -1   3      
  2   1 -2

   T  (d)   S  3 0    
0 5

  T  ,   S    
1 _ 3   0

    
0   1 _ 5  

  T  
 2. Find the inverse of each of the following 

matrices.

 (a)   S   1 -1     
-1   3

  T   �(b)   S  4 1    
3 2

  T 

 (c)   S     1   0 -1
 

    
   3   2   0      

-1 -1   0
  T  �(d)   S     1 -1    2

  
    

  -5   7 -11        
-2   3  -5

   T 
 (e)   S  3 5 0

 
  

 3 7 1    
1 2 1

  T   �(f )   S  3 1 -1
 

   
 2 1   0     

1 5 -1
  T 

 (g)   S  2 4 1
 

  
 3 3 2    

4 1 4
  T   �(h)   S  3 1 -1

 
   

 5 2   0     
1 1 -1

  T 

 (i)   S   3   1 2
 

   
 1 -1 3     

1   2 4
   T   �(j) 

1 4 5 2
0 0 0 1
1 2 2 0
0 1 1 0

−
−

− −
− −

 (k) 

1 7
0 3
1 5
1 5

1
1
1 1

0

2

5
6

−
−

  �(l) 

1 0
0 3 0

0

0 0

0 0
0 0

2
1

5
7

0
0 1 0
0 1
0 0 1

 3. In each case, solve the systems of equations by 
finding the inverse of the coefficient matrix.

 (a) 3x -  y = 5 �(b) 2x - 3y = 0
2x + 2y = 1   x - 4y = 1

y

x0

x
y

⎡
⎣⎢

⎤
⎦⎥

⎣ ⎦ ⎣ ⎦
x
y

⎡
⎢

⎤
⎥

⎡
⎢

⎤
⎥= y

xQ1

y x=
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 (c) x +  y + 2z =   5 �(d)  x + 4y + 2z =   1
x +  y +  z =   0  2x + 3y + 3z = -1
x + 2y + 4z = -2  4x +  y + 4z =   0

 4. Given A-1 =   S    1 -1 3
 

   
   2   0 5     

-1   1 0
  T :

 (a) Solve the system of equations Ax =   S     1
 

 
 -1   

  3
   T .

 �(b) Find a matrix B such that AB =   S  1 -1 2
 

   
 0   1 1     

1   0 0
   T .

 (c) Find a matrix C such that CA =   S  1 2 -1     
3 1   1

  T .

 5. Find A when

 (a) (3A)-1 =   S  1 -1    
0   1

  T   �(b) (2A)T =    S  1 -1    
2   3

  T  -1
 

 (c) (I + 3A)-1 =   S   2   0    
1 -1

  T   

 �(d) (I - 2AT)-1 =   S  2 1    
1 1

  T 

 (e)   QA   S  1 -1    
0   1

  T   R  -1
  =   S  2 3    

1 1
  T   

 �(f )   Q    S  1 0    
2 1

  T  A R  -1
  =   S  1 0    

2 2
  T 

 (g) (AT - 2I )-1 = 2  S  1 1    
2 3

  T   

 �(h) (A-1 - 2I)T = -2  S  1 1    
1 0

  T 

 6. Find A when:

 (a) A-1 =   S  1 -1   3
 

   
 2   1   1     

0   2 -2
  T  �(b) A-1 =   S  0 1 -1

 
   

 1 2   1     
1 0   1

   T 

 7. Given   S  
x1

 
 

 x2   
x3

  T  =   S  3 -1 2
 

   
 1   0 4     

2   1 0
   T    S   

y1

 
 

 y2   
y3

  T  and 

    S  
z1

 
 

 z2   
z3

  T  =   S     1 -1   1
 

    
   2 -3   0      

-1   1 -2
  T    S   

y1

 
 

 y2   
y3

  T  , express the variables 

  x1, x2, and x3 in terms of z1, z2, and z3.

 8. (a) In the system   
3x + 4y = 7

                       
4x + 5y = 1

  , substitute

  the new variables x′ and y′ given by 

  
x = -5x + 4y

                         
y = 4x′ - 3y′

  . Then find x and y.

 �(b) Explain part (a) by writing the equations as 

A  S    x     y   T  =   S   7     
1

   T  and   S    x     y    T  = B  S    x′
     

y′
   T . What is the 

relationship between A and B?

 9. In each case either prove the assertion or give an 
example showing that it is false.

 (a) If A ≠ 0 is a square matrix, then A is 
invertible.

 �(b) If A and B are both invertible, then A + B is 
invertible.

 (c) If A and B are both invertible, then (A-1B)T 
is invertible.

 �(d) If A4 = 3I, then A is invertible.

 (e) If A2 = A and A ≠ 0, then A is invertible.

 �(f ) If AB = B for some B ≠ 0, then A is invertible.

 (g) If A is invertible and skew symmetric 
(AT = -A), the same is true of A-1.

 �(h) If A2 is invertible, then A is invertible.

 (i) If AB = I, then A and B commute.

 10. (a) If A, B, and C are square matrices and 
AB = I = CA, show that A is invertible 
and B = C = A-1.

 �(b) If C-1 = A, find the inverse of CT in terms of A.

 11. Suppose CA = Im, where C is m × n and A is 
n × m. Consider the system Ax = b of n 
equations in m variables.

 (a) Show that this system has a unique solution 
CB if it is consistent.

 �(b) If C =   S   0 -5   1     
3   0 -1

  T  and A =   S   2  -3
 

   
 1  -2     

6 -10
  T  , 

  find x (if it exists) when 

  (i)

 

b =   S  1 
 

 0   
3

  T ; and (ii) b =   S    7
 

 
  4   

22
  T . 

 12. Verify that A =   S  1 -1    
0   2

  T  satisfies A2 - 3A + 2I = 0, 

and use this fact to show that A-1 =   1 _ 2   (3I - A).

 13. Let Q = 

a c
b d
c a

c

c
b

b
a

a

d

d
d b

− −
−

−

−

−

. Compute QQT and 

  so find Q-1 if Q  ≠ 0.
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 14. Let U =   S  0 1    
1 0

  T . Show that each of U, -U, and 

  -I2 is its own inverse and that the product of any 
two of these is the third.

 15. Consider A =   S   1 1    
-1 0

  T  , B =   S  0 -1    
1   0

  T  , C =   S  0 1 0
 

  
 0 0 1    

5 0 0
  T .

  Find the inverses by computing (a) A6; �(b) B 4; 
and (c) C3.

 �16. Find the inverse of   S  1 0 1
 

  
 c 1 c    

3 c 2
   T  in terms of c.

 17. If c ≠ 0, find the inverse of   S  1 -1 1
 

   
 2 -1 2     

0   2  c

   T  in terms of c.

 18. Show that A has no inverse when: 

 (a) A has a row of zeros.

 �(b) A has a column of zeros.

 (c) each row of A sums to 0. [Hint: Theorem 5(2).]

 �(d) each column of A sums to 0. 
[Hint: Corollary 2, Theorem 4.]

 19. Let A denote a square matrix.

 (a) Let YA = 0 for some matrix Y ≠ 0. Show 
that A has no inverse. [Hint: Corollary 2, 
Theorem 4.]

 (b) Use part (a) to show that 

  (i)   S  1 -1 1
 

   
 0   1 1     

1   0 2
   T ; and �(ii)   S  2 1 -1

 
   

 1 1   0     
1 0 -1

  T  
  have no inverse. 
  [Hint: For part (ii) compare row 3 with the 

difference between row 1 and row 2.]

 20. If A is invertible, show that 

 (a) A2 ≠ 0. �(b) Ak ≠ 0 for all k = 1, 2, ….

 21. Suppose AB = 0, where A and B are square 
matrices. Show that:

 (a) If one of A and B has an inverse, the other 
is zero.

 �(b) It is impossible for both A and B to have 
inverses.

 (c) (BA)2 = 0.

 �22. Find the inverse of the X-expansion in Example 
16 Section 2.2 and describe it geometrically.

 23. Find the inverse of the shear transformation in 
Example 17 Section 2.2 and describe it geometically.

 24. In each case assume that A is a square matrix 
that satisfies the given condition. Show that A 
is invertible and find a formula for A–1 in terms 
of A.

 (a) A3 - 3A + 2I = 0.

 �(b) A4 + 2A3 - A - 4I = 0.

 25. Let A and B denote n × n matrices.

 (a) If A and AB are invertible, show that 
B is invertible using only (2) and (3) of 
Theorem 4.

 �(b) If AB is invertible, show that both A and B 
are invertible using Theorem 5.

 26. In each case find the inverse of the matrix A 
using Example 11.

 (a) A =   S  -1 1   2
 

   
   0 2 -1     

  0 1 -1
  T   �(b) A =   S   3 1   0

 
   

 5 2   0     
1 3 -1

  T 

 (c) A = 

3
2
1
3

4
3

−1
1

0
0
1
1

0
0
3
4

 �(d) A = 

2
1
0
0

1
1
0
0

5
−1

1
1

2
0

−1
−2

 27. If A and B are invertible symmetric matrices such 
that AB = BA, show that A-1, AB, AB-1, and 
A-1B-1 are also invertible and symmetric.

 28. Let A be an n × n matrix and let I be the n × n 
identity matrix.

 (a) If A2 = 0, verify that (I - A)-1 = I + A.

 (b) If A3 = 0, verify that (I - A)-1 = I + A + A2.

 (c) Find the inverse of   S  1 2 -1
 

   
 0 1   3     

0 0   1
   T .

 �(d) If An = 0, find the formula for (I - A)-1.

 29. Prove property 6 of Theorem 4: If A is 
invertible and a ≠ 0, then aA is invertible 
and (aA)-1 =   1 _ a  A

-1.
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 30. Let A, B, and C denote n × n matrices. Using 
only Theorem 4, show that:

 (a) If A, C, and ABC are all invertible, B is 
invertible.

 �(b) If AB and BA are both invertible, A and B 
are both invertible.

 31. Let A and B denote invertible n × n matrices.

 (a) If A-1 = B-1, does it mean that A = B? 
Explain.

 (b) Show that A = B if and only if A-1B = I.

 32. Let A, B, and C be n × n matrices, with A and B 
invertible. Show that

 �(a) If A commutes with C, then A-1 commutes 
with C.

 (b) If A commutes with B, then A-1 commutes 
with B-1.

 33. Let A and B be square matrices of the same size.

 (a) Show that (AB)2 = A2B2 if AB = BA.

 �(b) If A and B are invertible and (AB)2 = A2B2, 
show that AB = BA.

 (c) If A =   S  1 0    
0 0

  T  and B =   S  1 1    
0 0

  T  , show that 

(AB)2 = A2B2 but AB ≠ BA.

 �34. Let A and B be n × n matrices for which AB is 
invertible. Show that A and B are both invertible.

 35. Consider A =   S   1   3  -1
 

    
 2   1    5      

1 -7   13
  T  , B =   S     1 1   2

 
   

   3 0 -3     
-2 5  17

  T .
 (a) Show that A is not invertible by finding a 

nonzero 1 × 3 matrix Y such that YA = 0. 
[Hint: Row 3 of A equals 2(row 2) - 3 (row 1).]

 �(b) Show that B is not invertible. 
[Hint: Column 3 = 3(column 2) - column 1.]

 36. Show that a square matrix A is invertible if and 
only if it can be left-cancelled: AB = AC implies 
B = C.

 37. If U2 = I, show that I + U is not invertible 
unless U = I.

 38. (a) If J is the 4 × 4 matrix with every entry 
1, show that I -   1 _ 2  J is self-inverse and 
symmetric.

 �(b) If X is n × m and satisfies XTX = Im, show 
that In - 2XXT is self-inverse and symmetric.

 39. An n × n matrix P is called an idempotent if 
P2 = P. Show that:

 (a) I is the only invertible idempotent.

 �(b) P is an idempotent if and only if I - 2P is 
self-inverse.

 (c) U is self-inverse if and only if U = I - 2P for 
some idempotent P.

 (d) I - aP is invertible for any a ≠ 1, and 
   (I - aP)-1 = I +  Q   a _____ 

1 - a
   R P.

 40. If A2 = kA, where k ≠ 0, show that A is 
invertible if and only if A = kI.

 41. Let A and B denote n × n invertible matrices.

 (a) Show that A-1 + B-1 = A-1(A + B)B-1.

 �(b) If A + B is also invertible, show that 
A-1 + B-1 is invertible and find a 
formula for (A-1 + B-1)-1.

 42. Let A and B be n × n matrices, and let I be the 
n × n identity matrix.

 (a) Verify that A(I + BA) = (I + AB)A and that 
(I + BA)B = B(I + AB).

 (b) If I + AB is invertible, verify that I + BA 
is also invertible and that 
(I + BA)-1 = I - B(I + AB)-1A.

Elementary Matrices
It is now clear that elementary row operations are important in linear algebra: 
They are essential in solving linear systems (using the gaussian algorithm) and in 
inverting a matrix (using the matrix inversion algorithm). It turns out that they can 
be performed by left multiplying by certain invertible matrices. These matrices are 
the subject of this section.

S E C T I O N  2 . 5
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An n × n matrix E is called an elementary matrix if it can be obtained from the identity 
matrix In by a single elementary row operation (called the operation corresponding to 
E). We say that E is of type I, II, or III if the operation is of that type (see page 6).

Hence
E1 =   S  0 1    

1 0
  T  , E2 =   S  1 0    

0 9
  T  , and E3 =   S  1 5    

0 1
  T  ,

are elementary of types I, II, and III, respectively, obtained from the 2 × 2 identity 
matrix by interchanging rows 1 and 2, multiplying row 2 by 9, and adding 5 times 
row 2 to row 1.

Suppose now that a matrix A =   S   a b c
           

p q r
   T  is left multiplied by the above elementary 

matrices E1, E2, and E3. The results are:

E1A =   S  0 1    
1 0

  T    S   a b c
           

p q r
   T  =   S   p q r

           
a b c

   T 
E2A =   S  1 0    

0 9
  T    S   a b c

           
p q r

   T  =   S   a  b  c
                

9p 9q 9r
   T 

E3A =   S  1 5    
0 1

  T    S   a b c
           

p q r
   T  =   S   a + 5p b + 5q c + 5r

                                          
p    q    r

   T 
In each case, left multiplying A by the elementary matrix has the same effect as 
doing the corresponding row operation to A. This works in general.

Lemma 110

If an elementary row operation is performed on an m × n matrix A, the result is EA 
where E is the elementary matrix obtained by performing the same operation on the 
m × m identity matrix.

10

PROOF

We prove it for operations of type III; the proofs for types I and II are left as 
exercises. Let E be the elementary matrix corresponding to the operation that 
adds k times row p to row q ≠ p. The proof depends on the fact that each row of 
EA is equal to the corresponding row of E times A. Let K1, K2, …, Km denote the 
rows of Im. Then row i of E is Ki if i ≠ q, while row q of E is Kq + kKp. Hence:

If i ≠ q then row i of EA = KiA = (row i of A).

Row q of EA = (Kq + kKp)A  = KqA + k(KpA) 
= (row q of A) plus k (row p of A).

Thus EA is the result of adding k times row p of A to row q, as required.

The effect of an elementary row operation can be reversed by another such 
operation (called its inverse) which is also elementary of the same type (see the 
discussion following Example 3 Section 1.1). It follows that each elementary 
matrix E is invertible. In fact, if a row operation on I produces E, then the inverse 
operation carries E back to I. If F is the elementary matrix corresponding to the 
inverse operation, this means FE = I (by Lemma 1). Thus F = E-1 and we have 
proved

10 A lemma is an auxiliary theorem used in the proof of other theorems.

Definition 2.12
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Lemma 2

Every elementary matrix E is invertible, and E-1 is also a elementary matrix (of the same 
type). Moreover, E-1 corresponds to the inverse of the row operation that produces E.

The following table gives the inverse of each type of elementary row operation:

Type Operation Inverse Operation
I Interchange rows p and q Interchange rows p and q
II Multiply row p by k ≠ 0 Multiply row p by 1/k
III Add k times row p to row q ≠ p Subtract k times row p from row q

Note that elementary matrices of type I are self-inverse.

EXAMPLE 1

Find the inverse of each of the elementary matrices

E1 =   S  0 1 0
 

  
 1 0 0    

0 0 1
  T  , E2 =   S  1 0 0

 
  

 0 1 0    
0 0 9

  T  , and E3 =   S  1 0 5
 

  
 0 1 0    

0 0 1
  T .

Solution ► E1, E2, and E3 are of Type I, II, and III respectively, so the table gives

 E  1  
-1  =   S  0 1 0

 
  

 1 0 0    
0 0 1

  T  = E1,  E  2  
-1  =   S  1 0 0

 
  

 0 1 0    
0 0   1 _ 9  

   T  , and  E  3  
-1  =   S  1 0 -5

 
   

 0 1   0     
0 0   1

   T .

Inverses and Elementary Matrices
Suppose that an m × n matrix A is carried to a matrix B (written A → B) by a 
series of k elementary row operations. Let E1, E2, …, Ek denote the corresponding 
elementary matrices. By Lemma 1, the reduction becomes

A → E1A → E2E1A → E3E2E1A → � → EkEk-1�E2E1A = B

In other words,
A → UA = B where U = EkEk-1�E2E1

The matrix U = EkEk-1�E2E1 is invertible, being a product of invertible matrices 
by Lemma 2. Moreover, U can be computed without finding the Ei as follows: If 
the above series of operations carrying A → B is performed on Im in place of A, the 
result is Im → UIm = U. Hence this series of operations carries the block matrix 
[A Im] → [B U]. This, together with the above discussion, proves

Theorem 1

Suppose A is m × n and A → B by elementary row operations.
1. B = UA where U is an m × m invertible matrix.
2. U can be computed by [A Im] → [B U] using the operations carrying A → B.
3. U = EkEk-1�E2E1 where E1, E1, …, Ek are the elementary matrices 

corresponding (in order) to the elementary row operations carrying A to B.
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EXAMPLE 2

If A =   S  2 3 1    
1 2 1

  T  , express the reduced row-echelon form R of A as R = UA 

where U is invertible.

Solution ► Reduce the double matrix [A I] → [R U] as follows:

[A I ] = 2 3 1 1 0
1 2 1 0 1

 → 
1 2 1 0 1
2 3 1 1 0

  → 
− − −

1 2 1 0 1
0 1 1 1 2

 

→ 
1 0 1 2 3
0 1 1 1 2

− −
−

Hence R =   S  1 0 -1     
0 1   1

  T  and U =   S   2 -3     
-1   2

  T .

Now suppose that A is invertible. We know that A → I by Theorem 5 Section 
2.4, so taking B = I in Theorem 1 gives [A I] → [I U] where I = UA. Thus 
U = A-1, so we have [A I] → [I A-1]. This is the matrix inversion algorithm, 
derived (in another way) in Section 2.4. However, more is true: Theorem 1 
gives A-1 = U = EkEk-1�E2E1 where E1, E2, …, Ek are the elementary matrices
corresponding (in order) to the row operations carrying A → I. Hence

 A = (A-1)-1 = (EkEk-1�E2E1)
-1 =  E  1  

-1  E  2  
-1 � E  k-1  

-1
   E  k  

-1 . (∗)

By Lemma 2, this shows that every invertible matrix A is a product of elementary 
matrices. Since elementary matrices are invertible (again by Lemma 2), this proves 
the following important characterization of invertible matrices.

Theorem 2

A square matrix is invertible if and only if it is a product of elementary matrices.

It follows that A → B by row operations if and only if B = UA for some 
invertible matrix B. In this case we say that A and B are row-equivalent. 
(See Exercise 17.)

EXAMPLE 3

Express A =   S  -2 3    
1 0

  T  as a product of elementary matrices.

Solution ► Using Lemma 1, the reduction of A → I is as follows:

A =   S  -2 3    
1 0

  T  → E1A =   S   1 0    
-2 3

  T  → E2E1A =   S  1 0    
0 3

  T  → E3E2E1A =   S  1 0    
0 1

  T 
where the corresponding elementary matrices are

E1 =   S  0 1    
1 0

  T  , E2 =   S  1 0    
2 1

  T  , E3 =   S  1 0    
0   1 _ 3  

  T  
Hence (E3 E2 E1)A = I, so:

A = (E3E2E1)
-1 =  E  1  

-1  E  2  
-1  E  3  

-1  =   S  0 1    
1 0

  T    S   1 0    
-2 1

  T    S  1 0    
0 3

  T .
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Smith Normal Form
Let A be an m × n matrix of rank r, and let R be the reduced row-echelon form of 
A. Theorem 1 shows that R = UA where U is invertible, and that U can be found 
from [A Im] → [R U].

The matrix R has r leading ones (since rank A = r) so, as R is reduced, the n × m 
matrix RT contains each row of Ir in the first r columns. Thus row operations will 

carry RT →    S  Ir 0
    

0 0
  T  
 n×m

 . Hence Theorem 1 (again) shows that    S  Ir 0
    

0 0
  T  
 n×m

  = U1R
T where 

U1 is an n × n invertible matrix. Writing V =  U  1  
T , we obtain

UAV = RV =  RU  1  
T  = (U1R

T)T = a   S  Ir 0
    

0 0
  T  
 n×m

 b
T

 =    S  Ir 0
    

0 0
  T  
 m×n

 .

Moreover, the matrix U1 = VT can be computed by [RT In] →   S    S  Ir 0
    

0 0
  T  
 n×m

 V T T  . 
This proves

Theorem 3

Let A be an m × n matrix of rank r. There exist invertible matrices U and V of size 
m × m and n × n, respectively, such that

UAV =    S  Ir 0
    

0 0
  T  
 m×n

 .

Moreover, if R is the reduced row-echelon form of A, then:
1. U can be computed by [A Im] → [R U];

2. V can be computed by [RT In] →   S    S  Ir 0
    

0 0
  T  
 n×m

 V T T .

If A is an m × n matrix of rank r, the matrix   S  Ir 0
    

0 0
  T  is called the Smith normal 

form11 of A. Whereas the reduced row-echelon form of A is the “nicest” matrix to 
which A can be carried by row operations, the Smith canonical form is the “nicest” 
matrix to which A can be carried by row and column operations. This is because doing 
row operations to RT amounts to doing column operations to R and then transposing.

EXAMPLE 4

Given A = 
−
− −

−

1 1 1 2
2 2 1 1
1 1 0 3

, find invertible matrices U and V such that 

UAV =   S  Ir 0
    

0 0
  T  , where r = rank A.

Solution ► The matrix U and the reduced row-echelon form R of A are 
computed by the row reduction [A I3] → [R U]:

11 Named after Henry John Stephen Smith (1826–83).
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1 1 1 2
2 2 1 1
1 1 0 3

1 0 0
0 1 0
0 0 1

−
− −

−
 → 

1 1 0 3
0 0 1 5
0 0 0 0

1 1 0
2 1 0
1

− − −
−

− 11 1
Hence

R = 
− −1 1 0 3

0 0 1 5
0 0 0 0

 and U = 
−

−
−

1 1 0
2 1 0
1 1 1

In particular, r = rank R = 2. Now row-reduce [RT I4] →   S   S  Ir 0
    

0 0
  T   V T T :

1 0 0
1 0 0
0 1 0
3 5 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−

−

 → 

1 0 0
0 1 0
0 0 0
0 0 0

1 0 0 00
0 0 1 0
1 1 0 0
3 0 5 1−

whence

VT = 

−

1 0 0 0
0 0 1 0
1 1 0 0
3 0 5 1

 so V = 
−

1 0 1 3
0 0 1 0
0 1 0 5
0 0 0 1

Then UAV =   S  I2 0
    

0  0
  T  as is easily verified.

Uniqueness of the Reduced Row-echelon Form
In this short subsection, Theorem 1 is used to prove the following important theorem.

Theorem 4

If a matrix A is carried to reduced row-echelon matrices R and S by row operations, then 
R = S.

PROOF

Observe first that UR = S for some invertible matrix U (by Theorem 1 there 
exist invertible matrices P and Q such that R = PA and S = QA; take U = QP-1). 
We show that R = S by induction on the number m of rows of R and S. The case 
m = 1 is left to the reader. If Rj and Sj denote column j in R and S respectively, 
the fact that UR = S gives

 URj = Sj for each j. (∗)

Since U is invertible, this shows that R and S have the same zero columns. 
Hence, by passing to the matrices obtained by deleting the zero columns from R 
and S, we may assume that R and S have no zero columns.

But then the first column of R and S is the first column of Im because R and S 
are row-echelon so (∗) shows that the first column of U is column 1 of Im. Now 
write U, R, and S in block form as follows.
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U =   S  1 X
    

0 V
  T  , R =   S   1 X

    
0 R′

  T  , and S =   S   1 Z
    

0 S′
  T .

Since UR = S, block multiplication gives VR′ = S′ so, since V is invertible (U 
is invertible) and both R′ and S′ are reduced row-echelon, we obtain R′ = S′ by 
induction. Hence R and S have the same number (say r) of leading 1s, and so 
both have m–r zero rows.

In fact, R and S have leading ones in the same columns, say r of them. 
Applying (∗) to these columns shows that the first r columns of U are the first r 
columns of Im. Hence we can write U, R, and S in block form as follows:

U =   S  Ir M
    

0 W
  T  , R =   S  R1 R2    

0     0  
  T  , and S =   S  S1 S2    

0     0  
  T 

where R1 and S1 are r × r. Then block multiplication gives UR = R; that is, 
S = R. This completes the proof.

E X E R C I S E S  2 . 5

 1. For each of the following elementary matrices, 
describe the corresponding elementary row 
operation and write the inverse.

 (a) E =   S  1 0 3
 

  
 0 1 0    

0 0 1
  T   �(b) E =   S  0 0 1

 
  

 0 1 0    
1 0 0

  T 

 (c) E =   S  1 0 0
 

  
 0   1 _ 2   0 

  
 

0 0 1
  T   �(d) E =   S     1 0 0

 
   

 -2 1 0     
  0 0 1

   T 

 (e) E =   S  0 1 0
 

  
 1 0 0    

0 0 1
  T   �(f ) E =   S  1 0 0

 
  

 0 1 0    
0 0 5

  T 
 2. In each case find an elementary matrix E such 

that B = EA.

 (a) A =   S   2   1    
3 -1

  T  , B =   S   2   1    
1 -2

  T  

 �(b) A =   S  -1 2    
0 1

  T  , B =   S  1 -2    
0   1

  T  

 (c) A =   S   1 1    
-1 2

  T  , B =   S  -1 2    
1 1

  T  

 �(d) A =   S  4 1    
3 2

  T  , B =   S  1 -1    
3   2

  T  

 (e) A =   S  -1   1     
1 -1

  T  , B =   S  -1 1    
-1 1

  T  

 �(f ) A =   S   2 1    
-1 3

  T  , B =   S  -1 3    
2 1

  T  

 3. Let A =   S   1 2    
-1 1

  T  and C =   S  -1 1    
2 1

  T .
 (a) Find elementary matrices E1 and E2 such that 

C = E2E1A.

 �(b) Show that there is no elementary matrix E 
such that C = EA.

 4. If E is elementary, show that A and EA differ in 
at most two rows.

 5. (a) Is I an elementary matrix? Explain.

 �(b) Is 0 an elementary matrix? Explain.

 6. In each case find an invertible matrix U such that 
UA = R is in reduced row-echelon form, and 
express U as a product of elementary matrices.

 (a) A =   S   1 -1 2     
-2   1 0

  T   �(b) A =   S   1  2   1     
5 12 -1

  T 

 (c) A = 
−

−

1 2 1 0
3 1 1 2
1 3 33 2

  �(d) A = 
2 1 1 0
3 1 2 1
1 2 3 1

−
−
−

 7. In each case find an invertible matrix U such 
that UA = B, and express U as a product of 
elementary matrices.

 (a) A =   S   2 1 3     
-1 1 2

  T  , B =   S  1 -1 -2     
3   0   1

  T  

 �(b) A =   S  2 -1 0     
1   1 1

  T  , B =   S   3   0 1     
2 -1 0

  T 
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 8. In each case factor A as a product of elementary 
matrices.

 (a) A =   S  1 1    
2 1

  T   �(b) A =   S  2 3    
1 2

  T 

 (c) A =   S  1 0 2
 

  
 0 1 1    

2 1 6
  T   �(d) A =   S    1 0 -3

 
   

   0 1   4     
-2 2   15

   T 
 9. Let E be an elementary matrix.

 (a) Show that ET is also elementary of the same 
type.

 (b) Show that ET = E if E is of type I or II.

 �10. Show that every matrix A can be factored 
as A = UR where U is invertible and R is in 
reduced row-echelon form.

 11. If A =   S   1   2    
1 -3

  T  and B =   S   5   2     
-5 -3

  T  , find an 

elementary matrix F such that AF = B. 
[Hint: See Exercise 9.]

 12. In each case find invertible U and V such that

  UAV =   S  Ir 0
    

0 0
  T  , where r = rank A.

 (a) A =   S   1   1 -1      
-2 -2   4

  T  �(b) A =   S  3 2    
2 1

  T 

 (c) A = 
−
−

−

1 1
31

1

1

1

2
2 0
0 4

  �(d) A = 
−

3
1
11

2
0

1 0
3 1
1 1

 13. Prove Lemma 1 for elementary matrices of:

 (a) type I; (b) type II.

 14. While trying to invert A, [A I] is carried to [P Q] 
by row operations. Show that P = QA.

 15. If A and B are n × n matrices and AB is a 
product of elementary matrices, show that the 
same is true of A.

 �16. If U is invertible, show that the reduced 
row-echelon form of a matrix [U A] is [I U -1A].

 17. Two matrices A and B are called row-
equivalent (written A   

r
 ∼  B) if there is a sequence 

of elementary row operations carrying A to B.

 (a) Show that A   
r
 ∼  B if and only if A = UB for 

some invertible matrix U.

 �(b) Show that: 

   (i) A   
r
 ∼  A for all matrices A.

   (ii) If A   
r
 ∼  B, then B   

r
 ∼  A.

  (iii) If A   
r
 ∼  B and B   

r
 ∼  C, then A   

r
 ∼  C.

 (c) Show that, if A and B are both row-
equivalent to some third matrix, then A   

r
 ∼  B.

 (d) Show that 
1 3
0 4
1

1
1 1
0 6

2

8

−
 and 

1
1

22

51 4
2 11 8
1 2

−
−

− −
−

 

are row-equivalent. [Hint: Consider (c) and 
Theorem 1 Section 1.2.]

 18. If U and V are invertible n × n matrices, show 
that U   

r
 ∼  V. (See Exercise 17.)

 19. (See Exercise 17.) Find all matrices that are row-
equivalent to:

 (a)   S  0 0 0    
0 0 0

  T   �(b)   S  0 0 0    
0 0 1

  T 

 (c)   S  1 0 0    
0 1 0

  T   �(d)   S  1 2 0    
0 0 1

  T 
 20. Let A and B be m × n and n × m matrices, 

respectively. If m > n, show that AB is not 
invertible. [Hint: Use Theorem 1 Section 1.3 to 
find x ≠ 0 with Bx = 0.]

 21. Define an elementary column operation on a matrix 
to be one of the following: (I) Interchange two 
columns. (II) Multiply a column by a nonzero 
scalar. (III) Add a multiple of a column to 
another column. Show that:

 (a) If an elementary column operation is done to 
an m × n matrix A, the result is AF, where F 
is an n × n elementary matrix.

 (b) Given any m × n matrix A, there exist m × m 
elementary matrices E1, …, Ek and n × n 
elementary matrices F1, …, Fp such that, in 
block form,

Ek�E1AF1�Fp =   S  Ir 0
    

0 0
  T .

 22. Suppose B is obtained from A by: 

 (a) interchanging rows i and j; 

 �(b) multiplying row i by k ≠ 0; 

 (c) adding k times row i to row j (i ≠ j). 

  In each case describe how to obtain B-1 from A-1. 
[Hint: See part (a) of the preceding exercise.]

 23. Two m × n matrices A and B are called 
equivalent (written A   

e
 ∼  B if there exist 
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invertible matrices U and V (sizes m × m and 
n × n) such that A = UBV.

 (a) Prove the following the properties of 
equivalence.

   (i) A   
e
 ∼  A for all m × n matrices A. 

(ii) If A   
e
 ∼  B, then B   

e
 ∼  A.

(iii) If A   
e
 ∼  B and B   

e
 ∼  C, then A   

e
 ∼  C.

 (b) Prove that two m × n matrices are equivalent 
if they have the same rank. [Hint: Use part 
(a) and Theorem 3.]

Linear Transformations
If A is an m × n matrix, recall that the transformation TA : �

n → �m defined by 

TA(x) = Ax for all x in �n 

is called the matrix transformation induced by A. In Section 2.2, we saw that many 
important geometric transformations were in fact matrix transformations. These 
transformations can be characterized in a different way. The new idea is that of 
a linear transformation, one of the basic notions in linear algebra. We define 
these transformations in this section, and show that they are really just the matrix 
transformations looked at in another way. Having these two ways to view them 
turns out to be useful because, in a given situation, one perspective or the other 
may be preferable. 

Linear Transformations 

A transformation T : �n → �m is called a linear transformation if it satisfies the 
following two conditions for all vectors x and y in �n and all scalars a:

T1 T(x + y) = T(x) + T(y)

T2 T(ax) = aT(x)

Of course, x + y and ax here are computed in �n, while T(x) + T(y) and aT(x) 
are in �m. We say that T preserves addition if T1 holds, and that T preserves scalar 
multiplication if T2 holds. Moreover, taking a = 0 and a = -1 in T2 gives

T(0) = 0 and T(-x) = -T(x)

Hence T preserves the zero vector and the negative of a vector. Even more is true. 
Recall that a vector y in �n is called a linear combination of vectors x1, x2, …, xk 

if y has the form 

y = a1x1 + a2x2 + � + akxk

for some scalars a1, a2, …, ak. Conditions T1 and T2 combine to show that every linear 
transformation T preserves linear combinations in the sense of the following theorem.

Theorem 1

If T : �n → �
m is a linear transformation, then for each k = 1, 2, … 

T(a1x1 + a2x2 + � + akxk) = a1T(x1) + a2T(x2) + � + akT(xk)

for all scalars ai and all vectors xi in �n.

S E C T I O N  2 . 6

Definition 2.13
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PROOF

If k = 1, it reads T(a1x1) = a1T(x1) which is Condition T1. If k = 2, we have 

 T(a1x1 + a2x2) = T(a1x1) + T(a2x2) by Condition T1 
 = a1T(x1) + a2T(x2) by Condition T2

If k = 3, we use the case k = 2 to obtain

 T(a1x1 + a2x2 + a3x3) = T [(a1x1 + a2x2) + a3x3] collect terms 
 = T(a1x1 + a2x2) + T(a3x3) by Condition T1
 = [a1T(x1) + a2T(x2)] + T(a3x3) by the case k = 2
 = [a1T(x1) + a2T(x2)] + a3T(x3) by Condition T2

The proof for any k is similar, using the previous case k - 1 and Conditions T1 
and T2.

The method of proof in Theorem 1 is called mathematical induction (Appendix C).
Theorem 1 shows that if T is a linear transformation and T(x1), T(x2), …, T(xk) 

are all known, then T(y) can be easily computed for any linear combination y of 
x1, x2, …, xk. This is a very useful property of linear transformations, and is 
illustrated in the next example. 

EXAMPLE 1

If T : �2 → �2 is a linear transformation, T   S  1   
1
  T  =   S   2   

-3
  T  and T   S   1   

-2
  T  =   S  5   

1
  T  , find T   S  4   

3
  T .

Solution ► Write z =   S  4   
3

  T  , x =   S  1   
1

  T  , and y =   S   1   
-2

  T  for convenience. Then we 

know T(x) and T(y) and we want T(z), so it is enough by Theorem 1 to express 
z as a linear combination of x and y. That is, we want to find numbers a and b 
such that z = ax + by. Equating entries gives two equations 4 = a + b and 
3 = a - 2b. The solution is, a =   11 __ 3   and b =   1 _ 3  , so z =   11 __ 3  x +   1 _ 3  y. Thus 
Theorem 1 gives

T(z) =   11 __ 3  T(x) +   1 _ 3  T(y) =   11 __ 3     S   2   
-3

  T  +   1 _ 3     S  5   
1

  T  =   1 _ 3     S   27    
-32

  T 
This is what we wanted.

EXAMPLE 2

If A is m × n, the matrix transformation TA : �
n → �m, A, is a linear 

transformation.

Solution ► We have TA(x) = Ax for all x in �n, so Theorem 2 Section 2.2 gives

TA(x + y) = A(x + y) = Ax + Ay = TA(x) + TA(y)

and 

TA(ax) = A(ax) = a(Ax) = aTA(x)

hold for all x and y in �n and all scalars a. Hence TA satisfies T1 and T2, and 
so is linear.
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The remarkable thing is that the converse of Example 2 is true: Every linear 
transformation T : �n → �m is actually a matrix transformation. To see why, we 
define the standard basis of �n to be the set of columns

{e1, e2, …, en}

of the identity matrix In. Then each ei is in �n and every vector x =   S   
x1

 
 

 x2   
	
 
 

 
xn

   T  in �n is a 

linear combination of the ei. In fact:

x = x1e1 + x2e2 + � + xnen

as the reader can verify. Hence Theorem 1 shows that

T(x) = T(x1e1 + x2e2 + � + xnen) = x1T(e1) + x2T(e2) + � + xnT(en)

Now observe that each T(ei) is a column in �m, so 

A = [T(e1) T(e2) � T(en)]

is an m × n matrix. Hence we can apply Definition 2.5 to get

T(x) = x1T(e1) + x2T(e2) + � + xnT(en) = [T(e1) T(e2) � T(en)]  S   
x1

 
 

 x2   
	
 
 

 
xn

   T  = Ax.

Since this holds for every x in �n, it shows that T is the matrix transformation 
induced by A, and so proves most of the following theorem.

Theorem 2

Let T : �n → �m be a transformation.
1. T is linear if and only if it is a matrix transformation.
2. In this case T = TA is the matrix transformation induced by a unique m × n 

matrix A, given in terms of its columns by 

A = [T(e1) T(e2) � T(en)]

 where {e1, e2, …, en} is the standard basis of �n.

PROOF

It remains to verify that the matrix A is unique. Suppose that T is induced by 
another matrix B. Then T(x) = Bx for all x in �n. But T(x) = Ax for each x, so 
Bx = Ax for every x. Hence A = B by Theorem 5 Section 2.2.

Hence we can speak of the matrix of a linear transformation. Because of 
Theorem 2 we may (and shall) use the phrases “linear transformation” and 
“matrix transformation” interchangeably. 

EXAMPLE 3

Define T1: �
3 → �2

 by T   S  
x1

 
 

 x2   
x3

  T  =   S  x1   
x2

  T  for all   S  
x1

 
 

 x2   
x3

  T  in �3. Show that T is a linear 

transformation and use Theorem 2 to find its matrix.
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Solution ► Write x =   S  
x1

 
 

 x2   
x3

  T  and y =   S   
y1

 
 

 y2   
y3

  T  , so that x + y =   S  
x1 + y1

 
   

 x2 + y2     
x3 + y3

  T . Hence

T(x + y) =   S  x1 + y1     
x2 + y2

  T  =   S  x1   
x2

  T  +   S  y1   
y2

  T  = T(x) + T(y)

Similarly, the reader can verify that T(ax) = aT(x) for all a in �, so T is a linear 
transformation. Now the standard basis of �3 is

e1 =   S  1 
 

 0   
0

  T  , e2 =   S  0 
 

 1   
0

  T  , and e3 =   S  0 
 

 0   
1

  T 
so, by Theorem 2, the matrix of T is 

A = [T(e1) T(e2) T(e3)] =   S   1 0 0            
0 1 0

   T .

Of course, the fact that T   S  
x1

 
 

 x2   
x3

  T  =   S   x1      
x2

   T  =   S   1 0 0            
0 1 0

   T    S  
x1

 
 

 x2   
x3

  T  shows directly that T is a 

matrix transformation (hence linear) and reveals the matrix.

To illustrate how Theorem 2 is used, we rederive the matrices of the 
transformations in Examples 13 and 15 in Section 2.2. 

EXAMPLE 4

Let Q0: �
2 → �2 denote reflection in the x axis (as in Example 13 Section 2.2) 

and let  R   π __ 2  
 : �2 → �2 denote counterclockwise rotation through   π __ 2   about the 

origin (as in Example 15 Section 2.2). Use Theorem 2 to find the matrices of 
Q0 and  R   π __ 2  

 .

Solution ► Observe that Q0 and  R   π __ 2  
  are linear by Example 2 (they are matrix 

transformations), so Theorem 2 applies to them. The standard basis of �2 is 

{e1, e2} where e1 =   S  1   
0

  T  points along the positive x axis, and e2 =   S  0   
1

  T  points 

along the positive y axis (see Figure 1). 
 The reflection of e1 in the x axis is e1 itself because e1 points along the x axis, 
and the reflection of e2 in the x axis is -e2 because e2 is perpendicular to the x 
axis. In other words, Q0(e1) = e1 and Q0(e2) = -e2. Hence Theorem 2 shows 
that the matrix of Q0 is 

[Q0(e1) Q0(e2)] = [e1 -e2] =   S   1   0    
0 -1

  T 
which agrees with Example 13 Section 2.2.
 Similarly, rotating e1 through   π __ 2   counterclockwise about the origin produces 
e2, and rotating e2 through   π __ 2   counterclockwise about the origin gives -e1. 
That is,  R   π __ 2  

 (e1) = e2 and  R   π __ 2  
 (e2) = -e2. 

Hence, again by Theorem 2, the 
matrix of  R   π __ 2  

  is 
[ R   π __ 2  

 (e1)  R   π __ 2  
 (e2)] = [e2 -e1] =   S  0 -1    

1   0
  T 

agreeing with Example 15 Section 2.2.

y

x

e2

e1

0
1

⎡
⎣⎢

⎤
⎦⎥

1
0

⎡
⎣⎢

⎤
⎦⎥

0

� FIGURE 1
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EXAMPLE 5

Let Q1: �
2 → �2 denote reflection in the line y = x. Show that Q1 is a matrix 

transformation, find its matrix, and use it to illustrate Theorem 2.

Solution ► Figure 2 shows that Q1  S  x¦   
y
  T  =   S   y     

x
   T . Hence Q1  S  x¦   

y
  T  =   S  0 1    

1 0
  T    S   y     

x
   T  ,

so Q1 is the matrix transformation induced by the matrix A =   S  0 1    
1 0

  T .
Hence Q1 is linear (by Example 2) and so Theorem 2 applies. If e1 =   S  1   

0
  T  and 

e1 =   S  0   
1

  T  are the standard basis of �2, then it is clear geometrically that 

Q1(e1) = e2 and Q1(e2) = e1. Thus (by Theorem 2) the matrix of Q1 is 
[Q1(e1) Q1(e2)] = [e2 e1] = A as before.

Recall that, given two “linked” transformations 

�
k →T  �n →S  �m,

we can apply T first and then apply S, and so obtain a new transformation 

S ◦ T : �k → �m,

called the composite of S and T, defined by

(S ◦ T )(x) = S[T(x)] for all x in Rk. 

If S and T are linear, the action of S ◦ T can be computed by multiplying their matrices.

Theorem 3

Let �k →T  �n →S  �m, be linear transformations, and let A and B be the matrices of S 
and T respectively. Then S ◦ T is linear with matrix AB.

PROOF

(S ◦ T)(x) = S[T(x)] = A[Bx] = (AB)x for all x in �k.

Theorem 3 shows that the action of the composite S ◦ T is determined by the 
matrices of S and T. But it also provides a very useful interpretation of matrix 
multiplication. If A and B are matrices, the product matrix AB induces the 
transformation resulting from first applying B and then applying A. Thus the 
study of matrices can cast light on geometrical transformations and vice-versa. 
Here is an example.

EXAMPLE 6

Show that reflection in the x axis followed by rotation through   π __ 2   is reflection in 
the line y = x.

y

x

e2

e1
0

x
y

⎡
⎣⎢

⎤
⎦⎥

y x=

T x
y

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

= y
x

� FIGURE 2
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Solution ► The composite in question is  R   π __ 2  
  ◦ Q0 where Q0 is reflection in the 

x axis and  R   π __ 2  
  is rotation through   π __ 2  . By Example 4,  R   π __ 2  

  has matrix A =   S  0 -1    
1   0

  T  
and Q0 has matrix B =   S   1   0    

0 -1
  T . Hence Theorem 3 shows that the matrix of 

 R   π __ 2  
  ◦ Q0 is AB =   S  0 -1    

1   0
  T 
 
  
S
  1   0   

 

0 -1

  
T
  =   S  0 1    

1 0
  T  , which is the matrix of reflection in the 

line y = x by Example 3.

This conclusion can also be seen geometrically. Let x be a typical point in �2, 
and assume that x makes an angle α with the positive x axis. The effect of first 
applying Q0 and then applying  R   π __ 2  

  is shown in Figure 3. The fact that  R   π __ 2  
 [Q0(x)] 

makes the angle α with the positive y axis shows that  R   π __ 2  
 [Q0(x)] is the reflection 

of x in the line y = x.

y

x

x

0
α

y

x

x

0 α

Q (x) (x)0

y

x

x

α

α

0

Q0

y x=

R Q x⁄ 2 0[ ( )]�

� FIGURE 3

In Theorem 3, we saw that the matrix of the composite of two linear 
transformations is the product of their matrices (in fact, matrix products were 
defined so that this is the case). We are going to apply this fact to rotations, 
reflections, and projections in the plane. Before proceeding, we pause to present 
useful geometrical descriptions of vector addition and scalar multiplication in the 
plane, and to give a short review of angles and the trigonometric functions.

Some Geometry

As we have seen, it is convenient to view a vector x in �2 as an arrow from the 
origin to the point x (see Section 2.2). This enables us to visualize what sums and 

scalar multiples mean geometrically. For example consider x =   S  1   
2

  T  in �2. Then 

2x =   S  2   
4

  T  ,   1 _ 2  x =   S     
1 _ 2     
1

  T  and -  1 _ 2  x =   S   -  1 _ 2     
-1

  T  , and these are shown as arrows in Figure 4. 

Observe that the arrow for 2x is twice as long as the arrow for x and in the same 
direction, and that the arrows for   1 _ 2  x is also in the same direction as the arrow for 
x, but only half as long. On the other hand, the arrow for  −  1 _ 2  x is half as long as 
the arrow for x, but in the opposite direction. More generally, we have the following 
geometrical description of scalar multiplication in �2:

x1

x2

0

2 2
4x = ⎡

⎣⎢
⎤
⎦⎥

x = ⎡
⎣⎢

⎤
⎦⎥

1
2

1
2

1 2
1x = ⎡

⎣⎢
⎤
⎦⎥

/

− = −
−

⎡
⎣⎢

⎤
⎦⎥

1
2

1 2
1x /

� FIGURE 4
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Scalar Multiple Law

Let x be a vector in �2. The arrow for kx is |k| times12 as long as the arrow for x, and is 
in the same direction as the arrow for x if k > 0, and in the opposite direction if k < 0. 

Now consider two vectors x =   S  2   
1

  T  and y =   S  1   
3

  T  in �2. They are plotted in 

Figure 5 along with their sum x + y =   S  3   
4

  T . It is a routine matter to verify that the 

four points 0, x, y, and x + y form the vertices of a parallelogram–that is opposite 
sides are parallel and of the same length. (The reader should verify that the side 
from 0 to x has slope of   1 _ 2  , as does the side from y to x + y, so these sides are 
parallel.) We state this as follows:

Parallelogram Law 

Consider vectors x and y in �2. If the arrows for x and y are drawn (see Figure 6), the 
arrow for x + y corresponds to the fourth vertex of the parallelogram determined by the 
points x, y, and 0.

We will have more to say about this in Chapter 4. 
We now turn to a brief review of angles and the trigonometric functions. Recall 

that an angle θ is said to be in standard position if it is measured counterclockwise 
from the positive x axis (as in Figure 7). Then θ uniquely determines a point p on 
the unit circle (radius 1, centre at the origin). The radian measure of θ is the length 
of the arc on the unit circle from the positive x axis to p. Thus 360° = 2π radians, 
180° = π, 90° =   π __ 2  , and so on.

The point p in Figure 7 is also closely linked to the trigonometric functions 
cosine and sine, written cos θ and sin θ respectively. In fact these functions are 

defined to be the x and y coordinates of p; that is p =   S  cos θ
    

sin θ
  T . This defines cos θ and 

sin θ for the arbitrary angle θ (possibly negative), and agrees with the usual values 
when θ is an acute angle  Q0 ≤ θ ≤   π __ 2   R  as the reader should verify. For more discussion 
of this, see Appendix A. 

Rotations
We can now describe rotations in the plane. Given an angle θ, let 

Rθ : �
2 → �2

denote counterclockwise rotation of �2 about the origin through the angle θ. The 
action of Rθ is depicted in Figure 8. We have already looked at  R   π __ 

2
    (in Example 15 

Section 2.2) and found it to be a matrix transformation. It turns out that Rθ is a 
matrix transformation for every angle θ (with a simple formula for the matrix), but it 
is not clear how to find the matrix. Our approach is to first establish the (somewhat 
surprising) fact that Rθ is linear, and then obtain the matrix from Theorem 2. 

Let x and y be two vectors in �2. Then x + y is the diagonal of the parallelogram 
determined by x and y as in Figure 9. The effect of Rθ is to rotate the entire 
parallelogram to obtain the new parallelogram determined by Rθ(x) and Rθ(y), with 
diagonal Rθ(x + y). But this diagonal is Rθ(x) + Rθ(y) by the parallelogram law 
(applied to the new parallelogram). It follows that 

Rθ(x + y) = Rθ(x) + Rθ(y).

12 If k is a real number, |k| denotes the absolute value of k; that is, |k| = k if k ≥ 0 and |k| = -k if k < 0.
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A similar argument shows that Rθ(ax) = aRθ(x)
 
for any scalar a, so Rθ: �

2 → �2 is 
indeed a linear transformation.

With linearity established we can find the matrix of Rθ. Let e1 =   S  1   
0

  T  and e2 =   S  0   
1

  T  
denote the standard basis of �2. By Figure 10 we see that

Rθ(e1) =   S   cos θ
          

sin θ
   T  and Rθ(e2) =   S  -sin θ

    
cos θ

  T .
Hence Theorem 2 shows that Rθ is induced by the matrix

[Rθ(e1) Rθ(e2)] =   S  cos θ -sin θ
        

sin θ   cos θ
  T .

We record this as

Theorem 4

The rotation Rθ : �2 → �2 is the linear transformation with matrix   S  cos θ -sin θ
         

sin θ   cos θ
  T  .

For example,  R   π __ 2  
  and Rπ have matrices   S  0 -1    

1   0
  T  and   S  -1   0     

0 -1
  T  , respectively, by 

Theorem 4. The first of these confirms the result in Example 15 Section 2.2. The 

second shows that rotating a vector x =   S  x   
y
  T  through the angle π results in 

Rπ(x) =   S  -1   0     
0 -1

  T    S  x¦   
y
  T  =   S  -x¦

   
-y

  T  = -x. Thus applying Rπ is the same as negating x, a 

fact that is evident without Theorem 4. 

EXAMPLE 7

Let θ and ϕ be angles. By finding the matrix of the composite Rθ ◦ Rϕ, obtain 
expressions for cos(θ + ϕ) and sin(θ + ϕ).

Solution ► Consider the transformations �2 →Rϕ  �2 →Rθ  �2. Their composite 
Rθ ◦ Rϕ is the transformation that first rotates the plane through ϕ and then 
rotates it through θ, and so is the rotation through the angle θ + ϕ (see 
Figure 11). In other words 

Rθ+ϕ = Rθ ◦ Rϕ.

Theorem 3 shows that the corresponding equation holds for the matrices of 
these transformations, so Theorem 4 gives:

  S  cos(θ + ϕ) -sin(θ + ϕ)
              

sin(θ + ϕ)   cos(θ + ϕ)
  T  =   S  cos θ -sin θ

        
sin θ   cos θ

  T    S  cos ϕ -sin ϕ
        

sin ϕ   cos ϕ
  T 

If we perform the matrix multiplication on the right, and then compare first 
column entries, we obtain

cos(θ + ϕ) = cos θ cos ϕ - sin θ sin ϕ
sin(θ + ϕ) = sin θ cos ϕ + cos θ sin ϕ

These are the two basic identities from which most of trigonometry can 
be derived.
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Reflections
The line through the origin with slope m has equation y = mx, and we let 
Qm: �2 → �2 denote reflection in the line y = mx. 

This transformation is described geometrically in Figure 12. In words, Qm(x) is 
the “mirror image” of x in the line y = mx. If m = 0 then Q0 is reflection in the x 
axis, so we already know Q0 is linear. While we could show directly that Qm is linear 
(with an argument like that for Rθ), we prefer to do it another way that is instructive 
and derives the matrix of Qm directly without using Theorem 2. 

Let θ denote the angle between the positive x axis and the line y = mx. The key 
observation is that the transformation Qm can be accomplished in three steps: First 
rotate through -θ (so our line coincides with the x axis), then reflect in the x axis, 
and finally rotate back through θ. In other words: 

Qm = Rθ ◦ Q0 ◦ R−θ

Since R–θ, Q0, and Rθ are all linear, this (with Theorem 3) shows that Qm is linear 
and that is matrix is the product of the matrices of Rθ, Q0, and R–θ. If we write 
c = cos θ and s = sin θ for simplicity, then the matrices of Rθ, R–θ, and Q0 are

  S  c -s
    

s   c  T  ,   S   c s
    

-s c
  T  , and   S   1   0    

0 -1
  T  respectively.13

Hence, by Theorem 3, the matrix of Qm = Rθ ◦ Q0 ◦ R−θ is

  S  c -s
    

s   c  T    S   
1   0    
0 -1

  T    S   c s
    

-s c
  T  =   S  c2 - s2   2sc  

         
2sc   s2 - c2

  T .
We can obtain this matrix in terms of m alone. Figure 13 shows that 

 cos θ =   1 ________ 
 √ 

_______

 1 +  m 2   
   and  sin θ =   m ________ 

 √ 
_______

 1 +  m 2   
  , 

so the matrix   S  c2 - s2   2sc  
         

2sc   s2 - c2
  T  of Qm becomes   1 _______ 

1 +  m 2 
     S  1 - m2   2m  

         
2m   m2 - 1

  T .

Theorem 5

Let Qm denote reflection in the line y = mx. Then Qm is a linear transformation with 

matrix   1 ______ 
1 +  m 2 

     S  1 - m2   2m  
          

2m   m2 - 1
  T .

Note that if m = 0, the matrix in Theorem 5 becomes   S   1   0    
0 -1

  T  , as expected. Of 

course this analysis fails for reflection in the y axis because vertical lines have no 
slope. However it is an easy exercise to verify that reflection in the y axis is indeed 

linear with matrix   S  -1 0    
0 1

  T .14

EXAMPLE 8

Let T : �2 → �2
 be rotation through -  π 

__ 2   followed by reflection in the y axis. 
Show that T is a reflection in a line through the origin and find the line.

13 The matrix of  R -θ  comes from the matrix of  R θ  using the fact that, for all angles θ, cos(-θ) = cos θ and sin(-θ) = -sin(θ).

14 Note that   S−1 
0

0 
1
T=   lim

m→∞

1______

1 + m2 S  1 - m2
   

2m 
2m    

m2 - 1
T .
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Solution ► The matrix of  R -  π 
__ 2  
  is 

cos( ) sin( )
sin( ) cos( )

− −
−

−
−

�

�
2

2

�

�
2

2
 =   S   0 1    

-1 0
  T  and the matrix of 

reflection in the y axis is   S  -1 0    
0 1

  T . Hence the matrix of T is 

  S  -1 0    
0 1

  T    S   0 1    
-1 0

  T  =   S   0 -1     
-1   0

  T  and this is reflection in the line y = -x 

(take m = -1 in Theorem 5).

Projections
The method in the proof of Theorem 5 works more generally. Let Pm: �2 → �2

denote projection on the line y = mx. This transformation is described 
geometrically in Figure 14. If m = 0, then  P 0   S   x     y   T  =   S   x     

0
   T  for all   S   x     y   T  in �2, so P0 is 

linear with matrix   S  1 0    
0 0

  T . Hence the argument above for Qm goes through for Pm. 

First observe that 

Pm = Rθ ◦ P0 ◦ R−θ

as before. So, Pm is linear with matrix

  S  c -s
    

s   c  T    S  
1 0    
0 0

  T    S   c s
    

-s c
  T  =   S  c2 sc

    
sc s2

  T 
where c =  cos θ =   1 ________ 

 √ 
_______

 1 +  m 2   
   and s =  sin θ =   m ________ 

 √ 
_______

 1 +  m 2   
  . This gives: 

Theorem 6

Let Pm: �2 → �2 be projection on the line y = mx. Then Pm is a linear transformation 

with matrix   1 _______ 
1 +  m 2 

      S   1   m 
    

m m2
  T .

Again, if m = 0, then the matrix in Theorem 6 reduces to   S  1 0    
0 0

  T  as expected. 

As the y axis has no slope, the analysis fails for projection on the y axis, but this 

transformation is indeed linear with matrix   S  0 0    
0 1

  T  as is easily verified. 

EXAMPLE 9

Given x in �2, write y = Pm(x). The fact that y lies on the line y = mx means 
that Pm(y) = y. But then

(Pm ◦ Pm)(x) = Pm(y) = y = Pm(x) for all x in �2, that is, Pm ◦ Pm = Pm. 

In particular, if we write the matrix of Pm as A =   1 _______ 
1 + m2

     S   1   m 
    

m m2
  T  , then A2 = A. 

The reader should verify this directly.

y

x0

Pm(x)

x

y mx=

� FIGURE 14
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E X E R C I S E S  2 . 6

 1. Let Tθ : �
3 → �2 be a linear transformation. 

 (a) Find T   S  8 
 

 3   
7

  T  if T   S    1
 
 

  0   
-1

  T  =   S   2     
3

   T  and T   S  2 
 

 1   
3

  T  =   S   -1       
 0

   T . 

 �(b) Find T   S   5
 

  
 6    

-13
  T  if T   S    3

 
 

  2   
-1

  T  =   S   3     
5

   T  and T   S  2 
 

 0   
5

  T  =   S   -1       
 2

   T .

 2. Let Tθ : �
4 → �3 be a linear transformation. 

 (a) Find T   S   
  1

 
 

   3   
−2

 
 

 

−3

  T  if T   S     1
 

 
   1   

  0
 

 
 

-1

  T  =   S    2
 
 

  3   
-1

  T  and 

T   S     0
 

 
 -1   

  1
 

 
 

  1

   T  =   S  5 
 

 0   
1

  T . 
 �(b) Find T   S     5

 
 

 -1   
  2

 
 

 

−4

  T  if T   S  1 
 

 1   
1

 
 

 

1

  T  =   S    5
 
 

  1   
-3

  T  and 

T   S  -1
 

 
   1   

  0
 

 
 

  2

   T  =   S  2 
 

 0   
1

  T .
 3. In each case assume that the transformation T is 

linear, and use Theorem 2 to obtain the matrix A 
of T.

 (a) T : �2 → �2 is reflection in the line y = -x.

 �(b) T : �2 → �2 is given by T(x) = -x for each x 
in �2.

 (c) T : �2 → �2 is clockwise rotation through   π __ 4  . 

 �(d) T : �2 → �2 is counterclockwise rotation 
through   π __ 4  .

 4. In each case use Theorem 2 to obtain the matrix 
A of the transformation T. You may assume that 
T is linear in each case. 

 (a) T : �3 → �3 is reflection in the x-z plane. 

 �(b) T : �3 → �3 is reflection in the y-z plane.

 5. Let T : �n → �m be a linear transformation. 

 (a) If x is in �n, we say that x is in the kernel of T 
if T(x) = 0. If x1 and x2 are both in the kernel 
of T, show that ax1 + bx2 is also in the kernel 
of T for all scalars a and b.

 �(b) If y is in �n, we say that y is in the image of T 
if y = T(x) for some x in �n. If y1 and y2 are 

both in the image of T, show that ay1 + by2 
is also in the image of T for all scalars a and b.

 6. Use Theorem 2 to find the matrix of the 
identity transformation  1 �n  : �n → �n 
defined by  1 �n  : (x) = x for each x in �n.

 7. In each case show that T : �2 → �2 is not a 
linear transformation. 

 (a) T   S  x   
y
  T  =   S   xy

      
0

   T . �(b) T   S  x   
y
  T  =   S   0      

y2
   T  

 8. In each case show that T is either reflection in a 
line or rotation through an angle, and find the 
line or angle. 

 (a) T   S  x   
y
  T  =   1 _ 5    S   -3x + 4y

                 
4x + 3y

   T .
 �(b) T   S  x   

y
  T  =   1 __ 

 √ 

__

 2  
    S   x + y

             
-x + y

   T .

 (c) T   S  x   
y
  T  =   1 __ 

 √ 

__

 3  
    S   x -  √ 

__

 3  y
               

 √ 

__

 3  x + y
   T . 

 �(d) T   S  x   
y
  T  = -  1 __ 10    S   8x + 6y

              
6x - 8y

   T . 
 9. Express reflection in the line y = -x as the 

composition of a rotation followed by reflection 
in the line y = x.

 10. In each case find the matrix of T : �3 → �3: 

 (a) T is rotation through θ about the x axis (from 
the y axis to the z axis). 

 �(b) T is rotation through θ about the y axis (from 
the x axis to the z axis).

 11. Let Tθ : �
2 → �2 denote reflection in the line 

making an angle θ with the positive x axis. 

 (a) Show that the matrix of Tθ 

is   S   cos 2θ
            

sin 2θ
     

sin 2θ
               

−cos 2θ
   T  for all θ.

 (b) Show that  T θ  ◦  R 2ϕ  =  T θ−ϕ  for all θ and ϕ.

 12. In each case find a rotation or reflection that 
equals the given transformation. 

 (a) Reflection in the y axis followed by rotation 
through   π __ 2  . 

 �(b) Rotation through π followed by reflection in 
the x axis. 
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 (c) Rotation through   π __ 2   followed by reflection in 
the line y = x.

 �(d) Reflection in the x axis followed by rotation 
through   π __ 2  . 

 (e) Reflection in the line y = x followed by 
reflection in the x axis. 

 �(f ) Reflection in the x axis followed by reflection 
in the line y = x.

 13. Let R and S be matrix transformations �n → �m 
induced by matrices A and B respectively. In 
each case, show that T is a matrix transformation 
and describe its matrix in terms of A and B. 

 (a) T(x) = R(x) + S(x) for all x in �n. 

 �(b) T(x) = aR(x) for all x in �n (where a is a fixed 
real number). 

 14. Show that the following hold for all linear 
transformations T : �n → �m: 

 (a) T(0) = 0. �(b) T(-x) = -T(x) for all x in �n.

 15. The transformation T : �n → �m defined 
by T(x) = 0 for all x in �n is called the zero 
transformation. 

 (a) Show that the zero transformation is linear 
and find its matrix. 

 (b) Let e1, e2, …, en denote the columns of the 
n × n identity matrix. If T : �n → �m is 
linear and T(ei) = 0 for each i, show that T is 
the zero transformation. [Hint: Theorem 1.] 

 16. Write the elements of �n and �m as rows. If 
A is an m × n matrix, define T : �m → �n by 
T(y) = yA for all rows y in �m. Show that:

 (a) T is a linear transformation. 

 (b) the rows of A are T (f1), T (f2), …, T (fm) 
where fi denotes row i of Im. [Hint: Show 
that fi A is row i of A.]

 17. Let S : �n → �n and T : �n → �n be linear 
transformations with matrices A and B respectively. 

 (a) Show that B2 = B if and only if T 2 = T 
(where T 2 means T ◦ T ). 

 �(b) Show that B2 = I if and only if T 2 =  1 �n . 

 (c) Show that AB = BA if and only if 
S ◦ T = T ◦ S. 

  [Hint: Theorem 3.]

 18. Let Q0: �
2 → �2 be reflection in the x axis, 

let Q1: �
2 → �2 be reflection in the line y = x, 

let Q-1: �
2 → �2 be reflection in the line 

y = -x, and let  R   π __ 2  
 : �2 → �2 be counterclockwise 

rotation through   π __ 2  . 

 (a) Show that Q1 ◦  R   π __ 2  
  = Q0. 

 �(b) Show that Q1 ◦ Q2 =  R   π __ 2  
 . 

 (c) Show that  R   π __ 2  
  ◦ Q0 = Q1. 

 �(d) Show that Q0 ◦  R   π __ 2  
  = Q-1. 

 19. For any slope m, show that: 

 (a) Qm ◦ Pm = Pm (b) Pm ◦ Qm = Pm

 �20. Define T : �n → � by 
T(x1, x2, …, xn) = x1 + x2 + � + xn. 
Show that T is a linear transformation 
and find its matrix.

 21. Given c in �, define Tc : �
n → � by Tc(x) = cx 

for all x in �n. Show that Tc is a linear 
transformation and find its matrix. 

 22. Given vectors w and x in �n, denote their dot 
product by w · x. 

 (a) Given w in �n, define Tw: �n → � by 
Tw(x) = w · x for all x in �n. Show that 
Tw is a linear transformation. 

 �(b) Show that every linear transformation 
T : �n → � is given as in (a); that is 
T = Tw for some w in �n.

 23. If x ≠ 0 and y are vectors in �n, show that there 
is a linear transformation T : �n → �n such that 
T(x) = y. [Hint: By Definition 2.5, find a matrix 
A such that Ax = y.]

 24. Let �n →T  �m →S  �k be two linear 
transformations. Show directly that S ◦ T is 
linear. That is: 

 (a) Show that (S ◦ T )(x + y) = (S ◦ T )x + (S ◦ T )y 
for all x, y in �n.

 �(b) Show that (S ◦ T )(ax) = a[(S ◦ T )x] for all x 
in �n and all a in �.

 25. Let �n →T  �m →S  �k →R  �k be linear 
transformations. Show that 
R ◦ (S ◦ T) = (R ◦ S) ◦ T by showing directly 
that [R ◦ (S ◦ T )](x) = [(R ◦ S) ◦ T )](x) holds 
for each vector x in �n.
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LU-Factorization15

The solution to a system Ax = b of linear equations can be solved quickly if A can 
be factored as A = LU where L and U are of a particularly nice form. In this section 
we show that gaussian elimination can be used to find such factorizations. 

Triangular Matrices 
As for square matrices, if A = [aij] is an m × n matrix, the elements a11, a22, a33, … 
form the main diagonal of A. Then A is called upper triangular if every entry 
below and to the left of the main diagonal is zero. Every row-echelon matrix is 
upper triangular, as are the matrices 

1 1 0 3
0 2 1 1
0 0 3 0

−

−  

0 2 1 0 5
0 0 0 3 1
0 0 1 0 1  

1 1 1
0 1 1
0 0 0
0 0 0

−

By analogy, a matrix A is called lower triangular if its transpose is upper triangular, 
that is if each entry above and to the right of the main diagonal is zero. A matrix is 
called triangular if it is upper or lower triangular. 

EXAMPLE 1

Solve the system

 x1 + 2x2 - 3x3 - x4 + 5x5 = 3
 5x3 + x4 +  x5 = 8
 2x5 = 6

where the coefficient matrix is upper triangular.

Solution ► As in gaussian elimination, let the “non-leading” variables be 
parameters: x2 = s and x4 = t. Then solve for x5, x3, and x1 in that order 
as follows. The last equation gives 

x5 =   6 _ 2   = 3

Substitution into the second last equation gives

x3 = 1 -   1 _ 5  t

Finally, substitution of both x5 and x3 into the first equation gives

x1 = -9 - 2s +   2 _ 5  t.

The method used in Example 1 is called back substitution because later 
variables are substituted into earlier equations. It works because the coefficient 
matrix is upper triangular. Similarly, if the coefficient matrix is lower triangular the 
system can be solved by forward substitution where earlier variables are substituted 
into later equations. As observed in Section 1.2, these procedures are more efficient 
than gaussian elimination.

15 This section is not used later and so may be omitted with no loss of continuity.
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Now consider a system Ax = b where A can be factored as A = LU where L is 
lower triangular and U is upper triangular. Then the system Ax = b can be solved 
in two stages as follows:

1. First solve Ly = b for y by forward substitution.

2. Then solve Ux = y for x by back substitution.

Then x is a solution to Ax = b because Ax = LUx = Ly = b. Moreover, every 
solution x arises this way (take y = Ux). Furthermore the method adapts easily for 
use in a computer. 

This focuses attention on efficiently obtaining such factorizations A = LU. The 
following result will be needed; the proof is straightforward and is left as Exercises 7 
and 8.

Lemma 1

Let A and B denote matrices. 
1. If A and B are both lower (upper) triangular, the same is true of AB.
2. If A is n × n and lower (upper) triangular, then A is invertible if and only if every 

main diagonal entry is nonzero. In this case A-1 is also lower (upper) triangular.

LU-Factorization
Let A be an m × n matrix. Then A can be carried to a row-echelon matrix U (that 
is, upper triangular). As in Section 2.5, the reduction is

A → E1A → E2E1A → E3E2E1A → � → EkEk-1�E2E1A = U

where E1, E2, …, Ek are elementary matrices corresponding to the row operations 
used. Hence 

A = LU

where L = (EkEk-1�E2E1)
-1 =  E  1  

-1  E  2  
-1 � E  k-1  

-1
   E  k  

-1 . If we do not insist that U is 
reduced then, except for row interchanges, none of these row operations involve 
adding a row to a row above it. Thus, if no row interchanges are used, all the Ei are 
lower triangular, and so L is lower triangular (and invertible) by Lemma 1. This 
proves the following theorem. For convenience, let us say that A can be lower 
reduced if it can be carried to row-echelon form using no row interchanges.

Theorem 1

If A can be lower reduced to a row-echelon matrix U, then

A = LU 

where L is lower triangular and invertible and U is upper triangular and row-echelon.

A factorization A = LU as in Theorem 1 is called an LU-factorization of A.

Such a factorization may not exist (Exercise 4) because A cannot be carried to 
row-echelon form using no row interchange. A procedure for dealing with this 
situation will be outlined later. However, if an LU-factorization A = LU does exist, 
then the gaussian algorithm gives U and also leads to a procedure for finding L. 

Definition 2.14
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Example 2 provides an illustration. For convenience, the first nonzero column from 
the left in a matrix A is called the leading column of A.

EXAMPLE 2

Find an LU-factorization of A = 
− −

−
−

0 6 4
1

11
2

2 2

3
30 3

0 7 0
.

Solution ► We lower reduce A to row-echelon form as follows:

A = 
− −

−
−

0 2 6 2 4
0 1 3 3 2
0 1 3 7 10

 → 
− −0 1 3 1 2

0 0 0 2 4
0 0 0 6 12

 → 
00 1 3 1 2
0 0 0 1 2
0 0 0 0 0

− −
 = U

The circled columns are determined as follows: The first is the leading column 
of A, and is used (by lower reduction) to create the first leading 1 and create 
zeros below it. This completes the work on row 1, and we repeat the procedure 
on the matrix consisting of the remaining rows. Thus the second circled 
column is the leading column of this smaller matrix, which we use to create the 
second leading 1 and the zeros below it. As the remaining row is zero here, we 
are finished. Then A = LU where

L = 
−
−
2 0 0
1 2 0
1 6 1

.

This matrix L is obtained from I3 by replacing the bottom of the first two 
columns by the circled columns in the reduction. Note that the rank of A is 2 
here, and this is the number of circled columns.

The calculation in Example 2 works in general. There is no need to calculate the 
elementary matrices Ei, and the method is suitable for use in a computer because the 
circled columns can be stored in memory as they are created. The procedure can be 
formally stated as follows:

LU-Algorithm

Let A be an m × n matrix of rank r, and suppose that A can be lower reduced to a 
row-echelon matrix U. Then A = LU where the lower triangular, invertible matrix L is 
constructed as follows: 

1. If A = 0, take L = Im and U = 0. 
2. If A ≠ 0, write A1 = A and let c1 be the leading column of A1. Use c1 to create 

the first leading 1 and create zeros below it (using lower reduction). When this is 
completed, let A2 denote the matrix consisting of rows 2 to m of the matrix just 
created. 

3. If A2 ≠ 0, let c2 be the leading column of A2 and repeat Step 2 on A2 to create A3.
4. Continue in this way until U is reached, where all rows below the last leading 1 

consist of zeros. This will happen after r steps. 
5. Create L by placing c1, c2, …, cr at the bottom of the first r columns of Im.
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A proof of the LU-algorithm is given at the end of this section.
LU-factorization is particularly important if, as often happens in business and 

industry, a series of equations Ax = B1, Ax = B2, …, Ax = Bk, must be solved, each with 
the same coefficient matrix A. It is very efficient to solve the first system by gaussian 
elimination, simultaneously creating an LU-factorization of A, and then using the 
factorization to solve the remaining systems by forward and back substitution. 

EXAMPLE 3

Find an LU-factorization for A = 

−
−

−−
−

5 5 10 0 5
3 3 2 2 1
2 2 0 1 0
1 1 10 2 5

.

Solution ► The reduction to row-echelon form is 
5 5 10 0 5
3 3 2 2 1
2 2 0 1 0
1 1 10 2 5

−
−
− −

−

  → 

1 1 2 0 1
0 0 8 2 4
0 0 4 1 2
0

−

−
00 8 2 4

→ 

1 1 2 0 1
0 0 1
0 0 0 2 0
0 0 0 0 0

1
4

1
2

−

−

→ 

1 1− 22 0 1
0 0 1
0 0 0 1 0
0 0 0 0 0

1
4

1
2  = U

If U denotes this row-echelon matrix, then A = LU, where 

L = 
−
− −

5 0 0 0
3 8 0 0
2 4 2 0
1 8 0 1

The next example deals with a case where no row of zeros is present in U (in fact, A 
is invertible).

EXAMPLE 4

Find an LU-factorization for A = 
−

2 4 2
1 1 2
1 0 2

.

Solution ► The reduction to row-echelon form is

2 4 2
1 1 2
1 0 2−

 → 
1 2 1
0 1 1
0 2 3

−  → 
1 2 1
0 1 1
0 0 5

−  → 
1 22 1
0 1 1
0 0 1

−  = U
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Hence A = LU where L = −
−

2 0 0
1 1 0
1 2 5

.

There are matrices (for example   S  0 1    
1 0

  T ) that have no LU-factorization and so 

require at least one row interchange when being carried to row-echelon form via 
the gaussian algorithm. However, it turns out that, if all the row interchanges 
encountered in the algorithm are carried out first, the resulting matrix requires 
no interchanges and so has an LU-factorization. Here is the precise result.

Theorem 2

Suppose an m × n matrix A is carried to a row-echelon matrix U via the gaussian 
algorithm. Let P1, P2, …, Ps be the elementary matrices corresponding (in order) to 
the row interchanges used, and write P = Ps�P2P1. (If no interchanges are used take 
P = Im.) Then:

1. PA is the matrix obtained from A by doing these interchanges (in order) to A.
2. PA has an LU-factorization.

The proof is given at the end of this section.
A matrix P that is the product of elementary matrices corresponding to row 

interchanges is called a permutation matrix. Such a matrix is obtained from the 
identity matrix by arranging the rows in a different order, so it has exactly one 1 in 
each row and each column, and has zeros elsewhere. We regard the identity matrix as a 
permutation matrix. The elementary permutation matrices are those obtained from I by 
a single row interchange, and every permutation matrix is a product of elementary ones.

EXAMPLE 5

If A = 

−
− −

−
−

0 0 1 2
1 1 1 2
2 1 3 6
0 1 1 4

, find a permutation matrix P such that PA has an 

LU-factorization, and then find the factorization.

Solution ► Apply the gaussian algorithm to A:

A →∗  

− −
−
−
−

1 1 1 2
0 0 1 2
2 1 3 6
0 1 1 4

  → 

− −
−

− −
−

1 1 1 2
0 0 1 2
0 1 1 10
0 1 11 4

 →∗  

1 1 1 2
0 1 1 10
0 0 1 2
0 1 1 4

− −
− −

−
−

→ 

1 1 1− −22
0 1 1 10
0 0 1 2
0 0 2 14

−
−
−

 → 

1 1 1 2
0 1 1 10
0 0 1 2
0 0 0 10

− −
−
−
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Two row interchanges were needed (marked with ∗), first rows 1 and 2 and 
then rows 2 and 3. Hence, as in Theorem 2,

P = 

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 = 

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

If we do these interchanges (in order) to A, the result is PA. Now apply the 
LU-algorithm to PA:

PA = 

− −
−
−
−

1 1 1 2
2 1 3 6
0 0 1 2
0 1 1 4

  → 

− −
− −

−
−

1 1 1 2
0 1 1 10
0 0 1 2
0 1 11 4

 → 

1 1 1 2
0 1 1 10
0 0 1 2
0 0 2 14

− −
−

−
−

→ 

1 1 1 2− −
00 1 1 10
0 0 1 2
0 0 0 10

−
−  → 

1 1 1 2
0 1 1 10
0 0 1 2
0 0 0 1

− −
−
−  = U

Hence, PA = LU, where L = 

−
−
−

−1 1
0

0
0
1 0

0 1
0 00 1

1 1
1 2

2
 and U = 

−
−

−
−

1 0 0 0
2 1 0 0
0 0 1 0
0 1 2 10

.

Theorem 2 provides an important general factorization theorem for matrices. 
If A is any m × n matrix, it asserts that there exists a permutation matrix P and an 
LU-factorization PA = LU. Moreover, it shows that either P = I or P = Ps � P2P1, 
where P1, P2, …, Ps are the elementary permutation matrices arising in the 
reduction of A to row-echelon form. Now observe that Pi

-1 = Pi for each i (they 
are elementary row interchanges). Thus, P-1 = P1P2�Ps, so the matrix A can be 
factored as

A = P-1LU

where P-1 is a permutation matrix, L is lower triangular and invertible, and U is a 
row-echelon matrix. This is called a PLU-factorization of A.

The LU-factorization in Theorem 1 is not unique. For example,

  S  1 0    
3 2

  T    S  1 -2 3     
0   0 0

  T  =   S  1 0    
3 1

  T    S  1 -2 3     
0   0 0

  T 
However, it is necessary here that the row-echelon matrix has a row of zeros. Recall 
that the rank of a matrix A is the number of nonzero rows in any row-echelon 
matrix U to which A can be carried by row operations. Thus, if A is m × n, the 
matrix U has no row of zeros if and only if A has rank m.

Theorem 3

Let A be an m × n matrix that has an LU-factorization

A = LU

If A has rank m (that is, U has no row of zeros), then L and U are uniquely determined by A.
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PROOF

Suppose A = MV is another LU-factorization of A, so M is lower triangular 
and invertible and V is row-echelon. Hence LU = MV, and we must show 
that L = M and U = V. We write N = M-1L. Then N is lower triangular and 
invertible (Lemma 1) and NU = V, so it suffices to prove that N = I. If N is 
m × m, we use induction on m. The case m = 1 is left to the reader. If m > 1, 
observe first that column 1 of V is N times column 1 of U. Thus if either column 
is zero, so is the other (N is invertible). Hence, we can assume (by deleting zero 
columns) that the (1, 1)-entry is 1 in both U and V. 

 Now we write N =   S   a   0    
X N1

  T  , U =   S  1  Y
    

0 U1
  T  , and V =   S  1  Z

    
0 V1

  T  in block form.

Then NU = V becomes   S    a   aY
        

X XY + N1U1
  T  =   S  1  Z

    
0 V1

  T . Hence a = 1, Y = Z, X = 0, 

and N1U1 = V1. But N1U1 = V1 implies N1 = I by induction, whence N = I.

If A is an m × m invertible matrix, then A has rank m by Theorem 5 Section 2.4. 
Hence, we get the following important special case of Theorem 3.

Corollary 1

If an invertible matrix A has an LU-factorization A = LU, then L and U are uniquely 
determined by A.

Of course, in this case U is an upper triangular matrix with 1s along the main diagonal.

Proofs of Theorems

PROOF OF THE LU-ALGORITHM

If c1, c2, …, cr are columns of lengths m, m - 1, …, m - r + 1, respectively, 
write L(m)(c1, c2, …, cr) for the lower triangular m × m matrix obtained from Im 
by placing c1, c2, …, cr at the bottom of the first r columns of Im.

Proceed by induction on n. If A = 0 or n = 1, it is left to the reader. If n > 1, let 
c1 denote the leading column of A and let k1 denote the first column of the m × m 
identity matrix. There exist elementary matrices E1, …, Ek such that, in block form, 

(Ek�E2E1)A = k
X
A1

1

1
0  where (Ek�E2E1)c1 = k1.

Moreover, each Ej can be taken to be lower triangular (by assumption). Write

G = (Ek�E2E1)
-1 =  E  1  

-1  E  2  
-1 � E  k  

-1 

Then G is lower triangular, and GK1 = c1. Also, each Ej (and so each Ej
-1) is the 

result of either multiplying row 1 of Im by a constant or adding a multiple of row 
1 to another row. Hence, 

G = ( E  1  
-1  E  2  

-1 � E  k  
-1 )Im = c

Im−
1

1

0

109SECTION 2.7 LU-Factorization



in block form. Now, by induction, let A1 = L1U1 be an LU-factorization of A1, 
where L1 = L(m-1)[c2, …, cr] and U1 is row-echelon. Then block multiplication 
gives

G-1A = k
X

L U1
1

1 1
0  = L

X

U1

1

1

1 0

0

0 1

0 0

Hence A = LU, where U = 
X
U

0 1
0 0

1

1
 is row-echelon and

L = 
I L

c
m−

1
1

0 1 0

0 1
 = c

L1
0

 = L(m)[c1, c2, …, cr].

This completes the proof.

PROOF OF THEOREM 2

Let A be a nonzero m × n matrix and let kj denote column j of Im. There is a 
permutation matrix P1 (where either P1 is elementary or P1 = Im) such that the 
first nonzero column c1 of P1A has a nonzero entry on top. Hence, as in the 
LU-algorithm,

L(m)[c1]
-1 · P1 · A = 

X
A

1

1

0 1
0 0

in block form. Then let P2 be a permutation matrix (either elementary or Im) 
such that 

P2 · L(m)[c1]
-1 · P1 · A = 

X

A
1

1

0 1

0 0 ′
and the first nonzero column c2 of A′1 has a nonzero entry on top. Thus,

L(m)[k1, c2]
-1 · P2 · L(m)[c1]

-1 · P1 · A = 
X

X

A

1

2

2

0 1

0 0
0 1

0 0
in block form. Continue to obtain elementary permutation matrices P1, P2, …, Pr 
and columns c1, c2, …, cr of lengths m, m - 1, …, such that

(LrPrLr-1Pr-1�L2P2L1P1)A = U

where U is a row-echelon matrix and Lj = L(m)[k1, …, kj-1, cj]
-1 for each j, where 

the notation means the first j -1 columns are those of Im. It is not hard to verify 
that each Lj has the form Lj = L(m)[k1, …, kj-1, c′j] where c′j  is a column of length 
m - j + 1. We now claim that each permutation matrix Pk can be “moved past” 
each matrix Lj to the right of it, in the sense that

PkLj = Lj′Pk

where L′j  = L(m)[k1, …, kj-1, c�j ] for some column c�j of length m - j + 1. Given 
that this is true, we obtain a factorization of the form

(LrL′r-1�L′2L′1)(PrPr-1�P2P1) A = U 

If we write P = PrPr-1�P2P1, this shows that PA has an LU-factorization 
because LrL′r-1�L′2L′1 is lower triangular and invertible. All that remains is to 
prove the following rather technical result.
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Lemma 2

Let Pk result from interchanging row k of Im with a row below it. If j < k, let cj be a column of 
length m - j + 1. Then there is another column cj′ of length m - j + 1 such that

Pk · L
(m)[k1, …, kj-1, cj] = L(m) [k1, …, kj-1, c′j ] · Pk

The proof is left as Exercise 11.

E X E R C I S E S  2 . 7

 1. Find an LU-factorization of the following 
matrices.

 (a) 2 2 2
3 3 1
1 1 1

06
39
33

−
−

− −−

 �(b) 2 2
1 3
1 7

4
1
7

−
−−

 (c) 22 2 2
1 1 5
3 3 5
1 1 3

−

−
−

−
−

6
5
7
1

0
2
2
2−

 �(d) 1 1 1
1 1 1
1

− −

−
−

−

−−
− −

3 1
1
1

0 4 0

03
4
2
2 2

 (e) 
−

− −

−

−

−−

2 4 0
1 2 3
2 4 1
0 0 4
22 4 2

2
1

2
2
4

6
1

1
3
1

2
1
6
8
6

 �(f ) 2 2 2
1 0 1
3 2 3
1 2 1

4
2

2
1

6
3 2
1

−
−

−
−

 2. Find a permutation matrix P and an 
LU-factorization of PA if A is:

 (a) 0 0 2
0 1 4
3 5 1

−
 �(b) 0 1 2

0 0 4
1 2 1

−

−

 (c) 0 2 3
1 3

−
− 44

1 3 2
2 4 0

−
−

6

1
1

1
1

1
12

−
−

 �(d) 1 3
2 6
1 1
2 10 1

−
4

3

0

1
1

5

5

2−
−
−

−

 3. In each case use the given LU-decomposition of 
A to solve the system Ax = b by finding y such 
that Ly = b, and then x such that Ux = y:

 (a) A = −
2 00 00
0 0

0
0

1 3

1 1
1

0
1

1
0 2
0 1

; b = 
1

−1
2

 �(b) A = 
−

−2 0 00
1 0 0
1 1

1 11
0 11
0 00 02

3 ; b = −
−2

11
1

 (c) A = 
2

2

0
1 0
1 2
0 0

1 1 2
0 111

1

1−
−

−

−
−
−

4
0 100

0
00

0
0

1

1
2

0 0

; b = −
1
1
2
0

�(d) A = −
−

−

−
− −

2 0
1 0

0 0 0
1 2
3 1

1 1
11
11

1
1

1 0
0 2
0
0

0

0
0

0
0
0
1

; b = 

4
6
4
5

−

 4. Show that   S  0 1    
1 0

  T  = LU is impossible where L is 

lower triangular and U is upper triangular.

�5. Show that we can accomplish any row 
interchange by using only row operations of 
other types.

 6. (a) Let L and L1 be invertible lower triangular 
matrices, and let U and U1 be invertible 
upper triangular matrices. Show that 
LU = L1U1 if and only if there exists an 
invertible diagonal matrix D such that 
L1 = LD and U1 = D-1U. [Hint: Scrutinize 
L-1L1 = UU1

-1.]

�(b) Use part (a) to prove Theorem 3 in the case 
that A is invertible.

�7. Prove Lemma 1(1). [Hint: Use block 
multiplication and induction.]

 8. Prove Lemma 1(2). [Hint: Use block 
multiplication and induction.]

 9. A triangular matrix is called unit triangular if it 
is square and every main diagonal element is a 1.

 (a) If A can be carried by the gaussian algorithm to 
row-echelon form using no row interchanges, 
show that A = LU where L is unit lower 
triangular and U is upper triangular.
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 �(b) Show that the factorization in (a) is unique.

 10. Let c1, c2, …, cr be columns of lengths m, 
m - 1, …, m - r + 1. If kj denotes column j 
of Im, show that L(m)[c1, c2, …, cr] = 
L(m)[c1] L

(m)[k1, c2] L
(m) [k1, k2, c3] � 

L(m)[k1, k2, …, kr-1, cr]. The notation is 

as in the proof of Theorem 2. [Hint: Use 
induction on m and block multiplication.]

 11. Prove Lemma 2. [Hint: Pk
-1 = Pk. Write 

Pk =   S   Ik  0 
    

0 P0
  T  in block form where P0 is an 

(m - k) × (m - k) permutation matrix.]

An Application to Input-Output Economic Models16

In 1973 Wassily Leontief was awarded the Nobel prize in economics for his work on 
mathematical models.17 Roughly speaking, an economic system in this model consists 
of several industries, each of which produces a product and each of which uses some 
of the production of the other industries. The following example is typical.

EXAMPLE 1

A primitive society has three basic needs: food, shelter, and clothing. There are thus 
three industries in the society—the farming, housing, and garment industries—that 
produce these commodities. Each of these industries consumes a certain proportion 
of the total output of each commodity according to the following table.

OUTPUT
Farming Housing Garment

Farming 0.4 0.2 0.3
CONSUMPTION Housing 0.2 0.6 0.4

Garment 0.4 0.2 0.3

Find the annual prices that each industry must charge for its income to equal its 
expenditures.

Solution ► Let p1, p2, and p3 be the prices charged per year by the farming, 
housing, and garment industries, respectively, for their total output. To see 
how these prices are determined, consider the farming industry. It receives p1 
for its production in any year. But it consumes products from all these industries 
in the following amounts (from row 1 of the table): 40% of the food, 20% of 
the housing, and 30% of the clothing. Hence, the expenditures of the farming 
industry are 0.4p1 + 0.2p2 + 0.3p3, so

0.4p1 + 0.2p2 + 0.3p3 = p1

A similar analysis of the other two industries leads to the following system of 
equations.

0.4p1 + 0.2p2 + 0.3p3 = p1
0.2p1 + 0.6p2 + 0.4p3 = p2
0.4p1 + 0.2p2 + 0.3p3 = p3

This has the matrix form Ep = p, where

16 The applications in this section and the next are independent and may be taken in any order.

17 See W. W. Leontief, “The world economy of the year 2000,” Scientific American, Sept. 1980.
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E =   S  0.4 0.2 0.3
 

    
 0.2 0.6 0.4      

0.4 0.2 0.3
  T  and p =   S  

p1

 
 

 p2   
p3

  T 
The equations can be written as the homogeneous system

(I - E)p = 0

where I is the 3 × 3 identity matrix, and the solutions are

p =   S  2t
 

 
 3t   

2t

  T 
where t is a parameter. Thus, the pricing must be such that the total output 
of the farming industry has the same value as the total output of the garment 
industry, whereas the total value of the housing industry must be   3 _ 2   as much.

In general, suppose an economy has n industries, each of which uses some 
(possibly none) of the production of every industry. We assume first that the 
economy is closed (that is, no product is exported or imported) and that all 
product is used. Given two industries i and j, let eij denote the proportion of the 
total annual output of industry j that is consumed by industry i. Then E = [eij] is 
called the input-output matrix for the economy. Clearly,

 0 ≤ eij ≤ 1 for all i and j (1)

Moreover, all the output from industry j is used by some industry (the model is 
closed), so

 e1j + e2j + � + eij = 1 for each j (2)

This condition asserts that each column of E sums to 1. Matrices satisfying 
conditions 1 and 2 are called stochastic matrices.

As in Example 1, let pi denote the price of the total annual production of industry 
i. Then pi is the annual revenue of industry i. On the other hand, industry i spends 
ei1p1 + ei2p2 + � + ein pn annually for the product it uses (eij pj is the cost for product 
from industry j). The closed economic system is said to be in equilibrium if the 
annual expenditure equals the annual revenue for each industry—that is, if

e1j p1 + e2j p2 + � + eij pn = pi for each i = 1, 2, …, n

If we write p =   S  
p1

 
 

 
p2   
	
 
 

 

pn

  T  , these equations can be written as the matrix equation

Ep = p

This is called the equilibrium condition, and the solutions p are called 
equilibrium price structures. The equilibrium condition can be written as

(I - E)p = 0

which is a system of homogeneous equations for p. Moreover, there is always a 
nontrivial solution p. Indeed, the column sums of I - E are all 0 (because E is 
stochastic), so the row-echelon form of I - E has a row of zeros. In fact, more 
is true:
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Theorem 1

Let E be any n × n stochastic matrix. Then there is a nonzero n × 1 matrix p with 
nonnegative entries such that Ep = p. If all the entries of E are positive, the matrix p 
can be chosen with all entries positive.

Theorem 1 guarantees the existence of an equilibrium price structure for any 
closed input-output system of the type discussed here. The proof is beyond the 
scope of this book.18

EXAMPLE 2

Find the equilibrium price structures for four industries if the input-output 
matrix is 

E =   S   
.6 .2 .1 .1

 
    

 .3 .4 .2  0      
.1 .3 .5 .2

 
    

 

 0 .1 .2 .7

  T 
Find the prices if the total value of business is $1000.

Solution ► If p =   S  
p1

 
 

 
p2   p3

 
 

 
p4

  T  is the equilibrium price structure, then the equilibrium 

condition is Ep = p. When we write this as (I - E)p = 0, the methods of 
Chapter 1 yield the following family of solutions:

p =   S  
44t

 
 

 39t   
51t

 
 

 

47t

  T 
where t is a parameter. If we insist that p1 + p2 + p3 + p4 = 1000, then 
t = 5.525 (to four figures). Hence

p =   S  
243.09

 
   

 215.47     
281.76

 
   

 

259.67

  T 
to five figures.

The Open Model
We now assume that there is a demand for products in the open sector of the 
economy, which is the part of the economy other than the producing industries 
(for example, consumers). Let di denote the total value of the demand for product 
i in the open sector. If pi and eij are as before, the value of the annual demand for 
product i by the producing industries themselves is ei1p1 + ei2p2 + � + ein pn, so the 
total annual revenue pi of industry i breaks down as follows:

pi = (ei1p1 + ei2p2 + � + ein pn) + di for each i = 1, 2, …, n

18 The interested reader is referred to P. Lancaster’s Theory of Matrices (New York: Academic Press, 1969) or to E. Seneta’s 
Non-negative Matrices (New York: Wiley, 1973).

114 Chapter 2 Matrix Algebra



The column d =   S  d1

 
 

 	   
dn

  T  is called the demand matrix, and this gives a matrix equation 

p = Ep + d
or
 (I - E)p = d (∗)

This is a system of linear equations for p, and we ask for a solution p with every 
entry nonnegative. Note that every entry of E is between 0 and 1, but the column 
sums of E need not equal 1 as in the closed model.

Before proceeding, it is convenient to introduce a useful notation. If A = [aij] and 
B = [bij] are matrices of the same size, we write A > B if aij > bij for all i and j, and 
we write A ≥ B if aij ≥ bij for all i and j. Thus P ≥ 0 means that every entry of P is 
nonnegative. Note that A ≥ 0 and B ≥ 0 implies that AB ≥ 0.

Now, given a demand matrix d ≥ 0, we look for a production matrix p ≥ 0 
satisfying equation (∗). This certainly exists if I - E is invertible and (I - E)-1 ≥ 0. 
On the other hand, the fact that d ≥ 0 means any solution p to equation (∗) satisfies 
p ≥ Ep. Hence, the following theorem is not too surprising.

Theorem 2

Let E ≥ 0 be a square matrix. Then I - E is invertible and (I - E)-1 ≥ 0 if and only if 
there exists a column p > 0 such that p > Ep.

HEURISTIC PROOF

If (I - E)-1 ≥ 0, the existence of p > 0 with p > Ep is left as Exercise 11. 
Conversely, suppose such a column p exists. Observe that

(I - E)(I + E + E2 + � + Ek-1) = I - Ek

holds for all k ≥ 2. If we can show that every entry of Ek approaches 0 as k 
becomes large then, intuitively, the infinite matrix sum

U = I + E + E2 + �

exists and (I - E)U = I. Since U ≥ 0, this does it. To show that Ek approaches 
0, it suffices to show that EP < �P for some number � with 0 < � < 1 (then 
EkP < �kP for all k ≥ 1 by induction). The existence of � is left as Exercise 12.

The condition p > Ep in Theorem 2 has a simple economic interpretation. If p is 
a production matrix, entry i of Ep is the total value of all product used by industry i 
in a year. Hence, the condition p > Ep means that, for each i, the value of product 
produced by industry i exceeds the value of the product it uses. In other words, each 
industry runs at a profit.

EXAMPLE 3

If E =   S  0.6 0.2 0.3
 

    
 0.1 0.4 0.2      

0.2 0.5 0.1
  T  , show that I - E is invertible and (I - E)-1 ≥ 0.

Solution ► Use p = (3, 2, 2)T in Theorem 2.
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If p0 = (1, 1, 1)T, the entries of Ep0 are the row sums of E. Hence p0 > Ep0 holds 
if the row sums of E are all less than 1. This proves the first of the following useful 
facts (the second is Exercise 10).

Corollary 1

Let E ≥ 0 be a square matrix. In each of the following cases, I - E is invertible and 
(I - E)-1 ≥ 0:

1. All row sums of E are less than 1.
2. All column sums of E are less than 1.

E X E R C I S E S  2 . 8

 1. Find the possible equilibrium price structures 
when the input-output matrices are:

 (a)   S  0.1 0.2 0.3
 

    
 0.6 0.2 0.3      

0.3 0.6 0.4
  T  �(b)   S  0.5 0   0.5

 
    

 0.1 0.9 0.2      
0.4 0.1 0.3

   T 

  (c)   S   
.3 .1 .1 .2

 
    

 .2 .3 .1  0      
.3 .3 .2 .3

 
    

 

.2 .3 .6 .7

   T  �(d)   S  .5  0 .1 .1
 

    
 .2 .7  0 .1      

.1 .2 .8 .2
 

    
 

.2 .1 .1 .6

   T 
�2. Three industries A, B, and C are such that all the 

output of A is used by B, all the output of B is 
used by C, and all the output of C is used by A. 
Find the possible equilibrium price structures.

 3. Find the possible equilibrium price structures 
for three industries where the input-output 

matrix is   S  1 0 0
 

  
 0 0 1    

0 1 0
  T . Discuss why there are two 

parameters here.

 �4. Prove Theorem 1 for a 2 × 2 stochastic 
matrix E by first writing it in the form 

E =   S   a    b  
        

1 - a 1 - b
  T  , where 0 ≤ a ≤ 1 and 

0 ≤ b ≤ 1.

 5. If E is an n × n stochastic matrix and c is an 
n × 1 matrix, show that the sum of the entries 
of c equals the sum of the entries of the n × 1 
matrix Ec.

 6. Let W = [1 1 1�1]. Let E and F denote n × n 
matrices with nonnegative entries.

 (a) Show that E is a stochastic matrix if and only 
if WE = W.

 (b) Use part (a) to deduce that, if E and F are both 
stochastic matrices, then EF is also stochastic.

 7. Find a 2 × 2 matrix E with entries between 0 
and 1 such that:

 (a) I - E has no inverse.

�(b) I - E has an inverse but not all entries of 
(I - E)-1 are nonnegative.

�8. If E is a 2 × 2 matrix with entries between 0 
and 1, show that I - E is invertible and 
(I - E)-1 ≥ 0 if and only if tr E < 1 + det E. 

Here, if E =   S  a b
   

c d
  T  , then tr E = a + d and 

det E = ad - bc.

 9. In each case show that I - E is invertible and 
(I - E)-1 ≥ 0.

 (a)   S  0.6 0.5 0.1
 

    
 0.1 0.3 0.3      

0.2 0.1 0.4
  T  �(b)   S  0.7 0.1 0.3

 
    

 0.2 0.5 0.2      
0.1 0.1 0.4

  T 

 (c)   S  0.6 0.2 0.1
 

    
 0.3 0.4 0.2      

0.2 0.5 0.1
  T  �(d)   S  0.8 0.1 0.1

 
    

 0.3 0.1 0.2      
0.3 0.3 0.2

  T 
 10. Prove that (1) implies (2) in the Corollary to 

Theorem 2.

 11. If (I - E)-1 ≥ 0, find p > 0 such that p > Ep.

 12. If Ep < p where E ≥ 0 and p > 0, find a number 
� such that Ep < �p and 0 < � < 1. 

  [Hint: If Ep = (q1, …, qn)
T and p = (p1, …, pn)

T, 
take any number � such that 

  max  U   q1 __ 
p1

  , …,   
qn

 __ 
pn

   V  < � < 1.]
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An Application to Markov Chains
Many natural phenomena progress through various stages and can be in a variety of 
states at each stage. For example, the weather in a given city progresses day by day 
and, on any given day, may be sunny or rainy. Here the states are “sun’’ and “rain,’’ 
and the weather progresses from one state to another in daily stages. Another 
example might be a football team: The stages of its evolution are the games it plays, 
and the possible states are “win,’’ “draw,’’ and “loss.’’

The general setup is as follows: A “system’’ evolves through a series of “stages,’’ 
and at any stage it can be in any one of a finite number of “states.’’ At any given stage, 
the state to which it will go at the next stage depends on the past and present history 
of the system—that is, on the sequence of states it has occupied to date. 

A Markov chain is such an evolving system wherein the state to which it will go next 
depends only on its present state and does not depend on the earlier history of the system.19

19

Even in the case of a Markov chain, the state the system will occupy at any stage 
is determined only in terms of probabilities. In other words, chance plays a role. For 
example, if a football team wins a particular game, we do not know whether it will 
win, draw, or lose the next game. On the other hand, we may know that the team 
tends to persist in winning streaks; for example, if it wins one game it may win the 
next game   1 _ 2   of the time, lose   4 __ 10   of the time, and draw   1 __ 10   of the time. These fractions 
are called the probabilities of these various possibilities. Similarly, if the team 
loses, it may lose the next game with probability   1 _ 2   (that is, half the time), win with 
probability   1 _ 4  , and draw with probability   1 _ 4  . The probabilities of the various
outcomes after a drawn game will also be known.

We shall treat probabilities informally here: The probability that a given event will 
occur is the long-run proportion of the time that the event does indeed occur. Hence, all 
probabilities are numbers between 0 and 1. A probability of 0 means the event is 
impossible and never occurs; events with probability 1 are certain to occur.

If a Markov chain is in a particular state, the probabilities that it goes to 
the various states at the next stage of its evolution are called the transition 
probabilities for the chain, and they are assumed to be known quantities. To 
motivate the general conditions that follow, consider the following simple example. 
Here the system is a man, the stages are his successive lunches, and the states are the 
two restaurants he chooses.

EXAMPLE 1

A man always eats lunch at one of two restaurants, A and B. He never eats at A 
twice in a row. However, if he eats at B, he is three times as likely to eat at B 
next time as at A. Initially, he is equally likely to eat at either restaurant.

(a) What is the probability that he eats at A on the third day after the initial one?

(b) What proportion of his lunches does he eat at A?

Solution ► The table of transition probabilities follows. The A column indicates 
that if he eats at A on one day, he never eats there again on the next day and so 
is certain to go to B.

19 The name honours Andrei Andreyevich Markov (1856–1922) who was a professor at the university in St. Petersburg, Russia.
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Present Lunch
A B

Next
Lunch

A 0 0.25
B 1 0.75

The B column shows that, if he eats at B on one day, he will eat there on the 
next day   3 _ 4   of the time and switches to A only   1 _ 4   of the time.
 The restaurant he visits on a given day is not determined. The most that we 
can expect is to know the probability that he will visit A or B on that day. 

Let sm =   S   s  1  
(m) 
   

 s  2  
(m) 

  T  denote the state vector for day m. Here s1
(m) denotes the 

probability that he eats at A on day m, and s2
(m) is the probability that he eats at 

B on day m. It is convenient to let s0 correspond to the initial day. Because he 
is equally likely to eat at A or B on that initial day, s1

(0) = 0.5 and s2
(0) = 0.5, so 

s0 =   S  0.5   
0.5

  T . Now let

P =   S  0 0.25    
1 0.75

  T 
denote the transition matrix. We claim that the relationship

sm+1 = Psm

holds for all integers m ≥ 0. This will be derived later; for now, we use it as 
follows to successively compute s1, s2, s3, ….

s1 = ps0 =   S  0 0.25    
1 0.75

  T    S  0.5   
0.5

  T  =   S  0.125    
0.875

  T 
s2 = ps1 =   S  0 0.25    

1 0.75
  T    S  0.125    

0.875
  T  =   S  0.21875     

0.78125
  T 

s3 = ps2 =   S  0 0.25    
1 0.75

  T    S  0.21875     
0.78125

  T  =   S  0.1953125      
0.8046875

  T 
Hence, the probability that his third lunch (after the initial one) is at A is 
approximately 0.195, whereas the probability that it is at B is 0.805.
If we carry these calculations on, the next state vectors are (to five figures):

s4 =   S  0.20117     
0.79883

  T   s5 =   S  0.19971     
0.80029

  T 

s6 =   S  0.20007     
0.79993

  T   s7 =   S  0.19998     
0.80002

  T 
Moreover, as m increases the entries of sm get closer and closer to the 
corresponding entries of   S  0.2   

0.8
  T . Hence, in the long run, he eats 20% of his 

lunches at A and 80% at B.

Example 1 incorporates most of the essential features of all Markov chains. The 
general model is as follows: The system evolves through various stages and at each 
stage can be in exactly one of n distinct states. It progresses through a sequence 
of states as time goes on. If a Markov chain is in state j at a particular stage of its 
development, the probability pij that it goes to state i at the next stage is called the 
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transition probability. The n × n matrix P = [ pij] is called the transition matrix 
for the Markov chain. The situation is depicted graphically in the diagram.

We make one important assumption about the transition matrix P = [ pij]: It 
does not depend on which stage the process is in. This assumption means that the 
transition probabilities are independent of time—that is, they do not change as time 
goes on. It is this assumption that distinguishes Markov chains in the literature of 
this subject.

EXAMPLE 2

Suppose the transition matrix of a three-state Markov chain is

P = 
11 12 13

21 22 23

31 32 33

p p p
p p p
p p p

 = 

1 2 3
0 3 0. .11 0 6
0 5 0 9 0 2
0.2 0.0 0.2

1
2
3

.
. . . Next state

Present state

If, for example, the system is in state 2, then column 2 lists the probabilities of 
where it goes next. Thus, the probability is p12 = 0.1 that it goes from state 2 to 
state 1, and the probability is p22 = 0.9 that it goes from state 2 to state 2. The 
fact that p32 = 0 means that it is impossible for it to go from state 2 to state 3 at 
the next stage.

Consider the jth column of the transition matrix P.

  S  
p1j

 

 

 
p2j

   
	
 
 

 

pnj

  T 
If the system is in state j at some stage of its evolution, the transition probabilities 
p1j, p2j, …, pnj represent the fraction of the time that the system will move to state 
1, state 2, …, state n, respectively, at the next stage. We assume that it has to go to 
some state at each transition, so the sum of these probabilities equals 1:

p1j + p2j + � + pnj = 1 for each j

Thus, the columns of P all sum to 1 and the entries of P lie between 0 and 1. Hence 
P is called a stochastic matrix.

As in Example 1, we introduce the following notation: Let si
(m) denote the 

probability that the system is in state i after m transitions. The n × 1 matrices

sm =   S  
 s  1  

(m) 

 

 

  s  2  
(m)    
	
 
 

 

 s  n  
(m) 

  T  m = 0, 1, 2, …

are called the state vectors for the Markov chain. Note that the sum of the entries 
of sm must equal 1 because the system must be in some state after m transitions. The 
matrix s0 is called the initial state vector for the Markov chain and is given as part 
of the data of the particular chain. For example, if the chain has only two states, 

then an initial vector s0 =   S   1     
0

   T  means that it started in state 1. If it started in state 2, 

state
j

state
1

state
2

state
n

Present
State

p1 j

p2 j

pn j

Next
State
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the initial vector would be s0 =   S   0     
1

   T . If s0 =   S   0.5       
0.5

   T  , it is equally likely that the system 

started in state 1 or in state 2.

Theorem 1

Let P be the transition matrix for an n-state Markov chain. If sm is the state vector at 
stage m, then

sm+1 = Psm

for each m = 0, 1, 2, ….

HEURISTIC PROOF

Suppose that the Markov chain has been run N times, each time starting with the 
same initial state vector. Recall that pij is the proportion of the time the system 
goes from state j at some stage to state i at the next stage, whereas si

(m) is the 
proportion of the time it is in state i at stage m. Hence

 s  i  
m+1 N

is (approximately) the number of times the system is in state i at stage m + 1. 
We are going to calculate this number another way. The system got to state i 
at stage m + 1 through some other state (say state j) at stage m. The number of 
times it was in state j at that stage is (approximately) sj

(m)N, so the number of 
times it got to state i via state j is pij (sj

(m)N). Summing over j gives the number of 
times the system is in state i (at stage m + 1). This is the number we calculated 
before, so

 s  i  
(m+1) N = pi1 s  1  

(m) N + pi2 s  2  
(m) N + � + pin s  n  

(m) N

Dividing by N gives  s  i  
(m+1)  = pi1 s  1  

(m)  + pi2 s  2  
(m)  + � + pin s  n  

(m)  for each i, and this can 
be expressed as the matrix equation sm+1 = Psm.

If the initial probability vector s0 and the transition matrix P are given, 
Theorem 1 gives s1, s2, s3, …, one after the other, as follows:

s1 = Ps0
s2 = Ps1
s3 = Ps2

	

Hence, the state vector sm is completely determined for each m = 0, 1, 2, … by P 
and s0.

EXAMPLE 3

A wolf pack always hunts in one of three regions R1, R2, and R3. Its hunting 
habits are as follows:

1. If it hunts in some region one day, it is as likely as not to hunt there 
again the next day.

2. If it hunts in R1, it never hunts in R2 the next day.
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3. If it hunts in R2 or R3, it is equally likely to hunt in each of the other 
regions the next day.

If the pack hunts in R1 on Monday, find the probability that it hunts there on 
Thursday.

Solution ► The stages of this process are the successive days; the states are the 
three regions. The transition matrix P is determined as follows (see the table): 
The first habit asserts that p11 = p22 = p33 =   1 _ 2  . Now column 1 displays what 
happens when the pack starts in R1: It never goes to state 2, so p21 = 0 and, 
because the column must sum to 1, p31 =   1 _ 2  . Column 2 describes what happens 
if it starts in R2: p22 =   1 _ 2   and p12 and p32 are equal (by habit 3), so p12 = p32 =   1 _ 2   
because the column sum must equal 1. Column 3 is filled in a similar way.

Now let Monday be the initial stage. Then s0 =   S  1 
 

 0   
0

  T  because the pack hunts 

in R1 on that day. Then s1, s2, and s3 describe Tuesday, Wednesday, and
Thursday, respectively, and we compute them using Theorem 1.

s1 = Ps0 =   S     
1 _ 2  
 

 
 0   

  1 _ 2  
   T  s2 = Ps1 =   S  

  3 _ 8  

 
 
   1 _ 8    
 

  4 _ 8  

  T  s3 = Ps2 =   S   
  11 __ 32  

 
 

   6 __ 32    
 

  15 __ 32  

   T 
Hence, the probability that the pack hunts in Region R1 on Thursday is   11 __ 32  .

Another phenomenon that was observed in Example 1 can be expressed in 
general terms. The state vectors s0, s1, s2, … were calculated in that example and 

were found to “approach” s =   S  0.2   
0.8

  T . This means that the first component of sm 

becomes and remains very close to 0.2 as m becomes large, whereas the second 
component gets close to 0.8 as m increases. When this is the case, we say that sm 
converges to s. For large m, then, there is very little error in taking sm = s, so the 
long-term probability that the system is in state 1 is 0.2, whereas the probability 
that it is in state 2 is 0.8. In Example 1, enough state vectors were computed for 
the limiting vector S to be apparent. However, there is a better way to do this that 
works in most cases.

Suppose P is the transition matrix of a Markov chain, and assume that the state 
vectors sm converge to a limiting vector s. Then sm is very close to s for sufficiently 
large m, so sm+1 is also very close to s. Thus, the equation sm+1 = Psm from 
Theorem 1 is closely approximated by

s = Ps

so it is not surprising that s should be a solution to this matrix equation. Moreover, 
it is easily solved because it can be written as a system of homogeneous linear 
equations

(I - P)s = 0

with the entries of s as variables. 

R1 R2 R3

R1   1 _ 2    1 _ 4    1 _ 4  
R2 0   1 _ 2    1 _ 4  
R3   1 _ 2    1 _ 4    1 _ 2  
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In Example 1, where P =   S  0 0.25    
1 0.75

  T  , the general solution to (I - P)s = 0 is 

s =   S   t
   

4t
  T  , where t is a parameter. But if we insist that the entries of S sum to 1 

(as must be true of all state vectors), we find t = 0.2 and so s =   S  0.2   
0.8

  T  as before.

All this is predicated on the existence of a limiting vector for the sequence of 
state vectors of the Markov chain, and such a vector may not always exist. However, 
it does exist in one commonly occurring situation. A stochastic matrix P is called 
regular if some power P m of P has every entry greater than zero. The matrix 

P =   S  0 0.25    
1 0.75

  T  of Example 1 is regular (in this case, each entry of P2 is positive), and 

the general theorem is as follows:

Theorem 2

Let P be the transition matrix of a Markov chain and assume that P is regular. Then 
there is a unique column matrix s satisfying the following conditions:

1. Ps = s.
2. The entries of s are positive and sum to 1.

Moreover, condition 1 can be written as

(I - P)s = 0

and so gives a homogeneous system of linear equations for s. Finally, the sequence of 
state vectors s0, s1, s2, … converges to s in the sense that if m is large enough, each entry 
of sm is closely approximated by the corresponding entry of s.

This theorem will not be proved here.20

If P is the regular transition matrix of a Markov chain, the column s satisfying 
conditions 1 and 2 of Theorem 2 is called the steady-state vector for the Markov 
chain. The entries of s are the long-term probabilities that the chain will be in each 
of the various states.

EXAMPLE 4

A man eats one of three soups—beef, chicken, and vegetable—each day. He 
never eats the same soup two days in a row. If he eats beef soup on a certain 
day, he is equally likely to eat each of the others the next day; if he does not eat 
beef soup, he is twice as likely to eat it the next day as the alternative.

(a) If he has beef soup one day, what is the probability that he has it again 
two days later?

(b) What are the long-run probabilities that he eats each of the three soups?

Solution ► The states here are B, C, and V, the three soups. The transition 
matrix P is given in the table. (Recall that, for each state, the corresponding 
column lists the probabilities for the next state.) If he has beef soup initially, 
then the initial state vector is

20 The interested reader can find an elementary proof in J. Kemeny, H. Mirkil, J. Snell, and G. Thompson, Finite Mathematical 
Structures (Englewood Cliffs, N.J.: Prentice-Hall, 1958).
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s0 =   S  1 
 

 0   
0

  T 
Then two days later the state vector is s2. If P is the transition matrix, then

s1 = Ps0 =   1 _ 2     S  0 
 

 1   
1

  T  , s2 = Ps1 =   1 _ 6     S  4 
 

 1   
1

  T 
so he eats beef soup two days later with probability   2 _ 3   This answers (a) and also 
shows that he eats chicken and vegetable soup each with probability   1 _ 6  .
 To find the long-run probabilities, we must find the steady-state vector s. 
Theorem 2 applies because P is regular (P2 has positive entries), so s satisfies 
Ps = s. That is, (I - P)s = 0 where

I - P =   1 _ 6     S    6 -4 -4
 

    
 -3   6 -2      

-3 -2   6
   T 

The solution is s =   S  4t
 

 
 3t   

3t

  T  , where t is a parameter, and we use s =   S  0.4
 

 
 0.3   

0.3
  T  because 

the entries of S must sum to 1. Hence, in the long run, he eats beef soup 40% 
of the time and eats chicken soup and vegetable soup each 30% of the time.

E X E R C I S E S  2 . 9

 1. Which of the following stochastic matrices is 
regular?

 (a)   S   0 0   1 _ 2  

 
  

 1 0   1 _ 2     
 

0 1 0
  T  �(b)   S  

  1 _ 2   0   1 _ 3  

 
  

   1 _ 4   1   1 _ 3     
 

  1 _ 4   0   1 _ 3  

  T 
 2. In each case find the steady-state vector and, 

assuming that it starts in state 1, find the 
probability that it is in state 2 after 3 transitions.

 (a)   S  0.5 0.3     
0.5 0.7

  T  �(b)   S    
1 _ 2   1

    
  1 _ 2   0

  T 

 (c)   S   
0   1 _ 2     1 _ 4  

 
  

 1 0   1 _ 4     
 

0   1 _ 2     1 _ 2  

   T  �(d)   S  0.4 0.1 0.5
 

    
 0.2 0.6 0.2      

0.4 0.3 0.3
  T 

 (e)   S  0.8 0.0 0.2
 

    
 0.1 0.6 0.1      

0.1 0.4 0.7
  T  �(f )   S  0.1 0.3 0.3

 
    

 0.3 0.1 0.6      
0.6 0.6 0.1

  T 
 3. A fox hunts in three territories A, B, and C. 

He never hunts in the same territory on two 
successive days. If he hunts in A, then he hunts 

in C the next day. If he hunts in B or C, he is 
twice as likely to hunt in A the next day as in the 
other territory.

 (a) What proportion of his time does he spend 
in A, in B, and in C?

 (b) If he hunts in A on Monday (C on Monday), 
what is the probability that he will hunt in B 
on Thursday?

 4. Assume that there are three social classes—
upper, middle, and lower—and that social 
mobility behaves as follows:

 1. Of the children of upper-class parents, 70% 
remain upper-class, whereas 10% become 
middle-class and 20% become lower-class.

 2. Of the children of middle-class parents, 80% 
remain middle-class, whereas the others are 
evenly split between the upper class and the 
lower class.

 3. For the children of lower-class parents, 60% 
remain lower-class, whereas 30% become 
middle-class and 10% upper-class.

B C V

B 0   2 _ 3    2 _ 3  
C   1 _ 2  0   1 _ 3  
V   1 _ 2    1 _ 3  0
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 (a) Find the probability that the grandchild of 
lower-class parents becomes upper-class.

 �(b) Find the long-term breakdown of society 
into classes.

 5. The prime minister says she will call an election. 
This gossip is passed from person to person with 
a probability p ≠ 0 that the information is passed 
incorrectly at any stage. Assume that when a 
person hears the gossip he or she passes it to one 
person who does not know. Find the long-term 
probability that a person will hear that there is 
going to be an election.

 �6. John makes it to work on time one Monday out 
of four. On other work days his behaviour is as 
follows: If he is late one day, he is twice as likely 
to come to work on time the next day as to be 
late. If he is on time one day, he is as likely to 
be late as not the next day. Find the probability 
of his being late and that of his being on time 
Wednesdays.

 7. Suppose you have 1¢ and match coins with a 
friend. At each match you either win or lose 
1¢ with equal probability. If you go broke 
or ever get 4¢, you quit. Assume your friend 
never quits. If the states are 0, 1, 2, 3, and 
4 representing your wealth, show that the 
corresponding transition matrix P is not regular. 
Find the probability that you will go broke after 
3 matches.

 �8. A mouse is put into a maze 
of compartments, as in the 
diagram. Assume that he 
always leaves any 
compartment he enters and 
that he is equally likely to 
take any tunnel entry.

 (a) If he starts in compartment 1, find the 
probability that he is in compartment 1 again 
after 3 moves.

 (b) Find the compartment in which he spends 
most of his time if he is left for a long time.

 9. If a stochastic matrix has a 1 on its main 
diagonal, show that it cannot be regular. Assume 
it is not 1 × 1.

 10. If sm is the stage-m state vector for a Markov 
chain, show that sm+k = Pksm holds for all m ≥ 1 
and k ≥ 1 (where P is the transition matrix).

 11. A stochastic matrix is doubly stochastic if all 
the row sums also equal 1. Find the steady-state 
vector for a doubly stochastic matrix.

 �12. Consider the 2 × 2 stochastic matrix 

  P =   S  1 - p   q  
       

p  1 - q
  T  , where 0 < p < 1 and 0 < q < 1.

 (a) Show that   1 _____ 
p + q     S  q   

p
  T  is the steady-state vector 

for P.

 (b) Show that Pm converges to the matrix 

  1 _____ 
p + q     S  q q

    
p p

  T  by first verifying inductively that

 Pm =   1 _____ 
p + q     S  q q

    
p p

  T  +   
(1 - p - q)m

  ___________ 
p + q     S   p -q

     
-p   q  T 

  for m = 1, 2, …. (It can be shown that 
the sequence of powers P, P2, P3, …of any 
regular transition matrix converges to the 
matrix each of whose columns equals the 
steady-state vector for P.)

S U P P L E M E N TA R Y  E X E R C I S E S  F O R  C H A P T E R  2

 1. Solve for the matrix X if:

 (a) PXQ = R; (b) XP = S;

  where

  P =   S   1   0
 

  
 2 -1    

0   3
   T  , Q =   S  1 1 -1     

2 0   3
  T  , R =   S  -1 1 -4

 
   

 -4 0 -6     
  6 6 -6

   T  , 
S =   S  1 6    

3 1
  T 

 2. Consider p(X) = X3 - 5X2 + 11X - 4I.

 (a) If p(U ) =   S   1 3    
-1 0

  T  , compute p(UT).

 �(b) If p(U ) = 0 where U is n × n, find U -1 in 
terms of U.

 3. Show that, if a (possibly nonhomogeneous) 
system of equations is consistent and has more 

1 3

2

5

4
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variables than equations, then it must have 
infinitely many solutions. [Hint: Use Theorem 2 
Section 2.2 and Theorem 1 Section 1.3.]

 4. Assume that a system Ax = b of linear equations 
has at least two distinct solutions y and z.

 (a) Show that xk = y + k(y - z) is a solution for 
every k.

 �(b) Show that xk = xm implies k = m. [Hint: See 
Example 7 Section 2.1.]

 (c) Deduce that Ax = b has infinitely many 
solutions.

 5. (a) Let A be a 3 × 3 matrix with all entries on 
and below the main diagonal zero. Show that 
A3 = 0.

 (b) Generalize to the n × n case and prove your 
answer.

 6. Let Ipq denote the n × n matrix with (p, q)-entry 
equal to 1 and all other entries 0. Show that:

 (a) In = I11 + I22 + � + Inn.

 (b) IpqIrs =  { Ips if q = r
   

0  if q ≠ r
 
 
 .

 (c) If A = [aij] is n × n, then A =  ∑ 
i=1

   
n

     ∑ 
j=1

   
n

  aijIij .

 �(d) If A = [aij], then IpqAIrs = aqrIps for all p, q, r, 
and s.

 7. A matrix of the form aIn, where a is a number, is 
called an n × n scalar matrix.

 (a) Show that each n × n scalar matrix 
commutes with every n × n matrix.

 �(b) Show that A is a scalar matrix if it commutes 
with every n × n matrix. [Hint: See part (d) 
of Exercise 6.]

 8. Let M =   S   A B
    

C D
  T  , where A, B, C, and D are all 

  n × n and each commutes with all the others. 
If M2 = 0, show that (A + D)3 = 0. [Hint: First 
show that A2 = -BC = D2 and that 
B(A + D) = 0 = C(A + D).]

 9. If A is 2 × 2, show that A-1 = AT if and only if 

  A =   S   cos θ sin θ
        

-sin θ cos θ
  T  for some θ or 

A =   S   cos θ   sin θ
        

sin θ -cos θ
  T  for some θ.

  [Hint: If a2 + b2 = 1, then a = cos θ, 
b = sin θ for some θ. Use 
cos(θ - φ) = cos θ cos φ + sin θ sin φ.]

 10. (a) If A =   S  0 1    
1 0

  T  , show that A2 = I. 

 (b) What is wrong with the following argument? 
If A2 = I, then A2 - I = 0, so 
(A - I)(A + I) = 0, whence A = I or A = -I. 

 11. Let E and F be elementary matrices obtained 
from the identity matrix by adding multiples of 
row k to rows p and q. If k ≠ p and k ≠ q, show 
that EF = FE.

 12. If A is a 2 × 2 real matrix, A2 = A and 
AT = A, show that either A is one of 

  S  0 0    
0 0

  T  ,   S  1 0    
0 0

  T  ,   S  0 0    
0 1

  T  ,   S  1 0    
0 1

  T  , or A =   S   a   b  
     

b 1 - a
  T  

where a2 + b2 = a, -  1 _ 2   ≤ b ≤   1 _ 2   and b ≠ 0.

 13. Show that the following are equivalent for 
matrices P, Q:

 (1) P, Q, and P + Q are all invertible and 
(P + Q)-1 = P-1 + Q-1.

 (2) P is invertible and Q = PG where 
G2 + G + I = 0.
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Determinants and 
Diagonalization

3
With each square matrix we can calculate a number, called the determinant of the 
matrix, which tells us whether or not the matrix is invertible. In fact, determinants 
can be used to give a formula for the inverse of a matrix. They also arise in 
calculating certain numbers (called eigenvalues) associated with a matrix. These 
eigenvalues are essential to a technique called diagonalization that is used in many 
applications where it is desired to predict the future behaviour of a system. For 
example, we use it to predict whether a species will become extinct.

Determinants were first studied by Leibnitz in 1696, and the term “determinant” 
was first used in 1801 by Gauss in his Disquisitiones Arithmeticae. Determinants are 
much older than matrices (which were introduced by Cayley in 1878) and were 
used extensively in the eighteenth and nineteenth centuries, primarily because of 
their significance in geometry (see Section 4.4). Although they are somewhat less 
important today, determinants still play a role in the theory and application of 
matrix algebra.

The Cofactor Expansion
In Section 2.5 we defined the determinant of a 2 × 2 matrix A =   S  a b

   
c d

  T  as follows:1

det A =  |  a b
   

c d
  |  = ad - bc

and showed (in Example 4) that A has an inverse if and only if det A ≠ 0. One 
objective of this chapter is to do this for any square matrix A. There is no difficulty 
for 1 × 1 matrices: If A = [a], we define det A = det[a] = a and note that A is 
invertible if and only if a ≠ 0.

If A is 3 × 3 and invertible, we look for a suitable definition of det A by trying to 
carry A to the identity matrix by row operations. The first column is not zero (A is 
invertible); suppose the (1, 1)-entry a is not zero. Then row operations give

A = 
a b c
d e f
g h i

 → 

a b c
ad ae af
ag ah ai

 → 
a b c

ae bd af cd−0
00 ah bg ai cg− −

−  = 0
0

a b c
u af cd
v ai cg−

−

where u = ae - bd and v = ah - bg. Since A is invertible, one of u and v is nonzero 
(by Example 11 Section 2.4); suppose that u ≠ 0. Then the reduction proceeds

1 Determinants are commonly written |A| = det A using vertical bars. We will use both notations.
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A → 
a b c

u
v

af cd
ai cg−

−0
0

 → 

a b c
u af cd
uv u ai cg

−
−

0
0 ( )

 → af cd−
aa b c

u
w

0
0 0

where w = u(ai - cg) - v(af - cd) = a(aei + bfg + cdh - ceg - afh - bdi). We define 

 det A = aei + bfg + cdh - ceg - afh - bdi (∗)

and observe that det A ≠ 0 because a det A = w ≠ 0 (is invertible).
To motivate the definition below, collect the terms in (∗) involving the entries a, 

b, and c in row 1 of A:

 det A = 
a b c
d e f
g h i

= aei + bfg + cdh - ceg - afh - bdi

= a(ei - fh) - b(di - fg) + c(dh - eg)

= a |   e f
   

h i
   |  - b |  

d f
   

g i
   |  + c |   d e

    
g h

  | 
This last expression can be described as follows: To compute the determinant of a 
3 × 3 matrix A, multiply each entry in row 1 by a sign times the determinant of the 
2 × 2 matrix obtained by deleting the row and column of that entry, and add the 
results. The signs alternate down row 1, starting with +. It is this observation that 
we generalize below.

EXAMPLE 1

 det 
2 3 7
4 0 6
1 5 0

−  = 2 |  0 6    
5 0

  |  - 3 |  -4 6    
1 0

  |  + 7 |  -4 0    
1 5

  | 

 = 2(-30) - 3(-6) + 7(-20)
 = -182.

This suggests an inductive method of defining the determinant of any square 
matrix in terms of determinants of matrices one size smaller. The idea is to define 
determinants of 3 × 3 matrices in terms of determinants of 2 × 2 matrices, then we 
do 4 × 4 matrices in terms of 3 × 3 matrices, and so on.

To describe this, we need some terminology. 

Assume that determinants of (n - 1) × (n - 1) matrices have been defined. Given the 
n × n matrix A, let

Aij denote the (n - 1) × (n - 1) matrix 
obtained from A by deleting row i and column j.

Then the (i, j)-cofactor cij(A) is the scalar defined by

cij(A) = (-1)i+j det(Aij).

Here (-1)i+j is called the sign of the (i, j)-position.

The sign of a matrix is clearly 1 or -1, and the following diagram is useful for 
remembering the sign of a position:

Definition 3.1
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+ − + −
− + − +
+ − + −
− + − +

Note that the signs alternate along each row and column with + in the upper 
left corner.

EXAMPLE 2

Find the cofactors of positions (1, 2), (3, 1), and (2, 3) in the following matrix.

A = 
−3

5
8

1
2
9

6
7
4

Solution ► Here A12 is the matrix   S  5 7    
8 4

  T  that remains when row 1 and column 2 

are deleted. The sign of position (1, 2) is (-1)1+2 = -1 (this is also the 
(1, 2)-entry in the sign diagram), so the (1, 2)-cofactor is

c12(A) = (-1)1+2 |  5 7    
8 4

  |  = (-1)(5 · 4 - 7 · 8) = (-1)(-36) = 36

Turning to position (3, 1), we find

c31(A) = (-1)3+1det A31 = (-1)3+1 |  -1 6    
2 7

  |  = (+1)(-7 - 12) = -19

Finally, the (2, 3)-cofactor is

c23(A) = (-1)2+3det A23 = (-1)2+3 |  3 -1    
8   9

  |  = (-1)(27 + 8) = -35

Clearly other cofactors can be found—there are nine in all, one for each 
position in the matrix.

We can now define det A for any square matrix A. 

Assume that determinants of (n - 1) × (n - 1) matrices have been defined. If A = [aij] 
is n × n define

det A = a11c11(A) + a12c12(A) + � + a1nc1n(A)

This is called the cofactor expansion of det A along row 1.

It asserts that det A can be computed by multiplying the entries of row 1 by the 
corresponding cofactors, and adding the results. The astonishing thing is that det A 
can be computed by taking the cofactor expansion along any row or column: Simply 
multiply each entry of that row or column by the corresponding cofactor and add.

Definition 3.2
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Theorem 1

Cofactor Expansion Theorem2

The determinant of an n × n matrix A can be computed by using the cofactor expansion 
along any row or column of A. That is det A can be computed by multiplying each entry 
of the row or column by the corresponding cofactor and adding the results.

2

The proof will be given in Section 3.6.

EXAMPLE 3

Compute the determinant of A = 
−

3 4 5
1 7 2
9 8 6

.

Solution ► The cofactor expansion along the first row is as follows:

det A  = 3c11(A) + 4c12(A) + 5c13(A)

= 3 |   7   2    
8 -6

  |  - 4 |   1   2    
9 -6

  |  + 3 |  1 7    
9 8

  | 
= 3(-58) - 4(-24) + 5(-55)
= -353

Note that the signs alternate along the row (indeed along any row or column). 
Now we compute det A by expanding along the first column.

det A  = 3c11(A) + 1c21(A) + 9c31(A)

= 3 |   7   2    
8 -6

  |  -  |   4   5    
8 -6

  |  + 9 |  4 5    
7 2

  | 
= 3(-58) - (-64) + 9(-27)
= -353

The reader is invited to verify that det A can be computed by expanding along 
any other row or column.

The fact that the cofactor expansion along any row or column of a matrix A always 
gives the same result (the determinant of A) is remarkable, to say the least. The 
choice of a particular row or column can simplify the calculation.

EXAMPLE 4

Compute det A where A = −
−

3 0
5 2
2 0
6 0

0
00

1
1
6
3 1

.

2 The cofactor expansion is due to Pierre Simon de Laplace (1749–1827), who discovered it in 1772 as part of a study of linear 
differential equations. Laplace is primarily remembered for his work in astronomy and applied mathematics.
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Solution ► The first choice we must make is which row or column to use in the 
cofactor expansion. The expansion involves multiplying entries by cofactors, so 
the work is minimized when the row or column contains as many zero entries 
as possible. Row 1 is a best choice in this matrix (column 4 would do as well), 
and the expansion is

det A  = 3c11(A) + 0c12(A) + 0c13(A) + 0c14(A)

= 3 −
1 2 0
6 0 1
3 1 0

This is the first stage of the calculation, and we have succeeded in expressing the 
determinant of the 4 × 4 matrix A in terms of the determinant of a 3 × 3 matrix. 
The next stage involves this 3 × 3 matrix. Again, we can use any row or column for 
the cofactor expansion. The third column is preferred (with two zeros), so

det A  = 3a0 |  6 0    
3 1

  |   - (-1) |  1 2    
3 1

  |   + 0 |  1 2    
6 0

  |  b
= 3[0 + 1(-5) + 0]
= -15

This completes the calculation.

Computing the determinant of a matrix A can be tedious.3 For example, if A is a 
4 × 4 matrix, the cofactor expansion along any row or column involves calculating 
four cofactors, each of which involves the determinant of a 3 × 3 matrix. And if A is 
5 × 5, the expansion involves five determinants of 4 × 4 matrices! There is a clear 
need for some techniques to cut down the work.

The motivation for the method is the observation (see Example 4) that 
calculating a determinant is simplified a great deal when a row or column consists 
mostly of zeros. (In fact, when a row or column consists entirely of zeros, the 
determinant is zero—simply expand along that row or column.)

Recall next that one method of creating zeros in a matrix is to apply elementary 
row operations to it. Hence, a natural question to ask is what effect such a row 
operation has on the determinant of the matrix. It turns out that the effect is easy 
to determine and that elementary column operations can be used in the same way. 
These observations lead to a technique for evaluating determinants that greatly 
reduces the labour involved. The necessary information is given in Theorem 2.

Theorem 2

Let A denote an n × n matrix.

1. If A has a row or column of zeros, det A = 0.

2. If two distinct rows (or columns) of A are interchanged, the determinant of the 
resulting matrix is -det A.

3 
If A =   S  a b c

 
  

 d e f    
g h i

   T  , we can calculate det A by considering   S   a 
 
 d   

g
   

b
 

 
 e   

h
   

c
 

 
 f   

i
     

a
 

 
 d   

g
   

b
 

 
 e   

h
  T  obtained from A by adjoining columns 1 and 2 on the right. Then 

det A = aei + bfg + cdh - ceg - afh - bdi, where the positive terms aei, bfg, and cdh are the products down and to the right 
starting at a, b, and c, and the negative terms ceg, afh, and bdi are the products down and to the left starting at c, a, and b. 
Warning: This rule does not apply to n × n matrices where n > 3 or n = 2.
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3. If a row (or column) of A is multiplied by a constant u, the determinant of the 
resulting matrix is u(det A).

4. If two distinct rows (or columns) of A are identical, det A = 0.

5. If a multiple of one row of A is added to a different row (or if a multiple of a column is 
added to a different column), the determinant of the resulting matrix is det A.

PROOF

We prove properties 2, 4, and 5 and leave the rest as exercises.

Property 2. If A is n × n, this follows by induction on n. If n = 2, the verification 
is left to the reader. If n > 2 and two rows are interchanged, let B denote the 
resulting matrix. Expand det A and det B along a row other than the two that 
were interchanged. The entries in this row are the same for both A and B, but 
the cofactors in B are the negatives of those in A (by induction) because the 
corresponding (n - 1) × (n - 1) matrices have two rows interchanged. Hence, 
det B = -det A, as required. A similar argument works if two columns are 
interchanged.

Property 4. If two rows of A are equal, let B be the matrix obtained by 
interchanging them. Then B = A, so det B = det A. But det B = -det A by 
property 2, so det A = det B = 0. Again, the same argument works for columns.

Property 5. Let B be obtained from A = [aij] by adding u times row p to row 
q. Then row q of B is (aq1 + uap1, aq2 + uap2, …, aqn + uapn). The cofactors of 
these elements in B are the same as in A (they do not involve row q): in symbols, 
cqj(B) = cqj(A) for each j. Hence, expanding B along row q gives

 det B = (aq1 + uap1)cq1(A) + (aq2 + uap2)cq2(A) + � + (aqn + uapn)cqn(A)
 =  [aq1cq1(A) + aq2cq2(A) + � + aqncqn(A)]

 + u[ap1cq1(A) + ap2cq2(A) + � + apncqn(A)]
 = det A + u det C

where C is the matrix obtained from A by replacing row q by row p (and both 
expansions are along row q). Because rows p and q of C are equal, det C = 0 by 
property 4. Hence, det B = det A, as required. As before, a similar proof holds 
for columns.

To illustrate Theorem 2, consider the following determinants.

3 1 2
2 5 1
0 0 0

−
 = 0 (because the last row consists of zeros)

3 −

−

1 5
2 8 7
1 2 1

 = - 

−

−

5 1 3
7 8 2
1 2 1

 (because two columns are interchanged)

8 1 2
3 0 9
1 2 1−

 = 3 
8 1 2
1 0 3
1 2 1−

  (because the second row of the matrix on the left is 
3 times the second row of the matrix on the right)

2 1 2
4 0 4
1 3 1

 = 0 (because two columns are identical)
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2 5 2
1 2 9
3 1 1

−  = 
0 9 20
1 2 9
3 1 1

−   (because twice the second row of the matrix on the 
left was added to the first row)

The following four examples illustrate how Theorem 2 is used to evaluate determinants.

EXAMPLE 5

Evaluate det A when A = 
−

−
1
1 1
2

3
0
1

1

6
.

Solution ► The matrix does have zero entries, so expansion along (say) the 
second row would involve somewhat less work. However, a column operation 
can be used to get a zero in position (2, 3)—namely, add column 1 to column 3. 
Because this does not change the value of the determinant, we obtain

det A = 
−

−
1 1 3
1 0 1
2 1 6

 = 
−1 1 4

1 0 0
2 1 8

 = - |  -1 4    
1 8

  |   = 12

where we expanded the second 3 × 3 matrix along row 2.

EXAMPLE 6

If det 
a b c
p q r
x y z

 = 6, evaluate det A where A = 
a x b y c z

x y z
p q r

+ + +

− − −
3 3 3 .

Solution ► First take common factors out of rows 2 and 3. 

det A = 3(-1) det 
a x b y c z

x y z
p q r

+ + +

Now subtract the second row from the first and interchange the last two rows.

det A = -3 det 
a b c
x y z
p q r

 = 3 det 
a b c
p q r
x y z

 = 3 · 6 = 18

The determinant of a matrix is a sum of products of its entries. In particular, if 
these entries are polynomials in x, then the determinant itself is a polynomial in x. It 
is often of interest to determine which values of x make the determinant zero, so it 
is very useful if the determinant is given in factored form. Theorem 2 can help.

EXAMPLE 7

Find the values of x for which det A = 0, where A = 
x x

x
xx

x

1
1

1
.
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Solution ► To evaluate det A, first subtract x times row 1 from rows 2 and 3.

det A = 
x x

x x
x x

1
1

1
 = x

x x−

− −

−

1

1

0

0

1 2

2x x

xx
2

x2

 = 
x x x

x x x

− −

− −
1

1

2 2

2 2

At this stage we could simply evaluate the determinant (the result is 
2x3 - 3x2 + 1). But then we would have to factor this polynomial to 
find the values of x that make it zero. However, this factorization can 
be obtained directly by first factoring each entry in the determinant and 
taking a common factor of (1 - x) from each row.

det A = x x x x
x x x x
− + −

− − +
( )( ) ( )

( ) ( )( )
1 1 1

1 1 1
  = (1 - x)2 

x x
x x
+

+
1

1
= (1 - x)2(2x + 1)

Hence, det A = 0 means (1 - x)2(2x + 1) = 0, that is x = 1 or x = -  1 _ 2  .

EXAMPLE 8

If a1, a2, and a3 are given show that

det 
1
1
1

1 1
2

2 2
2

3 3
2

a a
a a
a a

 = (a3 - a1)(a3 - a2)(a2 - a1)

Solution ► Begin by subtracting row 1 from rows 2 and 3, and then expand 
along column 1:

det 
1
1
1

1 1
2

2 2
2

3 3
2

a a
a a
a a

 = det 
1
0

1 1
2

2 1 2
2

1
2

a a
a aa a
a aa a

−
−−

−
00 3 1 3

2
1
2

 = det 2 1 2
2

1
2

3 1 3
2

1
2

a a a a
a a a a

−
−

−
−

Now (a2 - a1) and (a3 - a1) are common factors in rows 1 and 2, respectively, so 

det 
1
1
1

1 1
2

2 2
2

3 3
2

a a
a a
a a

  = (a2 - a1)(a3 - a1) det   S  1 a2 + a1      
1 a3 + a1

  T 
= (a2 - a1)(a3 - a1)(a3 - a2)

The matrix in Example 8 is called a Vandermonde matrix, and the formula for its 
determinant can be generalized to the n × n case (see Theorem 7 Section 3.2).

If A is an n × n matrix, forming uA means multiplying every row of A by u. 
Applying property 3 of Theorem 2, we can take the common factor u out of each 
row and so obtain the following useful result.

Theorem 3

If A is an n × n matrix, then det(uA) = undet A for any number u.
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The next example displays a type of matrix whose determinant is easy to compute.

EXAMPLE 9

Evaluate det A if A = 

a
u b
v w c
x y z d

0 0 0
00
0

.

Solution ► Expand along row 1 to get det A = a 

b
w c
y z d

0
00

. Now expand this along the 

top row to get det A = ab |   c 0    
z d

  |   = abcd, the product of the main diagonal entries.

A square matrix is called a lower triangular matrix if all entries above the main 
diagonal are zero (as in Example 9). Similarly, an upper triangular matrix is one 
for which all entries below the main diagonal are zero. A triangular matrix is one 
that is either upper or lower triangular. Theorem 4 gives an easy rule for calculating 
the determinant of any triangular matrix. The proof is like the solution to Example 9.

Theorem 4

If A is a square triangular matrix, then det A is the product of the entries on the 
main diagonal.

Theorem 4 is useful in computer calculations because it is a routine matter to carry 
a matrix to triangular form using row operations.

Block matrices such as those in the next theorem arise frequently in practice, and 
the theorem gives an easy method for computing their determinants. This dovetails 
with Example 11 Section 2.4.

Theorem 5

Consider matrices   S  A X
    

0 B
   T  and   S   A 0    

Y B
   T  in block form, where A and B are square 

matrices. Then

det   S  A X
    

0 B
   T  = det A det B and det   S   A 0    

Y B
   T  = det A det B

PROOF

Write T =   S  A X
    

0 B
   T  and proceed by induction on k where A is k × k. If k = 1, it 

is the Laplace expansion along column 1. In general let Si(T ) denote the matrix 
obtained from T by deleting row i and column 1. Then the cofactor expansion of 
det T along the first column is

 det T = a11det(S1(T )) - a21det(S2(T )) + � ± ak1det(Sk(T )) (∗)
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where a11, a21, …, ak1 are the entries in the first column of A. But

Si(T ) =   S  Si(A) Xi
     

0   B  
   T  for each i = 1, 2, …, k, so det(Si(T )) = det(Si(A)) · det B 

by induction. Hence, equation (∗) becomes

 det T = {a11det(S1(T )) - a21det(S2(T )) + � ± ak1det(Sk(T ))} det B
= {det A} det B

as required. The lower triangular case is similar.

EXAMPLE 10

det 

2 3 1 3
1 2 1 1
0 1 0 1
0 4 0 1

− −  = - 

2 1 3 3
1 1 2 1
0 0 1 1
0 0 4 1

− −
 = - |   2   1    

1 -1
  |  |  1 1    

4 1
  |  = -(-3)(-3) = -9

The next result shows that det A is a linear transformation when regarded as a 
function of a fixed column of A. The proof is Exercise 21. 

Theorem 6

Given columns c1, …, cj–1, cj+1, …, cn in �n, define T : �n → � by

T(x) = det[c1 � cj–1 x cj+1 � cn] for all x in �n.

Then, for all x and y in �n and all a in �, 

T(x + y) = T(x) + T(y) and T(ax) = aT(x)

E X E R C I S E S  3 . 1

 1. Compute the determinants of the following 
matrices.

 (a) 2
3

1
2

−  �(b) 6
8

9
12

 (c) 
2

2
a
ab

ab
b

 �(d) 1
1

+
−

a
a

a
a

 (e) 
cos
sin

–sin
cos

θ

θ

θ

θ
 �(f ) 

−2
1
0

0
2
3

3
5
0

 (g) 
11
4
7

2
5
8

3
6
9

 �(h) 
0

0

0

0
b

a
c
e

d

 (i) 
1

1
1b

c

b
c

c

b
 �(j) 

0
a
b

a

c

b
c0
0

 (k) 

−0
3
0
5

1
0
1
0

1
0
2
0

0
2
1
7

 �(l) 

1
2

−1
4

0
2
0
1

3
6
3

12

1
0
1
0

−

 (m) 

3
1
1
1

1
3
0
1

5
0
5
2

2
1
2
1

−

−

 �(n) 

−

−

−4
3
0
1

1
1
1
2

3
0
2
1

1
2
2
1

 (o) 

1 1 5 5
3 1 2 4
1 3 8 0
1 1 2 1

−

− −
−

 �(p) 

0 0 0
0 0
0

a
b p

c q k
d s t u

 2. Show that det A = 0 if A has a row or column 
consisting of zeros.

 3. Show that the sign of the position in the last row 
and the last column of A is always +1.
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 4. Show that det I = 1 for any identity matrix I.

 5. Evaluate the determinant of each matrix by 
reducing it to upper triangular form.

 (a) 
1 1

1
1

2
3 1
2 3

−

−
 �(b) 

1 1
2 5

2
3

3

1 1

−

−

 (c) 

−

−

−1

1

11
1

0
2 3

3 1 2
2

1
0 1
1 2

 �(d) −
2 1
0 1
0 1
1 21

13
32
15
5

 6. Evaluate by cursory inspection:

 (a) det 
a b

b
b

c
a c
a c

+ +
−

+
− −

1
1
1 1

1 1

 �(b) det 
a b

b
c

ca b b+ +2
2 22

 7. If det 
a c
p r
x

b
q
y z

 = -1, compute:

 (a) det 
− − −

+ ++
x z

p q r
p r

a b c3 3
2 2

3
y

q2

 �(b) det 
− −

+ + +
a − b c

p
2 2

3
2

2
2 xx yq r

y
z

x z
2

3 3

 8. Show that:

 (a) det 
p x q y r z
a x b y c z
a p b q c r

+ +
+ +
+ +

+
+
+

 = 2 det 
a b c
p q r
x y z

 �(b) det 
2 2
2 2
2

2
2
2 2

a p b q c r
p x q y r z
x a y b z c

+ +
+ +
+ +

+
+
+

 = 9 det 
a b c
pp q r
x y z

 9. In each case either prove the statement or give 
an example showing that it is false:

 (a) det(A + B) = det A + det B.

 �(b) If det A = 0, then A has two equal rows.

 (c) If A is 2 × 2, then det(AT) = det A.

 �(d) If R is the reduced row-echelon form of A, 
then det A = det R.

 (e) If A is 2 × 2, then det(7A) = 49 det A.

 �(f ) det(AT) = -det A.

 (g) det(-A) = -det A.

 �(h) If det A = det B where A and B are the same 
size, then A = B.

 10. Compute the determinant of each matrix, using 
Theorem 5.

 (a) 

1 2 2
0 0 1
1 5 0

3
0
0

0

0
0 0 1
0 0 11

1
1
1−

−

−
4

 �(b) 

1 0 0
1− 113

3
4 0

0 2 1
0 1 2

2

0

0
0
0

0
03 1

1
−

 11. If det A = 2, det B = -1, and det C = 3, find:

 (a) det 
A X Y

B Z
C

0
0 0

 �(b) det 
A
X B
Y Z C

0
0
0

 (c) det 
A X Y

B
Z C0

0 0  �(d) det 
A X

B
Y Z C

0
00

 12. If A has three columns with only the top two 
entries nonzero, show that det A = 0.

 13. (a) Find det A if A is 3 × 3 and det(2A) = 6.

 (b) Under what conditions is det(-A) = det A?

 14. Evaluate by first adding all other rows to the first 
row.

 (a) det 
x

x
x

−
−−

−

1
2 3

3
2

2 −2

2

 �(b) det 
x

x
x

−
−

− + −
−

−
1
31 1

2 1
3 22

 
 15. (a) Find b if det 

x
y
z

5 1
2 6
5 4

−

−
 = ax + by + cz.

 �(b) Find c if det 
x
y
z

2 1
1 3
3 4

−

−
 = ax + by + cz.

 16. Find the real numbers x and y such that 
det A = 0 if:

 (a) A = 
x

xy
y

yx

0
0

0
 �(b) A = 

x x

x
xx

x
−
− −−

−
1

2
3
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 (c) A = x2

x3

x

x x3x2

x x3

x2 x

x3 x2

1

1

1

1

 �(d) A = 

y
y

y
x

x 0 00
0
0

0
0

0
0
0

x
x

y x

 17. Show that det 

0
0

0
0

1
1
1
1

1 1
x

x
x

x
x

x

 = -3x2.

 18. Show that det 

1

1
1

1

2

2

3x x

a x
p x

x

r
b

x

x

q c
  = (1 - ax)(1 - bx)(1 - cx).

 19. Given the polynomial p(x) = a + bx + cx2 + dx3 + x4, 

the matrix C = 

a db c− −− −

0 0
0 1
0

1 0
0
1

0
0 0

  is called the companion matrix of p(x).
Show that det(xI - C) = p(x).

 20. Show that det 
a b c
b c a
c a b

x
x
x

x
x
x

x
x
x

+ +
+ +
+ +

+
+
+

  = (a + b + c + 3x)[(ab + ac + bc) - (a2 + b2 + c2)].

 21. Prove Theorem 6. [Hint: Expand the 
determinant along column j.]

 22. Show that

  det 

0 0
0

0
0

0

1

2

1

a
a

a
a

n

n

∗

∗ ∗
∗ ∗ ∗
−

 = (-1)ka1a2�an

  where either n = 2k or n = 2k + 1, and ∗-entries 
are arbitrary.

 23. By expanding along the first column, show that:

   det 

1 0
0 0
0 00

0 1

0
0

0
0

0
0

0
0

0 0
0

0

1
1

1
1 1

1
1

1 0

 = 1 + (-1)n+1

  if the matrix is n × n, n ≥ 2.

 �24. Form matrix B from a matrix A by writing the 
columns of A in reverse order. Express det B in 
terms of det A.

 25. Prove property 3 of Theorem 2 by expanding 
along the row (or column) in question.

 26. Show that the line through two distinct points 
(x1, y1) and (x2, y2) in the plane has equation

det 
x
x
x

y
y
y

1
1
1

1

2

1

2

 = 0.

 27. Let A be an n × n matrix. Given a polynomial 
p(x) = a0 + a1x + � + amxm, we write 
p(A) = a0I + a1A + � + amAm.

  For example, if p(x) = 2 - 3x + 5x2, then 
p(A) = 2I - 3A + 5A2. The characteristic 
polynomial of A is defined to be 
cA(x) = det[xI - A], and the Cayley-Hamilton 
theorem asserts that cA(A) = 0 for any matrix A.

 (a) Verify the theorem for 

  (i) A = 
−

3 2
1 1

 and  (ii) A = 
−1 11

10 0
8 22

.

 (b) Prove the theorem for A =   S  a b
   

c d
  T .

Determinants and Matrix Inverses
In this section, several theorems about determinants are derived. One consequence 
of these theorems is that a square matrix A is invertible if and only if det A ≠ 0. 
Moreover, determinants are used to give a formula for A-1 which, in turn, yields 
a formula (called Cramer’s rule) for the solution of any system of linear equations 
with an invertible coefficient matrix.

We begin with a remarkable theorem (due to Cauchy in 1812) about the 
determinant of a product of matrices. The proof is given at the end of this section.

S E C T I O N  3 . 2
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Theorem 1

Product Theorem
If A and B are n × n matrices, then det(AB) = det A det B.

The complexity of matrix multiplication makes the product theorem quite 
unexpected. Here is an example where it reveals an important numerical identity.

EXAMPLE 1

If A =   S   a b
    

-b a
  T  and B =   S   c d

    
-d c

  T  , then AB =   S   ac - bd  ad + bc
          

-(ad + bc) ac - bd
  T .

Hence det A det B = det(AB) gives the identity

(a2 + b2)(c2 + d2) = (ac - bd)2 + (ad + bc)2

Theorem 1 extends easily to det(ABC) = det A det B det C. In fact, induction gives

det(A1A2�Ak-1Ak) = det A1 det A2�det Ak-1 det Ak

for any square matrices A1, …, Ak of the same size. In particular, if each Ai = A, 
we obtain

det(Ak) = (det A)k for any k ≥ 1

We can now give the invertibility condition.

Theorem 2

An n × n matrix A is invertible if and only if det A ≠ 0. When this is the case, 

det(A-1) =   1 _____ 
det A

  .

PROOF

If A is invertible, then AA-1 = I; so the product theorem gives

1 = det I = det(AA-1) = det A det A-1

Hence, det A ≠ 0 and also det A-1 =   1 _____ 
det A

  . 

Conversely, if det A ≠ 0, we show that A can be carried to I by elementary 
row operations (and invoke Theorem 5 Section 2.4). Certainly, A can be 
carried to its reduced row-echelon form R, so R = Ek�E2E1A where the Ei are 
elementary matrices (Theorem 1 Section 2.5). Hence the product theorem gives 

det R = det Ek � det E2 det E1 det A

Since det E ≠ 0 for all elementary matrices E, this shows det R ≠ 0. In 
particular, R has no row of zeros, so R = I because R is square and reduced 
row-echelon. This is what we wanted.
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EXAMPLE 2

For which values of c does A = 
c

c

−
−

−

1
1 1
0

0
3
2 4

 have an inverse?

Solution ► Compute det A by first adding c times column 1 to column 3 and 
then expanding along row 1.

det A = det 
c

c

−
−

−

1
1 1
0

3
2 4

0
 = det  c

c
−−

−
3
2

1 00
1 1
0 4

 = 2(c + 2)(c - 3).

Hence, det A = 0 if c = -2 or c = 3, and A has an inverse if c ≠ -2 and c ≠ 3.

EXAMPLE 3

If a product A1A2�Ak of square matrices is invertible, show that each Ai is 
invertible.

Solution ► We have A1A2�Ak = det(A1A2�Ak) by the product theorem, and 
det(A1A2�Ak) ≠ 0 by Theorem 2 because A1A2�Ak is invertible. Hence

det A1 det A2 � det Ak ≠ 0,

so det Ai ≠ 0 for each i. This shows that each Ai is invertible, again by 
Theorem 2.

Theorem 3

If A is any square matrix, det AT = det A.

PROOF

Consider first the case of an elementary matrix E. If E is of type I or II, then 
ET = E; so certainly det ET = det E. If E is of type III, then ET is also of type 
III; so det ET = 1 = det E by Theorem 2 Section 3.1. Hence, det ET = det E 
for every elementary matrix E.

Now let A be any square matrix. If A is not invertible, then neither is AT; so 
det AT = 0 = det A by Theorem 2. On the other hand, if A is invertible, then 
A = Ek�E2E1, where the Ei are elementary matrices (Theorem 2 Section 2.5). 
Hence, AT =  E  1  

T   E  2  
T � E  k  

T  so the product theorem gives

 det AT = det  E  1  
T det  E  2  

T  � det  E  k  
T  = det E1 det E2 � det Ek

  = det Ek � det E2 det E1
  = det A

This completes the proof.
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EXAMPLE 4

If det A = 2 and det B = 5, calculate det(A3B-1ATB2).

Solution ► We use several of the facts just derived.

 det(A3B-1ATB2) = det(A3) det(B-1)det(AT)det(B2)

 = (det A)3   1 _____ 
det B

   det A(det B)2

 = 23 ·   1 _ 5   · 2 · 52

 = 80

EXAMPLE 5

A square matrix is called orthogonal if A-1 = AT. What are the possible values 
of det A if A is orthogonal?

Solution ► If A is orthogonal, we have I = AAT. Take determinants to obtain 
1 = det I = det(AAT) = det A det AT = (det A)2. Since det A is a number, this 
means det A = ±1.

Hence Theorems 4 and 5 of Section 2.6 imply that rotation about the origin 
and reflection about a line through the origin in �2 have orthogonal matrices with 
determinants 1 and -1 respectively. In fact they are the only such transformations 
of �2. We have more to say about this in Section 8.2.

Adjugates
In Section 2.4 we defined the adjugate of a 2 × 2 matrix A =   S  a b

   
c d

  T  to be

adj(A) =   S   d -b
     

-c   a
  T . Then we verified that A(adj A) = (det A)I = (adj A)A and hence

that, if det A ≠ 0, A-1 =   1 _____ 
det A

   adj A. We are now able to define the adjugate of an 

arbitrary square matrix and to show that this formula for the inverse remains 
valid (when the inverse exists).

Recall that the (i, j)-cofactor cij(A) of a square matrix A is a number defined for 
each position (i, j) in the matrix. If A is a square matrix, the cofactor matrix of A 
is defined to be the matrix [cij(A)] whose (i, j)-entry is the (i, j)-cofactor of A. 

The adjugate4 of A, denoted adj(A), is the transpose of this cofactor matrix; in symbols,

adj(A) = [cij(A)]T

4

This agrees with the earlier definition for a 2 × 2 matrix A as the reader can verify.

4 This is also called the classical adjoint of A, but the term “adjoint” has another meaning.

Definition 3.3
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EXAMPLE 6

Compute the adjugate of A = 
−

−−

1 2
0 5
2 7

3
1
6

 and calculate A(adj A) and (adj A)A.

Solution ► We first find the cofactor matrix.

c A c A c A
c A c A c A
c A c A c A

11 12 13

21 22 23

31 32 33

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

  = 

−
−

− − −

−
−

−
−

−
−

− −
−

−
−

1 5
6 7

0 5
2 7

0 1
2 6

3 2
6 7

1 2
2 7

1 3
2 6

3 2
1 5

1 2
0 5

1 3
0 1

= 
−

−
−

37 10 2
9 3 0

17 5 1
Then the adjugate of A is the transpose of this cofactor matrix.

adj A = 
T−

−
−

37 10 2
9 3 0

17 5 1

 = 
−

− −
37 9 17
10 3 5

2 0 1
The computation of A(adj A) gives

A(adj A) = 
−

− −

−
− −

1 3 2
0 1 5
2 6 7

37 9 17
10 3 5

2 0 1
 = 

3 0 0
0 3 0
00 0 3

 = 3I

and the reader can verify that also (adj A)A = 3I. Hence, analogy with the 
2 × 2 case would indicate that det A = 3; this is, in fact, the case.

The relationship A(adj A) = (det A)I holds for any square matrix A. To see why 
this is so, consider the general 3 × 3 case. Writing cij(A) = cij for short, we have

adj A = 
c c c
c c c
c c c

T11 12 13

21 22 23

31 32 33

 = 
c c c
c c c
11 21 31

12 22 332

13 23 33c c c

If A = [aij] in the usual notation, we are to verify that A(adj A) = (det A)I. That is,

A(adj A) = 
a a a
a a a
a a a

c c c
c c

11 12 13

21 22 23

31 32 33

11 21 31

12 22 cc
c c c

32

13 23 33

 = 

A
A

A

0 0
0 0
0 0

det
det

det

Consider the (1, 1)-entry in the product. It is given by a11c11 + a12c12 + a13c13, and 
this is just the cofactor expansion of det A along the first row of A. Similarly, the 
(2, 2)-entry and the (3, 3)-entry are the cofactor expansions of det A along rows 2 
and 3, respectively.

So it remains to be seen why the off-diagonal elements in the matrix product 
A(adj A) are all zero. Consider the (1, 2)-entry of the product. It is given by 
a11c21 + a12c22 + a13c23. This looks like the cofactor expansion of the determinant of 
some matrix. To see which, observe that c21, c22, and c23 are all computed by deleting 
row 2 of A (and one of the columns), so they remain the same if row 2 of A is 
changed. In particular, if row 2 of A is replaced by row 1, we obtain
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a11c21 + a12c22 + a13c23 = det 
a a a
a a a
a a a

11 12 13

11 12 13

31 32 33

 = 0

where the expansion is along row 2 and where the determinant is zero because two rows 
are identical. A similar argument shows that the other off-diagonal entries are zero.

This argument works in general and yields the first part of Theorem 4. The 
second assertion follows from the first by multiplying through by the scalar   1 _____ 

det A
  .

Theorem 4

Adjugate Formula
If A is any square matrix, then

A(adj A) = (det A)I = (adj A)A

In particular, if det A ≠ 0, the inverse of A is given by

A-1 =   1 _____ 
det A

   adj A

It is important to note that this theorem is not an efficient way to find the inverse 
of the matrix A. For example, if A were 10 × 10, the calculation of adj A would 
require computing 102 = 100 determinants of 9 × 9 matrices! On the other hand, 
the matrix inversion algorithm would find A-1 with about the same effort as finding 
det A. Clearly, Theorem 4 is not a practical result: its virtue is that it gives a 
formula for A-1 that is useful for theoretical purposes.

EXAMPLE 7

Find the (2, 3)-entry of A-1 if A = −
−

2 3
5 1
3

1
7
0 6

.

Solution ► First compute det A = −
−

2 3
5 1

1

3 6
7
0

 = −
12 7
75 11

3 00
 = 3 |   1  7     

-7 11
  |  = 180. 

Since A-1 =   1 _____ 
det A

   adj A =   1 ___ 180  [cij(A)]T,
 
the (2, 3)-entry of A-1 is the (3, 2)-entry 

of the matrix   1 ___ 180  [cij(A)]; that is, it equals   1 ___ 180  c32(A) =   1 ___ 180   a- |  2 3    
5 1

  |  b =   13 ___ 180  .

EXAMPLE 8

If A is n × n, n ≥ 2, show that det(adj A) = (det A)n-1.

Solution ► Write d = det A; we must show that det(adj A) = dn-1. We have 
A(adj A) = dI by Theorem 4, so taking determinants gives d det(adj A) = dn. 
Hence we are done if d ≠ 0. Assume d = 0; we must show that det(adj A) = 0, 
that is, adj A is not invertible. If A ≠ 0, this follows from A(adj A) = dI = 0; if 
A = 0, it follows because then adj A = 0.

142 Chapter 3 Determinants and Diagonalization



Cramer’s Rule
Theorem 4 has a nice application to linear equations. Suppose

Ax = b
is a system of n equations in n variables x1, x2, …, xn. Here A is the n × n coefficient 
matrix, and x and b are the columns

x =   S  
x1

 
 

 x2   


 
 

 
xn

  T  and b =   S  
b1

 
 

 b2   


 
 

 

bn

  T 
of variables and constants, respectively. If det A ≠ 0, we left multiply by A-1 to 
obtain the solution x = A-1b. When we use the adjugate formula, this becomes

   S  
x1

 
 

 x2   


 
 

 
xn

  T  = 1 _____ 
det A

   (adj A)b

 =
1 _____ 

det A
   

c c c
c

c

c
n11 21 1

112 22 2

1 2

(A)
(A)

(A)

(A)
(A)

(A)

(A)
(A)

(A)

c

c c

n

n n nn

b1
b2

bn

Hence, the variables x1, x2, …, xn are given by

x1 =   1 _____ 
det A

   [b1c11(A) + b2c21(A) + � + bncn1(A)]

x2 =   1 _____ 
det A

   [b1c12(A) + b2c22(A) + � + bncn2(A)]

     


xn =   1 _____ 
det A

   [b1c1n(A) + b2c2n(A) + � + bncnn(A)]

Now the quantity b1c11(A) + b2c21(A) + � + bncn1(A) occurring in the formula for 
 x1 looks like the cofactor expansion of the determinant of a matrix. The cofactors 
involved are c11(A), c21(A), …, cn1(A), corresponding to the first column of A. If A1 
is obtained from A by replacing the first column of A by b, then ci1(A1) = ci1(A) for 
each i because column 1 is deleted when computing them. Hence, expanding det(A1) 
by the first column gives

 det A1 = b1c11(A1) + b2c21(A1) + � + bncn1(A1)
 = b1c11(A) + b2c21(A) + � + bncn1(A)
 = (det A)x1

Hence, x1 =   
det A1 ______ 
det A

  , and similar results hold for the other variables.

Theorem 5

Cramer’s Rule5

If A is an invertible n × n matrix, the solution to the system
Ax = b

of n equations in the variables x1, x2, …, xn is given by

x1 =   
det A1 ______ 
det A

  , x2 =   
det A2 ______ 
det A

  ,  …, xn =   
det An ______ 
det A

  

where, for each k, Ak is the matrix obtained from A by replacing column k by b.
5

5 Gabriel Cramer (1704–1752) was a Swiss mathematician who wrote an introductory work on algebraic curves. He popularized the 
rule that bears his name, but the idea was known earlier.
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EXAMPLE 9

Find x1, given the following system of equations.

5x1 + x2 -  x3 = 4
9x1 + x2 -  x3 = 1
 x1 - x2 + 5x3 = 2

Solution ► Compute the determinants of the coefficient matrix A and the matrix 
A1 obtained from it by replacing the first column by the column of constants.

  det A = det 
−
−

−

5 1
9 1

1

1
1

1 5
 = -16

det A1 = det 
−
−

−

4 1
1 1

1

1
1

2 5
 = 12

Hence, x1 =   
det A1 ______ 
det A

   = -  3 _ 4   by Cramer’s rule.

Cramer’s rule is not an efficient way to solve linear systems or invert matrices. 
True, it enabled us to calculate x1 here without computing x2 or x3. Although 
this might seem an advantage, the truth of the matter is that, for large systems 
of equations, the number of computations needed to find all the variables by 
the gaussian algorithm is comparable to the number required to find one of the 
determinants involved in Cramer’s rule. Furthermore, the algorithm works when 
the matrix of the system is not invertible and even when the coefficient matrix 
is not square. Like the adjugate formula, then, Cramer’s rule is not a practical 
numerical technique; its virtue is theoretical.

Polynomial Interpolation

EXAMPLE 10

A forester wants to estimate the age (in years) of a tree by measuring the 
diameter of the trunk (in cm). She obtains the following data:

Tree 1 Tree 2 Tree 3
Trunk Diameter 5 10 15
Age 3  5  6

Estimate the age of a tree with a trunk diameter of 12 cm.

Solution ► The forester decides to “fit’’ a quadratic polynomial 

p(x) = r0 + r1x + r2x
2

to the data, that is choose the coefficients r0, r1, and r2 so that p(5) = 3, 
p(10) = 5, and p(15) = 6, and then use p(12) as the estimate. These conditions 
give three linear equations:

r0 +  5r1 +  25r2 = 3
r0 + 10r1 + 100r2 = 5
r0 + 15r1 + 225r2 = 6

6

4

2

(5, 3)

(10, 5)

Diameter

1050 12 15

Age (15, 6)
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The (unique) solution is r0 = 0, r1 =   7 __ 10  , and r2 = -  1 __ 50  , so 

p(x) =   7 __ 10  x -   1 __ 50  x
2 =   1 __ 50  x(35 - x).

Hence the estimate is p(12) = 5.52.

As in Example 10, it often happens that two variables x and y are related but 
the actual functional form y = f (x) of the relationship is unknown. Suppose that 
for certain values x1, x2, …, xn of x the corresponding values y1, y2, …, yn are 
known (say from experimental measurements). One way to estimate the value of y 
corresponding to some other value a of x is to find a polynomial6

p(x) = r0 + r1x + r2x + � + rn-1x
n-1

that “fits” the data, that is p(xi) = yi holds for each i = 1, 2, …, n. Then the estimate 
for y is p(a). As we will see, such a polynomial always exists if the xi are distinct.

The conditions that p(xi) = yi are

r0 + r1x1 + r2 x  1  
2  + � + rn-1 x  1  

n-2  = y1

r0 + r1x2 + r2 x  2  
2  + � + rn-1 x  2  

n-2  = y2

  
  
     
    


r0 + r1xn + r2 x  n  
2  + � + rn-1 x  n  

n-2  = yn

In matrix form, this is

1

1

1

1 1
2

1
1

2 2
2

2
1

2 1

x x x

x x x

x x x

n

n

n n n
n

−

−

−

   S    
r0

 
  

 r1    


 

  
 

rn-1

  T  =   S   
y1

 
 

 
y2   


 
 

 
yn

  T  (∗)

It can be shown (see Theorem 7) that the determinant of the coefficient matrix 
equals the product of all terms (xi - xj) with i > j and so is nonzero (because the xi 
are distinct). Hence the equations have a unique solution r0, r1, …, rn-1. This proves

Theorem 6

Let n data pairs (x1, y1), (x2, y2), …, (xn, yn) be given, and assume that the xi are distinct. 
Then there exists a unique polynomial

p(x) = r0 + r1x + r2x
2 + � + rn-1x

n-1

such that p(xi) = yi for each i = 1, 2, …, n.

The polynomial in Theorem 6 is called the interpolating polynomial for the data.
We conclude by evaluating the determinant of the coefficient matrix in (∗).

If a1, a2, …, an are numbers, the determinant

6 A polynomial is an expression of the form a0 + a1x + a2x
2

+ � + anx
n where the ai are numbers and x is a variable. If an ≠ 0, 

the integer n is called the degree of the polynomial, and an is called the leading coefficient. See Appendix D.
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det 

1

1

1

1

1 1
2

1
1

2 2
2

2
1

3 3
2

3
1

2 1

a a a

a a a

a a

a a a

n

n

n

n n n
n

−

−

−

−

a

is called a Vandermonde determinant.7 There is a simple formula for this 
determinant. If n = 2, it equals (a2 - a1); if n = 3, it is (a3 - a2)(a3 - a1)(a2 - a1) 
by Example 8 Section 3.1. The general result is the product

∏1≤j<i≤n(ai - aj)

of all factors (ai - aj) where 1 ≤ j < i ≤ n. For example, if n = 4, it is 

(a4 - a3)(a4 - a2)(a4 - a1)(a3 - a2)(a3 - a1)(a2 - a1).

Theorem 7

Let a1, a2, …, an be numbers where n ≥ 2. Then the corresponding Vandermonde 
determinant is given by

det 

1

1

1

1

1 1
2

1
1

2 2
2

2
1

3 3
2

3
1

2 1

a a a

a a a

a a a

a a a

n

n

n

n n n
n

−

−

−

−

 = ∏1≤j<i≤n(ai - aj)

PROOF

We may assume that the ai are distinct; otherwise both sides are zero. We 
proceed by induction on n ≥ 2; we have it for n = 2, 3. So assume it holds for 
n - 1. The trick is to replace an by a variable x, and consider the determinant 

p(x) = det 

a a a

a a a

a a a

x x

n

n

n n n
n

−

−

− − −
−

1

1

1

1

1 1
2

1
1

2 2
2

2
1

1 1
2

1
1

22 1xn−

.

Then p(x) is a polynomial of degree at most n - 1 (expand along the last row), 
and p(ai) = 0 for i = 1, 2, …, n - 1 because in each case there are two identical 
rows in the determinant. In particular, p(a1) = 0, so we have p(x) = (x - a1)p1(x) 
by the factor theorem (see Appendix D). Since a2 ≠ a1, we obtain p1(a2) = 0, and 
so p1(x) = (x - a2)p2(x). Thus p(x) = (x - a1)(x - a2)p2(x). As the ai are distinct, 
this process continues to obtain

 p(x) = (x - a1)(x - a2)�(x - an-1)d (∗∗)

7 Alexandre Théophile Vandermonde (1735–1796) was a French mathematician who made contributions to the theory of equations.
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where d is the coefficient of xn-1 in p(x). By the cofactor expansion of p(x) along 
the last row we get

d = (-1)n+n det 

a a a

a a a

a a a

n

n

n n n
n

−

−

− − −
−

1

1

1

1 1
2

1
2

2 2
2

2
2

1 1
2

1
22

.

Because (-1)n+n = 1, the induction hypothesis shows that d is the product of all 
factors (ai - aj) where 1 ≤ j < i ≤ n - 1. The result now follows from (∗∗) by 
substituting an for x in p(x).

PROOF OF THEOREM 1

If A and B are n × n matrices we must show that 

 det(AB) = det A det B. (∗)

Recall that if E is an elementary matrix obtained by doing one row operation 
to In, then doing that operation to a matrix C (Lemma 1 Section 2.5) results in 
EC. By looking at the three types of elementary matrices separately, Theorem 2 
Section 3.1 shows that 

 det(EC) = det E det C for any matrix C. (∗∗)

Thus if E1, E2, …, Ek are all elementary matrices, it follows by induction that

 det(Ek�E2E1C) = det Ek � det E2 det E1 det C for any matrix C. (∗∗∗)

Lemma. If A has no inverse, then det A = 0.

Proof. Let A → R where R is reduced row-echelon, say En�E2E1A = R. Then 
R has a row of zeros by Theorem 5(4) Section 2.4, and hence det R = 0. But 
then (∗∗∗) gives det A = 0 because det E ≠ 0 for any elementary matrix E. This 
proves the Lemma.

Now we can prove (∗) by considering two cases.

Case 1. A has no inverse. Then AB also has no inverse (otherwise A[B(AB)-1] = I 
so A is invertible by the Corollary 2 to Theorem 5 Section 2.4). Hence the above 
Lemma (twice) gives 

det(AB) = 0 = 0 det B = det A det B.

proving (∗) in this case.

Case 2. A has an inverse. Then A is a product of elementary matrices by Theorem 
2 Section 2.5, say A = E1E2…Ek. Then (∗∗∗) with C = I gives 

det A = det(E1E2�Ek) = det E1 det E2 � det Ek.

But then (∗∗∗) with C = B gives

det(AB) = det[(E1E2�Ek)B] = det E1 det E2 � det Ek det B = det A det B,

and (∗) holds in this case too.
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E X E R C I S E S  3 . 2

 1. Find the adjugate of each of the following 
matrices.

 (a) 
5 3
1 3
1 8

2
4

1
−  �(b) 

1 2
3 0
0 11

1
1−

−

 (c) 
1 1
1 0

0

0 1
1

1

−
−

−
 �(d)   1 _ 3   

1 2
2 2

2

22 1
1

−
−

−

 2. Use determinants to find which real values of c 
make each of the following matrices invertible.

 (a) 
1 3

43
2 8

− c
0

5
 �(b) 

0
21 1

−
−

−

c

c c c

c

 (c) 
1

0
0

51−

c
c

c 5
2  �(d) c

4
2

4

3

5

c
c

c

 (e) 
1 1
0
2

−
− c

c

2
1

1
 �(f ) 

11
1

0

1
1

1

c
c

c

−

 3. Let A, B, and C denote n × n matrices and 
assume that det A = -1, det B = 2, and 
det C = 3. Evaluate: 

 (a) det(A3BCTB-1) �(b) det(B2C-1AB-1CT)

 4. Let A and B be invertible n × n matrices. 
Evaluate:

 (a) det(B-1AB) �(b) det(A-1B-1AB)

 5. If A is 3 × 3 and det(2A-1) = -4 = det(A3(B-1)T), 
find det A and det B.

 6. Let A = 
a b c
p q r
u v w

 and assume that det A = 3. 

Compute:

 (a) det(2B-1) where B = 
4
4
4

u p
v q
w

2
2
2

a
b
c r

−
−
−

 �(b) det(2C-1) where C = 
2
2
2

3

3
3

p u
q v
r w

u
v
w

a
b
c

−
−

+
+
+

− 

 7. If det   S  a b
   

c d
  T  = -2, calculate:

 (a) det 
2 0

1 2
2 2

1
2

2

−
−+

−
c
d b

a

 �(b) det 
( )

2 4
1

1
22

0

21 2
−
−+

b

a c

d

 (c) det(3A-1) where A = +
+

3
3

c c
d

a
b d

 8. Solve each of the following by Cramer’s rule:

 (a) 2x +  y =   1 �(b) 3x + 4y =   9
3x + 7y = -2  2x -  y = -1

 (c) 5x + y -  z = -7 �(d) 4x -  y + 3z =   1
2x - y - 2z =   6  6x + 2y -  z =   0
3x  + 2z = -7  3x + 3y + 2z = -1

 9. Use Theorem 4 to find the (2, 3)-entry of A-1 if:

 (a) A = 
−

3 1
1 2
1 1

2
1
2

 �(b) A = 
−1 1

3 1
0

2
1
4 7

 10. Explain what can be said about det A if:

 (a) A2 = A �(b) A2 = I

 (c) A3 = A

 �(d) PA = P and P is invertible

 (e) A2 = uA and A is n × n

 �(f ) A = -AT and A is n × n

 (g) A2 + I = 0 and A is n × n

 11. Let A be n × n. Show that uA = (uI)A, and use 
this with Theorem 1 to deduce the result in 
Theorem 3 Section 3.1: det(uA) = un det A.

 12. If A and B are n × n matrices, AB = -BA, and n 
is odd, show that either A or B has no inverse.

 13. Show that det AB = det BA holds for any two 
n × n matrices A and B.

 14. If Ak = 0 for some k ≥ 1, show that A is not 
invertible.

 �15. If A-1 = AT, describe the cofactor matrix of A in 
terms of A.
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 16. Show that no 3 × 3 matrix A exists such that 
A2 + I = 0. Find a 2 × 2 matrix A with this 
property.

 17. Show that det(A + BT) = det(AT + B) for any 
n × n matrices A and B.

 18. Let A and B be invertible n × n matrices. Show 
that det A = det B if and only if A = UB where 
U is a matrix with det U = 1.

 �19. For each of the matrices in Exercise 2, find the 
inverse for those values of c for which it exists.

 20. In each case either prove the statement or give 
an example showing that it is false: 

 (a) If adj A exists, then A is invertible. 

 �(b) If A is invertible and adj A = A-1, then 
det A = 1.

 (c) det(AB) = det(BTA).

 �(d) If det A ≠ 0 and AB = AC, then B = C.

 (e) If AT = -A, then det A = -1.

 �(f ) If adj A = 0, then A = 0.

 (g) If A is invertible, then adj A is invertible.

 �(h) If A has a row of zeros, so also does adj A.

 (i) det(ATA) > 0.

 �(j) det(I + A) = 1 + det A.

 (k) If AB is invertible, then A and B are 
invertible.

 �(l) If det A = 1, then adj A = A.

 21. If A is 2 × 2 and det A = 0, show that one column 
of A is a scalar multiple of the other. [Hint: 
Definition 2.5 and Theorem 5(2) Section 2.4.]

 22. Find a polynomial p(x) of degree 2 such that:

 (a) p(0) = 2, p(1) = 3, p(3) = 8

 �(b) p(0) = 5, p(1) = 3, p(2) = 5

 23. Find a polynomial p(x) of degree 3 such that:

 (a) p(0) = p(1) = 1, p(-1) = 4, p(2) = -5 

 �(b) p(0) = p(1) = 1, p(-1) = 2, p(-2) = -3

 24. Given the following data pairs, find the 
interpolating polynomial of degree 3 and 
estimate the value of y corresponding to x = 1.5.

 (a) (0, 1), (1, 2), (2, 5), (3, 10)

 �(b) (0, 1), (1, 1.49), (2, -0.42), (3, -11.33)

 (c) (0, 2), (1, 2.03), (2, -0.40), (-1, 0.89)

 25. If A = 
a

a
b

b

c
c−

−−

1
1

1
 show that 

det A = 1 + a2 + b2 + c2. Hence, find A-1 for 
any a, b, and c.

 26. (a) Show that A = 
a p q

b r
c

0
0 0

 has an inverse if and 

only if abc ≠ 0, and find A-1 in that case.

 �(b) Show that if an upper triangular matrix is 
invertible, the inverse is also upper triangular.

 27. Let A be a matrix each of whose entries are 
integers. Show that each of the following 
conditions implies the other.

 (1) A is invertible and A-1 has integer entries.

 (2) det A = 1 or -1.

 �28. If A-1 = 
−

3 0 1
0 2 3
3 1 1

, find adj A.

 29. If A is 3 × 3 and det A = 2, find 
det(A-1 + 4 adj A).

 30. Show that det  S   0 A
    

B X
  T  = det A det B when A and B 

are 2 × 2. What if A and B are 3 × 3? 

  [Hint: Block multiply by   S  0 I
   

I 0
  T .]

 31. Let A be n × n, n ≥ 2, and assume one column 
of A consists of zeros. Find the possible values of 
rank(adj A).

 32. If A is 3 × 3 and invertible, compute 
det(-A2(adj A)-1).

 33. Show that adj(uA) = un-1adj A for all n × n 
matrices A.

 34. Let A and B denote invertible n × n matrices. 
Show that:

 (a) adj(adj A) = (det A)n-2A (here n ≥ 2)
 [Hint: See Example 8.]

 �(b) adj(A-1) = (adj A)-1

 (c) adj(AT) = (adj A)T

 �(d) adj(AB) = (adj B)(adj A) [Hint: Show that AB 
adj(AB) = AB adj B adj A.]
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Diagonalization and Eigenvalues
The world is filled with examples of systems that evolve in time—the weather in a 
region, the economy of a nation, the diversity of an ecosystem, etc. Describing such 
systems is difficult in general and various methods have been developed in special cases. 
In this section we describe one such method, called diagonalization, which is one of the 
most important techniques in linear algebra. A very fertile example of this procedure 
is in modelling the growth of the population of an animal species. This has attracted 
more attention in recent years with the ever increasing awareness that many species are 
endangered. To motivate the technique, we begin by setting up a simple model of a bird 
population in which we make assumptions about survival and reproduction rates. 

EXAMPLE 1

Consider the evolution of the population of a species of birds. Because the 
number of males and females are nearly equal, we count only females. We 
assume that each female remains a juvenile for one year and then becomes an 
adult, and that only adults have offspring. We make three assumptions about 
reproduction and survival rates:

1. The number of juvenile females hatched in any year is twice 
the number of adult females alive the year before (we say the 
reproduction rate is 2).

2. Half of the adult females in any year survive to the next year (the adult 
survival rate is   1 _ 2  ).

3. One quarter of the juvenile females in any year survive into adulthood 
(the juvenile survival rate is   1 _ 4  ).

If there were 100 adult females and 40 juvenile females alive initially, compute 
the population of females k years later.

Solution ► Let ak and jk denote, respectively, the number of adult and juvenile 
females after k years, so that the total female population is the sum ak + jk. 
Assumption 1 shows that jk+1 = 2ak, while assumptions 2 and 3 show that 
ak+1 =   1 _ 2  ak +   1 _ 4    jk. Hence the numbers ak and jk in successive years are related 
by the following equations:

 ak+1 =   1 _ 2  ak +   1 _ 4   jk
 jk+1 = 2ak

If we write vk, = c   ak      
jk

  d and A = c  
  1 _ 2     1 _ 4          
2 0

   d, these equations take the matrix form 

vk+1 = Avk, for each k = 0, 1, 2, …

Taking k = 0 gives v1 = Av0, then taking k = 1 gives v2 = Av1 = A2v0, and 
taking k = 2 gives v3 = Av2 = A3v0. Continuing in this way, we get

vk = Akv0 for each k = 0, 1, 2, ….

Since v0 = c   a0      
j0

  d = c 100    
40

 d is known, finding the population profile vk amounts to 

computing Ak for all k ≥ 0. We will complete this calculation in Example 12 
after some new techniques have been developed.

S E C T I O N  3 . 3

150 Chapter 3 Determinants and Diagonalization



Let A be a fixed n × n matrix. A sequence v0, v1, v2, … of column vectors in �n 
is called a linear dynamical system8 if v0 is known and the other vk are determined 
(as in Example 1) by the conditions

vk+1 = Avk for each k = 0, 1, 2, …. 

These conditions are called a matrix recurrence for the vectors vk. As in 
Example 1, they imply that 

vk = Akv0 for all k ≥ 0, 

so finding the columns vk amounts to calculating Ak for k ≥ 0. 
Direct computation of the powers Ak of a square matrix A can be time-

consuming, so we adopt an indirect method that is commonly used. The idea is 
to first diagonalize the matrix A, that is, to find an invertible matrix P such that

 P-1AP = D is a diagonal matrix (∗)

This works because the powers Dk of the diagonal matrix D are easy to compute, 
and (∗) enables us to compute powers Ak of the matrix A in terms of powers Dk 
of D. Indeed, we can solve (∗) for A to get A = PDP-1. Squaring this gives

A2 = (PDP-1)(PDP-1) = PD2P-1

Using this we can compute A3 as follows:

A3 = AA2
 = (PDP-1)(PD2P-1) = PD3P-1

Continuing in this way we obtain Theorem 1 (even if D is not diagonal).

Theorem 1

If A = PDP-1 then Ak = PDkP-1 for each k = 1, 2, ….

Hence computing Ak comes down to finding an invertible matrix P as in equation 
(∗). To do this it is necessary to first compute certain numbers (called eigenvalues) 
associated with the matrix A.

Eigenvalues and Eigenvectors

If A is an n × n matrix, a number λ is called an eigenvalue of A if

Ax = λx for some column x ≠ 0 in �n

In this case, x is called an eigenvector of A corresponding to the eigenvalue λ, or a 
λ-eigenvector for short.

EXAMPLE 2

If A =   S   3   5    
1 -1

  T  and x =   S  5   
1

  T  , then Ax = 4x so λ = 4 is an eigenvalue of A with 

corresponding eigenvector x.

8 More precisely, this is a linear discrete dynamical system. Many models regard vt as a continuous function of the time t, and replace 
our condition between vk+1 and Avk with a differential relationship viewed as functions of time.

Definition 3.4
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The matrix A in Example 2 has another eigenvalue in addition to λ = 4. To find 
it, we develop a general procedure for any n × n matrix A.

By definition a number λ is an eigenvalue of the n × n matrix A if and only if 
Ax = λx for some column x ≠ 0. This is equivalent to asking that the homogeneous 
system

(λI - A)x = 0

of linear equations has a nontrivial solution x ≠ 0. By Theorem 5 Section 2.4 this 
happens if and only if the matrix λI - A is not invertible and this, in turn, holds if 
and only if the determinant of the coefficient matrix is zero:

det(λI - A) = 0

This last condition prompts the following definition: 

If A is an n × n matrix, the characteristic polynomial cA(x) of A is defined by

cA(x) = det(xI - A)

Note that cA(x) is indeed a polynomial in the variable x, and it has degree n when A 
is an n × n matrix (this is illustrated in the examples below). The above discussion 
shows that a number λ is an eigenvalue of A if and only if cA(λ) = 0, that is if 
and only if λ is a root of the characteristic polynomial cA(x). We record these 
observations in

Theorem 2

Let A be an n × n matrix.

1. The eigenvalues λ of A are the roots of the characteristic polynomial cA(x) of A.

2. The λ-eigenvectors x are the nonzero solutions to the homogeneous system

(λI - A)x = 0

 of linear equations with λI - A as coefficient matrix.

In practice, solving the equations in part 2 of Theorem 2 is a routine application of 
gaussian elimination, but finding the eigenvalues can be difficult, often requiring 
computers (see Section 8.5). For now, the examples and exercises will be constructed 
so that the roots of the characteristic polynomials are relatively easy to find (usually 
integers). However, the reader should not be misled by this into thinking that 
eigenvalues are so easily obtained for the matrices that occur in practical applications!

EXAMPLE 3

Find the characteristic polynomial of the matrix A =   S   3   5    
1 -1

  T  discussed in

Example 2, and then find all the eigenvalues and their eigenvectors.

Solution ► Since xI - A =   S  x 0    
0 x

  T  -   S   3   5    
1 -1

  T  =   S  x - 3 -5        
-1 x + 1

  T  , we get

cA(x) = det   S  x - 3 -5        
-1 x + 1

  T  = x2 - 2x - 8 = (x - 4)(x + 2)

Definition 3.5
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Hence, the roots of cA(x) are λ1 = 4 and λ2 = -2, so these are the eigenvalues 
of A. Note that λ1 = 4 was the eigenvalue mentioned in Example 2, but we 
have found a new one: λ2 = -2.

To find the eigenvectors corresponding to λ2 = -2, observe that in this case

(λ2I - A)x =   S  λ2 - 3  -5  
         

-1 λ2 + 1
  T  =   S  -5 -5     

-1 -1
  T 

so the general solution to (λ2I - A)x = 0 is x = t   S  -1   
1

  T   where t is an arbitrary 

real number. Hence, the eigenvectors x corresponding to λ2 are x = t   S  -1   
1

  T  
where t ≠ 0 is arbitrary. Similarly, λ1 = 4 gives rise to the eigenvectors 

x = t   S  5   
1

  T  , t ≠ 0, which includes the observation in Example 2.

Note that a square matrix A has many eigenvectors associated with any given 
eigenvalue λ. In fact every nonzero solution x of (λI - A)x = 0 is an eigenvector. 
Recall that these solutions are all linear combinations of certain basic solutions 
determined by the gaussian algorithm (see Theorem 2 Section 1.3). Observe that 
any nonzero multiple of an eigenvector is again an eigenvector,9 and such multiples 
are often more convenient.10 Any set of nonzero multiples of the basic solutions of 
(λI - A)x = 0 will be called a set of basic eigenvectors corresponding to λ.

EXAMPLE 4

Find the characteristic polynomial, eigenvalues, and basic eigenvectors for 

A = −
−

2 0 0
1 2 1
1 3 2

.

Solution ► Here the characteristic polynomial is given by

cA(x) = det 
x

x
x

−

−
−−

− +

2 0

3

0
1 1
1 2

2  = (x - 2)(x - 1)(x + 1)

so the eigenvalues are λ1 = 2, λ2 = 1, and λ3 = -1. To find all eigenvectors for 
λ1 = 2, compute

λ1I - A = 
λ

λ

λ

1

1

1

2
2 1

0 0
1

2
1
1

−
−−

−3 +−
 = 

0 0 00
1 0 1
1 3 4

−
− −

9 In fact, any nonzero linear combination of λ-eigenvectors is again a λ-eigenvector.

10 Allowing nonzero multiples helps eliminate round-off error when the eigenvectors involve fractions.
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We want the (nonzero) solutions to (λ1I - A)x = 0. The augmented matrix 
becomes

0 0 0 0
1 0 1 0
1 3 4 0

−
− −

 → 
1 0 1 0
0 1 1 0
0 0 0 0

−
−

using row operations. Hence, the general solution x to (λ1I - A)x = 0 is

x = t   S  1 
 

 1   
1

  T  , where t is arbitrary, so we can use x1 =   S  1 
 

 1   
1

  T  as the basic 

eigenvector corresponding to λ1 = 2. As the reader can verify, the gaussian 

algorithm gives basic eigenvectors x2 =   S  0 
 

 1   
1

  T  and x3 =   S  0 
 

   1 _ 3    
 

1
  T  corresponding to 

λ2 = 1 and λ3 = -1, respectively. Note that to eliminate fractions, we could 

instead use 3x3 =   S  0 
 

 1   
3

  T  as the basic λ3-eigenvector.

EXAMPLE 5

If A is a square matrix, show that A and AT have the same characteristic 
polynomial, and hence the same eigenvalues.

Solution ► We use the fact that xI - AT = (xI - A)T. Then

 c AT (x) = det(xI - AT) = det[(xI - A)T] = det(xI - A) = cA(x)

by Theorem 3 Section 3.2. Hence  c AT (x) and cA(x) have the same roots, and so 
AT and A have the same eigenvalues (by Theorem 2).

The eigenvalues of a matrix need not be distinct. For example, if A =   S  1 1    
0 1

  T  the 

characteristic polynomial is (x - 1)2 so the eigenvalue 1 occurs twice. Furthermore, 
eigenvalues are usually not computed as the roots of the characteristic polynomial. 
There are iterative, numerical methods (for example the QR-algorithm in Section 
8.5) that are much more efficient for large matrices. 

A-Invariance
If A is a 2 × 2 matrix, we can describe the eigenvectors of A geometrically using the 
following concept. A line L through the origin in �2 is called A-invariant if Ax is in 
L whenever x is in L. If we think of A as a linear transformation �2 → �2, this asks 
that A carries L into itself, that is the image Ax of each vector x in L is again in L.

EXAMPLE 6

The x axis L =  U   S   x   
0

  T  | x in � V  is A-invariant for any matrix of the form 

A =   S   a b
        

0 c
   T  because   S   a b

        
0 c

   T  s  x   
0

 t = s ax
   

0
 t is L for all x =   S   x   

0
  T  in L.
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To see the connection with eigenvectors, let x ≠ 0 be any nonzero vector in �2 
and let Lx denote the unique line through the origin containing x (see the diagram). 
By the definition of scalar multiplication in Section 2.6, we see that Lx consists of all 
scalar multiples of x, that is 

Lx = �x = {tx | t in �}.

Now suppose that x is an eigenvector of A, say Ax = λx for some λ in �. Then if tx 
is in Lx then 

A(tx) = t(Ax) = t(λx) = (tλ)x is again in Lx.

That is, Lx is A-invariant. On the other hand, if Lx is A-invariant then Ax is in Lx 
(since x is in Lx). Hence Ax = tx for some t in �, so x is an eigenvector for A (with 
eigenvalue t). This proves:

Theorem 3

Let A be a 2 × 2 matrix, let x ≠ 0 be a vector in �2, and let Lx be the line through the 
origin in �2 containing x. Then 

x is an eigenvector of A if and only if Lx is A-invariant.

EXAMPLE 7

1. If θ is not a multiple of π, show that A =   S   cos θ -sin θ
                         

 sin θ  cos θ 
   T  has no real 

eigenvalue. 

2. If m is real show that B =   1 _______ 
1 + m2

     S   1 − m2
 2m  

                         
 2m m2 − 1

   T  has a 1 as an 

eigenvalue.

Solution ►

(1) A induces rotation about the origin through the angle θ (Theorem 4 
Section 2.6). Since θ is not a multiple of π, this shows that no line 
through the origin is A-invariant. Hence A has no eigenvector by 
Theorem 3, and so has no eigenvalue. 

(2) B induces reflection Qm in the line through the origin with slope m by 
Theorem 5 Section 2.6. If x is any nonzero point on this line then it is 
clear that Qmx = x, that is Qmx = 1x. Hence 1 is an eigenvalue (with 
eigenvector x).

If θ =   π __ 2   in Example 7(1), then A =   S  0 -1    
1   0

   T  , so cA(x) = x2 + 1. This polynomial 

has no root in �, so A has no (real) eigenvalue, and hence no eigenvector. In 
fact its eigenvalues are the complex numbers i and -i, with corresponding 

eigenvectors   S   1       
-i

   T  and   S   1     
i
   T . In other words, A has eigenvalues and eigenvectors, just 

not real ones.
Note that every polynomial has complex roots,11 so every matrix has complex 

eigenvalues. While these eigenvalues may very well be real, this suggests that we 
really should be doing linear algebra over the complex numbers. Indeed, everything 

11 This is called the Fundamental Theorem of Algebra and was first proved by Gauss in his doctoral dissertation.

y

x0

Lx

x
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we have done (gaussian elimination, matrix algebra, determinants, etc.) works if all 
the scalars are complex.

Diagonalization
An n × n matrix D is called a diagonal matrix if all its entries off the main diagonal 
are zero, that is if D has the form

D = 

n

λ

λ

λ

1

2

0 0
00

0 0

 = diag(λ1, λ2, …, λn)

where λ1, λ2, …, λn are numbers. Calculations with diagonal matrices are very easy. 
Indeed, if D = diag(λ1, λ2, …, λn) and E = diag(�1, �2, …, �n) are two diagonal 
matrices, their product DE and sum D + E are again diagonal, and are obtained by 
doing the same operations to corresponding diagonal elements:

 DE = diag(λ1�1, λ2�2, …, λn�n)
 D + E = diag(λ1 + �1, λ2 + �2, …, λn + �n)

Because of the simplicity of these formulas, and with an eye on Theorem 1 and the 
discussion preceding it, we make another definition:

An n × n matrix A is called diagonalizable if

P-1AP is diagonal for some invertible n × n matrix P

Here the invertible matrix P is called a diagonalizing matrix for A.

To discover when such a matrix P exists, we let x1, x2, …, xn denote the columns 
of P and look for ways to determine when such xi exist and how to compute them. 
To this end, write P in terms of its columns as follows:

P = [x1, x2, …, xn]

Observe that P-1AP = D for some diagonal matrix D holds if and only if

AP = PD

If we write D = diag(λ1, λ2, …, λn), where the λi are numbers to be determined, the 
equation AP = PD becomes

A[x1, x2, …, xn] = [x1, x2, …, xn] 

n

1

2

0 0
00

0 0

λ

λ

λ

By the definition of matrix multiplication, each side simplifies as follows

[Ax1 Ax2 � Axn] = [λ1x1 λ2x2 � λnxn] 

Comparing columns shows that Axi = λixi for each i, so

P-1AP = D if and only if Axi = λixi for each i.

In other words, P-1AP = D holds if and only if the diagonal entries of D are 
eigenvalues of A and the columns of P are corresponding eigenvectors. This proves 
the following fundamental result.

Definition 3.6
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Theorem 4

Let A be an n × n matrix.
1. A is diagonalizable if and only if it has eigenvectors x1, x2, …, xn such that the 

matrix P = [x1 x2 � xn] is invertible.
2. When this is the case, P-1AP = diag(λ1, λ2, …, λn) where, for each i, λi is the 

eigenvalue of A corresponding to xi.

EXAMPLE 8

Diagonalize the matrix A = −
−

2 00
1 1
1 23

2  in Example 4.

Solution ► By Example 4, the eigenvalues of A are λ1 = 2, λ2 = 1, and λ3 = -1,

with corresponding basic eigenvectors x1 =   S  1 
 

 1   
1

  T  , x2 =   S  0 
 

 1   
1

  T  , and x3 =   S  0 
 

 1   
3

  T  , 
respectively. Since the matrix P = [x1 x2 � xn] = 

1 0
1 1

1

0
1

1 3
 is 

invertible, Theorem 4 guarantees that P-1AP = 
1

2

3

0
0
0

0
0

0

λ

λ

λ

 = 
−

2 00
0 0

00 1
1  = D.

The reader can verify this directly—easier to check AP = PD.

In Example 8, suppose we let Q = [x2 x1 x3] be the matrix formed from the 
eigenvectors x1, x2, and x3 of A, but in a different order than that used to form P. 
Then Q-1AQ = diag(λ2, λ1, λ3) is diagonal by Theorem 4, but the eigenvalues 
are in the new order. Hence we can choose the diagonalizing matrix P so that the 
eigenvalues λi appear in any order we want along the main diagonal of D.

In every example above each eigenvalue has had only one basic eigenvector. Here 
is a diagonalizable matrix where this is not the case.

EXAMPLE 9

Diagonalize the matrix A = 
0 1 1
1 0 1
1 1 0

.

Solution ► To compute the characteristic polynomial of A first add rows 2 and 3 
of xI - A to row 1:
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cA(x)  = det 
x

x
x

− −
− −
− −

1 1
1 1
1 1

 = det 
x x x

x
x

− − −
− −
− −

2 2 2
1 1
1 1

= det 
−

− +
− +

x
x

x

2 0 0
1 1 0
1 0 1

 = (x - 2)(x + 1)2

Hence the eigenvalues are λ1 = 2 and λ2 = -1, with λ2 repeated twice (we say 
that λ2 has multiplicity two). However, A is diagonalizable. For λ1 = 2, the 

system of equations (λ1I - A)x = 0 has general solution x = t   S  1 
 

 1   
1

  T  as the reader 

can verify, so a basic λ1-eigenvector is x1 =   S  1 
 

 1   
1

  T . 
Turning to the repeated eigenvalue λ2 = -1, we must solve (λ2I - A)x = 0. 

By gaussian elimination, the general solution is x = s   S  -1
 

 
   1   

  0
   T  + t   S  -1

 
 

   0   
  1

   T  where s and t 

are arbitrary. Hence the gaussian algorithm produces two basic λ2-eigenvectors 

x2 =   S  -1
 

 
   1   

  0
   T  and y2 =   S  -1

 
 

   0   
  1

   T . If we take P = [x1 x2 y2] = 
−1 −1

1
1

1 0
01 1

 we find that P 

is invertible. Hence P-1AP = diag(2, -1, -1) by Theorem 4.

Example 9 typifies every diagonalizable matrix. To describe the general case, we 
need some terminology. 

An eigenvalue λ of a square matrix A is said to have multiplicity m if it occurs m times 
as a root of the characteristic polynomial cA(x).

Thus, for example, the eigenvalue λ2 = -1 in Example 9 has multiplicity 2. In 
that example the gaussian algorithm yields two basic λ2-eigenvectors, the same 
number as the multiplicity. This works in general.

Theorem 5

A square matrix A is diagonalizable if and only if every eigenvalue λ of multiplicity 
m yields exactly m basic eigenvectors; that is, if and only if the general solution of the 
system (λI - A)x = 0 has exactly m parameters.

One case of Theorem 5 deserves mention.

Theorem 6

An n × n matrix with n distinct eigenvalues is diagonalizable.

Definition 3.7
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The proofs of Theorems 5 and 6 require more advanced techniques and are given in 
Chapter 5. The following procedure summarizes the method.

Diagonalization Algorithm

To diagonalize an n × n matrix A:
Step 1. Find the distinct eigenvalues λ of A.
Step 2. Compute the basic eigenvectors corresponding to each of these eigenvalues λ as 

basic solutions of the homogeneous system (λI - A)x = 0.

Step 3. The matrix A is diagonalizable if and only if there are n basic eigenvectors 
in all.

Step 4. If A is diagonalizable, the n × n matrix P with these basic eigenvectors as its 
columns is a diagonalizing matrix for A, that is, P is invertible and P-1AP is 
diagonal.

The diagonalization algorithm is valid even if the eigenvalues are nonreal complex 
numbers. In this case the eigenvectors will also have complex entries, but we will 
not pursue this here.

EXAMPLE 10

Show that A =   S  1 1    
0 1

  T  is not diagonalizable.

Solution 1 ► The characteristic polynomial is cA(x) = (x - 1)2, so A has only one 
eigenvalue λ1 = 1 of multiplicity 2. But the system of equations (λ1I - A)x = 0 

has general solution t   S   1     
0

   T  , so there is only one parameter, and so only one basic 

eigenvector   S   1     
2

   T . Hence A is not diagonalizable.

Solution 2 ► We have cA(x) = (x - 1)2 so the only eigenvalue of A is λ = 1. 

Hence, if A were diagonalizable, Theorem 4 would give P-1AP =   S  1 0    
0 1

  T  = I for 

some invertible matrix P. But then A = PIP-1 = I, which is not the case. 
So A cannot be diagonalizable.

Diagonalizable matrices share many properties of their eigenvalues. The 
following example illustrates why.

EXAMPLE 11

If λ3 = 5λ for every eigenvalue of the diagonalizable matrix A, show that 
A3 = 5A.
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Solution ► Let P-1AP = D = diag(λ1, …, λn). Because  λ  i  
3  = 5λi for each i, we 

obtain

D3 = diag( λ  1  
3 , …,  λ  n  

3 ) = diag(5λ1, …, 5λn) = 5D

Hence A3 = (PDP-1)3 = PD3P-1 = P(5D)P-1 = 5(PDP-1) = 5A using 
Theorem 1. This is what we wanted.

If p(x) is any polynomial and p(λ) = 0 for every eigenvalue of the diagonalizable 
matrix A, an argument similar to that in Example 11 shows that p(A) = 0. 
Thus Example 11 deals with the case p(x) = x3 - 5x. In general, p(A) is 
called the evaluation of the polynomial p(x) at the matrix A. For example, if 
p(x) = 2x3 - 3x + 5, then p(A) = 2A3 - 3A + 5I—note the use of the identity 
matrix.

In particular, if cA(x) denotes the characteristic polynomial of A, we certainly 
have cA(λ) = 0 for each eigenvalue λ of A (Theorem 2). Hence cA(A) = 0 for every 
diagonalizable matrix A. This is, in fact, true for any square matrix, diagonalizable 
or not, and the general result is called the Cayley-Hamilton theorem. It is proved 
in Section 8.6 and again in Section 9.4.

Linear Dynamical Systems
We began Section 3.3 with an example from ecology which models the evolution of 
the population of a species of birds as time goes on. As promised, we now complete 
the example—Example 12 below.

The bird population was described by computing the female population profile 

vk =   S  ak
   

jk
  T  of the species, where ak and jk represent the number of adult and juvenile 

females present k years after the initial values a0 and j0 were observed. The model 
assumes that these numbers are related by the following equations:

 ak+1 =   1 _ 2  ak +   1 _ 4   jk
 jk+1 = 2ak

If we write A =   S    
1 _ 2      1 _ 4      
2 0

  T  , the columns vk satisfy vk+1 = Avk for each k = 0, 1, 2, ….

Hence vk = Akv0 for each k = 1, 2, …. We can now use our diagonalization 
techniques to determine the population profile vk for all values of k in terms of the 
initial values.

EXAMPLE 12

Assuming that the initial values were a0 = 100 adult females and j0 = 40 
juvenile females, compute ak and jk for k = 1, 2, ….
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Solution ► The characteristic polynomial of the matrix A =   S    
1 _ 2      1 _ 4      
2 0

  T  is 
cA(x) = x2 -   1 _ 2  x -   1 _ 2   = (x - 1)(x +   1 _ 2  ), so the eigenvalues are λ1 = 1 and 
λ2 = -  1 _ 2   and gaussian elimination gives corresponding basic eigenvectors 

  S     
1 _ 2       
1

   T  and   S   -  1 _ 4         
1

   T . For convenience, we can use multiples x1 =   S   1     
2

   T  and x2 =   S  -1   
4

  T  
respectively. Hence a diagonalizing matrix is P =   S  1 -1    

2   4
   T  and we obtain

P-1AP = D where D =   S  1   0    
0 -  1 _ 2  

   T .
This gives A = PDP-1 so, for each k ≥ 0, we can compute Ak explicitly:

 Ak = PDkP-1 =   S   1 -1           
2   4

   T    S   1   0                 
0  (-  1 _ 2  )

k   T     1 _ 
6
     S     4 1           

-2 4
   T 

  =   1 _ 6   
+ −4 2 1( 22

1
2

1
2

1
2

1

8 8 2 4

) ( )

( ) ( )

k k

k k

− −
− − + −

Hence we obtain

  S   ak
      

jk
   T  = vk = Akv0  =   1 _ 6   

+ − − −
− − + −

k k

k k

1
2

1
2

1
2

1
2

4 2 1

8 8 2 4

( ) ( )

( ) ( )
100
40

=   1 _ 6   
+ −
− −

440 160

880 640

1
2
1
2

( )

( )

k

k .

Equating top and bottom entries, we obtain exact formulas for ak and jk:

ak =   220 ___ 3   +   80 __ 3     Q-  1 _ 2   R  
k  and jk =   440 ___ 3   +   320 ___ 3     Q-  1 _ 2   R  

k  for k = 1, 2, ….

In practice, the exact values of ak and jk are not usually required. What is 
needed is a measure of how these numbers behave for large values of k. This is 
easy to obtain here. Since   Q-  1 _ 2   R  

k  is nearly zero for large k, we have the following 
approximate values

 ak ≈   220 ___ 3   and jk ≈   440 ___ 3   if k is large. 

Hence, in the long term, the female population stabilizes with approximately 
twice as many juveniles as adults.

If A is an n × n matrix, a sequence v0, v1, v2, … of columns in �n is called a linear 
dynamical system if v0 is specified and v1, v2, … are given by the matrix recurrence 
vk+1 = Avk for each k ≥ 0.

As before, we obtain

 vk = Akv0 for each k = 1, 2, … (∗)

Hence the columns vk are determined by the powers Ak of the matrix A and, as we 
have seen, these powers can be efficiently computed if A is diagonalizable. In fact (∗) 
can be used to give a nice “formula” for the columns vk in this case.

Assume that A is diagonalizable with eigenvalues λ1, λ2, …, λn and corresponding 
basic eigenvectors x1, x2, …, xn. If P = [x1 x2 � xn] is a diagonalizing matrix with 
the xi as columns, then P is invertible and

Definition 3.8
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P-1AP = D = diag(λ1, λ2, …, λn)

by Theorem 4. Hence A = PDP-1 so (∗) and Theorem 1 give

vk = Akv0 = (PDP-1)kv0 = (PDkP-1)v0 = PDk(P-1v0)

for each k = 1, 2, …. For convenience, we denote the column P-1v0 arising here 
as follows:

b = P-1v0 =   S  
b1

 
 

 b2   


 
 

 

bn

  T 
Then matrix multiplication gives 

vk  = PDk(P-1v0)

= [x1 x2 � xn] 

k

k

n
k

1

2

0 0

0

0

λ

λ

λ

0

0

   S  
b1

 
 

 b2   


 
 

 

bn

  T 

= [x1 x2 � xn] 

b

b

b

k

k

n n
k

1 1

2 2

λ

λ

λ

= b1 λ  1  
k
  x1 + b2 λ  2  

k
  x2 + � + bn λ  n  

k
  xn (∗∗)

for each k ≥ 0. This is a useful exact formula for the columns vk. Note that, in 
particular, v0 = b1x1 + b2x2 + � + bnxn.

However, such an exact formula for vk is often not required in practice; all that is 
needed is to estimate vk for large values of k (as was done in Example 12). This can 
be easily done if A has a largest eigenvalue. An eigenvalue λ of a matrix A is called a 
dominant eigenvalue of A if it has multiplicity 1 and

|λ| > |μ| for all eigenvalues μ ≠ λ

where |λ| denotes the absolute value of the number λ. For example, λ1 = 1 is 
dominant in Example 12.

Returning to the above discussion, suppose that A has a dominant eigenvalue. By 
choosing the order in which the columns xi are placed in P, we may assume that λ1 
is dominant among the eigenvalues λ1, λ2, …, λn of A (see the discussion following 
Example 8). Now recall the exact expression for Vk in (∗∗) above:

vk = b1 λ  1  
k
  x1 + b2 λ  2  

k
  x2 + � + bn λ  n  

k
  xn

Take  λ  1  
k
   out as a common factor in this equation to get

vk =  λ  1  
k
     Sb1x1 + b2  Q   λ2 ___ 

λ1
   R  k x2 + � + bn  Q   λn ___ 

λ1
   R  k xn T 

for each k ≥ 0. Since λ1 is dominant, we have |λi| < |λ1| for each i ≥ 2, so each 
of the numbers (λi/λ1)

k become small in absolute value as k increases. Hence vk 
is approximately equal to the first term  λ  1  

k
  b1x1, and we write this as vk ≈  λ  1  

k
  b1x1. 

These observations are summarized in the following theorem (together with the 
above exact formula for vk).
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Theorem 7

Consider the dynamical system v0, v1, v2, … with matrix recurrence 

vk+1 = Avk for k ≥ 0

where A and v0 are given. Assume that A is a diagonalizable n × n matrix with 
eigenvalues λ1, λ2, …, λn and corresponding basic eigenvectors x1, x2, …, xn, and 
let P = [x1 x2 � xn] be the diagonalizing matrix. Then an exact formula for vk is

vk = b1 λ  1  
k
  x1 + b2 λ  2  

k
  x2 + � + bn λ  n  

k
  xn for each k ≥ 0

where the coefficients bi come from

b = P-1v0 =   S  
b1

 
 

 b2   


 
 

 

bn

  T .
Moreover, if A has dominant eigenvalue λ1,12 then vk is approximated by 

vk = b1 λ  1  
k
  x1 for sufficiently large k.

12

EXAMPLE 13

Returning to Example 12, we see that λ1 = 1 is the dominant eigenvalue, with 

eigenvector x1 =   S   1     
2

   T . Here P =   S   1 -1          
2   4

   T  and v0 =   S  100    
40

  T  , so P-1v0 =   1 _ 3     S   220    
-80

  T . 
Hence b1 =   220 ___ 3   in the notation of Theorem 7, so

  S   ak
      

jk
   T  = vk ≈ b1 λ  1  

k
  x1 =   220 ___ 3  1

k  S   1     
2

   T 
where k is large. Hence ak ≈   220 ___ 3   and jk ≈   440 ___ 3  , as in Example 12.

This next example uses Theorem 7 to solve a “linear recurrence.” See also 
Section 3.4.

EXAMPLE 14

Suppose a sequence x0, x1, x2, … is determined by insisting that

x0 = 1, x1 = -1, and xk+2 = 2xk - xk+1 for every k ≥ 0. 

Find a formula for xk in terms of k.

Solution ► Using the linear recurrence xk+2 = 2xk - xk+1 repeatedly gives 

x2 = 2x0 - x1 = 3, x3 = 2x1 - x2 = 5, x4 = 11, x5 = 21, …

so the xi are determined but no pattern is apparent. The idea is to find 

vk =   S   xk
         

xk+1
   T  for each k instead, and then retrieve xk as the top component 

of vk. The reason this works is that the linear recurrence guarantees that these 
vk are a dynamical system:

12 Similar results can be found in other situations. If for example, eigenvalues λ1 and λ2 (possibly equal) satisfy |λ1| = |λ2| > |λi| for 
all i > 2, then we obtain vk ≈ b1 λ  1  

k
  x1 + b2 λ  2  

k
  x2 for large k.
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vk+1 =   S   xk+1         
xk+2

   T  =   S   xk+1                  
2xk − xk+1

   T  = Avk where A =   S   0   1           
2 −1

   T .
The eigenvalues of A are λ1 = -2 and λ2 = 1 with eigenvectors 

x1 =   S   1   
−2

  T  and x2 =   S  1   
1

  T  , so the diagonalizing matrix is P =   S     1 1           
-2 1

   T . 
Moreover, b =  P  0  

−1 v0 =   1 _ 3     S  2   
1

  T  so the exact formula for vk is 

  S   xk
         

xk+1
   T  = vk = b1 λ  1  

k
  x1 + b2 λ  2  

k
  x2 =   2 _ 3  (-2)k   S   1   

−2
  T  +   1 _ 3  1

k  S  1   
1

  T .
Equating top entries gives the desired formula for xk: 

 x k  =   1 _ 3    S2(−2 ) k  + 1 T  for all k = 0, 1, 2, ….

The reader should check this for the first few values of k.

Graphical Description of Dynamical Systems
If a dynamical system vk+1 = Avk is given, the sequence v0, v1, v2, … is called the 
trajectory of the system starting at v0. It is instructive to obtain a graphical plot of 

the system by writing vk =   S   xk
      yk
   T  and plotting the successive values as points in the 

plane, identifying vk with the point (xk, yk) in the plane. We give several examples 
which illustrate properties of dynamical systems. For ease of calculation we assume 
that the matrix A is simple, usually diagonal.

EXAMPLE 15

Let A =   S    
1 _ 2   0

    
0   1 _ 3  

  T . Then the eigenvalues are   1 _ 2   and   1 _ 3  , with corresponding 

eigenvectors x1 =   S   1     
0

   T  and x2 =   S   0     
1

   T . The exact formula is 

vk = b1(  1 _ 2  )
k   S  1   

0
  T  + b2(  1 _ 3  )

k   S  0   
1

  T 
for k = 0, 1, 2, … by Theorem 7, where the coefficients b1 and b2 depend 
on the initial point v0. Several trajectories are plotted in the diagram and, 
for each choice of v0, the trajectories converge toward the origin because 
both eigenvalues are less than 1 in absolute value. For this reason, the 
origin is called an attractor for the system.

EXAMPLE 16

Let A =   S    
3 _ 2   0

    
0   4 _ 3  

  T . Here the eigenvalues are   3 _ 2   and   4 _ 3  , with corresponding 

eigenvectors x1 =   S   1     
0

   T  and x2 =   S   0     
1

   T  as before. The exact formula is

vk = b1(  3 _ 2  )
k   S  1   

0
  T  + b2(  4 _ 3  )

k   S  0   
1

  T 

O x

y
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for k = 0, 1, 2, …. Since both eigenvalues are greater than 1 in absolute value, 
the trajectories diverge away from the origin for every choice of initial point V0. 
For this reason, the origin is called a repellor for the system.13

13

EXAMPLE 17

Let A =   S   1 -  1 _ 2       
-  1 _ 2     1

  T . Now the eigenvalues are   3 _ 2   and   1 _ 2  , with corresponding 

eigenvectors x1 =   S  -1   
1

  T  and x2 =   S   1     
1

   T . The exact formula is

vk = b1(  3 _ 2  )
k   S  -1   

1
  T  + b2(  1 _ 2  )

k   S  1   
1

  T 
for k = 0, 1, 2, …. In this case   3 _ 2   is the dominate eigenvalue so, if b1 ≠ 0, we 

have vk ≈ b1(  3 _ 2  )
k   S  -1   

1
  T  for large k and vk is approaching the line y = -x. 

However, if b1 = 0, then vk = b2(  1 _ 2  )
k   S  1   

1
  T  and so approaches the origin along the 

line y = x. In general the trajectories appear as in the diagram, and the origin 
is called a saddle point for the dynamical system in this case.

EXAMPLE 18

Let A =   S   0   1 _ 2      
-  1 _ 2   0

  T . Now the characteristic polynomial is cA(x) = x2 +   1 _ 4  , so the 

eigenvalues are the complex numbers   i _ 2   and -  i _ 2   where i2 = -1. Hence A is not 
diagonalizable as a real matrix. However, the trajectories are not difficult to 

describe. If we start with v0 =   S   1     
1

   T  ,
 
then the trajectory begins as

v1 =   S     1 _ 2     
-  1 _ 2  

  T  , v2 =   S  -  1 _ 4     
-  1 _ 4  

  T  , v3 =   S  -  1 _ 8     
  1 _ 8  
  T  , v4 =   S    

1 __ 16     
  1 __ 16  

  T  , v5 =   S     1 __ 32      
-  1 __ 32  

  T  , v6 =   S  -  1 __ 64      
-  1 __ 64  

  T  , …
Five of these points are plotted in the diagram. Here each trajectory spirals in 
toward the origin, so the origin is an attractor. Note that the two (complex) 
eigenvalues have absolute value less than 1 here. If they had absolute value 
greater than 1, the trajectories would spiral out from the origin.

Google PageRank
Dominant eigenvalues are useful to the Google search engine for finding 
information on the Web. If an information query comes in from a client, Google 
has a sophisticated method of establishing the “relevance” of each site to that 
query. When the relevant sites have been determined, they are placed in order of 
importance using a ranking of all sites called the PageRank. The relevant sites with 
the highest PageRank are the ones presented to the client. It is the construction of 
the PageRank that is our interest here. 

13 In fact, P = I here, so v0 =   S   b1      
b2

   T 

O x

y

O x

y

x

y

1

1

v0

v1

v2

v3

0
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The Web contains many links from one site to another. Google interprets a link 
from site j to site i as a “vote” for the importance of site i. Hence if site i has more 
links to it than does site j, then i is regarded as more “important” and assigned a 
higher PageRank. One way to look at this is to view the sites as vertices in a huge 
directed graph (see Section 2.2). Then if site j links to site i there is an edge from j 
to i, and hence the (i, j)-entry is a 1 in the associated adjacency matrix (called the 
connectivity matrix in this context). Thus a large number of 1s in row i of this matrix 
is a measure of the PageRank of site i.14

However this does not take into account the PageRank of the sites that link to 
i. Intuitively, the higher the rank of these sites, the higher the rank of site i. One 
approach is to compute a dominant eigenvector x for the connectivity matrix. 
In most cases the entries of x can be chosen to be positive with sum 1. Each site 
corresponds to an entry of x, so the sum of the entries of sites linking to a given site 
i is a measure of the rank of site i. In fact, Google chooses the PageRank of a site so 
that it is proportional to this sum.15

E X E R C I S E S  3 . 3
1415

 1. In each case find the characteristic polynomial, 
eigenvalues, eigenvectors, and (if possible) an 
invertible matrix P such that P-1AP is diagonal.

 (a) A = 1 2
3 2

 �(b) A = −
−−

2
1

4
1

 (c) A = 
−

−

7 4
0 0

0

0

5
5

2
 �(d) A = 

−

−

1 3
2 6
1

1
0
1 5

 (e) A = 
−

−
−

1 3
2 66

2

21 1
 �(f ) A = 

0 1 0
3 0 1
2 0 0

 (g) A = − −−
3 11
4 5
2 52

2  �(h) A = 
−

2 1
1
1

1
0 0
1 2

 (i) A = 
0λ 00

0
00

0
λ

μ
, λ ≠ μ

 2. Consider a linear dynamical system vk+1 = Avk 
for k ≥ 0. In each case approximate vk using 
Theorem 7.

 (a) A = 
−

2 1
4 1

, v0 = 1
2

 �(b) A = −
−

3 2
2 2

, v0 = 
−

3
1

 
 (c) A = 

1 00
1 32
1 14

, v0 = 
1
1
1

 �(d) A = −
−

1 23
21 1

44 11−
, v0 = 

2
0
1

 3. Show that A has λ = 0 as an eigenvalue if and 
only if A is not invertible.

 �4. Let A denote an n × n matrix and put 
A1 = A - αI, α in �. Show that λ is an 
eigenvalue of A if and only if λ - α is an 
eigenvalue of A1. (Hence, the eigenvalues of 
A1 are just those of A “shifted” by α.) How do 
the eigenvectors compare?

 5. Show that the eigenvalues of   S  cos θ -sin θ
        

sin θ   cos θ
  T  

  are eiθ and e-iθ. (See Appendix A.)

 6. Find the characteristic polynomial of the n × n 
identity matrix I. Show that I has exactly one 
eigenvalue and find the eigenvectors.

 7. Given A =   S  a b
   

c d
  T  , show that:

 (a) cA(x) = x2 - tr Ax + det A, where 
tr A = a + d is called the trace of A.

14 For more on PageRank, visit http://www.google.com/technology/.

15 See the articles “Searching the web with eigenvectors” by Herbert S. Wilf, UMAP Journal 23(2), 2002, pages 101–103, and “The 
worlds largest matrix computation: Google’s PageRank is an eigenvector of a matrix of order 2.7 billion” by Cleve Moler, Matlab 
News and Notes, October 2002, pages 12–13.
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 (b) The eigenvalues are 
  1 _ 2    S (a + d) ±  √ 

____________

  (a - d)2 + 4bc   T 

 8. In each case, find P-1AP and then compute An.

 (a) A =   S  6 -5    
2 -1

  T  , P =   S  1 5    
1 2

  T 

 �(b) A =   S  -7 -12     
6   10

  T  , P =   S  -3   4     
2 -3

  T 
  [Hint: (PDP-1)n = PDnP-1 for each n = 1, 2, ….]

 �9. (a) If A =   S  1 3    
0 2

  T  and B =   S  2 0    
0 1

  T  , verify that A  

and B are diagonalizable, but AB is not.

 �(b) If D =   S  1   0    
0 -1

  T  , find a diagonalizable matrix A 

such that D + A is not diagonalizable.

 10. If A is an n × n matrix, show that A is 
diagonalizable if and only if AT is diagonalizable.

 11. If A is diagonalizable, show that each of the 
following is also diagonalizable. 

 (a) An, n ≥ 1 �(b) kA, k any scalar.

 (c) p(A), p(x) any polynomial (Theorem 1)

 �(d) U -1AU for any invertible matrix U.

 (e) kI + A for any scalar k.

 �12. Give an example of two diagonalizable matrices 
A and B whose sum A + B is not diagonalizable.

 13. If A is diagonalizable and 1 and -1 are the only 
eigenvalues, show that A-1 = A.

 �14. If A is diagonalizable and 0 and 1 are the only 
eigenvalues, show that A2 = A.

 15. If A is diagonalizable and λ ≥ 0 for each 
eigenvalue of A, show that A = B2 for some 
matrix B.

 16. If P-1AP and P-1BP are both diagonal, show that 
AB = BA. [Hint: Diagonal matrices commute.]

 17. A square matrix A is called nilpotent if An = 0 
for some n ≥ 1. Find all nilpotent diagonalizable 
matrices. [Hint: Theorem 1.]

 18. Let A be any n × n matrix and r ≠ 0 a real number.

 (a) Show that the eigenvalues of rA are precisely 
the numbers rλ, where λ is an eigenvalue 
of A.

 �(b) Show that crA(x) = rncA Q   x _ r   R .

 19. (a) If all rows of A have the same sum s, show 
that s is an eigenvalue.

 (b) If all columns of A have the same sum s, 
show that s is an eigenvalue.

 20. Let A be an invertible n × n matrix.

 (a) Show that the eigenvalues of A are nonzero.

 �(b) Show that the eigenvalues of A-1 are 
precisely the numbers 1/λ, where λ is an 
eigenvalue of A.

 (c) Show that  c A-1 (x) =   
(-x)n

 _____ 
det A

   cA Q   1 _ x   R .

 21. Suppose λ is an eigenvalue of a square matrix A 
with eigenvector x ≠ 0.

 (a) Show that λ2 is an eigenvalue of A2 (with the 
same x).

 �(b) Show that λ3 - 2λ + 3 is an eigenvalue of 
A3 - 2A + 3I.

 (c) Show that p(λ) is an eigenvalue of p(A) for 
any nonzero polynomial p(x).

 22. If A is an n × n matrix, show that 
 c A2 (x2) = (-1)ncA(x)cA(-x).

 23. An n × n matrix A is called nilpotent if Am = 0 
for some m ≥ 1.

 (a) Show that every triangular matrix with zeros 
on the main diagonal is nilpotent.

 �(b) If A is nilpotent, show that λ = 0 is the only 
eigenvalue (even complex) of A.

 (c) Deduce that cA(x) = xn, if A is n × n and 
nilpotent.

 24. Let A be diagonalizable with real eigenvalues and 
assume that Am = I for some m ≥ 1. 

 �(a) Show that A2 = I. 

 (b) If m is odd, show that A = I. 

  [Hint: Theorem 3 Appendix A.]

 25. Let A2 = I, and assume that A ≠ I and A ≠ -I.

 (a) Show that the only eigenvalues of A are 
λ = 1 and λ = -1. 

 (b) Show that A is diagonalizable. 
[Hint: Verify that A(A + I) = A + I and 
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A(A - I) = -(A - I), and then look at 
nonzero columns of A + I and of A - I.] 

 (c) If Qm : �2 → �2 is reflection in the line 
y = mx where m ≠ 0, use (b) to show that the 
matrix of Qm is diagonalizable for each m. 

 (d) Now prove (c) geometrically using 
Theorem 3.

 26. Let A = 
−
−
−

2 3 3
1 0 1
1 1 2

 and B = 
0 1
3 0 1
2 0 0

0
. Show that 

  cA(x) = cB(x) = (x + 1)2 (x - 2), but A is 
diagonalizable and B is not. 

 �27. (a) Show that the only diagonalizable matrix A 
that has only one eigenvalue λ is the scalar 
matrix A = λI.

 (b) Is   S  3 -2    
2 -1

  T  diagonalizable?

 28. Characterize the diagonalizable n × n matrices 
A such that A2 - 3A + 2I = 0 in terms of their 
eigenvalues. [Hint: Theorem 1.]

 29. Let A =   S   B 0         
0 C

   T  where B and C are square matrices.

 (a) If B and C are diagonalizable via Q and R 
(that is, Q-1BQ and R-1CR are diagonal), 

show that A is diagonalizable via   S   Q 0
         

0 R
   T .

 (b) Use (a) to diagonalize A if B =   S  5 3    
3 5

  T  and 

C =   S   7 -1     
-1   7

  T .

 30. Let A =   S   B 0         
0 C

   T  , where B and C are square matrices.

 (a) Show that cA(x) = cB(x)cC(x).

 (b) If x and y are eigenvectors of B and 

C, respectively, show that   S   x   
0

  T  and   S  0   y  T  
are eigenvectors of A, and show how 
every eigenvector of A arises from such 
eigenvectors.

 31. Referring to the model in Example 1, determine 
if the population stabilizes, becomes extinct, or 
becomes large in each case. Denote the adult 
and juvenile survival rates as A and J, and the 
reproduction rate as R.

R A J
(a) 2   1 _ 2    1 _ 2  

�(b) 3   1 _ 4    1 _ 4  
(c) 2   1 _ 4    1 _ 3  

�(d) 3   3 _ 5    1 _ 5  

 32. In the model of Example 1, does the final 
outcome depend on the initial population of 
adult and juvenile females? Support your answer.

 33. In Example 1, keep the same reproduction 
rate of 2 and the same adult survival rate of   1 _ 2  , 
but suppose that the juvenile survival rate is 
ρ. Determine which values of ρ cause the 
population to become extinct or to become large.

 �34. In Example 1, let the juvenile survival rate be   2 _ 5  , 
and let the reproduction rate be 2. What values 
of the adult survival rate α will ensure that the 
population stabilizes?

An Application to Linear Recurrences
It often happens that a problem can be solved by finding a sequence of numbers x0, 
x1, x2, … where the first few are known, and subsequent numbers are given in terms 
of earlier ones. Here is a combinatorial example where the object is to count the 
number of ways to do something.

EXAMPLE 1

An urban planner wants to determine the number xk of ways that a row of k 
parking spaces can be filled with cars and trucks if trucks take up two spaces 
each. Find the first few values of xk.

S E C T I O N  3 . 4
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Solution ► Clearly, x0 = 1 and x1 = 1, while x2 = 2 since there can be two cars 
or one truck. We have x3 = 3 (the 3 configurations are ccc, cT, and Tc) and 
x4 = 5 (cccc, ccT, cTc, Tcc, and TT ). The key to this method is to find a way to 
express each subsequent xk in terms of earlier values. In this case we claim that

 xk+2 = xk + xk+1 for every k ≥ 0 (∗)

Indeed, every way to fill k + 2 spaces falls into one of two categories: Either a 
car is parked in the first space (and the remaining k + 1 spaces are filled in xk+1 
ways), or a truck is parked in the first two spaces (with the other k spaces filled 
in xk ways). Hence, there are xk+1 + xk ways to fill the k + 2 spaces. This is (∗).

The recurrence (∗) determines xk for every k ≥ 2 since x0 and x1 are given. 
In fact, the first few values are

 x0 = 1
 x1 = 1
 x2 = x0 + x1 = 2
 x3 = x1 + x2 = 3
 x4 = x2 + x3 = 5
 x5 = x3 + x4 = 8
  
  
    


Clearly, we can find xk for any value of k, but one wishes for a “formula” 
for xk as a function of k. It turns out that such a formula can be found using 
diagonalization. We will return to this example later.

A sequence x0, x1, x2, … of numbers is said to be given recursively if each 
number in the sequence is completely determined by those that come before it. 
Such sequences arise frequently in mathematics and computer science, and also 
occur in other parts of science. The formula xk+2 = xk+1 + xk in Example 1 is an 
example of a linear recurrence relation of length 2 because xk+2 is the sum of 
the two preceding terms xk+1 and xk; in general, the length is m if xk+m is a sum 
of multiples of xk, xk+1, …, xk+m-1.

The simplest linear recursive sequences are of length 1, that is xk+1 is a 
fixed multiple of xk for each k, say xk+1 = axk. If x0 is specified, then x1 = ax0, 
x2 = ax1 = a2x0, and x3 = ax2 = a3x0, …. Continuing, we obtain xk = akx0 for each 
k ≥ 0, which is an explicit formula for xk as a function of k (when x0 is given).

Such formulas are not always so easy to find for all choices of the initial values. 
Here is an example where diagonalization helps.

EXAMPLE 2

Suppose the numbers x0, x1, x2, … are given by the linear recurrence relation

xk+2 = xk+1 + 6xk for k ≥ 0 

where x0 and x1 are specified. Find a formula for xk when x0 = 1 and x1 = 3, 
and also when x0 = 1 and x1 = 1.

Solution ► If x0 = 1 and x1 = 3, then x2 = x1 + 6x0 = 9, x3 = x2 + 6x1 = 27, 
x4 = x3 + 6x2 = 81, and it is apparent that
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xk = 3k for k = 0, 1, 2, 3, and 4.

This formula holds for all k because it is true for k = 0 and k = 1, and it 
satisfies the recurrence xk+2 = xk+1 + 6xk for each k as is readily checked.

However, if we begin instead with x0 = 1 and x1 = 1, the sequence 
continues x2 = 7, x3 = 13, x4 = 55, x5 = 133, …  . In this case, the sequence is 
uniquely determined but no formula is apparent. Nonetheless, a simple device 
transforms the recurrence into a matrix recurrence to which our diagonalization 
techniques apply.

The idea is to compute the sequence v0, v1, v2, … of columns instead of the 
numbers x0, x1, x2, …, where

vk =   S   xk
         

xk+1
   T  for each k ≥ 0

Then v0 =   S   x0      
x1

   T  =   S   1     
1

   T  is specified, and the numerical recurrence 

xk+2 = xk+1 + 6xk transforms into a matrix recurrence as follows:

vk+1 =   S   xk+1         
xk+2

   T  =   S   xk+1                  
6xk + xk+1

   T  =   S   0 1        
6 1

   T    S   xk
         

xk+1
   T  = Avk

where A =   S   0 1        
6 1

   T . Thus these columns vk are a linear dynamical system, so 

Theorem 7 Section 3.3 applies provided the matrix A is diagonalizable.
We have cA(x) = (x - 3)(x + 2) so the eigenvalues are λ1 = 3 and λ2 = -2 with 

corresponding eigenvectors x1 =   S  1   
3

  T  and x2 =   S  -1   
2

  T . as the reader can check. 

Since P = [x1 x2] =   S   1 -1          
3  2

   T 
 
is invertible, it is a diagonalizing matrix for A. The 

coefficients bi in Theorem 7 Section 3.3 are given by   S  b1   
b2

  T  = P-1v0 =   S     
3 _ 5        

  -2 __ 5  
   T  , 

so that the theorem gives

  S   xk
         

xk+1
   T  = vk = b1 λ  1  

k
  x1 + b2 λ  2  

k
  x2 =   3 _ 5   3

k   S  1   
3

  T  +   -2 __ 5   (-2)k   S  -1   
2

  T 
Equating top entries yields

xk =   1 _ 5     S3
k+1 - (-2)k+1 T  for k ≥ 0

This gives x0 = 1 = x1, and it satisfies the recurrence xk+2 = xk+1 + 6xk as is 
 easily verified. Hence, it is the desired formula for the xk.

Returning to Example 1, these methods give an exact formula and a good 
approximation for the numbers xk in that problem.

EXAMPLE 3

In Example 1, an urban planner wants to determine xk, the number of ways that 
a row of k parking spaces can be filled with cars and trucks if trucks take up two 
spaces each. Find a formula for xk and estimate it for large k.
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Solution ► We saw in Example 1 that the numbers xk satisfy a linear recurrence

xk+2 = xk + xk+1 for every k ≥ 0

If we write vk =   S   xk
         

xk+1
   T  as before, this recurrence becomes a matrix recurrence 

for the vk:

vk+1 =   S   xk+1         
xk+2

   T  =   S   xk+1                
xk + xk+1

   T  =   S   0 1        
1 1

   T    S   xk
         

xk+1
   T  = Avk

for all k ≥ 0 where A =   S   0 1        
1 1

   T . Moreover, A is diagonalizable here. The 

characteristic polynomial is cA(x) = x2 - x - 1 with roots   1 _ 2  [1 ±  √ 

__

 5   ] by the 
quadratic formula, so A has eigenvalues

λ1 =   1 _ 2  [1 +  √ 

__

 5   ] and λ1 =   1 _ 2  [1 -  √ 

__

 5   ]

Corresponding eigenvectors are x1 =   S   1   
λ1

  T  and x2 =   S   1   
λ2

  T  respectively as the 

reader can verify. As the matrix P = [x1 x2] =   S   1      
λ1

     1      
λ2

   T  is invertible, it is a 

diagonalizing matrix for A. We compute the coefficients b1 and b2 (in 
Theorem 7 Section 3.3) as follows:

  S  b1   
b2

  T  = P-1v0 =   1 ____ 
-  √ 

__

 5  
    S     λ2 -1

              
-λ1   1

   T    S   1     
1

   T  =   1 ___ 
  √ 

__

 5  
     S   λ1    

-λ2
  T 

where we used the fact that λ1 + λ2 = 1. Thus Theorem 7 Section 3.3 gives

  S   xk
         

xk+1
   T  = vk = b1 λ  1  

k
  x1 + b2 λ  2  

k
  x2 =   λ1 __ 

 √ 

__

 5  
    λ  1  

k
     S   1   
λ1

  T  -   λ2 __ 
 √ 

__

 5  
    λ  2  

k
     S   1   
λ2

  T 
Comparing top entries gives an exact formula for the numbers xk:

xk =   1 __ 
 √ 

__

 5  
     S  λ  1  

k+1  -  λ  2  
k+1  T  for k ≥ 0

Finally, observe that λ1 is dominant here (in fact, λ1 = 1.618 and λ2 = -0.618 
to three decimal places) so  λ  2  

k+1  is negligible compared with  λ  1  
k+1  if k is large. 

Thus,

xk ≈   1 __ 
 √ 

__

 5  
   λ  1  

k+1  for each k ≥ 0

This is a good approximation, even for as small a value as k = 12. Indeed, 
repeated use of the recurrence xk+2 = xk + xk+1 gives the exact value x12 = 233, 

while the approximation is x12 ≈   (1.618)13

 ______ 
 √ 

__

 5   
   = 232.94.

The sequence x0, x1, x2, … in Example 3 was first discussed in 1202 by Leonardo 
Pisano of Pisa, also known as Fibonacci,16 and is now called the Fibonacci 
sequence. It is completely determined by the conditions x0 = 1, x1 = 1 and the 
recurrence xk+2 = xk + xk+1 for each k ≥ 0. These numbers have been studied for 
centuries and have many interesting properties (there is even a journal, the Fibonacci 
Quarterly, devoted exclusively to them). For example, biologists have discovered 
that the arrangement of leaves around the stems of some plants follow a Fibonacci 
pattern. The formula xk =   1 __ 

 √ 

__

 5  
     S  λ  1  

k+1  -  λ  2  
k+1  T  in Example 3 is called the Binet 

16 The problem Fibonacci discussed was: “How many pairs of rabbits will be produced in a year, beginning with a single pair, if in every 
month each pair brings forth a new pair that becomes productive from the second month on? Assume no pairs die.” The number of 
pairs satisfies the Fibonacci recurrence.
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formula. It is remarkable in that the xk are integers but λ1 and λ2 are not. This 
phenomenon can occur even if the eigenvalues λi are nonreal complex numbers.

We conclude with an example showing that nonlinear recurrences can be very 
complicated.

EXAMPLE 4

Suppose a sequence x0, x1, x2, … satisfies the following recurrence: 

xk+1 = e  
  1 _ 2  xk    if xk is even

           
3xk + 1 if xk is odd

  

If x0 = 1, the sequence is 1, 4, 2, 1, 4, 2, 1, … and so continues to cycle 
indefinitely. The same thing happens if x0 = 7. Then the sequence is 

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, …

and it again cycles. However, it is not known whether every choice of x0 will 
lead eventually to 1. It is quite possible that, for some x0, the sequence will 
continue to produce different values indefinitely, or will repeat a value and 
cycle without reaching 1. No one knows for sure.

E X E R C I S E S  3 . 4

 1. Solve the following linear recurrences. 

 (a) xk+2 = 3xk + 2xk+1, where x0 = 1 and x1 = 1.

 �(b) xk+2 = 2xk - xk+1, where x0 = 1 and x1 = 2.

 (c) xk+2 = 2xk + xk+1, where x0 = 0 and x1 = 1.

 �(d) xk+2 = 6xk - xk+1, where x0 = 1 and x1 = 1.

 2. Solve the following linear recurrences.

 (a) xk+3 = 6xk+2 - 11xk+1 + 6xk, where x0 = 1, 
x1 = 0, and x2 = 1.

 �(b) xk+3 = -2xk+2 + xk+1 + 2xk, where x0 = 1, 
x1 = 0, and x2 = 1.

  [Hint: Use vk =   S   
xk

 
  

 xk+1    
xk+2

  T .]
 3. In Example 1 suppose busses are also allowed to 

park, and let xk denote the number of ways a row 
of k parking spaces can be filled with cars, trucks, 
and busses.

 (a) If trucks and busses take up 2 and 3 
spaces respectively, show that 
xk+3 = xk + xk+1 + xk+2 for each k, 
and use this recurrence to compute x10. 
[Hint: The eigenvalues are of little use.]

 �(b) If busses take up 4 spaces, find a recurrence 
for the xk and compute x10.

 4. A man must climb a flight of k steps. He always 
takes one or two steps at a time. Thus he can 
climb 3 steps in the following ways: 1, 1, 1; 1, 2; 
or 2, 1. Find sk, the number of ways he can climb 
the flight of k steps. [Hint: Fibonacci.]

 �5. How many “words” of k letters can be made 
from the letters {a, b} if there are no adjacent a’s?

 6. How many sequences of k flips of a coin are 
there with no HH?

 �7. Find xk, the number of ways to make a stack of 
k poker chips if only red, blue, and gold chips are 
used and no two gold chips are adjacent. [Hint: 
Show that xk+2 = 2xk+1 + 2xk by considering how 
many stacks have a red, blue, or gold chip on top.]

 8. A nuclear reactor contains α- and β-particles. 
In every second each α-particle splits into three 
β-particles, and each β-particle splits into an 
α-particle and two β-particles. If there is a single 
α-particle in the reactor at time t = 0, how 
many α-particles are there at t = 20 seconds? 
[Hint: Let xk and yk denote the number of α- and 
β-particles at time t = k seconds. Find xk+1 and 
yk+1 in terms of xk and yk.]
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 �9. The annual yield of wheat in a certain country 
has been found to equal the average of the 
yield in the previous two years. If the yields 
in 1990 and 1991 were 10 and 12 million tons 
respectively, find a formula for the yield k years 
after 1990. What is the long-term average yield?

 10. Find the general solution to the recurrence 
xk+1 = rxk + c where r and c are constants. 
[Hint: Consider the cases r = 1 and r ≠ 1 
separately. If r ≠ 1, you will need the identity

1 + r + r2 + � + rn-1 =   1 - rn

 ____ 1 - r   for n ≥ 1.]

 11. Consider the length 3 recurrence 
xk+3 = axk + bxk+1 + cxk+2.

 (a) If vk =   S   
xk

 
  

 xk+1    
xk+2

  T  and A =   S  0 1 0
 

  
 0 0 1    

a b c

   T  , show that 

  vk+1 = Avk.

 �(b) If λ is any eigenvalue of A, show that 

x =   S   1 
 

 λ   
λ2

  T  is a λ-eigenvector. 

  [Hint: Show directly that Ax = λx.]

 (c) Generalize (a) and (b) to a recurrence 
xk+4 = axk + bxk+1 + cxk+2 + dxk+3 of 
length 4.

 12. Consider the recurrence xk+2 = axk+1 + bxk + c 
where c may not be zero.

 (a) If a + b ≠ 1 show that p can be found 
such that, if we set yk = xk + p, then 
yk+2 = ayk+1 + byk. [Hence, the sequence 
xk can be found provided yk can be 
found by the methods of this section 
(or otherwise).]

 �(b) Use (a) to solve the recurrence 
xk+2 = xk+1 + 6xk + 5 where x0 = 1 
and x1 = 1.

 13. Consider the recurrence

   xk+2 = axk+1 + bxk + c(k) (∗)

  where c(k) is a function of k, and consider the 
related recurrence

   xk+2 = axk+1 + bxk (∗∗)

  Suppose that xk = pk is a particular solution of (∗).

 �(a) If qk is any solution of (∗∗), show that qk + pk 
is a solution of (∗).

 (b) Show that every solution of (∗) arises as in 
(a) as the sum of a solution of (∗∗) plus the 
particular solution pk of (∗).

An Application to Systems of Differential 
Equations 
A function f of a real variable is said to be differentiable if its derivative exists and, 
in this case, we let f ′ denote the derivative. If f and g are differentiable functions, 
a system 

 f ′ =  3f + 5g
 g′ = -f + 2g

is called a system of first order differential equations, or a differential system for short. 
Solving many practical problems often comes down to finding sets of functions 
that satisfy such a system (often involving more than two functions). In this section 
we show how diagonalization can help. Of course an acquaintance with calculus 
is required.

The Exponential Function
The simplest differential system is the following single equation:

 f ′= af where a is a constant. (∗)

It is easily verified that f (x) = eax is one solution; in fact, equation (∗) is simple 
enough for us to find all solutions. Suppose that f is any solution, so that 
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f ′(x) = af (x) for all x. Consider the new function g given by g(x) = f (x)e-ax. 
Then the product rule of differentiation gives

 g′(x) = f (x)[-ae-ax] + f ′(x)e-ax

= -af (x)e-ax + [af (x)]e-ax

= 0

for all x. Hence the function g(x) has zero derivative and so must be a constant, say 
g(x) = c. Thus c = g(x) = f (x)e-ax, that is

f (x) = ceax.

In other words, every solution f (x) of (∗) is just a scalar multiple of eax. Since every 
such scalar multiple is easily seen to be a solution of (∗), we have proved

Theorem 1

The set of solutions to f ′= af is {ceax | c any constant} = �eax.

Remarkably, this result together with diagonalization enables us to solve a wide 
variety of differential systems.

EXAMPLE 1

Assume that the number n(t) of bacteria in a culture at time t has the property 
that the rate of change of n is proportional to n itself. If there are n0 bacteria 
present when t = 0, find the number at time t.

Solution ► Let k denote the proportionality constant. The rate of change of 
n(t) is its time-derivative n′(t), so the given relationship is n′(t) = kn(t). Thus 
Theorem 1 shows that all solutions n are given by n(t) = cekt, where c is a 
constant. In this case, the constant c is determined by the requirement that 
there be n0 bacteria present when t = 0. Hence n0 = n(0) = cek0 = c, so

n(t) = n0e
kt

gives the number at time t. Of course the constant k depends on the strain 
of bacteria.

The condition that n(0) = n0 in Example 1 is called an initial condition or a 
boundary condition and serves to select one solution from the available solutions.

General Differential Systems
Solving a variety of problems, particularly in science and engineering, comes down 
to solving a system of linear differential equations. Diagonalization enters into this 
as follows. The general problem is to find differentiable functions f1, f2, …, fn that 
satisfy a system of equations of the form
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f ′1 =  a11 f1 + a12 f2 + � + a1n fn

f ′2 =  a21 f1 + a22 f2 + � + a2n fn


    
     
        


f ′n =  an1 f1 + an2 f2 + � + ann fn

where the aij are constants. This is called a linear system of differential equations 
or simply a differential system. The first step is to put it in matrix form. Write

f ′ =   S   
f1

 
 

 
f2   


 
 

 

fn

  T  f ′ =   S   
f ′1

 
 

 
f ′2   


 
 

 

f ′n

  T  A = 

a a a n11 12 1

aa a a

a a a

n

n n nn

21 22 2

1 2

Then the system can be written compactly using matrix multiplication:

f ′ = Af

Hence, given the matrix A, the problem is to find a column f of differentiable 
functions that satisfies this condition. This can be done if A is diagonalizable. 
Here is an example.

EXAMPLE 2

Find a solution to the system

f ′1 =  f1 + 3f2
f ′2 = 2f1 + 2f2

that satisfies f1(0) = 0, f2(0) = 5.

Solution ► This is f ′ = Af, where f =   S   f1   
f2

  T  and A =   S  1 3    
2 2

  T . The reader can

verify that cA(x) = (x - 4)(x + 1), and that x1 =   S  1   
1

  T  and x2 =   S   3   
-2

  T  are 

eigenvectors corresponding to the eigenvalues 4 and -1, respectively. Hence 

the diagonalization algorithm gives P-1AP =   S   4   0    
0 -1

  T  , where 

P = [x1 x2] =   S   1   3    
1 -2

  T .
 
Now consider new functions g1 and g2 given by f = Pg 

(equivalently, g = P-1f ), where g =   S   g1   
g2

  T . Then

  S   f1   
f2

  T  =   S   1   3    
1 -2

  T    S   g1   
g2

  T  that is,  
f1 = g1 + 3g2        
f2 = g1 - 2g2

 

Hence f ′1 = g′1 + 3g′2 and f ′2 = g′1 - 2g′2 so that

`f ′ =   S    f ′1      
f ′2

   T  =   S   1   3    
1 -2

  T    S    g′1      
g′2

   T  = Pg′

If this is substituted in f ′ = Af, the result is Pg′ = APg, whence

g′ = P-1APg
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But this means that

  S    g′1      
g′2

   T  =   S   4   0    
0 -1

  T    S   g1   
g2

  T  , so  
g′1 = 4g1     
g′2 = -g2

 

Hence Theorem 1 gives g1(x) = ce4x, g2(x) = de-x, where c and d are constants. 
Finally, then,

  S    f1(x)
    

f2 (x)
  T  = P   S    g1(x)

    
g2 (x)

  T  =   S   1   3    
1 -2

  T    S    ce4x

    
de-x

  T  =   S   ce4x + 3de-x

      
ce4x - 2de-x

  T 
so the general solution is

 
f1(x) =  ce4x + 3de-x

          
f2(x) =  ce4x - 2de-x

  c and d constants.

It is worth observing that this can be written in matrix form as

  S    f1(x)
    

f2 (x)
  T  =  c   S   1     

1
   T  e4x + d   S   3   

-2
  T  e-x

That is,

f (x) = cx1e
4x + dx2e

-x

This form of the solution works more generally, as will be shown.
Finally, the requirement that f1(0) = 0 and f2(0) = 5 in this example 

determines the constants c and d:

0 = f1(0) = ce0 + 3de0 = c + 3d
5 = f2(0) = ce0 - 2de0 = c - 2d

These equations give c = 3 and d = -1, so

f1(x) = 3e4x - 3e-x

f2(x) = 3e4x + 2e-x

satisfy all the requirements.

The technique in this example works in general.

Theorem 2

Consider a linear system
f ′ = Af

of differential equations, where A is an n × n diagonalizable matrix. Let P-1AP be 
diagonal, where P is given in terms of its columns

P = [x1, x2, …, xn]

and {x1, x2, …, xn} are eigenvectors of A. If xi corresponds to the eigenvalue λi for each i, 
then every solution f of f ′ = Af has the form

f (x) = c1x1 e 
λ1x  + c2x2 e 

λ2x  + � + cnx2 e 
λnx 

where c1, c2, …, cn are arbitrary constants.

176 Chapter 3 Determinants and Diagonalization



PROOF

By Theorem 4 Section 3.3, the matrix P = [x1, x2, …, xn] is invertible and

P-1AP = 

n

1

2

0 0
0 0

0 0

λ

λ

λ

.

As in Example 2, write f =   S   
f1

 
 

 
f2   


 
 

 

fn

  T  and define g =   S   
g1

 
 

 
g2   


 
 

 
gn

  T  by g = P-1f; equivalently, 

f = Pg. If P = [ pij], this gives

fi = pi1g1 + pi2g2 + � + pingn.

Since the pij are constants, differentiation preserves this relationship:

fi′ = pi1g′1 + pi2g′2 + � + ping′n.

so f ′ = Pg′. Substituting this into f ′ = Af gives Pg′ = APg. But then 
multiplication by P-1 gives g′ = P-1APg, so the original system of equations 
f ′ = Af for f becomes much simpler in terms of g:

s   
g′1

 
 

 
g′2   


 
 

 

g′n

  t = 

n

1

2

0 0
0 0

0 0

λ

λ

λ

   S   
g1

 
 

 
g2   


 
 

 
gn

  T 
Hence gi′ = λigi holds for each i, and Theorem 1 implies that the only solutions are

gi(x) = ci e 
λi x  ci some constant.

Then the relationship f = Pg gives the functions f1, f2, …, fn as follows:

f (x) = [x1, x2, …, xn]   S  
c1 e 

λ1x 

 

  

 c2 e 
λ2x 
    



 

  
 

cn e 
λnx 

  T  = c1x1 e 
λ1x  + c2x2 e 

λ2x  + � + cnx2 e 
λnx 

This is what we wanted.

The theorem shows that every solution to f ′ = Af is a linear combination

f (x) = c1x1 e 
λ1x  + c2x2 e 

λ2x  + � + cnx2 e 
λnx 

where the coefficients ci are arbitrary. Hence this is called the general solution 
to the system of differential equations. In most cases the solution functions fi(x) 
are required to satisfy boundary conditions, often of the form fi(a) = bi, where 
a, b1, …, bn are prescribed numbers. These conditions determine the constants ci. 
The following example illustrates this and displays a situation where one eigenvalue 
has multiplicity greater than 1.
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EXAMPLE 3

Find the general solution to the system

f ′1 =   5 f1 + 8 f2 + 16 f3
f ′2 =   4 f1 +   f2 +  8 f3
f ′3 = -4 f1 - 4 f2 - 11 f3

Then find a solution satisfying the boundary conditions f1(0) = f2(0) = f3(0) = 1.

Solution ► The system has the form f ′ = Af, where A = 
− −−

5 16
4 1

4
8

8

4 11
. Then 

cA(x) = (x + 3)2(x - 1) and eigenvectors corresponding to the eigenvalues -3, 
-3, and 1 are, respectively,

x1 =   S  -1
 

 
   1   

  0
   T  x2 =   S  -2

 
 

   0   
  1

   T  x3 =   S     2
 

 
   1   

-1
  T 

Hence, by Theorem 2, the general solution is

f (x) = c1  S  -1
 

 
   1   

  0
   T e-3x + c2  S  -2

 
 

   0   
  1

   T e-3x + c3  S     2
 

 
   1   

-1
  T ex, ci constants.

The boundary conditions f1(0) = f2(0) = f3(0) = 1 determine the constants ci.

  S  1 
 

 1   
1

  T  = f (0)  = c1  S  -1
 

 
   1   

  0
   T  + c2  S  -2

 
 

   0   
  1

   T  + c3  S     2
 

 
   1   

-1
  T 

= 
− −

−

1 2 2
1 0 1
0 1 1

1

2

3

c
c
c

The solution is c1 = -3, c2 = 5, c3 = 4, so the required specific solution is

f1(x) = -7e-3x + 8ex

f2(x) = -3e-3x + 4ex

f3(x) =   5e-3x - 4ex

E X E R C I S E S  3 . 5

 1. Use Theorem 1 to find the general solution to 
each of the following systems. Then find a specific 
solution satisfying the given boundary condition.

 (a) f ′1 = 2f1 + 4f2, f1(0) = 0
f ′2 = 3f1 + 3f2, f2(0) = 1

 �(b) f ′1 = -f1 + 5f2, f1(0) =   1
f ′2 =   f1 + 3f2, f2(0) = -1

 (c) f ′1 =     4f2 + 4f3
f ′2 =   f1 +  f2 - 2f3
f ′3 = -f1 +  f2 + 4f3
f1(0) = f2(0) = f3(0) = 1

 �(d) f ′1 = 2f1 +  f2 + 2f3
f ′2 = 2f1 + 2f2 - 2f3
f ′3 = 3f1 +  f2 +  f3
f1(0) = f2(0) = f3(0) = 1

 2. Show that the solution to f ′= af 
satisfying f (x0) = k is f (x) =  ke a(x-x0) . 

 3. A radioactive element decays at a rate 
proportional to the amount present. Suppose an 
initial mass of 10 g decays to 8 g in 3 hours. 

 (a) Find the mass t hours later. 

 �(b) Find the half-life of the element—the time 
taken to decay to half its mass.
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 4. The population N(t) of a region at time t 
increases at a rate proportional to the population. 
If the population doubles every 5 years and is 
3 million initially, find N(t). 

 5. Let A be an invertible diagonalizable n × n 
matrix and let b be an n-column of constant 
functions. We can solve the system f ′ = Af + b 
as follows: 

 �(a) If g satisfies g′ = Ag (using Theorem 2), 
show that f = g - A-1b is a solution to 
f ′ = Af + b. 

 (b) Show that every solution to 
f ′ = Af + b arises as in (a) for some 
solution g to g′ = Ag.

 6. Denote the second derivative of f by f � = ( f ′ )′. 
Consider the second order differential equation
f � - a1f ′ - a2 f = 0, a1 and a2 real numbers. (∗)

 (a) If f is a solution to (∗) let f1 = f and 
f2 = f ′ - a1f. Show that 

  e  
 f ′1 = a1f1 + f2         
f ′2 = a2f1

  , that is   S    f ′1      
f ′2

   T  =   S  a1 1
    

a2 0
  T    S   f1     

f2
   T . 

 �(b) Conversely, if   S    f1     
f2

   T  is a solution to the system 

in (a), show that f1 is a solution to (∗).

 7. Writing f � = (f � )′, consider the third order 
differential equation

f � - a1f � - a2f ′- a3f = 0

  where a1, a2, and a3 are real numbers. Let f1 = f, 
f2 = f ′- a1f and f3 = f � - a1f ′ - a2f �.

 (a) Show that   S   
f1

 
 

 f2   
f3

   T  is a solution to the system

  • 
 f ′1 = a1f1 + f2

  
     

  f ′2 = a2f1 + f3         
f ′3 = a3f1   

  , that is   S   
f ′1

 
 

 f ′2   
f ′3

   T  = 
a
a
a

1

2

3

1 0
0 1
0 0

   S   
f1

 
 

 f2   
f3

   T .

 (b) Show further that if   S   
f1

 
 

 f2   
f3

   T  is any solution to 

this system, then f = f1 is a solution to (∗). 
Remark. A similar construction casts every 
linear differential equation of order n (with 
constant coefficients) as an n × n linear 
system of first order equations. However, the 
matrix need not be diagonalizable, so other 
methods have been developed. 

Proof of the Cofactor Expansion Theorem
Recall that our definition of the term determinant is inductive: The determinant of 
any 1 × 1 matrix is defined first; then it is used to define the determinants of 2 × 2 
matrices. Then that is used for the 3 × 3 case, and so on. The case of a 1 × 1 matrix 
[a] poses no problem. We simply define 

det[a] = a

as in Section 3.1. Given an n × n matrix A, define Aij to be the (n - 1) × (n - 1) 
matrix obtained from A by deleting row i and column j. Now assume that 
the determinant of any (n - 1) × (n - 1) matrix has been defined. Then the 
determinant of A is defined to be

det A  = a11 det A11 - a21 det A21 + � + (-1)n+1an1 det An1

=  ∑ 
i=1

   
n

  (-1)i+1 ai1 det Ai1

where summation notation has been introduced for convenience.17 Observe that, 
in the terminology of Section 3.1, this is just the cofactor expansion of det A along 
the first column, and that (-1)i+j det Aij is the (i, j)-cofactor (previously denoted 

17 Summation notation is a convenient shorthand way to write sums of similar expressions. For example a1 + a2 + a3 + a4 =  ∑ 
i=1

   
4
  ai ,

a5b5 + a6b6 + a7b7 + a8b8 =  ∑ 
k=5

  
8
  akbk , and 12 + 22 + 32 + 42 + 52 =  ∑ 

j=1
   

5
  j 2 .
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as cij(A)).18 To illustrate the definition, consider the 2 × 2 matrix A =   S  a11 a12     
a21 a22

  T . 
Then the definition gives

det   S  a11 a12     
a21 a22

  T  = a11 det[a22] - a21 det[a12] = a11a22 - a21a12

and this is the same as the definition in Section 3.1.
Of course, the task now is to use this definition to prove that the cofactor 

expansion along any row or column yields det A (this is Theorem 1 Section 3.1). 
The proof proceeds by first establishing the properties of determinants stated in 
Theorem 2 Section 3.1, but for rows only (see Lemma 2). This being done, the full 
proof of Theorem 1 Section 3.1 is not difficult. The proof of Lemma 2 requires the 
following preliminary result.

Lemma 1

Let A, B, and C be n × n matrices that are identical except that the pth row of A is the 
sum of the pth rows of B and C. Then

det A = det B + det C

PROOF

We proceed by induction on n, the cases n = 1 and n = 2 being easily checked. 
Consider ai1 and Ai1:

Case 1: If i ≠ p,

ai1 = bi1 = ci1 and det Ai1 = det Bi1 = det Ci1

by induction because Ai1, Bi1, Ci1 are identical except that one row of Ai1 is the 
sum of the corresponding rows of Bi1 and Ci1.

Case 2: If i = p,

ap1 = bp1 + cp1 and Ap1 = Bp1 = Cp1

Now write out the defining sum for det A, splitting off the pth term for special 
attention.

 det A =  ∑ 
i≠p

   
 
  ai1(-1)i+1  det Ai1 + ap1(-1)p+1 det Ap1

 =  ∑ 
i≠p

   
 
  ai1(-1)i+1  [det Bi1 + det Bi1] + (bp1 + cp1)(-1)p+1 det Ap1

where det Ai1 = det Bi1 + det Ci1 by induction. But the terms here involving Bi1 
and bp1 add up to det B because ai1 = bi1 if i ≠ p and Ap1 = Bp1. Similarly, the 
terms involving Ci1 and cp1 add up to det C. Hence det A = det B + det C, as 
required.

18 Note that we used the expansion along row 1 at the beginning of Section 3.1. The column 1 expansion definition is more 
convenient here.
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Lemma 2

Let A = [aij] denote an n × n matrix.
1. If B = [bij] is formed from A by multiplying a row of A by a number u, then 

det B = u det A.
2. If A contains a row of zeros, then det A = 0.

3. If B = [bij] is formed by interchanging two rows of A, then det B = -det A.
4. If A contains two identical rows, then det A = 0. 

5. If B = [bij] is formed by adding a multiple of one row of A to a different row, 
then det B = det A.

PROOF

For later reference the defining sums for det A and det B are as follows:

 det A =  ∑ 
i=1

   
 n

  ai1(-1)i+1  det Ai1 (∗)

 det B =  ∑ 
i=1

   
 n

  bi1(-1)i+1  det Bi1 (∗∗)

Property 1. The proof is by induction on n, the cases n = 1 and n = 2 being easily 
verified. Consider the ith term in the sum (∗∗) for det B where B is the result of 
multiplying row p of A by u.

 (a) If i ≠ p, then bi1 = ai1 and det Bi1 = u det Ai1 by induction because Bi1 comes 
from Ai1 by multiplying a row by u.

 (b) If i = p, then bp1 = uap1 and Bp1 = Ap1.

In either case, each term in equation (∗∗) is u times the corresponding term in 
equation (∗), so it is clear that det B = u det A.

Property 2. This is clear by property 1 because the row of zeros has a common 
factor u = 0.

Property 3. Observe first that it suffices to prove property 3 for interchanges of 
adjacent rows. (Rows p and q (q > p) can be interchanged by carrying out 
2(q - p) - 1 adjacent changes, which results in an odd number of sign changes 
in the determinant.) So suppose that rows p and p + 1 of A are interchanged to 
obtain B. Again consider the ith term in (∗∗).

 (a) If i ≠ p and i ≠ p + 1, then bi1 = ai1 and det Bi1 = -det Ai1 by induction 
because Bi1 results from interchanging adjacent rows in Ai1. Hence the ith 
term in (∗∗) is the negative of the ith term in (∗). Hence det B = -det A in 
this case.

 (b) If i = p or i = p + 1, then bp1 = ap+1,1 and Bp1 = Ap+1,1, whereas bp+1,1 = ap1 
and Bp+1,1 = Ap1. Hence terms p and p + 1 in (∗∗) are

bp1(-1)p+1 det Bp1 = -ap+1,1(-1)(p+1)+1 det(Ap+1,1)
bp+1,1(-1)(p+1)+1 det(Bp+1,1) = -ap1(-1)p+1 det Ap1

This means that terms p and p + 1 in (∗∗) are the same as these terms in (∗), 
except that the order is reversed and the signs are changed. Thus the sum (∗∗) is 
the negative of the sum (∗); that is, det B = -det A.
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Property 4. If rows p and q in A are identical, let B be obtained from A by 
interchanging these rows. Then B = A so det A = det B. But det B = -det A by 
property 3 so det A = -det A. This implies that det A = 0.

Property 5. Suppose B results from adding u times row q of A to row p. Then 
Lemma 1 applies to B to show that det B = det A + det C, where C is obtained 
from A by replacing row p by u times row q. It now follows from properties 1 
and 4 that det C = 0 so det B = det A, as asserted.

These facts are enough to enable us to prove Theorem 1 Section 3.1. For 
convenience, it is restated here in the notation of the foregoing lemmas. The only 
difference between the notations is that the (i, j)-cofactor of an n × n matrix A was 
denoted earlier by

cij(A) = (-1)i+j det Aij

Theorem 1

If A = [aij] is an n × n matrix, then

1. det A =  ∑ 
i=1

   
 n

   aij(-1)i+j  det Aij (cofactor expansion along column j).

2. det A =  ∑ 
j=1

   
 n

   aij(-1)i+j  det Aij (cofactor expansion along row i).

Here Aij denotes the matrix obtained from A by deleting row i and column j.

PROOF

Lemma 2 establishes the truth of Theorem 2 Section 3.1 for rows. With this 
information, the arguments in Section 3.2 proceed exactly as written to establish 
that det A = det AT holds for any n × n matrix A. Now suppose B is obtained 
from A by interchanging two columns. Then BT is obtained from AT by 
interchanging two rows so, by property 3 of Lemma 2,

det B = det BT = -det AT = -det A

Hence property 3 of Lemma 2 holds for columns too.
This enables us to prove the cofactor expansion for columns. Given an  n × 

n matrix A = [aij], let B = [bij] be obtained by moving column j to the left side, 
using j - 1 interchanges of adjacent columns. Then det B = (-1)j-1det A and, 
because Bi1 = Aij and bi1 = aij for all i, we obtain

det A = (-1) j-1det B = (-1) j-1 ∑ 
i=1

   
n

  bi1(-1)i+1  det Bi1

=  ∑ 
i=1

   
n

  aij(-1)i+j  det Aij

This is the cofactor expansion of det A along column j.
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Finally, to prove the row expansion, write B = AT. Then Bij = ( A  ij  
T ) and bij = aji 

for all i and j. Expanding det B along column j gives

det A = det AT = det B =  ∑ 
i=1

   
n

  bij(-1)i+j  det Bij

=  ∑ 
i=1

   
n

  aji(-1)j+i  det   S ( A  ji  
T ) T  =  ∑ 

i=1
   

n

  aji(-1)j+i  det Aji

This is the required expansion of det A along row j.

E X E R C I S E S  3 . 6

 1. Prove Lemma 1 for columns.

 �2. Verify that interchanging rows p and q (q > p) 
can be accomplished using 2(q - p) - 1 adjacent 
interchanges.

 3. If u is a number and A is an n × n matrix, prove 
that det(uA) = un det A by induction on n, using 
only the definition of det A.

S U P P L E M E N TA R Y  E X E R C I S E S  F O R  C H A P T E R  3

 1. Show that

  det 
a x qx c x
p x vx r x
u

b
q
v

p
u
a

r
w
cx bx w x

+ +
+ +
+ +

+
+
+

  = (1 + x3)det 
a c
p r
u

b
q
v w

 2. (a) Show that (Aij)
T = (AT)ji for all i, j, and all 

square matrices A.

 �(b) Use (a) to prove that det AT = det A. 
[Hint: Induction on n where A is n × n.]

 3. Show that det   S   0 In
          

Im 0
   T   = (-1)nm for all n ≥ 1 and 

m ≥ 1.

 4. Show that 

  det 
1

1

1

3

3

3

a a

b b

c c

 = (b - a)(c - a)(c - b)(a + b + c).

 5. Let A =   S  R1   
R2

  T  be a 2 × 2 matrix with rows R1 

and R2. If det A = 5, find det B where 

  B =   S   3R1 + 2R3                  
2R1 + 5R2

   T . 
 6. Let A =   S  3 -4    

2 -3
  T  , and let vk = Akv0 for each k ≥ 0.

 (a) Show that A has no dominant eigenvalue.

 (b) Find vk if v0 equals: (i)   S  1   
1

  T  (ii)   S  2   
1

  T  
  (iii)   S  x   

y
  T  ≠   S  1   

1
  T  or   S  2   

1
  T  
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Vector Geometry

4
Vectors and Lines
In this chapter we study the geometry of 3-dimensional space. We view a point in 
3-space as an arrow from the origin to that point. Doing so provides a “picture” of 
the point that is truly worth a thousand words. We used this idea earlier, in Section 
2.6, to describe rotations, reflections, and projections of the plane �2. We now apply 
the same techniques to 3-space to examine similar transformations of �3. Moreover, 
the method enables us to completely describe all lines and planes in space. 

Vectors in �3

Introduce a coordinate system in 3-dimensional space in the usual way. First choose 
a point O called the origin, then choose three mutually perpendicular lines through 
O, called the x, y, and z axes, and establish a number scale on each axis with zero at 
the origin. Given a point P in 3-space we associate three numbers x, y, and z with 
P, as described in Figure 1. These numbers are called the coordinates of P, and we 
denote the point as (x, y, z), or P(x, y, z) to emphasize the label P. The result is 
called a cartesian1 coordinate system for 3-space, and the resulting description of 
3-space is called cartesian geometry. 

As in the plane, we introduce vectors by identifying each point P(x, y, z) with the 

vector v =   S  
x
 

 
 y   

z
   T  in �3, represented by the arrow from the origin to P as in Figure 1. 

Informally, we say that the point P has vector v, and that vector v has point P. In this 
way 3-space is identified with �3, and this identification will be made throughout 
this chapter, often without comment. In particular, the terms “vector” and 
“point” are interchangeable.2 The resulting description of 3-space is called vector 

geometry. Note that the origin is 0 =   S  0 
 

 0   
0

  T . 
Length and Direction
We are going to discuss two fundamental geometric properties of vectors in �3: 
length and direction. First, if v is a vector with point P, the length ‖v‖ of vector 

1 Named after René Descartes who introduced the idea in 1637.

2 Recall that we defined �n as the set of all ordered n-tuples of real numbers, and reserved the right to denote them as rows or as 
columns.

S E C T I O N  4 . 1

P(x, y, z)

P0(x, y, 0)

yx

O

z

v =
x
y
z

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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v is defined to be the distance from the origin to P, that is the length of the arrow 
representing v. The following properties of length will be used frequently. 

Theorem 1

Let v =   S  
x
 

 
 y   

z
   T  be a vector. 

(1) ‖v‖ =  √ 
___________

  x 2  +  y 2  +  z 2   . 3

(2) v = 0 if and only if ‖v‖ = 0 
(3) ‖av‖ = |a| ‖v‖ for all scalars a.4

34

PROOF

Let v have point P = (x, y, z).

 (1) In Figure 2, ‖v‖ is the hypotenuse of the right triangle OQP, and so 
‖v‖

2 = h2 + z2 by Pythagoras’ theorem.5 But h is the hypotenuse of the 
right triangle ORQ, so h2 = x2 + y2. Now (1) follows by eliminating h2 
and taking positive square roots. 

 (2) If ‖v‖ = 0, then x2 + y2 + z2 = 0 by (1). Because squares of real numbers 
are nonnegative, it follows that x = y = z = 0, and hence that v = 0. The 
converse is because ‖0‖ = 0.

 (3) We have av = (ax, ay, az) so (1) gives ‖av‖
2 = (ax)2 + (ay)2 + (az)2 = a2

‖v‖
2.

Hence ‖av‖ =  √ 

__

 a2  ‖v‖, and we are done because  √ 

__

 a2   = |a| for any real 
number a.

5

Of course the �2-version of Theorem 1 also holds.

EXAMPLE 1

If v =   S     2
 

 
 −1   

  3
   T  then ‖v‖ =  √ 

_________

 4 + 1 + 9   =  √ 

___

 14  . Similarly if v =   S     3   
−4

  T  in 2-space 

then ‖v‖ =  √ 
______

 9 + 16   = 5.

When we view two nonzero vectors as arrows emanating from the origin, it is 
clear geometrically what we mean by saying that they have the same or opposite 
direction. This leads to a fundamental new description of vectors. 

3 When we write  √
__
p we mean the positive square root of p.

4 Recall that the absolute value |a| of a real number is defined by  |a | = { a if a ≥ 0 
-a if a < 0  

 .

5 Pythagoras’ theorem states that if a and b are sides of right triangle with hypotenuse c, then a2
+ b2

= c2. A proof is given at the 
end of this section.
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v
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Theorem 2

Let v ≠ 0 and w ≠ 0 be vectors in �3. Then v = w as matrices if and only if v and w 
have the same direction and the same length.6

6

PROOF

If v = w, they clearly have the same direction and length. Conversely, let v and 
w be vectors with points P(x, y, z) and Q(x1, y1, z1) respectively. If v and w have 
the same length and direction then, geometrically, P and Q must be the same 

point (see Figure 3). Hence x = x1, y = y1, and z = z1, that is v =   S  
x
 

 
 y   

z
   T  =   S  

x1

 
 

 y1   
z1

   T   = w.

A characterization of a vector in terms of its length and direction only is called 
an intrinsic description of the vector. The point to note is that such a description 
does not depend on the choice of coordinate system in �3. Such descriptions are 
important in applications because physical laws are often stated in terms of vectors, 
and these laws cannot depend on the particular coordinate system used to describe 
the situation. 

Geometric Vectors
If A and B are distinct points in space, the arrow from A to B has length and 
direction. Hence:

 Suppose that A and B are any two points in �3. In Figure 4 the line segment from A to 
B is denoted  

 _
 

›

 AB  and is called the geometric vector from A to B. Point A is called the 
tail of  

 _
 

›

 AB , B is called the tip of  
 _

 

›

 AB , and the length of  
 _

 

›

 AB  is denoted  ‖  
 _

 

›

 AB  ‖ .

Note that if v is any vector in �3 with point P then v =  
 _

 

›

 OP  is itself a geometric 
vector where O is the origin. Referring to  

 _
 

›

 AB  as a “vector” seems justified by 
Theorem 2 because it has a direction (from A to B) and a length  ‖  

 _
 

›

 AB  ‖ . However 
there appears to be a problem because two geometric vectors can have the same 
length and direction even if the tips and tails are different. For example  

 _
 

›

 AB  and  
 

_

 

›

 PQ  in Figure 5 have the same length  √ 

__

 5  and the same direction (1 unit left and 2 
units up) so, by Theorem 2, they are the same vector! The best way to understand 
this apparent paradox is to see  

 _
 

›

 AB  and  
 _

 

›

 PQ  as different representations of the same 

underlying vector   S  -1   
2

  T .7 Once it is clarified, this phenomenon is a great benefit 

because, thanks to Theorem 2, it means that the same geometric vector can be 
positioned anywhere in space; what is important is the length and direction, not 
the location of the tip and tail. This ability to move geometric vectors about is very 
useful as we shall soon see. 

6 It is Theorem 2 that gives vectors their power in science and engineering because many physical quantities are determined by 
their length and magnitude (and are called vector quantities). For example, saying that an airplane is flying at 200 km/h does not 
describe where it is going; the direction must also be specified. The speed and direction comprise the velocity of the airplane, a 
vector quantity.

7 Fractions provide another example of quantities that can be the same but look different. For example   6 _ 9   and   14
 __ 21   certainly appear 

different, but they are equal fractions—both equal   2 _ 3   in “lowest terms”.
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The Parallelogram Law
We now give an intrinsic description of the sum of two vectors v and w in �3, that 
is a description that depends only on the lengths and directions of v and w and 
not on the choice of coordinate system. Using Theorem 2 we can think of these 
vectors as having a common tail A. If their tips are P and Q respectively, then they 
both lie in a plane  containing A, P, and Q, as shown in Figure 6. The vectors v 
and w create a parallelogram8 in , shaded in Figure 6, called the parallelogram 
determined by v and w. 

If we now choose a coordinate system in the plane  with A as origin, then 
the parallelogram law in the plane (Section 2.6) shows that their sum v + w is 
the diagonal of the parallelogram they determine with tail A. This is an intrinsic 
description of the sum v + w because it makes no reference to coordinates. This 
discussion proves:

The Parallelogram Law

In the parallelogram determined by two vectors v and w, the vector v + w is the 
diagonal with the same tail as v and w.

Because a vector can be positioned with its tail at any point, the parallelogram 
law leads to another way to view vector addition. In Figure 7(a) the sum v + w of 
two vectors v and w is shown as given by the parallelogram law. If w is moved so its 
tail coincides with the tip of v (Figure 7(b)) then the sum v + w is seen as “first v 
and then w. Similarly, moving the tail of v to the tip of w shows in Figure 7(c) that 
v + w is “first w and then v.” This will be referred to as the tip-to-tail rule, and it 
gives a graphic illustration of why v + w = w + v.

Since  
	

 AB   denotes the vector from a point A to a point B, the tip-to-tail rule takes 
the easily remembered form

 
	

 AB   +  
	

 BC   =  
	

 AC  

for any points A, B, and C. The next example uses this to derive a theorem in 
geometry without using coordinates.

EXAMPLE 2

Show that the diagonals of a parallelogram bisect each other.

Solution ► Let the parallelogram have vertices A, B, C, and D, as shown; let E 
denote the intersection of the two diagonals; and let M denote the midpoint 
of diagonal AC. We must show that M = E and that this is the midpoint of 
diagonal BD. This is accomplished by showing that   

	
 BM  =   

	
 MD . (Then the fact 

that these vectors have the same direction means that M = E, and the fact that 
they have the same length means that M = E is the midpoint of BD.) Now 
  
	

 AM  =   
	

 MC  because M is the midpoint of AC, and  
	

 BA   =   
	

 CD  because the figure 
is a parallelogram. Hence

  
	

 BM  =  
	

 BA   +   
	

 AM  =   
	

 CD  +   
	

 MC  =   
	

 MC  +   
	

 CD  =   
	

 MD 

where the first and last equalities use the tip-to-tail rule of vector addition.

8 Recall that a parallelogram is a four-sided figure whose opposite sides are parallel and of equal length.
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One reason for the importance of the tip-to-tail rule is that it means two or 
more vectors can be added by placing them tip-to-tail in sequence. This gives a 
useful “picture” of the sum of several vectors, and is illustrated for three vectors 
in Figure 8 where u + v + w is viewed as first u, then v, then w.

There is a simple geometrical way to visualize the (matrix) difference v - w 
of two vectors. If v and w are positioned so that they have a common tail A (see 
Figure 9), and if B and C are their respective tips, then the tip-to-tail rule gives 
w +  

	
 CB   = v. Hence v - w =  

	
 CB   is the vector from the tip of w to the tip of v. 

Thus both v - w and v + w appear as diagonals in the parallelogram determined 
by v and w (see Figure 9). We record this for reference.

Theorem 3

If v and w have a common tail, then v - w is the vector from the tip of w to the tip of v.

One of the most useful applications of vector subtraction is that it gives a simple 
formula for the vector from one point to another, and for the distance between the points.

Theorem 4

Let P1(x1, y1, z1) and P2(x2, y2, z2) be two points. Then:

1.   
	

 P1P2  =   S  
x2 - x1

 
   

 y2 - y1     
z2 - z1

   T .
2. The distance between P1 and P2 is  √ 

______________________________

   (x2 - x1)
2 + ( y2 - y1)

2 + (z2 - z1)
2  .

PROOF

If O is the origin, write v1 =   
	

 OP1  =   S  
x1

 
 

 y1   
z1

   T  and v2 =   
	

 OP2  =   S  
x2

 
 

 y2   
z2

   T  as in Figure 10.

Then Theorem 3 gives   
	

 P1P2  = v2 - v1, and (1) follows. But the distance between 

P1 and P2 is  ‖   
	

 P1P2  ‖ , so (2) follows from (1) and Theorem 1.

Of course the �2-version of Theorem 4 is also valid: If P1(x1, y1) and P2(x2, y2)

are points in �2, then   
	

 P1P2  =   S   x2 - x1             y2 - y1
   T  , and the distance between P1 and P2 is 

 √ 
___________________

  (x2 - x1)
2 + ( y2 - y1)

2  .

EXAMPLE 3

The distance between P1(2, -1, 3) and P2(1, 1, 4) is  √ 
_________________

  (-1)2 + (2)2 + (1)2   =  √ 

__

 6  , 

and the vector from P1 to P2 is   
	

 P1P2  =   S  -1
 

 
   2   

  1
   T .
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u
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v
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w

w
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As for the parallelogram law, the intrinsic rule for finding the length and direction 
of a scalar multiple of a vector in �3 follows easily from the same situation in �2.

Scalar Multiplication

Scalar Multiple Law
If a is a real number and v ≠ 0 is a vector then:

(1) The length of av is ‖av‖ = |a|‖v‖.

(2) If av ≠ 0,9 the direction of av is  { the same as v if a > 0,    opposite to v if a < 0.  
 

9

PROOF

 (1) This part of Theorem 1. 

 (2) Let O denote the origin in �3, let v have point P, and choose any plane 
containing O and P. If we set up a coordinate system in this plane with O as 

origin, then v =  
 _

 

›

 OP  so the result in (2) follows from the scalar multiple law in 
the plane (Section 2.6).

Figure 11 gives several examples of scalar multiples of a vector v.
Consider a line L through the origin, let P be any point on L other than the 

origin O, and let p =  
	

 OP  . If t ≠ 0, then tp is a point on L because it has direction 
the same or opposite as that of p. Moreover t > 0 or t < 0 according as the point tp 
lies on the same or opposite side of the origin as P. This is illustrated in Figure 12. 

A vector u is called a unit vector if ‖u‖ = 1. Then i =   S  1 
 

 0   
0

  T  , j =   S  0 
 

 1   
0

  T  , and k =   S  0 
 

 0   
1

  T  
are unit vectors, called the coordinate vectors. We discuss them in more detail in 
Section 4.2.

EXAMPLE 4

If v ≠ 0 show that   1 ____ 
‖v‖

  v is the unique unit vector in the same direction as v.

Solution ► The vectors in the same direction as v are the scalar multiples av 
where a > 0. But ‖av‖ = |a|‖v‖ = a‖v‖ when a > 0, so av is a unit vector if 

and only if a =   1 ____ 
‖v‖

  .

The next example shows how to find the coordinates of a point on the line 
segment between two given points. The technique is important and will be used 
again below.

9 Since the zero vector has no direction, we deal only with the case av ≠ 0.
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EXAMPLE 5

Let p1 and p2 be the vectors of two points P1 and P2. If M is the point one third 
the way from P1 to P2, show that the vector m of M is given by 

m =   2 _ 3  p1 +   1 _ 3  p2

Conclude that if P1 = P1(x1, y1, z1) and P2 = P2(x2, y2, z2), then M has 
coordinates

M = M(  2 _ 3  x1 +   1 _ 3  x2,   2 _ 3   y1 +   1 _ 3   y2,   2 _ 3  z1 +   1 _ 3  z2). 

Solution ► The vectors p1, p2, and m are shown in the diagram. We have 

  
	

 P1M  =   1 _ 3    
	

 P1P2  because   
	

 P1M  is in the same direction as   
	

 P1P2  and   1 _ 3   as long. By 
Theorem 3 we have   

	
 P1P2  = p2 - p1, so tip-to-tail addition gives

m = p1 +   
	

 P1M  = p1 +   1 _ 3  (p2 - p1) =   2 _ 3  p1 +   1 _ 3  p2

as required. For the coordinates, we have p1 =   S  
x1

 
 

 y1   
z1

   T  and p2 =   S  
x2

 
 

 y2   
z2

   T  , so

m =   2 _ 3    S  
x1

 
 

 y1   
z1

   T  +   1 _ 3    S  
x2

 
 

 y2   
z2

   T  =   S  
  2 _ 3   x1 +   1 _ 3   x2

 
   

   2 _ 3   y1 +   1 _ 3   y2    
 

  2 _ 3   z1 +   1 _ 3   z2

   T 
by matrix addition. The last statement follows.

Note that in Example 5 m =   2 _ 3  p1 +   1 _ 3  p2 is a “weighted average” of p1 and p2 with 
more weight on p1 because m is closer to p1.

The point M halfway between points P1 and P2 is called the midpoint between 
these points. In the same way, the vector m of M is

m =   1 _ 2  p1 +   1 _ 2  p2 =   1 _ 2  (p1 + p2)

as the reader can verify, so m is the “average” of p1 and p2 in this case. 

EXAMPLE 6

Show that the midpoints of the four sides of any quadrilateral are the vertices 
of a parallelogram. Here a quadrilateral is any figure with four vertices and 
straight sides.

Solution ► Suppose that the vertices of the quadrilateral are A, B, C, and D (in 
that order) and that E, F, G, and H are the midpoints of the sides as shown in 
the diagram. It suffices to show  

	
 EF   =   

	
 HG  (because then sides EF and HG are 

parallel and of equal length). Now the fact that E is the midpoint of AB means 
that  

	
 EB   =   1 _ 2   

	
 AB  . Similarly,  

	
 BF   =   1 _ 2   

	
 BC  , so

 
	

 EF   =  
	

 EB   +  
	

 BF   =   1 _ 2   
	

 AB   +   1 _ 2   
	

 BC   =   1 _ 2  ( 
	

 AB   +  
	

 BC  ) =   1 _ 2   
	

 AC  

A similar argument shows that   
	

 HG  =   1 _ 2   
	

 AC   too, so  
	

 EF   =   
	

 HG  as required.

P1

P2

M

O m

p1

2p

B 
F C 

G 

D 
H 

A 

E 
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Two nonzero vectors are called parallel if they have the same or opposite direction.

Many geometrical propositions involve this notion, so the following theorem will 
be referred to repeatedly.

Theorem 5

Two nonzero vectors v and w are parallel if and only if one is a scalar multiple of the other.

PROOF

If one of them is a scalar multiple of the other, they are parallel by the scalar 
multiple law. 

Conversely, assume that v and w are parallel and write d =   
‖v‖

 ____ 
‖w‖

   for 

convenience. Then v and w have the same or opposite direction. If they have 
the same direction we show that v = dw by showing that v and dw have the 
same length and direction. In fact, ‖dw‖ = |d| ‖w‖ = ‖v‖ by Theorem 1; as to 
the direction, dw and w have the same direction because d > 0, and this is the 
direction of v by assumption. Hence v = dw in this case by Theorem 2. In the 
other case, v and w have opposite direction and a similar argument shows that 
v = -dw. We leave the details to the reader.

EXAMPLE 7

Given points P(2, -1, 4), Q(3, -1, 3), A(0, 2, 1), and B(1, 3, 0), determine if 
	

 PQ   and  
	

 AB   are parallel.

Solution ► By Theorem 3,  
	

 PQ   = (1, 0, -1) and  
	

 AB   = (1, 1, -1). If  
	

 PQ   = t 
	

 AB   
then (1, 0, -1) = (t, t, -t), so 1 = t and 0 = t, which is impossible. Hence  

	
 PQ   

is not a scalar multiple of  
	

 AB  , so these vectors are not parallel by Theorem 5.

Lines in Space
These vector techniques can be used to give a very simple way of describing straight 
lines in space. In order to do this, we first need a way to specify the orientation of 
such a line, much as the slope does in the plane. 

With this in mind, we call a nonzero vector d ≠ 0 a direction vector for the line if it is 
parallel to  

	
 AB   for some pair of distinct points A and B on the line.

Of course it is then parallel to   
	

 CD  for any distinct points C and D on the line. In 
particular, any nonzero scalar multiple of d will also serve as a direction vector of 
the line. 

We use the fact that there is exactly one line that passes through a particular 

point P0(x0, y0, z0) and has a given direction vector d =   S  
a
 

 
 b   

c
   T . We want to describe 

this line by giving a condition on x, y, and z that the point P(x, y, z) lies on 

Definition 4.2

Definition 4.3

Origin

P0
P 

p0

d
	
P P0

p

� FIGURE 13
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this line. Let p0 =   S  
x0

 
 

 y0   
z0

   T  and p =   S  
x
 

 
 y   

z
   T  denote the vectors of P0 and P, respectively 

(see Figure 13). Then 

p = p0 +   
	

 P0P 

Hence P lies on the line if and only if   
	

 P0P  is parallel to d—that is, if and only if 
	

 P0P  = td for some scalar t by Theorem 5. Thus p is the vector of a point on the 
line if and only if p = p0 + td for some scalar t. This discussion is summed up 
as follows.

Vector Equation of a Line

The line parallel to d ≠ 0 through the point with vector p0 is given by 

p = p0 + td t any scalar

In other words, the point p is on this line if and only if a real number t exists such that 
p = p0 + td.

In component form the vector equation becomes

  S  
x
 

 
 y   

z
   T  =   S  

x0

 
 

 y0   
z0

   T  + t   S  
a
 

 
 b   

c
   T 

Equating components gives a different description of the line.

Parametric Equations of a Line

The line through P0(x0, y0, z0) with direction vector d =   S  
a
 

 
 b   

c
   T  ≠ 0 is given by

 x = x0 + ta
 y = y0 + tb  t any scalar
 z = z0 + tc

In other words, the point P(x, y, z) is on this line if and only if a real number t exists 
such that x = x0 + ta, y = y0 + tb, and z = z0 + tc.

EXAMPLE 8

Find the equations of the line through the points P0(2, 0, 1) and P1(4, -1, 1).

Solution ► Let d =   
	

 P0P1  =   S  2 
 

 1   
0

  T  denote the vector from P0 to P1. Then d is 

parallel to the line (P0 and P1 are on the line), so d serves as a direction vector 
for the line. Using P0 as the point on the line leads to the parametric equations

 x = 2 + 2t
 y = -t t a parameter
 z = 1

Note that if P1 is used (rather than P0), the equations are
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 x = 4 + 2s
 y = -1 - s s a parameter
 z = 1

These are different from the preceding equations, but this is merely the result 
of a change of parameter. In fact, s = t - 1.

EXAMPLE 9

Find the equations of the line through P0(3, -1, 2) parallel to the line with 
equations

 x = -1 + 2t
 y = 1 + t
 z = -3 + 4t

Solution ► The coefficients of t give a direction vector d =   S  2 
 

 1   
4

  T  of the given 

line. Because the line we seek is parallel to this line, d also serves as a direction 
vector for the new line. It passes through P0, so the parametric equations are

 x = 3 + 2t
 y = -1 + t
 z = 2 + 4t

EXAMPLE 10

Determine whether the following lines intersect and, if so, find the point of 
intersection.

 x = 1 - 3t x = -1 + s
 y = 2 + 5t y = 3 - 4s
 z = 1 + t z = 1 - s

Solution ► Suppose p = P(x, y, z) lies on both lines. Then 

  S  1 - 3t
 

  
 2 + 5t    

1 + t
   T  =   S  

x
 

 
 y   

z
   T  =   S  -1 + s

 
   

 3 - 4s     
1 - s

   T  for some t and s,

where the first (second) equation is because P lies on the first (second) line. 
Hence the lines intersect if and only if the three equations

 1 - 3t = -1 + s
 2 + 5t = 3 - 4s
 1 + t = 1 - s

have a solution. In this case, t = 1 and s = -1 satisfy all three equations, so the 
lines do intersect and the point of intersection is 

p =   S  1 - 3t
 

  
 2 + 5t    

1 + t
   T  =   S  -2

 
 

   7   
  2

   T 
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using t = 1. Of course, this point can also be found from p =   S  -1 + s
 

   
 3 - 4s     

1 - s
   T  using 

s = -1.

EXAMPLE 11

Show that the line through P0(x0, y0) with slope m has direction vector d =   S   1   
m

  T  
and equation y - y0 = m(x - x0). This equation is called the point-slope formula.

Solution ► Let P1(x1, y1) be the point on the line one unit to the right of P0 (see the 
diagram). Hence x1 = x0 + 1. Then d = P0P1 serves as direction vector of the line, 

and d =   S   x1 - x0             y1 - y0
   T  =   S   1             y1 - y0

   T . But the slope m can be computed as follows:

m =   
y1 - y0 _______ x1 - x0

   =   
y1 - y0 ______ 

1
   = y1 - y0

Hence d =   S   1   
m

  T  and the parametric equations are x = x0 + t, y = y0 + mt. 
Eliminating t gives y - y0 = mt = m(x - x0), as asserted.

Note that the vertical line through P0(x0, y0) has a direction vector d =   S  0   
1

  T  that is 

not of the form   S   1   
m

  T  for any m. This result confirms that the notion of slope makes 

no sense in this case. However, the vector method gives parametric equations for 
the line:

 x = x0
 y = y0 + t

Because y is arbitrary here (t is arbitrary), this is usually written simply as x = x0.

Pythagoras’ Theorem
The pythagorean theorem was known earlier, but Pythagoras (c. 550 b.c.) is credited 
with giving the first rigorous, logical, deductive proof of the result. The proof we 
give depends on a basic property of similar triangles: ratios of corresponding sides 
are equal. 

Theorem 6

Pythagoras’ Theorem
Given a right-angled triangle with hypotenuse c and sides a and b, then a2 + b2 = c2.

PROOF

Let A, B, and C be the vertices of the triangle as in Figure 14. Draw a perpendicular 
from C to the point D on the hypotenuse, and let p and q be the lengths of BD 

and DA respectively. Then DBC and CBA are similar triangles so   
p
 __ a   =   a __ c  .

y

xO x1 = x0+1x0

P0(x0,y0)

P1(x1,y1)

b 

a c
q 

D p 

C A 

B 

� FIGURE 14
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This means a2 = pc. In the same way, the similarity of DCA and CBA gives   
q
 __ 

b
   =   b __ c  , 

whence b2 = qc. But then 

a2 + b2 = pc + qc = (p + q)c = c2

because p + q = c. This proves Pythagoras’ theorem.

E X E R C I S E S  4 . 1

 1. Compute ‖v‖ if v equals:

 (a)   S     2
 

 
 -1   

  2
   T  �(b)   S     1

 
 

 -1   
  2

   T 
 (c)   S     1

 
 

   0   
-1

  T  �(d)   S  -1
 

 
   0   

  2
   T 

 (e) 2  S     1
 

 
 -1   

  2
   T  �(f ) -3  S  1 

 
 1   

2
  T 

 2. Find a unit vector in the direction of:

 (a)   S     7
 

 
 -1   

  5
   T  �(b)   S  -2

 
 

 -1   
  2

   T 
 3. (a) Find a unit vector in the direction from 

     S     3
 

 
 -1   

  4
   T  to   S  1 

 
 3   

5
  T .

 (b) If u ≠ 0, for which values of a is au a unit 
vector?

 4. Find the distance between the following pairs of 
points.

 (a)   S     3
 

 
 -1   

  0
   T  and   S     2

 
 

 -1   
  1

   T  �(b)   S     2
 

 
 -1   

  2
   T  and   S  2 

 
 0   

1
  T 

 (c)   S  -3
 

 
   5   

  2
   T  and   S  1 

 
 3   

3
  T  �(d)   S     4

 
 

   0   
-2

  T  and   S  3 
 

 2   
0

  T 
 5. Use vectors to show that the line joining the 

midpoints of two sides of a triangle is parallel to 
the third side and half as long.

 6. Let A, B, and C denote the three vertices of a 
triangle.

 (a) If E is the midpoint of side BC, show that 

 
	

 AE   =   1 _ 2  ( 
	

 AB   +  
	

 AC  ).
 �(b) If F is the midpoint of side AC, show that 

 
	

 FE   =   1 _ 2   
	

 AB  .

 7. Determine whether u and v are parallel in each 
of the following cases.

 (a) u =   S  -3
 

 
 -6   

  3
   T ; v =   S     5

 
 

  10   
-5

   T 
 �(b) u =   S     3

 
 

 -6   
  3

   T ; v =   S  -1
 

 
   2   

-1
  T 

 (c) u =   S  1 
 

 0   
1

  T ; v =   S  -1
 

 
   0   

  1
   T 

 �(d) u =   S     2
 

 
   0   

-1
  T ; v =   S  -8

 
 

   0   
  4

   T 
 8. Let p and q be the vectors of points P and 

Q, respectively, and let R be the point whose 
vector is p + q. Express the following in terms 
of p and q.

 (a)   
	

 QP   �(b)  
	

 QR 

 (c)   
	

 RP   �(d)  
	

 RO  where O is the origin

 9. In each case, find  
	

 PQ   and  ‖  
	

 PQ   ‖ .

 (a) P(1, -1, 3), Q(3, 1, 0)

 �(b) P(2, 0, 1), Q(1, -1, 6)

 (c) P(1, 0, 1), Q(1, 0, -3)

 �(d) P(1, -1, 2), Q(1, -1, 2)

 (e) P(1, 0, -3), Q(-1, 0, 3)

 �(f ) P(3, -1, 6), Q(1, 1, 4)

 10. In each case, find a point Q such that  
	

 PQ   has 
(i) the same direction as v; (ii) the opposite 
direction to v.

 (a) P(-1, 2, 2), v =   S  1 
 

 3   
1

  T 
 �(b) P(3, 0, -1), v =   S     2

 
 

 -1   
  3

   T 
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 11. Let u =   S     3
 

 
 -1   

  0
   T  , v =   S  4 

 
 0   

1
  T  , and w =   S  -1

 
 

   1   
  5

   T . 
  In each case, find x such that:

 (a) 3(2u + x) + w = 2x - v

 �(b) 2(3v - x) = 5w + u - 3x

 12. Let u =   S  1 
 

 1   
2

  T  , v =   S  0 
 

 1   
2

  T  , and w =   S     1
 

 
   0   

-1
  T . In each 

case, find numbers a, b, and c such that 
x = au + bv + cw.

 (a) x =   S     2
 

 
 -1   

  6
   T  �(b) x =   S  1 

 
 3   

0
  T 

 

 13. Let u =   S     3
 

 
 -1   

  0
   T  , v =   S  4 

 
 0   

1
  T  , and z =   S  1 

 
 1   

1
  T . In each 

case, show that there are no numbers a, b, and c 
such that:

 (a) au + bv + cz =   S  1 
 

 2   
1

  T 
 (b) au + bv + cz =   S     5

 
 

   6   
-1

  T 
 14. Let P1 = P1(2, 1, -2) and P2 = P2(1, -2, 0). 

Find the coordinates of the point P:

 (a)    1 _ 5   the way from P1 to P2

 �(b)    1 _ 4   the way from P2 to P1

 15. Find the two points trisecting the segment 
between P(2, 3, 5) and Q(8, -6, 2).

 16. Let P1 = P1(x1, y1, z1) and P2 = P2(x2, y2, z2) be 
two points with vectors p1 and p2, respectively. If 
r and s are positive integers, show that the point 
P lying   r

 ___ r + s   the way from P1 to P2 has vector

p = (  s
 ___ r + s  )p1 + (  r

 ___ r + s  )p2.

 17. In each case, find the point Q:

 (a)   
	

 PQ   =   S     2
 

 
   0   

-3
  T  and P = P(2, -3, 1)

 �(b)   
	

 PQ   =   S  -1
 

 
   4   

  7
   T  and P = P(1, 3, -4)

 18. Let u =   S     2
 

 
   0   

-4
  T  and v =   S     2

 
 

   1   
-2

  T . In each case find x: 

 (a) 2u - ‖v‖v =   3 _ 2  (u - 2x)

 �(b) 3u + 7v = ‖u‖
2(2x + v)

 19. Find all vectors u that are parallel to v =   S     3
 

 
 -2   

  1
   T  

and satisfy ‖u‖ = 3‖v‖.

 20. Let P, Q, and R be the vertices of a parallelogram 
with adjacent sides PQ and PR. In each case, find 
the other vertex S.

 (a) P(3, -1, -1), Q(1, -2, 0), R(1, -1, 2)

 �(b) P(2, 0, -1), Q(-2, 4, 1), R(3, -1, 0)

 21. In each case either prove the statement or give 
an example showing that it is false. 

 (a) The zero vector 0 is the only vector of 
length 0. 

 �(b) If ‖v - w‖ = 0, then v = w. 

 (c) If v = -v, then v = 0. 

 �(d) If ‖v‖ = ‖w‖, then v = w.

 (e) If ‖v‖ = ‖w‖, then v = ±w. 

 �(f ) If v = tw for some scalar t, then v and w 
have the same direction. 

 (g) If v, w, and v + w are nonzero, and v and 
v + w parallel, then v and w are parallel.

 �(h) ‖-5v‖ = -5‖v‖, for all v. 

 (i) If ‖v‖ = ‖2v‖, then v = 0. 

 �(j) ‖v + w‖ = ‖v‖ + ‖w‖, for all v and w.

 22. Find the vector and parametric equations of the 
following lines. 

 (a) The line parallel to   S     2
 

 
 -1   

  0
   T  and passing through 

P(1, -1, 3).

 �(b) The line passing through P(3, -1, 4) and 
Q(1, 0, -1).

 (c) The line passing through P(3, -1, 4) and 
Q(3, -1, 5).

 �(d) The line parallel to   S  1 
 

 1   
1

  T  and passing 

through P(1, 1, 1).
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 (e) The line passing through P(1, 0, -3) and 
parallel to the line with parametric equations 
x = -1 + 2t, y = 2 - t, and z = 3 + 3t.

 �(f ) The line passing through P(2, -1, 1) and 
parallel to the line with parametric equations 
x = 2 - t, y = 1, and z = t.

 (g) The lines through P(1, 0, 1) that meet the 

line with vector equation p =   S  1 
 

 2   
0

  T  + t   S     2
 

 
 -1   

  2
   T  at 

points at distance 3 from P0(1, 2, 0).

 23. In each case, verify that the points P and Q lie 
on the line.

 (a) x = 3 - 4t P(-1, 3, 0), Q(11, 0, 3)
y = 2 + t
z = 1 - t

 �(b) x = 4 - t P(2, 3, -3), Q(-1, 3, -9)
y = 3
z = 1 - 2t

 24. Find the point of intersection (if any) of the 
following pairs of lines.

 (a) x = 3 + t x = 4 + 2s
y = 1 - 2t y = 6 + 3s
z = 3 + 3t z = 1 + s

 �(b) x = 1 - t x = 2s
y = 2 + 2t y = 1 + s
z = -1 + 3t z = 3

 (c)   S  
x
 

 
 y   

z
   T  =   S     3

 
 

 -1   
  2

   T  + t   S     1
 

 
   1   

-1
  T 

    S  
x
 

 
 y   

z
   T  =   S     1

 
 

   1   
-2

  T  + s   S  2 
 

 0   
3

  T 
 �(d)   S  

x
 

 
 y   

z
   T  =   S     4

 
 

 -1   
  5

   T  + t   S  1 
 

 0   
1

  T 
    S  

x
 

 
 y   

z
   T  =   S     2

 
 

 -7   
 12

  T  + s   S     0
 

 
 -2   

  3
   T 

 25. Show that if a line passes through the origin, 
the vectors of points on the line are all scalar 
multiples of some fixed nonzero vector.

 26. Show that every line parallel to the z axis has 
parametric equations x = x0, y = y0, z = t for 
some fixed numbers x0 and y0.

 27. Let d =   S  
a
 

 
 b   

c
   T  be a vector where a, b, and c are all 

nonzero. Show that the equations of the line 
through P0(x0, y0, z0) with direction vector d 
can be written in the form

  
x - x0 ______ a   =   

y - y0 ______ 
b
   =   

z - z0 ______ c  

  This is called the symmetric form of the 
equations.

 28. A parallelogram has sides AB, BC, CD, and DA. 
Given A(1, -1, 2), C(2, 1, 0), and the midpoint 
M(1, 0, -3) of AB, find   

	
 BD .

 �29. Find all points C on the line through A(1, -1, 2) 

and B = (2, 0, 1) such that  ‖  
	

 AC   ‖  = 2 ‖  
	

 BC   ‖ .

 30. Let A, B, C, D, E, and F be the vertices of a 
regular hexagon, taken in order. Show that 
 
	

 AB   +  
	

 AC   +   
	

 AD  +  
	

 AE   +  
	

 AF   = 3  
	

 AD .

 31. (a) Let P1, P2, P3, P4, P5, and P6 be six points 
equally spaced on a circle with centre C. 
Show that

  
	

 CP1  +   
	

 CP2  +   
	

 CP3  +   
	

 CP4  +   
	

 CP5  +   
	

 CP6  = 0.

 �(b) Show that the conclusion in part (a) holds for 
any even set of points evenly spaced on the 
circle.

 (c) Show that the conclusion in part (a) holds for 
three points.

 (d) Do you think it works for any finite set of 
points evenly spaced around the circle?

 32. Consider a quadrilateral with vertices A, B, C, 
and D in order (as shown in the diagram). 

D 

B 

C 

A 

  If the diagonals AC and BD bisect each other, 
show that the quadrilateral is a parallelogram. 
(This is the converse of Example 2.) [Hint: Let E 
be the intersection of the diagonals.  Show that  
	

 AB   =   
	

 DC  by writing  
	

 AB   =  
	

 AE   +  
	

 EB  .]
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 �33. Consider the parallelogram ABCD (see diagram), 
and let E be the midpoint of side AD. 

A 
E 

F 

C 

D 

B 

  Show that BE and AC trisect each other; that is, 
show that the intersection point is one-third of 
the way from E to B and from A to C. [Hint: If 
F is one-third of the way from A to C, show that 
2 

	
 EF   =  

	
 FB   and argue as in Example 2.]

 34. The line from a vertex of a triangle to the 
midpoint of the opposite side is called a median 
of the triangle. If the vertices of a triangle have 

vectors u, v, and w, show that the point on each 
median that is   1 _ 3   the way from the midpoint to 
the vertex has vector   1 _ 3  (u + v + w). Conclude 
that the point C with vector   1 _ 3  (u + v + w) lies 
on all three medians. This point C is called the 
centroid of the triangle.

 35. Given four noncoplanar points in space, the 
figure with these points as vertices is called a 
tetrahedron. The line from a vertex through 
the centroid (see previous exercise) of the 
triangle formed by the remaining vertices is 
called a median of the tetrahedron. If u, v, 
w, and x are the vectors of the four vertices, 
show that the point on a median one-fourth 
the way from the centroid to the vertex has 
vector   1 _ 4  (u + v + w + x). Conclude that the 
four medians are concurrent.

Projections and Planes
Any student of geometry soon realizes that the notion of perpendicular lines is 
fundamental. As an illustration, suppose a point P and a plane are given and it is 
desired to find the point Q that lies in the plane and is closest to P, as shown in 
Figure 1. Clearly, what is required is to find the line through P that is perpendicular 
to the plane and then to obtain Q as the point of intersection of this line with the 
plane. Finding the line perpendicular to the plane requires a way to determine when 
two vectors are perpendicular. This can be done using the idea of the dot product of 
two vectors.

The Dot Product and Angles 

Given vectors v =   S  
x1

 
 

 y1   
z1

   T  and w =   S  
x2

 
 

 y2   
z2

   T  , their dot product v · w is a number defined

v · w = x1x2 + y1 y2 + z1z2 = vTw

Because v · w is a number, it is sometimes called the scalar product of v and w.10

EXAMPLE 1

If v =   S     2
 

 
 -1   

  3
   T  and w =   S     1

 
 

   4   
-1

  T  , then v · w = 2 · 1 + (-1) · 4 + 3 · (-1) = -5.

The next theorem lists several basic properties of the dot product.

10 Similarly, if v =   S  x1   y1
  T  and w =   S  x2   y2

  T  in �2, then v · w = x1x2 + y1y2.

S E C T I O N  4 . 2

P 

Q 

� FIGURE 1
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Theorem 1

Let u, v, and w denote vectors in �3 (or �2).
1. v · w is a real number. 
2. v · w = w · v. 
3. v · 0 = 0 = 0 · v. 
4. v · v = ‖v‖

2. 
5. (kv) · w = k(w · v) = v · (kw) for all scalars k.
6. u · (v ± w) = u · v ± u · w

PROOF

(1), (2), and (3) are easily verified, and (4) comes from Theorem 1 Section 4.1. 
The rest are properties of matrix arithmetic (because w · v = vTw, and are left 
to the reader.

The properties in Theorem 1 enable us to do calculations like

3u · (2v - 3w + 4z) = 6(u · v) - 9(u · w) + 12(u · z)

and such computations will be used without comment below. Here is an example.

EXAMPLE 2

Verify that ‖v - 3w‖
2 = 1 when ‖v‖ = 2, ‖w‖ = 1, and v · w = 2.

Solution ► We apply Theorem 1 several times:

 ‖v - 3w‖
2 = (v - 3w) · (v - 3w)

 = v · (v - 3w) - 3w · (v - 3w)
 = v · v - 3(v · w) - 3(w · v) + 9(w · w)
 = ‖v‖

2 - 6(v · w) + 9‖v‖
2

 = 4 - 12 + 9 = 1.

There is an intrinsic description of the dot product of two nonzero vectors in �3. 
To understand it we require the following result from trigonometry.

Law of Cosines

If a triangle has sides a, b, and c, and if θ is the interior angle opposite c then 

c2 = a2 + b2 - 2ab cos θ.
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PROOF

We prove it when is θ acute, that is 0 ≤ θ <   π __ 2  ; the obtuse case is similar. In 
Figure 2 we have p = a sin θ and q = a cos θ. Hence Pythagoras’ theorem gives

 c2 = p2 + (b - q)2 = a2 sin2 θ + (b - a cos θ)2

  = a2(sin2 θ + cos2 θ) + b2 - 2ab cos θ.

The law of cosines follows because sin2 θ + cos2 θ = 1 for any angle θ.

Note that the law of cosines reduces to Pythagoras’ theorem if θ is a right angle 
(because cos   π __ 2   = 0).

Now let v and w be nonzero vectors positioned with a common tail as in 
Figure 3. Then they determine a unique angle θ in the range

0 ≤ θ ≤ π

This angle θ will be called the angle between v and w. Figure 2 illustrates when θ 
is acute (less than   π __ 2  ) and obtuse (greater than   π __ 2  ). Clearly v and w are parallel if θ is 
either 0 or π. Note that we do not define the angle between v and w if one of these 
vectors is 0.

The next result gives an easy way to compute the angle between two nonzero 
vectors using the dot product.

Theorem 2

Let v and w be nonzero vectors. If θ is the angle between v and w, then 

v · w = ‖v‖‖w‖cos θ

PROOF

We calculate ‖v - w‖
2 in two ways. First apply the law of cosines to the triangle 

in Figure 4 to obtain:

‖v - w‖
2 = ‖v‖

2 + ‖w‖
2 - 2‖v‖‖w‖cos θ

On the other hand, we use Theorem 1:

 ‖v - w‖
2 = (v - w) · (v - w)

 = v · v - v · w - w · v + w · w
 = ‖v‖

2 - 2(v · w) + ‖w‖
2

Comparing these we see that - 2‖v‖‖w‖cos θ = -2(v · w), and the result follows.

If v and w are nonzero vectors, Theorem 2 gives an intrinsic description of v · w 
because ‖v‖, ‖w‖, and the angle θ between v and w do not depend on the choice of 
coordinate system. Moreover, since ‖v‖ and ‖v‖ are nonzero (v and w are nonzero 
vectors), it gives a formula for the cosine of the angle θ:

 cos θ =   
v · w _______ 

‖v‖‖w‖
   (∗)

Since 0 ≤ θ ≤ π, this can be used to find θ.

b
b − q

a c

q

p

θ

� FIGURE 2

θ obtuse

θ acute

θ

θ

v

w

v

w

� FIGURE 3

θ

v

w

v w− 

� FIGURE 4
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EXAMPLE 3

Compute the angle between u =   S  -1
 

 
   1   

  2
   T  and v =   S     2

 
 

   1   
-1

  T .
Solution ► Compute cos θ =   

v · w _______ 
‖v‖‖w‖

   =   
-2 + 1 - 2  ___________ 

 √ 

__

 6    √ 

__

 6  
   = -  

1 __ 
2

  . Now recall that 

cos θ and sin θ are defined so that (cos θ, sin θ) is the point on the unit circle 
determined by the angle θ (drawn counterclockwise, starting from the positive 
x axis). In the present case, we know that cos θ = -  1 _ 2   and that 0 ≤ θ ≤ π. 
Because cos   π __ 3   =   1 _ 2  , it follows that θ =   2π

 __ 3   (see the diagram).

If v and w are nonzero, (∗) shows that cos θ has the same sign as v · w, so 

 v · w > 0 if and only if θ is acute (0 ≤ θ <   π __ 2  )
 v · w < 0 if and only if θ is obtuse (  π __ 2   < θ ≤ 0)
 v · w = 0 if and only if θ =   π __ 2  

In this last case, the (nonzero) vectors are perpendicular. The following terminology 
is used in linear algebra: 

Two vectors v and w are said to be orthogonal if v = 0 or w = 0 or the angle between 
them is   π 

__ 2  .

Since v · w = 0 if either v = 0 or w = 0, we have the following theorem:

Theorem 3

Two vectors v and w are orthogonal if and only if v · w = 0.

EXAMPLE 4

Show that the points P(3, -1, 1), Q(4, 1, 4), and R(6, 0, 4) are the vertices of a 
right triangle.

Solution ► The vectors along the sides of the triangle are

 
	

 PQ   =   S  1 
 

 2   
3

  T  ,  
	

 PR   =   S  3 
 

 1   
3

  T  , and  
	

 QR  =   S     2
 

 
 -1   

  0
   T 

Evidently  
	

 PQ   ·  
	

 QR  = 2 - 2 + 0 = 0, so  
	

 PQ   and  
	

 QR  are orthogonal vectors. 
This means sides PQ and QR are perpendicular—that is, the angle at Q is a 
right angle.

Example 5 demonstrates how the dot product can be used to verify geometrical 
theorems involving perpendicular lines.

y

xO

2
3
�

−1
2

( , )−1
2

3
2

Definition 4.5
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EXAMPLE 5

A parallelogram with sides of equal length is called a rhombus. Show that the 
diagonals of a rhombus are perpendicular.

Solution ► Let u and v denote vectors along two adjacent sides of a rhombus, as 
shown in the diagram. Then the diagonals are u - v and u + v, and we compute

 (u - v) · (u + v) = u · (u + v) - v · (u + v)
 = u · u + u · v - v · u - v · v
 = ‖u‖

2 - ‖v‖
2

 = 0

because ‖u‖ = ‖v‖ (it is a rhombus). Hence u - v and u + v are orthogonal.

Projections
In applications of vectors, it is frequently useful to write a vector as the sum of two 
orthogonal vectors. Here is an example.

EXAMPLE 6

Suppose a ten-kilogram block is placed on a flat surface inclined 30° to the 
horizontal as in the diagram. Neglecting friction, how much force is required 
to keep the block from sliding down the surface?

Solution ► Let w denote the weight (force due to gravity) exerted on the block. 
Then ‖w‖ = 10 kilograms and the direction of w is vertically down as in the 
diagram. The idea is to write w as a sum w = w1 + w2 where w1 is parallel to 
the inclined surface and w2 is perpendicular to the surface. Since there is no 
friction, the force required is -w1 because the force w2 has no effect parallel to 
the surface. As the angle between w and w2 is 30° in the diagram, we have 

  
‖w1‖

 _____ 
‖w‖

   = sin 30° =   1 _ 2  . Hence ‖w1‖ =   1 _ 2  ‖w‖ =   1 _ 2  10 = 5. Thus the required 

force has a magnitude of 5 kilograms weight directed up the surface.

If a nonzero vector d is specified, the key idea in Example 6 is to be able to write 
an arbitrary vector u as a sum of two vectors,

u = u1 + u2

where u1 is parallel to d and u2 = u - u1 is orthogonal to d. Suppose that u and 
d ≠ 0 emanate from a common tail Q (see Figure 5). Let P be the tip of u, and let 
P1 denote the foot of the perpendicular from P to the line through Q parallel to d. 
Then u1 =   

	
 QP1  has the required properties:

1. u1 is parallel to d.
2. u2 = u - u1 is orthogonal to d.
3. u = u1 + u2.

The vector u1 =   
	

 QP1  in Figure 5 is called the projection of u on d. It is denoted

u1 = projd u

v

u
u − v

u + v

30° 

30° 
w

w1 

w2 

P

P1

Q
(a)

P1

(b)

Q

P

u1

u1

u

u

d

d

u− 1u

u− 1u

� FIGURE 5
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In Figure 5(a) the vector u1 = projd u has the same direction as d; however, u1
and d have opposite directions if the angle between u and d is greater than   π __ 2  . 
(Figure 5(b)). Note that the projection u1 = projd u is zero if and only if u and d 
are orthogonal.

Calculating the projection of u on d ≠ 0 is remarkably easy.     

Theorem 4

Let u and d ≠ 0 be vectors.
1. The projection of u on d is given by projd u =   u · d _____ 

‖d‖
2
   d.

2. The vector u - projd u is orthogonal to d.

PROOF

The vector u1 = projd u is parallel to d and so has the form u1 = td for some 
scalar t. The requirement that u - u1 and d are orthogonal determines t. In fact, 
it means that (u - u1) · d = 0 by Theorem 3. If u1 = td is substituted here, the 
condition is

0 = (u - td) · d = u · d - t(d · d) = u · d - t‖d‖
2

It follows that t =   u · d _____ 
‖d‖

2
  , where the assumption that d ≠ 0 guarantees that 

‖d‖
2 ≠ 0.

EXAMPLE 7

Find the projection of u =   S     2
 

 
 -3   

  1
   T  on d =   S     1

 
 

 -1   
  3

   T  and express u = u1 + u2 where 

u1 is parallel to d and u2 is orthogonal to d.

Solution ► The projection u1 of u on d is

u1 = projd u =   u · d _____ 
‖d‖

2
   d =   2 + 3 + 3  ______________  

12 + (-1)2 + 32
    S     1

 
 

 -1   
  3

   T  =   8 __ 11    S     1
 

 
 -1   

  3
   T 

Hence u2 = u - u1 =   1 __ 11     S     14
 

  
 -25    

-13
  T  , and this is orthogonal to d by Theorem 4 

(alternatively, observe that d · u2 = 0). Since u = u1 + u2, we are done.

EXAMPLE 8

Find the shortest distance (see diagram) from the point P(1, 3, -2) to the line 

through P0(2, 0, -1) with direction vector d =   S     1
 

 
 -1   

  0
   T . Also find the point Q that 

lies on the line and is closest to P.

P(1, 3, −2) 

P 0 (2, 0, −1) 

Q 
u

u1 

u u− 1 

d
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Solution ► Let u =   S     1
 

 
   3   

-2
  T  -   S     2

 
 

   0   
-1

  T  =   S  -1
 

 
   3   

-1
  T  denote the vector from P0 to P, and let 

u1 denote the projection of u on d. Thus

u1 =   u · d _____ 
‖d‖

2
   d =   -1 - 3 + 0  ______________  

12 + (-1)2 + 02
   d = -2d =   S  -2

 
 

   2   
  0

   T 
by Theorem 4. We see geometrically that the point Q on the line is closest to 
P, so the distance is

 ‖  
	

 QP   ‖  = ‖u - u1‖ =  ‖   S     1
 

 
   1   

-1
  T  ‖  =  √ 

__

 3  

To find the coordinates of Q, let p0 and q denote the vectors of P0 and Q, 

respectively. Then p0 =   S     2
 

 
   0   

-1
  T  and q = p0 + u1 =   S     0

 
 

   2   
-1

  T . 
Hence Q(0, 2, -1) is the required point. It can be checked that the distance 
from Q to P is  √ 

__

 3  , as expected.

Planes
It is evident geometrically that among all planes that are perpendicular to a given 
straight line there is exactly one containing any given point. This fact can be used to 
give a very simple description of a plane. To do this, it is necessary to introduce the 
following notion: 

A nonzero vector n is called a normal for a plane if it is orthogonal to every vector in 
the plane.

For example, the coordinate vector k is a normal for the x-y plane. 
Given a point P0 = P0(x0, y0, z0) and a nonzero vector n, there is a unique plane 

through P0 with normal n, shaded in Figure 6. A point P = P(x, y, z) lies on this 
plane if and only if the vector   

	
 P0P  is orthogonal to n—that is, if and only if 

n ·   
	

 P0P  = 0. Because   
	

 P0P  =   S  
x - x0

 
  

 y - y0    
z - z0

   T  this gives the following result:

Scalar Equation of a Plane

The plane through P0(x0, y0, z0) with normal n =   S  
a
 

 
 b   

c
   T  ≠ 0 as a normal vector is given by 

a(x - x0) + b( y - y0) + c(z - z0) = 0

In other words, a point P(x, y, z) is on this plane if and only if x, y, and z satisfy this 
equation.

Definition 4.7

P 0 

P n

� FIGURE 6
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EXAMPLE 9

Find an equation of the plane through P0(1, -1, 3) with n =   S     3
 

 
 -1   

  2
   T  as normal.

Solution ► Here the general scalar equation becomes 

3(x - 1) - ( y + 1) + 2(z - 3) = 0

This simplifies to 3x - y + 2z = 10.

If we write d = ax0 + by0 + cz0, the scalar equation shows that every plane with 

normal n =   S  
a
 

 
 b   

c
   T  has a linear equation of the form

ax + by + cz = d (∗)

for some constant d. Conversely, the graph of this equation is a plane with n =   S  
a
 

 
 b   

c
   T 

as a normal vector (assuming that a, b, and c are not all zero).

EXAMPLE 10

Find an equation of the plane through P0(3, -1, 2) that is parallel to the plane 
with equation 2x - 3y = 6.

Solution ► The plane with equation 2x - 3y = 6 has normal n =   S     2
 

 
 -3   

  0
   T . Because 

the two planes are parallel, n serves as a normal for the plane we seek, so the 
equation is 2x - 3y = d for some d by equation (∗). Insisting that P0(3, -1, 2) 
lies on the plane determines d; that is, d = 2 · 3 - 3(-1) = 9. Hence, the 
equation is 2x - 3y = 9.

Consider points P0(x0, y0, z0) and P(x, y, z) with vectors p0 =   S  
x0

 
 

 y0   
z0

   T  and p =   S  
x
 

 
 y   

z
   T . 

Given a nonzero vector n, the scalar equation of the plane through P0(x0, y0, z0) with 

normal n =   S  
a
 

 
 b   

c
   T  takes the vector form:

Vector Equation of a Plane

The plane with normal n ≠ 0 through the point with vector p0 is given by 

n · (p - p0) = 0

In other words, the point with vector p is on the plane if and only if p satisfies this condition.

Moreover, equation (∗) translates as follows: 

Every plane with normal n has vector equation n · p = d for some number d.

This is useful in the second solution of Example 11.
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EXAMPLE 11

Find the shortest distance from the point P(2, 1, -3) to the plane with equation 
3x - y + 4z = 1. Also find the point Q on this plane closest to P.

Solution 1 ► The plane in question has normal n =   S     3
 

 
 -1   

  4
   T . Choose any point 

P0 on the plane—say P0(0, -1, 0)—and let Q(x, y, z) be the point on the plane 

closest to P (see the diagram). The vector from P0 to P is u =   S     2
 

 
   2   

-3
  T . Now erect 

n with its tail at P0. Then  
	

 QP   = u1 and u1 is the projection of u on n:

u1 =   n · u _____ 
‖n‖

2
   n =   -8 __ 26    S     3

 
 

 -1   
  4

   T  =   -4 __ 13    S     3
 

 
 -1   

  4
   T 

Hence the distance is  ‖  
	

 QP   ‖  = ‖u1‖ =   4  √ 

___

 26  
 ____ 13  . To calculate the point Q, let 

q =   S  
x
 

 
 y   

z
   T  and p0 =   S     0

 
 

 -1   
  0

   T  be the vectors of Q and P0. Then 

q = p0 + u - u1 =   S     0
 

 
 -1   

  0
   T  +   S     2

 
 

   2   
-3

  T  +   4 __ 13     S     3
 

 
 -1   

  4
   T  =   S   

  38 __ 13  

 
 

   9 __ 13    
 

  -23 ___ 13  

  T 
This gives the coordinates of Q(  38 __ 13  ,   

9 __ 13  ,   
-23 ___ 13  ).

Solution 2 ► Let q =   S  
x
 

 
 y   

z
   T  and p =   S     2

 
 

   1   
-3

  T  be the vectors of Q and P. Then Q is on 

the line through P with direction vector n, so q = p + tn for some scalar t. In 
addition, Q lies on the plane, so n · q = 1. This determines t:

1 = n · q = n · (p + tn) = n · p + t‖n‖
2 = -7 + t(26)

This gives t =   8 __ 26   =   4 __ 13  , so

  S  
x
 

 
 y   

z
   T  = q = p + tn =   S     2

 
 

   1   
-3

  T  +   4 __ 13    S     3
 

 
 -1   

  4
   T  =   1 __ 13    S     38

 
  

    9    
-23

  T 
as before. This determines Q (in the diagram), and the reader can verify that 

the required distance is  ‖  
	

 QP   ‖  =   4 __ 13   √ 

___

 26  , as before.

The Cross Product
If P, Q, and R are three distinct points in �3 that are not all on some line, it is clear 
geometrically that there is a unique plane containing all three. The vectors  

	
 PQ   and  

	
 PR   both lie in this plane, so finding a normal amounts to finding a nonzero vector 

orthogonal to both  
	

 PQ   and  
	

 PR  . The cross product provides a systematic way to 
do this. 

P(2, 1, −3) 

P0(0, −1, 0) Q(x, y, z) 
u

u1 

n
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Given vectors v1 =   S  
x1

 
 

 y1   
z1

   T  and v2 =   S  
x2

 
 

 y2   
z2

   T  , define the cross product v1 × v2 by

v1 × v2 =   S   
y1z2 - z1y2

  
     

  -(x1z2 - z1x2)         
x1 y2 - y1x2

   T  .
(Because it is a vector, v1 × v2 is often called the vector product.) There is an easy 
way to remember this definition using the coordinate vectors: 

i =   S  1 
 

 0   
0

  T  , j =   S  0 
 

 1   
0

  T  , and k =   S  0 
 

 0   
1

  T 
They are vectors of length 1 pointing along the positive x, y, and z axes, 
respectively, as in Figure 7. The reason for the name is that any vector can be 
written as 

  S  
x
 

 
 y   

z
   T  = xi + yj + zk.

With this, the cross product can be described as follows:

Determinant Form of the Cross Product

If v1 =   S  
x1

 
 

 y1   
z1

   T  and v2 =   S  
x2

 
 

 y2   
z2

   T  are two vectors, then

v1 × v2 = det 
i x

j y

k z

x

y

z

1 2

1 2

1 2

 =  |   
y1 y2           z1 z2

   |  i -  |   
x1 x2           z1 z2

   |  j +  |   
x1 x2          y1 y2

   |  k

where the determinant is expanded along the first column.

EXAMPLE 12

If v =   S     2
 

 
 -1   

  4
   T  and w =   S  1 

 
 3   

7
  T  , then 

 v1 × v2 = det 
i

j

k

−

2 1

1 3

4 7

 =  |  -1 3    
4 7

  |  i -  |  2 1    
4 7

  |  j +  |   2 1    
-1 3

  |  k

  = -19i - 10j + 7k

  =   S  -19
 

  
 -10    

   7
   T 

Observe that v × w is orthogonal to both v and w in Example 12. This holds in 
general as can be verified directly by computing v · (v × w) and w · (v × w), and 
is recorded as the first part of the following theorem. It will follow from a more 

Definition 4.8

z

x

O 

y

ji

k

� FIGURE 7
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general result which, together with the second part, will be proved in Section 4.3 
where a more detailed study of the cross product will be undertaken. 

Theorem 5

Let v and w be vectors in �3.
1. v × w is a vector orthogonal to both v and w. 
2. If v and w are nonzero, then v × w = 0 if and only if v and w are parallel.

It is interesting to contrast Theorem 5(2) with the assertion (in Theorem 3) that

v · w = 0 if and only if v and w are orthogonal.

EXAMPLE 13

Find the equation of the plane through P(1, 3, -2), Q(1, 1, 5), and R(2, -2, 3).

Solution ► The vectors  
	

 PQ   =   S     0
 

 
 -2   

  7
   T  and  

	
 PR   =   S     1

 
 

 -5   
  5

   T  lie in the plane, so

 
	

 PQ   ×  
	

 PR   = det 
i

j

k

− −
0 1

2 5

7 5

 = 25i + 7j + 2k =   S  25
 

 
  7   

 2
   T 

is a normal for the plane (being orthogonal to both  
	

 PQ   and  
	

 PR  ). Hence the 
plane has equation 

25x + 7y + 2z = d for some number d.

Since P(1, 3, -2) lies in the plane we have 25 · 1 + 7 · 3 + 2(-2) = d. Hence 
d = 42 and the equation is 25x + 7y + 2z = 42. Incidentally, the same 
equation is obtained (verify) if  

	
 QP   and  

	
 QR , or  

	
 RP   and  

	
 RQ , are used as the 

vectors in the plane.

EXAMPLE 14

Find the shortest distance between the nonparallel lines 

  S  
x
 

 
 y   

z
   T  =   S     1

 
 

   0   
-1

  T  + t   S  2 
 

 0   
1

  T  and   S  
x
 

 
 y   

z
   T  =   S  3 

 
 1   

0
  T  + s   S     1

 
 

   1   
-1

  T 
Then find the points A and B on the lines that are closest together.

Solution ► Direction vectors for the two lines are d1 =   S  2 
 

 0   
1

  T  and d2 =   S     1
 

 
   1   

-1
  T  , so 

n = d1 × d2 = det 

i

j

k −
0

1

2

1

1

1

 =   S  -1
 

 
   3   

  2
   T 
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is perpendicular to both lines. Consider the plane shaded in the diagram 
containing the first line with n as normal. This plane contains P1(1, 0, -1) 
and is parallel to the second line. Because P2(3, 1, 0) is on the second line, the 
distance in question is just the shortest distance between P2(3, 1, 0) and this 

plane. The vector u from P1 to P2 is u =   
	

 P1P2  =   S  2 
 

 1   
1

  T  and so, as in Example 11, 

the distance is the length of the projection of u on n.

distance =  ‖   u · n _____ 
‖n‖

2
   n ‖  =   

|u · n|
 ______ 

‖n‖
   =   3 ___ 

 √ 

___

 14  
   =   3 √ 

___

 14  
 ____ 14  

Note that it is necessary that n = d1 × d2 be nonzero for this calculation to be 
possible. As is shown later (Theorem 4 Section 4.3), this is guaranteed by the 
fact that d1 and d2 are not parallel.

 The points A and B have coordinates A(1 + 2t, 0, t - 1) and 

B(3 + s, 1 + s, -s) for some s and t, so  
	

 AB   =   S  2 + s - 2t
 

    
 1 + s      

1 - s - t
   T . This vector is 

orthogonal to both d1 and d2, and the conditions  
	

 AB   · d1 = 0 and  
	

 AB   · d2 = 0 
give equations 5t - s = 5 and t - 3s = 2. The solution is s =   -5 __ 14   and t =   13 __ 14  , so 

the points are A Q   40 __ 14  , 0,   -1 __ 14   R  and B Q   37 __ 14  ,   
9 __ 14  ,   

5 __ 14   R . We have  ‖  
	

 AB   ‖  =   3 √ 

___

 14  
 ____ 14  , as before.

E X E R C I S E S  4 . 2

 1. Compute u · v where:

 (a) u =   S     2
 

 
 -1   

  3
   T  , v =   S  -1

 
 

   1   
  1

   T 
 �(b) u =   S     1

 
 

   2   
-1

  T  , v = u

 (c) u =   S     1
 

 
   1   

-3
  T  , v =   S     2

 
 

 -1   
  1

   T 
 �(d) u =   S     3

 
 

 -1   
  5

   T  , v =   S     6
 

 
 -7   

-5
  T 

 (e) u =   S  
x
 

 
 y   

z
   T  , v =   S  

a
 

 
 b   

c
   T 

 �(f ) u =   S  
a
 

 
 b   

c
   T  , v = 0

 2. Find the angle between the following pairs of 
vectors.

 (a) u =   S  1 
 

 0   
3

  T  , v =   S  2 
 

 0   
1

  T  �(b) u =   S     3
 

 
 -1   

  0
   T  , v =   S  -6

 
 

   2   
  0

   T 
 (c) u =   S     7

 
 

 -1   
  3

   T  , v =   S     1
 

 
   4   

-1
  T 

 �(d) u =   S     2
 

 
   1   

-1
  T  , v =   S  3 

 
 6   

3
  T  (e) u =   S     1

 
 

 -1   
  0

   T  , v =   S  0 
 

 1   
1

  T 
 �(f ) u =   S  0 

 
 3   

4
  T  , v =   S  5 √ 

__

 2  
 

  
 -7    

-1
   T 

 3. Find all real numbers x such that:

 (a)   S     2
 

 
 -1   

  3
   T  and   S   

  x
 

 
 -2   

  1
   T  are orthogonal.

 �(b)   S     2
 

 
 -1   

  1
   T  and   S  1 

 
 x   

2
  T  are at an angle of   π __ 3  .

P2

B

P1
A

u

n
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 4. Find all vectors v =   S  
x
 

 
 y   

z
   T  orthogonal to both:

 (a) u1 =   S  -1
 

 
 -3   

  2
   T  , u2 =   S  0 

 
 1   

1
  T 

 �(b) u1 =   S     3
 

 
 -1   

  2
   T  , u2 =   S  2 

 
 0   

1
  T 

 (c) u1 =   S     2
 

 
   0   

-1
  T  , u2 =   S  -4

 
 

   0   
  2

   T 
 �(d) u1 =   S     2

 
 

 -1   
  3

   T  , u2 =   S  0 
 

 0   
0

  T 
 5. Find two orthogonal vectors that are both 

orthogonal to v =   S  1 
 

 2   
0

  T .
 6. Consider the triangle with vertices P(2, 0, -3), 

Q(5, -2, 1), and R(7, 5, 3).

 (a) Show that it is a right-angled triangle.

 �(b) Find the lengths of the three sides and verify 
the Pythagorean theorem.

 7. Show that the triangle with vertices A(4, -7, 9), 
B(6, 4, 4), and C(7, 10, -6) is not a right-angled 
triangle.

 8. Find the three internal angles of the triangle 
with vertices:

 (a) A(3, 1, -2), B(3, 0, -1), and C(5, 2, -1)

 �(b) A(3, 1, -2), B(5, 2, -1), and C(4, 3, -3)

 9. Show that the line through P0(3, 1, 4) and 
P1(2, 1, 3) is perpendicular to the line through 
P2(1, -1, 2) and P3(0, 5, 3).

 10. In each case, compute the projection of u on v.

 (a) u =   S  5 
 

 7   
1

  T  , v =   S     2
 

 
 -1   

  3
   T 

 �(b) u =   S     3
 

 
 -2   

  1
   T  , v =   S  4 

 
 1   

1
  T 

 c) u =   S     1
 

 
 -1   

  2
   T  , v =   S     3

 
 

 -1   
  1

   T 
 �(d) u =   S     3

 
 

 -2   
-1

  T  , v =   S  -6
 

 
   4   

  2
   T 

 11. In each case, write u = u1 + u2, where u1 is 
parallel to v and u2 is orthogonal to v.

 (a) u =   S     2
 

 
 -1   

  1
   T  , v =   S     1

 
 

 -1   
  3

   T 
 �(b) u =   S  3 

 
 1   

0
  T  , v =   S  -2

 
 

   1   
  4

   T 
 (c) u =   S     2

 
 

 -1   
  0

   T  , v =   S     3
 

 
   1   

-1
  T 

 �(d) u =   S     3
 

 
 -2   

  1
   T  , v =   S  -6

 
 

   4   
-1

  T 
 12. Calculate the distance from the point P to the 

line in each case and find the point Q on the line 
closest to P.

 (a) P(3, 2, -1) line:   S  
x
 

 
 y   

z
   T  =   S  2 

 
 1   

3
  T  + t   S     3

 
 

 -1   
-2

  T 
 �(b) P(1, -1, 3) line:   S  

x
 

 
 y   

z
   T  =   S     1

 
 

   0   
-1

  T  + t   S  3 
 

 1   
4

  T 
 13. Compute u × v where:

 (a) u =   S  1 
 

 2   
3

  T  , v =   S  1 
 

 1   
2

  T 
 �(b) u =   S     3

 
 

 -1   
  0

   T  , v =   S  -6
 

 
   2   

  0
   T 

 (c) u =   S     3
 

 
 -2   

  1
   T  , v =   S     1

 
 

   1   
-1

  T 
 �(d) u =   S     2

 
 

   0   
-1

  T  , v =   S  1 
 

 4   
7

  T 
 14. Find an equation of each of the following planes.

 (a) Passing through A(2, 1, 3), B(3, -1, 5), and 
C(1, 2, -3).

 �(b) Passing through A(1, -1, 6), B(0, 0, 1), and 
C(4, 7, -11).

 (c) Passing through P(2, -3, 5) and parallel to 
the plane with equation 3x - 2y - z = 0.

 �(d) Passing through P(3, 0, -1) and parallel to 
the plane with equation 2x - y + z = 3.
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 (e) Containing P(3, 0, -1) and the line 

    S  
x
 

 
 y   

z
   T  =   S  0 

 
 0   

2
  T  + t   S  1 

 
 0   

1
  T .

 �(f ) Containing P(2, 1, 0) and the line 

    S  
x
 

 
 y   

z
   T  =   S     3

 
 

 -1   
  2

   T  + t   S     1
 

 
   0   

-1
  T .

 (g) Containing the lines 

    S  
x
 

 
 y   

z
   T  =   S     1

 
 

 -1   
  2

   T  + t   S  1 
 

 1   
1

  T  and   S  
x
 

 
 y   

z
   T  =   S  0 

 
 0   

2
  T  + t   S     1

 
 

 -1   
  0

   T .
 �(h) Containing the lines   S  

x
 

 
 y   

z
   T  =   S  3 

 
 1   

0
  T  + t   S     1

 
 

 -1   
  3

   T  
  and   S  

x
 

 
 y   

z
   T  =   S     0

 
 

 -2   
  5

   T  + t   S     2
 

 
   1   

-1
  T .

 (i) Each point of which is equidistant from 
P(2, -1, 3) and Q(1, 1, -1).

 �(j) Each point of which is equidistant from 
P(0, 1, -1) and Q(2, -1, -3).

 15. In each case, find a vector equation of the line.

 (a) Passing through P(3, -1, 4) and 
perpendicular to the plane 3x - 2y - z = 0.

 �(b) Passing through P(2, -1, 3) and 
perpendicular to the plane 2x + y = 1.

 (c) Passing through P(0, 0, 0) and perpendicular 
to the lines 

    S  
x
 

 
 y   

z
   T  =   S  1 

 
 1   

0
  T  + t   S     2

 
 

   0   
-1

  T  and   S  
x
 

 
 y   

z
   T  =   S     2

 
 

   1   
-3

  T  + t   S     1
 

 
 -1   

  5
   T .

 �(d) Passing through P(1, 1, -1), and 
perpendicular to the lines 

    S  
x
 

 
 y   

z
   T  =   S  2 

 
 0   

1
  T  + t   S     1

 
 

   1   
-2

  T  and   S  
x
 

 
 y   

z
   T  =   S     5

 
 

   5   
-2

  T  + t   S     1
 

 
   2   

-3
  T .

 (e) Passing through P(2, 1, -1), intersecting 

  the line   S  
x
 

 
 y   

z
   T  =   S     1

 
 

   2   
-1

  T  + t   S  3 
 

 0   
1

  T  , and 

  perpendicular to that line.

 �(f ) Passing through P(1, 1, 2), intersecting the line 

    S  
x
 

 
 y   

z
   T  =   S  2 

 
 1   

0
  T  + t   S  1 

 
 1   

1
  T  , and perpendicular 

  to that line.

 16. In each case, find the shortest distance from the 
point P to the plane and find the point Q on the 
plane closest to P.

 (a) P(2, 3, 0); plane with equation 5x + y + z = 1.

 �(b) P(3, 1, -1); plane with equation 
2x + y - z = 6.

 17. (a) Does the line through P(1, 2, -3) with 

direction vector d =   S     1
 

 
   2   

-3
  T  lie in the plane 

2x - y - z = 3? Explain.

 �(b) Does the plane through P(4, 0, 5), Q(2, 2, 1), 
and R(1, -1, 2) pass through the origin? 
Explain.

 18. Show that every plane containing P(1, 2, -1) and 
Q(2, 0, 1) must also contain R(-1, 6, -5).

 19. Find the equations of the line of intersection of 
the following planes.

 (a) 2x - 3y + 2z = 5 and x + 2y - z = 4.

 �(b) 3x + y - 2z = 1 and x + y + z = 5.

 20. In each case, find all points of intersection of the 

given plane and the line   S  
x
 

 
 y   

z
   T  =   S     1

 
 

 -2   
  3

   T  + t   S     2
 

 
   5   

-1
  T .

 (a) x - 3y + 2z = 4 �(b) 2x - y - z = 5

 (c) 3x - y + z = 8 �(d) -x - 4y - 3z = 6

 21. Find the equation of all planes:

 (a) Perpendicular to the line   S  
x
 

 
 y   

z
   T  =   S     2

 
 

 -1   
  3

   T  + t   S  2 
 

 1   
3

  T .
 �(b) Perpendicular to the line   S  

x
 

 
 y   

z
   T  =   S     1

 
 

   0   
-1

  T  + t   S  3 
 

 0   
2

  T .
 (c) Containing the origin.

 �(d) Containing P(3, 2, -4).

 (e) Containing P(1, 1, -1) and Q(0, 1, 1).

 �(f ) Containing P(2, -1, 1) and Q(1, 0, 0).

 (g) Containing the line   S  
x
 

 
 y   

z
   T  =   S  2 

 
 1   

0
  T  + t   S     1

 
 

 -1   
  0

   T .
 �(h) Containing the line   S  

x
 

 
 y   

z
   T  =   S  3 

 
 0   

2
  T  + t   S     1

 
 

 -2   
-1

  T .
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 22. If a plane contains two distinct points P1 and 
P2, show that it contains every point on the line 
through P1 and P2.

 23. Find the shortest distance between the following 
pairs of parallel lines.

 (a)   S  
x
 

 
 y   

z
   T  =   S     2

 
 

 -1   
  3

   T  + t   S     1
 

 
 -1   

  4
   T ;   S  x 

 
 y   

z
   T  =   S  1 

 
 0   

1
  T  + t   S     1

 
 

 -1   
  4

   T 
 �(b)   S  

x
 

 
 y   

z
   T  =   S  3 

 
 0   

2
  T  + t   S  3 

 
 1   

0
  T ;   S  x 

 
 y   

z
   T  =   S  -1

 
 

   2   
  2

   T  + t   S  3 
 

 1   
0

  T 
 24. Find the shortest distance between the following 

pairs of nonparallel lines and find the points on 
the lines that are closest together.

 (a)   S  
x
 

 
 y   

z
   T  =   S  3 

 
 0   

1
  T  + s   S     2

 
 

   1   
-3

  T ;   S  
x
 

 
 y   

z
   T  =   S     1

 
 

   1   
-1

  T  + t   S  1 
 

 0   
1

  T 
 �(b)   S  

x
 

 
 y   

z
   T  =   S     1

 
 

 -1   
  0

   T  + s   S  1 
 

 1   
1

  T ;   S  
x
 

 
 y   

z
   T  =   S     2

 
 

 -1   
  3

   T  + t   S  3 
 

 1   
0

  T 
 (c)   S  

x
 

 
 y   

z
   T  =   S     3

 
 

   1   
-1

  T  + s   S     1
 

 
   1   

-1
  T ;   S  

x
 

 
 y   

z
   T  =   S  1 

 
 2   

0
  T  + t   S  1 

 
 0   

2
  T 

 �(d)   S  
x
 

 
 y   

z
   T  =   S  1 

 
 2   

3
  T  + s   S     2

 
 

   0   
-1

  T ;   S  
x
 

 
 y   

z
   T  =   S     3

 
 

 -1   
  0

   T  + t   S  1 
 

 1   
0

  T 
 25. Show that two lines in the plane with slopes m1 

and m2 are perpendicular if and only if 
m1m2 = -1. [Hint: Example 11 Section 4.1.]

 26. (a) Show that, of the four diagonals of a cube, 
no pair is perpendicular.

 �(b) Show that each diagonal is perpendicular to 
the face diagonals it does not meet.

 27. Given a rectangular solid with sides of lengths 1, 
1, and  √ 

__

 2  , find the angle between a diagonal and 
one of the longest sides.

 �28. Consider a rectangular solid with sides of lengths 
a, b, and c. Show that it has two orthogonal 
diagonals if and only if the sum of two of a2, b2, 
and c2 equals the third.

 29. Let A, B, and C(2, -1, 1) be the vertices of a 

triangle where  
	

 AB   is parallel to   S     1
 

 
 -1   

  1
   T  ,  	 AC   is 

parallel to   S     2
 

 
   0   

-1
  T  , and angle C = 90°. Find the 

equation of the line through B and C.

 30. If the diagonals of a parallelogram have equal 
length, show that the parallelogram is a 
rectangle.

 31. Given v =   S  
x
 

 
 y   

z
   T  in component form, show that the 

projections of v on i, j, and k are xi, yj, and zk, 
respectively.

 32. (a) Can u · v = -7 if ‖u‖ = 3 and ‖v‖ = 2? 
Defend your answer.

 (b) Find u · v if u =   S     2
 

 
 -1   

  2
   T  , ‖v‖ = 6, and the 

angle between u and v is   2π
 __ 3  .

 33. Show that (u + v) · (u - v) = ‖u‖
2 - ‖v‖

2 
for any vectors u and v.

 34. (a) Show that 
‖u + v‖

2 + ‖u - v‖
2 = 2(‖u‖

2 + ‖v‖
2) 

for any vectors u and v.

 �(b) What does this say about parallelograms?

 35. Show that if the diagonals of a parallelogram 
are perpendicular, it is necessarily a rhombus. 
[Hint: Example 5.]

 36. Let A and B be the end points of a diameter of a 
circle (see the diagram). If C is any point on the 
circle, show that AC and BC are perpendicular. 
[Hint: Express  

	
 AC   and  

	
 BC   in terms of u =   

	
 OA  

and v =   
	

 OC , where O is the centre.]

C 

B A 
O 

 37. Show that u and v are orthogonal, if and only if
‖u + v‖

2 = ‖u‖
2 + ‖v‖

2.

 38. Let u, v, and w be pairwise orthogonal vectors.

 (a) Show that 
‖u + v + w‖

2 = ‖u‖
2 + ‖v‖

2 + ‖w‖
2.

 �(b) If u, v, and w are all the same length, show 
that they all make the same angle with 
u + v + w.
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 39. (a) Show that n =   S  a   
b
  T  is orthogonal to every 

vector along the line ax + by + c = 0.

 �(b) Show that the shortest distance from 

  P0(x0, y0) to the line is   
|ax0 + by0 + c|

  _____________ 
 √ 

_______

 a2 + b2  
  .

  [Hint: If P1 is on the line, project u =   
	

 P1P0  
on n.]

 40. Assume u and v are nonzero vectors that are 
not parallel. Show that w = ‖u‖v + ‖v‖u is a 
nonzero vector that bisects the angle between u 
and v.

 41. Let α, β, and γ be the angles a vector 
v ≠ 0 makes with the positive x, y, and z axes, 
respectively. Then cos α, cos β, and cos γ are 
called the direction cosines of the vector v.

 (a) If v =   S  
a
 

 
 b   

c
   T  , show that cos α =   a ____ 

‖v‖
  , 

  cos β =   b ____ 
‖v‖

  , and cos γ =   c ____ 
‖v‖

  .

 �(b) Show that cos2 α + cos2
 β + cos2 γ = 1.

 42. Let v ≠ 0 be any nonzero vector and suppose 
that a vector u can be written as u = p + q, 
where p is parallel to v and q is orthogonal to v. 
Show that p must equal the projection of u on v. 
[Hint: Argue as in the proof of Theorem 4.]

 43. Let v ≠ 0 be a nonzero vector and let a ≠ 0 be a 
scalar. If u is any vector, show that the projection 
of u on v equals the projection of u on av.

 44. (a) Show that the Cauchy-Schwarz inequality 
|u · v| ≤ ‖u‖‖v‖ holds for all vectors u and 
v. [Hint: |cos θ| ≤ 1 for all angles θ.]

 (b) Show that |u · v| = ‖u‖‖v‖ if and only if 
u and v are parallel. 
[Hint: When is cos θ = ±1?]

 (c) Show that 
|x1x2 + y1 y2 + z1z2| 

≤  √ 
___________

   x  1  
2  +  y  1  

2  +  z  1  
2     √ 

___________

   x  2  
2  +  y  2  

2  +  z  2  
2    

holds for all numbers x1, x2, y1, y2, z1, and z2.

 �(d) Show that |xy + yz + zx| ≤ x2 + y2 + z2 for 
all x, y, and z.

 (e) Show that (x + y + z)2 ≤ 3(x2 + y2 + z2) 
holds for all x, y, and z.

 45. Prove that the triangle inequality 
‖u · v‖ ≤ ‖u‖ + ‖v‖ holds for all vectors u 
and v. [Hint: Consider the triangle with u and v 
as two sides.]

More on the Cross Product

The cross product v × w of two �3-vectors v =   S  
x1

 
 

 y1   
z1

   T  and w =   S  
x2

 
 

 y2   
z2

   T  was defined in 

Section 4.2 where we observed that it can be best remembered using a determinant:

 v × w = det 

i

j

k

x x

y y

z z

1 2

1 2

1 2

 =  |   
y1  y2           z1 z2

   |  i -  |   
x1 x2           z1 z2

   |  j +  |   
x1 x2          y1 y2

   |  k (∗)

Here i =   S  1 
 

 0   
0

  T  , j =   S  0 
 

 1   
0

  T  , and k =   S  1 
 

 0   
0

  T  are the coordinate vectors, and the determinant 

is expanded along the first column. We observed (but did not prove) in Theorem 5 
Section 4.2 that v × w is orthogonal to both v and w. This follows easily from the 
next result.
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Theorem 1

If u =   S  
x0

 
 

 y0   
z0

   T  , v =   S  
x1

 
 

 y1   
z1

   T  , and w =   S  
x2

 
 

 y2   
z2

   T  , then u · (v × w) = det 
x0 x1 x2

y0 y1 y2

z0 z1 z2

.

PROOF

Recall that u · (v × w) is computed by multiplying corresponding components of 
u and v × w and then adding. Using (∗), the result is:

u · (v × w) = x0 a |   
y1  y2           z1 z2

   | b + y0 a- |   
x1 x2           z1 z2

   |   b + z0a |   
x1 x2          y1 y2

   |  b = det 
x x x
y y y
z z z

0 1

0 1

2

2

0 1 2

where the last determinant is expanded along column 1.

The result in Theorem 1 can be succinctly stated as follows: If u, v, and w are three 
vectors in �3, then 

u · (v × w) = det[u v w]

where [u v w] denotes the matrix with u, v, and w as its columns. Now it is clear 
that v × w is orthogonal to both v and w because the determinant of a matrix is 
zero if two columns are identical.

Because of (∗) and Theorem 1, several of the following properties of the cross 
product follow from properties of determinants (they can also be verified directly). 

Theorem 2

Let u, v, and w denote arbitrary vectors in �3.
1. u × v is a vector.
2. u × v is orthogonal to both u and v.
3. u × 0 = 0 = 0 × u.
4. u × u = 0.
5. u × v = -(v × u).
6. (ku) × v = k(u × v) = u × (kv) for any scalar k.
7. u × (v + w) = (u × v) + (u × w).
8. (v + w) × u = (v × u) + (w × u).

PROOF

(1) is clear; (2) follows from Theorem 1; and (3) and (4) follow because the 
determinant of a matrix is zero if one column is zero or if two columns are 
identical. If two columns are interchanged, the determinant changes sign, and 
this proves (5). The proofs of (6), (7), and (8) are left as Exercise 15.
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We now come to a fundamental relationship between the dot and cross products.

Theorem 3

Lagrange Identity11

If u and v are any two vectors in �3, then

‖u × v‖
2 = ‖u‖

2
‖v‖

2 - (u · v)
2

11

PROOF

Given u and v, introduce a coordinate system and write u =   S  
x1

 
 

 y1   
z1

   T  and v =   S  
x2

 
 

 y2   
z2

   T  in 

component form. Then all the terms in the identity can be computed in terms of 
the components. The detailed proof is left as Exercise 14.

An expression for the magnitude of the vector u × v can be easily obtained 
from the Lagrange identity. If θ is the angle between u and v, substituting 
u · v = ‖u‖‖v‖ cos θ into the Lagrange identity gives

‖u × v‖
2 = ‖u‖

2
‖v‖

2 - ‖u‖
2
‖v‖

2 cos2 θ = ‖u‖
2
‖v‖

2 sin2 θ 

using the fact that 1 - cos2 θ = sin2 θ. But sin θ is nonnegative on the range 
0 ≤ θ ≤ π, so taking the positive square root of both sides gives 

‖u × v‖ = ‖u‖‖v‖ sin θ

This expression for ‖u × v‖ makes no reference to a coordinate system and, 
moreover, it has a nice geometrical interpretation. The parallelogram determined 
by the vectors u and v has base length ‖v‖ and altitude ‖u‖ sin θ (see Figure 1). 
Hence the area of the parallelogram formed by u and v is

(‖u‖ sin θ) ‖v‖ = ‖u × v‖

This proves the first part of Theorem 4.

Theorem 4

If u and v are two nonzero vectors and θ is the angle between u and v, then
1. ‖u × v‖ = ‖u‖‖v‖ sin θ = area of the parallelogram determined by u and v. 
2. u and v are parallel if and only if u × v = 0.

11 Joseph Louis Lagrange (1736–1813) was born in Italy and spent his early years in Turin. At the age of 19 he solved a famous 
problem by inventing an entirely new method, known today as the calculus of variations, and went on to become one of the greatest 
mathematicians of all time. His work brought a new level of rigour to analysis and his Mécanique Analytique is a masterpiece in 
which he introduced methods still in use. In 1766 he was appointed to the Berlin Academy by Frederik the Great who asserted 
that the “greatest mathematician in Europe” should be at the court of the “greatest king in Europe.” After the death of Frederick, 
Lagrange went to Paris at the invitation of Louis XVI. He remained there throughout the revolution and was made a count 
by Napoleon.

Joseph Louis Lagrange. 
Photo © Corbis.

θ
v

u ‖u‖ sin θ

� FIGURE 1
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PROOF OF (2)

By (1), u × v = 0 if and only if the area of the parallelogram is zero. By Figure 1 
the area vanishes if and only if u and v have the same or opposite direction—that 
is, if and only if they are parallel.

EXAMPLE 1

Find the area of the triangle with vertices P(2, 1, 0), Q(3, -1, 1), and R(1, 0, 1).

Solution ► We have  
	

 RP   =   S     1
 

 
   1   

-1
  T  and  

	
 RQ  =   S     2

 
 

 -1   
  0

   T . The area of the triangle is half 

the area of the parallelogram (see the diagram), and so equals   1 _ 2   ‖  
	

 RP   ×  
	

 RQ  ‖ . We 
have

 
	

 RP   ×  
	

 RQ  = det 
i

j

k

−

−

1 2

1 1

1 0

 =   S  -1
 

 
 -2   

-3
  T  ,

so the area of the triangle is   1 _ 2   ‖  
	

 RP   ×  
	

 RQ  ‖  =   1 _ 2    √ 
_________

 1 + 4 + 9   =   1 _ 2    √ 

___

 14  .

If three vectors u, v, and w are given, they determine a “squashed” rectangular 
solid called a parallelepiped (Figure 2), and it is often useful to be able to find the 
volume of such a solid. The base of the solid is the parallelogram determined by 
u and v, so it has area A = ‖u × v‖ by Theorem 4. The height of the solid is the 
length h of the projection of w on u × v. Hence

h =  |   
w · (u × v)

 __________ 
‖u × v‖

2
   | ‖u × v‖ =   

|w · (u × v)|
  ___________ 

‖u × v‖
   =   

|w · (u × v)|
  ___________ 

A
  

Thus the volume of the parallelepiped is hA = |w · (u × v)|. This proves

Theorem 5

The volume of the parallelepiped determined by three vectors w, u, and v (Figure 2) is 
given by |w · (u × v)|.

EXAMPLE 2

Find the volume of the parallelepiped determined by the vectors 

w =   S     1
 

 
   2   

-1
  T  , u =   S  1 

 
 1   

0
  T  , and v =   S  -2

 
 

   0   
  1

   T .
Solution ► By Theorem 1, w · (u × v) = det 

−

−

1 2
2 0

01 1
1
1

 = -3. 

Hence the volume is |w · (u × v)| = |-3| = 3 by Theorem 5.

R 

Q 

P 

h

u v×

v
w

u

� FIGURE 2
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We can now give an intrinsic description of the cross product u × v. Its 
magnitude ‖u × v‖ = ‖u‖‖v‖ sin θ is coordinate-free. If u × v ≠ 0, its direction 
is very nearly determined by the fact that it is orthogonal to both u and v and so 
points along the line normal to the plane determined by u and v. It remains only 
to decide which of the two possible directions is correct.

Before this can be done, the basic issue of how coordinates are assigned must be 
clarified. When coordinate axes are chosen in space, the procedure is as follows: An 
origin is selected, two perpendicular lines (the x and y axes) are chosen through the 
origin, and a positive direction on each of these axes is selected quite arbitrarily. 
Then the line through the origin normal to this x-y plane is called the z axis, 
but there is a choice of which direction on this axis is the positive one. The two 
possibilities are shown in Figure 3, and it is a standard convention that cartesian 
coordinates are always right-hand coordinate systems. The reason for this 
terminology is that, in such a system, if the z axis is grasped in the right hand with 
the thumb pointing in the positive z direction, then the fingers curl around from 
the positive x axis to the positive y axis (through a right angle).

Suppose now that u and v are given and that θ is the angle between them 
(so 0 ≤ θ ≤ π). Then the direction of ‖u × v‖ is given by the right-hand rule.

Right-hand Rule

If the vector u × v is grasped in the right hand and the fingers curl around from u to v 
through the angle θ, the thumb points in the direction for u × v.

To indicate why this is true, introduce coordinates in �3 as follows: Let u and v 
have a common tail O, choose the origin at O, choose the x axis so that u points in 
the positive x direction, and then choose the y axis so that v is in the x-y plane and 
the positive y axis is on the same side of the x axis as v. Then, in this system, u and 

v have component form u =   S   
a
 

 
 0   

0
  T  and v =   S   b 

 
 c   

0
  T  where a > 0 and c > 0. The situation 

is depicted in Figure 4. The right-hand rule asserts that u × v should point in the 
positive z direction. But our definition of u × v gives

u × v = det 
i
j
k

a b
c0

0 0

 =   S   0 
 

 0   
ac

  T  = (ac)k

and (ac)k has the positive z direction because ac > 0.

E X E R C I S E S  4 . 3

 1. If i, j, and k are the coordinate vectors, verify 
that i × j = k, j × k = i, and k × i = j.

 2. Show that u × (v × w) need not equal 
(u × v) × w by calculating both when 

u =   S  1 
 

 1   
1

  T  , v =   S  1 
 

 1   
0

  T  , and w =   S  0 
 

 0   
1

  T .

 3. Find two unit vectors orthogonal to both u and 
v if: 

 (a) u =   S  1 
 

 2   
2

  T  , v =   S     2
 

 
 -1   

  2
   T  �(b) u =   S     1

 
 

   2   
-1

  T  , v =   S  3 
 

 1   
2

  T 

Left-hand system 

x y
O 

z

O 

Right-hand system 

x y

z

� FIGURE 3
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 4. Find the area of the triangle with the following 
vertices.

 (a) A(3, -1, 2), B(1, 1, 0), and C(1, 2, -1)

 �(b) A(3, 0, 1), B(5, 1, 0), and C(7, 2, -1)

 (c) A(1, 1, -1), B(2, 0, 1), and C(1, -1, 3)

 �(d) A(3, -1, 1), B(4, 1, 0), and C(2, -3, 0)

 5. Find the volume of the parallelepiped 
determined by w, u, and v when:

 (a) w =   S  2 
 

 1   
1

  T  , v =   S  1 
 

 0   
2

  T  , and u =   S     2
 

 
   1   

-1
  T 

 �(b) w =   S  1 
 

 0   
3

  T  , v =   S     2
 

 
   1   

-3
  T  , and u =   S  1 

 
 1   

1
  T 

 6. Let P0 be a point with vector p0, and let 
ax + by + cz = d be the equation of a plane with 

normal n =   S  
a
 

 
 b   

c
   T .

 (a) Show that the point on the plane closest to 
P0 has vector p given by

 p = p0 +   
d - (p0 · n)

 __________ 
‖n‖

2
   n.

  [Hint: p = p0 + tn for some t, and 
p · n = d.]

 �(b) Show that the shortest distance from P0 to 

the plane is   
|d - (p0 · n)|

  ___________ 
‖n‖

  .

 (c) Let P0′ denote the reflection of P0 in the 
plane—that is, the point on the opposite side 
of the plane such that the line through P0 
and P0′ is perpendicular to the plane.

   Show that p0 + 2   
d - (p0 · n)

 __________ 
‖n‖

2
   n is the vector 

of P0′.

 7. Simplify (au + bv) × (cu + dv).

 8. Show that the shortest distance from a point P 
to the line through P0 with direction vector d 

is   
 ‖   

	
 P0P  × d ‖ 
 __________ 

‖d‖
  .

 9. Let u and v be nonzero, nonorthogonal vectors. 
If θ is the angle between them, show that 

tan θ =   
‖u × v‖

 ________ u · v  .

 �10. Show that points A, B, and C are all on one line 
if and only if  

	
 AB   ×  

	
 AC   = 0.

 11. Show that points A, B, C, and D are all on one 
plane if and only if  

	
 AB   ·  Q  

	
 AB   ×  

	
 AC   R  = 0.

 �12. Use Theorem 5 to confirm that, if u, v, and w 
are mutually perpendicular, the (rectangular) 
parallelepiped they determine has volume 
‖u‖‖v‖‖w‖.

 13. Show that the volume of the parallelepiped 
determined by u, v, and u × v is ‖u × v‖

2.

 14. Complete the proof of Theorem 3.

 15. Prove the following properties in Theorem 2.

 (a) Property 6 �(b) Property 7

 (c) Property 8

 16. (a) Show that 
w · (u × v) = u · (v × w) = v × (w × u) 
holds for all vectors w, u, and v.

 �(b) Show that v - w and 
(u × v) + (v × w) + (w × u) are orthogonal.

 17. Show that u × (v × w) = (u · w)v - (u × v)w. 
[Hint: First do it for u = i, j, and k; then write 
u = xi + yj + zk and use Theorem 2.]

 18. Prove the Jacobi identity: 
u × (v × w) + v × (w × u) + w × (u × v) = 0. 
[Hint: The preceding exercise.]

 19. Show that
(u × v) · (w × z) = det   S   u · w u · z                       v · w v · z   T .

  [Hint: Exercises 16 and 17.]

 20. Let P, Q, R, and S be four points, not all on one 
plane, as in the diagram. Show that the volume 
of the pyramid they determine is

  1 _ 6   |  
	

 PQ   ·  Q  
	

 PR   ×  
	

 PS   R  | .

  [Hint: The volume of a cone with base area 
A and height h as in the diagram below right 
is   1 _ 3  Ah.]

Q

S 

R 

P 

h 

218 Chapter 4 Vector Geometry



 21. Consider a triangle with vertices A, B, and 
C, as in the diagram below. Let α, β, and γ 
denote the angles at A, B, and C, respectively, 
and let a, b, and c denote the lengths of the 
sides opposite A, B, and C, respectively. Write 

u =  
	

 AB  , v =  
	

 BC  , and w =  
	

 CA  .
B 

C A 
b 

a c β

α γ

 (a) Deduce that u + v + w = 0.

 (b) Show that u × v = w × u = v × w. [Hint: 
Compute u × (u + v + w) and 
v × (u + v + w).]

 (c) Deduce the law of sines:

    sin α
 _____ a   =   

sin β
 _____ 

b
   =   

sin γ
 _____ c  

 �22. Show that the (shortest) distance between two 
planes n · p = d1 and n · p = d2 with n as 

normal is   
|d2 - d1|

 ________ 
‖n‖

  .

 23. Let A and B be points other than the origin, and 
let a and b be their vectors. If a and b are not 
parallel, show that the plane through A, B, and 
the origin is given by 

  {P(x, y, z)|  S  
x
 

 
 y   

z
   T  = sa + tb for some s and t}.

 24. Let A be a 2 × 3 matrix of rank 2 with rows 
r1 and r2. Show that P = {XA|X = [x y]; x, y 
arbitrary} is the plane through the origin with 
normal r1 × r2.

 25. Given the cube with vertices P(x, y, z), where 
each of x, y, and z is either 0 or 2, consider the 
plane perpendicular to the diagonal through 
P(0, 0, 0) and P(2, 2, 2) and bisecting it.

 (a) Show that the plane meets six of the edges of 
the cube and bisects them.

 (b) Show that the six points in (a) are the vertices 
of a regular hexagon.

Linear Operators on �3 
Recall that a transformation T : �n → �m is called linear if T(x + y) = T(x) + T(y) 
and T(ax) = aT(x) holds for all x and y in �n and all scalars a. In this case we showed 
(in Theorem 2 Section 2.6) that there exists an m × n matrix A such that T(x) = Ax 
for all x in �n, and we say that T is the matrix transformation induced by A. 

A linear transformation 
T : �n → �n

is called a linear operator on �n.

In Section 2.6 we investigated three important linear operators on �2: rotations 
about the origin, reflections in a line through the origin, and projections on this line.

In this section we investigate the analogous operators on �3: Rotations about a 
line through the origin, reflections in a plane through the origin, and projections 
onto a plane or line through the origin in �3. In every case we show that the 
operator is linear, and we find the matrices of all the reflections and projections. 

To do this we must prove that these reflections, projections, and rotations 
are actually linear operators on �3. In the case of reflections and rotations, it is 
convenient to examine a more general situation. A transformation T : �3 → �3 is 
said to be distance preserving if the distance between T(v) and T(w) is the same as 
the distance between v and w for all v and w in �3; that is,

 ‖T(v) - T(w)‖ = ‖v - w‖ for all v and w in �3. (∗)

Clearly reflections and rotations are distance preserving, and both carry 0 to 0, so 
the following theorem shows that they are both linear. 

S E C T I O N  4 . 4

Definition 4.9
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Theorem 1

If T : �3 → �3 is distance preserving, and if T(0) = 0, then T is linear.

PROOF

Since T(0) = 0, taking w = 0 in (∗) shows that ‖T(v)‖ = ‖v‖ for all v in �3, 
that is T preserves length. Also, ‖T(v) - T(w)‖2 = ‖v - w‖

2 by (∗). Since 
‖v - w‖

2 = ‖v‖
2 - 2v · w + ‖w‖

2 always holds, it follows that 
T(v) · T(w) = v · w for all v and w. Hence (by Theorem 2 Section 4.2) the 
angle between T(v) and T(w) is the same as the angle between v and w for 
all (nonzero) vectors v and w in �3.

With this we can show that T is linear. Given nonzero vectors v and w in �3, 
the vector v + w is the diagonal of the parallelogram determined by v and w. By 
the preceding paragraph, the effect of T is to carry this entire parallelogram to the 
parallelogram determined by T(v) and T(w), with diagonal T(v + w). But this 
diagonal is T(v) + T(w) by the parallelogram law (see Figure 1). 

In other words, T(v + w) = T(v) + T(w). A similar argument shows that 
T(av) = aT(v) for all scalars a, proving that T is indeed linear.

Distance-preserving linear operators are called isometries, and we return to them 
in Section 10.4.

Reflections and Projections
In Section 2.6 we studied the reflection Qm: �2 → �2 in the line y = mx and 
projection Pm: �2 → �2 on the same line. We found (in Theorems 5 and 6, 
Section 2.6) that they are both linear and 

Qm has matrix   1 _______ 
1 + m2

     S   1 - m2
             

2m
     

2m
             

m2 − 1
   T  and Pm has matrix   1 _______ 

1 + m2
     S   1  m 

             
m m2

   T . 
We now look at the analogues in �3. 

Let L denote a line through the origin in �3. Given a vector v in �3, the 
reflection QL(v) of v in L and the projection PL(v) of v on L are defined in Figure 2. 
In the same figure, we see that 

 PL(v) = v +   1 _ 2  [QL(v) - v] =   1 _ 2  [QL(v) + v] (∗∗)

so the fact that QL is linear (by Theorem 1) shows that PL is also linear.12 However, 

Theorem 4 Section 4.2 gives us the matrix of PL directly. In fact, if d =   S  
a
 

 
 b   

c
   T  ≠ 0 is a 

direction vector for L, and we write v =   S  
x
 

 
 y   

z
   T  , then 

PL(v) =   v · d _____ 
‖d‖

2
   d =   

ax + by + cz
  ___________  

a2 + b2 + c2
    S  

a
 

 
 b   

c
   T  =   

1 ___________ 
a2 + b2 + c2

   

a22

2

2

ab ac

ab b bc

ac bc c

   S  
x
 

 
 y   

z
   T 

as the reader can verify. Note that this shows directly that PL is a matrix 
transformation and so gives another proof that it is linear. 

12 Note that Theorem 1 does not apply to PL since it does not preserve distance.

x

z

y

w

v

T(v)

T(w)

T ( ) v w+

v + w

� FIGURE 1

L

0

v

Q (v)L

P (v)L

� FIGURE 2
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Theorem 2

Let L denote the line through the origin in �3 with direction vector d =   S  
a
 

 
 b   

c
   T  ≠ 0. Then 

PL and QL are both linear and

PL has matrix   1 ___________ 
a2 + b2 + c2

   
a ab ac

ab b bc

ac bc c

2

2

2

,

QL has matrix   1 ___________ 
a2 + b2 + c2

   
a b c

ab b a c

ac bc c

2ab 2ac

2bc2

2 2

2 2 2

2 2 2

− −

− −
2 2 2− −a b

.

PROOF

It remains to find the matrix of QL. But (∗∗) implies that QL(v) = 2PL(v) - v for 

each v in �3, so if v =   S  
x
 

 
 y   

z
   T  we obtain (with some matrix arithmetic):

QL(v) = μ   2 ___________ 
a2 + b2 + c2

   

a ab ac

ab b bc

ac bc c

−
1 0 0
0 1 0
0 0 1

2

2

2

∂   S  
x
 

 
 y   

z
   T 

=
1 ___________ 

a2 + b2 + c2
   

− −
−

a b c ab ac

ab b a

2 2

2

2 2 2

2 2 −−
− −

c bc

ac bc c a b

2

2 2 2

2

2 2

   S  
x
 

 
 y   

z
   T 

as required.

In �3 we can reflect in planes as well as lines. Let M denote a plane through 
the origin in �3. Given a vector v in �3, the reflection QM(v) of v in M and the 
projection PM(v) of v on M are defined in Figure 3. As above, we have

PM(v) = v +   1 _ 2  [QM(v) - v] =   1 _ 2  [QM(v) + v]

so the fact that QM is linear (again by Theorem 1) shows that PM is also linear. 
Again we can obtain the matrix directly. If n is a normal for the plane M, then 
Figure 3 shows that 

PM(v) = v - projn(v) = v -   v · n _____ 
‖n‖

2
   n for all vectors v.

If n =   S  
a
 

 
 b   

c
   T  ≠ 0 and v =   S  

x
 

 
 y   

z
   T  , a computation like the above gives

PM(v) = • 
1 0 0
0 1 0
0 0 1

   S  
x
 

 
 y   

z
   T  -   

ax + by + cz
  ___________  

a2 + b2 + c2
    S  

a
 

 
 b   

c
   T ¶ =   1 ___________ 

a2 + b2 + c2
   

+ − −

− + −
− − +

2 2

2 2

2

b c ab ac

ab a c bc

ac bc b c22

   S  
x
 

 
 y   

z
   T .

M

v

O 

QM (v)

PM (v)

� FIGURE 3
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This proves the first part of 

Theorem 3

Let M denote the plane through the origin in �3 with normal n =   S  
a
 

 
 b   

c
   T  ≠ 0. Then PM 

and QM are both linear and

PM has matrix   1 ___________ 
a2 + b2 + c2

   
b c ab ac

ab a c bc

ac bc a b

2 2

2 2

2 2

+ − −

− + −
− − +

,

QM has matrix   1 ___________ 
a2 + b2 + c2

   
2

2
a

ab

− −2ab −2ac
−2bc

−2bc−2ac

−

2 2b c+
−2 22a bc+

−2 22a cb+

.

PROOF

It remains to compute the matrix of QM. Since QM(v) = 2PM(v) - v for each 
v in �3, the computation is similar to the above and is left as an exercise for 
the reader.

Rotations
In Section 2.6 we studied the rotation Rθ : �

2 → �2 counterclockwise about the 
origin through the angle θ. Moreover, we showed in Theorem 4 Section 2.6 that 

Rθ is linear and has matrix   S   cos θ -sin θ
                       

sin θ  cos θ
   T . One extension of this is given in the 

following example.

EXAMPLE 1

Let Rz,θ : �
3 → �3 denote rotation of �3 about the z axis through an angle θ 

from the positive x axis toward the positive y axis. Show that Rz,θ is linear and 
find its matrix. 

Solution ► First R is distance preserving and so is linear by Theorem 1. 
Hence we apply Theorem 2 Section 2.6 to obtain the matrix of Rz,θ. 

Let i =   S  1 
 

 0   
0

  T  , j =   S  0 
 

 1   
0

  T  , and k =   S  0 
 

 0   
1

  T  denote the standard basis of �3; we must find 

Rz,θ(i), Rz,θ(j), and Rz,θ(k). Clearly Rz,θ(k) = k. The effect of Rz,θ on the x-y plane 
is to rotate it counterclockwise through the angle θ. Hence Figure 4 gives 

Rz,θ(i) =   S  cos θ
 

  
 sin θ    

0
   T  , Rz,θ(j) =   S  -sin θ

 
  

 cos θ    
0

   T x

y

z

θ

θ ji

Rz(i)

Rz(j)
k

� FIGURE 4
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so, by Theorem 2 Section 2.6, Rz,θ has matrix

[Rz,θ(i) Rz,θ(j) Rz,θ(k)] = 
−

sin θ
sin θ
cos θ

cos θ

0 0

0
0
1

.

Example 1 begs to be generalized. Given a line L through the origin in �3, every 
rotation about L through a fixed angle is clearly distance preserving, and so is a 
linear operator by Theorem 1. However, giving a precise description of the matrix 
of this rotation is not easy and will have to wait until more techniques are available. 

Transformations of Areas and Volumes 
Let v be a nonzero vector in �3. Each vector in the same direction as v whose 
length is a fraction s of the length of v has the form sv (see Figure 5). With this, 
scrutiny of Figure 6 shows that a vector u is in the parallelogram determined by v 
and w if and only if it has the form u = sv + tw where 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1. But 
then, if T : �3 → �3 is a linear transformation, we have 

T(sv + tw) = T(sv) + T(tw) = sT(v) + tT(w).

Hence T(sv + tw) is in the parallelogram determined by T(v) and T(w). Conversely, 
every vector in this parallelogram has the form T(sv + tw) where sv + tw is in the 
parallelogram determined by v and w. For this reason, the parallelogram determined 
by T(v) and T(w) is called the image of the parallelogram determined by v and w. 
We record this discussion as: 

Theorem 4

If T : �3 → �3 (or �2 → �2) is a linear operator, the image of the parallelogram 
determined by vectors v and w is the parallelogram determined by T(v) and T(w).

This result is illustrated in Figure 7, and was used in Examples 15 and 16 Section 
2.2 to reveal the effect of expansion and shear transformations. 

Now we are interested in the effect of a linear transformation T : �3 → �3 on 
the parallelepiped determined by three vectors u, v, and w in �3 (see the discussion 
preceding Theorem 5 Section 4.3). If T has matrix A, Theorem 4 shows that this 
parallelepiped is carried to the parallelepiped determined by T(u) = Au, T(v) = Av, 
and T(w) = Aw. In particular, we want to discover how the volume changes, and it 
turns out to be closely related to the determinant of the matrix A.

Theorem 5

Let vol(u, v, w) denote the volume of the parallelepiped determined by three vectors u, v, 
and w in �3, and let area(p, q) denote the area of the parallelogram determined by two 
vectors p and q in �2. Then: 

1. If A is a 3 × 3 matrix, then vol(Au, Av, Aw) = |det(A)| · vol(u, v, w).

2. If A is a 2 × 2 matrix, then area(Ap, Aq) = |det(A)| · area(p, q).

Origin 

v

sv

� FIGURE 5

O 

v
sv

tw w

sv+tw
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w

v

u

T(u)

T(w)

T(v)
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PROOF

 1. Let [u v w] denote the 3 × 3 matrix with columns u, v, and w. Then 

vol(Au, Av, Aw) = |Au · (Av × Aw)|

  by Theorem 5 Section 4.3. Now apply Theorem 1 Section 4.3 twice to get

Au · (Av × Aw) = det[Au Av Aw]  = det{A [u v w]}
= det(A) det[u v w]
= det(A) (u · (v × w))

  where we used Definition 2.9 and the product theorem for determinants. 
Finally (1) follows from Theorem 5 Section 4.3 by taking absolute values. 

 2. Given p =   S  x   
y
  T  in �2, write p1 =   S   

x
 

 
 y   

0
  T  in �3. By the diagram, 

area(p, q) = vol(p1, q1, k) where k is the (length 1) coordinate vector 

along the z axis. If A is a 2 × 2 matrix, write A1 =   S   A 0         
0 1

   T  in block form, 

and observe that (Av)1 = (A1v1) for all v in �2 and A1k = k. Hence 
part (1) if this theorem shows

area(Ap, Aq)  = vol(A1p1, A1q1, A1k)
= |det(A1)| vol(p1, q1, k)
= |det(A)| area(p, q)

  as required.

Define the unit square and unit cube to be the square and cube corresponding 
to the coordinate vectors in �2 and �3, respectively. Then Theorem 5 gives a 
geometrical meaning to the determinant of a matrix A:

• If A is a 2 × 2 matrix, then |det(A)| is the area of the image of the unit square 
under multiplication by A;

• If A is a 3 × 3 matrix, then |det(A)| is the volume of the image of the unit cube 
under multiplication by A.

These results, together with the importance of areas and volumes in geometry, were 
among the reasons for the initial development of determinants.

E X E R C I S E S  4 . 4

 1. In each case show that that T is either projection 
on a line, reflection in a line, or rotation through 
an angle, and find the line or angle.

 (a) T   S  x   
y
  T  =   1 _ 5    S   x + 2y

              
2x + 4y

   T  �(b) T   S  x   
y
  T  =   1 _ 2    S   

x - y
           

y - x   T 

 (c) T   S  x   
y
  T  =   1 __ 

 √ 

__

 2  
    S   -x - y

             
x - y   T  �(d) T   S  x   

y
  T  =   1 _ 5    S   -3x + 4y

                 
4x + 3y

   T 

 (e) T   S   x     
y
   T  =   S   -y       

-x
   T  �(f ) T   S  x   

y
  T  =   1 _ 2    S   x -  √ 

__

 3  y
               

 √ 

__

 3  x + y
   T 

 2. Determine the effect of the following 
transformations.

 (a) Rotation through   π __ 2  , followed by projection 
on the y axis, followed by reflection in the 
line y = x.

 �(b) Projection on the line y = x followed by 
projection on the line y = -x.

 (c) Projection on the x axis followed by 
reflection in the line y = x.

q1 

p1 

k
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 3. In each case solve the problem by finding the 
matrix of the operator.

 (a) Find the projection of v =   S     1
 

 
 -2   

  3
   T  on the plane 

with equation 3x - 5y + 2z = 0.

 �(b) Find the projection of v =   S     0
 

 
   1   

-3
  T  on the plane 

with equation 2x - y + 4z = 0.

 (c) Find the reflection of v =   S     1
 

 
 -2   

  3
   T  in the plane 

with equation x - y + 3z = 0.

 �(d) Find the reflection of v =   S     0
 

 
   1   

-3
  T  in the plane 

with equation 2x + y - 5z = 0.

 (e) Find the reflection of v =   S     2
 

 
   5   

-1
  T  in the line 

with equation   S  
x
 

 
 y   

z
   T  = t   S     1

 
 

   1   
-2

  T .
 �(f ) Find the projection of v =   S     1

 
 

 -1   
  7

   T  on the line 

with equation   S  
x
 

 
 y   

z
   T  = t   S  3 

 
 0   

4
  T .

 (g) Find the projection of v =   S     1
 

 
   1   

-3
  T  on the line 

with equation   S  
x
 

 
 y   

z
   T  = t   S     2

 
 

   0   
-3

  T .
 �(h) Find the reflection of v =   S     2

 
 

 -5   
  0

   T  in the line 

with equation   S  
x
 

 
 y   

z
   T  = t   S     1

 
 

   1   
-3

  T .
 4. (a) Find the rotation of v =   S     2

 
 

   3   
-1

  T  about the 

z axis through θ =   π __ 4  .

 �(b) Find the rotation of v =   S  1 
 

 0   
3

  T  about the z axis 

through θ =   π __ 6  .

 5. Find the matrix of the rotation in �3 about the x 
axis through the angle θ (from the positive y axis 
to the positive z axis).

 �6. Find the matrix of the rotation about the y axis 
through the angle θ (from the positive x axis to 
the positive z axis).

 7. If A is 3 × 3, show that the image of the line in 
�

3 through p0 with direction vector d is the line 
through Ap0 with direction vector Ad, assuming 
that Ad ≠ 0. What happens if Ad = 0?

 8. If A is 3 × 3 and invertible, show that the image 
of the plane through the origin with normal 
n is the plane through the origin with normal 
n1 = Bn where B = (A-1)T. [Hint: Use the fact 
that v · w = vTw to show that n1 · (Ap) = n · p 
for each p in �3.]

 9. Let L be the line through the origin in �2 with 

direction vector d =   S  a   
b
  T  ≠ 0. 

 �(a) If PL denotes projection on L, show that PL 

has matrix   1 _______ 
a2 + b2

     S   a2 ab
           

ab b2
   T .

 (b) If QL denotes reflection in L, show that QL 

has matrix   1 _______ 
a2 + b2

     S   a2 - b2  2ab 
                          

 2ab  b2 - a2
   T .

 10. Let n be a nonzero vector in �3, let L be the 
line through the origin with direction vector n, 
and let M be the plane through the origin with 
normal n. Show that PL(v) = QL(v) + PM(v) for 
all v in �3. [In this case, we say that 
PL = QL + PM.]

 11. If M is the plane through the origin in �3 with 

normal n =   S  
a
 

 
 b   

c
   T  , show that QM has matrix 

  1 ___________ 
a2 + b2 + c2

   
2

2
a

ab
− −2ab −2ac

−2bc
−2bc−2ac

−

2 2b c+
−2 22a bc+

−2 22a cb+
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An Application to Computer Graphics
Computer graphics deals with images displayed on a computer screen, and so 
arises in a variety of applications, ranging from word processors, to Star Wars 
animations, to video games, to wire-frame images of an airplane. These images 
consist of a number of points on the screen, together with instructions on how to 
fill in areas bounded by lines and curves. Often curves are approximated by a set of 
short straight-line segments, so that the curve is specified by a series of points on 
the screen at the end of these segments. Matrix transformations are important here 
because matrix images of straight line segments are again line segments.13 Note that 
a colour image requires that three images are sent, one to each of the red, green, 
and blue phosphorus dots on the screen, in varying intensities.

Consider displaying the letter A. In reality, it is depicted on the screen, as in 
Figure 1, by specifying the coordinates of the 11 corners and filling in the interior. 
For simplicity, we will disregard the thickness of the letter, so we require only five 
coordinates as in Figure 2. This simplified letter can then be stored as a data matrix

Vertex

D

1 2 3 4 5
0 6 5 1 3
0 0 3 3 9

=

where the columns are the coordinates of the vertices in order. Then if we want to 
transform the letter by a 2 × 2 matrix A, we left-multiply this data matrix by A (the 
effect is to multiply each column by A and so transform each vertex).

For example, we can slant the letter to the right by multiplying by an x-shear 

matrix A =   S  1 0.2    
0 1   

  T   —see Section 2.2. The result is the letter with data matrix

AD =   S  1 0.2    
0 1   

  T    S  0 6 5 1 3      
0 0 3 3 9

  T  =   S  0 6 5.6 1.6 4.8         
0 0 3    3    9   

  T 
which is shown in Figure 3. If we want to make this slanted matrix narrower, we can 

now apply an x-scale matrix B =   S  0.8 0    
0    1

  T  that shrinks the x-coordinate by 0.8. The 

result is the composite transformation

BAD =   S  0.8 0    
0    1

  T    S  1 0.2    
0 1   

  T    S  0 6 5 1 3      
0 0 3 3 9

  T  =   S  0 4.8 4.48 1.28 3.84           
0 0    3     3     9    

  T 
which is drawn in Figure 4.

On the other hand, we can rotate the letter about the origin through   π __ 6   (or 30°) 

by multiplying by the matrix  R   π __ 2  
  =   S  cos(  π __ 6  ) -sin(  π __ 6  )         

sin(  π __ 6  )   cos(  π __ 6  )
  T  =   S  0.866 -0.5            

0.5     0.866
  T .

This gives

 R   π __ 2  
 D =   S  0.866 -0.5            

0.5     0.866
  T    S  0 6 5 1 3      

0 0 3 3 9
  T  =   S  0 5.196 2.83  -0.634 -1.902                

0 3     5.098   3.098   9.294
  T 

and is plotted in Figure 5.
This poses a problem: How do we rotate at a point other than the origin? It 

turns out that we can do this when we have solved another more basic problem. It 
is clearly important to be able to translate a screen image by a fixed vector w, that is 
apply the transformation Tw : �2 → �2 given by Tw(v) = v + w for all v in �2. The 
problem is that these translations are not matrix transformations �2 → �2 because 
they do not carry 0 to 0 (unless w = 0). However, there is a clever way around this.

13 If v0 and v1 are vectors, the vector from v0 to v1 is d = v1 - v0. So a vector v lies on the line segment between v0 and v1 if and only 
if v = v0 + td for some number t in the range 0 ≤ t ≤ 1. Thus the image of this segment is the set of vectors Av = Av0 + tAd with 
0 ≤ t ≤ 1, that is the image is the segment between Av0 and Av1.
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The idea is to represent a point v =   S  x   
y
  T  as a 3 × 1 column   S   

x
 

 
 y   

1
  T  , called the 

homogeneous coordinates of v. Then translation by w =   S   p   
q
  T  can be achieved 

by multiplying by a 3 × 3 matrix:

1 0
0 1
0 0 1 1

p
q

x
y  = 

1

x p
y q

+
+  =   S  Tw(v)

    
1 

  T 

Thus, by using homogeneous coordinates we can implement the translation Tw in 
the top two coordinates. On the other hand, the matrix transformation induced by 

A =   S  a b
   

c d
  T  is also given by a 3 × 3 matrix:

a b
c d

x
y

0
0

0 0 1 1

 = 
ax by
cx dy

1

+
+  =   S  Av   

1  
  T 

So everything can be accomplished at the expense of using 3 × 3 matrices and 
homogeneous coordinates.

EXAMPLE 1

Rotate the letter A in Figure 2 through   π __ 6   about the point   S  4   
5

  T .
Solution ► Using homogenous coordinates for the vertices of the letter results in 
a data matrix with three rows:

Kd = 
0 6 5 1 3
0 0 3 3 9
1 1 1 1 1

If we write w =   S  4   
5

  T  , the idea is to use a composite of transformations: First 

translate the letter by -w so that the point w moves to the origin, then rotate 
this translated letter, and then translate it by w back to its original position. 
The matrix arithmetic is as follows (remember the order of composition!):

1 0 4
0 1 5
0 0 1

0 866 0 5 0
0 5 0 866 0
0 0 1

1 0 4
0 1 5
0 0 1

− −
−

. .
. .

0 6 5 1 3
0 0 3 3 9
1 1 1 1 1

 

= 
3 036 8 232 5 866 2 402 1 134. . . . .

−1 33 1 67 3 768 1 768 7 964
1 1 1 1 1
. . . . .

This is plotted in Figure 6.

This discussion merely touches the surface of computer graphics, and the 
reader is referred to specialized books on the subject. Realistic graphic rendering 
requires an enormous number of matrix calculations. In fact, matrix multiplication 
algorithms are now embedded in microchip circuits, and can perform over 100 
million matrix multiplications per second. This is particularly important in the 
field of three-dimensional graphics where the homogeneous coordinates have four 
components and 4 × 4 matrices are required.

Origin 

� FIGURE 6
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E X E R C I S E S  4 . 5

 1. Consider the letter A described in Figure 2. 
Find the data matrix for the letter obtained by:

 (a) Rotating the letter through   π __ 4   about the 
origin.

 �(b) Rotating the letter through   π __ 4   about the 

point   S   1     
2

   T .
 2. Find the matrix for turning the letter A in 

Figure 2 upside-down in place.

 3. Find the 3 × 3 matrix for reflecting in the line 

y = mx + b. Use   S   1      
m

   T  as direction vector for the 
line.

 4. Find the 3 × 3 matrix for rotating through the 
angle θ about the point P(a, b).

 5. Find the reflection of the point P in the line 
y = 1 + 2x in �2 if:

 (a) P = P(1, 1)

 �(b) P = P(1, 4)

 (c) What about P = P(1, 3)? Explain. 
[Hint: Example 1 and Section 4.4.]

S U P P L E M E N TA R Y  E X E R C I S E S  F O R  C H A P T E R  4

 1. Suppose that u and v are nonzero vectors. If u 
and v are not parallel, and au + bv = a1u + b1v, 
show that a = a1 and b = b1.

 2. Consider a triangle with vertices A, B, and 
C. Let E and F be the midpoints of sides AB 
and AC, respectively, and let the medians 
EC and FB meet at O. Write  

	
 EO  = s  

	
 EC   

and  
	

 FO   = t  
	

 FB  , where s and t are scalars. Show 
that s = t =   1 _ 3   by expressing   

	
 AO  two ways in 

the form a  
	

 EO  + b  
	

 AC  , and applying Exercise 1. 
Conclude that the medians of a triangle meet 
at the point on each that is one-third of the 
way from the midpoint to the vertex (and so are 
concurrent).

 3. A river flows at 1 km/h and a swimmer moves 
at 2 km/h (relative to the water). At what angle 
must he swim to go straight across? What is his 
resulting speed?

 �4. A wind is blowing from the south at 75 knots, 
and an airplane flies heading east at 100 knots. 
Find the resulting velocity of the airplane.

 5. An airplane pilot flies at 300 km/h in a direction 
30° south of east. The wind is blowing from the 
south at 150 km/h.

 (a) Find the resulting direction and speed of the 
airplane.

 (b) Find the speed of the airplane if the wind is 
from the west (at 150 km/h).

 �6. A rescue boat has a top speed of 13 knots. The 
captain wants to go due east as fast as possible 
in water with a current of 5 knots due south. 
Find the velocity vector v = (x, y) that she must 
achieve, assuming the x and y axes point east and 
north, respectively, and find her resulting speed.

 7. A boat goes 12 knots heading north. The current 
is 5 knots from the west. In what direction does 
the boat actually move and at what speed?

 8. Show that the distance from a point A (with 
vector a) to the plane with vector equation 
n · p = d is   1 ___ 

‖n‖
  |n · a - d|.

 9. If two distinct points lie in a plane, show that 
the line through these points is contained in 
the plane.

 10. The line through a vertex of a triangle, 
perpendicular to the opposite side, is called 
an altitude of the triangle. Show that the 
three altitudes of any triangle are concurrent. 
(The intersection of the altitudes is called the 
orthocentre of the triangle.) [Hint: If P is the 
intersection of two of the altitudes, show that 
the line through P and the remaining vertex is 
perpendicular to the remaining side.]
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The Vector Space �n

5
Subspaces and Spanning
In Section 2.2 we introduced the set �n of all n-tuples (called vectors), and began our 
investigation of the matrix transformations �n → �m given by matrix multiplication 
by an m × n matrix. Particular attention was paid to the euclidean plane �2 where 
certain simple geometric transformations were seen to be matrix transformations. 
Then in Section 2.6 we introduced linear transformations, showed that they are all 
matrix transformations, and found the matrices of rotations and reflections in �2. 
We returned to this in Section 4.4 where we showed that projections, reflections, 
and rotations of �2 and �3 were all linear, and where we related areas and volumes 
to determinants. 

In this chapter we investigate �n in full generality, and introduce some of the 
most important concepts and methods in linear algebra. The n-tuples in �n will 
continue to be denoted x, y, and so on, and will be written as rows or columns 
depending on the context.

Subspaces of �n

A set1 U of vectors in �n is called a subspace of �n if it satisfies the following properties:
S1. The zero vector 0 is in U. 
S2. If x and y are in U, then x + y is also in U. 
S3. If x is in U, then ax is in U for every real number a.

1

We say that the subset U is closed under addition if S2 holds, and that U is closed 
under scalar multiplication if S3 holds.

Clearly �n is a subspace of itself. The set U = {0}, consisting of only the zero 
vector, is also a subspace because 0 + 0 = 0 and a0 = 0 for each a in �; it is called 
the zero subspace. Any subspace of �n other than {0} or �n is called a proper 
subspace.

1 We use the language of sets. Informally, a set X is a collection of objects, called the elements of the set. The fact that x is an 
element of X is denoted x ∈ X. Two sets X and Y are called equal (written X = Y) if they have the same elements. If every element of 
X is in the set Y, we say that X is a subset of Y, and write X ⊆ Y. Hence X ⊆ Y and Y ⊆ X both hold if and only if X = Y.
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We saw in Section 4.2 that every plane M through the origin in �3 has equation 

ax + by + cz = 0 where a, b, and c are not all zero. Here n =   S  
a
 

 
 b   

c
   T  is a normal for the 

plane and

M = {v in �3 | n · v = 0} 

where v =   S  
x
 

 
 y   

z
   T  and n · v denotes the dot product introduced in Section 2.2 (see the 

diagram).2 Then M is a subspace of �3. Indeed we show that M satisfies S1, S2, and 
S3 as follows:

S1. 0 is in M because n · 0 = 0;

S2. If v and v1 are in M, then n · (v + v1) = n · v + n · v1 = 0 + 0 = 0, so v + v1 is 
in M;

S3. If v is in M, then n · (av) = a(n · v) = a(0) = 0, so av is in M.

This proves the first part of

EXAMPLE 1

Planes and lines through the origin in �3 are all subspaces of �3.

Solution ► We dealt with planes above. If L is a line through the origin with 
direction vector d, then L = {td | t in �} (see the diagram). We leave it as an 
exercise to verify that L satisfies S1, S2, and S3.

Example 1 shows that lines through the origin in �2 are subspaces; in fact, they are the 
only proper subspaces of �2 (Exercise 24). Indeed, we shall see in Example 14 Section 
5.2 that lines and planes through the origin in �3 are the only proper subspaces of �3. 
Thus the geometry of lines and planes through the origin is captured by the subspace 
concept. (Note that every line or plane is just a translation of one of these.) 

Subspaces can also be used to describe important features of an m × n matrix A. 
The null space of A, denoted null A, and the image space of A, denoted im A, are 
defined by

null A = {x in �n | Ax = 0} and im A = {Ax | x in �n}

In the language of Chapter 2, null A consists of all solutions x in �n of the 
homogeneous system Ax = 0, and im A is the set of all vectors y in �m such that 
Ax = y has a solution x. Note that x is in null A if it satisfies the condition Ax = 0, 
while im A consists of vectors of the form Ax for some x in �n. These two ways to 
describe subsets occur frequently.

EXAMPLE 2

If A is an m × n matrix, then: 

1. null A is a subspace of �n.

2. im A is a subspace of �m.

2 We are using set notation here. In general {q | p } means the set of all objects q with property p.

y

z

x M 

n

y

z

x

L 

d
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Solution ► 

1. The zero vector 0 in �n lies in null A because A0 = 0.3 If x and x1 
are in null A, then x + x1 and ax are in null A because they satisfy the 
required condition: 

A(x + x1) = Ax + Ax1 = 0 + 0 = 0 and A(ax) = a(Ax) = a0 = 0

 Hence null A satisfies S1, S2, and S3, and so is a subspace of �n.

2. The zero vector 0 in �m lies in im A because 0 = A0. Suppose that y and 
y1 are in im A, say y = Ax and y1 = Ax1 where x and x1 are in �n. Then

y + y1 = Ax + Ax1 = A(x + x1) and ay = a(Ax) = A(ax)

 show that y + y1 and ay are both in im A (they have the required 
form). Hence im A is a subspace of �m.

3

There are other important subspaces associated with a matrix A that clarify basic 
properties of A. If A is an n × n matrix and λ is any number, let 

Eλ(A) = {x in �n | Ax = λx}.

A vector x is in Eλ(A) if and only if (λI - A)x = 0, so Example 2 gives:

EXAMPLE 3

Eλ(A) = null(λI - A) is a subspace of �n for each n × n matrix A and 
number λ.

Eλ(A) is called the eigenspace of A corresponding to λ. The reason for the name 
is that, in the terminology of Section 3.3, λ is an eigenvalue of A if Eλ(A) ≠ {0}. 
In this case the nonzero vectors in Eλ(A) are called the eigenvectors of A 
corresponding to λ.

The reader should not get the impression that every subset of �n is a subspace. 
For example:

U1 =  U   S   x     y   T  | x ≥ 0 V  satisfies S1 and S2, but not S3;

U2 =  U   S   x     y   T  | x2 = y2 V  satisfies S1 and S3, but not S2;

Hence neither U1 nor U2 is a subspace of �2. (However, see Exercise 20.)

Spanning Sets
Let v and w be two nonzero, nonparallel vectors in �3 with their tails at the 
origin. The plane M through the origin containing these vectors is described in 
Section 4.2 by saying that n = v × w is a normal for M, and that M consists of all 
vectors p such that n · p = 0.4 While this is a very useful way to look at planes, 
there is another approach that is at least as useful in �3 and, more importantly, 
works for all subspaces of �n for any n ≥ 1.

3 We are using 0 to represent the zero vector in both �m and �n. This abuse of notation is common and causes no confusion once 
everybody knows what is going on.

4 The vector n = v × w is nonzero because v and w are not parallel.
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The idea is as follows: Observe that, by the diagram, a vector p is in M if and 
only if it has the form 

p = av + bw

for certain real numbers a and b (we say that p is a linear combination of v and w). 
Hence we can describe M as 

M = {ax + bw | a, b in �}.5

and we say that {v, w} is a spanning set for M. It is this notion of a spanning set that 
provides a way to describe all subspaces of �n.

As in Section 1.3, given vectors x1, x2, …, xk in �n, a vector of the form 

t1x1 + t2x2 + 	 + tkxk where the ti are scalars

is called a linear combination of the xi, and ti is called the coefficient of xi in the 
linear combination. 

The set of all such linear combinations is called the span of the xi and is denoted

span{x1, x2, …, xk} = {t1x1 + t2x2 + 	 + tkxk | ti in �}.

If V = span{x1, x2, …, xk}, we say that V is spanned by the vectors x1, x2, …, xk, and 
that the vectors x1, x2, …, xk span the space V.

Two examples: 

span{x} = {tx | t in �},

which we write as span{x} = �x for simplicity. 

span{x, y} = {rx + sy| r, s in �}.

In particular, the above discussion shows that, if v and w are two nonzero, 
nonparallel vectors in �3, then

M = span{v, w}

is the plane in �3 containing v and w. Moreover, if d is any nonzero vector in �3 
(or �2), then

L = span{v} = {td | t in �} = �d

is the line with direction vector d (see also Lemma 1 Section 3.3). Hence lines and 
planes can both be described in terms of spanning sets.

EXAMPLE 4

Let x = (2, -1, 2, 1) and y = (3, 4, -1, 1) in �4. Determine whether 
p = (0, -11, 8, 1) or q = (2, 3, 1, 2) are in U = span{x, y}.

Solution ► The vector p is in U if and only if p = sx + ty for scalars s and t. 
Equating components gives equations 

2s + 3t = 0, -s + 4t = -11, 2s - t = 8, and s + t = 1.

This linear system has solution s = 3 and t = -2, so p is in U. On the other 
hand, asking that q = sx + ty leads to equations

2s + 3t = 2, -s + 4t = 3, 2s - t = 1, and s + t = 2

and this system has no solution. So q does not lie in U.

5 In particular, this implies that any vector p orthogonal to v × w must be a linear combination p = av + bw of v and w for some a 
and b. Can you prove this directly?

M

av

v
0 w bw

p

Definition 5.2
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Theorem 1

Let U = span{x1, x2, …, xk} in �n. Then:
1. U is a subspace of �n containing each Xi. 
2. If W is a subspace of �n and each Xi is in W, then U ⊆ W.

PROOF

Write U = span{x1, x2, …, xk} for convenience.

 1. The zero vector 0 is in U because 0 = 0x1 + 0x2 + 	 + 0xk is a linear 
combination of the xi. If x = t1x1 + t2x2 + 	 + tkxk and 
y = s1x1 + s2x2 + 	 + skxk are in U, then x + y and ax are in U because

  x + y = (t1 + s1)x1 + (t2 + s2)x2 + 	 + (tk + sk)x1, and
ax = (at1)x1 + (at2)x2 + 	 + (atk)x1.

  Hence S1, S2, and S3 are satisfied for U, proving (1). 

 2. Let x = t1x1 + t2x2 + 	 + tkxk where the ti are scalars and each xi is in W. 
Then each tixi is in W because W satisfies S3. But then x is in W because W 
satisfies S2 (verify). This proves (2).

Condition (2) in Theorem 1 can be expressed by saying that span{x1, x2, …, xk} is 
the smallest subspace of �n that contains each xi. This is useful for showing that two 
subspaces U and W are equal, since this amounts to showing that both U ⊆ W and 
W ⊆ U. Here is an example of how it is used. 

EXAMPLE 5

If x and y are in �n, show that span{x, y} = span{x + y, x - y}.

Solution ► Since both x + y and x - y are in span{x, y}, Theorem 1 gives

span{x + y, x - y} ⊆ span{x, y}.

But x =   1 _ 2  (x + y) +   1 _ 2  (x - y) and y =   1 _ 2  (x + y) -   1 _ 2  (x - y) are both in 
span{x + y, x - y}, so

span{x, y} ⊆ span{x + y, x - y}

again by Theorem 1. Thus span{x, y} = span{x + y, x - y}, as desired.

It turns out that many important subspaces are best described by giving a 
spanning set. Here are three examples, beginning with an important spanning set 
for �n itself. Column j of the n × n identity matrix In is denoted ej and called the jth 
coordinate vector in �n, and the set {e1, e2, …, en} is called the standard basis of 

�
n. If x =   S  

x1

 
 

 x2   


 
 

 
xn

  T  is any vector in �n, then x = x1e1 + x2e2 + 	 + xnen, as the reader 

can verify. This proves: 
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EXAMPLE 6

�
n = span{e1, e2, …, en} where e1, e2, …, en are the columns of In.

If A is an m × n matrix A, the next two examples show that it is a routine matter 
to find spanning sets for null A and im A. 

EXAMPLE 7

Given an m × n matrix A, let x1, x2, …, xk denote the basic solutions to the 
system Ax = 0 given by the gaussian algorithm. Then

null A = span{x1, x2, …, xk}.

Solution ► If x is in null A, then Ax = 0 so Theorem 2 Section 1.3 
shows that x is a linear combination of the basic solutions; that is, 
null A ⊆ span{x1, x2, …, xk}. On the other hand, if x is in span{x1, x2, …, xk}, 
then x = t1x1 + t2x2 + 	 + tkxk for scalars ti, so

Ax = t1Ax1 + t2Ax2 + 	 + tkAxk = t10 + t20 + 	 + tk0 = 0.

This shows that x is in null A, and hence that span{x1, x2, …, xk} ⊆ null A. 
Thus we have equality.

EXAMPLE 8

Let c1, c2, …, cn denote the columns of the m × n matrix A. Then

im A = span{c1, c2, …, cn}.

Solution ► If {e1, e2, …, en} is the standard basis of �n, observe that

[Ae1 Ae2 	 Aen] = A[e1 e2 	 en] = AIn = A = [c1 c2 	 cn].

Hence ci = Aei is in im A for each i, so span{c1, c2, …, cn} ⊆ im A.

Conversely, let y be in im A, say y = Ax for some x in �n. If x =   S  
x1

 
 

 x2   


 
 

 
xn

  T  , then 

Definition 2.5 gives

y = Ax = x1c1 + x2c2 + 	 + xncn is in span{c1, c2, …, cn}.

This shows that im A ⊆ span{c1, c2, …, cn}, and the result follows.

E X E R C I S E S  5 . 1

We often write vectors in �n as rows.

 1. In each case determine whether U is a subspace 
of �3. Support your answer.

 (a) U = {(1, s, t) | s and t in �}.

 �(b) U = {(0, s, t) | s and t in �}.

 (c) U = {(r, s, t) | r, s, and t in �, -r + 3s + 2t = 0}.

 �(d) U = {(r, 3s, r - 2) | r and s in �}.

 (e) U = {(r, 0, s) | r2 + s2 = 0, r and s in �}.

 �(f ) U = {(2r, -s2, t) | r, s, and t in �}.
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 2. In each case determine if x lies in U = span{y, z}. 
If x is in U, write it as a linear combination of 
y and z; if x is not in U, show why not.

 (a) x = (2, -1, 0, 1), y = (1, 0, 0, 1), and 
z = (0, 1, 0, 1).

 �(b) x = (1, 2, 15, 11), y = (2, -1, 0, 2), and 
z = (1, -1, -3, 1).

 (c) x = (8, 3, -13, 20), y = (2, 1, -3, 5), and 
z = (-1, 0, 2, -3).

 �(d) x = (2, 5, 8, 3), y = (2, -1, 0, 5), and 
z = (-1, 2, 2, -3).

 3. In each case determine if the given vectors 
span �4. Support your answer.

 (a) {(1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)}.

 �(b) {(1, 3, -5, 0), (-2, 1, 0, 0), (0, 2, 1, -1), 
(1, -4, 5, 0)}.

 4. Is it possible that {(1, 2, 0), (2, 0, 3)} can span the 
subspace U = {(r, s, 0) | r and s in �}? Defend 
your answer.

 5. Give a spanning set for the zero subspace {0} of �n. 

 6. Is �2 a subspace of �3? Defend your answer.

 7. If U = span{x, y, z} in �n, show that 
U = span{x + tz, y, z} for every t in �.

 8. If U = span{x, y, z} in �n, show that 
U = span{x + y, y + z, z + x}.

 9. If a ≠ 0 is a scalar, show that 
span{ax} = span{x} for every vector x in �n.

 �10. If a1, a2, …, ak are nonzero scalars, show that 
span{a1x1, a2x2, …, akxk} = span{x1, x2, …, xk} 
for any vectors xi in �n.

 11. If x ≠ 0 in �n, determine all subspaces of 
span{x}.

 �12. Suppose that U = span{x1, x2, …, xk} where each 
xi is in �n. If A is an m × n matrix and Axi = 0 
for each i, show that Ay = 0 for every vector y 
in U.

 13. If A is an m × n matrix, show that, for each 
invertible m × m matrix U, null(A) = null(UA). 

 14. If A is an m × n matrix, show that, for each 
invertible n × n matrix V, im(A) = im(AV ).

 15. Let U be a subspace of �n, and let x be a vector 
in �n.

 (a) If ax is in U where a ≠ 0 is a number, show 
that x is in U. 

 �(b) If y and x + y are in U where y is a vector in 
�

n, show that x is in U.

 16. In each case either show that the statement is 
true or give an example showing that it is false. 

 (a) If U ≠ �n is a subspace of �n and x + y is in 
U, then x and y are both in U.

 �(b) If U is a subspace of �n and rx is in U for all 
r in �, then x is in U.

 (c) If U is a subspace of �n and x is in U, then 
-x is also in U.

 �(d) If x is in U and U = span{y, z}, then 
U = span{x, y, z}. 

 (e) The empty set of vectors in �n is a subspace 
of �n.

 �(f )   S   0     
1

   T  is in span  U   S   1     
0

   T  ,   S   2     
0

   T  V  .
 17. (a) If A and B are m × n matrices, show that 

U = {x in �n | Ax = Bx} is a subspace of �n.

 (b) What if A is m × n, B is k × n, and m ≠ k?

 18. Suppose that x1, x2, …, xk are vectors in �n. If 
y = a1x1 + a2x2 + 	 + akxk where a1 ≠ 0, show 
that span{x1, x2, …, xk} = span{y1, x2, …, xk}.

 19. If U ≠ {0} is a subspace of �, show that U = �.

 �20. Let U be a nonempty subset of �n. Show that U 
is a subspace if and only if S2 and S3 hold.

 21. If S and T are nonempty sets of vectors in �n, 
and if S ⊆ T, show that span{S} ⊆ span{T}.

 22. Let U and W be subspaces of �n. Define their 
intersection U ∩ W and their sum U + W as 
follows:

  U ∩ W = {x in �n | x belongs to both U and W}.

  U + W = {x in �n | x is a sum of a vector in U 
and a vector in W}.

 (a) Show that U ∩ W is a subspace of �n.

 �(b) Show that U + W is a subspace of �n.

 23. Let P denote an invertible n × n matrix. If λ is 
a number, show that Eλ(PAP-1) = {Px | x is in 
Eλ(A)} for each n × n matrix A.
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 24. Show that every proper subspace U of �2 is a 
line through the origin. [Hint: If d is a nonzero 
vector in U, let L = �d = {rd | r in �} denote 

the line with direction vector d. If u is in U but 
not in L, argue geometrically that every vector v 
in �2 is a linear combination of u and d.]

Independence and Dimension 
Some spanning sets are better than others. If U = span{x1, x2, …, xk} is a subspace of 
�

n, then every vector in U can be written as a linear combination of the xi in at least 
one way. Our interest here is in spanning sets where each vector in U has a exactly 
one representation as a linear combination of these vectors. 

Linear Independence 
Given x1, x2, …, xk in �n, suppose that two linear combinations are equal:

r1x1 + r2x2 + 	 + rkxk = s1x1 + s2x2 + 	 + skxk.

We are looking for a condition on the set {x1, x2, …, xk} of vectors that guarantees 
that this representation is unique; that is, ri = si for each i. Taking all terms to the 
left side gives

(r1 - s1)x1 + (r2 - s2)x2 + 	 + (rk - sk)xk = 0.

so the required condition is that this equation forces all the coefficients ri - si to be zero. 

With this in mind, we call a set {x1, x2, …, xk} of vectors linearly independent (or 
simply independent) if it satisfies the following condition:

If t1x1 + t2x2 + 	 + tkxk = 0 then t1 = t2 = 	 = tk = 0.

We record the result of the above discussion for reference.

Theorem 1

If {x1, x2, …, xk} is an independent set of vectors in �n, then every vector in 
span{x1, x2, …, xk} has a unique representation as a linear combination of the xi.

It is useful to state the definition of independence in different language. Let us 
say that a linear combination vanishes if it equals the zero vector, and call a linear 
combination trivial if every coefficient is zero. Then the definition of independence 
can be compactly stated as follows:

A set of vectors is independent if and only if the only 
linear combination that vanishes is the trivial one.

Hence we have a procedure for checking that a set of vectors is independent:

Independence Test

To verify that a set {x1, x2, …, xk} of vectors in �n is independent, proceed as follows: 
1. Set a linear combination equal to zero: t1x1 + t2x2 + 	 + tkxk = 0.
2. Show that ti = 0 for each i (that is, the linear combination is trivial).

Of course, if some nontrivial linear combination vanishes, the vectors are not independent.

S E C T I O N  5 . 2

Definition 5.3
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EXAMPLE 1

Determine whether {(1, 0, -2, 5), (2, 1, 0, -1), (1, 1, 2, 1)} is independent 
in �4.

Solution ► Suppose a linear combination vanishes:

r(1, 0, -2, 5) + s(2, 1, 0, -1) + t(1, 1, 2, 1) = (0, 0, 0, 0).

Equating corresponding entries gives a system of four equations:

r + 2s + t = 0, s + t = 0, -2r + 2t = 0, and 5r - s + t = 0.

The only solution is the trivial one r = s = t = 0 (verify), so these vectors are 
independent by the independence test.

EXAMPLE 2

Show that the standard basis {e1, e2, …, ek} of �n is independent.

Solution ► The components of t1e1 + t2e2 + 	 + tnen are t1, t2, …, tn (see the 
discussion preceding Example 6 Section 5.1) So the linear combination vanishes 
if and only if each ti = 0. Hence the independence test applies.

EXAMPLE 3

If {x, y} is independent, show that {2x + 3y, x - 5y} is also independent.

Solution ► If s(2x + 3y) + t(x - 5y) = 0, collect terms to get 
(2s + t)x + (3s - 5t)y = 0. Since {x, y} is independent this combination 
must be trivial; that is, 2s + t = 0 and 3s - 5t = 0. These equations have 
only the trivial solution s = t = 0, as required.

EXAMPLE 4

Show that the zero vector in �n does not belong to any independent set.

Solution ► No set {0, x1, x2, …, xk} of vectors is independent because we have a 
vanishing, nontrivial linear combination 1 · 0 + 0x1 + 0x2 + 	 + 0xk = 0.

EXAMPLE 5

Given x in �n, show that {x} is independent if and only if x ≠ 0. 

Solution ► A vanishing linear combination from {x} takes the form tx = 0, 
t in �. This implies that t = 0 because x ≠ 0.
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The next example will be needed later.

EXAMPLE 6

Show that the nonzero rows of a row-echelon matrix R are independent. 

Solution ► We illustrate the case with 3 leading 1s; the general case is 

analogous. Suppose R has the form R = 

0
0
0
0

1
0
0
0

∗

0
0
0

∗

1
0
0

∗

∗

1
0

∗

∗

∗

0

 where ∗ indicates 

a nonspecified number. Let R1, R2, and R3 denote the nonzero rows of R. If 
t1R1 + t2R2 + t3R3 = 0 we show that t1 = 0, then t2 = 0, and finally t3 = 0. 
The condition t1R1 + t2R2 + t3R3 = 0 becomes

(0, t1, ∗, ∗, ∗, ∗) + (0, 0, 0, t2, ∗, ∗) + (0, 0, 0, 0, t3, ∗) = (0, 0, 0, 0, 0, 0).

Equating second entries show that t1 = 0, so the condition becomes 
t2R2 + t3R3 = 0. Now the same argument shows that t2 = 0. Finally, 
this gives t3R3 = 0 and we obtain t3 = 0.

A set of vectors in �n is called linearly dependent (or simply dependent) if it is 
not linearly independent, equivalently if some nontrivial linear combination vanishes. 

EXAMPLE 7

If v and w are nonzero vectors in �3, show that {v, w} is dependent if and only 
if v and w are parallel.

Solution ► If v and w are parallel, then one is a scalar multiple of the other 
(Theorem 4 Section 4.1), say v = aw for some scalar a. Then the nontrivial 
linear combination v - aw = 0 vanishes, so {v, w} is dependent.

Conversely, if {v, w} is dependent, let sv + tw = 0 be nontrivial, say s ≠ 0. 
Then v = -  t _ s  w, so v and w are parallel (by Theorem 4 Section 4.1). A similar 
argument works if t ≠ 0.

With this we can give a geometric description of what it means for a set {u, v, w} 
in �3 to be independent. Note that this requirement means that {v, w} is also 
independent (av + bw = 0 means that 0u + av + bw = 0), so M = span{v, w} is the 
plane containing v, w, and 0 (see the discussion preceding Example 4 Section 5.1). 
So we assume that {v, w} is independent in the following example. 

EXAMPLE 8

Let u, v, and w be nonzero vectors in �3 where {v, w} independent. Show that 
{u, v, w} is independent if and only if u is not in the plane M = span{v, w}. 
This is illustrated in the diagrams.

M

M

u

v

w

u
v

w

{ }u v w, , independent

{ }u v w, , not independent
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Solution ► If {u, v, w} is independent, suppose u is in the plane M = span{v, w}, 
say u = av + bw, where a and b are in �. Then 1u - av - bw = 0, 
contradicting the independence of {u, v, w}.
On the other hand, suppose that u is not in M; we must show that {u, v, w} is 
independent. If ru + sv + tw = 0 where r, s, and t are in �3, then r = 0 since 
otherwise u =   −s

 __ r  v +   −t
 __ r  w is in M. But then sv + tw = 0, so s = t = 0 by our 

assumption. This shows that {u, v, w} is independent, as required.

By Theorem 5 Section 2.4, the following conditions are equivalent for an n × n 
matrix A:

1. A is invertible.
2. If Ax = 0 where x is in �n, then x = 0. 
3. Ax = b has a solution x for every vector b in �n.

While condition 1 makes no sense if A is not square, conditions 2 and 3 are 
meaningful for any matrix A and, in fact, are related to independence and spanning. 

Indeed, if c1, c2, …, cn are the columns of A, and if we write x =   S  
x1

 
 

 x2   


 
 

 
xn

  T  , then 

Ax = x1c1 + x2c2 + 	 + xncn 

by Definition 2.5. Hence the definitions of independence and spanning show, 
respectively, that condition 2 is equivalent to the independence of {c1, c2, …, cn} 
and condition 3 is equivalent to the requirement that span{c1, c2, …, cn} = �m. 
This discussion is summarized in the following theorem:

Theorem 2

If A is an m × n matrix, let {c1, c2, …, cn} denote the columns of A.
1. {c1, c2, …, cn} is independent in �m if and only if Ax = 0, x in �n, implies x = 0.
2. �

m = span{c1, c2, …, cn} if and only if Ax = b has a solution x for every vector 
b in �m.

For a square matrix A, Theorem 2 characterizes the invertibility of A in terms 
of the spanning and independence of its columns (see the discussion preceding 
Theorem 2). It is important to be able to discuss these notions for rows. If 
x1, x2, …, xk are 1 × n rows, we define span{x1, x2, …, xk} to be the set of all linear 
combinations of the xi (as matrices), and we say that {x1, x2, …, xk} is linearly 
independent if the only vanishing linear combination is the trivial one (that is, if 
{ x  1  

T ,  x  2  
T , …,  x  k  

T } is independent in �n, as the reader can verify).6

Theorem 3

The following are equivalent for an n × n matrix A:
1. A is invertible.

6 It is best to view columns and rows as just two different notations for ordered n-tuples. This discussion will become redundant in 
Chapter 6 where we define the general notion of a vector space.
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2. The columns of A are linearly independent.
3. The columns of A span �n.
4. The rows of A are linearly independent. 
5. The rows of A span the set of all 1 × n rows.

PROOF

Let c1, c2, …, cn denote the columns of A.

(1) ⇔ (2). By Theorem 5 Section 2.4, A is invertible if and only if Ax = 0 
implies x = 0; this holds if and only if {c1, c2, …, cn} is independent by 
Theorem 2.

(1) ⇔ (3). Again by Theorem 5 Section 2.4, A is invertible if and only if 
Ax = b has a solution for every column B in �n; this holds if and only if 
span{c1, c2, …, cn} = �n by Theorem 2. 

(1) ⇔ (4). The matrix A is invertible if and only if AT is invertible (by the 
Corollary to Theorem 4 Section 2.4); this in turn holds if and only if AT has 
independent columns (by (1) ⇔ (2)); finally, this last statement holds if and 
only if A has independent rows (because the rows of A are the transposes of 
the columns of AT).

(1) ⇔ (5). The proof is similar to (1) ⇔ (4).

EXAMPLE 9

Show that S = {(2, -2, 5), (-3, 1, 1), (2, 7, -4)} is independent in �3. 

Solution ► Consider the matrix A = 
2

-3
2

-2
1
7

5
1

-4
 with the vectors in S as its 

rows. A routine computation shows that det A = -117 ≠ 0, so A is invertible. 
Hence S is independent by Theorem 3. Note that Theorem 3 also shows that 
�

3 = span S.

Dimension
It is common geometrical language to say that �3 is 3-dimensional, that planes are 
2-dimensional and that lines are 1-dimensional. The next theorem is a basic tool 
for clarifying this idea of “dimension”. Its importance is difficult to exaggerate.

Theorem 4

Fundamental Theorem
Let U be a subspace of �n. If U is spanned by m vectors, and if U contains k linearly 
independent vectors, then k ≤ m.

This proof is given in Theorem 2 Section 6.3 in much greater generality.
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If U is a subspace of �n, a set {x1, x2, …, xm} of vectors in U is called a basis of U if it 
satisfies the following two conditions:

1. {x1, x2, …, xm} is linearly independent. 
2. U = span{x1, x2, …, xm}.

The most remarkable result about bases7 is:

Theorem 5

Invariance Theorem
If {x1, x2, …, xm} and {y1, y2, …, yk} are bases of a subspace U of �n, then m = k.

PROOF

We have k ≤ m by the fundamental theorem because {x1, x2, …, xm} spans U, 
and {y1, y2, …, yk} is independent. Similarly, by interchanging xs and ys we get 
m ≤ k. Hence m = k.

The invariance theorem guarantees that there is no ambiguity in the following 
definition:

If U is a subspace of �n and {x1, x2, …, xm} is any basis of U, the number, m, of vectors 
in the basis is called the dimension of U, denoted

dim U = m.

The importance of the invariance theorem is that the dimension of U can be 
determined by counting the number of vectors in any basis.8

Let {e1, e2, …, en} denote the standard basis of �n, that is the set of columns of 
the identity matrix. Then �n = span{e1, e2, …, en} by Example 6 Section 5.1, and 
{e1, e2, …, en} is independent by Example 2. Hence it is indeed a basis of �n in the 
present terminology, and we have 

EXAMPLE 10

dim(�n) = n and {e1, e2, …, en} is a basis.

This agrees with our geometric sense that �2 is two-dimensional and �3 is 
three-dimensional. It also says that �1 = � is one-dimensional, and {1} is a basis. 
Returning to subspaces of �n, we define

dim {0} = 0.

This amounts to saying {0} has a basis containing no vectors. This makes sense 
because 0 cannot belong to any independent set (Example 4).

7 The plural of “basis” is “bases”.

8 We will show in Theorem 6 that every subspace of �n does indeed have a basis.

Definition 5.4

Definition 5.5
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EXAMPLE 11

Let U =  U   S  r 
 
 s   

r
  T  | r, s in � V . Show that U is a subspace of �3, find a basis, and 

calculate dim U.

Solution ► Clearly,   S  r 
 
 s   

r
  T  = ru + sv where u =   S  1 

 
 0   

1
  T  and v =   S  0 

 
 1   

0
  T . It follows that 

U = span{u, v}, and hence that U is a subspace of �3. Moreover, if 

ru + sv = 0, then   S  r 
 
 s   

r
  T  =   S  0 

 
 0   

0
  T  so r = s = 0. Hence {u, v} is independent, and so a 

basis of U. This means dim U = 2.

EXAMPLE 12

Let B = {x1, x2, …, xn} be a basis of �n. If A is an invertible n × n matrix, then 
D = {Ax1, Ax2, …, Axn} is also a basis of �n.

Solution ► Let x be a vector in �n. Then A-1x is in �n so, since B is a basis, 
we have A-1x = t1x1 + t2x2 + 	 + tnxn for ti in �. Left multiplication by A 
gives x = t1(Ax1) + t2(Ax2) + 	 + tn(Axn), and it follows that D spans �n. To 
show independence, let s1(Ax1) + s2(Ax2) + 	 + sn(Axn) = 0, where the si are 
in �. Then A(s1x1 + s2x2 + 	 + snxn) = 0 so left multiplication by A-1 gives 
s1x1 + s2x2 + 	 + snxn = 0. Now the independence of B shows that each si = 0, 
and so proves the independence of D. Hence D is a basis of �n.

While we have found bases in many subspaces of �n, we have not yet shown that 
every subspace has a basis. This is part of the next theorem, the proof of which is 
deferred to Section 6.4 where it will be proved in more generality.

Theorem 6

Let U ≠ {0} be a subspace of �n. Then:
1. U has a basis and dim U ≤ n. 
2. Any independent set in U can be enlarged (by adding vectors from the standard 

basis) to a basis of U.
3. Any spanning set for U can be cut down (by deleting vectors) to a basis of U.

EXAMPLE 13

Find a basis of �4 containing S = {u, v} where u = (0, 1, 2, 3) and v = (2, -1, 0, 1). 

Solution ► By Theorem 6 we can find such a basis by adding vectors from the 
standard basis of �4 to S. If we try e1 = (1, 0, 0, 0), we find easily that {e1, u, v} 
is independent. Now add another vector from the standard basis, say e2.
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Again we find that B = {e1, e2, u, v} is independent. Since B has 4 = dim �4 
vectors, then B must span �4 by Theorem 7 below (or simply verify it directly). 
Hence B is a basis of �4.

Theorem 6 has a number of useful consequences. Here is the first. 

Theorem 7

Let U be a subspace of �n where dim U = m and let B = {x1, x2, …, xm} be a set of m 
vectors in U. Then B is independent if and only if B spans U.

PROOF

Suppose B is independent. If B does not span U then, by Theorem 6, B can be 
enlarged to a basis of U containing more than m vectors. This contradicts the 
invariance theorem because dim U = m, so B spans U. Conversely, if B spans U 
but is not independent, then B can be cut down to a basis of U containing fewer 
than m vectors, again a contradiction. So B is independent, as required.

As we saw in Example 13, Theorem 7 is a “labour-saving” result. It asserts 
that, given a subspace U of dimension m and a set B of exactly m vectors in U, to 
prove that B is a basis of U it suffices to show either that B spans U or that B is 
independent. It is not necessary to verify both properties.

Theorem 8

Let U ⊆ W be subspaces of �n. Then:
1. dim U ≤ dim W. 
2. If dim U = dim W, then U = W.

PROOF

Write dim W = k, and let B be a basis of U. 

 1. If dim U > k, then B is an independent set in W containing more than k 
vectors, contradicting the fundamental theorem. So dim U ≤ k = dim W. 

 2. If dim U = k, then B is an independent set in W containing k = dim W 
vectors, so B spans W by Theorem 7. Hence W = span B = U, proving (2).

It follows from Theorem 8 that if U is a subspace of �n, then dim U is one of the 
integers 0, 1, 2, …, n, and that:

 dim U = 0 if and only if U = {0},
 dim U = n if and only if U = �n

The other subspaces are called proper. The following example uses Theorem 8 
to show that the proper subspaces of �2 are the lines through the origin, while the 
proper subspaces of �3 are the lines and planes through the origin.
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EXAMPLE 14

1. If U is a subspace of �2 or �3, then dim U = 1 if and only if U is a line 
through the origin. 

2. If U is a subspace of �3, then dim U = 2 if and only if U is a plane 
through the origin.

PROOF

 1. Since dim U = 1, let {u} be a basis of U. Then U = span{u} = {tu | t in �}, so 
U is the line through the origin with direction vector u. Conversely each line 
L with direction vector d ≠ 0 has the form L = {td | t in �}. Hence {d} is a 
basis of U, so U has dimension 1.

 2. If U ⊆ �3 has dimension 2, let {v, w} be a basis of U. Then v and w are not 
parallel (by Example 7) so n = v × w ≠ 0. Let P = {x in �3 | n · x = 0} 
denote the plane through the origin with normal n. Then P is a subspace of 
�

3 (Example 1 Section 5.1) and both v and w lie in P (they are orthogonal to 
n), so U = span{v, w} ⊆ P by Theorem 1 Section 5.1. Hence 

U ⊆ P ⊆ �3.

  Since dim U = 2 and dim(�3) = 3, it follows from Theorem 8 that dim P = 2 
or 3, whence P = U or �3. But P ≠ �3 (for example, n is not in P) and so 
U = P is a plane through the origin.
 Conversely, if U is a plane through the origin, then dim U = 0, 1, 2, or 3 
by Theorem 8. But dim U ≠ 0 or 3 because U ≠ {0} and U ≠ �3, and dim 
U ≠ 1 by (1). So dim U = 2.

Note that this proof shows that if v and w are nonzero, nonparallel vectors in 
�

3, then span{v, w} is the plane with normal n = v × w. We gave a geometrical 
verification of this fact in Section 5.1.

E X E R C I S E S  5 . 2

In Exercises 1–6 we write vectors �n as rows.

 1. Which of the following subsets are independent? 
Support your answer.

 (a) {(1, -1, 0), (3, 2, -1), (3, 5, -2)} in �3.

 �(b) {(1, 1, 1), (1, -1, 1), (0, 0, 1)} in �3.

 (c) {(1, -1, 1, -1), (2, 0, 1, 0), (0, -2, 1, -2)} in �4.

 �(d) {(1, 1, 0, 0), (1, 0, 1, 0), (0, 0, 1, 1), 
(0, 1, 0, 1)} in �4.

 2. Let {x, y, z, w} be an independent set in �n. 
Which of the following sets is independent? 
Support your answer.

 (a) {x - y, y - z, z - x}

 �(b) {x + y, y + z, z + x}

 (c) {x - y, y - z, z - w, w - x}

 �(d) {x + y, y + z, z + w, w + x}

 3. Find a basis and calculate the dimension of the 
following subspaces of �4.

 (a) span{(1, -1, 2, 0), (2, 3, 0, 3), (1, 9, -6, 6)}.

 �(b) span{(2, 1, 0, -1), (-1, 1, 1, 1), (2, 7, 4, 1)}.

 (c) span{(-1, 2, 1, 0), (2, 0, 3, -1), (4, 4, 11, -3),
 (3, -2, 2, -1)}.

 �(d) span{(-2, 0, 3, 1), (1, 2, -1, 0), (-2, 8, 5, 3), 
(-1, 2, 2, 1)}.
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 4. Find a basis and calculate the dimension of the 
following subspaces of �4.

 (a) U =  U    S   
a

 

  
 a + b    

a - b
 

  
 

b

   T  | a and b in � V .
 �(b) U =  U    S  a + b

 
  

 a - b    
b
 

  
 

a

   T  | a and b in � V .
 (c) U =  U    S   

a

 
  

 b    c + a   
 

c

   T  | a, b, and c in � V .

 �(d) U =  U    S  a - b
 

  
 b + c    a    

b + c

   T  | a, b, and c in � V .
 (e) U =  U    S   

a

 
 
 b   c   

d

   T  | a + b - c + d = 0 in � V .
 �(f ) U =  U   S   

a

 
 
 b   c   

d

   T  | a + b = c + d in � V .
 5. Suppose that {x, y, z, w} is a basis of �4. Show 

that:

 (a) {x + aw, y, z, w} is also a basis of �4 for any 
choice of the scalar a.

 �(b) {x + w, y + w, z + w, w} is also a basis 
of �4.

 (c) {x, x + y, x + y + z, x + y + z + w} is also 
a basis of �4.

 6. Use Theorem 3 to determine if the following 
sets of vectors are a basis of the indicated space.

 (a) {(3, -1), (2, 2)} in �2.

 �(b) {(1, 1, -1), (1, -1, 1), (0, 0, 1)} in �3.

 (c) {(-1, 1, -1), (1, -1, 2), (0, 0, 1)} in �3.

 �(d) {(5, 2, -1), (1, 0, 1), (3, -1, 0)} in �3.

 (e) {(2, 1, -1, 3), (1, 1, 0, 2), (0, 1, 0, -3), 
(-1, 2, 3, 1)} in �4.

 �(f ) {(1, 0, -2, 5), (4, 4, -3, 2), (0, 1, 0, -3), 
(1, 3, 3, -10)} in �4.

 7. In each case show that the statement is true or 
give an example showing that it is false. 

 (a) If {x, y} is independent, then {x, y, x + y} is 
independent. 

 �(b) If {x, y, z} is independent, then {y, z} is 
independent. 

 (c) If {y, z} is dependent, then {x, y, z} is 
dependent for any x. 

 �(d) If all of x1, x2, …, xk are nonzero, then 
{x1, x2, …, xk} is independent. 

 (e) If one of x1, x2, …, xk is zero, then 
{x1, x2, …, xk} is dependent. 

 �(f ) If ax + by + cz = 0, then {x, y, z} is 
independent.

 (g) If {x, y, z} is independent, then 
ax + by + cz = 0 for some a, b, and c in �.

 �(h) If {x1, x2, …, xk} is dependent, then 
t1x1 + t2x2 + 	 + tkxk = 0 for some 
numbers ti in � not all zero. 

 (i) If {x1, x2, …, xk} is independent, then 
t1x1 + t2x2 + 	 + tkxk = 0 for some ti in �.

 8. If A is an n × n matrix, show that det A = 0 
if and only if some column of A is a linear 
combination of the other columns.

 9. Let {x, y, z} be a linearly independent set in �4. 
Show that {x, y, z, ek} is a basis of �4 for some ek 
in the standard basis {e1, e2, e3, e4}.

 �10. If {x1, x2, x3, x4, x5, x6} is an independent set of 
vectors, show that the subset {x2, x3, x5} is also 
independent.

 11. Let A be any m × n matrix, and let b1, b2, 
b3, …, bk be columns in �m such that the 
system Ax = bi has a solution xi for each i. If 
{b1, b2, b3, …, bk} is independent in �m, show 
that {x1, x2, x3, …, xk} is independent in �n.

 �12. If {x1, x2, x3, …, xk} is independent, show that 
{x1, x1 + x2, x1 + x2 + x3, …, x1 + x2 + 	 + xk} 
is also independent.

 13. If {y, x1, x2, x3, …, xk} is independent, show 
that {y + x1, y + x2, y + x3, …, y + xk} is also 
independent.

 14. If {x1, x2, …, xk} is independent in �n, and if y is 
not in span{x1, x2, …, xk}, show that 
{x1, x2, …, xk, y} is independent.

 15. If A and B are matrices and the columns of AB 
are independent, show that the columns of B are 
independent.
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 16. Suppose that {x, y} is a basis of �2, and let 

A =   S   a b
        

c d
   T .

 (a) If A is invertible, show that {ax + by, cx + dy} 
is a basis of �2.

 �(b) If {ax + by, cx + dy} is a basis of �2, show 
that A is invertible.

 17. Let A denote an m × n matrix.

 (a) Show that null A = null(UA) for every 
invertible m × m matrix U.

 �(b) Show that dim(null A) = dim(null(AV )) 
for every invertible n × n matrix V. [Hint: 
If {x1, x2, …, xk} is a basis of null A, show 
that {V-1x1, V

-1x2, …, V-1xk} is a basis of 
null(AV ).]

 18. Let A denote an m × n matrix.

 (a) Show that im A = im(AV ) for every 
invertible n × n matrix V.

 (b) Show that dim(im A) = dim(im(UA)) for 
every invertible m × m matrix U. [Hint: If 
{y1, y2, …, yk} is a basis of im(UA), show that 
{U -1y1, U -1y2, …, U -1yk} is a basis of im A.]

 19. Let U and W denote subspaces of �n, and 
assume that U ⊆ W. If dim U = n - 1, show 
that either W = U or W = �n.

 �20. Let U and W denote subspaces of �n, and 
assume that U ⊆ W. If dim W = 1, show that 
either U = {0} or U = W.

Orthogonality
Length and orthogonality are basic concepts in geometry and, in �2 and �3, they 
both can be defined using the dot product. In this section we extend the dot product 
to vectors in �n, and so endow �n with euclidean geometry. We then introduce the 
idea of an orthogonal basis—one of the most useful concepts in linear algebra, and 
begin exploring some of its applications.

Dot Product, Length, and Distance 
If x = (x1, x2, …, xn) and y = ( y1, y2, …, yn) are two n-tuples in �n, recall that their 
dot product was defined in Section 2.2 as follows: 

x · y = x1y1 + x2y2 + 	 + xnyn.

Observe that if x and y are written as columns then x · y = xTy is a matrix product 
(and x · y = xyT if they are written as rows). Here x · y is a 1 × 1 matrix, which we 
take to be a number. 

As in �3, the length ‖x‖ of the vector is defined by

‖x‖ =  √ 

____
 x · x   =  √ 

_________________

   x  1  
2  +  x  2  

2  +  	  +  x  n  
2   

Where  √ 
___

  Q   R    indicates the positive square root.

A vector x of length 1 is called a unit vector. If x ≠ 0, then ‖x‖ ≠ 0 and it follows 
easily that   1 ___ 

‖x‖
  x is a unit vector (see Theorem 6 below), a fact that we shall use later.

EXAMPLE 1

If x = (1, -1, -3, 1) and y = (2, 1, 1, 0) in �4, then x · y = 2 - 1 - 3 + 0 = -2 

and ‖x‖ =  √ 
____________

  1 + 1 + 9 + 1   =  √ 

___

 12   = 2 √ 

__

 3  . Hence   1 ___ 
2 √ 

__

 3  
   x is a unit vector; 

similarly   1 __ 
 √ 

__

 6  
   y is a unit vector.

S E C T I O N  5 . 3

Definition 5.6
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These definitions agree with those in �2 and �3, and many properties carry over to �n:

Theorem 1

Let x, y, and z denote vectors in �n. Then: 
1. x · y = y · x. 

2. x · (y + z) = x · y + x · z.

3. (ax) · y = a(x · y) = x · (ay) for all scalars a. 

4. ‖x‖
2 = x · x. 

5. ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0.

6. ‖ax‖ = | a| ‖x‖ for all scalars a.

PROOF

(1), (2), and (3) follow from matrix arithmetic because x · y = xTy; (4) is clear 

from the definition; and (6) is a routine verification since |a| =  √ 

__

 a2  . If 
x = (x1, x2, …, xn), then ‖x‖ =  √ 

________________

   x  1  
2  +  x  2  

2  + 	 +  x  n  
2   , so ‖x‖ = 0 if and only if 

x  1  
2  +  x  2  

2  + 	 +  x  n  
2  = 0. Since each xi is a real number this happens if and only 

if xi = 0 for each i; that is, if and only if x = 0. This proves (5).

Because of Theorem 1, computations with dot products in �n are similar to those 
in �3. In particular, the dot product 

(x1 + x2 + 	 + xm) · (y1 + y2 + 	 + yk) 

equals the sum of mk terms, xi · yj, one for each choice of i and j. For example:

(3x - 4y) · (7x + 2y)  = 21(x · x) + 6(x · y) - 28(y · x) - 8(y · y)
= 21‖x‖

2 - 22(x · y) - 8‖y‖
2

holds for all vectors x and y.

EXAMPLE 2

Show that ‖x + y‖
2 = ‖x‖

2 + 2(x · y) + ‖y‖
2 for any x and y in �n.

Solution ► Using Theorem 1 several times: 

‖x + y‖
2  = (x + y) · (x + y) = x · x + x · y + y · x + y · y

= ‖x‖
2 + 2(x · y) + ‖y‖

2

EXAMPLE 3

Suppose that �n = span{f1, f2, …, fk} for some vectors fi. If x · fi = 0 for each i 
where x is in �n, show that x = 0.
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Solution ► We show x = 0 by showing that ‖x‖ = 0 and using (5) of Theorem 1. 
Since the fi span �n, write x = t1f1 + t2f2 + 	 + tkfk where the ti are in �. Then

‖x‖
2  = x · x = x · (t1f1 + t2f2 + 	 + tkfk)

= t1(x · f1) + t2(x · f2) + 	 + tk(x · fk)
= t1(0) + t2(0) + 	 + tk(0) 
= 0.

We saw in Section 4.2 that if u and v are nonzero vectors in �3, then 
u · v _______ 

‖u‖‖v‖
   = cos θ where θ is the angle between u and v. Since |cos θ| ≤ 1 for any 

angle θ, this shows that |u · v| ≤ ‖u‖‖v‖. In this form the result holds in �n.

Theorem 2

Cauchy Inequality9

If x and y are vectors in �n, then

|x · y| ≤ ‖x‖‖y‖.

Moreover |x · y| = ‖x‖‖y‖ if and only if one of x and y is a multiple of the other.
9

PROOF

The inequality holds if x = 0 or y = 0 (in fact it is equality). Otherwise, 
write ‖x‖ = a > 0 and ‖y‖ = b > 0 for convenience. A computation like 
that preceding Example 2 gives 

 ‖bx - ay‖
2 = 2ab(ab - x · y) and ‖bx - ay‖

2 = 2ab(ab + x · y). (∗)

It follows that ab - x · y ≥ 0 and ab + x · y ≥ 0, and hence that -ab ≤ x · y ≤ ab. 
Hence |x · y| ≤ ab = ‖x‖‖y‖, proving the Cauchy inequality. 

If equality holds, then |x · y| = ab, so x · y = ab or x · y = -ab. Hence (∗) 
shows that bx - ay = 0 or bx + ay = 0, so one of x and y is a multiple of the 
other (even if a = 0 or b = 0).

The Cauchy inequality is equivalent to (x · y)2 ≤ ‖x‖
2
‖y‖

2. In �5 this becomes 

(x1y1 + x2y2 + x3y3 + x4y4 + x5y5)
2 

  ≤  Q  x  1  
2  +  x  2  

2  +  x  3  
2  +  x  4  

2  +  x  5  
2  R  Q  y  1  

2  +  y  2  
2  +  y  3  

2  +  y  4  
2  +  y  5  

2  R 

for all xi and yi in �.
There is an important consequence of the Cauchy inequality. Given x and y in 

�
n, use Example 2 and the fact that x · y ≤ ‖x‖‖y‖ to compute 

‖x + y‖
2 = ‖x‖

2 + 2(x · y) + ‖y‖
2 ≤ ‖x‖

2 + 2‖x‖‖y‖ + ‖y‖
2 = (‖x + y‖)

2.

Taking positive square roots gives:

9 Augustin Louis Cauchy (1789–1857) was born in Paris and became a professor at the École Polytechnique at the age of 26. He was 
one of the great mathematicians, producing more than 700 papers, and is best remembered for his work in analysis in which he 
established new standards of rigour and founded the theory of functions of a complex variable. He was a devout Catholic with a long-
term interest in charitable work, and he was a royalist, following King Charles X into exile in Prague after he was deposed in 1830. 
Theorem 2 first appeared in his 1812 memoir on determinants.

Augustin Louis Cauchy. 
Photo © Corbis.
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Corollary 1

Triangle Inequality
If x and y are vectors in �n, then ‖x + y‖ ≤ ‖x‖ + ‖y‖.

The reason for the name comes from the observation that in �3 the inequality 
asserts that the sum of the lengths of two sides of a triangle is not less than the 
length of the third side. This is illustrated in the first diagram. 

If x and y are two vectors in �n, we define the distance d(x, y) between x and y by 

d(x, y) = ‖x - y‖

The motivation again comes from �3 as is clear in the second diagram. This 
distance function has all the intuitive properties of distance in �3, including 
another version of the triangle inequality.

Theorem 3

If x, y, and z are three vectors in �n we have: 
1. d(x, y) ≥ 0 for all x and y.
2. d(x, y) = 0 if and only if x = y.
3. d(x, y) = d(y, x).
4. d(x, z) ≤ d(x, y) + d(y, z). Triangle inequality.

PROOF

(1) and (2) restate part (5) of Theorem 1 because d(x, y) = ‖x - y‖, and (3) 
follows because ‖u‖ = ‖-u‖ for every vector u in �n. To prove (4) use the 
Corollary to Theorem 2: 

d(x, z) = ‖x - z‖  = ‖(x - y) + (y - z)‖
≤ ‖(x - y)‖ + ‖(y - z)‖ = d(x, y) + d(y, z)

Orthogonal Sets and the Expansion Theorem

We say that two vectors x and y in �n are orthogonal if x · y = 0, extending the 
terminology in �3 (See Theorem 3 Section 4.2). More generally, a set {x1, x2, …, xk} 
of vectors in �n is called an orthogonal set if 

xi · xj = 0 for all i ≠ j and xi ≠ 0 for all i.10

Note that {x} is an orthogonal set if x ≠ 0. A set {x1, x2, …, xk} of vectors in �n is called 
orthonormal if it is orthogonal and, in addition, each xi is a unit vector: 

‖xi‖ = 1 for each i.
10

10 The reason for insisting that orthogonal sets consist of nonzero vectors is that we will be primarily concerned with orthogonal bases.

v w

v w+

Definition 5.7

v

w
v w−

Definition 5.8
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EXAMPLE 4

The standard basis {e1, e2, …, en} is an orthonormal set in �n.

The routine verification is left to the reader, as is the proof of:

EXAMPLE 5

If {x1, x2, …, xk} is orthogonal, so also is {a1x1, a2x2, …, akxk} for any nonzero 
scalars ai.

If x ≠ 0, it follows from item (6) of Theorem 1 that   1 ____ 
‖x‖

  x is a unit vector, 
that is it has length 1.

Hence if {x1, x2, …, xk} is an orthogonal set, then  U   1 _____ 
‖x1‖

  x1,   1 _____ 
‖x2‖

  x2, …,   1 ____ 
‖xk‖

  xk V  is an 

orthonormal set, and we say that it is the result of normalizing the orthogonal set 
{x1, x2, …, xk}.

EXAMPLE 6

If f1 =   S     1
 

 
   1   

  1
 

 
 

-1

  T  , f2 =   S  1 
 

 0   
1

 
 

 

2

  T  , f3 =   S  -1
 

 
   0   

  1
 

 
 

  0

   T  , and f4 =   S  -1
 

 
   3   

-1
 

 
 

  1

   T  then {f1, f2, f3, f4} is an 

orthogonal set in �4 as is easily verified. After normalizing, the corresponding 
orthonormal set is  U   1 _ 2   f1,   1 __ 

 √ 

__

 6  
   f2,   1 __ 

 √ 

__

 2  
   f3,   1 ___ 

2 √ 

__

 3  
   f4 V .

The most important result about orthogonality is Pythagoras’ theorem. Given 
orthogonal vectors v and w in �3, it asserts that ‖v + w‖

2 = ‖v‖
2 + ‖w‖

2 as in the 
diagram. In this form the result holds for any orthogonal set in �n.

Theorem 4

Pythagoras’ Theorem
If {x1, x2, …, xk} is a orthogonal set in �n, then

‖x1 + x2 + 	 + xk‖
2 = ‖x1‖

2 + ‖x2‖
2 + 	 + ‖xk‖

2.

PROOF

The fact that xi · xj = 0 whenever i ≠ j gives

‖x1 + x2 + 	 + xk‖
2  = (x1 + x2 + 	 + xk) · (x1 + x2 + 	 + xk)

= (x1 · x1 + x2 · x2 + 	 + xk · xk) +  ∑ 
i≠j

   
 
  xi · xj 

= ‖x1‖
2 + ‖x2‖

2 + 	 + ‖xk‖
2 + 0.

This is what we wanted.

Definition 5.9

v w+ w

v
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If v and w are orthogonal, nonzero vectors in �3, then they are certainly not 
parallel, and so are linearly independent by Example 7 Section 5.2. The next 
theorem gives a far-reaching extension of this observation.

Theorem 5

Every orthogonal set in �n is linearly independent.

PROOF

Let {x1, x2, …, xk} be an orthogonal set in �n and suppose a linear combination 
vanishes: t1x1 + t2x2 + 	 + tkxk = 0. Then

0 = x1 · 0  = x1 · (t1x1 + t2x2 + 	 + tkxk)
= t1(x1 · x1) + t2(x1 · x2) + 	 + tk(x1 · xk)
= t1‖x1‖

2 + t2(0) + 	 + tk(0)
= t1‖x1‖

2

Since ‖x1‖
2 ≠ 0, this implies that t1 = 0. Similarly ti = 0 for each i.

Theorem 5 suggests considering orthogonal bases for �n, that is orthogonal sets 
that span �n. These turn out to be the best bases in the sense that, when expanding 
a vector as a linear combination of the basis vectors, there are explicit formulas for 
the coefficients. 

Theorem 6

Expansion Theorem
Let {f1, f2, …, fm} be an orthogonal basis of a subspace U of �n. If x is any vector in U, 
we have

x =  Q   x · f1 _____ 
‖f1‖

2
   R  f1 +  Q   x · f2 _____ 

‖f2‖
2
   R  f2 + 	 +  Q   x · fm _____ 

‖fm‖
2
   R  fm.

PROOF

Since {f1, f2, …, fm} spans U, we have x = t1f1 + t2f2 + 	 + tmfm where the ti are 
scalars. To find t1 we take the dot product of both sides with f1: 

x · f1  = (t1f1 + t2f2 + 	 + tmfm) · f1

= t1(f1 · f1) + t2(f2 · f1) + 	 + tm(fm · f1)
= t1‖f1‖

2 + t2(0) + 	 + tm(0)
= t1‖f1‖

2

Since f1 ≠ 0, this gives t1 =   
x · f1 _____ 
‖f1‖

2
  . Similarly, ti =   

x · fi _____ 
‖fi‖

2
   for each i.

The expansion in Theorem 6 of x as a linear combination of the orthogonal 
basis {f1, f2, …, fm} is called the Fourier expansion of x, and the coefficients 

t1 =   
x · fi _____ 
‖fi‖

2
   are called the Fourier coefficients. Note that if {f1, f2, …, fm} is actually 
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orthonormal, then ti = x · fi for each i. We will have a great deal more to say about 
this in Section 10.5.

EXAMPLE 7

Expand x = (a, b, c, d) as a linear combination of the orthogonal basis 
{f1, f2, f3, f4} of �4 given in Example 6.

Solution ► We have f1 = (1, 1, 1, -1), f2 = (1, 0, 1, 2), f3 = (-1, 0, 1, 0), and 
f4 = (-1, 3, -1, 1) so the Fourier coefficients are 

t1 =   
x · f1 _____ 
‖f1‖

2
   =   1 __ 

4
  (a + b + c + d) t3 =   

x · f3 _____ 
‖f3‖

2
   =   1 __ 

2
  (-a + c)

t2 =   
x · f2 _____ 
‖f2‖

2
   =   1 __ 

6
  (a + c + 2d) t4 =   

x · f4 _____ 
‖f4‖

2
   =   1 ___ 

12
  (-a + 3b - c + d)

The reader can verify that indeed x = t1f1 + t2f2 + t3f3 + t4f4.

A natural question arises here: Does every subspace U of �n have an orthogonal 
basis? The answer is “yes”; in fact, there is a systematic procedure, called the Gram-
Schmidt algorithm, for turning any basis of U into an orthogonal one. This leads 
to a definition of the projection onto a subspace U that generalizes the projection 
along a vector used in �2 and �3. All this is discussed in Section 8.1.

E X E R C I S E S  5 . 3

We often write vectors in �n as row n-tuples.

 1. Obtain orthonormal bases of �3 by normalizing 
the following.

 (a) {(1, -1, 2), (0, 2, 1), (5, 1, -2)}

 �(b) {(1, 1, 1), (4, 1, -5), (2, -3, 1)}

 2. In each case, show that the set of vectors is 
orthogonal in �4.

 (a) {(1, -1, 2, 5), (4, 1, 1, -1), (-7, 28, 5, 5)}

 (b) {(2, -1, 4, 5), (0, -1, 1, -1), (0, 3, 2, -1)}

 3. In each case, show that B is an orthogonal basis 
of �3 and use Theorem 6 to expand x = (a, b, c) 
as a linear combination of the basis vectors.

 (a) B = {(1, -1, 3), (-2, 1, 1), (4, 7, 1)}

 �(b) B = {(1, 0, -1), (1, 4, 1), (2, -1, 2)}

 (c) B = {(1, 2, 3), (-1, -1, 1), (5, -4, 1)}

 �(d) B = {(1, 1, 1), (1, -1, 0), (1, 1, -2)}

 4. In each case, write x as a linear combination of 
the orthogonal basis of the subspace U.

 (a) x = (13, -20, 15); 
U = span{(1, -2, 3), (-1, 1, 1)}

 �(b) x = (14, 1, -8, 5); 
U = span{(2, -1, 0, 3), (2, 1, -2, -1)}

 5. In each case, find all (a, b, c, d) in �4 such that 
the given set is orthogonal.

 (a) {(1, 2, 1, 0), (1, -1, 1, 3), (2, -1, 0, -1), 
(a, b, c, d)}

 �(b) {(1, 0, -1, 1), (2, 1, 1, -1), (1, -3, 1, 0), 
(a, b, c, d)}

 6. If ‖x‖ = 3, ‖y‖ = 1, and x · y = -2, compute:

 (a) ‖3x - 5y‖ �(b) ‖2x + 7y‖

 (c) (3x - y) · (2y - x)

 �(d) (x - 2y) · (3x + 5y)

 7. In each case either show that the statement is 
true or give an example showing that it is false. 

 (a) Every independent set in �n is orthogonal.

 �(b) If {x, y} is an orthogonal set in �n, then 
{x, x + y} is also orthogonal.
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 (c) If {x, y} and {z, w} are both orthogonal in �n, 
then {x, y, z, w} is also orthogonal.

 �(d) If {x1, x2} and {y1, y2, y3} are both orthogonal 
and xi · yj = 0 for all i and j, then 
{x1, x2, y1, y2, y3} is orthogonal. 

 (e) If {x1, x2, …, xn} is orthogonal in �n, then 
�

n = span{x1, x2, …, xn}.

 �(f ) If x ≠ 0 in �n, then {x} is an orthogonal set.

 8. Let v denote a nonzero vector in �n.

 (a) Show that P = {x in �n | x · v = 0} is a 
subspace of �n.

 (b) Show that �v = {tv | t in �} is a subspace of �n.

 (c) Describe P and �v geometrically when 
n = 3.

 �9. If A is an m × n matrix with orthonormal 
columns, show that ATA = In. 
[Hint: If c1, c2, …, cn are the columns of A, 
show that column j of ATA has entries
c1 · cj, c2 · cj, …, cn · cj].

 10. Use the Cauchy inequality to show that 
 √ 

__
 xy   ≤   1 _ 2  (x + y) for all x ≥ 0 and y ≥ 0. Here 

 √ 
__

 xy   and   1 _ 2  (x + y) are called, respectively, the 
geometric mean and arithmetic mean of x and y.

  [Hint: Use x =   S    √ 

__
 x          √ 

__
 y  
   T  and y =   S    √ 

__
 y          √ 

__
 x  
   T  .]

 11. Use the Cauchy inequality to prove that: 

 (a) (r1 + r2 + 	 + rn)
2 ≤ n( r  1  

2  +  r  2  
2  + 	 +  r  n  

2 )
for all ri in � and all n ≥ 1.

 �(b) r1r2 + r1r3 + r2r3 ≤  r  1  
2  +  r  2  

2  +  r  3  
2  for all r1, 

r2, and r3 in �. [Hint: See part (a).] 

 12. (a) Show that x and y are orthogonal in �n if 
and only if ‖x + y‖ = ‖x - y‖.

 �(b) Show that x + y and x - y are orthogonal in 
�

n if and only if ‖x‖ = ‖y‖.

 13. (a) Show that ‖x + y‖
2
 = ‖x‖

2 + ‖y‖
2 if and 

only if x is orthogonal to y.

 (b) If x =   S   1     
1

   T  , y =   S   1     
0

   T  and z =   S   -2       
  3

   T  , show that 

‖x + y + z‖
2
 = ‖x‖

2 + ‖y‖
2 + ‖z‖

2 but 
x · y ≠ 0, x · z ≠ 0, and y · z ≠ 0.

 14. (a) Show that x · y =   1 _ 4  [‖x + y‖
2
 - ‖x - y‖

2
] for 

all x, y in �n.

 (b) Show that 
‖x‖

2 + ‖y‖
2 =   1 _ 2  ‖x + y‖

2
 + ‖x - y‖

2

for all x, y in �n.

 �15. If A is n × n, show that every eigenvalue of ATA 
is nonnegative. [Hint: Compute ‖Ax‖

2 where x is 
an eigenvector.]

 16. If �n = span{x1, …, xm} and x · xi = 0 for all i, 
show that x = 0. [Hint: Show ‖x‖ = 0.] 

 17. If �n = span{x1, …, xm} and x · xi = y · xi for all 
i, show that x = y. [Hint: Preceding Exercise.]

 18. Let {e1, …, en} be an orthogonal basis of �n. 
Given x and y in �n, show that 

x · y =   
(x · e1)(y · e1)  ____________ 

‖e1‖
2
   + 	 +   

(x · en)(y · en)  ____________ 
‖en‖

2
  .

Rank of a Matrix
In this section we use the concept of dimension to clarify the definition of the rank 
of a matrix given in Section 1.2, and to study its properties. This requires that we 
deal with rows and columns in the same way. While it has been our custom to 
write the n-tuples in �n as columns, in this section we will frequently write them 
as rows. Subspaces, independence, spanning, and dimension are defined for rows 
using matrix operations, just as for columns. If A is an m × n matrix, we define:

The column space, col A, of A is the subspace of �m spanned by the columns of A.
The row space, row A, of A is the subspace of �n spanned by the rows of A.

Much of what we do in this section involves these subspaces. We begin with:

S E C T I O N  5 . 4

Definition 5.10
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Lemma 1

Let A and B denote m × n matrices. 
1. If A → B by elementary row operations, then row A = row B.
2. If A → B by elementary column operations, then col A = col B.

PROOF

We prove (1); the proof of (2) is analogous. It is enough to do it in the case 
when A → B by a single row operation. Let R1, R2, …, Rm denote the rows of A. 
The row operation A → B either interchanges two rows, multiplies a row by a 
nonzero constant, or adds a multiple of a row to a different row. We leave the 
first two cases to the reader. In the last case, suppose that a times row p is added 
to row q where p < q. Then the rows of B are R1, …, Rp, …, Rq + aRp, …, Rm, 
and Theorem 1 Section 5.1 shows that 

span{R1, …, Rp, …, Rq, …, Rm} = span{R1, …, Rp, …, Rq + aRp, …, Rm}.

That is, row A = row B.

If A is any matrix, we can carry A → R by elementary row operations where R is 
a row-echelon matrix. Hence row A = row R by Lemma 1; so the first part of the 
following result is of interest.

Lemma 2

If R is a row-echelon matrix, then
1. The nonzero rows of R are a basis of row R.
2. The columns of R containing leading ones are a basis of col R.

PROOF

The rows of R are independent by Example 6 Section 5.2, and they span row R 
by definition. This proves 1.

Let  c j1 ,  c j2 , …,  c jr  denote the columns of R containing leading 1s. Then 
{ c j1 ,  c j2 , …,  c jr } is independent because the leading 1s are in different rows (and 
have zeros below and to the left of them). Let U denote the subspace of all 
columns in �m in which the last m - r entries are zero. Then dim U = r (it is 
just �r with extra zeros). Hence the independent set { c j1 ,  c j2 , …,  c jr } is a basis of 
U by Theorem 7 Section 5.2. Since each  c ji  is in col R, it follows that col R = U, 
proving (2).

With Lemma 2 we can fill a gap in the definition of the rank of a matrix given 
in Chapter 1. Let A be any matrix and suppose A is carried to some row-echelon 
matrix R by row operations. Note that R is not unique. In Section 1.2 we defined 
the rank of A, denoted rank A, to be the number of leading 1s in R, that is the 
number of nonzero rows of R. The fact that this number does not depend on the 
choice of R was not proved in Section 1.2. However part 1 of Lemma 2 shows that 
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rank A = dim(row A)

and hence that rank A is independent of R. 
Lemma 2 can be used to find bases of subspaces of �n (written as rows). Here is 

an example.

EXAMPLE 1

Find a basis of U = span{(1, 1, 2, 3), (2, 4, 1, 0), (1, 5, -4, -9)}.

Solution ► U is the row space of 
1 2
2 1
1

1
4
5 4

3
0
9− −

. This matrix has row-echelon 

form 
1 2
0 3
0

1 3
1

00 0

3
2− − , so {(1, 1, 2, 3), (0, 1, -  3 _ 2  , -3)} is basis of U by Lemma 2. 

Note that {(1, 1, 2, 3), (0, 2, -3, -6)} is another basis that avoids fractions.

Lemmas 1 and 2 are enough to prove the following fundamental theorem.

Theorem 1

Let A denote any m × n matrix of rank r. Then

dim(col A) = dim(row A) = r.

Moreover, if A is carried to a row-echelon matrix R by row operations, then 
1. The r nonzero rows of R are a basis of row A.
2. If the leading 1s lie in columns j1, j2, …, jr of R, then columns j1, j2, …, jr of A are 

a basis of col A.

PROOF

We have row A = row R by Lemma 1, so (1) follows from Lemma 2. Moreover, 
R = UA for some invertible matrix U by Theorem 1 Section 2.5. Now write 
A = [c1 c2 	 cn] where c1, c2, …, cn are the columns of A. Then 

R = UA = U [c1 c2 	 cn] = [Uc1 Uc2 	 Ucn].

Thus, in the notation of (2), the set B = {U c j1 , U c j2 , …, U c jr } is a basis of col R 
by Lemma 2. So, to prove (2) and the fact that dim(col A) = r, it is enough to 
show that D = { c j1 ,  c j2 , …,  c jr } is a basis of col A. First, D is linearly independent 
because U is invertible (verify), so we show that, for each j, column cj is a linear 
combination of the  c ji . But Ucj is column j of R, and so is a linear combination of 
the U c ji , say Ucj = a1U c j1  + a2U c j2  + 	 + arU c jr  where each ai is a real number. 

Since U is invertible, it follows that cj = a1 c j1  + a2 c j2  + 	 + ar c jr  and the proof 
is complete.
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EXAMPLE 2

Compute the rank of A = 
−1 2

3 5
1 1

6
22

1
0

2
 and find bases for row A and col A.

Solution ► The reduction of A to row-echelon form is as follows:

1 2 2 1
3 6 5 0
1 2 1 2

−
 → 

1 2 2 1
0 0 1 3
0 0 1 3

−
−
−

 → 
1 2 2 1
0 0 1 3
0 0

−
−

00 0
 

Hence rank A = 2, and {[1 2 2 -1], [0 0 1 -3]} is a basis of row A by 
Lemma 2. Since the leading 1s are in columns 1 and 3 of the row-echelon 
matrix, Theorem 1 shows that columns 1 and 3 of A are a basis 

U   S  1 
 

 3   
1

  T  ,   S  2 
 

 5   
1

  T  V  of col A.

Theorem 1 has several important consequences. The first, Corollary 1 below, 
follows because the rows of A are independent (respectively span row A) if and only 
if their transposes are independent (respectively span col A). 

Corollary 1

If A is any matrix, then rank A = rank(AT).

If A is an m × n matrix, we have col A ⊆ �m and row A ⊆ �n. Hence Theorem 8 
Section 5.2 shows that dim(col A) ≤ dim(�m) = m and dim(row A) ≤ dim(�n) = n. 
Thus Theorem 1 gives: 

Corollary 2

If A is an m × n matrix, then rank A ≤ m and rank A ≤ n.

Corollary 3

Rank A = rank(UA) = rank(AV ) whenever U and V are invertible.

PROOF

Lemma 1 gives rank A = rank(UA). Using this and Corollary 1 we get 

rank(AV ) = rank(AV )T = rank(VTAT) = rank(AT) = rank A.

The next corollary requires a preliminary lemma.

256 Chapter 5 The Vector Space �n



Lemma 3

Let A, U, and V be matrices of sizes m × n, p × m, and n × q respectively. 
(1) col(AV ) ⊆ col A, with equality if V is (square and) invertible. 
(2) row(UA) ⊆ row A, with equality if U is (square and) invertible.

PROOF

For (1), write V = [v1, v2, …, vq] where vj is column j of V. Then we 
have AV = [Av1, Av2, …, Avq], and each Avj is in col A by Definition 1 
Section 2.2. It follows that col(AV ) ⊆ col A. If V is invertible, we obtain 
col A = col[(AV )V-1] ⊆ col(AV ) in the same way. This proves (1). 

As to (2), we have col[(UA)T] = col(ATUT) ⊆ col(AT) by (1), from which 
row(UA) ⊆ row A. If U is invertible, this is equality as in the proof of (1).

Corollary 4

If A is m × n and B is n × m, then rank AB ≤ rank A and rank AB ≤ rank B.

PROOF

By Lemma 3, col(AB) ⊆ col A and row(BA) ⊆ row A, so Theorem 1 applies.

In Section 5.1 we discussed two other subspaces associated with an m × n 
matrix A: the null space null(A) and the image space im(A)

null(A) = {x in �n | Ax = 0} and im(A) = {Ax | x in �n}.

Using rank, there are simple ways to find bases of these spaces. If A has rank r, we 
have im(A) = col(A) by Example 8 Section 5.1, so dim[im(A)] = dim[col(A)] = r. 
Hence Theorem 1 provides a method of finding a basis of im(A). This is recorded 
as part (2) of the following theorem.

Theorem 2

Let A denote an m × n matrix of rank r. Then
(1) The n - r basic solutions to the system Ax = 0 provided by the gaussian 

algorithm are a basis of null(A), so dim[null(A)] = n - r. 
(2) Theorem 1 provides a basis of im(A) = col(A), and dim[im(A)] = r.

PROOF

It remains to prove (1). We already know (Theorem 1 Section 2.2) that null(A) is 
spanned by the n - r basic solutions of Ax = 0. Hence using Theorem 7 Section 
5.2, it suffices to show that dim[null(A)] = n - r. So let {x1, …, xk} be a basis 
of null(A), and extend it to a basis {x1, …, xk, xk+1, …, xn} of �n (by Theorem 6 
Section 5.2). It is enough to show that {Axk+1, …, Axn} is a basis of im(A); then 
n - k = r by the above and so k = n - r as required.
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Spanning. Choose Ax in im(A), x in �n, and write 
x = a1x1 + 	 + akxk + ak+1xk+1 + 	 + anxn where the ai are in �. 
Then Ax = ak+1Axk+1 + 	 + anAxn because {x1, …, xk} ⊆ null(A). 

Independence. Let tk+1Axk+1 + 	 + tnAxn = 0, ti in �. Then tk+1xk+1 + 	 + tnxn 
is in null A, so tk+1xk+1 + 	 + tnxn = t1x1 + 	 + tkxk for some t1, …, tk in �. 
But then the independence of the xi shows that ti = 0 for every i.

EXAMPLE 3

If A = 
−

−
−

1 1
1 0
2 1

2 1
2 1
4 0

, find bases of null(A) and im(A), and so find their dimensions.

Solution ► If x is in null(A), then Ax = 0, so x is given by solving the system 
Ax = 0. The reduction of the augmented matrix to reduced form is

1 2 1 1
1 2 0 1
2 4 1 0

0
0
0

−
−

−
 → 

1 2 0 1
0 0 1 2
0 0 0 0

0
0
0

− −

Hence r = rank(A) = 2. Here, im(A) = col(A) has basis  U   S     1
 

 
 −1   

  2
   T  ,   S  1 

 
 0   

1
  T  V  by 

Theorem 1 because the leading 1s are in columns 1 and 3. In particular, 
dim[im(A)] = 2 = r as in Theorem 2. 

Turning to null(A), we use gaussian elimination. The leading variables are 
x1 and x3, so the nonleading variables become parameters: x2 = s and x4 = t. 
It follows from the reduced matrix that x1 = 2s + t and x3 = -2t, so the 
general solution is

x =   S  
x1

 
 

 x2   x3
 

 
 

x4

  T  =   S  2s + t
 

  
 s    

−2t
 

  
 

t

   T  = sx1 + tx2 where x1 =   S  2 
 

 1   
0

 
 

 

0

  T  , and x2 =   S     1
 

 
   0   

-2
 

 
 

  1

   T .
Hence null(A). But x1 and x2 are solutions (basic), so 

null(A) = span{x1, x2}

However Theorem 2 asserts that {x1, x2} is a basis of null(A). (In fact it is 
easy to verify directly that {x1, x2} is independent in this case.) In particular, 
dim[null(A)] = 2 = n - r, as Theorem 2 asserts.

Let A be an m × n matrix. Corollary 2 of the Theorem 1 asserts that 
rank A ≤ m and rank A ≤ n, and it is natural to ask when these extreme cases 
arise. If c1, c2, …, cn are the columns of A, Theorem 2 Section 5.2 shows that 
{c1, c2, …, cn} spans �m if and only if the system Ax = b is consistent for every 
b in �m, and that {c1, c2, …, cn} is independent if and only if Ax = 0, x in �n, 
implies x = 0. The next two useful theorems improve on both these results, and 
relate them to when the rank of A is n or m.
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Theorem 3

The following are equivalent for an m × n matrix A:
1. rank A = n.
2. The rows of A span �n.
3. The columns of A are linearly independent in �m.
4. The n × n matrix ATA is invertible.
5. CA = In for some n × m matrix C. 
6. If Ax = 0, x in �n, then x = 0.

PROOF

(1) ⇒ (2). We have row A ⊆ �n, and dim(row A) = n by (1), so row A = �n by 
Theorem 8 Section 5.2. This is (2). 

(2) ⇒ (3). By (2), row A = �n, so rank A = n. This means dim(col A) = n. Since 
the n columns of A span col A, they are independent by Theorem 7 Section 5.2.

(3) ⇒ (4). If (ATA)x = 0, x in �n, we show that x = 0 (Theorem 5 Section 2.4). 
We have

‖Ax‖
2 = (Ax)TAx = xTATAx = xT0 = 0.

Hence Ax = 0, so x = 0 by (3) and Theorem 2 Section 5.2.

(4) ⇒ (5). Given (4), take C = (ATA)-1 AT. 

(5) ⇒ (6). If Ax = 0, then left multiplication by C (from (5)) gives x = 0.

(6) ⇒ (1). Given (6), the columns of A are independent by Theorem 2 Section 
5.2. Hence dim(col A) = n, and (1) follows.

Theorem 4

The following are equivalent for an m × n matrix A: 
1. rank A = m. 
2. The columns of A span �m.
3. The rows of A are linearly independent in �n. 
4. The m × m matrix AAT is invertible. 
5. AC = Im for some n × m matrix C. 
6. The system Ax = b is consistent for every b in �m.

PROOF

(1) ⇒ (2). By (1), dim(col A) = m, so col A = �m by Theorem 8 Section 5.2. 

(2) ⇒ (3). By (2), col A = �m, so rank A = m. This means dim(row A) = m. Since 
the m rows of A span row A, they are independent by Theorem 7 Section 5.2.
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(3) ⇒ (4). We have rank A = m by (3), so the n × m matrix AT has rank m. 
Hence applying Theorem 3 to AT in place of A shows that (AT)TAT is invertible, 
proving (4).

(4) ⇒ (5). Given (4), take C = AT(AAT)-1 in (5).

(5) ⇒ (6). Comparing columns in AC = Im gives Acj = ej for each j, where cj and 
ej denote column j of C and Im respectively. Given b in �m, write b =  ∑

j=1  
m

  rjej , 
rj in �. Then Ax = b holds with x =  ∑

j=1  
m

  rjcj , as the reader can verify. 

(6) ⇒ (1). Given (6), the columns of A span �m by Theorem 2 Section 5.2. Thus 
col A = �m and (1) follows.

EXAMPLE 4

Show that 
3

2 2 2

x y z

x y z x y z

+ +

+ + + +  is invertible if x, y, and z are not all equal.

Solution ► The given matrix has the form ATA where a =   S  1 x

 
  

 1 y    
1 z

   T  has independent 

columns because x, y, and z are not all equal (verify). Hence Theorem 3 applies.

Theorems 4 and 5 relate several important properties of an m × n matrix A to 
the invertibility of the square, symmetric matrices ATA and AAT. In fact, even if 
the columns of A are not independent or do not span �m, the matrices ATA and 
AAT are both symmetric and, as such, have real eigenvalues as we shall see. We 
return to this in Chapter 7.

E X E R C I S E S  5 . 4

 1. In each case find bases for the row and column 
spaces of A and determine the rank of A.

 (a) A = 

−
−
−
−

2 6
2 3
4 9
0

4 8
1
5
1 1 2

2
10

 �(b) A = 

−
−

−
−

2 1
2 1

1
1

4 32
6 033

 (c) A = 

−
−

−
−

−

−
−

−

1 5 2
2

2
2 2
0 0 12 9

5

7
3

1 7 11

1
1

 �(d) A = −
−− −

1 1 3
33 26

2

 2. In each case find a basis of the subspace U.

 (a) U = span{(1, -1, 0, 3), (2, 1, 5, 1), (4, -2, 5, 7)}

 �(b) U = span{(1, -1, 2, 5, 1), (3, 1, 4, 2, 7), 
(1, 1, 0, 0, 0), (5, 1, 6, 7, 8)}

 (c) U = span  U   S  1 
 

 1   
0

 
 

 

0

  T  ,   S  
0

 
 

 0   
1

 
 

 

1

  T  ,   S  1 
 

 0   
1

 
 

 

0

  T  ,   S  0 
 

 1   
0

 
 

 

1

  T   V 
 �(d) U = span  U   S     1

 
 

   5   
-6

  T  ,   S     2
 

 
   6   

-8
  T  ,   S      3

 
  

    7    
-10

  T  ,   S    4
 

 
  8   

12
  T   V 

 3. (a) Can a 3 × 4 matrix have independent 
columns? Independent rows? Explain.

 �(b) If A is 4 × 3 and rank A = 2, can A have 
independent columns? Independent rows? 
Explain.
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 (c) If A is an m × n matrix and rank A = m, 
show that m ≤ n.

 �(d) Can a nonsquare matrix have its rows 
independent and its columns independent? 
Explain.

 (e) Can the null space of a 3 × 6 matrix have 
dimension 2? Explain.

 �(f ) Suppose that A is 5 × 4 and null(A) = �x for 
some column x ≠ 0. Can dim(im A) = 2?

 �4. If A is m × n show that col(A) = {Ax | x in �n}.

 5. If A is m × n and B is n × m, show that AB = 0 
if and only if col B ⊆ null A.

 6. Show that the rank does not change when 
an elementary row or column operation is 
performed on a matrix.

 7. In each case find a basis of the null space of 
A. Then compute rank A and verify (1) of 
Theorem 2.

 (a) A = 

3 1
2 1
4

1
0
2 1

1 11−

 �(b) A = 

−

3 5 0
1 2 1
1 1 2
2

5
0

2
2
21
40 4 2

−
−

−
−−−

 8. Let A = cR where c ≠ 0 is a column in �m and 
r ≠ 0 is a row in �n.

 (a) Show that col A = span{c} and 
row A = span{r}.

 �(b) Find dim(null A).

 (c) Show that null A = null r.

 9. Let A be m × n with columns c1, c2, …, cn.

 (a) If {c1, …, cn} is independent, show 
null A = {0}.

 �(b) If null A = {0}, show that {c1, …, cn} is 
independent.

 10. Let A be an n × n matrix.

 (a) Show that A2 = 0 if and only if 
col A ⊆ null A.

 �(b) Conclude that if A2 = 0, then rank A ≤   n _ 2  .

 (c) Find a matrix A for which col A = null A.

 11. Let B be m × n and let AB be k × n. If 
rank B = rank(AB), show that null B = null(AB). 
[Hint: Theorem 1.]

 �12. Give a careful argument why rank(AT) = rank A. 

 13. Let A be an m × n matrix with columns 
c1, c2, …, cn. If rank A = n, show that 
{ATc1, A

Tc2, …, ATcn} is a basis of �n.

 14. If A is m × n and b is m × 1, show that b 
lies in the column space of A if and only if 
rank[A b] = rank A.

 15. (a) Show that Ax = b has a solution if and only 
if rank A = rank[A b]. [Hint: Exercises 12 
and 14.]

 �(b) If Ax = b has no solution, show that 
rank[A b] = 1 + rank A.

 16. Let X be a k × m matrix. If I is the m × m 
identity matrix, show that I + XTX is invertible.

[Hint: I + XTX = ATA where A =   S   I   
X

  T  in block 
form.]

 17. If A is m × n of rank r, show that A can be 
factored as A = PQ where P is m × r with r 
independent columns, and Q is r × n with r 

independent rows. [Hint: Let UAV =   S   Ir 0
         

0  0
   T  by 

Theorem 3, Section 2.5, and write 

U -1 =   S   U1 U2             
U3 U4

   T  and V-1 =   S   V1 V2            
V3 V4

   T  in block 

form, where U1 and V1 are r × r.]

 18. (a) Show that if A and B have independent 
columns, so does AB.

 (b) Show that if A and B have independent rows, 
so does AB.

 19. A matrix obtained from A by deleting rows and 
columns is called a submatrix of A. If A has an 
invertible k × k submatrix, show that rank A ≥ k. 
[Hint: Show that row and column operations 

carry A →   S   Ik P
         

0  Q
   T  in block form.] Remark: It can 

be shown that rank A is the largest integer r such 
that A has an invertible r × r submatrix.
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Similarity and Diagonalization
In Section 3.3 we studied diagonalization of a square matrix A, and found important 
applications (for example to linear dynamical systems). We can now utilize the 
concepts of subspace, basis, and dimension to clarify the diagonalization process, 
reveal some new results, and prove some theorems which could not be demonstrated 
in Section 3.3.

Before proceeding, we introduce a notion that simplifies the discussion of 
diagonalization, and is used throughout the book.

Similar Matrices

If A and B are n × n matrices, we say that A and B are similar, and write A ∼ B, if 
B = P-1AP for some invertible matrix P.

Note that A ∼ B if and only if B = QAQ–1 where Q is invertible (write P–1 = Q). 
The language of similarity is used throughout linear algebra. For example, a matrix 
A is diagonalizable if and only if it is similar to a diagonal matrix.

If A ∼ B, then necessarily B ∼ A. To see why, suppose that B = P-1AP. Then 
A = PBP-1 = Q-1BQ where Q = P-1 is invertible. This proves the second of the 
following properties of similarity (the others are left as an exercise):

1. A ∼ A for all square matrices A.

2. If A ∼ B, then B ∼ A. (∗)

3. If A ∼ B and B ∼ C, then A ∼ C.

These properties are often expressed by saying that the similarity relation ∼ is an 
equivalence relation on the set of n × n matrices. Here is an example showing how 
these properties are used.

EXAMPLE 1

If A is similar to B and either A or B is diagonalizable, show that the other is 
also diagonalizable.

Solution ► We have A ∼ B. Suppose that A is diagonalizable, say A ∼ D where 
D is diagonal. Since B ∼ A by (2) of (∗), we have B ∼ A and A ∼ D. Hence 
B ∼ D by (3) of (∗), so B is diagonalizable too. An analogous argument works if 
we assume instead that B is diagonalizable.

Similarity is compatible with inverses, transposes, and powers: 

If A ∼ B then A-1 ∼ B-1, AT ∼ BT, and Ak ∼ Bk for all integers k ≥ 1.

The proofs are routine matrix computations using Theorem 1 Section 3.3. Thus, 
for example, if A is diagonalizable, so also are AT, A-1 (if it exists), and Ak (for 
each k ≥ 1). Indeed, if A ∼ D where D is a diagonal matrix, we obtain AT ∼ DT, 
A-1 ∼ D-1, and Ak ∼ Dk, and each of the matrices DT, D-1, and Dk is diagonal.

We pause to introduce a simple matrix function that will be referred to later.

S E C T I O N  5 . 5

Definition 5.11
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The trace tr A of an n × n matrix A is defined to be the sum of the main diagonal 
elements of A.

In other words:

If A = [aij], then tr A = a11 + a22 + 	 + ann.

It is evident that tr(A + B) = tr A + tr B and that tr(cA) = c tr A holds for all n × n 
matrices A and B and all scalars c. The following fact is more surprising.

Lemma 1

Let A and B be n × n matrices. Then tr(AB) = tr(BA).

PROOF

Write A = [aij] and B = [bij]. For each i, the (i, i)-entry di of the matrix AB is 
di = ai1b1i + ai2b2i + 	 + ainbni = ∑ j aijbji. Hence

tr(AB) = d1 + d2 + 	 + dn = ∑ i di = ∑ i (∑ j aijbji).

Similarly we have tr(BA) = ∑ i (∑ j bijaji). Since these two double sums are the 
same, Lemma 1 is proved.

As the name indicates, similar matrices share many properties, some of which are 
collected in the next theorem for reference.

Theorem 1

If A and B are similar n × n matrices, then A and B have the same determinant, rank, 
trace, characteristic polynomial, and eigenvalues.

PROOF

Let B = P-1AP for some invertible matrix P. Then we have 

det B = det(P-1) det A det P = det A because det(P-1) = 1/det P.

Similarly, rank B = rank(P-1AP) = rank A by Corollary 3 of Theorem 1 
Section 5.4. Next Lemma 1 gives

tr(P-1AP) = tr[P-1(AP)] = tr[(AP)P-1] = tr A.

As to the characteristic polynomial,

cB(x) = det(xI - B)  = det{x(P-1IP) - P-1AP}
= det{P-1(xI - A)P}
= det(xI - A)
= cA(x).

Finally, this shows that A and B have the same eigenvalues because the 
eigenvalues of a matrix are the roots of its characteristic polynomial.

Definition 5.12
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EXAMPLE 2

Sharing the five properties in Theorem 1 does not guarantee that two matrices 

are similar. The matrices A =   S   1 1        
0 1

   T  and I =   S   1 0        
0 1

   T  have the same determinant, 

rank, trace, characteristic polynomial, and eigenvalues, but they are not similar 
because P-1IP = I for any invertible matrix P.

Diagonalization Revisited 
Recall that a square matrix A is diagonalizable if there exists an invertible matrix 
P such that P-1AP = D is a diagonal matrix, that is if A is similar to a diagonal 

matrix D. Unfortunately, not all matrices are diagonalizable, for example   S   1 1        
0 1

   T  
(see Example 10 Section 3.3). Determining whether A is diagonalizable is closely 
related to the eigenvalues and eigenvectors of A. Recall that a number λ is called 
an eigenvalue of A if Ax = λx for some nonzero column x in �n, and any such 
nonzero vector x is called an eigenvector of A corresponding to λ (or simply a 
λ-eigenvector of A). The eigenvalues and eigenvectors of A are closely related to 
the characteristic polynomial cA(x) of A, defined by 

cA(x) = det(xI - A).

If A is n × n this is a polynomial of degree n, and its relationship to the eigenvalues 
is given in the following theorem (a repeat of Theorem 2 Section 3.3).

Theorem 2

Let A be an n × n matrix. 
1. The eigenvalues λ of A are the roots of the characteristic polynomial cA(x) of A.
2. The λ-eigenvectors x are the nonzero solutions to the homogeneous system

(λI - A)x = 0

 of linear equations with λI - A as coefficient matrix.

EXAMPLE 3

Show that the eigenvalues of a triangular matrix are the main diagonal entries.

Solution ► Assume that A is triangular. Then the matrix xI - A is also triangular 
and has diagonal entries (x - a11), (x - a22), …, (x - ann) where A = [aij]. 
Hence Theorem 4 Section 3.1 gives 

cA(x) = (x - a11)(x - a22)	(x - ann) 

and the result follows because the eigenvalues are the roots of cA(x).

Theorem 4 Section 3.3 asserts (in part) that an n × n matrix A is diagonalizable if 
and only if it has n eigenvectors x1, …, xn such that the matrix P = [x1 	 xn] with 
the xi as columns is invertible. This is equivalent to requiring that {x1, …, xn} is a 
basis of �n consisting of eigenvectors of A. Hence we can restate Theorem 4 Section 
3.3 as follows:
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Theorem 3

Let A be an n × n matrix.
1. A is diagonalizable if and only if �n has a basis {x1, x2, …, xn} consisting of 

eigenvectors of A.
2. When this is the case, the matrix P = [x1 x2 	 xn] is invertible and 

P-1AP = diag(λ1, λ2, …, λn) where, for each i, λi is the eigenvalue of A 
corresponding to xi.

The next result is a basic tool for determining when a matrix is diagonalizable. 
It reveals an important connection between eigenvalues and linear independence: 
Eigenvectors corresponding to distinct eigenvalues are necessarily linearly 
independent.

Theorem 4

Let x1, x2, …, xk be eigenvectors corresponding to distinct eigenvalues λ1, λ2, …, λk of 
an n × n matrix A. Then {x1, x2, …, xk} is a linearly independent set.

PROOF

We use induction on k. If k = 1, then {x1} is independent because x1 ≠ 0. 
In general, suppose the theorem is true for some k ≥ 1. Given eigenvectors 
{x1, x2, …, xk+1}, suppose a linear combination vanishes: 

 t1x1 + t2x2 + 	 + tk+1xk+1 = 0. (∗)

We must show that each ti = 0. Left multiply (∗) by A and use the fact that 
Axi = λixi to get 

 t1λ1x1 + t2λ2x2 + 	 + tk+1λk+1xk+1 = 0. (∗∗)

If we multiply (∗) by λ1 and subtract the result from (∗∗), the first terms cancel 
and we obtain

t2(λ2 - λ1)x2 + t3(λ3 - λ1)x3 + 	 + tk+1(λk+1 - λ1)xk+1 = 0.

Since x2, x3, …, xk+1 correspond to distinct eigenvalues λ2, λ3, …, λk+1, the set 
{x2, x3, …, xk+1} is independent by the induction hypothesis. Hence,

t2(λ2 - λ1) = 0, t3(λ3 - λ1) = 0, …, tk+1(λk+1 - λ1) = 0,

and so t2 = t3 = 	 = tk+1 = 0 because the λi are distinct. Hence (∗) becomes 
t1x1 = 0, which implies that t1 = 0 because x1 ≠ 0. This is what we wanted.

Theorem 4 will be applied several times; we begin by using it to give a useful 
condition for when a matrix is diagonalizable.

Theorem 5

If A is an n × n matrix with n distinct eigenvalues, then A is diagonalizable.
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PROOF

Choose one eigenvector for each of the n distinct eigenvalues. Then these 
eigenvectors are independent by Theorem 4, and so are a basis of �n by 
Theorem 7 Section 5.2. Now use Theorem 3.

EXAMPLE 4

Show that A = 
−

1 00
1 3
1

2
1 0

 is diagonalizable.

Solution ► A routine computation shows that cA(x) = (x - 1)(x - 3)(x + 1) and 
so has distinct eigenvalues 1, 3, and -1. Hence Theorem 5 applies.

However, a matrix can have multiple eigenvalues as we saw in Section 3.3. To 
deal with this situation, we prove an important lemma which formalizes a technique 
that is basic to diagonalization, and which will be used three times below.

Lemma 2

Let {x1, x2, …, xk} be a linearly independent set of eigenvectors of an n × n matrix A, 
extend it to a basis {x1, x2, …, xk, …, xn} of �n, and let

P = [x1 x2 	 xn]

be the (invertible) n × n matrix with the xi as its columns. If λ1, λ2, …, λk are the (not 
necessarily distinct) eigenvalues of A corresponding to x1, x2, …, xk respectively, then 
P-1AP has block form 

P-1AP =   S  diag(λ1, λ2, …, λk)  B 
           

0    A1
  T  

where B has size k × (n - k) and A1 has size (n - k) × (n - k).

PROOF

If {e1, e2, …, en} is the standard basis of �n, then

[e1 e2 … en] = In = P-1P  = P-1[x1 x2 	 xn]
= [P-1x1 P-1x2 	 P-1xn]

Comparing columns, we have P-1xi = ei for each 1 ≤ i ≤ n. On the other hand, 
observe that 

P-1AP = P-1A[x1 x2 	 xn] = [(P-1A)x1 (P-1A)x2 	 (P-1A)xn].

Hence, if 1 ≤ i ≤ k, column i of P-1AP is

(P-1A)xi = P-1(λixi) = λi(P
-1x1) = λiei.

This describes the first k columns of P-1AP, and Lemma 2 follows.

Note that Lemma 2 (with k = n) shows that an n × n matrix A is diagonalizable if 
�

n has a basis of eigenvectors of A, as in (1) of Theorem 3.
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If λ is an eigenvalue of an n × n matrix A, define the eigenspace of A corresponding to 
λ by 

Eλ(A) = {x in �n | Ax = λx}.

This is a subspace of �n and the eigenvectors corresponding to λ are just the 
nonzero vectors in Eλ(A). In fact Eλ(A) is the null space of the matrix (λI - A):

Eλ(A) = {x | (λI - A)x = 0} = null(λI - A).

Hence, by Theorem 2 Section 5.4, the basic solutions of the homogeneous system 
(λI - A)x = 0 given by the gaussian algorithm form a basis for Eλ(A). In particular

 dim Eλ(A) is the number of basic solutions x of (λI - A)x = 0. (∗∗∗)

Now recall (Definition 3.7) that the multiplicity11 of an eigenvalue λ of A is the 
number of times λ occurs as a root of the characteristic polynomial cA(x) of A. In 
other words, the multiplicity of λ is the largest integer m ≥ 1 such that

cA(x) = (x - λ)mg(x)

for some polynomial g(x). Because of (∗∗∗), the assertion (without proof ) in 
Theorem 5 Section 3.3 can be stated as follows: A square matrix is diagonalizable if 
and only if the multiplicity of each eigenvalue λ equals dim[Eλ(A)]. We are going to 
prove this, and the proof requires the following result which is valid for any square 
matrix, diagonalizable or not.

Lemma 3

Let λ be an eigenvalue of multiplicity m of a square matrix A. Then dim[Eλ(A)] ≤ m.

PROOF

Write dim[Eλ(A)] = d. It suffices to show that cA(x) = (x - λ)dg(x) for some 
polynomial g(x), because m is the highest power of (x - λ) that divides cA(x). 
To this end, let {x1, x2, …, xd} be a basis of Eλ(A). Then Lemma 2 shows that an 
invertible n × n matrix P exists such that 

P-1AP =   S  λId  B 
    

0   A1
  T 

in block form, where Id denotes the d × d identity matrix. Now write A′ = P-1AP 
and observe that cA′(x) = cA(x) by Theorem 1. But Theorem 5 Section 3.1 gives 

cA(x) = cA′(x) = det(xIn - A′ )  = det   S  (x - λ)Id   -B  
           

0   xIn-d - A1
  T 

= det[(x - λ)Id] det[(xIn-d - A1)]
= (x - λ)dg(x).

where g(x) =  c A1
 (x). This is what we wanted.

It is impossible to ignore the question when equality holds in Lemma 3 for 
each eigenvalue λ. It turns out that this characterizes the diagonalizable n × n 
matrices A for which cA(x) factors completely over �. By this we mean that 
cA(x) = (x - λ1)(x - λ2)	(x - λn), where the λi are real numbers (not necessarily 

11 This is often called the algebraic multiplicity of λ.

Definition 5.13
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distinct); in other words, every eigenvalue of A is real. This need not happen 

(consider A =   S   0 -1           
1   0

   T ), and we investigate the general case below. 

Theorem 6

The following are equivalent for a square matrix A for which cA(x) factors completely.
1. A is diagonalizable.
2. dim[Eλ(A)] equals the multiplicity of λ for every eigenvalue λ of the matrix A.

PROOF

Let A be n × n and let λ1, λ2, …, λk be the distinct eigenvalues of A. For each i, 
let mi denote the multiplicity of λi and write di = dim[ E λi

 (A)]. Then 

cA(x) =  (x - λ1) 
m1  (x - λ2) 

m2 	 (x - λn) 
mk 

so m1 + 	 + mk = n because cA(x) has degree n. Moreover, di ≤ mi for each i by 
Lemma 3.

(1) ⇒ (2). By (1), �n has a basis of n eigenvectors of A, so let ti of them lie in 
 E λi

 (A) for each i. Since the subspace spanned by these ti eigenvectors has 
dimension ti, we have ti ≤ di for each i by Theorem 4 Section 5.2. Hence

n = t1 + 	 + tk ≤ d1 + 	 + dk ≤ m1 + 	 + mk = n.

It follows that d1 + 	 + dk = m1 + 	 + mk so, since di ≤ mi for each i, we must 
have di = mi. This is (2).

(2) ⇒ (1). Let Bi denote a basis of  E λi
 (A) for each i, and let B = B1 ∪ 	 ∪ Bk. 

Since each Bi contains mi vectors by (2), and since the Bi are pairwise disjoint (the 
λi are distinct), it follows that B contains n vectors. So it suffices to show that B 
is linearly independent (then B is a basis of �n). Suppose a linear combination 
of the vectors in B vanishes, and let yi denote the sum of all terms that come 
from Bi. Then yi lies in  E λi

 (A) for each i, so the nonzero yi are independent by 
Theorem 4 (as the λi are distinct). Since the sum of the yi is zero, it follows that 
yi = 0 for each i. Hence all coefficients of terms in yi are zero (because Bi is 
independent). Since this holds for each i, it shows that B is independent.

EXAMPLE 5

If A = 
− − −

5 16
4

4
1 8
8

4 11

 and B = −
−−

2 11
12 2

1 0 2
, show that A is diagonalizable but 

B is not.

Solution ► We have cA(x) = (x + 3)2(x - 1) so the eigenvalues are λ1 = -3 
and λ2 = 1. The corresponding eigenspaces are  E λ1

 (A) = span{x1, x2} and 
 E λ2

 (A) = span{x3} where

x1 =   S  -1
 

 
   1   

  0
   T  , x2 =   S  -2

 
 

   0   
  1

   T  , x3 =   S     2
 

 
   1   

-1
  T 
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as the reader can verify. Since {x1, x2} is independent, we have 
dim(Eλ1

(A)) = 2 which is the multiplicity of λ1. Similarly, dim(Eλ2
(A)) = 1 

equals the multiplicity of λ2. Hence A is diagonalizable by Theorem 6, and 
a diagonalizing matrix is P = [x1 x2 x3].

Turning to B, cB(x) = (x + 1)2(x - 3) so the eigenvalues are λ1 = -1 
and λ2 = 3. The corresponding eigenspaces are Eλ1(B) = span{y1} and 
Eλ2(B) = span{y2} where

y1 =   S  -1
 

 
   2   

  1
   T  , y2 =   S     5

 
 

   6   
-1

  T .
Here dim(Eλ1

(B)) = 1 is smaller than the multiplicity of λ1, so the matrix B is 
not diagonalizable, again by Theorem 6. The fact that dim(Eλ1

(B)) = 1 means 
that there is no possibility of finding three linearly independent eigenvectors.

Complex Eigenvalues
All the matrices we have considered have had real eigenvalues. But this need not be 

the case: The matrix A =   S   0 -1           
1   0

   T  has characteristic polynomial cA(x) = x2 + 1 which 

has no real roots. Nonetheless, this matrix is diagonalizable; the only difference is 
that we must use a larger set of scalars, the complex numbers. The basic properties 
of these numbers are outlined in Appendix A.

Indeed, nearly everything we have done for real matrices can be done for 
complex matrices. The methods are the same; the only difference is that the 
arithmetic is carried out with complex numbers rather than real ones. For example, 
the gaussian algorithm works in exactly the same way to solve systems of linear 
equations with complex coefficients, matrix multiplication is defined the same way, 
and the matrix inversion algorithm works in the same way.

But the complex numbers are better than the real numbers in one respect: While 
there are polynomials like x2 + 1 with real coefficients that have no real root, this 
problem does not arise with the complex numbers: Every nonconstant polynomial 
with complex coefficients has a complex root, and hence factors completely as a 
product of linear factors. This fact is known as the fundamental theorem of algebra.12

EXAMPLE 6

Diagonalize the matrix A =   S   0 -1           
1   0

   T . 
Solution ► The characteristic polynomial of A is 

cA(x) = det(xI - A) = x2 + 1 = (x - i)(x + i)

where i2 = -1. Hence the eigenvalues are λ1 = i and λ2 = -i, with 

corresponding eigenvectors x1 =   S   1   
-i

  T  and x2 =   S  1   
i
  T . Hence A is diagonalizable 

by the complex version of Theorem 5, and the complex version of Theorem 3 

shows that P = [x1 x2] =   S   1 1    
-i i 

  T  is invertible and P-1AP =   S   λ1 0
          

0 λ2
   T  =   S   i  0     

0 -i
  T . Of 

course, this can be checked directly.

We shall return to complex linear algebra in Section 8.6.

12 This was a famous open problem in 1799 when Gauss solved it at the age of 22 in his Ph.D. dissertation.
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Symmetric Matrices13

On the other hand, many of the applications of linear algebra involve a real matrix A 
and, while A will have complex eigenvalues by the fundamental theorem of algebra, 
it is always of interest to know when the eigenvalues are, in fact, real. While this 
can happen in a variety of ways, it turns out to hold whenever A is symmetric. This 
important theorem will be used extensively later. Surprisingly, the theory of complex 
eigenvalues can be used to prove this useful result about real eigenvalues.

Let  
__

 z   denote the conjugate of a complex number z. If A is a complex matrix, the 
conjugate matrix  

__
 A   is defined to be the matrix obtained from A by conjugating 

every entry. Thus, if A = [zij], then  
__

 A   = [ 
__

 z  ij]. For example,

If A =   S  -i + 2  5         
i  3 + 4i

  T  then  
__

 A   =   S  i + 2  5        
-i  3 - 4i

  T 
Recall that  

______
 z + w   =  

__
 z   +  

__
 w   and  

___
 zw   =  

__
 z    
__

 w   hold for all complex numbers z and w. It 
follows that if A and B are two complex matrices, then

 
______

 A + B   =  
__

 A   +  
__

 B  ,  
___

 AB   =  
__

 A    
__

 B   and  
___

 λA   =  
__

 λ    
__

 B  

hold for all complex scalars λ. These facts are used in the proof of the following 
theorem.

Theorem 7

Let A be a symmetric real matrix. If λ is any complex eigenvalue of A, then λ is real.14

14

PROOF

Observe that  
__

 A   = A because A is real. If λ is an eigenvalue of A, we show that 
λ is real by showing that  

__
 λ   = λ. Let x be a (possibly complex) eigenvector 

corresponding to λ, so that x ≠ 0 and Ax = λx. Define c = xT 
__

 x  .

If we write x = (z1, z2, …, zn) where the zi are complex numbers, we have

c = xT 
__

 x   = z1 
__

 z1   + z2 
__

 z2   + 	 + zn 
__

 zn   = | 
__

 z1  |
2 + | 

__
 z2  |
2 + 	 + | 

__
 zn  |
2.

Thus c is a real number, and c > 0 because at least one of the zi ≠ 0 (as x ≠ 0). 
We show that  

__
 λ   = λ by verifying that λc =  

__
 λ  c. We have 

λc = λ(xT 
__

 x  ) = (λx)T 
__

 x   = (Ax)T 
__

 x   = xTAT 
__

 x  .

At this point we use the hypothesis that A is symmetric and real. This means 
AT = A =  

__
 A  , so we continue the calculation:

λc = xTAT 
__

 x   = xT(  
__

 A    
__

 x  ) = xT( 
___

 Ax  )  = xT( 
___

 λx  )
 = xT( 

__
 λ    
__

 x  )
=  

__
 λ  xT 

__
 x  

=  
__

 λ  c

as required.

The technique in the proof of Theorem 7 will be used again when we return to 
complex linear algebra in Section 8.6.

13 This discussion uses complex conjugation and absolute value. These topics are discussed in Appendix A.

14 This theorem was first proved in 1829 by the great French mathematician Augustin Louis Cauchy (1789–1857).
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EXAMPLE 7

Verify Theorem 7 for every real, symmetric 2 × 2 matrix A.

Solution ► If A =   S   a b
        

b c
   T  we have cA(x) = x2 - (a + c)x + (ac - b2), so the 

eigenvalues are given by λ =   1 _ 2     S (a + c) ±  √ 
__________________

  (a + c)2 - 4(ac - b2)   T . But here

(a + c)2 - 4(ac - b2) = (a - c)2 + 4b2 ≥ 0

for any choice of a, b, and c. Hence, the eigenvalues are real numbers.

E X E R C I S E S  5 . 5

 1. By computing the trace, determinant, and rank, 
show that A and B are not similar in each case.

 (a) A =   S   1 2        
2 1

   T  , B =   S   1 1    
-1 1

  T 

 �(b) A =   S   3   1    
2 -1

  T  , B =   S   1 1        
2 1

   T 

 (c) A =   S   2   1    
1 -1

  T  , B =   S   3   0    
1 -1

  T 

 �(d) A =   S   3 1    
-1 2

  T  , B =   S  2 -1    
3   2

  T 

 (e) A = 
2 1

1

1
1 1
1 0

0 , B = 
11 1
2 2
3

2
4
6 3

−

−
−−

−

 �(f ) A = 
1 3
1 2
0

2
1
3 5

−
−

−
, B = 

2 3
6 −−−

−
3

0

1
9

0 0

 2. Show that 

1 1
2 1
1 0
4

0

0

1
1

2
0
1
3 0

−

−
 and 

1 0
01 1

0 4
4

−
−

−−
− 111

1

1
1 3

5 1−
  are not similar.

 3. If A ∼ B, show that:

 (a) AT ∼ BT �(b) A-1 ∼ B-1

 (c) rA ∼ rB for r in � (d) An ∼ Bn for n ≥ 1

 4. In each case, decide whether the matrix A is 
diagonalizable. If so, find P such that P-1AP 
is diagonal. 

 (a) 
1
1 1

10

00

0
2  �(b) 

3 6
0 0

0
3
0

5 2
−

 (c) 
3 6
2 0
1 30

1
1

− −
 �(d) 

3

4 00
0 22
2 1

 5. If A is invertible, show that AB is similar to BA 
for all B. 

 6. Show that the only matrix similar to a scalar 
matrix A = rI, r in �, is A itself. 

 7. Let λ be an eigenvalue of A with corresponding 
eigenvector x. If B = P-1AP is similar to A, show 
that P-1x is an eigenvector of B corresponding 
to λ.

 8. If A ∼ B and A has any of the following 
properties, show that B has the same property. 

 (a) Idempotent, that is A2 = A. 

 �(b) Nilpotent, that is Ak = 0 for some k ≥ 1.

 (c) Invertible.

 9. Let A denote an n × n upper triangular matrix. 

 (a) If all the main diagonal entries of A are 
distinct, show that A is diagonalizable. 

 �(b) If all the main diagonal entries of A are 
equal, show that A is diagonalizable only if it 
is already diagonal. 

 (c) Show that 
1 1

10
0 0

0
0

2
 is diagonalizable but that 

1
0
0

1
1

0
0

0 2
 is not diagonalizable.
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 10. Let A be a diagonalizable n × n matrix 
with eigenvalues λ1, λ2, …, λn (including 
multiplicities). Show that: 

 (a) det A = λ1λ2	λn

 �(b) tr A = λ1 + λ2 + 	 + λn

 11. Given a polynomial p(x) = r0 + r1x + 	 + rnx
n 

and a square matrix A, the matrix 
p(A) = r0I + r1A + 	 + rnA

n is called the 
evaluation of p(x) at A. Let B = P-1AP. Show 
that p(B) = P-1p(A)P for all polynomials p(x). 

 12. Let P be an invertible n × n matrix. If A is any 
n × n matrix, write TP(A) = P-1AP. Verify that:

 (a) TP(I) = I

 �(b) TP(AB) = TP(A)TP(B)

 (c) TP(A + B) = TP(A) + TP(B)

 (d) TP(rA) = rTP(A)

 (e) TP(Ak) = [TP(A)]k for k ≥ 1

 (f ) If A is invertible, TP(A-1) = [TP(A)]-1.

 (g) If Q is invertible, TQ[TP(A)] = TPQ(A). 

 13. (a) Show that two diagonalizable matrices are 
similar if and only if they have the same 
eigenvalues with the same multiplicities. 

 �(b) If A is diagonalizable, show that A ∼ AT. 

 (c) Show that A ∼ AT if A =   S   1 1        
0 1

   T .
 14. If A is 2 × 2 and diagonalizable, show that 

C(A) = {X | XA = AX} has dimension 2 or 4. 
[Hint: If P-1AP = D, show that X is in C(A) if 
and only if P-1XP is in C(D).] 

 15. If A is diagonalizable and p(x) is a polynomial 
such that p(λ) = 0 for all eigenvalues λ of A, 
show that p(A) = 0 (see Example 9 Section 3.3). 
In particular, show cA(A) = 0. [Remark: cA(A) = 0 
for all square matrices A—this is the Cayley-
Hamilton theorem (see Theorem 2 Section 9.4).]

 16. Let A be n × n with n distinct real eigenvalues. If 
AC = CA, show that C is diagonalizable. 

 17. Let A = 
a

a
b

b

c
c

0
0

0
 and B = 

c b
ba c
cb a

a
. 

 (a) Show that x3 - (a2 + b2 + c2)x - 2abc has 
real roots by considering A. 

 �(b) Show that a2 + b2 + c2 ≥ ab + ac + bc by 
considering B. 

 18. Assume the 2 × 2 matrix A is similar to an upper 
triangular matrix. If tr A = 0 = tr A2, show that 
A2 = 0. 

 19. Show that A is similar to AT for all 2 × 2 

matrices A. [Hint: Let A =   S   a b
        

c d
   T . If c = 0, treat 

the cases b = 0 and b ≠ 0 separately. If c ≠ 0, 
reduce to the case c = 1 using Exercise 12(d).]

 20. Refer to Section 3.4 on linear recurrences. 
Assume that the sequence x0, x1, x2, … satisfies 

xn+k = r0xn + r1xn+1 + 	 + rk-1xn+k-1

  for all n ≥ 0. Define 

A = 

r rr r k −

0 0
0

0
01

1

10 0

0

0

0 11 2

, Vn = 

x
x

x

n

n+1

nn k+ −1

.

  Then show that:

 (a) Vn = AnV0 for all n. 

 (b) cA(x) = xk - rk-1x
k-1 - 	 - r1x - r0.

 (c) If λ is an eigenvalue of A, the eigenspace Eλ 
has dimension 1, and x = (1, λ, λ2, …, λk-1)T 
is an eigenvector. [Hint: Use cA(λ) = 0 to 
show that Eλ = �x.]

 (d) A is diagonalizable if and only if the 
eigenvalues of A are distinct. [Hint: See part 
(c) and Theorem 4.]

 (e) If λ1, λ2, …, λk are distinct real eigenvalues, 
there exist constants t1, t2, …, tk such that 
xn = t1 λ  1  

n  + 	 + tk λ  
k
  n  holds for all n. 

[Hint: If D is diagonal with λ1, λ2, …, λk 
as the main diagonal entries, show that 
An = PDnP-1 has entries that are linear 
combinations of  λ  1  

n ,  λ  2  
n , …,  λ  k  

n .

272 Chapter 5 The Vector Space �n



Best Approximation and Least Squares
Often an exact solution to a problem in applied mathematics is difficult to obtain. 
However, it is usually just as useful to find arbitrarily close approximations to a 
solution. In particular, finding “linear approximations” is a potent technique in applied 
mathematics. One basic case is the situation where a system of linear equations has no 
solution, and it is desirable to find a “best approximation” to a solution to the system. 
In this section best approximations are defined and a method for finding them is 
described. The result is then applied to “least squares” approximation of data. 

Suppose A is an m × n matrix and b is a column in �m, and consider the system

Ax = b

of m linear equations in n variables. This need not have a solution. However, given 
any column z in �n, the distance ‖b - Az‖ is a measure of how far Az is from b. 
Hence it is natural to ask whether there is a column z in �n that is as close as 
possible to a solution in the sense that

‖b - Az‖

is the minimum value of ‖b - Ax‖ as x ranges over all columns in �n.
The answer is “yes”, and to describe it define 

U = {Ax | x lies in �n}.

This is a subspace of �n (verify) and we want a vector Az in U as close as possible 
to b. That there is such a vector is clear geometrically if n = 3 by the diagram. In 
general such a vector Az exists by a general result called the projection theorem that 
will be proved in Chapter 8 (Theorem 3 Section 8.1). Moreover, the projection 
theorem gives a simple way to compute z because it also shows that the vector 
b - Az is orthogonal to every vector Ax in U. Thus, for all x in �n,

0 = (Ax) · (b - Az) = (Ax)T(b - Az)  = xTAT(b - Az)
= x · [AT(b - Az)]

In other words, the vector AT(b - Az) in �n is orthogonal to every vector in �n and 
so must be zero (being orthogonal to itself ). Hence z satisfies 

(ATA)z = ATb.

This is a system of linear equations called the normal equations for z.

Note that this system can have more than one solution (see Exercise 5). However, 
the n × n matrix ATA is invertible if (and only if ) the columns of A are linearly 
independent (Theorem 3 Section 5.4); so, in this case, z is uniquely determined and 
is given explicitly by z = (ATA)-1ATb. However, the most efficient way to find z is 
to apply gaussian elimination to the normal equations. 

This discussion is summarized in the following theorem.

Theorem 1

Best Approximation Theorem
Let A be an m × n matrix, let b be any column in �m, and consider the system

Ax = b

of m equations in n variables.

S E C T I O N  5 . 6

Az U 

b − Az
b

0

Definition 5.14
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(1) Any solution z to the normal equations
(ATA)z = ATb

 is a best approximation to a solution to Ax = b in the sense that ‖b - Az‖ is the 
minimum value of ‖b - Ax‖ as x ranges over all columns in �n.

(2) If the columns of A are linearly independent, then ATA is invertible and z is given 
uniquely by z = (ATA)-1ATb.

We note in passing that if A is n × n and invertible, then

z = (ATA)-1ATb = A-1b

is the solution to the system of equations, and ‖b - Az‖ = 0. Hence if A has 
independent columns, then (ATA)-1AT is playing the role of the inverse of the 
nonsquare matrix A. The matrix AT(AAT)-1 plays a similar role when the rows of A 
are linearly independent. These are both special cases of the generalized inverse 
of a matrix A (see Exercise 14). However, we shall not pursue this topic here. 

EXAMPLE 1

The system of linear equations

3x -  y = 4
 x + 2y = 0
2x +  y = 1

has no solution. Find the vector z =   S  x0   
y0

  T  that best approximates a solution. 

Solution ► In this case,

A =   S  3 -1
 

  
 1   2    

2   1
   T  , so ATA =   S   3 1 2     

-1 2 1
  T    S  3 -1

 
  

 1   2    
2   1

   T  =   S  14 1    
1 6

  T 

is invertible. The normal equations (ATA)z = ATb are

  S  14 1    
1 6

  T z =   S   14       
-3

   T  , so z =   1 __ 83     S   87    
-56

  T .
Thus x0 =   87 __ 83   and y0 =   -56 ___ 83  . With these values of x and y, the left sides of the 
equations are, approximately,

3x0 -  y0 =    317 ___ 83   =   3.82
 x0 + 2y0 =   -25 ___ 83   = -0.30

2x0 +  y0 =    118 ___ 83   =   1.42

This is as close as possible to a solution.

EXAMPLE 2

The average number g of goals per game scored by a hockey player seems to 
be related linearly to two factors: the number x1 of years of experience and the 
number x2 of goals in the preceding 10 games. The data on the following page 
were collected on four players. Find the linear function g = a0 + a1x1 + a2x2 
that best fits these data.
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Solution ► If the relationship is given by g = r0 + r1x1 + r2x2, then the data can 
be described as follows:

1 5 3
1 3 4
1 1 5
1 2 1

   S  
r0

 
 

 r1   
r2

  T  =   S  
0.8

 
 

 0.8   
0.6

 
 

 

0.4

  T 
Using the notation in Theorem 1, we get

z  = (ATA)-1ATb

=   1 __ 42   
− −

−
−

119 17 19
17 5 1
19 1 5

1 1 1 1
5 3 1 2
3 4 5 1

   S  
0.8

 
 

 0.8   
0.6

 
 

 

0.4

  T  =   S  0.14
 

  
 0.09    

0.08
  T 

Hence the best-fitting function is g = 0.14 + 0.09x1 + 0.08x2. The amount 
of computation would have been reduced if the normal equations had been 
constructed and then solved by gaussian elimination.

Least Squares Approximation
In many scientific investigations, data are collected that relate two variables. For 
example, if x is the number of dollars spent on advertising by a manufacturer and y 
is the value of sales in the region in question, the manufacturer could generate data 
by spending x1, x2, …, xn dollars at different times and measuring the corresponding 
sales values y1, y2, …, yn.

Suppose it is known that a linear relationship exists between the variables x and y—
in other words, that y = a + bx for some constants a and b. If the data are plotted, the 
points (x1, y1), (x2, y2), …, (xn, yn) may appear to lie on a straight line and estimating a 
and b requires finding the “best-fitting” line through these data points. For example, 
if five data points occur as shown in the diagram, line 1 is clearly a better fit than line 
2. In general, the problem is to find the values of the constants a and b such that the 
line y = a + bx best approximates the data in question. Note that an exact fit would 
be obtained if a and b were such that yi = a + bxi were true for each data point (xi, yi). 
But this is too much to expect. Experimental errors in measurement are bound to 
occur, so the choice of a and b should be made in such a way that the errors between 
the observed values yi and the corresponding fitted values a + bxi are in some sense 
minimized. Least squares approximation is a way to do this.

The first thing we must do is explain exactly what we mean by the best fit of a 
line y = a + bx to an observed set of data points (x1, y1), (x2, y2), …, (xn, yn). For 
convenience, write the linear function r0 + r1x as

f (x) = r0 + r1x 

so that the fitted points (on the line) have coordinates (x1, f (x1)), …, (xn, f (xn)). The 
second diagram is a sketch of what the line y = f (x) might look like. For each i the 
observed data point (xi, yi) and the fitted point (xi, f (xi)) need not be the same, and 
the distance di between them measures how far the line misses the observed point. 
For this reason di is often called the error at xi, and a natural measure of how close 
the line y = f (x) is to the observed data points is the sum d1 + d2 + 	 + dn of all 
these errors. However, it turns out to be better to use the sum of squares

S =  d  1  
2  +  d  2  

2  + 	 +  d  n  
2 

g x1 x2

0.8 5 3
0.8 3 4
0.6 1 5
0.4 2 1

y

x0

(x5, y5) 
(x4, y4) 

(x3, y3) 

(x2, y2) 
(x1, y1) 

Line 2 
Line 1 

y

x0 x 1 

y = f (x)
d i 

d 1 

d n 

x i x n 

(xn, f(xn)) 
(xn, yn) 

(xi, yi) 

(xi, f(xi)) 

(x1, y1) 
(x1, f(x1)) 
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as the measure of error, and the line y = f (x) is to be chosen so as to make this sum 
as small as possible. This line is said to be the least squares approximating line for 
the data points (x1, y1), (x2, y2), …, (xn, yn).

The square of the error di is given by  d  i  
2  = [yi - f (xi)]

2 for each i, so the quantity 
S to be minimized is the sum:

S = [y1 - f (x1)]
2 + [y2 - f (x2)]

2 + 	 + [yn - f (xn)]
2.

Note that all the numbers xi and yi are given here; what is required is that the 
function f be chosen in such a way as to minimize S. Because f (x) = r0 + r1x, this 
amounts to choosing r0 and r1 to minimize S. This problem can be solved using 
Theorem 1. The following notation is convenient.

x =   S  
x1

 
 

 x2   


 
 

 
xn

  T  y =   S  
y1

 
 

 
y2   


 
 

 
yn

  T  and f (x) =   S   
f (x1)

 
  

 
f (x2)    



 

  
 

f (xn)

  T  =   S  
r0 + r1x1

 
   

 r0 + r1x2     


 

   
 

r0 + r1xn

  T 
Then the problem takes the following form: Choose r0 and r1 such that

S = [y1 - f (x1)]
2 + [y2 - f (x2)]

2 + 	 + [yn - f (xn)]
2 = ‖y - f (x)‖2

is as small as possible. Now write

M =   S   
1 x1

 
  

 1 x2    

  
 

 
  

 

1 xn

   T  and r =   S  r0   
r1

  T .

Then Mr = f (x), so we are looking for a column r =   S  r0   
r1

  T  such that ‖y - Mr‖
2 is as 

small as possible. In other words, we are looking for a best approximation z to the 
system Mr = y. Hence Theorem 1 applies directly, and we have

Theorem 2

Suppose that n data points (x1, y1), (x2, y2), …, (xn, yn) are given, where at least two of 
x1, x2, …, xn are distinct. Put

y =   S   
y1

 
 

 
y2   


 
 

 
yn

  T  M =   S   
1 x1

 
  

 1 x2    

  
 

 
  

 

1 xn

   T 
Then the least squares approximating line for these data points has equation 

y = z0 + z1x

where z =   S  z0   z1
  T  is found by gaussian elimination from the normal equations

(MTM)z = MTy.

The condition that at least two of x1, x2, …, xn are distinct ensures that MTM is an 
invertible matrix, so z is unique:

z = (MTM)-1MTy.
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EXAMPLE 3

Let data points (x1, y1), (x2, y2), …, (x5, y5) be given as in the accompanying 
table. Find the least squares approximating line for these data.

Solution ► In this case we have

 MTM = 
x x x
1 1 1

1 2 5
   S   
1 x1

 
  

 1 x2    

  
 

 
  

 

1 x5

   T 
 = x x

x

+ +

+ +
5 1 5

1 xx x x5 1
2

5
2+ +

 =   S   5  21     
21 111

  T  ,

 and MTy = 
x x x
1 1 1

1 2 5
   S   

y1

 
 

 
y2   


 
 

 
y5

  T 
 = y y y

x y x
+ + +

+
1 2 5

1 1 2 yy x y2 5 5+ +
 =   S  15   

78
  T  ,

so the normal equations (MTM)z = MTy for z =   S  z0   
z1

  T  become

  S   5  21     
21 111

  T  =   S  z0   
z1

  T  =   S  15   
78

  T 

The solution (using gaussian elimination) is z =   S  z0   
z1

  T  =   S  0.24    
0.66

  T  to two 

decimal places, so the least squares approximating line for these data is 
y = 0.24 + 0.66x. Note that MTM is indeed invertible here (the 
determinant is 114), and the exact solution is

z = (MTM)-1MTy =   1 ___ 114      S   111 -21     
-21    5

  T    S   15      
78

   T  =   1 ___ 114     S   27      
75

   T  =   1 __ 38     S   9   
25

  T .

Least Squares Approximating Polynomials
Suppose now that, rather than a straight line, we want to find a polynomial

y = f (x) = r0 + r1x + r2x
2 + 	 + rmxm

of degree m that best approximates the data pairs (x1, y1), (x2, y2), …, (xn, yn). 
As before, write 

x =   S  
x1

 
 

 x2   


 
 

 
xn

  T  y =   S  
y1

 
 

 
y2   


 
 

 
yn

  T  and f (x) =   S   
f (x1)

 
  

 
f (x2)    



 

  
 

f (xn)

  T  
For each xi we have two values of the variable y, the observed value yi, and the 
computed value f (xi). The problem is to choose f (x)—that is, choose r0, r1, …, rm

—such that the f (xi) are as close as possible to the yi. Again we define “as close as 
possible” by the least squares condition: We choose the ri such that 

‖y - f (x)‖2 = [y1 - f (x1)]
2 + [y2 - f (x2)]

2 + 	 + [yn - f (xn)]
2

is as small as possible. 

x y

1 1
3 2
4 3
6 4
7 5
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A polynomial f (x) satisfying this condition is called a least squares approximating 
polynomial of degree m for the given data pairs.

If we write 

M = 

x x x

x x x

x x x

m

m

n n n
m

1

1

1

1 1
2

1

2 2
2

2

2

 and r =   S   
r0

 
 

 r1   


 
 

 
rm

  T 
we see that f (x) = Mr. Hence we want to find R such that ‖y - Mr‖

2 is as small as 
possible; that is, we want a best approximation z to the system Mr = y. Theorem 1 
gives the first part of Theorem 3. 

Theorem 3

Let n data pairs (x1, y1), (x2, y2), …, (xn, yn) be given, and write

y =   S  
 y1

 
 

 
y2   


 
 

 
yn

   T  M = 

x x x

x x x

x x x

m

m

n n n
m

1 1
2

1

2 2
2

2

2

1

1

1

 z =   S   
 z0

 
 

 z1   


 
 

 
zm

  T 
1. If z is any solution to the normal equations

(MTM)z = MTy

 then the polynomial
z0 + z1x + z2x

2 + 	 + zmxm

is a least squares approximating polynomial of degree m for the given data pairs. 
2. If at least m + 1 of the numbers x1, x2, …, xn are distinct (so n ≥ m + 1), the 

matrix MTM is invertible and z is uniquely determined by

z = (MTM)-1MTy

PROOF

It remains to prove (2), and for that we show that the columns of M are linearly 
independent (Theorem 3 Section 5.4). Suppose a linear combination of the 
columns vanishes:

r0   S  
1

 
 

 1   


 

 
 

1

  T  + r1  S  
x1

 
 

 x2   


 
 

 

xn

  T  + 	 + rm  S  
  x  1  

m 

 

 
  x  2  

m    


 
 

 

 x  n  
m 

   T  =   S  
0

 
 

 0   


 

 
 

0

  T 
If we write q(x) = r0 + r1x + 	 + rmxm, equating coefficients shows that 
q(x1) = q(x2) = 	 = q(xn) = 0. Hence q(x) is a polynomial of degree m with at 
least m + 1 distinct roots, so q(x) must be the zero polynomial (see Appendix D 
or Theorem 4 Section 6.5). Thus r0 = r1 = 	 = rm = 0 as required.

Definition 5.15
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EXAMPLE 4

Find the least squares approximating quadratic y = z0 + z1x + z2x
2 for the 

following data points.

(-3, 3), (-1, 1), (0, 1), (1, 2), (3, 4)

Solution ► This is an instance of Theorem 3 with m = 2. Here

y = 

3
1
1
2
4

 M = 

−
−

1 3 9
1 1 1
1 0 0
1 1 1
1 3 9

Hence,

MTM = −−

−
−1 1 1 1 1

3 1 0 1 3
9 1 0 1 9

1 3 9
1 1 1
1 0 0
1 1 1
1 3 9

 = 20
5 0 20

20 0
00

164

MTy = − −
1 1 1 1 1
3 1 0 1 3
9 1 0 1 9

3
1
1
2
4

 =   S  11
 

 
  4   

66
  T 

The normal equations for z are

5 20
0 0

0

020
20
0 164

 z =   S  11
 

 
  4   

66
  T  whence z =   S  1.15

 
  

 0.20    
0.26

  T 
This means that the least squares approximating quadratic for these data is 
y = 1.15 + 0.20x + 0.26x2.

Other Functions
There is an extension of Theorem 3 that should be mentioned. Given data pairs 
(x1, y1), (x2, y2), …, (xn, yn), that theorem shows how to find a polynomial 

f (x) = r0 + r1x + 	 + rmxm

such that ‖y - f (x)‖2 is as small as possible, where x and f (x) are as before. 
Choosing the appropriate polynomial f (x) amounts to choosing the coefficients 
r0, r1, …, rm, and Theorem 3 gives a formula for the optimal choices. Here f (x) is a 
linear combination of the functions 1, x, x2, …, xm where the ri are the coefficients, 
and this suggests applying the method to other functions. If f0(x), f1(x), …, fm(x) are 
given functions, write 

f (x) = r0 f0(x) + r1 f1(x) + 	 + rm fm(x) 
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where the ri are real numbers. Then the more general question is whether 
r0, r1, …, rm can be found such that ‖y - f (x)‖2 is as small as possible where 

f (x) =   S    
f (x1)

 
  

 
f (x2)    



 

  
 

f (xm)

  T 
Such a function f (x) is called a least squares best approximation for these data 
pairs of the form r0 f0(x) + r1 f1(x) + 	 + rm fm(x), ri in �. The proof of Theorem 3 
goes through to prove

Theorem 4

Let n data pairs (x1, y1), (x2, y2), …, (xn, yn) be given, and suppose that m + 1 functions 
f0(x), f1(x), …, fm(x) are specified. Write 

y =   S  
y1

 
 

 
y2   


 
 

 
yn

  T  M = 

f x f x f x
f x f

m0 1 1 1 1

0 2

( ) ( ) ( )
( ) 1 2 2

0 1

( ) ( )

( ) ( ) ( )

x f x

f x f x f x

m

n n m n

 z =   S   
z1

 
 

 z2   


 
 

 
zm

  T 
(1) If z is any solution to the normal equations

(MTM)z = MTy,

 then the function 

z0 f0(x) + z1 f1(x) + 	 + zm fm(x)

 is the best approximation for these data among all functions of the form 
r0 f0(x) + r1 f1(x) + 	 + rm fm(x) where the ri are in �.

(2) If MTM is invertible (that is, if rank(M) = m + 1), then z is uniquely 
determined; in fact, z = (MTM)-1(MTy).

Clearly Theorem 4 contains Theorem 3 as a special case, but there is no simple test 
in general for whether MTM is invertible. Conditions for this to hold depend on the 
choice of the functions f0(x), f1(x), …, fm(x).

EXAMPLE 5

Given the data pairs (-1, 0), (0, 1), and (1, 4), find the least squares 
approximating function of the form r0x + r12

x.

Solution ► The functions are f0(x) = x and f1(x) = 2x, so the matrix M is

M = 
f x f x
f x f x
f x f x

0 1 1 1

0 2 1 2

0 3 1 3

( ) ( )
( ) ( )
( ) ( )

 = 
− −1

0

1

1 2

0 2

1 2

 =   1 _ 2   
−2 1

0 2
2 4

In this case MTM =   1 _ 4     S   8  6    
6 21

  T  is invertible, so the normal equations
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  1 _ 4     S   8  6    
6 21

  T z =   S   4     
9

   T  have a unique solution z =   1 __ 11    S   10      
16

   T 
Hence the best-fitting function of the form r0x + r12

x is  
__

 f   (x) =   10 __ 11  x +   16 __ 11  2
x.

Note that  
__

 f   (x) = s  
 
__

 f   (–1)

 
  

  
__

 f   (0)   
 

 
__

 f   (1)

   t = s  
  -2 __ 11  

 
 

   16 __ 11    
 

  42 __ 11  

   t , compared with y =   S  0 
 

 1   
4

  T .

E X E R C I S E S  5 . 6

 1. Find the best approximation to a solution of each 
of the following systems of equations.

 (a)   x +  y -  z = 5
 2x -  y + 6z = 1
 3x + 2y -  z = 6
-x + 4y +  z = 0

 �(b) 3x +  y +  z = 6
2x + 3y -  z = 1
2x -  y +  z = 0
3x - 3y + 3z = 8

 2. Find the least squares approximating line 
y = z0 + z1x for each of the following sets of 
data points.

 (a) (1, 1), (3, 2), (4, 3), (6, 4)

 �(b) (2, 4), (4, 3), (7, 2), (8, 1)

 (c) (-1, -1), (0, 1), (1, 2), (2, 4), (3, 6)

 �(d) (-2, 3), (-1, 1), (0, 0), (1, -2), (2, -4)

 3. Find the least squares approximating quadratic 
y = z0 + z1x + z2x

2 for each of the following sets 
of data points.

 (a) (0, 1), (2, 2), (3, 3), (4, 5)

 �(b) (-2, 1), (0, 0), (3, 2), (4, 3)

 4. Find a least squares approximating function 
of the form r0x + r1x

2 + r22
x for each of the 

following sets of data pairs.

 (a) (-1, 1), (0, 3), (1, 1), (2, 0)

 �(b) (0, 1), (1, 1), (2, 5), (3, 10)

 5. Find the least squares approximating function 
of the form r0 + r1x

2 + r2sin   πx
 __ 2   for each of the 

following sets of data pairs.

 (a) (0, 3), (1, 0), (1, -1), (-1, 2)

 �(b) (-1,   1 _ 2  ), (0, 1), (2, 5), (3, 9)

 6. If M is a square invertible matrix, show that 
z = M-1y (in the notation of Theorem 3).

 �7. Newton’s laws of motion imply that an object 
dropped from rest at a height of 100 metres will 
be at a height s = 100 -   1 _ 2  gt2 metres t seconds 
later, where g is a constant called the acceleration 
due to gravity. The values of s and t given in the 
table are observed. Write x = t2, find the least 
squares approximating line s = a + bx for these 
data, and use b to estimate g.

  Then find the least squares approximating 
quadratic s = a0 + a1t + a2t

2 and use the value of 
a2 to estimate g.

t 1 2 3
s 95 80 56

 8. A naturalist measured the heights yi (in metres) 
of several spruce trees with trunk diameters xi (in 
centimetres). The data are as given in the table. 
Find the least squares approximating line for 
these data and use it to estimate the height of a 
spruce tree with a trunk of diameter 10 cm.

xi 5 7 8 12 13 16
yi 2 3.3 4 7.3 7.9 10.1

 �9. The yield y of wheat in bushels per acre 
appears to be a linear function of the number 
of days x1 of sunshine, the number of inches 
x2 of rain, and the number of pounds x3 of 
fertilizer applied per acre. Find the best fit to 
the data in the table by an equation of the form 
y = r0 + r1x1 + r2x2 + r3x3. [Hint: If a calculator 
for inverting ATA is not available, the inverse is 
given in the answer.]
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y x1 x2 x3

28 50 18 10
30 40 20 16
21 35 14 10
23 40 12 12
23 30 16 14

 10. (a) Use m = 0 in Theorem 3 to show that the 
best-fitting horizontal line y = a0 through 
the data points (x1, y1), …, (xn, yn) is 
y =   1 _ n  ( y1 + y2 + 	 + yn), the average of 
the y coordinates.

 �(b) Deduce the conclusion in (a) without using 
Theorem 3.

 11. Assume n = m + 1 in Theorem 3 (so M is 
square). If the xi are distinct, use Theorem 
6 Section 3.2 to show that M is invertible. 
Deduce that z = M-1y and that the least squares 
polynomial is the interpolating polynomial 
(Theorem 6 Section 3.2) and actually passes 
through all the data points.

 12. Let A be any m × n matrix and write 
K = {x | ATAx = 0}. Let B be an m-column. 
Show that, if z is an n-column such that 
‖b - Az‖ is minimal, then all such vectors 
have the form z + x for some x in K. 
[Hint: ‖b - Ay‖ is minimal if and only if 
ATAy = ATb.]

 13. Given the situation in Theorem 4, write

f (x) = r0 p0(x) + r1p1(x) + 	 + rmpm(x)

  Suppose that f (x) has at most k roots for any 
choice of the coefficients r0, r1, …, rm, not all 
zero.

 (a) Show that MTM is invertible if at least k + 1 
of the xi are distinct.

 �(b) If at least two of the xi are distinct, show that 
there is always a best approximation of the 
form r0 + r1e

x.

 (c) If at least three of the xi are distinct, show 
that there is always a best approximation 
of the form r0 + r1x + r2e

x. [Calculus is 
needed.]

 14. If A is an m × n matrix, it can be proved that 
there exists a unique n × m matrix A# satisfying 
the following four conditions: AA#A = A; 
A#AA# = A#; AA# and A#A are symmetric. The 
matrix A# is called the generalized inverse of A, 
or the Moore-Penrose inverse.

 (a) If A is square and invertible, show that 
A# = A-1.

 (b) If rank A = m, show that A# = AT(AAT)-1.

 (c) If rank A = n, show that A# = (ATA)-1AT.

An Application to Correlation and Variance
Suppose the heights h1, h2, …, hn of n men are measured. Such a data set is called 
a sample of the heights of all the men in the population under study, and various 
questions are often asked about such a sample: What is the average height in the 
sample? How much variation is there in the sample heights, and how can it be 
measured? What can be inferred from the sample about the heights of all men in 
the population? How do these heights compare to heights of men in neighbouring 
countries? Does the prevalence of smoking affect the height of a man? 

The analysis of samples, and of inferences that can be drawn from them, is a 
subject called mathematical statistics, and an extensive body of information has been 
developed to answer many such questions. In this section we will describe a few 
ways that linear algebra can be used. 

It is convenient to represent a sample {x1, x2, …, xn} as a sample vector15 
x = [x1 x2 	 xn] in �n. This being done, the dot product in �n provides a 
convenient tool to study the sample and describe some of the statistical concepts 

15 We write vectors in �n as row matrices, for convenience.
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related to it. The most widely known statistic for describing a data set is the sample 
mean  

__
 x   defined by16

 
__

 x   =   1 _ n  (x1 + x2 + 	 + xn) =   1 _ n    ∑ 
i=1

   
n

  xi .

The mean  
__

 x   is “typical” of the sample values xi, but may not itself be one of them. 
The number xi -  

__
 x   is called the deviation of xi from the mean  

__
 x  . The deviation is 

positive if xi >  
__

 x   and it is negative if xi <  
__

 x  . Moreover, the sum of these deviations 
is zero:

  ∑ 
i=1

   
n

  (xi -  
__

 x  )  =  Q  ∑ 
i=1

   
n

  xi  R  - n 
__

 x   = n 
__

 x   - n 
__

 x   = 0. (∗)

This is described by saying that the sample mean  
__

 x   is central to the sample values xi.
If the mean  

__
 x   is subtracted from each data value xi, the resulting data xi -  

__
 x   are 

said to be centred. The corresponding data vector is 

xc = [x1 -  
__

 x   x2 -  
__

 x   	 xn -  
__

 x  ] 

and (∗) shows that the mean  
__

 x  c = 0. For example, the sample x = [-1 0 1 4 6] 
is plotted in the first diagram. The mean is  

__
 x   = 2, and the centred sample 

xc = [-3 -2 -1 2 4] is also plotted. Thus, the effect of centring is to shift the 
data by an amount  

__
 x   (to the left if  

__
 x   is positive) so that the mean moves to 0.

Another question that arises about samples is how much variability there is in the 
sample x = [x1 x2 	 xn]; that is, how widely are the data “spread out” around the 
sample mean  

__
 x  . A natural measure of variability would be the sum of the deviations 

of the xi about the mean, but this sum is zero by (∗); these deviations cancel out. 
To avoid this cancellation, statisticians use the squares (xi -  

__
 x  )2 of the deviations as 

a measure of variability. More precisely, they compute a statistic called the sample 
variance  s  x  

2 , defined17 as follows: 

 s  x  
2  =   1 ___ 

n-1  [(x1 -  
__

 x  )2 + (x2 -  
__

 x  )2 + 	 + (xn -  
__

 x  )2] =   1 ___ 
n-1    ∑ 

i=1
   

n

  (xi -  
__

 x  ) 2.

The sample variance will be large if there are many xi at a large distance from the 
mean  

__
 x  , and it will be small if all the xi are tightly clustered about the mean. The 

variance is clearly nonnegative (hence the notation  s  x  
2 ), and the square root sx of the 

variance is called the sample standard deviation. 
The sample mean and variance can be conveniently described using the dot 

product. Let 

1 = [1 1 	 1]

denote the row with every entry equal to 1. If x = [x1 x2 	 xn], then 
x · 1 = x1 + x2 + 	 + xn, so the sample mean is given by the formula

 
__

 x   =   1 _ n  (x · 1).

Moreover, remembering that  
__

 x   is a scalar, we have  
__

 x  1 = [ 
__

 x    
__

 x   	  
__

 x  ], so the centred 
sample vector xc is given by 

xc = x -  
__

 x  1 = [x1 -  
__

 x   x2 -  
__

 x   	 xn -  
__

 x  ].

Thus we obtain a formula for the sample variance:

 s  x  
2  =   1 ___ 

n-1  ‖xc‖
2 =   1

 ___ 
n-1  ‖x -  

__
 x  1‖

2.

Linear algebra is also useful for comparing two different samples. To illustrate 
how, consider two examples.

16 The mean is often called the “average” of the sample values xi, but statisticians use the term “mean”.

17 Since there are n sample values, it seems more natural to divide by n here, rather than by n - 1. The reason for using n - 1 is that 
then the sample variance s2

x provides a better estimate of the variance of the entire population from which the sample was drawn.

−1 0 1 

Sample x

Centred Sample xc

2 4 6 

4 2 0 −1 −2 −3 

xc

x
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The following table represents the number of sick days at work per year and the 
yearly number of visits to a physician for 10 individuals. 

Individual 1 2 3 4 5 6 7 8 9 10
Doctor visits 2 6 8 1 5 10 3 9 7 4
Sick days 2 4 8 3 5 9 4 7 7 2

The data are plotted in the scatter diagram where it is evident that, roughly 
speaking, the more visits to the doctor the more sick days. This is an example 
of a positive correlation between sick days and doctor visits.

Now consider the following table representing the daily doses of vitamin C 
and the number of sick days.

Individual 1 2 3 4 5 6 7 8 9 10
Vitamin C 1 5 7 0 4 9 2 8 6 3
Sick days 5 2 2 6 2 1 4 3 2 5

The scatter diagram is plotted as shown and it appears that the more vitamin C 
taken, the fewer sick days. In this case there is a negative correlation between daily 
vitamin C and sick days.

In both these situations, we have paired samples, that is observations of two 
variables are made for ten individuals: doctor visits and sick days in the first case; 
daily vitamin C and sick days in the second case. The scatter diagrams point to 
a relationship between these variables, and there is a way to use the sample to 
compute a number, called the correlation coefficient, that measures the degree to 
which the variables are associated. 

To motivate the definition of the correlation coefficient, suppose two paired 
samples x = [x1 x2 	 xn], and y = [y1 y2 	 yn] are given and consider the 
centred samples

xc = [x1 -  
__

 x   x2 -  
__

 x   	 xn -  
__

 x  ] and yc = [y1 -  
__
 y   y2 -  

__
 y   	 yn -  

__
 y  ]

If xk is large among the xi’s, then the deviation xk -  
__

 x   will be positive; and xk -  
__

 x   
will be negative if xk is small among the xi’s. The situation is similar for y, and the 
following table displays the sign of the quantity (xi -  

__
 x  )( yk -  

__
 y  ) in all four cases:

Sign of (xi -  
__

 x  )( yk -  
__
 y  ):

xi large xi small
yi large positive negative
yi small negative positive

Intuitively, if x and y are positively correlated, then two things happen: 

1. Large values of the xi tend to be associated with large values of the yi , and 

2. Small values of the xi tend to be associated with small values of the yi . 

It follows from the table that, if x and y are positively correlated, then the dot 
product

xc · yc =  ∑ 
i=1

   
n

  (xi -  
__

 x  ) ( yi -  
__
 y  )

is positive. Similarly xc · yc is negative if x and y are negatively correlated. With this 
in mind, the sample correlation coefficient18 r is defined by

18 The idea of using a single number to measure the degree of relationship between different variables was pioneered by Francis Galton 
(1822–1911). He was studying the degree to which characteristics of an offspring relate to those of its parents. The idea was refined 
by Karl Pearson (1857–1936) and r is often referred to as the Pearson correlation coefficient.

Sick 
Days 

Doctor Visits 

Sick 
Days 

Vitamin C Doses 
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r = r(x, y) =   
xc · yc

 ________ 
‖xc‖ ‖yc‖

  .

Bearing the situation in �3 in mind, r is the cosine of the “angle” between the 
vectors xc and yc, and so we would expect it to lie between -1 and 1. Moreover, 
we would expect r to be near 1 (or -1) if these vectors were pointing in the same 
(opposite) direction, that is the “angle” is near zero (or π).

This is confirmed by Theorem 1 below, and it is also borne out in the examples 
above. If we compute the correlation between sick days and visits to the physician 
(in the first scatter diagram above) the result is r = 0.90 as expected. On the other 
hand, the correlation between daily vitamin C doses and sick days (second scatter 
diagram) is r = -0.84.

However, a word of caution is in order here. We cannot conclude from the 
second example that taking more vitamin C will reduce the number of sick days 
at work. The (negative) correlation may arise because of some third factor that is 
related to both variables. For example, case it may be that less healthy people are 
inclined to take more vitamin C. Correlation does not imply causation. Similarly, 
the correlation between sick days and visits to the doctor does not mean that having 
many sick days causes more visits to the doctor. A correlation between two variables 
may point to the existence of other underlying factors, but it does not necessarily 
mean that there is a causality relationship between the variables. 

Our discussion of the dot product in �n provides the basic properties of the 
correlation coefficient:

Theorem 1

Let x = [x1 x2 	 xn] and y = [y1 y2 	 yn] be (nonzero) paired samples, and let 
r = r(x, y) denote the correlation coefficient. Then:

1. -1 ≤ r ≤ 1.
2. r = 1 if and only if there exist a and b > 0 such that yi = a + bxi for each i.
3. r = -1 if and only if there exist a and b < 0 such that yi = a + bxi for each i.

PROOF

The Cauchy inequality (Theorem 2 Section 5.3) proves (1), and also shows that 
r = ±1 if and only if one of xc and yc is a scalar multiple of the other. This in 
turn holds if and only if yc = bxc for some b ≠ 0, and it is easy to verify that r = 1 
when b > 0 and r = -1 when b < 0.

Finally, yc = bxc means y1 -  
__
 y   = b(x1 -  

__
 x  ) for each i; that is, yi = a + bxi 

where a =  
__
 y   - b 

__
 x  . Conversely, if yi = a + bxi, then  

__
 y   = a + b 

__
 x   (verify), so 

y1 -  
__
 y   = (a + bxi) - (a + b 

__
 x  ) = b(x1 -  

__
 x  ) for each i. In other words, yc = bxc. 

This completes the proof.

Properties (2) and (3) in Theorem 1 show that r(x, y) = 1 means that there is 
a linear relation with positive slope between the paired data (so large x values are 
paired with large y values). Similarly, r(x, y) = -1 means that there is a linear 
relation with negative slope between the paired data (so small x values are paired 
with small y values). This is borne out in the two scatter diagrams above.
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We conclude by using the dot product to derive some useful formulas for 
computing variances and correlation coefficients. Given samples x = [x1 x2 	 xn], 
and y = [y1 y2 	 yn], the key observation is the following formula:

xc · yc = x · y - n  
__

 x    
__
 y  . (∗∗)

Indeed, remembering that  
__

 x   and  
__
 y   are scalars:

 xc · yc = (x -  
__

 x  1) · (y -  
__
 y  1)

 = x · y - x · ( 
__
 y  1) - ( 

__
 x  1) · y + ( 

__
 x  1) · ( 

__
 y  1)

 = x · y -  
__

 y  (x · 1) -  
__

 x  (1 · y) +  
__

 x   
__
 y  (1 · 1)

 = x · y -  
__

 y  (n 
__

 x  ) -  
__

 x  (n 
__
 y  ) +  

__
 x   
__
 y  (n)

 = x · y - n 
__

 x   
__
 y  .

Taking y = x in (∗∗) gives a formula for the variance
 
 s  x  

2  =   1 ___ 
n-1  ‖xc‖

2 of x.

Variance Formula

If x is a sample vector, then  s  x  2  =   1
 ___ 

n-1  (‖xc‖
2 - n 

__
 x  2).

We also get a convenient formula for the correlation coefficient, 

r = r(x, y) =   
xc · yc

 ________ 
‖xc‖ ‖yc‖

  . Moreover, (∗∗) and the fact that  s  x  
2  =   1 ___ 

n-1  ‖xc‖
2 give:

Correlation Formula

If x and y are sample vectors, then 

r = r(x, y) =   
x · y - n  

__
 x    
__
 y  
  ___________ 

(n - 1)sxsy

  .

Finally, we give a method that simplifies the computations of variances and 
correlations.

Data Scaling

Let x = [x1 x2 	 xn] and y = [y1 y2 	 yn] be sample vectors. Given constants a, b, c, 
and d, consider new samples z = [z1 z2 	 zn] and w = [w1 w2 	 wn] where 
zi = a + bxi , for each i and wi = c + dyi for each i. Then: 

(a)  __
 z   = a + b 

__
 x  .

(b)  s  z  2  = b2 s  x  2  , so sz = |b|sx .
(c) If b and d have the same sign, then r(x, y) = r(z, w).

The verification is left as an exercise. 
For example, if x = [101 98 103 99 100 97], subtracting 100 yields 

z = [1 -2 3 -1 0 -3]. A routine calculation shows that  
__

 z   = -  1 _ 3   and  s  z  
2  =   14 __ 3  , 

so  
__

 x   = 100 -   1 _ 3   = 99.67, and  s  z  
2  =   14 __ 3   = 4.67.
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E X E R C I S E S  5 . 7

 1. The following table gives IQ scores for 10 
fathers and their eldest sons. Calculate the 
means, the variances, and the correlation 
coefficient r. (The data scaling formula is useful.)

1 2 3 4 5 6 7 8 9 10

Father’s IQ 140 131 120 115 110 106 100 95 91 86

Son’s IQ 130 138 110 99 109 120 105 99 100 94

 �2. The following table gives the number of years of 
education and the annual income (in thousands) 
of 10 individuals. Find the means, the variances, 
and the correlation coefficient. (Again the data 
scaling formula is useful.)

Individual 1 2 3 4 5 6 7 8 9 10

Years of education 12 16 13 18 19 12 18 19 12 14

Yearly income 
(1000’s)

31 48 35 28 55 40 39 60 32 35

 3. If x is a sample vector, and xc is the centred 
sample, show that  

__
 x  c = 0 and the standard 

deviation of xc is sx.

 4. Prove the data scaling formulas found on page 
292: (a), �(b), and (c).

S U P P L E M E N TA R Y  E X E R C I S E S  F O R  C H A P T E R  5

 1. In each case either show that the statement is 
true or give an example showing that it is false. 
Throughout, x, y, z, x1, x2, …, xn denote vectors 
in �n. 

 (a) If U is a subspace of �n and x + y is in U, 
then x and y are both in U.

 �(b) If U is a subspace of �n and rx is in U, then x 
is in U.

 (c) If U is a nonempty set and sx + ty is in U for 
any s and t whenever x and y are in U, then 
U is a subspace.

 �(d) If U is a subspace of �n and x is in U, then 
-x is in U.

 (e) If {x, y} is independent, then {x, y, x + y} is 
independent.

 �(f ) If {x, y, z} is independent, then {x, y} is 
independent.

 (g) If {x, y} is not independent, then {x, y, z} is 
not independent.

 �(h) If all of x1, x2, …, xn are nonzero, then 
{x1, x2, …, xn} is independent.

 (i) If one of x1, x2, …, xn is zero, then 
{x1, x2, …, xn} is not independent.

 �(j) If ax + by + cz = 0 where a, b, and c are in 
�, then {x, y, z} is independent.

 (k) If {x, y, z} is independent, then 
ax + by + cz = 0 for some a, b, and c in �. 

 �(l) If {x1, x2, …, xn} is not independent, then 
t1x1 + t2x2 + 	 + tnxn = 0 for ti in � not all 
zero.

 (m) If {x1, x2, …, xn} is independent, then 
t1x1 + t2x2 + 	 + tnxn = 0 for some ti in �. 

 �(n) Every set of four non-zero vectors in �4 is a 
basis.

 (o) No basis of �3 can contain a vector with a 
component 0.

 �(p) �
3 has a basis of the form {x, x + y, y} where 

x and y are vectors.

 (q) Every basis of �5 contains one column of I5.

 �(r) Every nonempty subset of a basis of �3 is 
again a basis of �3.

 (s) If {x1, x2, x3, x4} and {y1, y2, y3, y4} are bases 
of �4, then {x1 + y1, x2 + y2, x3 + y3, x4 + y4} 
is also a basis of �4.
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Vector Spaces

6
In this chapter we introduce vector spaces in full generality. The reader will notice 
some similarity with the discussion of the space �n in Chapter 5. In fact much of the 
present material has been developed in that context, and there is some repetition. 
However, Chapter 6 deals with the notion of an abstract vector space, a concept 
that will be new to most readers. It turns out that there are many systems in which 
a natural addition and scalar multiplication are defined and satisfy the usual rules 
familiar from �n. The study of abstract vector spaces is a way to deal with all these 
examples simultaneously. The new aspect is that we are dealing with an abstract 
system in which all we know about the vectors is that they are objects that can be 
added and multiplied by a scalar and satisfy rules familiar from �n. 

The novel thing is the abstraction. Getting used to this new conceptual level 
is facilitated by the work done in Chapter 5: First, the vector manipulations are 
familiar, giving the reader more time to become accustomed to the abstract setting; 
and, second, the mental images developed in the concrete setting of �n serve as an 
aid to doing many of the exercises in Chapter 6. 

The concept of a vector space was first introduced in 1844 by the German 
mathematician Hermann Grassmann (1809–1877), but his work did not receive the 
attention it deserved. It was not until 1888 that the Italian mathematician Guiseppe 
Peano (1858–1932) clarified Grassmann’s work in his book Calcolo Geometrico 
and gave the vector space axioms in their present form. Vector spaces became 
established with the work of the Polish mathematician Stephan Banach (1892–1945), 
and the idea was finally accepted in 1918 when Hermann Weyl (1885–1955) used it 
in his widely read book Raum-Zeit-Materie (“Space-Time-Matter”), an introduction 
to the general theory of relativity.

Examples and Basic Properties
Many mathematical entities have the property that they can be added and multiplied 
by a number. Numbers themselves have this property, as do m × n matrices: The 
sum of two such matrices is again m × n as is any scalar multiple of such a matrix. 
Polynomials are another familiar example, as are the geometric vectors in Chapter 
4. It turns out that there are many other types of mathematical objects that can be 
added and multiplied by a scalar, and the general study of such systems is introduced 
in this chapter. Remarkably, much of what we could say in Chapter 5 about the 
dimension of subspaces in �n can be formulated in this generality.

S E C T I O N  6 . 1



A vector space consists of a nonempty set V of objects (called vectors) that can be 
added, that can be multiplied by a real number (called a scalar in this context), and for 
which certain axioms hold.1 If v and w are two vectors in V, their sum is expressed as 
v + w, and the scalar product of v by a real number a is denoted as av. These operations 
are called vector addition and scalar multiplication, respectively, and the following 
axioms are assumed to hold.

1

Axioms for vector addition

A1. If u and v are in V, then u + v is in V.
A2. u + v = v + u for all u and v in V.
A3. u + (v + w) = (u + v) + w for all u, v, and w in V.
A4. An element 0 in V exists such that v + 0 = v = 0 + v for every v in V.
A5. For each v in V, an element -v in V exists such that -v + v = 0 and v + (-v) = 0.

Axioms for scalar multiplication

S1. If v is in V, then av is in V for all a in �.
S2. a(v + w) = av + aw for all v and w in V and all a in �.
S3. (a + b)v = av + bv for all v in V and all a and b in �.
S4. a(bv) = (ab)v for all v in V and all a and b in �.
S5. 1v = v for all v in V.

The content of axioms A1 and S1 is described by saying that V is closed under 
vector addition and scalar multiplication. The element 0 in axiom A4 is called 
the zero vector, and the vector -v in axiom A5 is called the negative of v.

The rules of matrix arithmetic, when applied to �n, give

EXAMPLE 1

�
n is a vector space using matrix addition and scalar multiplication.2

2

It is important to realize that, in a general vector space, the vectors need not 
be n-tuples as in �n. They can be any kind of objects at all as long as the addition 
and scalar multiplication are defined and the axioms are satisfied. The following 
examples illustrate the diversity of the concept.

The space �n consists of special types of matrices. More generally, let Mmn denote 
the set of all m × n matrices with real entries. Then Theorem 1 Section 2.1 gives:

EXAMPLE 2

The set Mmn of all m × n matrices is a vector space using matrix addition and 
scalar multiplication. The zero element in this vector space is the zero matrix of 
size m × n, and the vector space negative of a matrix (required by axiom A5) is 
the usual matrix negative discussed in Section 2.1. Note that Mmn is just �mn in 
different notation.

1 The scalars will usually be real numbers, but they could be complex numbers, or elements of an algebraic system called a field. 
Another example is the field � of rational numbers. We will look briefly at finite fields in Section 8.7.

2 We will usually write the vectors in �n as n-tuples. However, if it is convenient, we will sometimes denote them as rows or columns.
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In Chapter 5 we identified many important subspaces of �n such as im A and null A 
for a matrix A. These are all vector spaces.

EXAMPLE 3

Show that every subspace of �n is a vector space in its own right using the 
addition and scalar multiplication of �n.

Solution ► Axioms A1 and S1 are two of the defining conditions for a subspace 
U of �n (see Section 5.1). The other eight axioms for a vector space are 
inherited from �n. For example, if x and y are in U and a is a scalar, then 
a(x + y) = ax + ay because x and y are in �n. This shows that axiom S2 holds 
for U; similarly, the other axioms also hold for U.

EXAMPLE 4

Let V denote the set of all ordered pairs (x, y) and define addition in V as in �2. 
However, define a new scalar multiplication in V by 

a(x, y) = (ay, ax)

Determine if V is a vector space with these operations.

Solution ► Axioms A1 to A5 are valid for V because they hold for matrices. 
Also a(x, y) = (ay, ax) is again in V, so axiom S1 holds. To verify axiom S2, 
let v = (x, y) and w = (x1, y1) be typical elements in V and compute

 a(v + w) = a(x + x1, y + y1) = (a( y + y1), a(x + x1))
 av + aw = (ay, ax) + (ay1, ax1) = (ay + ay1, ax + ax1)

Because these are equal, axiom S2 holds. Similarly, the reader can verify that 
axiom S3 holds. However, axiom S4 fails because

a(b(x, y)) = a(by, bx) = (abx, aby)

need not equal ab(x, y) = (aby, abx). Hence, V is not a vector space. (In fact, 
axiom S5 also fails.)

Sets of polynomials provide another important source of examples of vector 
spaces, so we review some basic facts. A polynomial in an indeterminate x is an 
expression

p(x) = a0 + a1x + a2x
2 + � + anx

n 

where a0, a1, a2, …, an are real numbers called the coefficients of the polynomial. 
If all the coefficients are zero, the polynomial is called the zero polynomial and is 
denoted simply as 0. If p(x) ≠ 0, the highest power of x with a nonzero coefficient 
is called the degree of p(x) denoted as deg p(x). The coefficient itself is called the 
leading coefficient of p(x). Hence deg(3 + 5x) = 1, deg(1 + x + x2) = 2, and 
deg(4) = 0. (The degree of the zero polynomial is not defined.)

Let P denote the set of all polynomials and suppose that

p(x) = a0 + a1x + a2x
2 + �

q(x) = b0 + b1x + b2x
2 + �
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are two polynomials in P (possibly of different degrees). Then p(x) and q(x) 
are called equal [written p(x) = q(x)] if and only if all the corresponding 
coefficients are equal—that is, a0 = b0, a1 = b1, a2 = b2, and so on. In particular, 
a0 + a1x + a2x

2 + � = 0 means that a0 = 0, a1 = 0, a2 = 0, …, and this is the 
reason for calling x an indeterminate. The set P has an addition and scalar 
multiplication defined on it as follows: if p(x) and q(x) are as before and a is a 
real number,

 p(x) + q(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x
2 + �

 ap(x) = aa0 + (aa1)x + (aa2)x
2 + �

Evidently, these are again polynomials, so P is closed under these operations, called 
pointwise addition and scalar multiplication. The other vector space axioms are 
easily verified, and we have

EXAMPLE 5

The set P of all polynomials is a vector space with the foregoing addition and 
scalar multiplication. The zero vector is the zero polynomial, and the negative 
of a polynomial p(x) = a0 + a1x + a2x

2 + � is the polynomial 
-p(x) = -a0 - a1x - a2x

2 - � obtained by negating all the coefficients.

There is another vector space of polynomials that will be referred to later. 

EXAMPLE 6

Given n ≥ 1, let Pn denote the set of all polynomials of degree at most n, 
together with the zero polynomial. That is 

Pn = {a0 + a1x + a2x
2 + � + anx

n | a0, a1, a2, …, an in �}.

Then Pn is a vector space. Indeed, sums and scalar multiples of polynomials in 
Pn are again in Pn, and the other vector space axioms are inherited from P. In 
particular, the zero vector and the negative of a polynomial in Pn are the same 
as those in P.

If a and b are real numbers and a < b, the interval [a, b] is defined to be the set 
of all real numbers x such that a ≤ x ≤ b. A (real-valued) function f on [a, b] is a 
rule that associates to every number x in [a, b] a real number denoted f (x). The 
rule is frequently specified by giving a formula for f (x) in terms of x. For example, 
f (x) = 2x, f (x) = sin x, and f (x) = x2 + 1 are familiar functions. In fact, every 
polynomial p(x) can be regarded as the formula for a function p.

The set of all functions on [a, b] is denoted F[a, b]. Two functions f and g in 
F[a, b] are equal if f (x) = g(x) for every x in [a, b], and we describe this by saying 
that f and g have the same action. Note that two polynomials are equal in P 
(defined prior to Example 5) if and only if they are equal as functions.

If f and g are two functions in F[a, b], and if r is a real number, define the sum 
f + g and the scalar product rf by

 ( f + g)(x) = f (x) + g(x) for each x in [a, b]
 (rf )(x) = rf (x) for each x in [a, b]
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In other words, the action of f + g upon x is to associate x with the number 
f (x) + g(x), and rf associates x with rf (x). The sum of f (x) = x2 and g(x) = -x is 
shown in the diagram. These operations on F[a, b] are called pointwise addition 
and scalar multiplication of functions and they are the usual operations familiar 
from elementary algebra and calculus.

EXAMPLE 7

The set F[a, b] of all functions on the interval [a, b] is a vector space using 
pointwise addition and scalar multiplication. The zero function (in axiom A4), 
denoted 0, is the constant function defined by

0(x) = 0 for each x in [a, b]

The negative of a function f is denoted -f and has action defined by

(-f )(x) = -f (x) for each x in [a, b]

Axioms A1 and S1 are clearly satisfied because, if f and g are functions on [a, b], 
then f + g and rf are again such functions. The verification of the remaining 
axioms is left as Exercise 14.

Other examples of vector spaces will appear later, but these are sufficiently varied 
to indicate the scope of the concept and to illustrate the properties of vector spaces 
to be discussed. With such a variety of examples, it may come as a surprise that a 
well-developed theory of vector spaces exists. That is, many properties can be shown 
to hold for all vector spaces and hence hold in every example. Such properties are 
called theorems and can be deduced from the axioms. Here is an important example.

Theorem 1

Cancellation
Let u, v, and w be vectors in a vector space V. If v + u = v + w, then u = w.

PROOF

We are given v + u = v + w. If these were numbers instead of vectors, we 
would simply subtract v from both sides of the equation to obtain u = w. This 
can be accomplished with vectors by adding -v to both sides of the equation. 
The steps (using only the axioms) are as follows:

 v + u = v + w
 -v + (v + u) = -v + (v + w) (axiom A5)
 (-v + v) + u = (-v + v) + w (axiom A3)

0 + u = 0 + w  (axiom A5)
 u = w  (axiom A4)

This is the desired conclusion.3

3

3 Observe that none of the scalar multiplication axioms are needed here.

y

1

1 xO

y f x g x

x x

= +
= −

( ) ( )
2

y x f x= =2 ( )

y x g x= =− ( )
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As with many good mathematical theorems, the technique of the proof of 
Theorem 1 is at least as important as the theorem itself. The idea was to mimic 
the well-known process of numerical subtraction in a vector space V as follows: 
To subtract a vector v from both sides of a vector equation, we added -v to both 
sides. With this in mind, we define difference u - v of two vectors in V as 

u - v = u + (-v).

We shall say that this vector is the result of having subtracted v from u and, as in 
arithmetic, this operation has the property given in Theorem 2.

Theorem 2

If u and v are vectors in a vector space V, the equation

x + v = u

has one and only one solution x in V given by

x = u - v.

PROOF

The difference x = u - v is indeed a solution to the equation because (using 
several axioms)

x + v = (u - v) + v = [u + (-v)] + v = u + (-v + v) = u + 0 = u.

To see that this is the only solution, suppose x1 is another solution so that 
x1 + v = u. Then x + v = x1 + v (they both equal u), so x = x1 by cancellation.

Similarly, cancellation shows that there is only one zero vector in any vector 
space and only one negative of each vector (Exercises 10 and 11). Hence we speak 
of the zero vector and the negative of a vector.

The next theorem derives some basic properties of scalar multiplication that 
hold in every vector space, and will be used extensively.

Theorem 3

Let v denote a vector in a vector space V and let a denote a real number.
1. 0v = 0.
2. a0 = 0.
3. If av = 0, then either a = 0 or v = 0.
4. (-1)v = -v.
5. (-a)v = -(av) = a(-v).

PROOF

 1. Observe that 0v + 0v = (0 + 0)v = 0v = 0v + 0 where the first equality is by 
axiom S3. It follows that 0v = 0 by cancellation.
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 2. The proof is similar to that of (1), and is left as Exercise 12(a). 

 3. Assume that av = 0. If a = 0, there is nothing to prove; if a ≠ 0, we must 
show that v = 0. But a ≠ 0 means we can scalar-multiply the equation av = 0 
by the scalar   1 _ a  . The result (using Axioms S5, S4, and (2)) is 

v = 1v = (  1 _ a  a)v =   1 _ a  (av) =   1 _ a  0 = 0.

 4. We have -v + v = 0 by axiom A5. On the other hand, 

(-1)v + v = (-1)v + 1v = (-1 + 1)v = 0v = 0

  using (1) and axioms S5 and S3. Hence (-1)v + v = -v + v (because both 
are equal to 0), so (-1)v = -v by cancellation.

 5. The proof is left as Exercise 12.

The properties in Theorem 3 are familiar for matrices; the point here is that they 
hold in every vector space.

Axiom A3 ensures that the sum u + (v + w) = (u + v) + w is the same however 
it is formed, and we write it simply as u + v + w. Similarly, there are different 
ways to form any sum v1 + v2 + � + vn, and Axiom A3 guarantees that they are all 
equal. Moreover, Axiom A2 shows that the order in which the vectors are written 
does not matter (for example: u + v + w + z = z + u + w + v).

Similarly, Axioms S2 and S3 extend. For example a(u + v + w) = au + av + aw 
and (a + b + c)v = av + bv + cv hold for all values of the scalars and vectors 
involved (verify). More generally,

a(v1 + v2 + � + vn) = av1 + av2 + � + avn

(a1 + a2 + � + an)v = a1v + a2v + � + anv

hold for all n ≥ 1, all numbers a, a1, …, an, and all vectors, v, v1, …, vn. The verifications 
are by induction and are left to the reader (Exercise 13). These facts—together with the 
axioms, Theorem 3, and the definition of subtraction—enable us to simplify expressions 
involving sums of scalar multiples of vectors by collecting like terms, expanding, and 
taking out common factors. This has been discussed for the vector space of matrices 
in Section 2.1 (and for geometric vectors in Section 4.1); the manipulations in an 
arbitrary vector space are carried out in the same way. Here is an illustration.

EXAMPLE 8

If u, v, and w are vectors in a vector space V, simplify the expression

2(u + 3w) - 3(2w - v) - 3[2(2u + v - 4w) - 4(u - 2w)]. 

Solution ► The reduction proceeds as though u, v, and w were matrices or 
variables.

2(u  + 3w) - 3(2w - v) - 3[2(2u + v - 4w) - 4(u - 2w)]
= 2u + 6w - 6w + 3v - 3[4u + 2v - 8w - 4u + 8w]
= 2u + 3v - 3[2v]
= 2u + 3v - 6v
= 2u - 3v.

Condition (2) in Theorem 3 points to another example of a vector space. 
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EXAMPLE 9

A set {0} with one element becomes a vector space if we define 

0 + 0 = 0 and a0 = 0 for all scalars a.

The resulting space is called the zero vector space and is denoted {0}.

The vector space axioms are easily verified for {0}. In any vector space V, Theorem 
3(2) shows that the zero subspace (consisting of the zero vector of V alone) is a copy 
of the zero vector space. 

E X E R C I S E S  6 . 1

 1. Let V denote the set of ordered triples (x, y, z) 
and define addition in V as in �3. For each of 
the following definitions of scalar multiplication, 
decide whether V is a vector space.

 (a) a(x, y, z) = (ax, y, az)

 	(b) a(x, y, z) = (ax, 0, az)

 (c) a(x, y, z) = (0, 0, 0)

 	(d) a(x, y, z) = (2ax, 2ay, 2az)

 2. Are the following sets vector spaces with the 
indicated operations? If not, why not?

 (a) The set V of nonnegative real numbers; 
ordinary addition and scalar multiplication.

 	(b) The set V of all polynomials of degree ≥3, 
together with 0; operations of P.

 (c) The set of all polynomials of degree ≤3; 
operations of P.

 	(d) The set {1, x, x2, …}; operations of P.

 (e) The set V of all 2 × 2 matrices of the form 

  S  a b
   

0 c
  T ; operations of M22.

 	(f ) The set V of 2 × 2 matrices with equal 
column sums; operations of M22.

 (g) The set V of 2 × 2 matrices with zero 
determinant; usual matrix operations.

 	(h) The set V of real numbers; usual operations.

 (i) The set V of complex numbers; usual 
addition and multiplication by a real number.

 	(j) The set V of all ordered pairs (x, y) with 
the addition of �2, but scalar multiplication 
a(x, y) = (ax, -ay).

 (k) The set V of all ordered pairs (x, y) with 
the addition of �2, but scalar multiplication 
a(x, y) = (x, y) for all a in �. 

 	(l) The set V of all functions f: � → � with 
pointwise addition, but scalar multiplication 
defined by (af )(x) = f (ax).

 (m) The set V of all 2 × 2 matrices whose entries 
sum to 0; operations of M22.

 	(n) The set V of all 2 × 2 matrices with the 
addition of M22 but scalar multiplication ∗ 
defined by a ∗ X = aXT.

 3. Let V be the set of positive real numbers with 
vector addition being ordinary multiplication, 
and scalar multiplication being a · v = va. Show 
that V is a vector space.

 	4. If V is the set of ordered pairs (x, y) of real 
numbers, show that it is a vector space if 
(x, y) + (x1, y1) = (x + x1, y + y1 + 1) and 
a(x, y) = (ax, ay + a - 1). What is the zero 
vector in V?

 5. Find x and y (in terms of u and v) such that:

 (a) 2x + y = u 	(b) 3x - 2y = u
5x + 3y = v  4x - 5y = v

 6. In each case show that the condition 
au + bv + cw = 0 in V implies that 
a = b = c = 0.

 (a) V = �4; u = (2, 1, 0, 2), v = (1, 1, -1, 0), 
w = (0, 1, 2, 1)

 	(b) V = M22; u =   S  1 0    
0 1

  T  , v =   S  0 1    
1 0

  T  , w =   S   1   1    
1 -1

  T 
 (c) V = P; u = x3 + x, v = x2 + 1, 

w = x3 - x2 + x + 1
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 	(d) V = F[0, π]; u = sin x, v = cos x, w = 1—
the constant funciton

 7. Simplify each of the following.

 (a) 3[2(u - 2v - w) + 3(w - v)] - 7(u - 3v - w)

 	(b) 4(3u - v + w) - 2[(3u - 2v) - 3(v - w)] 
+ 6(w - u - v)

 8. Show that x = v is the only solution to the 
equation x + x = 2v in a vector space V. Cite all 
axioms used.

 9. Show that -0 = 0 in any vector space. Cite all 
axioms used.

 	10. Show that the zero vector 0 is uniquely 
determined by the property in axiom A4.

 11. Given a vector v, show that its negative -v 
is uniquely determined by the property in 
axiom A5.

 12. (a) Prove (2) of Theorem 3. [Hint: Axiom S2.]

 	(b) Prove that (-a)v = -(av) in Theorem 3 by 
first computing (-a)v + av. Then do it using 
(4) of Theorem 3 and axiom S4.

 (c) Prove that a(-v) = -(av) in Theorem 3 in 
two ways, as in part (b).

 13. Let v, v1, …, vn denote vectors in a vector space 
V and let a, a1, …, an denote numbers. Use 
induction on n to prove each of the following.

 (a) a(v1 + v2 + � + vn) = av1 + av2 + � + avn

 	(b) (a1 + a2 + � + an)v = a1v + a2v + � + anv

 14. Verify axioms A2—A5 and S2—S5 for the space 
F[a, b] of functions on [a, b] (Example 7).

 15. Prove each of the following for vectors u and v 
and scalars a and b.

 (a) If av = 0, then a = 0 or v = 0.

 (b) If av = bv and v ≠ 0, then a = b.

 	(c) If av = aw and a ≠ 0, then v = w.

 16. By calculating (1 + 1)(v + w) in two ways (using 
axioms S2 and S3), show that axiom A2 follows 
from the other axioms.

 17. Let V be a vector space, and define Vn to be the 
set of all n-tuples (v1, v2, …, vn) of n vectors vi, 
each belonging to V. Define addition and scalar 
multiplication in Vn as follows:

(u1, u2, …, un) + (v1, v2, …, vn) 
        = (u1 + v1, u2 + v2, …, un + vn)
a(v1, v2, …, vn) = (av1, av2, …, avn)

  Show that Vn is a vector space.

 18. Let Vn be the vector space of n-tuples from the 
preceding exercise, written as columns. If A is an 
m × n matrix, and X is in Vn, define AX in Vm by 
matrix multiplication. More precisely, if 

A = [aij] and X =   S  
v1

 
 

 
   
vn

  T  , let AX =   S  
u1

 
 

 
   
un

  T  , where 

  ui = ai1v1 + ai2v2 + � + ainvn for each i. Prove 
that:

 (a) B(AX) = (BA)X

 (b) (A + A1)X = AX + A1X

 (c) A(X + X1) = AX + AX1

 (d) (kA)X = k(AX) = A(kX) if k is any number

 (e) IX = X if I is the n × n identity matrix

 (f ) Let E be an elementary matrix obtained by 
performing a row operation on the rows 
of In (see Section 2.5). Show that EX is the 
column resulting from performing that same 
row operation on the vectors (call them rows) 
of X. [Hint: Lemma 1 Section 2.5.]

Subspaces and Spanning Sets

If V is a vector space, a nonempty subset U ⊆ V is called a subspace of V if U is itself a 
vector space using the addition and scalar multiplication of V.

Subspaces of �n (as defined in Section 5.1) are subspaces in the present sense by 
Example 3 Section 6.1. Moreover, the defining properties for a subspace of �n 
actually characterize subspaces in general.

S E C T I O N  6 . 2

Definition 6.2
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Theorem 1

Subspace Test
A subset U of a vector space is a subspace of V if and only if it satisfies the following 
three conditions: 

1. 0 lies in U where 0 is the zero vector of V.
2. If u1 and u2 are in U, then u1 + u2 is also in U.
3. If u is in U, then au is also in U for each scalar a.

PROOF

If U is a subspace of V, then (2) and (3) hold by axioms A1 and S1 respectively, 
applied to the vector space U. Since U is nonempty (it is a vector space), choose 
u in U. Then (1) holds because 0 = 0u is in U by (3) and Theorem 3 Section 6.1. 

Conversely, if (1), (2), and (3) hold, then axioms A1 and S1 hold because of 
(2) and (3), and axioms A2, A3, S2, S3, S4, and S5 hold in U because they hold in 
V. Axiom A4 holds because the zero vector 0 of V is actually in U by (1), and so 
serves as the zero of U. Finally, given u in U, then its negative -u in V is again 
in U by (3) because -u = (-1)u (again using Theorem 3 Section 6.1). Hence 
-u serves as the negative of u in U.

Note that the proof of Theorem 1 shows that if U is a subspace of V, then U and V 
share the same zero vector, and that the negative of a vector in the space U is the 
same as its negative in V.

EXAMPLE 1

If V is any vector space, show that {0} and V are subspaces of V.

Solution ► U = V clearly satisfies the conditions of the test. As to U = {0}, it 
satisfies the conditions because 0 + 0 = 0 and a0 = 0 for all a in �.

The vector space {0} is called the zero subspace of V.

EXAMPLE 2

Let v be a vector in a vector space V. Show that the set

�v = {av | a in �}

of all scalar multiples of v is a subspace of V.

Solution ► Because 0 = 0v, it is clear that 0 lies in �v. Given two vectors av 
and a1v in �v, their sum av + a1v = (a + a1)v is also a scalar multiple of v and 
so lies in �v. Hence �v is closed under addition. Finally, given av, r(av) = (ra)v 
lies in �v for all r ∈ �, so �v is closed under scalar multiplication. Hence the 
subspace test applies.
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In particular, given d ≠ 0 in �3, �d is the line through the origin with direction 
vector d.

The space �v in Example 2 is described by giving the form of each vector in �v. 
The next example describes a subset U of the space Mnn by giving a condition that 
each matrix of U must satisfy.

EXAMPLE 3

Let A be a fixed matrix in Mnn. Show that U = {X in Mnn | AX = XA} is a 
subspace of Mnn.

Solution ► If 0 is the n × n zero matrix, then A0 = 0A, so 0 satisfies the 
condition for membership in U. Next suppose that X and X1 lie in U so that 
AX = XA and AX1 = X1A. Then 

 A(X + X1) = AX + AX1 = XA + X1A = (X + X1)A
 A(aX) = a(AX) = a(XA) = (aX)A 

for all a in �, so both X + X1 and aX lie in U. Hence U is a subspace of Mnn.

Suppose p(x) is a polynomial and a is a number. Then the number p(a) obtained 
by replacing x by a in the expression for p(x) is called the evaluation of p(x) at a. 
For example, if p(x) = 5 - 6x + 2x2, then the evaluation of p(x) at a = 2 is 
p(2) = 5 - 12 + 8 = 1. If p(a) = 0, the number a is called a root of p(x).

EXAMPLE 4

Consider the set U of all polynomials in P that have 3 as a root:

U = {p(x) in P | p(3) = 0}.

Show that U is a subspace of P.

Solution ► Clearly, the zero polynomial lies in U. Now let p(x) and q(x) lie 
in U so p(3) = 0 and q(3) = 0. We have (p + q)(x) = p(x) + q(x) for all x, so 
(p + q)(3) = p(3) + q(3) = 0 + 0 = 0, and U is closed under addition. The 
verification that U is closed under scalar multiplication is similar.

Recall that the space Pn consists of all polynomials of the form

a0 + a1x + a2x
2 + � + anx

n

where a0, a1, a2, …, an are real numbers, and so is closed under the addition and 
scalar multiplication in P. Moreover, the zero polynomial is included in Pn. Thus 
the subspace test gives Example 5.

EXAMPLE 5

Pn is a subspace of P for each n ≥ 0.
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The next example involves the notion of the derivative f ′ of a function f. (If the 
reader is not familiar with calculus, this example may be omitted.) A function f 
defined on the interval [a, b] is called differentiable if the derivative f ′(r) exists at 
every r in [a, b].

EXAMPLE 6

Show that the subset D[a, b] of all differentiable functions on [a, b] is a 
subspace of the vector space F[a, b] of all functions on [a, b].

Solution ► The derivative of any constant function is the constant function 0; 
in particular, 0 itself is differentiable and so lies in D[a, b]. If f and g both lie in 
D[a, b] (so that f ′ and g′ exist), then it is a theorem of calculus that f + g and af 
are both differentiable [in fact, ( f + g)′ = f ′+ g′ and (af )′= af ′], so both lie in 
D[a, b]. This shows that D[a, b] is a subspace of F[a, b].

Linear Combinations and Spanning Sets

Let {v1, v2, …, vn} be a set of vectors in a vector space V. As in �n, a vector v is called a 
linear combination of the vectors v1, v2, …, vn if it can be expressed in the form

v = a1v1 + a2v2 + � + anvn

where a1, a2, …, an are scalars, called the coefficients of v1, v2, …, vn. The set of all 
linear combinations of these vectors is called their span, and is denoted by

span{v1, v2, …, vn} = {a1v1 + a2v2 + � + anvn | ai in �}.

If it happens that V = span{v1, v2, …, vn}, these vectors are called a spanning set 
for V. For example, the span of two vectors v and w is the set

span{v, w} = {sv + tw | s and t in �}

of all sums of scalar multiples of these vectors.

EXAMPLE 7

Consider the vectors p1 = 1 + x + 4x2 and p2 = 1 + 5x + x2 in P2. Determine 
whether p1 and p2 lie in span{1 + 2x - x2, 3 + 5x + 2x2}.

Solution ► For p1, we want to determine if s and t exist such that

p1 = s(1 + 2x - x2) + t(3 + 5x + 2x2).

Equating coefficients of powers of x (where x0 = 1) gives

1 = s + 3t, 1 = 2s + 5t, and 4 = -s + 2t.

These equations have the solution s = -2 and t = 1, so p1 is indeed in 
span{1 + 2x - x2, 3 + 5x + 2x2}.

Turning to p2 = 1 + 5x + x2, we are looking for s and t such that 
p2 = s(1 + 2x - x2) + t(3 + 5x + 2x2). Again equating coefficients of powers 
of x gives equations 1 = s + 3t, 5 = 2s + 5t, and 1 = -s + 2t. But in this case 
there is no solution, so p2 is not in span{1 + 2x - x2, 3 + 5x + 2x2}.

Definition 6.3
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We saw in Example 6 Section 5.1 that �m = span{e1, e2, …, em} where the 
vectors e1, e2, …, em are the columns of the m × m identity matrix. Of course 
�

m = Mm1 is the set of all m × 1 matrices, and there is an analogous spanning 
set for each space Mmn. For example, each 2 × 2 matrix has the form

  S  a b
   

c d
  T  = a   S  1 0    

0 0
  T  + b   S  0 1    

0 0
  T  + c   S  0 0    

1 0
  T  + d   S  0 0    

0 1
  T 

so

M22 = span  U   S  1 0    
0 0

  T  ,   S  0 1    
0 0

  T  ,   S  0 0    
1 0

  T  ,   S  0 0    
0 1

  T  V .
Similarly, we obtain

EXAMPLE 8

Mmn is the span of the set of all m × n matrices with exactly one entry equal to 
1, and all other entries zero.

The fact that every polynomial in Pn has the form a0 + a1x + a2x
2 + � + anx

n 
where each ai is in � shows that 

EXAMPLE 9

Pn = span{1, x, x2, …, xn}.

In Example 2 we saw that span{v} = {av | a in �} = �v is a subspace for any vector 
v in a vector space V. More generally, the span of any set of vectors is a subspace. In 
fact, the proof of Theorem 1 Section 5.1 goes through to prove:

Theorem 2

Let U = span{v1, v2, …, vn} in a vector space V. Then: 
1. U is a subspace of V containing each of v1, v2, …, vn.

2. U is the “smallest” subspace containing these vectors in the sense that any 
subspace that contains each of v1, v2, …, vn must contain U.

Theorem 2 is used frequently to determine spanning sets, as the following 
examples show. 

EXAMPLE 10

Show that P3 = span{x2 + x3, x, 2x2 + 1, 3}.

Solution ► Write U = span{x2 + x3, x, 2x2 + 1, 3}. Then U ⊆ P3, and we use 
the fact that P3 = span{1, x, x2, x3} to show that P3 ⊆ U. In fact, x and 1 =   1 _ 3   · 3 
clearly lie in U. But then successively,

x2 =   1 _ 2  [(2x2 + 1) - 1] and x3 = (x2 + x3) - x2

also lie in U. Hence P3 ⊆ U by Theorem 2.
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EXAMPLE 11

Let u and v be two vectors in a vector space V. Show that

span{u, v} = span{u + 2v, u - v}.

Solution ► We have span{u + 2v, u - v} ⊆ span{u, v} by Theorem 2 because 
both u + 2v and u - v lie in span{u, v}. On the other hand,

u =   1 _ 3  (u + 2v) +   2 _ 3  (u - v) and v =   1 _ 3  (u + 2v) -   1 _ 3  (u - v)

so span{u, v} ⊆ span{u + 2v, u - v}, again by Theorem 2.

E X E R C I S E S  6 . 2

 1. Which of the following are subspaces of P3? 
Support your answer.

 (a) U = {f (x) | f (x) in P3, f (2) = 1}

 	(b) U = {xg(x) | g(x) in P2}

 (c) U = {xg(x) | g(x) in P3}

 	(d) U = {xg(x) + (1 - x)h(x) | g(x) and h(x) in P2}

 (e) U = The set of all polynomials in P3 with 
constant term 0

 	(f ) U = {f (x) | f (x) in P3, deg f (x) = 3}

 2. Which of the following are subspaces of M22? 
Support your answer.

 (a) U =  U   S  a b   
0 c

  T  ` a, b, and c in � V 
 	(b) U =  U   S  a b   

c d
  T  ` a + b = c + d; a, b, c, and d in � V 

 (c) U = {A | A in M22, A = AT}

 	(d) U = {A | A in M22, AB = 0}, B a fixed 
2 × 2 matrix

 (e) U = {A | A in M22, A
2 = A}

 	(f ) U = {A | A in M22, A is not invertible}

 (g) U = {A | A in M22, BAC = CAB}, B and C 
fixed 2 × 2 matrices

 3. Which of the following are subspaces of F[0, 1]? 
Support your answer.

 (a) U = {f | f (0) = 0}

 	(b) U = {f | f (0) = 1}

 (c) U = {f | f (0) = f (1)}

 	(d) U = {f | f (x) ≥ 0 for all x in [0, 1]}

 (e) U = {f | f (x) = f ( y) for all x and y in [0, 1]} 

 	(f ) U = {f |  f (x + y) = f (x) + f ( y) for all x and 
y in [0, 1]}

 (g) U = {f | f is integrable and  ∫0  
1  f (x)dx  = 0} 

 4. Let A be an m × n matrix. For which columns b 
in �m is U = {x | x in �n, Ax = b} a subspace of 
�

n? Support your answer.

 5. Let x be a vector in �n (written as a column), 
and define U = {Ax | A in Mmn}.

 (a) Show that U is a subspace of �m.

 	(b) Show that U = �m if x ≠ 0.

 6. Write each of the following as a linear 
combination of x + 1, x2 + x, and x2 + 2.

 (a) x2 + 3x + 2

 	(b) 2x2 - 3x + 1

 (c) x2 + 1

` 	(d) x

 7. Determine whether v lies in span{u, w} in each 
case.

 (a) v = 3x2 - 2x - 1; u = x2 + 1, w = x + 2

 	(b) v = x; u = x2 + 1, w = x + 2

 (c) v =   S   1 3    
-1 1

  T ; u =   S  1 -1    
2   1

  T  , w =   S  2 1    
1 0

  T 

 	(d) v =   S  1 -4    
5   3

  T ; u =   S  1 -1    
2   1

  T  , w =   S  2 1    
1 0

  T 
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 8. Which of the following functions lie in 
span{cos2 x, sin2 x}? (Work in F[0, π].)

 (a) cos 2x 	(b) 1

 (c) x2 	(d) 1 + x2

 9. (a) Show that �3 is spanned by 
{(1, 0, 1), (1, 1, 0), (0, 1, 1)}.

 	(b) Show that P2 is spanned by 
{1 + 2x2, 3x, 1 + x}.

 (c) Show that M22 is spanned by 

   U   S  1 0    
0 0

  T  ,   S  1 0    
0 1

  T  ,   S  0 1    
1 0

  T  ,   S  1 1    
0 1

  T  V .
 10. If X and Y are two sets of vectors in a 

vector space V, and if X ⊆ Y, show that 
span X ⊆ span Y. 

 11. Let u, v, and w denote vectors in a vector space 
V. Show that:

 (a) span{u, v, w} = span{u + v, u + w, v + w}

 	(b) span{u, v, w} = span{u - v, u + w, w}

 12. Show that 
 span{v1, v2, …, vn, 0} = span{v1, v2, …, vn} 
holds for any set of vectors {v1, v2, …, vn}.

 13. If X and Y are nonempty subsets of a vector 
space V such that span X = span Y = V, must 
there be a vector common to both X and Y? 
Justify your answer.

 	14. Is it possible that {(1, 2, 0), (1, 1, 1)} can span the 
subspace U = {(a, b, 0) | a and b in �}?

 15. Describe span{0}.

 16. Let v denote any vector in a vector space V. 
Show that span{v} = span{av} for any a ≠ 0.

 17. Determine all subspaces of �v where v ≠ 0 in 
some vector space V.

 	18. Suppose V = span{v1, v2, …, vn}. If 
u = a1v1 + a2v2 + � + anvn where the ai are in 
� and a1 ≠ 0, show that V = span{u, v2, …, vn}.

 19. If Mnn = span{A1, A2, …, Ak}, show that 
Mnn = span{ A  1  

T ,  A  2  
T , …,  A  k  

T }.

 20. If Pn = span{p1(x), p2(x), …, pk(x)} and a is in �, 
show that pi(a) ≠ 0 for some i.

 21. Let U be a subspace of a vector space V.

 (a) If au is in U where a ≠ 0, show that u is 
in U.

 	(b) If u and u + v are in U, show that v is in U.

 	22. Let U be a nonempty subset of a vector space 
V. Show that U is a subspace of V if and only if 
u1 + au2 lies in U for all u1 and u2 in U and all a 
in �.

 23. Let U = {p(x) in P | p(3) = 0} be the set 
in Example 4. Use the factor theorem (see 
Section 6.5) to show that U consists of 
multiples of x - 3; that is, show that 
U = {(x - 3)q(x) | q(x) in P}. Use this to 
show that U is a subspace of P.

 24. Let A1, A2, …, Am denote n × n matrices. 
If y is a nonzero column in �n and 
A1y = A2y = � = Amy = 0, show that 
{A1, A2, …, Am} cannot span Mnn.

 25. Let {v1, v2, …, vn} and {u1, u2, …, un} be sets of 
vectors in a vector space, and let 

X =   S  
v1

 
 

 
   
vn

  T  Y =   S  
u1

 
 

 
   
un

  T 
  as in Exercise 18 Section 6.1.

 (a) Show that span{v1, …, vn} ⊆ span{u1, …, un} 
if and only if AY = X for some n × n 
matrix A.

 (b) If X = AY where A is invertible, show that 
span{v1, …, vn} = span{u1, …, un}.

 26. If U and W are subspaces of a vector space V, let 
U ∪ W = {v | v is in U or v is in W}. Show that 
U ∪ W is a subspace if and only if U ⊆ W or 
W ⊆ U.

 27. Show that P cannot be spanned by a finite set of 
polynomials.
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Linear Independence and Dimension

As in �n, a set of vectors {v1, v2, …, vn} in a vector space V is called linearly 
independent (or simply independent) if it satisfies the following condition:

If s1v1 + s2v2 + � + snvn = 0, then s1 = s2 = � = sn = 0.

A set of vectors that is not linearly independent is said to be linearly dependent 
(or simply dependent).

The trivial linear combination of the vectors v1, v2, …, vn is the one with every 
coefficient zero:

0v1 + 0v2 + � + 0vn.

This is obviously one way of expressing 0 as a linear combination of the vectors 
v1, v2, …, vn, and they are linearly independent when it is the only way.

EXAMPLE 1

Show that {1 + x, 3x + x2, 2 + x - x2} is independent in P2.

Solution ► Suppose a linear combination of these polynomials vanishes.

s1(1 + x) + s2(3x + x2) + s3(2 + x - x2) = 0.

Equating the coefficients of 1, x, and x2 gives a set of linear equations.

s1 +   + 2s3 = 0 
s1 + 3s2 +  s3 = 0
   s2 -  s3 = 0

The only solution is s1 = s2 = s3 = 0.

EXAMPLE 2

Show that {sin x, cos x} is independent in the vector space F[0, 2π] of functions 
defined on the interval [0, 2π].

Solution ► Suppose that a linear combination of these functions vanishes.

s1(sin x) + s2(cos x) = 0.

This must hold for all values of x in [0, 2π] (by the definition of equality in 
F[0, 2π]). Taking x = 0 yields s2 = 0 (because sin 0 = 0 and cos 0 = 1). 
Similarly, s1 = 0 follows from taking x =   π __ 2   (because sin   π __ 2   = 1 and cos   π __ 2   = 0).

EXAMPLE 3

Suppose that {u, v} is an independent set in a vector space V. Show that 
{u + 2v, u - 3v} is also independent.

S E C T I O N  6 . 3

Definition 6.4
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Solution ► Suppose a linear combination of u + 2v and u - 3v vanishes:

s(u + 2v) + t(u - 3v) = 0.

We must deduce that s = t = 0. Collecting terms involving u and v gives

(s + t)u + (2s - 3t)v = 0.

Because {u, v} is independent, this yields linear equations s + t = 0 and 
2s - 3t = 0. The only solution is s = t = 0.

EXAMPLE 4

Show that any set of polynomials of distinct degrees is independent.

Solution ► Let p1, p2, …, pm be polynomials where deg(pi) = di. By relabelling 
if necessary, we may assume that d1 > d2 > � > dm. Suppose that a linear 
combination vanishes:

t1p1 + t2p2 + � + tmpm = 0

where each ti is in �. As deg(p1) = d1, let  ax d1  be the term in p1 of highest 
degree, where a ≠ 0. Since d1 > d2 > � > dm, it follows that t1 ax d1  is the 
only term of degree d1 in the linear combination t1p1 + t2p2 + � + tmpm = 0. 
This means that t1 ax d1  = 0, whence t1a = 0, hence t1 = 0 (because a ≠ 0). But 
then t2p2 + � + tmpm = 0 so we can repeat the argument to show that t2 = 0. 
Continuing, we obtain ti = 0 for each i, as desired.

EXAMPLE 5

Suppose that A is an n × n matrix such that Ak = 0 but Ak-1 ≠ 0. Show that 
B = {I, A, A2, …, Ak-1} is independent in Mnn.

Solution ► Suppose r0I + r1A
1 + r2A

2 + � + rk–1A
k–1 = 0. Multiply by Ak–1: 

r0A
k–1 + r1A

k + r2A
k+1 + � + rk–1A

2k–2 = 0

Since Ak = 0, all the higher powers are zero, so this becomes r0A
k–1 = 0. 

But Ak–1 ≠ 0, so r0 = 0, and we have r1A
1 + r2A

2 + � + rk–1A
k–1 = 0. Now 

multiply by Ak–2 to conclude that r1 = 0. Continuing, we obtain ri = 0 for 
each i, so B is independent.

The next example collects several useful properties of independence for 
reference.
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EXAMPLE 6

Let V denote a vector space. 

1. If v ≠ 0 in V, then {v} is an independent set. 

2. No independent set of vectors in V can contain the zero vector. 

Solution ► 

1. Let tv = 0, t in �. If t ≠ 0, then v = 1v =   1 _ t  (tv) =   1 _ t  0 = 0, contrary 
to assumption. So t = 0.

2. If {v1, v2, …, vk} is independent and (say) v2 = 0, then 
0v1 + 1v2 + � + 0vk = 0 is a nontrivial linear combination that 
vanishes, contrary to the independence of {v1, v2, …, vk}.

A set of vectors is independent if 0 is a linear combination in a unique way. The 
following theorem shows that every linear combination of these vectors has uniquely 
determined coefficients, and so extends Theorem 1 Section 5.2.

Theorem 1

Let {v1, v2, …, vn} be a linearly independent set of vectors in a vector space V. If a vector 
v has two (ostensibly different) representations

v = s1v1 + s2v2 + � + snvn

v = t1v1 + t2v2 + � + tnvn

as linear combinations of these vectors, then s1 = t1, s2 = t2, …, sn = tn. In other words, 
every vector in V can be written in a unique way as a linear comination of the vi.

PROOF

Subtracting the equations given in the theorem gives

(s1 - t1)v1 + (s2 - t2)v2 + � + (sn - tn)vn = 0

The independence of {v1, v2, …, vn} gives si - ti = 0 for each i, as required.

The following theorem extends (and proves) Theorem 4 Section 5.2, and is one 
of the most useful results in linear algebra.

Theorem 2

Fundamental Theorem
Suppose a vector space V can be spanned by n vectors. If any set of m vectors in V is 
linearly independent, then m ≤ n.
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PROOF

Let V = span{v1, v2, …, vn}, and suppose that {u1, u2, …, um} is an independent 
set in V. Then u1 = a1v1 + a2v2 + � + anvn where each ai is in �. As u1 ≠ 0 
(Example 6), not all of the ai are zero, say a1 ≠ 0 (after relabelling the vi). Then 
V = span{u1, v2, v3, …, vn} as the reader can verify. Hence, write 
u2 = b1u1 + c2v2 + c3v3 + � + cnvn. Then some ci ≠ 0 because {u1, u2} is 
independent; so, as before, V = span{u1, u2, v3, …, vn}, again after possible 
relabelling of the vi. If m > n, this procedure continues until all the vectors vi are 
replaced by the vectors u1, u2, …, un. In particular, V = span{u1, u2, …, un}. But 
then un+1 is a linear combination of u1, u2, …, un contrary to the independence 
of the ui. Hence, the assumption m > n cannot be valid, so m ≤ n and the 
theorem is proved.

If V = span{v1, v2, …, vn}, and if {u1, u2, …, um} is an independent set in V, 
the above proof shows not only that m ≤ n but also that m of the (spanning) 
vectors v1, v2, …, vn can be replaced by the (independent) vectors u1, u2, …, um 
and the resulting set will still span V. In this form the result is called the Steinitz 
Exchange Lemma.

As in �n, a set {e1, e2, …, en} of vectors in a vector space V is called a basis of V if it 
satisfies the following two conditions:

1. {e1, e2, …, en} is linearly independent
2. V = span{e1, e2, …, en}

Thus if a set of vectors {e1, e2, …, en} is a basis, then every vector in V can be written 
as a linear combination of these vectors in a unique way (Theorem 1). But even more 
is true: Any two (finite) bases of V contain the same number of vectors.

Theorem 3

Invariance Theorem
Let {e1, e2, …, en} and {f1, f2, …, fm} be two bases of a vector space V. Then n = m.

PROOF

Because V = span{e1, e2, …, en} and {f1, f2, …, fm} is independent, it follows from 
Theorem 2 that m ≤ n. Similarly n ≤ m, so n = m, as asserted.

Theorem 3 guarantees that no matter which basis of V is chosen it contains the 
same number of vectors as any other basis. Hence there is no ambiguity about the 
following definition.

Definition 6.5
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If {e1, e2, …, en} is a basis of the nonzero vector space V, the number n of vectors in the 
basis is called the dimension of V, and we write

dim V = n.

The zero vector space {0} is defined to have dimension 0:

dim {0} = 0.

In our discussion to this point we have always assumed that a basis is nonempty and 
hence that the dimension of the space is at least 1. However, the zero space {0} has 
no basis (by Example 6) so our insistence that dim{0} = 0 amounts to saying that the 
empty set of vectors is a basis of {0}. Thus the statement that “the dimension of a 
vector space is the number of vectors in any basis” holds even for the zero space. 

We saw in Example 9 Section 5.2 that dim(�n) = n and, if ej denotes column j 
of In, that {e1, e2, …, en} is a basis (called the standard basis). In Example 7 below, 
similar considerations apply to the space Mmn of all m × n matrices; the verifications 
are left to the reader. 

EXAMPLE 7

The space Mmn has dimension mn, and one basis consists of all m × n matrices 
with exactly one entry equal to 1 and all other entries equal to 0. We call this 
the standard basis of Mmn.

EXAMPLE 8

Show that dim Pn = n + 1 and that {1, x, x2, …, xn} is a basis, called the 
standard basis of Pn.

Solution ► Each polynomial p(x) = a0 + a1x + � + anx
n in Pn is clearly a 

linear combination of 1, x, …, xn, so Pn = span{1, x, …, xn}. However, if a 
linear combination of these vectors vanishes, a01 + a1x + � + anx

n = 0, 
then a0 = a1 = � = an = 0 because x is an indeterminate. So {1, x, …, xn} is 
linearly independent and hence is a basis containing n + 1 vectors. Thus, 
dim(Pn) = n + 1.

EXAMPLE 9

If v ≠ 0 is any nonzero vector in a vector space V, show that span{v} = �v 
has dimension 1.

Solution ► {v} clearly spans �v, and it is linearly independent by Example 6. 
Hence {v} is a basis of �v, and so dim �v = 1.

Definition 6.6
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EXAMPLE 10

Let A =   S  1 1    
0 0

  T  and consider the subspace

U = {X in M22 | AX = XA}

of M22. Show that dim U = 2 and find a basis of U.

Solution ► It was shown in Example 3 Section 6.2 that U is a subspace for any 

choice of the matrix A. In the present case, if X =   S   x y
    

z w
  T  is in U, the condition 

AX = XA gives z = 0 and x = y + w. Hence each matrix X in U can be written

X =   S  y + w y
     

0    w
  T  = y   S  1 1    

0 0
  T  + w   S  1 0    

0 1
  T 

so U = span B where B =  U   S  1 1    
0 0

  T  ,   S  1 0    
0 1

  T  V . Moreover, the set B is linearly 

independent (verify this), so it is a basis of U and dim U = 2.

EXAMPLE 11

Show that the set V of all symmetric 2 × 2 matrices is a vector space, and find 
the dimension of V.

Solution ► A matrix A is symmetric if AT = A. If A and B lie in V, then 

(A + B)T = AT + BT = A + B and (kA)T = kAT = kA

using Theorem 2 Section 2.1. Hence A + B and kA are also symmetric. As 
the 2 × 2 zero matrix is also in V, this shows that V is a vector space (being a 
subspace of M22). Now a matrix A is symmetric when entries directly across 
the main diagonal are equal, so each 2 × 2 symmetric matrix has the form

  S  a c
   

c b
  T  = a   S  1 0    

0 0
  T  + b   S  0 0    

0 1
  T  + c   S  0 1    

1 0
  T 

Hence the set B =  U   S  1 0    
0 0

  T  ,   S  0 0    
0 1

  T  ,   S  0 1    
1 0

  T  V  spans V, and the reader can verify 

that B is linearly independent. Thus B is a basis of V, so dim V = 3.

It is frequently convenient to alter a basis by multiplying each basis vector by a 
nonzero scalar. The next example shows that this always produces another basis. 
The proof is left as Exercise 22. 

EXAMPLE 12

Let B = {v1, v2, …, vn} be vectors in a vector space V. Given nonzero scalars 
a1, a2, …, an, write D = {a1v1, a2v2, …, anvn}. If B is independent or spans V, 
the same is true of D. In particular, if B is a basis of V, so also is D.
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E X E R C I S E S  6 . 3

 1. Show that each of the following sets of vectors is 
independent.

 (a) {(1 + x, 1 - x, x + x2} in P2

 	(b) {x2, x + 1, 1 - x - x2} in P2

 (c)  U   S  1 1    
0 0

  T  ,   S  1 0    
1 0

  T  ,   S   0   0    
1 -1

  T  ,   S  0 1    
0 1

  T  V  in M22

 	(d)  U   S  1 1    
1 0

  T  ,   S  0 1    
1 1

  T  ,   S  1 0    
1 1

  T  ,   S  1 1    
0 1

  T  V  in M22

 2. Which of the following subsets of V are 
independent?

 (a) V = P2; {x
2 + 1, x + 1, x}

 	(b) V = P2; {x
2 - x + 3, 2x2 + x + 5, x2 + 5x + 1}

 (c) V = M22;  U   S  1 1    
0 1

  T  ,   S  1 0    
1 1

  T  ,   S  1 0    
0 1

  T  V 
 	(d) V = M22; 

   U   S  -1   0     
0 -1

  T  ,   S   1 -1     
-1   1

  T  ,   S  1 1    
1 1

  T  ,   S   0 -1     
-1   0

  T  V 
 (e) V = F[1, 2];  U   1 __ x  ,   1 __ 

x2
  ,   1 __ 

x3
   V 

 	(f ) V = F[0, 1]; 

 U   1 __________ 
x2 + x - 6

  ,   1 ___________  
x2 - 5x + 6

  ,   1 ______ 
x2 - 9

   V 
 3. Which of the following are independent in 

F[0, 2π]?

 (a) {sin2 x, cos2 x}

 	(b) {1, sin2 x, cos2 x}

 (c) {x, sin2 x, cos2 x}

 4. Find all values of x such that the following are 
independent in �3.

 (a) {(1, -1, 0), (x, 1, 0), (0, 2, 3)}

 	(b) {(2, x, 1), (1, 0, 1), (0, 1, 3)}

 5. Show that the following are bases of the space V 
indicated.

 (a) {(1, 1, 0), (1, 0, 1), (0, 1, 1)}; V = �3

 	(b) {(-1, 1, 1), (1, -1, 1), (1, 1, -1)}; V = �3

 (c)  U   S  1 0    
0 1

  T  ,   S  0 1    
1 0

  T  ,   S  1 1    
0 1

  T  ,   S  1 0    
0 0

  T  V ; V = M22

 	(d) {1 + x, x + x2, x2 + x3, x3}; V = P3

 6. Exhibit a basis and calculate the dimension of 
each of the following subspaces of P2.

 (a) {a(1 + x) + b(x + x2) | a and b in �}

 	(b) {a + b(x + x2) | a and b in �}

 (c) {p(x) | p(1) = 0}

 	(d) {p(x) | p(x) = p(-x)}

 7. Exhibit a basis and calculate the dimension of 
each of the following subspaces of M22.

 (a) {A | AT = -A}

 	(b)  UA ` A  S   1 1    
-1 0

  T  =   S   1 1    
-1 0

  T  A V 
 (c)  UA ` A  S   1 0    

-1 0
  T  =   S  0 0    

0 0
  T  V 

 	(d)  UA ` A  S   1 1    
-1 0

  T  =   S   0 1    
-1 1

  T  A V 
 8. Let A =   S  1 1    

0 0
  T  and define 

  U = {X | X is in M22 and AX = X}.

 (a) Find a basis of U containing A.

 	(b) Find a basis of U not containing A.

 9. Show that the set � of all complex numbers is a 
vector space with the usual operations, and find 
its dimension.

 10. (a) Let V denote the set of all 2 × 2 matrices 
with equal column sums. Show that V is a 
subspace of M22, and compute dim V.

 	(b) Repeat part (a) for 3 × 3 matrices.

 (c) Repeat part (a) for n × n matrices.

 11. (a) Let V = {(x2 + x + 1)p(x) | p(x) in P2}. Show 
that V is a subspace of P4 and find dim V. 
[Hint: If f (x)g(x) = 0 in P, then f (x) = 0 or 
g(x) = 0.]

 	(b) Repeat with V = {(x2 - x)p(x) | p(x) in P3}, a 
subset of P5.

 (c) Generalize.
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 12. In each case, either prove the assertion or give an 
example showing that it is false.

 (a) Every set of four nonzero polynomials in P3 
is a basis.

 	(b) P2 has a basis of polynomials f (x) such that 
f (0) = 0.

 (c) P2 has a basis of polynomials f (x) such that 
f (0) = 1.

 	(d) Every basis of M22 contains a noninvertible 
matrix.

 (e) No independent subset of M22 contains a 
matrix A with A2 = 0.

 	(f ) If {u, v, w} is independent then, 
au + bv + cw = 0 for some a, b, c.

 (g) {u, v, w} is independent if au + bv + cw = 0 
for some a, b, c.

 	(h) If {u, v} is independent, so is {u, u + v}.

 (i) If {u, v} is independent, so is {u, v, u + v}.

 	(j) If {u, v, w} is independent, so is {u, v}.

 (k) If {u, v, w} is independent, so is 
{u + w, v + w}. 

 	(l) If {u, v, w} is independent, so is {u + v + w}.

 (m) If u ≠ 0 and v ≠ 0 then {u, v} is dependent 
if and only if one is a scalar multiple of the 
other. 

 	(n) If dim V = n, then no set of more than 
n vectors can be independent. 

 (o) If dim V = n, then no set of fewer than 
n vectors can span V.

 13. Let A ≠ 0 and B ≠ 0 be n × n matrices, and 
assume that A is symmetric and B is skew-
symmetric (that is, BT = -B). Show that {A, B} 
is independent.

 14. Show that every set of vectors containing a 
dependent set is again dependent.

 	15. Show that every nonempty subset of an 
independent set of vectors is again independent.

 16. Let f and g be functions on [a, b], and assume 
that f (a) = 1 = g(b) and f (b) = 0 = g(a). Show 
that {f, g} is independent in F[a, b].

 17. Let {A1, A2, …, Ak} be independent in Mmn, and 
suppose that U and V are invertible matrices of 
size m × m and n × n, respectively. Show that 
{UA1V, UA2V, …, UAkV} is independent.

 18. Show that {v, w} is independent if and only if 
neither v nor w is a scalar multiple of the other.

 	19. Assume that {u, v} is independent in a vector 
space V. Write u′ = au + bv and v′ = cu + dv, 
where a, b, c, and d are numbers. Show that 
{u′, v′} is independent if and only if the 
matrix   S   a c

        
b d

   T  is invertible. [Hint: Theorem 5 

Section 2.4.]

 20. If {v1, v2, …, vk} is independent and w is not in 
span{v1, v2, …, vk}, show that:

 (a) {w, v1, v2, …, vk} is independent.

 (b) {v1 + w, v2 + w, …, vk + w} is independent.

 21. If {v1, v2, …, vk} is independent, show that 
{v1, v1 + v2, …, v1 + v2 + � + vk} is also 
independent.

 22. Prove Example 12.

 23. Let {u, v, w, z} be independent. Which of the 
following are dependent?

 (a) {u - v, v - w, w - u}

 	(b) {u + v, v + w, w + u}

 (c) {u - v, v - w, w - z, z - u}

 	(d) {u + v, v + w, w + z, z + u}

 24. Let U and W be subspaces of V with bases 
{u1, u2, u3} and {w1, w2} respectively. If U and W 
have only the zero vector in common, show that 
{u1, u2, u3, w1, w2} is independent.

 25. Let {p, q} be independent polynomials. Show 
that {p, q, pq} is independent if and only if 
deg p ≥ 1 and deg q ≥ 1.

 	26. If z is a complex number, show that {z, z2} is 
independent if and only if z is not real.

 27. Let B = {A1, A2, …, An} ⊆ Mmn, and write 
B′ = { A  1  

T ,  A  2  
T , …,  A  n  

T } ⊆ Mnm. Show that:

 (a) B is independent if and only if B′ is 
independent.

 (b) B spans Mmn if and only if B′ spans Mnm.
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 28. If V = F[a, b] as in Example 7 Section 6.1, show 
that the set of constant functions is a subspace of 
dimension 1 ( f is constant if there is a number c 
such that f (x) = c for all x).

 29. (a) If U is an invertible n × n matrix and 
{A1, A2, …, Amn} is a basis of Mmn, show 
that {A1U, A2U, …, AmnU} is also a basis.

 	(b) Show that part (a) fails if U is not invertible. 
[Hint: Theorem 5 Section 2.4.]

 30. Show that {(a, b), (a1, b1)} is a basis of �2 if and 
only if {a + bx, a1 + b1x} is a basis of P1.

 31. Find the dimension of the subspace 
span{1, sin2 θ, cos 2θ} of F[0, 2π].

 32. Show that F[0, 1] is not finite dimensional.

 33. If U and W are subspaces of V, define their 
intersection U ∩ W as follows:

U ∩ W = {v | v is in both U and W}
 (a) Show that U ∩ W is a subspace contained in 

U and W.

 	(b) Show that U ∩ W = {0} if and only if {u, w} 
is independent for any nonzero vectors u in 
U and w in W.

 (c) If B and D are bases of U and W, 
and if U ∩ W = {0}, show that 
B ∪ D = {v | v is in B or D} is independent.

 34. If U and W are vector spaces, let 
V = {(u, w) | u in U and w in W}.

 (a) Show that V is a vector space if 
(u, w) + (u1, w1) = (u + u1, w + w1) and 
a(u, w) = (au, aw).

 (b) If dim U = m and dim W = n, show that 
dim V = m + n.

 (c) If V1, …, Vm are vector spaces, let 
V = V1 × � × Vm = {(v1, …, vm) | vi in Vi 
for each i} denote the space of n-tuples from 
the Vi with componentwise operations (see 
Exercise 17 Section 6.1). If dim Vi = ni for 
each i, show that dim V = n1 + � + nm.

 35. Let Dn denote the set of all functions f from the 
set {1, 2, …, n} to �.

 (a) Show that Dn is a vector space with pointwise 
addition and scalar multiplication.

 (b) Show that {S1, S2, …, Sn} is a basis of 
Dn where, for each k = 1, 2, …, n, the 
function Sk is defined by Sk(k) = 1, 
whereas Sk(j) = 0 if j ≠ k.

 36. A polynomial p(x) is even if p(-x) = p(x) and 
odd if p(-x) = -p(x). Let En and On denote the 
sets of even and odd polynomials in Pn.

 (a) Show that En is a subspace of Pn and find 
dim En.

 	(b) Show that On is a subspace of Pn and find 
dim On.

 37. Let {v1, …, vn} be independent in a vector 
space V, and let A be an n × n matrix. Define 
u1, …, un by

  S  
u1

 
 

 
   
un

  T  = A   S  
v1

 
 

 
   
vn

  T 
  (See Exercise 18 Section 6.1.) Show that 

{u1, …, un} is independent if and only if A 
is invertible.

Finite Dimensional Spaces
Up to this point, we have had no guarantee that an arbitrary vector space has 
a basis—and hence no guarantee that one can speak at all of the dimension of 
V. However, Theorem 1 will show that any space that is spanned by a finite set 
of vectors has a (finite) basis: The proof requires the following basic lemma, of 
interest in itself, that gives a way to enlarge a given independent set of vectors.

S E C T I O N  6 . 4
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Lemma 1

Independent Lemma
Let {v1, v2, …, vk} be an independent set of vectors in a vector space V. If u ∈ V but4 
u ∉ span{v1, v2, …, vk}, then {u, v1, v2, …, vk} is also independent.

4

PROOF

Let tu + t1v1 + t2v2 + � + tkvk = 0; we must show that all the coefficients 
are zero. First, t = 0 because, otherwise, u = -  t1 __ t  v1 -   t2 __ t  v2 - � -   tk

 __ t  vk is in 
span{v1, v2, …, vk}, contrary to our assumption. Hence t = 0. But then 
t1v1 + t2v2 + � + tkvk = 0 so the rest of the ti are zero by the independence 
of {v1, v2, …, vk}. This is what we wanted.

Note that the converse of Lemma 1 is also true: if {u, v1, v2, …, vk} is independent, 
then u is not in span{v1, v2, …, vk}.

As an illustration, suppose that {v1, v2} is independent in �3. Then v1 and v2 are 
not parallel, so span{v1, v2} is a plane through the origin (shaded in the diagram). By 
Lemma 1, u is not in this plane if and only if {u, v1, v2} is independent. 

A vector space V is called finite dimensional if it is spanned by a finite set of vectors. 
Otherwise, V is called infinite dimensional.

Thus the zero vector space {0} is finite dimensional because {0} is a spanning set.

Lemma 2

Let V be a finite dimensional vector space. If U is any subspace of V, then any 
independent subset of U can be enlarged to a finite basis of U.

PROOF

Suppose that I is an independent subset of U. If span I = U then I is already 
a basis of U. If span I ≠ U, choose u1 ∈ U such that u1 ∉ span I. Hence the 
set I � {u1} is independent by Lemma 1. If span{I � {u1}} = U we are done; 
otherwise choose u2 ∈ U such that u2 ∉ span{I � {u1}}. Hence {I � {u1, u2}} 
is independent, and the process continues. We claim that a basis of U will 
be reached eventually. Indeed, if no basis of U is ever reached, the process 
creates arbitrarily large independent sets in V. But this is impossible by the 
fundamental theorem because V is finite dimensional and so is spanned by a 
finite set of vectors.

4 If X is a set, we write a ∈ X to indicate that a is an element of the set X. If a is not an element of X, we write a ∉ X.

z

x
y

u

0

v1 v2

span 1 2{ , }v v

Definition 6.7

312 Chapter 6 Vector Spaces



Theorem 1

Let V be a finite dimensional vector space spanned by m vectors. 
(1) V has a finite basis, and dim V ≤ m.

(2) Every independent set of vectors in V can be enlarged to a basis of V by adding 
vectors from any fixed basis of V. 

(3) If U is a subspace of V, then 

 (a) U is finite dimensional and dim U ≤ dim V.

 (b) Every basis of U is part of a basis of V.

PROOF

 (1) If V = {0}, then V has an empty basis and dim V = 0 ≤ m. Otherwise, let 
v ≠ 0 be a vector in V. Then {v} is independent, so (1) follows from Lemma 2 
with U = V.

 (2) We refine the proof of Lemma 2. Fix a basis B of V and let I be an 
independent subset of V. If span I = V then I is already a basis of V. If 
span I ≠ V, then B is not contained in I (because B spans V ). Hence choose 
b1 ∈ B such that b1 ∉  span I. Hence the set I � {b1} is independent by 
Lemma 1. If span{I � {b1}} = V we are done; otherwise a similar argument 
shows that {I � {b1, b2}} is independent for some b2 ∈ B. Continue this 
process. As in the proof of Lemma 2, a basis of V will be reached eventually. 

(3a) This is clear if U = {0}. Otherwise, let u ≠ 0 in U. Then {u} can be 
enlarged to a finite basis B of U by Lemma 2, proving that U is finite 
dimensional. But B is independent in V, so dim U ≤ dim V by the 
fundamental theorem.

(3b) This is clear if U = {0} because V has a basis; otherwise, it follows from (2).

Theorem 1 shows that a vector space V is finite dimensional if and only if it has a 
finite basis (possibly empty), and that every subspace of a finite dimensional space 
is again finite dimensional. 

EXAMPLE 1

Enlarge the independent set D =  U   S  1 1    
1 0

  T  ,   S  0 1    
1 1

  T  ,   S  1 0    
1 1

  T  V  to a basis of M22.

Solution ► The standard basis of M22 is  U   S  1 0    
0 0

  T  ,   S  0 1    
0 0

  T  ,   S  0 0    
1 0

  T  ,   S  0 0    
0 1

  T  V , so including 

one of these in D will produce a basis by Theorem 1. In fact including any of 
these matrices in D produces an independent set (verify), and hence a basis by 
Theorem 4. Of course these vectors are not the only possibilities, for example, 

including   S  1 1    
0 1

  T  works as well.
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EXAMPLE 2

Find a basis of P3 containing the independent set {1 + x, 1 + x2}.

Solution ► The standard basis of P3 is {1, x, x2, x3}, so including two of these 
vectors will do. If we use 1 and x3, the result is {1, 1 + x, 1 + x2, x3}. This is 
independent because the polynomials have distinct degrees (Example 4 Section 
6.3), and so is a basis by Theorem 1. Of course, including {1, x} or {1, x2} would 
not work!

EXAMPLE 3

Show that the space P of all polynomials is infinite dimensional.

Solution ► For each n ≥ 1, P has a subspace Pn of dimension n + 1. Suppose 
P is finite dimensional, say dim P = m. Then dim Pn ≤ dim P by Theorem 1, 
that is n + 1 ≤ m. This is impossible since n is arbitrary, so P must be infinite 
dimensional.

The next example illustrates how (2) of Theorem 1 can be used.

EXAMPLE 4

If c1, c2, …, ck are independent columns in �n, show that they are the first k 
columns in some invertible n × n matrix.

Solution ► By Theorem 1, expand {c1, c2, …, ck} to a basis 
{c1, c2, …, ck, ck+1, …, cn} of �n. Then the matrix 
A = [c1 c2 � ck ck+1 � cn] with this basis as its columns is 
an n × n matrix and it is invertible by Theorem 3 Section 5.2.

Theorem 2

Let U and W be subspaces of the finite dimensional space V.

1. If U ⊆ W, then dim U ≤ dim W. 
2. If U ⊆ W and dim U = dim W, then U = W.

PROOF

Since W is finite dimensional, (1) follows by taking V = W in part (3) of 
Theorem 1. Now assume dim U = dim W = n, and let B be a basis of U. Then 
B is an independent set in W. If U ≠ W, then span B ≠ W, so B can be extended 
to an independent set of n + 1 vectors in W by Lemma 1. This contradicts 
the fundamental theorem (Theorem 2 Section 6.3) because W is spanned by 
dim W = n vectors. Hence U = W, proving (2).
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Theorem 2 is very useful. This was illustrated in Example 13 Section 5.2 for �2 
and �3; here is another example.

EXAMPLE 5

If a is a number, let W denote the subspace of all polynomials in Pn that have a 
as a root:

W = {p(x) | p(x) is in Pn and p(a) = 0}.

Show that {(x - a), (x - a)2, …, (x - a)n} is a basis of W.

Solution ► Observe first that (x - a), (x - a)2, …, (x - a)n are members of W, 
and that they are independent because they have distinct degrees (Example 4 
Section 6.3). Write 

U = span{(x - a), (x - a)2, …, (x - a)n}

Then we have U ⊆ W ⊆ Pn, dim U = n, and dim Pn = n + 1. Hence 
n ≤ dim W ≤ n + 1 by Theorem 2. Since dim W is an integer, we must 
have dim W = n or dim W = n + 1. But then W = U or W = Pn, again 
by Theorem 2. Because W ≠ Pn, it follows that W = U, as required.

A set of vectors is called dependent if it is not independent, that is if some 
nontrivial linear combination vanishes. The next result is a convenient test for 
dependence.

Lemma 3

Dependent Lemma
A set D = {v1, v2, …, vk} of vectors in a vector space V is dependent if and only if some 
vector in D is a linear combination of the others.

PROOF

Let v2 (say) be a linear combination of the rest: v2 = s1v1 + s3v3 + � + skvk. 
Then s1v1 + (-1)v2 + s3v3 + � + skvk = 0 is a nontrivial linear combination 
that vanishes, so D is dependent. Conversely, if D is dependent, let 
t1v1 + t2v2 + � + tkvk = 0 where some coefficient is nonzero. If (say) t2 ≠ 0, 
then v2 = -   t1 __ t2

  v1 -   t3 __ t2
  v3 - � -   tk

 __ t2
  vk is a linear combination of the others.

Lemma 1 gives a way to enlarge independent sets to a basis; by contrast, 
Lemma 3 shows that spanning sets can be cut down to a basis. 

Theorem 3

Let V be a finite dimensional vector space. Any spanning set for V can be cut down (by 
deleting vectors) to a basis of V.
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PROOF

Since V is finite dimensional, it has a finite spanning set S. Among all spanning 
sets contained in S, choose S0 containing the smallest number of vectors. It 
suffices to show that S0 is independent (then S0 is a basis, proving the theorem). 
Suppose, on the contrary, that S0 is not independent. Then, by Lemma 3, 
some vector u ∈ S0 is a linear combination of the set S1 = S0 \ {u} of vectors 
in S0 other than u. It follows that span S0 = span S1, that is, V = span S1. But 
S1 has fewer elements than S0 so this contradicts the choice of S0. Hence S0 is 
independent after all.

Note that, with Theorem 1, Theorem 3 completes the promised proof of 
Theorem 6 Section 5.2 for the case V = �n.

EXAMPLE 6

Find a basis of P3 in the spanning set S = {1, x + x2, 2x - 3x2, 1 + 3x - 2x2, x3}. 

Solution ► Since dim P3 = 4, we must eliminate one polynomial from S. 
It cannot be x3 because the span of the rest of S is contained in P2. But 
eliminating 1 + 3x - 2x2 does leave a basis (verify). Note that 1 + 3x - 2x2 is 
the sum of the first three polynomials in S.

Theorems 1 and 3 have other useful consequences. 

Theorem 4

Let V be a vector space with dim V = n, and suppose S is a set of exactly n vectors in V. 
Then S is independent if and only if S spans V.

PROOF

Assume first that S is independent. By Theorem 1, S is contained in a basis B 
of V. Hence |S| = n = |B| so, since S ⊆ B, it follows that S = B. In particular S 
spans V. 

Conversely, assume that S spans V, so S contains a basis B by Theorem 3. 
Again |S| = n = |B| so, since S ⊇ B, it follows that S = B. Hence S is 
independent.

One of independence or spanning is often easier to establish than the other when 
showing that a set of vectors is a basis. For example if V = �n it is easy to check 
whether a subset S of �n is orthogonal (hence independent) but checking spanning 
can be tedious. Here are three more examples.
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EXAMPLE 7

Consider the set S = {p0(x), p1(x), …, pn(x)} of polynomials in Pn. If 
deg pk(x) = k for each k, show that S is a basis of Pn. 

Solution ► The set S is independent—the degrees are distinct—see Example 4 
Section 6.3. Hence S is a basis of Pn by Theorem 4 because dim Pn = n + 1.

EXAMPLE 8

Let V denote the space of all symmetric 2 × 2 matrices. Find a basis of V 
consisting of invertible matrices.

Solution ► We know that dim V = 3 (Example 11 Section 6.3), so what is 
needed is a set of three invertible, symmetric matrices that (using Theorem 4) 

is either independent or spans V. The set  U   S  1 0    
0 1

  T  ,   S   1   0    
0 -1

  T  ,   S  0 1    
1 0

  T  V  is independent 

(verify) and so is a basis of the required type.

EXAMPLE 9

Let A be any n × n matrix. Show that there exist n2 + 1 scalars a0, a1, a2, …,  a n2  
not all zero, such that 

a0I + a1A + a2A
2 + � +  a n2  A n

2
  = 0

where I denotes the n × n identity matrix.

Solution ► The space Mnn of all n × n matrices has dimension n2 by Example 7 
Section 6.3. Hence the n2 + 1 matrices I, A, A2, …,  A n

2
  cannot be independent 

by Theorem 4, so a nontrivial linear combination vanishes. This is the desired 
conclusion.

Note that the result in Example 9 can be written as f (A) = 0 where 
f (x) = a0 + a1x + a2x

2 + � +  a n2  x n
2
 . In other words, A satisfies a nonzero 

polynomial f (x) of degree at most n2. In fact we know that A satisfies a 
nonzero polynomial of degree n (this is the Cayley-Hamilton theorem—see 
Theorem 10 Section 8.6 or Theorem 2 Section 9.4), but the brevity of the 
solution in Example 6 is an indication of the power of these methods. 

If U and W are subspaces of a vector space V, there are two related subspaces 
that are of interest, their sum U + W and their intersection U ∩ W, defined by

U + W = {u + w | u in U, and w in W}
U ∩ W = {v in V | v in both U and W}

It is routine to verify that these are indeed subspaces of V, that U ∩ W is 
contained in both U and W, and that U + W contains both U and W. We 
conclude this section with a useful fact about the dimensions of these spaces. 
The proof is a good illustration of how the theorems in this section are used.
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Theorem 5

Suppose that U and W are finite dimensional subspaces of a vector space V. Then 
U + W is finite dimensional and 

dim(U + W) = dim U + dim W - dim(U ∩ W).

PROOF

Since U ∩ W ⊆ U, it has a finite basis, say {x1, …, xd}. Extend it to a basis 
{x1, …, xd, u1, …, um} of U by Theorem 1. Similarly extend {x1, …, xd} to 
a basis {x1, …, xd, w1, …, wp} of W. Then

U + W = span{x1, …, xd, u1, …, um, w1, …, wp}

as the reader can verify, so U + W is finite dimensional. For the rest, it suffices 
to show that {x1, …, xd, u1, …, um, w1, …, wp} is independent (verify). Suppose 
that 

 r1x1 + � + rdxd + s1u1 + � + smum + t1w1 + � + tpwp = 0 (∗)

where the ri, sj, and tk are scalars. Then 

 r1x1 + � + rdxd + s1u1 + � + smum = -(t1w1 + � + tpwp)

is in U (left side) and also in W (right side), and so is in U ∩ W. Hence 
(t1w1 + � + tpwp) is a linear combination of {x1, …, xd}, so t1 = � = tp = 0, 
because {x1, …, xd, w1, …, wp} is independent. Similarly, s1 = � = sm = 0, so (∗) 
becomes r1x1 + � + rdxd = 0. It follows that r1 = � = rd = 0, as required.

Theorem 5 is particularly interesting if U ∩ W = {0}. Then there are no vectors 
xi in the above proof, and the argument shows that if {u1, …, um} and {w1, …, wp} 
are bases of U and W respectively, then {u1, …, um, w1, …, wp} is a basis of U + W. 
In this case U + W is said to be a direct sum (written U ⊕ W); we return to this in 
Chapter 9. 

E X E R C I S E S  6 . 4

 1. In each case, find a basis for V that includes the 
vector v.

 (a) V = �3, v = (1, -1, 1)

	(b) V = �3, v = (0, 1, 1)

 (c) V = M22, v =   S  1 1    
1 1

  T 
 	(d) V = P2, v = x2 - x + 1

 2. In each case, find a basis for V among the given 
vectors.

 (a) V = �3, 
{(1, 1, -1), (2, 0, 1), (-1, 1, -2), (1, 2, 1)}

	(b) V = P2, {x
2 + 3, x + 2, x2 - 2x -1, x2 + x}

 3. In each case, find a basis of V containing v and w.

 (a) V = �4, v = (1, -1, 1, -1), w = (0, 1, 0, 1)

	(b) V = �4, v = (0, 0, 1, 1), w = (1, 1, 1, 1)

 (c) V = M22, v =   S  1 0    
0 1

  T  , w =   S  0 1    
1 0

  T 
	(d) V = P3, v = x2 + 1, w = x2 + x

 4. (a) If z is not a real number, show that {z, z2} is a 
basis of the real vector space � of all complex 
numbers.
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 	(b) If z is neither real nor pure imaginary, show 
that {z,  

__
 z  } is a basis of �.

 5. In each case use Theorem 4 to decide if S is a 
basis of V. 

 (a) V = M22; 

S =  U   S  1 1    
1 1

  T  ,   S  0 1    
1 1

  T  ,   S  0 0    
1 1

  T  ,   S  0 0    
0 1

  T  V .
 	(b) V = P3; S = {2x2, 1 + x, 3, 1 + x + x2 + x3}.

 6. (a) Find a basis of M22 consisting of matrices 
with the property that A2 = A. 

 	(b) Find a basis of P3 consisting of polynomials 
whose coefficients sum to 4. What if they 
sum to 0?

 7. If {u, v, w} is a basis of V, determine which of 
the following are bases.

 (a) {u + v, u + w, v + w}

 	(b) {2u + v + 3w, 3u + v - w, u - 4w}

 (c) {u, u + v + w} 

 	(d) {u, u + w, u - w, v + w} 

 8. (a) Can two vectors span �3? Can they be 
linearly independent? Explain.

 	(b) Can four vectors span �3? Can they be 
linearly independent? Explain.

 9. Show that any nonzero vector in a finite 
dimensional vector space is part of a basis.

 	10. If A is a square matrix, show that det A = 0 if 
and only if some row is a linear combination of 
the others. 

 11. Let D, I, and X denote finite, nonempty sets of 
vectors in a vector space V. Assume that D is 
dependent and I is independent. In each case 
answer yes or no, and defend your answer. 

 (a) If X ⊇ D, must X be dependent?

 	(b) If X ⊆ D, must X be dependent? 

 (c) If X ⊇ I, must X be independent? 

 	(d) If X ⊆ I, must X be independent? 

 12. If U and W are subspaces of V and dim U = 2, 
show that either U ⊆ W or dim(U ∩ W) ≤ 1.

 13. Let A be a nonzero 2 × 2 matrix and write 
U = {X in M22 | XA = AX}. Show that 
dim U ≥ 2. [Hint: I and A are in U.]

 14. If U ⊆ �2 is a subspace, show that U = {0}, 
U = �2, or U is a line through the origin.

 	15. Given v1, v2, v3, …, vk, and v, let 
U = span{v1, v2, …, vk} and 
W = span{v1, v2, …, vk, v}. Show that either 
dim W = dim U or dim W = 1 + dim U.

 16. Suppose U is a subspace of P1, U ≠ {0}, and
U ≠ P1. Show that either U = � or 
U = �(a + x) for some a in �.

 17. Let U be a subspace of V and assume 
dim V = 4 and dim U = 2. Does every basis of 
V result from adding (two) vectors to some basis 
of U? Defend your answer.

 18. Let U and W be subspaces of a vector space V.

 (a) If dim V = 3, dim U = dim W = 2, and 
U ≠ W, show that dim(U ∩ W) = 1.

 	(b) Interpret (a) geometrically if V = �3.

 19. Let U ⊆ W be subspaces of V with dim U = k 
and dim W = m, where k < m. If k < l < m, 
show that a subspace X exists where U ⊆ X ⊆ W 
and dim X = l.

 20. Let B = {v1, …, vn} be a maximal independent set 
in a vector space V. That is, no set of more than 
n vectors S is independent. Show that B is a basis 
of V.

 21. Let B = {v1, …, vn} be a minimal spanning set for 
a vector space V. That is, V cannot be spanned 
by fewer than n vectors. Show that B is a basis 
of V.

 22. (a) Let p(x) and q(x) lie in P1 and suppose that 
p(1) ≠ 0, q(2) ≠ 0, and p(2) = 0 = q(1). Show 
that {p(x), q(x)} is a basis of P1. [Hint: If 
rp(x) + sq(x) = 0, evaluate at x = 1, x = 2.]

 (b) Let B = {p0(x), p1(x), …, pn(x)} be a set of 
polynomials in Pn. Assume that there exist 
numbers a0, a1, …, an such that pi(ai) ≠ 0 for 
each i but pi(aj) = 0 if i is different from j. 
Show that B is a basis of Pn.

319SECTION 6.4 Finite Dimensional Spaces



 23. Let V be the set of all infinite sequences 
(a0, a1, a2, …) of real numbers. Define 
addition and scalar multiplication by 
(a0, a1, …) + (b0, b1, …) = (a0 + b0, a1 + b1, …) 
and r(a0, a1, …) = (ra0, ra1, …).

 (a) Show that V is a vector space.

	(b) Show that V is not finite dimensional.

 (c) [For those with some calculus.] Show that 
the set of convergent sequences (that is, 
lim 
n→∞

 an exists) is a subspace, also of infinite 

dimension.

 24. Let A be an n × n matrix of rank r. If 
U = {X in Mnn | AX = 0}, show that 
dim U = n(n - r). [Hint: Exercise 34 
Section 6.3.]

 25. Let U and W be subspaces of V.

 (a) Show that U + W is a subspace of V 
containing U and W.

	(b) Show that span{u, w} = �u + �w for any 
vectors u and w.

 (c) Show that span{u1, …, um, w1, …, wn} 
= span{u1, …, um} + span{w1, …, wn} for 
any vectors ui in U and wj in W.

 26. If A and B are m × n matrices, show that 
rank(A + B) ≤ rank A + rank B. [Hint: If U and 
V are the column spaces of A and B, respectively, 
show that the column space of A + B is 
contained in U + V and that 
dim(U + V ) ≤ dim U + dim V. (See 
Theorem 5.)]

An Application to Polynomials
The vector space of all polynomials of degree at most n is denoted Pn, and it was 
established in Section 6.3 that Pn has dimension n + 1; in fact, {1, x, x2, …, xn} is 
a basis. More generally, any n + 1 polynomials of distinct degrees form a basis, 
by Theorem 4 Section 6.4 (they are independent by Example 4 Section 6.3). 
This proves

Theorem 1

Let p0(x), p1(x), p2(x), …, pn(x) be polynomials in Pn of degrees 0, 1, 2, …, n, 
respectively. Then {p0(x), …, pn(x)} is a basis of Pn.

An immediate consequence is that {1, (x - a), (x - a)2, …, (x - a)n} is a basis of 
Pn for any number a. Hence we have the following:

Corollary 1

If a is any number, every polynomial f (x) of degree at most n has an expansion in powers 
of (x - a):

 f (x) = a0 + a1(x - a) + a2(x - a)2 + � + an(x - a)n. (∗)

If f (x) is evaluated at x = a, then equation (∗) becomes

f (a) = a0 + a1(a - a) + � + an(a - a)n = a0.

Hence a0 = f (a), and equation (∗) can be written f (x) = f (a) + (x - a)g(x), where 
g(x) is a polynomial of degree n - 1 (this assumes that n ≥ 1). If it happens that 

S E C T I O N  6 . 5
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f (a) = 0, then it is clear that f (x) has the form f (x) = (x - a)g(x). Conversely, every 
such polynomial certainly satisfies f (a) = 0, and we obtain:

Corollary 2

Let f (x) be a polynomial of degree n ≥ 1 and let a be any number. Then:
Remainder Theorem

1. f (x) = f (a) + (x - a)g(x) for some polynomial g(x) of degree n - 1.

Factor Theorem

2. f (a) = 0 if and only if f (x) = (x - a)g(x) for some polynomial g(x).

The polynomial g(x) can be computed easily by using “long division” to divide f (x) 
by (x - a)—see Appendix D.

All the coefficients in the expansion (∗) of f (x) in powers of (x - a) can be 
determined in terms of the derivatives of f (x).5 These will be familiar to students 
of calculus. Let f (n)(x) denote the nth derivative of the polynomial f (x), and write 
f (0)(x) = f (x). Then, if

f (x) = a0 + a1(x - a) + a2(x - a)2 + � + an(x - a)n,

it is clear that a0 = f (a) = f (0)(a). Differentiation gives

f (1)(x) = a1 + 2a2(x - a) + 3a3(x - a)2 + � + nan(x - a)n-1

and substituting x = a yields a1 = f (1)(a). This process continues to give 

a2 =   
f  (2)(a)

 ______ 
2!

  , a3 =   
f  (3)(a)

 ______ 
3!

  , …, =   
f  (k)(a)

 ______ 
k!

  , where k! is defined as k! = k(k - 1) � 2 · 1. 

Hence we obtain the following:

Corollary 3

Taylor’s Theorem
If f (x) is a polynomial of degree n, then

f (x) = f (a) +   
f  (1)(a)

 ______ 
1!

   (x - a) +   
f  (2)(a)

 ______ 
2!

  (x - a)2 + � +   
f  (n)(a)

 ______ 
n!

  (x - a)n.

EXAMPLE 1

Expand f (x) = 5x3 + 10x + 2 as a polynomial in powers of x - 1.

Solution ► The derivatives are f (1)(x) = 15x2 + 10, f (2)(x) = 30x, and 
f (3)(x) = 30. Hence the Taylor expansion is 

f (x)  = f (1) +   
f  (1)(1)

 ______ 
1!

   (x - 1) +   
f  (2)(1)

 ______ 
2!

  (x - 1)2 +   
f  (3)(1)

 ______ 
3!

  (x - 1)3

= 17 + 25(x - 1) + 15(x - 1)2 + 5(x - 1)3.

5 The discussion of Taylor’s theorem can be omitted with no loss of continuity.
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Taylor’s theorem is useful in that it provides a formula for the coefficients in 
the expansion. It is dealt with in calculus texts and will not be pursued here.

Theorem 1 produces bases of Pn consisting of polynomials of distinct degrees. 
A different criterion is involved in the next theorem.

Theorem 2

Let f0(x), f1(x), …, fn(x) be nonzero polynomials in Pn. Assume that numbers a0, a1, …, 
an exist such that

fi(ai) ≠ 0 for each i
fi(aj) = 0 if i ≠ j

Then 
1. { f0(x), …, fn(x)} is a basis of Pn.

2. If f (x) is any polynomial in Pn, its expansion as a linear combination of these 
basis vectors is

f (x) =   
f (a0) _____ 
f 0(a0)

   f 0(x) +   
f (a1) _____ 
f 1(a1)

   f 1(x) + � +   
f (an) _____ 
f n(an)

   f n(x).

PROOF

 1. It suffices (by Theorem 4 Section 6.4) to show that {f0(x), …, fn(x)} is linearly 
independent (because dim Pn = n + 1). Suppose that

r0 f0(x) + r1 f1(x) + � + rn fn(x) = 0, ri ∈ �. 

  Because fi(a0) = 0 for all i > 0, taking x = a0 gives r0f0(a0) = 0. But then 
r0 = 0 because f0(a0) ≠ 0. The proof that ri = 0 for i > 0 is analogous.

 2. By (1), f (x) = r0 f0(x) + � + rn fn(x) for some numbers ri. Again, evaluating at 
a0 gives f (a0) = r0 f0(a0), so r0 = f (a0)/f0(a0). Similarly, ri = f (ai)/fi(ai) for each i.

EXAMPLE 2

Show that {x2 - x, x2 - 2x, x2 - 3x + 2} is a basis of P2.

Solution ► Write f0(x) = x2 - x = x(x - 1), f1(x) = x2 - 2x = x(x - 2), and 
f2(x) = x2 - 3x + 2 = (x - 1)(x - 2). Then the conditions of Theorem 2 are 
satisfied with a0 = 2, a1 = 1, and a2 = 0.

We investigate one natural choice of the polynomials fi(x) in Theorem 2. To 
illustrate, let a0, a1, and a2 be distinct numbers and write

f0(x) =   
(x - a1)(x - a2)  _______________  
(a0 - a1)(a0 - a2)

   f1(x) =   
(x - a0)(x - a2)  _______________  
(a1 - a0)(a1 - a2)

   f2(x) =   
(x - a0)(x - a1)  _______________  
(a2 - a0)(a2 - a1)

  

Then f0(a0) = f1(a1) = f2(a2) = 1, and fi(aj) = 0 for i ≠ j. Hence Theorem 2 applies, 
and because fi(ai) = 1 for each i, the formula for expanding any polynomial is 
simplified.
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In fact, this can be generalized with no extra effort. If a0, a1, …, an are distinct 
numbers, define the Lagrange polynomials δ0(x), δ1(x), …, δn(x) relative to these 
numbers as follows: 

δk(x) =   
∏i≠k(x - ai)  _____________  
 ∏i≠k(ak - ai)

   k = 0, 1, 2, …, n

Here the numerator is the product of all the terms (x - a0), (x - a1), …, (x - an) 
with (x - ak) omitted, and a similar remark applies to the denominator. If n = 2, 
these are just the polynomials in the preceding paragraph. For another example, if 
n = 3, the polynomial δ1(x) takes the form

δ1(x) =   
(x - a0)(x - a2)(x - a3)   ______________________   

(a1 - a0)(a1 - a2)(a1 - a3)
  

In the general case, it is clear that δi(ai) = 1 for each i and that δi(aj) = 0 if i ≠ j. 
Hence Theorem 2 specializes as Theorem 3.

Theorem 3

Lagrange Interpolation Expansion
Let a0, a1, …, an be distinct numbers. The corresponding set

{δ0(x), δ1(x), …, δn(x)}

of Lagrange polynomials is a basis of Pn, and any polynomial f (x) in Pn has the 
following unique expansion as a linear combination of these polynomials.

f (x) = f (a0)δ0(x) + f (a1)δ1(x) + � + f (an)δn(x)

EXAMPLE 3

Find the Lagrange interpolation expansion for f (x) = x2 - 2x + 1 relative to 
a0 = -1, a1 = 0, and a2 = 1.

Solution ► The Lagrange polynomials are

δ0(x) =   
(x - 0)(x - 1)

  ________________  
(-1 - 0)(-1 - 1)

   =   1 _ 2  (x
2 - x)

δ1(x) =   
(x + 1)(x - 1)

  _____________  
(0 + 1)(0 - 1)

   = -(x2 - 1)

δ2(x) =   
(x + 1)(x - 0)

  _____________  
(1 + 1)(1 - 0)

   =   1 _ 2  (x
2 + x)

Because f (-1) = 4, f (0) = 1, and f (1) = 0, the expansion is
f (x) = 2(x2 - x) - (x2 - 1).

The Lagrange interpolation expansion gives an easy proof of the following 
important fact.
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Theorem 4

Let f (x) be a polynomial in Pn, and let a0, a1, …, an denote distinct numbers. If f (ai) = 0 
for all i, then f (x) is the zero polynomial (that is, all coefficients are zero).

PROOF

All the coefficients in the Lagrange expansion of f (x) are zero.

E X E R C I S E S  6 . 5

 1. If polynomials f (x) and g(x) satisfy f (a) = g(a), 
show that f (x) - g(x) = (x - a)h(x) for some 
polynomial h(x).

 Exercises 2, 3, 4, and 5 require polynomial 
differentiation.

 2. Expand each of the following as a polynomial 
in powers of x - 1.

 (a) f (x) = x3 - 2x2 + x - 1

	(b) f (x) = x3 + x + 1

 (c) f (x) = x4

	(d) f (x) = x3 - 3x2 + 3x

3. Prove Taylor’s theorem for polynomials.

4. Use Taylor’s theorem to derive the binomial 
theorem:

(1 + x)n =  Q   n     
0

   R  +  Q   n     
1

   R x +  Q   n     
2

   R x2 + � +  Q   n     
n

   R xn

  Here the binomial coefficients  Q  n   
r
  R  are defined 

by  Q  n   
r
  R  =   n! ________ 

r!(n - r)!
   where n! = n(n - 1) � 2 · 1 

if n ≥ 1 and 0! = 1.

 5. Let f (x) be a polynomial of degree n. Show 
that, given any polynomial g(x) in Pn, there exist 
numbers b0, b1, …, bn such that

g(x) = b0f (x) + b1f 
(1)(x) + � + bnf 

(n)(x)

  where f (k)(x) denotes the kth derivative of f (x).

 6. Use Theorem 2 to show that the following are 
bases of P2.

 (a) {x2 - 2x, x2 + 2x, x2 - 4}

 	(b) {x2 - 3x + 2, x2 - 4x + 3, x2 - 5x + 6}

 7. Find the Lagrange interpolation expansion of 

f (x) relative to a0 = 1, a1 = 2, and a2 = 3 if:

 (a) f (x) = x2 + 1 	(b) f (x) = x2 + x + 1

 8. Let a0, a1, …, an be distinct numbers. If f (x) and 
g(x) in Pn satisfy f (ai) = g(ai) for all i, show that 
f (x) = g(x). [Hint: See Theorem 4.]

 9. Let a0, a1, …, an be distinct numbers. If f (x) in 
Pn+1 satisfies f (ai) = 0 for each i = 0, 1, …, n, 
show that f (x) = r(x - a0)(x - a1) � (x - an) for 
some r in �. [Hint: r is the coefficient of xn+1 in 
f (x). Consider f (x) - r(x - a0) � (x - an) and 
use Theorem 4.]

 10. Let a and b denote distinct numbers.

 (a) Show that {(x - a), (x - b)} is a basis of P1.

	(b) Show that {(x - a)2, (x - a)(x - b), (x - b)2} 
is a basis of P2.

 (c) Show that {(x - a)n, (x - a)n-1(x - b), …, 
(x - a)(x - b)n-1, (x - b)n} is a basis of 
Pn. [Hint: If a linear combination vanishes, 
evaluate at x = a and x = b. Then reduce 
to the case n - 2 by using the fact that if 
p(x)q(x) = 0 in P, then either p(x) = 0 or 
q(x) = 0.]

 11. Let a and b be two distinct numbers. Assume 
that n ≥ 2 and let

Un = {f (x) in Pn | f (a) = 0 = f (b)}.
 (a) Show that 

Un = {(x - a)(x - b)p(x) | p(x) in Pn-2}.

	(b) Show that dim Un = n - 1. 
[Hint: If p(x)q(x) = 0 in P, then either 
p(x) = 0, or q(x) = 0.]

 (c) Show that {(x - a)n-1(x - b), (x - a)n-2(x - b)2, 
…, (x - a)2(x - b)n-2, (x - a)(x - b)n-1} is a 
basis of Un. [Hint: Exercise 10.]
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An Application to Differential Equations
Call a function f : � → � differentiable if it can be differentiated as many times 
as we want. If f is a differentiable function, the nth derivative f (n) of f is the result 
of differentiating n times. Thus f (0) = f, f (1) = f ′, f (2) = f (1)

′, … and, in general, 
f (n+1) = f (n)

′ for each n ≥ 0. For small values of n these are often written as 
f, f ′, f �, f �, ….

If a, b, and c are numbers, the differential equations 

f � + af ′ + bf = 0 or f � + af � + bf ′ + cf = 0,

are said to be of second-order and third-order, respectively. In general, an 
equation 

 f (n) + an-1 f 
(n-1) + an-2 f 

(n-2) + � + a2 f 
(2) + a1 f 

(1) + a0 f 
(0) = 0, ai in �, (∗)

is called a differential equation of order n. In this section we investigate the set of 
solutions to (∗) and, if n is 1 or 2, find explicit solutions. Of course an acquaintance 
with calculus is required. 

Let f and g be solutions to (∗). Then f + g is also a solution because 
( f + g)(k) = f (k) + g(k) for all k, and af is a solution for any a in � because 
(af )(k) = af (k). It follows that the set of solutions to (∗) is a vector space, 
and we ask for the dimension of this space. 

We have already dealt with the simplest case (see Theorem 1 Section 3.5): 

Theorem 1

The set of solutions of the first-order differential equation f ′ + af = 0 is a one-
dimensional vector space and {e-ax} is a basis.

There is a far-reaching generalization of Theorem 1 that will be proved in 
Section 7.4 (Theorem 1). 

Theorem 2

The set of solutions to the nth order equation (∗) has dimension n.

Every differential equation of order n can be converted into a system of n linear 
first-order equations (see Exercises 6 and 7 in Section 3.5). In the case that the 
matrix of this system is diagonalizable, this approach provides a proof of Theorem 
2. But if the matrix is not diagonalizable, Theorem 1 Section 7.4 is required. 

Theorem 1 suggests that we look for solutions to (∗) of the form eλx for some 
number λ. This is a good idea. If we write f (x) = eλx, it is easy to verify that 
f (k)(x) = λkeλx for each k ≥ 0, so substituting f in (∗) gives

(λn + an-1λ
n-1 + an-2λ

n-2 + � + a2λ
2 + a1λ

1 + a0)e
λx = 0.

Since eλx ≠ 0 for all x, this shows that eλx is a solution of (∗) if and only if λ is a root 
of the characteristic polynomial c(x), defined to be 

c(x) = xn + an-1x
n-1 + an-2x

n-2 + � + a2x
2 + a1x + a0.

This proves Theorem 3. 
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Theorem 3

If λ is real, the function eλx is a solution of (∗) if and only if λ is a root of the 
characteristic polynomial c(x).

EXAMPLE 1

Find a basis of the space U of solutions of f � - 2f � - f ′ - 2f = 0.

Solution ► The characteristic polynomial is x3 - 2x2 - x - 1 = 
(x - 1)(x + 1)(x - 2), with roots λ1 = 1, λ2 = -1, and λ3 = 2. 
Hence ex, e-x, and e2x are all in U. Moreover they are independent 
(by Lemma 1 below) so, since dim(U ) = 3 by Theorem 2, {ex, e-x, 
e2x} is a basis of U.

Lemma 1

If λ1, λ2, …, λk are distinct, then { e λ1x ,  e λ2x , …,  e λkx } is linearly independent.

PROOF

If  r1e 
λ1x  +  r2e 

λ2x  + � +  rke 
λkx  = 0 for all x, then 

r1 +  r2e 
(λ2-λ1)x  + � +  rke 

(λk-λ1)x  = 0; that is,  r2e 
(λ2-λ1)x  + � +  rke 

(λk-λ1)x  
is a constant. Since the λi are distinct, this forces r2 = � = rk = 0, 
whence r1 = 0 also. This is what we wanted.

Theorem 4

Let U denote the space of solutions to the second-order equation
f � + af ′ + bf = 0

where a and b are real constants. Assume that the characteristic polynomial x2 + ax + b 
has two real roots λ and �. Then

(1) If λ ≠ �, then {eλx, e�x} is a basis of U. 
(2) If λ = �, then {eλx, xeλx} is a basis of U.

PROOF

Since dim(U ) = 2 by Theorem 2, (1) follows by Lemma 1, and (2) follows 
because the set {eλx, xeλx} is independent (Exercise 3).

EXAMPLE 2

Find the solution of f � + 4f ′+ 4f = 0 that satisfies the boundary conditions 
f (0) = 1, f (1) = -1.
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Solution ► The characteristic polynomial is x2 + 4x + 4 = (x + 2)2, so -2 is 
a double root. Hence {e-2x, xe-2x} is a basis for the space of solutions, and the 
general solution takes the form f (x) = ce-2x + dxe-2x. Applying the boundary 
conditions gives 1 = f (0) = c and -1 = f (1) = (c + d)e-2. Hence c = 1 and 
d = -(1 + e2), so the required solution is 

f (x) = e-2x - (1 + e2)xe-2x.

One other question remains: What happens if the roots of the characteristic 
polynomial are not real? To answer this, we must first state precisely what eλx 
means when λ is not real. If q is a real number, define

eiq = cos q + i sin q

where i2 = -1. Then the relationship eiq e iq1  =  e i(q+q1)
  holds for all real q and q1, as 

is easily verified. If λ = p + iq, where p and q are real numbers, we define 

eλ = epeiq = ep(cos q + i sin q).

Then it is a routine exercise to show that

1. eλe� = eλ+�

2. eλ = 1 if and only if λ = 0

3. (eλx)′ = λeλx

These easily imply that f (x) = eλx is a solution to f �+ af ′+ bf = 0 if λ is a (possibly 
complex) root of the characteristic polynomial x2 + ax + b. Now write λ = p + iq 
so that

f (x) = eλx = epxcos(qx) + iepxsin(qx).

For convenience, denote the real and imaginary parts of f (x) as u(x) = epxcos(qx) and 
v(x) = epxsin(qx). Then the fact that f (x) satisfies the differential equation gives

0 = f � + af ′ + bf = (u� + au′ + bu) + i(v� + av′ + bv).

Equating real and imaginary parts shows that u(x) and v(x) are both solutions to the 
differential equation. This proves part of Theorem 5.

Theorem 5

Let U denote the space of solutions of the second-order differential equation

f � + af ′ + bf = 0

where a and b are real. Suppose λ is a nonreal root of the characteristic polynomial 
x2 + ax + b. If λ = p + iq, where p and q are real, then

{epxcos(qx), epxsin(qx)}

is a basis of U.
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PROOF

The foregoing discussion shows that these functions lie in U. Because dim U = 2 
by Theorem 2, it suffices to show that they are linearly independent. But if 

repxcos(qx) + sepxsin(qx) = 0

for all x, then r cos(qx) + s sin(qx) = 0 for all x (because epx ≠ 0). Taking x = 0 
gives r = 0, and taking x =   π __ 2q

   gives s = 0 (q ≠ 0 because λ is not real). This is 
what we wanted.

EXAMPLE 3

Find the solution f (x) to f � - 2f ′ + 2f = 0 that satisfies f (0) = 2 and f (  π __ 2  ) = 0.

Solution ► The characteristic polynomial x2 - 2x + 2 has roots 1 + i and 1 - i. 
Taking λ = 1 + i (quite arbitrarily) gives p = q = 1 in the notation of Theorem 
5, so {ex cos x, ex sin x} is a basis for the space of solutions. The general solution 
is thus f (x) = ex(r cos x + s sin x). The boundary conditions yield 2 = f (0) = r 
and 0 = f (  π __ 2  ) = eπ/2s. Thus r = 2 and s = 0, and the required solution is 
f (x) = 2excos x.

The following theorem is an important special case of Theorem 5.

Theorem 6

If q ≠ 0 is a real number, the space of solutions to the differential equation f � + q2f = 0 
has basis {cos(qx), sin(qx)}.

PROOF

The characteristic polynomial x2 + q2 has roots qi and -qi, so Theorem 5 applies 
with p = 0.

In many situations, the displacement s(t) of some object at time t turns out 
to have an oscillating form s(t) = c sin(at) + d cos(at). These are called simple 
harmonic motions. An example follows.

EXAMPLE 4

A weight is attached to an extension spring (see diagram). If it is pulled from 
the equilibrium position and released, it is observed to oscillate up and down. 
Let d(t) denote the distance of the weight below the equilibrium position t 
seconds later. It is known (Hooke’s law) that the acceleration d�(t) of the 
weight is proportional to the displacement d(t) and in the opposite direction. 
That is,

d(t)
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d�(t) = -kd(t)

where k > 0 is called the spring constant. Find d(t) if the maximum extension 
is 10 cm below the equilibrium position and find the period of the oscillation 
(time taken for the weight to make a full oscillation).

Solution ► It follows from Theorem 6 (with q2 = k) that

d(t) = r sin( √ 

__

 k  t) + s cos( √ 

__

 k  t)

where r and s are constants. The condition d(0) = 0 gives s = 0, so 
d(t) = r sin( √ 

__

 k  t). Now the maximum value of the function sin x is 1 
(when x =   π __ 2  ), so r = 10 (when t =   π

 ___ 
2 √ 

__

 k  
  ). Hence

d(t) = 10 sin( √ 

__

 k  t).

Finally, the weight goes through a full oscillation as  √ 

__

 k  t increases from 0 to 2π. 
The time taken is t =   2π

 __ 
 √ 

__

 k  
  ,
 
the period of the oscillation.

E X E R C I S E S  6 . 6

 1. Find a solution f to each of the following 
differential equations satisfying the given 
boundary conditions.

 (a) f ′ - 3f = 0; f (1) = 2

 	(b) f ′ + f = 0; f (1) = 1

 (c) f � + 2f ′ - 15f = 0; f (1) = f (0) = 0

 	(d) f � + f ′ - 6f = 0; f (0) = 0, f (1) = 1

 (e) f � - 2f ′ + f = 0; f (1) = f (0) = 1

 	(f ) f � - 4f ′ + 4f = 0; f (0) = 2, f (-1) = 0

 (g) f � - 3af ′ + 2a2f = 0; a ≠ 0; f (0) = 0, 
f (1) = 1 - ea

 	(h) f � - a2f = 0, a ≠ 0; f (0) = 1, f (1) = 0

 (i) f � - 2f ′ + 5f = 0; f (0) = 1, f (  π __ 4  ) = 0

 	(j) f � + 4f ′ + 5f = 0; f (0) = 0, f (  π __ 2  ) = 1

 2. If the characteristic polynomial of 
f � + af ′ + bf = 0 has real roots, show that f = 0 
is the only solution satisfying f (0) = 0 = f (1).

 3. Complete the proof of Theorem 2. [Hint: If λ is 
a double root of x2 + ax + b, show that a = -2λ 

and b = λ2. Hence xeλx is a solution.]

 4. (a) Given the equation f ′ + af = b, (a ≠ 0), make 
the substitution f (x) = g(x) + b/a and obtain 
a differential equation for g. Then derive the 
general solution for f ′ + af = b.

 	(b) Find the general solution to f ′ + f = 2.

 5. Consider the differential equation 
f � + af ′ + bf = g, where g is some fixed function. 
Assume that f0 is one solution of this equation.

 (a) Show that the general solution is 
cf1 + df2 + f0, where c and d are constants and 
{f1, f2} is any basis for the solutions to 
f � + af ′ + bf = 0.

 	(b) Find a solution to 
f � + f ′- 6f = 2x3 - x2 - 2x. 
[Hint: Try f (x) =   -1 __ 3  x

3.]

 6. A radioactive element decays at a rate 
proportional to the amount present. Suppose 
an initial mass of 10 grams decays to 8 grams 
in 3 hours.

 (a) Find the mass t hours later.

 	(b) Find the half-life of the element—the time it 
takes to decay to half its mass.
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 7. The population N(t) of a region at time t 
increases at a rate proportional to the population. 
If the population doubles in 5 years and is 
3 million initially, find N(t).

 	8. Consider a spring, as in Example 4. If the period 
of the oscillation is 30 seconds, find the spring 
constant k.

 9. As a pendulum swings (see the diagram), let t 
measure the time since it was vertical. The angle 
θ = θ(t) from the vertical can be shown to satisfy 
the equation θ� + kθ = 0, provided that θ is 
small. If the maximal angle is θ = 0.05 radians, 
find θ(t) in terms of k. If the period is 
0.5 seconds, find k. [Assume that θ = 0 
when t = 0.]

θ

S U P P L E M E N TA R Y  E X E R C I S E S  F O R  C H A P T E R  6

 1. (Requires calculus) Let V denote the space of 
all functions f : � → � for which the derivatives 
f ′ and f � exist. Show that f1, f2, and f3 in V 
are linearly independent provided that their 
wronskian w(x) is nonzero for some x, where

w(x) = det   S    
f1(x) f2(x) f3(x)

  
     

  f ′1(x) f ′2(x) f ′3(x)         
f �1(x) f �2(x) f �3(x)

   T 
 2. Let {v1, v2, …, vn} be a basis of �n (written as 

columns), and let A be an n × n matrix.

 (a) If A is invertible, show that 
{Av1, Av2, …, Avn} is a basis of �n.

 	(b) If {Av1, Av2, …, Avn} is a basis of �n, show 
that A is invertible.

 3. If A is an m × n matrix, show that A has rank m 
if and only if col A contains every column of Im.

 	4. Show that null A = null(ATA) for any real 
matrix A.

 5. Let A be an m × n matrix of rank r. Show that 
dim(null A) = n - r (Theorem 3 Section 5.4) as 
follows. Choose a basis {x1, …, xk} of null A and 
extend it to a basis {x1, …, xk, z1, …, zm} of �n. 
Show that {Az1, …, Azm} is a basis of col A.
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Linear Tran sformations

7
If V and W are vector spaces, a function T : V → W is a rule that assigns to each 
vector v in V a uniquely determined vector T(v) in W. As mentioned in Section 2.2, 
two functions S : V → W and T : V → W are equal if S(v) = T(v) for every v in V. 
A function T : V → W is called a linear transformation if T(v + v1) = T(v) + T(v1) 
for all v, v1 in V and T(rv) = rT(v) for all v in V and all scalars r. T(v) is called the 
image of v under T. We have already studied linear transformations T : �n → �m 
and shown (in Section 2.6) that they all are given by multiplication by a uniquely 
determined m × n matrix A; that is, T(x) = Ax for all x in �n. In the case of linear 
operators �2 → �2, this yields an important way to describe geometric functions 
such as rotations about the origin and reflections in a line through the origin. 

In the present chapter we will describe linear transformations in general, 
introduce the kernel and image of a linear transformation, and prove a useful result 
(called the dimension theorem) that relates the dimensions of the kernel and image, 
and unifies and extends several earlier results. Finally we study the notion of 
isomorphic vector spaces, that is, spaces that are identical except for notation, and 
relate this to composition of transformations that was introduced in Section 2.3. 

Examples and Elementary Properties 

If V and W are two vector spaces, a function T : V → W is called a linear 
transformation if it satisfies the following axioms.

T1. T(v + v1) = T(v) + T(v1) for all v and v1 in V.
T2. T(rv) = rT(v)  for all v in V and r in �.

A linear transformation T : V → V is called a linear operator on V. The situation can 
be visualized as in the diagram.

Axiom T1 is just the requirement that T preserves vector addition. It asserts that 
the result T(v + v1) of adding v and v1 first and then applying T is the same as 
applying T first to get T(v) and T(v1) and then adding. Similarly, axiom T2 means 
that T preserves scalar multiplication. Note that, even though the additions in axiom 
T1 are both denoted by the same symbol +, the addition on the left forming v + v1 
is carried out in V, whereas the addition T(v) + T(v1) is done in W. Similarly, 
the scalar multiplications rv and rT(v) in axiom T2 refer to the spaces V and W, 
respectively. 

S E C T I O N  7 . 1

Definition 7.1
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We have already seen many examples of linear transformations T : �n → �m. In 
fact, writing vectors in �n as columns, Theorem 2 Section 2.6 shows that, for each 
such T, there is an m × n matrix A such that T(x) = Ax for every x in �n. Moreover, 
the matrix A is given by A = [T(e1) T(e2) � T(en)] where {e1, e2, …, en} is the 
standard basis of �n. We denote this transformation by TA : �n → �m, defined by

TA(x) = Ax for all x in �n. 

Example 1 lists three important linear transformations that will be referred to 
later. The verification of axioms T1 and T2 is left to the reader.

EXAMPLE 1

If V and W are vector spaces, the following are linear transformations: 
Identity operator V → V 1V : V → V where 1V(v) = v for all v in V
Zero transformation V → W  0 : V → W where 0(v) = 0 for all v in V
Scalar operator V → V  a : V → V where a(v) = av for all v in V
   (Here a is any real number.)

The symbol 0 will be used to denote the zero transformation from V to W for 
any spaces V and W. It was also used earlier to denote the zero function [a, b] → �.

The next example gives two important transformations of matrices. Recall that 
the trace tr A of an n × n matrix A is the sum of the entries on the main diagonal.

EXAMPLE 2

Show that the transposition and trace are linear transformations. More 
precisely,

 R : Mmn → Mnm where R(A) = AT for all A in Mmn

 S : Mmn → � where S(A) = tr A for all A in Mnn

are both linear transformations.

Solution ► Axioms T1 and T2 for transposition are (A + B)T = AT + BT and 
(rA)T = r(AT), respectively (using Theorem 2 Section 2.1). The verifications for 
the trace are left to the reader.

EXAMPLE 3

If a is a scalar, define Ea : Pn → � by Ea(p) = p(a) for each polynomial p in Pn. 
Show that Ea is a linear transformation (called evaluation at a).

Solution ► If p and q are polynomials and r is in �, we use the fact that the sum 
p + q and scalar product rp are defined as for functions: 

(p + q)(x) = p(x) + q(x) and (rp)(x) = rp(x)

for all x. Hence, for all p and q in Pn and all r in �:
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 Ea(p + q) = (p + q)(a) = p(a) + q(a) = Ea(p) + Ea(q), and
 Ea(rp) = (rp)(a) = rp(a) = rEa(p).

Hence Ea is a linear transformation.

The next example involves some calculus.

EXAMPLE 4

Show that the differentiation and integration operations on Pn are linear 
transformations. More precisely,

 D : Pn → Pn-1 where D[ p(x)] = p′(x) for all p(x) in Pn

     I : Pn → Pn+1 where I[ p(x)] =  ∫ 0   
x  p(t)dt  for all p(x) in Pn

are linear transformations.

Solution ► These restate the following fundamental properties of differentiation 
and integration.

[ p(x) + q(x)]′ = p′(x) + q′(x) and [rp(x)]′ = (rp)′(x)

 ∫ 0   
x  [ p(t) + q(t)]dt  =  ∫ 0   

x  p(t)dt  +  ∫ 0   
x  q(t)dt  and  ∫ 0   

x rp(t)dt  = r ∫ 0   
x  p(t)dt 

The next theorem collects three useful properties of all linear transformations. 
They can be described by saying that, in addition to preserving addition and scalar 
multiplication (these are the axioms), linear transformations preserve the zero 
vector, negatives, and linear combinations.

Theorem 1

Let T : V → W be a linear transformation.
1. T(0) = 0.
2. T(-v) = -T(v) for all v in V.
3. T(r1v1 + r2v2 + � + rkvk) = r1T(v1) + r2T(v2) + � + rkT(vk) for all vi in V 

and all ri in �.

PROOF

 1. T(0) = T(0v) = 0T(v) = 0 for any v in V.

 2. T(-v) = T [(-1)v] = (-1)T(v) = -T(v) for any v in V.

 3. The proof of Theorem 1 Section 2.6 goes through.

The ability to use the last part of Theorem 1 effectively is vital to obtaining the 
benefits of linear transformations. Example 5 and Theorem 2 provide illustrations.
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EXAMPLE 5

Let T : V → W be a linear transformation. If T(v - 3v1) = w and 
T(2v - v1) = w1, find T(v) and T(v1) in terms of w and w1.

Solution ► The given relations imply that

T(v) - 3T(v1) = w
2T(v) - T(v1) = w1 

by Theorem 1. Subtracting twice the first from the second gives 
T(v1) =   1 _ 5  (w1 - 2w). Then substitution gives T(v) =   1 _ 5  (3w1 - w).

The full effect of property (3) in Theorem 1 is this: If T : V → W is a linear 
transformation and T(v1), T(v2), …, T(vn) are known, then T(v) can be computed 
for every vector v in span{v1, v2, …, vn}. In particular, if {v1, v2, …, vn} spans V, then 
T(v) is determined for all v in V by the choice of T(v1), T(v2), …, T(vn). The next 
theorem states this somewhat differently. As for functions in general, two linear 
transformations T : V → W and S : V → W are called equal (written T = S) if they 
have the same action; that is, if T(v) = S(v) for all v in V.

Theorem 2

Let T : V → W and S : V → W be two linear transformations. Suppose that 
V = span{v1, v2, …, vn}. If T(vi) = S(vi) for each i, then T = S.

PROOF

If v is any vector in V = span{v1, v2, …, vn}, write v = a1v1 + a2v2 + � + anvn 
where each ai is in �. Since T(vi) = S(vi) for each i, Theorem 1 gives

T(v)  = T(a1v1 + a2v2 + � + anvn)
= a1T(v1) + a2T(v2) + � + anT(vn)
= a1S(v1) + a2S(v2) + � + anS(vn)
= S(a1v1 + a2v2 + � + anvn)
= S(v).

Since v was arbitrary in V, this shows that T = S.

EXAMPLE 6

Let V = span{v1, …, vn}. Let T : V → W be a linear transformation. If
T(v1) = � = T(vn) = 0, show that T = 0, the zero transformation from 
V to W.

Solution ► The zero transformation 0 : V → W is defined by 0(v) = 0 for all v 
in V (Example 1), so T(vi) = 0(vi) holds for each i. Hence T = 0 by Theorem 2.

Theorem 2 can be expressed as follows: If we know what a linear transformation 
T : V → W does to each vector in a spanning set for V, then we know what T does 
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to every vector in V. If the spanning set is a basis, we can say much more.

Theorem 3

Let V and W be vector spaces and let {b1, b2, …, bn} be a basis of V. Given any 
vectors w1, w2, …, wn in W (they need not be distinct), there exists a unique linear 
transformation T : V → W satisfying T(bi) = wi for each i = 1, 2, …, n. In fact, the 
action of T is as follows: 
Given v = v1b1 + v2b2 + � + vnbn in V, vi in �, then

T(v) = T(v1b1 + v2b2 + � + vnbn) = v1w1 + v2w2 + � + vnwn.

PROOF

If a transformation T does exist with T(bi) = wi for each i, and if S is any other 
such transformation, then T(bi) = wi = S(bi) holds for each i, so S = T by 
Theorem 2. Hence T is unique if it exists, and it remains to show that there 
really is such a linear transformation. Given v in V, we must specify T(v) in 
W. Because {b1, …, bn} is a basis of V, we have v = v1b1 + � + vnbn, where 
v1, …, vn are uniquely determined by v (this is Theorem 1 Section 6.3). Hence 
we may define T : V → W by 

T(v) = T(v1b1 + v2b2 + � + vnbn) = v1w1 + v2w2 + � + vnwn

for all v = v1b1 + � + vnbn in V. This satisfies T(bi) = wi for each i; the 
verification that T is linear is left to the reader.

This theorem shows that linear transformations can be defined almost at will: 
Simply specify where the basis vectors go, and the rest of the action is dictated 
by the linearity. Moreover, Theorem 2 shows that deciding whether two linear 
transformations are equal comes down to determining whether they have the same 
effect on the basis vectors. So, given a basis {b1, …, bn} of a vector space V, there is a 
different linear transformation V → W for every ordered selection w1, w2, …, wn of 
vectors in W (not necessarily distinct).

EXAMPLE 7

Find a linear transformation T : P2 → M22 such that 

T(1 + x) =   S  1 0    
0 0

  T  , T(x + x2) =   S  0 1    
1 0

  T  , and T(1 + x2) =   S  0 0    
0 1

  T .
Solution ► The set {1 + x, x + x2, 1 + x2} is a basis of P2, so every vector 
p = a + bx + cx2 in P2 is a linear combination of these vectors. In fact 

p(x) =   1 _ 2  (a + b - c)(1 + x) +   1 _ 2  (-a + b + c)(x + x2) +   1 _ 2  (a - b + c)(1 + x2)

Hence Theorem 3 gives

T [p(x)]  =   1 _ 2  (a + b - c)  S  1 0    
0 0

  T  +   1 _ 2  (-a + b + c)  S  0 1    
1 0

  T  +   1 _ 2  (a - b + c)  S  0 0    
0 1

  T 
=   1 _ 2     S   a + b - c -a + b + c

              
-a + b + c   a - b + c 

  T 
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E X E R C I S E S  7 . 1

 1. Show that each of the following functions is a 
linear transformation.

 (a) T : �2 → �2; T(x, y) = (x, -y) (reflection in 
the x axis)

 �(b) T : �3 → �3; T(x, y, z) = (x, y, -z) 
(reflection in the x-y plane)

 (c) T : 	 → 	; T(z) =  
__

 z   (conjugation)

 �(d) T : Mmn → Mkl; T(A) = PAQ, P a k × m 
matrix, Q an n × l matrix, both fixed

 (e) T : Mnn → Mnn; T(A) = AT + A

 �(f ) T : Pn → �; T [ p(x)] = p(0) 

 (g) T : Pn → �; T(r0 + r1x + � + rnx
n) = rn

 �(h) T : �n → �; T(x) = x · z, z a fixed vector in 
�

n

 (i) T : Pn → Pn; T [ p(x)] = p(x + 1)

 �(j) T : �n → V; T(r1, �, rn) = r1e1 + � + rnen 
where {e1, …, en} is a fixed basis of V.

 (k) T : V → �; T(r1e1 + � + rnen) = r1, where 
{e1, …, en} is a fixed basis of V

 2. In each case, show that T is not a linear 
transformation.

 (a) T : Mnn → �; T(A) = det A

 �(b) T : Mnm → �; T(A) = rank A

 (c) T : � → �; T(x) = x2

 �(d) T : V → V; T(v) = v + u where u ≠ 0 is a 
fixed vector in V (T is called the translation 
by u)

 3. In each case, assume that T is a linear 
transformation.

 (a) If T : V → � and T(v1) = 1, T(v2) = -1, find 
T(3v1 - 5v2).

 �(b) If T : V → � and T(v1) = 2, T(v2) = -3, find 
T(3v1 + 2v2).

 (c) If T : �2 → �2 and 

T   S  1   
3

  T  =   S  1   
1

  T  , T   S  1   
1

  T  =   S  0   
1

  T  , find T   S  -1   
3

  T .

 �(d) If T : �2 → �2 and T   S   1   
-1

  T  =   S  0   
1

  T  , T   S  1   
1

  T  =   S  1   
0

  T  , 
find T   S   1   

-7
  T .

 (e) If T : P2 → P2 and T(x + 1) = x, 
T(x - 1) = 1, T(x2) = 0, find T(2 + 3x - x2 ).

 �(f ) If T : P2 → � and T(x + 2) = 1, T(1) = 5, 
T(x2 + x) = 0, find T(2 - x + 3x2).

 4. In each case, find a linear transformation with 
the given properties and compute T(v).

 (a) T : �2 → �3; T(1, 2) = (1, 0, 1), 
T(-1, 0) = (0, 1, 1); v = (2, 1)

 �(b) T : �2 → �3; T(2, -1) = (1, -1, 1), 
T(1, 1) = (0, 1, 0); v = (-1, 2)

 (c) T : P2 → P3; T(x2) = x3, T(x + 1) = 0, 
T(x - 1) = x; v = x2 + x + 1

 �(d) T : M22 → �; T   S  1 0    
0 0

  T  = 3, T   S  0 1    
1 0

  T  = -1, 

  T   S  1 0    
1 0

  T  = 0 = T   S  0 0    
0 1

  T ; v =   S  a b
   

c d
  T 

 5. If T : V → V is a linear transformation, find T(v) 
and T(w) if: 

 (a) T(v + w) = v - 2w and T(2v - w) = 2v

 �(b) T(v + 2w) = 3v - w and 
T(v - w) = 2v - 4w

 6. If T : V → W is a linear transformation, show 
that T(v - v1) = T(v) - T(v1) for all v and v1 
in V.

 7. Let {e1, e2} be the standard basis of �2. Is it 
possible to have a linear transformation T 
such that T(e1) lies in � while T(e2) lies in �2? 
Explain your answer.

 8. Let {v1, …, vn} be a basis of V and let T : V → V 
be a linear transformation.

 (a) If T(vi) = vi for each i, show that T = 1V.

 �(b) If T(vi) = -vi for each i, show that T = -1 is 
the scalar operator (see Example 1).

 9. If A is an m × n matrix, let Ck(A) denote column 
k of A. Show that Ck : Mmn → �m is a linear 
transformation for each k = 1, …, n.

 10. Let {e1, …, en} be a basis of �n. Given 
k, 1 ≤ k ≤ n, define Pk : �

n → �n by 
Pk(r1e1 + � + rnen) = rkek. Show that 
Pk a linear transformation for each k.
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 11. Let S : V → W and T : V → W be linear 
transformations. Given a in �, define functions 
(S + T ) : V → W and (aT ) : V → W by 
(S + T )(v) = S(v) + T(v) and (aT )(v) = aT(v) 
for all v in V. Show that S + T and aT are linear 
transformations.

 �12. Describe all linear transformations T : � → V.

 13. Let V and W be vector spaces, let V be finite 
dimensional, and let v ≠ 0 in V. Given any w in 
W, show that there exists a linear transformation 
T : V → W with T(v) = w. [Hint: Theorem 1(2) 
Section 6.4 and Theorem 3.]

 14. Given y in �n, define Sy : �
n → � by 

Sy(x) = x · y for all x in �n (where · is the 
dot product introduced in Section 5.3).

 (a) Show that Sy : �
n → � is a linear 

transformation for any y in �n.

 (b) Show that every linear transformation 
T : �n → � arises in this way; that is, T = Sy 
for some y in �n. [Hint: If {e1, …, en} is the 
standard basis of �n, write Sy(ei) = yi for each 
i. Use Theorem 1.] 

 15. Let T : V → W be a linear transformation.

 (a) If U is a subspace of V, show that 
T(U ) = {T(u) | u in U} is a subspace of W 
(called the image of U under T ).

 �(b) If P is a subspace of W, show that 
{v in V | T(v) in P} is a subspace of V 
(called the preimage of P under T ).

 16. Show that differentiation is the only linear 
transformation Pn → Pn that satisfies 
T(xk) = kxk-1 for each k = 0, 1, 2, …, n.

 17. Let T : V → W be a linear transformation and 
let v1, …, vn denote vectors in V.

 (a) If {T(v1), …, T(vn)} is linearly independent, 
show that {v1, …, vn} is also independent.

 (b) Find T : �2 → �2 for which the converse 
of part (a) is false.

 �18. Suppose T : V → V is a linear operator with the 
property that T [T(v)] = v for all v in V. (For 
example, transposition in Mnn or conjugation 
in 	.) If v ≠ 0 in V, show that {v, T(v)} is 
linearly independent if and only if T(v) ≠ v and 
T(v) ≠ -v.

 19. If a and b are real numbers, define Ta,b : 	 → 	 
by Ta,b(r + si) = ra + sbi for all r + si in 	.

 (a) Show that Ta,b is linear and Ta,b( 
__

 z  ) =  
______

 Ta,b(z)   
for all z in 	. (Here  

__
 z   denotes the conjugate 

of z.)

 (b) If T : 	 → 	 is linear and T( 
__

 z  ) =  
____

 T(z)   
for all z in 	, show that T = Ta,b for 
some real a and b.

 20. Show that the following conditions are 
equivalent for a linear transformation 
T : M22 → M22.

 (1) tr[T(A)] = tr A for all A in M22.

 (2) T   S  r11 r12    
r21 r22

  T  = r11B11 + r12B12 + r21B21 + r22B22 

for matrices Bij such that 
tr B11 = 1 = tr B22 and tr B12 = 0 = tr B21.

 21. Given a in �, consider the evaluation map 
Ea : Pn → � defined in Example 3.

 (a) Show that Ea is a linear transformation 
satisfying the additional condition that 
Ea(x

k) = [Ea(x)]k holds for all k = 0, 1, 2, …. 
[Note: x0 = 1.]

 �(b) If T : Pn → � is a linear transformation 
satisfying T(xk) = [T(x)]k for all 
k = 0, 1, 2, …, show that T = Ea for 
some a in R.

 22. If T : Mnn → � is any linear transformation 
satisfying T(AB) = T(BA) for all A and B in 
Mnn, show that there exists a number k such that 
T(A) = k tr A for all A. (See Lemma 1 Section 
5.5.) [Hint: Let Eij denote the n × n matrix with 
1 in the (i, j) position and zeros elsewhere. 

  Show that EikElj = e   0 if k ≠ l
      

Eij if k = l
 . . Use this 

to show that T(Eij) = 0 if i ≠ j and 
T(E11) = T(E22) = � = T(Enn). Put 
k = T(E11) and use the fact that 
{Eij | 1 ≤ i, j ≤ n} is a basis of Mnn.]

 23. Let T : 	 → 	 be a linear transformation of the 
real vector space 	, and assume that T(a) = a for 
every real number a. Show that the following are 
equivalent: 

 (a) T(zw) = T(z)T(w) for all z and w in 	.

 (b) Either T = 1	 or T(z) =  
__

 z   for each z in 	 
(where  

__
 z   denotes the conjugate). 
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Kernel and Image of a Linear Transformation
This section is devoted to two important subspaces associated with a linear 
transformation T : V → W. 

The kernel of T (denoted ker T) and the image of T (denoted im T or T(V )) are 
defined by 

 ker T = {v in V | T(v) = 0}
 im T = {T(v) | v in V} = T(V )

The kernel of T is often called the nullspace of T. It consists of all vectors v in V 
satisfying the condition that T(v) = 0. The image of T is often called the range of 
T and consists of all vectors w in W of the form w = T(v) for some v in V. These 
subspaces are depicted in the diagrams.

EXAMPLE 1

Let TA : �n → �m be the linear transformation induced by the m × n matrix A, 
that is TA(x) = Ax for all columns x in �n. Then 

ker TA = {x | Ax = 0} = null A and im TA = {Ax | x in �n} = im A

Hence the following theorem extends Example 2 Section 5.1.

Theorem 1

Let T : V → W be a linear transformation. 
1. ker T is a subspace of V.

2. im T is a subspace of W.

PROOF

The fact that T(0) = 0 shows that ker T and im T contain the zero vector of V 
and W respectively. 

 1. If v and v1 lie in ker T, then T(v) = 0 = T(v1), so

 T(v + v1) = T(v) + T(v1) = 0 + 0 = 0
 T(rv) = rT(v) = r0 = 0 for all r in �

  Hence v + v1 and rv lie in ker T (they satisfy the required condition), so 
ker T is a subspace of V by the subspace test (Theorem 1 Section 6.2). 

 2. If w and w1 lie in im T, write w = T(v) and w1 = T(v1) where v, v1 ∈ V. Then 

 w + w1 = T(v) + T(v1) = T(v + v1)
 rw = rT(v) = T(rv) for all r in �

  Hence w + w1 and rw both lie in im T (they have the required form), so 
im T is a subspace of W.

S E C T I O N  7 . 2

Definition 7.2

ker T

im T 

T

T 

V 

V 

W 

W 

0 
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Given a linear transformation T : V → W: 

dim(ker T ) is called the nullity of T and denoted as nullity(T )

dim(im T ) is called the rank of T and denoted as rank(T )

The rank of a matrix A was defined earlier to be the dimension of col A, the column 
space of A. The two usages of the word rank are consistent in the following sense. 
Recall the definition of TA in Example 1.

EXAMPLE 2

Given an m × n matrix A, show that im TA = col A, so rank TA = rank A.

Solution ► Write A = [c1 � cn] in terms of its columns. Then

im TA = {Ax | x in �n} = {x1c1 + � + xncn | xi in �}

using Definition 2.5. Hence im TA is the column space of A; the rest follows.

Often, a useful way to study a subspace of a vector space is to exhibit it as the 
kernel or image of a linear transformation. Here is an example.

EXAMPLE 3

Define a transformation P : Mnn → Mnn by P(A) = A - AT for all A in Mnn. 
Show that P is linear and that: 

(a) ker P consists of all symmetric matrices.

(b) im P consists of all skew-symmetric matrices.

Solution ► The verification that P is linear is left to the reader. To prove part 
(a), note that a matrix A lies in ker P just when 0 = P(A) = A - AT, and this 
occurs if and only if A = AT—that is, A is symmetric. Turning to part (b), 
the space im P consists of all matrices P(A), A in Mnn. Every such matrix is 
skew-symmetric because

P(A)T = (A - AT)T = AT - A = -P(A)

On the other hand, if S is skew-symmetric (that is, ST = -S), then S lies in 
im P. In fact,

P[  1 _ 2  S] =   1 _ 2  S - [  1 _ 2  S]T =   1 _ 2  (S - ST) =   1 _ 2  (S + S) = S.

One-to-One and Onto Transformations

Let T : V → W be a linear transformation.
1. T is said to be onto if im T = W.
2. T is said to be one-to-one if T(v) = T(v1) implies v = v1.

Definition 7.3
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A vector w in W is said to be hit by T if w = T(v) for some v in V. Then T is 
onto if every vector in W is hit at least once, and T is one-to-one if no element 
of W gets hit twice. Clearly the onto transformations T are those for which 
im T = W is as large a subspace of W as possible. By contrast, Theorem 2 shows 
that the one-to-one transformations T are the ones with ker T as small a subspace 
of V as possible.

Theorem 2

If T : V → W is a linear transformation, then T is one-to-one if and only if 
ker T = {0}.

PROOF

If T is one-to-one, let v be any vector in ker T. Then T(v) = 0, so T(v) = T(0). 
Hence v = 0 because T is one-to-one. Hence ker T = {0}.

Conversely, assume that ker T = {0} and let T(v) = T(v1) with v and v1 in V. 
Then T(v - v1) = T(v) - T(v1) = 0, so v - v1 lies in ker T = {0}. This means 
that v - v1 = 0, so v = v1, proving that T is one-to-one.

EXAMPLE 4

The identity transformation 1V : V → V is both one-to-one and onto for any 
vector space V.

EXAMPLE 5

Consider the linear transformations 

S : �3 → �2 given by S(x, y, z) = (x + y, x - y)
T : �2 → �3 given by T(x, y) = (x + y, x - y, x)

Show that T is one-to-one but not onto, whereas S is onto but not one-to-one.

Solution ► The verification that they are linear is omitted. T is one-to-one 
because 

ker T = {(x, y) | x + y = x - y = x = 0} = {(0, 0)}

However, it is not onto. For example (0, 0, 1) does not lie in im T because 
if (0, 0, 1) = (x + y, x - y, x) for some x and y, then x + y = 0 = x - y and 
x = 1, an impossibility. Turning to S, it is not one-to-one by Theorem 2 
because (0, 0, 1) lies in ker S. But every element (s, t) in �2 lies in im S 
because (s, t) = (x + y, x - y) = S(x, y, z) for some x, y, and z (in fact, 
x =   1 _ 2  (s + t), y =   1 _ 2  (s - t), and z = 0. Hence S is onto.
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EXAMPLE 6

Let U be an invertible m × m matrix and define

T : Mmn → Mmn by T(X) = UX for all X in Mmn

Show that T is a linear transformation that is both one-to-one and onto.

Solution ► The verification that T is linear is left to the reader. To see that T 
is one-to-one, let T(X) = 0. Then UX = 0, so left-multiplication by U -1 gives 
X = 0. Hence ker T = {0}, so T is one-to-one. Finally, if Y is any member of 
Mmn, then U -1Y lies in Mmn too, and T(U -1Y) = U(U -1Y) = Y. This shows 
that T is onto.

The linear transformations �n → �m all have the form TA for some m × n 
matrix A (Theorem 2 Section 2.6). The next theorem gives conditions under 
which they are onto or one-to-one. Note the connection with Theorems 3 and 4 
in Section 5.4.

Theorem 3

Let A be an m × n matrix, and let TA : �n → �m be the linear transformation induced 
by A, that is TA(x) = Ax for all columns x in �n.

1. TA is onto if and only if rank A = m.
2. TA is one-to-one if and only if rank A = n.

PROOF

 1. We have that im TA is the column space of A (see Example 2), so TA is onto 
if and only if the column space of A is �m. Because the rank of A is the 
dimension of the column space, this holds if and only if rank A = m.

 2. ker TA = {x in �n | Ax = 0}, so (using Theorem 2) TA is one-to-one if and 
only if Ax = 0 implies x = 0. This is equivalent to rank A = n by Theorem 3 
Section 5.4.

The Dimension Theorem
Let A denote an m × n matrix of rank r and let TA : �n → �m denote the 
corresponding matrix transformation given by TA(x) = Ax for all columns x in �n. It 
follows from Examples 1 and 2 that im TA = col A, so dim(im TA) = dim(col A) = r. 
But Theorem 2 Section 5.4 shows that dim(ker TA) = dim(null A) = n - r. 
Combining these we see that 

dim(im TA) + dim(ker TA) = n for every m × n matrix A.

The main result of this section is a deep generalization of this observation.
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Theorem 4

Dimension Theorem
Let T : V → W be any linear transformation and assume that ker T and im T are both 
finite dimensional. Then V is also finite dimensional and

dim V = dim(ker T ) + dim(im T )

In other words, dim V = nullity(T ) + rank(T ).

PROOF

Every vector in im T = T(V ) has the form T(v) for some v in V. Hence let 
{T(e1), T(e2), …, T(er)} be a basis of im T, where the ei lie in V. Let {f1, f2, …, fk} 
be any basis of ker T. Then dim(im T ) = r and dim(ker T ) = k, so it suffices to 
show that B = {e1, …, er, f1, …, fk} is a basis of V.

 1. B spans V. If v lies in V, then T(v) lies in im V, so

T(v) = t1T(e1) + t2T(e2) + � + trT(er) ti in �

  This implies that v - t1e1 - t2e2 - � - trer lies in ker T and so is a linear 
combination of f1, …, fk. Hence v is a linear combination of the vectors in B.

 2. B is linearly independent. Suppose that ti and sj in � satisfy

 t1e1 + � + trer + s1f1 + � + skfk = 0 (∗)

  Applying T gives t1T(e1) + � + trT(er) = 0 (because T(fi) = 0 for each i). 
Hence the independence of {T(e1), …, T(er)} yields t1 = � = tr = 0. But 
then (∗) becomes

s1f1 + � + skfk = 0

  so s1 = � = sk = 0 by the independence of {f1, …, fk}. This proves that B is 
linearly independent.

Note that the vector space V is not assumed to be finite dimensional in Theorem 4. 
In fact, verifying that ker T and im T are both finite dimensional is often an 
important way to prove that V is finite dimensional.

Note further that r + k = n in the proof so, after relabelling, we end up with 
a basis

B = {e1, e2, …, er, er+1, …, en}

of V with the property that {er+1, …, en} is a basis of ker T and {T(e1), …, T(er)} is 
a basis of im T. In fact, if V is known in advance to be finite dimensional, then any 
basis {er+1, …, en} of ker T can be extended to a basis {e1, e2, …, er, er+1, …, en} 
of V by Theorem 1 Section 6.4. Moreover, it turns out that, no matter how this is 
done, the vectors {T(e1), …, T(er)} will be a basis of im T. This result is useful, and 
we record it for reference. The proof is much like that of Theorem 4 and is left as 
Exercise 26.
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Theorem 5

Let T : V → W be a linear transformation, and let {e1, …, er, er+1, …, en} be a basis of 
V such that {er+1, …, en} is a basis of ker T. Then {T(e1), …, T(er)} is a basis of im T, 
and hence r = rank T.

The dimension theorem is one of the most useful results in all of linear algebra. 
It shows that if either dim(ker T ) or dim(im T ) can be found, then the other is 
automatically known. In many cases it is easier to compute one than the other, so 
the theorem is a real asset. The rest of this section is devoted to illustrations of this 
fact. The next example uses the dimension theorem to give a different proof of the 
first part of Theorem 2 Section 5.4.

EXAMPLE 7

Let A be an m × n matrix of rank r. Show that the space null A of all solutions 
of the system Ax = 0 of m homogeneous equations in n variables has dimension 
n - r.

Solution ► The space in question is just ker TA, where TA : �n → �m is defined 
by TA(x) = Ax for all columns x in �n. But dim(im TA) = rank TA = rank A = r 
by Example 2, so dim(ker TA) = n - r by the dimension theorem.

EXAMPLE 8

If T : V → W is a linear transformation where V is finite dimensional, then

dim(ker T ) ≤ dim V and dim(im T ) ≤ dim V

Indeed, dim V = dim(ker T ) + dim(im T ) by Theorem 4. Of course, the first 
inequality also follows because ker T is a subspace of V.

EXAMPLE 9

Let D : Pn → Pn-1 be the differentiation map defined by D[ p(x)] = p′(x). 
Compute ker D and hence conclude that D is onto.

Solution ► Because p′(x) = 0 means p(x) is constant, we have dim(ker D) = 1. 
Since dim Pn = n + 1, the dimension theorem gives

dim(im D) = (n + 1) - dim(ker D) = n = dim(Pn-1)

This implies that im D = Pn-1, so D is onto.

Of course it is not difficult to verify directly that each polynomial q(x) in Pn-1 is 
the derivative of some polynomial in Pn (simply integrate q(x)!), so the dimension 
theorem is not needed in this case. However, in some situations it is difficult to see 
directly that a linear transformation is onto, and the method used in Example 9 may 
be by far the easiest way to prove it. Here is another illustration.
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EXAMPLE 10

Given a in �, the evaluation map Ea : Pn → � is given by Ea[ p(x)] = p(a).
Show that Ea is linear and onto, and hence conclude that 
{(x - a), (x - a)2, …, (x - a)n} is a basis of ker Ea, the subspace of all 
polynomials p(x) for which p(a) = 0.

Solution ► Ea is linear by Example 3 Section 7.1; the verification that 
it is onto is left to the reader. Hence dim(im Ea) = dim(�) = 1, so 
dim(ker Ea) = (n + 1) - 1 = n by the dimension theorem. Now each of 
the n polynomials (x - a), (x - a)2, …, (x - a)n clearly lies in ker Ea, and 
they are linearly independent (they have distinct degrees). Hence they are 
a basis because dim(ker Ea) = n.

We conclude by applying the dimension theorem to the rank of a matrix.

EXAMPLE 11

If A is any m × n matrix, show that rank A = rank ATA = rank AAT.

Solution ► It suffices to show that rank A = rank ATA (the rest follows by 
replacing A with AT). Write B = ATA, and consider the associated matrix 
transformations

TA : �n → �m and TB : �n → �n

The dimension theorem and Example 2 give

rank A = rank TA = dim(im TA) = n - dim(ker TA)
rank B = rank TB = dim(im TB) = n - dim(ker TB)

so it suffices to show that ker TA = ker TB. Now Ax = 0 implies that 
Bx = ATAx = 0, so ker TA is contained in ker TB. On the other hand, 
if Bx = 0, then ATAx = 0, so 

‖Ax‖
2 = (Ax)T(Ax) = xTATAx = xT0 = 0

This implies that Ax = 0, so ker TB is contained in ker TA.

E X E R C I S E S  7 . 2

 1. For each matrix A, find a basis for the kernel and 
image of TA, and find the rank and nullity of TA.

 (a) 
1 1 1

13
3

0
01 2

2
2

−

−
 �(b) 

2

2

1
1 0 3

3

1 1
1

1

4

−

−

 (c) 

1 1

1
13 2

4 5
0 22

2 −

−
−

 �(d) 

2

2

0
1 1

1
3

3
1

6
3

0

0
−

−
−

 2. In each case, (i) find a basis of ker T, and (ii) find 
a basis of im T. You may assume that T is linear.

 (a) T : P2 → �2; T(a + bx + cx2) = (a, b)

 �(b) T : P2 → �2; T(p(x)) = (p(0), p(1))

 (c) T : �3 → �3; T(x, y, z) = (x + y, x + y, 0)

 �(d) T : �3 → �4; T(x, y, z) = (x, x, y, y)

 (e) T : M22 → M22; T   S  a b
   

c d
  T  =   S   a + b b + c

      
c + d d + a

  T 
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 �(f ) T : M22 → �; T   S  a b
   

c d
  T  = a + d

 (g) T : Pn → �; T(r0 + r1x + � + rnx
n) = rn

 �(h) T : �n → �; 
T(r1, r2, …, rn) = r1 + r2 + � + rn

 (i) T : M22 → M22; T(X) = XA - AX, where 

A =   S  0 1    
1 0

  T 
 �(j) T : M22 → M22; T(X) = XA, where 

A =   S  1 1    
0 0

  T 
 3. Let P : V → � and Q : V → � be linear 

transformations, where V is a vector space. 
Define T : V → �2 by T(v) = (P(v), Q(v)).

 (a) Show that T is a linear transformation.

 �(b) Show that ker T = ker P ∩ ker Q, the set 
of vectors in both ker P and ker Q.

 4. In each case, find a basis 
B = {e1, …, er, er+1, …, en} of V such that 
{er+1, …, en} is a basis of ker T, and verify 
Theorem 5.

 (a) T : �3 → �4; T(x, y, z) = 
(x - y + 2z, x + y - z, 2x + z, 2y - 3z)

 �(b) T : �3 → �4; T(x, y, z) = 
(x + y + z, 2x - y + 3z, z - 3y, 3x + 4z)

 5. Show that every matrix X in Mnn has the 
form X = AT - 2A for some matrix A in Mnn. 
[Hint: The dimension theorem.]

 6. In each case either prove the statement or give 
an example in which it is false. Throughout, let 
T : V → W be a linear transformation where V 
and W are finite dimensional.

 (a) If V = W, then ker T ⊆ im T.

 �(b) If dim V = 5, dim W = 3, and 
dim(ker T ) = 2, then T is onto.

 (c) If dim V = 5 and dim W = 4, then 
ker T ≠ {0}.

 �(d) If ker T = V, then W = {0}.

 (e) If W = {0}, then ker T = V.

 �(f ) If W = V, and im T ⊆ ker T, then T = 0.

 (g) If {e1, e2, e3} is a basis of V and 
T(e1) = 0 = T(e2), then dim(im T ) ≤ 1.

 �(h) If dim(ker T ) ≤ dim W, then 
dim W ≥   1 _ 2   dim V. 

 (i) If T is one-to-one, then dim V ≤ dim W.

 �(j) If dim V ≤ dim W, then T is one-to-one.

 (k) If T is onto, then dim V ≥ dim W.

 �(l) If dim V ≥ dim W, then T is onto.

 (m) If {T(v1), …, T(vk)} is independent, then 
{v1, …, vk} is independent.

 �(n) If {v1, …, vk} spans V, then {T(v1), …, T(vk)} 
spans W.

 7. Show that linear independence is preserved by 
one-to-one transformations and that spanning 
sets are preserved by onto transformations. 
More precisely, if T : V → W is a linear 
transformation, show that:

 (a) If T is one-to-one and {v1, …, vn} is 
independent in V, then {T(v1), …, T(vn)} is 
independent in W.

 �(b) If T is onto and V = span{v1, …, vn}, then 
W = span{T(v1), …, T(vn)}.

 8. Given {v1, …, vn} in a vector space V, define 
T : �n → V by T(r1, …, rn) = r1v1 + � + rnvn. 
Show that T is linear, and that: 

 (a) T is one-to-one if and only if {v1, …, vn} is 
independent.

 �(b) T is onto if and only if V = span{v1, …, vn}.

 9. Let T : V → V be a linear transformation where 
V is finite dimensional. Show that exactly one of 
(i) and (ii) holds: (i) T(v) = 0 for some v ≠ 0 in 
V; (ii) T(x) = v has a solution x in V for every v 
in V.

 �10. Let T : Mnn → � denote the trace map: 
T(A) = tr A for all A in Mnn. Show that 
dim(ker T ) = n2 - 1.

 11. Show that the following are equivalent for a 
linear transformation T : V → W.

 (a) ker T = V (b) im T = {0}

 (c) T = 0

� 12. Let A and B be m × n and k × n matrices, 
respectively. Assume that Ax = 0 implies 
Bx = 0 for every n-column x. Show that 
rank A ≥ rank B. [Hint: Theorem 4.]
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 13. Let A be an m × n matrix of rank r. Thinking of 
�

n as rows, define V = {x in �m | xA = 0}. Show 
that dim V = m - r.

 14. Consider V =  U   S  a b
   

c d
  T  ` a + c = b + d V .

 (a) Consider S : M22 → � with 

S   S  a b
   

c d
  T  = a + c - b - d. Show that 

S is linear and onto and that V is a 
subspace of M22. Compute dim V.

 (b) Consider T : V → � with T   S  a b
   

c d
  T  = a + c. 

Show that T is linear and onto, and use this 
information to compute dim(ker T ).

 15. Define T : Pn → � by T [ p(x)] = the sum of all 
the coefficients of p(x).

 (a) Use the dimension theorem to show that 
dim(ker T ) = n.

 �(b) Conclude that {x - 1, x2 - 1, …, xn - 1} is a 
basis of ker T.

 16. Use the dimension theorem to prove Theorem 1 
Section 1.3: If A is an m × n matrix with m < n, 
the system Ax = 0 of m homogeneous equations 
in n variables always has a nontrivial solution.

 17. Let B be an n × n matrix, and consider the 
subspaces U = {A | A in Mmn, AB = 0} and 
V = {AB | A in Mmn}. Show that 
dim U + dim V = mn.

 18. Let U and V denote, respectively, the spaces 
of even and odd polynomials in Pn. Show that 
dim U + dim V = n + 1. [Hint: Consider 
T : Pn → Pn where T [ p(x)] = p(x) - p(-x).]

 19. Show that every polynomial f (x) in Pn-1 can 
be written as f (x) = p(x + 1) - p(x) for some 
polynomial p(x) in Pn. [Hint: Define 
T : Pn → Pn-1 by T [ p(x)] = p(x + 1) - p(x).]

 �20. Let U and V denote the spaces of symmetric 
and skew-symmetric n × n matrices. Show that 
dim U + dim V = n2.

 21. Assume that B in Mnn satisfies Bk = 0 for some 
k ≥ 1. Show that every matrix in Mnn has the 
form BA - A for some A in Mnn. [Hint: Show 
that T : Mnn → Mnn is linear and one-to-one 
where T(A) = BA - A for each A.]

 �22. Fix a column y ≠ 0 in �n and let 
U = {A in Mnn | Ay = 0}. Show that 
dim U = n(n - 1).

 23. If B in Mmn has rank r, let U = {A in Mnn | BA = 0} 
and W = {BA | A in Mnn}. Show that 
dim U = n(n - r) and dim W = nr. [Hint: Show 
that U consists of all matrices A whose columns 
are in the null space of B. Use Example 7.]

 24. Let T : V → V be a linear transformation where 
dim V = n. If ker T ∩ im T = {0}, show that 
every vector v in V can be written v = u + w for 
some u in ker T and w in im T. [Hint: Choose 
bases B ⊆ ker T and D ⊆ im T, and use Exercise 
33 Section 6.3.]

 25. Let T : �n → �n be a linear operator of rank 
1, where �n is written as rows. Show that there 
exist numbers a1, a2, …, an and b1, b2, …, bn such 
that T(X) = XA for all rows X in �n, where

A = 

a a a
a a a

a a a

b b b
b b b

b b b

n

n

n nn n

1 1

1

1

1 1

2 2 2

2

2

2

1

  [Hint: im T = �w for w = (b1, …, bn) in �n.]

 26. Prove Theorem 5.

 27. Let T : V → � be a nonzero linear 
transformation, where dim V = n. Show 
that there is a basis {e1, …, en} of V such 
that T(r1e1 + r2e2 + � + rnen) = r1.

 28. Let f ≠ 0 be a fixed polynomial of degree 
m ≥ 1. If p is any polynomial, recall that 
(p ◦ f )(x) = p[ f (x)]. Define Tf : Pn → Pn+m 
by Tf ( p) = p ◦ f

 (a) Show that Tf is linear.

 (b) Show that Tf is one-to-one.

 29. Let U be a subspace of a finite dimensional 
vector space V.

 (a) Show that U = ker T for some linear 
operator T : V → V.

 �(b) Show that U = im S for some linear operator 
S : V → V. [Hint: Theorems 1 Section 6.4 
and 3 Section 7.1.]
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 30. Let V and W be finite dimensional vector spaces.

 (a) Show that dim W ≤ dim V if and only if 
there exists an onto linear transformation 
T : V → W. [Hint: Theorems 1 Section 6.4 
and 3 Section 7.1.]

 (b) Show that dim W ≥ dim V if and 
only if there exists a one-to-one 
linear transformation T : V → W. 
[Hint: Theorems 1 Section 6.4 and 3 
Section 7.1.]

Isomorphisms and Composition
Often two vector spaces can consist of quite different types of vectors but, on 
closer examination, turn out to be the same underlying space displayed in different 
symbols. For example, consider the spaces

�
2 = {(a, b) | a, b ∈ �} and P1 = {a + bx | a, b ∈ �}.

Compare the addition and scalar multiplication in these spaces: 

 (a, b) + (a1, b1) = (a + a1, b + b1) (a + bx) + (a1 + b1x) = (a + a1) + (b1 + b1)x
 r(a, b) = (ra, rb) r(a + bx) = (ra) + (rb)x

Clearly these are the same vector space expressed in different notation: if we change 
each (a, b) in �2 to a + bx, then �2 becomes P1, complete with addition and scalar 
multiplication. This can be expressed by noting that the map (a, b) � a + bx is a 
linear transformation �2 → P1 that is both one-to-one and onto. In this form, we 
can describe the general situation.

A linear transformation T : V → W is called an isomorphism if it is both onto and 
one-to-one. The vector spaces V and W are said to be isomorphic if there exists an 
isomorphism T : V → W, and we write V � W when this is the case.

EXAMPLE 1

The identity transformation 1V : V → V is an isomorphism for any vector 
space V.

EXAMPLE 2

If T : Mmn → Mnm is defined by T(A) = AT for all A in Mmn, then T is an 
isomorphism (verfiy). Hence Mmn � Mnm.

EXAMPLE 3

Isomorphic spaces can “look” quite different. For example, M22 � P3 because 

the map T : M22 → P3 given by T   S  a b
   

c d
  T  = a + bx + cx2 + dx3 is an isomorphism 

(verify).

S E C T I O N  7 . 3

Definition 7.4
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The word isomorphism comes from two Greek roots: iso, meaning “same,” and 
morphos, meaning “form.” An isomorphism T : V → W induces a pairing

v ↔ T(v)

between vectors v in V and vectors T(v) in W that preserves vector addition and 
scalar multiplication. Hence, as far as their vector space properties are concerned, the 
spaces V and W are identical except for notation. Because addition and scalar 
multiplication in either space are completely determined by the same operations in 
the other space, all vector space properties of either space are completely determined 
by those of the other.

One of the most important examples of isomorphic spaces was considered in 
Chapter 4. Let A denote the set of all “arrows” with tail at the origin in space, and 
make A into a vector space using the parallelogram law and the scalar multiple law 
(see Section 4.1). Then define a transformation T : �3 → A by taking 

T   S   
x
 

 
 y   

z
   T  to be the arrow v from the origin to the point P(x, y, z).

In Section 4.1 matrix addition and scalar multiplication were shown to correspond 
to the parallelogram law and the scalar multiplication law for these arrows, so the 
map T is a linear transformation. Moreover T is an isomorphism: it is one-to-one 
by Theorem 2 Section 4.1, and it is onto because, given an arrow v in A with tip 

P(x, y, z), we have T   S   
x
 

 
 y   

z
   T  = v. This justifies the identification v =   S   

x
 

 
 y   

z
   T  in Chapter 4 of 

the geometric arrows with the algebraic matrices. This identification is very useful. 
The arrows give a “picture” of the matrices and so bring geometric intuition into 
�

3; the matrices are useful for detailed calculations and so bring analytic precision 
into geometry. This is one of the best examples of the power of an isomorphism to 
shed light on both spaces being considered. 

The following theorem gives a very useful characterization of isomorphisms: 
They are the linear transformations that preserve bases. 

Theorem 1

If V and W are finite dimensional spaces, the following conditions are equivalent for a 
linear transformation T : V → W.

1. T is an isomorphism.
2. If {e1, e2, …, en} is any basis of V, then {T(e1), T(e2), …, T(en)} is a basis of W.
3. There exists a basis {e1, e2, …, en} of V such that {T(e1), T(e2), …, T(en)} is a 

basis of W.

PROOF

(1) ⇒ (2). Let {e1, …, en} be a basis of V. If t1T(e1) + � + tnT(en) = 0 with ti in 
�, then T(t1e1 + � + tnen) = 0, so t1e1 + � + tnen = 0 (because ker T = {0}). 
But then each ti = 0 by the independence of the ei, so {T(e1), …, T(en)} is 
independent. To show that it spans W, choose w in W. Because T is onto, 
w = T(v) for some v in V, so write v = t1e1 + � + tnen. Then 
w = T(v) = t1T(e1) + � + tnT(en), proving that {T(e1), …, T(en)} spans W.
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(2) ⇒ (3). This is because V has a basis.

(3) ⇒ (1). If T(v) = 0, write v = v1e1 + � + vnen where each vi is in �. Then 
0 = T(v) = v1T(e1) + � + vnT(en), so v1 = � = vn = 0 by (3). Hence v = 0, so 
ker T = {0} and T is one-to-one. To show that T is onto, let w be any vector in 
W. By (3) there exist w1, …, wn in � such that

w = w1T(e1) + � + wnT(en) = T(w1e1 + � + wnen).

Thus T is onto.

Theorem 1 dovetails nicely with Theorem 3 Section 7.1 as follows. Let V and W 
be vector spaces of dimension n, and suppose that {e1, e2, …, en} and {f1, f2, …, fn} 
are bases of V and W, respectively. Theorem 3 Section 7.1 asserts that there exists a 
linear transformation T : V → W such that

T(ei) = fi for each i = 1, 2, …, n

Then {T(e1), …, T(en)} is evidently a basis of W, so T is an isomorphism by 
Theorem 1. Furthermore, the action of T is prescribed by

T(r1e1 + � + rnen) = r1f1 + � + rnfn

so isomorphisms between spaces of equal dimension can be easily defined as soon 
as bases are known. In particular, this shows that if two vector spaces V and W have 
the same dimension then they are isomorphic, that is V � W. This is half of the 
following theorem.

Theorem 2

If V and W are finite dimensional vector spaces, then V � W if and only if 
dim V = dim W.

PROOF

It remains to show that if V � W then dim V = dim W. But if V � W, then 
there exists an isomorphism T : V → W. Since V is finite dimensional, let 
{e1, …, en} be a basis of V. Then {T(e1), …, T(en)} is a basis of W by Theorem 1, 
so dim W = n = dim V.

Corollary 1

Let U, V, and W denote vector spaces. Then: 
1. V � V for every vector space V. 
2. If V � W then W � V.
3. If U � V and V � W, then U � W.

The proof is left to the reader. By virtue of these properties, the relation � is 
called an equivalence relation on the class of finite dimensional vector spaces. Since 
dim(�n) = n it follows that
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Corollary 2

If V is a vector space and dim V = n, then V is isomorphic to �n.

If V is a vector space of dimension n, note that there are important explicit 
isomorphisms V → �n. Fix a basis B = {b1, b2, …, bn} of V and write {e1, e2, …, en} 
for the standard basis of �n. By Theorem 3 Section 7.1 there is a unique linear 
transformation CB : V → �n given by 

CB(v1b1 + v2b2 + � + vnbn) = v1e1 + v2e2 + � + vnen =   S  
v1

 
 

 v2   
�
 
 

 
vn

  T  
where each vi is in �. Moreover, CB(bi) = ei for each i so CB is an isomorphism 
by Theorem 1, called the coordinate isomorphism corresponding to the basis B. 
These isomorphisms will play a central role in Chapter 9. 

The conclusion in the above corollary can be phrased as follows: As far as vector 
space properties are concerned, every n-dimensional vector space V is essentially 
the same as �n; they are the “same” vector space except for a change of symbols. 
This appears to make the process of abstraction seem less important—just study �n 
and be done with it! But consider the different “feel” of the spaces P8 and M33 even 
though they are both the “same” as �9: For example, vectors in P8 can have roots, 
while vectors in M33 can be multiplied. So the merit in the abstraction process lies 
in identifying common properties of the vector spaces in the various examples. This is 
important even for finite dimensional spaces. However, the payoff from abstraction 
is much greater in the infinite dimensional case, particularly for spaces of functions. 

EXAMPLE 4

Let V denote the space of all 2 × 2 symmetric matrices. Find an isomorphism 
T : P2 → V such that T(1) = I, where I is the 2 × 2 identity matrix

Solution ► {1, x, x2} is a basis of P2, and we want a basis of V containing I. 

The set  U   S  1 0    
0 1

  T  ,   S  0 1    
1 0

  T  ,   S  0 0    
0 1

  T  V  is independent in V, so it is a basis because 

dim V = 3 (by Example 11 Section 6.3). Hence define T : P2 → V by taking 

T(1) =   S  1 0    
0 1

  T  , T(x) =   S  0 1    
1 0

  T  , T(x2) =   S  0 0    
0 1

  T  , and extending linearly as in 

Theorem 3 Section 7.1. Then T is an isomorphism by Theorem 1, and its 

action is given by T(a + bx + cx2) = aT(1) + bT(x) + cT(x2) =   S   a   b  
     

b a + c
  T .

The dimension theorem (Theorem 4 Section 7.2) gives the following useful 
fact about isomorphisms.

Theorem 3

If V and W have the same dimension n, a linear transformation T : V → W is an 
isomorphism if it is either one-to-one or onto.
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PROOF

The dimension theorem asserts that dim(ker T ) + dim(im T ) = n, so 
dim(ker T ) = 0 if and only if dim(im T ) = n. Thus T is one-to-one if 
and only if T is onto, and the result follows.

Composition
Suppose that T : V → W and S : W → U are linear transformations. They link 
together as in the diagram so, as in Section 2.3, it is possible to define a new 
function V → U by first applying T and then S. 

Given linear transformations V →T  W →S  U, the composite ST : V → U of T and S is 
defined by 

ST(v) = S[T(v)] for all v in V.

The operation of forming the new function ST is called composition.1
1

The action of ST can be described compactly as follows: ST means first T then S.
Not all pairs of linear transformations can be composed. For example, if 

T : V → W and S : W → U are linear transformations then ST : V → U is defined, 
but TS cannot be formed unless U = V because S : W → U and T : V → W do not 
“link” in that order.2

Moreover, even if ST and TS can both be formed, they may not be equal. In fact, 
if S : �m → �n and T : �n → �m are induced by matrices A and B respectively, then 
ST and TS can both be formed (they are induced by AB and BA respectively), but 
the matrix products AB and BA may not be equal (they may not even be the same 
size). Here is another example.

EXAMPLE 5

Define: S : M22 → M22 and T : M22 → M22 by S   S   a b        
c d

   T  =   S   c d        
a b

   T  and 

T(A) = AT for A ∈ M22 Describe the action of ST and TS, and show 
that ST ≠ TS.

Solution ► ST   S   a b        
c d

   T  = S   S   a c        
b d

   T  =   S   b d        
a c

   T  , whereas TS   S   a b        
c d

   T  = T   S   c d        
a b

   T  =   S   c a        
d b

   T .

It is clear that TS   S   a b        
c d

   T  need not equal ST   S   a b        
c d

   T , so TS ≠ ST.

The next theorem collects some basic properties3 of the composition operation.

1 In Section 2.3 we denoted the composite as S ◦ T. However, it is more convenient to use the simpler notation ST.

2 Actually, all that is required is U ⊆ V.

3 Theorem 4 can be expressed by saying that vector spaces and linear transformations are an example of a category. In general 
a category consists of certain objects and, for any two objects X and Y, a set mor(X, Y). The elements α of mor(X, Y) are called 
morphisms from X to Y and are written α : X → Y. It is assumed that identity morphisms and composition are defined in such a way 
that Theorem 4 holds. Hence, in the category of vector spaces the objects are the vector spaces themselves and the morphisms are 
the linear transformations. Another example is the category of metric spaces, in which the objects are sets equipped with a distance 
function (called a metric), and the morphisms are continuous functions (with respect to the metric). The category of sets and 
functions is a very basic example.

Definition 7.5

T S 

V W U 
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Theorem 4

Let V   T
 - -- →     W   S

 - - →     U   R
 - - →     Z be linear transformations.

1. The composite ST is again a linear transformation.
2. T1V = T and 1WT = T.
3. (RS)T = R(ST ).

PROOF

The proofs of (1) and (2) are left as Exercise 25. To prove (3), observe that, for 
all v in V: 

{(RS)T}(v) = (RS)[T(v)] = R{S[T(v)]} = R{(ST)(v)} = {R(ST)}(v)

Up to this point, composition seems to have no connection with isomorphisms. 
In fact, the two notions are closely related.

Theorem 5

Let V and W be finite dimensional vector spaces. The following conditions are equivalent 
for a linear transformation T : V → W.

1. T is an isomorphism.
2. There exists a linear transformation S : W → V such that ST = 1V and 

TS = 1W.

Moreover, in this case S is also an isomorphism and is uniquely determined by T:

If w in W is written as w = T(v), then S(w) = v.

PROOF

(1) ⇒ (2). If B = {e1, …, en} is a basis of V, then D = {T(e1), …, T(en)} is a basis 
of W by Theorem 1. Hence (using Theorem 3 Section 7.1), define a linear 
transformation S : W → V by

 S[T(ei)] = ei for each i (∗)

Since ei = 1V(ei), this gives ST = 1V by Theorem 2 Section 7.1. But applying T 
gives T [S[T(ei)]] = T(ei) for each i, so TS = 1W (again by Theorem 2 Section 
7.1, using the basis D of W).

(2) ⇒ (1). If T(v) = T(v1), then S[T(v)] = S[T(v1)]. Because ST = 1V by (2), 
this reads v = v1; that is, T is one-to-one. Given w in W, the fact that TS = 1W 
means that w = T [S(w)], so T is onto.

Finally, S is uniquely determined by the condition ST = 1V because this 
condition implies (∗). S is an isomorphism because it carries the basis D to B. 
As to the last assertion, given w in W, write w = r1T(e1) + � + rnT(en). Then 
w = T(v), where v = r1e1 + � + rnen. Then S(w) = v by (∗).
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Given an isomorphism T : V → W, the unique isomorphism S : W → V satisfying 
condition (2) of Theorem 5 is called the inverse of T and is denoted by T -1. Hence 
T : V → W and T -1 : W → V are related by the fundamental identities: 

T -1[T(v)] = v for all v in V and T [T -1(w)] = w for all w in W

In other words, each of T and T -1 reverses the action of the other. In particular, 
equation (∗) in the proof of Theorem 5 shows how to define T -1 using the image 
of a basis under the isomorphism T. Here is an example.

EXAMPLE 6

Define T : P1 → P1 by T(a + bx) = (a - b) + ax. Show that T has an inverse, 
and find the action of T -1.

Solution ► The transformation T is linear (verify). Because T(1) = 1 + x and 
T(x) = -1, T carries the basis B = {1, x} to the basis D = {1 + x, -1}. Hence T 
is an isomorphism, and T -1 carries D back to B, that is, 

T -1(1 + x) = 1 and T -1(-1) = x.

Because a + bx = b(1 + x) + (b - a)(-1), we obtain

T -1(a + bx) = bT -1(1 + x) + (b - a)T -1(-1) = b + (b - a)x.

Sometimes the action of the inverse of a transformation is apparent.

EXAMPLE 7

If B = {b1, b2, …, bn} is a basis of a vector space V, the coordinate 
transformation CB : V → �n is an isomorphism defined by 

CB(v1b1 + v2b2 + � + vnbn) = (v1, v2, …, vn)
T.

The way to reverse the action of CB is clear:  C  B  -1  : �n → V is given by 

 C  B  -1 (v1, v2, …, vn) = v1b1 + v2b2 + � + vnbn for all vi in V.

Condition (2) in Theorem 5 characterizes the inverse of a linear transformation 
T : V → W as the (unique) transformation S : W → V that satisfies ST = 1V and 
TS = 1W. This often determines the inverse.

EXAMPLE 8

Define T : �3 → �3 by T(x, y, z) = (z, x, y). Show that T 3 = 1�
3, and hence 

find T -1.

Solution ► T 2(x, y, z) = T [T(x, y, z)] = T(z, x, y) = ( y, z, x). Hence

T 3(x, y, z) = T [T 2(x, y, z)] = T( y, z, x) = (x, y, z)
Since this holds for all (x, y, z), it shows that T 3 = 1�

3, so 
T(T 2) = 1�

3 = (T 2)T. Thus T -1 = T 2 by (2) of Theorem 5.
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EXAMPLE 9

Define T : Pn → �n+1 by T(p) = (p(0), p(1), …, p(n)) for all p in Pn. Show that 
T -1 exists.

Solution ► The verification that T is linear is left to the reader. If T(p) = 0, then 
p(k) = 0 for k = 0, 1, …, n, so p has n + 1 distinct roots. Because p has degree 
at most n, this implies that p = 0 is the zero polynomial (Theorem 4 Section 
6.5) and hence that T is one-to-one. But dim Pn = n + 1 = dim �n+1, so this 
means that T is also onto and hence is an isomorphism. Thus T -1 exists by 
Theorem 5. Note that we have not given a description of the action of T -1, we 
have merely shown that such a description exists. To give it explicitly requires 
some ingenuity; one method involves the Lagrange interpolation expansion 
(Theorem 3 Section 6.5).

E X E R C I S E S  7 . 3

 1. Verify that each of the following is an 
isomorphism (Theorem 3 is useful).

 (a) T : �3 → �3; 
T(x, y, z) = (x + y, y + z, z + x)

 �(b) T : �3 → �3; 
T(x, y, z) = (x, x + y, x + y + z)

 (c) T : 	 → 	; T(z) =  
__

 z  

 �(d) T : Mmn → Mmn; T(X) = UXV, U and V 
invertible

 (e) T : P1 → �2; T [ p(x)] = [ p(0), p(1)]

 �(f ) T : V → V; T(v) = kv, k ≠ 0 a fixed number, 
V any vector space

 (g) T : M22 → �4; T    S  a b
   

c d
  T  = (a + b, d, c, a - b)

 �(h) T : Mmn → Mnm; T(A) = AT

 2. Show that {a + bx + cx2, a1 + b1x + c1x
2, 

a2 + b2x + c2x
2} is a basis of P2 if and only if 

{(a, b, c), (a1, b1, c1), (a2, b2, c2)} is a basis of �3.

 3. If V is any vector space, let V n denote the space 
of all n-tuples (v1, v2, …, vn), where each vi lies in 
V. (This is a vector space with component-wise 
operations; see Exercise 17 Section 6.1.) If Cj(A) 
denotes the jth column of the m × n matrix A, 
show that T : Mmn → (�m)n is an isomorphism 
if T(A) = [C1(A) C2(A) � Cn(A)]. (Here �m 
consists of columns.)

 4. In each case, compute the action of ST and TS, 
and show that ST ≠ TS.

 (a) S : �2 → �2 with S(x, y) = ( y, x); 
T : �2 → �2 with T(x, y) = (x, 0)

 �(b) S : �3 → �3 with S(x, y, z) = (x, 0, z); 
 T : �3 → �3 with T(x, y, z) = (x + y, 0, y + z)

 (c) S : P2 → P2 with S(p) = p(0) + p(1)x + p(2)x2; 
T :  P2 → P2 with 

T(a + bx + cx2) = b + cx + ax2

 �(d) S : M22 → M22 with S   S  a b
   

c d
  T  =   S  a 0    

0 d
  T ;

  T : M22 → M22 with T   S  a b
   

c d
  T  =   S   c a

   
d b

  T 

 5. In each case, show that the linear transformation 
T satisfies T 2 = T.

 (a) T : �4 → �4; T(x, y, z, w) = (x, 0, z, 0)

 �(b) T : �2 → �2; T(x, y) = (x + y, 0)

 (c) T : P2 → P2; 
T(a + bx + cx2) = (a + b - c) + cx + cx2

 �(d) T : M22 → M22; T   S  a b
   

c d
  T  =   1 _ 2    S  a + c b + d

        
a + c b + d

  T 
 6. Determine whether each of the following 

transformations T has an inverse and, if so, 
determine the action of T -1.

 (a) T : �3 → �3; 
T(x, y, z) = (x + y, y + z, z + x)
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 �(b) T : �4 → �4; 
T(x, y, z, t) = (x + y, y + z, z + t, t + x)

 (c) T : M22 → M22; T    S  a b
   

c d
  T  =   S   a - c    b - d 

         
2a - c 2b - d

  T 

 �(d) T : M22 → M22; T    S  a b
   

c d
  T  =   S   a + 2c b + 2d

         
3c - a  3d - b

  T 
 (e) T : P2 → �3; 

T(a + bx + cx2) = (a - c, 2b, a + c)

 �(f ) T : P2 → �3; T(p) = [ p(0), p(1), p(-1)]

 7. In each case, show that T is self-inverse: 
T -1 = T.

 (a) T : �4 → �4; T(x, y, z, w) = (x, -y, -z, w)

 �(b) T : �2 → �2; T(x, y) = (ky - x, y), k any fixed 
number

 (c) T : Pn → Pn; T(p(x)) = p(3 - x)

 �(d) T : M22 → M22; T(X) = AX where 

  A =   1 _ 4     S  5 -3    
3 -5

  T 
 8. In each case, show that T 6 =  1 �4  and so 

determine T -1.

 (a) T : �4 → �4; T(x, y, z, w) = (-x, z, w, y)

 �(b) T : �4 → �4; 
T(x, y, z, w) = (-y, x - y, z, -w)

 9. In each case, show that T is an isomorphism by 
defining T -1 explicitly.

 (a) T : Pn → Pn is given by T [ p(x)] = p(x + 1).

 �(b) T : Mnn → Mnn is given by T(A) = UA where 
U is invertible in Mnn.

 10. Given linear transformations V →T  W →S  U:

 (a) If S and T are both one-to-one, show that 
ST is one-to-one.

 �(b) If S and T are both onto, show that ST is 
onto.

 11. Let T : V → W be a linear transformation. 

 (a) If T is one-to-one and TR = TR1 for 
transformations R and R1 : U → V, show 
that R = R1.

 (b) If T is onto and ST = S1T for 
transformations S and S1 : W → U, show 
that S = S1.

 12. Consider the linear transformations 
V →T  W →R  U.

 (a) Show that ker T ⊆ ker RT.

 �(b) Show that im RT ⊆ im R.

 13. Let V →T  U →S  W be linear transformations.

 (a) If ST is one-to-one, show that T is one-to-
one and that dim V ≤ dim U.

 �(b) If ST is onto, show that S is onto and that 
dim W ≤ dim U.

� 14. Let T : V → V be a linear transformation. Show 
that T 2 = 1V if and only if T is invertible and 
T = T -1.

 15. Let N be a nilpotent n × n matrix (that is, 
N k = 0 for some k). Show that T : Mnm → Mnm 
is an isomorphism if T(X) = X - NX. [Hint: If 
X is in ker T, show that X = NX = N2X = �. 
Then use Theorem 3.]

 �16. Let T : V → W be a linear transformation, and 
let {e1, …, er, er+1, …, en} be any basis of V such 
that {er+1, …, en} is a basis of ker T. Show that 
im T � span{e1, …, er}. [Hint: See Theorem 5 
Section 7.2.]

 17. Is every isomorphism T : M22 → M22 given by 
an invertible matrix U such that T(X) = UX for 
all X in M22? Prove your answer.

 18. Let Dn denote the space of all functions f from 
{1, 2, …, n} to � (see Exercise 35 Section 6.3). If 
T : Dn → �n is defined by 

T( f ) = (f (1), f (2), …, f (n)),

  show that T is an isomorphism.

 19. (a) Let V be the vector space of Exercise 3 
Section 6.1. Find an isomorphism T : V → �1.

 �(b) Let V be the vector space of Exercise 
4 Section 6.1. Find an isomorphism 
T : V → �2.

 20. Let V →T  W →S  V be linear transformations such 
that ST = 1V. If dim V = dim W = n, show that 
S = T -1 and T = S-1. [Hint: Exercise 13 and 
Theorems 3, 4, and 5.]

 21. Let V →T  W →S  V be functions such that 
TS = 1W and ST = 1V. If T is linear, show that S 
is also linear.
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 22. Let A and B be matrices of size p × m and n × q. 
Assume that mn = pq. Define R : Mmn → Mpq by 
R(X) = AXB.

 (a) Show that Mmn � Mpq by comparing dimensions.

 (b) Show that R is a linear transformation.

 (c) Show that if R is an isomorphism, then m = p 
and n = q. [Hint: Show that T : Mmn → Mpn 
given by T(X) = AX and S : Mmn → Mmq 
given by S(X) = XB are both one-to-one, and 
use the dimension theorem.]

 23. Let T : V → V be a linear transformation such 
that T 2 = 0 is the zero transformation.

 (a) If V ≠ {0}, show that T cannot be invertible.

 (b) If R : V → V is defined by R(v) = v + T(v) 
for all v in V, show that R is linear and 
invertible.

 24. Let V consist of all sequences [x0, x1, x2, …) of 
numbers, and define vector operations

 [x0, x1, …) + [y0, y1, …) = [x0 + y0, x1 + y1, …)
 r[x0, x1, …) = [rx0, rx1, …)
 (a) Show that V is a vector space of infinite 

dimension.

 �(b) Define T : V → V and S : V → V by 
T [x0, x1, …) = [x1, x2, …) and 
S[x0, x1, …) = [0, x0, x1, …). Show that 
TS = 1V, so TS is one-to-one and onto, 
but that T is not one-to-one and S is not 
onto.

 25. Prove (1) and (2) of Theorem 4.

 26. Define T : Pn → Pn by T(p) = p(x) + xp′(x) for 
all p in Pn.

 (a) Show that T is linear.

 �(b) Show that ker T = {0} and conclude 
that T is an isomorphism. [Hint: Write 
p(x) = a0 + a1x + � + anx

n and 
compare coefficients if p(x) = -xp′(x).]

 (c) Conclude that each q(x) in Pn has the 
form q(x) = p(x) + xp′(x) for some unique 
polynomial p(x).

 (d) Does this remain valid if T is defined by 
T [ p(x)] = p(x) - xp′(x)? Explain.

 27. Let T : V → W be a linear transformation, where 
V and W are finite dimensional.

 (a) Show that T is one-to-one if and only 
if there exists a linear transformation 
S : W → V with ST = 1V. [Hint: If 
{e1, …, en} is a basis of V and T is 
one-to-one, show that W has a basis 
{T(e1), …, T(en), fn+1, …, fn+k} and use 
Theorems 2 and 3, Section 7.1.]

 �(b) Show that T is onto if and only if there exists 
a linear transformation S : W → V with 
TS = 1W. [Hint: Let {e1, …, er, …, en} be a 
basis of V such that {er+1, …, en} is a basis 
of ker T. Use Theorem 5 Section 7.2 and 
Theorems 2 and 3, Section 7.1.]

 28. Let S and T be linear transformations V → W, 
where dim V = n and dim W = m.

 (a) Show that ker S = ker T if and only if 
T = RS for some isomorphism R : W → W. 
[Hint: Let {e1, …, er, …, en} be a basis 
of V such that {er+1, …, en} is a basis of 
ker S = ker T. Use Theorem 5 Section 7.2 to 
extend {S(e1), …, S(er)} and {T(e1), …, T(er)} 
to bases of W.]

 �(b) Show that im S = im T if and only if 
T = SR for some isomorphism R : V → V. 
[Hint: Show that dim(ker S) = dim(ker T ) 
and choose bases {e1, …, er, …, en} and 
{f1, …, fr, …, fn} of V where {er+1, …, en} 
and {fr+1, …, fn} are bases of ker S and ker T, 
respectively. If 1 ≤ i ≤ r, show that 
S(ei) = T(gi) for some gi in V, and prove 
that {g1, …, gr, fr+1, …, fn} is a basis of V.]

 �29. If T : V → V is a linear transformation where 
dim V = n, show that TST = T for some 
isomorphism S : V → V. [Hint: Let 
{e1, …, er, er+1, …, en} be as in Theorem 5 
Section 7.2. Extend {T(e1), …, T(er)} to a basis 
of V, and use Theorem 1 and Theorems 2 and 3, 
Section 7.1.]

 30. Let A and B denote m × n matrices. In each case 
show that (1) and (2) are equivalent.

 (a) (1) A and B have the same null space.
(2) B = PA for some invertible m × m 
matrix P.

 (b) (1) A and B have the same range.
(2) B = AQ for some invertible n × n 
matrix Q.

  [Hint: Use Exercise 28.]
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A Theorem about Differential Equations
Differential equations are instrumental in solving a variety of problems throughout 
science, social science, and engineering. In this brief section, we will see that the set 
of solutions of a linear differential equation (with constant coefficients) is a vector 
space and we will calculate its dimension. The proof is pure linear algebra, although 
the applications are primarily in analysis. However, a key result (Lemma 3 below) 
can be applied much more widely. 

We denote the derivative of a function f : � → � by f ′, and f will be called 
differentiable if it can be differentiated any number of times. If f is a differentiable 
function, the nth derivative f (n) of f is the result of differentiating n times. Thus 
f (0) = f, f (1) = f ′, f (2) = f (1)

′, …, and in general f (n+1) = f (n)
′ for each n ≥ 0. For 

small values of n these are often written as f, f ′, f �, f �, ….
If a, b, and c are numbers, the differential equations 

f � - af ′ - bf = 0 or f� - af � - bf ′ - cf = 0 

are said to be of second order and third order, respectively. In general, an 
equation 

 f (n) - an-1 f 
(n-1) -an-2 f 

(n-2) - � - a2 f 
(2) -a1 f 

(1) - a0 f 
(0) = 0, ai in �, (∗)

is called a differential equation of order n. We want to describe all solutions of 
this equation. Of course a knowledge of calculus is required. 

The set F of all functions � → � is a vector space with operations as described 
in Example 7 Section 6.1. If f and g are differentiable, we have ( f + g)′ = f ′ + g′ and 
(af )′ = af ′ for all a in �. With this it is a routine matter to verify that the following 
set is a subspace of F: 

Dn = { f : � → � | f is differentiable and is a solution to (∗)}

Our sole objective in this section is to prove

Theorem 1

The space Dn has dimension n.

We have already used this theorem in Section 3.5.
As will be clear later, the proof of Theorem 1 requires that we enlarge Dn 

somewhat and allow our differentiable functions to take values in the set 	 of 
complex numbers. To do this, we must clarify what it means for a function 
f : � → 	 to be differentiable. For each real number x write f (x) in terms of its 
real and imaginary parts fr(x) and fi(x): 

f (x) = fr(x) + ifi(x).

This produces new functions fr : � → � and fi : � → �, called the real and 
imaginary parts of f, respectively. We say that f is differentiable if both fr and fi 
are differentiable (as real functions), and we define the derivative f ′ of f by 

 f ′ = fr′ + ifi′. (∗∗)
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We refer to this frequently in what follows.4

With this, write D∞ for the set of all differentiable complex valued functions 
f : � → 	. This is a complex vector space using pointwise addition (see Example 7 
Section 6.1), and the following scalar multiplication: For any w in 	 and f in D∞, 
we define wf : � → 	 by (wf )(x) = wf (x) for all x in �. We will be working in D∞ 
for the rest of this section. In particular, consider the following complex subspace 
of D∞: 

 D  n  
∗
  = { f : � → 	 | f is a solution to (∗)}

Clearly, Dn ⊆  D  n  
∗
 , and our interest in  D  n  

∗
  comes from 

Lemma 1

If dim	( D  n  ∗
 ) = n, then dim�(Dn) = n.

PROOF

Observe first that if dim	( D  n  
∗
 ) = n, then dim�( D  n  

∗
 ) = 2n. [In fact, if {g1, …, gn} is 

a 	-basis of  D  n  
∗
  then {g1, …, gn, ig1, …, ign} is a �-basis of  D  n  

∗
 ]. Now observe that 

the set Dn × Dn of all ordered pairs (f, g) with f and g in Dn is a real vector space 
with componentwise operations. Define

θ :  D  n  
∗
  → Dn × Dn given by θ( f ) = ( fr , fi ) for f in  D  n  

∗
 .

One verifies that θ is onto and one-to-one, and it is �-linear because f → fr and 
f → fi are both �-linear. Hence  D  n  

∗
  � Dn × Dn as �-spaces. Since dim�( D  n  

∗
 ) is 

finite, it follows that dim�(Dn) is finite, and we have

2 dim�(Dn) = dim�(Dn × Dn) = dim�( D  n  
∗
 ) = 2n.

Hence dim�(Dn) = n, as required.

It follows that to prove Theorem 1 it suffices to show that dim	( D  n  
∗
 ) = n.

There is one function that arises frequently in any discussion of differential 
equations. Given a complex number w = a + ib (where a and b are real), we have 
ew = ea(cos b + i sin b). The law of exponents, ewev = ew+v for all w, v in 	 is easily 
verified using the formulas for sin(b + b1) and cos(b + b1). If x is a variable and 
w = a + ib is a complex number, define the exponential function ewx by 

ewx = eax(cos bx + i sin bx).

Hence ewx is differentiable because its real and imaginary parts are differentiable for 
all x. Moreover, the following can be proved using (∗∗): 

(ewx)′ = wewx 

In addition, (∗∗) gives the product rule for differentiation: 

If f and g are in D∞, then ( fg)′ = f ′g + fg′. 

4 Write |w| for the absolute value of any complex number w. As for functions � → �, we say that   lim
t→0

f (t) = w if, for all ε > 0 there 

exists δ > 0 such that |f (t) - w| < ε whenever |t| < δ. (Note that t represents a real number here.) In particular, given a real 
number x, we define the derivative f ′ of a function f : � → 	 by f ′(x) =   lim

t→0
  {  1_t [f (x + t) - f (x)]}, and we say that f is differentiable if 

f ′(x) exists for all x in �. Then we can prove that f is differentiable if and only if both fr and fi are differentiable, and that f ′ = fr′ + ifi′
in this case.
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We omit the verifications. 
To prove that dim	( D  n  

∗
 ) = n, two preliminary results are required. Here is the 

first.

Lemma 2

Given f in D∞ and w in 	, there exists g in D∞ such that g′ - wg = f.

PROOF

Define p(x) = f (x)e-wx. Then p is differentiable, whence pr and pi are both 
differentiable, hence continuous, and so both have antiderivatives, say pr = qr′ 
and pi = qi′. Then the function q = qr + iqi is in D∞, and q′ = p by (∗∗). Finally 
define g(x) = q(x)ewx. Then g′ = q′ewx + qwewx = pewx + w(qewx) = f + wg by the 
product rule, as required.

The second preliminary result is important in its own right.

Lemma 3

Kernel Lemma
Let V be a vector space, and let S and T be linear operators V → V. If S is onto and both 
ker(S) and ker(T ) are finite dimensional, then ker(TS) is also finite dimensional and 
dim[ker(TS)] = dim[ker(T )] + dim[ker(S)].

PROOF

Let {u1, u2, …, um} be a basis of ker(T ) and let {v1, v2, …, vn} be a basis of ker(S). 
Since S is onto, let ui = S(wi) for some wi in V. It suffices to show that 

B = {w1, w2, …, wm, v1, v2, …, vn}

is a basis of ker(TS). Note that B ⊆ ker(TS) because TS(wi) = T(ui) = 0 for each 
i and TS(vj) = T(0) = 0 for each j.

Spanning. If v is in ker(TS), then S(v) is in ker(T ), say 
S(v) = ∑riui = ∑riS(wi) = S Q∑riwi R . It follows that v - ∑riwi is in 
ker(S) = span{v1, v2, …, vn}, proving that v is in span(B).

Independence. Let ∑riwi + ∑tjvj = 0. Applying S, and noting that S(vj) = 0 for 

each j, yields 0 = ∑riS(wi) = ∑riui. Hence ri = 0 for each i, and so ∑tjvj = 0. 
This implies that each tj = 0, and so proves the independence of B.
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PROOF OF THEOREM 1

By Lemma 1, it suffices to prove that dim	( D  n  
∗
 ) = n. This holds for n = 1 

because the proof of Theorem 1 Section 3.5 goes through to show that 
 D  1  

∗
  =  	e a0x . Hence we proceed by induction on n. With an eye on (∗), 

consider the polynomial 

p(t) = tn - an-1t
n-1 - an-2t

n-2 - � - a2t
2 - a1t - 0

(called the characteristic polynomial of equation (∗)). Now define a map 
D : D∞ → D∞ by D( f ) = f ′ for all f in D∞. Then D is a linear operator, 
whence p(D): D∞ → D∞ is also a linear operator. Moreover, since 
D 

k( f ) = f (k) for each k ≥ 0, equation (∗) takes the form p(D)( f ) = 0. 
In other words, 

 D  n  
∗
  = ker[ p(D)].

By the fundamental theorem of algebra,5 let w be a complex root of p(t), so 
that p(t) = q(t)(t - w) for some complex polynomial q(t) of degree n - 1. 
It follows that p(D) = q(D)(D - w 1 D∞

 ). Moreover D -  w1 D∞
  is onto by 

Lemma 2, dim	[ker(D - w 1 D∞
 )] = 1 by the case n = 1 above, and 

dim	(ker[q(D)]) = n - 1 by induction. Hence Lemma 3 shows that 
ker[P(D)] is also finite dimensional and 

dim	(ker[ p(D)]) = dim	(ker[q(D)]) + dim	(ker[D - w 1 D∞
 ]) = (n - 1) + 1 = n.

Since  D  n  
∗
  = ker[ p(D)], this completes the induction, and so proves Theorem 1.

5

More on Linear Recurrences6

In Section 3.4 we used diagonalization to study linear recurrences, and gave several 
examples. We now apply the theory of vector spaces and linear transformations to 
study the problem in more generality.

Consider the linear recurrence

xn+2 = 6xn - xn+1 for n ≥ 0

If the initial values x0 and x1 are prescribed, this gives a sequence of numbers. For 
example, if x0 = 1 and x1 = 1 the sequence continues 

x2 = 5, x3 = 1, x4 = 29, x5 = -23, x6 = 197, …

as the reader can verify. Clearly, the entire sequence is uniquely determined by 
the recurrence and the two initial values. In this section we define a vector space 
structure on the set of all sequences, and study the subspace of those sequences 
that satisfy a particular recurrence.

Sequences will be considered entities in their own right, so it is useful to have a 
special notation for them. Let

[xn) denote the sequence x0, x1, x2, …, xn, … 

5 This is the reason for allowing our solutions to (∗) to be complex valued.

6 This section requires only Sections 7.1–7.3.
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EXAMPLE 1

[n) is the sequence 0, 1, 2, 3, …
[n + 1) is the sequence 1, 2, 3, 4, … 
[2n) is the sequence 1, 2, 22, 23, …
[(-1)n) is the sequence 1, -1, 1, -1, …
[5) is the sequence 5, 5, 5, 5, …

Sequences of the form [c) for a fixed number c will be referred to as constant 
sequences, and those of the form [λn), λ some number, are power sequences.

Two sequences are regarded as equal when they are identical: 

[xn) = [yn) means xn = yn for all n = 0, 1, 2, …

Addition and scalar multiplication of sequences are defined by

 [xn) + [yn) = [xn + yn)
 r[xn) = [rxn)

These operations are analogous to the addition and scalar multiplication in �n, and 
it is easy to check that the vector-space axioms are satisfied. The zero vector is the 
constant sequence [0), and the negative of a sequence [xn) is given by -[xn) = [-xn).

Now suppose k real numbers r0, r1, …, rk-1 are given, and consider the linear 
recurrence relation determined by these numbers.

 xn+k = r0xn+ r1xn+1 + � + rk-1xn+k-1 (∗)

When r0 ≠ 0, we say this recurrence has length k.7 For example, the relation 
xn+2 = 2xn+ xn+1 is of length 2.

A sequence [xn) is said to satisfy the relation (∗) if (∗) holds for all n ≥ 0. Let V 
denote the set of all sequences that satisfy the relation. In symbols,

V = {[xn) | xn+k = r0xn + r1xn+1 + � + rk-1xn+k-1 hold for all n ≥ 0}

It is easy to see that the constant sequence [0) lies in V and that V is closed under 
addition and scalar multiplication of sequences. Hence V is vector space (being a 
subspace of the space of all sequences). The following important observation about 
V is needed (it was used implicitly earlier): If the first k terms of two sequences 
agree, then the sequences are identical. More formally,

Lemma 1

Let [xn) and [yn) denote two sequences in V. Then

[xn) = [yn) if and only if x0 = y0, x1 = y1, …, xk-1 = yk-1

PROOF

If [xn) = [yn) then xn = yn for all n = 0, 1, 2, … . Conversely, if xi = yi for all 
i = 0, 1, …, k - 1, use the recurrence (∗) for n = 0.

xk = r0x0 + r1x1 + � + rk-1xk-1 = r0y0 + r1y1 + � + rk-1yk-1 = yk

Next the recurrence for n = 1 establishes xk+1 = yk+1. The process continues to 
show that xn+k = yn+k holds for all n ≥ 0 by induction on n. Hence [xn) = [yn).

7 We shall usually assume that r0 ≠ 0; otherwise, we are essentially dealing with a recurrence of shorter length than k.
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This shows that a sequence in V is completely determined by its first k terms. 
In particular, given a k-tuple v = (v0, v1, …, vk-1) in �k, define 

T(v) to be the sequence in V whose first k terms are v0, v1, …, vk-1.

The rest of the sequence T(v) is determined by the recurrence, so T : �k → V 
is a function. In fact, it is an isomorphism.

Theorem 1

Given real numbers r0, r1, …, rk-1, let

V = {[xn) | xn+k = r0xn+ r1xn+1 + � + rk-1xn+k-1, for all n ≥ 0}

denote the vector space of all sequences satisfying the linear recurrence relation (∗) 
determined by r0, r1, …, rk-1. Then the function

T : �k → V

defined above is an isomorphism. In particular: 
1. dim V = k.
2. If {v1, …, vk} is any basis of �k, then {T(v1), …, T(vk)} is a basis of V.

PROOF

(1) and (2) will follow from Theorems 1 and 2, Section 7.3 as soon as we show 
that T is an isomorphism. Given v and w in �k, write v = (v0, v1, …, vk-1) and 
w = (w0, w1, …, wk-1). The first k terms of T(v) and T(w) are v0, v1, …, vk-1 and 
w0, w1, …, wk-1, respectively, so the first k terms of T(v) + T(w) are v0 + w0, 
v1 + w1, …, vk-1 + wk-1. Because these terms agree with the first k terms of 
T(v + w), Lemma 1 implies that T(v + w) = T(v) + T(w). The proof that 
T(rv) + rT(v) is similar, so T is linear.

Now let [xn) be any sequence in V, and let v = (x0, x1, …, xk-1). Then the 
first k terms of [xn) and T(v) agree, so T(v) = [xn). Hence T is onto. Finally, 
if T(v) = [0) is the zero sequence, then the first k terms of T(v) are all zero 
(all terms of T(v) are zero!) so v = 0. This means that ker T = {0}, so T is 
one-to-one.

EXAMPLE 2

Show that the sequences [1), [n), and [(-1)n) are a basis of the space V of all 
solutions of the recurrence

xn+3 = -xn + xn+1 + xn+2.

Then find the solution satisfying x0 = 1, x1 = 2, x2 = 5.

Solution ► The verifications that these sequences satisfy the recurrence (and 
hence lie in V ) are left to the reader. They are a basis because [1) = T(1, 1, 1), 
[n) = T(0, 1, 2), and [(-1)n) = T(1, -1, 1); and {(1, 1, 1), (0, 1, 2), (1, -1, 1)} is 
a basis of �3. Hence the sequence [xn) in V satisfying x0 = 1, x1 = 2, x2 = 5 is a 
linear combination of this basis:
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[xn) = t1[1) + t2[n) + t3[(-1)n)

The nth term is xn = t1 + nt2 + (-1)nt3, so taking n = 0, 1, 2 gives

1 = x0 = t1 + 0  + t3
2 = x1 = t1 +  t2 - t3
5 = x2 = t1 + 2t2 + t3

This has the solution t1 = t3 =   1 _ 2  , t2 = 2, so xn =   1 _ 2   + 2n +   1 _ 2  (-1)n.

This technique clearly works for any linear recurrence of length k: Simply take 
your favourite basis {v1, …, vk} of �k—perhaps the standard basis—and compute 
T(v1), …, T(vk). This is a basis of V all right, but the nth term of T(vi) is not usually 
given as an explicit function of n. (The basis in Example 2 was carefully chosen so 
that the nth terms of the three sequences were 1, n, and (-1)n, respectively, each a 
simple function of n.)

However, it turns out that an explicit basis of V can be given in the general 
situation. Given the recurrence (∗) again:

xn+k = r0xn + r1xn+1 + � + rk-1xn+k-1

the idea is to look for numbers λ such that the power sequence [λn) satisfies (∗). 
This happens if and only if

λn+k = r0λ
n + r1λ

n+1 + � + rk-1λ
n+k-1

holds for all n ≥ 0. This is true just when the case n = 0 holds; that is,

λk = r0 + r1λ + � + rk-1λ
k-1

The polynomial

p(x) = xk - rk-1x
k-1 - � - r1x - r0

is called the polynomial associated with the linear recurrence (∗). Thus every root λ 
of p(x) provides a sequence [λn) satisfying (∗). If there are k distinct roots, the power 
sequences provide a basis. Incidentally, if λ = 0, the sequence [λn) is 1, 0, 0, …; that 
is, we accept the convention that 00 = 1.

Theorem 2

Let r0, r1, …, rk-1 be real numbers; let

V = {[xn) | xn+k = r0xn + r1xn+1 + � + rk-1xn+k-1 for all n ≥ 0}

denote the vector space of all sequences satisfying the linear recurrence relation 
determined by r0, r1, …, rk-1; and let

p(x) = xk - rk-1x
k-1 - � - r1x - r0

denote the polynomial associated with the recurrence relation. Then
1. [λn) lies in V if and only if λ is a root of p(x).
2. If λ1, λ2, …, λk are distinct real roots of p(x), then {[ λ  1  

n ), [ λ  2  
n ), …, [ λ  k  

n )} is a 
basis of V.
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PROOF

It remains to prove (2). But [λi
n) = T(vi) where vi = (1, λi, λi

2, …, λi
k-1), so (2) 

follows by Theorem 1, provided that (v1, v2, …, vn) is a basis of �k. This is true 
provided that the matrix with the vi as its rows

1

1

�

1

�

�

�

�

λ1

λ2

�

λk

λ2
1

λ2
2

�

λ2
k

λ1
k–1

λ2
k–1

�

λk
k–1

is invertible. But this is a Vandermonde matrix and so is invertible if the λi are 
distinct (Theorem 7 Section 3.2). This proves (2).

EXAMPLE 3

Find the solution of xn+2 = 2xn + xn+1 that satisfies x0 = a, x1 = b.

Solution ► The associated polynomial is p(x) = x2 - x - 2 = (x - 2)(x + 1). The 
roots are λ1 = 2 and λ2 = -1, so the sequences [2n) and [(-1)n) are a basis for the 
space of solutions by Theorem 2. Hence every solution [xn) is a linear combination

[xn) = t1[2
n) + t2[(-1)n)

This means that xn = t12
n + t2(-1)n holds for n = 0, 1, 2, …, so (taking n = 0, 1) 

x0 = a and x1 = b give

 t1 + t2 = a
2t1 - t2 = b

These are easily solved: t1 =   1 _ 3  (a + b) and t2 =   1 _ 3  (2a - b), so

tn =   1 _ 3  [(a + b)2n + (2a - b)(-1)n]

The Shift Operator
If p(x) is the polynomial associated with a linear recurrence relation of length k, and 
if p(x) has k distinct roots λ1, λ2, …, λk, then p(x) factors completely: 

p(x) = (x - λ1)(x - λ2)�(x - λk)

Each root λi provides a sequence [λi
n) satisfying the recurrence, and they are a 

basis of V by Theorem 2. In this case, each λi has multiplicity 1 as a root of p(x). 
In general, a root λ has multiplicity m if p(x) = (x - λ)mq(x), where q(λ) ≠ 0. In 
this case, there are fewer than k distinct roots and so fewer than k sequences [λn) 
satisfying the recurrence. However, we can still obtain a basis because, if λ has 
multiplicity m (and λ ≠ 0), it provides m linearly independent sequences that satisfy 
the recurrence. To prove this, it is convenient to give another way to describe the 
space V of all sequences satisfying a given linear recurrence relation.

Let S denote the vector space of all sequences and define a function

S : S → S by S[xn) = [xn+1) = [x1, x2, x3, …)

S is clearly a linear transformation and is called the shift operator on S. Note that 
powers of S shift the sequence further: S2[xn) = S[xn+1) = [xn+2). In general,
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Sk[xn) = [xn+k) = [xk, xk+1, …) for all k = 0, 1, 2, …

But then a linear recurrence relation

xn+k = r0xn + r1xn+1 + � + rk-1xn+k-1 for all n = 0, 1, …

can be written

 Sk[xn) = r0[xn) + r1S[xn) + � + rk-1S
k-1[xn) (∗∗)

Now let p(x) = xk - rk-1x
k-1 - � - r1x - r0 denote the polynomial associated with 

the recurrence relation. The set L[S, S] of all linear transformations from S to itself 
is a vector space (verify8) that is closed under composition. In particular,

p(S) = Sk - rk-1S
k-1 - � - r1S - r0

is a linear transformation called the evaluation of p at S. The point is that condition 
(∗∗) can be written as

p(S)[xn) = 0

In other words, the space V of all sequences satisfying the recurrence relation is just 
ker[ p(S)]. This is the first assertion in the following theorem.

Theorem 3

Let r0, r1, …, rk-1 be real numbers, and let

V = {[xn) | xn+k = r0xn + r1xn+1 + � + rk-1xn+k-1 for all n ≥ 0}

denote the space of all sequences satisfying the linear recurrence relation determined by 
r0, r1, …, rk-1. Let

p(x) = xk - rk-1x
k-1 - � - r1x - r0

denote the corresponding polynomial. Then: 
1. V = ker[ p(S)], where S is the shift operator.

2. If p(x) = (x - λ)mq(x), where λ ≠ 0 and m > 1, then the sequences

{[λn), [nλn), [n2λn), …, [nm-1λn)}

 all lie in V and are linearly independent.

PROOF

(Sketch) It remains to prove (2). If  Q   n     
k
   R  =   

n(n - 1)�(n - k + 1)
  ___________________  

k!
   denotes the 

binomial coefficient, the idea is to use (1) to show that the sequence sk =  [  Q   n     
k
   R λn ) 

is a solution for each k = 0, 1, …, m - 1. Then (2) of Theorem 1 can be 
applied to show that {s0, s1, …, sm-1} is linearly independent. Finally, the 
sequences tk = [nkλn), k = 0, 1, …, m - 1, in the present theorem can be 

given by tk =  ∑ 
j=0

   
m-1

 akjsj , where A = [aij] is an invertible matrix. Then (2) follows. 

We omit the details.

8 See Exercises 19 and 20, Section 9.1.

365SECTION 7.5 More on Linear Recurrences



This theorem combines with Theorem 2 to give a basis for V when p(x) has k real 
roots (not necessarily distinct) none of which is zero. This last requirement means 
r0 ≠ 0, a condition that is unimportant in practice (see Remark 1 below).

Theorem 4

Let r0, r1, …, rk-1 be real numbers with r0 ≠ 0; let

V = {[xn) | xn+k = r0xn + r1xn+1 + � + rk-1xn+k-1 for all n ≥ 0}

denote the space of all sequences satisfying the linear recurrence relation of length k 
determined by r0, …, rk-1; and assume that the polynomial

p(x) = xk - rk-1x
k-1 - � - r1x - r0

factors completely as

p(x) =  (x - λ1) 
m1  (x - λ2) 

m2  � (x - λp) 
mp  

where λ1, λ2, …, λp are distinct real numbers and each mi ≥ 1. Then λi ≠ 0 for each i, 
and

[ λ  1  
n ), [ nλ  1  

n ), …, [ n m1-1  λ  1  
n )

[ λ  2  
n ), [ nλ  2  

n ), …, [ n m2-1  λ  2  
n )

�

[ λ  p  
n ), [ nλ  p  

n ), …, [ n mp-1  λ  p  
n )

is a basis of V.

PROOF

There are m1 + m2 + � + mp = k sequences in all so, because dim V = k, 
it suffices to show that they are linearly independent. The assumption that 
r0 ≠ 0, implies that 0 is not a root of p(x). Hence each λi ≠ 0, so 
{[ λ  i  

n ), [n λ  i  
n ), … [ n mi-1  λ  i  

n )} is linearly independent by Theorem 3. 
The proof that the whole set of sequences is linearly independent is omitted.

EXAMPLE 4

Find a basis for the space V of all sequences [xn) satisfying

xn+3 = -9xn - 3xn+1 + 5xn+2.

Solution ► The associated polynomial is 

p(x) = x3 - 5x2 + 3x + 9 = (x - 3)2(x + 1). 

Hence 3 is a double root, so [3n) and [n3n) both lie in V by Theorem 3 (the 
reader should verify this). Similarly, λ = -1 is a root of multiplicity 1, so 
[(-1)n) lies in V. Hence {[3n), [n3n), [(-1)n)} is a basis by Theorem 4.

If r0 = 0 [so p(x) has 0 as a root], the recurrence reduces to one of shorter length. 
For example, consider

 xn+4 = 0xn + 0xn+1 + 3xn+2 + 2xn+3 (∗∗∗)

Remark 1
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If we set yn = xn+2, this recurrence becomes yn+2 = 3yn + 2yn+1, which has solutions 
[3n) and [(-1)n). These give the following solution to (∗): 

[0, 0, 1, 3, 32, …)
[0, 0, 1, -1, (-1)2, …)

In addition, it is easy to verify that

[1, 0, 0, 0, 0, …)
[0, 1, 0, 0, 0, …)

are also solutions to (∗∗∗). The space of all solutions of (∗) has dimension 4 
(Theorem 1), so these sequences are a basis. This technique works whenever r0 = 0.

Theorem 4 completely describes the space V of sequences that satisfy a linear 
recurrence relation for which the associated polynomial p(x) has all real roots. 
However, in many cases of interest, p(x) has complex roots that are not real. 
If p(�) = 0, � complex, then p( 

__
 �  ) = 0 too ( 

__
 �   the conjugate), and the main 

observation is that [�n +  
__

 �  n) and [i(�n +  
__

 �  n)) are real solutions. Analogs of the 
preceding theorems can then be proved.

E X E R C I S E S  7 . 5

 1. Find a basis for the space V of sequences [xn) 
satisfying the following recurrences, and use it 
to find the sequence satisfying x0 = 1, x1 = 2, 
x2 = 1.

 (a) xn+3 = -2xn + xn+1 + 2xn+2

 �(b) xn+3 = -6xn + 7xn+1

 (c) xn+3 = -36xn + 7xn+2

 2. In each case, find a basis for the space V of all 
sequences [xn) satisfying the recurrence, and use 
it to find xn if x0 = 1, x1 = -1, and x2 = 1.

 (a) xn+3 = xn + xn+1 - xn+2

 �(b) xn+3 = -2xn + 3xn+1

 (c) xn+3 = -4xn + 3xn+2

 �(d) xn+3 = xn - 3xn+1 + 3xn+2

 (e) xn+3 = 8xn - 12xn+1 + 6xn+2

 3. Find a basis for the space V of sequences [xn) 
satisfying each of the following recurrences.

 (a) xn+2 = -a2xn + 2axn+1, a ≠ 0

 �(b) xn+2 = -abxn + (a + b)xn+1, (a ≠ b)

 4. In each case, find a basis of V.

 (a) V = {[xn) | xn+4 = 2xn+2 - xn+3, for n ≥ 0}

 �(b) V = {[xn) | xn+4 = -xn+2 + 2xn+3, for n ≥ 0}

 5. Suppose that [xn) satisfies a linear recurrence 
relation of length k. If {e0 = (1, 0, …, 0), 
e1 = (0, 1, …, 0), ek-1 = (0, 0, …, 1)} is the 
standard basis of �k, show that 
xn = x0T(e0) + x1T(e1) + � + xk-1T(ek-1)
holds for all n ≥ k. (Here T is as in Theorem 1.)

 6. Show that the shift operator S is onto but not 
one-to-one. Find ker S.

 �7. Find a basis for the space V of all sequences [xn) 
satisfying xn+2 = -xn.

Remark 2
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Orthogonality

8
In Section 5.3 we introduced the dot product in �n and extended the basic 
geometric notions of length and distance. A set {f1, f2, …, fm} of nonzero vectors 
in �n was called an orthogonal set if fi · fj = 0 for all i ≠ j, and it was proved 
that every orthogonal set is independent. In particular, it was observed that the 
expansion of a vector as a linear combination of orthogonal basis vectors is easy to 
obtain because formulas exist for the coefficients. Hence the orthogonal bases are 
the “nice” bases, and much of this chapter is devoted to extending results about 
bases to orthogonal bases. This leads to some very powerful methods and theorems. 
Our first task is to show that every subspace of �n has an orthogonal basis.

Orthogonal Complements and Projections
If {v1, …, vm} is linearly independent in a general vector space, and if vm+1 is not in 
span{v1, …, vm}, then {v1, …, vm, vm+1} is independent (Lemma 1 Section 6.4). Here 
is the analog for orthogonal sets in �n.

Lemma 1

Orthogonal Lemma
Let {f1, f2, …, fm} be an orthogonal set in �n. Given x in �n, write

fm+1 = x -   
x · f1 _____ 
‖f1‖

2
   f1 -   

x · f2 _____ 
‖f2‖

2
   f2 - � -   

x · fm _____ 
‖fm‖

2
   fm

Then:
1. fm+1 · fk = 0 for k = 1, 2, …, m.

2. If x is not in span{f1, …, fm}, then fm+1 ≠ 0 and {f1, …, fm, fm+1} is an 
orthogonal set.

PROOF

For convenience, write ti = (x · fi)/‖fi‖
2 for each i. Given 1 ≤ k ≤ m:

 fm+1 · fk = (x - t1f1 - � - tkfk - � - tmfm) · fk

 = x · fk - t1(f1 · fk) - � - tk(fk · fk) - � - tm(fm · fk)
 = x · fk - tk ‖fk‖

2

 = 0

This proves (1), and (2) follows because fm+1 ≠ 0 if x is not in span{f1, …, fm}.
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The orthogonal lemma has three important consequences for �n. The first is an 
extension for orthogonal sets of the fundamental fact that any independent set is 
part of a basis (Theorem 1 Section 6.4).

Theorem 1

Let U be a subspace of �n.
1. Every orthogonal subset {f1, …, fm} in U is a subset of an orthogonal basis of U.
2. U has an orthogonal basis.

PROOF

 1. If span{f1, …, fm} = U, it is already a basis. Otherwise, there exists x in U 
outside span{f1, …, fm}. If fm+1 is as given in the orthogonal lemma, then fm+1 
is in U and {f1, …, fm, fm+1} is orthogonal. If span{f1, …, fm, fm+1} = U, we are 
done. Otherwise, the process continues to create larger and larger orthogonal 
subsets of U. They are all independent by Theorem 5 Section 5.3, so we have 
a basis when we reach a subset containing dim U vectors.

 2. If U = {0}, the empty basis is orthogonal. Otherwise, if f ≠ 0 is in U, then {f} 
is orthogonal, so (2) follows from (1).

We can improve upon (2) of Theorem 1. In fact, the second consequence of the 
orthogonal lemma is a procedure by which any basis {x1, …, xm} of a subspace U of 
�

n can be systematically modified to yield an orthogonal basis {f1, …, fm} of U. The 
fi are constructed one at a time from the xi.

To start the process, take f1 = x1. Then x2 is not in span{f1} because {x1, x2} is 
independent, so take

f2 = x2 -   
x2 · f1 ______ 
‖f1‖

2
   f1

Thus {f1, f2} is orthogonal by Lemma 1. Moreover, span{f1, f2} = span{x1, x2} 
(verify), so x3 is not in span{f1, f2}. Hence {f1, f2, f3} is orthogonal where

f3 = x3 -   
x3 · f1 ______ 
‖f1‖

2
   f1 -   

x3 · f2 ______ 
‖f2‖

2
   f2

Again, span{f1, f2, f3} = span{x1, x2, x3}, so x4 is not in span{f1, f2, f3} and the process 
continues. At the mth iteration we construct an orthogonal set {f1, …, fm} such that

span{f1, f2, …, fm} = span{x1, x2, …, xm} = U

Hence {f1, f2, …, fm} is the desired orthogonal basis of U. The procedure can be 
summarized as follows.

Theorem 2

Gram-Schmidt Orthogonalization Algorithm1

If {x1, x2, …, xm} is any basis of a subspace U of �n, construct f1, f2, …, fm in U 
successively as follows:

1

1 Erhardt Schmidt (1876–1959) was a German mathematician who studied under the great David Hilbert and later developed the theory of 
Hilbert spaces. He first described the present algorithm in 1907. Jörgen Pederson Gram (1850–1916) was a Danish actuary.
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f1 = x1

f2 = x2 -   
x2 · f1 ______ 
‖f1‖

2
   f1

f3 = x3 -   
x3 · f1 ______ 
‖f1‖

2
   f1 -   

x3 · f2 ______ 
‖f2‖

2
   f2

�

fk = xk -   
xk · f1 _____ 
‖f1‖

2
   f1 -   

xk · f2 _____ 
‖f2‖

2
   f2 - � -   

xk · fk-1 _______ 
‖fk-1‖

2
   fk-1

for each k = 2, 3, …, m. Then
1. {f1, f2, …, fm} is an orthogonal basis of U.
2. span{f1, f2, …, fk} = span{x1, x2, …, xk} for each k = 1, 2, …, m.

The process (for k = 3) is depicted in the diagrams. Of course, the algorithm 
converts any basis of �n itself into an orthogonal basis.

EXAMPLE 1

Find an orthogonal basis of the row space of A = 
− −1

1
1 11

3 0
0 0
2

1 1
.

Solution ► Let x1, x2, x3 denote the rows of A and observe that {x1, x2, x3} is 
linearly independent. Take f1 = x1. The algorithm gives

f2 = x2 -   
x2 · f1 ______ 
‖f1‖

2
   f1 = (3, 2, 0, 1) -   4 _ 4  (1, 1, -1, -1) = (2, 1, 1, 2)

f3 = x3 -   
x3 · f1 ______ 
‖f1‖

2
   f1 -   

x3 · f2 ______ 
‖f2‖

2
   f2 = x3 -   0 _ 4   f1 -   3 __ 10   f2 =   1 __ 10  (4, -3, 7, -6)

Hence {(1, 1, -1, -1), (2, 1, 1, 2),   1 __ 10  (4, -3, 7, -6)} is the orthogonal basis 
provided by the algorithm. In hand calculations it may be convenient to 
eliminate fractions, so {(1, 1, -1, -1), (2, 1, 1, 2), (4, -3, 7, -6)} is also an 
orthogonal basis for row A.

Observe that the vector   
x · fi _____ 
‖fi‖

2
   fi is unchanged if a nonzero scalar multiple of fi is used 

in place of fi. Hence, if a newly constructed fi is multiplied by a nonzero scalar at 
some stage of the Gram-Schmidt algorithm, the subsequent f s will be unchanged. 
This is useful in actual calculations.

Projections
Suppose a point x and a plane U through the origin in �3 are given, and we want to 
find the point p in the plane that is closest to x. Our geometric intuition assures us 
that such a point p exists. In fact (see the diagram), p must be chosen in such a way 
that x - p is perpendicular to the plane.

f1

f2

f1

f2

f3

x3

span {f1, f2}

span {f1, f2}

Gram-Schmidt

0

0

Remark

U

x

p
0

x − p
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Now we make two observations: first, the plane U is a subspace of �3 (because U 
contains the origin); and second, that the condition that x - p is perpendicular to 
the plane U means that x - p is orthogonal to every vector in U. In these terms the 
whole discussion makes sense in �n. Furthermore, the orthogonal lemma provides 
exactly what is needed to find p in this more general setting.

If U is a subspace of �n, define the orthogonal complement U⊥ of U (pronounced 
“U-perp”) by

U⊥ = {x in �n | x · y = 0 for all y in U}.

The following lemma collects some useful properties of the orthogonal 
complement; the proof of (1) and (2) is left as Exercise 6.

Lemma 2

Let U be a subspace of �n.

1. U⊥ is a subspace of �n.

2. {0}⊥ = �n and (�n)⊥ = {0}.

3. If U = span{x1, x2, …, xk}, then U⊥ = {x in �n | x · xi = 0 for i = 1, 2, …, k}.

PROOF

 3. Let U = span{x1, x2, …, xk}; we must show that U⊥ = {x | x · xi = 0 for each i}. 
If x is in U⊥ then x · xi = 0 for all i because each xi is in U. Conversely, 
suppose that x · xi = 0 for all i; we must show that x is in U⊥, that is, 
x · y = 0 for each y in U. Write y = r1x1 + r2x2 + � + rkxk, where each 
ri is in �. Then, using Theorem 1 Section 5.3, 

x · y = r1(x · x1) + r2(x · x2) + � + rk(x · xk) = r10 + r20 + � + rk0 = 0,

  as required.

EXAMPLE 2

Find U⊥ if U = span{(1, -1, 2, 0), (1, 0, -2, 3)} in �4.

Solution ► By Lemma 2, x = (x, y, z, w) is in U⊥ if and only if it is orthogonal to 
both (1, -1, 2, 0) and (1, 0, -2, 3); that is,

x - y + 2z   = 0
x  - 2z + 3w = 0

Gaussian elimination gives U⊥ = span{(2, 4, 1, 0), (3, 3, 0, -1)}.

Now consider vectors x and d ≠ 0 in �3. The projection p = projd(x) of x on 
d was defined in Section 4.2 as in the diagram. The following formula for p was 
derived in Theorem 4 Section 4.2

p = projd(x) =  Q   x · d _____ 
  ‖ d ‖  2 

   R d,

Definition 8.1

U

0

x

p
d
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where it is shown that x - p is orthogonal to d. Now observe that the line 
U = �d = {td | t ∈ �} a subspace of �3, that {d} is an orthogonal basis of U, 
and that p ∈ U and x - p ∈ U⊥ (by Theorem 4 Section 4.2).

In this form, this makes sense for any vector x in �n and any subspace U of �n, so 
we generalize it as follows. If {f1, f2, …, fm} is an orthogonal basis of U, we define the 
projection p of x on U by the formula

 p =  Q   x ·  f 1  _____ 
  ‖  f 1  ‖  2 

   R   f 1  +  Q   x ·  f 2  _____ 
  ‖  f 2  ‖  2 

   R   f 2  + � +  Q   x ·  f m 
 _____ 

  ‖  f m  ‖  2 
   R   f m . (∗)

Then p ∈ U and (by the orthogonal lemma) x - p ∈ U⊥, so it looks like we have a 
generalization of Theorem 4 Section 4.2.

However there is a potential problem: the formula (∗) for p must be shown to 
be independent of the choice of the orthogonal basis {f1, f2, …, fm}. To verify this, 
suppose that {f ′1, f ′2, …, f ′m} is another orthogonal basis of U, and write

 p′  =  Q   x · f ′1 _____ 
‖f ′1‖

2
   R  f ′1 +  Q   x · f ′2 _____ 

‖f ′2‖
2
   R  f ′2 +  �  +  Q   x · f ′m ______ 

‖f ′m‖
2
   R  f ′m .

As before, p′ ∈ U and x - p′ ∈ U⊥, and we must show that p′ = p. To see this, 
write the vector p - p′ as follows:

p - p′ = (x - p′) - (x - p).

This vector is in U (because p and p′ are in U ) and it is in U⊥ (because x - p′ and 
x - p are in U⊥), and so it must be zero (it is orthogonal to itself!). This means 
p′ = p as desired. 

Hence, the vector p in equation (∗) depends only on x and the subspace U, 
and not on the choice of orthogonal basis {f1, …, fm} of U used to compute it. 
Thus, we are entitled to make the following definition: 

Let U be a subspace of �n with orthogonal basis {f1, f2, …, fm}. If x is in �n, the vector 

projU(x) =   
x · f1 _____ 
‖f1‖

2
   f1 +   

x · f2 _____ 
‖f2‖

2
   f2 + � +   

x · fm _____ 
‖fm‖

2
   fm

is called the orthogonal projection of x on U. For the zero subspace U = {0}, we 
define 

proj{0}(x) = 0.

The preceding discussion proves (1) of the following theorem.

Theorem 3

Projection Theorem
If U is a subspace of �n and x is in �n, write p = projU(x). Then

1. p is in U and x - p is in U⊥.
2. p is the vector in U closest to x in the sense that

‖x - p‖ < ‖x - y‖ for all y ∈ U, y ≠ p

Definition 8.2
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PROOF

 1. This is proved in the preceding discussion (it is clear if U = {0}).

 2. Write x - y = (x - p) + (p - y). Then p - y is in U and so is orthogonal 
to x - p by (1). Hence, the pythagorean theorem gives

‖x - y‖
2 = ‖x - p‖

2 + ‖p - y‖
2 > ‖x - p‖

2

  because p - y ≠ 0. This gives (2).

EXAMPLE 3

Let U = span{x1, x2} in �4 where x1 = (1, 1, 0, 1) and x2 = (0, 1, 1, 2). If 
x = (3, -1, 0, 2), find the vector in U closest to x and express x as the sum 
of a vector in U and a vector orthogonal to U.

Solution ► {x1, x2} is independent but not orthogonal. The Gram-Schmidt 
process gives an orthogonal basis {f1, f2} of U where f1 = x1 = (1, 1, 0, 1) and

f2 = x2 -   
x2 · f1 ______ 
‖f1‖

2
    f1 = x2 -   3 _ 3   f1 = (-1, 0, 1, 1)

Hence, we can compute the projection using {f1, f2}:

p = projU(x) =   
x · f1 _____ 
‖f1‖

2
   f1 +   

x · f2 _____ 
‖f2‖

2
   f2 =   4 _ 3   f1 +   -1

 __ 3   f2 =   1 _ 3  [5 4 -1 3]

Thus, p is the vector in U closest to x, and x - p =   1 _ 3  (4, -7, 1, 3) 
is orthogonal to every vector in U. (This can be verified by checking 
that it is orthogonal to the generators x1 and x2 of U.) The required 
decomposition of x is thus

x = p + (x - p) =   1 _ 3  (5, 4, -1, 3) +   1 _ 3  (4, -7, 1, 3).

EXAMPLE 4

Find the point in the plane with equation 2x + y - z = 0 that is closest to the 
point (2, -1, -3).

Solution ► We write �3 as rows. The plane is the subspace U whose points 
(x, y, z) satisfy z = 2x + y. Hence

U = {(s, t, 2s + t) | s, t in �} = span{(0, 1, 1), (1, 0, 2)}

The Gram-Schmidt process produces an orthogonal basis {f1, f2} of U 
where f1 = (0, 1, 1) and f2 = (1, -1, 1). Hence, the vector in U closest to 
x = (2, -1, -3) is

projU(x) =   
x · f1 _____ 
‖f1‖

2
   f1 +   

x · f2 _____ 
‖f2‖

2
   f2 = -2f1 + 0f2 = (0, -2, -2)

Thus, the point in U closest to (2, -1, -3) is (0, -2, -2).

The next theorem shows that projection on a subspace of �n is actually a linear 
operator �n → �n. 
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Theorem 4

Let U be a fixed subspace of �n. If we define T : �n → �n by 

T(x) = projU(x) for all x in �n. 

1. T is a linear operator. 
2. im T = U and ker T = U⊥.

3. dim U + dim U⊥ = n.

PROOF

If U = {0}, then U⊥ = �n, and so T(x) = proj{0}(x) = 0 for all x. Thus T = 0 is 
the zero (linear) operator, so (1), (2), and (3) hold. Hence assume that U ≠ {0}.

 1. If {f1, f2, …, fm} is an orthonormal basis of U, then 

 T(x) = (x · f1)f1 + (x · f2)f2 + � + (x · fm)fm for all x in �n (∗)

  by the definition of the projection. Thus T is linear because 

(x + y) · fi = x · fi + y · fi and (rx) · fi = r(x · fi) for each i. 

 2. We have im T ⊆ U by (∗) because each fi is in U. But if x is in U, then 
x = T(x) by (∗) and the expansion theorem applied to the space U. This 
shows that U ⊆ im T, so im T = U.
 Now suppose that x is in U⊥. Then x · fi = 0 for each i (again because 
each fi is in U ) so x is in ker T by (∗). Hence U⊥ ⊆ ker T. On the other 
hand, Theorem 3 shows that x - T(x) is in U⊥ for all x in �n, and it 
follows that ker T ⊆ U⊥. Hence ker T = U⊥, proving (2). 

 3. This follows from (1), (2), and the dimension theorem (Theorem 4 Section 7.2).

E X E R C I S E S  8 . 1

 1. In each case, use the Gram-Schmidt algorithm to 
convert the given basis B of V into an orthogonal 
basis.

 (a) V = �2, B = {(1, -1), (2, 1)}

�(b) V = �2, B = {(2, 1), (1, 2)}

 (c) V = �3, B = {(1, -1, 1), (1, 0, 1), (1, 1, 2)}

�(d) V = �3, B = {(0, 1, 1), (1, 1, 1), (1, -2, 2)}

 2. In each case, write x as the sum of a vector in U 
and a vector in U⊥.

 (a) x = (1, 5, 7), U = span{(1, -2, 3), (-1, 1, 1)}

�(b) x = (2, 1, 6), U = span{(3, -1, 2), (2, 0, -3)}

 (c) x = (3, 1, 5, 9), U = span{(1, 0, 1, 1), 
(0, 1, -1, 1), (-2, 0, 1, 1)}

�(d) x = (2, 0, 1, 6), U = span{(1, 1, 1, 1), 
(1, 1, -1, -1), (1, -1, 1, -1)}

 (e) x = (a, b, c, d), U = span{(1, 0, 0, 0), 
(0, 1, 0, 0), (0, 0, 1, 0)}

�(f ) x = (a, b, c, d), U = span{(1, -1, 2, 0), 
(-1, 1, 1, 1)}

 3. Let x = (1, -2, 1, 6) in �4, and let 
U = span{(2, 1, 3, -4), (1, 2, 0, 1)}.

�(a) Compute projU(x).

 (b) Show that {(1, 0, 2, -3), (4, 7, 1, 2)} is 
another orthogonal basis of U.

�(c) Use the basis in part (b) to compute 
projU(x).
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 4. In each case, use the Gram-Schmidt algorithm to 
find an orthogonal basis of the subspace U, and 
find the vector in U closest to x.

 (a) U = span{(1, 1, 1), (0, 1, 1)}, x = (-1, 2, 1)

 �(b) U = span{(1, -1, 0), (-1, 0, 1)}, x = (2, 1, 0)

 (c) U = span{(1, 0, 1, 0), (1, 1, 1, 0), (1, 1, 0, 0)}, 
x = (2, 0, -1, 3)

 �(d) U = span{(1, -1, 0, 1), (1, 1, 0, 0), (1, 1, 0, 1)}, 
x = (2, 0, 3, 1)

 5. Let U = span{v1, v2, …, vk}, vi in �n, and let A be 
the k × n matrix with the vi as rows.

 (a) Show that U⊥ = {x | x in �n, AxT = 0}.

 �(b) Use part (a) to find U⊥ if 
U = span{(1, -1, 2, 1), (1, 0, -1, 1)}.

 6. (a) Prove part 1 of Lemma 2.

 (b) Prove part 2 of Lemma 2.

 7. Let U be a subspace of �n. If x in �n can be 
written in any way at all as x = p + q with 
p in U and q in U⊥, show that necessarily 
p = projU(x).

 �8. Let U be a subspace of �n and let x be a vector 
in �n. Using Exercise 7, or otherwise, show that 
x is in U if and only if x = projU(x).

 9. Let U be a subspace of �n.

 (a) Show that U⊥ = �n if and only if U = {0}.

 (b) Show that U⊥ = {0} if and only if U = �n.

 �10. If U is a subspace of �n, show that projU(x) = x 
for all x in U.

 11. If U is a subspace of �n, show that 
x = projU(x) +  proj U⊥ (x) for all x in �n.

 12. If {f1, …, fn} is an orthogonal basis of �n and 
U = span{f1, …, fm}, show that 
U⊥ = span{fm+1, …, fn}.

 13. If U is a subspace of �n, show that U⊥⊥ = U. 
[Hint: Show that U ⊆ U⊥⊥, then use 
Theorem 4(3) twice.]

 �14. If U is a subspace of �n, show how to find an 
n × n matrix A such that U = {x | Ax = 0}. 
[Hint: Exercise 13.]

 15. Write �n as rows. If A is an n × n matrix, write 
its null space as null A = {x in �n | AxT = 0}. 
Show that: 

 (a) null A = (row A)⊥;

 (b) null AT = (col A)⊥.

 16. If U and W are subspaces, show that 
(U + W)⊥ = U⊥ ∩ W⊥. [See Exercise 22 
Section 5.1.]

 17. Think of �n as consisting of rows. 

 (a) Let E be an n × n matrix, and let 
U = {xE | x in �n}. Show that the following 
are equivalent.
(i) E2 = E = ET (E is a projection matrix).

(ii) (x - xE) · (yE) = 0 for all x and y in �n.

(iii) projU(x) = xE for all x in �n.

  [Hint: For (ii) implies (iii): Write 
x = xE + (x - xE) and use the uniqueness 
argument preceding the definition of 
projU(x). For (iii) implies (ii): x - xE is in 
U⊥ for all x in �n.]

 (b) If E is a projection matrix, show that I - E is 
also a projection matrix.

 (c) If EF = 0 = FE and E and F are projection 
matrices, show that E + F is also a projection 
matrix.

 �(d) If A is m × n and AAT is invertible, show that 
E = AT(AAT)-1A is a projection matrix.

 18. Let A be an n × n matrix of rank r. Show that 
there is an invertible n × n matrix U such that 
UA is a row-echelon matrix with the property 
that the first r rows are orthogonal. [Hint: Let 
R be the row-echelon form of A, and use the 
Gram-Schmidt process on the nonzero rows of R 
from the bottom up. Use Lemma 1 Section 2.4.]

 19. Let A be an (n - 1) × n matrix with rows 
x1, x2, …, xn-1 and let Ai denote the 
(n - 1) × (n - 1) matrix obtained from A by 
deleting column i. Define the vector y in �n by 
y = [det A1 -det A2 det A3 � (-1)n+1 det An] 
Show that:

 (a) xi · y = 0 for all i = 1, 2, …, n - 1. [Hint: 

Write Bi =   S   xi
   

A
  T  and show that det Bi = 0.]
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 (b) y ≠ 0 if and only if {x1, x2, …, xn-1} is 
linearly independent. [Hint: If some 
det Ai ≠ 0, the rows of Ai are linearly 
independent. Conversely, if the xi are 
independent, consider A = UR where R is in 
reduced row-echelon form.]

 (c) If {x1, x2, …, xn-1} is linearly independent, 
use Theorem 3(3) to show that all solutions 
to the system of n - 1 homogeneous 
equations

AxT
 = 0

  are given by ty, t a parameter.

Orthogonal Diagonalization
Recall (Theorem 3 Section 5.5) that an n × n matrix A is diagonalizable if and only 
if it has n linearly independent eigenvectors. Moreover, the matrix P with these 
eigenvectors as columns is a diagonalizing matrix for A, that is

P-1AP is diagonal.

As we have seen, the really nice bases of �n are the orthogonal ones, so a natural 
question is: which n × n matrices have an orthogonal basis of eigenvectors? These 
turn out to be precisely the symmetric matrices, and this is the main result of this 
section.

Before proceeding, recall that an orthogonal set of vectors is called orthonormal 
if ‖v‖ = 1 for each vector v in the set, and that any orthogonal set 
{v1, v2, …, vk} can be “normalized”, that is converted into an orthonormal set 

 U   1 ____  ‖  v 1  ‖   v1,   1 ____  ‖  v 2  ‖   v2, …,   1 ____  ‖  v k  ‖   vk V . In particular, if a matrix A has n orthogonal 

eigenvectors, they can (by normalizing) be taken to be orthonormal. The 
corresponding diagonalizing matrix P has orthonormal columns, and such 
matrices are very easy to invert.

Theorem 1

The following conditions are equivalent for an n × n matrix P.
1. P is invertible and P-1 = PT.
2. The rows of P are orthonormal.
3. The columns of P are orthonormal.

PROOF

First recall that condition (1) is equivalent to PPT = I by Corollary 1 of 
Theorem 5 Section 2.4. Let x1, x2, …, xn denote the rows of P. Then  x   j  

T  is the 
jth column of PT, so the (i, j)-entry of PPT is xi · xj. Thus PPT = I means that 
xi · xj = 0 if i ≠ j and xi · xj = 1 if i = j. Hence condition (1) is equivalent to 
(2). The proof of the equivalence of (1) and (3) is similar.

An n × n matrix P is called an orthogonal matrix2 if it satisfies one (and hence all) of 
the conditions in Theorem 1.

2

2 In view of (2) and (3) of Theorem 1, orthonormal matrix might be a better name. But orthogonal matrix is standard.

S E C T I O N  8 . 2

Definition 8.3
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EXAMPLE 1

The rotation matrix   S  cos θ -sin θ
        

sin θ   cos θ
  T  is orthogonal for any angle θ.

These orthogonal matrices have the virtue that they are easy to invert—simply 
take the transpose. But they have many other important properties as well. If 
T : �n → �n is a linear operator, we will prove (Theorem 3 Section 10.4) that T is 
distance preserving if and only if its matrix is orthogonal. In particular, the matrices 
of rotations and reflections about the origin in �2 and �3 are all orthogonal (see 
Example 1). 

It is not enough that the rows of a matrix A are merely orthogonal for A to be an 
orthogonal matrix. Here is an example. 

EXAMPLE 2

The matrix 
2 11

1
11 1

0 1
−

−
 has orthogonal rows but the columns are not orthogonal.

However, if the rows are normalized, the resulting matrix 

2
6

1
6

1
6

1
3

1
3

1
3

1
2

1
20

−

−
 is 

orthogonal (so the columns are now orthonormal as the reader can verify).

EXAMPLE 3

If P and Q are orthogonal matrices, then PQ is also orthogonal, as is P-1 = PT.

Solution ► P and Q are invertible, so PQ is also invertible and 
(PQ)-1 = Q-1P-1 = QTPT = (PQ)T. Hence PQ is orthogonal. 
Similarly, (P-1)-1 = P = (PT)T = (P-1)T shows that P-1 is orthogonal.

An n × n matrix A is said to be orthogonally diagonalizable when an orthogonal 
matrix P can be found such that P-1AP = PTAP is diagonal.

This condition turns out to characterize the symmetric matrices.

Theorem 2

Principal Axis Theorem
The following conditions are equivalent for an n × n matrix A.

1. A has an orthonormal set of n eigenvectors.
2. A is orthogonally diagonalizable.
3. A is symmetric.

Definition 8.4
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PROOF

(1) ⇔ (2). Given (1), let x1, x2, …, xn be orthonormal eigenvectors of 
A. Then P = [x1 x2 � xn] is orthogonal, and P–1AP is diagonal by 
Theorem 4 Section 3.3. This proves (2). Conversely, given (2) let P–1AP 
be diagonal where P is orthogonal. If x1, x2, …, xn are the columns 
of P then {x1, x2, …, xn} is an orthonormal basis of �n that consists of 
eigenvectors of A by Theorem 4 Section 3.3. This proves (1). 

(2) ⇒ (3). If PTAP = D is diagonal, where P-1 = PT, then A = PDPT. But 
DT = D, so this gives AT = PTTDTPT = PDPT = A.

(3) ⇒ (2). If A is an n × n symmetric matrix, we proceed by induction on n. 
If n = 1, A is already diagonal. If n > 1, assume that (3) ⇒ (2) for 
(n - 1) × (n - 1) symmetric matrices. By Theorem 7 Section 5.5 let λ1 
be a (real) eigenvalue of A, and let Ax1 = λ1x1, where ‖x1‖ = 1. Use the 
Gram-Schmidt algorithm to find an orthonormal basis {x1, x2, …, xn} for �n. 

Let P1 = [x1 x2 � xn], so P1 is an orthogonal matrix and  P   1  
T AP1 =   S  λ1  B 

    
0 A1

  T  
in block form by Lemma 2 Section 5.5. But  P   1  

T AP1 is symmetric (A is), so it 
follows that B = 0 and A1 is symmetric. Then, by induction, there exists an 
(n - 1) × (n - 1) orthogonal matrix Q such that QTA1Q = D1 is diagonal. 

Observe that P2 =   S  1  0     
0 Q

  T  is orthogonal, and compute:

(P1P2)
TA(P1P2) =  P   2  

T ( P   1  
T AP1)P2

 =   S   1    0             
0 QT   T    S   λ1  0            

0 A1
   T    S   1  0          

0 Q
   T 

 =   S   λ1  0             
0 D1

   T 
  is diagonal. Because P1P2 is orthogonal, this proves (2).

A set of orthonormal eigenvectors of a symmetric matrix A is called a set of 
principal axes for A. The name comes from geometry, and this is discussed 
in Section 8.8. Because the eigenvalues of a (real) symmetric matrix are real, 
Theorem 2 is also called the real spectral theorem, and the set of distinct 
eigenvalues is called the spectrum of the matrix. In full generality, the spectral 
theorem is a similar result for matrices with complex entries (Theorem 8 
Section 8.6).

EXAMPLE 4

Find an orthogonal matrix P such that P-1AP is diagonal, where A = 
−

−

1 1
0

0
21

21 5
.
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Solution ► The characteristic polynomial of A is (adding twice row 1 to row 2):

cA(x) = det
x

x
x

−

− −
− −

1 0 1
0 1 2
1 2 5

 = x(x - 1)(x - 6)

Thus the eigenvalues are λ = 0, 1, and 6, and corresponding eigenvectors are

x1 =   S     1
 

 
 -2   

  1
   T  x2 =   S  2 

 
 1   

0
  T  x3 =   S  -1

 
 

   2   
  5

   T 
respectively. Moreover, by what appears to be remarkably good luck, these 
eigenvectors are orthogonal. We have ‖x1‖

2 = 6, ‖x2‖
2 = 5, and ‖x3‖

2 = 30, so

P =   S   1 __ 
 √ 

__

 6  
  x1   1 __ 

 √ 

__

 5  
  x2   1 ___ 

 √ 

___

 30  
  x3 T  =   1 ___ 

 √ 

___

 30  
   

−

−
5 2 6 1

2 5 6 2

5 0 5

is an orthogonal matrix. Thus P-1 = PT and

PTAP = 
0 0 0
0 1 0
0 0 6

by the diagonalization algorithm.

Actually, the fact that the eigenvectors in Example 4 are orthogonal is no 
coincidence. Theorem 4 Section 5.5 guarantees they are linearly independent 
(they correspond to distinct eigenvalues); the fact that the matrix is symmetric 
implies that they are orthogonal. To prove this we need the following useful 
fact about symmetric matrices.

Theorem 3

If A is an n × n symmetric matrix, then

(Ax) · y = x · (Ay)

for all columns x and y in �n.3

3

PROOF

Recall that x · y = xTy for all columns x and y. Because AT = A, we get

(Ax) · y = (Ax)Ty = xTATy = xTAy = x · (Ay).

Theorem 4

If A is a symmetric matrix, then eigenvectors of A corresponding to distinct eigenvalues 
are orthogonal.

3 The converse also holds (Exercise 15).

379SECTION 8.2 Orthogonal Diagonalization



PROOF

Let Ax = λx and Ay = �y, where λ ≠ �. Using Theorem 3, we compute

λ(x · y) = (λx) · y = (Ax) · y = x · (Ay) = x · (�y) = �(x · y)

Hence (λ - �)(x · y) = 0, and so x · y = 0 because λ ≠ �.

Now the procedure for diagonalizing a symmetric n × n matrix is clear. Find the 
distinct eigenvalues (all real by Theorem 7 Section 5.5) and find orthonormal bases 
for each eigenspace (the Gram-Schmidt algorithm may be needed). Then the set of 
all these basis vectors is orthonormal (by Theorem 4) and contains n vectors. Here 
is an example.

EXAMPLE 5

Orthogonally diagonalize the symmetric matrix A = 
−

−
8 22
2 4

42 5
5 .

Solution ► The characteristic polynomial is

cA(x) = det 
x

x
x

− −
− − −

−− 8 2 2
2 5 4
2 4 5

 = x(x - 9)2.

Hence the distinct eigenvalues are 0 and 9 of multiplicities 1 and 2, 
respectively, so dim(E0) = 1 and dim(E9) = 2 by Theorem 6 Section 5.5 (A is 
diagonalizable, being symmetric). Gaussian elimination gives

E0(A) =  span{x1}, x1 =   S     1
 

 
   2   

-2
  T  , and E9(A) =  span  U   S  -2

 
 

   1   
  0

   T  ,   S  2 
 

 0   
1

  T  V . 
The eigenvectors in E9 are both orthogonal to x1 as Theorem 4 guarantees, 
but not to each other. However, the Gram-Schmidt process yields and 
orthogonal basis 

{x2, x3} of E9(A) where x2 =   S  -2
 

 
   1   

  0
   T  and x3 =   S  2 

 
 4   

5
  T .

Normalizing gives orthonormal vectors  U   1 _ 3   x 1 ,   1 __ 
 √ 

__

 5  
   x 2 ,   1 ___ 

3 √ 

__

 5  
   x 3  V , so 

P =   S   1 _ 3   x 1    1 __ 
 √ 

__

 5  
   x 2    1 ___ 

3 √ 

__

 5  
   x 3  T  =   1 ___ 

3 √ 

__

 5  
     S       √ 

__

 5   −6 2
  

    
    2 √ 

__

 5     3 4        

−2 √ 

__

 5     0 5

  T 
is an orthogonal matrix such that P–1AP is diagonal. 

It is worth noting that other, more convenient, diagonalizing matrices P 

exist. For example, y2 =   S  2 
 

 1   
2

  T  and y3 =   S  -2
 

 
   2   

  1
   T  lie in E9(A) and they are orthogonal. 

Moreover, they both have norm 3 (as does x1), so
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Q =   S   1 _ 3  x1   1 _ 3  y2   1 _ 3  y3 T  =   1 _ 3   
−

−

1 22
2 2

22 1
1

is a nicer orthogonal matrix with the property that Q-1AQ is diagonal.

If A is symmetric and a set of orthogonal eigenvectors of A is given, the 
eigenvectors are called principal axes of A. The name comes from geometry. An 
expression q =  ax  1  

2  + bx1x2 +  cx  2  
2  is called a quadratic form in the variables x1 

and x2, and the graph of the equation q = 1 is called a conic in these variables. 
For example, if q = x1x2, the graph of q = 1 is given in the first diagram. 

But if we introduce new variables y1 and y2 by setting x1 = y1 + y2 and 
x2 = y1 - y2, then q becomes q =  y  1  

2  -  y  2  
2 , a diagonal form with no cross term 

y1 y2 (see the second diagram). Because of this, the y1 and y2 axes are called 
the principal axes for the conic (hence the name). Orthogonal diagonalization 
provides a systematic method for finding principal axes. Here is an illustration. 

EXAMPLE 6

Find principal axes for the quadratic form q =  x  1  
2  - 4x1x2 +  x  2  

2 . 

Solution ► In order to utilize diagonalization, we first express q in matrix form. 
Observe that 

q = [x1 x2]  S  1 -4    
0   1

  T    S  x1   
x2

  T .
The matrix here is not symmetric, but we can remedy that by writing 

q =  x  1  
2  - 2x1x2 - 2x2x1 +  x  2  

2 .

Then we have 
q = [x1 x2]  S   1 -2     

-2   1
  T    S  x1   

x2
  T  = xTAx

where x =   S  x1   
x2

  T  and A =   S   1 -2     
-2   1

  T  is symmetric. The eigenvalues of A are 

λ1 = 3 and λ2 = -1, with corresponding (orthogonal) eigenvectors x1 =   S   1   
-1

  T  
and x2 =   S  1   

1
  T . Since ‖x1‖ = ‖x2‖ =  √ 

__

 2  , so

P =   1 __ 
 √ 

__

 2  
     S   1 1    

-1 1
  T  is orthogonal and PTAP = D =   S   3   0    

0 -1
  T . 

Now define new variables   S   y1   
y2

  T  = y by y = PTx, equivalently x = Py 
(since P-1 = PT). Hence 

y1 =   1 __ 
 √ 

__

 2  
  (x1 - x2) and y2 =   1 __ 

 √ 

__

 2  
  (x1 + x2). 

In terms of y1 and y2, q takes the form 

q = xTAx = (Py)TA(Py) = yT(PTAP)y = yTDy = 3 y  1  
2  -  y  2  

2 . 

Note that y = PTx is obtained from x by a counterclockwise rotation of   π __ 4   (see 
Theorem 6 Section 2.4).

O x1

x2

x1x2 = 1

O

y1y2

y2
1
 − y2

2
 = 1
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Observe that the quadratic form q in Example 6 can be diagonalized in other 
ways. For example 

q =  x  1  
2  - 4x1x2 +  x  2  

2  =  z  1  
2  -   1 _ 3   z  2  

2  

where z1 = x1 - 2x2 and z2 = 3x2. We examine this more carefully in Section 8.8. 
If we are willing to replace “diagonal” by “upper triangular” in the principal axis 

theorem, we can weaken the requirement that A is symmetric to insisting only that 
A has real eigenvalues.

Theorem 5

Triangulation Theorem
If A is an n × n matrix with n real eigenvalues, an orthogonal matrix P exists such that 
PTAP is upper triangular.4

4

PROOF

We modify the proof of Theorem 2. If Ax1 = λ1x1 where ‖x1‖ = 1, let 
{x1, x2, …, xn} be an orthonormal basis of �n, and let P1 = [x1 x2 � xn]. 

Then P1 is orthogonal and  P  1  
T AP1 =   S  λ1  B 

    
0 A1

  T  in block form. By induction, 

let QTA1Q = T1 be upper triangular where Q is orthogonal of size 

(n - 1) × (n -1). Then P2 =   S  1  0     
0 Q

  T  is orthogonal, so P = P1P2 is also 

orthogonal and PTAP =   S  λ1  BQ 
     

0     T1  
  T  is upper triangular.

The proof of Theorem 5 gives no way to construct the matrix P. However, an 
algorithm will be given in Section 11.1 where an improved version of Theorem 5 
is presented. In a different direction, a version of Theorem 5 holds for an arbitrary 
matrix with complex entries (Schur’s Theorem in Section 8.6).

As for a diagonal matrix, the eigenvalues of an upper triangular matrix 
are displayed along the main diagonal. Because A and PTAP have the same 
determinant and trace whenever P is orthogonal, Theorem 5 gives:

Corollary 1

If A is an n × n matrix with real eigenvalues λ1, λ2, …, λn (possibly not all distinct), 
then det A = λ1λ2�λn and tr A = λ1 + λ2 + � + λn.

This corollary remains true even if the eigenvalues are not real (using Schur’s 
theorem).

4 There is also a lower triangular version.
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E X E R C I S E S  8 . 2

 1. Normalize the rows to make each of the 
following matrices orthogonal.

 (a) A =   S   1 1    
-1 1

  T  �(b) A =   S  3 -4    
4   3

  T 

 (c) A =   S   1 2    
-4 2

  T  �(d) A =   S   a b
    

-b a
  T  , (a, b) ≠ (0, 0)

 (e) A = 
0
0

0 20

−cos sin
sin cos

θ

θ

θ

θ  �(f ) A = 
2 1
1 −−

−
1

0 1
1

1

1

 (g) A = 
−

−
−

1 22
2 2

22 1
1  �(h) A = 

−

−

2 3

3
3 6

6

6 2
2

 �2. If P is a triangular orthogonal matrix, show that 
P is diagonal and that all diagonal entries are 1 
or -1.

 3. If P is orthogonal, show that kP is orthogonal if 
and only if k = 1 or k = -1.

 4. If the first two rows of an orthogonal matrix 
are  Q   1 _ 3  ,   

2 _ 3  ,   
2 _ 3   R  and  Q   2 _ 3  ,   

1 _ 3  ,   
-2 __ 3    R , find all possible third 

rows.

 5. For each matrix A, find an orthogonal matrix P 
such that P-1AP is diagonal.

 (a) A =   S  0 1    
1 0

  T  �(b) A =   S   1 -1     
-1   1

  T 

 (c) A = 
3 00
0 22

20 5
 �(d) A = 

3 7
0 5 0

0

07 3

 (e) A = 
1 01
1 01
0 200

 �(f ) A = 
5
2 28

2

2 54

4−
−

−

−
−

−

 (g) A = 

5 0
3 0
0 7

5

700

0
0

0
0 1

3

1
 �(h) A = 

3

3
3

1
5 3
1
1

1
11

1
1 5

5

5

−
−

−
−

 �6. Consider A = 
a

a
c

c
0

0
0

0

0
 where one of a, c ≠ 0. 

Show that cA(x) = x(x - k)(x + k), where 

k =  √ 
______

 a2 + c2   and find an orthogonal matrix P 
such that P-1AP is diagonal.

 7. Consider A = 
a

b
a

0
0

0 0
0

0
. Show that 

cA(x) = (x - b)(x - a)(x + a) and find an 
orthogonal matrix P such that P-1AP is diagonal.

 8. Given A =   S  b a
   

a b
  T  , show that 

cA(x) = (x - a - b)(x + a - b) and find an 
orthogonal matrix P such that P-1AP is diagonal.

 9. Consider A = 
b

b
ba

a0
00

0
. Show that 

  cA(x) = (x - b)(x - b - a)(x - b + a) and find an 
orthogonal matrix P such that P-1AP is diagonal.

 10. In each case find new variables y1 and y2 that 
diagonalize the quadratic form q.

 (a)   q =  x  1  
2  + 6x1x2 +  x  2  

2 

 �(b)   q =  x  1  
2  + 4x1x2 - 2 x  2  

2 

 11. Show that the following are equivalent for a 
symmetric matrix A.

 (a) A is orthogonal. (b) A2 = I.

 �(c) All eigenvalues of A are ±1.

  [Hint: For (b) if and only if (c), use Theorem 2.]

 12. We call matrices A and B orthogonally similar 
(and write A ∼◦  B) if B = PTAP for an orthogonal 
matrix P.

 (a) Show that A ∼◦  A for all A; A ∼◦  B ⇒ B ∼◦  A; 
and A ∼◦  B and B ∼◦  C ⇒ A ∼◦  C.

 (b) Show that the following are equivalent for 
two symmetric matrices A and B.

   (i) A and B are similar.

   (ii) A and B are orthogonally similar.

  (iii) A and B have the same eigenvalues.

 13. Assume that A and B are orthogonally similar 
(Exercise 12).

 (a) If A and B are invertible, show that A-1 and 
B-1 are orthogonally similar.

 �(b) Show that A2 and B2 are orthogonally similar.

 (c) Show that, if A is symmetric, so is B.
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 14. If A is symmetric, show that every eigenvalue of 
A is nonnegative if and only if A = B2 for some 
symmetric matrix B.

 �15. Prove the converse of Theorem 3: 
If (Ax) · y = x · (Ay) for all n-columns x and y, 
then A is symmetric.

 16. Show that every eigenvalue of A is zero if and 
only if A is nilpotent (Ak = 0 for some k ≥ 1).

 17. If A has real eigenvalues, show that 
A = B + C where B is symmetric and C 
is nilpotent. [Hint: Theorem 5.]

 18. Let P be an orthogonal matrix.

 (a)   Show that det P = 1 or det P = -1.

 �(b) Give 2 × 2 examples of P such that det P = 1 
and det P = -1.

 (c) If det P = -1, show that I + P has no 
inverse. [Hint: PT(I + P) = (I + P)T.]

 �(d) If P is n × n and det P ≠ (-1)n, show that 
I - P has no inverse. 
[Hint: PT(I - P) = -(I - P)T.]

 19. We call a square matrix E a projection matrix if 
E2 = E = ET.

 (a) If E is a projection matrix, show that 
P = I - 2E is orthogonal and symmetric.

 (b) If P is orthogonal and symmetric, show that 
E =   1 _ 2  (I - P) is a projection matrix.

 (c) If U is m × n and UTU = I (for example, a 
unit column in �n), show that E = UUT is a 
projection matrix.

 20. A matrix that we obtain from the identity 
matrix by writing its rows in a different order is 
called a permutation matrix. Show that every 
permutation matrix is orthogonal.

 �21. If the rows r1, …, rn of the n × n matrix 
A = [aij] are orthogonal, show that the 

(i, j)-entry of A-1 is   
aji
 _____ 

‖rj‖
2
  .

 22. (a) Let A be an m × n matrix. Show that the 
following are equivalent.

 (i) A has orthogonal rows.

 (ii) A can be factored as A = DP, where 
D is invertible and diagonal and P has 
orthonormal rows.

 (iii) AAT is an invertible, diagonal matrix.

 (b) Show that an n × n matrix A has orthogonal 
rows if and only if A can be factored as 
A = DP, where P is orthogonal and D is 
diagonal and invertible.

 23. Let A be a skew-symmetric matrix; that is, 
AT = -A. Assume that A is an n × n matrix.

 (a) Show that I + A is invertible. [Hint: By 
Theorem 5 Section 2.4, it suffices to show 
that (I + A)x = 0, x in �n, implies x = 0. 
Compute x · x = xTx, and use the fact that 
Ax = -x and A2x = x.]

 �(b) Show that P = (I - A)(I + A)-1 is 
orthogonal.

 (c) Show that every orthogonal matrix P such 
that I + P is invertible arises as in part (b) 
from some skew-symmetric matrix A. 
[Hint: Solve P = (I - A)(I + A)-1 for A.]

 24. Show that the following are equivalent for an 
n × n matrix P.

 (a) P is orthogonal.

 (b) ‖Px‖ = ‖x‖ for all columns x in �n.

 (c) ‖Px - Py‖ = ‖x - y‖ for all columns x 
and y in �n.

 (d) (Px) · (Py) = x · y for all columns x and y 
in �n. 

  [Hints: For (c) ⇒ (d), see Exercise 14(a) Section 
5.3. For (d) ⇒ (a), show that column i of P 
equals Pei, where ei is column i of the identity 
matrix.]

 25. Show that every 2 × 2 orthogonal matrix has the 

form    S  cos θ -sin θ
        

sin θ   cos θ
  T   or    S   cos θ   sin θ

        
sin θ -cos θ

  T   for some 

angle θ. [Hint: If a2 + b2 = 1, then a = cos θ and 
b = sin θ for some angle θ.]

 26. Use Theorem 5 to show that every symmetric 
matrix is orthogonally diagonalizable.
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Positive Definite Matrices
All the eigenvalues of any symmetric matrix are real; this section is about the 
case in which the eigenvalues are positive. These matrices, which arise whenever 
optimization (maximum and minimum) problems are encountered, have countless 
applications throughout science and engineering. They also arise in statistics (for 
example, in factor analysis used in the social sciences) and in geometry (see Section 
8.8). We will encounter them again in Chapter 10 when describing all inner 
products in �n.

A square matrix is called positive definite if it is symmetric and all its eigenvalues λ 

are positive, that is λ > 0.

Because these matrices are symmetric, the principal axis theorem plays a central 
role in the theory.

Theorem 1

If A is positive definite, then it is invertible and det A > 0.

PROOF

If A is n × n and the eigenvalues are λ1, λ2, …, λn, then det A = λ1λ2�λn > 0 
by the principal axis theorem (or the corollary to Theorem 5 Section 8.2).

If x is a column in �n and A is any real n × n matrix, we view the 1 × 1 matrix 
xTAx as a real number. With this convention, we have the following characterization 
of positive definite matrices.

Theorem 2

A symmetric matrix A is positive definite if and only if xTAx > 0 for every column 
x ≠ 0 in �n.

PROOF

A is symmetric so, by the principal axis theorem, let 
PTAP = D = diag(λ1, λ2, …, λn) where P-1 = PT and the λi are the 
eigenvalues of A. Given a column x in �n, write y = PTx = [y1 y2 � yn]

T. Then

xTAx > xT(PDPT)x = yTDy = λ1 y  1  
2  + λ2 y  2  

2  + � + λn y  n  
2  (∗)

If A is positive definite and x ≠ 0, then xTAx > 0 by (∗) because some yj ≠ 0 and 
every λi > 0. Conversely, if xTAx > 0 whenever x ≠ 0, let x = Pej ≠ 0 where ej 
is column j of In. Then y = ej, so (∗) reads λj = xTAx > 0.

Note that Theorem 2 shows that the positive definite matrices are exactly the symmetric 
matrices A for which the quadratic form q = xTAx takes only positive values.

S E C T I O N  8 . 3

Definition 8.5
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EXAMPLE 1

If U is any invertible n × n matrix, show that A = UTU is positive definite.

Solution ► If x is in �n and x ≠ 0, then

xTAx = xT(UTU )x = (Ux)T(Ux) = ‖Ux‖
2 > 0

because Ux ≠ 0 (U is invertible). Hence Theorem 2 applies.

It is remarkable that the converse to Example 1 is also true. In fact every 
positive definite matrix A can be factored as A = UTU where U is an upper 
triangular matrix with positive elements on the main diagonal. However, 
before verifying this, we introduce another concept that is central to any 
discussion of positive definite matrices.

If A is any n × n matrix, let (r)A denote the r × r submatrix in the upper 
left corner of A; that is, (r)A is the matrix obtained from A by deleting the last 
n - r rows and columns. The matrices (1)A, (2)A, (3)A, …, (n)A = A are called 
the principal submatrices of A.

EXAMPLE 2

If A = 
10 5
5 2

2

2

2 3
3  then (1)A = [10], (2)A =   S  10 5    

5 3
  T  and (3)A = A.

Lemma 1

If A is positive definite, so is each principal submatrix (r)A for r = 1, 2, …, n.

PROOF

Write A =   S  (r)A P
    

Q R
  T  in block form. If y ≠ 0 in �r, write x =   S   y   

0
  T  in �n. 

Then x ≠ 0, so the fact that A is positive definite gives

0 < xTAx = [yT 0]  S  (r)A P
    

Q R
  T    S   y   

0
  T  = yT((r)A)y

This shows that (r)A is positive definite by Theorem 2.5

5

If A is positive definite, Lemma 1 and Theorem 1 show that det((r)A) > 0 for 
every r. This proves part of the following theorem which contains the converse to 
Example 1, and characterizes the positive definite matrices among the symmetric 
ones.

5 A similar argument shows that, if B is any matrix obtained from a positive definite matrix A by deleting certain rows and deleting the 
same columns, then B is also positive definite.
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Theorem 3

The following conditions are equivalent for a symmetric n × n matrix A:

1. A is positive definite.
2. det((r)A) > 0 for each r = 1, 2, …, n.
3. A = UTU where U is an upper triangular matrix with positive entries on the 

main diagonal.
Furthermore, the factorization in (3) is unique (called the Cholesky factorization6 
of A).

6

PROOF

First, (3) ⇒ (1) by Example 1, and (1) ⇒ (2) by Lemma 1 and Theorem 1.

(2) ⇒ (3). Assume (2) and proceed by induction on n. If n = 1, then A = [a] 
where a > 0 by (2), so take U = [ √ 

__
 a  ]. If n > 1, write B = (n-1)A. Then B is 

symmetric and satisfies (2) so, by induction, we have B = UTU as in (3) where 
U is of size (n - 1) × (n - 1). Then, as A is symmetric, it has block form 

A =   S   B p
    

pT b
  T . where p is a column in �n-1 and b is in �. If we write 

x = (UT)-1p and c = b - xTx, block multiplication gives

A =   S  U
TU p
     

pT  b
  T  =   S  UT 0    

xT 1
  T    S  U x    

0 c
  T 

as the reader can verify. Taking determinants and applying Theorem 5 Section 
3.1 gives det A = det(UT) det U · c = c(det U )2. Hence c > 0 because det A > 0 

by (2), so the above factorization can be written A =   S  UT   0      
xT  √ 

_
 c  
  T    S  U   x      

0  √ 

_
 c  
  T . Since U has 

positive diagonal entries, this proves (3).

As to the uniqueness, suppose that A = UTU =  U   1  
T U1 are two Cholesky 

factorizations. Write D = U U   1  
-1  = (UT)-1 U   1  

T . Then D is upper triangular, 
because D = UU1

-1, and lower triangular, because D = (UT)-1U1
T, and so it is a 

diagonal matrix. Thus U = DU1 and U1 = DU, so it suffices to show that D = I. 
But eliminating U1 gives U = D2U, so D2 = I because U is invertible. Since the 
diagonal entries of D are positive (this is true of U and U1), it follows that D = I.

The remarkable thing is that the matrix U in the Cholesky factorization is easy 
to obtain from A using row operations. The key is that Step 1 of the following 
algorithm is possible for any positive definite matrix A. A proof of the algorithm is 
given following Example 3.

6 Andre-Louis Cholesky (1875–1918), was a French mathematician who died in World War I. His factorization was published in 1924 
by a fellow officer.
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Algorithm for the Cholesky Factorization

If A is a positive definite matrix, the Cholesky factorization A = UTU can be obtained 
as follows:

Step 1. Carry A to an upper triangular matrix U1 with positive diagonal entries using 
row operations each of which adds a multiple of a row to a lower row.

Step 2. Obtain U from U1 by dividing each row of U1 by the square root of the 
diagonal entry in that row.

EXAMPLE 3

Find the Cholesky factorization of A = 
10 5
5 2

2

2

2 3
3 .

Solution ► The matrix A is positive definite by Theorem 3 because 
det (1)A = 10 > 0, det (2)A = 5 > 0, and det (3)A = det A = 3 > 0. Hence Step 1 
of the algorithm is carried out as follows: 

A = 
10 5 2

5 3 2
2 2 3

 → 
10 5 2
0 1
0 1

1
2

13
5

 → 
10 5 2
0 1
0 0

1
2

3
5

 = U1

Now carry out Step 2 on U1 to obtain U = 

10

20

00

5
10

2
10

1
2

3
5

.

The reader can verify that UTU = A.

PROOF OF THE CHOLESKY ALGORITHM

If A is positive definite, let A = UTU be the Cholesky factorization, and let 
D = diag(d1, …, dn) be the common diagonal of U and UT. Then UTD-1 
is lower triangular with ones on the diagonal (call such matrices LT-1). 
Hence L = (UTD-1)-1 is also LT-1, and so In → L by a sequence of row 
operations each of which adds a multiple of a row to a lower row (verify; 
modify columns right to left). But then A → LA by the same sequence of 
row operations (see the discussion preceding Theorem 1 Section 2.5). Since 
LA = [D(UT)-1][UTU] = DU is upper triangular with positive entries on the 
diagonal, this shows that Step 1 of the algorithm is possible.

Turning to Step 2, let A → U1 as in Step 1 so that U1 = L1A where L1 is 
LT-1. Since A is symmetric, we get 

 L1 U  1  
T  = L1(L1A)T = L1 A

T L  1  
T  = L1A L  1  

T   = U1 L  1  
T  (∗)
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Let D1 = diag(e1, …, en) denote the diagonal of U1. Then (∗) gives 
L1( U  1  

T  D  1  
-1 ) = U1 L  1  

T  D  1  
-1 . This is both upper triangular (right side) and 

LT-1 (left side), and so must equal In. In particular,  U  1  
T  D  1  

-1  =  L  1  
-1 . Now 

let D2 = diag( √ 
__

 e1  , …,  √ 
__

 en  ), so that  D  2  
2  = D1. If we write U =  D  2  

-1 U1 we have

UTU = ( U  1  
T  D  2  

-1 )( D  2  
-1 U1) =  U  1  

T ( D  2  
2 )-1U1 = ( U  1  

T  D  1  
-1 )U1 = ( L  1  

-1 )U1 = A

This proves Step 2 because U =  D  2  
-1 U1 is formed by dividing each row of U1 

by the square root of its diagonal entry (verify).

E X E R C I S E S  8 . 3

 1. Find the Cholesky decomposition of each of the 
following matrices.

 (a)   S  4 3    
3 5

  T  �(b)   S   2 -1     
-1   1

  T 

 (c) 
12

1
2
4

4 1
3

3

7
−

−
 �(d) 

20
2
4

4 3
35 5

5

 2. (a) If A is positive definite, show that Ak is 
positive definite for all k ≥ 1. 

 �(b) Prove the converse to (a) when k is odd. 

 (c) Find a symmetric matrix A such that A2 is 
positive definite but A is not. 

 3. Let A =   S  1 a
    

a b
  T . If a2 < b, show that A is positive 

definite and find the Cholesky factorization. 

 �4. If A and B are positive definite and r > 0, show 
that A + B and rA are both positive definite.

 5. If A and B are positive definite, show that   S  A 0    
0 B

  T  
is positive definite.

 �6. If A is an n × n positive definite matrix and U is 
an n × m matrix of rank m, show that UTAU is 
positive definite.

 7. If A is positive definite, show that each diagonal 
entry is positive.

 8. Let A0 be formed from A by deleting rows 2 and 
4 and deleting columns 2 and 4. If A is positive 
definite, show that A0 is positive definite.

 9. If A is positive definite, show that A = CCT 
where C has orthogonal columns.

 �10. If A is positive definite, show that A = C2 where 
C is positive definite.

 11. Let A be a positive definite matrix. If a is a real 
number, show that aA is positive definite if and 
only if a > 0.

 12. (a) Suppose an invertible matrix A can be 
factored in Mnn as A = LDU where L is 
lower triangular with 1s on the diagonal, U 
is upper triangular with 1s on the diagonal, 
and D is diagonal with positive diagonal 
entries. Show that the factorization is unique: 
If A = L1D1U1 is another such factorization, 
show that L1 = L, D1 = D, and U1 = U.

 �(b) Show that a matrix A is positive definite 
if and only if A is symmetric and admits a 
factorization A = LDU as in (a).

 13. Let A be positive definite and write 
dr = det (r)A for each r = 1, 2, …, n. If U is 
the upper triangular matrix obtained in step 
1 of the algorithm, show that the diagonal 
elements u11, u22, …, unn of U are given 
by u11 = d1, ujj = dj/dj-1 if j > 1. [Hint: If 
LA = U where L is lower triangular with 1s 
on the diagonal, use block multiplication to 
show that det (r)A = det (r)U for each r.]
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QR-Factorization7

One of the main virtues of orthogonal matrices is that they can be easily inverted—
the transpose is the inverse. This fact, combined with the factorization theorem in 
this section, provides a useful way to simplify many matrix calculations (for example, 
in least squares approximation).

Let A be an m × n matrix with independent columns. A QR-factorization of A 
expresses it as A = QR where Q is m × n with orthonormal columns and R is an 
invertible and upper triangular matrix with positive diagonal entries.

The importance of the factorization lies in the fact that there are computer 
algorithms that accomplish it with good control over round-off error, making it 
particularly useful in matrix calculations. The factorization is a matrix version of 
the Gram-Schmidt process. 

Suppose A = [c1 c2 � cn] is an m × n matrix with linearly independent 
columns c1, c2, …, cn. The Gram-Schmidt algorithm can be applied to these 
columns to provide orthogonal columns f1, f2, …, fn where f1 = c1 and

fk = ck -   
ck · f1 _____ 
‖f1‖

2
   f1 +   

ck · f2 _____ 
‖f2‖

2
   f2 - � -   

ck · fk-1 _______ 
‖fk-1‖

2
   fk-1

for each k = 2, 3, …, n. Now write qk =   1 ____ 
‖fk‖

   fk for each k. Then q1, q2, …, qn are 

orthonormal columns, and the above equation becomes

‖fk‖qk = ck - (ck · q1)q1 - (ck · q2)q2 - � - (ck · qk-1)qk-1

Using these equations, express each ck as a linear combination of the qi:

c1 = ‖f1‖q1
c2 = (c2 · q1)q1 + ‖f2‖q2
c3 = (c3 · q1)q1 + (c3 · q2)q2 + ‖f3‖q3
�   �

cn = (cn · q1)q1 + (cn · q2)q2 + (cn · q3)q3 + � + ‖fn‖qn

These equations have a matrix form that gives the required factorization:

A = [c1 c2 c3 � cn]

 = [q1 q2 q3 � qn]
0
0 00

0 0 0

3 3

f

f
2f

1f

3c
3c

c q
2q
1q

2q
1q2c 1q

n

cn

cn

n

 (∗)

Here the first factor Q = [q1 q2 q3 � qn] has orthonormal columns, and the 
second factor is an n × n upper triangular matrix R with positive diagonal entries 
(and so is invertible). We record this in the following theorem.

Theorem 1

QR-Factorization
Every m × n matrix A with linearly independent columns has a QR-factorization A = QR 
where Q has orthonormal columns and R is upper triangular with positive diagonal entries.

7 This section is not used elsewhere in this book.

S E C T I O N  8 . 4
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The matrices Q and R in Theorem 1 are uniquely determined by A; we return to 
this below.

EXAMPLE 1

Find the QR-factorization of A = 
−

1 0

0

01 1
1

0 11
0 1

.

Solution ► Denote the columns of A as c1, c2, and c3, and observe that {c1, c2, c3} 
is independent. If we apply the Gram-Schmidt algorithm to these columns, the 
result is: 

f1 = c1 =   S     1
 

 
 −1   

  0
 

 
 

  0

   T  , f2 = c2 -   1 _ 2   f1 =   S   
  1 _ 2  

 

 

 
  1 _ 2     
1

 
 

 

0

  T  , and f3 = c3 +   1 _ 2   f1 - f2 =   S  
0

 
 

 0   
0

 
 

 

1

  T .
Write qj =   1 ____ 

  ‖  f j  ‖  2 
   fj for each j, so {q1, q2, q3} is orthonormal. Then equation (∗) 

preceding Theorem 1 gives A = QR where 

Q = [q1 q2 q3] = 
−

1
2

1
6

1
2

1
6

2
6

0

0

0 0

0 0 1

 = −1
6

3 1 0

3 1 0
0 2 0

0 0 66

R = 
f1

f2

f

c2 q1 q1

q2

c3

c3

3

0
0 0

· ·

·  = 

−1
2

1
2

3
2

3
2

2

0

0 0 1

 = 

−
1
2

2 1 1

0 3 3

0 0 2

The reader can verify that indeed A = QR.

If a matrix A has independent rows and we apply QR-factorization to AT, the 
result is:

Corollary 1

If A has independent rows, then A factors uniquely as A = LP where P has orthonormal 
rows and L is an invertible lower triangular matrix with positive main diagonal entries.

Since a square matrix with orthonormal columns is orthogonal, we have

Theorem 2

Every square, invertible matrix A has factorizations A = QR and A = LP where Q and 
P are orthogonal, R is upper triangular with positive diagonal entries, and L is lower 
triangular with positive diagonal entries.
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In Section 5.6 we found how to find a best approximation z to a solution of a 
(possibly inconsistent) system Ax = b of linear equations: take z to be any solution 
of the “normal” equations (ATA)z = ATb. If A has independent columns this z is 
unique (ATA is invertible by Theorem 3 Section 5.4), so it is often desirable to 
compute (ATA)–1. This is particularly useful in least squares approximation (Section 
5.6). This is simplified if we have a QR-factorization of A (and is one of the main 
reasons for the importance of Theorem 1). For if A = QR is such a factorization, 
then QTQ = In because Q has orthonormal columns (verify), so we obtain

ATA = RTQTQR = RTR.

Hence computing (ATA)-1 amounts to finding R-1, and this is a routine matter 
because R is upper triangular. Thus the difficulty in computing (ATA)-1 lies in 
obtaining the QR-factorization of A.

We conclude by proving the uniqueness of the QR-factorization.

Theorem 3

Let A be an m × n matrix with independent columns. If A = QR and A = Q1R1 are 
QR-factorizations of A, then Q1 = Q and R1 = R.

PROOF

Write Q = [c1 c2 � cn] and Q1 = [d1 d2 � dn] in terms of their columns, 
and observe first that QTQ = In =  Q  1  

T Q1 because Q and Q1 have orthonormal 
columns. Hence it suffices to show that Q1 = Q (then R1 =  Q  1  

T A = QTA = R). 
Since  Q  1  

T Q1 = In, the equation QR = Q1R1 gives  Q  1  
T Q = R1R

-1; for convenience 
we write this matrix as

 Q  1  
T Q = R1R

-1 = [tij].

This matrix is upper triangular with positive diagonal elements (since this is true 
for R and R1), so tii > 0 for each i and tij = 0 if i > j. On the other hand, the 
(i, j)-entry of  Q  1  

T Q is  d  i  T  cj = di · cj, so we have di · cj = tij for all i and j. But each 
cj is in span{d1, d2, …, dn} because Q = Q1(R1R

-1). Hence the expansion theorem 
gives

cj = (d1 · cj)d1 + (d2 · cj)d2 + � + (dn · cj)dn = t1jd1 + t2jd2 + � + tjjdi

because di · cj = tij = 0 if i > j. The first few equations here are

c1 = t11d1
c2 = t12d1 + t22d2
c3 = t13d1 + t23d2 + t33d3
c4 = t14d1 + t24d2 + t34d3 + t44d4

    �  �

The first of these equations gives 1 = ‖c1‖ = ‖t11d1‖ = ‖t11‖‖d1‖ = t11, whence 
c1 = d1. But then t12 = d1 · c2 = c1 · c2 = 0, so the second equation becomes 
c2 = t22d2. Now a similar argument gives c2 = d2, and then t13 = 0 and t23 = 0 
follows in the same way. Hence c3 = t33d3 and c3 = d3. Continue in this way to 
get ci = di for all i. This means that Q1 = Q, which is what we wanted.

Remark
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E X E R C I S E S  8 . 4

 1. In each case find the QR-factorization of A. 

 (a) A =   S   1 -1     
-1   0

  T  �(b) A =   S  2 1    
1 1

  T  

 (c) A = 

1
1
1
0

1
1
0
0

1
0
0
0

 �(d) A −

−

1 0
1 1
0 11

1

11 0

0

 2. Let A and B denote matrices.

 (a) If A and B have independent columns, show 
that AB has independent columns. [Hint: 
Theorem 3 Section 5.4.]

 �(b) Show that A has a QR-factorization if and 
only if A has independent columns.

 (c) If AB has a QR-factorization, show that the 
same is true of B but not necessarily A. 

[Hint: Consider AAT where A =   S   1 0 0            
1 1 1

   T .]
 3. If R is upper triangular and invertible, show that 

there exists a diagonal matrix D with diagonal 
entries ±1 such that R1 = DR is invertible, upper 
triangular, and has positive diagonal entries. 

 4. If A has independent columns, let A = QR where 
Q has orthonormal columns and R is invertible 
and upper triangular. [Some authors call this 
a QR-factorization of A.] Show that there is a 
diagonal matrix D with diagonal entries ±1 such 
that A = (QD)(DR) is the QR-factorization of A. 
[Hint: Preceding exercise.] 

Computing Eigenvalues 
In practice, the problem of finding eigenvalues of a matrix is virtually never solved 
by finding the roots of the characteristic polynomial. This is difficult for large 
matrices and iterative methods are much better. Two such methods are described 
briefly in this section. 

The Power Method
In Chapter 3 our initial rationale for diagonalizing matrices was to be able to 
compute the powers of a square matrix, and the eigenvalues were needed to do this. 
In this section, we are interested in efficiently computing eigenvalues, and it may 
come as no surprise that the first method we discuss uses the powers of a matrix. 

Recall that an eigenvalue λ of an n × n matrix A is called a dominant eigenvalue 
if λ has multiplicity 1, and

|λ| > |�| for all eigenvalues � ≠ λ.

Any corresponding eigenvector is called a dominant eigenvector of A. When such 
an eigenvalue exists, one technique for finding it is as follows: Let x0 in �n be a first 
approximation to a dominant eigenvector λ, and compute successive approximations 
x1, x2, … as follows:

x1 = Ax0 x2 = Ax1 x3 = Ax2 �

In general, we define

xk+1 = Axk for each k ≥ 0.

If the first estimate x0 is good enough, these vectors xn will approximate the 
dominant eigenvector λ (see below). This technique is called the power 
method (because xk = Akx0 for each k ≥ 1). Observe that if z is any eigenvector 
corresponding to λ, then

  
z · (Az)

 _______ 
‖z‖

2
   =   

z · (λz)
 _______ 

‖z‖
2
   = λ.

S E C T I O N  8 . 5
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Because the vectors x1, x2, …, xn, … approximate dominant eigenvectors, this 
suggests that we define the Rayleigh quotients as follows:

rk =   
xk · xk+1 ________ 

‖xk‖
2
   for k ≥ 1.

Then the numbers rk approximate the dominant eigenvalue λ.

EXAMPLE 1

Use the power method to approximate a dominant eigenvector and eigenvalue 

of A =   S  1 1    
2 0

  T .
Solution ► The eigenvalues of A are 2 and -1, with eigenvectors   S   1     

1
   T  and   S   1       

-2
   T .

Take x0 =   S   1     
0

   T  as the first approximation and compute x1, x2, …, successively, 

from x1 = Ax0, x2 = Ax1, … . The result is

x1 =   S   1     
2

   T  , x2 =   S   3     
2

   T  , x3 =   S   5     
6

   T  , x4 =   S   11      
10

   T  , x5 =   S   21      
22

   T  , …

These vectors are approaching scalar multiples of the dominant eigenvector 

  S   1     
1

   T . Moreover, the Rayleigh quotients are

r1 =   7 _ 5  , r2 =   27 __ 13  , r3 =   115 ___ 61  , r4 =   451 ___ 221  , …

and these are approaching the dominant eigenvalue 2.

To see why the power method works, let λ1, λ2, …, λm be eigenvalues of A with 
λ1 dominant and let y1, y2, …, ym be corresponding eigenvectors. What is required 
is that the first approximation x0 be a linear combination of these eigenvectors:

x0 = a1y1 + a2y2 + � + amym with a1 ≠ 0

If k ≥ 1, the fact that xk = Akx0 and Akyi =  λ  i  
k yi for each i gives

xk = a1 λ  1  
k
  y1 + a2 λ  2  

k
  y2 + � + am λ  m  k

  ym  for k ≥ 1

Hence

  1 ___ 
 λ  1  

k
  
  xk = a1y1 + a2  Q   λ2 ___ 

λ1
   R  k y2 + � + am  Q   λm ___ 

λ1
   R  k ym

The right side approaches a1y1 as k increases because λ1 is dominant 

 Q  |   λi ___ 
λ1

   |  < 1 for each i > 1 R . Because a1 ≠ 0, this means that xk approximates the

dominant eigenvector a1 λ  1  
k
  y1.

The power method requires that the first approximation x0 be a linear 
combination of eigenvectors. (In Example 1 the eigenvectors form a basis of �2.) 
But even in this case the method fails if a1 = 0, where a1 is the coefficient of the 

dominant eigenvector (try x0 =   S  -1   
2

  T  in Example 1). In general, the rate of 

convergence is quite slow if any of the ratios  |   λi ___ 
λ1

   |  is near 1. Also, because the 

method requires repeated multiplications by A, it is not recommended unless these 
multiplications are easy to carry out (for example, if most of the entries of A are zero).
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QR-Algorithm
A much better method for approximating the eigenvalues of an invertible matrix A 
depends on the factorization (using the Gram-Schmidt algorithm) of A in the form

A = QR

where Q is orthogonal and R is invertible and upper triangular (see Theorem 
2 Section 8.4). The QR-algorithm uses this repeatedly to create a sequence of 
matrices A1 = A, A2, A3, …, as follows:

1. Define A1 = A and factor it as A1 = Q1R1.

2. Define A2 = R1Q1 and factor it as A2 = Q2R2.

3. Define A3 = R2Q2 and factor it as A3 = Q3R3.

      �

In general, Ak is factored as Ak = QkRk and we define Ak+1 = RkQk. Then Ak+1 is 
similar to Ak [in fact, Ak+1 = RkQk = ( Q  k  

-1 Ak)Qk], and hence each Ak has the same 
eigenvalues as A. If the eigenvalues of A are real and have distinct absolute values, 
the remarkable thing is that the sequence of matrices A1, A2, A3, … converges to an 
upper triangular matrix with these eigenvalues on the main diagonal. [See below for 
the case of complex eigenvalues.]

EXAMPLE 2

If A =   S  1 1    
2 0

  T  as in Example 1, use the QR-algorithm to approximate the 

eigenvalues.

Solution ► The matrices A1, A2, and A3 are as follows:

A1 =   S  1 1    
2 0

  T  = Q1R1 where Q1 =   1 __ 
 √ 

__

 5  
    S   1   2    
2 -1

  T  and R1 =   1 __ 
 √ 

__

 5  
     S  5 1    

0 2
  T 

A2 =   1 _ 5     S   7   9    
4 -2

  T  =   S   1.4 -1.8      
-0.8 -0.4

  T  = Q2R2

  where Q2 =   1 ___ 
 √ 

___

 65  
    S   7   4    
4 -7

  T  and R2 =   1 ___ 
 √ 

___

 65  
     S  13 11    

0 10
  T 

A3 =   1 __ 13     S  27  -5     
8 -14

  T  =   S  2.08 -0.38      
0.62 -1.08

  T 

This is converging to   S  2   ∗
    

0 -1
  T  and so is approximating the eigenvalues 2 and -1 

on the main diagonal.

It is beyond the scope of this book to pursue a detailed discussion of these 
methods. The reader is referred to J. M. Wilkinson, The Algebraic Eigenvalue 
Problem (Oxford, England: Oxford University Press, 1965) or G. W. Stewart, 
Introduction to Matrix Computations (New York: Academic Press, 1973). We 
conclude with some remarks on the QR-algorithm.
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Shifting. Convergence is accelerated if, at stage k of the algorithm, a number sk is 
chosen and Ak - skI is factored in the form QkRk rather than Ak itself. Then 

 Q  k  
-1 AkQk =  Q  k  

-1 (QkRk + skI)Qk = RkQk + skI

so we take Ak+1 = RkQk + skI. If the shifts sk are carefully chosen, convergence can 
be greatly improved.

Preliminary Preparation. A matrix such as

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗

0
0 0
0 0 0

is said to be in upper Hessenberg form, and the QR-factorizations of such matrices 
are greatly simplified. Given an n × n matrix A, a series of orthogonal matrices 
H1, H2, …, Hm (called Householder matrices) can be easily constructed such that

B =  H  m  T
  � H  1  

T AH1�Hm

is in upper Hessenberg form. Then the QR-algorithm can be efficiently applied to B 
and, because B is similar to A, it produces the eigenvalues of A.

Complex Eigenvalues. If some of the eigenvalues of a real matrix A are not real, 
the QR-algorithm converges to a block upper triangular matrix where the diagonal 
blocks are either 1 × 1 (the real eigenvalues) or 2 × 2 (each providing a pair of 
conjugate complex eigenvalues of A).

E X E R C I S E S  8 . 5

 1. In each case, find the exact eigenvalues and 
determine corresponding eigenvectors. Then 

start with x0 =   S  1   
1

  T  and compute x4 and r3 using 

the power method.

 (a) A =   S   2 -4     
-3   3

  T  �(b) A =   S   5   2     
-3 -2

  T 

 (c) A =   S  1 2    
2 1

  T  �(d) A =   S  3 1    
1 0

  T 
 2. In each case, find the exact eigenvalues and then 

approximate them using the QR-algorithm.

 (a) A =   S  1 1    
1 0

  T  �(b) A =   S  3 1    
1 0

  T 

 3. Apply the power method to A =   S   0 1    
-1 0

  T  , starting 

at x0 =   S  1   
1

  T . Does it converge? Explain.

 �4. If A is symmetric, show that each matrix Ak in 
the QR-algorithm is also symmetric. Deduce 
that they converge to a diagonal matrix.

 5. Apply the QR-algorithm to A =   S  2 -3    
1 -2

  T . Explain.

 6. Given a matrix A, let Ak, Qk, and Rk, k ≥ 1, be 
the matrices constructed in the QR-algorithm. 
Show that Ak = (Q1Q2�Qk)(Rk�R2R1) for each 
k ≥ 1 and hence that this is a QR-factorization 
of Ak. [Hint: Show that QkRk = Rk-1Qk-1 for 
each k ≥ 2, and use this equality to compute 
(Q1Q2�Qk)(Rk�R2R1) “from the centre out.” 
Use the fact that (AB)n+1 = A(BA)nB for any 
square matrices A and B.]
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Complex Matrices
If A is an n × n matrix, the characteristic polynomial cA(x) is a polynomial of degree 
n and the eigenvalues of A are just the roots of cA(x). In most of our examples these 
roots have been real numbers (in fact, the examples have been carefully chosen 
so this will be the case!); but it need not happen, even when the characteristic 

polynomial has real coefficients. For example, if A =   S   0 1    
-1 0

  T   then cA(x) = x2 + 1 has 

roots i and -i, where i is a complex number satisfying i2 = -1. Therefore, we have 
to deal with the possibility that the eigenvalues of a (real) square matrix might be 
complex numbers.

In fact, nearly everything in this book would remain true if the phrase real number 
were replaced by complex number wherever it occurs. Then we would deal with 
matrices with complex entries, systems of linear equations with complex coefficients 
(and complex solutions), determinants of complex matrices, and vector spaces 
with scalar multiplication by any complex number allowed. Moreover, the proofs 
of most theorems about (the real version of ) these concepts extend easily to the 
complex case. It is not our intention here to give a full treatment of complex linear 
algebra. However, we will carry the theory far enough to give another proof that the 
eigenvalues of a real symmetric matrix A are real (Theorem 7 Section 5.5) and to 
prove the spectral theorem, an extension of the principal axis theorem (Theorem 2 
Section 8.2).

The set of complex numbers is denoted �. We will use only the most basic 
properties of these numbers (mainly conjugation and absolute values), and the 
reader can find this material in Appendix A.

If n ≥ 1, we denote the set of all n-tuples of complex numbers by �n. As with �n, 
these n-tuples will be written either as row or column matrices and will be referred 
to as vectors. We define vector operations on �n as follows:

 (v1, v2, …, vn) + (w1, w2, …, wn) = (v1 + w1, v2 + w2, …, vn + wn)
 u(v1, v2, …, vn) = (uv1, uv2, …, uvn) for u in �

With these definitions, �n satisfies the axioms for a vector space (with complex 
scalars) given in Chapter 6. Thus we can speak of spanning sets for �n, of linearly 
independent subsets, and of bases. In all cases, the definitions are identical to the 
real case, except that the scalars are allowed to be complex numbers. In particular, 
the standard basis of �n remains a basis of �n, called the standard basis of �n.

The Standard Inner Product
There is a natural generalization to �n of the dot product in �n.

Given z = (z1, z2, …, zn) and w = (w1, w2, …, wn) in �n, define their standard inner 
product 〈z, w〉 by

〈z, w〉 = z1 
__

 w  1 + z2 
__

 w  2 + � + zn 
__

 w  n

where  
__

 w   is the conjugate of the complex number w.

Clearly, if z and w actually lie in �n, then 〈z, w〉 = z · w is the usual dot product.

S E C T I O N  8 . 6
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EXAMPLE 1

If z = (2, 1 - i, 2i, 3 - i) and w = (1 - i, -1, -i, 3 + 2i), then

 〈z, w〉 = 2(1 + i) + (1 - i)(-1) + (2i)(i) + (3 - i)(3 - 2i) = 6 - 6i
〈z, z〉 = 2 · 2 + (1 - i)(1 + i) + (2i)(-2i) + (3 - i)(3 + i) = 20

Note that 〈z, w〉 is a complex number in general. However, if 
w = z = (z1, z2, …, zn), the definition gives 〈z, z〉 = |z1|

2 + � + |zn|
2 which 

is a nonnegative real number, equal to 0 if and only if z = 0. This explains the 
conjugation in the definition of 〈z, w〉, and it gives (4) of the following theorem.

Theorem 1

Let z, z1, w, and w1 denote vectors in �n, and let λ denote a complex number.
1. 〈z + z1, w〉 = 〈z, w〉 + 〈z1, w〉 and 〈z, w + w1〉 = 〈z, w〉 + 〈z, w1〉. 
2. 〈λz, w〉 = λ〈z, w〉 and 〈z, λw〉 =  

__
 λ  〈z, w〉.

3. 〈z, w〉 =  
______

 〈w, z〉  .

4. 〈z, z〉 ≥ 0, and 〈z, z〉 = 0 if and only if z = 0.

PROOF

We leave (1) and (2) to the reader (Exercise 10), and (4) has already been proved. 
To prove (3), write z = (z1, z2, …, zn) and w = (w1, w2, …, wn). Then

  
______

 〈w, z〉   =  
_________________

  (w1 
__

 z  1 + � + wn 
__

 z  n)   =  
__

 w  1 
__

  
__

 z    1 + � +  
__

 w  n 
__

  
__

 z    n
  = z1 

__
 w  1 + � + zn 

__
 w  n = 〈z, w〉

As for the dot product on �n, property (4) enables us to define the norm or length ‖z‖ 
of a vector z = (z1, z2, …, zn) in �n:

‖z‖ =  √ 
_____

 〈z, z〉   =  √ 
_____________________

  |z1|
2 + |z2|

2 + � + |zn|
2  

The only properties of the norm function we will need are the following (the proofs 
are left to the reader):

Theorem 2

If z is any vector in �n, then
1. ‖z‖ ≥ 0, and ‖z‖ = 0 if and only if z = 0.
2. ‖λz‖ = |λ|‖z‖ for all complex numbers λ.

A vector u in �n is called a unit vector if ‖u‖ = 1. Property (2) in Theorem 2 

then shows that if z ≠ 0 is any nonzero vector in �n, then u =   1 ____ 
‖z‖

  z is a unit vector.

Definition 8.8
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EXAMPLE 2

In �4, find a unit vector u that is a positive real multiple of 
z = (1 - i, i, 2, 3 + 4i).

Solution ► ‖z‖ =  √ 
______________

  2 + 1 + 4 + 25   =  √ 

___

 32   = 4 √ 

__

 2  , so take u =   1 ___ 
4 √ 

__

 2  
  z.

A matrix A = [aij] is called a complex matrix if every entry aij is a complex 
number. The notion of conjugation for complex numbers extends to matrices 
as follows: Define the conjugate of A = [aij] to be the matrix

 
__

 A   = [ 
__

 a  ij]

obtained from A by conjugating every entry. Then (using Appendix A)

 
______

 A + B   =  
__

 A   +  
__

 B   and  
___

 AB   =  
__

 A    
__

 B  

holds for all (complex) matrices of appropriate size.
Transposition of complex matrices is defined just as in the real case, and the 

following notion is fundamental.

The conjugate transpose AH of a complex matrix A is defined by

AH =  Q  
__

 A   R T =  
_____

  QAT R   

Observe that AH = AT when A is real.8

EXAMPLE 3

3 1 2
2 5 2

− +
+ −

Hi i
i i i

 = 
3 2

1 5 2
2

−
+ −
−

i
i i
i i

The following properties of AH follow easily from the rules for transposition of 
real matrices and extend these rules to complex matrices. Note the conjugate in 
property (3).

Theorem 3

Let A and B denote complex matrices, and let λ be a complex number.
1. (AH)H = A.
2. (A + B)H = AH + BH.
3. (λA)H =  

__
 λ  AH.

4. (AB)H = BHAH.

8 Other notations for AH are  A ∗  and  A † .
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Hermitian and Unitary Matrices
If A is a real symmetric matrix, it is clear that AH = A. The complex matrices that 
satisfy this condition turn out to be the most natural generalization of the real 
symmetric matrices: 

A square complex matrix A is called hermitian9 if AH = A, equivalently  
__

 A   = AT.
9

Hermitian matrices are easy to recognize because the entries on the main diagonal 
must be real, and the “reflection’’ of each nondiagonal entry in the main diagonal 
must be the conjugate of that entry.

EXAMPLE 4

3

7
7

2
2

2 1

i i
i
i

+
− −−

−−
 is hermitian, whereas   S   1   i

    
i -2

  T  and   S   1 i
    

-i i
  T  are not.

The following Theorem extends Theorem 3 Section 8.2, and gives a very useful 
characterization of hermitian matrices in terms of the standard inner product in �n.

Theorem 4

An n × n complex matrix A is hermitian if and only if

〈Az, w〉 = 〈z, Aw〉

for all n-tuples z and w in �n.

PROOF

If A is hermitian, we have AT =  
__

 A  . If z and w are columns in �n, then 
〈z, w〉 = zT 

__
 w  , so 

〈Az, w〉 = (Az)T 
__

 w   = zTAT 
__

 w   = zT  
__

 A    
__

 w   = zT( 
____

 Aw  ) = 〈z, Aw〉.

To prove the converse, let ej denote column j of the identity matrix. If A = [aij], 
the condition gives

 
__

 a  ij = 〈ei, Aej〉 = 〈Aei, ej〉 = aij.

Hence  
__

 A   = AT, so A is hermitian.

Let A be an n × n complex matrix. As in the real case, a complex number λ 
is called an eigenvalue of A if Ax = λx holds for some column x ≠ 0 in �n. In 
this case x is called an eigenvector of A corresponding to λ. The characteristic 
polynomial cA(x) is defined by

cA(x) = det(xI - A).

9 The name hermitian honours Charles Hermite (1822–1901), a French mathematician who worked primarily in analysis and is 
remembered as the first to show that the number e from calculus is transcendental—that is, e is not a root of any polynomial with 
integer coefficients.

Definition 8.10
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This polynomial has complex coefficients (possibly nonreal). However, the proof of 
Theorem 2 Section 3.3 goes through to show that the eigenvalues of A are the roots 
(possibly complex) of cA(x).

It is at this point that the advantage of working with complex numbers becomes 
apparent. The real numbers are incomplete in the sense that the characteristic 
polynomial of a real matrix may fail to have all its roots real. However, this difficulty 
does not occur for the complex numbers. The so-called fundamental theorem of 
algebra ensures that every polynomial of positive degree with complex coefficients 
has a complex root. Hence every square complex matrix A has a (complex) 
eigenvalue. Indeed (Appendix A), cA(x) factors completely as follows:

cA(x) = (x - λ1)(x - λ2)�(x - λn)

where λ1, λ2, …, λn are the eigenvalues of A (with possible repetitions due to 
multiple roots).

The next result shows that, for hermitian matrices, the eigenvalues are actually 
real. Because symmetric real matrices are hermitian, this re-proves Theorem 7 
Section 5.5. It also extends Theorem 4 Section 8.2, which asserts that eigenvectors 
of a symmetric real matrix corresponding to distinct eigenvalues are actually 
orthogonal. In the complex context, two n-tuples z and w in �n are said to be 
orthogonal if 〈z, w〉 = 0.

Theorem 5

Let A denote a hermitian matrix.
1. The eigenvalues of A are real.
2. Eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

PROOF

Let λ and � be eigenvalues of A with (nonzero) eigenvectors z and w. Then 
Az = λz and Aw = �w, so Theorem 4 gives

 λ〈z, w〉 = 〈λz, w〉 = 〈Az, w〉 = 〈z, Aw〉 = 〈z, �w〉 =  
__

 �  〈z, w〉 (∗)

If � = λ and w = z, this becomes λ〈z, z〉 =  
__

 λ  〈z, z〉. Because 〈z, z〉 = ‖z‖
2 ≠ 0, 

this implies λ =  
__

 λ  . Thus λ is real, proving (1). Similarly, � is real, so equation 
(∗) gives λ〈z, w〉 = �〈z, w〉. If λ ≠ �, this implies 〈z, w〉 = 0, proving (2).

The principal axis theorem (Theorem 2 Section 8.2) asserts that every real 
symmetric matrix A is orthogonally diagonalizable—that is PTAP is diagonal where 
P is an orthogonal matrix (P-1 = PT). The next theorem identifies the complex 
analogs of these orthogonal real matrices. 

As in the real case, a set of nonzero vectors {z1, z2, …, zm} in �n is called orthogonal 
if 〈zi, zj〉 = 0 whenever i ≠ j, and it is orthonormal if, in addition, ‖zi‖ = 1 for 
each i.

Definition 8.11
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Theorem 6

The following are equivalent for an n × n complex matrix A. 
1. A is invertible and A-1 = AH.
2. The rows of A are an orthonormal set in �n.
3. The columns of A are an orthonormal set in �n.

PROOF

If A = [c1 c2 � cn] is a complex matrix with jth column cj, then 
AT  

__
 A   = [〈ci, cj〉], as in Theorem 1 Section 8.2. Now (1) ⇔ (2) follows, 

and (1) ⇔ (3) is proved in the same way.

A square complex matrix U is called unitary if U -1 = U H.

Thus a real matrix is unitary if and only if it is orthogonal.

EXAMPLE 5

The matrix A =   S   1 + i 1     
1 - i  i 

  T  has orthogonal columns, but the rows are not 

orthogonal. Normalizing the columns gives the unitary matrix   1 _ 2     S   1 + i    √ 

__

 2        
1 - i  √ 

__

 2  i
  T .

Given a real symmetric matrix A, the diagonalization algorithm in Section 3.3 
leads to a procedure for finding an orthogonal matrix P such that PTAP is diagonal 
(see Example 4, Section 8.2). The following example illustrates Theorem 5 and 
shows that the technique works for complex matrices. 

EXAMPLE 6

Consider the hermitian matrix A =   S   3  2 + i
        

2 - i    7   
  T . Find the eigenvalues of A, 

find two orthonormal eigenvectors, and so find a unitary matrix U such that 
U HAU is diagonal.

Solution ► The characteristic polynomial of A is

cA(x) = det(xI - A) = det   S   x - 3 -2 -  i 
          

-2 + i     x - 7
  T  = (x - 2)(x - 8)

Hence the eigenvalues are 2 and 8 (both real as expected), and corresponding 

eigenvectors are   S   2 + i
          

-1
   T  and   S   1          

2 - i
   T  (orthogonal as expected). Each has length  

√ 

__

 6   so, as in the (real) diagonalization algorithm, let U =   1 __ 
 √ 

__

 6  
     S  2 + i   1        

-1 2 - i
  T  be 

the unitary matrix with the normalized eigenvectors as columns. 

Then U HAU =   S  2 0    
0 8

  T  is diagonal.

Definition 8.12
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Unitary Diagonalization
An n × n complex matrix A is called unitarily diagonalizable if U HAU is diagonal 
for some unitary matrix U. As Example 6 suggests, we are going to prove that every 
hermitian matrix is unitarily diagonalizable. However, with only a little extra effort, 
we can get a very important theorem that has this result as an easy consequence. 

A complex matrix is called upper triangular if every entry below the main 
diagonal is zero. We owe the following theorem to Issai Schur.10

Theorem 7

Schur’s Theorem
If A is any n × n complex matrix, there exists a unitary matrix U such that

U HAU = T

is upper triangular. Moreover, the entries on the main diagonal of T are the eigenvalues 
λ1, λ2, …, λn of A (including multiplicities).

PROOF

We use induction on n. If n = 1, A is already upper triangular. If n > 1, 
assume the theorem is valid for (n - 1) × (n - 1) complex matrices. Let 
λ1 be an eigenvalue of A, and let y1 be an eigenvector with ‖y1‖ = 1. Then 
y1 is part of a basis of �n (by the analog of Theorem 1 Section 6.4), so the 
(complex analog of the) Gram-Schmidt process provides y2, …, yn such that 
{y1, y2, …, yn} is an orthonormal basis of �n. If U1 = [y1 y2 � yn] is the 
matrix with these vectors as its columns, then (see Lemma 3)

 U   1  
H AU1 =   S  λ1 X1    

0   A1
  T 

in block form. Now apply induction to find a unitary (n - 1) × (n - 1) matrix 

W1 such that  W  1  
H A1W1 = T1 is upper triangular. Then U2 =   S   1  0     

0   W1
  T  is a unitary 

n × n matrix. Hence U = U1U2 is unitary (using Theorem 6), and

U HAU  =  U   2  
H ( U   1  

H AU1)U2

=   S   1  0              
0    W  1  

H 
   T    S   λ1 X1             

0   A1
   T    S   1  0             

0   W1
   T  =   S   λ1 X1W1                

0     T1
   T    

is upper triangular. Finally, A and U HAU = T have the same eigenvalues by (the 
complex version of ) Theorem 1 Section 5.5, and they are the diagonal entries of 
T because T is upper triangular.

The fact that similar matrices have the same traces and determinants gives the 
following consequence of Schur’s theorem. 

10 Issai Schur (1875–1941) was a German mathematician who did fundamental work in the theory of representations of groups as 
matrices.
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Corollary 1

Let A be an n × n complex matrix, and let λ1, λ2, …, λn denote the eigenvalues of A, 
including multiplicities. Then

det A = λ1λ2�λn and tr A = λ1 + λ2 + � + λn

Schur’s theorem asserts that every complex matrix can be “unitarily 
triangularized.’’ However, we cannot substitute “unitarily diagonalized” here. 

In fact, if A =   S  1 1    
0 1

  T  , there is no invertible complex matrix U at all such that 

U -1AU is diagonal. However, the situation is much better for hermitian matrices.

Theorem 8

Spectral Theorem
If A is hermitian, there is a unitary matrix U such that U HAU is diagonal.

PROOF

By Schur’s theorem, let U HAU = T be upper triangular where U is unitary. 
Since A is hermitian, this gives

T H = (U HAU )H = U HAHU HH = U HAU = T

This means that T is both upper and lower triangular. Hence T is actually 
diagonal.

The principal axis theorem asserts that a real matrix A is symmetric if and only if 
it is orthogonally diagonalizable (that is, PTAP is diagonal for some real orthogonal 
matrix P). Theorem 8 is the complex analog of half of this result. However, the 
converse is false for complex matrices: There exist unitarily diagonalizable matrices 
that are not hermitian.

EXAMPLE 7

Show that the non-hermitian matrix A =   S   0 1    
-1 0

  T  is unitarily diagonalizable.

Solution ► The characteristic polynomial is cA(x) = x2 + 1. Hence the 

eigenvalues are i and -i, and it is easy to verify that   S   i 
   

-1
  T  and   S  -1   

i 
  T  are 

corresponding eigenvectors. Moreover, these eigenvectors are orthogonal and 

both have length  √ 

__

 2  , so U =   1 __ 
 √ 

__

 2  
     S   i -1     

-1    i 
  T  is a unitary matrix such that 

U HAU =   S   i   0    
0 -i 

  T  is diagonal.
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There is a very simple way to characterize those complex matrices that are 
unitarily diagonalizable. To this end, an n × n complex matrix N is called normal 
if NNH = NHN. It is clear that every hermitian or unitary matrix is normal, as is 

the matrix   S   0 1    
-1 0

  T  in Example 7. In fact we have the following result.

Theorem 9

An n × n complex matrix A is unitarily diagonalizable if and only if A is normal.

PROOF

Assume first that U HAU = D, where U is unitary and D is diagonal. 
Then DDH = DHD as is easily verified. Because DDH = U H(AAH)U and 
DHD = U H(AHA)U, it follows by cancellation that AAH = AHA.

Conversely, assume A is normal—that is, AAH = AHA. By Schur’s theorem, 
let U HAU = T, where T is upper triangular and U is unitary. Then T is 
normal too:

TT H = U H(AAH)U = U H(AHA)U = T HT

Hence it suffices to show that a normal n × n upper triangular matrix T must be 
diagonal. We induct on n; it is clear if n = 1. If n > 1 and T = [tij], then equating 
(1, 1)-entries in TT H and T HT gives

|t11|
2 + |t12|

2 + � + |t1n|
2 = |t11|

2

This implies t12 = t13 = � = t1n = 0, so T =   S  t11  0 
    

0 T1
  T  in block form. Hence 

T 
=   S   

_
 t  11  0 

    
0  T  1  

H 
  T  so TT H = T HT implies T1 T   1  

H  = T1 T   1  
H . Thus T1 is diagonal by 

induction, and the proof is complete.

We conclude this section by using Schur’s theorem (Theorem 7) to prove a 
famous theorem about matrices. Recall that the characteristic polynomial of a square 
matrix A is defined by cA(x) = det(xI - A), and that the eigenvalues of A are just the 
roots of cA(x). 

Theorem 10

Cayley-Hamilton Theorem11

If A is an n × n complex matrix, then cA(A) = 0; that is, A is a root of its characteristic 
polynomial.

11

11 Named after the English mathematician Arthur Cayley (1821–1895), see page 32, and William Rowan Hamilton (1805–1865), an Irish 
mathematician famous for his work on physical dynamics.
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PROOF

If p(x) is any polynomial with complex coefficients, then p(P-1AP) = P-1p(A)P 
for any invertible complex matrix P. Hence, by Schur’s theorem, we may assume 
that A is upper triangular. Then the eigenvalues λ1, λ2, …, λn of A appear along 
the main diagonal, so cA(x) = (x - λ1)(x - λ2)(x - λ3)�(x - λn). Thus 

cA(A) = (A - λ1I)(A - λ2I)(A - λ3I)�(A - λnI)

Note that each matrix A - λiI is upper triangular. Now observe:

 1. A - λ1I has zero first column because column 1 of A is (λ1, 0, 0, …, 0)T.

 2. Then (A - λ1I)(A - λ2I) has the first two columns zero because column 2 of 
(A - λ2I) is (b, 0, 0, …, 0)T for some constant b.

 3. Next (A - λ1I)(A - λ2I)(A - λ3I) has the first three columns zero because 
column 3 of (A - λ3I) is (c, d, 0, …, 0)T for some constants c and d.

Continuing in this way we see that (A - λ1I)(A - λ2I)(A - λ3I) � (A - λnI) has 
all n columns zero; that is, cA(A) = 0.

E X E R C I S E S  8 . 6

 1. In each case, compute the norm of the complex 
vector. 

 (a) (1, 1 - i, -2, i)

 �(b) (1 - i, 1 + i, 1, -1)

 (c) (2 + i, 1 - i, 2, 0, -i)

 �(d) (-2, -i, 1 + i, 1 - i, 2i)

 2. In each case, determine whether the two vectors 
are orthogonal. 

 (a) (4, -3i, 2 + i), (i, 2, 2 - 4i) 

 �(b) (i, -i, 2 + i), (i, i, 2 - i)

 (c) (1, 1, i, i), (1, i, -i, 1)

 �(d) (4 + 4i, 2 + i, 2i), (-1 + i, 2, 3 - 2i)

 3. A subset U of �n is called a complex subspace 
of �n if it contains 0 and if, given v and w in 
U, both v + w and zv lie in U (z any complex 
number). In each case, determine whether U is a 
complex subspace of �3. 

 (a) U = {(w,  
__

 w  , 0) | w in �} 

 �(b) U = {(w, 2w, a) | w in �, a in �}

 (c) U = �3

 �(d) U = {(v + w, v - 2w, v) | v, w in �}

 4. In each case, find a basis over �, and determine 
the dimension of the complex subspace U of �3 
(see the previous exercise).

 (a) U = {(w, v + w, v - iw) | v, w in �} 

 �(b) U = {(iv + w, 0, 2v - w) | v, w in �}

 (c) U = { (u, v, w) | iu - 3v + (1 - i)w = 0; 
u, v, w in �}

 �(d) U = { (u, v, w) | 2u + (1 + i)v - iw = 0; 
u, v, w in �}

 5. In each case, determine whether the given matrix 
is hermitian, unitary, or normal. 

 (a)   S  1 -i
    

i    i
  T  �(b)   S   2 3    

-3 2
  T 

 (c)   S   1   i 
    

-i 2
  T  �(d)   S  1 -i 

    
i  -1

  T 

 (e)   1 __ 
 √ 

__

 2  
   ·   S  1 -1    

1   1
  T  �(f )   S   1    1 + i

        
1 + i  i 

  T 
 (g)   S  1 + i   1            

-i  -1 + i
  T  �(h)   1 ____ 

 √ 

__

 2  |z|
     S  z   z 

    
 
__

 z   - 
_

 z  
  T  , z ≠ 0

 6. Show that a matrix N is normal if and only if 
 
__

 N  NT = NT  
__

 N  . 
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 7. Let A =   S   z  
__

 v  
    

v w
  T  where v, w, and z are complex 

numbers. Characterize in terms of v, w, and z 
when A is 

 (a) hermitian (b) unitary

 (c) normal.

 8. In each case, find a unitary matrix U such that 
U HAU is diagonal.

 (a) A =   S   1   i 
    

-i 1
  T  �(b) A =   S   4    3 - i

        
3 + i  1   

  T 

 (c) A =   S   a b
    

-b a
  T  �(d) A =   S   2    1 + i

        
1 - i  3   

  T  
  a, b, real 

 (e) A = 
i

i

+

−

1 1
0 2 0

0

1 00
 �(f ) A = i

i
+

−

1 00
0 1

1
1

0 2

 9. Show that 〈Ax, y〉 = 〈x, AHy〉 holds for all n × n 
matrices A and for all n-tuples x and y in �n. 

 10. (a) Prove (1) and (2) of Theorem 1. 

 �(b) Prove Theorem 2. 

 (c) Prove Theorem 3.

 11. (a) Show that A is hermitian if and only if 
 
__

 A   = AT.

 �(b) Show that the diagonal entries of any 
hermitian matrix are real. 

 12. (a) Show that every complex matrix Z can be 
written uniquely in the form Z = A + iB, 
where A and B are real matrices.

 (b) If Z = A + iB as in (a), show that Z is 
hermitian if and only if A is symmetric, and 
B is skew-symmetric (that is, BT = -B). 

 13. If Z is any complex n × n matrix, show that ZZH 
and Z + ZH are hermitian.

 14. A complex matrix B is called skew-hermitian if 
BH = -B.

 (a) Show that Z - ZH is skew-hermitian for any 
square complex matrix Z. 

 �(b) If B is skew-hermitian, show that B2 and iB 
are hermitian. 

 (c) If B is skew-hermitian, show that the 
eigenvalues of B are pure imaginary 
(iλ for real λ). 

 �(d) Show that every n × n complex matrix Z can 
be written uniquely as Z = A + B, where A is 
hermitian and B is skew-hermitian.

 15. Let U be a unitary matrix. Show that:

 (a) ‖Ux‖ = ‖x‖ for all columns x in �n.

 (b) |λ| = 1 for every eigenvalue λ of U.

 16. (a) If Z is an invertible complex matrix, show that 
ZH is invertible and that (ZH)-1 = (Z-1)H.

 �(b) Show that the inverse of a unitary matrix is 
again unitary. 

 (c) If U is unitary, show that U H is unitary. 

 17. Let Z be an m × n matrix such that ZHZ = In 
(for example, Z is a unit column in �n).

 (a) Show that V = ZZH is hermitian and satisfies 
V 2 = V.

 (b) Show that U = I - 2ZZH is both unitary and 
hermitian (so U -1 = U H = U ). 

 18. (a) If N is normal, show that zN is also normal 
for all complex numbers z.

 �(b) Show that (a) fails if normal is replaced by 
hermitian.

 19. Show that a real 2 × 2 normal matrix is either 

symmetric or has the form   S   a b
    

-b a
  T .

 20. If A is hermitian, show that all the coefficients of 
cA(x) are real numbers. 

 21. (a) If A =   S  1 1    
0 1

  T  , show that U -1AU is not 

diagonal for any invertible complex matrix U. 

 �(b) If A =   S   0 1    
-1 0

  T  , show that U -1AU is not upper 

triangular for any real invertible matrix U. 

 22. If A is any n × n matrix, show that U HAU is 
lower triangular for some unitary matrix U. 

 23. If A is a 3 × 3 matrix, show that A2 = 0 
if and only if there exists a unitary matrix 
U such that U HAU has the form 
0
0
0

0
0
0 0

u
v  or the form 

0
0 00
0 00

u v
.

 24. If A2 = A, show that rank A = tr A. [Hint: Use 
Schur’s theorem.]
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An Application to Linear Codes over Finite Fields
For centuries mankind has been using codes to transmit messages. In many cases, 
for example transmitting financial, medical, or military information, the message is 
disguised in such a way that it cannot be understood by an intruder who intercepts 
it, but can be easily “decoded” by the intended receiver. This subject is called 
cryptography and, while intriguing, is not our focus here. Instead, we investigate 
methods for detecting and correcting errors in the transmission of the message.

The stunning photos of the planet Saturn sent by the space probe are a very 
good example of how successful these methods can be. These messages are subject 
to “noise” such as solar interference which causes errors in the message. The signal 
is received on Earth with errors that must be detected and corrected before the 
high-quality pictures can be printed. This is done using error-correcting codes. To 
see how, we first discuss a system of adding and multiplying integers while ignoring 
multiples of a fixed integer. 

Modular Arithmetic
We work in the set � = {0, ±1, ±2, ±3, …} of integers, that is the set of whole 
numbers. Everyone is familiar with the process of “long division” from arithmetic. 
For example, we can divide an integer a by 5 and leave a remainder “modulo 5” in 
the set {0, 1, 2, 3, 4}. As an illustration

19 = 3 · 5 + 4,

so the remainder of 19 modulo 5 is 4. Similarly, the remainder of 137 modulo 5 is 2 
because 137 = 27 · 5 + 2. This works even for negative integers: For example,

-17 = (-4) · 5 + 3,

so the remainder of -17 modulo 5 is 3.
This process is called the division algorithm. More formally, let n ≥ 2 denote an 

integer. Then every integer a can be written uniquely in the form

a = qn + r where q and r are integers and 0 ≤ r ≤ n - 1.

Here q is called the quotient of a modulo n, and r is called the remainder 
of a modulo n. We refer to n as the modulus. Thus, if n = 6, the fact that 
134 = 22 · 6 + 2 means that 134 has quotient 22 and remainder 2 modulo 6.

Our interest here is in the set of all possible remainders modulo n. This set is 
denoted

�n = {0, 1, 2, 3, …, n - 1}

and is called the set of integers modulo n. Thus every integer is uniquely 
represented in �n by its remainder modulo n. 

We are going to show how to do arithmetic in �n by adding and multiplying 
modulo n. That is, we add or multiply two numbers in �n by calculating the usual 
sum or product in � and taking the remainder modulo n. It is proved in books on 
abstract algebra that the usual laws of arithmetic hold in �n for any modulus n ≥ 2. 
This seems remarkable until we remember that these laws are true for ordinary 
addition and multiplication and all we are doing is reducing modulo n.

To illustrate, consider the case n = 6, so that �6 = {0, 1, 2, 3, 4, 5}. Then 
2 + 5 = 1 in �6 because 7 leaves a remainder of 1 when divided by 6. Similarly, 
2 · 5 = 4 in �6, while 3 + 5 = 2, and 3 + 3 = 0. In this way we can fill in the 
addition and multiplication tables for �6; the result is:

S E C T I O N  8 . 7
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Tables for �6

+ ×0 1  2 3  4 5  
0 0  1 2  3 4  5 
1 1  2 3  4 5  0 
2 2  3 4  5 0  1 
3 3  4 5  0 1  2 
4 4  5 0  1 2  3 
5 5  0 1  2 3  4 

0 1  2 3  4 5
0 0  0 0 0  0 0  0 
1 0  1 2  3 4  5 
2 0  2 4  0 2  4 
3 0  3 0  3 0  3 
4 0  4 2  0 4  2 
5 0  5 4  3 2  1 

Calculations in �6 are carried out much as in �. As an illustration, consider the 
“distributive law” a(b + c) = ab + ac familiar from ordinary arithmetic. This holds 
for all a, b, and c in �6; we verify a particular case: 

3(5 + 4) = 3 · 5 + 3 · 4 in �6

In fact, the left side is 3(5 + 4) = 3 · 3 = 3, and the right side is (3 · 5) + (3 · 4) =
3 + 0 = 3 too. Hence doing arithmetic in �6 is familiar. However, there are 
differences. For example, 3 · 4 = 0 in �6, in contrast to the fact that a · b = 0 in � 
can only happen when either a = 0 or b = 0. Similarly, 32 = 3 in �6, unlike �.

Note that we will make statements like -30 = 19 in �7; it means that -30 and 
19 leave the same remainder 5 when divided by 7, and so are equal in �7 because 
they both equal 5. In general, if n ≥ 2 is any modulus, the operative fact is that 

a = b in �n if and only if a - b is a nultiple of n.

In this case we say that a and b are equal modulo n, and write a = b (mod n). 
Arithmetic in �n is, in a sense, simpler than that for the integers. For 

example, consider negatives. Given the element 8 in �17, what is -8? The 
answer lies in the observation that 8 + 9 = 0 in �17, so -8 = 9 (and -9 = 8). 
In the same way, finding negatives is not difficult in �n for any modulus n.

Finite Fields
In our study of linear algebra so far the scalars have been real (possibly complex) 
numbers. The set � of real numbers has the property that it is closed under addition 
and multiplication, that the usual laws of arithmetic hold, and that every nonzero real 
number has an inverse in �. Such a system is called a field. Hence the real numbers � 
form a field, as does the set � of complex numbers. Another example is the set � of all 
rational numbers (fractions); however the set � of integers is not a field—for example, 
2 has no inverse in the set � because 2 · x = 1 has no solution x in �.

Our motivation for isolating the concept of a field is that nearly everything we 
have done remains valid if the scalars are restricted to some field: The gaussian 
algorithm can be used to solve systems of linear equations with coefficients in 
the field; a square matrix with entries from the field is invertible if and only if its 
determinant is nonzero; the matrix inversion algorithm works in the same way; and 
so on. The reason is that the field has all the properties used in the proofs of these 
results for the field �, so all the theorems remain valid. 

It turns out that there are finite fields—that is, finite sets that satisfy the usual 
laws of arithmetic and in which every nonzero element a has an inverse, that 
is an element b in the field such that ab = 1. If n ≥ 2 is an integer, the modular 
system �n certainly satisfies the basic laws of arithmetic, but it need not be a field. 
For example we have 2 · 3 = 0 in �6 so 3 has no inverse in �6 (if 3a = 1 then 
2 = 2 · 1 = 2(3a) = 0a = 0 in �6, a contradiction). The problem is that 6 = 2 · 3 
can be properly factored in �.
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An integer p ≥ 2 is called a prime if p cannot be factored as p = ab where a and b 
are positive integers and neither a nor b equals 1. Thus the first few primes are 2, 3, 
5, 7, 11, 13, 17, … . If n ≥ 2 is not a prime and n = ab where 2 ≤ a, b ≤ n - 1, then 
ab = 0 in �n and it follows (as above in the case n = 6) that b cannot have an inverse 
in �n, and hence that �n is not a field. In other words, if �n is a field, then n must be 
a prime. Surprisingly, the converse is true:

Theorem 1

If p is a prime, then �p is a field using addition and multiplication modulo p.

The proof can be found in books on abstract algebra.12 If p is a prime, the field �p is 
called the field of integers modulo p.

For example, consider the case n = 5. Then �5 = {0, 1, 2, 3, 4} and the addition 
and multiplication tables are:

+ 0 1  2 3  4
0 0  1 2  3 4
1 1  2 3  4 0
2 2  3 4  0 1
3 3  4 0  1 2
4 4  0 1  2 3

0 1  2 3  4 
0 0  0 0 0 0
1 0  1 2  3 4
2 0  2 4  

×

1 1 3
3 0  3 1  4 2
4 0  4 3  2 1

Hence 1 and 4 are self-inverse in �5, and 2 and 3 are inverses of each other, so �5 is 
indeed a field. Here is another important example.

EXAMPLE 1

If p = 2, then �2 = {0, 1} is a field with addition and multiplication modulo 2 
given by the tables

+ 0 1
0 0  1 
1 1  0

0 1
0 0 0
1 0 1

an d 
×

This is binary arithmetic, the basic algebra of computers.

While it is routine to find negatives of elements of �p, it is a bit more difficult 
to find inverses in �p. For example, how does one find 14-1 in �17? Since we 
want 14-1 · 14 = 1 in �17, we are looking for an integer a with the property that 
a · 14 = 1 modulo 17. Of course we can try all possibilities in �17 (there are only 
17 of them!), and the result is a = 11 (verify). However this method is of little use 
for large primes p, and it is a comfort to know that there is a systematic procedure 
(called the euclidean algorithm) for finding inverses in �p for any prime p. 
Furthermore, this algorithm is easy to program for a computer. To illustrate the 
method, let us once again find the inverse of 14 in �17.

12 See, for example, W. K. Nicholson, Introduction to Abstract Algebra, 4th ed., (New York: Wiley, 2012).
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EXAMPLE 2

Find the inverse of 14 in �17.

Solution ► The idea is to first divide p = 17 by 14: 

17 = 1 · 14 + 3.

Now divide (the previous divisor) 14 by the new remainder 3 to get

14 = 4 · 3 + 2,

and then divide (the previous divisor) 3 by the new remainder 2 to get

3 = 1 · 2 + 1.

It is a theorem of number theory that, because 17 is a prime, this procedure will 
always lead to a remainder of 1. At this point we eliminate remainders in these 
equations from the bottom up:

1  = 3 - 1 · 2 since 3 = 1 · 2 + 1
= 3 - 1 · (14 - 4 · 3) = 5 · 3 - 1 · 14 since 2 = 14 - 4 · 3
= 5 · (17 - 1 · 14) - 1 · 14 = 5 · 17 - 6 · 14 since 3 = 17 - 1 · 14

Hence (-6) · 14 = 1 in �17, that is, 11 · 14 = 1. So 14-1 = 11 in �17.

As mentioned above, nearly everything we have done with matrices over the field 
of real numbers can be done in the same way for matrices with entries from �p. We 
illustrate this with one example. Again the reader is referred to books on abstract 
algebra.

EXAMPLE 3

Determine if the matrix A =   S  1 4    
6 5

  T  from �7 is invertible and, if so, find its 
inverse.

Solution ► Working in �7 we have det A = 1 · 5 - 6 · 4 = 5 - 3 = 2 ≠ 0 in �7, 

so A is invertible. Hence Example 4 Section 2.4 gives A-1 = 2-1  S   5 -4     
-6   1

  T . 
Note that 2-1 = 4 in �7 (because 2 · 4 = 1 in �7). Note also that -4 = 3 and 

-6 = 1 in �7, so finally A-1 = 4   S  5 3    
1 1

  T  =   S  6 5    
4 4

  T . The reader can verify that 

indeed   S  1 4    
6 5

  T    S  6 5    
4 4

  T  =   S  1 0    
0 1

  T  in �7.

While we shall not use them, there are finite fields other than �p for the various 
primes p. Surprisingly, for every prime p and every integer n ≥ 1, there exists a field 
with exactly pn elements, and this field is unique.13 It is called the Galois field of 
order pn, and is denoted GF( pn). 

13 See, for example, W. K. Nicholson, Introduction to Abstract Algebra, 4th ed., (New York: Wiley, 2012).
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Error Correcting Codes
Coding theory is concerned with the transmission of information over a channel 
that is affected by noise. The noise causes errors, so the aim of the theory is to 
find ways to detect such errors and correct at least some of them. General coding 
theory originated with the work of Claude Shannon (1916–2001) who showed 
that information can be transmitted at near optimal rates with arbitrarily small 
chance of error. 

Let F denote a finite field and, if n ≥ 1, let 

F n denote the F-vector space of 1 × n row matrices over F

with the usual componentwise addition and scalar multiplication. In this context, the 
rows in F n are called words (or n-words) and, as the name implies, will be written 
as [a b c d] = abcd. The individual components of a word are called its digits. A 
nonempty subset C of F n is called a code (or an n-code), and the elements in C are 
called code words. If F = �2, these are called binary codes. 

If a code word w is transmitted and an error occurs, the resulting word v is 
decoded as the code word “closest” to v in F n. To make sense of what “closest” 
means, we need a distance function on F n analogous to that in �n (see Theorem 
3 Section 5.3). The usual definition in �n does not work in this situation. For 
example, if w = 1111 in (�2)

4 then the square of the distance of w from 0 is 
(1 - 0)2 + (1 - 0)2 + (1 - 0)2 + (1 - 0)2 = 0, even though w ≠ 0.

However there is a satisfactory notion of distance in F n due to Richard Hamming 
(1915–1998). Given a word w = a1a2�an in F n, we first define the Hamming 
weight wt(w) to be the number of nonzero digits in w:

wt(w) = wt(a1a2�an) = |{i | ai ≠ 0}|

Clearly, 0 ≤ wt(w) ≤ n for every word w in F n. Given another word v = b1b2�bn in 
F n, the Hamming distance d(v, w) between v and w is defined by 

d(v, w) = wt(v - w) = |{i | bi ≠ ai}|.

In other words, d(v, w) is the number of places at which the digits of v and w differ. 
The next result justifies using the term distance for this function d.

Theorem 2

Let u, v, and w denote words in F n. Then: 
1. d(v, w) ≥ 0. 
2. d(v, w) = 0 if and only if v = w. 
3. d(v, w) = d(w, v). 
4. d(v, w) ≤ d(v, u) + d(u, w)

PROOF

(1) and (3) are clear, and (2) follows because wt(v) = 0 if and only if v = 0. To prove 
(4), write x = v - u and y = u - w. Then (4) reads wt(x + y) ≤ wt(x) + wt(y). 
If x = a1a2�an and y = b1b2�bn, this follows because ai + bi ≠ 0 implies that 
either ai ≠ 0 or bi ≠ 0.
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Given a word w in F n and a real number r > 0, define the ball Br(w) of radius r 
(or simply the r-ball) about w as follows:

Br(w) = {x ∈ F n | d(w, x) ≤ r}.

Using this we can describe one of the most useful decoding methods.

Nearest Neighbour Decoding

Let C be an n-code, and suppose a word v is transmitted and w is received. Then w is 
decoded as the code word in C closest to it. (If there is a tie, choose arbitrarily.)

Using this method, we can describe how to construct a code C that can detect (or 
correct) t errors. Suppose a code word c is transmitted and a word w is received with 
s errors where 1 ≤ s ≤ t. Then s is the number of places at which the c- and w-digits 
differ, that is, s = d(c, w). Hence Bt(c) consists of all possible received words where 
at most t errors have occurred. 

Assume first that C has the property that no code word lies in the t-ball of 
another code word. Because w is in Bt(c) and w ≠ c, this means that w is not a code 
word and the error has been detected. If we strengthen the assumption on C to 
require that the t-balls about code words are pairwise disjoint, then w belongs to a 
unique ball (the one about c), and so w will be correctly decoded as c. 

To describe when this happens, let C be an n-code. The minimum distance d of C 
is defined to be the smallest distance between two distinct code words in C; that is,

d = min{d(v, w) | v and w in C; v ≠ w}.

Theorem 3

Let C be an n-code with minimum distance d. Assume that nearest neighbour decoding 
is used. Then: 

1. If t < d, then C can detect t errors.14

2. If 2t < d, then C can correct t errors.
14

PROOF

 1. Let c be a code word in C. If w ∈ Bt(c), then d(w, c) ≤ t < d by hypothesis. 
Thus the t-ball Bt(c) contains no other code word, so C can detect t errors 
by the preceding discussion.

 2. If 2t < d, it suffices (again by the preceding discussion) to show that the 
t-balls about distinct code words are pairwise disjoint. But if c ≠ c′ are 
code words in C and w is in Bt(c′ ) ∩ Bt(c), then Theorem 2 gives

d(c, c′ ) ≤ d(c, w) + d(w, c′ ) ≤ t + t = 2t < d

  by hypothesis, contradicting the minimality of d.

14 We say that C detects (corrects) t errors if C can detect (or correct) t or fewer errors.
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EXAMPLE 4

If F = �3 = {0, 1, 2}, the 6-code {111111, 111222, 222111} has minimum 
distance 3 and so can detect 2 errors and correct 1 error.

Let c be any word in F n. A word w satisfies d(w, c) = r if and only if w and c 

differ in exactly r digits. If |F| = q, there are exactly  Q  n   
r
  R (q - 1)r such words where 

Q  n   
r
  R  is the binomial coefficient. Indeed, choose the r places where they differ in  Q  n   

r
  R  

ways, and then fill those places in w in (q - 1)r ways. It follows that the number of 
words in the t-ball about c is 

|Bt(c)| =  Q  n   
0

  R  +  Q  n   
1

  R (q - 1) +  Q  n   
2

  R (q - 1)2 + � +  Q   n     
t
   R (q - 1)t =  ∑ 

i=0
   

t

   Q   n     
i
   R  (q - 1)i.

This leads to a useful bound on the size of error-correcting codes.

Theorem 4

Hamming Bound
Let C be an n-code over a field F that can correct t errors using nearest neighbour 
decoding. If |F| = q, then 

|C| ≤   
qn

 ____________  
 ∑ 
i=0

   
t

   Q   n     
i
   R  (q - 1)i

  .

PROOF

Write k =  ∑ 
i=0

   
t

   Q   n     
i
   R  (q - 1)i. The t-balls centred at distinct code words each contain 

k words, and there are |C| of them. Moreover they are pairwise disjoint because 
the code corrects t errors (see the discussion preceding Theorem 3). Hence they 
contain k · |C| distinct words, and so k · |C| ≤ |F n| = qn, proving the theorem.

A code is called perfect if there is equality in the Hamming bound; equivalently, 
if every word in F n lies in exactly one t-ball about a code word. For example, if 

F = �2, n = 3, and t = 1, then q = 2 and  Q   3     
0

   R  +  Q   3     
1

   R  = 4, so the Hamming bound is 

  2
3
 __ 4   = 2. The 3-code C = {000, 111} has minimum distance 3 and so can correct 1 

error by Theorem 3. Hence C is perfect. 

Linear Codes
Up to this point we have been regarding any nonempty subset of the F-vector space 
F n as a code. However many important codes are actually subspaces. A subspace 
C ⊆ F n of dimension k ≥ 1 over F is called an (n, k)-linear code, or simply an 
(n, k)-code. We do not regard the zero subspace (that is, k = 0) as a code. 
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EXAMPLE 5

If F = �2 and n ≥ 2, the n-parity-check code is constructed as follows: An 
extra digit is added to each word in F n-1 to make the number of 1s in the 
resulting word even (we say such words have even parity). The resulting 
(n, n-1)-code is linear because the sum of two words of even parity again 
has even parity.

Many of the properties of general codes take a simpler form for linear codes. 
The following result gives a much easier way to find the minimal distance of a 
linear code, and sharpens the results in Theorem 3.

Theorem 5

Let C be an (n, k)-code with minimum distance d over a finite field F, and use nearest 
neighbour decoding.

1. d = min{wt(w) | 0 ≠ w in C}. 
2. C can detect t ≥ 1 errors if and only if t < d. 
3. C can correct t ≥ 1 errors if and only if 2t < d. 
4. If C can correct t ≥ 1 errors and |F| = q, then

 Q  n   
0

  R  +  Q  n   
1

  R (q - 1) +  Q  n   
2

  R (q - 1)2 + � +  Q  n   
t
  R (q - 1)t ≤ qn-k.

PROOF

 1. Write d′ = min{wt(w) | 0 ≠ w in C}. If v ≠ w are words in C, then 
d(v, w) = wt(v - w) ≥ d′ because v - w is in the subspace C. Hence 
d ≥ d′. Conversely, given w ≠ 0 in C then, since 0 is in C, we have 
wt(w) = d(w, 0) ≥ d by the definition of d. Hence d′ ≥ d and (1) is proved. 

 2. Assume that C can detect t errors. Given w ≠ 0 in C, the t-ball Bt(w) about 
w contains no other code word (see the discussion preceding Theorem 3). 
In particular, it does not contain the code word 0, so t < d(w, 0) = wt(w). 
Hence t < d by (1). The converse is part of Theorem 3. 

 3. We require a result of interest in itself. 

  Claim. Suppose c in C has wt(c) ≤ 2t. Then Bt(0) ∩ Bt(c) is nonempty.

  Proof. If wt(c) ≤ t, then c itself is in Bt(0) ∩ Bt(c). So assume t < wt(c) ≤ 2t. 
Then c has more than t nonzero digits, so we can form a new word w by 
changing exactly t of these nonzero digits to zero. Then d(w, c) = t, so w is 
in Bt(c). But wt(w) = wt(c) - t ≤ t, so w is also in Bt(0). Hence w is in 
Bt(0) ∩ Bt(c), proving the Claim.

  If C corrects t errors, the t-balls about code words are pairwise disjoint (see 
the discussion preceding Theorem 3). Hence the claim shows that wt(c) > 2t 
for all c ≠ 0 in C, from which d > 2t by (1). The other inequality comes from 
Theorem 3. 

 4. We have |C| = qk because dimF C = k, so this assertion restates Theorem 4.
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EXAMPLE 6

If F = �2, then 

C = {0000000, 0101010, 1010101, 1110000,
1011010, 0100101, 0001111, 1111111}

is a (7, 3)-code; in fact C = span{0101010, 1010101, 1110000}. The minimum 
distance for C is 3, the minimum weight of a nonzero word in C.

Matrix Generators
Given a linear n-code C over a finite field F, the way encoding works in practice 
is as follows. A message stream is blocked off into segments of length k ≤ n called 
messages. Each message u in F k is encoded as a code word, the code word is 
transmitted, the receiver decodes the received word as the nearest code word, and 
then re-creates the original message. A fast and convenient method is needed to 
encode the incoming messages, to decode the received word after transmission (with 
or without error), and finally to retrieve messages from code words. All this can be 
achieved for any linear code using matrix multiplication. 

Let G denote a k × n matrix over a finite field F, and encode each message u in 
F k as the word uG in F n using matrix multiplication (thinking of words as rows). 
This amounts to saying that the set of code words is the subspace C = {uG | u in F k} 
of F n. This subspace need not have dimension k for every k × n matrix G. But, 
if {e1, e2, …, ek} is the standard basis of F k, then eiG is row i of G for each I and 
{e1G, e2G, …, ekG} spans C. Hence dim C = k if and only if the rows of G are 
independent in F n, and these matrices turn out to be exactly the ones we need. 
For reference, we state their main properties in Lemma 1 below (see Theorem 4 
Section 5.4).

Lemma 1

The following are equivalent for a k × n matrix G over a finite field F: 
1. rank G = k.

2. The columns of G span F k.
3. The rows of G are independent in F n.
4. The system GX = B is consistent for every column B in �k.
5. GK = Ik for some n × k matrix K.

PROOF

(1) ⇒ (2). This is because dim(col G) = k by (1). 

(2) ⇒ (4). G[x1 � xn]
T = x1c1 + � + xncn where cj is column j of G. 

(4) ⇒ (5). G[k1 � kk] = [Gk1 � Gkk] for columns kj. 

(5) ⇒ (3). If a1R1 + � + akRk = 0 where Ri is row i of G, then [a1 � ak]G = 0, 
so [a1 � ak] = 0, by (5). Hence each ai = 0, proving (3). 

(3) ⇒ (1). rank G = dim(row G) = k by (3).
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Note that Theorem 4 Section 5.4 asserts that, over the real field �, the properties in 
Lemma 1 hold if and only if GGT is invertible. But this need not be true in general. 

For example, if F = �2 and G =   S  1 0 1 0     
0 1 0 1

  T  , then GGT = 0. The reason is that the 

dot product w · w can be zero for w in F n even if w ≠ 0. However, even though 
GGT is not invertible, we do have GK = I2 for some 4 × 2 matrix K over F as 

Lemma 1 asserts (in fact, K =   S  1 0 0 0     
0 1 0 0

  T T is one such matrix).

Let C ⊆ F n be an (n, k)-code over a finite field F. If {w1, …, wk} is a basis 

of C, let G =   S  
w1

 
 

 �   
wk

   T  be the k × n matrix with the wi as its rows. Let {e1, …, ek} 

is the standard basis of F k regarded as rows. Then wi = eiG for each i, so 
C = span{w1, …, wk} = span{e1G, …, ekG}. It follows (verify) that

C = {uG | u in F k}. 

Because of this, the k × n matrix G is called a generator of the code C, and G has 
rank k by Lemma 1 because its rows wi are independent. 

In fact, every linear code C in F n has a generator of a simple, convenient form. 
If G is a generator matrix for C, let R be the reduced row-echelon form of G. We 
claim that C is also generated by R. Since G → R by row operations, Theorem 1 
Section 2.5 shows that these same row operations [G Ik] → [R W], performed on 
[G Ik], produce an invertible k × k matrix W such that R = WG. This shows that 
C = {uR | u in F k}. [In fact, if u is in F k, then uG = u1R where u1 = uW -1 is in 
F k, and uR = u2G where u2 = uW is in F k]. Thus R is a generator of C, so we may 
assume that G is in reduced row-echelon form. 

In that case, G has no row of zeros (since rank G = k) and so contains all the 
columns of Ik. Hence a series of column interchanges will carry G to the block form 
G� = [Ik A] for some k × (n - k) matrix A. Hence the code C� = {uG� | u in F k} is 
essentially the same as C; the code words in C� are obtained from those in C by a 
series of column interchanges. Hence if C is a linear (n, k)-code, we may (and shall) 
assume that the generator matrix G has the form

G = [Ik A] for some k × (n - k) matrix A.

Such a matrix is called a standard generator, or a systematic generator, for the 
code C. In this case, if u is a message word in F k, the first k digits of the encoded 
word uG are just the first k digits of u, so retrieval of u from uG is very simple 
indeed. The last n - k digits of uG are called parity digits.

Parity-Check Matrices
We begin with an important theorem about matrices over a finite field.

Theorem 6

Let F be a finite field, let G be a k × n matrix of rank k, let H be an (n - k) × n matrix 
of rank n - k, and let C = {uG | u in F k} and D = {vH | V in F n-k} be the codes they 
generate. Then the following conditions are equivalent: 

1. GHT = 0.
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2. HGT = 0.
3. C = {w in F n | wHT = 0}.

4. D = {w in F n | wGT = 0}.

PROOF

First, (1) ⇔ (2) holds because HGT and GHT are transposes of each other.

(1) ⇒ (3). Consider the linear transformation T : F n → F n-k defined by 
T(w) = wHT for all w in F n. To prove (3) we must show that C = ker T. 
We have C ⊆ ker T by (1) because T(uG) = uGHT = 0 for all u in F k. Since 
dim C = rank G = k, it is enough (by Theorem 2 Section 6.4) to show that 
dim(ker T ) = k. However the dimension theorem (Theorem 4 Section 7.2) 
shows that dim(ker T ) = n - dim(im T ), so it is enough to show that 
dim(im T ) = n - k. But if R1, …, Rn are the rows of HT, then block 
multiplication gives

im T = {wHT | w in �n} = span{R1, …, Rn} = row(HT).

Hence dim(im T ) = rank(HT) = rank H = n - k, as required. This proves (3). 

(3) ⇒ (1). If u is in F k, then uG is in C so, by (3), u(GHT) = (uG)HT = 0. 
Since u is arbitrary in F k, it follows that GHT = 0. 

(2) ⇔ (4). The proof is analogous to (1) ⇔ (3).

The relationship between the codes C and D in Theorem 6 will be characterized in 
another way in the next subsection. 

If C is an (n, k)-code, an (n - k) × n matrix H is called a parity-check matrix
for C if C = {w | wHT = 0} as in Theorem 6. Such matrices are easy to find for a 
given code C. If G = [Ik A] is a standard generator for C where A is k × (n - k), 
the (n - k) × n matrix

H = [-AT In-k]

is a parity-check matrix for C. Indeed, rank H = n - k because the rows of H are 
independent (due to the presence of In-k), and 

GHT = [Ik A]  S   -A
        

In-k

   T  = -A + A = 0 

by block multiplication. Hence H is a parity-check matrix for C and we have 
C = {w in F n | wHT = 0}. Since wHT and HwT are transposes of each other, this 
shows that C can be characterized as follows:

C = {w in F n | HwT = 0}

by Theorem 6. 
This is useful in decoding. The reason is that decoding is done as follows: If a 

code word c is transmitted and v is received, then z = v - c is called the error. 
Since HcT = 0, we have HzT = HvT and this word

s = HzT = HvT
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is called the syndrome. The receiver knows v and s = HvT, and wants to recover c. 
Since c = v - z, it is enough to find z. But the possibilities for z are the solutions of 
the linear system 

HzT = s

where s is known. Now recall that Theorem 3 Section 2.2 shows that these 
solutions have the form z = x + s where x is any solution of the homogeneous 
system HxT = 0, that is, x is any word in C (by Lemma 1). In other words, the 
errors z are the elements of the set

C + s = {c + s | c in C}. 

The set C + s is called a coset of C. Let |F| = q. Since |C + s| = |C| = qn-k the 
search for z is reduced from qn possibilities in F n to qn-k possibilities in C + s. 
This is called syndrome decoding, and various methods for improving efficiency 
and accuracy have been devised. The reader is referred to books on coding for 
more details.15

Orthogonal Codes
Let F be a finite field. Given two words v = a1a2�an and w = b1b2�bn in F n, the 
dot product v · w is defined (as in �n) by 

v · w = a1b1 + a2b2 + � + anbn.

Note that v · w is an element of F, and it can be computed as a matrix product: 
v · w = vwT.

If C ⊆ F n is an (n, k)-code, the orthogonal complement C⊥ is defined as in �n:

C⊥ = {v in F n | v · c = 0 for all c in C}.

This is easily seen to be a subspace of F n, and it turns out to be an (n, n-k)-code. 
This follows when F = � because we showed (in the projection theorem) that 
n = dim U⊥ + dim U for any subspace U of �n. However the proofs break down 
for a finite field F because the dot product in F n has the property that w · w = 0 
can happen even if w ≠ 0. Nonetheless, the result remains valid. 

Theorem 7

Let C be an (n, k)-code over a finite field F, let G = [Ik A] be a standard generator for C 
where A is k × (n - k), and write H = [-AT In-k] for the parity-check matrix. Then: 

1. H is a generator of C⊥.
2. dim(C⊥) = n - k = rank H. 
3. C⊥⊥ = C and dim(C⊥) + dim C = n.

PROOF

As in Theorem 6, let D = {vH | v in F n-k} denote the code generated by H. 
Observe first that, for all w in F n and all u in F k, we have

w · (uG) = w(uG)T = w(GTuT) = (wGT) · u.

15 For an elementary introduction, see V. Pless, Introduction to the Theory of Error-Correcting Codes, 3rd ed., (New York: Wiley, 1998). 
For a more detailed treatment, see A. A. Bruen and M. A. Forcinito, Cryptography, Information Theory, and Error-Correction, (New 
York: Wiley, 2005).
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Since C = {uG | u in F k}, this shows that w is in C⊥ if and only if (wGT) · u = 0 
for all u in F k; if and only if16 wGT = 0; if and only if w is in D (by Theorem 6). 
Thus C⊥ = D and a similar argument shows that D⊥ = C.

 1. H generates C⊥ because C⊥ = D = {vH | v in F n-k}.

 2. This follows from (1) because, as we observed above, rank H = n - k. 

 3. Since C⊥ = D and D⊥ = C, we have C⊥⊥ = (C⊥)⊥ = D⊥ = C. Finally the 
second equation in (3) restates (2) because dim C = k.

16

We note in passing that, if C is a subspace of �k, we have C + C⊥ = �k by the 
projection theorem (Theorem 3 Section 8.1), and C ∩ C⊥ = {0} because any vector 
x in C ∩ C⊥ satisfies ‖x‖

2 = x · x = 0. However, this fails in general. For example, if 
F = �2 and C = span{1010, 0101} in F4 then C⊥ = C, so C + C⊥ = C = C ∩ C⊥.

We conclude with one more example. If F = �2, consider the standard matrix G 
below, and the corresponding parity-check matrix H: 

G = 

1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

 and H = 
1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

The code C = {uG | u in F 4} generated by G has dimension k = 4, and is called the 
Hamming (7, 4)-code. The vectors in C are listed in the first table below. The dual 
code generated by H has dimension n - k = 3 and is listed in the second table.

C 

G 

: 

u u
0000 0000000 
0001 0001011 
0010 0010101 
0011 0011110 
0100 010011 10 
0101 0101101 
0110 0110011 
0111 0111000 
1000 1000111 
1001 1001100 
1 1010 1010010 
1011 1011001 
1100 1100001 
1101 1101010 
1110 1110100 
111 11 1111111 

000 0000000 
001 1011001 
010 1101010 
011 0110011 
10 

C 

H 

⊥ : 

v v

0 0 1110100 
101 0101101 
110 0011110 
111 1000111 

 

Clearly each nonzero code word in C has weight at least 3, so C has minimum 
distance d = 3. Hence C can detect two errors and correct one error by 
Theorem 5. The dual code has minimum distance 4 and so can detect 3 errors 
and correct 1 error.

16 If v · u = 0 for every u in F k, then v = 0—let u range over the standard basis of F k.
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E X E R C I S E S  8 . 7

 1. Find all a in �10 such that:

 (a) a2 = a

 �(b) a has an inverse (and find the inverse)

 (c) ak = 0 for some k ≥ 1

 �(d) a = 2k for some k ≥ 1

 (e) a = b2 for some b in �10

 2. (a) Show that if 3a = 0 in �10, then necessarily 
a = 0 in �10. 

 �(b) Show that 2a = 0 in �10 holds in �10 if and 
only if a = 0 or a = 5. 

 3. Find the inverse of:

 (a) 8 in �13; �(b) 11 in �19. 

 4. If ab = 0 in a field F, show that either a = 0 or 
b = 0. 

 5. Show that the entries of the last column of the 
multiplication table of �n are 0, n - 1, n - 2, …, 
2, 1 in that order. 

 6. In each case show that the matrix A is invertible 
over the given field, and find A-1. 

 (a) A =   S  1 4    
2 1

  T  over �5. 

 �(b) A =   S  5 6    
4 3

  T  over �7. 

 7. Consider the linear system   
3x +  y + 4z = 3

                               
4x + 3y +  z = 1 

  . 

In each case solve the system by reducing the 
augmented matrix to reduced row-echelon form 
over the given field:

 (a) �5. �(b) �7. 

 8. Let K be a vector space over �2 with basis {1, t}, 
so K = {a + bt | a, b, in �2}. It is known that K 
becomes a field of four elements if we define 
t2 = 1 + t. Write down the multiplication table 
of K. 

 9. Let K be a vector space over �3 with basis {1, t}, 
so K = {a + bt | a, b, in �3}. It is known that K 
becomes a field of nine elements if we define 
t2 = -1 in �3. In each case find the inverse of 
the element x of K:

 (a) x = 1 + 2t. �(b) x = 1 + t. 

 10. How many errors can be detected or corrected 
by each of the following binary linear codes? 

 (a) C = { 0000000, 0011110, 0100111, 0111001,
1001011, 1010101, 1101100, 1110010}

 �(b) C = { 0000000000, 0010011111, 0101100111, 
0111111000, 1001110001, 1011101110, 
1100010110, 1110001001}

 11. (a) If a binary linear (n, 2)-code corrects one error, 
show that n ≥ 5. [Hint: Hamming bound.] 

 �(b) Find a (5, 2)-code that corrects one error. 

 12. (a) If a binary linear (n, 3)-code corrects two 
errors, show that n ≥ 9. [Hint: Hamming 
bound.] 

 �(b) If G = 
1 1 11

1 11
1 1

0 1
0 0 0

0
0

000
01

0 0

0

1 11 1
1

0
, show 

that the binary (10, 3)-code generated by G 
corrects two errors. [It can be shown that no 
binary (9, 3)-code corrects two errors.] 

 13. (a) Show that no binary linear (4, 2)-code can 
correct single errors. 

 �(b) Find a binary linear (5, 2)-code that can 
correct one error. 

 14. Find the standard generator matrix G and the 
parity-check matrix H for each of the following 
systematic codes: 

 (a) {00000, 11111} over �2. 

 �(b) Any systematic (n, 1)-code where n ≥ 2. 

 (c) The code in Exercise 10(a). 

 (d) The code in Exercise 10(b). 

 15. Let c be a word in F n. Show that Bt(c) = c + Bt(0), 
where we write c + Bt(0) = {c + v | v in Bt(0)}.

 16. If a (n, k)-code has two standard generator 
matrices G and G1, show that G = G1. 

 17. Let C be a binary linear n-code (over �2). 
Show that either each word in C has even 
weight, or half the words in C have even 
weight and half have odd weight. [Hint: The 
dimension theorem.]
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An Application to Quadratic Forms17

An expression like  x  1  
2  +  x  2  

2  +  x  3  
2  - 2x1x3 + x2x3 is called a quadratic form in the 

variables x1, x2, and x3. In this section we show that new variables y1, y2, and y3 can 
always be found so that the quadratic form, when expressed in terms of the new 
variables, has no cross terms y1 y2, y1 y3, or y2 y3. Moreover, we do this for forms 
involving any finite number of variables using orthogonal diagonalization. This has 
far-reaching applications; quadratic forms arise in such diverse areas as statistics, 
physics, the theory of functions of several variables, number theory, and geometry. 

A quadratic form q in the n variables x1, x2, …, xn is a linear combination of terms 
 x  1  2 ,  x  2  

2 , …,  x  n  2 , and cross terms x1x2, x1x3, x2x3, … .

If n = 3, q has the form 

q = a11 x  1  
2   + a22 x  2  

2  + a33 x  3  
2  + a12x1x2 + a21x2x1

+ a13x1x3 + a31x3x1 + a23x2x3 + a32x3x2

In general

q = a11 x  1  
2  + a22 x  2  

2  + � + ann x  n  
2  + a12x1x2 + a13x1x3 + � 

This sum can be written compactly as a matrix product

q = q(x) = xTAx

where x = (x1, x2, …, xn) is thought of as a column, and A = [aij] is a real n × n 
matrix. Note that if i ≠ j, two separate terms aij xi xj and aji xj xi are listed, each of 
which involves xi xj, and they can (rather cleverly) be replaced by

  1 _ 2  (aij + aji)xi xj and   1 _ 2  (aij + aji)xj xi

respectively, without altering the quadratic form. Hence there is no loss of generality 
in assuming that xi xj and xj xi have the same coefficient in the sum for q. In other 
words, we may assume that A is symmetric. 

EXAMPLE 1

Write q =  x  1  
2  + 3 x  3  

2  + 2x1x2 - x1x3 in the form q(x) = xTAx, where A is a 
symmetric 3 × 3 matrix. 

Solution ► The cross terms are 2x1x2 = x1x2 + x2x1 and -x1x3 = -  1 _ 2  x1x3 -   1 _ 2  x3x1. 
Of course, x2x3 and x3x2 both have coefficient zero, as does  x  2  

2 . Hence

q(x) = [x1 x2 x3]
x
x
x

−

−

1
2

1
2

1

2

3

1 1
1 0 0

0 3

is the required form (verify).

We shall assume from now on that all quadratic forms are given by

q(x) = xTAx

17 This section requires only Section 8.2.
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where A is symmetric. Given such a form, the problem is to find new variables 
y1, y2, …, yn, related to x1, x2, …, xn, with the property that when q is expressed 
in terms of y1, y2, …, yn, there are no cross terms. If we write

y = (y1, y2, …, yn)
T

this amounts to asking that q = yTDy where D is diagonal. It turns out that this 
can always be accomplished and, not surprisingly, that D is the matrix obtained 
when the symmetric matrix A is othogonally diagonalized. In fact, as Theorem 2 
Section 8.2 shows, a matrix P can be found that is orthogonal (that is, P-1 = PT) 
and diagonalizes A:

PTAP = D  = 

n

λ

λ

λ

1

2

0 0
0 0

0 0

The diagonal entries λ1, λ2, …, λn are the (not necessarily distinct) eigenvalues 
of A, repeated according to their multiplicities in cA(x), and the columns of P are 
corresponding (orthonormal) eigenvectors of A. As A is symmetric, the λi are real 
by Theorem 7 Section 5.5. 

Now define new variables y by the equations

x = Py equivalently y = PTx

Then substitution in q(x) = xTAx gives

q = (Py)TA(Py) = yT(PTAP)y = yTDy = λ1  y  1  
2  + λ2  y  2  

2  + � + λn  y  n  
2 

Hence this change of variables produces the desired simplification in q.

Theorem 1

Diagonalization Theorem
Let q = xTAx be a quadratic form in the variables x1, x2, …, xn, where 
x = (x1, x2, …, xn)

T and A is a symmetric n × n matrix. Let P be an orthogonal 
matrix such that PTAP is diagonal, and define new variables y = ( y1, y2, …, yn)

T by

x = Py equivalently y = PTx

If q is expressed in terms of these new variables y1, y2, …, yn, the result is

q = λ1  y  1  
2  + λ2  y  2  

2  + � + λn  y  n  
2 

where λ1, λ2, …, λn are the eigenvalues of A repeated according to their multiplicities.

Let q = xTAx be a quadratic form where A is a symmetric matrix and let 
λ1, …, λn be the (real) eigenvalues of A repeated according to their multiplicities. 
A corresponding set {f1, …, fn} of orthonormal eigenvectors for A is called a set 
of principal axes for the quadratic form q. (The reason for the name will become 
clear later.) The orthogonal matrix P in Theorem 1 is given as P = [f1 � fn], so 
the variables X and Y are related by

x = Py = [f1 f2 � fn]  S   
y1

 
 

 
y2   
�
 
 

 
yn

  T  = y1f1 + y2f2 + � + ynfn.
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Thus the new variables yi are the coefficients when x is expanded in terms of the 
orthonormal basis {f1, …, fn} of �n. In particular, the coefficients yi are given by 
yi = x · fi by the expansion theorem (Theorem 6 Section 5.3). Hence q itself is 
easily computed from the eigenvalues λi and the principal axes fi:

q = q(x) = λ1(x · f1)
2 + � + λn(x · fn)

2.

EXAMPLE 2

Find new variables y1, y2, y3, and y4 such that

q = 3(  x  1  
2  +    x  2  

2  +   x  3  
2  +   x  4  

2 )
+ 2x1x2 - 10x1x3 + 10x1x4 + 10x2x3 - 10x2x4 + 2x3x4

has diagonal form, and find the corresponding principal axes.

Solution ► The form can be written as q = xTAx, where

x = 

x
x
x
x

1

2

3

4

 and A = 

−
−

−
−

3 1 5 5
1 3 5 5
5 5 3 1
5 5 1 3

A routine calculation yields

cA(x) = det(xI - A) = (x - 12)(x + 8)(x - 4)2

so the eigenvalues are λ1 = 12, λ2 = -8, and λ3 = λ4 = 4. Corresponding 
orthonormal eigenvectors are the principal axes:

f1 =   1 _ 2   

1
1
1
1

−
−  f2 =   1 _ 2   

1
1
1
1

−

−

 f3 =   1 _ 2   

1
1
1
1

 f4 =   1 _ 2   −
−

1
1
1
1

The matrix

P = [f1 f2 f3 f4] =   1 _ 2   
− −
− −

− −

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

is thus orthogonal, and P-1AP = PTAP is diagonal. Hence the new variables y 
and the old variables x are related by y = PTx and x = Py. Explicitly,

y1 =   1 _ 2  (x1 - x2 - x3 + x4) x1 =   1 _ 2  (  y1 + y2 + y3 + y4)

y2 =   1 _ 2  (x1 - x2 + x3 - x4) x2 =   1 _ 2  (-y1 - y2 + y3 + y4)

y3 =   1 _ 2  (x1 + x2 + x3 + x4) x3 =   1 _ 2  (-y1 + y2 + y3 - y4)

y3 =   1 _ 2  (x1 + x2 - x3 - x4) x4 =   1 _ 2  (  y1 - y2 + y3 - y4)

If these xi are substituted in the original expression for q, the result is

q = 12  y  1  
2  - 8  y  2  

2  + 4  y  3  
2  + 4  y  4  

2 

This is the required diagonal form.
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It is instructive to look at the case of quadratic forms in two variables x1 and 
x2. Then the principal axes can always be found by rotating the x1 and x2 axes 
counterclockwise about the origin through an angle θ. This rotation is a linear 
transformation Rθ : �

2 → �2, and it is shown in Theorem 4 Section 2.6 that Rθ 

has matrix P =   S  cos θ -sin θ
        

sin θ   cos θ
  T . If {e1, e2} denotes the standard basis of �2, the 

rotation produces a new basis {f1, f2} given by 

 f1 = Rθ(e1) =   S   cos θ
          

sin θ
   T  and f2 = Rθ(e2) =   S   -sin θ

            
cos θ

   T  (∗)

Given a point p =   S   x1      
x2

   T  = x1e1 + x2e2 in the original system, let y1 and y2 be the 

coordinates of p in the new system (see the diagram). That is,

   S   x1      
x2

   T  = p = y1f1 + y2f2 =   S  cos θ -sin θ
        

sin θ   cos θ
  T    S   y1      y2

   T  (∗∗)

Writing x =   S   x1      x2
   T  and y =   S   y1      y2

   T  , this reads x = Py so, since P is orthogonal, this 

is the change of variables formula for the rotation as in Theorem 1. 
If r ≠ 0 ≠ s, the graph of the equation r x  1  

2  + s x  2  
2  = 1 is called an ellipse if rs > 0 

and a hyperbola if rs < 0. More generally, given a quadratic form 

q = a x  1  
2  + b x 1  x 2  + c x  2  

2  where not all of a, b, and c are zero,

the graph of the equation q = 1 is called a conic. We can now completely 
describe this graph. There are two special cases which we leave to the reader. 

1. If exactly one of a and c is zero, then the graph of q = 1 is a parabola.

So we assume that a ≠ 0 and c ≠ 0. In this case, the description depends on 
the quantity b2 - 4ac, called the discriminant of the quadratic form q. 

2. If b2 - 4ac = 0, then either both a ≥ 0 and c ≥ 0, or both a ≤ 0 and c ≤ 0. 
Hence q = ( √ 

__
 a  x1 +  √ 

_
 c  x2)

2 or q = ( √ 

___
 -a  x1 +  √ 

___
 -c  x2)

2, so the graph of q = 1 
is a pair of straight lines in either case. 

So we also assume that b2 - 4ac ≠ 0. But then the next theorem asserts that 
there exists a rotation of the plane about the origin which transforms the 
equation a x  1  

2  + b x 1  x 2  + c x  2  
2  = 1 into either an ellipse or a hyperbola, and the 

theorem also provides a simple way to decide which conic it is. 

Theorem 2

Consider the quadratic form q = a x  1  
2  + bx1x2 + c x  2  

2  where a, c, and b2 - 4ac are all 
nonzero.

1. There is a counterclockwise rotation of the coordinate axes about the origin such 
that, in the new coordinate system, q has no cross term. 

2. The graph of the equation

a x  1  
2  + bx1x2 + c x  2  

2  = 1

 is an ellipse if b2 - 4ac < 0 and an hyperbola if b2 - 4ac > 0.

O
θ

y2

y2
y1

y1

p

x1 x1

x2

x2
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PROOF

If b = 0, q already has no cross term and (1) and (2) are clear. So assume b ≠ 0.

The matrix A =   S   a   1 _ 2  b
    

  1 _ 2  b   c  
  T  of q has characteristic polynomial 

cA(x) = x2 - (a + c)x -   1 _ 4  (b
2 - 4ac). If we write d =  √ 

___________

 b2 + (a - c)2   for convenience;

then the quadratic formula gives the eigenvalues

λ1 =   1 _ 2  [a + c - d] and λ2 =   1 _ 2  [a + c + d]

with corresponding principal axes

f1 =   1 ________________  
 √ 

_______________

  b2 + (a - c - d)2  
     S   a - c - d                

b
   T  and 

f2 =   1 ________________  
 √ 

_______________

  b2 + (a - c - d)2  
     S   -b                 

a - c - d
   T 

as the reader can verify. These agree with equation (∗) above if θ is an angle 
such that

cos θ =   a - c - d  ________________  
 √ 

_______________

  b2 + (a - c - d)2  
   and sin θ =   b ________________  

 √ 
_______________

  b2 + (a - c - d)2  
  

Then P = [f1 f2] =   S  cos θ -sin θ
        

sin θ   cos θ
  T  diagonalizes A and equation (∗∗) becomes the 

formula x = Py in Theorem 1. This proves (1).

Finally, A is similar to   S  λ1   0 
    

0 λ2
  T   so λ1λ2 = det A =   1 _ 4  (4ac - b2). Hence the 

graph of λ1 y  1  
2  + λ2 y  2  

2  = 1 is an ellipse if b2 < 4ac and an hyperbola if b2 > 4ac. 
This proves (2).

EXAMPLE 3

Consider the equation x2 + xy + y2 = 1. Find a rotation so that the equation 
has no cross term.

Solution ► Here a = b = c = 1 in the notation of Theorem 2, so cos θ =   -1 __ 
 √ 

__

 2  
   and 

sin θ =   1 __ 
 √ 

__

 2  
  . Hence θ =   3π

 __ 4   will do it. The new variables are y1 =   1 __ 
 √ 

__

 2  
  (x2 - x1) and 

y2 =   -1 __ 
 √ 

__

 2  
  (x2 + x1) by (∗∗), and the equation becomes  y  1  

2  + 3 y  2  
2  = 2. The angle θ 

has been chosen such that the new y1 and y2 axes are the axes of symmetry of 

the ellipse (see the diagram). The eigenvectors f1 =   1 __ 
 √ 

__

 2  
     S  -1   

1
  T  and f2 =   1 __ 

 √ 

__

 2  
     S  -1   

-1
  T  

point along these axes of symmetry, and this is the reason for the name 
principal axes.

The determinant of any orthogonal matrix P is either 1 or -1 (because PPT = I). 

The orthogonal matrices   S  cos θ -sin θ
        

sin θ   cos θ
  T  arising from rotations all have 

determinant 1. More generally, given any quadratic form q = xTAx, the orthogonal 
matrix P such that PTAP is diagonal can always be chosen so that det P = 1 by 

3
4
�

x2

x1

y2

y1
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interchanging two eigenvalues (and hence the corresponding columns of P). It is 
shown in Theorem 4 Section 10.4 that orthogonal 2 × 2 matrices with determinant 
1 correspond to rotations. Similarly, it can be shown that orthogonal 3 × 3 matrices 
with determinant 1 correspond to rotations about a line through the origin. 
This extends Theorem 2: Every quadratic form in two or three variables can be 
diagonalized by a rotation of the coordinate system.

Congruence
We return to the study of quadratic forms in general.

Theorem 3

If q(x) = xTAx is a quadratic form given by a symmetric matrix A, then A is uniquely 
determined by q.

PROOF

Let q(x) = xTBx for all x where BT = B. If C = A - B, then CT = C and 
xTCx = 0 for all x. We must show that C = 0. Given y in �n,

 0 = (x + y)TC(x + y)  = xTCx + xTCy + yTCx + yTCy
= xTCy + yTCx

But yTCx = (xTCy)T = xTCy (it is 1 × 1). Hence xTCy = 0 for all x and y in �n. 
If ej is column j of In, then the (i, j)-entry of C is ei

TCej = 0. Thus C = 0.

Hence we can speak of the symmetric matrix of a quadratic form. 
On the other hand, a quadratic form q in variables xi can be written in 

several ways as a linear combination of squares of new variables, even if the 
new variables are required to be linear combinations of the xi. For example, if 
q = 2 x  1  

2  − 4 x 1  x 2  +  x  2  
2  then 

q = 2  Q  x 1  −  x 2  R  
2  −  x  2  

2  and q = -2 x  1  
2  +   Q2 x 1  −  x 2  R  

2 

The question arises: How are these changes of variables related, and what 
properties do they share? To investigate this, we need a new concept. 

Let a quadratic form q = q(x) = xTAx be given in terms of variables 
x = (x1, x2, …, xn)

T. If the new variables y = ( y1, y2, …, yn)
T are to be linear 

combinations of the xi, then y = Ax for some n × n matrix A. Moreover, since 
we want to be able to solve for the xi in terms of the yi, we ask that the matrix 
A be invertible. Hence suppose U is an invertible matrix and that the new 
variables y are given by 

y = U –1x, equivalently x = Uy.

In terms of these new variables, q takes the form 

q = q(x) = (Uy)TA(Uy) = yT(UTAU )y.

That is, q has matrix UTAU with respect to the new variables y. Hence, to study 
changes of variables in quadratic forms, we study the following relationship on 
matrices: Two n × n matrices A and B are called congruent, written A ∼c  B, if 
B = UTAU for some invertible matrix U. Here are some properties of congruence:
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1. A ∼c  A for all A. 

2. If A ∼c  B, then B ∼c  A.

3. If A ∼c  B and B ∼c  C, then A ∼c  C.

4. If A ∼c  B, then A is symmetric if and only if B is symmetric.

5. If A ∼c  B, then rank A = rank B.

The converse to (5) can fail even for symmetric matrices.

EXAMPLE 4

The symmetric matrices A =   S  1 0    
0 1

  T  and B =   S   1   0    
0 -1

  T  have the same rank but 

are not congruent. Indeed, if A ∼c  B, an invertible matrix U exists such that 
B = UTAU = UTU. But then -1 = det B = (det U )2, a contradiction.

The key distinction between A and B in Example 4 is that A has two positive 
eigenvalues (counting multiplicities) whereas B has only one.

Theorem 4

Sylvester’s Law of Inertia
If A ∼c  B, then A and B have the same number of positive eigenvalues, counting 
multiplicities.

The proof is given at the end of this section.
The index of a symmetric matrix A is the number of positive eigenvalues of A. 

If q = q(x) = xTAx is a quadratic form, the index and rank of q are defined to be, 
respectively, the index and rank of the matrix A. As we saw before, if the variables 
expressing a quadratic form q are changed, the new matrix is congruent to the old 
one. Hence the index and rank depend only on q and not on the way it is expressed. 

Now let q = q(x) = xTAx be any quadratic form in n variables, of index k and 
rank r, where A is symmetric. We claim that new variables z can be found so that q 
is completely diagonalized—that is,

q(z) =   z  1  
2  + � +   z  k  

2  -   z  k+1  
2
   - � -   z  r  

2 

If k ≤ r ≤ n, let Dn(k, r) denote the n × n diagonal matrix whose main diagonal 
consists of k ones, followed by r - k minus ones, followed by n - r zeros. Then 
we seek new variables z such that

q(z) = zTDn(k, r)z

To determine z, first diagonalize A as follows: Find an orthogonal matrix P0 such that

 P  0  
T AP0 = D = diag(λ1, λ2, …, λr, 0, …, 0)

is diagonal with the nonzero eigenvalues λ1, λ2, …, λr of A on the main diagonal 
(followed by n - r zeros). By reordering the columns of P0, if necessary, we may 
assume that λ1, …, λk are positive and λk+1, …, λr are negative. This being the case, 
let D0 be the n × n diagonal matrix

D0 = diag Q   1 ____ 
 √ 

___

 λ1  
  , …,   1 ____ 

 √ 
___

 λk  
  ,   1 ________ 

 √ 
______

 -λk+1  
  , …,   1 ______ 

 √ 
____

 -λr  
  , 1, …, 1 R 

428 Chapter 8 Orthogonality



Then  D  0  
T DD0 = Dn(k, r), so if new variables z are given by x = (P0D0)z, we obtain

q(z) = zTDn(k, r)z =  z  1  
2  + � +   z  k  

2  -   z  k+1  
2
   - � -   z  r  

2 

as required. Note that the change-of-variables matrix P0D0 from z to x has 
orthogonal columns (in fact, scalar multiples of the columns of P0).

EXAMPLE 5

Completely diagonalize the quadratic form q in Example 2 and find the index 
and rank.

Solution ► In the notation of Example 2, the eigenvalues of the matrix A 
of q are 12, -8, 4, 4; so the index is 3 and the rank is 4. Moreover, the 
corresponding orthogonal eigenvectors are f1, f2, f3 (see Example 2), and f4. 
Hence P0 = [f1 f3 f4 f2] is orthogonal and

 P  0  
T AP0 = diag(12, 4, 4, -8)

As before, take D0 = diag Q   1 ___ 
 √ 

___

 12  
  ,   1 _ 2  ,   

1 _ 2  ,   
1 __ 

 √ 

__

 8  
   R  and define the new variables z by 

x = (P0D0)z. Hence the new variables are given by z =  D  0  
-1  P  0  

T x. The result is

z1 =  √ 

__

 3  (x1 - x2 - x3 + x4)
z2 = x1 + x2 + x3 + x4
z3 = x1 + x2 - x3 - x4
z4 =  √ 

__

 2  (x1 - x2 + x3 - x4)

This discussion gives the following information about symmetric matrices.

Theorem 5

Let A and B be symmetric n × n matrices, and let 0 ≤ k ≤ r ≤ n.
1. A has index k and rank r if and only if A ∼c  Dn(k, r).
2. A ∼c  B if and only if they have the same rank and index.

PROOF

 1. If A has index k and rank r, take U = P0D0 where P0 and D0 are as described 
prior to Example 5. Then UTAU = Dn(k, r). The converse is true because 
Dn(k, r) has index k and rank r (using Theorem 4).

 2. If A and B both have index k and rank r, then A ∼c  Dn(k, r) ∼c  B by (1). The 
converse was given earlier.
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PROOF OF THEOREM 4

By Theorem 1, A ∼c  D1 and B ∼c  D2 where D1 and D2 are diagonal and have the 
same eigenvalues as A and B, respectively. We have D1 ∼c  D2, (because A ∼c  B), 
so we may assume that A and B are both diagonal. Consider the quadratic form 
q(x) = xTAx. If A has k positive eigenvalues, q has the form

q(x) = a1 x  1  
2  + � + ak  x  k  

2  - ak+1  x  k+1  
2
   - � - ar  x  r  

2 , ai > 0

where r = rank A = rank B. The subspace W1 = {x | xk+1 = � = xr = 0} of �n 
has dimension n - r + k and satisfies q(x) > 0 for all x ≠ 0 in W1. 

On the other hand, if B = UTAU, define new variables y by x = Uy. If B has 
k′ positive eigenvalues, q has the form

q(x) = b1 y  1  
2  + � + bk′  y  k′  

2
   - bk′+1  y  k′+1  

2
   - � - br  y  r  

2 , bi > 0

Let f1, …, fn denote the columns of U. They are a basis of �n and

x = Uy = [f1 � fn]  S   
y1

 
 

 �   
yn

   T  = y1f1 + � + ynfn 

Hence the subspace W2 = span{fk′+1, …, fr} satisfies q(x) < 0 for all x ≠ 0 
in W2. Note that dim W2 = r - k′. It follows that W1 and W2 have only 
the zero vector in common. Hence, if B1 and B2 are bases of W1 and W2, 
respectively, then (Exercise 33 Section 6.3) B1 ∪ B2 is an independent set of 
(n - r + k) + (r - k′ ) = n + k - k′ vectors in �n. This implies that k ≤ k′, 
and a similar argument shows k′ ≤ k.

E X E R C I S E S  8 . 8

 1. In each case, find a symmetric matrix A such that 
q = xTBx takes the form q = xTAx.

 (a)   S  1 1    
0 1

  T  �(b)   S   1 1    
-1 2

  T 

 (c) 
1 1

11 0
0

0 11
 �(d) 

2

2 −

−

1 1
14 0

5 3

 2. In each case, find a change of variables that will 
diagonalize the quadratic form q. Determine the 
index and rank of q.

 (a) q =  x  1  
2  + 2x1x2 +  x  2  

2 

 �(b) q =  x  1  
2  + 4x1x2 +  x  2  

2 

 (c) q =  x  1  
2  +  x  2  

2  +  x  3  
2  - 4(x1x2 + x1x3 + x2x3)

 �(d) q = 7 x  1  
2  +  x  2  

2  +  x  3  
2  + 8x1x2 + 8x1x3 - 16x2x3

 (e) q = 2( x  1  
2  +  x  2  

2  +  x  3  
2  - x1x2 + x1x3 - x2x3)

 �(f ) q = 5 x  1  
2  + 8 x  2  

2  + 5 x  3  
2  - 4(x1x2 + 2x1x3 + x2x3)

 (g) q =  x  1  
2  -  x  3  

2  - 4x1x2 + 4x2x3

 �(h) q =  x  1  
2  +  x  3  

2  - 2x1x2 + 2x2x3

 3. For each of the following, write the equation in 
terms of new variables so that it is in standard 
position, and identify the curve.

 (a) xy = 1

 �(b) 3x2 - 4xy = 2

 (c) 6x2 + 6xy - 2y2 = 5

 �(d) 2x2 + 4xy + 5y2 = 1

 4. Consider the equation ax2 + bxy + cy2 = d, 
where b ≠ 0. Introduce new variables x1 and y1 
by rotating the axes counterclockwise through an 
angle θ. Show that the resulting equation has no 
x1y1-term if θ is given by

cos 2θ =   a - c _____________  
 √ 

___________

 b2 + (a - c)2  
  ,

sin 2θ =   b _____________  
 √ 

___________

 b2 + (a - c)2  
  

  [Hint: Use equation (∗∗) preceding Theorem 
2 to get x and y in terms of x1 and y1, and 
substitute.]
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 5. Prove properties (1)–(5) preceding Example 4. 

 6. If A ∼c  B show that A is invertible if and only if B 
is invertible. 

 7. If x = (x1, …, xn)
T is a column of variables, 

A = AT is n × n, B is 1 × n, and c is a constant, 
xTAx + Bx = c is called a quadratic equation in 
the variables xi.

 (a) Show that new variables y1, …, yn can be 
found such that the equation takes the form 
λ1 y  1  

2  + � + λr y  r  
2  + k1y1 + � + knyn = c.

 �(b) Write  x  1  
2  +  3x  2  

2  +  3x  3  
2  + 4x1x2 - 4x1x3 + 5x1 

- 6x3 = 7 in this form and find variables y1, 
y2, y3 as in (a).

 8. Given a symmetric matrix A, define 
qA(x) = xTAx. Show that B ∼c  A if and only 
if B is symmetric and there is an invertible 
matrix U such that qB(x) = qA(Ux) for all x. 
[Hint: Theorem 3.]

 9. Let q(x) = xTAx be a quadratic form, A = AT.

 (a) Show that q(x) > 0 for all x ≠ 0, if and only 
if A is positive definite (all eigenvalues are 

positive). In this case, q is called positive 
definite.

 �(b) Show that new variables y can be found such 
that q = ‖y‖

2 and y = Ux where U is upper 
triangular with positive diagonal entries. 
[Hint: Theorem 3 Section 8.3.]

 10. A bilinear form β on �n is a function that 
assigns to every pair x, y of columns in �n a 
number β(x, y) in such a way that 

β(rx + sy, z) = rβ(x, z) + sβ(y, z)
β(x, ry + sz) = rβ(x, y) + sβ(x, z)

  for all x, y, z in �n and r, s in �. If 
β(x, y) = β(y, x) for all x, y, β is called 
symmetric.

 (a) If β is a bilinear form, show that an n × n 
matrix A exists such that β(x, y) = xTAy for 
all x, y. 

 (b) Show that A is uniquely determined by β.

 (c)   Show that β is symmetric if and only if 
A = AT.

An Application to Constrained Optimization
It is a frequent occurrence in applications that a function q = q(x1, x2, …, xn) of 
n variables, called an objective function, is to be made as large or as small as 
possible among all vectors x = (x1, x2, …, xn) lying in a certain region of �n called 
the feasible region. A wide variety of objective functions q arise in practice; our 
primary concern here is to examine one important situation where q is a quadratic 
form. The next example gives some indication of how such problems arise.

EXAMPLE 1

A politician proposes to spend x1 dollars annually on health care and x2 dollars 
annually on education. She is constrained in her spending by various budget 
pressures, and one model of this is that the expenditures x1 and x2 should satisfy 
a constraint like

 5x  1  
2  +  3x  2  

2  ≤ 15.

Since xi ≥ 0 for each i, the feasible region is the shaded area shown in the 
diagram. Any choice of feasible point (x1, x2) in this region will satisfy the 
budget constraints. However, these choices have different effects on voters, 
and the politician wants to choose x = (x1, x2) to maximize some measure 
q = q(x1, x2) of voter satisfaction. Thus the assumption is that, for any value 
of c, all points on the graph of q(x1, x2) = c have the same appeal to voters.

S E C T I O N  8 . 9

O

1

1

2

2

c = 1

c = 2

x2

x1

5 3 151
2

2
2x x+ ≤5

3
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Hence the goal is to find the largest value of c for which the graph of 
q(x1, x2) = c contains a feasible point.

The choice of the function q depends upon many factors; we will show 
how to solve the problem for any quadratic form q (even with more than two 
variables). In the diagram the function q is given by

q(x1, x2) = x1x2,

and the graphs of q(x1, x2) = c are shown for c = 1 and c = 2. As c increases the 
graph of q(x1, x2) = c moves up and to the right. From this it is clear that there 
will be a solution for some value of c between 1 and 2 (in fact the largest value 
is c =   1 _ 2   √ 

___

 15   = 1.94 to two decimal places).

The constraint  5x  1  
2  +  3x  2  

2  ≤ 15 in Example 9 can be put in a standard form. 

If we divide through by 15, it becomes   Q   x1 ___ 
 √ 

__

 3  
   R  2  +   Q   x2 ___ 

 √ 

__

 5  
   R  2  ≤ 1. This suggests that 

we introduce new variables y = ( y1, y2) where y1 =   
x1 ___ 
 √ 

__

 3  
   and y2 =   

x2 ___ 
 √ 

__

 5  
  . Then the 

constraint becomes ‖y‖
2 ≤ 1, equivalently ‖y‖ ≤ 1. In terms of these new variables, 

the objective function is q =  √ 

___

 15  y1 y2, and we want to maximize this subject to 
‖y‖ ≤ 1. When this is done, the maximizing values of x1 and x2 are obtained from 
x1 =  √ 

__

 3  y1 and x2 =  √ 

__

 5  y2.
Hence, for constraints like that in Example 1, there is no real loss in generality 

in assuming that the constraint takes the form ‖x‖ ≤ 1. In this case the principal 
axis theorem solves the problem. Recall that a vector in �n of length 1 is called a 
unit vector.

Theorem 1

Consider the quadratic form q = q(x) = xTAx where A is an n × n symmetric matrix, 
and let λ1 and λn denote the largest and smallest eigenvalues of A, respectively. Then:

(1) max{q(x) | ‖x‖ ≤ 1} = λ1, and q(f1) = λ1 where f1 is any unit eigenvector 
corresponding to λ1.

(2) min{q(x) | ‖x‖ ≤ 1} = λn, and q(fn) = λn where fn is any unit eigenvector 
corresponding to λn.

PROOF

Since A is symmetric, let the (real) eigenvalues λi of A be ordered as to size as 
follows: λ1 ≥ λ2 ≥ � ≥ λn. By the principal axis theorem, let P be an orthogonal 
matrix such that PTAP = D = diag(λ1, λ2, …, λn). Define y = PTx, equivalently 
x = Py, and note that ‖y‖ = ‖x‖ because ‖y‖

2 = yTy = xT(PPT)x = xTx = ‖x‖
2. 

If we write y = ( y1, y2, …, yn)
T, then

 q(x)  = q(Py) = (Py)TA(Py)
= yT(PTAP)y = yTDy
= λ1 y  1  

2  + λ2 y  2  
2  + � + λn y  n  

2 . (∗)
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Now assume that ‖x‖ ≤ 1. Since λi ≤ λ1 for each i, (∗) gives

q(x) = λ1 y  1  
2  + λ2 y  2  

2  + � + λn y  n  
2  ≤ λ1 y  1  

2  + λ1 y  2  
2  + � + λ1 y  n  

2  = λ1‖y‖
2 ≤ λ1

because ‖y‖ = ‖x‖ ≤ 1. This shows that q(x) cannot exceed λ1 when ‖x‖ ≤ 1. 
To see that this maximum is actually achieved, let f1 be a unit eigenvector 
corresponding to λ1. Then

q(f1) =  f   1  
T  Af1 =  f   1  

T (λ1f1) = λ1( f   1  
T  f1) = λ1‖f1‖

2 = λ1.

Hence λ1 is the maximum value of q(x) when ‖x‖ ≤ 1, proving (1). The proof of 
(2) is analogous.

The set of all vectors x in �n such that ‖x‖ ≤ 1 is called the unit ball. If n = 2, 
it is often called the unit disk and consists of the unit circle and its interior; if n = 3, 
it is the unit sphere and its interior. It is worth noting that the maximum value of a 
quadratic form q(x) as x ranges throughout the unit ball is (by Theorem 1) actually 
attained for a unit vector x on the boundary of the unit ball.

Theorem 1 is important for applications involving vibrations in areas as diverse 
as aerodynamics and particle physics, and the maximum and minimum values in the 
theorem are often found using advanced calculus to minimize the quadratic form 
on the unit ball. The algebraic approach using the principal axis theorem gives a 
geometrical interpretation of the optimal values because they are eigenvalues.

EXAMPLE 2

Maximize and minimize the form q(x) =  3x  1  
2  + 14x1x2 +  3x  2  

2  subject to 
‖x‖ ≤ 1.

Solution ► The matrix of q is A =   S  3 7    
7 3

  T  , with eigenvalues λ1 = 10 and 

λ2 = -4, and corresponding unit eigenvectors f1 =   1 __ 
 √ 

__

 2  
  (1, 1) and f2 =   1 __ 

 √ 

__

 2  
  (1, -1). 

Hence, among all unit vectors x in �2, q(x) takes its maximal value 10 at 
x = f1, and the minimum value of q(x) is -4 when x = f2.

As noted above, the objective function in a constrained optimization problem 
need not be a quadratic form. We conclude with an example where the objective 
function is linear, and the feasible region is determined by linear constraints.

EXAMPLE 3

A manufacturer makes x1 units of product 1, and x2 units of product 2, at a 
profit of $70 and $50 per unit respectively, and wants to choose x1 and x2 to 
maximize the total profit p(x1, x2) = 70x1 + 50x2. However x1 and x2 are not 
arbitrary; for example, x1 ≥ 0 and x2 ≥ 0. Other conditions also come into play.
Each unit of product 1 costs $1200 to produce and requires 2000 square feet of 
warehouse space; each unit of product 2 costs $1300 to produce and requires 
1100 square feet of space. If the total warehouse space is 11 300 square feet, 
and if the total production budget is $8700, x1 and x2 must also satisfy the 
conditions

1200x1 + 1300x2 = 8700

2000x1 + 1100x2 = 11300

p = 570

p = 500

p = 430

(4, 3)

O

x2

x1
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2000x1 + 1100x2 ≤ 11 300,
1200x1 + 1300x2 ≤ 8700.

The feasible region in the plane satisfying these constraints (and x1 ≥ 0, 
x2 ≥ 0) is shaded in the diagram. If the profit equation 70x1 + 50x2 = p is 
plotted for various values of p, the resulting lines are parallel, with p increasing 
with distance from the origin. Hence the best choice occurs for the line 
70x1 + 50x2 = 430 that touches the shaded region at the point (4, 3). So the 
profit p has a maximum of p = 430 for x1 = 4 units and x2 = 3 units.

Example 3 is a simple case of the general linear programming problem18 which 
arises in economic, management, network, and scheduling applications. Here 
the objective function is a linear combination q = a1x1 + a2x2 + � + anxn of the 
variables, and the feasible region consists of the vectors x = (x1, x2, …, xn)

T in �n 
which satisfy a set of linear inequalities of the form b1x1 + b2x2 + � + bnxn ≤ b. 
There is a good method (an extension of the gaussian algorithm) called the simplex 
algorithm for finding the maximum and minimum values of q when x ranges over 
such a feasible set. As Example 3 suggests, the optimal values turn out to be vertices 
of the feasible set. In particular, they are on the boundary of the feasible region, as is 
the case in Theorem 1.

More detailed discussion of linear programming is available on the Online 
Learning Centre (www.mcgrawhill.ca/olc/nicholson).

An Application to Statistical Principal Component 
Analysis
Linear algebra is important in multivariate analysis in statistics, and we conclude with 
a very short look at one application of diagonalization in this area. A main feature 
of probability and statistics is the idea of a random variable X, that is a real-valued 
function which takes its values according to a probability law (called its distribution). 
Random variables occur in a wide variety of contexts; examples include the number of 
meteors falling per square kilometre in a given region, the price of a share of a stock, 
or the duration of a long distance telephone call from a certain city.

The values of a random variable X are distributed about a central number �, 
called the mean of X. The mean can be calculated from the distribution as the 
expectation E(X) = � of the random variable X. Functions of a random variable are 
again random variables. In particular, (X - �)2 is a random variable, and the variance 
of the random variable X, denoted var(X), is defined to be the number

var(X) = E{(X - �)2} where � = E(X).

It is not difficult to see that var(X) ≥ 0 for every random variable X. The number 
σ =  √ 

______

 var(X)   is called the standard deviation of X, and is a measure of how much the 
values of X are spread about the mean � of X. A main goal of statistical inference 
is finding reliable methods for estimating the mean and the standard deviation of a 
random variable X by sampling the values of X.

If two random variables X and Y are given, and their joint distribution is known, 
then functions of X and Y are also random variables. In particular, X + Y and aX are 
random variables for any real number a, and we have

18 A good introduction can be found at http://www.mcgrawhill.ca/olc/nicholson, and more information is available in “Linear 
Programming and Extensions” by N. Wu and R. Coppins, McGraw-Hill, 1981.
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E(X + Y) = E(X) + E(Y) and E(aX) = aE(X).19

An important question is how much the random variables X and Y depend on each 
other. One measure of this is the covariance of X and Y, denoted cov(X, Y), defined by

cov(X, Y) = E{(X - �)(Y - υ)} where � = E(X) and υ = E(Y). 

Clearly, cov(X, X) = var(X). If cov(X, Y) = 0 then X and Y have little relationship to 
each other and are said to be uncorrelated.20

Multivariate statistical analysis deals with a family X1, X2, …, Xn of random 
variables with means �i = E(Xi) and variances  σ  i  

2  = var(Xi) for each i. We denote 
the covariance of Xi and Xj by σij = cov(Xi, Xj). Then the covariance matrix of the 
random variables X1, X2, …, Xn is defined to be the n × n matrix

Σ = [σij]

whose (i, j)-entry is σij. The matrix Σ is clearly symmetric; in fact it can be shown 
that Σ is positive semidefinite in the sense that λ ≥ 0 for every eigenvalue λ of 
Σ. (In reality, Σ is positive definite in most cases of interest.) So suppose that the 
eigenvalues of Σ are λ1 ≥ λ2 ≥ � ≥ λn ≥ 0. The principal axis theorem (Theorem 
2 Section 8.2) shows that an orthogonal matrix P exists such that

PT
ΣP = diag(λ1, λ2, …, λn).

If we write  
__

 X   = (X1, X2, …, Xn), the procedure for diagonalizing a quadratic form 
gives new variables  

__
 Y   = (Y1, Y2, …, Yn) defined by

 
__

 Y   = PT 
__

 X  .

These new random variables Y1, Y2, …, Yn are called the principal components 
of the original random variables Xi, and are linear combinations of the Xi. 
Furthermore, it can be shown that

cov(Yi, Yj) = 0 if i ≠ j and var(Yi) = λi for each i.

Of course the principal components Yi point along the principal axes of the 
quadratic form q =  

__
 X  TΣ 

__

 X  . 
The sum of the variances of a set of random variables is called the total 

variance of the variables, and determining the source of this total variance is one 
of the benefits of principal component analysis. The fact that the matrices Σ and 
diag(λ1, λ2, …, λn) are similar means that they have the same trace, that is,

σ11 + σ22 + � + σnn = λ1 + λ2 + � + λn

This means that the principal components Yi have the same total variance as the 
original random variables Xi. Moreover, the fact that λ1 ≥ λ2 ≥ � ≥ λn ≥ 0 means 
that most of this variance resides in the first few Yi. In practice, statisticians find that 
studying these first few Yi (and ignoring the rest) gives an accurate analysis of the 
total system variability. This results in substantial data reduction since often only a 
few Yi suffice for all practical purposes. Furthermore, these Yi are easily obtained as 
linear combinations of the Xi. Finally, the analysis of the principal components often 
reveals relationships among the Xi that were not previously suspected, and so results 
in interpretations that would not otherwise have been made.

19 Hence E( ) is a linear transformation from the vector space of all random variables to the space of real numbers.

20 If X and Y are independent in the sense of probability theory, then they are uncorrelated; however, the converse is not true in 
general.

435SECTION 8.10 An Application to Statistical Principal Component Analysis



Change of Basis

9
If A is an m × n matrix, the corresponding matrix transformation TA : �n → �m 
is defined by 

TA(x) = Ax for all columns x in �n.

It was shown in Theorem 2 Section 2.6 that every linear transformation 
T : �n → �m is a matrix transformation; that is, T = TA for some m × n 
matrix A. Furthermore, the matrix A is uniquely determined by T. In fact A 
is given in terms of its columns by 

A = [T(e1) T(e2) � T(en)] 

where {e1, e2, …, en} is the standard basis of �n.
In this chapter we show how to associate a matrix with any linear transformation 

T : V → W where V and W are finite-dimensional vector spaces, and we describe 
how the matrix can be used to compute T(v) for any v in V. The matrix depends on 
the choice of a basis B in V and a basis D in W, and is denoted MDB (T ). The case 
when W = V is particularly important. If B and D are two bases of V, we show that 
the matrices MBB(T ) and MDD(T ) are similar, that is MDD(T ) = P-1MBB(T )P for 
some invertible matrix P. Moreover, we give an explicit method for constructing 
P depending only on the bases B and D. This leads to some of the most important 
theorems in linear algebra, as we shall see in Chapter 11.

The Matrix of a Linear Transformation
Let T : V → W be a linear transformation where dim V = n and dim W = m. The 
aim in this section is to describe the action of T as multiplication by an m × n 
matrix A. The idea is to convert a vector v in V into a column in �n, multiply that 
column by A to get a column in �m, and convert this column back to get T(v) in W. 

Converting vectors to columns is a simple matter, but one small change is 
needed. Up to now the order of the vectors in a basis has been of no importance. 
However, in this section, we shall speak of an ordered basis {b1, b2, …, bn}, which 
is just a basis where the order in which the vectors are listed is taken into account. 
Hence {b2, b1, b3} is a different ordered basis from {b1, b2, b3}.

If B = {b1, b2, …, bn} is an ordered basis in a vector space V, and if

v = v1b1 + v2b2 + � + vnbn, vi ∈ �

is a vector in V, then the (uniquely determined) numbers v1, v2, …, vn are called the 
coordinates of v with respect to the basis B. 
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The coordinate vector of v with respect to B is defined to be

CB(v) = (v1b1 + v2b2 + � + vnbn) =   S  
v1

 
 

 v2   
�
 
 

 
vn

  T 
The reason for writing CB(v) as a column instead of a row will become clear later. 
Note that CB(bi) = ei is column i of In.

EXAMPLE 1

The coordinate vector for v = (2, 1, 3) with respect to the ordered basis 

B = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} of �3 is CB(v) =   S  0 
 

 2   
1

  T  because 

v = (2, 1, 3) = 0(1, 1, 0) + 2(1, 0, 1) + 1(0, 1, 1).

Theorem 1

If V has dimension n and B = {b1, b2, …, bn} is any ordered basis of V, the coordinate 
transformation CB : V → �n is an isomorphism. In fact,  C  B  −1 : �n → V is given by 

 C  B  −1   S  
v1

 
 

 v2   
�
 
 

 
vn

  T  = v1b1 + v2b2 + � + vnbn for all   S  
v1

 
 

 v2   
�
 
 

 
vn

  T  in �n.

PROOF

The verification that CB is linear is Exercise 13. If T : �n
→ V is the map denoted  

C  B  -1  in the theorem, one verifies (Exercise 13) that TCB = 1V and CBT =  1 �n . 
Note that CB(bj) is column j of the identity matrix, so CB carries the basis B to 
the standard basis of �n, proving again that it is an isomorphism (Theorem 1 
Section 7.3).

Now let T : V → W be any linear transformation where dim V = n and 
dim W = m, and let B = {b1, b2, …, bn} and D be ordered bases of V and W, 
respectively. Then CB : V → �n and CD : W → �m are isomorphisms and we 
have the situation shown in the diagram where A is an m × n matrix (to be 
determined). In fact, the composite 

CDT C  B  -1 : �n → �m is a linear transformation

so Theorem 2 Section 2.6 shows that a unique m × n matrix A exists such that

CDT C  B  -1  = TA, equivalently CDT = TACB 

TA acts by left multiplication by A, so this latter condition is 

CD[T(v)] = ACB(v) for all v in V

This requirement completely determines A. Indeed, the fact that CB(bj) is column j 
of the identity matrix gives

column j of A = ACB(bj) = CD[T(bj)]

Definition 9.1

V T

CB

TA

CD

W

�
m

�
n
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for all j. Hence, in terms of its columns,

A =   SCD[T(b1)] CD[T(b2)] � CD[T(bn)] T .

This is called the matrix of T corresponding to the ordered bases B and D, and 
we use the following notation: 

MDB(T ) =   SCD[T(b1)] CD[T(b2)] � CD[T(bn)] T 

This discussion is summarized in the following important theorem.

Theorem 2

Let T : V → W be a linear transformation where dim V = n and dim W = m, and 
let B = {b1, …, bn} and D be ordered bases of V and W, respectively. Then the matrix 
MDB(T ) just given is the unique m × n matrix A that satisfies

CDT = TACB.

Hence the defining property of MDB(T ) is 

CD[T(v)] = MDB(T )CB(v) for all v in V.

The matrix MDB[T] is given in terms of its columns by

MDB(T ) =   SCD[T(b1)] CD[T(b2)] � CD[T(bn)] T 

The fact that T =  C  D  -1 TACB means that the action of T on a vector v in V can be 
performed by first taking coordinates (that is, applying CB to v), then multiplying 
by A (applying TA), and finally converting the resulting m-tuple back to a vector 
in W (applying  C  D  -1 ).

EXAMPLE 2

Define T : P2 → �2 by T(a + bx + cx2) = (a + c, b - a - c) for all polynomials 
a + bx + cx2. If B = {b1, b2, b3} and D = {d1, d2} where

b1 = 1, b2 = x, b3 = x2 and d1 = (1, 0), d2 = (0, 1) 

compute MDB(T ) and verify Theorem 2.

Solution ► We have T(b1) = d1 - d2, T(b2) = d2, and T(b3) = d1 - d2. Hence

MDB(T ) =   SCD[T(b1)] CD[T(b2)] CD[T(b3)] T  = − −
1 0 1
1 1 1

.

If v = a + bx + cx2 = ab1 + bb2 + cb3, then T(v) = (a + c)d1 + (b - a - c)d2, so

CD[T(v)] = a c
b a c

+
− −

 = 
a
b
c− −

1 0 1
1 1 1

 = MDB(T )CB(v)

as Theorem 2 asserts.

Definition 9.2
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The next example shows how to determine the action of a transformation from 
its matrix.

EXAMPLE 3

Suppose T : M22(�) → �3 is linear with matrix MDB(T) = 
0
0

−1

0
−1

1

−1
1
0

1
0
0

 where

B =  U   S   1 0        
0 0

   T  ,   S   0 1        
0 0

   T  ,   S   0 0        
1 0

   T  ,   S   0 0        
0 1

   T  V  and D = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. 

Compute T(v) where v =   S   a b
        

c d
   T . 

Solution ► The idea is to compute CD[T(v)] first, and then obtain T(v). We have 

CD[T(v)] = MDB(T )CB(v) = 
0
0

−1

0
−1

1

−1
1
0

1
0
0

   S  
a

 
 
 b   c  
 

d

  T  =   S  a - b
 

  
 b - c    

c - d
   T 

Hence T(v)  = (a - b)(1, 0, 0) + (b - c)(0, 1, 0) + (c - d)(0, 0, 1) 
= (a - b, b - c, c - d)

The next two examples will be referred to later.

EXAMPLE 4

Let A be an m × n matrix, and let TA : �
n → �m be the matrix transformation 

induced by A : TA(x) = Ax for all columns x in �n. If B and D are the standard 
bases of �n and �m, respectively (ordered as usual), then

MDB(TA) = A

In other words, the matrix of TA corresponding to the standard bases is A itself.

Solution ► Write B = {e1, …, en}. Because D is the standard basis of �m, it is 
easy to verify that CD(y) = y for all columns y in �m. Hence

MDB(TA) = [TA(e1) TA(e2) � TA(en)] = [Ae1 Ae2 � Aen] = A

because Aej is the jth column of A.

EXAMPLE 5

Let V and W have ordered bases B and D, respectively. Let dim V = n.

1. The identity transformation 1V : V → V has matrix MBB(1V) = In.

2. The zero transformation 0 : V → W has matrix MDB(0) = 0.
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The first result in Example 5 is false if the two bases of V are not equal. In fact, if 
B is the standard basis of �n, then the basis D of �n can be chosen so that MBD( 1 �n ) 
turns out to be any invertible matrix we wish (Exercise 14).

The next two theorems show that composition of linear transformations is 
compatible with multiplication of the corresponding matrices.

Theorem 3

Let V →T  W →S  U, be linear transformations and let B, D, and E be finite ordered bases 
of V, W, and U, respectively. Then

MEB(ST ) = MED(S) · MDB(T )

PROOF

We use the property in Theorem 2 three times. If v is in V,

MED(S)MDB(T )CB(v) = MED(S)CD[T(v)] = CE[ST(v)] = MEB(ST )CB(v) 

If B = {e1, …, en}, then CB(ej) is column j of In. Hence taking v = ej shows that 
MED(S)MDB(T ) and MEB(ST ) have equal jth columns. The theorem follows.

Theorem 4

Let T : V → W be a linear transformation, where dim V = dim W = n. The following 
are equivalent.

1. T is an isomorphism.

2. MDB(T ) is invertible for all ordered bases B and D of V and W.

3.  MDB(T ) is invertible for some pair of ordered bases B and D of V and W.

When this is the case, [MDB(T )]-1 = MBD(T -1).

PROOF

(1) ⇒ (2). We have V →T  W → 
T -1

 V, so Theorem 3 and Example 5 give 

MBD(T -1)MDB(T ) = MBB(T -1T ) = MBB(1V) = In 

Similarly, MDB(T )MBD(T -1) = In, proving (2) (and the last statement in the 
theorem).

(2) ⇒ (3). This is clear.

(3) ⇒ (1). Suppose that TDB(T ) is invertible for some bases B and D and, for 
convenience, write A = MDB(T ). Then we have CDT = TACB by Theorem 2, so 

T = (CD)–1TACB

by Theorem 1 where (CD)–1 and CB are isomorphisms. Hence (1) follows if we 
can show that TA : �

n → �n is also an isomorphism. But A is invertible by (3) 
and one verifies that TA T A–1  =  1 �n  =  T A–1 TA. So TA is indeed invertible (and 
(TA)–1 =  T A–1 ).

TV W U

ST

S

TA−1

TA−1

�
n

TA

TA
�

n
�

n
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In Section 7.2 we defined the rank of a linear transformation T : V → W by 
rank T = dim(im T ). Moreover, if A is any m × n matrix and TA : �n → �m is 
the matrix transformation, we showed that rank(TA) = rank A. So it may not be 
surprising that rank T equals the rank of any matrix of T. 

Theorem 5

Let T : V → W be a linear transformation where dim V = n and dim W = m. If B 
and D are any ordered bases of V and W, then rank T = rank[MDB(T )].

PROOF

Write A = MDB(T ) for convenience. The column space of A 
is U = {Ax | x in �n}. Hence rank A = dim U and so, because 
rank T = dim(im T ), it suffices to find an isomorphism S : im T → U. 
Now every vector in im T has the form T(v), v in V. By Theorem 2, 
CD[T(v)] = ACB(v) lies in U. So define S : im T → U by

S[T(v)] = CD[T(v)] for all vectors T(v) in im T

The fact that CD is linear and one-to-one implies immediately that S is 
linear and one-to-one. To see that S is onto, let Ax be any member of 
U, x in �n. Then x = CB(v) for some v in V because CB is onto. Hence 
Ax = ACB(v) = CD[T(v)] = S[T(v)], so S is onto. This means that S is an 
isomorphism.

EXAMPLE 6

Define T : P2 → �3 by T(a + bx + cx2) = (a - 2b, 3c - 2a, 3c - 4b) for 
a, b, c ∈ �. Compute rank T. 

Solution ► Since rank T = rank [MDB(T )] for any bases B ⊆ P2 and D ⊆ �3, we 
choose the most convenient ones: B = {1, x, x2} and D = {(1, 0, 0), (0, 1, 0), 
(0, 0, 1)}. Then MDB(T ) = [CD[T(1)] CD[T(x)] CD[T(x2)]] = A where 

A = 
0
3
3

−2
0

−4

1
−2

0
. Since A → 

0
3
3

−2
−4
−4

1
0
0

 → 
0

0

3–
4−

−2
1
0

1
0
0

we have rank A = 2. Hence rank T = 2 as well.

We conclude with an example showing that the matrix of a linear transformation 
can be made very simple by a careful choice of the two bases.
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EXAMPLE 7

Let T : V → W be a linear transformation where dim V = n and dim W = m. 
Choose an ordered basis B = {b1, …, br, br+1, …, bn} of V in which 
{br+1, …, bn} is a basis of ker T, possibly empty. Then {T(b1), …, T(br)} is a 
basis of im T by Theorem 5 Section 7.2, so extend it to an ordered basis 
D = {T(b1), …, T(br), fr+1, …, fm} of W. Because T(br+1) = � = T(bn) = 0, 
we have

MDB(T ) = [CD[T(b1)] � CD[T(br)] CD[T(br+1)] � CD[T(bn)]] =   S  Ir 0
    

0 0
  T .

Incidentally, this shows that rank T = r by Theorem 5.

E X E R C I S E S  9 . 1

 1. In each case, find the coordinates of v with 
respect to the basis B of the vector space V.

 (a) V = P2, v = 2x2 + x - 1, B = {x + 1, x2, 3}

 
(b) V = P2, v = ax2 + bx + c, 
B = {x2, x + 1, x + 2}

 (c) V = �3, v = (1, -1, 2), 
B = {(1, -1, 0), (1, 1, 1), (0, 1, 1)}

 
(d) V = �3, v = (a, b, c), 
B = {(1, -1, 2), (1, 1, -1), (0, 0, 1)}

 (e) V = M22, v =   S   1 2    
-1 0

  T  , 
B =  U   S  1 1    

0 0
  T  ,   S  1 0    

1 0
  T  ,   S  0 0    

1 1
  T  ,   S  1 0    

0 1
  T  V 

 2. Suppose T : P2 → �2 is a linear transformation. 
If B = {1, x, x2} and D = {(1, 1), (0, 1)}, find the 
action of T given:

 (a) MDB(T) =   S   1 2 -1     
-1 0   1

  T 

 
(b) MDB(T) =   S   2 1   3     
-1 0 -2

  T 
 3. In each case, find the matrix of T : V → W 

corresponding to the bases B and D of V and W, 
respectively.

 (a) T : M22 → �, T(A) = tr A;

B =  U   S  1 0    
0 0

  T  ,   S  0 1    
0 0

  T  ,   S  0 0    
1 0

  T  ,   S  0 0    
0 1

  T  V ,
D = {1}

 
(b) T : M22 → M22, T(A) = AT;

B = D =  U   S  1 0    
0 0

  T  ,   S  0 1    
0 0

  T  ,   S  0 0    
1 0

  T  ,   S  0 0    
0 1

  T  V 
 (c) T : P2 → P3, T [ p(x)] = xp(x); B = {1, x, x2} 

and D = {1, x, x2, x3}

 
(d) T : P2 → P2, T [ p(x)] = p(x + 1); 
B = D = {1, x, x2}

 4. In each case, find the matrix of T : V → W 
corresponding to the bases B and D, respectively, 
and use it to compute CD[T(v)], and hence T(v).

 (a) T : �3 → �4, 
T(x, y, z) = (x + z, 2z, y - z, x + 2y); B and 
D standard; v = (1, -1, 3)

 
(b) T : �2 → �4, T(x, y) = (2x - y, 3x + 2y, 4y, x); 
B = {(1, 1), (1, 0)}, D standard; v = (a, b)

 (c) T : P2 → �2, T(a + bx + cx2) = (a + c, 2b); 
B = {1, x, x2}, D = {(1, 0), (1, -1)}; 
v = a + bx + cx2

 
(d) T : P2 → �2, T(a + bx + cx2) = (a + b, c); 
B = {1, x, x2}, D = {(1, -1), (1, 1)}; 
v = a + bx + cx2

 (e) T : M22 → �, T   S   a b
        

c d
   T  = a + b + c + d;

  B =  U   S  1 0    
0 0

  T  ,   S  0 1    
0 0

  T  ,   S  0 0    
1 0

  T  ,   S  0 0    
0 1

  T  V ,
  D = {1}; v =   S   a b

        
c d

   T 
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(f ) T : M22 → M22, T   S   a b
        

c d
   T  =   S   a  b + c

        
b + c  d 

  T ;
  B = D =  U   S  1 0    

0 0
  T  ,   S  0 1    

0 0
  T  ,   S  0 0    

1 0
  T  ,   S  0 0    

0 1
  T  V ;

  v =   S   a b
        

c d
   T 

 5. In each case, verify Theorem 3. Use the standard 
basis in �n and {1, x, x2} in P2.

 (a) �
3   T

 - -- →     �2   S
 - -- →     �4; T(a, b, c) = (a + b, b - c), 

S(a, b) = (a, b - 2a, 3b, a + b)

 
(b) �
3   T

 - -- →     �4   S
 - -- →     �2; 

T(a, b, c) = (a + b, c + b, a + c, b - a), 
S(a, b, c, d) = (a + b, c - d)

 (c) P2   T
 - -- →     �3   S

 - -- →     P2; 
T(a + bx + cx2) = (a, b - c, c - a), 
S(a, b, c) = b + cx + (a - c)x2

 
(d) �
3   T

 - -- →     P2   S
 - -- →     �2; 

T(a, b, c) = (a - b) + (c - a)x + bx2, 
S(a + bx + cx2) = (a - b, c)

 6. Verify Theorem 3 for M22   T
 - -- →     M22   S

 - - →     P2 where 

T(A) = AT and S   S   a b
        

c d
   T  = b + (a + d)x + cx2.

  Use the bases 

  B = D =  U   S  1 0    
0 0

  T  ,   S  0 1    
0 0

  T  ,   S  0 0    
1 0

  T  ,   S  0 0    
0 1

  T  V 
  and E = {1, x, x2}.

 7. In each case, find T -1 and verify that 
[MDB(T )]-1 = MBD(T -1).

 (a) T : �2 → �2, T(a, b) = (a + 2b, 2a + 5b); 
B = D = standard

 
(b) T : �3 → �3, T(a, b, c) = (b + c, a + c, a + b); 
B = D = standard

 (c) T : P2 → �3, 
T(a + bx + cx2) = (a - c, b, 2a - c); 
B = {1, x, x2}, D = standard

 
(d) T : P2 → �3, 
T(a + bx + cx2) = (a + b + c, b + c, c); 
B = {1, x, x2}, D = standard

 8. In each case, show that MDB(T ) is invertible 
and use the fact that MBD(T -1) = [MBD(T )]-1 
to determine the action of T -1.

 (a) T : P2 → �3, 
T(a + bx + cx2) = (a + c, c, b - c); 
B = {1, x, x2}, D = standard

 
(b) T : M22 → �4, 

  T   S   a b
        

c d
   T  = (a + b + c, b + c, c, d);

  B =  U   S  1 0    
0 0

  T  ,   S  0 1    
0 0

  T  ,   S  0 0    
1 0

  T  ,   S  0 0    
0 1

  T  V ,
  D = standard

 9. Let D : P3 → P2 be the differentiation map 
given by D[ p(x)] = p′(x). Find the matrix of D 
corresponding to the bases B = {1, x, x2, x3} 
and E = {1, x, x2}, and use it to compute 
D(a + bx + cx2 + dx3).

 10. Use Theorem 4 to show that T : V → V is 
not an isomorphism if ker T ≠ 0 (assume 
dim V = n). [Hint: Choose any ordered basis B 
containing a vector in ker T.]

 11. Let T : V → � be a linear transformation, 
and let D = {1} be the basis of �. Given any 
ordered basis B = {e1, …, en} of V, show that 
MDB(T ) = [T(e1)�T(en)].

 
12. Let T : V → W be an isomorphism, let 
B = {e1, …, en} be an ordered basis of V, 
and let D = {T(e1), …, T(en)}. Show that 
MDB(T ) = In—the n × n identity matrix.

 13. Complete the proof of Theorem 1.

 14. Let U be any invertible n × n matrix, and let 
D = {f1, f2, …, fn} where fj is column j of U. 
Show that MBD( 1 �n ) = U when B is the standard 
basis of �n.

 15. Let B be an ordered basis of the n-dimensional 
space V and let CB : V → �n be the coordinate 
transformation. If D is the standard basis of �n, 
show that MDB(CB) = In.

 16. Let T : P2 → �3 be defined by 
T(p) = (p(0), p(1), p(2)) for all p in P2. Let 
B = {1, x, x2} and D = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

 (a) Show that MDB(T) = 
1 0
1 1

0
1

1 42
 and conclude 

that T is an isomorphism.
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(b) Generalize to T : Pn → �n+1 where 
T(p) = (p(a0), p(a1), …, p(an)) and a0, a1, …, an 
are distinct real numbers. [Hint: Theorem 7 
Section 3.2.]

 17. Let T : Pn → Pn be defined by 
T [ p(x)] = p(x) + xp′(x), where p′(x) denotes the 
derivative. Show that T is an isomorphism by 
finding MBB(T ) when B = {1, x, x2, …, xn}. 

 18. If k is any number, define Tk : M22 → M22 by 
Tk(A) = A + kAT.

 (a) If B =  U   S  1 0    
0 0

  T  ,   S  0 0    
0 1

  T  ,   S  0 1    
1 0

  T  ,   S   0 1    
-1 0

  T  V  
find MBB (Tk), and conclude that Tk is 
invertible if k ≠ 1 and k ≠ -1.

 (b) Repeat for Tk: M33 → M33. Can you 
generalize?

 The remaining exercises require the following 
definitions. If V and W are vector spaces, the 
set of all linear transformations from V to W 
will be denoted by 
L(V, W) = {T | T : V → W is a linear transformation}
Given S and T in L(V, W) and a in �, define 
S + T : V → W and aT : V → W by
 (S + T )(v) = S(v) + T(v) for all v in V
 (aT )(v) = aT(v) for all v in V

 19. Show that L(V, W) is a vector space.

 20. Show that the following properties hold provided 
that the transformations link together in such a 
way that all the operations are defined.

 (a) R(ST ) = (RS)T

 (b) 1WT = T = T1V

 (c) R(S + T ) = RS + RT

 
(d) (S + T )R = SR + TR

 (e) (aS)T = a(ST ) = S(aT )

 21. Given S and T in L(V, W), show that:

 (a) ker S ∩ ker T ⊆ ker(S + T )

 
(b) im(S + T ) ⊆ im S + im T

 22. Let V and W be vector spaces. If X is a subset 
of V, define 
X 0 = {T in L(V, W) | T(v) = 0 for all v in X}

 (a) Show that X0 is a subspace of L(V, W).

 
(b) If X ⊆ X1, show that  X   1  
0  ⊆ X0.

 (c) If U and U1 are subspaces of V, show that 
(U + U1)

0 = U0 ∩  U   1  
0 .

 23. Define R : Mmn → L(�n, �m) by R(A) = TA for 
each m × n matrix A, where TA : �

n → �m is 
given by TA(x) = Ax for all x in �n. Show that R 
is an isomorphism.

 24. Let V be any vector space (we do not assume 
it is finite dimensional). Given v in V, define 
Sv: � → V by Sv(r) = rv for all r in �.

 (a) Show that Sv lies in L(�, V ) for each v in V.

 
(b) Show that the map R : V → L(�, V ) given by 
R(v) = Sv is an isomorphism. [Hint: To show 
that R is onto, if T lies in L(�, V ), show that 
T = Sv where v = T(1).]

 25. Let V be a vector space with ordered basis 
B = {b1, b2, …, bn}. For each i = 1, 2, …, m, 
define Si: � → V by Si(r) = rbi for all r in �.

 (a) Show that each Si lies in L(�, V ) and 
Si(1) = bi.

 
(b) Given T in L(�, V ), let 
T(1) = a1b1 + a2b2 + � + anbn, ai in �. 
Show that T = a1S1 + a2S2 + � + anSn.

 (c) Show that {S1, S2, …, Sn} is a basis of L(�, V ).

 26. Let dim V = n, dim W = m, and let B and D be 
ordered bases of V and W, respectively. Show 
that MDB : L(V, W) → Mmn is an isomorphism 
of vector spaces. [Hint: Let B = {b1, …, bn} and 
D = {d1, …, dm}. Given A = [aij] in Mmn, show 
that A = MDB(T ) where T : V → W is defined 
by T(bj) = a1jd1 + a2jd2 + � + amjdm for each j.]

 27. If V is a vector space, the space V∗ = L(V, �) 
is called the dual of V. Given a basis 
B = {b1, b2, …, bn} of V, let Ei : V → � 
for each i = 1, 2, …, n be the linear 
transformation satisfying

Ei(bj) = e   0 if i ≠ j
                  

1 if i = j
   

  (each Ei exists by Theorem 3 Section 7.1). Prove 
the following:

 (a) Ei(r1b1 + � + rnbn) = ri for each i = 1, 2, …, n

 
(b) v = E1(v)b1 + E2(v)b2 + � + En(v)bn for all 
v in V

444 Chapter 9 Change of Basis



 (c) T = T(b1)E1 + T(b2)E2 + � + T(bn)En for 
all T in V∗

 (d) {E1, E2, …, En} is a basis of V∗ (called the 
dual basis of B).

  Given v in V, define v∗ : V → � by 
v∗(w) = E1(v)E1(w) + E2(v)E2(w) + � + En(v)En(w) 
for all w in V. Show that:

 (e) v∗ : V → � is linear, so v∗ lies in V∗.

 (f ) bi
∗ = Ei for each i = 1, 2, …, n.

 (g) The map R : V → V∗ with R(v) = v∗ is 
an isomorphism. [Hint: Show that R is 
linear and one-to-one and use Theorem 3 
Section 7.3. Alternatively, show that 
R-1(T ) = T(b1)b1 + � + T(bn)bn.]

Operators and Similarity
While the study of linear transformations from one vector space to another is 
important, the central problem of linear algebra is to understand the structure of 
a linear transformation T : V → V from a space V to itself. Such transformations 
are called linear operators. If T : V → V is a linear operator where dim(V ) = n, 
it is possible to choose bases B and D of V such that the matrix MDB(T ) has a very 

simple form: MDB(T ) =   S  Ir 0
    

0 0
  T  where r = rank T (see Example 7 Section 9.1). 

Consequently, only the rank of T is revealed by determining the simplest matrices 
MDB(T ) of T where the bases B and D can be chosen arbitrarily. But if we insist 
that B = D and look for bases B such that MBB(T ) is as simple as possible, we 
learn a great deal about the operator T. We begin this task in this section.

The B-matrix of an Operator

If T : V → V is an operator on a vector space V, and if B is an ordered basis of V, define 
MB(T ) = MBB(T ) and call this the B-matrix of T.

Recall that if T : �n → �n is a linear operator and E = {e1, e2, …, en} is the standard 
basis of �n, then CE(x) = x for every x ∈ �n, so ME(T ) = [T(e1), T(e2), …, T(en)] is 
the matrix obtained in Theorem 2 Section 2.6. Hence ME(T ) will be called the 
standard matrix of the operator T. 

For reference the following theorem collects some results from Theorems 2, 
3, and 4 in Section 9.1, specialized for operators. As before, CB(v) denoted the 
coordinate vector of v with respect to the basis B. 

Theorem 1

Let T : V → V be an operator where dim V = n, and let B be an ordered basis of V. 
1. CB(T(v)) = MB(T)CB(v) for all v in V. 
2. If S : V → V is another operator on V, then MB(ST ) = MB(S)MB(T ). 
3. T is an isomorphism if and only if MB(T ) is invertible. In this case MD[T] is 

invertible for every ordered basis D of V. 
4. If T is an isomorphism, then MB(T -1) = [MB(T)]-1.
5. If B = {b1, b2, …, bn}, then MB(T) =   SCB[T(b1)] CB[T(b2)] � CB[T(bn)] T .
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Definition 9.3
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For a fixed operator T on a vector space V, we are going to study how the matrix 
MB(T ) changes when the basis B changes. This turns out to be closely related to 
how the coordinates CB(v) change for a vector v in V. If B and D are two ordered 
bases of V, and if we take T = 1V in Theorem 2 Section 9.1, we obtain 

CD(v) = MDB(1V)CB(v) for all v in V.

With this in mind, define the change matrix PD←B by

PD←B = MDB(1V) for any ordered bases B and D of V.

This proves (∗∗) in the following theorem: 

Theorem 2

Let B = {b1, b2, …, bn} and D denote ordered bases of a vector space V. Then the change 
matrix PD←B is given in terms of its columns by

 PD←B = [CD(b1) CD(b2) � CD(bn)]  (∗)

and has the property that

CD(v) = PD←BCD(v) for all v in V. (∗∗)

Moreover, if E is another ordered basis of V, we have 
1. PB←B = In.
2. PD←B is invertible and (PD←B)-1 = PB←D. 
3. PE←DPD←B = PE←B.

PROOF

The formula (∗∗) is derived above, and (∗) is immediate from the definition of 
PD←B and the formula for MDB(T ) in Theorem 2 Section 9.1. 

 1. PB←B = MBB(1V) = In as is easily verified.

 2. This follows from (1) and (3).

 3. Let V   T
 - -- →     W   S

 - - →     U be operators, and let B, D, and E be ordered bases of V, 
W, and U respectively. We have MEB(ST ) = MED(S)MDB(T ) by Theorem 
3 Section 9.1. Now (3) is the result of specializing V = W = U and 
T = S = 1V.

Property (3) in Theorem 2 explains the notation PD←B.

EXAMPLE 1

In P2 find PD←B if B = {1, x, x2} and D = {1, (1 - x), (1 - x)2}. Then use this to 
express p = p(x) = a + bx + cx2 as a polynomial in powers of (1 - x).

Definition 9.4
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Solution ► To compute the change matrix PD←B, express 1, x, x2 in the basis D:

 1 = 1 + 0(1 - x) + 0(1 - x)2

x = 1 - 1(1 - x) + 0(1 - x)2

x2 = 1 - 2(1 - x) + 1(1 - x)2

Hence PD←B = [CD(1), CD(x), CD(x)2] = − −
1 11

10 2
0 0 1

. We have CB(p) = 
a
b
c

, so 

CD( p) = PD←BCD( p) = 
a
b
c

− −
1 1 1
0 1 2
0 0 1

 = 
a b c

b c
c

+ +
− − 2

Hence p(x) = (a + b + c) - (b + 2c)(1 - x) + c(1 - x)2 by Definition 9.1.1

1

Now let B = {b1, b2, …, bn} and B0 be two ordered bases of a vector space V. An 
operator T : V → V has different matrices MB[T] and  M B0

 [T] with respect to B and 
B0. We can now determine how these matrices are related. Theorem 2 asserts that

 C B0
 (v) =  P B0←B CB(v) for all v in V.

On the other hand, Theorem 1 gives

CB[T(v)] = MB(T )CB(v) for all v in V.

Combining these (and writing P =  P B0←B  for convenience) gives

PMB(T )CB(v)  = PCB[T(v)]
=  C B0

 [T(v)]
=  M B0

 (T) C B0
 (v)

=  M B0
 (T)PCB(v)

This holds for all v in V. Because CB(bj) is the jth column of the identity matrix, 
it follows that 

PMB(T ) =  M B0
 (T )P

Moreover P is invertible (in fact, P-1 =  P B←B0
  by Theorem 2), so this gives

MB(T ) = P-1 M B0
 (T )P

This asserts that  M B0
 (T ) and MB(T ) are similar matrices, and proves Theorem 3.

Theorem 3

Let B0 and B be two ordered bases of a finite dimensional vector space V. If T : V → V is 
any linear operator, the matrices MB(T ) and  M B0

 (T ) of T with respect to these bases are 
similar. More precisely,

MB(T ) = P-1 M B0
 (T )P

where P =  P B0←B  is the change matrix from B to B0.

1 This also follows from Taylor’s Theorem (Corollary 3 of Theorem 1 Section 6.5 with a = 1).
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EXAMPLE 2

Let T : �3 → �3 be defined by T(a, b, c) = (2a - b, b + c, c - 3a). If B0 denotes 
the standard basis of �3 and B = {(1, 1, 0), (1, 0, 1), (0, 1, 0)}, find an invertible 
matrix P such that P-1 M B0

 (T )P = MB(T ).

Solution ► We have

 M B0
 (T ) = [ C B0

 (2, 0, -3 )  C B0
 (-1, 1, 0 )  C B0

 (0, 1, 1)] = 
2 1 0
0 1 1
3 0 1

−

−

MB(T ) = [CB(1, 1, -3 ) CB(2, 1, -2 ) CB(-1, 1, 0)] = 
−

− −
− −

4 4 1
3 2 0
3 3 2

P =  P B0←B  = [ C B0
 (1, 1, 0 )  C B0

 (1, 0, 1 )  C B0
 (0, 1, 0)] = 

1 1 0
1 0 1
0 1 0

The reader can verify that P-1 M B0
 (T )P = MB(T ); equivalently that

 M B0
 (T )P = PMB(T ).

A square matrix is diagonalizable if and only if it is similar to a diagonal matrix. 
Theorem 3 comes into this as follows: Suppose an n × n matrix A =  M B0

 (T ) is 
the matrix of some operator T : V → V with respect to an ordered basis B0. If 
another ordered basis B of V can be found such that MB(T ) = D is diagonal, then 
Theorem 3 shows how to find an invertible P such that P-1AP = D. In other words, 
the “algebraic” problem of finding P such that P-1AP is diagonal comes down to 
the “geometric” problem of finding a basis B such that MB(T ) is diagonal. This 
shift of emphasis is one of the most important techniques in linear algebra.

Each n × n matrix A can be easily realized as the matrix of an operator. In fact, 
(Example 4 Section 9.1),

ME(TA) = A

where TA : �
n → �n is the matrix operator given by TA(x) = Ax, and E is the 

standard basis of �n. The first part of the next theorem gives the converse of 
Theorem 3: Any pair of similar matrices can be realized as the matrices of the 
same linear operator with respect to different bases.

Theorem 4

Let A be an n × n matrix and let E be the standard basis of �n.

1. Let A′ be similar to A, say A′ = P-1AP, and let B be the ordered basis of �n 
consisting of the columns of P in order. Then TA : �n � �n is linear and

ME(TA) = A and MB(TA) = A′

2. If B is any ordered basis of �n, let P be the (invertible) matrix whose columns are 
the vectors in B in order. Then 

MB(TA) = P-1AP
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PROOF

 1. We have ME(TA) = A by Example 4 Section 9.1. Write P = [b1 � bn] 
in terms of its columns so B = {b1, …, bn} is a basis of �n. Since E is the 
standard basis, 

PE←B = [CE(b1) � CE(bn)] = [b1 � bn] = P.

  Hence Theorem 3 (with B0 = E) gives MB(TA) = P–1ME(TA)P = P–1AP = A′.

 2. Here P and B are as above, so again PE←B = P and MB(TA) = P–1AP.

EXAMPLE 3

Given A =   S   10    6     
-18 -11

  T  , P =   S   2 -1     
-3   2

  T  , and D =   S   1   0    
0 -2

  T  , verify that P-1AP = D 

and use this fact to find a basis B of �2 such that MB(TA) = D.

Solution ► P-1AP = D holds if AP = PD; this verification is left to the reader.

Let B consist of the columns of P in order, that is P : B = e  S   2   
-3

  T  ,   S  -1   
2

  T f. 
Then Theorem 4 gives MB(TA) = P-1AP = D. More explicitly, 

MB(TA) = cCB aTA  S   2   
-3

  T b  CB aTA  S  -1   
2

  T fd = cCB   S   2   
-3

  T  CB  S   2   
-4

  T d =   S   1   0    
0 -2

  T  = D.

Let A be an n × n matrix. As in Example 3, Theorem 4 provides a new way 
to find an invertible matrix P such that P-1AP is diagonal. The idea is to find a 
basis B = {b1, b2, …, bn} of �n such that MB(TA) = D is diagonal and take 
P = [b1 b2 � bn] to be the matrix with the bj as columns. Then, by Theorem 4,

P-1AP = MB(TA) = D.

As mentioned above, this converts the algebraic problem of diagonalizing A into the 
geometric problem of finding the basis B. This new point of view is very powerful 
and will be explored in the next two sections.

Theorem 4 enables facts about matrices to be deduced from the corresponding 
properties of operators. Here is an example.

EXAMPLE 4

1. If T : V → V is an operator where V is finite dimensional, show that 
TST = T for some invertible operator S : V → V.

2. If A is an n × n matrix, show that AUA = A for some invertible matrix U.

Solution ►

1. Let B = {b1, …, br, br+1, …, bn} be a basis of V chosen so that 
ker T = span{br+1, …, bn}. Then {T(b1), …, T(br)} is independent 
(Theorem 5 Section 7.2), so complete it to a basis 
{T(b1), …, T(br), fr+1, …, fn} of V.
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By Theorem 3 Section 7.1, define S : V → V by

S[T(bi)] = bi for 1 ≤ i ≤ r
  S(fj) = bj for r < j ≤ n

 Then S is an isomorphism by Theorem 1 Section 7.3, and 
TST = T because these operators agree on the basis B. In fact,

(TST )(bi) = T [ST(bi)] = T(bi) if 1 ≤ i ≤ r, and 
(TST )(bj) = TS[T(bj)] = TS(0) = 0 = T(bj) for r < j ≤ n.

2. Given A, let T = TA : �
n → �n. By (1) let TST = T where S : �n → �n 

is an isomorphism. If E is the standard basis of �n, then A = ME(T ) by 
Theorem 4. If U = ME(S) then, by Theorem 1, U is invertible and

AUA = ME(T )ME(S)ME(T ) = ME(TST ) = ME(T ) = A

 as required.

The reader will appreciate the power of these methods if he/she tries to find U 
directly in part 2 of Example 4, even if A is 2 × 2.

A property of n × n matrices is called a similarity invariant if, whenever a given 
n × n matrix A has the property, every matrix similar to A also has the property. 
Theorem 1 Section 5.5 shows that rank, determinant, trace, and characteristic 
polynomial are all similarity invariants.

To illustrate how such similarity invariants are related to linear operators, consider 
the case of rank. If T : V → V is a linear operator, the matrices of T with respect to 
various bases of V all have the same rank (being similar), so it is natural to regard the 
common rank of all these matrices as a property of T itself and not of the particular 
matrix used to describe T. Hence the rank of T could be defined to be the rank of A, 
where A is any matrix of T. This would be unambiguous because rank is a similarity 
invariant. Of course, this is unnecessary in the case of rank because rank T was 
defined earlier to be the dimension of im T, and this was proved to equal the rank 
of every matrix representing T (Theorem 5 Section 9.1). This definition of rank T 
is said to be intrinsic because it makes no reference to the matrices representing T. 
However, the technique serves to identify an intrinsic property of T with every 
similarity invariant, and some of these properties are not so easily defined directly.

In particular, if T : V → V is a linear operator on a finite dimensional space V, 
define the determinant of T (denoted det T ) by

det T = det MB(T ), B any basis of V

This is independent of the choice of basis B because, if D is any other basis of V, 
the matrices MB(T ) and MD(T ) are similar and so have the same determinant. In 
the same way, the trace of T (denoted tr T ) can be defined by

tr T = tr MB(T ), B any basis of V

This is unambiguous for the same reason.
Theorems about matrices can often be translated to theorems about linear 

operators. Here is an example.

EXAMPLE 5

Let S and T denote linear operators on the finite dimensional space V. Show that 

det(ST ) = det S det T
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Solution ► Choose a basis B of V and use Theorem 1.

det(ST ) = det MB(ST )  = det[MB(S)MB(T )]
= det[MB(S)]det[MB(T )] = det S det T

Recall next that the characteristic polynomial of a matrix is another similarity 
invariant: If A and A′ are similar matrices, then cA(x) = cA′(x) (Theorem 1 Section 
5.5). As discussed above, the discovery of a similarity invariant means the discovery 
of a property of linear operators. In this case, if T : V → V is a linear operator on 
the finite dimensional space V, define the characteristic polynomial of T by

cT(x) = cA(x) where A = MB(T ), B any basis of V

In other words, the characteristic polynomial of an operator T is the characteristic 
polynomial of any matrix representing T. This is unambiguous because any two such 
matrices are similar by Theorem 3.

EXAMPLE 6

Compute the characteristic polynomial cT(x) of the operator T : P2 → P2 given 
by T(a + bx + cx2) = (b + c) + (a + c)x + (a + b)x2.

Solution ► If B = {1, x, x2}, the corresponding matrix of T is

MB(T ) = [CB[T(1)] CB[T(x)] CB[T(x2)]] = 
0 11

1
1 1
1 0

0

Hence cT(x) = det[xI - MB(T )] = x3 - 3x - 2 = (x + 1)2(x - 2)

In Section 4.4 we computed the matrix of various projections, reflections, and 
rotations in �3. However, the methods available then were not adequate to find the 
matrix of a rotation about a line through the origin. We conclude this section with 
an example of how Theorem 3 can be used to compute such a matrix. 

EXAMPLE 7

Let L be the line in �3 through the origin with (unit) direction vector 
d =   1 _ 3  [2 1 2]T. Compute the matrix of the rotation about L through an 
angle θ measured counterclockwise when viewed in the direction of d.

Solution ► Let R : �3 → �3 be the rotation. The idea is to first find a basis 
B0 for which the matrix of  M B0

 (R) of R is easy to compute, and then use 
Theorem 3 to compute the “standard” matrix ME(R) with respect to the 
standard basis E = {e1, e2, e3} of �3. 

To construct the basis B0, let K denote the plane through the origin with d 
as normal, shaded in the diagram. Then the vectors f =   1 _ 3  [-2 2 1]T and 
g =   1 _ 3  [1 2 -2]T are both in K (they are orthogonal to d) and are independent 
(they are orthogonal to each other).

L

d = R(d)
R(g)

R(f )
g

f

0
θ

θ
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Hence B0 = {d, f, g} is an orthonormal basis of �3, and the effect of R on 
B0 is easy to determine. In fact R(d) = d and (as in Theorem 4 Section 2.6) the 
second diagram gives

R(f ) = cos θ f + sin θ g and  R(g) = -sin θ f + cos θ g

because ‖f‖ = 1 = ‖g‖. Hence

 M B0
 (R) = [ C B0

 (d)  C B0
 (f )  C B0

 (g)] = 
1 00
0
0

cos θ
sin θ

−sin θ
cos θ

.

Now Theorem 3 (with B = E) asserts that ME(R) = P-1 M B0
 (R)P where 

P =  P B0←E  = [ C B0
 (e1)  C B0

 (e2)  C B0
 (e3)] =   1 _ 3   

−
−

2 2
22 1
1

1 22

using the expansion theorem (Theorem 6 Section 5.3). Since P-1 = PT 
(P is orthogonal), the matrix of R with respect to E is 

ME(R)  = PT M B0
 (R)P

=   1 _ 9   
+ + −−

−
5

8
444

4

6 2

2 2

2 3
2

cos

cos

cos
cos

cos

cos
66sin

θ θ θθ

θ

θ

θ

θ θ

θ

−− −
− + −

2 1 2 2
3 4 6 5

cos sin
sin

sin sin

sin

cos
cosθ θ

θ θ θ+

−

−
+ +

4
As a check one verifies that this is the identity matrix when θ = 0, as it should.

Note that in Example 7 not much motivation was given to the choices of the 
(orthonormal) vectors f and g in the basis B0, which is the key to the solution. 
However, if we begin with any basis containing d the Gram-Schmidt algorithm 
will produce an orthogonal basis containing d, and the other two vectors will 
automatically be in L⊥ = K. 

E X E R C I S E S  9 . 2

 1. In each case find PD←B, where B and D are 
ordered bases of V. Then verify that 
CD(v) = PD←BCB(v).

 (a) V = �2, B = {(0, -1), (2, 1)}, 
D = {(0, 1), (1, 1)}, v = (3, -5) 

 
(b) V = P2, B = {x, 1 + x, x2},
D = {2, x + 3, x2 - 1}, v = 1 + x + x2

 (c) V = M22,

  B =  U   S  1 0    
0 0

  T  ,   S  0 1    
0 0

  T  ,   S  0 0    
0 1

  T  ,   S  0 0    
1 0

  T  V ,

  D =  U   S  1 1    
0 0

  T  ,   S  1 0    
1 0

  T  ,   S  1 0    
0 1

  T  ,   S  0 1    
1 0

  T  V ,

  v =   S   3 -1           
1   4

   T 

 2. In �3 find PD←B, where 
B = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} and 
D = {(1, 0, 1), (1, 0, -1), (0, 1, 0)}. 
If v = (a, b, c), show that 

  CD(v) =   1 _ 2     S  
a + c

 
  

 a - c    
2b

   T  and CB(v) =   S  a - b
 

  
 b - c    

c
   T  , and 

  verify that CD(v) = PD←BCB(v).

 3. In P3 find PD←B if B = {1, x, x2, x3} and 
D = {1, (1 - x), (1 - x)2, (1 - x)3}. 
Then express p = a + bx + cx2 + dx3 as 
a polynomial in powers of (1 - x).

 4. In each case verify that PD←B is the inverse 
of PB←D and that PE←DPD←B = PE←B, where 
B, D, and E are ordered bases of V.

R(g)

R(f )

g

f0
θ

θ
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 (a) V = �3, B = {(1, 1, 1), (1, -2, 1), (1, 0, -1)}, 
D = standard basis,
E = {(1, 1, 1), (1, -1, 0), (-1, 0, 1)}

 
(b) V = P2, B = {1, x, x2},
D = {1 + x + x2, 1 - x, -1 + x2}. E = {x2, x, 1}

 5. Use property (2) of Theorem 2, with D the 
standard basis of �n, to find the inverse of:

 (a) A = 
1 1 0
1

1
1

0
0

1

 
(b) A = 
−

1 1
2 3

2
0

01

2

 6. Find PD←B if B = {b1, b2, b3, b4} and 
D = {b2, b3, b1, b4}. Change matrices arising 
when the bases differ only in the order of the 
vectors are called permutation matrices.

 7. In each case, find P =  P B0←B  and verify that 
P-1 M B0

 (T )P = MB(T ) for the given operator T.

 (a) T : �3 → �3, T(a, b, c) = (2a - b, b + c, c - 3a); 
B0 = {(1, 1, 0), (1, 0, 1), (0, 1, 0)} and B is the 
standard basis.

 
(b) T : P2 → P2, 
T(a + bx + cx2) = (a + b) + (b + c)x + (c + a)x2; 
B0 = {1, x, x2} and B = {1 - x2, 1 + x, 2x + x2}.

 (c) T : M22 → M22, T   S   a b
        

c d
   T  =   S  a + d b + c

        
a + c b + d

  T ;
  B0 =  U   S  1 0    

0 0
  T  ,   S  0 1    

0 0
  T  ,   S  0 0    

1 0
  T  ,   S  0 0    

0 1
  T  V ,

  and B =  U   S  1 1    
0 0

  T  ,   S  0 0    
1 1

  T  ,   S  1 0    
0 1

  T  ,   S  0 1    
1 1

  T  V 
 8. In each case, verify that P-1AP = D and find a 

basis B of �2 such that MB(TA) = D.

 (a) A =   S   11 -6             
12 -6

   T  P =   S   2 3        
3 4

   T  D =   S   2 0        
0 3

   T 

 
(b) A =   S   29 -12               
70 -29

   T  P =   S   3 2        
7 5

   T  D =   S   1   0           
0 -1

   T 

 9. In each case, compute the characteristic 
polynomial cT(x).

 (a) T : �2 → �2, T(a, b) = (a - b, 2b - a)

 
(b) T : �2 → �2, T(a, b) = (3a + 5b, 2a + 3b)

 (c) T : P2 → P2, T(a + bx + cx2) 
= (a - 2c) + (2a + b + c)x + (c - a)x2

 
(d) T : P2 → P2, T(a + bx + cx2) 
= (a + b - 2c) + (a - 2b + c)x + (b - 2a)x2

 (e) T : �3 → �3, T(a, b, c) = (b, c, a)

 
(f ) T : M22 → M22, T   S   a b
        

c d
   T  =   S  a - c b - d

        
a - c b - d

  T ;
 10. If V is finite dimensional, show that a linear 

operator T on V has an inverse if and only if 
det T ≠ 0.

 11. Let S and T be linear operators on V where V is 
finite dimensional.

 (a) Show that tr(ST ) = tr(TS).
[Hint: Lemma 1 Section 5.5.]

 (b) [See Exercise 19 Section 9.1.] For a in �, 
show that tr(S + T ) = tr S + tr T, and 
tr(aT ) = a tr(T ).


12.  If A and B are n × n matrices, show that they 
have the same null space if and only if A = UB 
for some invertible matrix U. [Hint: Exercise 28 
Section 7.3.]

 13. If A and B are n × n matrices, show that they 
have the same column space if and only if 
A = BU for some invertible matrix U. [Hint: 
Exercise 28 Section 7.3.]

 14. Let E = {e1, …, en} be the standard ordered basis 
of �n, written as columns. If D = {d1, …, dn} is 
any ordered basis, show that PE←D = [d1 � dn].

 15. Let B = {b1, b2, …, bn} be any ordered basis of 
�

n, written as columns. If Q = [b1 b2 � bn] 
is the matrix with the bi as columns, show that 
QCB(v) = v for all v in �n.

 16. Given a complex number w, define Tw: � → � 
by Tw(z) = wz for all z in �.

 (a) Show that Tw is a linear operator for each w 
in �, viewing � as a real vector space. 

 
(b) If B is any ordered basis of �, define 
S : � → M22 by S(w) = MB(Tw) for all w 
in �. Show that S is a one-to-one linear 
transformation with the additional property 
that S(wv) = S(w)S(v) holds for all w and v in 
�. 

 (c) Taking B = {1, i} show that 

S(a + bi) =   S  a -b
    

b   a
  T  for all complex 

numbers a + bi. This is called the regular 
representation of the complex numbers 
as 2 × 2 matrices. If θ is any angle, 
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describe S(eiθ ) geometrically. Show that 
S( 

__
 w  ) = S(w)T for all w in �; that is, that 

conjugation corresponds to transposition.

 17. Let B = {b1, b2, …, bn} and D = {d1, d2, …, dn} 
be two ordered bases of a vector space V. Prove 
that CD(v) = PD←BCB(v) holds for all v in V as 
follows: Express each bj in the form 
bj = p1jd1 + p2jd2 + � + pnjdn 

and write P = [ pij]. Show that 
P = [CD(b1) CD(b1) � CD(b1)] and that 
CD(v) = PCB(v) for all v in B. 

 18. Find the standard matrix of the rotation R about 
the line through the origin with direction vector 
d = [2 3 6]T. [Hint: Consider f = [6 2 -3]T 
and g = [3 -6 2]T.]

Invariant Subspaces and Direct Sums
A fundamental question in linear algebra is the following: If T : V → V is a linear 
operator, how can a basis B of V be chosen so the matrix MB(T ) is as simple as 
possible? A basic technique for answering such questions will be explained in this 
section. If U is a subspace of V, write its image under T as

T(U ) = {T(u) | u in U}.

Let T : V → V be an operator. A subspace U ⊆ V is called T-invariant if T(U ) ⊆ U, 
that is, T(u) ∈ U for every vector u ∈ U. Hence T is a linear operator on the vector 
space U.

This is illustrated in the diagram, and the fact that T : U → U is an operator on 
U is the primary reason for our interest in T-invariant subspaces. 

EXAMPLE 1

Let T : V → V be any linear operator. Then:

1. {0} and V are T-invariant subspaces.

2. Both ker T and im T = T(V ) are T-invariant subspaces. 

3. If U and W are T-invariant subspaces, so are T(U ), U � W, and U + W.

Solution ► Item 1 is clear, and the rest is left as Exercises 1 and 2.

EXAMPLE 2

Define T : �3 → �3 by T(a, b, c) = (3a + 2b, b - c, 4a + 2b - c). Then 
U = {(a, b, a) | a, b in �} is T-invariant because

T(a, b, a) = (3a + 2b, b - a, 3a + 2b)

is in U for all a and b (the first and last entries are equal).

If a spanning set for a subspace U is known, it is easy to check whether U is 
T-invariant.

S E C T I O N  9 . 3

Definition 9.5

U

T

T

V

U

V
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EXAMPLE 3

Let T : V → V be a linear operator, and suppose that U = span{u1, u2, …, uk} 
is a subspace of V. Show that U is T-invariant if and only if T(ui) lies in U for 
each i = 1, 2, …, k.

Solution ► Given u in U, write it as u = r1u1 + � + rkuk, ri in �. Then

T(u) = r1T(u1) + � + rkT(uk)

and this lies in U if each T(ui) lies in U. This shows that U is T-invariant if each 
T(ui) lies in U; the converse is clear.

EXAMPLE 4

Define T : �2 → �2 by T(a, b) = (b, -a). Show that �2 contains no T-invariant 
subspace except 0 and �2.

Solution ► Suppose, if possible, that U is T-invariant, but U ≠ 0, U ≠ �2. 
Then U has dimension 1 so U = �x where x ≠ 0. Now T(x) lies in U—say 
T(x) = rx, r in �. If we write x = (a, b), this is (b, -a) = r(a, b), which gives 
b = ra and -a = rb. Eliminating b gives r2a = rb = -a, so (r2 + 1)a = 0. 
Hence a = 0. Then b = ra = 0 too, contrary to the assumption that x ≠ 0. 
Hence no one-dimensional T-invariant subspace exists.

Let T : V → V be a linear operator. If U is any T-invariant subspace of V, then

T : U → U

is a linear operator on the subspace U, called the restriction of T to U.

This is the reason for the importance of T-invariant subspaces and is the first step 
toward finding a basis that simplifies the matrix of T.

Theorem 1

Let T : V → V be a linear operator where V has dimension n and suppose that U is 
any T-invariant subspace of V. Let B1 = {b1, …, bk} be any basis of U and extend it 
to a basis B = {b1, …, bk, bk+1, …, bn} of V in any way. Then MB(T ) has the block 
triangular form

MB(T ) =   S   M B1
 (T ) Y
      

0  Z
   T 

where Z is (n - k) × (n - k) and  M B1
 (T ) is the matrix of the restriction of T to U.

Definition 9.6
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PROOF

The matrix of (the restriction) T : U → U with respect to the basis B1 is the 
k × k matrix 

 M B1
 (T ) = [ C B1

 [T(b1)]  C B1
 [T(b2)] �  C B1

 [T(bk)]] 

Now compare the first column  C B1
 [T(b1)] here with the first column CB[T(b1)] of 

MB(T ). The fact that T(b1) lies in U (because U is T-invariant) means that T(b1) 
has the form 

T(b1) = t1b1 + t2b2 + � + tkbk + 0bk+1 + � + 0bn

Consequently, 

 C B1
 [T(b1)] = 

t
t

tk

1

2

�
 in �k whereas CB[T(b1)] = 

t
t

t

1

2

�
kk

0

0
�

 in �n

This shows that the matrices MB(T ) and   S   M B1
 (T ) Y
      

0  Z
   T  have identical first columns.

Similar statements apply to columns 2, 3, …, k, and this proves the theorem.

The block upper triangular form for the matrix MB(T ) in Theorem 1 is 
very useful because the determinant of such a matrix equals the product of the 
determinants of each of the diagonal blocks. This is recorded in Theorem 2 for 
reference, together with an important application to characteristic polynomials.

Theorem 2

Let A be a block upper triangular matrix, say 

A = A
AA
AA A

A
A

A

A

n

n

n

nn

11 12 13 1

22 23 2

33 3

0
0

0

0

0 0
where the diagonal blocks are square. Then:

1. det A = (det A11)(det A22)(det A33)�(det Ann).

2. cA(x) =  c A11
 (x) c A22

 (x) c A33
 (x)� c Ann

 (x).
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PROOF

If n = 2, (1) is Theorem 5 Section 3.1; the general case (by induction on n) is left 
to the reader. Then (2) follows from (1) because 

xI - A = 

xI A A A A
xI A A A

xI A A

n

n

n

− − − −
− − −

− −

11 12 13 1

22 23 2

33 3

0
0 0

0 00 0 xI Ann−

where, in each diagonal block, the symbol I stands for the identity matrix of the 
appropriate size.

EXAMPLE 5

Consider the linear operator T : P2 → P2 given by

T(a + bx + cx2) = (-2a - b + 2c) + (a + b)x + (-6a - 2b + 5c)x2

Show that U = span{x, 1 + 2x2} is T-invariant, use it to find a block upper 
triangular matrix for T, and use that to compute cT(x).

Solution ► U is T-invariant by Example 3 because U = span{x, 1 + 2x2} and 
both T(x) and T(1 + 2x2) lie in U:

 T(x) = -1 + x - 2x2 = x - (1 + 2x2)
 T(1 + 2x2) = 2 + x + 4x2 = x + 2(1 + 2x2)

Extend the basis B1 = {x, 1 + 2x2} of U to a basis B of P2 in any way at all—say, 
B = {x, 1 + 2x2, x2}. Then 

MB(T )  = [CB[T(x)] CB[T(1 + 2x2)] CB[T(x2)]]
= [CB(-1 + x - 2x2) CB(2 + x + 4x2) CB(2 + 5x2)]

= 
0
2
1

1
2
0

1
–1
0

is in block upper triangular form as expected. Finally, 

cT (x ) = det  
x

x
x

− −
− −

−

1 1 0
1 2 2
0 0 1

 = (x2 - 3x + 3)(x - 1)

Eigenvalues
Let T : V → V be a linear operator. A one-dimensional subspace �v, v ≠ 0, is 
T-invariant if and only if T(rv) = rT(v) lies in �v for all r in �. This holds if and 
only if T(v) lies in �v; that is, T(v) = λv for some λ in �. A real number λ is called 
an eigenvalue of an operator T : V → V if

T(v) = λv 

holds for some nonzero vector v in V. In this case, v is called an eigenvector of T 
corresponding to λ. The subspace
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Eλ(T ) = {v in V | T(v) = λv}

is called the eigenspace of T corresponding to λ. These terms are consistent with 
those used in Section 5.5 for matrices. If A is an n × n matrix, a real number λ is an 
eigenvalue of the matrix operator TA : �

n → �n if and only if λ is an eigenvalue of 
the matrix A. Moreover, the eigenspaces agree:

Eλ(TA) = {x in �n | Ax = λx} = Eλ(A) 

The following theorem reveals the connection between the eigenspaces of an 
operator T and those of the matrices representing T.

Theorem 3

Let T : V → V be a linear operator where dim V = n, let B denote any ordered basis of 
V, and let CB : V → �n denote the coordinate isomorphism. Then: 

1. The eigenvalues λ of T are precisely the eigenvalues of the matrix MB(T ) and 
thus are the roots of the characteristic polynomial cT(x).

2. In this case the eigenspaces Eλ(T ) and Eλ[MB(T )] are isomorphic via the 
restriciton CB : Eλ(T ) → Eλ[MB(T )].

PROOF

Write A = MB(T ) for convenience. If T(v) = λv, then applying CB gives 
λCB(v) = CB[T(v)] = ACB(v) because CB is linear. Hence CB(v) lies in Eλ(A), 
so we do indeed have a function CB : Eλ(T ) → Eλ(A). It is clearly linear and 
one-to-one; we claim it is onto. If x is in Eλ(A), write x = CB(v) for some v 
in V (CB is onto). This v actually lies in Eλ(T ). To see why, observe that

CB[T(v)] = ACB(v) = Ax = λx = λCB(v) = CB(λv)

Hence T(v) = λv because CB is one-to-one, and this proves (2). As to (1), we 
have already shown that eigenvalues of T are eigenvalues of A. The converse 
follows, as in the foregoing proof that CB is onto.

Theorem 3 shows how to pass back and forth between the eigenvectors of an 
operator T and the eigenvectors of any matrix MB(T ) of T :

v lies in Eλ(T ) if and only if CB(v) lies in Eλ[MB(T )]

EXAMPLE 6

Find the eigenvalues and eigenspaces for T : P2 → P2 given by

T(a + bx + cx2) = (2a + b + c) + (2a + b - 2c)x - (a + 2c)x2

Solution ► If B = {1, x, x2}, then

MB(T ) = [CB[T(1)] CB[T(x)] CB[T(x2)]] = −
−−

2 1 1
2 1 2
1 0 2
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Hence cT(x) = det[xI - MB(T )] = (x + 1)2(x - 3) as the reader can verify. 

Moreover, E-1[MB(T )] = �  S  -1
 

 
   2   

  1
   T  and E3[MB(T )] = �  S     5

 
 

   6   
-1

  T  , so Theorem 3 gives 

E-1(T ) = �(-1 + 2x + x2) and E3(T ) = �(5 + 6x - x2).

Theorem 4

Each eigenspace of a linear operator T : V → V is a T-invariant subspace of V.

PROOF

If v lies in the eigenspace Eλ(T ), then T(v) = λv, so T [T(v)] = T(λv) = λT(v). 
This shows that T(v) lies in Eλ(T ) too.

Direct Sums
Sometimes vectors in a space V can be written naturally as a sum of vectors in two 
subspaces. For example, in the space Mnn of all n × n matrices, we have subspaces 

U = {P in Mnn | P is symmetric} and W = {Q in Mnn | Q is skew symmetric} 

where a matrix Q is called skew-symmetric if QT = -Q. Then every matrix A in 
Mnn can be written as the sum of a matrix in U and a matrix in W; indeed,

A =   1 _ 2  (A + AT) +   1 _ 2  (A - AT)

where   1 _ 2  (A + AT) is symmetric and   1 _ 2  (A - AT) is skew symmetric. Remarkably, 
this representation is unique: If A = P + Q where PT = P and QT = -Q, then 
AT = PT + QT = P - Q; adding this to A = P + Q gives P =   1 _ 2  (A + AT), and 
subtracting gives Q =   1 _ 2  (A - AT). In addition, this uniqueness turns out to be closely 
related to the fact that the only matrix in both U and W is 0. This is a useful way to 
view matrices, and the idea generalizes to the important notion of a direct sum of 
subspaces. 

If U and W are subspaces of V, their sum U + W and their intersection U ∩ W 
were defined in Section 6.4 as follows: 

 U + W = {u + w | u in U and w in W}
 U ∩ W = {v | v lies in both U and W}

These are subspaces of V, the sum containing both U and W and the intersection 
contained in both U and W. It turns out that the most interesting pairs U and W 
are those for which U ∩ W is as small as possible and U + W is as large as possible. 

A vector space V is said to be the direct sum of subspaces U and W if 

U ∩ W = {0} and U + W = V

In this case we write V = U ⊕ W. Given a subspace U, any subspace W such that 
V = U ⊕ W is called a complement of U in V.

Definition 9.7
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EXAMPLE 7

In the space �5, consider the subspaces U = {(a, b, c, 0, 0) | a, b, and c in �} 
and W = {(0, 0, 0, d, e) | d and e in �}. Show that �5 = U ⊕ W. 

Solution ► If x = (a, b, c, d, e) is any vector in �5, then 
x = (a, b, c, 0, 0) + (0, 0, 0, d, e), so x lies in U + W. Hence �5 = U + W. 
To show that U ∩ W = {0}, let x = (a, b, c, d, e) lie in U ∩ W. Then 
d = e = 0 because x lies in U, and a = b = c = 0 because x lies in W. Thus 
x = (0, 0, 0, 0, 0) = 0, so 0 is the only vector in U ∩ W. Hence U ∩ W = {0}.

EXAMPLE 8

If U is a subspace of �n, show that �n = U ⊕ U⊥.

Solution ► The equation �n = U + U⊥ holds because, given x in �n, 
the vector projU(x) lies in U and x - projU(x) lies in U⊥. To see that 
U ∩ U⊥ = {0}, observe that any vector in U ∩ U⊥ is orthogonal to 
itself and hence must be zero.

EXAMPLE 9

Let {e1, e2, …, en} be a basis of a vector space V, and partition it into two parts: 
{e1, …, ek} and {ek+1, …, en}. If U = span{e1, …, ek} and W = span{ek+1, …, en}, 
show that V = U ⊕ W.

Solution ► If v lies in U ∩ W, then v = a1e1 + � + akek and 
v = bk+1ek+1 + � + bnen hold for some ai and bj in �. The fact that the ei 
are linearly independent forces all ai = bj = 0, so v = 0. Hence U ∩ W = {0}. 
Now, given v in V, write v = v1e1 + � + vnen where the vi are in �. 
Then v = u + w, where u = v1e1 + � + vkek lies in U and 
w = vk+1ek+1 + � + vnen lies in W. This proves that V = U + W.

Example 9 is typical of all direct sum decompositions.

Theorem 5

Let U and W be subspaces of a finite dimensional vector space V. The following three 
conditions are equivalent:

1. V = U ⊕ W.

2. Each vector v in V can be written uniquely in the form
v = u + w u in U, w in W

3. If {u1, …, uk} and {w1, …, wm} are bases of U and W, respectively, then 
B = {u1, …, uk, w1, …, wm} is a basis of V.
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 (The uniqueness in 2 means that if v = u1 + w1 is another such representation, 
then u1 = u and w1 = w.)

PROOF

Example 9 shows that (3) ⇒ (1).

(1) ⇒ (2). Given v in V, we have v = u + w, u in U, w in W, because V = U + W.

If also v = u1 + w1, then u - u1 = w1 - w lies in U ∩ W = {0}, so u = u1 
and w = w1.

(2) ⇒ (3). Given v in V, we have v = u + w, u in U, w in W. Hence v lies 
in span B; that is, V = span B. To see that B is independent, let 
a1u1 + � + akuk + b1w1 + � + bmwm = 0. Write u = a1u1 + � + akuk 
and w = b1w1 + � + bmwm. Then u + w = 0, and so u = 0 and w = 0 
by the uniqueness in (2). Hence ai = 0 for all i and bj = 0 for all j.

Condition (3) in Theorem 5 gives the following useful result.

Theorem 6

If a finite dimensional vector space V is the direct sum V = U ⊕ W of subspaces U and 
W, then

dim V = dim U + dim W

These direct sum decompositions of V play an important role in any discussion 
of invariant subspaces. If T : V → V is a linear operator and if U1 is a T-invariant 
subspace, the block upper triangular matrix

 MB(T ) =   S   M B1
 (T ) Y
      

0  Z
   T  (∗)

in Theorem 1 is achieved by choosing any basis B1 = {b1, …, bk} of U1 and 
completing it to a basis B = {b1, …, bk, bk+1, …, bn} of V in any way at all. The 
fact that U1 is T-invariant ensures that the first k columns of MB(T ) have the form 
in (∗) (that is, the last n - k entries are zero), and the question arises whether the 
additional basis vectors bk+1, …, bn can be chosen such that

U2 = span{bk+1, …, bn}

is also T-invariant. In other words, does each T-invariant subspace of V have a 
T-invariant complement? Unfortunately the answer in general is no (see Example 11 
below); but when it is possible, the matrix MB(T ) simplifies further. The assumption 
that the complement U2 = span{bk+1, …, bn} is T-invariant too means that Y = 0 
in equation (∗) above, and that Z =  M B2

 (T ) is the matrix of the restriction of T 
to U2 (where B2 = {bk+1, …, bn}). The verification is the same as in the proof of 
Theorem 1.
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Theorem 7

Let T : V → V be a linear operator where V has dimension n. Suppose V = U1 ⊕ U2 
where both U1 and U2 are T-invariant. If B1 = {b1, …, bk} and B2 = {bk+1, …, bn} are 
bases of U1 and U2 respectively, then

B = {b1, …, bk, bk+1, …, bn}

is a basis of V, and MB(T ) has the block diagonal form 

MB(T ) =   S   M B1
 (T )  0 

         
0   M B1

 (T )
  T 

where  M B1
 (T ) and  M B2

 (T ) are the matrices of the restrictions of T to U1 and to U2 
respectively.

The linear operator T : V → V is said to be reducible if nonzero T-invariant subspaces 
U1 and U2 can be found such that V = U1 ⊕ U2.

Then T has a matrix in block diagonal form as in Theorem 7, and the study of T 
is reduced to studying its restrictions to the lower-dimensional spaces U1 and U2. If 
these can be determined, so can T. Here is an example in which the action of T on 
the invariant subspaces U1 and U2 is very simple indeed. The result for operators is 
used to derive the corresponding similarity theorem for matrices.

EXAMPLE 10

Let T : V → V be a linear operator satisfying T 2 = 1V (such operators are 
called involutions). Define

U1 = {v | T(v) = v} and U2 = {v | T(v) = -v}

(a) Show that V = U1 ⊕ U2.

(b) If dim V = n, find a basis B of V such that MB(T ) =   S   Ik   0  
     

0 -In-k

  T  for 
some k.

(c) Conclude that, if A is an n × n matrix such that A2 = I, then A is 

similar to   S   Ik   0  
     

0 -In-k

  T  for some k.

Solution ► 

(a) The verification that U1 and U2 are subspaces of V is left to the reader. 
If v lies in U1 ∩ U2, then v = T(v) = -v, and it follows that v = 0. 
Hence U1 ∩ U2 = {0}. Given v in V, write

v =   1 _ 2  {[v + T(v)] + [v - T(v)]}

 Then v + T(v) lies in U1, because T [v + T(v)] = T(v) + T 2(v) = v 
+ T(v). Similarly, v - T(v) lies in U2, and it follows that V = U1 + U2. 
This proves part (a).

Definition 9.8
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(b) U1 and U2 are easily shown to be T-invariant, so the result follows 
from Theorem 7 if bases B1 = {b1, …, bk} and B2 = {bk+1, …, bn} of U1 
and U2 can be found such that  M B1

 (T ) = Ik and  M B2
 (T ) = -In-k. But 

this is true for any choice of B1 and B2: 

 M B1
 (T )  = [ C B1

 [T(b1)]  C B1
 [T(b2)] �  C B1

 [T(bk)]]
= [ C B1

 (b1)  C B1
 (b2) �  C B1

 (bk)]
= Ik

 A similar argument shows that  M B2
 (T ) = -In-k, so part (b) follows 

with B = {b1, b2, …, bn}.

(c) Given A such that A2 = I, consider TA : �
n → �n. Then 

(TA)2(x) = A2x = x for all x in �n, so (TA)2 = 1V. Hence, by part (b), 
there exists a basis B of �n such that 

MB(TA) =   S   Ir   0  
     

0 -In-r

  T 
 But Theorem 4 Section 9.2 shows that MB(TA) = P-1AP for some 

invertible matrix P, and this proves part (c).

Note that the passage from the result for operators to the analogous result for 
matrices is routine and can be carried out in any situation, as in the verification 
of part (c) of Example 10. The key is the analysis of the operators. In this case, 
the involutions are just the operators satisfying T 2 = 1V, and the simplicity of this 
condition means that the invariant subspaces U1 and U2 are easy to find.

Unfortunately, not every linear operator T : V → V is reducible. In fact, the 
linear operator in Example 4 has no invariant subspaces except 0 and V. On the 
other hand, one might expect that this is the only type of nonreducible operator; 
that is, if the operator has an invariant subspace that is not 0 or V, then some 
invariant complement must exist. The next example shows that even this is not valid.

EXAMPLE 11

Consider the operator T : �2 → �2 given by T   S  a   
b
  T  =   S   a + b

          
b
   T . Show that 

U1 = �  S  1   
0

  T  is T-invariant but that U1 has no T-invariant complement in �2.

Solution ► Because U1 = span U   S   1     
0

   T  V  and T   S  1   
0

  T  =   S  1   
0

  T  , it follows (by Example 3) 

that U1 is T-invariant. Now assume, if possible, that U1 has a T-invariant 
complement U2 in �2. Then U1 ⊕ U2 = �2 and T(U2) ⊆ U2. Theorem 6 gives

2 = dim �2 = dim U1 + dim U2 = 1 + dim U2

so dim U2 = 1. Let U2 = �u2, and write u2 =   S   p   
q
  T . We claim that u2 is not U1. 

For if u2 ∈ U1, then u2 ∈ U1 � U2 = {0}, so u2 = 0. But then U2 = �u2 = {0}, 
a contradiction, as dim U2 = 1. So u2 ∉ U1, from which q ≠ 0. On the other 

hand, T(u2) ∈ U2 = �u2 (because U2 is T-invariant), say T(u2) = λu2 = λ   S   p   q  T .
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Thus

   S   p + q
          q   T  = T   S   p   

q
  T  = λ   S   p   q  T  where λ ∈ �. 

Hence p + q = λp and q = λq. Because q ≠ 0, the second of these equations 
implies that λ = 1, so the first equation implies q = 0, a contradiction. So a 
T-invariant complement of U1 does not exist.

This is as far as we take the theory here, but in Chapter 11 the techniques 
introduced in this section will be refined to show that every matrix is similar to a 
very nice matrix indeed—its Jordan canonical form. 

E X E R C I S E S  9 . 3

 1. If T : V → V is any linear operator, show that 
ker T and im T are T-invariant subspaces.

 2. Let T be a linear operator on V. If U and W are 
T-invariant, show that 

 (a) U ∩ W and U + W are also T-invariant.

 
(b) T(U ) is T-invariant.

 3. Let S and T be linear operators on V and assume 
that ST = TS.

 (a) Show that im S and ker S are T-invariant.

 
(b) If U is T-invariant, show that S(U ) is 
T-invariant.

 4. Let T : V → V be a linear operator. Given v in 
V, let U denote the set of vectors in V that lie in 
every T-invariant subspace that contains v.

 (a) Show that U is a T-invariant subspace of V 
containing v.

 (b) Show that U is contained in every 
T-invariant subspace of V that contains v.

 5. (a) If T is a scalar operator (see Example 1 
Section 7.1) show that every subspace is 
T-invariant.

 (b) Conversely, if every subspace is T-invariant, 
show that T is scalar.

 
6. Show that the only subspaces of V that are 
T-invariant for every operator T : V → V are 
0 and V. Assume that V is finite dimensional. 
[Hint: Theorem 3 Section 7.1.]

 7. Suppose that T : V → V is a linear operator and 
that U is a T-invariant subspace of V. If S is an 
invertible operator, put T ′ = STS-1. Show that 
S(U ) is a T ′-invariant subspace.

 8. In each case, show that U is T-invariant, use it to 
find a block upper triangular matrix for T, and 
use that to compute cT(x).

 (a) T : P2 → P2, T(a + bx + cx2) 
= (-a + 2b + c) + (a + 3b + c)x + (a + 4b)x2, 
U = span{1, x + x2}

 
(b) T : P2 → P2, T(a + bx + cx2) 
= (5a - 2b + c) + (5a - b + c)x + (a + 2c)x2, 
U = span{1 - 2x2, x + x2}

 9. In each case, show that TA : �
2 → �2 has no 

invariant subspaces except 0 and �2.

 (a) A =   S   1   2     
-1 -1

  T 
 
(b) A =   S  cos θ -sin θ

        
sin θ   cos θ

  T  , 0 < θ < π

 10. In each case, show that V = U ⊕ W.

 (a) V = �4, U = span{(1, 1, 0, 0), (0, 1, 1, 0)}, 
W = span{(0, 1, 0, 1), (0, 0, 1, 1)}

 
(b) V = �4, U = {(a, a, b, b) | a, b in �}, 
W = {(c, d, c, -d) | c, d in �}

 (c) V = P3, U = {a + bx | a, b in �}, 
W = {ax2 + bx3 | a, b in �}
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(d) V = M22, U = e  S   a a        
b b

   T  ` a, b in �f,

  W = e  S   a b          
-a b

   T  ` a, b in �f

 11. Let U = span{(1, 0, 0, 0), (0, 1, 0, 0)} in �4. 
Show that �4 = U ⊕ W1 and �4 = U ⊕ W2, 
where W1 = span{(0, 0, 1, 0), (0, 0, 0, 1)} and 
W2 = span{(1, 1, 1, 1), (1, 1, 1, -1)}. 

 12. Let U be a subspace of V, and suppose that 
V = U ⊕ W1 and V = U ⊕ W2 hold for 
subspaces W1 and W2. Show that 
dim W1 = dim W2.

 13. If U and W denote the subspaces of even and 
odd polynomials in Pn, respectively, show that 
Pn = U ⊕ W. (See Exercise 36 Section 6.3.) 
[Hint: f (x) + f (-x) is even.]

 
14. Let E be a 2 × 2 matrix such that E2 = E. Show 
that M22 = U ⊕ W, where U = {A | AE = A} 
and W = {B | BE = 0}. [Hint: XE lies in U for 
every matrix X.]

 15. Let U and W be subspaces of V. Show that 
U ∩ W = {0} if and only if {u, w} is independent 
for all u ≠ 0 in U and all w ≠ 0 in W.

 16. Let V   T
 - -- →     W   S

 - - →     V be linear transformations, and 
assume that dim V and dim W are finite.

 (a) If ST = 1V, show that W = im T ⊕ ker S. 
[Hint: Given w in W, show that w - TS(w) 
lies in ker S.]

 (b) Illustrate with �2   T
 - -- →     �3   S

 - - →     �2 where 
T(x, y) = (x, y, 0) and S(x, y, z) = (x, y).

 17. Let U and W be subspaces of V, let dim V = n, 
and assume that dim U + dim W = n.

 (a) If U ∩ W = {0}, show that V = U ⊕ W.

 
(b) If U + W = V, show that V = U ⊕ W.
[Hint: Theorem 5 Section 6.4.]

 18. Let A =   S  0 1    
0 0

  T  and consider TA : �
2 → �2.

 (a) Show that the only eigenvalue of TA is λ = 0.

 
(b) Show that ker(TA) = �  S  1   
0

  T  is the unique 

TA-invariant subspace of �2 (except for 0 
and �2).

 19. If A = 

−
−

−−

2

2

5
2

0
1 0
0 1
0

0
0

0
0 1 1

, show that TA : �
4 → �4 

has two-dimensional T-invariant subspaces U 
and W such that �4 = U ⊕ W, but A has no real 
eigenvalue.

 
20. Let T : V → V be a linear operator where 
dim V = n. If U is a T-invariant subspace of V, 
let T1: U → U denote the restriction of T to U 
(so T1(u) = T(u) for all u in U ). Show that 
cT(x) =  c T1

 (x) · q(x) for some polynomial q(x). 
[Hint: Theorem 1.]

 21. Let T : V → V be a linear operator where 
dim V = n. Show that V has a basis of 
eigenvectors if and only if V has a basis B such 
that MB(T ) is diagonal.

 22. In each case, show that T 2 = 1 and find (as in 
Example 10) an ordered basis B such that MB(T ) 
has the given block form.

 (a) T : M22 → M22 where T(A) = AT, 

  MB(T ) =   S  I3   0
    

0 -1
  T 

 
(b) T : P3 → P3 where T [ p(x)] = p(-x), 

  MB(T ) =   S   I2   0
    

0 -I2
  T 

 (c) T : � → � where T(a + bi) = a - bi, 

  MB(T ) =   S   1   0    
0 -1

  T 
 
(d) T : �3 → �3 where 

T(a, b, c) = (-a + 2b + c, b + c, -c), 

  MB(T ) =   S   1   0    
0 -I2

  T 
 (e) T : V → V where T(v) = -v, dim V = n, 

MB(T ) = -In

 23. Let U and W denote subspaces of a vector 
space V.

 (a) If V = U ⊕ W, define T : V → V by 
T(v) = w where v is written (uniquely) as 
v = u + w with u in U and w in W. Show 
that T is a linear transformation, U = ker T, 
W = im T, and T 2 = T.
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(b) Conversely, if T : V → V is a linear 
transformation such that T 2 = T, show that 
V = ker T ⊕ im T. [Hint: v - T(v) lies in 
ker T for all v in V.]

 24. Let T : V → V be a linear operator satisfying 
T 2 

= T (such operators are called idempotents). 
Define  U1 = {v | T(v) = v} and 

U2 = ker T = {v | T(v) = 0}.

 (a) Show that V = U1 ⊕ U2.

 (b) If dim V = n, find a basis B of V such that 

MB(T ) =   S  Ir 0
    

0 0
  T  , where r = rank T.

 (c) If A is an n × n matrix such that A2 = A, 

show that A is similar to   S  Ir 0
    

0 0
  T  , where 

r = rank A. [Hint: Example 10.]

 25. In each case, show that T 2 = T and find (as in 
the preceding exercise) an ordered basis B such 
that MB(T ) has the form given (0k is the k × k 
zero matrix).

 (a) T : P2 → P2 where 
T(a + bx + cx2) = (a - b + c)(1 + x + x2), 

MB(T ) =   S  1 0       
0 02

  T 
 
(b) T : �3 → �3 where 

T(a, b, c) = (a + 2b, 0, 4b + c), 

  MB(T ) =   S  I2 0
    

0 0
  T 

 (c) T : M22 → M22 where 

  T   S   a b
        

c d
   T  =   S  -5 -15     

2    6
  T    S  a b

   
c d

  T  , 

  MB(T) =   S  I2 0   
    

0 02
  T 

 26. Let T : V → V be an operator satisfying T 2 = cT, 
c ≠ 0.

 (a) Show that V = U ⊕ ker T, where 
U = {u | T(u) = cu}. [Hint: Compute 
T(v -   1 _ c  T(v)).]

 (b) If dim V = n, show that V has a basis B such 

that MB(T ) =   S  cIr 0
    

0 0
  T  , where r = rank T.

 (c) If A is any n × n matrix of rank r such 
that A2 = cA, c ≠ 0, show that A is 

similar to   S  cIr 0
    

0 0
  T .

 27. Let T : V → V be an operator such that T 2 = c2, 
c ≠ 0.

 (a) Show that V = U1 ⊕ U2, where 
  U1 = {v | T(v) = cv} and 
  U2 = {v | T(v) = -cv}. 
[Hint: v =   1 __ 2c

  {[T(v) + cv] - [T(v) - cv]}.]

 (b) If dim V = n, show that V has a basis B such 

that MB(T ) =   S  cIk    0  
     

0 -cIn-k

  T  for some k.

 (c) If A is an n × n matrix such that A2 = c2I, 

c ≠ 0, show that A is similar to   S  cIk    0  
     

0 -cIn-k

  T  
or some k.

 28. If P is a fixed n × n matrix, define 
T : Mnn → Mnn by T(A) = PA. Let Uj denote the 
subspace of Mnn consisting of all matrices with 
all columns zero except possibly column j.

 (a) Show that each Uj is T-invariant.

 (b) Show that Mnn has a basis B such that MB(T ) 
is block diagonal with each block on the 
diagonal equal to P.

 29. Let V be a vector space. If f : V → � is a linear 
transformation and z is a vector in V, define 
Tf,z : V → V by Tf,z(v) = f (v)z for all v in V. 
Assume that f ≠ 0 and z ≠ 0.

 (a) Show that Tf,z is a linear operator of rank 1.

 
(b) If f ≠ 0, show that Tf,z is an idempotent if 
and only if f (z) = 1. (Recall that T : V → V 
is called an idempotent if T 2 = T.)

 (c) Show that every idempotent T : V → V 
of rank 1 has the form T = Tf,z for some 
f : V → � and some z in V with f (z) = 1. 
[Hint: Write im T = �z and show that 
T(z) = z. Then use Exercise 23.]

 30. Let U be a fixed n × n matrix, and consider the 
operator T : Mnn → Mnn given by T(A) = UA.

 (a) Show that λ is an eigenvalue of T if and only 
if it is an eigenvalue of U.

 
(b) If λ is an eigenvalue of T, show that Eλ(T ) 
consists of all matrices whose columns lie in 
Eλ(U ):

Eλ(T ) = {[P1 P2 � Pn] | Pi in Eλ(U ) for each i}
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 (c) Show that if dim[Eλ(U )] = d, then 
dim[Eλ(T )] = nd. [Hint: If B = {x1, …, xd} 
is a basis of Eλ(U ), consider the set of all 
matrices with one column from B and the 
other columns zero.]

 31. Let T : V → V be a linear operator where V is 
finite dimensional. If U ⊆ V is a subspace, let 
 
__

 U   = {u0 + T(u1) + T 2(u2) + � + Tk(uk) | 
ui in U, k ≥ 0}. Show that  

__
 U   is the smallest 

T-invariant subspace containing U (that is, it 
is T-invariant, contains U, and is contained in 
every such subspace).

 32. Let U1, …, Um be subspaces of V and assume 
that V = U1 + � + Um; that is, every v in V 
can be written (in at least one way) in the form 
v = u1 + � + um, ui in Ui. Show that the 
following conditions are equivalent.

 (i) If u1 + � + um = 0, ui in Ui, then ui = 0 
for each i.

 (ii) If u1 + � + um = u′1 + � + u′m, ui and u′i 
in Ui, then ui = u′i for each i.

 (iii) Ui ∩ (U1 + � + Ui-1 + Ui+1 + � + Um) = 
{0} for each i = 1, 2, …, m.

 (iv) Ui ∩ (Ui+1 + � + Um) = {0} for each 
i = 1, 2, …, m - 1.

  When these conditions are satisfied, we say that 
V is the direct sum of the subspaces Ui, and 
write V = U1 ⊕ U2 ⊕ � ⊕ Um.

 33. (a) Let B be a basis of V and let 
B = B1 ∪ B2 ∪ � ∪ Bm where the Bi are 
pairwise disjoint, nonempty subsets of B. 
If Ui = span Bi for each i, show that 
V = U1 ⊕ U2 ⊕ � ⊕ Um (preceding 
exercise).

 (b) Conversely if V = U1 ⊕ � ⊕ Um and Bi is 
a basis of Ui for each i, show that 
B = B1 ∪ � ∪ Bm is a basis of V as in (a).
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Inner Product Spaces

10
Inner Products and Norms
The dot product was introduced in �n to provide a natural generalization of 
the geometrical notions of length and orthogonality that were so important in 
Chapter 4. The plan in this chapter is to define an inner product on an arbitrary 
real vector space V (of which the dot product is an example in �n) and use it to 
introduce these concepts in V.

An inner product on a real vector space V is a function that assigns a real number 
〈v, w〉 to every pair v, w of vectors in V in such a way that the following axioms 
are satisfied.

P1. 〈v, w〉 is a real number for all v and w in V.

P2. 〈v, w〉 = 〈w, v〉 for all v and w in V.

P3. 〈v + w, u〉 = 〈v, u〉 + 〈w, u〉 for all u, v, and w in V.

P4. 〈rv, w〉 = r〈v, w〉 for all v and w in V and all r in �.

P5. 〈v, v〉 > 0 for all v ≠ 0 in V.

A real vector space V with an inner product 〈 , 〉 will be called an inner product 
space. Note that every subspace of an inner product space is again an inner product 
space using the same inner product.1

EXAMPLE 1

�
n is an inner product space with the dot product as inner product: 

〈x, y〉 = x · y for all v, w ∈ �n

See Theorem 1 Section 5.3. This is also called the euclidean inner product, 
and �n, equipped with the dot product, is called euclidean n-space.

1 If we regard �n as a vector space over the field � of complex numbers, then the “standard inner product” on �n defined in Section 
8.6 does not satisfy Axiom P4 (see Theorem 1(3) Section 8.6).
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EXAMPLE 2

If A and B are m × n matrices, define 〈A, B〉 = tr(ABT) where tr(X) is the trace 
of the square matrix X. Show that 〈 , 〉 is an inner product in Mmn.

Solution ► P1 is clear. Since tr(P) = tr(PT) for every m × n matrix P, we have P2:

〈A, B〉 = tr(ABT) = tr[(ABT)T] = tr(BAT) = 〈B, A〉.

Next, P3 and P4 follow because trace is a linear transformation Mmn → � 
(Exercise 19). Turning to P5, let r1, r2, …, rm denote the rows of the matrix A. 
Then the (i, j)-entry of AAT is ri · rj, so

〈A, A〉 = tr(AAT) = r1 · r1 + r2 · r2 + 
 + rm · rm

But rj · rj is the sum of the squares of the entries of rj, so this shows that 〈A, A〉 
is the sum of the squares of all nm entries of A. Axiom P5 follows.

The next example is important in analysis.

EXAMPLE 32

Let C[a, b] denote the vector space of continuous functions from [a, b] to �, a 
subspace of F[a, b]. Show that

〈 f, g〉 =  ∫a  
b    f (x)g(x) dx 

defines an inner product on C[a, b].

Solution ► Axioms P1 and P2 are clear. As to axiom P4,

〈rf, g〉 =  ∫a  
b    rf (x)g(x) dx  = r ∫ a   

b   f (x)g(x) dx  = r〈f, g〉

Axiom P3 is similar. Finally, theorems of calculus show that 
〈 f, f 〉 =  ∫a  

b    f (x)2 dx  ≥ 0 and, if f is continuous, that this is zero if 
and only if f is the zero function. This gives axiom P5.
2

If v is any vector, then, using axiom P3, we get

〈0, v〉 = 〈0 + 0, v〉 = 〈0, v〉 + 〈0, v〉

and it follows that the number 〈0, v〉 must be zero. This observation is recorded 
for reference in the following theorem, along with several other properties of inner 
products. The other proofs are left as Exercise 20.

Theorem 1

Let 〈 , 〉 be an inner product on a space V; let v, u, and w denote vectors in V; and let r 
denote a real number.

1. 〈u, v + w〉 = 〈u, v〉 + 〈u, w〉.

2. 〈v, rw〉 = r〈v, w〉 = 〈rv, w〉.

2 This example (and others later that refer to it) can be omitted with no loss of continuity by students with no calculus background.
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3. 〈v, 0〉 = 0 = 〈0, v〉.

4. 〈v, v〉 = 0 if and only if v = 0.

If 〈 , 〉 is an inner product on a space V, then, given u, v, and w in V,

〈ru + sv, w〉 = 〈ru, w〉 + 〈sv, w〉 = r〈u, w〉 + s〈v, w〉

for all r and s in � by axioms P3 and P4. Moreover, there is nothing special about 
the fact that there are two terms in the linear combination or that it is in the first 
component:

〈r1v1 + r2v2 + 
 + rnvn, w〉 = r1〈v1, w〉 + r2〈v2, w〉 + 
 + rn〈vn, w〉

and

〈v, s1w1 + s2w2 + 
 + smwm〉 = s1〈v, w1〉 + s2〈v, w2〉 + 
 + sm〈v, wm〉

hold for all ri and si in � and all v, w, vi, and wj in V. These results are described 
by saying that inner products “preserve” linear combinations. For example,

〈2u - v, 3u + 2v〉  = 〈2u, 3u〉 + 〈2u, 2v〉 + 〈-v, 3u〉 + 〈-v, 2v〉

= 6〈u, u〉 + 4〈u, v〉 - 3〈v, u〉 - 2〈v, v〉

= 6〈u, u〉 + 〈u, v〉 - 2〈v, v〉

If A is a symmetric n × n matrix and x and y are columns in �n, we regard the 
1 × 1 matrix xTAy as a number. If we write

〈x, y〉 = xTAy for all columns x, y in �n 

then axioms P1–P4 follow from matrix arithmetic (only P2 requires that A is 
symmetric). Axiom P5 reads

xTAx > 0 for all columns x ≠ 0 in �n

and this condition characterizes the positive definite matrices (Theorem 2 Section 
8.3). This proves the first assertion in the next theorem.

Theorem 2

If A is any n × n positive definite matrix, then

〈x, y〉 = xTAy for all columns x, y in �n

defines an inner product on �n, and every inner product on �n arises in this way.

PROOF

Given an inner product 〈 , 〉 on �n, let {e1, e2, …, en} be the standard basis of �n. 

If x =  ∑ 
i=1

   
n

  xiei  and y =  ∑ 
j=1

   
n

  yjej  are two vectors in �n, compute 〈x, y〉 by adding the 

inner product of each term xiei to each term yjej. The result is a double sum.

〈x, y〉 =  ∑ 
i=1

   
n

     ∑ 
j=1

   
n

    〈xiei, yjej〉 =  ∑ 
i=1

   
n

     ∑ 
j=1

   
n

    xi〈ei, ej〉yj
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As the reader can verify, this is a matrix product:

〈x, y〉 = [x1 x2 … xn]

e e
e e

e e

e e
e e

e e

e e
e e

e e

n

n

n n

, , ,
, , ,

, ,

1 1 1 2 1

2 1 2 2 2

1 22

1

2

y
y

yn n n,

Hence 〈x, y〉 = xTAy, where A is the n × n matrix whose (i, j)-entry is 〈ei, ej〉. 
The fact that 〈ei, ej〉 = 〈ej, ei〉 shows that A is symmetric. Finally, A is positive 
definite by Theorem 2 Section 8.3.

Thus, just as every linear operator �n → �n corresponds to an n × n matrix, every 
inner product on �n corresponds to a positive definite n × n matrix. In particular, 
the dot product corresponds to the identity matrix In.

If we refer to the inner product space �n without specifying the inner product, we 
mean that the dot product is to be used.

EXAMPLE 4

Let the inner product 〈 , 〉 be defined on �2 by

 〈   S  
v1   
v2

  T  ,   S  w1   
w2

  T  〉  = 2v1w1 - v1w2 - v2w1 - v2w2 

Find a symmetric 2 × 2 matrix A such that 〈x, y〉 = xTAy for all x, y in �2.

Solution ► The (i, j)-entry of the matrix A is the coefficient of viwj in the 

expression, so A =   S   2 -1     
-1   1

  T . Incidentally, if x =   S    x     y   T  , then

〈x, x〉 = 2x2 - 2xy + y2 = x2 + (x - y)2 ≥ 0

for all x, so 〈x, x〉 = 0 implies x = 0. Hence 〈 , 〉 is indeed an inner product, so 
A is positive definite.

Let 〈 , 〉 be an inner product on �n given as in Theorem 2 by a positive definite 
matrix A. If x = [x1 x2 
 xn]

T, then 〈x, x〉 = xTAx is an expression in the variables 
x1, x2, …, xn called a quadratic form. These are studied in detail in Section 8.8.

Norm and Distance

As in �n, if 〈 , 〉 is an inner product on a space V, the norm3 ‖v‖ of a vector v in V is 
defined by

‖v‖ =  √ 
_____

 〈v, v〉  

We define the distance between vectors v and w in an inner product space V to be

d(v, w) = ‖v - w‖

3

Note that axiom P5 guarantees that 〈v, v〉 ≥ 0, so ‖v‖ is a real number.

3 If the dot product is used in �n, the norm ‖x‖ of a vector x is usually called the length of x.

Remark

Definition 10.2
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EXAMPLE 5

The norm of a continuous function f = f (x) in C[a, b] (with the inner product 
from Example 3) is given by

‖f‖ =  √ 
_________

  ∫ a   
b  f (x)2dx   

Hence ‖f‖2 is the area beneath the graph of y = f (x)2 between x = a and x = b 
(see the diagram).

EXAMPLE 6

Show that 〈u + v, u - v〉 = ‖u‖
2 - ‖v‖

2 in any inner product space.

Solution ►  〈u + v, u - v〉  = 〈u, u〉 - 〈u, v〉 + 〈v, u〉 - 〈v, v〉

= ‖u‖
2 - 〈u, v〉 + 〈u, v〉- ‖v‖

2

= ‖u‖
2 - ‖v‖

2

A vector v in an inner product space V is called a unit vector if ‖v‖ = 1. The set 
of all unit vectors in V is called the unit ball in V. For example, if V = �2 (with the 
dot product) and v = (x, y), then

‖v‖ = 1  if and only if x2 + y2 = 1

Hence the unit ball in �2 is the unit circle x2 + y2 = 1 with centre at the origin and 
radius 1. However, the shape of the unit ball varies with the choice of inner product.

EXAMPLE 7

Let a > 0 and b > 0. If v = (x, y) and w = (x1, y1), define an inner product on 
�

2 by

〈v, w〉 =   
xx1 ___ 
a2

   +   
yy1 ___ 
b2

  

The reader can verify (Exercise 5) that this is indeed an inner product. In this 
case

‖v‖ = 1  if and only if   x
2
 __ 

a2
   +   

y2

 __ 
b2

   = 1

so the unit ball is the ellipse shown in the diagram.

Example 7 graphically illustrates the fact that norms and distances in an inner 
product space V vary with the choice of inner product in V.

Theorem 3

If v ≠ 0 is any vector in an inner product space V, then   1 ____ 
‖v‖

  v is the unique unit vector 
that is a positive multiple of v.

O a 

y

xb 

y = f (x)2

f   2 ‖‖
←

(0, −b)

(−a, 0) (a, 0)

(0, b)

xO

y
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The next theorem reveals an important and useful fact about the relationship 
between norms and inner products, extending the Cauchy inequality for �n 
(Theorem 2 Section 5.3).

Theorem 4

Cauchy-Schwarz Inequality4

If v and w are two vectors in an inner product space V, then

〈v, w〉
2 ≤ ‖v‖

2
‖w‖

2

Moreover, equality occurs if and only if one of v and w is a scalar multiple of the other.
4

PROOF

Write ‖v‖ = a and ‖w‖ = b. Using Theorem 1 we compute: 

‖bv - aw‖
2 = b2

‖v‖
2 - 2ab〈v, w〉 + a2

‖w‖
2 = 2ab(ab - 〈v, w〉)

 ‖bv + aw‖
2 = b2

‖v‖
2 + 2ab〈v, w〉 + a2

‖w‖
2 = 2ab(ab + 〈v, w〉) 

(∗)

It follows that ab - 〈v, w〉 ≥ 0 and ab + 〈v, w〉 ≥ 0, and hence that 
-ab ≤ 〈v, w〉 ≤ ab. But then |〈v, w〉| ≤ ab = ‖v‖‖w‖, as desired.

Conversely, if |〈v, w〉| = ‖v‖‖w‖ = ab then 〈v, w〉 = ±ab. Hence (∗) 
shows that bv - aw = 0 or bv + aw = 0. It follows that one of v and w 
is a scalar multiple of the other, even if a = 0 or b = 0.

EXAMPLE 8

If f and g are continuous functions on the interval [a, b], then (see Example 3)

  U  ∫ a   
b   f (x)g(x)dx  V  2  ≤  ∫ a   

b   f (x)2dx   ∫ a   
b  g(x)2dx 

Another famous inequality, the so-called triangle inequality, also comes from the 
Cauchy-Schwarz inequality. It is included in the following list of basic properties of 
the norm of a vector.

Theorem 5

If V is an inner product space, the norm ‖·‖ has the following properties.
1. ‖v‖ ≥ 0 for every vector v in V.
2. ‖v‖ = 0 if and only if v = 0.
3. ‖rv‖ = |r|‖v‖ for every v in V and every r in �.
4. ‖v + w‖ ≤ ‖v‖ + ‖w‖ for all v and w in V (triangle inequality).

4 Hermann Amandus Schwarz (1843–1921) was a German mathematician at the University of Berlin. He had strong geometric 
intuition, which he applied with great ingenuity to particular problems. A version of the inequality appeared in 1885.
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PROOF

Because ‖v‖ =  √ 
_____

 〈v, v〉  , properties (1) and (2) follow immediately from (3) and 
(4) of Theorem 1. As to (3), compute

‖rv‖
2 = 〈rv, rv〉 = r2

〈v, v〉 = r2
‖v‖

2

Hence (3) follows by taking positive square roots. Finally, the fact that 
〈v, w〉 ≤ ‖v‖‖w‖ by the Cauchy-Schwarz inequality gives

‖v + w‖
2 = 〈v + w, v + w〉  = ‖v‖

2
 + 2〈v, w〉 + ‖w‖

2

≤ ‖v‖
2
 + 2‖v‖‖w‖ + ‖w‖

2

= (‖v‖ + ‖w‖)2

Hence (4) follows by taking positive square roots.

It is worth noting that the usual triangle inequality for absolute values,

|r + s| ≤ |r| + |s| for all real numbers r and s,

is a special case of (4) where V = � = �1 and the dot product 〈r, s〉 = rs is used.
In many calculations in an inner product space, it is required to show that some 

vector v is zero. This is often accomplished most easily by showing that its norm 
‖v‖ is zero. Here is an example.

EXAMPLE 9

Let {v1, …, vn} be a spanning set for an inner product space V. If v in V satisfies 
〈v, vi〉 = 0 for each i = 1, 2, …, n, show that v = 0.

Solution ► Write v = r1v1 + 
 + rnvn, ri in �. To show that v = 0, we show 
that ‖v‖

2 = 〈v, v〉 = 0. Compute:

〈v, v〉 = 〈v, r1v1 + 
 + rnvn〉 = r1〈v, v1〉 + 
 + rn〈v, vn〉 = 0

by hypothesis, and the result follows.

The norm properties in Theorem 5 translate to the following properties of 
distance familiar from geometry. The proof is Exercise 21.

Theorem 6

Let V be an inner product space.

1. d(v, w) ≥ 0 for all v, w in V.

2. d(v, w) = 0 if and only if v = w.

3. d(v, w) = d(w, v) for all v and w in V.

4. d(v, w) ≤ d(v, u) + d(u, w) for all v, u, and w in V.
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E X E R C I S E S  1 0 . 1

 1. In each case, determine which of axioms P1–P5 
fail to hold.

 (a) V = �2, 〈(x1, y1), (x2, y2)〉 = x1 y1x2 y2

 �(b) V = �3,  〈(x1, x2, x3), ( y1, y2, y3)〉 

= x1 y1 - x2 y2 + x3 y3

 (c) V = �, 〈z, w〉 = z  
__

 w  , where  
__

 w   is complex 
conjugation

 �(d) V = P3,  〈p(x), q(x)〉 = p(1)q(1)

 (e) V = M22,  〈A, B〉 = det(AB)

 �(f ) V = F[0, 1],  〈 f, g〉 = f (1)g(0) + f (0)g(1)

 �2. Let V be an inner product space. If U ⊆ V is a 
subspace, show that U is an inner product space 
using the same inner product. 

 3. In each case, find a scalar multiple of v that is a 
unit vector.

 (a) v = f in C[0, 1] where f (x) = x2

〈f, g〉 =  ∫0  
1   f (x)g(x)dx 

 �(b) v = f in C[-π, π] where f (x) = cos x
〈f, g〉 =  ∫ -π   π

    f (x)g(x)dx 

 (c) v =   S  1   
3

  T  in �2 where 〈v, w〉 = vT   S   1 1        
1 2

   T  w

 �(d) v =   S   3   
-1

  T  in �2, 〈v, w〉 = vT   S     1 -1              
-1   2

   T  w

 4. In each case, find the distance between u and v.

 (a) u = (3, -1, 2, 0), v = (1, 1, 1, 3); 
〈u, v〉 = u · v

 �(b) u = (1, 2, -1, 2), v = (2, 1, -1, 3); 
〈u, v〉 = u · v

 (c) u = f, v = g in C[0, 1] where f (x) = x2 and 
g(x) = 1 - x; 〈f, g〉 =  ∫0  

1   f (x)g(x)dx 

 �(d) u = f, v = g in C[-π, π] where f (x) = 1 and 
g(x) = cos x; 〈f, g〉 =  ∫ -π   π

    f (x)g(x)dx 

 5. Let a1, a2, …, an be positive numbers. Given 
v = (v1, v2, …, vn) and w = (w1, w2, …, wn), 
define 〈v, w〉 = a1v1w1 + 
 + anvnwn. Show 
that this is an inner product on �n.

 6. If {b1, …, bn} is a basis of V and if 
v = v1b1 + 
 + vnbn and 
w = w1b1 + 
 + wnbn are vectors in V, define

〈v, w〉 = v1w1 + 
 + vnwn.

  Show that this is an inner product on V.

 7. If p = p(x) and q = q(x) are polynomials in Pn, 
define

〈p, q〉 = p(0)q(0) + p(1)q(1) + 
 + p(n)q(n)

  Show that this is an inner product on Pn. [Hint 
for P5: Theorem 4 Section 6.5 or Appendix D.]

 �8. Let Dn denote the space of all functions from the 
set {1, 2, 3, …, n} to � with pointwise addition 
and scalar multiplication (see Exercise 35 Section 
6.3). Show that 〈 , 〉 is an inner product on Dn if 
〈f, g〉 = f (1)g(1) + f (2)g(2) + 
 + f (n)g(n).

 9. Let re(z) denote the real part of the complex 
number z. Show that 〈 , 〉 is an inner product on 
� if 〈z, w〉 = re(z 

__
 w  ).

 10. If T : V → V is an isomorphism of the inner 
product space V, show that 

〈v, w〉1 = 〈T(v), T(w)〉

  defines a new inner product 〈 , 〉1 on V.

 11. Show that every inner product 〈 , 〉 on �n has 
the form 〈x, y〉 = (Ux) · (Uy) for some upper 
triangular matrix U with positive diagonal 
entries. [Hint: Theorem 3 Section 8.3.]

 12. In each case, show that 〈v, w〉 = vTAw defines 
an inner product on �2 and hence show that A is 
positive definite.

 (a) A =   S  2 1    
1 1

  T  �(b) A =   S   5 -3     
-3   2

  T 
 (c) A =   S  3 2    

2 3
  T  �(d) A =   S  3 4    

4 6
  T 

 13. In each case, find a symmetric matrix A such that 
〈v, w〉 = vTAw.

 (a)  〈   S  
v1   
v2

  T  ,   S   w1      w2
   T  〉  = v1w1 + 2v1w2 + 2v2w1 + 5v2w2 

 �(b)  〈   S  
v1   
v2

  T  ,   S   w1      w2
   T  〉  = v1w1 - v1w2 - v2w1 + 2v2w2 

 (c)  〈   S  
v1

 
 

 v2   
v3

  T  ,   S  
w1

 
 

 w2   
w3

  T   〉  =  2v1w1 + v2w2 + v3w3 - v1w2
- v2w1 + v2w3 + v3w2
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 �(d)  〈   S  
v1

 
 

 v2   
v3

  T  ,   S  
w1

 
 

 w2   
w3

  T  〉  =  v1w1 + 2v2w2 + 5v3w3 
- 2v1w3 - 2v3w1

 �14. If A is symmetric and xTAx = 0 for all columns x 
in �n, show that A = 0. [Hint: Consider 
〈x + y, x + y〉 where 〈x, y〉 = xTAy.]

 15. Show that the sum of two inner products on V is 
again an inner product.

 16. Let ‖u‖ = 1, ‖v‖ = 2, ‖w‖ =  √ 

__

 3  , 〈u, v〉 = -1, 
〈u, w〉 = 0 and 〈v, w〉 = 3. Compute:

 (a) 〈v + w, 2u - v〉

 �(b) 〈u - 2v - w, 3w - v〉

 17. Given the data in Exercise 16, show that 
u + v = w.

 18. Show that no vectors exist such that ‖u‖ = 1, 
‖v‖ = 2, and 〈u, v〉 = -3.

 19. Complete Example 2.

 �20. Prove Theorem 1.

 21. Prove Theorem 6.

 22. Let u and v be vectors in an inner product 
space V.

 (a) Expand 〈2u - 7v, 3u + 5v〉.

 �(b) Expand 〈3u - 4v, 5u + v〉.

 (c) Show that ‖u + v‖
2 = ‖u‖

2 + 2〈u, v〉 + ‖v‖
2.

 �(d) Show that ‖u - v‖
2 = ‖u‖

2 - 2〈u, v〉 + ‖v‖
2.

 23. Show that 
‖v‖

2 + ‖w‖
2 =   1 _ 2   {‖v + w‖

2 + ‖v - w‖
2}

for any v and w in an inner product space.

 24. Let 〈 , 〉 be an inner product on a vector space V. 
Show that the corresponding distance function is 
translation invariant. That is, show that 
d(v, w) = d(v + u, w + u) for all v, w, and u 
in V.

 25. (a) Show that 〈u, v〉 =   1 _ 4   [‖u + v‖
2 - ‖u - v‖

2] 
for all u, v in an inner product space V.

 (b) If 〈 , 〉 and 〈 , 〉′ are two inner products on V that 
have equal associated norm functions, show 
that 〈u, v〉 = 〈u, v〉′ holds for all u and v.

 26. Let v denote a vector in an inner product 
space V.

 (a) Show that W = {w | w in V, 〈v, w〉 = 0} 
is a subspace of V.

 �(b) If V = �3 with the dot product, and if 
v = (1, -1, 2), find a basis for W (W as in (a)).

 27. Given vectors w1, w2, …, wn and v, assume that 
〈v, wi〉 = 0 for each i. Show that 〈v, w〉 = 0 for 
all w in span{w1, w2, …, wn}.

 �28. If  V = span{v1, v2, …, vn} and 〈v, vi〉 = 〈w, vi〉 
holds for each i. Show that v = w.

 29. Use the Cauchy-Schwarz inequality in an inner 
product space to show that:

 (a) If ‖u‖ ≤ 1, then 〈u, v〉
2
 ≤ ‖v‖

2 for all v in V.

 �(b) (x cos θ + y sin θ)2 ≤ x2 + y2 for all real x, y, 
and θ.

 (c) ‖r1v1 + 
 + rnvn‖
2 ≤   Sr1‖v1‖ + 
 + rn‖vn‖ T  2

for all vectors vi, and all ri > 0 in �.

 30. If A is a 2 × n matrix, let u and v denote the 
rows of A.

 (a) Show that AAT =   S  ‖u‖
2 u · v

       
u · v ‖v‖

2
  T  .

 (b) Show that det(AAT ) ≥ 0.

 31. (a) If v and w are nonzero vectors in an 
inner product space V, show that 

-1 ≤   
〈v, w〉

 _______ 
‖v‖‖w‖

   ≤ 1, and hence that a unique 

angle θ exists such that   
〈v, w〉

 _______ 
‖v‖‖w‖

   = cos θ and 

0 ≤ θ ≤ π. This angle θ is called the angle 
between v and w.

 (b) Find the angle between v = (1, 2, -1, 1, 3) 
and w = (2, 1, 0, 2, 0) in �5 with the dot 
product.

 (c) If θ is the angle between v and w, show that 
the law of cosines is valid: 
‖v - w‖

2 = ‖v‖
2 + ‖w‖

2 - 2‖v‖‖w‖ cos θ.

 32. If V = �2, define ‖(x, y)‖ = |x| + |y|.

 (a) Show that ‖·‖ satisfies the conditions in 
Theorem 5.

 (b) Show that ‖·‖ does not arise from an inner 
product on �2 given by a matrix A. [Hint: If 
it did, use Theorem 2 to find numbers a, b, 
and c such that ‖(x, y)‖2 = ax2 + bxy + cy2 for 
all x and y.]
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Orthogonal Sets of Vectors
The idea that two lines can be perpendicular is fundamental in geometry, and this 
section is devoted to introducing this notion into a general inner product space V. 
To motivate the definition, recall that two nonzero geometric vectors x and y in �n 
are perpendicular (or orthogonal) if and only if x · y = 0. In general, two vectors v 
and w in an inner product space V are said to be orthogonal if

〈v, w〉 = 0

A set {f1, f2, …, fn} of vectors is called an orthogonal set of vectors if

1. Each fi ≠ 0.

2. 〈fi , fj〉 = 0 for all i ≠ j.

If, in addition, ‖fi‖ = 1 for each i, the set {f1, f2, …, fn} is called an orthonormal set.

EXAMPLE 1

{sin x, cos x} is orthogonal in C[-π, π] because

 ∫-π  π
   sin x cos x dx  =  [-  1 _ 4   cos 2x]  

-π
  π

   = 0

The first result about orthogonal sets extends Pythagoras’ theorem in �n 
(Theorem 4 Section 5.3) and the same proof works.

Theorem 1

Pythagoras’ Theorem
If {f1, f2, …, fn} is an orthogonal set of vectors, then

‖f1 + f2 + 
 + fn‖
2 = ‖f1‖

2 + ‖f2‖
2 + 
 + ‖fn‖

2

The proof of the next result is left to the reader.

Theorem 2

Let {f1, f2, …, fn} be an orthogonal set of vectors.
1. {r1f1, r2f2, …, rnfn} is also orthogonal for any ri ≠ 0 in �.

2.  U   1 ____ 
‖f1‖

   f1,   1 ____ 
‖f2‖

   f2, …,   1 ____ 
‖fn‖

   fn V  is an orthonormal set.

As before, the process of passing from an orthogonal set to an orthonormal one is 
called normalizing the orthogonal set. The proof of Theorem 5 Section 5.3 goes 
through to give

S E C T I O N  1 0 . 2
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Theorem 3

Every orthogonal set of vectors is linearly independent.

EXAMPLE 2

Show that u   S     2
 

 
 -1   

  0
   T  ,   S  0 

 
 1   

1
  T  ,   S     0

 
 

 -1   
  2

   T v is an orthogonal basis of �3 with inner product 

〈v, w〉 = vTAw, where A =   S  1 1 0
 

  
 1 2 0    

0 0 1
  T .

Solution ► We have

 〈   S   
  2

 
 

 -1   
  0

   T  ,   S  0 
 

 1   
1

  T  〉  = [2 -1 0]  S  1 1 0
 

  
 1 2 0    

0 0 1
  T    S  0 
 

 1   
1

  T  = [1 0 0]  S  0 
 

 1   
1

  T  = 0

and the reader can verify that the other pairs are orthogonal too. Hence the set 
is orthogonal, so it is linearly independent by Theorem 3. Because dim �3 = 3, 
it is a basis.

The proof of Theorem 6 Section 5.3 generalizes to give the following:

Theorem 4

Expansion Theorem
Let {f1, f2, …, fn} be an orthogonal basis of an inner product space V. If v is any vector 
in V, then

v =   
〈v, f1〉

 ______ 
‖f1‖

2
   f1 +   

〈v, f2〉
 ______ 

‖f2‖
2
   f2 + 
 +   

〈v, fn〉
 ______ 

‖fn‖
2
   fn

is the expansion of v as a linear combination of the basis vectors.

The coefficients   
〈v, f1〉

 ______ 
‖f1‖

2
  ,   

〈v, f2〉
 ______ 

‖f2‖
2
  , …,   

〈v, fn〉
 ______ 

‖fn‖
2
   in the expansion theorem are 

sometimes called the Fourier coefficients of v with respect to the orthogonal 
basis {f1, f2, …, fn}. This is in honour of the French mathematician J.B.J. Fourier 
(1768–1830). His original work was with a particular orthogonal set in the space 
C[a, b], about which there will be more to say in Section 10.5.

EXAMPLE 3

If a0, a1, …, an are distinct numbers and p(x) and q(x) are in Pn, define

〈p(x), q(x)〉 = p(a0)q(a0) + p(a1)q(a1) + 
 + p(an)q(an)
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This is an inner product on Pn. (Axioms P1–P4 are routinely verified, and P5 
holds because 0 is the only polynomial of degree n with n + 1 distinct roots. 
See Theorem 4 Section 6.5 or Appendix D.) 
 Recall that the Lagrange polynomials δ0(x), δ1(x), …, δn(x) relative to the 
numbers a0, a1, …, an are defined as follows (see Section 6.5):

δk(x) =   
 ∏

i≠k
  

 
  (x - ai) 

  ____________  
 ∏

i≠k
  

 
  (ak - ai) 

   k = 0, 1, 2, …, n

where  ∏
i≠k

  
 
  (x - ai)  means the product of all the terms 

(x - a0), (x - a1), (x - a2), …, (x - an)

except that the kth term is omitted. Then {δ0(x), δ1(x), …, δn(x)} is orthonormal 
with respect to 〈 , 〉 because δk(ai) = 0 if i ≠ k and δk(ak) = 1. These facts also 
show that 〈p(x), δk(x)〉 = p(ak) so the expansion theorem gives

p(x) = p(a0)δ0(x) + p(a1)δ1(x) + 
 + p(an)δn(x)

for each p(x) in Pn. This is the Lagrange interpolation expansion of p(x), 
Theorem 3 Section 6.5, which is important in numerical integration.

Lemma 1

Orthogonal Lemma
Let {f1, f2, …, fm} be an orthogonal set of vectors in an inner product space V, and let v 
be any vector not in span{f1, f2, …, fm}. Define

fm+1 = v -   
〈v, f1〉

 ______ 
‖f1‖

2
   f1 -   

〈v, f2〉
 ______ 

‖f2‖
2
   f2 - 
 -   

〈v, fm〉
 ______ 

‖fm‖
2
   fm

Then {f1, f2, …, fm, fm+1} is an orthogonal set of vectors.

The proof of this result (and the next) is the same as for the dot product in �n 
(Lemma 1 and Theorem 2 in Section 8.1).

Theorem 5

Gram-Schmidt Orthogonalization Algorithm
Let V be an inner product space and let {v1, v2, …, vn} be any basis of V. Define vectors 
f1, f2, …, fn in V successively as follows:

f1 = v1

f2 = v2 -   
〈v2, f1〉

 ______ 
‖f1‖

2
   f1

f3 = v3 -   
〈v3, f1〉

 ______ 
‖f1‖

2
   f1 -   

〈v3, f2〉
 ______ 

‖f2‖
2
   f2

�   �

fk = vk -   
〈vk, f1〉

 ______ 
‖f1‖

2
   f1 -   

〈vk, f2〉
 ______ 

‖f2‖
2
   f2 – 
 -   

〈vk, fk-1〉
 ________ 

‖fk-1‖
2
   fk-1

for each k = 2, 3, …, n. Then
1. {f1, f2, …, fn} is an orthogonal basis of V.

2. span{f1, f2, …, fk} = span{v1, v2, …, vk} holds for each k = 1, 2, …, n.
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The purpose of the Gram-Schmidt algorithm is to convert a basis of an inner 
product space into an orthogonal basis. In particular, it shows that every finite 
dimensional inner product space has an orthogonal basis. 

EXAMPLE 4

Consider V = P3 with the inner product 〈p, q〉 =  ∫ 
-1   
1    p(x)q(x)dx . If the 

Gram-Schmidt algorithm is applied to the basis {1, x, x2, x3}, show that the 
result is the orthogonal basis

{1, x,   1 _ 3  (3x2 - 1),   1 _ 5  (5x3 - 3x)}.

Solution ► Take f1 = 1. Then the algorithm gives

f2 = x -   
〈x, f1〉

 ______ 
‖f1‖

2
   f1 = x -   0 _ 2   f1 = x

f3 = x2 -   
〈x2, f1〉

 ______ 
‖f1‖

2
   f1 -   

〈x2, f2〉
 ______ 

‖f2‖
2
   f2

= x2 -   
  2 _ 3   __ 
2

  1 -   0 __ 
  2 _ 3  
  x

=   1 _ 3  (3x2 - 1)

The verification that f4 =   1 _ 5  (5x3 - 3x) is omitted.

The polynomials in Example 4 are such that the leading coefficient is 1 in each case. 
In other contexts (the study of differential equations, for example) it is customary to 
take multiples p(x) of these polynomials such that p(1) = 1. The resulting orthogonal 
basis of P3 is

{1, x,   1 _ 2  (3x2 - 1),   1 _ 2  (5x3 - 3x)}

and these are the first four Legendre polynomials, so called to honour the French 
mathematician A. M. Legendre (1752–1833). They are important in the study of 
differential equations.

If V is an inner product space of dimension n, let E = {f1, f2, …, fn} be an 
orthonormal basis of V (by Theorem 5). If v = v1f1 + v2f2 + 
 + vnfn and 
w = w1f1 + w2f2 + 
 + wnfn are two vectors in V, we have CE(v) = [v1 v2 
 vn]

T 
and CE(w) = [w1 w2 
 wn]

T. Hence

〈v, w〉 = 〈∑ivifi, ∑jwjfj〉 = ∑i,jviwj〈fi, fj〉 = ∑iviwi = CE(v) · CE(w).

This shows that the coordinate isomorphism CE : V → �n preserves inner products, 
and so proves

Corollary 1

If V is any n-dimensional inner product space, then V is isomorphic to �n as inner 
product spaces. More precisely, if E is any orthonormal basis of V, the coordinate 
isomorphism

CE : V → �n satisfies 〈v, w〉 = CE(v) · CE(w)
for all v and w in V.
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The orthogonal complement of a subspace U of �n was defined (in Chapter 8) to be 
the set of all vectors in �n that are orthogonal to every vector in U. This notion has a 
natural extension in an arbitrary inner product space. Let U be a subspace of an inner 
product space V. As in �n, the orthogonal complement U⊥ of U in V is defined by

U⊥ = {v | v in V, 〈v, u〉 = 0 for all u in U}.

Theorem 6

Let U be a finite dimensional subspace of an inner product space V.

1. U⊥ is a subspace of V and V = U ⊕ U⊥.

2. If dim V = n, then dim U + dim U⊥ = n.

3. If dim V = n, then U⊥⊥ = U.

PROOF

 1. U⊥ is a subspace by Theorem 1 Section 10.1. If v is in U ∩ U⊥, then 
〈v, v〉 = 0, so v = 0 again by Theorem 1 Section 10.1. Hence 
U ∩ U⊥ = {0}, and it remains to show that U + U⊥ = V. Given v in V, 
we must show that v is in U + U⊥, and this is clear if v is in U. If v is not 
in U, let {f1, f2, …, fm} be an orthogonal basis of U. Then the orthogonal 

lemma shows that v -  Q   〈v, f1〉
 ______ 

‖f1‖
2
   f1 +   

〈v, f2〉
 ______ 

‖f2‖
2
   f2 + 
 +   

〈v, fm〉
 ______ 

‖fm‖
2
   fm R  is in U⊥, 

so v is in U + U⊥ as required.

 2. This follows from Theorem 6 Section 9.3.

 3. We have dim U⊥⊥ = n - dim U⊥ = n - (n - dim U ) = dim U, using 
(2) twice. As U ⊆ U⊥⊥ always holds (verify), (3) follows by Theorem 2 
Section 6.4.

We digress briefly and consider a subspace U of an arbitrary vector space V. As 
in Section 9.3, if W is any complement of U in V, that is, V = U ⊕ W, then each 
vector v in V has a unique representation as a sum v = u + w where u is in U and w 
is in W. Hence we may define a function T : V → V as follows:

T(v) = u where v = u + w, u in U, w in W 

Thus, to compute T(v), express v in any way at all as the sum of a vector u in U and 
a vector in W; then T(v) = u.

This function T is a linear operator on V. Indeed, if v1 = u1 + w1 where u1 is 
in U and w1 is in W, then v + v1 = (u + u1) + (w + w1) where u + u1 is in U and 
w + w1 is in W, so

T(v + v1) = u + u1 = T(v) + T(v1)

Similarly, T(av) = aT(v) for all a in �, so T is a linear operator. Furthermore, 
im T = U and ker T = W as the reader can verify, and T is called the projection 
on U with kernel W.

If U is a subspace of V, there are many projections on U, one for each 
complementary subspace W with V = U ⊕ W. If V is an inner product space, we 
single out one for special attention. Let U be a finite dimensional subspace of an 
inner product space V. 
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The projection on U with kernel U⊥ is called the orthogonal projection on U (or 
simply the projection on U) and is denoted projU : V → V.

Theorem 7

Projection Theorem
Let U be a finite dimensional subspace of an inner product space V and let v be a vector 
in V.

1. projU : V → V is a linear operator with image U and kernel U⊥.

2. projU(v) is in U and v - projU(v) is in U⊥.

3. If {f1, f2, …, fm} is any orthogonal basis of U, then

projU(v) =   
〈v, f1〉

 ______ 
‖f1‖

2
   f1 +   

〈v, f2〉
 ______ 

‖f2‖
2
   f2 + 
 +   

〈v, fm〉
 ______ 

‖fm‖
2
   fm.

PROOF

Only (3) remains to be proved. But since {f1, f2, …, fn} is an orthogonal basis 
of U and since projU(v) is in U, the result follows from the expansion theorem 
(Theorem 4) applied to the finite dimensional space U.

Note that there is no requirement in Theorem 7 that V is finite dimensional.

EXAMPLE 5

Let U be a subspace of the finite dimensional inner product space V. Show that  
proj U⊥ (v) = v - projU(v) for all v in V.

Solution ► We have V = U⊥ ⊕ U⊥⊥ by Theorem 6. If we write p = projU(v), 
then v = (v - p) + p where v - p is in U⊥ and p is in U = U⊥⊥ by 
Theorem 7. Hence  proj U⊥ (v) = v - p. See Exercise 7 Section 8.1.

The vectors v, projU (v), and v - projU (v) in Theorem 7 can be visualized 
geometrically as in the diagram (where U is shaded and dim U = 2). This 
suggests that projU(v) is the vector in U closest to v. This is, in fact, the case.

Theorem 8

Approximation Theorem
Let U be a finite dimensional subspace of an inner product space V. If v is any vector in 
V, then projU(v) is the vector in U that is closest to v. Here closest means that

‖v - projU(v)‖ < ‖v - u‖

for all u in U, u ≠ projU(v).

Definition 10.3

v
v − projUv

projUv
U

0
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PROOF

Write p = projU(v), and consider v - u = (v - p) + (p - u). Because v - p is in 
U⊥ and p - u is in U, Pythagoras’ theorem gives

‖v - u‖
2 = ‖v - p‖

2 + ‖p - u‖
2 > ‖v - p‖

2 

because p - u ≠ 0. The result follows.

EXAMPLE 6

Consider the space C[-1, 1] of real-valued continuous functions on the interval 
[-1, 1] with inner product 〈 f, g〉 =  ∫

-1  
1   f (x)g(x) dx . Find the polynomial p = p(x) 

of degree at most 2 that best approximates the absolute-value function f given 
by f (x) = |x|.

Solution ► Here we want the vector p in the subspace U = P2 of C[-1, 1] that 
is closest to f. In Example 4 the Gram-Schmidt algorithm was applied to give 
an orthogonal basis {f1 = 1, f2 = x, f3 = 3x2 - 1} of P2 (where, for convenience, 
we have changed f3 by a numerical factor). Hence the required polynomial is

 p =  proj P2 ( f )

 =   
〈f, f1〉

 _____ 
‖f1‖

2
   f1 +   

〈f, f2〉
 _____ 

‖f2‖
2
   f2 +   

〈f, f3〉
 _____ 

‖f3‖
2
   f3

 =   1 _ 2   f1 + 0f2 +   1/2 ___ 8/5   f3

 =   3 __ 16  (5x2 + 1)

The graphs of p(x) and f (x) are given in the diagram.

If polynomials of degree at most n are allowed in Example 6, the polynomial 
in Pn is  proj Pn

 ( f ), and it is calculated in the same way. Because the subspaces Pn 
get larger as n increases, it turns out that the approximating polynomials  proj Pn

 ( f ) 
get closer and closer to f. In fact, solving many practical problems comes down to 
approximating some interesting vector v (often a function) in an infinite dimensional 
inner product space V by vectors in finite dimensional subspaces (which can be 
computed). If U1 ⊆ U2 are finite dimensional subspaces of V, then

‖v -  proj U2 (v)‖ < ‖v -  proj U1 (v)‖

by Theorem 8 (because  proj U1 (v) lies in U1 and hence in U2). Thus  proj U2 (v) is a 
better approximation to v than  proj U1 (v). Hence a general method in approximation 
theory might be described as follows: Given v, use it to construct a sequence of 
finite dimensional subspaces

U1 ⊆ U2 ⊆ U3 ⊆ 


of V in such a way that ‖v -  proj Uk
 (v)‖ approaches zero as k increases. Then  

proj Uk 
 (v) is a suitable approximation to v if k is large enough. For more information, 

the interested reader may wish to consult Interpolation and Approximation by Philip J. 
Davis (New York: Blaisdell, 1963).

−1 1O x

y
y p x= ( )

y f x= ( )
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E X E R C I S E S  1 0 . 2

Use the dot product in �n unless otherwise instructed.

 1. In each case, verify that B is an orthogonal 
basis of V with the given inner product and use 
the expansion theorem to express v as a linear 
combination of the basis vectors.

 (a) v =   S   a    
b
   T  , B =  U   S   1   

-1
  T  ,   S  1   

0
  T  V , V = �2, 

  〈v, w〉 = vTAw where A =   S  2 2    
2 5

  T 

 �(b) v =   S  
a
 

 
 b   

c
   T  , B =  U   S  1 

 
 1   

1
  T  ,   S  -1

 
 

   0   
  1

   T  ,   S     1
 

 
 -6   

  1
   T  V , V = �3, 

  〈v, w〉 = vTAw where A =   S  2 0 1
 

  
 0 1 0    

1 0 2
  T 

 (c) v = a + bx + cx2, B = {1, x, 2 - 3x2}, V = P2, 
〈p, q〉 = p(0)q(0) + p(1)q(1) + p(-1)q(-1)

 �(d) v =   S   a b
        

c d
   T  , 

  B =  U   S  1 0    
0 1

  T  ,   S   1   0    
0 -1

  T  ,   S  0 1    
1 0

  T  ,   S   0 1    
-1 0

  T  V , 
  V = M22, 〈X, Y〉 = tr(XYT)

 2. Let �3 have the inner product 
〈(x, y, z), (x′, y′, z′ )〉 = 2xx′ + yy′ + 3zz′.
In each case, use the Gram-Schmidt algorithm to 
transform B into an orthogonal basis.

 (a) B = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}

 �(b) B = {(1, 1, 1), (1, -1, 1), (1, 1, 0)}

 3. Let M22 have the inner product 
〈X, Y〉 = tr(XYT). In each case, use the 
Gram-Schmidt algorithm to transform B 
into an orthogonal basis.

 (a) B =  U   S  1 1    
0 0

  T  ,   S  1 0    
1 0

  T  ,   S  0 1    
0 1

  T  ,   S  1 0    
0 1

  T  V 
 �(b) B =  U   S  1 1    

0 1
  T  ,   S  1 0    

1 1
  T  ,   S  1 0    

0 1
  T  ,   S  1 0    

0 0
  T  V 

 4. In each case, use the Gram-Schmidt process 
to convert the basis B = {1, x, x2} into an 
orthogonal basis of P2.

 (a) 〈p, q〉 = p(0)q(0) + p(1)q(1) + p(2)q(2)

 �(b) 〈p, q〉 =  ∫0  
2  p(x)q(x) dx 

 5. Show that {1, x -   1 _ 2  , x
2 - x +   1 _ 6  }, is an 

orthogonal basis of P2 with the inner product 
〈p, q〉 =  ∫ 0   

1  p(x)q(x) dx , and find the 
corresponding orthonormal basis.

 6. In each case find U⊥ and compute dim U 
and dim U⊥.

 (a) U = span{ (1, 1, 2, 0), (3, -1, 2, 1), 
(1, -3, -2, 1)} in �4

 �(b) U = span{ (1, 1, 0, 0)} in �4

 (c) U = span{1, x} in P2 with
〈p, q〉 = p(0)q(0) + p(1)q(1) + p(2)q(2)

 �(d) U = span{x} in P2 with 〈p, q〉 =  ∫0  
1 p(x)q(x)dx 

 (e) U = span U   S  1 0    
0 1

  T  ,   S  1 1    
0 0

  T  V  in M22 with

〈X, Y〉 = tr(XYT)

 �(f ) U = span  U   S  1 1    
0 0

  T  ,   S  1 0    
1 0

  T  ,   S  1 0    
1 1

  T  V  in M22 with

〈X, Y〉 = tr(XYT)

 7. Let 〈X, Y〉 = tr(XYT) in M22. In each case find 
the matrix in U closest to A.

 (a) U = span  U   S  1 0    
0 1

  T  ,   S  1 1    
1 1

  T  V , A =   S  1 -1    
2   3

  T 
 �(b) U = span  U   S  1 0    

0 1
  T  ,   S   1   1    

1 -1
  T  ,   S  1 1    

0 0
  T  V , 

  A =   S  2 1    
3 2

  T 
 8. Let 〈p(x), q(x)〉 = p(0)q(0) + p(1)q(1) + p(2)q(2) 

in P2. In each case find the polynomial in U 
closest to f (x).

 (a) U = span{1 + x, x2}, f (x) = 1 + x2

 �(b) U = span{1, 1 + x2}; f (x) = x

 9. Using the inner product 〈p, q〉 =  ∫ 0   
1  p(x)q(x) dx  

on P2, write v as the sum of a vector in U and a 
vector in U⊥.

 (a) v = x2, U = span{x + 1, 9x - 5}

 �(b) v = x2 + 1, U = span{1, 2x - 1}
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 10. (a) Show that {u, v} is orthogonal if and only if 
‖u + v‖

2 = ‖u‖
2 + ‖v‖

2.

 (b) If u = v = (1, 1) and w = (-1, 0), show that 
‖u + v + w‖

2 = ‖u‖
2 + ‖v‖

2 + ‖w‖
2 but 

{u, v, w} is not orthogonal. Hence the 
converse to Pythagoras’ theorem need not 
hold for more than two vectors.

 11. Let v and w be vectors in an inner product space 
V. Show that:

 (a) v is orthogonal to w if and only if 
‖v + w‖ = ‖v - w‖.

 �(b) v + w and v - w are orthogonal if and only 
if ‖v‖ = ‖w‖.

 12. Let U and W be subspaces of an n-dimensional 
inner product space V. If dim U + dim W = n 
and 〈u, v〉 = 0 for all u in U and w in W, show 
that U⊥ = W.

 13. If U and W are subspaces of an inner product 
space, show that (U + W)⊥ = U⊥ ∩ W⊥.

 14. If X is any set of vectors in an inner 
product space V, define 
X⊥ = {v | v in V, 〈v, x〉 = 0 for all x in X}. 

 (a) Show that X⊥ is a subspace of V.

 �(b) If U = span{u1, u2, …, um}, show that 
U⊥ = {u1, …, um}⊥.

 (c) If X ⊆ Y, show that Y⊥ ⊆ X⊥.

 (d) Show that X⊥ ∩ Y⊥ = (X ∪ Y)⊥.

 15. If dim V = n and w ≠ 0 in V, show that 
dim{v | v in V, 〈v, w〉 = 0} = n - 1.

 16. If the Gram-Schmidt process is used on an 
orthogonal basis {v1, …, vn} of V, show that 
fk = vk holds for each k = 1, 2, …, n. That is, 
show that the algorithm reproduces the same 
basis.

 17. If {f1, f2, …, fn-1} is orthonormal in an inner 
product space of dimension n, prove that 
there are exactly two vectors fn such that 
{f1, f2, …, fn-1, fn} is an orthonormal basis. 

 18. Let U be a finite dimensional subspace of an 
inner product space V, and let v be a vector in V.

 (a) Show that v lies in U if and only if 
v = projU(v).

 �(b) If V = �3, show that (-5, 4, -3) lies in 
span{(3, -2, 5), (-1, 1, 1)} but that (-1, 0, 2) 
does not.

 19. Let n ≠ 0 and w ≠ 0 be nonparallel vectors in 
�

3 (as in Chapter 4).

 (a) Show that  Un, n × w, w -   n · w _____ 
‖n‖

2
   n V  is an 

orthogonal basis of �3.

 �(b) Show that span  Un × w, w -   n · w _____ 
‖n‖

2
   n V  is the 

plane through the origin with normal n.

 20. Let E = {f1, f2, …, fn} be an orthonormal basis 
of V.

 (a) Show that 〈v, w〉 = CE(v) · CE(w) for all v, w 
in V.

 �(b) If P = [ pij] is an n × n matrix, define 
bi = pi1f1 + 
 + pinfn for each i. Show that 
B = {b1, b2, …, bn} is an orthonormal basis if 
and only if P is an orthogonal matrix.

 21. Let {f1, …, fn} be an orthogonal basis of V. If v 
and w are in V, show that

〈v, w〉 =   
〈v, f1〉〈w, f1〉

  ___________ 
‖f1‖

2
   + 
 +   

〈v, fn〉〈w, fn〉
  ___________ 

‖fn‖
2
  .

 22. Let {f1, …, fn} be an orthonormal basis 
of V, and let v = v1f1 + 
 + vnfn 
and w = w1f1 + 
 + wnfn. Show 
that 〈v, w〉 = v1w1 + 
 + vnwn and 
‖v‖

2 =  v  1  
2  + 
 +  v  n  

2  (Parseval’s formula).

 23. Let v be a vector in an inner product space V.

 (a) Show that ‖v‖ ≥ ‖projU(v)‖ holds for all 
finite dimensional subspaces U. [Hint: 
Pythagoras’ theorem.]

 �(b) If {f1, f2, …, fm} is any orthogonal set in V, 
prove Bessel’s inequality:

   
〈v, f1〉

2

 ______ 
‖f1‖

2
   + 
 +   

〈v, fm〉
2

 _______ 
‖fm‖

2
   ≤ ‖v‖

2

 24. Let B = {f1, f2, …, fn} be an orthogonal basis 
of an inner product space V. Given v ∈ V, 
let θi be the angle between v and fi for each i 
(see Exercise 31 Section 10.1). Show that 
cos2 θ1 + cos2 θ2 + 
 + cos2 θn = 1. 
[The cos θi are called direction cosines 
for v corresponding to B.] 
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 25. (a) Let S denote a set of vectors in a finite 
dimensional inner product space V, and 
suppose that 〈u, v〉 = 0 for all u in S implies 
v = 0. Show that V = span S. [Hint: Write 
U = span S and use Theorem 6.]

 (b) Let A1, A2, …, Ak be n × n matrices. Show 
that the following are equivalent.

 (i) If Aib = 0 for all i (where b is a column 
in �n), then b = 0.

 (ii) The set of all rows of the matrices Ai 
spans �n.

 26. Let [xi) = (x1, x2, …) denote a sequence 
of real numbers xi , and let 
V = {[xi) | only finitely many xi ≠ 0}.

  Define componentwise addition and scalar 
multiplication on V as follows: 
[xi) + [yi) = [xi + yi), and a[xi) = [axi) for a in �.

Given [xi) and [yi) in V, define 〈[xi), [yi)〉 =  ∑ 
i=0

   
∞

   xiyi . 

(Note that this makes sense since only finitely 
many xi and yi are nonzero.) Finally define 

U = {[xi) in V |  ∑ 
i=0

   
∞

   xi = 0 }.

 (a) Show that V is a vector space and that U is a 
subspace. 

 (b) Show that 〈 , 〉 is an inner product on V.

 (c) Show that U⊥ = {0}.

 (d) Hence show that U ⊕ U⊥ ≠ V and U ≠ U⊥⊥.

Orthogonal Diagonalization
There is a natural way to define a symmetric linear operator T on a finite 
dimensional inner product space V. If T is such an operator, it is shown in this 
section that V has an orthogonal basis consisting of eigenvectors of T. This yields 
another proof of the principal axis theorem in the context of inner product spaces.

Theorem 1

Let T : V → V be a linear operator on a finite dimensional space V. Then the following 
conditions are equivalent.

1. V has a basis consisting of eigenvectors of T.

2. There exists a basis B of V such that MB(T ) is diagonal.

PROOF

We have MB(T ) = [CB[T(b1)] CB[T(b2)] 
 CB[T(bn)]] where B = {b1, b2, …, bn} 
is any basis of V. By comparing columns:

MB(T ) = 

n

λ

λ

λ

1

2

0 0
0 0

0 0

 if and only if T(bi) = λibi for each i

Theorem 1 follows.

A linear operator T on a finite dimensional space V is called diagonalizable if V has a 
basis consisting of eigenvectors of T.

S E C T I O N  1 0 . 3

Definition 10.4
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EXAMPLE 1

Let T : P2 → P2 be given by

T(a + bx + cx2) = (a + 4c) - 2bx + (3a + 2c)x2

Find the eigenspaces of T and hence find a basis of eigenvectors.

Solution ► If B0 = {1, x, x2}, then

 M B0
 (T ) = 

1 0 4
0 2 0
3 0 2

−

so cT(x) = (x + 2)2(x - 5), and the eigenvalues of T are λ = -2 and λ = 5. 

One sees that  U   S  0 
 

 1   
0

  T  ,   S     4
 

 
   0   

-3
  T  ,   S  1 

 
 0   

1
  T  V  is a basis of eigenvectors of  M B0

 (T ), so 

B = {x, 4 - 3x2, 1 + x2} is a basis of P2 consisting of eigenvectors of T.

If V is an inner product space, the expansion theorem gives a simple formula for 
the matrix of a linear operator with respect to an orthogonal basis.

Theorem 2

Let T : V → V be a linear operator on an inner product space V. If B = {b1, b2, …, bn} 
is an orthogonal basis of V, then

MB(T ) =   S   〈bi, T(bj)〉
 _________ 

‖bi‖
2
   T 

PROOF

Write MB(T ) = [aij]. The jth column of MB(T ) is CB[T(ej)], so

T(bj) = a1jb1 + 
 + aijbi + 
 + anjbn

On the other hand, the expansion theorem (Theorem 4 Section 10.2) gives

v =   
〈b1, v〉

 ______ 
‖b1‖

2
   b1 + 
 +   

〈bi, v〉
 ______ 

‖bi‖
2
   bi + 
 +   

〈bn, v〉
 ______ 

‖bn‖
2
   bn

for any v in V. The result follows by taking v = T(bj).

EXAMPLE 2

Let T : �3 → �3 be given by

T(a, b, c) = (a + 2b - c, 2a + 3c, -a + 3b + 2c)

If the dot product in �3 is used, find the matrix of T with respect to the 
standard basis B = {e1, e2, e3} where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).
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Solution ► The basis B is orthonormal, so Theorem 2 gives 

MB(T ) = 
e1
e2
e3

·

·

·

·

·

·

·

·

·

T(e1)
T(e1)
T(e1)

T(e2)
T(e2)
T(e2)

T(e3)
T(e3)
T(e3)

e1
e2
e3

e1
e2
e3

 = 
1 2 1
2 0 3
1 3 2

−

−

Of course, this can also be found in the usual way.

It is not difficult to verify that an n × n matrix A is symmetric if and only if 
x · (Ay) = (Ax) · y holds for all columns x and y in �n. The analog for operators 
is as follows:

Theorem 3

Let V be a finite dimensional inner product space. The following conditions are 
equivalent for a linear operator T : V → V.

1. 〈v, T(w)〉 = 〈T(v), w〉 for all v and w in V.

2. The matrix of T is symmetric with respect to every orthonormal basis of V.

3. The matrix of T is symmetric with respect to some orthonormal basis of V.

4. There is an orthonormal basis B = {f1, f2, …, fn} of V such that 
〈fi, T(fj)〉 = 〈T(fi), fj〉 holds for all i and j.

PROOF

(1) ⇒ (2). Let B = {f1, …, fn} be an orthonormal basis of V, and write 
MB(T ) = [aij]. Then aij = 〈fi, T(fj)〉 by Theorem 2. Hence (1) and axiom P2 give

aij = 〈fi, T(fj)〉 = 〈T(fi), fj〉 = 〈fj, T(fi)〉 = aji

for all i and j. This shows that MB(T ) is symmetric.

(2) ⇒ (3). This is clear.

(3) ⇒ (4). Let B = {f1, …, fn} be an orthonormal basis of V such that MB(T ) is 
symmetric. By (3) and Theorem 2, 〈fi, T(fj)〉 = 〈fj, T(fi)〉 for all i and j, so (4) 
follows from axiom P2.

(4) ⇒ (1). Let v and w be vectors in V and write them as v =  ∑ 
i=1

   
n

  vi fi  and 

w =  ∑ 
j=1

   
n

  wj fj . Then 

〈v, T(w)〉 =  〈  ∑ 
i
   

 

  vi fi ,  ∑ 
j
   

 

  wjT(fj)  〉   =  ∑ 
i
   

 

     ∑ 
j
   

 

   vi wj 〈fi, T(fj)〉

=  ∑ 
i
   

 

     ∑ 
j
   

 

   vi wj 〈T(fi), fj〉

=  〈  ∑ 
i
   

 

  viT(fi) ,  ∑ 
j
   

 

  wj fj  〉  
= 〈T(v), w〉

where we used (4) at the third stage. This proves (1).
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A linear operator T on an inner product space V is called symmetric if 
〈v, T(w)〉 = 〈T(v), w〉 holds for all v and w in V.

EXAMPLE 3

If A is an n × n matrix, let TA : �n → �n be the matrix operator given by 
TA(v) = Av for all columns v. If the dot product is used in �n, then TA is a 
symmetric operator if and only if A is a symmetric matrix.

Solution ► If E is the standard basis of �n, then E is orthonormal when the dot 
product is used. We have ME(TA) = A (by Example 4 Section 9.1), so the result 
follows immediately from part (3) of Theorem 3.

It is important to note that whether an operator is symmetric depends on which 
inner product is being used (see Exercise 2).

If V is a finite dimensional inner product space, the eigenvalues of an operator 
T : V → V are the same as those of MB(T ) for any orthonormal basis B (see 
Theorem 3 Section 9.3). If T is symmetric, MB(T ) is a symmetric matrix and so 
has real eigenvalues by Theorem 7 Section 5.5. Hence we have the following:

Theorem 4

A symmetric linear operator on a finite dimensional inner product space has real 
eigenvalues.

If U is a subspace of an inner product space V, recall that its orthogonal 
complement is the subspace U⊥ of V defined by

U⊥ = {v in V | 〈v, u〉 = 0 for all u in U}. 

Theorem 5

Let T : V → V be a symmetric linear operator on an inner product space V, and let U 
be a T-invariant subspace of V. Then:

1. The restriction of T to U is a symmetric linear operator on U.

2. U⊥ is also T-invariant.

PROOF

 1. U is itself an inner product space using the same inner product, and condition 
1 in Theorem 3 that T is symmetric is clearly preserved.

 2. If v is in U⊥, our task is to show that T(v) is also in U⊥; that is, 〈T(v), u〉 = 0 for 
all u in U. But if u is in U, then T(u) also lies in U because U is T-invariant, so

〈T(v), u〉 = 〈v, T(u)〉 = 0

  using the symmetry of T and the definition of U⊥.
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The principal axis theorem (Theorem 2 Section 8.2) asserts that an n × n matrix 
A is symmetric if and only if �n has an orthogonal basis of eigenvectors of A. The 
following result not only extends this theorem to an arbitrary n-dimensional inner 
product space, but the proof is much more intuitive. 

Theorem 6

Principal Axis Theorem
The following conditions are equivalent for a linear operator T on a finite dimensional 
inner product space V.

1. T is symmetric.

2. V has an orthogonal basis consisting of eigenvectors of T.

PROOF

(1) ⇒ (2). Assume that T is symmetric and proceed by induction on n = dim V. 
If n = 1, every nonzero vector in V is an eigenvector of T, so there is nothing 
to prove. If n ≥ 2, assume inductively that the theorem holds for spaces of 
dimension less than n. Let λ1 be a real eigenvalue of T (by Theorem 4) and 
choose an eigenvector f1 corresponding to λ1. Then U = �f1 is T-invariant, so 
U⊥ is also T-invariant by Theorem 5 (T is symmetric). Because dim U⊥ = n - 1 
(Theorem 6 Section 10.2), and because the restriction of T to U⊥ is a symmetric 
operator (Theorem 5), it follows by induction that U⊥ has an orthogonal basis 
{f2, …, fn} of eigenvectors of T. Hence B = {f1, f2, …, fn} is an orthogonal basis of 
V, which proves (2).

(2) ⇒ (1). If B = {f1, …, fn} is a basis as in (2), then MB(T ) is symmetric (indeed 
diagonal), so T is symmetric by Theorem 3.

The matrix version of the principal axis theorem is an immediate consequence of 
Theorem 6. If A is an n × n symmetric matrix, then TA : �n → �n is a symmetric 
operator, so let B be an orthonormal basis of �n consisting of eigenvectors of TA 
(and hence of A). Then PTAP is diagonal where P is the orthogonal matrix whose 
columns are the vectors in B (see Theorem 4 Section 9.2).

Similarly, let T : V → V be a symmetric linear operator on the n-dimensional 
inner product space V and let B0 be any convenient orthonormal basis of V. Then 
an orthonormal basis of eigenvectors of T can be computed from  M B0

 (T ). In fact, 
if PT M B0

 (T )P is diagonal where P is orthogonal, let B = {f1, …, fn} be the vectors 
in V such that  C B0

 (fj) is column j of P for each j. Then B consists of eigenvectors of 
T by Theorem 3 Section 9.3, and they are orthonormal because B0 is orthonormal. 
Indeed 

〈fi, fj〉 =  C B0
 (fi) ·  C B0

 (fj) 

holds for all i and j, as the reader can verify. Here is an example.
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EXAMPLE 4

Let T : P2 → P2 be given by 

T(a + bx + cx2) = (8a - 2b + 2c) + (-2a + 5b + 4c)x + (2a + 4b + 5c)x2

Using the inner product 〈a + bx + cx2, a′ + b′x + c′x2
〉 = aa′ + bb′ + cc′, 

show that T is symmetric and find an orthonormal basis of P2 consisting 
of eigenvectors.

Solution ► If B0 = {1, x, x2}, then  M B0
 (T ) = 

8 22
2 4

42 5
5

−
−  is symmetric, so 

T is symmetric. This matrix was analyzed in Example 5 Section 8.2, 
where it was found that an orthonormal basis of eigenvectors is 
 U   1 _ 3  [1 2 -2]T,   1 _ 3  [2 1 2]T,   1 _ 3  [-2 2 1]T V . Because B0 is orthonormal, 
the corresponding orthonormal basis of P2 is 

B =  U   1 _ 3  (1 + 2x - 2x2),   1 _ 3  (2 + x + 2x2),   1 _ 3  (-2 + 2x + x2) V .

E X E R C I S E S  1 0 . 3

 1. In each case, show that T is symmetric by 
calculating MB(T ) for some orthonormal basis B.

 (a) T : �3 → �3; 
T(a, b, c) = (a - 2b, -2a + 2b + 2c, 2b - c); 
dot product

 �(b) T : M22 → M22; T   S   a b
        

c d
   T  =   S   c - a     d - b 

         
a + 2c b + 2d

  T ;
  inner product 

 〈    S   x y
         

z w
   T  ,   S   x′ y′

          
z′ w′

   T  〉  = xx′ + yy′ + zz′ + ww′

 (c) T : P2 → P2; T(a + bx + cx2) 
= (b + c) + (a + c)x + (a + b)x2; inner product 
〈a + bx + cx2, a′ + b′x + c′x2

〉 = aa′ + bb′ + cc′

 2. Let T : �2 → �2 be given by 
T(a, b) = (2a + b, a - b).

 (a) Show that T is symmetric if the dot product 
is used.

 (b) Show that T is not symmetric if 

〈x, y〉 = xAyT, where A =   S  1 1    
1 2

  T . 
[Hint: Check that B = {(1, 0), (1, -1)} 
is an orthonormal basis.]

 3. Let T : �2 → �2 be given by 
T(a, b) = (a - b, b - a). 
Use the dot product in �2.

 (a) Show that T is symmetric.

 (b) Show that MB(T ) is not symmetric if the 
orthogonal basis B = {(1, 0), (0, 2)} is used. 
Why does this not contradict Theorem 3?

 4. Let V be an n-dimensional inner product 
space, and let T and S denote symmetric linear 
operators on V. Show that:

 (a) The identity operator is symmetric.

 �(b) rT is symmetric for all r in �.

 (c) S + T is symmetric.

 �(d) If T is invertible, then T -1 is symmetric.

 (e) If ST = TS, then ST is symmetric.

 5. In each case, show that T is symmetric and find 
an orthonormal basis of eigenvectors of T.

 (a) T : �3 → �3; T(a, b, c) = (2a + 2c, 3b, 2a + 5c); 
use the dot product

 �(b) T : �3 → �3; T(a, b, c) = (7a - b, -a + 7b, 2c); 
use the dot product

 (c) T : P2 → P2; T(a + bx + cx2) 
= 3b + (3a + 4c)x + 4bx2; inner product 
〈a + bx + cx2, a′ + b′x + c′x2

〉 = aa′ + bb′ + cc′
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 �(d) T : P2 → P2; 
T(a + bx + cx2) = (c - a) + 3bx + (a - c)x2; 
inner product as in part (c)

 6. If A is any n × n matrix, let TA : �n → �n be 
given by TA(x) = Ax. Suppose an inner product 
on �n is given by 〈x, y〉 = xTPy, where P is a 
positive definite matrix.

 (a) Show that TA is symmetric if and only if 
PA = ATP.

 (b) Use part (a) to deduce Example 3.

 7. Let T : M22 → M22 be given by T(X) = AX, 
where A is a fixed 2 × 2 matrix.

 (a) Compute MB(T ), where 

  B =  U   S  1 0    
0 0

  T  ,   S  0 0    
1 0

  T  ,   S  0 1    
0 0

  T  ,   S  0 0    
0 1

  T  V .
  Note the order!

 �(b) Show that cT(x) = [cA(x)]2.

 (c) If the inner product on M22 is 
〈X, Y〉 = tr(XYT), show that T is symmetric 
if and only if A is a symmetric matrix.

 8. Let T : �2 → �2 be given by 
T(a, b) = (b - a, a + 2b). Show that T is 
symmetric if the dot product is used in �2 
but that it is not symmetric if the following 
inner product is used: 

  〈x, y〉 = xAyT, A =   S   1 -1     
-1   2

  T .
 9. If T : V → V is symmetric, write 

T -1(W) = {v | T(v) is in W}. Show that 
T(U )⊥ = T -1(U⊥) holds for every 
subspace U of V.

 10. Let T : M22 → M22 be defined by T(X) = PXQ, 
where P and Q are nonzero 2 × 2 matrices. Use 
the inner product 〈X, Y〉 = tr(XYT). Show that 
T is symmetric if and only if either P and Q are 
both symmetric or both are scalar multiples 

of   S   0 1    
-1 0

  T . [Hint: If B is as in part (a) of 

Exercise 7, then MB(T ) =   S   aP cP
            

bP dP
   T  in block 

form, where Q =   S   a b
        

c d
   T . 

If B0 =  U   S  1 0    
0 0

  T  ,   S  0 1    
0 0

  T  ,   S  0 0    
1 0

  T  ,   S  0 0    
0 1

  T  V ,

  then MB(T ) =   S  pQT qQT

     
rQT sQT

  T  , where P =   S   p q
        

r s
   T . 

  Use the fact that cP = bPT ⇒ (c2 - b2)P = 0.]

 11. Let T : V → W be any linear transformation 
and let B = {b1, …, bn} and D = {d1, …, dm} be 
bases of V and W, respectively. If W is an inner 
product space and D is orthogonal, show that

MDB(T) =   S   〈di, T(bj)〉
 _________ 

‖di‖
2
   T 

  This is a generalization of Theorem 2.

 12. Let T : V → V be a linear operator on an inner 
product space V of finite dimension. Show that 
the following are equivalent.

 (1) 〈v, T(w)〉 = -〈T(v), w〉 for all v and w in V.

 �(2) MB(T ) is skew-symmetric for every 
orthonormal basis B.

 (3) MB(T ) is skew-symmetric for some 
orthonormal basis B.

  Such operators T are called skew-symmetric 
operators.

 13. Let T : V → V be a linear operator on an 
n-dimensional inner product space V.

 (a) Show that T is symmetric if and only if it 
satisfies the following two conditions.

 (i) cT(x) factors completely over �.

 (ii) If U is a T-invariant subspace of V, 
then U⊥ is also T-invariant.

 (b) Using the standard inner product on �2, 
show that T : �2 → �2 with 
T(a, b) = (a, a + b) satisfies condition (i) 
and that S : �2 → �2 with S(a, b) = (b, -a) 
satisfies condition (ii), but that neither is 
symmetric. (Example 4 Section 9.3 is useful 
for S.)

  [Hint for part (a): If conditions (i) and (ii) hold, 
proceed by induction on n. By condition (i), let 
e1 be an eigenvector of T. If U = �e1, then U⊥ 
is T-invariant by condition (ii), so show that 
the restriction of T to U⊥ satisfies conditions (i) 
and (ii). (Theorem 1 Section 9.3 is helpful for 
part (i)). Then apply induction to show that V 
has an orthogonal basis of eigenvectors (as in 
Theorem 6)].
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 14. Let B = {f1, f2, …, fn} be an orthonormal basis 
of an inner product space V. Given T : V → V, 
define T ′ : V → V by

T ′(v) =  〈v, T(f1)〉f1 + 〈v, T(f2)〉f2 

+ 
 + 〈v, T(fn)〉fn =  ∑ 
i=1

   
n

  〈v, T(fi)〉fi 

 (a) Show that (aT )′ = aT ′.

 (b) Show that (S + T )′ = S′ + T ′.

 �(c) Show that MB(T ′ ) is the transpose of MB(T ).

 (d) Show that (T ′ )′ = T, using part (c). [Hint: 
MB(S) = MB(T ) implies that S = T.]

 (e) Show that (ST )′ = T ′S′, using part (c).

 (f ) Show that T is symmetric if and only if 
T = T ′. [Hint: Use the expansion theorem 
and Theorem 3.]

 (g) Show that T + T ′ and TT ′ are symmetric, 
using parts (b) through (e).

 (h) Show that T ′(v) is independent of the 
choice of orthonormal basis B. [Hint: If 
D = {g1, …, gn} is also orthonormal, use the 

fact that fi =  ∑ 
j=1

   
n

  〈fi, gj〉gj  for each i.]

 15. Let V be a finite dimensional inner product 
space. Show that the following conditions are 
equivalent for a linear operator T : V → V.

 (1) T is symmetric and T 2 = T.

 (2) MB(T ) =   S  Ir 0
    

0 0
  T  for some orthonormal basis B 

of V.

  An operator is called a projection if it satisfies 
these conditions. [Hint: If T 2 = T and T(v) = λv, 
apply T to get λv = λ2v. Hence show that 0, 1 
are the only eigenvalues of T.]

 16. Let V denote a finite dimensional inner product 
space. Given a subspace U, define projU : V → V 
as in Theorem 7 Section 10.2.

 (a) Show that projU is a projection in the sense 
of Exercise 15. 

 (b) If T is any projection, show that T = projU, 
where U = im T. [Hint: Use T 2 = T to show 
that V = im T ⊕ ker T and T(u) = u for all 
u in im T. Use the fact that T is symmetric 
to show that ker T ⊆ (im T )⊥ and hence that 
these are equal because they have the same 
dimension.]

Isometries
We saw in Section 2.6 that rotations about the origin and reflections in a line 
through the origin are linear operators on �2. Similar geometric arguments (in 
Section 4.4) establish that, in �3, rotations about a line through the origin and 
reflections in a plane through the origin are linear. We are going to give an 
algebraic proof of these results that is valid in any inner product space. The key 
observation is that reflections and rotations are distance preserving in the following 
sense. If V is an inner product space, a transformation S : V → V (not necessarily 
linear) is said to be distance preserving if the distance between S(v) and S(w) is the 
same as the distance between v and w for all vectors v and w; more formally, if 

 ‖S(v) - S(w)‖ = ‖v - w‖ for all v and w in V. (∗)

Distance-preserving maps need not be linear. For example, if u is any vector in 
V, the transformation Su : V → V defined by Su(v) = v + u for all v in V is called 
translation by u, and it is routine to verify that Su is distance preserving for any u. 
However, Su is linear only if u = 0 (since then Su(0) = 0). Remarkably, distance-
preserving operators that do fix the origin are necessarily linear. 

Lemma 1

Let V be an inner product space of dimension n, and consider a distance-preserving 
transformation S : V → V. If S(0) = 0, then S is linear.

S E C T I O N  1 0 . 4
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PROOF

We have ‖S(v) - S(w)‖2 = ‖v - w‖
2 for all v and w in V by (∗), which gives 

 〈S(v), S(w)〉 = 〈v, w〉 for all v and w in V. (∗∗)

Now let {f1, f2, …, fn} be an orthonormal basis of V. Then {S(f1), S(f2), …, S(fn)} 
is orthonormal by (∗∗) and so is a basis because dim V = n. Now compute: 

〈S(v + w) - S(v) - S(w), S(fi)〉  = 〈S(v + w), S(fi)〉 - 〈S(v), S(fi)〉 - 〈S(w), S(fi)〉
= 〈v + w, fi〉 - 〈v, fi〉 - 〈w, fi〉

= 0

for each i. It follows from the expansion theorem (Theorem 4 Section 10.2) 
that S(v + w) - S(v) - S(w) = 0; that is, S(v + w) = S(v) + S(w). A similar 
argument shows that S(av) = aS(v) holds for all a in � and v in V, so S is 
linear after all.

Distance-preserving linear operators are called isometries.

It is routine to verify that the composite of two distance-preserving 
transformations is again distance preserving. In particular the composite of a 
translation and an isometry is distance preserving. Surprisingly, the converse is true.

Theorem 1

If V is a finite dimensional inner product space, then every distance-preserving 
transformation S : V → V is the composite of a translation and an isometry.

PROOF

If S : V → V is distance preserving, write S(0) = u and define T : V → V by 
T(v) = S(v) - u for all v in V. Then ‖T(v) - T(w)‖ = ‖v - w‖ for all vectors 
v and w in V as the reader can verify; that is, T is distance preserving. Clearly, 
T(0) = 0, so it is an isometry by Lemma 1. Since S(v) = u + T(v) = (Su ◦ T )(v) 
for all v in V, we have S = Su ◦ T, and the theorem is proved.

In Theorem 1, S = Su ◦ T factors as the composite of an isometry T followed by a 
translation Su. More is true: this factorization is unique in that u and T are uniquely 
determined by S; and w ∈ V exists such that S = T ◦ Sw is uniquely the composite of 
translation by w followed by the same isometry T (Exercise 12).

Theorem 1 focuses our attention on the isometries, and the next theorem shows 
that, while they preserve distance, they are characterized as those operators that 
preserve other properties.

Theorem 2

Let T : V → V be a linear operator on a finite dimensional inner product space V.
The following conditions are equivalent: 

1. T is an isometry. (T preserves distance)

Definition 10.5
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2. ‖T(v)‖ = ‖v‖ for all v in V. (T preserves norms)
3. 〈T(v), T(w)〉 = 〈v, w〉 for all v and w in V. (T preserves inner products)
4. If {f1, f2, …, fn} is an orthonormal basis of V, 

then {T(f1), T(f2), …, T(fn)} is also an 
orthonormal basis. (T preserves orthonormal bases)

5. T carries some orthonormal basis to an orthonormal basis.

PROOF

(1) ⇒ (2). Take w = 0 in (∗). 

(2) ⇒ (3). Since T is linear, (2) gives ‖T(v) - T(w)‖2 = ‖T(v - w)‖2 = ‖v - w‖
2.

Now (3) follows. 

(3) ⇒ (4). By (3), {T(f1), T(f2), …, T(fn)} is orthogonal and ‖T(fi)‖
2 = ‖fi‖

2
 = 1. 

Hence it is a basis because dim V = n.

(4) ⇒ (5). This needs no proof. 

(5) ⇒ (1). By (5), let {f1, …, fn} be an orthonormal basis of V such that
{T(f1), …, T(fn)} is also orthonormal. Given v = v1f1 + 
 + vnfn in V, we have 
T(v) = v1T(f1) + 
 + vnT(fn) so Pythagoras’ theorem gives 

‖T(v)‖2 =  v  1  
2  + 
 +  v  n  

2  = ‖v‖
2.

Hence ‖T(v)‖ = ‖v‖ for all v, and (1) follows by replacing v by v - w.

Before giving examples, we note some consequences of Theorem 2.

Corollary 1

Let V be a finite dimensional inner product space. 
1. Every isometry of V is an isomorphism.5

2. (a) 1V : V → V is an isometry. 
 (b) The composite of two isometries of V is an isometry. 
 (c) The inverse of an isometry of V is an isometry.5

PROOF

(1) is by (4) of Theorem 2 and Theorem 1 Section 7.3. (2a) is clear, and (2b) is 
left to the reader. If T : V → V is an isometry and {f1, …, fn} is an orthonormal 
basis of V, then (2c) follows because T -1 carries the orthonormal basis 
{T(f1), …, T(fn)} back to {f1, …, fn}.

The conditions in part (2) of the corollary assert that the set of isometries 
of a finite dimensional inner product space forms an algebraic system called a 
group. The theory of groups is well developed, and groups of operators are 
important in geometry. In fact, geometry itself can be fruitfully viewed as the 

5 V must be finite dimensional—see Exercise 13.

495SECTION 10.4 Isometries



study of those properties of a vector space that are preserved by a group of 
invertible linear operators. 

EXAMPLE 1

Rotations of �2 about the origin are isometries, as are reflections in lines 
through the origin: They clearly preserve distance and so are linear by Lemma 
1. Similarly, rotations about lines through the origin and reflections in planes 
through the origin are isometries of �3.

EXAMPLE 2

Let T : Mnn → Mnn be the transposition operator: T(A) = AT. Then T is an 
isometry if the inner product is 〈A, B〉 = tr(ABT) =  ∑ 

i, j
   

 
  aijbij . In fact, T permutes 

the basis consisting of all matrices with one entry 1 and the other entries 0.

The proof of the next result requires the fact (see Theorem 2) that, if B is an 
orthonormal basis, then 〈v, w〉 = CB(v) · CB(w) for all vectors v and w.

Theorem 3

Let T : V → V be an operator where V is a finite dimensional inner product space. 
The following conditions are equivalent.

1. T is an isometry.

2. MB(T ) is an orthogonal matrix for every orthonormal basis B.

3. MB(T ) is an orthogonal matrix for some orthonormal basis B.

PROOF

(1) ⇒ (2). Let B = {e1, …, en} be an orthonormal basis. Then the jth column of 
MB(T ) is CB[T(ej)], and we have

CB[T(ej)] · CB[T(ek)] = 〈T(ej), T(ek)〉 = 〈ej, ek〉

using (1). Hence the columns of MB(T ) are orthonormal in �n, which proves (2).

(2) ⇒ (3). This is clear.

(3) ⇒ (1). Let B = {e1, …, en} be as in (3). Then, as before,

〈T(ej), T(ek)〉 = CB[T(ej)] · CB[T(ek)]

so {T(e1), …, T(en)} is orthonormal by (3). Hence Theorem 2 gives (1).

It is important that B is orthonormal in Theorem 3. For example, T : V → V given by 
T(v) = 2v preserves orthogonal sets but is not an isometry, as is easily checked.
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If P is an orthogonal square matrix, then P-1 = PT. Taking determinants yields 
(det P)2 = 1, so det P = ±1. Hence:

Corollary 2

If T : V → V is an isometry where V is a finite dimensional inner product space, then 
det T = ±1.

EXAMPLE 3

If A is any n × n matrix, the matrix operator TA : �n → �n is an isometry if and 
only if A is orthogonal using the dot product in �n. Indeed, if E is the standard 
basis of �n, then ME (TA) = A by Theorem 4, Section 9.2.

Rotations and reflections that fix the origin are isometries in �2 and �3 
(Example 1); we are going to show that these isometries (and compositions of 
them in �3) are the only possibilities. In fact, this will follow from a general 
structure theorem for isometries. Surprisingly enough, much of the work 
involves the two-dimensional case.

Theorem 4

Let T : V → V be an isometry on the two-dimensional inner product space V. Then 
there are two possibilities.
Either (1) There is an orthonormal basis B of V such that 

MB(T ) =   S  cos θ -sin θ
        

sin θ   cos θ
  T  , 0 ≤ θ < 2π

or (2) There is an orthonormal basis B of V such that

MB(T ) =   S   1   0    
0 -1

  T 
Furthermore, type (1) occurs if and only if det T = 1, and type (2) occurs if and only if 
det T = -1.

PROOF

The final statement follows from the rest because det T = det[MB(T )] for any 
basis B. Let B0 = {e1, e2} be any ordered orthonormal basis of V and write 

A =  M B0
 (T ) =   S   a b

        
c d

   T ; that is,   
T(e1) = ae1 + ce2                               
T(e2) = be1 + de2

  

Then A is orthogonal by Theorem 3, so its columns (and rows) are orthonormal. 
Hence a2 + c2 = 1 = b2 + d2, so (a, c) and (d, b) lie on the unit circle. Thus 
angles θ and φ exist such that

a = cos θ,  c = sin θ  0 ≤ θ  < 2π

d = cos φ, b = sin φ 0 ≤ φ < 2π
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Then sin(θ + φ) = cd + ab = 0 because the columns of A are orthogonal, so 
θ + φ = kπ for some integer k. This gives d = cos(kπ - θ) = (-1)k cos θ and 
b = sin(kπ - θ) = (-1)k+1 sin θ. Finally

A =   S   cos θ (-1)k+1 sin θ
          

sin θ  (-1)k cos θ 
  T 

If k is even we are in type (1) with B = B0, so assume k is odd. Then A =   S   a   c
    

c -a
  T .

If a = -1 and c = 0, we are in type (1) with B = {e2, e2}. Otherwise A has 

eigenvalues λ1 = 1 and λ2 = -1 with corresponding eigenvectors x1 =   S   1 + a
           c   T  

and x2 =   S   -c
           

1 + a
   T  as the reader can verify. Write 

f1 = (1 + a)e1 + ce2 and f2 = -ce2 + (1 + a)e2.

Then f1 and f2 are orthogonal (verify) and  C B0
 (fi) =  C B0

 (λifi) = xi for each i. 
Moreover 

 C B0
 [T(fi)] = A C B0

 (fi) = Axi = λixi = λi C B0
 (fi) =  C B0

 (λifi),

so T(fi) = λifi for each i. Hence MB(T ) =   S  λ1 0 
    

0 λ2
  T  =   S   1   0    

0 -1
  T  and we are in type (2) 

with B =  U   1 ____ 
 ‖  f 1  ‖ 

    f 1 ,   1 ____ 
 ‖  f 2  ‖ 

    f 2  V .

Corollary 3

An operator T : �2 → �2 is an isometry if and only if T is a rotation or a reflection.

In fact, if E is the standard basis of �2, then the clockwise rotation Rθ about the 
origin through an angle θ has matrix

ME(Rθ) =   S  cos θ -sin θ
        

sin θ   cos θ
  T 

(see Theorem 4 Section 2.6). On the other hand, if S : �2 → �2 is the reflection in a 
line through the origin (called the fixed line of the reflection), let f1 be a unit vector 
pointing along the fixed line and let f2 be a unit vector perpendicular to the fixed 
line. Then B = {f1, f2} is an orthonormal basis, S(f1) = f1 and S(f2) = -f2, so

MB(S) =   S   1   0    
0 -1

  T 
Thus S is of type 2. Note that, in this case, 1 is an eigenvalue of S, and any 
eigenvector corresponding to 1 is a direction vector for the fixed line.
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EXAMPLE 4

In each case, determine whether TA : �2 → �2 is a rotation or a reflection, and 
then find the angle or fixed line:

(a) A =   1 _ 2     S   1   √ 

__

 3       
- √ 

__

 3    1
  T  (b) A =   1 _ 5     S  -3 4    

4 3
  T 

Solution ► Both matrices are orthogonal, so (because ME(TA) = A, where 
E is the standard basis) TA is an isometry in both cases. In the first case, 
det A = 1, so TA is a counterclockwise rotation through θ, where cos θ =   1 _ 2   and 
sin θ = -  

 √ 

__

 3  
 __ 2  . Thus θ = -  π 

__ 3  . In (b), det A = -1, so TA is a reflection in this case. 

We verify that d =   S   1     
2

   T  is an eigenvector corresponding to the eigenvalue 1. 

Hence the fixed line �d has equation y = 2x.

We now give a structure theorem for isometries. The proof requires three 
preliminary results, each of interest in its own right.

Lemma 2

Let T : V → V be an isometry of a finite dimensional inner product space V. If U is a 
T-invariant subspace of V, then U⊥ is also T-invariant.

PROOF

Let w lie in U⊥. We are to prove that T(w) is also in U⊥; that is, 〈T(w), u〉 = 0 
for all u in U. At this point, observe that the restriction of T to U is an isometry 
U → U and so is an isomorphism by the corollary to Theorem 2. In particular, 
each u in U can be written in the form u = T(u1) for some u1 in U, so

〈T(w), u〉 = 〈T(w), T(u1)〉 = 〈w, u1〉 = 0

because w is in U⊥. This is what we wanted.

To employ Lemma 2 above to analyze an isometry T : V → V when dim V = n, 
it is necessary to show that a T-invariant subspace U exists such that U ≠ 0 and 
U ≠ V. We will show, in fact, that such a subspace U can always be found of 
dimension 1 or 2. If T has a real eigenvalue λ then �u is T-invariant where u is any 
λ-eigenvector. But, in case (1) of Theorem 4, the eigenvalues of T are eiθ and e-iθ 
(the reader should check this), and these are nonreal if θ ≠ 0 and θ ≠ π. It turns out 
that every complex eigenvalue λ of T has absolute value 1 (Lemma 3 below); and 
that U has a T-invariant subspace of dimension 2 if λ is not real (Lemma 4).

Lemma 3

Let T : V → V be an isometry of the finite dimensional inner product space V. If λ is a 
complex eigenvalue of T, then |λ| = 1.
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PROOF

Choose an orthonormal basis B of V, and let A = MB(T ). Then A is a real 
orthogonal matrix so, using the standard inner product 〈x, y〉 = xT 

__
 y   in �n, 

we get

‖Ax‖
2 = (Ax)T( 

___
 Ax  ) = xTAT  

___
 Ax   = xTIx = ‖x‖

2

for all x in �n. But Ax = λx for some x ≠ 0, whence ‖x‖
2 = ‖λx‖

2 = |λ|
2
‖x‖

2. 
This gives |λ| = 1, as required.

Lemma 4

Let T : V → V be an isometry of the n-dimensional inner product space V. If T has a 
nonreal eigenvalue, then V has a two-dimensional T-invariant subspace.

PROOF

Let B be an orthonormal basis of V, let A = MB(T ), and (using Lemma 3) let 
λ = eiα be a nonreal eigenvalue of A, say Ax = λx where x ≠ 0 in �n. Because 
A is real, complex conjugation gives A 

__
 x   =  

__
 λ    
__

 x  , so  
__

 λ   is also an eigenvalue. 
Moreover λ ≠  

__
 λ   (λ is nonreal), so {x,  

__
 x  } is linearly independent in �n (the 

argument in the proof of Theorem 4 Section 5.5 works). Now define

z1 = x +  
__

 x   and z2 = i(x -  
__

 x  )

Then z1 and z2 lie in �n, and {z1, z2} is linearly independent over � because 
{x,  

__
 x  } is linearly independent over �. Moreover

x =   1 _ 2  (z1 - iz2) and  
__

 x   =   1 _ 2  (z1 + iz2)

Now λ +  
__

 λ   = 2 cos α and λ -  
__

 λ   = 2i sin α, and a routine computation gives

 Az1 = z1 cos α + z2 sin α
 Az2 = -z1 sin α + z2 cos α

Finally, let e1 and e2 in V be such that z1 = CB(e1) and z2 = CB(e2). Then 

CB[T(e1)] = ACB(e1) = Az1 = CB(e1 cos α + e2 sin α)

using Theorem 2 Section 9.1. Because CB is one-to-one, this gives the first 
of the following equations (the other is similar):

 T(e1) = e1 cos α + e2 sin α
 T(e2) = -e1 sin α + e2 cos α

Thus U = span{e1, e2} is T-invariant and two-dimensional.

We can now prove the structure theorem for isometries.
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Theorem 5

Let T : V → V be an isometry of the n-dimensional inner product space V. Given an 

angle θ, write R(θ) =   S  cos θ -sin θ
        

sin θ   cos θ
  T . Then there exists an orthonormal basis B of V 

such that MB(T ) has one of the following block diagonal forms, classified for convenience 
by whether n is odd or even:

n = 2k + 1 
R

R k

1 0
00 ( )

0 0

0

( )

1θ

θ

 or 
R

−1 0
0

0

0

0 ( )1θ

0 ( )R kθ

n = 2k 

( )
( )
0

0

0 0

0

0

( )

1

2

R
R

R k

θ

θ

θ

 or R

R k

−

−

1
1

00

00

0 0
0 ( )

(

00
0
0

0 0 )

1

1

θ

θ

PROOF

We show first, by induction on n, that an orthonormal basis B of V can be found 
such that MB(T ) is a block diagonal matrix of the following form:

MB(T ) = 

I
I

R

R(θt)

r

s

(θ1)
−
0 0 0

0 0 0
0 0 0

0 0 0

where the identity matrix Ir, the matrix -Is, or the matrices R(θi) may be missing. 
If n = 1 and V = �v, this holds because T(v) = λv and λ = ±1 by Lemma 3. 
If n = 2, this follows from Theorem 4. If n ≥ 3, either T has a real eigenvalue 
and therefore has a one-dimensional T-invariant subspace U = �u for any 
eigenvector u, or T has no real eigenvalue and therefore has a two-dimensional 
T-invariant subspace U by Lemma 4. In either case U⊥ is T-invariant (Lemma 
2) and dim U⊥ = n - dim U < n. Hence, by induction, let B1 and B2 be 
orthonormal bases of U and U⊥ such that  M B1

 (T ) and  M B2
 (T ) have the form 

given. Then B = B1 ∪ B2 is an orthonormal basis of V, and MB(T ) has the 
desired form with a suitable ordering of the vectors in B.

Now observe that R(0) =   S  1 0    
0 1

  T  and R(π) =   S  -1   0     
0 -1

  T . It follows that an even 

number of 1s or -1s can be written as R(θ1)-blocks. Hence, with a suitable 
reordering of the basis B, the theorem follows.

As in the dimension 2 situation, these possibilities can be given a geometric 
interpretation when V = �3 is taken as euclidean space. As before, this entails 
looking carefully at reflections and rotations in �3. If Q : �3 → �3 is any reflection 
in a plane through the origin (called the fixed plane of the reflection), take 
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{f2, f3} to be any orthonormal basis of the fixed plane and take f1 to be a unit 
vector perpendicular to the fixed plane. Then Q(f1) = -f1, whereas Q(f2) = f2 and 
Q(f3) = f3. Hence B = {f1, f2, f3} is an orthonormal basis such that

MB(Q) = 
−1 0 0
0 1 0
0 0 1

Similarly, suppose that R : �3 → �3 is any rotation about a line through the 
origin (called the axis of the rotation), and let f1 be a unit vector pointing along the 
axis, so R(f1) = f1. Now the plane through the origin perpendicular to the axis is an 
R-invariant subspace of �2 of dimension 2, and the restriction of R to this plane is 
a rotation. Hence, by Theorem 4, there is an orthonormal basis B1 = {f2, f3} of this 

plane such that  M B1
 (R) =   S  cos θ -sin θ

        
sin θ   cos θ

  T . But then B = {f1, f2, f3} is an orthonormal 

basis of �3 such that the matrix of R is

MB(R) = 
1 00
0
0

−cos θ sin θ
sin θ cos θ

However, Theorem 5 shows that there are isometries T in �3 of a third type: 
those with a matrix of the form

MB(T) = 
1 00
0
0

−
−cos sin

sin cos
θ

θ

θ

θ

If B = {f1, f2, f3}, let Q be the reflection in the plane spanned by f2 and f3, and let R 
be the rotation corresponding to θ about the line spanned by f1. Then MB(Q) and 
MB(R) are as above, and MB(Q) MB(R) = MB(T ) as the reader can verify. This means 
that MB(QR) = MB(T ) by Theorem 1 Section 9.2, and this in turn implies that 
QR = T because MB is one-to-one (see Exercise 26 Section 9.1). A similar argument 
shows that RQ = T, and we have Theorem 6.

Theorem 6

If T : �3 → �3 is an isometry, there are three possibilities.

(a) T is a rotation, and MB(T) = 
1 00
0
0

−cos sin
sin cos

θ

θ

θ

θ
 for some orthonormal basis B.

(b) T is a reflection, and MB(T) = 
1 00
0 0

00 1
1

−
 for some orthonormal basis B.

(c) T = QR = RQ where Q is a reflection, R is a rotation about an axis 

perpendicular to the fixed plane of Q and MB(T) = 
1 00
0
0

−
−cos sin

sin cos
θ

θ

θ

θ
 for some 

orthonormal basis B.

Hence T is a rotation if and only if det T = 1.
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PROOF

It remains only to verify the final observation that T is a rotation if and only if 
det T = 1. But clearly det T = -1 in parts (b) and (c).

A useful way of analyzing a given isometry T : �3 → �3 comes from computing 
the eigenvalues of T. Because the characteristic polynomial of T has degree 3, it 
must have a real root. Hence, there must be at least one real eigenvalue, and the only 
possible real eigenvalues are ±1 by Lemma 3. Thus Table 1 includes all possibilities.

TABLE 1

Eigenvalues of T Action of T
(1)  1, no other real 

eigenvalues
Rotation about the line �f where f is an eigenvector 
corresponding to 1. [Case (a) of Theorem 6.]

(2)  -1, no other 
real eigenvalues

Rotation about the line �f followed by reflection in the 
plane (�f )⊥ where f is an eigenvector corresponding to -1. 
[Case (c) of Theorem 6.]

(3) -1, 1, 1 Reflection in the plane (�f )⊥ where f is an eigenvector 
corresponding to -1. [Case (b) of Theorem 6.]

(4) 1, -1, -1 This is as in (1) with a rotation of π.
(5) -1, -1, -1 Here T(x) = -x for all x. This is (2) with a rotation of π.
(6) 1, 1, 1 Here T is the identity isometry.

EXAMPLE 5

Analyze the isometry T : �3 → �3 given by T   S  
x
 

 
 y   

z
   T  =   S   

y

 
 

 z   
-x

  T .

Solution ► If B0 is the standard basis of �3, then  M B0
 (T) = 

0 0
0 1

1

1 00
0

−
, 

so cT(x) = x3 + 1 = (x + 1)(x2 - x + 1). This is (2) in Table 1. Write:

f1 =   1 __ 
 √ 

__

 3  
     S     1

 
 

 -1   
  1

   T  f2 =   1 __ 
 √ 

__

 6  
     S  1 
 

 2   
1

  T  f3 =   1 __ 
 √ 

__

 2  
     S     1

 
 

   0   
-1

  T 
Here f1 is a unit eigenvector corresponding to λ1 = -1, so T is a rotation 
(through an angle θ) about the line L = �f1, followed by reflection in the 
plane U through the origin perpendicular to f1 (with equation x - y + z = 0). 
Then, {f1, f2} is chosen as an orthonormal basis of U, so B = {f1, f2, f3} is an 
orthonormal basis of �3 and

MB(T ) = 
−

−
1 0 0

0

0

1
2

3
2

3
2

1
2

Hence θ is given by cos θ =   1 _ 2  , sin θ =    √ 

__

 3  
 __ 2  , so θ =   π __ 3  .
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Let V be an n-dimensional inner product space. A subspace of V of dimension 
n - 1 is called a hyperplane in V. Thus the hyperplanes in �3 and �2 are, 
respectively, the planes and lines through the origin. Let Q : V → V be an isometry 
with matrix

MB(Q) =   S   -1  0      
  0 In-1

  T 
for some orthonormal basis B = {f1, f2, …, fn}. Then Q(f1) = -f1 whereas Q(u) = u 
for each u in U = span{f2, …, fn}. Hence U is called the fixed hyperplane of Q, and 
Q is called reflection in U. Note that each hyperplane in V is the fixed hyperplane 
of a (unique) reflection of V. Clearly, reflections in �2 and �3 are reflections in this 
more general sense.

Continuing the analogy with �2 and �3, an isometry T : V → V is called a 
rotation if there exists an orthonormal basis {f1, …, fn} such that

MB(T ) = 
I

R
I

r

s

(θ)
0 0

0 0
0 0

in block form, where R(θ) =   S  cos θ -sin θ
        

sin θ   cos θ
  T  , and where either Ir or Is (or both) may 

be missing. If R(θ) occupies columns i and i + 1 of MB(T ), and if W = span{fi, fi+1}, 
then W is T-invariant and the matrix of T : W → W with respect to {fi, fi+1} 
is R(θ). Clearly, if W is viewed as a copy of �2, then T is a rotation in W. 
Moreover, T(u) = u holds for all vectors u in the (n - 2)-dimensional subspace 
U = span{f1, …, fi-1, fi+1, …, fn}, and U is called the fixed axis of the rotation T. 
In �3, the axis of any rotation is a line (one-dimensional), whereas in �2 the axis is 
U = {0}.

With these definitions, the following theorem is an immediate consequence of 
Theorem 5 (the details are left to the reader).

Theorem 7

Let T : V → V be an isometry of a finite dimensional inner product space V. Then there 
exist isometries T1, …, Tk such that

T = TkTk-1
T2T1

where each Ti is either a rotation or a reflection, at most one is a reflection, and 
TiTj = TjTi holds for all i and j. Furthermore, T is a composite of rotations if and only if 
det T = 1.

E X E R C I S E S  1 0 . 4

Throughout these exercises, V denotes a finite 
dimensional inner product space.

 1. Show that the following linear operators are 
isometries.

 (a) T : � → �; T(z) =  
__

 z  ; 〈z, w〉 = re(z 
__

 w  )

 (b) T : �n → �n; T(a1, a2, …, an) 
= (an, an-1, …, a2, a1); dot product

 (c) T : M22 → M22; T   S   a b        
c d

   T  =   S   c d        
b a

   T ;
〈A, B〉 = tr(ABT)

 (d) T : �3 → �3; T(a, b, c) 
=   1 _ 9  (2a + 2b - c, 2a + 2c - b, 2b + 2c - a); 
dot product
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 2. In each case, show that T is an isometry of �2, 
determine whether it is a rotation or a reflection, 
and find the angle or the fixed line. Use the dot 
product.

 (a) T   S   a   
b
  T  =   S  -a

   
b
  T  �(b) T   S   a   

b
  T  =   S  -a

   
-b

  T 

 (c) T   S   a   
b
  T  =   S   b

   
-a

  T  �(d) T   S   a   
b
  T  =   S   -b

   
-a

  T 

 (e) T   S   a   
b
  T  =   1 __ 

 √ 

__

 2  
     S  a + b

    
b - a

  T  �(f ) T   S   a   
b
  T  =   1 __ 

 √ 

__

 2  
     S  a - b

    
a + b

  T 
 3. In each case, show that T is an isometry of �3, 

determine the type (Theorem 6), and find the 
axis of any rotations and the fixed plane of any 
reflections involved.

 (a) T   S   
a
 

 
 b   

c
   T  =   S   

  a
 

 
 -b   

  c
   T  �(b) T   S   

a
 

 
 b   

c
   T  =   1 _ 2     S   √ 

__

 3  c - a
 

   
  √ 

__

 3  a + c     
2b

   T 
 (c) T   S   

a
 

 
 b   

c
   T  =   S    b 

 
 c   

a
  T  �(d) T   S   

a
 

 
 b   

c
   T  =   S   

  a
 

 
 -b   

-c
   T 

 (e) T   S   
a
 

 
 b   

c
   T  =   1 _ 2     S  a +  √ 

__

 3  b
 

   
 b -  √ 

__

 3  a     
2c

   T 
 �(f ) T   S   

a
 

 
 b   

c
   T  =   1 __ 

 √ 

__

 2  
     S   

a + c
 

  
 - √ 

__

 2  b    
c - a

   T 
 4. Let T : �2 → �2 be an isometry. A vector x in 

�
2 is said to be fixed by T if T(x) = x. Let E1 

denote the set of all vectors in �2 fixed by T. 
Show that:

 (a) E1 is a subspace of �2.

 (b) E1 = �2 if and only if T = 1 is the identity 
map.

 (c) dim E1 = 1 if and only if T is a reflection 
(about the line E1).

 (d) E1 = {0} if and only if T is a rotation (T ≠ 1).

 5. Let T : �3 → �3 be an isometry, and let E1 
be the subspace of all fixed vectors in �3 (see 
Exercise 4). Show that:

 (a) E1 = �3 if and only if T = 1.

 (b) dim E1 = 2 if and only if T is a reflection 
(about the plane E1).

 (c) dim E1 = 1 if and only if T is a rotation 
(T ≠ 1) (about the line E1).

 (d) dim E1 = 0 if and only if T is a reflection 
followed by a (nonidentity) rotation.

 �6. If T is an isometry, show that aT is an isometry if 
and only if a = ±1.

 7. Show that every isometry preserves the angle 
between any pair of nonzero vectors (see 
Exercise 31 Section 10.1). Must an angle-
preserving isomorphism be an isometry? 
Support your answer.

 8. If T : V → V is an isometry, show that T 2 = 1V if 
and only if the only complex eigenvalues of T are 
1 and -1.

 9. Let T : V → V be a linear operator. Show that 
any two of the following conditions implies the 
third:

 (1) T is symmetric.

 (2) T is an involution (T 2 = 1V).

 (3) T is an isometry.

  [Hint: In all cases, use the definition 
〈v, T(w)〉 = 〈T(v), w〉 of a symmetric operator. 
For (1) and (3) ⇒ (2), use the fact that, if 
〈T 2(v) - v, w〉 = 0 for all w, then T 2(v) = v.]

 10. If B and D are any orthonormal bases of V, show 
that there is an isometry T : V → V that carries 
B to D.

 11. Show that the following are equivalent for a 
linear transformation S : V → V where V is 
finite dimensional and S ≠ 0:

 (1) 〈S(v), S(w)〉 = 0 whenever 〈v, w〉 = 0;

 (2) S = aT for some isometry T : V → V and 
some a ≠ 0 in �.

 (3) S is an isomorphism and preserves angles 
between nonzero vectors.

  [Hint: Given (1), show that ‖S(e)‖ = ‖S(f )‖ for 
all unit vectors e and f in V.]

 12. Let S : V → V be a distance preserving 
transformation where V is finite dimensional.

 (a) Show that the factorization in the proof of 
Theorem 1 is unique. That is, if S = Su ◦ T 
and S =  S u′  ◦ T ′ where u, u′ ∈ V and T, 
T ′ : V → V are isometries, show that u = u′ 
and T = T ′. 

 �(b) If S = Su ◦ T, u ∈ V, T an isometry, show 
that w ∈ V exists such that S = T ◦ Sw. 
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 13. Define T : P → P by T( f ) = xf (x) for all f ∈ P, 
and define an inner product on P as follows: If 
f = a0 + a1x + a2x

2 + 
 and 
g = b0 + b1x + b2x

2 + 
 are in P, define 
〈f, g〉 = a0b0 + a1b1 + a2b2 + 
.

 (a) Show that 〈 , 〉 is an inner product on P.

 (b) Show that T is an isometry of P. 

 (c) Show that T is one-to-one but not onto.

An Application to Fourier Approximation6

In this section we shall investigate an important orthogonal set in the space 
C[-π, π] of continuous functions on the interval [-π, π], using the inner product.

〈f, g〉 =  ∫ -π   π
   f (x)g(x)  dx

Of course, calculus will be needed. The orthogonal set in question is

{1, sin x, cos x, sin(2x), cos(2x), sin(3x), cos(3x), …}

Standard techniques of integration give

 ‖1‖
2 =  ∫ -π   π

  12  dx = 2π

 ‖sin kx‖
2 =  ∫ -π   π

  sin2(kx)  dx = π for any k = 1, 2, 3, …
 ‖cos kx‖

2 =  ∫ -π   π
  cos2(kx)  dx = π for any k = 1, 2, 3, …

We leave the verifications to the reader, together with the task of showing that 
these functions are orthogonal:

〈sin(kx), sin(mx)〉 = 0 = 〈cos(kx), cos(mx)〉 if k ≠ m

and

〈sin(kx), cos(mx)〉 = 0 for all k ≥ 0 and m ≥ 0

(Note that 1 = cos(0x), so the constant function 1 is included.)
Now define the following subspace of C[-π, π]:

Fn = span{1, sin x, cos x, sin(2x), cos(2x), …, sin(nx), cos(nx)}

The aim is to use the approximation theorem (Theorem 8 Section 10.2); so, given 
a function f in C[-π, π], define the Fourier coefficients of f by

a0 =   
〈 f (x), 1〉

 ________ 
‖1‖

2
   =   1 __ 2π

    ∫ -π   π
   f (x)  dx

ak =   
〈 f (x), cos(kx)〉

  _____________  
‖cos(kx)‖2

   =   1 __ π    ∫ -π   π
   f (x)cos(kx)  dx k = 1, 2, …

bk =   
〈 f (x), sin(kx)〉

  ____________  
‖sin(kx)‖2

   =   1 __ π    ∫ -π   π
   f (x)sin(kx)  dx k = 1, 2, …

Then the approximation theorem (Theorem 8 Section 10.2) gives Theorem 1.

6 The name honours the French mathematician J.B.J. Fourier (1768–1830) who used these techniques in 1822 to investigate heat 
conduction in solids.

S E C T I O N  1 0 . 5
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Theorem 1

Let f be any continuous real-valued function defined on the interval [-π, π]. If 
a0, a1, …, and b0, b1, … are the Fourier coefficients of f, then given n ≥ 0,

fn (x) = a0 + a1 cos x + b1 sin x + a2 cos(2x) + b2 sin(2x) + 
 
+ an cos(nx) + bn sin(nx)

is a function in Fn that is closest to f in the sense that

‖f - fn‖ ≤ ‖f - g‖

holds for all functions g in Fn.

The function fn is called the nth Fourier approximation to the function f.

EXAMPLE 1

Find the fifth Fourier approximation to the function f (x) defined on [-π, π] as 
follows:

f (x) = U  π + x if -π ≤ x < 0           
π - x if 0 ≤ x ≤ π

   

Solution ► The graph of y = f (x) appears in the top diagram. The Fourier 
coefficients are computed as follows. The details of the integrations (usually 
by parts) are omitted.

a0 =   1 __ 2π
    ∫ -π   π

   f (x)  dx =   π __ 2  

ak =   1 __ π    ∫ -π   π
   f (x)cos(kx)  dx =   2 ___ 

πk2  [1 - cos(kπ)] =  { 0   if k is even    
  4 ___ 
πk2   if k is odd

 
 
 

bk =   1 __ π    ∫ -π   π
   f (x)sin(kx)  dx = 0 for all k = 1, 2, …

Hence the fifth Fourier approximation is

f5(x) =   π __ 2   +   4 __ π    Ucos x +   1 __ 
32   cos(3x) +   1 __ 

52   cos(5x) V 

This is plotted in the middle diagram and is already a reasonable approximation 
to f (x). By comparison, f13(x) is also plotted in the bottom diagram.

We say that a function f is an even function if f (x) = f (-x) holds for all x; f is 
called an odd function if f (-x) = -f (x) holds for all x. Examples of even functions 
are constant functions, the even powers x2, x4, …, and cos(kx); these functions are 
characterized by the fact that the graph of y = f (x) is symmetric about the y axis. 
Examples of odd functions are the odd powers x, x3, …, and sin(kx) where k > 0, 
and the graph of y = f (x) is symmetric about the origin if f is odd. The usefulness of 
these functions stems from the fact that

  ∫ -π   π
   f (x)  dx = 0 if f is odd

  ∫ -π   π
   f (x)  dx = 2 ∫ 0   

π  f (x)  dx if f is even

y

x0

π

π−π

x 

y 

1

0 1−1−2−3−4

2

2

3

3

4

4
f5(x)

x 

y 

1

0 1−1−2−3−4

2

2

3

3

4

4
f13(x)
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These facts often simplify the computations of the Fourier coefficients. For 
example:

1. The Fourier sine coefficients bk all vanish if f is even.

2. The Fourier cosine coefficients ak all vanish if f is odd.

This is because f (x) sin(kx) is odd in the first case and f (x) cos(kx) is odd in the 
second case.

The functions 1, cos(kx), and sin(kx) that occur in the Fourier approximation for 
f (x) are all easy to generate as an electrical voltage (when x is time). By summing 
these signals (with the amplitudes given by the Fourier coefficients), it is possible to 
produce an electrical signal with (the approximation to) f (x) as the voltage. Hence 
these Fourier approximations play a fundamental role in electronics.

Finally, the Fourier approximations f1, f2, … of a function f get better and better 
as n increases. The reason is that the subspaces Fn increase:

F1 ⊆ F2 ⊆ F3 ⊆ 
 ⊆ Fn ⊆ 


So, because fn =  proj Fn
 ( f ), we get (see the discussion following Example 6 Section 

10.2)

‖f - f1‖ ≥ ‖f - f2‖ ≥ 
 ≥ ‖f - fn‖ ≥ 


These numbers ‖f - fn‖ approach zero; in fact, we have the following fundamental 
theorem.7

Theorem 2

Let f be any continuous function in C[-π, π]. Then

fn(x) approaches f (x) for all x such that -π < x < π.8

8

It shows that f has a representation as an infinite series, called the Fourier series 
of f:

f (x) = a0 + a1 cos x + b1 sin x + a2 cos(2x) + b2 sin(2x) + 


whenever -π < x < π. A full discussion of Theorem 2 is beyond the scope of this 
book. This subject had great historical impact on the development of mathematics, 
and has become one of the standard tools in science and engineering.

Thus the Fourier series for the function f in Example 1 is 

f (x) =   π __ 2   +   4 __ π    Ucos x +   1 __ 
32   cos(3x) +   1 __ 

52   cos(5x) +   1 __ 
72   cos(7x) + 
 V 

Since f (0) = π and cos(0) = 1, taking x = 0 leads to the series 

  π
2
 __ 8   = 1 +   1 __ 

32   +   1 __ 
52   +   1 __ 

72   + 


7 See, for example, J. W. Brown and R. V. Churchill, Fourier Series and Boundary Value Problems, 7th ed., (New York: McGraw-Hill, 
2008).

8 We have to be careful at the end points x = π or x = -π because sin(kπ) = sin(-kπ) and cos(kπ) = cos(-kπ).
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EXAMPLE 2

Expand f (x) = x on the interval [-π, π] in a Fourier series, and so obtain a 
series expansion of   π __ 4  .

Solution ► Here f is an odd function so all the Fourier cosine coefficients ak are 
zero. As to the sine coefficients:

bk =   1 __ π    ∫ -π   π
   x  sin(kx) dx =   2 _ 

k
  (-1)k+1 for k ≥ 1

where we omit the details of the integration by parts. Hence the Fourier series 
for x is 

x = 2  Ssin x -   1 _ 2   sin(2x) +   1 _ 3   sin(3x) -   1 _ 4   sin(4x) + … T  
for -π < x < π. In particular, taking x =   π __ 2   gives an infinite series for   π __ 4  .

  π __ 4   = 1 -   1 _ 3   +   1 _ 5   -   1 _ 7   +   1 _ 9   - 

Many other such formulas can be proved using Theorem 2.

E X E R C I S E S  1 0 . 5

 1. In each case, find the Fourier approximation f5 of 
the given function in C[-π, π].

 (a) f (x) = π - x

 �(b) f (x) = |x| =  {  x if 0 ≤ x ≤ π    
-x if -π ≤ x < 0

 
 
 

 (c) f (x) = x2

 �(d) f (x) =  {  0 if -π ≤ x < 0    
x if 0 ≤ x ≤ π

 
 
  

 2. (a) Find f5 for the even function f on [-π, π] 
satisfying f (x) = x for 0 ≤ x ≤ π. 

 �(b) Find f6 for the even function f on [-π, π] 
satisfying f (x) = sin x for 0 ≤ x ≤ π.

  [Hint: If k > 1, ∫ sin x cos(kx) 

=   1 _ 2     S   cos[(k - 1)x]
  ____________ 

k - 1
   -   

cos[(k + 1)x]
  ____________ 

k + 1
   T .]

 3. (a) Prove that  ∫ -π   π
   f (x)d x = 0 if f is odd and that  

∫ -π   π
   f (x)d x = 2 ∫ 0   

π  f (x)d x if f is even.

 (b) Prove that   1 _ 2  [ f (x) + f (-x)] is even and that 
  1 _ 2  [ f (x) - f (-x)] is odd for any function f. 
Note that they sum to f (x).

 �4. Show that {1, cos x, cos(2x), cos(3x), …} is an 
orthogonal set in C[0, π] with respect to the 
inner product 〈f, g〉 =  ∫ 0   

π  f (x)g(x)d x.

 5. (a) Show that   π
2
 __ 8   = 1 +   1 __ 

32   +   1 __ 
52   + 
 using 

Exercise 1(b).

 (b) Show that   π
2
 __ 12   = 1 -   1 __ 

22   +   1 __ 
32   -   1 __ 

42   + 
 using 
Exercise 1(c).
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Canonical Forms

11
Given a matrix A, the effect of a sequence of row-operations on A is to produce 
UA where U is invertible. Under this “row-equivalence” operation the best that 
can be achieved is the reduced row-echelon form for A. If column operations are 
also allowed, the result is UAV where both U and V are invertible, and the best 
outcome under this “equivalence” operation is called the Smith canonical form of 
A (Theorem 3 Section 2.5). There are other kinds of operations on a matrix and, 
in many cases, there is a “canonical” best possible result.

If A is square, the most important operation of this sort is arguably “similarity” 
wherein A is carried to U -1AU where U is invertible. In this case we say that 
matrices A and B are similar, and write A ∼ B, when B = U -1AU for some invertible 
matrix U. Under similarity the canonical matrices, called Jordan canonical matrices, 
are block triangular with upper triangular “Jordan” blocks on the main diagonal. In 
this short chapter we are going to define these Jordan blocks and prove that every 
matrix is similar to a Jordan canonical matrix.

Here is the key to the method. Let T : V → V be an operator on an 
n-dimensional vector space V, and suppose that we can find an ordered basis B 
of V so that the matrix MB(T ) is as simple as possible. Then, if B0 is any ordered 
basis of V, the matrices MB(T ) and MB0

(T ) are similar; that is,

MB(T ) = P-1MB0
(T )P for some invertible matrix P.

Moreover, P = PB0←B is easily computed from the bases B and D (Theorem 3 
Section 9.2). This, combined with the invariant subspaces and direct sums studied in 
Section 9.3, enables us to calculate the Jordan canonical form of any square matrix 
A. Along the way we derive an explicit construction of an invertible matrix P such 
that P-1AP is block triangular.

This technique is important in many ways. For example, if we want to diagonalize 
an n × n matrix A, let TA : �n → �n be the operator given by TA(x) = Ax for all 
x in �n, and look for a basis B of �n such that MB(TA) is diagonal. If B0 = E is the 
standard basis of �n, then ME(TA) = A, so

P-1AP = P-1ME(TA)P = MB(TA),

and we have diagonalized A. Thus the “algebraic” problem of finding an invertible 
matrix P such that P-1AP is diagonal is converted into the “geometric” problem of 
finding a basis B such that MB(TA) is diagonal. This change of perspective is one of 
the most important techniques in linear algebra. 



Block Triangular Form
We have shown (Theorem 5 Section 8.2) that any n × n matrix A with every 
eigenvalue real is orthogonally similar to an upper triangular matrix U. The 
following theorem shows that U can be chosen in a special way.

Theorem 1

Block Triangulation Theorem
Let A be an n × n matrix with every eigenvalue real and let

cA(x) =  (x - λ1) 
m1  (x - λ2) 

m2 � (x - λk) 
mk 

where λ1, λ2, …, λk are the distinct eigenvalues of A. Then an invertible matrix P exists 
such that 

P-1AP = 

U
U

U

Uk

1

2

3

0 00
0 00
0 00

00 0
where, for each i, Ui is an mi × mi upper triangular matrix with every entry on the main 
diagonal equal to λi.

The proof is given at the end of this section. For now, we focus on a method for 
finding the matrix P. The key concept is as follows.

If A is as in Theorem 1, the generalized eigenspace  G λi
 (A) is defined by

 G λi
 (A) = null[ (λiI - A) mi ]

where mi is the multiplicity of λi.

Observe that the eigenspace  E λi
 (A) = null(λiI - A) is a subspace of  G λi

 (A). We need 
three technical results.

Lemma 1

Using the notation of Theorem 1, we have dim[ G λi
 (A)] = mi.

S E C T I O N  1 1 . 1

Definition 11.1

511SECTION 11.1 Block Triangular Form



PROOF

Write Ai =  (λiI - A) mi  for convenience and let P be as in Theorem 1. The spaces  
G λi

 (A) = null(Ai) and null(P-1AiP) are isomorphic via x ↔ P-1x, so we show 
that dim[null(P-1AiP)] = mi. Now P-1AiP =  (λiI - P-1AP) 

mi . If we use the block 
form in Theorem 1, this becomes

P-1AiP = 

I U
I U

I U

i

i

i k

mi−
−

−

1

2

0 0
0 0

0 0

λ

λ

λ

= 

I Ui −λ( 11

2

0 0

0 0

0 0

)

( )

( )

m

i
m

i k
m

i

i

i

I U

I U

λ

λ

−

−

The matrix  (λiI - Uj) 
mi  is invertible if j ≠ i and zero if j = i (because then Ui is 

an mi × mi upper triangular matrix with each entry on the main diagonal equal 
to λi). It follows that mi = dim[null(P-1AiP)], as required.

Lemma 2

If P is as in Theorem 1, denote the columns of P as follows:

p11, p12, …, p1m1
; p21, p22, …, p2m2

; …; pk1, pk2, …,  p kmk
 

Then {pi1, pi2, …, pim1
} is a basis of  G λi

 (A).

PROOF

It suffices by Lemma 1 to show that each pij is in  G λi
 (A). Write the matrix in 

Theorem 1 as P-1AP = diag(U1, U2, …, Uk). Then

AP = P diag(U1, U2, …, Uk) 

Comparing columns gives, successively:

Ap11 = λ1p11, so (λ1I - A)p11 = 0
Ap12 = up11 + λ1p12, so (λ1I - A)2p12 = 0
Ap13 = wp11 + vp12 + λ1p13 so (λ1I - A)3p13 = 0
   	 	

where u, v, w are in �. In general, (λ1I - A) jp1j = 0 for j = 1, 2, …, m1, so p1j is 
in  G λi

 (A). Similarly, pij is in  G λi
 (A) for each i and j.

Lemma 3

If Bi is any basis of  G λi
 (A), then B = B1 ∪ B2 ∪ � ∪ Bk is a basis of �n.
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PROOF

It suffices by Lemma 1 to show that B is independent. If a linear combination 
from B vanishes, let xi be the sum of the terms from Bi. Then x1 + � + xk = 0. 
But xi = ∑ jrij pij by Lemma 2, so ∑ i,jrij pij = 0. Hence each xi = 0, so each 
coefficient in xi is zero.

Lemma 2 suggests an algorithm for finding the matrix P in Theorem 1. Observe 
that there is an ascending chain of subspaces leading from  E λi

 (A) to  G λi
 (A):

 E λi
 (A) = null[(λiI - A)] ⊆ null[(λiI - A)2] ⊆ � ⊆ null[ (λiI - A) mi ] =  G λi

 (A)

We construct a basis for  G λi
 (A) by climbing up this chain.

Triangulation Algorithm

Suppose A has characteristic polynomial

cA(x) =  (x - λ1) 
m1  (x - λ2) 

m2 � (x - λk) 
mk 

1. Choose a basis of null[(λ1I - A)]; enlarge it by adding vectors (possibly none) to 
a basis of null[(λ1I - A)2]; enlarge that to a basis of null[(λ1I - A)3], and so on. 
Continue to obtain an ordered basis {p11, p12, …, p1m1

} of  G λi
 (A).

2. As in (1) choose a basis {pi1, pi2, …, pim1
} of  G λi

 (A) for each i.
3. Let P = [p11 p12�p1m1

; p21 p22�p2m2
; …; pk1 pk2� p kmk

 ] be the matrix with 
these basis vectors (in order) as columns.

Then P-1AP = diag(U1, U2, …, Uk) as in Theorem 1.

PROOF

Lemma 3 guarantees that B = {p11, …, pkm1
} is a basis of �n, and Theorem 4 

Section 9.2 shows that P-1AP = MB(TA). Now  G λi
 (A) is TA-invariant for each i 

because

(λiI - A)mi x = 0 implies (λiI - A)mi(Ax) = A(λiI - A)mix = 0

By Theorem 7 Section 9.3 (and induction), we have 

P-1AP = MB(TA) = diag(U1, U2, …, Uk)

where Ui is the matrix of the restriction of TA to  G λi
 (A), and it remains to 

show that Ui has the desired upper triangular form. Given s, let pij be a 
basis vector in null[(λiI - A)s+1]. Then (λiI - A)pij is in null[(λiI - A)s], and 
therefore is a linear combination of the basis vectors pit coming before pij. 
Hence

TA(pij) = Apij = λipij - (λiI - A)pij

shows that the column of Ui corresponding to pij has λi on the main diagonal 
and zeros below the main diagonal. This is what we wanted.
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EXAMPLE 1

If A = −
−

2 00

0
0 0

0 0
1

1
1

1 2
0 2

2 , find P such that P-1AP is block triangular.

Solution ► cA(x) = det[xI - A] = (x - 2)4, so λ1 = 2 is the only eigenvalue and 
we are in the case k = 1 of Theorem 1. Compute:

(2I - A) = 

0 0 0 1
0 0 0 1
1 1 0 0
0 0 0 0

−

−
 (2I - A)2 = 

0 0
0 0
0 2−
00

0
0
0
0

0
0
0
0 0

 (2I - A)3 = 0

By gaussian elimination find a basis {p11, p12} of null(2I - A); then extend in 
any way to a basis {p11, p12, p13} of null[(2I - A)2]; and finally get a basis 
{p11, p12, p13, p14} of null[(2I - A)3] = �4. One choice is 

p11 =   S  1 
 

 1   
0

 
 

 

0

  T  p12 =   S  
0

 
 

 0   
1

 
 

 

0

  T  p13 =   S  
0

 
 

 1   
0

 
 

 

0

  T  p14 =   S  
0

 
 

 0   
0

 
 

 

1

  T 

Hence P = [p11 p12 p13 p14] = 

1

1

0
1 1
0 0

0 0

0

0 0

0
0 0 1

 gives P-1AP = 

2 00
0 1

1

0 2
0 0

0

0
0

0 2

2
2−

EXAMPLE 2

If A = 
− −−−

2

2

5
0

0

1 1

1
13 4

4 33
1 1

, find P such that P-1AP is block triangular.

Solution ► The eigenvalues are λ1 = 1 and λ2 = 2 because

cA(x) = 

x
x

x
x

− − −
− − − −

+
− − −

2 0 1 1
3 5 4 1
4 3 3 1
1 0 1 2

 = 

x x
x

− − +
− − − −

1 0 0 1
3 5 4 1
4 3 xx

x
+

− − −
3 1

1 0 1 2

= 

−
− − − −

+
− − −

x
x

x
x

1 0 0 0
3 5 4 4
4 3 3 5
1 0 1 3

 = (x - 1) 

− − −
+

− −

x
x

x

5 4 4
3 3 5
0 1 3

= (x - 1) 
5 4 0

3 3 2
0 1 2

x
x x

x

− −
+ − +

− −
 = (x - 1) 

5 4 0
3 2 0
0 1 2

x
x

x

− −
+

− −
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= (x - 1)(x - 2) |  x - 5  -4        
3     x + 2

  |   = (x - 1)2(x - 2)2

By solving equations, we find null(I - A) = span{p11} and 
null(I - A)2 = span{p11, p12} where

p11 =   S     1
 

 
   1   

-2
 

 
 

  1

   T  p12 =   S   
  0

 
 

   3   
-4

 
 

 

  1

   T 
Since λ1 = 1 has multiplicity 2 as a root of cA(x), dim  G λi

 (A) = 2 by Lemma 1. 
Since p11 and p12 both lie in  G λi

 (A), we have  G λi
 (A) = span{p11, p12}. 

Turning to λ2 = 2, we find that null(2I - A) = span{p21} and 
null[(2I - A)2] = span{p21, p22} where

p21 =   S     1
 

 
   0   

-1
 

 
 

  1

   T  and p22 =   S   
  0

 
 

 -4   
  3

 
 

 

  0

   T 
Again, dim  G λ2

 (A) = 2 as λ2 has multiplicity 2, so  G λ2
 (A) = span{p21, p22}. 

Hence P = −
− −−

1 1
1 0

0 0

0

43
342 1

1 1 1

 gives P-1AP = 

−1
1

0
0 0

0
0

0 2
2

3

3
00

0
0 0

.

If p(x) is a polynomial and A is an n × n matrix, then p(A) is also an n × n 
matrix if we interpret A0 = In. For example, if p(x) = x2 - 2x + 3, then 
p(A) = A2 - 2A + 3I. Theorem 1 provides another proof of the Cayley-Hamilton 
theorem (see also Theorem 10 Section 8.6). As before, let cA(x) denote the 
characteristic polynomial of A.

Theorem 2

Cayley-Hamilton Theorem
If A is a square matrix with every eigenvalue real, then cA(A) = 0.

PROOF

As in Theorem 1, write cA(x) =  (x - λ1) 
 m 1  � (x - λk) 

mk  =  ∏ 
i=1

   
k

   (x − λi) 
mi  , and write 

P–1AP = D = diag(U1, …, Uk). Hence 

cA(Ui) =  ∏ 
i=1

   
k

   (Ui − λi I mi
 ) mi   = 0 for each i

because the factor  (Ui − λi I mi
 ) mi  = 0. In fact  U i  −  λ i  I  m i   is mi × mi and has zeros on 

the main diagonal. But then 

P-1cA(A)P = cA(D)  = cA[diag(U1, …, Uk)]
= diag[cA(U1), …, cA(Uk)]
= 0

It follows that cA(A) = 0.
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EXAMPLE 3

If A =   S   1 3    
-1 2

  T  , then cA(x) = det   S  x - 1  -3        
1    x - 2

  T  = x2 - 3x + 5. Then 

cA(A) = A2 - 3A + 5I2 =   S  -2 9    
-3 1

  T  -   S   3 9    
-3 6

  T  +   S  5 0    
0 5

  T  =   S  0 0    
0 0

  T .

Theorem 1 will be refined even further in the next section.

Proof of Theorem 1
The proof of Theorem 1 requires the following simple fact about bases, the proof 
of which we leave to the reader.

Lemma 4

If {v1, v2, …, vn} is a basis of a vector space V, so also is {v1 + sv2, v2, …, vn} for any 
scalar s.

PROOF OF THEOREM 1

Let A be as in Theorem 1, and let T = TA : �n → �n be the matrix 
transformation induced by A. For convenience, call a matrix a λ-m-ut matrix if it 
is an m × m upper triangular matrix and every diagonal entry equals λ. Then we 
must find a basis B of �n such that MB(T ) = diag(U1, U2, …, Uk) where Ui is a 
λi-mi-ut matrix for each i. We proceed by induction on n. If n = 1, take B = {v} 
where v is any eigenvector of T.

If n > 1, let v1 be a λ1-eigenvector of T, and let B0 = {v1, w1, …, wn-1} be any 
basis of �n containing v1. Then (see Lemma 2 Section 5.5)

 M B0
 (T ) =   S  λ1 X

    
0 A1

  T 
in block form where A1 is (n - 1) × (n - 1). Moreover, A and  M B0

 (T ) are 
similar, so

cA(x) =  c  M B0
 (T ) (x) = (x - λ1) c A1

 (x)

Hence  c A1
 (x) =  (x - λ1) 

m1-1  (x - λ2) 
m2 � (x - λk) 

mk , so (by induction) let

Q-1A1Q = diag(Z1, U2, …, Uk)

where Z1 is a λ1-(m1 - 1)-ut matrix and Ui is a λi-mi-ut matrix for each i > 1. 

If P =   S   1 0    
0 Q

  T  , then P-1 M B0 (T ) =   S  λ1  XQ 
      

0   Q-1A1Q
  T  = A′, say. Hence 

A′ ∼  M B0
 (T ) ∼ A so by Theorem 4(2) Section 9.2 there is a basis B of �n such 

that  M  B 1  ( T A ) =  A′ , that is  M  B 1  (T ) =  A′ . Hence  M  B 1  (T ) takes the block form
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 M  B 1   QT R  =   S  λ1      XQ     
           

0 diag(Z1, U2, …, Uk)
  T  = 

X1

Z1

U2

	

0

0

	

Uk

λ1

0 0 0

Y

0

0
…

 (∗)

If we write U1 =   S  λ1 X1    
0 Z1

  T  , the basis B1 fulfills our needs except that the row 

matrix Y may not be zero.
We remedy this defect as follows. Observe that the first vector in the basis 

B1 is a λ1 eigenvector of T, which we continue to denote as v1. The idea is to 
add suitable scalar multiples of v1 to the other vectors in B1. This results in a 
new basis by Lemma 4, and the multiples can be chosen so that the new matrix 
of T is the same as (∗) except that Y = 0. Let {w1, …, wm2

} be the vectors in B1 
corresponding to λ2 (giving rise to U2 in (∗)). Write

U2 = 

u u u
u u

u

m

m

m

2 12 13 1

2 23 2

2 3

2

2

2

2

0
0 0

0 0 0

λ

λ

λ

λ…

 and Y = [y1 y2 �  y m2 ]

We first replace w1 by w′1 = w1 + sv1 where s is to be determined. Then (∗) 
gives

T(w′1)  = T(w1) + sT(v1)
= ( y1v1 + λ2w1) + sλ1v1
= y1v1 + λ2(w′1 - sv1) + sλ1v1
= λ2w′1 + [( y1 - s(λ2 - λ1)]v1

Because λ2 ≠ λ1 we can choose s such that T(w′1) = λ2w′1. Similarly, let 
w′2 = w2 + tv1 where t is to be chosen. Then, as before,

T(w′2)  = T(w2) + tT(v1)
= ( y2v1 + u12w1 + λ2w2) + tλ1v1
= u12w′1 + λ2w′2 + [( y2 - u12s) - t(λ2 - λ1)]v1

Again, t can be chosen so that T(w′2) = u12w′1 + λ2w′2. Continue in this way to 

eliminate y1, …, ym2
. This procedure also works for λ3, λ4, … and so produces a 

new basis B such that MB(T ) is as in (∗) but with Y = 0.

E X E R C I S E S  1 1 . 1

 1. In each case, find a matrix P such that P-1AP is 
in block triangular form as in Theorem 1.

 (a) A = 
2 2
1
1

1
22

3
− 1−−  �(b) A = 

5 1
4 1
4 0

3
2
3

−
−
−

 (c) A = 
0 11

1
32 6

1 2− −−
 �(d) A = 

1
1
2

3 0
4 3
4 4

−
−
−

−

 (e) A = 

− − −
−
−
−

1 1

1
1

1
1
1

0
3 3
2 3
2 2

2

4

 �(f ) A = 

−
−
−
−

3 6 3
2 2

2

2
2

1 3
3

10
1 11 0
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 2. Show that the following conditions are 
equivalent for a linear operator T on a finite 
dimensional space V.

 (1) MB(T ) is upper triangular for some ordered 
basis B of E.

 (2) A basis {b1, …, bn} of V exists such that, for each 
i, T(bi) is a linear combination of b1, …, bi.

 (3) There exist T-invariant subspaces 
V1 ⊆ V2 ⊆ � ⊆ Vn = V such that dim Vi = i 
for each i.

 3. If A is an n × n invertible matrix, show that 
A-1  = r0I + r1A + � + rn-1A

n-1 for some 

scalars r0, r1, …, rn-1. [Hint: Cayley-Hamilton 
theorem.]

�4. If T : V → V is a linear operator where V is 
finite dimensional, show that cT(T ) = 0. [Hint: 
Exercise 26 Section 9.1.]

 5. Define T : P → P by T [ p(x)] = xp(x). Show that:

 (a) T is linear and f (T )[ p(x)] = f (x)p(x) for all 
polynomials f (x).

 (b) Conclude that f (T ) ≠ 0 for all nonzero 
polynomials f (x). [See Exercise 4.]

The Jordan Canonical Form
Two m × n matrices A and B are called row-equivalent if A can be carried to B 
using row operations and, equivalently, if B = UA for some invertible matrix U. We 
know (Theorem 4 Section 2.6) that each m × n matrix is row-equivalent to a unique 
matrix in reduced row-echelon form, and we say that these reduced row-echelon 
matrices are canonical forms for m × n matrices using row operations. If we allow 

column operations as well, then A → UAV =   S  Ir 0
    

0 0
  T  for invertible U and V, and the 

canonical forms are the matrices   S  Ir 0
    

0 0
  T  where r is the rank (this is the Smith normal 

form and is discussed in Theorem 3 Section 2.6). In this section, we discover the 
canonical forms for square matrices under similarity: A → P-1AP. 

If A is an n × n matrix with distinct real eigenvalues λ1, λ2, …, λk, we saw 
in Theorem 1 Section 11.1 that A is similar to a block triangular matrix; more 
precisely, an invertible matrix P exists such that 

P-1AP = 

U
U

Uk

1

2

0

0

0
00

0

 = diag(U1, U2, …, Uk) (∗)

where, for each i, Ui is upper triangular with λi repeated on the main diagonal. The 
Jordan canonical form is a refinement of this theorem. The proof we gave of (∗) is 
matrix theoretic because we wanted to give an algorithm for actually finding the 
matrix P. However, we are going to employ abstract methods here. Consequently, 
we reformulate Theorem 1 Section 11.1 as follows:

Theorem 1

Let T : V → V be a linear operator where dim V = n. Assume that λ1, λ2, …, λk are 
the distinct eigenvalues of T, and that the λi are all real. Then there exists a basis F 
of V such that MF (T ) = diag(U1, U2, …, Uk) where, for each i, Ui is square, upper 
triangular, with λi repeated on the main diagonal.

S E C T I O N  1 1 . 2
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PROOF

Choose any basis B = {b1, b2, …, bn} of V and write A = MB(T ). Since A has 
the same eigenvalues as T, Theorem 1 Section 11.1 shows that an invertible 
matrix P exists such that P-1AP = diag(U1, U2, …, Uk) where the Ui are as in the 
statement of the Theorem. If pj denotes column j of P and CB : V → �n is the 
coordinate isomorphism, let fj =  C  B  -1 (pj) for each j. Then F = {f1, f2, …, fn} is a 
basis of V and CB(fj) = pj for each j. This means that PB←F = [CB(fj)] = [pj] = P, 
and hence (by Theorem 2 Section 9.2) that PF←B = P-1. With this, column j of 
MF (T ) is

CF (T(fj)) = PF←BCB(T(fj)) = P-1MB(T )CB(fj) = P-1Apj

for all j. Hence 

MF (T ) = [CF (T(fj))] = [P-1Apj] = P-1A[pj] = P-1AP = diag(U1, U2, …, Uk)

as required.

If n ≥ 1, define the Jordan block Jn(λ) to be the n × n matrix with λs on the main 
diagonal, 1s on the diagonal above, and 0s elsewhere. We take J1(λ) = [λ].

Hence 

J1(λ) = [λ], J2(λ) = 
1

0
λ

λ
, J3(λ) = 

1 0
0 1
0 0

λ

λ

λ

, J4(λ) = 

λ 11 0 0
0 1 0
0 0 1
0 0 0

λ

λ

λ

, …

We are going to show that Theorem 1 holds with each block Ui replaced by Jordan 
blocks corresponding to eigenvalues. It turns out that the whole thing hinges on the 
case λ = 0. An operator T is called nilpotent if T m = 0 for some m ≥ 1, and in this 
case λ = 0 for every eigenvalue λ of T. Moreover, the converse holds by Theorem 1 
Section 11.1. Hence the following lemma is crucial.

Lemma 1

Let T : V → V be a linear operator where dim V = n, and assume that T is nilpotent; 
that is, T m = 0 for some m ≥ 1. Then V has a basis B such that 

MB(T ) = diag( J1, J2, …, Jk)

where each Ji is a Jordan block corresponding to λ = 0.1

1

A proof is given at the end of this section.

1 The converse is true too: If MB(T ) has this form for some basis B of V, then T is nilpotent.

Definition 11.2
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Theorem 2

Real Jordan Canonical Form
Let T : V → V be a linear operator where dim V = n, and assume that λ1, λ2, …, λm 
are the distinct eigenvalues of T and that the λi are all real. Then there exists a basis E 
of V such that 

ME(T ) = diag(U1, U2, …, Uk)

in block form. Moreover, each Uj is itself block diagonal:

Uj = diag( J1, J2, …, Jk)

where each Ji is a Jordan block corresponding to some λi.

PROOF

Let E = {e1, e2, …, en) be a basis of V as in Theorem 1, and assume that Ui is an 
ni × ni matrix for each i. Let 

E1 = {e1, …,  e n1
 }, E2 = {en1+1, …, en2

}, …, Ek = { e nk-1
 +1, …,  e nk

 } 

where nk = n, and define Vi = span{Ei} for each i. Because the matrix 
ME(T ) = diag(U1, U2, …, Um) is block diagonal, it follows that each 
Vi is T-invariant and  M Ei

 (T ) = Ui for each i. Let Ui have λi repeated 
along the main diagonal, and consider the restriction T : Vi → Vi. Then  
M Ei

 (T - λi I ni
 ) is a nilpotent matrix, and hence (T - λi I ni

 ) is a nilpotent 
operator on Vi. But then Lemma 1 shows that Vi has a basis Bi such that  
M Bi

 (T - λi I ni
 ) = diag(K1, K2, …,  K ti

 ) where each Ki is a Jordan block 
corresponding to λ = 0. Hence 

 M Bi
 (T )  =  M Bi

 (λi I ni
 ) +  M Bi

 (T - λi I ni
 )

= λi I ni
  + diag(K1, K2, …,  K ti

 ) = diag( J1, J2, …, Jk)

where Ji = λi I fi
  + Ki is a Jordan block corresponding to λi (where Ki is fi × fi). 

Finally, B = B1 � B2 � � � Bk is a basis of V with respect to which T has the 
desired matrix.

Corollary 1

If A is an n × n matrix with real eigenvalues, an invertible matrix P exists such that 
P-1AP = diag( J1, J2, …, Jk) where each Ji is a Jordan block corresponding to an 
eigenvalue λi.

PROOF

Apply Theorem 2 to the matrix transformation TA : �n → �n to find a basis B 
of �n such that MB(TA) has the desired form. If P is the (invertible) n × n matrix 
with the vectors of B as its columns, then P-1AP = MB(TA) by Theorem 4 
Section 9.2.
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Of course if we work over the field � of complex numbers rather than �, the 
characteristic polynomial of a (complex) matrix A splits completely as a product 
of linear factors. The proof of Theorem 2 goes through to give

Theorem 3

Jordan Canonical Form2

Let T : V → V be a linear operator where dim V = n, and assume that λ1, λ2, …, λm 
are the distinct eigenvalues of T. Then there exists a basis F of V such that 

MF (T ) = diag(U1, U2, …, Uk)

in block form. Moreover, each Uj is itself block diagonal:

Uj = diag( J1, J2, …, Jtj
)

where each Ji is a Jordan block corresponding to some λi.

2

Except for the order of the Jordan blocks Ji, the Jordan canonical form is uniquely 
determined by the operator T. That is, for each eigenvalue λ the number and size 
of the Jordan blocks corresponding to λ is uniquely determined. Thus, for example, 
two matrices (or two operators) are similar if and only if they have the same Jordan 
canonical form. We omit the proof of uniqueness; it is best presented using modules 
in a course on abstract algebra. 

Proof of Lemma 1

Lemma 1

Let T : V → V be a linear operator where dim V = n, and assume that T is nilpotent; 
that is, T m = 0 for some m ≥ 1. Then V has a basis B such that 

MB(T ) = diag( J1, J2, …, Jk)

where each Ji =  J ni
 (0) is a Jordan block corresponding to λ = 0.

PROOF

The proof proceeds by induction on n. If n = 1, then T is a scalar operator, and 
so T = 0 and the lemma holds. If n ≥ 1, we may assume that T ≠ 0, so m ≥ 1 
and we may assume that m is chosen such that T m = 0, but T m-1 ≠ 0. Suppose 
T m-1u ≠ 0 for some u in V.3

Claim. {u, Tu, T 2u, …, T m-1u} is independent.

Proof. Suppose a0u + a1Tu + a2T 2u + � + am-1T m-1u = 0 where each ai is in 
�. Since T m = 0, applying T m-1 gives 0 = T m-10 = a0 T m-1u, whence a0 = 0.

3

2 This was first proved in 1870 by the French mathematician Camille Jordan (1838–1922) in his monumental Traité des substitutions 
et des équations algébriques.

3 If S : V→V is an operator, we abbreviate S(u) by Su for simplicity.

Camille Jordan. Photo © 
Corbis.
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Hence a1Tu + a2T 2u + � + am-1T m-1u = 0 and applying T m-2 gives a1 = 0 
in the same way. Continue in this fashion to obtain ai = 0 for each i. This proves 
the Claim.

Now define P = span{u, Tu, T 2u, …, T m-1u}. Then P is a T-invariant 
subspace (because T m = 0), and T : P → P is nilpotent with matrix 
MB(T ) = Jm(0) where B = {u, Tu, T 2u, …, T m-1u}. Hence we are done, by 
induction, if V = P ⊕ Q where Q is T-invariant (then dim Q = n - dim P < n 
because P ≠ 0, and T : Q → Q is nilpotent). With this in mind, choose a 
T-invariant subspace Q of maximal dimension such that P ∩ Q = {0}.4 
We assume that V ≠ P ⊕ Q and look for a contradiction. 

Choose x ∈ V such that x ∉ P ⊕ Q. Then T mx = 0 ∈ P ⊕ Q while 
T 0x = x ∉ P ⊕ Q. Hence there exists k, 1 ≤ k ≤ m, such that T kx ∈ P ⊕ Q 
but T k-1x ∉ P ⊕ Q. Write v = T k-1x, so that

v ∉ P ⊕ Q and Tv ∈ P ⊕ Q

Let Tv = p + q with p in P and q in Q. Then 0 = T m-1(Tv) = T m-1p + T m-1q 
so, since P and Q are T-invariant, T m-1p = -T m-1q ∈ P ∩ Q = {0}. Hence 

T m-1p = 0.

Since p ∈ P we have p = a0u + a1Tu + a2T 2u + � + am-1T m-1u for ai ∈ �. 
Since T m = 0, applying T m-1 gives 0 = T m-1p = a0T m-1u, whence a0 = 0. 
Thus p = T(p1) where p1 = a1u + a2Tu + � + am-1T m-2u ∈ P. If we write 
v1 = v - p1 we have 

T(v1) = T(v - p1) = Tv - p = q ∈ Q.

Since T(Q) ⊆ Q, it follows that T(Q + �v1) ⊆ Q ⊆ Q + �v1. Moreover v1 ∉ Q 
(otherwise v = v1 + p1 ∈ P ⊕ Q, a contradiction). Hence Q ⊂ Q + �v1 so, by 
the maximality of Q, we must have (Q + �v1) ∩ P ≠ {0}, say 

0 ≠ p2 = q1 + av1 where p2 ∈ P, q1 ∈ Q, and a ∈ �.

Thus av1 = p2 - q1 ∈ P ⊕ Q. But since v1 = v - p1 we have 

av = av1 + ap1 ∈ (P ⊕ Q) + P = P ⊕ Q

Since v ∉ P ⊕ Q, this implies that a = 0. But then p2 = q1 ∈ P ∩ Q = {0}, a 
contradiction. This completes the proof.

E X E R C I S E S  1 1 . 2

 1. By direct computation, show that there is no 
invertible complex matrix C such that

C-1
1
0
0

1

0

0

1
11 C = 

1 1
0 0

0

0 1
1
0

.

 �2. Show that 
a

a
b

1
0 0

0

0 0
 is similar to 

b
a

a

0 0
0 1
0 0

.

 3. (a) Show that every complex matrix is similar to 
its transpose. 

 (b) Show every real matrix is similar 
to its transpose. [Hint: Show that 
Jk(0)Q = Q[Jk(0)]T where Q is the k × k 
matrix with 1s down the “counter diagonal”, 
that is from the (1, k)-position to the 
(k, 1)-position.]

4 Observe that there is at least one such subspace: Q = {0}.
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Appendix A: 
Complex Numbers

The fact that the square of every real number is nonnegative shows that the 
equation x2 + 1 = 0 has no real root; in other words, there is no real number u such 
that u2 = -1. So the set of real numbers is inadequate for finding all roots of all 
polynomials. This kind of problem arises with other number systems as well. The 
set of integers contains no solution of the equation 3x + 2 = 0, and the rational 
numbers had to be invented to solve such equations. But the set of rational numbers 
is also incomplete because, for example, it contains no root of the polynomial 
x2 - 2. Hence the real numbers were invented. In the same way, the set of complex 
numbers was invented, which contains all real numbers together with a root of the 
equation x2 + 1 = 0. However, the process ends here: the complex numbers have 
the property that every polynomial with complex coefficients has a (complex) root. 
This fact is known as the fundamental theorem of algebra.

One pleasant aspect of the complex numbers is that, whereas describing the real 
numbers in terms of the rationals is a rather complicated business, the complex 
numbers are quite easy to describe in terms of real numbers. Every complex 
number has the form

a + bi

where a and b are real numbers, and i is a root of the polynomial x2 + 1. Here a 
and b are called the real part and the imaginary part of the complex number, 
respectively. The real numbers are now regarded as special complex numbers of 
the form a + 0i = a, with zero imaginary part. The complex numbers of the form 
0 + bi = bi with zero real part are called pure imaginary numbers. The complex 
number i itself is called the imaginary unit and is distinguished by the fact that

i2 = -1

As the terms complex and imaginary suggest, these numbers met with some resistance 
when they were first used. This has changed; now they are essential in science 
and engineering as well as mathematics, and they are used extensively. The names 
persist, however, and continue to be a bit misleading: These numbers are no more 
“complex” than the real numbers, and the number i is no more “imaginary” than -1.

Much as for polynomials, two complex numbers are declared to be equal if and 
only if they have the same real parts and the same imaginary parts. In symbols,

a + bi = a′ + b′i if and only if a = a′ and b = b′

The addition and subtraction of complex numbers is accomplished by adding and 
subtracting real and imaginary parts:



(a + bi) + (a′ + b′i) = (a + a′ ) + (b + b′ )i

(a + bi) - (a′ + b′i) = (a - a′ ) + (b - b′ )i

This is analogous to these operations for linear polynomials a + bx and a′ + b′x, 
and the multiplication of complex numbers is also analogous with one difference: 
i2 = -1. The definition is

(a + bi)(a′ + b′i) = (aa′ - bb′ ) + (ab′ + ba′ )i

With these definitions of equality, addition, and multiplication, the complex 
numbers satisfy all the basic arithmetical axioms adhered to by the real numbers (the 
verifications are omitted). One consequence of this is that they can be manipulated 
in the obvious fashion, except that i2 is replaced by -1 wherever it occurs, and the 
rule for equality must be observed.

EXAMPLE 1

If z = 2 - 3i and w = -1 + i, write each of the following in the form a + bi:
z + w, z - w, zw,   1 _ 3  z, and z2.

Solution ►   z + w = (2 - 3i) + (-1 + i) = (2 - 1) + (-3 + 1)i = 1 - 2i
 z - w = (2 - 3i) - (-1 + i) = (2 + 1) + (-3 - 1)i = 3 - 4i
 zw = (2 - 3i)(-1 + i) = (-2 - 3i2) + (2 + 3)i = 1 + 5i

   1 _ 3  z =   1 _ 3  (2 - 3i) =   2 _ 3   - i
 z2 = (2 - 3i)(2 - 3i) = (4 + 9i2) + (-6 - 6)i = -5 - 12i

EXAMPLE 2

Find all complex numbers z such as that z2 = i.

Solution ► Write z = a + bi; we must determine a and b. Now 
z2 = (a2 - b2) + (2ab)i, so the condition z2 = i becomes

(a2 - b2) + (2ab)i = 0 + i

Equating real and imaginary parts, we find that a2 = b2 and 2ab = 1. The 
solution is a = b = ±  1

 __ 
 √ 

__

 2  
  , so the complex numbers required are z =   1 __ 

 √ 

__

 2  
   +   1 __ 

 √ 

__

 2  
  i and 

z = -  1
 __ 

 √ 

__

 2  
   -   1 __ 

 √ 

__

 2  
  i.

As for real numbers, it is possible to divide by every nonzero complex number 
z. That is, there exists a complex number w such that wz = 1. As in the real case, 
this number w is called the inverse of z and is denoted by z-1 or   1 _ z  . Moreover, if 
z = a + bi, the fact that z ≠ 0 means that a ≠ 0 or b ≠ 0. Hence a2 + b2 ≠ 0, and 
an explicit formula for the inverse is

  1 __ 
z
   =   a _______ 

a2 + b2
   -   b _______ 

 a2 + b2
  i

In actual calculations, the work is facilitated by two useful notions: the conjugate 
and the absolute value of a complex number. The next example illustrates the 
technique.
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EXAMPLE 3

Write   3 + 2i
 ______ 

2 + 5i
   in the form a + bi.

Solution ► Multiply top and bottom by the complex number 2 - 5i (obtained 
from the denominator by negating the imaginary part). The result is

  3 + 2i
 ______ 

2 + 5i
   =   

(2 - 5i)(3 + 2i)
  ______________  

(2 - 5i)(2 + 5i)
   =   

(6 + 10) + (4 - 15)i
  __________________  

22 - (5i)2
   =   16 __ 29   -   11 __ 29  i

Hence the simplified form is   16 __ 29   -   11 __ 29  i, as required.

The key to this technique is that the product (2 - 5i)(2 + 5i) = 29 in the 
denominator turned out to be a real number. The situation in general leads to 
the following notation: If z = a + bi is a complex number, the conjugate of z 
is the complex number, denoted  

__
 z  , given by

 
__

 z   = a - bi where z = a + bi

Hence  
__

 z   is obtained from z by negating the imaginary part. For example, 
 
_______

 (2 + 3i)   = 2 - 3i and  
______

 (1 - i)   = 1 + i. If we multiply z = a + bi by  
__

 z  , we obtain

z 
__

 z   = a2 + b2 where z = a + bi

The real number a2 + b2 is always nonnegative, so we can state the following 
definition: The absolute value or modulus of a complex number z = a + bi, 
denoted by |z|, is the positive square root  √ 

_______

 a2 + b2  ; that is,

|z| =  √ 
_______

 a2 + b2   where z = a + bi

For example, |2 - 3i| =  √ 
__________

 22 + (-3)2   =  √ 

___

 13   and |1 + i| =  √ 
_______

 12 + 12   =  √ 

__

 2  .
Note that if a real number a is viewed as the complex number a + 0i, its absolute 

value (as a complex number) is |a| =  √ 

__

 a2  , which agrees with its absolute value as a 
real number.

With these notions in hand, we can describe the technique applied in Example 3 
as follows: When converting a quotient   z __ w   of complex numbers to the form a + bi, 
multiply top and bottom by the conjugate  

__
 w   of the denominator.

The following list contains the most important properties of conjugates and 
absolute values. Throughout, z and w denote complex numbers.

 C1.  
______

 z ± w   =  __
 z   ±  

__
 w   C7.   1 __ z   =   1 ____ 

|z|
2
    
__

 z  

 C2.  
___

 zw   =  __
 z    
__

 w   C8. |z| ≥ 0 for all complex numbers z

 C3.  
____

  Q   z __ w   R    =    
__

 z   __  
__

 w  
   C9. |z| = 0 if and only if z = 0

 C4.  
___

 ( __
 z  )   = z  C10. |zw| = |z||w|

 C5. z is real if and only if  __
 z   = z  C11.  |   z __ w   |  =   

|z|
 ___ 

|w|
  

 C6. z 
__

 z   = |z|
2  C12. |z + w| = |z| + |w| (triangle 

inequality)

All these properties (except property C12) can (and should) be verified by the 
reader for arbitrary complex numbers z = a + bi and w = c + di. They are not 
independent; for example, property C10 follows from properties C2 and C6.

The triangle inequality, as its name suggests, comes from a geometric 
representation of the complex numbers analogous to identification of the real 
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numbers with the points of a line. The representation is achieved as follows: 
Introduce a rectangular coordinate system in the plane (Figure A.1), and identify the 
complex number a + bi with the point (a, b). When this is done, the plane is called 
the complex plane. Note that the point (a, 0) on the x axis now represents the real 
number a = a + 0i, and for this reason, the x axis is called the real axis. Similarly, 
the y axis is called the imaginary axis. The identification (a, b) = a + bi of the 
geometric point (a, b) and the complex number a + bi will be used in what follows 
without comment. For example, the origin will be referred to as 0.

This representation of the complex numbers in the complex plane gives a useful 
way of describing the absolute value and conjugate of a complex number z = a + bi. 
The absolute value |z| =  √ 

_______

 a2 + b2   is just the distance from z to the origin. This 
makes properties C8 and C9 quite obvious. The conjugate  

__
 z   = a - bi of z is just the 

reflection of z in the real axis (x axis), a fact that makes properties C4 and C5 clear.
Given two complex numbers z1 = a1 + b1i = (a1, b1) and z2 = a2 + b2i = (a2, b2), 

the absolute value of their difference

|z1 - z2| =  √ 
___________________

  (a1 - a2)
2 + (b1 - b2)

2  

is just the distance between them. This gives the complex distance formula:

|z1 - z2| is the distance between z1 and z2

This useful fact yields a simple verification of the triangle inequality, property 
C12. Suppose z and w are given complex numbers. Consider the triangle in 
Figure A.2 whose vertices are 0, w, and z + w. The three sides have lengths |z|, |w|, 
and |z + w| by the complex distance formula, so the inequality

|z + w| ≤ |z| + |w|

expresses the obvious geometric fact that the sum of the lengths of two sides of a 
triangle is at least as great as the length of the third side.

The representation of complex numbers as points in the complex plane has 
another very useful property: It enables us to give a geometric description of the 
sum and product of two complex numbers. To obtain the description for the 
sum, let

 z = a + bi = (a, b)

 w = c + di = (c, d) 

denote two complex numbers. We claim that the four points 0, z, w, and z + w 
form the vertices of a parallelogram. In fact, in Figure A.3 the lines from 0 to z 
and from w to z + w have slopes

  b - 0 _____ 
a - 0

   =   b __ a   and   
(b + d) - d

 __________ 
(a + c) - c

   =   b __ a  

respectively, so these lines are parallel. (If it happens that a = 0, then both these 
lines are vertical.) Similarly, the lines from z to z + w and from 0 to w are also 
parallel, so the figure with vertices 0, z, w, and z + w is indeed a parallelogram. 
Hence, the complex number z + w can be obtained geometrically from z and 
w by completing the parallelogram. This is sometimes called the parallelogram 
law of complex addition. Readers who have studied mechanics will recall that 
velocities and accelerations add in the same way; in fact, these are all special 
cases of vector addition.

y

(a, −b) = a − bi

0 1 x
(a, 0) = a

(a, b) = a + bi
(0, b) = bi

i

� FIGURE A.1

y

x0

w
�z + w�

� �w

z w+
� �( )z w w �z�+ − =

� FIGURE A.2

z = (a, b)

w = (c, d )

y

x0 = (0, 0)

z + w = (a + c, b + d )

� FIGURE A.3
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Polar Form
The geometric description of what happens when two complex numbers are 
multiplied is at least as elegant as the parallelogram law of addition, but it requires 
that the complex numbers be represented in polar form. Before discussing this, 
we pause to recall the general definition of the trigonometric functions sine and 
cosine. An angle θ in the complex plane is in standard position if it is measured 
counterclockwise from the positive real axis as indicated in Figure A.4. Rather than 
using degrees to measure angles, it is more natural to use radian measure. This 
is defined as follows: The circle with its centre at the origin and radius 1 (called 
the unit circle) is drawn in Figure A.4. It has circumference 2π, and the radian 
measure of θ is the length of the arc on the unit circle counterclockwise from 1 to 
the point P on the unit circle determined by θ. Hence 90° =   π __ 2  , 45° =   π __ 4  , 180° = π, 
and a full circle has the angle 360° = 2π. Angles measured clockwise from 1 are 
negative; for example, -i corresponds to -  π 

__ 2   (or to   2π
 __ 3  ).

Consider an angle θ in the range 0 ≤ θ ≤   π __ 2  . If θ is plotted in standard 
position as in Figure A.4, it determines a unique point P on the unit circle, 
and P has coordinates (cos θ, sin θ) by elementary trigonometry. However, any 
angle θ (acute or not) determines a unique point on the unit circle, so we define 
the cosine and sine of θ (written cos θ and sin θ) to be the x and y coordinates 
of this point. For example, the points

 1 = (1, 0) i = (0, 1)  -1 = (-1, 0) -i = (0, -1)

plotted in Figure A.4 are determined by the angles 0,   π __ 2  , π,   3π
 __ 2  , respectively. Hence

 cos 0 = 1 cos   π __ 2   = 0  cos π = -1 cos   3π
 __ 2   = 0

 sin 0 = 0 sin   π __ 2   = 1  sin π = 0 sin   3π
 __ 2   = -1

Now we can describe the polar form of a complex number. Let z = a + bi be a 
complex number, and write the absolute value of z as

r = |z| =  √ 
_______

 a2 + b2  

If z ≠ 0, the angle θ shown in Figure A.5 is called an argument of z and is denoted

θ = arg z

This angle is not unique (θ + 2πk would do as well for any k = 0, ±1, ± 2, …). 
However, there is only one argument θ in the range -π ≤ θ ≤ π, and this is 
sometimes called the principal argument of z.

Returning to Figure A.5, we find that the real and imaginary parts a and b of z 
are related to r and θ by

a = r cos θ
b = r sin θ

Hence the complex number z = a + bi has the form

z = r(cos θ + i sin θ) r = |z|, θ = arg(z)

The combination cos θ + i sin θ is so important that a special notation is used:

eiθ = cos θ + i sin θ

is called Euler’s formula after the great Swiss mathematician Leonhard Euler 
(1707–1783). With this notation, z is written

z = reiθ r = |z|, θ = arg(z)

This is a polar form of the complex number z. Of course it is not unique, because 
the argument can be changed by adding a multiple of 2π.

Unit
circle

y

x

i

−1

−i

1

1

P
Radian

measure
of θ

θ
0

� FIGURE A.4

y

x

r

a

b

z = (a, b)

0
θ

� FIGURE A.5
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EXAMPLE 4

Write z1 = -2 + 2i and z2 = -i in polar form.

Solution ► The two numbers are plotted in the complex plane in Figure A.6. 
The absolute values are

r1 = |-2 + 2i| =  √ 
__________

 (-2)2 + 22   = 2 √ 

__

 2  

r2 = |-i| =  √ 
__________

 02 + (-1)2   = 1
By inspection of Figure A.6, arguments of z1 and z2 are

θ1 = arg(-2 + 2i) =   3π
 __ 4  

θ2 = arg(-i) =   3π
 __ 2  

The corresponding polar forms are z1 = -2 + 2i = 2 √ 

__

 2  e3πi/4 and 
z2 = -i = e3πi/2. Of course, we could have taken the argument -  π 

__ 2   for z2 and 
obtained the polar form z2 = e-πi/2.

In Euler’s formula eiθ = cos θ + i sin θ, the number e is the familiar constant 
e = 2.71828… from calculus. The reason for using e will not be given here; the 
reason why cos θ + i sin θ is written as an exponential function of θ is that the 
law of exponents holds:

eiθ · eiϕ = ei(θ+ϕ)

where θ and ϕ are any two angles. In fact, this is an immediate consequence of 
the addition identities for sin(θ + ϕ) and cos(θ + ϕ):

 eiθeiϕ = (cos θ + i sin θ)(cos ϕ + i sin ϕ) 

 = (cos θ cos ϕ - sin θ sin ϕ) + i (cos θ sin ϕ + sin θ cos ϕ) 

 = cos(θ + ϕ) + i sin(θ + ϕ) 

 = ei(θ+ϕ)

This is analogous to the rule eaeb = ea+b, which holds for real numbers a and b, so it 
is not unnatural to use the exponential notation eiθ for the expression cos θ + i sin θ. 
In fact, a whole theory exists wherein functions such as ez, sin z, and cos z are 
studied, where z is a complex variable. Many deep and beautiful theorems can be 
proved in this theory, one of which is the so-called fundamental theorem of algebra 
mentioned later (Theorem 4). We shall not pursue this here.

The geometric description of the multiplication of two complex numbers follows 
from the law of exponents.

Theorem 1

Multiplication Rule
If z1 = r1e

iθ1 and z2 = r2e
iθ2 are complex numbers in polar form, then

z1z2 = r1r2e
i(θ2+θ2)

In other words, to multiply two complex numbers, simply multiply the absolute 
values and add the arguments. This simplifies calculations considerably, particularly 
when we observe that it is valid for any arguments θ1 and θ2.

y

x
2

1

0

z i1 2 2= − +

z2 = −i

θ
θ

� FIGURE A.6
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EXAMPLE 5

Multiply (1 - i)(1 +  √ 

__

 3  i) in two ways.

Solution ► We have |1 - i| =  √ 

__

 2   and |1 +  √ 

__

 3  i| = 2 so, from Figure A.7,

1 - i =  √ 

__

 2  e-iπ/4

1 +  √ 

__

 3  i = 2eiπ/3

Hence, by the multiplication rule,

 (1 - i)(1 +  √ 

__

 3  i) = ( √ 

__

 2  e-iπ/4)(2eiπ/3)
 = 2 √ 

__

 2  ei(-π/4+π/3)

 
= 2 √ 

__

 2  eiπ/12

This gives the required product in polar form. Of course, direct multiplication 
gives (1 - i)(1 +  √ 

__

 3  i) = ( √ 

__

 3   + 1) + ( √ 

__

 3   - 1)i. Hence, equating real and 
imaginary parts gives the formulas cos(  π __ 12  ) =    √ 

__

 3   + 1
 _____ 

2 √ 

__

 2  
   and sin(  π __ 12  ) =    √ 

__

 3   - 1
 _____ 

2 √ 

__

 2  
  .

Roots of Unity
If a complex number z = reiθ is given in polar form, the powers assume a particularly 
simple form. In fact, z2 = (reiθ)(reiθ) = r2e2iθ, z3 = z2 
 z = (r2e2iθ)(reiθ) = r3e3iθ, and so 
on. Continuing in this way, it follows by induction that the following theorem holds 
for any positive integer n. The name honours Abraham De Moivre (1667-1754).

Theorem 2

De Moivre’s Theorem
If θ is any angle, then (eiθ)n = einθ holds for all integers n.

PROOF

The case n > 0 has been discussed, and the reader can verify the result for n = 0. 
To derive it for n < 0, first observe that

if z = reiθ ≠ 0 then z-1 =   1 _ r  e
-iθ

In fact, (reiθ)(  1 _ r  e
-iθ) = 1ei0 = 1 by the multiplication rule. Now assume that n is 

negative and write it as n = -m, m > 0. Then

(reiθ)n = [(reiθ)-1]m = (  1 _ r  e
-iθ)m = r-mei(-mθ) = rneinθ

If r = 1, this is De Moivre’s theorem for negative n.

y

x

1 − i

12
π

− 4
π

3
π

1 + 3i√

(1− )i (1+ 3 )i√

0

� FIGURE A.7
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EXAMPLE 6

Verify that (-1 +  √ 

__

 3  i)3 = 8.

Solution ► We have |-1 +  √ 

__

 3  i| = 8, so -1 +  √ 

__

 3  i = 2e2πi/3 (see Figure A.8). 
Hence De Moivre’s theorem gives

(-1 +  √ 

__

 3  i)3 = (2e2πi/3)3 = 8e3(2πi/3) = 8e2πi = 8

De Moivre’s theorem can be used to find nth roots of complex numbers where n 
is positive. The next example illustrates this technique.

EXAMPLE 7

Find the cube roots of unity; that is, find all complex numbers z such that 
z3 = 1.

Solution ► First write z = reiθ and 1 = 1ei0 in polar form. We must use the 
condition z3 = 1 to determine r and θ. Because z3 = r3e3iθ by De Moivre’s 
theorem, this requirement becomes

r3e3iθ = 1e0i

These two complex numbers are equal, so their absolute values must be equal 
and the arguments must either be equal or differ by an integral multiple of 2π:
   r3 = 1

   3θ = 0 + 2kπ, k some integer

Because r is real and positive, the condition r3 = 1 implies that r = 1. However,
θ =   2kπ

 ____ 
3

  , k some integer

seems at first glance to yield infinitely many different angles for z. However, 
choosing k = 0, 1, 2 gives three possible arguments θ (where 0 ≤ θ < 2π), and 
the corresponding roots are

1e0i = 1

1e2πi/3 = -  1 _ 2   +    √ 

__

 3  
 __ 2  i

1e4πi/3 = -  1 _ 2   -    √ 

__

 3  
 __ 2  i

These are displayed in Figure A.9. All other values of k yield values of θ that 
differ from one of these by a multiple of 2π—and so do not give new roots. 
Hence we have found all the roots.

The same type of calculation gives all complex nth roots of unity; that is, all 
complex numbers z such that zn = 1. As before, write 1 = 1e0i and

z = reiθ

in polar form. Then zn = 1 takes the form

rnenθi = 1e0i

using De Moivre’s theorem. Comparing absolute values and arguments yields

y

2

x
3

2π

−1+ 3i√

0

� FIGURE A.8

y

1
x

3
2π

3
4π

1
2− + i

2
3√

1
2− − i

2
3√

0

� FIGURE A.9
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 rn = 1

 nθ = 0 + 2kπ, k some integer

Hence r = 1, and the n values

θ =   2kπ
 ____ n  , k = 0, 1, 2, …, n - 1

of θ all lie in the range 0 ≤ θ < 2π. As in Example 7, every choice of k yields a value 
of θ that differs from one of these by a multiple of 2π, so these give the arguments 
of all the possible roots.

Theorem 3

nth Roots of Unity 
If n ≥ 1 is an integer, the nth roots of unity (that is, the solutions to zn = 1) are given by 

z = e2πki/n, k = 0, 1, 2, …, n - 1

The nth roots of unity can be found geometrically as the points on the unit circle 
that cut the circle into n equal sectors, starting at 1. The case n = 5 is shown in 
Figure A.10, where the five fifth roots of unity are plotted.

The method just used to find the nth roots of unity works equally well to find 
the nth roots of any complex number in polar form. We give one example.

EXAMPLE 8

Find the fourth roots of  √ 

__

 2   +  √ 

__

 2  i.

Solution ► First write  √ 

__

 2   +  √ 

__

 2  i = 2eπi/4 in polar form. If z = reiθ satisfies 
z4 =  √ 

__

 2   +  √ 

__

 2  i, then De Moivre’s theorem gives

r4ei(4θ) = 2eπi/4

Hence r4 = 2 and 4θ =   π __ 4   + 2kπ, k an integer. We obtain four distinct roots 
(and hence all) by

r =   
4
 √ 

__

 2  , θ =   π __ 16   +   2kπ
 ___ 16  , k = 0, 1, 2, 3

Thus the four roots are

  4 √ 

__

 2  eπi/16   4 √ 

__

 2  e9πi/16   4 √ 

__

 2  e17πi/16   4 √ 

__

 2  e25πi/16

Of course, reducing these roots to the form a + bi would require the 
computation of   4 √ 

__

 2   and the sine and cosine of the various angles.

An expression of the form ax2 + bx + c, where the coefficients a ≠ 0, b, and c 
are real numbers, is called a real quadratic. A complex number u is called a root 
of the quadratic if au2 + bu + c = 0. The roots are given by the famous quadratic 
formula:

u =   -b ±  √ 

________

 b2 - 4ac  
  ______________ 

2a
  

The quantity d = b2 - 4ac is called the discriminant of the quadratic ax2 + bx + c, 
and there is no real root if and only if d < 0. In this case the quadratic is said to be 
irreducible. Moreover, the fact that d < 0 means that  √ 

__

 d   = i √ 
___

 |d|  , so the two
(complex) roots are conjugates of each other:

e8 /5πi
e6 /5πi

1=e0i

y

x

e4 /5πi

e2 /5πi

0

� FIGURE A.10
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u =   1 __ 2a
  (-b + i √ 

___

 |d|  ) and  
__

 u   =   1 __ 2a
  (-b - i √ 

___

 |d|  )

The converse of this is true too: Given any nonreal complex number u, then
u and  

__
 u   are the roots of some real irreducible quadratic. Indeed, the quadratic

x2 - (u +  
__

 u  )x + u 
__

 u   = (x - u)(x -  
__

 u  )

has real coefficients (u 
__

 u   = |u|
2 and u +  

__
 u   is twice the real part of u) and so is 

irreducible because its roots u and  
__

 u   are not real.

EXAMPLE 9

Find a real irreducible quadratic with u = 3 - 4i as a root.

Solution ► We have u +  
__

 u   = 6 and |u|
2 = 25, so x2 - 6x + 25 is irreducible with 

u and  
__

 u   = 3 + 4i as roots.

Fundamental Theorem of Algebra
As we mentioned earlier, the complex numbers are the culmination of a long search 
by mathematicians to find a set of numbers large enough to contain a root of every 
polynomial. The fact that the complex numbers have this property was first proved 
by Gauss in 1797 when he was 20 years old. The proof is omitted.

Theorem 4

Fundamental Theorem of Algebra
Every polynomial of positive degree with complex coefficients has a complex root.

If f (x) is a polynomial with complex coefficients, and if u1 is a root, then the factor 
theorem (Section 6.5) asserts that

f (x) = (x - u1)g(x)

where g(x) is a polynomial with complex coefficients and with degree one less 
than the degree of f (x). Suppose that u2 is a root of g(x), again by the fundamental 
theorem. Then g(x) = (x - u2)h(x), so

f (x) = (x - u1)(x - u2)h(x)

This process continues until the last polynomial to appear is linear. Thus f (x) has 
been expressed as a product of linear factors. The last of these factors can be written 
in the form u(x - un), where u and un are complex (verify this), so the fundamental 
theorem takes the following form.

Theorem 5

Every complex polynomial f (x) of degree n ≥ 1 has the form
f (x) = u(x - u1)(x - u2)�(x - un)

where, u, u1, …, un are complex numbers and u ≠ 0. The numbers u1, u2, …, un are the 
roots of f (x) (and need not all be distinct), and u is the coefficient of xn.
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This form of the fundamental theorem, when applied to a polynomial f (x) with real 
coefficients, can be used to deduce the following result.

Theorem 6

Every polynomial f (x) of positive degree with real coefficients can be factored as a 
product of linear and irreducible quadratic factors.

In fact, suppose f (x) has the form
f (x) = anx

n + an-1x
n-1 + � + a1x + a0

where the coefficients ai are real. If u is a complex root of f (x), then we claim first 
that  

__
 u   is also a root. In fact, we have f (u) = 0, so

0 =  
__

 0   =  
____

 f (u)    =  

____________________________

   anu
n + an-1u

n-1 + � + a1u + a0  

=  
____

 anu
n   +  

________
 an-1u

n-1   + � +  
___

 a1u   +  
__

 a0  
=  

__
 a  n 

__
 u  n +  

__
 a  n-1 

__
 u  n-1 + � +  

__
 a  1 

__
 u   +  

__
 a  0

= an 
__

 u  n + an-1 
__

 u  n-1 + � + a1 
__

 u   + a0
= f ( 

__
 u  )

where  
__

 a  i = ai for each i because the coefficients ai are real. Thus if u is a root of f (x), 
so is its conjugate  

__
 u  . Of course some of the roots of f (x) may be real (and so equal 

their conjugates), but the nonreal roots come in pairs, u and  
__

 u  . By Theorem 6, we 
can thus write f (x) as a product:

 f (x) = an(x - r1) � (x - rk)(x - u1)(x -  
__

 u  1) � (x - um)(x -  
__

 u  m) (∗)

where an is the coefficient of xn in f (x); r1, r2, …, rk are the real roots; and u1,  
__

 u  2, u2,  __
 u  2, …, um,  

__
 u  m, are the nonreal roots. But the product

(x - uj)(x -  
__

 u  j) = x2 - (uj +  
__

 u  j)x + uj 
__

 u  j) 

is a real irreducible quadratic for each j (see the discussion preceding Example 9). 
Hence (∗) shows that f (x) is a product of linear and irreducible quadratic factors, 
each with real coefficients. This is the conclusion in Theorem 6.

E X E R C I S E S  A

 1. Solve each of the following for the real number x.

 (a) x - 4i = (2 - i)2


(b) (2 + xi)(3 - 2i) = 12 + 5i

 (c) (2 + xi)2 = 4


(d) (2 + xi)(2 - xi) = 5

 2. Convert each of the following to the form a + bi.

 (a) (2 - 3i) - 2(2 - 3i) + 9

 
(b) (3 - 2i)(1 + i) + |3 + 4i|

 (c)   1 + i
 ______ 

2 - 3i
   +   1 - i ________ 

-2 + 3i
   
(d)   3 - 2i ______ 

1 - i
   +   3 - 7i ______ 

2 - 3i
  

 (e) i131 
(f ) (2 - i)3

 (g) (1 + i)4


(h) (1 - i)2(2 + i)2

 (i)   3 √ 

__

 3   - i
 ________ 

 √ 

__

 3   + i
   +    

√ 

__

 3   + 7i
 ________ 

 √ 

__

 3   - i
  

 3. In each case, find the complex number z.

 (a) iz - (1 + i)2 = 3 - i


(b) (i + z) - 3i(2 - z) = iz + 1

 (c) z2 = -i


(d) z2 = 3 - 4i

 (e) z(1 + i) =  
__

 z   + (3 + 2i)


(f ) z(2 - i) = ( 
__

 z   + 1)(1 + i)
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 4. In each case, find the roots of the real quadratic 
equation.

 (a) x2 - 2x + 3 = 0

 
(b) x2 - x + 1 = 0

 (c) 3x2 - 4x + 2 = 0

 
(d) 2x2 - 5x + 2 = 0

 5. Find all numbers x in each case.

 (a) x3 = 8 
(b) x3 = -8

 (c) x4 = 16 
(d) x4 = 64

 6. In each case, find a real quadratic with u as a 
root, and find the other root.

 (a) u = 1 + i 
(b) u = 2 - 3i

 (c) u = -i 
(d) u = 3 - 4i

 7. Find the roots of x2 - 2cos θ x + 1 = 0, θ any 
angle.

 
8. Find a real polynomial of degree 4 with 2 - i 
and 3 - 2i as roots.

 9. Let re z and im z denote, respectively, the real 
and imaginary parts of z. Show that:

 (a) im(iz) = re z (b) re(iz) = -im z

 (c) z +  
__

 z   = 2 re z (d) z -  
__

 z   = 2i im z

 (e) re(z + w) = re z + re w, and re(tz) = t · re z 
if t is real

 (f ) im(z + w) = im z + im w, and 
im(tz) = t · im z if t is real

 10. In each case, show that u is a root of the 
quadratic equation, and find the other root.

 (a) x2 - 3ix + (-3 + i) = 0; u = 1 + i

 
(b) x2 + ix - (4 - 2i) = 0; u = -2

 (c) x2 - (3 - 2i)x + (5 - i) = 0; u = 2 - 3i

 
(d) x2 + 3(1 - i)x - 5i = 0; u = -2 + i

 11. Find the roots of each of the following complex 
quadratic equations.

 (a) x2 + 2x + (1 + i) = 0

 
(b) x2 - x + (1 - i) = 0

 (c) x2 - (2 - i)x + (3 - i) = 0

 
(d) x2 - 3(1 - i)x - 5i = 0

 12. In each case, describe the graph of the equation 
(where z denotes a complex number).

 (a) |z| = 1 
(b) |z - 1| = 2

 (c) z = i 
_
 z   
(d) z = - 

_
 z  

 (e) z = |z|

 
(f ) im z = m · re z, m a real number 

 13. (a) Verify |zw| = |z||w| directly for z = a + bi 
and w = c + di.

 (b) Deduce (a) from properties C2 and C6.

 14. Prove that |z + w| = |z|
2 + |w|

2 + w 
__

 z   +  
__

 w  z 
for all complex numbers w and z.

 15. If zw is real and z ≠ 0, show that w = a 
__

 z   for 
some real number a.

 16. If zw =  
__

 z  v and z ≠ 0, show that w = uv for 
some u in � with |u| = 1.

 17. Use property C5 to show that (1 + i)n + (1 - i)n 
is real for all n.

 18. Express each of the following in polar form 
(use the principal argument).

 (a) 3 - 3i 
(b) -4i

 (c) - √ 

__

 3   + i 
(d) -4 + 4 √ 

__

 3  i

 (e) -7i 
(f ) -6 + 6i

 19. Express each of the following in the form a + bi.

 (a) 3eπi 
(b) e7πi/3

 (c) 2e3πi/4 
(d)  √ 

__

 2  e-πi/4

 (e) e5πi/4 
(f ) 2 √ 

__

 3  e-2πi/6

 20. Express each of the following in the form a + bi.

 (a) (-1 +  √ 

__

 3  i)2 
(b) (1 +  √ 

__

 3  i)-4

 (c) (1 + i)8 
(d) (1 - i)10

 (e) (1 - i)6( √ 

__

 3   + i)3 
(f ) ( √ 

__

 3   - i)9(2 - 2i)5

 21. Use De Moivre’s theorem to show that:

 (a) cos 2θ = cos2 θ - sin2 θ;

  sin 2θ = 2 cos θ sin θ

 (b) cos 3θ = cos3 θ - 3 cos θ sin2 θ;

  sin 3θ = 3 cos2 θ sin θ - sin3 θ
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 22. (a) Find the fourth roots of unity.

 (b) Find the sixth roots of unity.

 23. Find all complex numbers z such that:

 (a) z4 = -1 
(b) z4 = 2( √ 

__

 3  i - 1)

 (c) z3 = -27i 
(d) z6 = -64

 24. If z = reiθ in polar form, show that:

 (a)  
__

 z   = re-iθ

 
(b) z-1 =   1 _ r  e
-iθ if z ≠ 0

 25. Show that the sum of the nth 
roots of unity is zero. [Hint: 
1 - zn = (1 - z)(1 + z + z2 + � + zn-1)
for any complex number z.]

 26. (a) Suppose z1, z2, z3, z4, and z5 are equally 
spaced around the unit circle. Show 
that z1 + z2 + z3 + z4 + z5 = 0. [Hint: 
(1 - z)(1 + z + z2 + z3 + z4) = 1 - z5 for 
any complex number z.]

 
(b) Repeat (a) for any n ≥ 2 points equally 
spaced around the unit circle.

 (c) If |w| = 1, show that the sum of the roots of 
zn = w is zero.

 27. If zn is real, n ≥ 1, show that ( 
__

 z  )n is real.

 28. If  
__

 z  2 = z2, show that z is real or pure imaginary.

 29. If a and b are rational numbers, let p and q denote 
numbers of the form a + b  √ 

__

 2  . If p = a + b √ 

__

 2  , 
define  � p   = a - b √ 

__

 2   and [ p] = a2 - 2b2. Show 
that each of the following holds.

 (a) a + b √ 

__

 2   = a1 + b1 √ 

__

 2   
only if a = a1 and b = b1

 (b)  � p ± q   =  � p   ±  � q  

 (c)  � pq   =  � p   � q  

 (d) [ p] = p � p  

 (e) [ pq] = [ p][q]

 (f ) If f (x) is a polynomial with rational 
coefficients and p = a + b  √ 

__

 2   is a root of f (x), 
then  � p   is also a root of f (x).
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Appendix B: 
Proofs

Logic plays a basic role in human affairs. Scientists use logic to draw conclusions 
from experiments, judges use it to deduce consequences of the law, and 
mathematicians use it to prove theorems. Logic arises in ordinary speech with 
assertions such as “If John studies hard, he will pass the course,” or “If an integer n 
is divisible by 6, then n is divisible by 3.” 1 In each case, the aim is to assert that if a 
certain statement is true, then another statement must also be true. In fact, if p and 
q denote statements, most theorems take the form of an implication: “If p is true, 
then q is true.” We write this in symbols as

p ⇒ q

and read it as “p implies q.” Here p is the hypothesis and q the conclusion of 
the implication. The verification that p ⇒ q is valid is called the proof of the 
implication. In this section we examine the most common methods of proof 2 
and illustrate each technique with some examples.

Method of Direct Proof
To prove that p ⇒ q, demonstrate directly that q is true whenever p is true.

EXAMPLE 1

If n is an odd integer, show that n2 is odd.

Solution ► If n is odd, it has the form n = 2k + 1 for some integer k. Then 
n2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 also is odd because 2k2 + 2k is an integer.

Note that the computation n2 = 4k2 + 4k + 1 in Example 1 involves some simple 
properties of arithmetic that we did not prove. These properties, in turn, can be 
proved from certain more basic properties of numbers (called axioms)—more about 
that later. Actually, a whole body of mathematical information lies behind nearly 
every proof of any complexity, although this fact usually is not stated explicitly. 
Here is a geometrical example.

1 By an integer we mean a “whole number”; that is, a number in the set 0, ±1, ±2, ±3, … .

2 For a more detailed look at proof techniques see D. Solow, How to Read and Do Proofs, 2nd ed. (New York: Wiley, 1990); 
or J. F. Lucas. Introduction to Abstract Mathematics, Chapter 2 (Belmont, CA: Wadsworth, 1986).



EXAMPLE 2

In a right triangle, show that the sum of the two acute angles is 90 degrees.

Solution ► The right triangle is shown in the diagram. Construct a rectangle 
with sides of the same length as the short sides of the original triangle, and 
draw a diagonal as shown. The original triangle appears on the bottom of the 
rectangle, and the top triangle is identical to the original (but rotated). Now it 
is clear that α + β is a right angle.

Geometry was one of the first subjects in which formal proofs were used—
Euclid’s Elements was published about 300 b.c. The Elements is the most successful 
textbook ever written, and contains many of the basic geometrical theorems that are 
taught in school today. In particular, Euclid included a proof of an earlier theorem 
(about 500 b.c.) due to Pythagoras. Recall that, in a right triangle, the side opposite 
the right angle is called the hypotenuse of the triangle.

EXAMPLE 3

Pythagoras’ Theorem
In a right-angled triangle, show that the square of the length of the hypotenuse 
equals the sum of the squares of the lengths of the other two sides.

Solution ► Let the sides of the right triangle have lengths a, b, and c as shown. 
Consider two squares with sides of length a + b, and place four copies of the 
triangle in these squares as in the diagram. The central rectangle in the second 
square shown is itself a square because the angles α and β add to 90 degrees 
(using Example 2), so its area is c2 as shown. Comparing areas shows that both 
a2 + b2 and c2 each equal the area of the large square minus four times the area 
of the original triangle, and hence are equal.

Sometimes it is convenient (or even necessary) to break a proof into parts, and 
deal with each case separately. We formulate the general method as follows:

Method of Reduction to Cases
To prove that p ⇒ q, show that p implies at least one of a list p1, p2, …, pn of 
statements (the cases) and then show that pi ⇒ q for each i.

EXAMPLE 4

Show that n2 ≥ 0 for every integer n.

Solution ► This statement can be expressed as an implication: If n is an integer, 
then n2 ≥ 0. To prove it, consider the following three cases:

(1) n > 0; (2) n = 0; (3) n < 0.

Then n2 > 0 in Cases (1) and (3) because the product of two positive (or two 
negative) integers is positive. In Case (2) n2 = 02 = 0, so n2 ≥ 0 in every case.

β

β

α

β

α

α

a

b

c

a

a

a2

b2 b

b
b a

c2

b

b

b

a

a

a
β

β

β

β

β
α

α

α

α
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EXAMPLE 5

If n is an integer, show that n2 - n is even.

Solution ► We consider two cases:

(1) n is even; (2) n is odd.
We have n2 - n = n(n - 1), so this is even in Case (1) because any multiple of 
an even number is again even. Similarly, n - 1 is even in Case (2) so n(n - 1) is 
again even for the same reason. Hence n2 - n is even in any case.

The statements used in mathematics are required to be either true or false. This 
leads to a proof technique which causes consternation in many beginning students. 
The method is a formal version of a debating strategy whereby the debater assumes 
the truth of an opponent’s position and shows that it leads to an absurd conclusion.

Method of Proof by Contradiction
To prove that p ⇒ q, show that the assumption that both p is true and q is false leads 
to a contradiction. In other words, if p is true, then q must be true; that is, p ⇒ q.

EXAMPLE 6

If r is a rational number (fraction), show that r2 ≠ 2.

Solution ► To argue by contradiction, we assume that r is a rational number and 
that  r2 = 2, and show that this assumption leads to a contradiction. Let m and n be 
integers such that r = m/n is in lowest terms (so, in particular, m and n are not both 
even). Then r2 = 2 gives m2 = 2n2, so m2 is even. This means m is even (Example 
1), say m = 2k. But then 2n2 = m2 = 4k2, so n2 = 2k2 is even, and hence n is even. 
This shows that n and m are both even, contrary to the choice of these numbers.

EXAMPLE 7

Pigeonhole Principle
If n + 1 pigeons are placed in n holes, then some hole contains at least 2 pigeons.

Solution ► Assume the conclusion is false. Then each hole contains at most 
one pigeon and so, since there are n holes, there must be at most n pigeons, 
contrary to assumption.

The next example involves the notion of a prime number, that is an integer that 
is greater than 1 which cannot be factored as the product of two smaller positive 
integers both greater than 1. The first few primes are 2, 3, 5, 7, 11, … .

EXAMPLE 8

If 2n - 1 is a prime number, show that n is a prime number.

Solution ► We must show that p ⇒ q where p is the statement “2n - 1 is a
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prime”, and q is the statement “n is a prime.” Suppose that p is true but q is false 
so that n is not a prime, say n = ab where a ≥ 2 and b ≥ 2 are integers. If we 
write 2a = x, then 2n = 2ab = (2a)b = xb. Hence 2n - 1 factors:

2n - 1 = xb - 1 = (x - 1)(xb-1 + xb-2 + � + x2 + x + 1)

As x ≥ 4, this expression is a factorization of 2n - 1 into smaller positive 
integers, contradicting the assumption that 2n - 1 is prime.

The next example exhibits one way to show that an implication is not valid.

EXAMPLE 9

Show that the implication “n is a prime ⇒ 2n - 1 is a prime” is false.

Solution ► The first four primes are 2, 3, 5, and 7, and the corresponding values 
for 2n - 1 are 3, 7, 31, 127 (when n = 2, 3, 5, 7). These are all prime as the 
reader can verify. This result seems to be evidence that the implication is true. 
However, the next prime is 11 and 211 - 1 = 2047 = 23 · 89, which is clearly 
not a prime.

We say that n = 11 is a counterexample to the (proposed) implication in Example 9. 
Note that, if you can find even one example for which an implication is not valid, the 
implication is false. Thus disproving implications is in a sense easier than proving them.

The implications in Examples 8 and 9 are closely related: They have the form 
p ⇒ q and q ⇒ p, where p and q are statements. Each is called the converse of 
the other and, as these examples show, an implication can be valid even though its 
converse is not valid. If both p ⇒ q and q ⇒ p are valid, the statements p and q are 
called logically equivalent. This is written in symbols as

p ⇔ q

and is read “p if and only if q”. Many of the most satisfying theorems make the 
assertion that two statements, ostensibly quite different, are in fact logically equivalent.

EXAMPLE 10

If n is an integer, show that “n is odd ⇔ n2 is odd.”

Solution ► In Example 1 we proved the implication “n is odd ⇒ n2 is odd.” 
Here we prove the converse by contradiction. If n2 is odd, we assume that 
n is not odd. Then n is even, say n = 2k, so n2 = 4k2, which is also even, a 
contradiction.

Many more examples of proofs can be found in this book and, although they are 
often more complex, most are based on one of these methods. In fact, linear algebra is 
one of the best topics on which the reader can sharpen his or her skill at constructing 
proofs. Part of the reason for this is that much of linear algebra is developed using the 
axiomatic method. That is, in the course of studying various examples it is observed 
that they all have certain properties in common. Then a general, abstract system is 
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studied in which these basic properties are assumed to hold (and are called axioms). 
In this system, statements (called theorems) are deduced from the axioms using 
the methods presented in this appendix. These theorems will then be true in all the 
concrete examples, because the axioms hold in each case. But this procedure is more 
than just an efficient method for finding theorems in the examples. By reducing the 
proof to its essentials, we gain a better understanding of why the theorem is true and 
how it relates to analogous theorems in other abstract systems.

The axiomatic method is not new. Euclid first used it in about 300 b.c.  to 
derive all the propositions of (euclidean) geometry from a list of 10 axioms. The 
method lends itself well to linear algebra. The axioms are simple and easy to 
understand, and there are only a few of them. For example, the theory of vector 
spaces contains a large number of theorems derived from only ten simple axioms.

E X E R C I S E S  B

 1. In each case prove the result and either prove the 
converse or give a counterexample.

 (a) If n is an even integer, then n2 is a multiple of 4.


(b) If m is an even integer and n is an odd 
integer, then m + n is odd.

 (c) If x = 2 or x = 3, then x3 - 6x2 + 11x - 6 = 0.


(d) If x2 - 5x + 6 = 0, then x = 2 or x = 3.

 2. In each case either prove the result by splitting 
into cases, or give a counterexample.

 (a) If n is any integer, then n2 = 4k + 1 for some 
integer k.


(b) If n is any odd integer, then n2 = 8k + 1 for 
some integer k.

 (c) If n is any integer, n3 - n = 3k for some 
integer k. [Hint: Use the fact that each 
integer has one of the forms 3k, 3k + 1, or 
3k + 2, where k is an integer.]

 3. In each case prove the result by contradiction and 
either prove the converse or give a counterexample.

 (a) If n > 2 is a prime integer, then n is odd.


(b) If n + m = 25 where n and m are integers, 
then one of n and m is greater than 12.

 (c) If a and b are positive numbers and a ≤ b, 
then  √ 

__
 a   ≤  √ 

__

 b  .

 (d) If m and n are integers and mn is even, then 
m is even or n is even.

 4. Prove each implication by contradiction.

 (a) If x and y are positive numbers, 
then  √ 

_____
 x + y   ≠  √ 

__
 x   +     √ 

__
 y  .


(b) If x is irrational and y is rational, then x + y 
is irrational.

 (c) If 13 people are selected, at least 2 have 
birthdays in the same month.

 5. Disprove each statement by giving a 
counterexample.

 (a) n2 + n + 11 is a prime for all positive 
 integers n.


(b) n3 ≥ 2n for all integers n ≥ 2.

 (c) If n ≥ 2 points are arranged on a circle in 
such a way that no three of the lines joining 
them have a common point, then these lines 
divide the circle into 2n-1 regions. [The cases 
n = 2, 3, and 4 are shown in the diagram.]

n = 2 n = 3 n = 4

 6. The number e from calculus has a series 
expansion

e = 1 +   1 __ 
1!

   +   
1 __ 
2!

   +   
1 __ 
3!

   + �

  where n! = n(n - 1) � 3 · 2 · 1 for each integer 
n ≥ 1. Prove that e is irrational by contradiction.
[Hint: If e = m/n, consider

k = n! Qe - 1 -   1 __ 
1!

   -   
1 __ 
2!

   -   
1 __ 
3!

   - � -   
1 __ 
n!

   R . 
  Show that k is a positive integer and that

k =   1 _____ 
n + 1

   +   1 _____________  
(n + 1)(n + 2)

   + � <   1 __ n  .]
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Appendix C: 
Mathematical Induction

Suppose one is presented with the following sequence of equations:

 1 = 1
 1 + 3 = 4
 1 + 3 + 5 = 9
 1 + 3 + 5 + 7 = 16
 1 + 3 + 5 + 7 + 9 = 25

It is clear that there is a pattern. The numbers on the right side of the equations 
are the squares 12, 22, 32, 42, and 52 and, in the equation with n2 on the right side, 
the left side is the sum of the first n odd numbers. The odd numbers are

1 = 2 · 1 - 1
3 = 2 · 2 - 1 
5 = 2 · 3 - 1 
7 = 2 · 4 - 1 
9 = 2 · 5 - 1 

and from this it is clear that the nth odd number is 2n - 1. Hence, at least for 
n = 1, 2, 3, 4, or 5, the following is true:

 1 + 3 + � + (2n - 1) = n2 (Sn)

The question arises whether the statement Sn is true for every n. There is no hope of 
separately verifying all these statements because there are infinitely many of them. A 
more subtle approach is required.

The idea is as follows: Suppose it is verified that the statement Sn+1 will be true 
whenever Sn is true. That is, suppose we prove that, if Sn is true, then it necessarily 
follows that Sn+1 is also true. Then, if we can show that S1 is true, it follows that S2 
is true, and from this that S3 is true, hence that S4 is true, and so on and on. This is 
the principle of induction. To express it more compactly, it is useful to have a short 
way to express the assertion “If Sn is true, then Sn+1 is true.” As in Appendix B, we 
write this assertion as

Sn ⇒ Sn+1

and read it as “Sn implies Sn+1.” We can now state the principle of mathematical 
induction.



The Principle of Mathematical Induction

Suppose Sn is a statement about the natural number n for each n = 1, 2, 3, ….
Suppose further that:

1. S1 is true.
2. Sn ⇒ Sn+1 for every n ≥ 1.

Then Sn is true for every n ≥ 1.

This is one of the most useful techniques in all of mathematics. It applies in a wide 
variety of situations, as the following examples illustrate.

EXAMPLE 1

Show that 1 + 2 + � + n =   1 _ 2  n(n + 1) for n ≥ 1.

Solution ► Let Sn be the statement: 1 + 2 + � + n =   1 _ 2  n(n + 1) for n ≥ 1. We 
apply induction.

1. S1 is true. The statement S1 is 1 =   1 _ 2  1(1 + 1), which is true.

2. Sn ⇒ Sn+1. We assume that Sn is true for some n ≥ 1—that is, that

1 + 2 + � + n =   1 _ 2  n(n + 1)

We must prove that the statement

Sn+1: 1 + 2 + � + (n + 1) =   1 _ 2  (n + 1)(n + 2)

is also true, and we are entitled to use Sn to do so. Now the left side of Sn+1 is 
the sum of the first n + 1 positive integers. Hence the second-to-last term is n, 
so we can write

1 + 2 + � + (n + 1)  = (1 + 2 + � + n) + (n + 1)
=   1 _ 2  n(n + 1) + (n + 1)  using Sn

=   1 _ 2  (n + 1)(n + 2) 

This shows that Sn+1 is true and so completes the induction.

In the verification that Sn ⇒ Sn+1, we assume that Sn is true and use it to deduce 
that Sn+1 is true. The assumption that Sn is true is sometimes called the induction 
hypothesis.

EXAMPLE 2

If x is any number such that x ≠ 1, show that 1 + x + x2 + � + xn =   x
n+1 - 1 ________ 
x - 1

   
for n ≥ 1.

Solution ► Let Sn be the statement: 1 + x + x2 + � + xn =   x
n+1 - 1 ________ 
x - 1

  .

1. S1 is true. S1 reads 1 + x =   x
2 - 1 ______ 
x - 1

  , which is true because 

x2 - 1 = (x - 1)(x + 1).
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2. Sn ⇒ Sn+1. Assume the truth of Sn: 1 + x + x2 + � + xn =   x
n+1 - 1 ________ 
x - 1

  .

We must deduce from this the truth of Sn+1: 1 + x + x2 + � + xn+1 =   x
n+2 - 1 ________ 
x - 1

  . 

Starting with the left side of Sn+1 and using the induction hypothesis, we find

1 + x + x2 + � + xn+1 = (1 + x + x2 + � + xn) + xn+1

=   x
n+1 - 1 ________ 
x - 1

   + xn+1

=   
xn+1 - 1 + xn+1(x - 1)

  ____________________  
x - 1

  

=   x
n+2 - 1 ________ 
x - 1

  

This shows that Sn+1 is true and so completes the induction.

Both of these examples involve formulas for a certain sum, and it is often 
convenient to use summation notation. For example,  ∑ 

k=1
  

n

  (2k - 1)  means that in 

the expression (2k - 1), k is to be given the values k = 1, k = 2, k = 3, …, k = n, 
and then the resulting n numbers are to be added. The same thing applies to other 
expressions involving k. For example,

  ∑ 
k=1

  
n

  k3  = 13 + 23 + � + n3

  ∑ 
k=1

  
5
  (3k - 1)  = (3 · 1 - 1) + (3 · 2 - 1) + (3 · 3 - 1) + (3 · 4 - 1) + (3 · 5 - 1)

The next example involves this notation.

EXAMPLE 3

Show that  ∑ 
k=1

  
n

  (3k2 - k)  = n2(n + 1) for each n ≥ 1.

Solution ► Let Sn be the statement:  ∑ 
k=1

  
n

  (3k2 - k)  = n2(n + 1). 

1. S1 is true. S1 reads (3 · 12 - 1) = 12(1 + 1), which is true.

2. Sn ⇒ Sn+1. Assume that Sn is true. We must prove Sn+1:

  ∑ 
k=1

  
n+1

 (3k2 - k)  =  ∑ 
k=1

  
n

  (3k2 - k)  + [3(n + 1)2 - (n + 1)]

  = n2(n + 1) + (n + 1)[3(n + 1) - 1] using Sn

  = (n + 1)[n2 + 3n + 2]

  = (n + 1)[(n + 1)(n + 2)]

  = (n + 1)2(n + 2)

This proves that Sn+1 is true.

We now turn to examples wherein induction is used to prove propositions that do 
not involve sums.
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EXAMPLE 4

Show that 7n + 2 is a multiple of 3 for all n ≥ 1.

Solution ►

1. S1 is true: 71 + 2 = 9 is a multiple of 3.

2. Sn ⇒ Sn+1. Assume that 7n + 2 is a multiple of 3 for some n ≥ 1; say, 
7n + 2 = 3m for some integer m. Then

7n+1 + 2 = 7(7n) + 2 = 7(3m - 2) + 2 = 21m - 12 = 3(7m - 4)

 so 7n+1 + 2 is also a multiple of 3. This proves that Sn+1 is true.

In all the foregoing examples, we have used the principle of induction starting 
at 1; that is, we have verified that S1 is true and that Sn ⇒ Sn+1 for each n ≥ 1, and 
then we have concluded that Sn is true for every n ≥ 1. But there is nothing special 
about 1 here. If m is some fixed integer and we verify that

1. Sm is true.

2. Sn ⇒ Sn+1 for every n ≥ m.

then it follows that Sn is true for every n ≥ m. This “extended” induction principle is 
just as plausible as the induction principle and can, in fact, be proved by induction. 
The next example will illustrate it. Recall that if n is a positive integer, the number 
n! (which is read “n-factorial”) is the product

n! = n(n - 1)(n - 2)�3 · 2 · 1

of all the numbers from n to 1. Thus 2! = 2, 3! = 6, and so on.

EXAMPLE 5

Show that 2n < n! for all n ≥ 4.

Solution ► Observe that 2n < n! is actually false if n = 1, 2, 3.

1. S4 is true. 24 = 16 < 24 = 4!.

2. Sn ⇒ Sn+1 if n ≥ 4. Assume that Sn is true; that is, 2n < n!. Then

 2n+1 = 2 · 2n

  < 2 · n! because 2n < n!
  < (n + 1)n! because 2 < n + 1
  = (n + 1)!

Hence Sn+1 is true.
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E X E R C I S E S  C

In Exercises 1–19, prove the given statement by 
induction for all n ≥ 1.

 1. 1 + 3 + 5 + 7 + � + (2n - 1) = n2

 2. 12 + 22 + � + n2 =   1 _ 6  n(n + 1)(2n + 1)

 3. 13 + 23 + � + n3 = (1 + 2 + � + n)2

 4. 1 · 2 + 2 · 3 + � + n(n + 1) =   1 _ 3  n(n + 1)(n + 2)

 5. 1 · 22 +  2 · 32 + � + n(n + 1)2 
=   1 __ 12  n(n + 1)(n + 2)(3n + 5) 

 
6.   1 _____ 
1 · 2

   +   1 _____ 
2 · 3

   + � +   1 ________ 
n(n + 1)

   =   n _____ 
n + 1

   

 7. 12 + 32 + � + (2n - 1)2 =   n _ 3  (4n2 - 1) 

 8.   1 _______ 
1 · 2 · 3

    +   1 _______ 
2 · 3 · 4

   + � +   1 ______________  
n(n + 1)(n + 2)

   

=   
n(n + 3)

  ______________  
4(n + 1)(n + 2)

   

 9. 1 + 2 + 22 + � + 2n-1 = 2n - 1

 10. 3 + 33 + 35 + � + 32n-1 =   3 _ 8  (9
n - 1) 

 11.   1 __ 
12

   +   1 __ 
22

   + � +   1 __ 
n2

   ≤ 2 -   1 __ n   

 12. n < 2n

 13. For any integer m > 0, m!n! < (m + n)!

 
14.   1 ___ 
 √ 

__

 1  
   +   1 ___ 

 √ 

__

 2  
   + � +   1 ___  √ 

__
 n  
   ≤ 2 √ 

__
 n   - 1

 15.   1 ___ 
 √ 

__

 1  
   +   1 ___ 

 √ 

__

 2  
   + � +   1 ___  √ 

__
 n  
   ≥  √ 

__
 n  

 16. n3 + (n + 1)3 + (n + 2)3 is a multiple of 9.

 17. 5n + 3 is a multiple of 4.

 
18. n3 - n is a multiple of 3.

 19. 32n+1 + 2n+2 is a multiple of 7.

 
20. Let Bn = 1 · 1! + 2 · 2! + 3 · 3! + � + n · n! Find 
a formula for Bn and prove it.

 21. Let An = (1 -   1 _ 2  )(1 -   1 _ 3  )(1 -   1 _ 4  ) � (1 -   1 _ n  ). Find a 
formula for An and prove it.

 22. Suppose Sn is a statement about n for each n ≥ 1. 
Explain what must be done to prove that Sn is 
true for all n ≥ 1 if it is known that:

 (a) Sn ⇒ Sn+2 for each n ≥ 1.

 
(b) Sn ⇒ Sn+8 for each n ≥ 1.

 (c) Sn ⇒ Sn+1 for each n ≥ 10.

 (d) Both Sn and Sn+1 ⇒ Sn+2 for each n ≥ 1.

 23. If Sn is a statement for each n ≥ 1, argue that 
Sn is true for all n ≥ 1 if it is known that the 
following two conditions hold:

 (1) Sn ⇒ Sn-1 for each n ≥ 2.

 (2) Sn is true for infinitely many values of n.

 24. Suppose a sequence a1, a2, … of numbers is given 
that satisfies:

 (1) a1 = 2.

 (2) an+1 = 2an for each n ≥ 1.

  Formulate a theorem giving an in terms of n, and 
prove your result by induction.

 25. Suppose a sequence a1, a2, … of numbers is given 
that satisfies:

 (1) a1 = b.

 (2) an+1 = can + b for n = 1, 2, 3, ….

  Formulate a theorem giving an in terms of n, and 
prove your result by induction.

 26. (a) Show that n2 ≤ 2n for all n ≥ 4.

 (b) Show that n3 ≤ 2n for all n ≥ 10.
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Appendix D: 
Polynomials

Expressions like 3 - 5x: and 1 + 3x - 2x2 are examples of polynomials. In general, 
a polynomial is an expression of the form

f (x) = a0 + a1x + a2x
2 + � + anx

n

where the ai are numbers, called the coefficients of the polynomial, and x is a 
variable called an indeterminate. The number a0 is called the constant coefficient 
of the polynomial. The polynomial with every coefficient zero is called the zero 
polynomial, and is denoted simply as 0.

If f (x) ≠ 0, the coefficient of the highest power of x appearing in f (x) is called the 
leading coefficient of f (x), and the highest power itself is called the degree of the 
polynomial and is denoted deg( f (x)). Hence

 -1 + 5x + 3x2 has constant coefficient -1, leading coefficient 3, and degree 2,
 7 has constant coefficient 7, leading coefficient 7, and degree 0,
 6x - 3x3 + x4 - x5 has constant coefficient 0, leading coefficient -1, and degree 5.

We do not define the degree of the zero polynomial.

Two polynomials f (x) and g(x) are called equal if every coefficient of f (x) is the 
same as the corresponding coefficient of g(x). More precisely, if

f (x) = a0 + a1x + a2x
2 + � and g(x) = b0 + b1x + b2x

2 + �

are polynomials, then

f (x) = g(x) if and only if a0 = b0, a1 = b1, a2 = b2, ….

In particular, this means that

f (x) = 0 is the zero polynomial if and only if a0 = 0, a1 = 0, a2 = 0, ….

This is the reason for calling x an indeterminate.
Let f (x) and g(x) denote nonzero polynomials of degrees n and m respectively, say

f (x) = a0 + a1x + a2x
2 + � + anx

n and g(x) = b0 + b1x + b2x
2 + � + bmxm

where an ≠ 0 and bm ≠ 0. If these expressions are multiplied, the result is

f (x) g(x) = a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1 + a2b0)x
2 + � + anbmxn+m.

Since an and bm are nonzero numbers, their product anbm ≠ 0 and we have



Theorem 1

If f (x) and g(x) are nonzero polynomials of degrees n and m respectively, their product 
f (x) g(x) is also nonzero and

deg[ f (x)g(x)] = n + m.

EXAMPLE 1

(2 - x + 3x2)(3 + x2 - 5x3) = 6 - 3x + 11x2 - 11x3 + 8x4 - 15x5.

If f (x) is any polynomial, the next theorem shows that f (x) - f (a) is a multiple of 
the polynomial x - a. In fact we have

Theorem 2

Remainder Theorem
If f (x) is a polynomial of degree n ≥ 1 and a is any number, then there exists a 
polynomial q(x) such that

f (x) = (x - a)q(x) + f (a)

where deg(q(x)) = n - 1.

PROOF

Write f (x) = a0 + a1x + a2x
2 + � + anx

n where the ai are numbers, so that 
f (a) = a0 + a1a + a2a

2 + � + ana
n. If these expressions are subtracted, the 

constant terms cancel and we obtain

f (x) - f (a) = a1(x - a) + a2(x
2 - a2) + � + an(x

n - an).

Hence it suffices to show that, for each k ≥ 1, xk - ak = (x - a)p(x) for some 
polynomial p(x) of degree k - 1. This is clear if k = 1. If it holds for some value 
k, the fact that

xk+1 - ak+1 = (x - a)xk + a(xk - ak)

shows that it holds for k + 1. Hence the proof is complete by induction.

There is a systematic procedure for finding the polynomial q(x) in the 
remainder theorem. It is illustrated below for f (x) = x3 - 3x2 + x - 1 and a = 2. 
The polynomial q(x) is generated on the top line one term at a time as follows: 
First x2 is chosen because x2(x - 2) has the same x3-term as f (x), and this is 
substracted from f (x) to leave a “remainder” of -x2 + x - 1. Next, the second 
term on top is -x because -x(x - 2) has the same x2-term, and this is subtracted 
to leave -x - 1. Finally, the third term on top is -1, and the process ends with a 
“remainder” of -3.
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Hence x3 - 3x2 + x - 1 = (x - 2)(x2 - x - 1) + (-3). The final remainder is 
-3 = f (2) as is easily verified. This procedure is called the division algorithm.1

A real number a is called a root of the polynomial f (x) if f (a) = 0. Hence for 
example, 1 is a root of f (x) = 2 - x + 3x2 - 4x3, but -1 is not a root because 
f (-1) = 10 ≠ 0. If f (x) is a multiple of x - a, we say that x - a is a factor of f (x). 
Hence the remainder theorem shows immediately that if a is root of f (x), then 
x - a is factor of f (x). But the converse is also true: If x - a is a factor of f (x), say 
f (x) = (x - a) q(x), then f (a) = (a - a)q(a) = 0. This proves theT

Theorem 3

Factor Theorem
If f (x) is a polynomial and a is a number, then x - a is a factor of f (x) if and only if a is 
a root of f (x).

EXAMPLE 2

If f (x) = x3 - 2x2 - 6x + 4, then f (-2) = 0, so x - (-2) = x + 2 is a factor of 
f (x). In fact, the division algorithm gives f (x) = (x + 2)(x2 - 4x + 2).

Consider the polynomial f (x) = x3 - 3x + 2. Then 1 is clearly a root of f (x), 
and the division algorithm gives f (x) = (x - 1)(x2 + x - 2). But 1 is also a root of 
x2 + x - 2; in fact, x2 + x - 2 = (x - 1)(x + 2). Hence

f (x) = (x - 1)2(x + 2)

and we say that the root 1 has multiplicity 2.
Note that non-zero constant polynomials f (x) = b ≠ 0 have no roots. However, 

there do exist nonconstant polynomials with no roots. For example, if g(x) = x2 + 1, 
then g(a) = a2 + 1 ≥ 1 for every real number a, so a is not a root. However the 
complex number i is a root of g(x); we return to this below.

Now suppose that f (x) is any nonzero polynomial. We claim that it can be 
factored in the following form:

f (x) = (x - a1)(x - a2) � (x - am)g(x)

where a1, a2, …, am are the roots of f (x) and g(x) has no root (where the ai may have 
repetitions, and my not appear at all if f (x) has no real root).

1 This procedure can be used to divide f (x) by any nonzero polynomial d(x) in place of x - a; the remainder then is a polynomial that is 
either zero or of degree less than the degree of d(x).
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By the above calculation f (x) = x3 - 3x + 2 = (x - 1)2(x + 2) has roots 1 and 
-2, with 1 of multiplicity two (and g(x) = 1). Counting the root -2 once, we say 
that f (x) has three roots counting multiplicities. The next theorem shows that no 
polynomial can have more roots than its degree even if multiplicities are counted.

Theorem 4

If f (x) is a nonzero polynomial of degree n, then f (x) has at most n roots counting 
multiplicities.

PROOF

If n = 0, then f (x) is a constant and has no roots. So the theorem is true if n = 0. 
(It also holds for n = 1 because, if f (x) = a + bx where b ≠ 0, then the only root 
is -  a _ 

b
  .) In general, suppose inductively that the theorem holds for some value of 

n ≥ 0, and let f (x) have degree n + 1. We must show that f (x) has at most n + 1 
roots counting multiplicities. This is certainly true if f (x) has no root. On the 
other hand, if a is a root of f (x), the factor theorem shows that f (x) = (x - a) q(x) 
for some polynomial q(x), and q(x) has degree n by Theorem 1. By induction, 
q(x) has at most n roots. But if b is any root of f (x), then

(b - a)q(b) = f (b) = 0

so either b = a or b is a root of q(x). It follows that f (x) has at most n roots. This 
completes the induction and so proves Theorem 4.

As we have seen, a polynomial may have no root, for example f (x) = x2 + 1. Of 
course f (x) has complex roots i and -i, where i is the complex number such that 
i2 = -1. But Theorem 4 even holds for complex roots: the number of complex roots 
(counting multiplicities) cannot exceed the degree of the polynomial. Moreover, 
the fundamental theorem of algebra asserts that the only nonzero polynomials with 
no complex root are the non-zero constant polynomials. This is discussed more in 
Appendix A, Theorems 4 and 5.
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Selected
Answers

Exercises 1.1 Solutions and Elementary 
Operations (Page 7)

 1. (b) 2(2s + 12t + 13) + 5s + 9(-s - 3t - 3) + 3t = -1; 
(2s + 12t + 13) + 2s + 4(-s - 3t - 3) = 1

2. (b) x = t, y = 1_
3 (1 - 2t) or x = 1_

2 (1 - 3s), y = s

(d) x = 1 + 2s - 5t, y = s, z = t or x = s, y = t, 
z = 1_

5 (1 - s + 2t)
4. x = 1_

4 (3 + 2s), y = s, z = t

5. (a) No solution if b ≠ 0. If b = 0, any x is a solution. 
(b) x = b_

a

 7. (b) 1 2
0 1

0
1  (d) 

1 1 0
0 1 1
1 0 1

1
0
2−

 8. (b) 2
3 2 3 20

3

2 11
0
3

1 2

1 2 3

2 3

x x x
x x

x x
x z

y z
y
y

x
−

− + − +
−

+
+

− =
=
=

=
=
=

−
+
+

or

 9. (b) x = -3, y = 2 (d) x = -17, y = 13
 10. (b) x =   1 _ 9  , y =   10 __ 9  , z =   -7 __ 3  
 11. (b) No solution
 14. (b) F. x + y = 0, x - y = 0 has a unique solution.
  (d) T. Theorem 1.
 16. x′ = 5, y′ = 1, so x = 23, y = -32
 17. a = -  1 _ 9  , b = -  5 _ 9  , c =   11 __ 9  
 19. $4.50, $5.20

Exercises 1.2 Gaussian Elimination (Page 16)

 1. (b) No, no (d) No, yes (f) No, no

 2. (b)   S  
0 1 -3 0 0 0   0

  
      

  0 0   0 1 0 0 -1          
0 0   0 0 1 0   0

  
      

  

0 0   0 0 0 1   1

   T 
 3. (b) x1 = 2r - 2s - t + 1, x2 = r, x3 = -5s + 3t - 1, 

x4 = s, x5 = -6t + 1, x6 = t (d) x1 = -4s - 5t - 4, 
x2 = -2s + t - 2, x3 = s, x4 = 1, x5 = t

 4. (b) x = -  1 _ 7  , y = -  3 _ 7   (d) x =   1 _ 3  (t + 2), y = t 
(f) No solution

5. (b) x = -15t - 21, y = -11t - 17, z = t 
(d) No solution (f) x = -7, y = -9, z = 1
(h) x = 4, y = 3 + 2t, z = t

6. (b) Denote the equations as E1, E2, and E3. Apply 
gaussian elimination to column 1 of the augmented 
matrix, and observe that E3 - E1 = -4(E2 - E1). 
Hence E3 = 5E1 - 4E2.

7. (b) x1 = 0, x2 = -t, x3 = 0, x4 = t 
(d) x1 = 1, x2 = 1 - t, x3 = 1 + t, x4 = t

8. (b) If ab ≠ 2, unique solution x =   -2 - 5b ________ 
2 - ab

  , 

y =   a + 5 ______ 
2 - ab

  . If ab = 2: no solution if a ≠ -5; if 

a = -5, the solutions are x = -1 +   2 _ 5  t, y = t. 

(d) If a ≠ 2, unique solution x =   1 - b _____ 
a - 2

  , y =   ab - 2 ______ 
a - 2

  . If 

a = 2, no solution if b ≠ 1; if b = 1, the solutions are 
x =   1 _ 2  (1 - t), y = t.

9. (b) Unique solution x = -2a + b + 5c, y = 3a - b - 6c, 
z = -2a + b + 4c, for any a, b, c.

  (d) If abc ≠ -1, unique solution x = y = z = 0; if 
abc = -1 the solutions are x = abt, y = -bt, z = t.

  (f) If a = 1, solutions x = -t, y = t, z = -1. If a = 0, 
there is no solution. If a ≠ 1 and a ≠ 0, unique solution

  x =   a - 1 _____ a  , y = 0, z =   -1 ___ a  .

 10. (b) 1 (d) 3 (f) 1
 11. (b) 2 (d) 3
  (f) 2 if a = 0 or a = 2; 3, otherwise.

 12. (b) False. A = 
1 0
0 1
0 0

1
1
0

 (d) False. A = 
1 0
0 1
0 0

1
0
0

  (f) False.   
2x - y = 0

         
-4x + 2y = 0

  is consistent 

but   
2x - y = 1

         
-4x + 2y = 1

  is not. 

  (h) True, A has 3 rows, so there are at most 
3 leading 1’s.



14. (b) Since one of b – a and c – a is nonzero, then

    S  1 a b + c
 

   
 1 b c + a     

1 b c + a
  T  →   S   1   a   b + c

  
    

  0 b - a a - b        
0 c - a a - c  

  T  → 

      S   1 a b + c
 

   
 0 1  -1     

0 0   0  
   T  →   S   1 0 b + c + a

  
    

  0 1  -1         

0 0    0 
   T 

16. (b) x2 + y2 - 2x + 6y - 6 = 0
 18.   5 __ 20   in A,   7 __ 20   in B,   8 __ 20   in C

Exercises 1.3 Homogeneous Equations 
(Page 24)

 1. (b) False. A = 1 0 1
0 1 1

0
0  (d) False. A = 1 0 1

0 1 1
1
0

  (f) False. A = 1 0
0 1

0
0  (h) False. A = 

1 0
0 1
0 0

0
0
0

 2. (b) a = -3, x = 9t, y = -5t, z = t (d) a = 1, x = -t, 
y = t, z = 0; or a = -1, x = t, y = 0, z = t

3. (b) Not a linear combination. (d) v = x + 2y - z
 4. (b) y = 2a1 - a2 + 4a3.

 5. (b) r   S  
-2

 

 

 
  1

 
 

   0   
  0

 
 

 

  0

   T  + s   S  
-2

 

 

 
  0

 
 

 -1   
  1

 
 

 

  0

   T  + t   S  
-3

 

 

 
  0

 
 

 -2   
  0

 
 

 

  1

   T  (d) s   S  
0

 

 

 
2

 
 

 1   
0

 
 

 

0

  T  + t   S  
-1

 

 

 
  3

 
 

   0   
  1

 
 

 

  0

   T 
 6. (b) The system in (a) has nontrivial solutions.
 7. (b) By Theorem 2 Section 1.2, there are 

n - r = 6 - 1 = 5 parameters and thus infinitely 
many solutions.

  (d) If R is the row-echelon form of A, then R 
has a row of zeros and 4 rows in all. Hence R 
has r = rank A = 1, 2, or 3. Thus there are 
n - r = 6 - r = 5, 4, or 3 parameters and thus 
infinitely many solutions.

 9. (b) That the graph of ax + by + cz = d contains three 
points leads to 3 linear equations homogeneous in 
variables a, b, c, and d. Apply Theorem 1.

 11. There are n - r parameters (Theorem 2 Section 1.2), 
so there are nontrivial solutions if and only if n - r > 0.

Exercises 1.4 An Application to Network Flow 
(Page 27)

 1. (b) f1 =   85 - f4 - f7 2. (b) f5 = 15
   f2 =   60 - f4 - f7      25 ≤ f4 ≤ 30

 f3 = -75 + f4 + f6

f5 =   40 - f6 - f7 f4, f6, f7 parameters
3. (b) CD

Exercises 1.5 An Application to Electrical 
Networks (Page 29)

2. I1 = -  1 _ 5  , I2 =   3 _ 5  , I3 =   4 _ 5  
 4. I1 = 2, I2 = 1, I3 =   1 _ 2  , I4 =   3 _ 2  , I5 =   3 _ 2  , I6 =   1 _ 2  

Exercises 1.6 An Application to Chemical 
Reactions (Page 30)

2. 2NH3 + 3CuO → N2 + 3Cu + 3H2O
4. 15Pb(N3)2 + 44Cr(MnO4)2 →

22Cr2O3 + 88MnO2 + 5Pb3O4 + 90NO

Supplementary Exercises for Chapter 1 
(Page 30)

1. (b) No. If the corresponding planes are parallel and 
distinct, there is no solution. Otherwise they either 
coincide or have a whole common line of solutions, 
that is, at least one parameter.

2. (b) x1 = 1__
10 (-6s - 6t + 16), x2 = 1__

10 (4s - t + 1), x3 = s, 
x4 = t

3. (b) If a = 1, no solution. If a = 2, x = 2 - 2t, y = -t, 
z = t. If a ≠ 1 and a ≠ 2, the unique solution is 

x =
8 - 5a________

3(a - 1)
  , y =

-2 - a________
3(a - 1)

  , z =
a + 2_____

3

4. SR1    
R2
T→   SR1 + R2             

R2
T→   SR1 + R2             

-R1
T→   S R2       

-R1
T→   SR2    

R1
T

6. a = 1, b = 2, c = -1
9. (b) 5 of brand 1, 0 of brand 2, 3 of brand 3
8. The (real) solution is x = 2, y = 3 – t, z = t where t is 

a parameter. The given complex solution occurs when 
t = 3 – i is complex. If the real system has a unique 
solution, that solution is real because the coefficients 
and constants are all real.

Exercises 2.1 Matrix Addition, Scalar 
Multiplication, and Transposition (Page 40)

1. (b) (a b c d) = (-2, -4, -6, 0) + t(1, 1, 1, 1), 
t arbitrary (d) a = b = c = d = t, t arbitrary

2. (b) S-14  
-20 T (d) (-12, 4, -12) 

(f) S   0   1 -2    
-1   0   4    
  2 -4   0

T (h) S 4 -1   
-1 -6 T

3. (b) S15 -5   
10   0 T (d) Impossible (f) S5   2  

0 -1 T
(h) Impossible

4. (b) S4     1 _ 2  
T

5. (b) A = -  11__
3 B

6. (b) X = 4A - 3B, Y = 4B - 5A

7. (b) Y = (s, t), X = 1_
2 (1 + 5s, 2 + 5t); s and t arbitrary

8. (b) 20A - 7B + 2C

9. (b) If A = S a b      
c d
T, then (p, q, r, s) =

1_
2(2d, a + b - c - d, a - b + c - d, -a + b + c + d).

11. (b) If A + A′ = 0 then -A = -A + 0 =
-A + (A + A′ ) = (-A + A) + A′ = 0 + A′ = A′
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 13. (b) Write A = diag(a1, …, an), where a1, …, an are 
the main diagonal entries. If B = diag(b1, …, bn) then 
kA = diag(ka1, …, kan).

 14. (b) s = 1 or t = 0 (d) s = 0, and t = 3

 15. (b)   S   2   0    
1 -1

  T  (d)   S   2   7     
-  9 _ 2   -5

  T 
 16. (b) A = AT, so using Theorem 2 Section 2.1, 

(kA)T = kAT = kA.

 19. (b) False. Take B = -A for any A ≠ 0.
(d) True. Transposing fixes the main diagonal.
(f) True. (kA + mB)T = (kA)T + (mB)T = kAT + mBT 

= kA + mB

 20. (c) Suppose A = S + W, where S = ST and W = -WT. 
Then AT = ST + WT = S - W, so A + AT = 2S and 
A - AT = 2W. Hence S =   1 _ 2  (A + AT) and 
W =   1 _ 2  (A - AT) are uniquely determined by A.

 22. (b) If A = [aij] then (kp)A = [(kp)aij] = [k(paij)] = k[paij] 
= k(pA).

Exercises 2.2 Equations, Matrices, and 
Transformations (Page 54)

 1. (b) x x x x
x x

x x x
x x x

1 2 3 4

2 4

1 2 3

2 3 4

3 3 3 5
8 2 1
2 2 2

2 5 0

− − +
+

=

=
=

+ +
+ − =

 2. (b) x1  S     1
 

 
 -1   

  2
 

 
 

  3

   T  + x2   S  -2
 

 
   0   

-2
 

 
 

-4

  T  + x3   S  
-1

 
 

   1   
  7

 
 

 

  9

   T  + x4   S     1
 

 
 -2   

  0
 

 
 

-2

  T  =    S     5
 

 
 -3   

  8
 

 
 

 12

   T 
 3. (b) Ax =   S   1   2 3     

0 -4 5
  T    S  

x1

 
 

 x2   
x3

  T  = x1   S  1   
0

  T  + x2  S   2   
-4

  T  + x3  S  3   
5

  T  

  =   S  x1 + 2x2 + 3x3        
-4x2 + 5x3

  T 

  (d) Ax =   S    3 -4    1 6
  

     
    0   2    1 5         

-8   7 -3 0
   T    S  

x1

 
 

 x2   x3
 

 
 

x4

  T  = x1   S     3
 

 
   0   

-8
  T  + x2   S  -4

 
 

   2   
  7

   T  + 

  x3   S     1
 

 
   1   

-3
  T  + x4   S  6 

 
 5   

0
  T  =   S   

  3x1 - 4x2 +  x3 + 6x4

   
        

         2x2 +  x3 + 5x4              
-8x1 + 7x2 - 3x3     

  T 
 4. (b) To solve Ax = b the reduction is 

  
1 3 2 0 4
1 0 1 3 1
1 2 3 5 1

− −
−

 → 
1 0 1 3 1
0 1 1 1 1
0 0 0 0 0

− −
, so the general 

  solution is   S  1 + s + 3t

 
    

 1 - s - t      s      
t
   T . 

  Hence (1 + s + 3t)a1 + (1 - s - t)a2 + sa3 + ta4 = b 
for any choice of s and t. If s = t = 0, we get 
a1 + a2 = b; if s = 1 and t = 0, we have 2a1 + a3 = b.

 5. (b)   S  -2
 

 
   2   

  0
   T  + t   S     1

 
 

 -3   
  1

   T  (d)   S   
  3

 
 

 -9   
-2

 
 

 

  0

   T  + t   S  -1
 

 
   4   

  1
 

 
 

  1

   T 
 6. We have Ax0 = 0 and Ax1 = 0 and so 

A(sx0 + tx1) = s(Ax0) + t(Ax1) = s � 0 + t � 0 = 0.

 8. (b) x =   S  
-3

 

 

 
  0

 
 

 -1   
  0

 
 

 

  0

   T  +  Q s   S  
2

 

 

 
1

 
 

 0   
0

 
 

 

0

  T  + t   S  
-5

 

 

 
  0

 
 

   2   
  0

 
 

 

  1

   T  R .
 10. (b) False.   S  1 2    

2 4
  T    S   2   

-1
  T  =   S  0   

0
  T .

  (d) True. The linear combination x1a1 + � + xnan 
equals Ax where A = [a1 � an] by Theorem 1.

  (f) False. If A =   S  1 1 -1     
2 2   0

  T  and x =   S  2 
 

 0   
1

  T  , then 

  Ax =   S  1   
4

  T  ≠ s   S  1   
2

  T  + t   S  1   
2

  T  for any s and t.

  (h) False. If A =   S   1 -1   1      
-1   1 -1

  T , there is a solution for 

  b =   S  0   
0

  T  but not for b =   S  1   
0

  T .

 11. (b) Here T   S   x     
y
   T  =   S   y     

x
   T  =   S   0 1        1 0   T    S   x     

y
   T 

  (d) Here T   S   x     
y
   T  =   S   y       

-x
   T  =   S     0 1           

-1 0   T    S   x     
y
   T .

 13. (b) Here T   S  
x
 

 
 y   

z
   T  =   S  

-x
 

 
   y   

  z
   T  =   S  -1 0 0

 
   

   0 1 0     
  0 0 1

   T    S  x 
 
 y   

z
   T , so the matrix 

is   S  -1 0 0
 

   
   0 1 0     

  0 0 1
   T .

 16. Write A = [a1 a2 � an] in terms of its columns. If 
b = x1a1 + x2a2 + � + xnan where the xi are scalars, 
then Ax = b by Theorem 1 where x = [x1 x2 � xn]

T. 
That is, x is a solution to the system Ax = b.

 18. (b) By Theorem 3, A(tx1) = t(Ax1) = t � 0 = 0; that is, 
tx1 is a solution to Ax = 0.

 22. If A is m × n and x and y are n-vectors, we 
must show that A(x + y) = Ax + Ay. Denote 
the columns of A by a1, a2, …, an, and write 
x = [x1 x2 � xn]

T and y = [y1 y2 � yn]
T. Then 

x + y = [x1 + y1 x2 + y2 � xn + yn]
T, so 

Definition 1 and Theorem 1 §2.1 give
  A(x + y) = (x1 + y1)a1 + (x2 + y2)a2 + � + (xn + yn)an

= (x1a1 + x2a2 + � + xnan) + 
( y1a1 + y2a2 + � + ynan) = Ax + Ay.
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Exercises 2.3 Matrix Multiplication (Page 67)

 1. (b)   S  -1 -6 -2      
0   6  10

  T  (d) [-3 -15] (f) [-23] 

  (h)   S  1 0    
0 1

  T  (j)   S   aa′  0   0 
 

    
  0   bb′  0        

 0    0  cc′

   T 
 2. (b) BA =   S  -1 4 -10      

1 2    4
  T  B2 =   S   7 -6     

-1   6
  T  CB =   S  -2  12

 
   

   2 -6     
  1   6

   T  
  AC =   S     4  10     

-2 -1
  T  CA =   S     2   4   8

 
    

 -1 -1 -5      
  1   4   2

   T 
 3. (b) (a, b, a1, b1) = (3, 0, 1, 2)

 4. (b) A2 - A - 6I =   S  8 2    
2 5

  T  -   S   2   2    
2 -1

  T  -   S  6 0    
0 6

  T  =   S  0 0    
0 0

  T 

 5. (b) A(BC) =   S  1 -1    
0   1

  T    S  -9 -16     
5    1

  T  =   S  -14 -17     
5    1

  T  = 

    S  -2 -1 -2      
3   1   0

  T    S  1 0
 

  
 2 1    

5 8
  T  = (AB)C

 6. (b) If A =   S   a b
        

c d
   T  and E =   S  0 0    

1 0
  T , compare entries an AE 

and EA.
 7. (b) m × n and n × m for some m and n

 8. (b) (i)   S   1 0        
0 1

   T ,   S   1   0    
0 -1

  T ,   S   1   1    
0 -1

  T  
  (ii)   S   1 0        

0 0
   T ,   S   1 0        

0 1
   T ,   S   1 1        

0 0
   T 

 12. (b) A2k = 

k1 2 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−

 for k = 0, 1, 2, …, A2k+1 = 

  A2kA = 

k1 2 1 2 1
0 1 0 0
0 0 1 1
0 0 0 1

− + −

−

( )

 for k = 0, 1, 2, …

 13. (b)   S  I 0   
0 I

  T  = I2k (d) 0k (f)   S  X m   0       
0   X m

  T  if n = 2m; 

    S   0  X m+1
      

X m  0 
  T  if n = 2m + 1.

 14. (b) If Y is row i of the identity matrix I, then YA is 
row i of IA = A.

 16. (b) AB - BA (d) 0
 18. (b) (kA)C = k(AC) = k(CA) = C(kA)
 20. We have AT = A and BT = B, so (AB)T = BTAT = BA. 

Hence AB is symmetric if and only if AB = BA.
 22. (b) A = 0
 24. If BC = I, then AB = 0 gives 0 = 0C = (AB)C = A(BC) 

= AI = A, contrary to the assumption that A ≠ 0.
 26. 3 paths v1 → v4, 0 paths v2 → v3

 27. (b) False. If A =   S   1 0        
0 0

   T  = J, then AJ = A but J ≠ I.

  (d) True. Since AT = A, we have (I + AT = IT + AT = 
I + A. (f) False. If A =   S   0 1        

0 0
   T , then A ≠ 0 but A2 = 0.

  (h) True. We have A(A + B) = (A + B)A; that is, 
A2 + AB = A2 + BA. Subtracting A2 gives AB = BA.

  (j) False. A =   S  1 -2    
2   4

  T , B =   S   2 4        
1 2

   T  (l) False. See (j).

 28. (b) If A = [aij] and B = [bij] and ∑j aij = 1 = ∑jbij, 
then the (i, j)-entry of AB is cij = ∑k aik bkj, whence 
∑j cij = ∑j∑k aik bkj = ∑k aik(∑j bkj) = ∑k aik = 1. 
Alternatively: If e = (1, 1, …, 1), then the rows of A 
sum to 1 if and only if Ae = e. If also Be = e then 
(AB)e = A(Be) = Ae = e.

 30. (b) If A = [aij], then tr(kA) = tr[kaij] =  ∑ 
i=1

   
n

  kaii  = k ∑ 
i=1

   
n

  aii  
= k tr(A).

  (e) Write AT = [a′ij], where a′ij = aji. Then AAT = 

 Q  ∑ 
k=1

  
n

  aik a′kj  R , so tr(AAT) =  ∑ 
i=1

   
n

    S  ∑ 
k=1

  
n

  aik a′ki  T   =  ∑ 
i=1

   
n

   ∑ 
k=1

  
n

   a  ik  
2
    .

 32. (e) Observe that PQ = P2 + PAP - P2AP = P, so 

Q2 = PQ + APQ - PAPQ = P + AP - PAP = Q.

 34. (b) (A + B)(A - B) = A2 - AB + BA - B2, and 
(A - B)(A + B) = A2 + AB - BA -B2. These are 
equal if and only if -AB + BA = AB - BA; that is, 
2BA = 2AB; that is, BA = AB.

 35. (b) (A + B)(A - B) = A2 - AB + BA - B2 and 
(A - B)(A + B) = A2 - BA + AB - B2. These are 
equal if and only if -AB + BA = -BA + AB, that is 
2AB = 2BA, that is AB = BA.

 36. See V. Camillo, Communications in Algebra 25(6), 
(1997), 1767–1782; Theorem 2.

Exercises 2.4 Matrix Inverses (Page 80)

 2. (b)   1 _ 5     S   2 -1     
-3   4

  T  (d)   S  2 -1   3
 

   
 3   1 -1     

1   1 -2
  T  (f)   1 __ 10     S     1  4 -1

 
    

 -2  2   2      
-9 14 -1

  T 
  (h)   1 _ 4     S     2 0 -2

 
   

 -5 2   5     
-3 2 -1

  T  (j)   S   
  0   0   1 -2

  
     

  -1 -2 -1 -3         
  1   2   1   2

  
     

  

  0 -1   0   0

   T 

  (l) 

1 2 6 30 210
0 1 3 15 105
0 0 1 5 35
0 0 0 1 7
0 0 0 0 1

− −
− −

−
−

 3. (b)   S   x     
y
   T  =   1 _ 5     S  4 -3    

1 -2
  T    S  0   

1
  T  =   1 _ 5     S  -3   

-2
  T  

  (d)   S  
x
 

 
 y   

z
   T  =   1 _ 5     S      9 -14   6

  
     

     4  -4   1         
-10   15 -5

  T    S     1
 

 
 -1   

  0
   T  =   1 _ 5     S     23

 
  

    8    
-25

  T 
 4. (b) B = A-1AB =   S     4 -2   1

 
    

   7 -2   4      
-1   2 -1

  T 
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 5. (b)   1 __ 10     S  3 -2    
1   1

  T  (d)   1 _ 2     S   0   1    
1 -1

  T  
  (f)   1 _ 2     S   2 0    

-6 1
  T  (h) -  1 _ 2     S  1 1    

1 0
  T 

 6. (b) A =   1 _ 2     S     2 -1   3
 

    
   0   1 -1      

-2   1 -1
  T 

 8. (b) A and B are inverses.

 9. (b) False.   S  1 0    
0 1

  T  +   S   1   0    
0 -1

  T  (d) True. A-1 =   1 _ 3  A
3 

  (f) False. A = B =   S  1 0    
0 0

  T 
  (h) True. If (A2)B = I, then A(AB) = I; use Theorem 5.
 10. (b) (CT)-1 = (C-1)T = AT because C-1 = (A-1)-1 = A.

 11. (b) (i) Inconsistent. (ii)   S   x1      
x2

   T  =   S     2   
-1

  T 
 15. (b) B4 = I, so B-1 = B3 =   S   0 1    

-1 0
  T 

 16.   S  c
2 - 2 -c   1

  
     

    -c     1   0         
3 - c2   c -1

  T 
 18. (b) If column j of A is zero, Ay = 0 where y is column 

j of the identity matrix. Use Theorem 5.
  (d) If each column of A sums to 0, XA = 0 where X is 

the row of 1s. Hence ATXT = 0 so A has no inverse by 
Theorem 5 (XT ≠ 0).

 19. (b) (ii) (-1, 1, 1)A = 0
 20. (b) Each power Ak is invertible by Theorem 4 

(because A is invertible). Hence Ak cannot be 0.
 21. (b) By (a), if one has an inverse the other is zero and 

so has no inverse.

 22. If A =   S   a 0    
0 1

  T , a > 1, then A-1 =   S     1 _ a   0
        

0 1
   T  is an 

x-compression because   1 _ a   < 1.
 24. (b) A-1 =   1 _ 4  (A

3 + 2A2 - I)
 25. (b) If Bx = 0, then (AB)x = (A)Bx = 0, so x = 0 

because AB is invertible. Hence B is invertible by 
Theorem 5. But then A = (AB)B–1 is invertible by 
Theorem 4.

 26. (b) 
2

-5
-13

-1
3
8

0
0

-1

 (d) 

1
-1

0
0

-1
2
0
0

-14
16

2
1

8
-9
-1
-1

 28. (d) If An = 0, (I - A)-1 = I + A + � + An-1.
 30. (b) A[B(AB)-1] = I = [(BA)-1B]A, so A is invertible by 

Exercise 10.
 32. (a) Have AC = CA. Left-multiply by A-1 to get 

C = A-1CA. Then right-multiply by A-1 to get 
CA-1 = A-1C.

 33. (b) Given ABAB = AABB. Left multiply by A-1, then 
right multiply by B-1.

 34. If Bx = 0 where x is n × 1, then ABx = 0 so x = 0 as 
AB is invertible. Hence B is invertible by Theorem 5, 
so A = (AB)B-1 is invertible.

 35. (b) B   S  -1
 

 
   3   

-1
  T  = 0 so B is not invertible by Theorem 5.

 38. (b) Write U = In - 2XXT. Then UT = In
T - 2XTTXT 

= U, and U2 = In
2 - (2XXT)In - In(2XXT) + 

4(XXT)(XXT) = In - 4XXT + 4XXT = In.
 39. (b) (I - 2P)2 = I - 4P + 4P 2, and this equals I if and 

only if P 2 = P.
 41. (b) (A-1 + B-1)-1 = B(A + B)-1A

Exercises 2.5 Elementary Matrices (Page 89)

 1. (b) Interchange rows 1 and 3 of I. E-1 = E. 

  (d) Add (-2) times row 1 of I to row 2. E-1 =   S  1 0 0
 

  
 2 1 0    

0 0 1
  T 

  (f) Multiply row 3 of I by 5. E-1 =   S  
1 0 0

 
  

 0 1 0    
0 0   1 _ 5  

   T 
 2. (b)   S  -1 0    

0 1
  T  (d)   S  1 -1    

0   1
  T  (f)   S  0 1    

1 0
  T 

 3. (b) The only possibilities for E are   S  0 1    
1 0

  T ,   S   k 0    
0 1

  T ,
  S  1 0    
0 k

  T ,   S   1 k
    

0 1
  T , and   S  1 0    

k 1
  T . In each case, EA has a row 

different from C.
 5. (b) No, 0 is not invertible.

 6. (b)   S  1 -2    
0   1

  T    S  1 0    
0   1 _ 2  

  T    S   1 0    
-5 1

  T  A =   S   1 0   7     
0 1 -3

  T .

  Alternatively,   S  1 0    
0   1 _ 2  

  T    S  1 -1    
0   1

  T    S   1 0    
-5 1

  T  A =   S   1 0   7     
0 1 -3

  T .

  (d)   S  1 2 0
 

  
 0 1 0    

0 0 1
  T    S  

1 0 0
 

  
 0   1 _ 5   0 

  
 

0 0 1
  T    S   1   0 0

 
   

 0   1 0     
0 -1 1

  T    S    1 0 0
 

   
   0 1 0     

-2 0 1
   T    S    1 0 0

 
   

 -3 1 0     
  0 0 1

   T  

      S  0 0 1
 

  
 0 1 0    

1 0 0
  T  A =   S   1 0     1 _ 5       1 _ 5  

  
    

  0 1 -  7 _ 5   -  2 _ 5    
    

  

0 0   0   0

  T  
 7. (b) U =   S  1 1    

1 0
  T  =   S  1 1    

0 1
  T    S  0 1    

1 0
  T 

 8. (b) A =   S  0 1    
1 0

  T    S  1 0    
2 1

  T    S   1   0    
0 -1

  T    S  1 2    
0 1

  T 

  (d) A =   S    1 0 0
 

   
   0 1 0     

-2 0 1
   T    S  1 0 0

 
  

 0 1 0    
0 2 1

  T    S  1 0 -3
 

   
 0 1   0     

0 0   1
   T    S  1 0 0

 
  

 0 1 4    
0 0 1

  T 
 10. UA = R by Theorem 1, so A = U -1R.
 12. (b) U = A-1, V = I2; rank A = 2 

  (d) U =   S  -2   1 0
 

   
   3 -1 0     

  2 -1 1
  T , V =   S  

1 0 -1 -3
  

    
  0 1   1   4        

0 0   1   0
  

    
  

0 0   0   1

   T ; rank A = 2

 16. Write U-1 = EkEk-1�E2E1, Ei elementary. Then 
[I U-1A] = [U-1U U-1A] = U-1[U A] = EkEk-

1�E2E1[U A]. So [U A] 	 [I U-1A] by row 
operations (Lemma 1).
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 17. (b) (i) A   r ̃  A because A = IA (ii) If A   r ̃  B, then 
A = UB, U invertible, so B = U -1A. Thus B   r ̃  A.

  (iii) If A   r ̃  B and B   r ̃  C, then A = UB and B = VC, 
U and V invertible. Hence A = U(VC) = (UV )C, so 
A   r ̃  C.

 19. (b) If B   r ̃  A, let B = UA, U invertible. If U =   S   d b
    

-b d
  T ,

B = UA =   S   0 0 b
    

0 0 d
  T  where b and d are not both zero 

(as U is invertible). Every such matrix B arises in this 
way: Use U =   S   a b

    
-b a

  T  –it is invertible by Example 4 

Section 2.3.
 22. (b) Multiply column i by 1/k.

Exercises 2.6 Linear Transformations 
(Page 101)

 1. (b)   S      5
 

  
    6    

-13
  T  = 3  S     3

 
 

   2   
-1

  T  - 2  S  2 
 

 0   
5

  T  , so 

  T   S      5
 

  
    6    

-13
  T  = 3T   S     3

 
 

   2   
-1

  T  - 2T   S  2 
 

 0   
5

  T  = 3  S   3     
5

   T  - 2  S   -1       
  2

   T  =   S   11      
11

   T 

 2. (b) As in 1(b), T   S     5
 

 
 -1   

  2
 

 
 

-4

   T  =   S     4
 

 
   2   

-9
  T .

 3. (b) T(e1) = -e2 and T(e2) = -e1. 

So A[T(e1) T(e2)] = [-e2 -e1] =   S  -1   0     
0 -1

  T .

  (d) T(e1) =   S     
 √ 

__

 2   __ 2        
   √ 

__

 2   __ 2  
   T  and T(e2) =   S   -  

 √ 

__

 2  
 __ 2           

   √ 

__

 2   __ 2  
   T . 

  So A = [T(e1) T(e2)] =    √ 

__

 2   __ 2     S  1 -1    
1   1

  T .
 4. (b) T(e1) = -e1, T(e2) = e2 and T(e3) = e3. 

Hence Theorem 2 gives A[T(e1) T(e2) T(e3)] = 

  [-e1 e2 e3] =   S  -1 0 0
 

   
   0 1 0     

  0 0 1
   T .

 5. (b) We have y1 = T(x1) for some x1 in �n, and 
y2 = T(x2) for some x2 in �n. So ay1 + by2 = 
aT(x1) + bT(x2) = T(ax1 + bx2). Hence ay1 + by2 is 
also in the image of T.

 7. (b) T  Q2  S  0   
1

  T  R  ≠ 2  S   0   
-1

  T .
 8. (b) A =   1 __ 

 √ 

__

 2  
     S   1 1    

-1 1
  T , rotation through θ = -  π 

__ 4  . 

  (d) A =   1 __ 10     S  -8 -6     
-6   8

  T , reflection in the line y = -3x.

 10. (b)   S  cos θ 0 -sin θ
  

     
  0  1   0         

sin θ 0   cos θ
   T 

 12. (b) Reflection in the y axis (d) Reflection in y = x 
(f) Rotation through   π __ 2  

 13. (b) T(x) = aR(x) = a(Ax) = (aA)x for all x in �. Hence 
T is induced by aA.

 14. (b) If x is in �n, then 
T(-x) = T [(-1)x] = (-1)T(x) = -T(x).

 17. (b) If B2 = I then T 2(x) = T [T(x)] = B(Bx) = B2x = 
Ix = x =  1 �2 (x) for all x in �n. Hence T 2 =  1 �2 . If 
T 2 =  1 �2 , then B2x = T 2(x) =  1 �2 (x) = x = Ix for all x, 
so B2 = I by Theorem 5 Section 2.2.

 18. (b) The matrix of Q1 ◦ Q0 is   S  0 1    
1 0

  T    S   1   0    
0 -1

  T  =   S  0 -1    
1   0

  T , 
which is the matrix of  R   π __ 2  

 . (d) The matrix of Q0 ◦  R   π __ 2  
  

is   S   1   0    
0 -1

  T    S  0 -1    
1   0

  T  =   S   0 -1     
-1   0

  T , which is the matrix 

of Q-1.

 20. We have T(x) = x1 + x2 + � + xn = [1 1 � 1]  S  
x1

 
 

 x2   
�
 
 

 
xn

  T  , so 

T is the matrix transformation induced by the matrix 
A = [1 1 � 1]. In particular, T is linear. On the other 
hand, we can use Theorem 2 to get A, but to do this 
we must first show directly that T is linear.

If we write x =   S  
x1

 
 

 x2   
�
 
 

 
xn

  T  and y =   S  
y1

 
 

 
y2   
�
 
 

 
yn

  T . Then

  T(x + y)  = T   S  
x1 + y1

 
   

 
x2 + y2     

�
 

   
 

xn + yn

  T 
= (x1 + y1) + (x2 + y2) + � + (xn + yn)
= (x1 + x2 + � + xn) + ( y1 + y2 + � + yn)
= T(x) + T(y)

  Similarly, T(ax) = aT(x) for any scalar a, 
so T is linear. By Theorem 2, T has matrix 
A = [T(e1) T(e2) � T(en)] = [1 1 � 1], as before.

 22. (b) If T : �n
 → � is linear, write T(ej) = wj for each 

j = 1, 2, …, n where {e1, e2, …, en} is the standard 
basis of �n. Since x = x1e1 + x2e2 + � + xnen, 
Theorem 1 gives
T(x)  = T(x1e1 + x2e2 + � + xnen) 

= x1T(e1) + x2T(e2) + � + xnT(en)
= x1w1 + x2w2 + � + xnwn

= w · x = Tw(x)

  where w =   S  
w1

 
 

 w2    
�
 
 

 

wn

  T . Since this holds for all x in �n, it 

shows that T = TW. This also follows from Theorem 
2, but we have first to verify that T is linear. (This 
comes to showing that 
w · (x + y) = w · s + w · y and w · (ax) =  a(w · x) 
for all x and y in �n and all a in �.) Then T has matrix 
A = [T(e1) T(e2) � T(en)] = [w1 w2 � wn] by 

Theorem 2. Hence if x =   S  
x1

 
 

 x2   
�
 
 

 
xn

  T  in �, then 

T(x) = Ax = w · x, as required.
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 23. (b) Given x in � and a in �, we have
 (S ◦ T)(ax) = S[T(ax)] Definition of S ◦ T
 = S[aT(x)] Because T is linear.
 = a[S[T(x)]] Because S is linear.
 = a[(S ◦ T)(x)] Definition of S ◦ T

Exercises 2.7 LU-Factorization (Page 111)

 1. (b)   S    2   0 0
 

   
   1 -3 0     

-1   9 1
   T    S  1 2   1

 
   

 0 1 -  2 _ 3      
 

0 0   0
  T  

  (d)   S  
-1   0 0 0

  
    

    1   1 0 0        
  1 -1 1 0

  
    

  

  0 -2 0 1

  T    S  
1 3 -1 0 1

  
    

  0 1   2 1 0        
0 0   0 0 0

  
    

  

0 0   0 0 0

   T 

  (f)   S   
2   0 0 0

 
    

 1 -2 0 0      
3 -2 1 0

 
    

 

0   2 0 1

   T    S  
1 1 -1 2 1

  

    

  
0 1 -  1 _ 2   0 0

        
0 0   0 0 0

  
    

  

0 0   0 0 0

   T 
 2. (b) P =   S  0 0 1

 
  

 1 0 0    
0 1 0

  T  
  PA =   S  -1   2 1

 
   

   0 -1 2     
  0   0 4

   T  =   S  -1   0 0
 

   
   0 -1 0     

  0   0 4
   T    S  1 -2 -1

 
   

 0   1   2     
0   0   1

   T 

  (d) P =   S  
1 0 0 0

 
   

 0 0 1 0     
0 0 0 1

 
   

 

0 1 0 0

  T  PA =   S   
-1 -2    3 0

  
     

    1   1  -1 3         
  2   5 -10 1

  
     

  

  2   4  -6 5

   T  = 

     S  
-1   0   0 0

  
     

    1 -1   0 0         
  2   1 -2 0

  
     

  

  2   0   0 5

   T    S   
1 2 -3   0

  
    

  0 1 -2 -3        
0 0   1 -2

  
    

  

0 0   0   1

   T 
 3. (b) y =   S  -1

 
 

   0   
  0

   T  x =   S  -1 + 2t

 
   

 -t     s     
t
   T  s and t arbitray 

  (d) y =   S     2
 

 
   8   

-1
 

 
 

  0

   T  x =   S   8 - 2t

 
   

 6 - t     
-1 - t

 
   

 
t

   T  t arbitrary

 5.   S   R1      
R2

   T  →   S   R1 + R2               
R2

   T  →   S   R1 + R2               
-R1

   T  →   S   R2         
-R1

   T  →   S   R2      
R1

   T 
 6. (b) Let A = LU = L1U1 be LU-factorizations of the 

invertible matrix A. Then U and U1 have no row of 
zeros and so (being row-echelon) are upper triangular 
with 1’s on the main diagonal. Thus, using (a), the 
diagonal matrix D = UU1

-1 has 1’s on the main 
diagonal. Thus D = I, U = U1, and L = L1.

 7. If A =   S   a   0     
X A1

  T  and B =   S   b   0     
Y B1

  T  in block form, then 

AB =   S   ab      0           
Xb + A1Y A1B1

  T , and A1B1 is lower triangular 

by induction.

 9. (b) Let A = LU = L1U1 be two such factorizations. 
Then  UU  1  

-1  = L-1L1; write this matrix as 
D =  UU  1  

-1  = L-1L1. Then D is lower triangular 
(apply Lemma 1 to D = L-1L1); and D is also upper 
triangular (consider  UU  1  

-1 ). Hence D is diagonal, and 
so D = I because L-1 and L1 are unit triangular. Since 
A = LU; this completes the proof.

Exercises 2.8 An Application to Input-Output 
Economic Models (Page 116)

 1. (b)   S    t
 

 
 3t   

 t
   T  (d)   S  

14t

 

 
 17t   

47t
 

 
 

23t

  T   2.   S  t   t   
t
  T 

 4. P =   S   bt
              

(1 - a)t
   T  is nonzero (for some t) unless b = 0 and 

a = 1. In that case,   S  1   
1

  T  is a solution. If the entries of E 

are positive, then P =   S   b
           

1 - a
   T  has positive entries.

 7. (b)   S  0.4 0.8     
0.7 0.2

  T 
 8. If E =   S  a b

   
c d

  T , then I - E =   S  1 - a  -b   
       

-c  1 - d
  T , so 

  det(I – E) = (1 – a)(1 – d) – bc = 1 – tr E + det E. 
If det(I – E) ≠ 0, then 

(I - E)-1 =   1 _________ 
det(I - E)

     S  1 - d   b  
       

c     1 - a
  T , so (I – E)–1 ≥ 0 

if det(I - E) > 0, that is, tr E < 1 + det E. The 
converse is now clear.

 9. (b) Use p =   S  3 
 

 2   
1

  T  in Theorem 2.

  (d) p =   S  3 
 

 2   
2

  T  in Theorem 2.

Exercises 2.9 An Application to Markov Chains 
(Page 123)

 1. (b) Not regular

 2. (b)   1 _ 3    S  2   
1

  T  ,   3 _ 8   (d)   1 _ 3    S  1 
 

 1   
1

  T  , 0.312 (f)   1 __ 20    S  5 
 

 7   
8

  T  , 0.306

 4. (b) 50% middle, 25% upper, 25% lower
 6.   7 __ 16  ,   

9 __ 16  

 8. (a)   7 __ 75   (b) He spends most of his time in 

compartment 3; steady state   1 __ 16    S  
3

 

 

 
2

 
 

 5   
4

 
 

 

2

  T .
 12. (a) Direct verification.
  (b) Since 0 < p < 1 and 0 < q < 1 we get 

0 < p + q < 2 whence -1 < p + q - 1 < 1. Finally, 
-1 < 1 - p - q < 1, so (1 - p - q)m converges to 
zero as m increases.
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Supplementary Exercises for Chapter 2 
(Page 124)

 2. (b) U -1 =   1 _ 4  (U
2 - 5U + 11I).

 4. (b) If xk = xm, then y + k(y - z) = y + m(y - z). So 
(k - m)(y - z) = 0. But y - z is not zero (because 
y and z are distinct), so k - m = 0 by Example 7 
Section 2.1.

 6. (d) Using parts (c) and (b) gives Ipq AIrs =  ∑ 
i=1

   
n

   ∑ 
j=1

   
n

  aijIpqIijIrs  . 

The only nonzero term occurs when i = q 
and j = r, so Ipq AIrs = aqrIps.

 7. (b) If A = [aij] = ∑i,jaijIij, then IpqAIrs = aqrIps by 
6(d). But then aqrIps = AIpqIrs = 0 if q ≠ r, so aqr = 0 
if q ≠ r. If q = r, then aqqIps = AIpqIrs = AIps is 
independent of q. Thus aqq = a11 for all q.

Exercises 3.1 The Cofactor Expansion 
(Page 135)

 1. (b) 0 (d) -1 (f) -39 (h) 0 (j) 2abc (l) 0 
  (n) -56 (p) abcd

 5. (b) -17 (d) 106  6. (b) 0  7. (b) 12

 8. (b) det   S   
2a + p 2b + q 2c + r

   
        

   2p + x 2q + y 2r + z              
2x + a 2y + b 2z + c  

  T  = 

  3det 2p x+
a + p x+

2x a+

c + r z+
r z+2

2 cz +
2 yq +

qb + y+

2y b+
 =

  3det 

x p−

a + p x+
p a−

c + r z+

z r−
cr −

qy −

qb + y+
q b−  = 

  3det 
3x

x p−
p a−

3z

z r−
cr −

3y

qy −
q b− �

 9. (b) F, A =   S  1 1    
2 2

  T  (d) F, A =   S  2 0    
0 1

  T  → R =   S  1 0    
0 1

  T 
  (f) F, A =   S  1 1    

0 1
  T  (h) F, A =   S  1 1    

0 1
  T  and B =   S  1 0    

1 1
  T 

 10. (b) 35
 11. (b) -6 (d) -6
 14. (b) -(x - 2)(x2 + 2x - 12)
 15. (b) -7
 16. (b) ±  

 √ 

__

 6  
 __ 2   (d) x = ±y

 21. Let x =   S  
x1

 
 

 x2   
�
 
 

 
xn

  T  , y =   S  
y1

 
 

 
y2   
�
 
 

 
yn

  T  , and A = [c1 � x + y � cn] 

where x + y is in column j. Expanding det A along 
column j (the one containing x + y):

  T(x + y) = det A  =  ∑ 
i=1

   
n

  (xi + yi)cij(A)  

=  ∑ 
i=1

   
n

  xicij(A)  +  ∑ 
i=1

   
n

  yicij(A) 

= T(x) + T(y)
  Similarly for T(ax) = aT(x).

 24. If A is n × n, then det B = (-1)k det A where n = 2k 
or n = 2k + 1.

Exercises 3.2 Determinants and Matrix 
Inverses (Page 148)

 1. (b)   S    1 -1 -2
 

    
 -3   1   6      

-3   1   4
  T  (d)   1 _ 3     S  -1   2   2

 
    

   2 -1   2      
  2   2 -1

  T  = A

 2. (b) c ≠ 0 (d) any c (f) c ≠ -1
 3. (b) -2   4. (b) 1  6. (b)   4 _ 9    7. (b) 16

 8. (b)   1 __ 11    S   5   
21

  T  (d)   1 __ 79    S     12
 

  
 -37    

 -2
   T   9. (b)   4 __ 51  

 10. (b) det A = 1, -1 (d) det A = 1 
(f) det A = 0 if n is odd; nothing can be said if n is even

 15. dA where d = det A

 19. (b)   1 _ c     S    1 0 1
 

   
   0 c  1     

-1 c  1
   T , c ≠ 0 (d)   1 _ 2   

8 6
1

10 8

2 2

2 2

− −
−

− −

−c c
c c

c c c

c
 

  (f)   1 ____ 
c3 + 1

   
1 1 1

1
1 1

2

2

2

c c c
c c c

c c

− + − −
− +

− −

, c ≠ -1

 20. (b) T. det AB = det A det B = det B det A = det BA.
  (d) T. det A ≠ 0 means A-1 exists, so AB = AC 

implies that B = C. (f) F. If A =   S  1 1 1
 

  
 1 1 1    

1 1 1
  T , then 

adj A = 0. (h) F. If A =   S  1 1    
0 0

  T , then adj A =   S  0 -1    
0   1

  T .
  (j) F. If A =   S  -1   1     

1 -1
  T , then det(I + A) = -1 but 

1 + det A = 1. (l) F. If A =   S  1 1    
0 1

  T , then det A = 1 

but adj A =   S  1 -1    
0   1

  T  ≠ A.

 22. (b) 5 - 4x + 2x2.
 23. (b) 1 -   5 _ 3  x +   1 _ 2  x

2 +   7 _ 6  x
3.

 24. (b) 1 - 0.51x + 2.1x2 - 1.1x3; 1.25, so y = 1.25

 26. (b) Use induction on n where A is n × n. It is clear if 

n = 1. If n > 1, write A =   S  a X
    

0 B
  T  in block form where 

B is (n - 1) × (n - 1). Then A-1 =   S  a-1 -a-1XB-1
         

0     B-1   
  T ,

and this is upper triangular because B is upper 
triangular by induction.

 28. -  1 __ 21     S   3 0   1
 

   
 0 2   3     

3 1 -1
  T 
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 34. (b) Have (adj A)A = (det A)I; so taking inverses, 
A-1 · (adj A)-1 =   1 _____ 

det A
  I. On the other hand, 

A-1adj(A-1) = det(A-1)I =   1 _____ 
det A

  I. Comparison yields 

A-1(adj A)-1 = A-1adj(A-1), and part (b) follows.
  (d) Write det A = d, det B = e. By the adjugate 

formula AB adj(AB) = deI, and AB adj B adj A = 
A[eI] adj A = (eI)(dI) = deI. Done as AB is invertible.

Exercises 3.3 Diagonalization and Eigenvalues 
(Page 166)

 1. (b) (x - 3)(x + 2); 3, -2;   S   4   
-1

  T  ,   S   1     
1

   T ; 
  P =   S   4 1    

-1 1
  T ; P-1AP =   S   3   0    

0 -2
  T .

  (d) (x - 2)3; 2;   S  1 
 

 1   
0

  T  ,   S  -3
 

 
   0   

  1
   T ; No such P; Not diagonalizable.

  (f) (x + 1)2(x - 2); -1, 2;   S  -1
 

 
   1   

  2
   T  ,   S  1 

 
 2   

1
  T ; No such P; 

  Not diagonalizable. Note that this matrix and the 
matrix in Example 9 have the same characteristic 
polynomial, but that matrix is diagonalizable.

  (h) (x - 1)2(x - 3); 1, 3;   S  -1
 

 
   0   

  1
   T  ,   S  1 

 
 0   

1
  T ; No such P; Not 

diagonalizable.

 2. (b) Vk =   7 _ 3  2
k  S  2   

1
  T . (d) Vk =   3 _ 2  3

k  S  1 
 

 0   
1

  T .
 4. Ax = λx if and only if (A - αI)x = (λ - α)x. 

Same eigenvectors.

 8. (b) P-1AP =   S  1 0    
0 2

  T , so An = P   S  1 0    
0 2n

  T  P-1 = 

    S  9 - 8 · 2n 12(1 - 2n)
           

6(2n - 1)  9 · 2n - 8
   T .

 9. (b) A =   S  0 1    
0 2

  T 
 11. (b) and (d) If PAP-1 = D is diagonal, then 

(b) P-1(kA)P = kD is diagonal, and 
(d) Q(U -1AU )Q = D where Q = PU.

 12.   S  1 1    
0 1

  T  is not diagonalizable by Example 8. But 

  S  1 1    
0 1

  T  =   S   2   1    
0 -1

  T  +   S  -1 0    
0 2

  T  where   S   2   1    
0 -1

  T  has 

diagonalizing matrix P =   S  1 -1    
0   3

  T , and   S  -1 0    
0 2

  T  
  is already diagonal.
 14. We have λ2 = λ for every eigenvalue λ (as λ = 0, 1) 

so D2 = D, and so A2 = A as in Example 9.

 18. (b) crA(x) = det[xI - rA] = rndet  S   x __ r  I - A T  = rncA  S   x __ r   T 

 20. (b) If λ ≠ 0, Ax = λx if and only if A-1x =   1 _ 
λ
  x. 

The result follows.
 21. (b) (A3 - 2A - 3I)x = A3x - 2Ax + 3x = 

λ3x - 2λx + 3x = (λ3 - 2λ - 3)x.
 23. (b) If Am = 0 and Ax = λx, x ≠ 0, then A2x = A(λx) 

= λAx = λ2x. In general, Akx = λkx for all k ≥ 1. 
Hence, λmx = Amx = 0x = 0, so λ = 0 (because x ≠ 0).

 24. (a) If Ax = λx, then Akx = λkx for each k. Hence 
λmx = Amx = x, so λm = 1. As λ is real, λ = ±1 by 
the Hint. So if P-1AP = D is diagonal, then D2 = I 
by Theorem 4. Hence A2 = PD2P = I.

 27. (a) We have P-1AP = λI by the diagonalization 
algorithm, so A = P(λI)P-1 = λPP-1 = λI.

  (b) No. λ = 1 is the only eigenvalue.
 31. (b) λ1 = 1, stabilizes. (d) λ1 =   1 __ 24  (3 +  √ 

___

 69  ) = 1.13, 
diverges.

 34. Extinct if α <   1 _ 5  , stable if α =   1 _ 5  , diverges if α >   1 _ 5  .

Exercises 3.4 An Application to Linear 
Recurrences (Page 172)

 1. (b) xk =   1 _ 3  [4 - (-2)k] (d) xk =   1 _ 5  [2
k+2 + (-3)k].

 2. (b) xk =   1 _ 2  [(-1)k + 1]
 3. (b) xk+4 = xk + xk+2 + xk+3; x10 = 169
 5.   1 ___ 

2 √ 

__

 5  
  [3 +  √ 

__

 5  ] λ  1  
k
   + (-3 +  √ 

__

 5  ) λ  2  
k
   where λ1 =   1 _ 2  (1 +  √ 

__

 5  ) 
and λ2 =   1 _ 2  (1 -  √ 

__

 5  ).
 7.   1 ___ 

2 √ 

__

 3  
  [2 +  √ 

__

 3  ] λ  1  
k
   + (-2 +  √ 

__

 3  ) λ  2  
k
   where λ1 = 1 +  √ 

__

 3   
and λ2 = 1 -  √ 

__

 3  .
 9.   34 __ 3   -   4 _ 3     Q-  1 _ 2   R  

k . Long term 11  1 _ 3   million tons.

 11. (b) A  S   1 
 

 λ   
λ2

  T  =   S    
λ

 
    

 λ2       

a + bλ + cλ2

  T  =   S   λ 
 

 λ2   

λ3

  T  = λ   S   1 
 

 λ   
λ2

  T 
 12. (b) xk =   11 __ 10  3

k +   11 __ 15  (-2)k -   5 _ 6  
 13. (a) pk+2 + qk+2 = [apk+1 + bpk + c(k)] + [aqk+1 + bqk] = 

a( pk+1 + qk+1) + b( pk + qk) + c(k)

Section 3.5 An Application to Systems of 
Differential Equations (Page 178)

 1. (b) c1  S   1     
1

   T e4x + c2  S   5   
-1

  T e-2x; c1 = -  2 _ 3  , c2 =   1 _ 3   

  (d) c1  S  -8
 

 
  10   

  7
   T e-x + c2  S     1

 
 

 -2   
  1

   T e2x + c3  S  1 
 

 0   
1

  T e4x; c1 = 0, c2 = -  1 _ 2  , c3 =   3 _ 2  

 3. (b) The solution to (a) is m(t) = 10(  4 _ 5  )
t/3. Hence we 

want t such that 10(  4 _ 5  )
t/3 = 5. We solve for t by taking 

natural logarithms: t =   
3ln(  1 _ 2  ) ______ 
ln(  4 _ 5  )

   = 9.32 hours.

 5. (a) If g′ = Ag, put f = g - A-1b. Then f ′ = g′ and 
Af = Ag - b, so f ′ = g′ = Ag = Af + b, as required.

 6. (b) Assume that f1′ = a1f1 + f2 and f2′ = a2f1. 
Differentiating gives f1′′ = a1f1′ + f2′ = a1f1′ + a2f1, 
proving that f1 satisfies (∗).
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Exercises 3.6 Proof of the Cofactor Expansion 
Theorem (Page 182)

 2. Consider the rows Rp, Rp+1, …, Rq-1, Rq. In q - p 
adjacent interchanges they can be put in the order 
Rp+1, …, Rq-1, Rq, Rp. Then in q - p - 1 adjacent 
interchanges we can obtain the order Rq, Rp+1, …, 
Rq-1, Rp. This uses 2(q - p) -1 adjacent interchanges 
in all.

Supplementary Exercises for Chapter 3 
(Page 182)

 2. (b) If A is 1 × 1, then AT = A. In general, 
det[Aij] = det[(Aij)

T] = det[(AT)ji] by (a) and induction. 
Write AT = [a′ij] where a′ij = aji, and expand det AT 
along column 1.

det AT  =  ∑ 
j=1

   
n

  a′j1(-1) j+1det[(AT)j1] 

=  ∑ 
j=1

   
n

  a1j(-1)1+jdet[A1j]  = det A

  where the last equality is the expansion of det A along 
row 1.

Exercises 4.1 Vectors and Lines (Page 195)

 1. (b)  √ 

__

 6   (d)  √ 

__

 5   (f) 3 √ 

__

 6  .

 2. (b)   1 _ 3    S  -2
 

 
 -1   

  2
   T .

 4. (b)  √ 

__

 2   (d) 3.
 6. (b)   

→
 FE  =   

→
 FC  +   

→
 CE  =   1 _ 2    

→
 AC  +   1 _ 2    

→
 CB  =   1 _ 2   

Q   
→

 AC  +   
→

 CB  R  
=   1 _ 2    

→
 AB .

 7. (b) Yes (d) Yes
 8. (b) p (d) -(p + q).

 9. (b)   S  -1
 

 
 -1   

  5
   T ,  √ 

___

 27   (d)   S  0 
 

 0   
0

  T , 0 (f)   S  -2
 

 
   2   

  2
   T ,  √ 

___

 12  

 10. (b) (i) Q(5, -1, 2) (ii) Q(1, 1, -4).

 11. (b) x = u - 6v + 5w =   S  -26
 

  
    4    

  19
   T .

 12. (b)   S  
a
 

 
 b   

c
   T  =   S  -5

 
 

   8   
  6

   T 
 13. (b) If it holds then   S  3a + 4b + c

 
    

 -a + c      
b + c

   T  =   S  
x1

 
 

 x2   
x3

  T .

    S   
  3 4 1 x1

 
    

 -1 0 1 x2      
  0 1 1 x3

   T  →   S  
  0 4 4 x1 + 3x2

  
      

  -1 0 1   x2            
  0 1 1   x3  

   T 
  If there is to be a solution then x1 + 3x2 = 4x3 must 

hold. This is not satisfied.

 14. (b)   1 _ 4    S     5
 

 
 -5   

-2
  T .  17. (b) Q(0, 7, 3).  18. (b) x =   1 __ 40    S  -20

 
  

 -13    
  14

   T .
 20. (b) S(-1, 3, 2).
 21. (b) T. ‖v - w‖ = 0 implies that v - w = 0. (d) F. 

‖v‖ = ‖-v‖ for all v but v = -v only holds if v = 0.
  (f) F. If t < 0 they have the opposite direction. 

(h) F. ‖-5v‖ = 5‖v‖ for all v, so it fails if v ≠ 0.
  (j) F. Take w = -v where v ≠ 0.

 22. (b)   S     3
 

 
 -1   

  4
   T  + t   S     2

 
 

 -1   
  5

   T ; x = 3 + 2t, y = -1 - t, z = 4 + 5t 

  (d)   S  1 
 

 1   
1

  T  + t   S  1 
 

 1   
1

  T ; x = y = z = 1 + t

  (f)   S     2
 

 
 -1   

  1
   T  + t   S  -1

 
 

   0   
  1

   T ; x = 2 - t, y = -1, z = 1 + t

 23. (b) P corresponds to t = 2; Q corresponds to t = 5.
 24. (b) No intersection
  (d) P (2, -1, 3); t = -2, s = -3
 29. P(3, 1, 0) or P Q   5 _ 3  ,   

-1 __ 3  ,   
4 _ 3   R 

 31. (b)   
→

 CP k = -  
→

 CP n+k if 1 ≤ k ≤ n, where there are 
2n points.

 33.   
→

 DA  = 2  
→

 EA  and 2  
→

 AF  =   
→

 FC , so 2  
→

 EF  = 2 Q   
→

 EF  +   
→

 AF  R  
=   

→
 DA  +   

→
 FC  =   

→
 CB  +   

→
 FC  =   

→
 FC  +   

→
 CB  =   

→
 FB . 

Hence   
→

 EF  =   1 _ 2    
→

 FB . So F is the trisection point of both 
AC and EB.

Exercises 4.2 Projections and Planes 
(Page 209)

 1. (b) 6 (d) 0 (f) 0
 2. (b) π or 180° (d)   π __ 3   or 60° (f)   2π

 __ 3   or 120°

 3. (b) 1 or -17

 4. (b) t   S  -1
 

 
   1   

  2
   T  (d) s   S  1 

 
 2   

0
  T  + t   S  0 

 
 3   

1
  T 

 6. (b) 29 + 57 = 86
 8. (b) A = B = C =   π __ 3   or 60°

 10. (b)   11 __ 18  v (d) -  1 _ 2  v

 11. (b)   5 __ 21    S     2
 

 
 -1   

-4
  T  +   1 __ 21    S  53

 
 

 26   
20

  T  (d)   27 __ 53    S     6
 

 
 -4   

  1
   T  +   1 __ 53    S   -3

 
 

   2   
 26

  T 
 12. (b)   1 __ 26   √ 

_____

 5642  , Q(  71 __ 26  ,   
15 __ 26  ,   

34 __ 26  )

 13. (b)   S  0 
 

 0   
0

  T  (b)   S     4
 

  
 -15    

  8
   T 

 14. (b) -23x + 32y + 11z = 11 (d) 2x - y + z = 5 
(f) 2x + 3y + 2z = 7 (h) 2x - 7y - 3z = -1 
(j) x - y - z = 3

559Selected Answers



 15. (b)   S  
x
 

 
 y   

z
   T  =   S     2

 
 

 -1   
  3

   T  + t   S  2 
 

 1   
0

  T  (d)   S  
x
 

 
 y   

z
   T  =   S     1

 
 

   1   
-1

  T  + t   S  1 
 

 1   
1

  T  
  (f)   S  

x
 

 
 y   

z
   T  =   S  1 

 
 1   

2
  T  + t   S     4

 
 

   1   
-5

  T 
 16. (b)    √ 

__

 6  
 __ 3  , Q(  7 _ 3  ,   

 2 __ 
 3

  ,   -2 __ 
 3

  )
 17. (b) Yes. The equation is 5x - 3y - 4z = 0.
 19. (b) (-2, 7, 0) + t(3, -5, 2)
 20. (b) None (d) P(  13 __ 19  ,   

-78 ___ 19  ,   
65 __ 19  )

 21. (b) 3x + 2z = d, d arbitrary (d) a(x - 3) + b( y - 2) 
+ c(z + 4) = 0; a, b, and c not all zero 
(f) ax + by + (b - a)z = a; a and b not both zero 
(h) ax + by + (a - 2b)z = 5a - 4b; a and b not both zero

 23. (b)  √ 

___

 10  
 24. (b)    √ 

___

 14  
 ___ 2  , A(3, 1, 2), B(  7 _ 2  , -  1 _ 2  , 3) 

  (d)    √ 

__

 6  
 __ 6  , A(  19 __ 3  , 2,   1 _ 3  ), B(  37 __ 6  ,   

13 __ 6  , 0)

 26. (b) Consider the diagonal d =   S  a 
 
 a   

a
  T . The six face 

diagonals in question are ±  S   
  a

 
 

   0   
-a

   T  , ±  S    0
 

 
   a   

-a
   T  , ±  S   

  a
 

 
 -a   

  0
  T . 

All of these are orthogonal to d. The result works 
for the other diagonals by symmetry.

 28. The four diagonals are (a, b, c), (-a, b, c), (a, -b, c) 
and (a, b, -c) or their negatives. The dot products are 
±(-a2 + b2 + c2), ±(a2 - b2 + c2), and ±(a2 + b2 - c2).

 34. (b) The sum of the squares of the lengths of the 
diagonals equals the sum of the squares of the lengths 
of the four sides.

 38. (b) The angle θ between u and (u + v + w) is given by 

cos θ =   
u · (u + v + w)

  _______________  
‖u‖‖u + v + w‖

   =   
‖u‖
  ____________________  

 √ 
__________________

  ‖u‖
2 + ‖v‖

2 + ‖w‖
2  
   

=   1 ___ 
 √ 

__

 3  
  , because ‖u‖ = ‖v‖ = ‖w‖. Similar remarks 

apply to the other angles.
 39. (b) Let p0, p1 be the vectors of P0, P1, so u = p0 - p1.

Then u · n = p0 · n – p1 · n = (ax0 + by0) - (ax1 + by1) 
= ax0 + by0 + c. Hence the distance is 

 ‖  Q   u · n _____ 
‖n‖

2
   R n ‖  =   

|u · n|
 ______ 

‖n‖
  , as required.

 41. (b) This follows from (a) because ‖v‖
2 = a2 + b2 + c2.

 44. (d) Take   S  
x1

 
 

 y1   
z1

   T  =   S  
x
 

 
 y   

z
   T  and   S  

x2

 
 

 y2   
z2

   T  =   S   
y

 
 
 z   

x
  T  in (c).

Exercises 4.3 More on the Cross Product 
(Page 217)

 3. (b) ±  
 √ 

__

 3  
 __ 3     S     1

 
 

 -1   
-1

  T .  4. (b) 0 (d)  √ 

__

 5    5. (b) 7

 6. (b) The distance is ‖p - p0‖; use (a).
 10.  ‖  

	
 AB   ×  

	
 AC   ‖  is the area of the parallelogram 

determined by A, B, and C.

 12. Because u and v × w are parallel, the angle θ between 
them is 0 or π. Hence cos(θ) = ±1, so the volume is 
|u · (v × w)| = ‖u‖‖v × w‖cos(θ) = ‖u‖‖(v × w)‖. 
But the angle between v and w is   π __ 2   so ‖v × w‖ = 
‖v‖‖w‖cos(  π __ 2  ) = ‖v‖‖w‖. The result follows.

 15. (b) If u =   S  
u1

 
 

 u2   
u3

  T  , v =   S  
v1

 
 

 v2   
v3

  T  , and w =   S  
w1

 
 

 w2   
w3

  T  , then 

u × (v + w) = det   S   
i u1 v1 + w1

  
    

  j u2 v2 + w2        
k u3 v3 + w3

  T  = 

det   S   
i u1 v1

 
   

 j u2 v2     
k u3 v3

  T  + det   S   
i u1 w1

 
   

 j u2 w2     
k u3 w3

  T  = (u × v) + (u × w) 

where we used Exercise 21 Section 3.1.
 16. (b) (v - w) · [(u × v) + (v × w) + (w × u)]

= (v - w) · (u × v) + (v - w) · (v × w) + (v - w) · (w × u)
= -w · (u × v) + 0 + v · (w × u) = 0.

 22. Let p1 and p2 be vectors of points in the planes, so 
p1 · n = d1 and p2 · n = d2. The distance is the length 
of the projection of p2 - p1 along n; that is 

  
|(p2 - p1) · n|

  ____________ 
‖n‖

   =   
|d1 - d2|

 ________ 
‖n‖

  .

Exercises 4.4 Linear Operators on �
3 

(Page 224)

 1. (b) A =   S   1 -1     
-1   1

  T , projection on y = -x. 

  (d) A =   1 _ 5     S  -3 4    
4 3

  T , reflection in y = 2x. 

  (f) A =   1 _ 2     S    1  - √ 

__

 3       
 √ 

__

 3     1
   T , rotation through   π __ 3  .

 2. (b) The zero transformation.

 3. (b)   1 __ 21     S   17  2 -8
 

    
   2 20   4      

-8  4   5
   T    S     0

 
 

   1   
-3

  T 
  (d)   1 __ 30     S    22 -4   20

  
    

  -4  28   10        
 20  10 -20

  T    S     0
 

 
   1   

-3
  T 

  (f)   1 __ 25     S    9 0 12
 

   
  0 0  0     

12 0 16
  T    S     1

 
 

 -1   
  7

  T 
  (h)   1 __ 11     S   -9   2 -6

  
    

   2 -9 -6      
-6 -6   7

   T    S     2
 

 
 -5   

  0
  T 

 4. (b)   1 _ 2     S     
√ 

__

 3   -1 0
 

    
  1  √ 

__

 3    0      
 0    0  1

   T    S  1 
 

 0   
3

  T 
 6.   S  cos θ 0 -sin θ

  
      

  0  1    0          
sin θ 0   cos θ

   T 
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 9. (a) Write v =   S  x   
y
  T . PL(v) =  Q   v · d _____ 

‖d‖
2
   R  d =   

ax + by
 _______ 

a2 + b2
     S  a   

b
  T  

=   1 _______ 
a2 + b2

    S   a
2x + aby

                 
abx + b2y

    T  =   1 ________ 
a2 + b2   

     S   a2 ab
    

ab  b2 
  T    S  x   

y
  T 

Exercises 4.5 An Application to Computer 
Graphics (page 228)

 1. (b)   1 _ 2   
2 2 7 2 2 3 2 2 2 2 5 2 2

3 2 4 3 2 4 5 2 4 2 4 9 2 4
2 2 2 2 2

+ + + − + − +
− + + + + +

 5. (b) P(  9 _ 5  ,   
18 __ 5  )

Supplementary Exercises for Chapter 4 
(Page 228)

 4. 125 knots in a direction θ degrees east of north, where 
cos θ = 0.6 (θ = 53° or 0.93 radians).

 6. (12, 5). Actual speed 12 knots.

Exercises 5.1 Subspaces and Spanning 
(Page 234)

 1. (b) Yes (d) No (f) No.
 2. (b) No (d) Yes, x = 3y + 4z.
 3. (b) No
 10. span{a1x1, a2x2, …, akxk} ⊆ span{x1, x2, …, xk}

by Theorem 1 because, for each i, aixi is in 
span{x1, x2, …, xk}. Similarly, the fact that 
xi = ai

-1(aixi) is in span{a1x1, a2x2, …, akxk} for each 
i shows that span{x1, x2, …, xk} ⊆ span{a1x1, a2x2, …, 
akxk}, again by Theorem 1.

 12. If y = r1x1 + � + rkxk then 
Ay = r1(Ax1) + � + rk(Axk) = 0.

 15. (b) x = (x + y) - y = (x + y) + (-y) is in U because 
U is a subspace and both x + y and -y = (-1)y are in U.

 16. (b) True. x = 1x is in U. (d) True. Always span{y, z} 
⊆ span{x, y, z} by Theorem 1. Since x is in span{x, y} 
we have span{x, y, z} ⊆ span{y, z}, again by Theorem 1.

  (f) False. a   S  1   
0

  T  + b   S  2   
0

  T  =   S   a + 2b
            

0
   T  cannot equal   S  0   

1
  T .

 20. If U is a subspace, then S2 and S3 certainly hold. 
Conversely, assume that S2 and S3 hold for U. Since 
U is nonempty, choose x in U. Then 0 = 0x is in U by 
S3, so S1 also holds. This means that U is a subspace.

 22. (b) The zero vector 0 is in U + W because 0 = 0 + 0. 
Let p and q be vectors in U + W, say p = x1 + y1 
and q = x2 + y2 where x1 and x2 are in U, and y1 and 
y2 are in W. Then p + q = (x1 + x2) + (y1 + y2) is 
in U + W because x1 + x2 is in U and y1 + y2 is in 
W. Similarly, a(p + q) = ap + aq is in U + W for 
any scalar a because ap is in U and aq is in W. Hence 
U + W is indeed a subspace of �n.

Exercises 5.2 Independence and Dimension 
(Page 244)

 1. (b) Yes. If r   S  1 
 

 1   
1

  T  + s   S  1 
 

 1   
1

  T  + t   S  0 
 

 0   
1

  T  =   S  0 
 

 0   
0

  T  , then r + s = 0, 

r - s = 0, and r + s + t = 0. These equations give 
r = s = t = 0.

  (d) No. Indeed:   S  1 
 

 1   
0

 
 

 

0

  T  -   S  1 
 

 0   
1

 
 

 

0

  T  +    S  0 
 

 0   
1

 
 

 

1

  T  -   S  0 
 

 1   
0

 
 

 

1

  T  =   S  
0

 
 

 0   
0

 
 

 

0

  T .
 2. (b) Yes. If r(x + y) + s(y + z) + t(z + x) = 0, then 

(r + t)x + (r + s)y + (s + t)z = 0. Since {x, y, z} is 
independent, this implies that r + t = 0, r + s = 0, 
and s + t = 0. The only solution is r = s = t = 0.

  (d) No. In fact, (x + y) - (y + z) + (z + w) - (w + x) = 0.

 3. (b)  U   S     2
 

 
   1   

  0
 

 
 

-1

  T  ,   S  
-1

 
 

   1   
  1

 
 

 

  1

   T  V ; dimension 2. 

  (d)  U   S  -2
 

 
   0   

  3
 

 
 

  1

   T  ,   S     1
 

 
   2   

-1
 

 
 

  0

   T  V ; dimension 2.

 4. (b)  U   S  1 
 

 1   
0

 
 

 

1

  T  ,   S     1
 

 
 -1   

  1
 

 
 

  0

   T  V ; dimension 2.  (d)  U   S  1 
 

 0   
1

 
 

 

0

  T  ,   S  -1
 

 
   1   

  0
 

 
 

  1

   T  ,   S  
0

 
 

 1   
0

 
 

 

1

  T  V ; 
  dimension 3. (f)  U   S  -1

 
 

   1   
  0

 
 

 

  0

   T  ,   S  
1

 
 

 0   
1

 
 

 

0

  T  ,   S  1 
 

 0   
0

 
 

 

1

  T  V ; dimension 3.

 5. (b) If r(x + w) + s(y + w) + t(z + w) + u(w) = 0, 
then rx + sy + tz + (r + s + t + u)w = 0, so r = 0, 
s = 0, t = 0, and r + s + t + u = 0. The only solution 
is r = s = t = u = 0, so the set is independent. Since 
dim �4 = 4, the set is a basis by Theorem 7.

 6. (b) Yes (d) Yes (f) No.
 7. (b) T. If ry + sz = 0, then 0x + ry + sz = 0 so 

r = s = 0 because {x, y, z} is independent.
  (d) F. If x ≠ 0, take k = 2, x1 = x and x2 = -x.

  (f) F. If y = -x and z = 0, then 1x + 1y + 1z = 0.
  (h) T. This is a nontrivial, vanishing linear 

combination, so the xi cannot be independent.
 10. If rx2 + sx3 + tx5 = 0 then 0x1 + rx2 + sx3 + 0x4 + 

tx5 + 0x6 = 0 so r = s = t = 0.
 12. If t1x1 + t2(x1 + x2) + � + tk(x1 + x2 + � + xk) = 0, 

then (t1 + t2 + � + tk)x1 + (t2 + � + tk)x2 + � + 
(tk-1 + tk)xk-1 + (tk)xk = 0. Hence all these 
coefficients are zero, so we obtain successively 

tk = 0, tk-1 = 0, …, t2 = 0, t1 = 0.
 16. (b) We show AT is invertible (then A is invertible). Let 

ATx = 0 where x = [s t]T. This means as + ct = 0 and 
bs + dt = 0, so s(ax + by) + t(cx + dy) = (sa + tc)x + 
(sb + td)y = 0. Hence s = t = 0 by hypothesis.
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 17. (b) Each V-1xi is in null(AV ) because AV(V-1xi) = 
Axi = 0. The set {V-1x1, …, V-1xk} is independent 
as V-1 is invertible. If y is in null(AV ), then Vy is in 
null(A) so let Vy = t1x1 + � + tkxk where each tk is in 
�. Thus y = t1V

-1x1 + � + tkV
-1xk is in 

span{V-1x1, …, V-1xk}.
 20. We have {0} ⊆ U ⊆ W where dim{0} = 0 and 

dim W = 1. Hence dim U = 0 or dim U = 1 by 
Theorem 8, that is U = 0 or U = W, again by 
Theorem 8.

Exercises 5.3 Orthogonality (Page 252)

 1. (b)  U   1 __ 
 √ 

__

 3  
    S  1 
 

 1   
1

  T  ,   1 ___ 
 √ 

___

 42  
    S     4

 
 

   1   
-5

  T  ,   1 ___ 
 √ 

___

 14  
    S     2

 
 

 -3   
  1

   T  V .
 3. (b)   S  

a
 

 
 b   

c
   T  =   1 _ 2  (a - c)  S     1

 
 

   0   
-1

  T  +   1 __ 18  (a + 4b + c)  S  1 
 

 4   
1

  T  + 

    1 _ 9  (2a - b + 2c)  S     2
 

 
 -1   

  2
   T .

  (d)   S  
a
 

 
 b   

c
   T  =   1 _ 3  (a + b + c)  S  1 

 
 1   

1
  T  +   1 _ 2  (a - b)  S     1

 
 

 -1   
  0

   T  + 

    1 _ 6  (a + b - 2c)  S     1
 

 
   1   

-2
  T .

 4. (b)   S   
 14

 
 

   1   
-8

 
 

 

  5

   T  = 3  S   
  2

 
 

 -1   
  0

 
 

 

  3

   T  + 4  S     2
 

 
   1   

-2
 

 
 

-1

  T .  

 5. (b) t   S  
-1

 
 

   3   
 10

 
 

 

 11

   T  , t in �.

 6. (b)  √ 

___

 29   (d) 19

 7. (b) F. x =   S  1   
0

  T  and y =   S  0   
1

  T .
  (d) T. Every xi · yj = 0 by assumption, every 

xi · xj = 0 if i ≠ j because the xi are orthogonal, and 
every yi · yj = 0 if i ≠ j because the yi are orthogonal. 
As all the vectors are nonzero, this does it.

  (f) T. Every pair of distinct vectors in the set {x} has 
dot product zero (there are no such pairs).

 9. Let c1, …, cn be the columns of A. Then row i of AT 
is  c  i  

T , so the (i, j)-entry of ATA is  c  i  
T cj = ci · cj = 0, 1 

according as i ≠ j, i = j. So ATA = I.
 11. (b) Take n = 3 in (a), expand, and simplify.
 12. (b) We have (x + y) · (x - y) = ‖x‖

2 - ‖y‖
2. Hence 

(x + y) · (x - y) = 0 if and only if ‖x‖
2 = ‖y‖

2; if 
and only if ‖x‖ = ‖y‖—where we used the fact that 
‖x‖ ≥ 0 and ‖y‖ ≥ 0.

 15. If ATAx = λx, then 
‖Ax‖

2 = (Ax) · (Ax) = xTATAx = xT(λx) = λ‖x‖
2.

Exercises 5.4 Rank of a Matrix (Page 260)

 1. (b)  U   S     2
 

 
 -1   

  1
   T  ,   S  0 

 
 0   

1
  T  V ;  U   S     2

 
 

 -2   
  4

 
 

 

-6

  T  ,   S  
1

 
 

 1   
3

 
 

 

0

  T  V ; 2 

  (d)  U   S     1
 

 
   2   

-1
 

 
 

  3

   T  ,   S  
0

 
 

 0   
0

 
 

 

1

  T  V ;  U   S     1   
-3

  T  ,   S     3   
-2

  T  V ; 2

 2. (b)  U   S  
1

 

 

 
1

 
 

 0   
0

 
 

 

0

  T  ,   S   
  0

 

 

 
-2

 
 

   2   
  5

 
 

 

  1

   T  ,   S   
  0

 

 

 
  0

 
 

   2   
-3

 
 

 

  6

   T  V  (d)  U   S     1
 

 
   5   

-6
  T  ,   S     0

 
 

   1   
-1

  T  ,   S  0 
 

 0   
1

  T  V 
 3. (b) No; no (d) No
  (f) Otherwise, if A is m × n, we have 

m = dim(row A) = rank A = dim(col A) = n
 4. Let A = [c1 � cn]. Then col A = span{c1, …, cn} = 

{x1c1 + � + xncn | xi in �} = {Ax | x in �n}.

 7. (b) The basis is  U   S   
  6

 

 

 
  0

 
 

 -4   
  1

 
 

 

  0

   T  ,   S   
  5

 

 

 
  0

 
 

 -3   
  0

 
 

 

  1

   T  V , so the dimension is 2. 

  Have rank A = 3 and n - 3 = 2.
 8. (b) n - 1
 9. (b) If r1c1 + � + rncn = 0, let x = [r1, …, rn]

T. Then 
Cx = r1c1 + � + rncn = 0, so x is in null A = 0. 
Hence each ri = 0.

 10. (b) Write r = rank A. Then (a) gives 
r = dim(col A) ≤ dim(null A) = n - r.

 12. We have rank(A) = dim[col(A)] and 
rank (AT) = dim[row(AT)]. Let {c1, c2, …, ck} 
be a basis of col(A); it suffices to show that 
{ c  1  

T ,  c  2  
T ,  …, c  k  

T } is a basis of row(AT). But if 
t1 c  1  

T  + t2 c  2  
T  +  � + tkc  k  

T  = 0, tj in �, then (taking 
transposes) t1c1 + t2c2 + � + tkck = 0 so each 
tj = 0. Hence { c  1  

T ,  c  2  
T ,  …, c  k  

T } is independent. 
Given v in row(AT) then vT is in col(A); say 
vT = s1c1 + s2c2 + � + skck, sj in �: Hence 
v = s1 c  1  

T  + s2 c  2  
T  +  � + skc  k  

T , so { c  1  
T ,  c  2  

T ,  …, c  k  
T } spans 

row(AT), as required.
 15. (b) Let {u1, …, ur} be a basis of col(A). Then b is not 

in col(A), so {u1, …, ur, b} is linearly independent. 
Show that col[A b] = span{u1, …, ur, b}.

Exercises 5.5 Similarity and Diagonalization 
(Page 271)

 1. (b) traces = 2, ranks = 2, but det A = -5, det B = -1
  (d) ranks = 2, determinants = 7, but tr A = 5, tr B = 4
  (f) traces = -5, determinants = 0, but rank A = 2, 

rank B = 1
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 3. (b) If B = P-1AP, then B-1 = P-1A-1(P-1)-1 = P-1A-1P.

 4. (b) Yes, P =   S  -1 0 6
 

   
   0 1 0     

  1 0 5
   T  , P-1AP =   S  -3   0 0

 
   

   0 -3 0     
  0   0 8

   T 
  (d) No, cA(x) = (x + 1)(x - 4)2 so λ = 4 has 

multiplicity 2. But dim(E4) = 1 so Theorem 6 applies.
 8. (b) If B = P-1AP and Ak = 0, then 

Bk = (P-1AP)k = P-1AkP = P-10P = 0.
 9. (b) The eigenvalues of A are all equal (they are the 

diagonal elements), so if P-1AP = D is diagonal, then 
D = λI. Hence A = P-1(λI)P = λI.

 10. (b) A is similar to D = diag(λ1, λ2, …, λn) so 
(Theorem 1) tr A = tr D = λ1 + λ2 + � + λn.

 12. (b) TP(A)TP(B) = (P-1AP)(P-1BP) = P-1(AB)P = TP(AB).
 13. (b) If A is diagonalizable, so is AT, and they have the 

same eigenvalues. Use (a).
 17. (b) cB(x) = [x - (a + b + c)][x2 - k] where 

k = a2 + b2 + c2 - [ab + ac + bc]. Use Theorem 7.

Exercises 5.6 Best Approximation and Least 
Squares (Page 281)

 1. (b)   1 __ 12    S  -20
 

  
   46    

  95
   T  , (ATA)-1 =   1 __ 12     S      8 -10 -18

  
     

  -10   14   24         
-18   24   43

  T  
  2. (b)   64 __ 13   -   6 __ 13  x (d) -  4 __ 10   -   17 __ 10   x

 3. (b) y = 0.127 - 0.024x + 0.194x2,

  (MTM)-1 =   1 ___ 4248     S    3348   642 -426
  

      
    642   571 -187          

-426 -187    91
   T 

 4. (b)   1 __ 92  (-46x + 66x2 + 60 · 2x),

  (MTM)-1 =   1 __ 46     S    115    0 -46
  

     
     0   17 -18         

-46 -18   38
  T 

 5. (b)   1 __ 20    S18 + 21x2 + 28 sin(  πx
 __ 2  ) T , 

  (MTM)-1 =   1 __ 40     S   24 -2 14
 

    
 -2   1  3      

 14   3 49
   T 

 7. s = 99.71 - 4.87x; the estimate of g is 9.74. [The true 
value of g is 9.81]. If a quadratic in s is fit, the result is 
s = 101 -   3 _ 2  t -   9 _ 2  t

2 giving g = 9; 

  (MTM)-1 =   1 _ 2     S    38 -42   10
  

     
  -42   49 -12         

  10 -12    3
   T .

 9. y = -5.19 + 0.34x1 + 0.51x2 + 0.71x3, 

  (ATA)-1 =   1 ____ 25080     S  
 517860 -8016   5040 -22650

   
          

    -8016    208  -316     400                
   5040  -316   1300  -1090

   
          

   

-22650    400 -1090    1975

   T 
 10. (b) f (x) = a0 here, so the sum of squares is 

S = ∑( yi - a0)
2 = na0

2 - 2a0∑yi + ∑yi
2. 

Completing the square gives S = n  Sa0 -   1 _ n  ∑yi T  
2 

+   S∑yi
2 -   1 _ n   Q∑yi R 

2 T . This is minimal when 
a0 =   1 _ n  ∑yi.

 13. (b) Here f (x) = r0 + r1e
x. If f (x1) = 0 = f (x2) where 

x1 ≠ x2, then r0 + r1 ·  e 
x1  = 0 = r0 + r1 ·  e 

x2  so 
r1(e

x1 - ex2) = 0. Hence r1 = 0 = r0.

Exercises 5.7 An Application to Correlation and 
Variance (Page 287)

 2. Let X denote the number of years of education, 
and let Y denote the yearly income (in 1000’s). 
Then  

__
 x   = 15.3,  s  x  

2  = 9.12 and sx = 3.02, 
while  

__
 y   = 40.3,  s  y  

2  = 114.23 and sy = 10.69. The 
correlation is r(X, Y) = 0.599.

 4. (b) Given the sample vector x =   S  
x1

 
 

 x2   
�
 
 

 
xn

  T  , let z =   S  
z1

 
 

 z2   
�
 
 

 
zn

  T  
  where zi = a + bxi for each i. By (a) we have 

 
__

 z   = a + b 
__

 x  , so  s  z  
2  =   1 ___ 

n-1   ∑ 
i
   

 
  (zi -  

__
 z  )2  

  =   1 ___ 
n-1   ∑ 

i
   

 
  [(a + bxi) - (a + b 

__
 x  )]2  =   1 ___ 

n-1   ∑ 
i
   

 
  b2(xi -  

__
 x  )2  

  = b2 s  x  
2 . Now (b) follows because  √ 

__

 b2   = |b|.

Supplementary Exercises for Chapter 5 
(Page 287)

 (b) F (d) T (f) T (h) F (j) F (l) T (n) F (p) F (r) F

Exercises 6.1 Examples and Basic Properties 
(Page 295)

 1. (b) No; S5 fails. (d) No; S4 and S5 fail.
 2. (b) No; only A1 fails. (d) No
  (f) Yes (h) Yes (j) No 
  (l) No; only S3 fails. 

(n) No; only S4 and S5 fail.
 4. The zero vector is (0, -1); the negative of (x, y) is 

(-x, -2 - y).
 5. (b) x =   1 _ 7  (5u - 2v), y =   1 _ 7  (4u - 3v)
 6. (b) Equating entries gives a + c = 0, b + c = 0, 

b + c = 0, a - c = 0. The solution is a = b = c = 0.
  (d) If a sin x + b cos y + c = 0 in F[0, π], then this 

must hold for every x in [0, π]. Taking x = 0,   π __ 2  , and 
π, respectively, gives b + c = 0, a + c = 0, -b + c = 0 
whence, a = b = c = 0.

 7. (b) 4w
 10. If z + v = v for all v, then z + v = 0 + v, so z = 0 by 

cancellation.
 12. (b) (-a)v + av = (-a + a)v = 0v = 0 by Theorem 

3. Because also -(av) + av = 0 (by the definition of 
-(av) in axiom A5), this means that (-a)v = -(av) by 
cancellation. Alternatively, use Theorem 3(4) to give 
(-a)v = [(-1)a]v = (-1)(av) = -(av).
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 13. (b) The case n = 1 is clear, and n = 2 is axiom S3. 
If n > 2, then (a1 + a2 + � + an)v = 
[a1 + (a2 + � + an)]v = a1v + (a2 + � + an)v = 
a1v + (a2v + � + anv) using the induction hypothesis; 
so it holds for all n.

 15. (c) If av = aw, then v = 1v = (a-1a)v = a-1(av) = 
a-1(aw) = (a-1a)w = 1w = w.

Exercises 6.2 Subspaces and Spanning Sets 
(Page 301)

 1. (b) Yes (d) Yes (f) No; not closed under addition 
or scalar multiplication, and 0 is not in the set.

 2. (b) Yes (d) Yes (f) No; not closed under addition.
 3. (b) No; not closed under addition. (d) No; not 

closed under scalar multiplication. (f) Yes
 5. (b) If entry k of x is xk ≠ 0, and if y is in 

�
n, then y = Ax where the column of A 

is  x  k  
-1 y, and the other columns are zero.

 6. (b) -3(x + 1) + 0(x2 + x) + 2(x2 + 2) 
(d)   2 _ 3  (x + 1) +   1 _ 3  (x

2 + x) -   1 _ 3  (x
2 + 2)

 7. (b) No (d) Yes; v = 3u - w.
 8. (b) Yes; 1 = cos2 x + sin2 x 

(d) No. If 1 + x2 = a cos2 x + b sin2 x, then taking 
x = 0 and x = π gives a = 1 and a = 1 + π2.

 9. (b) Because P2 = span{1, x, x2}, it suffices to show that 
{1, x, x2} ⊆ span{1 + 2x2, 3x, 1 + x}. But x =   1 _ 3  (3x); 
1 = (1 + x) - x and x2 =   1 _ 2  [(1 + 2x2) - 1].

 11. (b) u = (u + w) - w, v = -(u - v) + (u + w) - w, 
and w = w

 14. No
 17. (b) Yes.
 18. v1 =   1 __ a1

  u -   a2 __ a1
  v2 - � -   an

 __ a1
  vn, so V ⊆ span{u, v2, …, vn}.

 21. (b) v = (u + v) - u is in U.
 22. Given the condition and u ∈ U, 0 = u + (-1)u ∈ U. 

The converse holds by the subspace test.

Exercises 6.3 Linear Independence and 
Dimension (Page 309)

 1. (b) If ax2 + b(x + 1) + c(1 - x - x2) = 0, then 
a + c = 0, b - c = 0, b + c = 0, so a = b = c = 0.

  (d) If a  S  1 1    
1 0

  T  + b  S  0 1    
1 1

  T  + c  S  1 0    
1 1

  T  + d  S  1 1    
0 1

  T  =   S  0 0    
0 0

  T ,
  then a + c + d = 0, a + b + d = 0, a + b + c = 0, and 

b + c + d = 0, so a = b = c = d = 0.
 2. (b) 3(x2 - x + 3) - 2(2x2 + x + 5) + (x2 + 5x + 1) = 0

  (d) 2  S  -1   0     
0 -1

  T  +   S   1 -1     
-1   1

  T  +   S  1 1    
1 1

  T  =   S  0 0    
0 0

  T  
  (f)   5 __________ 

x2 + x - 6
   +   1 ___________  

x2 - 5x + 6
   -   6 ______ 

x2 - 9
   = 0

 3. (b) Dependent: 1 - sin2 x - cos2 x = 0
 4. (b) x ≠ -  1 _ 3  

 5. (b) If r(-1, 1, 1) + s(1, -1, 1) + t(1, 1, -1) = 
(0, 0, 0), then -r + s + t = 0, r - s + t = 0, and 
r - s - t = 0, and this implies that r = s = t = 0. This 
proves independence. To prove that they span �3, 
observe that (0, 0, 1) =   1 _ 2  [(-1, 1, 1) + (1, -1, 1)] so 
(0, 0, 1) lies in span{(-1, 1, 1), (1, -1, 1), (1, 1, -1)}. 
The proof is similar for (0, 1, 0) and (1, 0, 0).

  (d) If r(1 + x) + s(x + x2) + t(x2 + x3) + ux3 = 0, then 
r = 0, r + s = 0, s + t = 0, and t + u = 0, so r = s = 
t = u = 0. This proves independence. To show 
that they span P3, observe that x2 = (x2 + x3) - x3, 
x = (x + x2) - x2, and 1 = (1 + x) - x, so 
{1, x, x2, x3} ⊆ span{1 + x, x + x2, x2 + x3, x3}.

 6. (b) {1, x + x2}; dimension = 2
  (d) {1, x2}; dimension = 2

 7. (b)  U   S   1 1    
-1 0

  T ,   S  1 0    
0 1

  T  V ; dimension = 2 

  (d)  U   S  1 0    
1 1

  T ,   S   0 1    
-1 0

  T  V ; dimension = 2

 8. (b)  U   S  1 0    
0 0

  T ,   S  0 1    
0 0

  T  V 
 10. (b) dim V = 7
 11. (b) {x2 - x, x(x2 - x), x2(x2 - x), x3(x2 - x)}; dim V = 4
 12. (b) No. Any linear combination f of such polynomials 

has f (0) = 0.

  (d) No.  U   S  1 0    
0 1

  T ,   S  1 1    
0 1

  T ,   S  1 0    
1 1

  T ,   S  0 1    
1 1

  T  V ; consists of 

invertible matrices.
  (f) Yes. 0u + 0v + 0w = 0 for every set {u, v, w}.
  (h) Yes. su + t(u + v) = 0 gives (s + t)u + tv = 0, 

whence s + t = 0 = t. (j) Yes. If ru + sv = 0, then 
ru + sv + 0w = 0, so r = 0 = s. 
(l) Yes. u + v + w ≠ 0 because {u, v, w} is independent.

  (n) Yes. If I is independent, then |I| ≤ n by the 
fundamental theorem because any basis spans V.

 15. If a linear combination of the subset vanishes, it is 
a linear combination of the vectors in the larger set 
(coefficients outside the subset are zero) so it is trivial.

 19. Because {u, v} is linearly independent, su′ + tv′ = 0 is 

equivalent to   S   a c
   

b d
  T    S   s    

t
   T  =   S   0     

0
   T . Now apply Theorem 5 

Section 2.4.
 23. (b) Independent (d) Dependent. For example, 

(u + v) - (v + w) + (w + z) - (z + u) = 0.
 26. If z is not real and az + bz2 = 0, then a + bz = 0 

(z ≠ 0). Hence if b ≠ 0, then z = -ab-1 is real. So 
b = 0, and so a = 0. Conversely, if z is real, say z = a, 
then (-a)z + 1z2 = 0, contrary to the independence 
of {z, z2}.

 29. (b) If Ux = 0, x ≠ 0 in �n, then Rx = 0 where R ≠ 0 
is row 1 of U. If B ∈ Mmn has each row equal to R, 
then Bx ≠ 0. But if B = ∑riAiU, then 
Bx = ∑riAiUx = 0. So {AiU} cannot span Mmn.
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 33. (b) If U ∩ W = 0 and ru + sw = 0, then ru = –sw is 
in U ∩ W, so ru = 0 = sw. Hence r = 0 = s because 
u ≠ 0 ≠ w. Conversely, if v ≠ 0 lies in U ∩ W, then 
1v + (–1)v = 0, contrary to hypothesis.

 36. (b) dim On =   n _ 2   if n is even and dim On =   n+1
 ___ 2   if n is 

odd.

Exercises 6.4 Finite Dimensional Spaces 
(Page 318)

 1. (b) {(0, 1, 1), (1, 0, 0), (0, 1, 0)} (d) {x2 - x + 1, 1, x}
 2. (b) Any three except {x2 + 3, x + 2, x2 - 2x - 1}
 3. (b) Add (0, 1, 0, 0) and (0, 0, 1, 0). (d) Add 1 and x3.
 4. (b) If z = a + bi, then a ≠ 0 and b ≠ 0. If rz + s 

__
 z   = 0, 

then (r + s)a = 0 and (r - s)b = 0. This means that 
r + s = 0 = r - s, so r = s = 0. Thus {z,  

__
 z  } is 

independent; it is a basis because dim � = 2.
 5. (b) The polynomials in S have distinct degrees.
 6. (b) {4, 4x, 4x2, 4x3} is one such basis of P3. However, 

there is no basis of P3 consisting of polynomials that 
have the property that their coefficients sum to zero. 
For if such a basis exists, then every polynomial 
in P3 would have this property (because sums 
and scalar multiples of such polynomials have the 
same property).

 7. (b) Not a basis (d) Not a basis
 8. (b) Yes; no
 10. det A = 0 if and only if A is not invertible; if and only 

if the rows of A are dependent (Theorem 3 Section 
5.2); if and only if some row is a linear combination of 
the others (Lemma 2).

 11. (b) No. {(0, 1), (1, 0)} ⊆ {(0, 1), (1, 0), (1, 1)}.
  (d) Yes. See Exercise 15 Section 6.3.
 15. If v ∈ U then W = U; if v ∉ U then {v1, v2, …, vk, v} 

is a basis of W by the independent lemma.
 18. (b) Two distinct planes through the origin (U and W) 

meet in a line through the origin (U ∩ W).
 23. (b) The set {(1, 0, 0, 0, …), (0, 1, 0, 0, 0, …), 

(0, 0, 1, 0, 0, …), …} contains independent 
subsets of arbitrary size.

 25. (b) �u + �w = {ru + sw | r, s in �} = span{u, w}

Exercises 6.5 An Application to Polynomials 
(Page 324)

 2. (b) 3 + 4(x - 1) + 3(x - 1)2 + (x - 1)3 (d) 1 + (x - 1)3

 6. (b) The polynomials are (x - 1)(x - 2), (x - 1)(x - 3), 
(x - 2)(x - 3). Use a0 = 3, a1 = 2, and a2 = 1.

 7. (b) f (x) =   3 _ 2  (x - 2)(x - 3) - 7(x - 1)(x - 3) + 
  13 __ 2  (x - 1)(x - 2).

 10. (b) If r(x - a)2 + s(x - a)(x - b) + t(x - b)2 = 0, 
then evaluation at x = a (x = b) gives t = 0 (r = 0). 
Thus s(x - a)(x - b) = 0, so s = 0. Use Theorem 4 
Section 6.4.

 11. (b) Suppose {p0(x), p1(x), …, pn-2(x)} is a basis of Pn-2. 
We show that {(x - a)(x - b)p0(x), (x - a)(x - b)p1(x), 
…, (x - a)(x - b)pn-2(x)} is a basis of Un. It is a 
spanning set by part (a), so assume that a linear 
combination vanishes with coefficients r0, r1, …, rn-2. 
Then (x - a)(x - b)[r0p0(x) + � + rn-2pn-2(x)] = 0, 
so r0p0(x) + � + rn-2pn-2(x) = 0 by the Hint. This 
implies that r0 = � = rn-2 = 0.

Exercises 6.6 An Application to Differential 
Equations (Page 329)

 1. (b) e1-x (d)   e
2x - e-3x

 _________ 
e2 - e-3

   (f) 2e2x(1 + x) 

  (h)   e
ax - ea(2-x)

 __________ 
1 - e2a

   (j) eπ-2xsin x

 4. (b) ce-x + 2, c a constant

 5. (b) ce-3x + de2x -   x
3
 __ 

3
  

 6. (b) t =   
3 ln(  1 _ 2  ) ______ 
ln(  4 _ 5  )

   = 9.32 hours  8. k =  Q   π ___ 
15

   R 2 = 0.044

Supplementary Exercises for Chapter 6 
(Page 330)

 2. (b) If YA = 0, Y a row, we show that Y = 0; thus AT 
(and hence A) is invertible. Given a column c in �n 
write c =  ∑ 

i
   

 
  ri(Avi)  where each ri is in �. Then 

Yc =  ∑ 
i
   

 
  riY Avi , so Y = YIn = Y[e1 e1 � en] = 

[Ye1 Ye2 � Yen] = [0 0 � 0] = 0, as required.
 4. We have null A ⊆ null(ATA) because Ax = 0 implies 

(ATA)x = 0. Conversely, if (ATA)x = 0, then
  ‖Ax‖

2 = (Ax)T(Ax) = xTATAx = 0. Thus Ax = 0.

Exercises 7.1 Examples and Elementary 
Properties (Page 336)

 1. (b) T(v) = vA where A =   S   1 0   0
 

   
 0 1   0     

0 0 -1
  T 

  (d) T(A + B) = P(A + B)Q = PAQ + PBQ = 

T(A) + T(B); T(rA) = P(rA)Q = rPAQ = rT(A)
  (f) T [(p + q)(x)] = (p + q)(0) = p(0) + q(0) = 

T [p(x)] + T [q(x)]; 
T [(rp)(x)] = (rp)(0) = r(p(0)) = rT [p(x)]

  (h) T(X + Y) = (X + Y) · Z = X · Z + Y · Z = 

T(X) + T(Y), and T(rX) = (rX) · Z = r(X · Z) = rT(X)
  (j) If v = (v1, …, vn) and w = (w1, …, wn), then 

T(v + w) = (v1 + w1)e1 + � + (vn + wn)en = 

(v1e1 + � + vnen) + (w1e1 + � + wnen) = 

T(v) + T(w)
T(av) = (av1)e + � + (avn)en = a(ve + � + vnen) = 

aT(v)

565Selected Answers



 2. (b) rank(A + B) ≠ rank A + rank B in general. For 

example, A =   S  1 0    
0 1

  T  and B =   S   1   0    
0 -1

  T .
  (d) T(0) = 0 + u = u ≠ 0, so T is not linear by 

Theorem 1.

 3. (b) T(3v1 + 2v2) = 0 (d) T   S   1   
-7

  T  =   S  -3   
4

  T  
  (f) T(2 - x + 3x2) = 46
 4. (b) T(x, y) =   1 _ 3  (x - y, 3y, x - y); T(-1, 2) = (-1, 2, -1) 

  (d) T   S   a b
        

c d
   T  = 3a - 3c + 2b

 5. (b) T(v) =   1 _ 3  (7v - 9w), T(w) =   1 _ 3  (v + 3w)
 8. (b) T(v) = (-1)v for all v in V, so T is the scalar 

operator -1
 12. If T(1) = v, then T(r) = T(r � 1) = rT(1) = rv for all r 

in �.
 15. (b) 0 is in U = {v ∈ V|T(v) ∈ P} because T(0) = 0 

is in P. If v and w are in U, then T(v) and T(w) are 
in P. Hence T(v + w) = T(v) + T(w) is in P and 
T(rv) = rT(v) is in P, so v + w and rv are in U.

 18. Suppose rv + sT(v) = 0. If s = 0, then r = 0 (because 
v ≠ 0). If s ≠ 0, then T(v) = av where a = -s-1r. 
Thus v = T 2(v) = T(av) = a2v, so a2 = 1, again 
because v ≠ 0. Hence a = ±1. Conversely, if 
T(v) = ±v, then {v, T(v)} is certainly not independent.

 21. (b) Given such a T, write T(x) = a. If p = p(x) =  

∑ 
i=0

   
n

  ai x
i , then T(p) = ∑aiT(xi) = ∑ai[T(x)]i = ∑aia

i = 

p(a) = Ea(p). Hence T = Ea.

Exercises 7.2 Kernel and Image of a Linear 
Transformation (Page 344)

 1. (b)  U    S  -3
 

 
   7   

  1
 

 
 

  0

   T ,   S  
  1

 
 

   1   
  0

 
 

 

-1

   T  V ;  U   S  1 
 

 0   
1

  T ,   S     0
 

 
   1   

-1
  T  V ; 2, 2 

  (d)  U   S  -1
 

 
   2   

  1
   T  V ;  U    S  1 

 
 0   

1
 

 
 

1

  T ,   S     0
 

 
   1   

-1
 

 
 

-2

  T  V ; 2, 1

 2. (b) {x2 - x}; {(1, 0), (0, 1)} 
  (d) {(0, 0, 1)}; {(1, 1, 0, 0), (0, 0, 1, 1)} 

  (f)  U   S   1   0    
0 -1

  T  ,   S  0 1    
0 0

  T ,   S  0 0    
1 0

  T  V ; {1}

  (h) {(1, 0, 0, …, 0, -1), (0, 1, 0, …, 0, -1), …, 
(0, 0, 0, …, 1, -1)}; {1}

  (j)  U   S  0 1    
0 0

  T ,   S  0 0    
0 1

  T  V ;  U   S  1 1    
0 0

  T ,   S  0 0    
1 1

  T  V 
 3. (b) T(v) = 0 = (0, 0) if and only if P(v) = 0 and 

Q(v) = 0; that is, if and only if v is in ker P ∩ ker Q.
 4. (b) ker T = span{(-4, 1, 3)}; B = {(1, 0, 0), (0, 1, 0), 

(-4, 1, 3)}, im T = span{(1, 2, 0, 3), (1, -1, -3, 0)}

 6. (b) Yes. dim(im T) = 5 - dim(ker T) = 3, so 
im T = W as dim W = 3. (d) No. T = 0 : �2 → �2

  (f) No. T : �2 → �2, T(x, y) = ( y, 0). Then 
ker T = im T

  (h) Yes. dim V = dim(ker T) + dim(im T) ≤ 
dim W + dim W = 2 dim W

  (j) No. Consider T : �2 → �2 with T(x, y) = ( y, 0).
  (l) No. Same example as (j).
  (n) No. Define T : �2 → �2 by T(x, y) = (x, 0). If 

v1 = (1, 0) and v2 = (0, 1), then �2 = span{v1, v2} but 
�

2 ≠ span{T(v1), T(v2)}.
 7. (b) Given w in W, let w = T(v), v in V, and write v = r1v1 +

 � + rnvn. Then w = T(v) = r1T(v1) + � + rnT(vn).
 8. (b) im T = { ∑ 

i
   

 
  rivi |ri in �} = span{vi}.

 10. T is linear and onto. Hence 1 = dim � = dim(im T) = 
dim(Mnn) - dim(ker T) = n2 - dim(ker T).

 12. The condition means ker (TA) ⊆ ker(TB), so 
dim[ker(TA)]≤ dim[ker(TB)]. Then Theorem 4 gives 
dim[im(TA)] ≥ dim[im(TB)]; that is, rank A ≥ rank B.

 15. (b) B = {x - 1, …, xn - 1} is independent (distinct 
degrees) and contained in ker T. Hence B is a basis of 
ker T by (a).

 20. Define T : Mnn → Mnn by T(A) = A - AT for all A in 
Mnn. Then ker T = U and im T = V by Example 3, so 
the dimension theorem gives 
n2 = dim Mnn = dim(U ) + dim(V ).

 22. Define T : Mnn → �n by T(A) = Ay for all A in Mnn. 
Then T is linear with ker T = U, so it is enough to 
show that T is onto (then dim U = n2 - dim(im T) = 

n2 - n). We have T(0) = 0. Let y = [y1 y2 � yn]
T ≠ 0 

in �n. If yk ≠ 0 let ck =  y  k  
-1 y, and let cj = 0 if j ≠ k. 

If A = [c1 c2 � cn], then 
T(A) = Ay = y1c1 + � + ykck + � + yncn = y. 
This shows that T is onto, as required.

 29. (b) By Lemma 2 Section 6.4, let {u1, …, um, …, un} 
be a basis of V where {u1, …, um} is a basis of U. By 
Theorem 3 Section 7.1 there is a linear transformation 
S : V → V such that S(ui) = ui for 1 ≤ i ≤ m, 
and S(ui) = 0 if i > m. Because each ui is in 
im S, U ⊆ im S. But if S(v) is in im S, write 
v = r1u1 + � + rmum + � + rnun. Then 
S(v) = r1S(u1) + � + rmS(um) = r1u1 + � + rmum is 
in U. So im S ⊆ U.

Exercises 7.3 Isomorphisms and Composition 
(Page 354)

 1. (b) T is onto because T(1, -1, 0) = (1, 0, 0), T(0, 1, -1) 
= (0, 1, 0), and T(0, 0, 1) = (0, 0, 1). Use Theorem 3.

  (d) T is one-to-one because 0 = T(X) = UXV implies 
that X = 0 (U and V are invertible). Use Theorem 3.
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  (f) T is one-to-one because 0 = T(v) = kv implies that 
v = 0 (because k ≠ 0). T is onto because T(  1 _ 

k
  v) = v for 

all v. [Here Theorem 3 does not apply if dim V is not 
finite.]

  (h) T is one-to-one because T(A) = 0 implies AT = 0, 
whence A = 0. Use Theorem 3.

 4. (b) ST(x, y, z) = (x + y, 0, y + z), TS(x, y, z) = (x, 0, z) 

  (d) ST   S  a b
   

c d
  T  =   S   c 0    

0 d
  T , TS  S  a b

   
c d

  T  =   S  0 a
    

d 0
  T 

 5. (b) T 2(x, y) = T(x + y, 0) = (x + y, 0) = T(x, y). 
Hence T 2 = T.

  (d) T 2  S  a b
   

c d
  T  =   1 _ 2  T   S  a + c b + d

        
a + c b + d

  T  =   1 _ 2    S  a + c b + d
        

a + c b + d
  T 

 6. (b) No inverse; (1, -1, 1, -1) is in ker T. 

  (d) T -1  S  a b
   

c d
  T  =   1 _ 5     S  3a - 2c 3b - 2d

          
  a + c     b + d

   T 
  (f) T -1(a, b, c) =   1 _ 2  [2a + (b - c)x - (2a - b - c)x2]
 7. (b) T 2(x, y) = T(ky - x, y) = (ky - (ky - x), y) = (x, y)
  (d) T 2(X) = A2X = IX = X
 8. (b) T 3(x, y, z, w) = (x, y, z, -w) so T 6(x, y, z, w) = 

T 3[T 3(x, y, z, w)] = (x, y, z, w). Hence T -1 = T 5. So 
T -1(x, y, z, w) = ( y - x, -x, z, -w).

 9. (b) T -1(A) = U -1 A.
 10. (b) Given u in U, write u = S(w), w in W (because 

S is onto). Then write w = T(v), v in V (T is onto). 
Hence u = ST(v), so ST is onto.

 12. (b) For all v in V, (RT)(v) = R[T(v)] is in im(R).
 13. (b) Given w in W, write w = ST(v), v in V (ST is 

onto). Then w = S[T(v)], T(v) in U, so S is onto. But 
then im S = W, so dim U = dim(ker S) + dim(im S) 
≥ dim(im S) = dim W.

 16. {T(e1), T(e2), …, T(er)} is a basis of im T by 
Theorem 5 Section 7.2. So T : span{e1, …, er} → im T 
is an isomorphism by Theorem 1.

 19. (b) T(x, y) = (x, y + 1)
 24. (b) TS[x0, x1, …) = T [0, x0, x1, …) = [x0, x1, …), so 

TS = 1V. Hence TS is both onto and one-to-one, so 
T is onto and S is one-to-one by Exercise 13. But 
[1, 0, 0, …) is in ker T while [1, 0, 0, …) is not in im S.

 26. (b) If T(p) = 0, then p(x) = -xp′(x). We write 
p(x) = a0 + a1x + a2x

2 + � + anx
n, and this becomes

a0 + a1x + a2x
2 + � + anx

n = 

-a1x - 2a2x
2 - � - nanx

n.
Equating coefficients yields a0 = 0, 2a1 = 0, 3a2 = 0, 
…, (n + 1)an = 0, whence p(x) = 0. This means 
that ker T = 0, so T is one-to-one. But then T is an 
isomorphism by Theorem 3.

 27. (b) If ST = 1V for some S, then T is onto by 
Exercise 13. If T is onto, let {e1, …, er, …, en} be 
a basis of V such that {er+1, …, en} is a basis of 
ker T. Since T is onto, {T(e1), …, T(er)} is a basis 
of im T = W by Theorem 5 Section 7.2. Thus 
S : W → V is an isomorphism where by S{T(ei)] = ei 
for i = 1, 2, …, r. Hence TS[T(ei)] = T(ei) for 
each i, that is TS[T(ei)] = 1W[T(ei)]. This means 
that TS = 1W because they agree on the basis 
{T(e1), …, T(er)} of W.

 28. (b) If T = SR, then every vector T(v) in im T has the 
form T(v) = S[R(v)], whence im T ⊆ im S. Since R is 
invertible, S = TR-1 implies im S ⊆ im T. 
 Conversely, assume that im S = im T. Then 
dim(ker S) = dim(ker T) by the dimension theorem. 
Let {e1, …, er, er+1, …, en} and {f1, …, fr, fr+1, …, fn} 
be bases of V such that {er+1, …, en} and 
{fr+1, …, fn} are bases of ker S and ker T, respectively. 
By Theorem 5, Section7.2, {S(e1), …, S(er)} and 
{T(f1), …, T(fr)} are both bases of im S = im T. So 
let g1, …, gr in V be such that S(ei) = T(gi) for each 
i = 1, 2, …, r. Show that 

B = {g1, …, gr, fr+1, …, fn} is a basis of V. 

  Then define R: V → V by R(gi) = ei for 
i = 1, 2, …, r, and R(fj) = ej for j = r + 1, …, n. 
Then R is an isomorphism by Theorem 1, 
Section 7.3. Finally SR = T since they have the 
same effect on the basis B.

 29. Let B = {e1, …, er, er+1, …, en} be a basis of V with 
{er+1, …, en} a basis of ker T. If 
{T(e1), …, T(er), wr+1, …, wn} is a basis of V, define 
S by S[T(ei)] = ei for 1 ≤ i ≤ r, and S(wj) = ej for 
r + 1 ≤ j ≤ n. Then S is an isomorphism by Theorem 
1, and TST(ei) = T(ei) clearly holds for 1 ≤ i ≤ r. But 
if i ≥ r + 1, then T(ei) = 0 = TST(ei), so T = TST by 
Theorem 2 Section 7.1.

Exercises 7.5 More on Linear Recurrences 
(Page 367)

 1. (b) {[1), [2n), [(-3)n)}; xn =   1 __ 20  (15 + 2n+3 + (-3)n+1)
 2. (b) {[1), [n), [(-2)n)}; xn =   1 _ 9  (5 - 6n + (-2)n+2) 

(d) {[1), [n), [n2)}; xn = 2(n - 1)2 - 1
 3. (b) {[an), [bn)}
 4. (b) [1, 0, 0, 0, 0, …), [0, 1, 0, 0, 0, …), [0, 0, 1, 1, 1, …), 

[0, 0, 1, 2, 3, …)
 7. By Remark 2, 

 [in + (-i)n) = [2, 0, -2, 0, 2, 0, -2, 0, …)
 [i(in - (-i)n)) = [0, -2, 0, 2, 0, -2, 0, 2, …) 
are solutions. They are linearly independent and so are 
a basis.
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Exercises 8.1 Orthogonal Complements and 
Projections (Page 374)

 1. (b) {(2, 1),   3 _ 5  (-1, 2)} (d) {(0, 1, 1), (1, 0, 0), (0, -2, 2)}
 2. (b) x =   1 ___ 182  (271, -221, 1030) +   1 ___ 182  (93, 403, 62) 
  (d) x =   1 _ 4  (1, 7, 11, 17) +   1 _ 4  (7, -7, -7, 7)
(f) x =   1 __ 12  (5a - 5b + c - 3d, -5a + 5b - c + 3d, 

 a - b + 11c + 3d, -3a + 3b + 3c + 3d) 
 +   1 __ 12  (7a + 5b - c + 3d, 5a + 7b + c - 3d, 
-a + b + c - 3d, 3a - 3b - 3c + 9d)

 3. (a)   1 __ 10  (-9, 3, -21, 33) =   3 __ 10  (-3, 1, -7, 11) 
  (c)   1 __ 70  (-63, 21, -147, 231) =   3 __ 10  (-3, 1, -7, 11)
 4. (b) {(1, -1, 0),   1 _ 2  (-1, -1, 2)}; projU(x) = (1, 0, -1)
  (d) {(1, -1, 0, 1), (1, 1, 0, 0),   1 _ 3  (-1, 1, 0, 2)}; 

projU(x) = (2, 0, 0, 1)
 5. (b) U⊥ = span{(1, 3, 1, 0), (-1, 0, 0, 1)}
 8. Write p = projU(x). Then p is in U by definition. If 

x is U, then x - p is in U. But x - p is also in U⊥ by 
Theorem 3, so x - p is in U ∩ U⊥ = {0}. Thus x = p.

 10. Let {f1, f2, …, fm} be an orthonormal basis of U. If x is 
in U the expansion theorem gives 
x = (x · f1)f1 + (x · f2)f2 + � + (x · fm)fm = projU(x).

 14. Let {y1, y2, …, ym} be a basis of U⊥, and let A be the 
n × n matrix with rows  y  1  

T ,  y  2  
T , …,  y  m  T

  , 0, …, 0. 
Then Ax = 0 if and only if yi · x = 0 for each 
i = 1, 2, …, m; if and only if x is in U⊥⊥ = U.

 17. (d) ET = AT[(AAT)-1]T(AT)T = AT[(AAT)T]-1A = 
AT[AAT]-1A = E
E2 = AT(AAT)-1AAT(AAT)-1A = AT(AAT)-1A = E

Exercises 8.2 Orthogonal Diagonalization 
(Page 383)

 1. (b)   1 _ 5     S  3 -4    
4   3

  T  (d)   1 _________ 
 √ 

_______

 a2 + b2   
    S   a b

    
-b a

  T  

  (f) 

0

2
6

1
6

1
6

1
3

1
3

1
3

1
2

1
2

−

−  (h)   1 _ 7     S    2 6 -3
 

   
   3 2   6     

-6 3   2
  T 

 2. We have PT = P-1; this matrix is lower triangular 
(left side) and also upper triangular (right side–see 
Lemma 1 Section 2.7), and so is diagonal. But then 
P = PT = P-1, so P2 = I. This implies that the 
diagonal entries of P are all ±1.

 5. (b)   1 __ 
 √ 

__

 2  
     S  1 -1    

1   1
  T  (d)   1 __ 

 √ 

__

 2  
     S     0  1   1

 
   

  √ 

__

 2   0   0     
  0  1 -1

   T  
  (f)   1 ___ 

3 √ 

__

 2  
     S   2 √ 

__

 2     3   1
  

    
    √ 

__

 2     0 -4        
2 √ 

__

 2   -3   1
  T  or   1 _ 3     S  2 -2   1

 
   

 1   2   2     
2   1 -2

  T  

  (h)   1 _ 2     S     1 -1  √ 

__

 2     0 

  
     

  -1   1  √ 

__

 2     0          
-1 -1   0   √ 

__

 2  
  

     
  

  1   1   0    √ 

__

 2  

   T 
 6. P =   1 ___ 

 √ 

__

 2  k
     S     c  √ 

__

 2   a   a
  

    
       0  k -k        

-a  √ 

__

 2   c   c
   T 

 10. (b) y1 =   1 __ 
 √ 

__

 5  
  (-x1 + 2x2) and y2 =   1 __ 

 √ 

__

 5  
  (2x1 + x2); 

q = -3 y  1  
2  + 2 y  2  

2 .
 11. (c)⇒(a) By Theorem 1 let P-1AP = D = 

diag(λ1, …, λn) where the λi are the eigenvalues of A. 
By (c) we have λi = ±1 for each i, whence D2 = I. 
But then A2 = (PDP-1)2 = PD2P-1 = I. Since A is 
symmetric this is AAT = I, proving (a).

 13. (b) If B = PTAP = P-1, then B2 = PTAPPTAP = PTA2P.

 15. If x and y are respectively columns i and j of In, then 
xTATy = xTAy shows that the (i, j)-entries of AT and A 

are equal.

 18. (b) det   S  cos θ -sin θ
        

sin θ   cos θ
   T  = 1 and det   S  cos θ   sin θ

        
sin θ -cos θ

  T  = -1 

  [Remark: These are the only 2 × 2 examples.]
  (d) Use the fact that P-1 = PT to show that 

PT(I - P) = -(I - P)T. Now take determinants and 
use the hypothesis that det P ≠ (-1)n.

 21. We have AAT = D, where D is diagonal with main 
diagonal entries ‖R1‖

2, …, ‖Rn‖
2. Hence A-1 = ATD-1,

  and the result follows because D-1 has diagonal entries 
1/‖R1‖

2, …, 1/‖Rn‖
2.

 23. (b) Because I - A and I + A commute, 
PPT = (I - A)(I + A)-1[(I + A)-1]T(I - A)T = 
(I - A)(I + A)-1(I - A)-1(I + A) = I.

Exercises 8.3 Positive Definite Matrices 
(Page 389)

 1. (b) U =    √ 

__

 2   __ 2     S  2 -1    
0   1

  T  (d) U =   1 __ 30     S   60  √ 

__

 5   12  √ 

__

 5    15  √ 

__

 5  
  

       
   0  6  √ 

___

 30   10  √ 

___

 30             

 0   0  5  √ 

___

 15  

   T 
 2. (b) If λk > 0, k odd, then λ > 0.
 4. If x ≠ 0, then xTAx > 0 and xTBx > 0. 

Hence xT(A + B)x = xTAx + xTBx > 0 and 
xT(rA)x = r(xTAx) > 0, as r > 0.

 6. Let x ≠ 0 in �n. Then xT(UTAU )x = (Ux)TA(Ux) > 0 
provided Ux ≠ 0. But if U = [c1 c2 � cn] and 
x = (x1, x2, …, xn), then Ux = x1c1 + x2c2 + � + xncn 
≠ 0 because x ≠ 0 and the ci are independent.

 10. Let PTAP = D = diag(λ1, …, λn) where PT = P. Since 
A is positive definite, each eigenvalue λi > 0. If 
B = diag( √ 

___

 λ1  , …,  √ 
___

 λn  ) then B2 = D, so 
A = PB2PT = (PBPT)2. Take C = PBPT. Since C has 
eigenvalues  √ 

__

 λi   > 0, it is positive definite.
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 12. (b) If A is positive definite, use Theorem 1 to write 
A = UTU where U is upper triangular with positive 
diagonal D. Then A = (D-1U )TD2(D-1U ) so 
A = L1D1U1 is such a factorization if 
U1 = D-1U, D1 = D2, and L1 =  U  1  

T . 
Conversely, let AT = A = LDU be such a 
factorization. Then UTDTLT = AT = A = LDU, 
so L = UT by (a). Hence A = LDLT = VTV where 
V = LD0 and D0 is diagonal with  D  0  

2  = D (the matrix 
D0 exists because D has positive diagonal entries). 
Hence A is symmetric, and it is positive definite by 
Example 1.

Exercises 8.4 QR-Factorization (Page 393)

 1. (b) Q =   1 __ 
 √ 

__

 5  
     S  2 -1    

1   2
  T , R =   1 __ 

 √ 

__

 5  
     S  5 3    

0 1
  T 

  (d) Q =   1 __ 
 √ 

__

 3  
     S   

  1   1 0
 

   
 -1   0 1     

   0   1 1
 

   
 

  1 -1 1

  T , R =   1 __ 
 √ 

__

 3  
     S  3 0 -1

 
   

 0 3   1     
0 0   2

   T 
 2. If A has a QR-factorization, use (a). For the converse 

use Theorem 1.

Exercises 8.5 Computing Eigenvalues 
(Page 396)

 1. (b) Eigenvalues 4, -1; eigenvectors   S   2   
-1

  T  ,   S   1   
-3

  T ; 
  x4 =   S   409    

-203
  T ; r3 = 3.94

  (d) Eigenvalues λ1 =   1 _ 2  (3 +  √ 

___

 13  ), λ2 =   1 _ 2  (3 -  √ 

___

 13  ); 

eigenvectors   S   λ1      
1

   T  ,   S   λ2      
1

   T ; x4 =   S  142    
43

  T ; r3 = 3.3027750

(The true value is λ1 = 3.3027756, to seven 
decimal places.)

 2. (b) Eigenvalues λ1 =   1 _ 2  (3 +  √ 

___

 13  ) = 3.302776, 
λ2 =   1 _ 2  (3 -  √ 

___

 13  ) = -0.302776

A1 =   S  3 1    
1 0

  T , Q1 =   1 ___ 
 √ 

___

 10  
     S  3 -1    

1   3
  T , R1 =   1 ___ 

 √ 

___

 10  
     S  10   3    

0 -1
  T  

  A2 =   1 __ 10     S   33 -1     
-1 -3

  T , Q2 =   1 ____ 
 √ 

_____

 1090  
     S   33  1     

-1 33
  T , 

    R2 =   1 ____ 
 √ 

_____

 1090  
     S  109  -3     

0 -10
  T 

  A3 =   1 ___ 109     S  360    1     
1 -33

  T  =   S   3.302775   0.009174           
0.009174 -0.302775

  T 
 4. Use induction on k. If k = 1, A1 = A. In general 

Ak+1 =  Q  k  
-1 AkQk =  Q  k  

T AkQk, so the fact that  A  k  
T  = Ak 

implies  A  k+1  
T
   = Ak+1. The eigenvalues of A are all 

real (Theorem 7 Section 5.5), so the Ak converge 
to an upper triangular matrix T. But T must also be 
symmetric (it is the limit of symmetric matrices), so it 
is diagonal.

Exercises 8.6 Complex Matrices (Page 406)

 1. (b)  √ 

__

 6   (d)  √ 

___

 13  
 2. (b) Not orthogonal (d) Orthogonal
 3. (b) Not a subspace. For example, i(0, 0, 1) = (0, 0, i) is 

not in U. (d) This is a subspace.
 4. (b) Basis {(i, 0, 2), (1, 0, -1)}; dimension 2 (d) Basis 

{(1, 0, -2i), (0, 1, 1 - i)}; dimension 2
 5. (b) Normal only (d) Hermitian (and normal), 

not unitary (f) None (h) Unitary (and normal); 
hermitian if and only if z is real

 8. (b) U =   1 ___ 
 √ 

___

 14  
     S   -2  3 - i

      
3 + i   2

   T , U HAU =   S  -1 0    
0 6

  T  
  (d) U =   1 __ 

 √ 

__

 3  
     S  1 + i   1      

 -1  1 - i
  T , U HAU =   S  1 0    

0 4
  T 

  (f) U =   1 __ 
 √ 

__

 3  
     S    √ 

__

 3    0   0 
  

    
    0  1 + i  1         

  0   -1  1 - i
  T , U HAU =   S  1 0 0

 
  

 0 0 0    
0 0 3

  T 
 10. (b) ‖λZ‖

2 = 〈λZ, λZ〉 = λ 
__

 λ  〈Z, Z〉 = |λ|2
‖Z‖

2

 11. (b) If the (k, k)-entry of A is akk, then the (k, k)-entry 
of  

__
 A   is  

__
 a  kk, so the (k, k)-entry of ( 

__
 A  )T = AH is  

__
 a  kk. 

This equals a, so akk is real.
 14. (b) Show that (B2)H = BHBH = (-B)(-B) = B2; 

(iB)H =  
_
 i  BH = (-i)(-B) = iB. (d) If Z = A + B, as 

given, first show that ZH = A - B, and hence that 
A =   1 _ 2  (Z + ZH) and B =   1 _ 2  (Z - ZH).

 16. (b) If U is unitary, (U -1)-1 = (U H)-1 = (U -1)H, so 
U -1 is unitary.

 18. (b) H =   S   1 i
    

-i 0
  T  is hermitian but iH =   S   i -1    

1   0
  T  is not.

 21. (b) Let U =   S  a b
   

c d
  T  be real and invertible, and assume 

that U -1AU =   S  λ μ
    

0 ν
  T . Then AU = U  S  λ μ

    
0 ν

  T , and first 

column entries are c = aλ and -a = cλ. Hence λ is 
real (c and a are both real and are not both 0), and 
(1 + λ2)a = 0. Thus a = 0, c = aλ = 0, a contradiction.

Section 8.7 An Application to Linear Codes 
over Finite Fields (Page 421)

 1. (b) 1-1 = 1, 9-1 = 9, 3-1 = 7, 7-1 = 3.
  (d) 21 = 2, 22 = 4, 23 = 8, 24 = 16 = 6, 25 = 12 = 2, 

26 = 22… so a = 2k if and only if a = 2, 4, 6, 8.
 2. (b) If 2a = 0 in �10, then 2a = 10k for some integer k. 

Thus a = 5k.
 3. (b) 11-1 = 7 in �19.
 6. (b) det A = 15 - 24 = 1 + 4 = 5 ≠ 0 in �7, so 

A-1 exists. Since 5-1 = 3 in �7, we have 

  A-1 = 3  S  3 -6    
3   5

  T  = 3  S  3 1    
3 5

  T  =   S  2 3    
2 1

  T .
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 7. (b) We have 5 � 3 = 1 in �7 so the reduction of the 
augmented matrix is:

    S  3 1 4 3     
4 3 1 1

  T  →    S  1 5 6 1     
4 3 1 1

  T  →   S  1 5 6 1     
0 4 5 4

  T  →
  S  1 5 6 1     
0 1 3 1

  T  →   S  1 0 5 3     
0 1 3 1

  T .
  Hence x = 3 + 2t, y = 1 + 4t, z = t; t in �7.
 9. (b) (1 + t)-1 = 2 + t.
 10. (b) The minimum weight of C is 5, so it detects 4 

errors and corrects 2 errors.
 11. (b) {00000, 01110, 10011, 11101}.
 12. (b) The code is {0000000000, 1001111000, 

0101100110, 0011010111, 1100011110, 1010101111, 
0110110001, 1111001001}. This has minimum 
distance 5 and so corrects 2 errors.

 13. (b) {00000, 10110, 01101, 11011} is a (5,2)-code of 
minimal weight 3, so it corrects single errors.

 14. (b) G = [1 u] where u is any nonzero vector in the 
code. H =   S   u         

In-1
   T .

Exercises 8.8 An Application to Quadratic 
Forms (Page 430)

 1. (b) A =   S  1 0    
0 2

  T  (d) A =   S   1   3   2
 

   
 3   1 -1     

2 -1   3
  T 

 2. (b) P =   1 __ 
 √ 

__

 2  
     S   1   1    

1 -1
  T ; y =   1 __ 

 √ 

__

 2  
     S   x1 + x2             

x1 - x2
   T ; q = 3 y  1  

2  -  y  2  
2 ; 1, 2

  (d) P =   1 _ 3     S    2   2 -1
 

    
   2 -1   2      

-1   2   2
  T ; y =   1 _ 3     S   

 2x1 + 2x2 -  x3

  
     

   2x1 -  x2 + 2x3         
-x1 + 2x2 + 2x3

  T ; 
  q = 9 y  1  

2  + 9 y  2  
2  - 9 y  3  

2 ; 2, 3

  (f) P =   1 _ 3     S  -2   1 2
 

   
   2   2 1     

  1 -2 2
  T ; y =   1 _ 3     S  

-2x1 + 2x2 +  x3

  
      

     x1 + 2x2 - 2x3          
  2x1 +  x2 + 2x3

   T ; 
  q = 9 y  1  

2  + 9 y  2  
2 ; 2, 2

  (h) P =   1 __ 
 √ 

__

 6  
     S  - √ 

__

 2    √ 

__

 3     1
  

     
     √ 

__

 2     0    2         
   √ 

__

 2    √ 

__

 3   -1
  T ; 

  y =   1 __ 
 √ 

__

 6  
     S  - √ 

__

 2  x1 +  √ 

__

 2  x2 +  √ 

__

 2  x3

  
        

     √ 

__

 3  x1     +  √ 

__

 3  x3            
     x1 +    2x2 -    x3

   T ; 
  q = 2 y  1  

2  +  y  2  
2  -  y  3  

2 ; 2, 3
 3. (b) x1 =   1 __ 

 √ 

__

 5  
  (2x - y), y1 =   1 __ 

 √ 

__

 5  
  (x + 2y); 4 x  1  

2  -  y  1  
2  = 2; 

hyperbola (d) x1 =   1 __ 
 √ 

__

 5  
  (x + 2y), y1 =   1 __ 

 √ 

__

 5  
  (2x - y); 

6 x  1  
2  +  y  1  

2  = 1; ellipse
 4. (b) Basis {(i, 0, i), (1, 0, -1)}, dimension 2
  (d) Basis {(1, 0, -2i), (0, 1, 1 - i)}, dimension 2

 7. (b) 3 y  1  
2  + 5 y  2  

2  -  y  3  
2  - 3 √ 

__

 2  y1 +   11 __ 3   √ 

__

 3  y2 +   2 _ 3   √ 

__

 6  y3 = 7

y1 =   1 __ 
 √ 

__

 2  
  (x2 + x3), y2 =   1 __ 

 √ 

__

 3  
  (x1 + x2 - x3), 

y3 =   1 __ 
 √ 

__

 6  
  (2x1 - x2 + x3)

 9. (b) By Theorem 3 Section 8.3 let A = UTU where 
U is upper triangular with positive diagonal entries. 
Then q = xT(UTU )x = (Ux)TUx = ‖Ux‖

2.

Exercises 9.1 The Matrix of a Linear 
Transformation (Page 442)

 1. (b)   S   
a
 

  
 2b - c    

c - b
   T  (d)   1 _ 2     S   a - b

 
    

 a + b       
-a + 3b + 2c

  T 
 2. (b) Let v = a + bx + cx2. Then CD[T(v)] = 

MDB(T)CB(v) =   S   2 1   3     
-1 0 -2

  T    S  
a
 

 
 b   

c
   T  =   S   2a + b + 3c

                    
-a - 2c

   T 
  Hence T(v)  = (2a + b + 3c)(1, 1) + (-a - 2c)(0, 1) 

= (2a + b + 3c, a + b + c).

 3. (b)   S  
1 0 0 0

 
   

 0 0 1 0     
0 1 0 0

 
   

 

0 0 0 1

  T  (d)   S  1 1 1
 

  
 0 1 2    

0 0 1
  T 

 4. (b)   S  
1 2

 
  

 5 3    
4 0

 
  

 

1 1

  T ; CD[T(a, b)] =   S  
1 2

 
  

 5 3    
4 0

 
  

 

1 1

  T    S   b
           

a - b
   T  =   S   2a - b

 

   
 3a + 2b     

4b
 

   
 

a

   T 
  (d)   1 _ 2     S  1 1 -1     

1 1   1
  T ; CD[T(a + bx + cx2)] = 

    1 _ 2     S  1 1 -1     
1 1   1

  T    S  
a
 

 
 b   

c
   T  =   1 _ 2     S   a + b - c

                
a + b + c

   T 

  (f)   S  
1 0 0 0

 
   

 0 1 1 0     
0 1 1 0

 
   

 

0 0 0 1

  T ; CD  QT   S   a b
        

c d
   T  R  =   S  

1 0 0 0
 

   
 0 1 1 0     

0 1 1 0
 

   
 

0 0 0 1

  T    S  
a

 
 
 b   c  
 

d

  T  =   S   
a

 

  
 b + c    

b + c
 

  
 

d

   T 
 5. (b) MED(S)MDB(T) = 

    S   1 1 0   0      
0 0 1 -1

  T    S   
  1 1 0

 
   

   0 1 1     
  1 0 1

 
   

 

-1 1 0

  T  =   S   1   2 1     
2 -1 1

  T  = MEB(ST)

  (d) MED(S)MDB(T) = 

    S  1 -1 0     
0   0 1

  T    S    1 -1 0
 

   
 -1   0 1     

  0   1 0
   T  =   S  2 -1 -1     

0   1   0
  T  = MEB(ST)

 7. (b) T -1(a, b, c) =   1 _ 2  (b + c - a, a + c - b, a + b - c); 

  MDB(T) =   S  0 1 1
 

  
 1 0 1    

1 1 0
  T ; MBD(T -1) =   1 _ 2     S  -1   1   1

 
    

   1 -1   1      
  1   1 -1

  T 
  (d) T -1(a, b, c) = (a - b) + (b - c)x + cx2; 

  MDB(T) =   S  1 1 1
 

  
 0 1 1    

0 0 1
  T ; MBD(T -1) =   S  1 -1   0

 
   

 0   1 -1     
0   0   1

   T 
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 8. (b) MDB(T -1) = [MBD[(T)]-1 = 

     S  
1 1 1 0

 
   

 0 1 1 0     
0 0 1 0

 
   

 

0 0 0 1

  T  
-1

  =   S  
1 -1   0 0

  
    

  0   1 -1 0        0   0   1 0  
    

  

0   0   0 1

   T .
  Hence CB[T -1(a, b, c, d)] = MBD(T -1)CD(a, b, c, d) = 

    S  
1 -1   0 0

  
    

  0   1 -1 0        0   0   1 0  
    

  

0   0   0 1

   T    S  a 
 
 b   c  
 

d

  T  =   S  a - b

 

  

 b - c    c    

d

   T , so 

  T -1(a, b, c, d) =   S  a - b b - c
      

    c         d
   T .

 12. Have CD[T(ej)] = column j of In. Hence 
MDB(T) = [CD[T(e1)] CD[T(e2)] � CD[T(en)]] = In.

 16. (b) If D is the standard basis of �n+1 and 
B = {1, x, x2, …, xn}, then

  MDB(T) = [CD[T(1)] CD[T(x)] � CD[T(xn)]] =

    S  
1 a0  a  0  

2  �  a  0  
n 

  

     

  
1 a1  a  1  

2  �  a  1  
n 

  
     

  1 a2  a  2  
2  �  a  2  

n          
 �   �   �     � 

  

     

  

1 an  a  n  
2  �  a  n  

n 

  T .
  This matrix has nonzero determinant by Theorem 

7 Section 3.2 (since the ai are distinct), so T is an 
isomorphism.

 20. (d) [(S + T)R](v) = (S + T)(R(v)) = 
S[(R(v))] + T [(R(v))] = SR(v) + TR(v) = [SR + TR](v) 
holds for all v in V. Hence (S + T)R = SR + TR.

 21. (b) If w lies in im(S + T), then w = (S + T)(v) for 
some v in V. But then w = S(v) + T(v), so w lies in 
im S + im T.

 22. (b) If X ⊆ X1, let T lie in  X  1  
0 . Then T(v) = 0 for all v 

in X1, whence T(v) = 0 for all v in X. Thus T is in X0 
and we have shown that  X  1  

0  ⊆ X0.
 24. (b) R is linear means Sv+w = Sv + Sw and Sav = aSv. 

These are proved as follows: Sv+w(r) = r(v + w) = 
rv + rw = Sv(r) + Sw(r) = (Sv + Sw)(r), and 
Sav(r) = r(av) = a(rv) = (aSv)(r) for all r in �. To show 
R is one-to-one, let R(v) = 0. This means Sv = 0 so 
0 = Sv(r) = rv for all r. Hence v = 0 (take r = 1). 
Finally, to show R is onto, let T lie in L(�, V ). We 
must find v such that R(v) = T, that is Sv = T. In 
fact, v = T(1) works since then T(r) = T(r � 1) = 
rT(1) = rv = Sv(r) holds for all r, so T = Sv.

 25. (b) Given T : � → V, let T(1) = a1b1 + � + anbn, ai 
in �. For all r in �, we have (a1S1 + � + anSn)(r) = 
a1S1(r) + � + anSn(r) = (a1rb1 + � + anrbn) = rT(1) 
= T(r). This shows that a1S1 + � + anSn = T.

 27. (b) Write v = v1b1 + � + vnbn, vj in �. Apply Ei 
to get Ei(v) = v1Ei(b1) + � + vnEi(bn) = vi by the 
definition of the Ei.

Exercises 9.2 Operators and Similarity 
(Page 452)

 1. (b)   1 _ 2     S  -3 -2 1
 

   
   2   2 0     

  0   0 2
   T 

 4. (b) PB←D =   S  1   1 -1
 

   
 1 -1   0     

1   0   1
   T , PD←B =   1 _ 3     S     1   1 1

 
   

   1 -2 1     
-1 -1 2

  T , 
  PE←D =   S   1   0   1

 
   

 1 -1   0     
1   1 -1

  T , PE←B =   S  0 0 1
 

  
 0 1 0    

1 0 0
  T 

 5. (b) A = PD←B, where B = {(1, 2, -1), (2, 3, 0), (1, 0, 2)}. 

  Hence A-1 = PB←D =   S     6 -4 -3
 

    
 -4   3   2      

  3 -2 -1
  T 

 7. (b) P =   S     1 1 0
 

   
   0 1 2     

-1 0 1
  T   8. (b) B =  U   S   3     

7
   T ,   S   2     

5
   T  V 

 9. (b) cT(x) = x2 - 6x - 1 
(d) cT(x) = x3 + x2 - 8x - 3 (f) cT(x) = x4

 12. Define TA : �n → �n by TA(x) = Ax for all x in �n. 
If null A = null B, then ker(TA) = null A = null B = 
ker(TB) so, by Exercise 28 Section 7.3, TA = STB for 
some isomorphism S : �n → �n. If B0 is the standard 
basis of �n, we have A =  M B0

 (TA) =  M B0
 (STB) = 

 M B0
 (S) M B0

 (TB) = UB where U =  M B0
 (S) is invertible 

by Theorem 1. Conversely, if A = UB with U 
invertible, then Ax = 0 if and only Bx = 0, so null A 
= null B.

 16. (b) Showing S(w + v) = S(w) + S(v) means MB(Tw+v) 
= MB(Tw) + MB(Tv). If B = {b1, b2}, then column 
j of MB(Tw+v) is CB[(w + v)bj] = CB(wbj + vbj) = 
CB(wbj) + CB(vbj) because CB is linear. This is column 
j of MB(Tw) + MB(Tv). Similarly MB(Taw) = aMB(Tw); 
so S(aw) = aS(w). Finally TwTv = Twv so S(wv) = 
MB(TwTv) = MB(Tw)MB(Tv) = S(w)S(v) by Theorem 1.

Exercises 9.3 Invariant Subspaces and Direct 
Sums (Page 464)

 2. (b) T(U ) ⊆ U, so T [T(U )] ⊆ T(U ).
 3. (b) If v is in S(U ), write v = S(u), u in U. Then 

T(v) = T [S(u)] = (TS)(u) = (ST)(u) = S[T(u)] and this 
lies in S(U ) because T(u) lies in U (U is T-invariant).

 6. Suppose U is T-invariant for every T. If U ≠ 0, choose 
u ≠ 0 in U. Choose a basis B = {u, u2, …, un} of V 
containing u. Given any v in V, there is (by Theorem 
3 Section 7.1) a linear transformation T : V → V such 
that T(u) = v, T(u2) = � = T(un) = 0. Then v = T(u) 
lies in U because U is T-invariant. This shows that 
V = U.
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 8. (b) T(1 - 2x2) = 3 + 3x - 3x2 = 3(1 - 2x2) + 3(x + x2) 
and T(x + x2) = -(1 - 2x2), so both are in U. Hence 
U is T-invariant by Example 3. If 

  B = {1 - 2x2, x + x2, x2} then MB(T) =   S  3 -1 1
 

   
 3   0 1     

0   0 3
   T , so

  cT(x) = det   S  x - 3 1  -1 
  

      
   -3  x  -1           

   0  0 x - 3
   T  = (x - 3)det   S  x - 3 1     

-3  x
  T 

  = (x - 3)(x2 - 3x + 3)
 9. (b) Suppose �u is TA-invariant where u ≠ 0. Then 

TA(u) = ru for some r in �, so (rI - A)u = 0. But 
det(rI - A) = (r - cos θ)2 + sin2 θ ≠ 0 because 
0 < θ < π. Hence u = 0, a contradiction.

 10. (b) U = span{(1, 1, 0, 0), (0, 0, 1, 1)} and 
W = span{(1, 0, 1, 0), (0, 1, 0, -1)}, and these 
four vectors form a basis of �4. Use Example 9.

  (d) U = span U   S  1   
0

   1   
0

  T  ,   S  0   
1

   0   
1

  T  V  and 

  W = span U   S     1   
-1

   0   
0

  T  ,   S  0   
0

   1   
1

  T  V , and these vectors are a basis 

of M22. Use Example 9.
 14. The fact that U and W are subspaces is easily verified 

using the subspace test. If A lies in U ∩ V, 
then A = AE = 0; that is, U ∩ V = 0. To show that 
M22 = U + V, choose any A in M22. 
Then A = AE + (A - AE), and AE lies in U [because 
(AE)E = AE2 = AE], and A - AE lies in W 
[because (A - AE)E = AE - AE2 = 0].

 17. (b) By (a) it remains to show U + W = V; we show 
that dim(U + W) = n and invoke Theorem 2 Section 
6.4. But U + W = U ⊕ W because U ∩ W = 0, so 
dim(U + W) = dim U + dim W = n.

 18. (b) First, ker(TA) is TA-invariant. Let U = �p be 
TA-invariant. Then TA(p) is in U, say TA(p) = λp. 
Hence Ap = λp so λ is an eigenvalue of A. This means 
that λ = 0 by (a), so p is in ker(TA). Thus U ⊆ ker(TA). 
But dim[ker(TA)] ≠ 2 because TA ≠ 0, so dim[ker(TA)] 
= 1 = dim(U ). Hence U = ker(TA).

 20. Let B1 be a basis of U and extend it to a basis B 

of V. Then MB(T) =   S   M B1
 (T) Y
      

0  Z
   T , so 

cT(x) = det[xI - MB(T)] = 
det[xI - MB1

(T)]det[xI - Z] = cT1(x)q(x).
 22. (b) T 2[p(x)] = p[-(-x)] = p(x), so T 2 = 1; 

B = {1, x2; x, x3}
  (d) T 2(a, b, c) = T(-a + 2b + c, b + c, -c) = (a, b, c), 

so T 2 = 1; B = {(1, 1, 0); (1, 0, 0), (0, -1, 2)}
 23. (b) Use the Hint and Exercise 2.
 25. (b) T 2(a, b, c) = T(a + 2b, 0, 4b + c) = (a + 2b, 0, 4b + c) 

= T(a, b, c), so T 2 = T; B = {(1, 0, 0), (0, 0, 1); (2, -1, 4)}

 29. (b) Tf,z[Tf,z(v)] = Tf,z[ f (v)z] = f[ f (v)z]z = f (v){ f [z]z} 
= f (v)f (z)z. This equals Tf,z(v) = f (v)z for all v if and 
only if f (v)f (z) = f (v) for all v. Since f ≠ 0, this holds if 
and only if f (z) = 1.

 30. (b) If A = [p1 p2 � pn] where Upi = λpi for each 
i, then UA = λA. Conversely, UA = λA means that 
Up = λp for every column p of A.

Exercises 10.1 Inner Products and Norms 
(Page 475)

 1. (b) P5 fails. (d) P5 fails. (f) P5 fails.
 2. Axioms P1–P5 hold in U because they hold in V.

 3. (b)   1 ___  √ 

__
 π  
   f (d)   1 ___ 

 √ 
___

 17  
    S     3   
-1

  T 
 4. (b)  √ 

__

 3   (d)  √ 

___

 3π  

 8. P1 and P2 are clear since f (i) and g(i) are real numbers.
  P3: 〈f + g, h〉 =  ∑ 

i
   

 
  (f + g)(i) · h(i)  

=  ∑ 
i
   

 
  (f (i) + g(i)) · h(i)  

=  ∑ 
i
   

 
  [ f (i)h(i) + g(i)h(i)] 

  =  ∑ 
i
   

 
  f (i)h(i)  +  ∑ 

i
   

 
  g(i)h(i)  = 〈f, h〉 + 〈g, h〉.

  P4: 〈rf, g〉 =  ∑ 
i
   

 
  (rf)(i) · g(i)  =  ∑ 

i
   

 
  rf (i) · g(i)  

= r ∑ 
i
   

 
  f (i) · g(i)  = r〈f, g〉.

  P5: If f ≠ 0, then 〈f, f〉 =  ∑ 
i
   

 
  f (i)2  > 0 because some 

f (i) ≠ 0.
 12. (b) 〈v, v〉 = 5 v  1  

2  - 6v1v2 + 2 v  2  
2  =   1 _ 5  [(5v1 - 3v2)

2 +  v  2  
2 ] 

(d) 〈v, v〉 = 3 v  1  
2  + 8v1v2 + 6 v  2  

2  =   1 _ 3  [(3v1 + 4v2)
2 + 2 v  2  

2 ]

 13. (b)   S   1 -2     
-2   1

  T 

  (d)   S    1 0 -2
 

   
   0 2   0     

-2 0   5
  T 

 14. By the condition, 〈x, y〉 =   1 _ 2  〈x + y, x + y〉 = 0 for 
all x, y. Let ei denote column i of I. If A = [aij], then 
aij = ei

TAej = 〈ei, ej〉 = 0 for all i and j.
 16. (b) -15
 20. 1. Using P2: 〈u, v + w〉 = 〈v + w, u〉 = 〈v, u〉 + 〈w, u〉 

= 〈u, v〉 + 〈u, w〉.
  2. Using P2 and P4: 

〈v, rw〉 = 〈rw, v〉 = r〈w, v〉 = r〈v, w〉.
  3. Using P3: 〈0, v〉 = 〈0 + 0, v〉 = 〈0, v〉 + 〈0, v〉, 

so 〈0, v〉 = 0. The rest is P2.
  4. Assume that 〈v, v〉 = 0. If v ≠ 0 this contradicts P5, 

so v = 0. Conversely, if v = 0, then 〈v, v〉 = 0 by Part 
3 of this theorem.

 22. (b) 15‖u‖
2 - 17〈u, v〉 - 4‖v‖

2

  (d) ‖u + v‖
2 = 〈u + v, u + v〉 = ‖u‖

2 + 2〈u, v〉 + ‖v‖
2

 26. (b) {(1, 1, 0), (0, 2, 1)}
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 28. 〈v - w, vi〉 = 〈v, vi〉 - 〈w, vi〉 = 0 for each i, so 
v = w by Exercise 27.

 29. (b) If u = (cos θ, sin θ) in �2 (with the dot product) 
then ‖u‖ = 1. Use (a) with v = (x, y).

Exercises 10.2 Orthogonal Sets of Vectors 
(Page 484)

 1. (b)   1 __ 14   e(6a + 2b + 6c)  S  1 
 

 1   
1

  T  + (7c - 7a)  S  -1
 

 
   0   

  1
   T  + 

  (a - 2b + c)  S     1
 

 
 -6   

  1
   T  f

  (d)  Q   a + d
 _____ 

2
   R    S  1 0    

0 1
  T  +  Q   a - d _____ 

2
   R    S   1   0    

0 -1
  T  +  Q   b + c

 _____ 
2

   R    S  0 1    
1 0

  T  
  +  Q   b - c _____ 

2
   R    S   0 1    

-1 0
  T 

 2. (b) {(1, 1, 1), (1, -5, 1), (3, 0, -2)}

 3. (b)  U   S  1 1    
0 1

  T ,   S  1 -2    
3   1

  T ,   S   1 -2     
-2   1

  T ,   S   1   0    
0 -1

  T  V 
 4. (b) {1, x - 1, x2 - 2x +   2 _ 3  }
 6. (b) U⊥ = span{[1 -1 0 0], [0 0 1 0], [0 0 0 1]}, 

dim U⊥ = 3, dim U = 1
  (d) U⊥ = span{2 - 3x, 1 - 2x2}, dim U⊥ = 2, 

dim U = 1 

  (f) U⊥ = span U   S   1 -1     
-1   0

  T  V , dim U⊥ = 1, dim U = 3

 7. (b) U = span  U   S  1 0    
0 1

  T ,   S   1   1    
1 -1

  T ,   S   0 1    
-1 0

  T  V ; 
projU(A) =   S  3 0    

2 1
  T 

 8. (b) U = span{1, 5 -3x2}; projU(x) =   3 __ 13  (1 + 2x2)
 9. (b) B = {1, 2x - 1} is an orthogonal basis of U because  

∫0  
1 (2x - 1) dx  = 0. Using it, we get projU(x2 + 1) = 

x +   5 _ 6  , so x2 + 1 = (x +   5 _ 6  ) + (x2 - x +   1 _ 6  ).
 11. (b) This follows from 〈v + w, v - w〉 = ‖v‖

2 - ‖w‖
2.

 14. (b) U⊥ ⊆ {u1, …, um}⊥ because each ui is in U. 
Conversely, if 〈v, ui〉 = 0 for each i, and 
u = r1u1 + � + rmum is any vector in U, then 
〈v, u〉 = r1〈v, u1〉 + � + rm〈v, um〉 = 0.

 18. (b) projU(-5, 4, -3) = (-5, 4, -3); 
projU(-1, 0, 2) =   1 __ 38  (-17, 24, 73)

 19. (b) The plane is U = {x | x · n = 0} so 
  span  Un × w, w -   n · w _____ 

‖n‖
2

  n V  ⊆ U. This is equality 

  because both spaces have dimension 2 (using (a)).
 20. (b) CE(bi) is column i of P. Since CE(bi) · CE(bj) = 

〈bi, bj〉 by (a), the result follows.
 23. (b) If U = span{ f1, f2, …, fm}, then projU(v) =  

∑ 
i=1

   
m

    
〈v1, fi〉

 ______ 

‖fi‖
2
   fi  by Theorem 7. Hence ‖projU(v)‖2 

=  ∑ 
i=1

   
m

    
〈v1, fi〉

2

 _______ 

‖fi‖
2
    by Pythagoras’ theorem. Now use (a).

Exercises 10.3 Orthogonal Diagonalization 
(Page 491)

 1. (b) B =  U   S  1 0    
0 0

  T ,   S  0 1    
0 0

  T ,   S  0 0    
1 0

  T ,   S  0 0    
0 1

  T  V ; 

  MB(T) =   S  
-1   0 1 0

  
    

    0 -1 0 1        
  1   0 2 0

  
    

  

  0   1 0 2

   T 
 4. (b) 〈v, (rT)(w)〉 = 〈v, rT(w)〉 = r〈v, T(w)〉 = 

r〈T(v), w〉 = 〈rT(v), w〉 = 〈(rT)(v), w〉

  (d) Given v and w, write T -1(v) = v1 and 
T -1(w) = w1. Then 〈T -1

(v), w〉 = 〈v1, T(w1)〉 = 
〈T(v1), w1〉 = 〈v, T -1

(w)〉.
 5. (b) If B0 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, then 

   M B0
 (T) =   S     7 -1 0

 
   

 -1   7 0     
  0   0 2

   T  has an orthonormal basis of

  eigenvectors  U   1 __ 
 √ 

__

 2  
    S  1 
 

 1   
0

  T  ,   1 __ 
 √ 

__

 2  
    S     1

 
 

 -1   
  0

   T  ,   S  0 
 

 0   
1

  T  V . Hence an 

  orthonormal basis of eigenvectors of T is 
   U   1 __ 

 √ 

__

 2  
  (1, 1, 0),   1 __ 

 √ 

__

 2  
  (1, -1, 0), (0, 0, 1) V .

  (d) If B0 = {1, x, x2}, then  M B0
 (T) =   S  -1 0   1

 
   

   0 3   0     
  1 0 -1

  T  has an 

  orthonormal basis of eigenvectors  U   S  0 
 

 1   
0

  T  ,   1 __ 
 √ 

__

 2  
    S  1 
 

 0   
1

  T  ,   1 __ 
 √ 

__

 2  
    S     1

 
 

   0   
-1

  T   V . 
  Hence an orthonormal basis of eigenvectors of T is  

Ux,   1 __ 
 √ 

__

 2  
  (1 + x2),   1 __ 

 √ 

__

 2  
  (1 - x2) V .

 7. (b) MB(T) =   S   A 0         
0 A

   T , so 

  cT(x) = det   S   xI2 - A   0                                 0    xI2 - A   T  = [cA(x)]2.

 12. (1)⇒(2). If B = {f1, …, fn} is an orthonormal basis 
of V, then MB(T) = [aij] where aij = 〈fi, T(fj)〉 by 
Theorem 2. If (1) holds, then aji = 〈fj, T(fi)〉 = 
-〈T(fj), fi)〉 = -〈fi, T(fj)〉 = -aij. Hence 
[MV(T)]T = -MV(T), proving (2).

 14. (c) The coefficients in the definition of 

T ′(fj) =  ∑ 
i=1

   
n

  〈fj, T(fi)〉 fi are the entries in the jth column 

CB[T ′(fj)] of MB(T ′ ). Hence MB(T ′ ) = [〈fj, T(fj)〉], and 
this is the transpose of MB(T) by Theorem 2.

Exercises 10.4 Isometries (Page 504)

 2. (b) Rotation through π (d) Reflection in the line y = -x 
(f) Rotation through   π __ 4  

 3. (b) cT(x) = (x - 1)(x2 +   3 _ 2  x + 1). If e = [1  √ 

__

 3    √ 

__

 3  ]T, 
then T is a rotation about �e.

  (d) cT(x) = (x + 1)(x + 1)2. Rotation (of π) about the x axis.
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  (f) cT(x) = (x + 1)(x2 -  √ 

__

 2  x + 1). Rotation (of -  π 
__ 4  ) 

about the y axis followed by a reflection in the x-z plane.
 6. If ‖v‖ = ‖(aT)(v)‖ = |a|‖T(v)‖ = |a|‖v‖ for some 

v ≠ 0, then |a| = 1 so a = ±1.
 12. (b) Assume that S = Su ◦ T, u ∈ V, T an isometry 

of V. Since T is onto (by Theorem 2), let u = T(w) 
where w ∈ V. Then for any v ∈ V, we have (T ◦ Sw)
(v) = T(w + v) = T(w) + T(w) = ST(w)(T(v)) = 
(ST(w) ◦T)(v), and it follows that T ◦ Sw = ST(w) ◦ T.

Exercises 10.5 An Application to Fourier 
Approximation (Page 509)

 1. (b)   π __ 
2

   -   4 __ 
π

     Scos x +   cos 3x ______ 
32

   +   cos 5x ______ 
52

   T 
  (d)   π __ 

4
   +   Ssin x -   sin 2x ______ 

2
   +   sin 3x ______ 

3
   -   sin 4x ______ 

4
   +   sin 5x ______ 

5
    T  

-   2 __ 
π

    Scos x +   cos 3x ______ 
32

   +   cos 5x ______ 
52

   T 
 2. (b)   2 __ 

π
   -   8 __ 

π
     S   cos 2x ______ 

22 - 1
   +   cos 4x ______ 

42 - 1
   +   cos 6x ______ 

62 - 1
   T 

 4. ∫cos kx cos lx dx =   1 _ 2      S   sin[(k + l)x]
  ___________ 

k + l
   -   

sin[(k - l)x]
  ___________ 

k - l
   T   

0
  

π

  = 

0 provided that k ≠ l.

Exercises 11.1 Block Triangular Form (Page 517)

 1. (b) cA(x) = (x + 1)3; P =   S   1   0 0
 

   
 1   1 0     

1 -3 1
  T ; 

  P-1AP =   S  -1   0   1
 

    
   0 -1   0      

  0   0 -1
  T 

  (d) cA(x) = (x - 1)2(x + 2); P =   S  -1 0 -1
 

   
   4 1   1     

  4 2   1
   T ; 

  P-1AP =   S   1 1   0
 

   
 0 1   0     

0 0 -2
  T 

  (f) cA(x) = (x + 1)2(x -1)2; P =   S   1 1 5   1
 

    
 0 0 2 -1      

0 1 2   0
 

    
 

1 0 1   1

   T ; 
  P-1AP =   S  

-1   1 0   0
  

     
    0 -1 1   0         

  0   0 1 -2
  

     
  

  0   0 0   1

   T 
 4. If B is any ordered basis of V, write A = MB(T). Then 

cT(x) = cA(x) = a0 + a1x + � + anx
n for scalars ai in 

�. Since MB is linear and MB(Tk) = MB(T)k, we have 
MB[cT(T)] = MV[a0 + a1T + � + anT

n] = 
a0I + a1A + � + anA

n = cA(A) = 0 by the 
Cayley-Hamilton theorem. Hence cT(T) = 0 because 
MB is one-to-one.

Exercises 11.2 The Jordan Canonical Form 
(Page 522)

 2.   S  a 1 0
 

  
 0 a 0    

0 0 b

   T    S  0 1 0
 

  
 0 0 1    

1 0 0
  T  =   S   0 1 0

 
  

 0 0 1    
1 0 0

  T    S  a 0 0
 

  
 0 a 1    

0 0 a

  T 
Appendix A Complex Numbers (Page 533)

 1. (b) x = 3 (d) x = ±1
 2. (b) 10 + i (d)   11 __ 26   +   23 __ 26  i 
  (f) 2 - 11i (h) 8 - 6i

 3. (b)   11 __ 5   +   3 _ 5  i (d) ±(2 - i) (f) 1 + i

 4. (b)   1 _ 2   ±    √ 

__

 3  
 __ 2  i (d) 2,   1 _ 2  

 5. (b) -2, 1 ±  √ 

__

 3  i 
  (d) ±2 √ 

__

 2  , ±2 √ 

__

 2  i
 6. (b) x2 - 4x + 13; 2 + 3i 
  (d) x2 - 6x + 25; 3 + 4i

 8. x4 - 10x3 + 42x2 - 82x + 65
 10. (b) (-2)2 + 2i - (4 - 2i) = 0; 2 - i
  (d) (-2 + i)2 + 3(1 - i)(-1 + 2i) - 5i = 0; -1 + 2i

 11. (b) -i, 1 + i 
  (d) 2 - i, 1 - 2i

 12. (b) Circle, centre at 1, radius 2 
  (d) Imaginary axis 

(f) Line y = mx

 18. (b) 4e-πi/2 (d) 8e2πi/3 (f) 6 √ 

__

 2  e3πi/4

 19. (b)   1 _ 2   +    √ 

__

 3  
 __ 2  i (d) 1 - i (f)  √ 

__

 3   - 3i

 20. (b) -  1 __ 32   +    √ 

__

 3  
 __ 32  i (d) -32i (f) -216(1 + i)

 23. (b) ±  
 √ 

__

 2  
 __ 2  ( √ 

__

 3   + i), ±  
 √ 

__

 2  
 __ 2  (-1 +  √ 

__

 3  i) 
(d) ±2i, ±( √ 

__

 3   + i), ±( √ 

__

 3   - i)

 26. (b) The argument in (a) applies using β =   2π
 __ n  . 

Then 1 + z + � + zn - 1 =   1 - zn

 ______ 
1 - z

   = 0.

Appendix B Proofs (Page 540)

 1. (b) If m = 2p and n = 2q + 1 where p and q 
are integers, then m + n = 2(p + q) + 1 is odd. 
The converse is false: m = 1 and n = 2 is a 
counterexample. 

  (d) x2 - 5x + 6 = (x - 2)(x - 3) so, if this is zero, 
then x = 2 or x = 3. The converse is true: each of 2 
and 3 satisfies x2 - 5x + 6 = 0.

 2. (b) This implication is true. If n = 2t + 1 where t is an 
integer, then n2 = 4t2 + 4t + 1 = 4t(t + 1) + 1. Now 
t is either even or odd, say t = 2m or t = 2m + 1. If 
t = 2m, then n2 = 8m(2m + 1) + 1; if t = 2m + 1, 
then n2 = 8(2m + 1)(m + 1) + 1. Either way, n2 has 
the form n2 = 8k + 1 for some integer k.
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 3. (b) Assume that the statement “one of m and n is 
greater than 12” is false. Then both n ≤ 12 and 
m ≤ 12, so n + m ≤ 24, contradicting the hypothesis 
that n + m = 25. This proves the implication. 
The converse is false: n = 13 and m = 13 is a 
counterexample. 

  (d) Assume that the statement “m is even or n is even” 
is false. Then both m and n are odd, so mn is odd, 
contradicting the hypothesis. The converse is true: If 
m or n is even, then mn is even.

 4. (b) If x is irrational and y is rational, assume that x + y 
is rational. Then x = (x + y) - y is the difference 
of two rationals, and so is rational, contrary to the 
hypothesis.

 5. (b) n = 10 is a counterexample because 103 = 1000 
while 210 = 1024, so the statement n3 ≥ 2n is false if 
n = 10. Note that n3 ≥ 2n does hold for 2 ≤ n ≤ 9.

Appendix C Mathematical Induction (Page 545)

 6.   n _____ 
n + 1

   +   1 _____________  
(n + 1)(n + 2)

   =   
n(n + 2) + 1

  _____________  
(n + 1)(n + 2)

   

    =   
(n + 1)2

 _____________  
(n + 1)(n + 2)

   =   
n + 1 _____ 
n + 2

  

 14. 2 √ 

__
 n   - 1 +   1 _______ 

 √ 
_____

 n + 1  
   =   2 √ 

______

 n2 + n   + 1  ____________ 
 √ 

_____

 n + 1  
   - 1 

    <   
2(n + 1)

 ________ 
 √ 

_____

 n + 1  
   - 1 = 2 √ 

_____

 n + 1   - 1

 18. If n3 – n = 3k, then 
(n + 1)3 – (n + 1) = 3k + 3n2 + 3n = 3(k + n2 + n)

 20. Bn = (n + 1)! - 1
 22. (b) Verify each of S1, S2, …, S8.
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A
A-invariance, 154–156
absolute value

complex number, 358n, 525, 526
notation, 97n
real number, 185n
symmetric matrices, 270n
triangle inequality, 473–474

abstract vector space, 288
action

same action, 52, 291, 334
transformations, 52, 436, 438–439

addition
see also sum
closed under, 43, 289
closed under addition, 229
complex number, 523–524
matrix addition, 34–36
pointwise addition, 291, 292
transformations, preserving 

addition, 91
vector addition, 289, 526

adjacency matrix, 66
adjugate, 71, 140–142
adjugate formula, 142
adult survival rate, 150
aerodynamics, 433
The Algebraic Eigenvalue Problem 

(Wilkinson), 395
algebraic method, 4, 9
algebraic multiplicity, 267n
algebraic sum, 28
altitude, 228
analytic geometry, 42
angles

angle between two vectors, 199, 
476

radian measure, 53n, 97, 527
standard position, 97, 527
unit circle, 97, 527

approximation theorem, 482–483, 
506–507

Archimedes, 10n
area

linear transformations of, 223–224
parallelogram, equal to zero, 

215–216
argument, 527
arrows, 184
associated homogeneous system, 47
associative law, 34, 62
attractor, 164
augmented matrix, 3, 4–5, 12, 13
auxiliary theorems, 84n
axiomatic method, 539–540

axioms, 540
axis, 184, 502

B
B-matrix, 445–452
back substitution, 13, 103
balanced reaction, 29
ball, 413
Banach, Stephan, 288
bases, 241n

see also basis
basic eigenvectors, 153
basic solutions, 22, 23
basis

choice of basis, 436, 441–442, 450
dual basis, 445
enlarging subset to, 242
geometric problem of finding, 

448, 449, 510
independent set, 369
isomorphisms, 348
linear operators, and choice of 

basis, 450
matrix of T corresponding to the 

ordered bases B and D, 438
ordered basis, 436, 438
orthogonal basis, 249n, 251–252, 

369, 479–480
orthonormal basis, 480, 488
standard basis, 93, 233, 241, 242, 

250, 307, 397
of subspace, 241
vector spaces, 306

Bessel’s inequality, 485
best approximation, 273–275
best approximation theorem, 

273–274
bilinear form, 431
binary codes, 412
Binet formula, 171–172
binomial coefficients, 324
binomial theorem, 324
block matrix, 134–135
block multiplication, 64–65
block triangular form, 511–517
block triangular matrix, 455–456
block triangulation theorem, 511
blocks, 64
boundary condition, 174, 326–327
Brown, J.W., 508n
Bruen, A.A., 419n

C
Calcolo Geometrico (Peano), 288

cancellation, 292, 293–294
cancellation laws, 74
canonical forms

block triangular form, 511–517
Jordan canonical form, 518–522
m × n matrix, 518

Cartesian coordinates, 184
cartesian geometry, 184
category, 351n
Cauchy, Augustin Louis, 137, 248f, 

248n, 270n
Cauchy inequality, 248, 285
Cauchy-Schwarz inequality, 213, 473
Cayley, Arthur, 32, 32f, 32n, 126, 

405n
Cayley-Hamilton theorem, 160, 

405–406, 515
centred, 283
centroid, 198
change matrix, 446
channel, 412
characteristic polynomial

block triangular matrix, 455–456
complex matrix, 400
diagonalizable matrix, 264
eigenvalues, 152
root of, 152, 325, 326
similarity invariant, 451
square matrix, 152, 405

chemical reactions, 29–30
choice of basis, 436, 441–442, 450
Cholesky, Andre-Louis, 387n
Cholesky algorithm, 388
Cholesky factorization, 387
Churchill, R.V., 508n
circuit rule, 28
classical adjoint, 140n
closed economy, 113
closed under addition, 43, 229, 289
closed under scalar multiplication, 

43, 229, 289
code

binary codes, 412
decoding, 418
defined, 412
error correcting codes, 412–414
Hamming (7,4)-code, 420
linear codes, 414–416
matrix generators, 416–417
minimum distance, 413
n-code, 412
(n, k)-code, 414
nearest neighbour decoding, 413
orthogonal codes, 419–420
parity-check code, 415

parity-check matrices, 417–419
perfect, 414
syndrome decoding, 419
use of, 408

code words, 412, 413, 416, 420
coding theory, 412
coefficient matrix, 3, 143
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quadratic forms, 381, 422–430
real spectral theorem, 378
statistical principal component 

analysis, 434–435
triangulation theorem, 382

orthogonally diagonalizable, 377
orthogonally similar, 383
orthonormal basis, 480, 488
orthonormal matrix, 376n
orthonormal set, 401, 477
orthonormal vector, 249

P
PageRank, 165–166, 166n
paired samples, 284
parabola, 425
parallel, 191
parallelepiped, 216, 223–224
parallelogram

area equal to zero, 215–216
defined, 97, 187n
determined by geometric vectors, 

187
image, 223
law, 97, 187–191, 526
rhombus, 202

parameters, 2, 12
parametric equations of a line, 192
parametric form, 2
parity-check code, 415
parity-check matrixes, 417–419
parity digits, 417
Parseval’s formula, 485
particle physics, 433
partitioned into blocks, 64
path of length, 66
Peano, Giuseppe, 288
Pearson, Karl, 284n
Pearson correlation coefficient, 284n
perfect code, 414
period, 329
permutation matrix, 107–110, 384, 

453

perpendicular lines, 198–202
physical dynamics, 405n
pigeonhole principle, 538
Pisano, Leonardo, 171
planes, 204–206, 230
Pless, V., 419n
PLU-factorization, 108
point-slope formula, 194
pointwise addition, 291, 292
polar form, 527–529
polynomials

associated with the linear 
recurrence, 363

characteristic polynomial. See 
characteristic polynomial

coefficients, 279–280, 290, 545
companion matrix, 137
complex roots, 155, 401, 549
constant, 546
defined, 145n, 290, 545
degree of the polynomial, 145n, 

290, 546
distinct degrees, 304
division algorithm, 548
equal, 291, 546
evaluation, 160, 298
even, 311
factor theorem, 548
form, 546
indeterminate, 546
interpolating the polynomial, 

144–147
Lagrange polynomials, 323, 479
leading coefficient, 145n, 290, 546
least squares approximating 

polynomials, 277–279
Legendre polynomials, 480
as matrix entries, and 

determinants, 132
with no root, 548, 549
nonconstant polynomial with 

complex coefficients, 269
odd, 311
remainder theorem, 547
root, 155, 298, 393, 523
root of characteristic polynomial, 

152, 325
Taylor’s theorem, 321–322, 321n
vector space of, 290
vector spaces, 320–323
zero polynomial, 290, 546

position vector, 187
positive correlation, 284
positive definite, 385, 431
positive definite matrix, 385–389, 

470
positive semidefinite, 435
positive x-shear, 54
power method, 393–394
power sequences, 361
practical problems, 1
preimage, 337
prime, 410, 538
principal argument, 527
principal axes, 378, 381–382, 423
principal axis theorem, 377–378, 

401, 404, 432, 490
principal components, 435
principal submatrices, 386
probabilities, 117
probability law, 434
probability theory, 435
product

complex number, 526
cross product. See cross product
determinant of product of 

matrices, 137–138
dot product. See dot product
inner product. See inner product

580 Index



matrix products, 59–62
matrix-vector products, 44
scalar product. See scalar product
standard inner product, 397–399
theorem, 138, 147

product rule, 358
projection

linear operator, 493
linear operators, 220–222
orthogonal projection, 372–374, 

482
projection matrix, 56, 374, 384
projection on U with kernel W, 481
projection theorem, 273, 372–373, 

482
projections, 100, 202–204, 370–374
proof

by contradiction, 538–540
defined, 536
direct proof, 536–537
formal proofs, 537
reduction to cases, 537–538

proper subspace, 229, 243
pure imaginary numbers, 523
Pythagoras, 194, 537
Pythagoras’ theorem, 185, 185n, 

194–195, 200, 250, 477, 537

Q
QR-algorithm, 395–396
QR-factorization, 390–392
quadratic equation, 431
quadratic form, 381, 422–430, 471
quadratic formula, 531
quotient, 408

R
r-ball, 413
radian measure, 53n, 97, 527
random variable, 434, 435
range, 338
rank

linear transformation, 339, 441
matrix, 14–16, 253–260, 339, 428
quadratic form, 428
similarity invariant, 450
symmetry matrix, 428
theorem, 255–258, 259

rational numbers, 289n
Raum-Zeit-Materie (“Space-Time-

Matter”) (Weyl), 288
Rayleigh quotients, 394
real axis, 526
real Jordan canonical form, 520
real numbers, 1, 42, 289n, 291, 397, 

401, 409, 523
real parts, 357, 523
real quadratic, 531
real spectral theorem, 378
recurrence, 169
recursive algorithm, 10
recursive sequence, 169
reduced row-echelon form, 9, 10, 12, 

14, 88–89
reduced row-echelon matrix, 9, 13
reducible, 462
reduction to cases, 537–538
reflections

about a line through the origin, 
140

fixed hyperplane, 504
fixed line, 498
fixed plane, 501
isometries, 497–498
linear operators, 220–222
linear transformations, 99–100

regular representation, 453

regular stochastic matrix, 122
remainder, 408
remainder theorem, 321, 547
repellor, 165
reproduction rate, 150
restriction, 455
reversed, 6
rhombus, 202
right cancelled invertible matrix, 74
right-hand coordinate systems, 217
right-hand rule, 217
root

of characteristics polynomial, 152, 
325, 326

of polynomials, 155, 298, 393, 523
of the quadratic, 531

roots of unity, 530–531
rotations

about a line through the origin, 
451

about the origin, and orthogonal 
matrices, 140

axis, 502
describing rotations, 97
fixed axis, 504
isometries, 497–498, 501–502, 504
linear operators, 222–223
linear transformations, 97–98

round-off error, 153n
row-echelon form, 9
row-echelon matrix, 9, 10, 13, 254
row-equivalent matrices, 90
row matrix, 32
row space, 253
rows

convention, 32
elementary row operations, 5–7
(i, j)-entry, 33
leading 1, 9
as notations for ordered n-tuples, 

239n
shape of matrix, 32
Smith normal form, 87–88
zero rows, 9

S
saddle point, 165
same action, 52, 291, 334
sample

analysis of, 282
comparison of two samples, 

283–284
defined, 282
paired samples, 284

sample correlation coefficient, 
284–285

sample mean, 283
sample standard deviation, 283, 283n
sample variance, 283
sample vector, 282
satisfy the relation, 361
scalar, 36, 289, 289n, 409
scalar equation of a plane, 204
scalar matrix, 125
scalar multiple law, 97, 189, 191
scalar multiples, 20, 36, 96
scalar multiplication

axioms, 289, 292n
basic properties, 293–294
closed under, 43
closed under scalar multiplication, 

229
described, 36–38
distributive laws, 37
of functions, 292
geometric vectors, 189–191
geometrical description, 96
transformations, preserving scalar 

multiplication, 91
vectors, 289

scalar operator, 332
scalar product

defined, 198
elementary row operations, 20
geometric vectors, 186

scatter diagram, 284
Schmidt, Erhardt, 369n
Schur, Issai, 403, 403n
Schur’s theorem, 403–404, 405
Schwarz, Hermann Amandus, 473n
second-order differential equation, 

325, 357
Seneta, E., 114n
sequences

of column vectors, 151
constant sequences, 361
equal, 361
Fibonacci sequence, 171, 171n
linear recurrences, 168–172
notation, 360–361
ordered sequence of real numbers, 

42
power sequences, 361
recursive sequence, 169
satisfy the relation, 361

set, 229n
set notation, 230n
set of all ordered n-tuples (�n)

closed under addition and scalar 
multiplication, 43

complex eigenvalues, 269
dimension, 240–244
dot product, 246–249, 397
expansion theorem, 251–252
as inner product space, 468
linear independence, 236–240
linear operators, 219–224
n-tuples, 253, 289n
notation, 42
orthogonal sets, 249–252
projection on, 374
rank of a matrix, 253–260
rules of matrix arithmetic, 289
similar matrices, 262–264
spanning sets, 231–234
special types of matrices, 289
standard basis, 93
subspaces, 231–234, 290
symmetric matrix, 270–271

Shannon, Claude, 412
shift operator, 364–367
shifting, 396
sign, 127
similar matrices, 262–264
similarity invariant, 450
simple harmonic motions, 328
simplex algorithm, 16, 434
sine, 97, 219, 527
single vector equation, 43
size m × n matrix, 32
skew-hermitian, 407
skew-symmetric, 42, 459, 492
Smith, Henry John Stephen, 87n
Smith normal form, 87–88
Snell, J., 122n
Solow, D., 536n
solution

algebraic method, 4, 9
basic solutions, 22, 23
best approximation to, 273–277
consistent system, 2, 15
general solution, 2, 13
geometric description, 3
inconsistent system, 2
to linear equation, 1–3
nontrivial solution, 18, 152
in parametric form, 2

solution to a system, 1–3, 13
trivial solution, 18

solution to a system, 1
span, 232, 299
spanning sets, 231–234, 299–301
spectral theorem, 40
spectrum, 378
sphere, 433
spring constant, 329
square matrix (n × n matrix)

characteristic polynomial, 152, 
405

cofactor matrix, 140
complex matrix. See complex 

matrix
defined, 33
determinants, 51, 126, 139
diagonal matrices, 69, 151, 156
diagonalizable matrix, 156, 448
diagonalizing matrix, 151
elementary matrix, 83–89
hermitian matrix, 400–402
idempotent, 69
identity matrix, 46, 50–51
invariants, 154–156
inverse. See inverses
lower triangular matrix, 134
matrix of an operator, 448
nilpotent matrix, 167
orthogonal matrix, 140
positive definite matrix, 385–389, 

470
regular representation of complex 

numbers, 453
scalar matrix, 125
similarity invariant, 450
skew-symmetric, 42
trace, 69, 263
triangular matrix, 134
unitary matrix, 402
upper triangular matrix, 134

staircase form, 9
standard basis, 93, 233, 241, 242, 

250, 307, 397
standard deviation, 434
standard generator, 417
standard inner product, 397–399
standard matrix, 445
standard position, 97, 188, 527
state vector, 118, 119–123
statistical principal component 

analysis, 434–435
steady-state vector, 122
Steinitz Exchange Lemma, 306
Stewart, G.W., 395
stochastic matrices, 113, 119, 122
structure theorem, 499–501
submatrix, 261
subset, 229n
subspace test, 297
subspaces

basis, 241
closed under addition, 229
closed under scalar multiplication, 

229
complex subspace, 406
defined, 229, 296
dimension, 240–244
eigenspace, 267
fundamental theorem, 240
image, 337, 338–339
intersection, 235, 317–318
invariance theorem, 241
invariant subspaces, 454–464
kernel, 338–339
m × n matrix, 230–231
planes and lines through the 

origin, 230
projection, 371–372
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proper subspace, 229, 243
spanning set, 231–234
subspace test, 297
sum, 235, 317–318
vector spaces, 296–299
zero subspace, 229, 297

subtraction
complex number, 523–524
matrix, 35
vector, 188, 293

sum
see also addition
algebraic sum, 28
complex number, 526
direct sum, 318, 459–464, 467
elementary row operations, 20
geometric vectors, 188
geometrical description, 96
matrices of the same size, 34
matrix addition, 34–36
of product of matrix entries, 132
of scalar multiples, 20
subspaces, 235, 317–318
subspaces of a vector space, 

317–318
of two vectors, 293
variances of set of random 

variables, 435
of vectors in two subspaces, 459

summation notation, 179, 179n
Sylvester’s law of inertia, 428
symmetric bilinear form, 431
symmetric form, 196, 422, 431
symmetric linear operator, 489
symmetric matrix

absolute value, 270n
congruence, 427–430
defined, 40
index, 428
orthogonal eigenvectors, 377–381
positive definite, 385–389
rank and index, 428
real eigenvalues, 270–271

syndrome, 419
syndrome decoding, 419
system of first order differential 

equations. See differential 
equations

system of linear equations
algebraic method, 4
associated homogeneous system, 

47
augmented matrix, 3
chemical reactions, application 

to, 29–30
coefficient matrix, 3
consistent system, 2, 15
constant matrix, 3
defined, 1
electrical networks, application 

to, 27–28
elementary operations, 4–7
equivalent systems, 4
gaussian elimination, 13, 14–16
general solution, 2
homogeneous equations, 18–23
inconsistent system, 2
infinitely many solutions, 3, 3f
inverses and, 72
with m × n coefficient matrix, 

44–45
matrix algebra. See matrix algebra
matrix multiplication, 61–62
network flow application, 25–26
no solution, 2, 3f
nontrivial solution, 18–19
normal equations, 273
positive integers, 30
rank of a matrix, 14–16

solutions, 1–3, 13
trivial solution, 18
unique solution, 3, 3f

systematic generator, 417

T
T-invariant, 454
tail, 186
Taylor’s theorem, 321–322, 321n, 

447n
tetrahedron, 198
theorems, 540
theory of Hilbert spaces, 369n
third-order differential equation, 

325, 357
Thompson, G., 122n
3-dimensional space, 51, 184
time, functions of, 151n
tip, 186
tip-to-tail rule, 187
total variance, 435
trace, 69, 166, 263, 332, 450
trajectory, 164
transformations

see also linear transformations
action, 52, 436, 438–439
composite, 57, 95
defining, 52
described, 32, 52
equal, 52
identity transformation, 53, 101
matrix transformation, 53, 426
zero transformation, 53, 102

transition matrix, 118, 119
transition probabilities, 117, 119
translation, 54, 336, 493
transpose of a matrix, 38–40
transposition, 38–39, 332
triangle

altitude, 228
centroid, 198
hypotenuse, 537
inequality, 213, 249, 473–474, 525
median, 198
orthocentre, 228

triangle inequality, 213, 249, 
473–474, 525

triangular matrices, 103–104, 111, 
134

triangulation algorithm, 513
triangulation theorem, 382
trigonometric functions, 97
trivial linear combinations, 236, 303
trivial solution, 18

U
uncorrelated, 435
unit ball, 433, 472
unit circle, 97, 472, 527
unit cube, 224
unit square, 224
unit triangular, 111
unit vector, 189, 246, 398–399, 472
unitarily diagonalizable, 403
unitary matrix, 402
upper Hessenberg form, 396
upper triangular matrix, 103, 134, 

403

V
Vandermonde determinant, 146
Vandermonde matrix, 133, 364
variance, 282–286, 434
variance formula, 286
variation, 434
vector addition, 289, 526

vector equation of a line, 192
vector equation of a plane, 205
vector geometry

angle between two vectors, 200
computer graphics, 225–227
cross product, 206–209
defined, 184
direction vector, 191–192
geometric vectors. See geometric 

vectors
line perpendicular to plane, 

198–202
linear operators, 219–224
lines in space, 191–194
planes, 204–206
projections, 202–204
symmetric form, 197
vector equation of a line, 192

vector product, 207
see also cross product

vector quantities, 186n
vector spaces

abstract vector space, 288
axioms, 289, 292, 294
basic properties, 288–295
basis, 306
cancellation, 292
as category, 351n
continuous functions, 469
defined, 289
differential equations, 325–329
dimension, 307–308
direct sum, 459–460
examples, 288–295
finite dimensional spaces, 311–318
infinite dimensional, 312
introduction of concept, 288
isomorphic, 347–348
linear independence, 303–308
linear recurrences, 360–367
linear transformations, 331
polynomials, 290–291, 320–323
scalar multiplication, basic 

properties of, 293–294
set of all ordered n-tuples (�n). 

See set of all ordered n-tuples 
(�n)

spanning sets, 299–301
subspaces, 296–299, 317–318
theory of vector spaces, 292–293
3-dimensional space, 184
zero vector space, 295

vectors
addition, 289
arrow representation, 51n
column vectors, 151
complex matrices, 397
coordinate vectors, 189, 207, 224, 

233, 437
defined, 42, 288, 397
difference of, 293
direction of, 185
direction vector, 191–194
fixed vectors, 505
geometric vectors. See geometric 

vectors; vector geometry
initial state vector, 119
intrinsic descriptions, 186
length, 184–185, 246, 398
matrix recurrence, 151
matrix-vector multiplication, 

43–48
matrix-vector products, 44
negative, 43, 289
nonzero vectors, 191, 231n, 248, 

249n
orthogonal vectors, 201, 202, 249, 

401–402, 477
orthonormal vector, 249, 401

position vector, 201
sample vector, 282
scalar multiplication, 289
set of all ordered n-tuples (�n). 

See set of all ordered n-tuples 
(�n)

single vector equation, 43
state vector, 118, 119–123
steady-state vector, 122
subtraction, 293
sum of two vectors, 289
unit vector, 189, 246, 398–399
zero n-vector, 43
zero vector, 46, 189n, 229, 236, 

289
velocity, 186n
vertices, 66
vibrations, 433
volume

linear transformations of, 223–224
of parallelepiped, 216, 223–224

W
Weyl, Hermann, 288
whole number, 536n
Wilf, Herbert S., 166n
Wilkinson, J.M., 395
words, 412
wronskian, 330
Wu, N., 434n

X
x-axis, 184
x-compression, 53
x-expansion, 53
x-shear, 54

Y
y-axis, 184
y-compression, 53
y-expansion, 53

Z
z-axis, 184
zero matrix

described, 34
no inverse, 70
scalar multiplication, 36

zero n-vector, 43
zero polynomial, 290, 546
zero rows, 9
zero subspace, 229, 297
zero transformation, 53, 102, 332
zero vector, 46, 189n, 229, 236, 289
zero vector space, 295
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