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Preface to the second edition

Since the publication of the first edition six years ago several readers com-
mented on the book and recommended improvements in a future edition.
Academic readers requested expanding the mathematical foundation with a
chapter dedicated to analytic solutions. Industrial readers desired a deeper
exploration of the variational foundation of equations of motion for various
engineering disciplines. Finally some reviewers suggested expanding the com-
putational techniques section.

The modifications to the second edition reflect these requests. The major
additions are in two new chapters (6 and 10) and two new Sections (7.5 and
12.5). Chapter 6 discusses a variety of analytic solutions to problems of cal-
culus of variations and Chapter 10 derives various equations of motion from
variational principles. Section 7.5 describes the boundary integral method
and Section 12.5 contains a detailed description of the finite element method.

The typographical errors found in the first edition have been corrected and
a strong effort was made to avoid introducing any in the new material. The
new chapters and sections were indexed and more references were added to
make this work as complete as possible.
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Preface to the first edition

The topic of this book has a long history. Its fundamentals were laid down
by icons of mathematics like Euler and Lagrange. It was once heralded as
the panacea for all engineering optimization problems by suggesting that all
one needs to do was to apply the Euler-Lagrange equation form and solve the
resulting differential equation.

This, as most all encompassing solutions, turned out to be not always true
and the resulting differential equations are not necessarily easy to solve. On
the other hand, many of the differential equations commonly used by engi-
neers today are derived from a variational problem. Hence, it is important
and useful for engineers to delve into this topic.

The book is organized into two parts: theoretical foundation and engineer-
ing applications. The first part starts with the statement of the fundamental
variational problem and its solution via the Euler-Lagrange equation. This
is followed by the gradual extension to variational problems subject to con-
straints, containing functions of multiple variables and functionals with higher
order derivatives. It continues with the inverse problem of variational calcu-
lus, when the origin is in the differential equation form and the corresponding
variational problem is sought. The first part concludes with the direct so-
lution techniques of variational problems, such as the Ritz, Galerkin, and
Kantorovich methods.

With the emphasis on applications, the second part starts with a detailed
discussion of the geodesic concept of differential geometry and its extensions
to higher order spaces. The computational geometry chapter covers the vari-
ational origin of natural splines and the variational formulation of B-splines
under various constraints.

The final two chapters focus on analytic and computational mechanics. Top-
ics of the first include the variational form and subsequent solution of several
classical mechanical problems using Hamilton’s principle. The last chapter
discusses generalized coordinates and Lagrange’s equations of motion. Some
fundamental applications of elasticity, heat conduction, and fluid mechanics
as well as their computational technology conclude the book.

xiii

 



 



Acknowledgments

My special thanks are due to Nora Konopka, publisher of Taylor & Francis
books, for believing in the importance of the topic and the value of a second
edition. I appreciate the support of Michele Smith, Jennifer Ahringer, Michele
Dimont and Ellin Anderson in the preparation of this volume.

I thank my coworkers, Dr. Leonard Hoffnung, for his meticulous verification
of the derivations, and Mr. Chris Mehling, for his very diligent proofreading.
Their corrections and comments greatly contributed to the quality of both
editions of the book.

I appreciate the thorough review of the first edition by Dr. John Brauer,
then at the Milwaukee School of Engineering, and I am still indebted to Pro-
fessor Bajcsay Pál of the Technical University of Budapest for initiating my
original interest in calculus of variations.

I am grateful for the courtesy of Sierra Nevada Corporation for the model
in the cover art. The model depicts the re-entry configuration of the Dream
Chaser spacecraft.

Louis Komzsik

xv

 



 



About the author

Dr. Louis Komzsik is a graduate of the Technical University of Budapest, and
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Part I

Mathematical foundation

1





1

The foundations of calculus of variations

The problem of the calculus of variations evolves from the analysis of func-
tions. In the analysis of functions the focus is on the relation between two
sets of numbers, the independent (x) and the dependent (y) set. The func-
tion f creates a one-to-one correspondence between these two sets, denoted as

y = f(x).

The generalization of this concept is based on allowing the two sets not to be
restricted to being real numbers and to be functions themselves. The relation-
ship between these sets is now called a functional. The topic of the calculus
of variations is to find extrema of functionals, most commonly formulated in
the form of an integral.

1.1 The fundamental problem and lemma of calculus of
variations

The fundamental problem of the calculus of variations is to find the extremum
(maximum or minimum) of the functional

I(y) =

∫ x1

x0

f(x, y, y′)dx,

where the solution satisfies the boundary conditions

y(x0) = y0

and
y(x1) = y1.

This problem may be generalized to the cases when higher derivatives or multi-
ple functions are given and will be discussed in Chapters 3 and 4, respectively.
These problems may also be extended with constraints, the topic of Chapter 2.

A solution process may be arrived at with the following logic. Let us as-
sume that there exists such a solution y(x) for the above problem that satisfies

3



4 Applied calculus of variations for engineers

the boundary conditions and produces the extremum of the functional. Fur-
thermore, we assume that it is twice differentiable. In order to prove that
this function results in an extremum, we need to prove that any alternative
function does not attain the extremum.

We introduce an alternative solution function of the form

Y (x) = y(x) + εη(x),

where η(x) is an arbitrary auxiliary function of x, that is also twice differen-
tiable and vanishes at the boundary:

η(x0) = η(x1) = 0.

In consequence the following is also true:

Y (x0) = y(x0) = y0

and
Y (x1) = y(x1) = y1.

A typical relationship between these functions is shown in Figure 1.1 where
the function is represented by the solid line and the alternative function by
the dotted line. The dashed line represents the arbitrary auxiliary function.

Since the alternative function Y (x) also satisfies the boundary conditions
of the functional, we may substitute into the variational problem:

I(ε) =

∫ x1

x0

f(x, Y, Y ′)dx.

where

Y ′(x) = y′(x) + εη′(x).

The new functional in terms of ε is identical with the original in the case when
ε = 0 and has its extremum when

∂I(ε)

∂ε
|ε=0 = 0.

Executing the derivation and taking the derivative into the integral, since the
limits are fixed, with the chain rule we obtain

∂I(ε)

∂ε
=

∫ x1

x0

(
∂f

∂Y

dY

dε
+

∂f

∂Y ′
dY ′

dε
)dx.

Clearly

dY

dε
= η(x),
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FIGURE 1.1 Alternative solutions example

and
dY ′

dε
= η′(x),

resulting in

∂I(ε)

∂ε
=

∫ x1

x0

(
∂f

∂Y
η(x) +

∂f

∂Y ′ η
′(x))dx.

Integrating the second term by parts yields

∫ x1

x0

(
∂f

∂Y ′ η
′(x))dx =

∂f

∂Y ′ η(x)|x1
x0

−
∫ x1

x0

(
d

dx

∂f

∂Y ′ )η(x)dx.

Due to the boundary conditions, the first term vanishes. With substitution
and factoring the auxiliary function, the problem becomes

∂I(ε)

∂ε
=

∫ x1

x0

(
∂f

∂Y
− d

dx

∂f

∂Y ′ )η(x)dx.

The extremum is achieved when ε = 0 as stated above, hence

∂I(ε)

∂ε
|ε=0 =

∫ x1

x0

(
∂f

∂y
− d

dx

∂f

∂y′
)η(x)dx.

 



6 Applied calculus of variations for engineers

Let us now consider the following integral:

∫ x1

x0

η(x)F (x)dx,

where x0 ≤ x ≤ x1 and F (x) is continuous, while η(x) is continuously differ-
entiable, satisfying

η(x0) = η(x1) = 0.

The fundamental lemma of calculus of variations states that if for all such η(x)

∫ x1

x0

η(x)F (x)dx = 0,

then

F (x) = 0

in the whole interval.

The following proof by contradiction is from [18]. Let us assume that there
exists at least one such location x0 ≤ ζ ≤ x1 where F (x) is not zero, for
example,

F (ζ) > 0.

By the condition of continuity of F (x) there must be a neighborhood of

ζ − h ≤ ζ ≤ ζ + h

where F (x) > 0. In this case, however, the integral becomes

∫ x1

x0

η(x)F (x)dx > 0,

for the right choice of η(x), which contradicts the original assumption. Hence
the statement of the lemma must be true.

Applying the lemma to this case results in the Euler-Lagrange differen-
tial equation specifying the extremum

∂f

∂y
− d

dx

∂f

∂y′
= 0.
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1.2 The Legendre test

The Euler-Lagrange differential equation just introduced represents a neces-
sary, but not sufficient, condition for the solution of the fundamental varia-
tional problem.

The alternative functional of

I(ε) =

∫ x1

x0

f(x, Y, Y ′)dx,

may be expanded as

I(ε) =

∫ x1

x0

f(x, y + εη(x), y′ + εη′(x))dx.

Assuming that the f function has continuous partial derivatives, the mean-
value theorem is applicable:

f(x, y + εη(x), y′ + εη′(x)) = f(x, y, y′)+

ε(η(x)
∂f(x, y, y′)

∂y
+ η′(x)

∂f(x, y, y′)
∂y′

) +O(ε2).

By substituting we obtain

I(ε) =

∫ x1

x0

f(x, y, y′)dx+

ε

∫ x1

x0

(η(x)
∂f(x, y, y′)

∂y
+ η′(x)

∂f(x, y, y′)
∂y′

)dx+O(ε2).

With the introduction of

δI1 = ε

∫ x1

x0

(η(x)
∂f(x, y, y′)

∂y
+ η′(x)

∂f(x, y, y′)
∂y′

)dx,

we can write

I(ε) = I(0) + δI1 +O(ε2),

where δI1 is called the first variation. The vanishing of the first variation is a
necessary, but not sufficient, condition to have an extremum. To establish a
sufficient condition, assuming that the function is thrice continuously differ-
entiable, we further expand as

I(ε) = I(0) + δI1 + δI2 +O(ε3).
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Here the newly introduced second variation is

δI2 =
ε2

2

∫ x1

x0

(η2(x)
∂2f(x, y, y′)

∂y2
+

2η(x)η′(x)
∂2f(x, y, y′)

∂y∂y′
+

η′2(x)
∂2f(x, y, y′)

∂y′2
)dx.

We now possess all the components to test for the existence of the extremum
(maximum or minimum). The Legendre test in [7] states that if indepen-
dently of the choice of the auxiliary η(x) function

- the Euler-Lagrange equation is satisfied,

- the first variation vanishes (δI1 = 0), and

- the second variation does not vanish (δI2 �= 0)

over the interval of integration, then the functional has an extremum. This
test manifests the necessary conditions for the existence of the extremum.
Specifically, the extremum will be a maximum if the second variation is neg-
ative, and conversely a minimum if it is positive. Certain similarities to the
extremum evaluation of regular functions by the teaching of classical calculus
are obvious.

We finally introduce the variation of the function as

δy = Y (x) − y(x) = εη(x),

and the variation of the derivative as

δy′ = Y ′(x) − y′(x) = εη′(x).

Based on these variations, we distinguish between the following cases:

- strong extremum occurs when δy is small, however, δy′ is large, while

- weak extremum occurs when both δy and δy′ are small.

On a final note: the above considerations did not ever state the finding or
presence of an absolute extremum; only the local extremum in the interval of
the integrand is obtained.
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1.3 The Euler-Lagrange differential equation

Let us expand the derivative in the second term of the Euler-Lagrange differ-
ential equation as follows:

d

dx

∂f

∂y′
=

∂2f

∂x∂y′
+

∂2f

∂y∂y′
y′ +

∂2f

∂y′2
y′′.

This demonstrates that the Euler-Lagrange equation is usually of second or-
der.

∂f

∂y
− ∂2f

∂x∂y′
− ∂2f

∂y∂y′
y′ − ∂2f

∂y′2
y′′ = 0.

The above form is also called the extended form. Consider the case when the
multiplier of the second derivative term vanishes:

∂2f

∂y′2
= 0.

In this case f must be a linear function of y′, in the form of

f(x, y, y′) = p(x, y) + q(x, y)y′.

For this form, the other derivatives of the equation are computed as

∂f

∂y
=
∂p

∂y
+
∂q

∂y
y′,

∂f

∂y′
= q,

∂2f

∂x∂y′
=
∂q

∂x
,

and
∂2f

∂y∂y′
=
∂q

∂y
.

Substituting results in the Euler-Lagrange differential equation of the form

∂p

∂y
− ∂q

∂x
= 0,

or

∂p

∂y
=
∂q

∂x
.

In order to have a solution, this must be an identity, in which case there must
be a function of two variables

u(x, y)
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whose total differential is of the form

du = p(x, y)dx + q(x, y)dy = f(x, y, y′)dx.

The functional may be evaluated as

I(y) =

∫ x1

x0

f(x, y, y′)dx =

∫ x1

x0

du = u(x1, y1)− u(x0, y0).

It follows from this that the necessary and sufficient condition for the solu-
tion of the Euler-Lagrange differential equation is that the integrand of the
functional be the total differential with respect to x of a certain function of
both x and y.

Considering furthermore, that the Euler-Lagrange differential equation is
linear with respect to f , it also follows that a term added to f will not change
the necessity and sufficiency of that condition.

Another special case may be worthy of consideration. Let us assume that
the integrand does not explicitly contain the x term. Then by executing the
differentiations

d

dx
(y′

∂f

∂y′
− f) =

y′
d

dx

∂f

∂y′
− ∂f

∂x
− ∂f

∂y
y′ =

y′(
d

dx

∂f

∂y′
− ∂f

∂y
)− ∂f

∂x
.

With the last term vanishing in this case, the differential equation simplifies to

d

dx
(y′

∂f

∂y′
− f) = 0.

Its consequence is the expression also known as Beltrami’s formula:

y′
∂f

∂y′
− f = c1, (1.1)

where the right-hand side term is an integration constant. The classical prob-
lem of the brachistochrone, discussed in the next section, belongs to this class.

Finally, it is also often the case that the integrand does not contain the y
term explicitly. Then

∂f

∂y
= 0
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and the differential equation has the simpler

d

dx

∂f

∂y′
= 0

form. As above, the result is

∂f

∂y′
= c2

where c2 is another integration constant. The geodesic problems, also the
subject of Chapter 8, represent this type of Euler-Lagrange equations.

We can surmise that the Euler-Lagrange differential equation’s general so-
lution is of the form

y = y(x, c1, c2),

where the c1, c2 are constants of integration, and are solved from the bound-
ary conditions

y0 = y(x0, c1, c2)

and
y1 = y(x1, c1, c2).

1.4 Application: minimal path problems

This section deals with several classical problems to illustrate the methodol-
ogy. The problem of finding the minimal path between two points in space
will be addressed in different senses.

The first problem is simple geometry, the shortest geometric distance be-
tween the points. The second one is the well-known classical problem of the
brachistochrone, originally posed and solved by Bernoulli. This is the path
of the shortest time required to move from one point to the other under the
force of gravity.

The third problem considers a minimal path in an optical sense and leads
to Snell’s law of reflection in optics. The fourth example finds the path of
minimal kinetic energy of a particle moving under the force of gravity.

All four problems will be presented in two-dimensional space, although they
may also be posed and solved in three dimensions with some more algebraic
difficulty but without any additional instructional benefit.
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1.4.1 Shortest curve between two points

First we consider the rather trivial variational problem of finding the solution
of the shortest curve between two points, P0, P1, in the plane. The form of
the problem using the arc length expression is

∫ P1

P0

ds =

∫ x1

x0

√
1 + y′2dx = extremum.

The obvious boundary conditions are the curve going through its endpoints:

y(x0) = y0,

and
y(x1) = y1.

It is common knowledge that the solution in Euclidean geometry is a straight
line from point (x0, y0) to point (x1, y1). The solution function is of the form

y(x) = y0 +m(x− x0),

with slope

m =
y1 − y0
x1 − x0

.

To evaluate the integral, we compute the derivative as

y′ = m

and the function becomes

f(x, y, y′) =
√

1 +m2.

Since the integrand is constant, the integral is trivial

I(y) =
√

1 +m2

∫ x1

x0

dx =
√
1 +m2(x1 − x0).

The square of the functional is

I2(y) = (1 +m2)(x1 − x0)
2 = (x1 − x0)

2 + (y1 − y0)
2.

This is the square of the distance between the two points in the plane, hence
the extremum is the distance between the two points along the straight line.
Despite the simplicity of the example, the connection of a geometric problem
to a variational formulation of a functional is clearly visible. This will be the
most powerful justification for the use of this technique.

Let us now solve the

∫ x1

x0

√
1 + y′2dx = extremum
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problem via its Euler-Lagrange equation form. Note that the form of the in-
tegrand dictates the use of the extended form.

∂f

∂y
= 0,

∂2f

∂x∂y′
= 0,

∂2f

∂y∂y′
= 0,

and
∂2f

∂y′2
=

1

(1 + y′2)3/2
.

Substituting into the extended form gives

1

(1 + y′2)3/2
y′′ = 0,

which simplifies into

y′′ = 0.

Integrating twice, one obtains

y(x) = c0 + c1x,

clearly the equation of a line. Substituting into the boundary conditions we
obtain two equations,

y0 = c0 + c1x0,

and
y1 = c0 + c1x1.

The solution of the resulting linear system of equations is

c0 = y0 − c1x0,

and

c1 =
y1 − y0
x1 − x0

.

It is easy to reconcile that

y(x) = y0 − y1 − y0
x1 − x0

x0 +
y1 − y0
x1 − x0

x

is identical to

y(x) = y0 +m(x− x0).
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The noticeable difference between the two solutions of this problem is that
using the Euler-Lagrange equation required no a priori assumption on the
shape of the curve and the geometric know-how was not used. This is the
case in most practical engineering applications and this is the reason for the
utmost importance of the Euler-Lagrange equation.

1.4.2 The brachistochrone problem

The problem of the brachistochrone may be the first problem of variational
calculus, already solved by Johann Bernoulli in the late 1600s. The name
stands for the shortest time in Greek, indicating the origin of the problem.

The problem is elementary in a physical sense. Its goal is to find the shortest
path of a particle moving in a vertical plane from a higher point to a lower
point under the (only) force of gravity. The sought solution is the function
y(x) with boundary conditions y(x0) = y0 and y(x1) = y1 where

P0 = (x0, y0)

and

P1 = (x1, y1)

are the starting and terminal points, respectively. Based on elementary physics
considerations, the problem represents an exchange of potential energy with
kinetic energy.

A moving body’s kinetic energy is related to its velocity and its mass. The
higher the velocity and the mass, the bigger the kinetic energy. A body can
gain kinetic energy using its potential energy, and conversely, can use its ki-
netic energy to build up potential energy. At any point during the movement,
the total energy is at equilibrium. This is the principle of Hamilton’s that
will be discussed in more detail in Chapter 10.

The potential energy of the particle at any x, y point during the motion is

Ep = mg(y0 − y),

where m is the mass of the particle and g is the acceleration of gravity [11].
The kinetic energy is

Ek =
1

2
mv2

assuming that the particle at the (x, y) point has velocity v. They are in
balance as

Ek = Ep,
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resulting in an expression of the velocity as

v =
√
2g(y0 − y).

The velocity by definition is

v =
ds

dt
,

where s is the arc length of the yet unknown curve. The time required to run
the length of the curve is

t =

∫ P1

P0

dt =

∫ P1

P0

1

v
ds.

Using the arc length expression from calculus, we get

t =

∫ x1

x0

√
1 + y′2
v

dx.

Substituting the velocity expression yields

t =
1√
2g

∫ x1

x0

√
1 + y′2√
y0 − y

dx.

Since we are looking for the minimal time, this is a variational problem of

I(y) =
1√
2g

∫ x1

x0

√
1 + y′2√
y0 − y

dx = extremum.

The integrand does not contain the independent variable, hence we can apply
Beltrami’s formula of Equation (1.1). This results in the form of

y′2√
(y0 − y)(1 + y′2)

−
√
1 + y′2√
y0 − y

= c0.

Creating a common denominator on the left-hand side produces

y′2
√
y0 − y −

√
1 + y′2

√
(y0 − y)(1 + y′2)√

(y0 − y)(1 + y′2)
√
y0 − y

= c0.

Grouping the numerator simplifies to

−√
y0 − y√

(y0 − y)(1 + y′2)
√
y0 − y

= c0.

Canceling and squaring results in the solution for y′ as

y′2 =
1− c20(y0 − y)

c20(y0 − y)
.
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Since

y′2 = (
dy

dx
)2,

the differential equation may be separated as

dx =

√
y0 − y√

2c1 − (y0 − y)
dy.

Here the new constant is introduced for simplicity as

c1 =
1

2c20
.

Finally x may be expressed directly by integrating

x =

∫ √
y0 − y√

2c1 − (y0 − y)
dy + c2.

The usual trigonometric substitution of

y0 − y = 2c1sin
2(
t

2
)

yields the integral of

x = 2c1

∫
sin2(

t

2
)dt = c1(t− sin(t)) + c2,

where c2 is another constant of integration. Reorganizing yields

y = y0 − c1(1 − cos(t)).

The final solution of the brachistochrone problem therefore is a cycloid. Fig-
ure 1.2 depicts the problem of the point moving from (0, 1) until it reaches
the x axis.

The resulting curve seems somewhat counter-intuitive, especially in view of
the earlier example of the shortest geometric distance between two points in
the plane and demonstrated by the straight line chord between the two points.
The shortest time, however, when the speed obtained during the traversal of
the interval depends on the path taken, is an entirely different matter.

The constants of the integration may be solved by substituting the bound-
ary points. From the x equation above at t = 0 we easily find

x = c2 = x0.

Substituting the endpoint location into the y equation, we obtain

y = y0 − c1(1− cos(t)) = y1,
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FIGURE 1.2 Solution of the brachistochrone problem

which is inconclusive, since the time of reaching the endpoint is not known.
For a simple conclusion of this discussion, let us assume that the particle
reaches the endpoint at time t = Π/2. Then

c1 = y0 − y1,

and the final solution is

x = x0 + (y0 − y1)(t− sin(t))

and

y = y1(1− cos(t)).

For the case shown in Figure 1.2, the point moving from (0, 1) until it reaches
the x axis, the solution curve is

x = (t− sin(t))

and

y = cos(t).

Another intriguing characteristic of the brachistochrone particle is that
when two particles are let go from two different points of the curve they will
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reach the terminal point of the curve at the same time. This is also counter-
intuitive, since clearly they have different geometric distances to cover; how-
ever, since they are acting under the gravity and the slope of the curve is
different at the two locations, the particle starting from a higher location
gathers much bigger speed than the particle starting at a lower location.

This so-called tautochrone behavior may be proven by calculation of the
time of the particles using the formula developed earlier. Evaluation of this
integral between points (x0, y0) and (x1, y1) as well as between (x2, y2) and
(x1, y1) (where (x2, y2) lies on the solution curve anywhere between the start-
ing and terminal point) will result in the same time.

Hence the brachistochrone problem may also be posed with a specified ter-
minal point and a variable starting point, leading to the class of variational
problems with open boundary, subject of Section 1.5.

1.4.3 Fermat’s principle

Fermat’s principle states that light traveling through an inhomogeneous medium
chooses the path of minimal optical length. The path’s optimal length depends
on the speed of light in the medium, which is defined as a continuous function
of

c = c(y),

where y is the vertical component of the path. Here

c(y) =
ds

dt
,

as the derivative of the length of the path and its inverse will be in the vari-
ational form. The time required to cover the distance between two points is

t =

∫
1

c(y)
ds.

The problem is now posed as a variational problem of

I(y) =

∫ (x2,y2)

(x1,y1)

ds

c(y)
.

Substituting the arc length

∫ x2

x1

√
1 + y′2

c(y)
dx = extremum,

with boundary conditions given at the two points P1, P2.

y(x1) = y1; y(x2) = y2.
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The functional does not contain the x term explicitly, allowing the use of Bel-
trami’s formula of Equation (1.1) and resulting in the simplified form of

y′
∂f

∂y′
− f = k1

where k1 is a constant of integration and its notation is chosen to distinguish
from the speed of light value c. Substituting f , differentiating and simplifying
yields

1

c(y)
√

1 + y′2
= −k1.

Reordering and separating results

∫
dx = ±k1

∫
c(y)√

1− k21c
2(y)

dy.

Depending on the particular model of the speed of light in the medium, the
result varies. In the case of the inhomogeneous optical medium consisting of
two homogeneous media in which the speed of light is piecewise constant, the
result is the well-known Snell’s law describing the scenario of the breaking
path of light at the water’s surface.

Assume the speed of light is c1 between points P1 and P0 and c2 between
points P0 and P2, both constant in their respective medium. The boundary
between the two media is represented by

P0(x, y0),

where the notation signifies the fact that the x location of the light ray is not
known yet. The known y0 location specifies the distance of the points in the
two separate media from the boundary.

Then the time to run the full path between P1 and P2 is simply

t =

√
(x− x1)2 + (y0 − y1)2

c1
+

√
(x2 − x)2 + (y2 − y0)2

c2
.

The minimum of this is simply obtained by classical calculus as

dt

dx
= 0,

or

x− x1

c1
√
(x− x1)2 + (y0 − y1)2

− x2 − x

c2
√
(x2 − x)2 + (y2 − y0)2

= 0.

The solution of this equation yields the x location of the ray crossing the
boundary, and produces the well-known Snell’s law of
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sinφ1
c1

=
sinφ2
c2

,

where the angles are measured with respect to the normal of the boundary
between the two media. The preceding work generalizes to multiples of ho-
mogeneous media, which is a practical application in lens systems of optical
machinery.

1.4.4 Particle moving in the gravitational field

The motion of a particle moving in the gravitational field of the Earth is
computed based on the principle of least action. The principle, a sub-case of
Hamilton’s principle, has been known for several hundred years, and was first
proven by Euler. The principle states that a particle under the influence of a
gravitational field moves on a path along which the kinetic energy is minimal.
As such, it is a variational problem of

I = 2

∫
Ekdt = extremum.

Here the multiplier is introduced for computational convenience. The kinetic
energy is expressed as

Ek =
1

2
mv2,

where v is the velocity of the particle. Substituting

vdt = ds

and

ds =
√
1 + (y′)2dx

the functional may be written as

I = m

∫
v
√
1 + (y′)2dx.

Since the gravitational field induces the particle’s motion, its speed is related
to its height known from elementary physics as

v2 = u2 − 2gy,

where u is an initial speed with yet undefined direction. Substituting into the
functional yields

I = m

∫ √
u2 − 2gy

√
1 + (y′)2dx = extremum.
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Since the functional does not contain x explicitly, we can use Beltrami’s for-
mula of Equation (1.1), resulting in the Euler-Lagrange equation of

√
u2 − 2gy√
1 + y′2

= c1,

where c1 is an arbitrary constant. Expressing y′, separating and integrating
yields

c21(u
2 − 2gy − c21) = g2(x− c2)

2,

with c2 being another constant of integration. Reordering yields the well-
known parabolic trajectory of

y =
u2 − c21

2g
− g

2c21
(x − c2)

2.

The resolution of the constants may be by giving boundary conditions of the
initial location and velocity of the particle. The constant c1 is related to the
latter and the constant c2 is related to the location. Assuming the origin as
initial location and an angle α of the initial velocity u with respect to the
horizontal axis, the formula may be simplified into

y = xtan(α) − gx2

2u2cos2(α)
.

Figure 1.3 demonstrates the path of the particle. The upper three curves
show the path with a 60-degree angle of the initial velocity and with different
magnitudes. The lower three curves demonstrate the paths obtained by the
same magnitude (10 units), but different angles of the initial velocity. For
visualization purposes the gravity constant was chosen to be 10 units as well.

A similarity between the four problems of this section is apparent. This
recognition is a very powerful aspect of variational calculus. There are many
instances in engineering applications when one physical problemmay be solved
in an analogous form using another principle. The common variational for-
mulation of both problems is the key to such recognition in most cases.

1.5 Open boundary variational problems

Let us consider the variational problem of Section 1.1:

I(y) =

∫ x1

x0

f(x, y, y′)dx,
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FIGURE 1.3 Trajectory of particle

with boundary condition

y(x0) = y0.

Let the boundary condition at the upper end be undefined. We introduce an
auxiliary function η(x) that in this case only satisfies

η(x0) = 0.

The extremum in this case is obtained from the same concept as earlier:

∂I(ε)

∂ε
|ε=0 =

∫ x1

x0

(
∂f

∂y
η(x) +

d

dx

∂f

∂y′
η′(x))dx = 0,

while recognizing the fact that x1 is undefined. Integrating by parts and
considering the one-sided boundary condition posed on the auxiliary function
yields

∂I(ε)

∂ε
|ε=0 =

∂f

∂y′
|x=x1η(x1) +

∫ x1

x0

((
∂f

∂y
− d

dx

∂f

∂y′
)η′(x))dx = 0.

The extremum is obtained when the Euler-Lagrange equation of

∂f

∂y
− d

dx

∂f

∂y′
= 0
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along with the given boundary condition of

y(x0) = y0

is satisfied, in addition to obeying the constraint of

∂f

∂y′
|x=x1 = 0.

Similar arguments may be applied when the starting point is open. This
problem is the predecessor of the more generic constrained variational prob-
lems, the topic of the next chapter.

 



 



2

Constrained variational problems

The boundary values applied in the prior discussion may also be considered
as constraints. The subject of this chapter is to generalize the constraint con-
cept in two senses. The first is to allow more difficult, algebraic boundary
conditions, and the second is to allow constraints imposed on the interior of
the domain as well.

2.1 Algebraic boundary conditions

There is the possibility of defining the boundary condition at one end of the
integral of the variational problem with an algebraic constraint. Let the

∫ x1

x0

f(x, y, y′)dx = extremum

variational problem subject to the customary boundary condition

y(x0) = y0,

on the lower end, and on the upper end an algebraic condition of the following
form is given:

g(x, y) = 0.

We again consider an alternative solution of the form

Y (x) = y(x) + εη(x).

The given boundary condition in this case is

η(x0) = 0.

Then, following [9], the intersection of the alternative solution and the alge-
braic curve is

X1 = X1(ε)

25
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and

Y1 = Y1(ε).

The notation is to distinguish from the fixed boundary condition values given
via x1, y1. Therefore the algebraic condition is

g(X1, Y1) = 0.

This must be true for any ε, hence applying the chain rule yields

dg

dε
=

∂g

∂X1

dX1

dε
+

∂g

∂Y1

dY1
dε

= 0. (2.1)

Since

Y1 = y(X1) + εη(X1),

we expand the last derivative of the second term of Equation (2.1) as

dY1
dε

=
dy

dx
|x=X1

dX1

dε
+ η(X1) + ε

dη

dx
|x=X1

dX1

dε
.

Substituting into Equation (2.1) results in

dg

dε
=

∂g

∂X1

dX1

dε
+

∂g

∂Y1
(
dy

dx
|x=X1

dX1

dε
+ η(X1) + ε

dη

dx
|x=X1

dX1

dε
) = 0.

Since (X1, Y1) becomes (x1, y1) when ε = 0,

dX1

dε
|ε=0 = − η(x1)

∂g
∂y |y=y1

∂g
∂x |x=x1 +

∂g
∂y |y=y1 dydx |x=x1

. (2.2)

We now consider the variational problem of

I(ε) =

∫ X1

x0

f(x, Y, Y ′)dx.

The derivative of this is

∂I(ε)

∂ε
=
dX1

dε
f |x=X1 +

∫ X1

x0

(
∂f

∂Y
η +

∂f

∂Y ′ η
′)dx.

Integrating by parts and taking ε = 0 yields

∂I(ε)

∂ε
|ε=0 =

dX1

dε
|ε=0f |x=x1 +

∂f

∂y′
|x=x1η(x1) +

∫ x1

x0

(
∂f

∂y
− d

dx

∂f

∂y′
)ηdx.

Substituting the first expression with Equation (2.2) results in

(
∂f

∂y′
|x=x1 −

∂g
∂y |y=y1f |x=x1

∂g
∂x |x=x1 +

∂g
∂y |y=y1 dydx |x=x1

)η(x1) +

∫ x1

x0

(
∂f

∂y
− d

dx

∂f

∂y′
)ηdx = 0.
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Due to the fundamental lemma of calculus of variations, to find the con-
strained variational problem’s extremum the Euler-Lagrange differential equa-
tion of

∂f

∂y
− d

dx

∂f

∂y′
= 0,

with the given boundary condition

y(x0) = y0,

and the algebraic constraint condition of the form

∂f

∂y′
|x=x1 =

∂g
∂y |y=y1f |x=x1

∂g
∂x |x=x1 +

∂g
∂y |y=y1 dydx |x=x1

all need to be satisfied.

2.2 Lagrange’s solution

We now further generalize the variational problem and impose both boundary
conditions as well as an algebraic condition on the whole domain as follows:

I(y) =

∫ x1

x0

f(x, y, y′)dx = extremum,

with

y(x0) = y0, y(x1) = y1,

while

J(y) =

∫ x1

x0

g(x, y, y′)dx = constant.

Following the earlier established pattern, we introduce an alternative solution
function, at this time, however, with two auxiliary functions as

Y (x) = y(x) + ε1η1(x) + ε2η2(x).

Here the two auxiliary functions are arbitrary and both satisfy the boundary
conditions:

η1(x0) = η1(x1) = η2(x0) = η2(x1) = 0.
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Substituting these into the integrals gives

I(Y ) =

∫ x1

x0

f(x, Y, Y ′)dx,

and

J(Y ) =

∫ x1

x0

g(x, Y, Y ′)dx.

Lagrange’s ingenious solution is to tie the two integrals together with a yet
unknown multiplier (now called the Lagrange multiplier) as follows:

I(ε1, ε2) = I(Y ) + λJ(Y ) =

∫ x1

x0

h(x, Y, Y ′)dx,

where

h(x, y, y′) = f(x, y, y′) + λg(x, y, y′).

The condition to solve this variational problem is

∂I

∂εi
= 0

when

εi = 0; i = 1, 2.

The derivatives are of the form

∂I

∂εi
=

∫ x1

x0

(
∂h

∂Y
ηi +

∂h

∂Y ′ η
′
i)dx.

The extremum is obtained when

∂I

∂εi
|εi=0,i=1,2 =

∫ x1

x0

(
∂h

∂Y
ηi +

∂h

∂Y ′ η
′
i)dx = 0.

Considering the boundary conditions and integrating by parts yields

∫ x1

x0

(
∂h

∂y
− d

dx

∂h

∂y′
)ηidx = 0,

which, due to the fundamental lemma of calculus of variations, results in the
relevant Euler-Lagrange differential equation

∂h

∂y
− d

dx

∂h

∂y′
= 0.

This equation contains three undefined coefficients: the two coefficients of
integration satisfying the boundary conditions and the Lagrange multiplier,
enforcing the constraint.
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2.3 Application: iso-perimetric problems

Iso-perimetric problems use a given perimeter of a certain object as the con-
straint of some variational problem. The perimeter may be a curve in the
two-dimensional case, as in the example of the next section. It may also be
the surface of a certain body, in the three-dimensional case.

2.3.1 Maximal area under curve with given length

This problem is conceptually very simple, but useful to illuminate the process
just established. It is also a very practical problem with more difficult geome-
tries involved. Here we focus on the simple case of finding the curve of given
length between two points in the plane. Without restricting the generality of
the discussion, we’ll position the two points on the x axis in order to simplify
the arithmetic.

The given points are (x0, 0) and (x1, 0) with x0 < x1. The area under any
curve going from the start point to the endpoint in the upper half-plane is

I(y) =

∫ x1

x0

ydx.

The constraint of the given length L is presented by the equation

J(y) =

∫ x1

x0

√
1 + y′2dx = L.

The Lagrange multiplier method brings the function

h(x, y, y′) = y(x) + λ
√

1 + y′2.

The constrained variational problem is

I(y) =

∫ x1

x0

h(x, y, y′)dx

whose Euler-Lagrange equation becomes

1− λ
d

dx

y′√
1 + y′2

= 0.

Integration yields

λy′√
1 + y′2

= x− c1.
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First we separate the variables

dy = ± x− c1√
λ2 − (x − c1)2

dx,

and integrate again to produce

y(x) = ±
√
λ2 − (x− c1)2 + c2.

It is easy to reorder this into

(x− c1)
2 + (y − c2)

2 = λ2,

which is the equation of a circle. Since the two given points are on the x axis,
the center of the circle must lie on the perpendicular bisector of the chord,
which implies that

c1 =
x0 + x1

2
.

To solve for the value of the Lagrange multiplier and the other constant, we
consider that the circular arc between the two points is the given length:

L = λθ,

where θ is the angle of the arc. The angle is related to the remaining constant
as

2Π− θ = atan(
x1 − x0
2c2

).

The two equations may be simultaneously satisfied with

θ = Π,

resulting in the shape being a semi-circle. This yields the solutions of

c2 = 0

and

λ =
L

π
.

The final solution function in implicit form is

(x− x0 + x1
2

)2 + y2 = (
L

π
)2,

or explicitly

y(x) =

√
(
L

π
)2 − (x− x0 + x1

2
)2.
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FIGURE 2.1 Maximum area under curves

It is simple to verify that the solution produces the extremum of the original
variational problem.

Figure 2.1 visibly demonstrates the phenomenon with three curves of equal
length (π/2) over the same interval. None of the solid curves denoted by
g(x), the triangle, or the rectangle cover as much area as the semi-circle y(x)
marked by the dashed lines.

2.3.2 Optimal shape of curve of given length under gravity

Another constrained variational problem, whose final result is often used in
engineering, is the rope hanging under its weight. The practical importance of
the problem regarding power lines and suspended cables is well-known. Here
we derive the solution of this problem from a variational origin.

A body in a force field is in static equilibrium when its potential energy has
a stationary value. Furthermore, if the stationary value is a minimum, then
the body is in stable equilibrium. This is also known as principle of minimum
potential energy.
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Assume a body of a homogeneous cable with a given weight per unit length
of ρ = constant, and suspension point locations of

P0 = (x0, y0),

and

P1 = (x1, y1).

These constitute the boundary conditions. A constraint is also given on the
length of the curve: L. The potential energy of the cable is

Ep =

∫ P1

P0

ρyds

where y is the height of the infinitesimal arc segment above the horizontal
base line and ρds is its weight. Using the arc length formula we obtain

Ep = ρ

∫ x1

x0

y
√
1 + y′2dx.

The principle of minimal potential energy dictates that the equilibrium posi-
tion of the cable is the solution of the variational problem of

I(y) = ρ

∫ x1

x0

y
√
1 + y′2dx = extremum,

under boundary conditions

y(x0) = y0; y(x1) = y1

and constraint of

∫ x1

x0

√
1 + y′2dx = L.

Introducing the Lagrange multiplier and the constrained function

h(y) = ρy
√
1 + y′2 + λ

√
1 + y′2,

the Euler-Lagrange differential equation of the problem after the appropriate
differentiations becomes

ρ
√
1 + y′2 − d

dx

(ρy + λ)y′√
1 + y′2

= 0.

Some algebraic activity, which does not add anything to the discussion, and
hence is not detailed, yields

(ρy + λ)(
y′2√
1 + y′2

−
√
1 + y′2) = c1,
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where the right-hand side is a constant of the integration. Another integration
results in the solution of the so-called catenary curve

y = −λ
ρ
− c1
ρ
cosh(

ρ(x− c2)

c1
),

with c2 being another constant of integration. The constants of integration
may be determined by the boundary conditions albeit the calculation, due to
the presence of the hyperbolic function, is rather tedious. Let us consider the
specific case of the suspension points being at the same height and symmetric
with respect to the origin. This is a typical engineering scenario for the span
of suspension cables. This results in the following boundary conditions:

P0 = (x0, y0) = (−s, h)
and

P1 = (x1, y1) = (s, h).

Without the loss of the generality, we can consider unit weight (ρ = 1) and
by substituting above boundary conditions we obtain

h+ λ = c1cosh(
−s+ c2
c1

) = c1cosh(
s+ c2
c1

).

This implies that
c2 = 0.

The value of the second coefficient is solved by adhering to the length con-
straint. Integrating the constraint equation yields

L = 2c1sinh(
s

c1
)

whose only unknown is the integration constant c1. This problem is not solv-
able by analytic means; however, it can be solved by an iterative procedure
numerically by considering the unknown coefficient as a variable:

c1 = x,

and intersecting the curve

y = xsinh(
s

x
)

and the horizontal line

y =
L

2
.

The minimal cable length must exceed the width of the span, hence we
expect the cable to have some slack. Then, for example, using

L = 3s
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FIGURE 2.2 The catenary curve

will result in an approximate solution of

c1 = 0.6175.

Clearly, depending on the length of the cable between similarly posted sus-
pension locations, different catenary curves may be obtained.
The Lagrange multiplier may finally be resolved by the expression

λ = c1cosh(
s

c1
)− h.

Assuming a cable suspended with a unit half-span (s = 1) and from unit
height (h = 1) and length of three times the half-span (L = 3), the value of
the Lagrange multiplier becomes

λ = 0.6175 cosh(
1

0.6175
)− 1 = 0.6204.

The final catenary solution curve, shown with a solid line in Figure 2.2, is
represented by

y = 0.6175 cosh(
1

0.6175
)− 0.6204.
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For comparison purposes, the figure also shows a parabola with dashed lines,
representing an approximation of the catenary and obeying the same bound-
ary conditions.

2.4 Closed-loop integrals

As a final topic in this chapter, we briefly view variational problems posed in
terms of closed-loop integrals, such as

I =

∮
f(x, y, y′)dx = extremum,

subject to the constraint of

J =

∮
g(x, y, y′)dx.

Note that there are no boundary points of the path given since it is a closed
loop. The substitution of

x = a cos(t), y = a sin(t),

changes the problem to the conventional form of

I =

∫ t1

t0

F (x, y, ẋ, ẏ)dt,

subject to

J =

∫ t1

t0

G(x, y, ẋ, ẏ)dt.

The arbitrary t0 and the specific t1 = t0 +2π boundary points clearly cover a
complete loop.





3

Multivariate functionals

3.1 Functionals with several functions

The variational problem of multiple dependent variables is posed as

I(y1, y2, . . . , yn) =

∫ x1

x0

f(x, y1, y2, . . . , yn, y
′
1, y

′
2, . . . , y

′
n)dx

with a pair of boundary conditions given for all functions:

yi(x0) = yi,0

and
yi(x1) = yi,1

for each i = 1, 2, . . . , n. The alternative solutions are:

Yi(x) = yi(x) + εiηi(x); i = 1, . . . , n

with all the arbitrary auxiliary functions obeying the conditions:

ηi(x0) = ηi(x1) = 0.

The variational problem becomes

I(ε1, . . . , εn) =

∫ x1

x0

f(x, . . . , yi + εiηi, . . . , y
′
i + εiη

′
i, . . .)dx,

whose derivative with respect to the auxiliary variables is

∂I

∂εi
=

∫ x1

x0

∂f

∂εi
dx = 0.

Applying the chain rule we get

∂f

∂εi
=

∂f

∂Yi

∂Yi
∂εi

+
∂f

∂Y ′
i

∂Y ′
i

∂εi
=

∂f

∂Yi
ηi +

∂f

∂Y ′
i

η′i.

Substituting into the variational equation yields, for i = 1, 2, . . . , n:

I(εi) =

∫ x1

x0

(
∂f

∂Yi
ηi +

∂f

∂Y ′
i

η′i)dx.

37
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Integrating by parts and exploiting the alternative function form results in

I(εi) =

∫ x1

x0

ηi(
∂f

∂yi
− d

dx

∂f

∂y′i
)dx.

To reach the extremum, based on the fundamental lemma, we need the solu-
tion of a set of n Euler-Lagrange equations of the form

∂f

∂yi
− d

dx

∂f

∂y′i
= 0; i = 1, . . . , n.

3.2 Variational problems in parametric form

Most of the discussion heretofore was focused on functions in explicit form.
The concepts also apply to problems posed in parametric form. The explicit
form variational problem of

I(y) =

∫ x1

x0

f(x, y, y′)dx

may be reformulated with the substitutions

x = u(t), y = v(t).

The parametric variational problem becomes of the form

I(x, y) =

∫ t1

t0

f(x, y,
ẏ

ẋ
)ẋdt,

or

I(x, y) =

∫ t1

t0

F (t, x, y, ẋ, ẏ)dt.

The Euler-Lagrange differential equation system for this case becomes

∂F

∂x
− d

dt

∂F

∂ẋ
= 0,

and
∂F

∂y
− d

dt

∂F

∂ẏ
= 0.

It is proven in [9] that an explicit variational problem is invariant under pa-
rameterization. In other words, independently of the algebraic form of the
parameterization, the same explicit solution will be obtained.

Parametrically given problems may be considered as functionals with sev-
eral functions. As an example, we consider the following twice differentiable
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functions

x = x(t), y = y(t), z = z(t).

The variational problem in this case is presented as

I(x, y, z) =

∫ t1

t0

f(t, x, y, z, ẋ, ẏ, ż)dx.

Here the independent variable t is the parameter, and there are three depen-
dent variables : x, y, z. Applying the steps just explained for this specific case
results in the system of Euler-Lagrange equations

∂f

∂x
− d

dt

∂f

∂ẋ
= 0,

∂f

∂y
− d

dt

∂f

∂ẏ
= 0,

and
∂f

∂z
− d

dt

∂f

∂ż
= 0.

The most practical applications of this case are variational problems in
three-dimensional space, presented in parametric form. This is usual in many
geometry problems and will be exploited in Chapters 8 and 9.

3.3 Functionals with two independent variables

All our discussions so far were confined to a single integral of the functional.
The next step of generalization is to allow a functional with multiple indepen-
dent variables. The simplest case is that of two independent variables, and
this will be the vehicle to introduce the process. The problem is of the form

I(z) =

∫ y1

y0

∫ x1

x0

f(x, y, z, zx, zy)dxdy = extremum.

Here the derivatives are

zx =
∂z

∂x

and

zy =
∂z

∂y
.

The alternative solution is also a function of two variables

Z(x, y) = z(x, y) + εη(x, y).
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The now familiar process emerges as

I(ε) =

∫ y1

y0

∫ x1

x0

f(x, y, Z, Zx, Zy)dxdy = extremum.

The extremum is obtained via the derivative

∂I

∂ε
=

∫ y1

y0

∫ x1

x0

∂f

∂ε
dxdy.

Differentiating and substituting yields

∂I

∂ε
=

∫ y1

y0

∫ x1

x0

(
∂f

∂Z
η +

∂f

∂Zx
ηx +

∂f

∂Zy
ηy)dxdy.

The extremum is reached when ε = 0:

∂I

∂ε
|ε=0 =

∫ y1

y0

∫ x1

x0

(
∂f

∂z
η +

∂f

∂zx
ηx +

∂f

∂zy
ηy)dxdy = 0.

Applying Green’s identity for the second and third terms produces

∫ y1

y0

∫ x1

x0

(
∂f

∂z
− ∂

∂x

∂f

∂zx
− ∂

∂y

∂f

∂zy
)ηdxdy +

∫
∂D

(
∂f

∂zx

dy

ds
− ∂f

∂zy

dx

ds
)ηds = 0.

Here ∂D is the boundary of the domain of the problem and the second integral
vanishes by the definition of the auxiliary function. Due to the fundamental
lemma of calculus of variations, the Euler-Lagrange differential equation be-
comes

∂f

∂z
− ∂

∂x

∂f

∂zx
− ∂

∂y

∂f

∂zy
= 0.

3.4 Application: minimal surfaces

Minimal surfaces occur in intriguing applications. For example, soap films
spanned over various types of wire loops intrinsically attain such shapes, no
matter how difficult the boundary curve is. Various biological cell interactions
also manifest similar phenomena.

From a differential geometry point of view a minimal surface is a surface
for which the mean curvature of the form

κm =
κ1 + κ2

2

vanishes, where κ1 and κ2 are the principal curvatures. A subset of minimal
surfaces are the surfaces of minimal area, and surfaces of minimal area passing
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through a closed space curve are minimal surfaces. Finding minimal surfaces
is called the problem of Plateau.

We seek the surface of minimal area with equation

z = f(x, y), (x, y) ∈ D,

with a closed-loop boundary curve

g(x, y, z) = 0; (x, y) ∈ ∂D.

The boundary condition represents a three-dimensional curve defined over
the perimeter of the domain. The curve may be piecewise differentiable, but
continuous and forms a closed loop, a Jordan curve.

The corresponding variational problem is

I(z) =

∫ ∫
D

√
1 +

∂z

∂x

2

+
∂z

∂y

2

dxdy = extremum.

subject to the constraint of the boundary condition above. The Euler-Lagrange
equation for this case is of the form

− ∂

∂x

∂z
∂x√

1 + ( ∂z∂x)
2 + ( ∂z∂y )

2
− ∂

∂y

∂z
∂y√

1 + ( ∂z∂x)
2 + ( ∂z∂y )

2
= 0.

After considerable algebraic work, this equation becomes

(1 + (
∂z

∂y
)2)

∂2z

∂x2
− 2

∂z

∂x

∂z

∂y

∂2z

∂x∂y
+ (1 + (

∂z

∂x
)2)

∂2z

∂y2
= 0.

This is the differential equation of minimal surfaces, originally obtained by
Lagrange himself. The equation is mainly of verification value as this is one
of the most relevant examples for the need of a numerical solution. Most of
the problems of finding minimal surfaces are solved by Ritz type methods,
the subject of Chapter 7.

The simplest solutions for such problems are the so-called saddle surfaces,
such as, for example, shown in Figure 3.1, whose equation is

z = x3 − 2xy2.

It is easy to verify that this satisfies the equation. The figure also shows the
level curves of the surface projected to the x − y plane. The straight lines
on the plane correspond to geodesic paths, a subject of detailed discussion in
Chapter 8. It is apparent that the x = 0 planar cross-section of the surface is
the z = 0 line in the x−y plane, as indicated by the algebra. The intersection
with the y = 0 plane produces the z = x3 curve, again in full adherence to
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FIGURE 3.1 Saddle surface

the equation.

When a minimal surface is sought in a parametric form

r = x(u, v)i+ y(u, v)j + z(u, v)k.

the variational problem becomes

I(r) =

∫ ∫
D

√
EF −G2dA,

where the so-called first fundamental quantities are defined as

E(u, v) = (r′u)
2,

F (u, v) = r′ur
′
v,

and

G(u, v) = (r′v)
2.

The solution may be obtained from the differential equation

∂

∂u

Fr′u −Gr′v√
EF −G2

+
∂

∂v

Er′v −Gr′u√
EF −G2

= 0.
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Finding minimal surfaces for special boundary arrangements arising from re-
volving curves is discussed in the next section.

3.4.1 Minimal surfaces of revolution

The problem has obvious relevance in mechanical engineering and computer-
aided manufacturing (CAM). Let us now consider two points

P0 = (x0, y0), P1 = (x1, y1),

and find the function y(x) going through the points that generates an object
of revolution z = f(x, y) when rotated around the x axis with minimal surface
area. The surface of that object of revolution is

S = 2π

∫ x1

x0

y
√
1 + y′2dx.

The corresponding variational problem is

I(y) = 2π

∫ x1

x0

y
√
1 + y′2dx = extremum,

with the boundary conditions of

y(x0) = y0, y(x1) = y1.

The Beltrami formula of Equation (1.1) produces

y
√
1 + y′2 − yy′2√

1 + y′2
= c1.

Reordering and another integration yields

x = c1

∫
1√

y2 − c21
dy.

Hyperbolic substitution enables the integration as

x = c1cosh
−1(

y

c1
) + c2.

Finally the solution curve generating the minimal surface of revolution be-
tween the two points is

y = c1cosh(
x− c2
c1

),

where the integration constants are resolved with the boundary conditions as

y0 = c1cosh(
x0 − c2
c1

),
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and

y1 = c1cosh(
x1 − c2
c1

).

FIGURE 3.2 Catenoid surface

An example of such a surface of revolution, the catenoid, is shown in Figure
3.2 where the meridian curves are catenary curves.

3.5 Functionals with three independent variables

The generalization to functionals with multiple independent variables is rather
straightforward from the last section. The case of three independent variables,
however, has such enormous engineering importance that it is worthy of a spe-
cial section. The problem is of the form

I(u(x, y, z)) =

∫ ∫ ∫
D

f(x, y, z, u, ux, uy, uz)dxdydz = extremum.
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The solution function u(x, y, z) may be some engineering quantity describing
a physical phenomenon acting on a three-dimensional body. Here the domain
is generalized as well to

x0 ≤ x ≤ x1, y0 ≤ y ≤ y1, z0 ≤ z ≤ z1.

The alternative solution is also a function of three variables

U(x, y, z) = u(x, y, z) + εη(x, y, z).

As usual

I(ε) =

∫ ∫ ∫
D

f(x, y, z, U, Ux, Uy, Uz)dxdydz.

The extremum is reached when:

∂I

∂ε
|ε=0 =

∫ ∫ ∫
D

(
∂f

∂u
η +

∂f

∂ux
ηx +

∂f

∂uy
ηy +

∂f

∂uz
ηz)dxdydz = 0.

Applying Green’s identity for the last three terms and a considerable amount
of algebra produces the Euler-Lagrange differential equation for this case

∂f

∂u
− ∂

∂x

∂f

∂ux
− ∂

∂y

∂f

∂uy
− ∂

∂z

∂f

∂uz
= 0.

An even more practical three-variable case, important in engineering dy-
namics, is when the Euclidean spatial coordinates are extended with time.
Let us consider the variational problem of one temporal and two spatial di-
mensions as

I(u) =

∫ t1

t0

∫ ∫
D

f(x, y, t, u, ux, uy, ut)dxdydt = extremum.

Here again

ux =
∂u

∂x
;uy =

∂u

∂y
,

and

ut =
∂u

∂t
.

We introduce the alternative solution as

U(x, y, t) = u(x, y, t) + εη(x, y, t),

with the temporal boundary conditions of

η(x, y, t0) = η(x, y, t1) = 0.
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As above

I(ε) =

∫ t1

t0

∫ ∫
D

f(x, y, t, U, Ux, Uy, Ut)dxdydt,

and the extremum is reached when:

∂I

∂ε
|ε=0 =

∫ t1

t0

∫ ∫
D

(
∂f

∂u
η +

∂f

∂ux
ηx +

∂f

∂uy
ηy +

∂f

∂ut
ηt)dxdydt = 0. (3.1)

The last member of the integral may be written as

∫ t1

t0

∫ ∫
D

∂f

∂ut
ηtdxdydt =

∫ ∫
D

∫ t1

t0

∂f

∂ut
ηtdtdxdy.

Integrating by parts yields

∫ ∫
D

(
∂f

∂ut
η|t1t0 −

∫ t1

t0

η
∂

∂t
(
∂f

∂ut
)dt)dxdy.

Due to the temporal boundary condition the first term vanishes and

−
∫ t1

t0

∫ ∫
D

η
∂

∂t
(
∂f

∂ut
)dxdydt

remains. The second and third terms of Equation (3.1) may be rewritten by
Green’s identity as follows:

∫ t1

t0

∫ ∫
D

(
∂f

∂ux
ηx +

∂f

∂uy
ηy)dxdydt =

−
∫ t1

t0

∫ ∫
D

η(
∂

∂x
(
∂f

∂ux
) +

∂

∂y
(
∂f

∂uy
))dxdydt+

∫ t1

t0

∫
∂D

η(
∂f

∂ux

dy

ds
+

∂f

∂uy

dx

ds
)dsdt.

With these changes, Equation (3.1) becomes

∂I

∂ε
|ε=0 =

∫ t1

t0

(

∫ ∫
D

η(
∂f

∂u
− ∂

∂x
(
∂f

∂ux
)− ∂

∂y
(
∂f

∂uy
)− ∂

∂t
(
∂f

∂ut
))dxdy+

∫
∂D

η(
∂f

∂ux

dy

ds
− ∂

∂uy

dx

ds
)ds)dt = 0.

Since the auxiliary function η is arbitrary, by the fundamental lemma of cal-
culus of variations the first integral is only zero when

∂f

∂u
− ∂

∂x
(
∂f

∂ux
)− ∂

∂y
(
∂f

∂uy
)− ∂

∂t
(
∂f

∂ut
) = 0,

in the interior of the domain D. This is the Euler-Lagrange differential equa-
tion of the problem. Since the boundary conditions of the auxiliary function
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were only temporal, the second integral is only zero when

∂f

∂ux

dy

ds
− ∂

∂uy

dx

ds
= 0,

on the boundary ∂D. This is the constraint of the variational problem. This
result will be utilized in Chapter 11 to solve the elastic membrane problem.

The case of functions with four independent variables such as

u(x, y, z, t)

will also be discussed in Chapter 12 in connection with elasticity problems in
solids.

The generalization of the process to even more independent variables is al-
gebraically straightforward. Generalization to more spatial coordinates is not
very frequent, although in some manufacturing applications five-dimensional
hyper-spaces do occur.
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Higher order derivatives

The fundamental problem of the calculus of variations involved the first deriva-
tive of the unknown function. In this chapter we will allow the presence of
higher order derivatives.

4.1 The Euler-Poisson equation

First let us consider the variational problem of a functional with a single func-
tion, but containing its higher derivatives:

I(y) =

∫ x1

x0

f(x, y, y′, . . . , y(m))dx.

Accordingly, boundary conditions for all derivatives will also be given as

y(x0) = y0, y(x1) = y1,

y′(x0) = y′0, y
′(x1) = y′1,

y′′(x0) = y′′0 , y
′′(x1) = y′′1 ,

and so on until

y(m−1)(x0) = y
(m−1)
0 , y(m−1)(x1) = y

(m−1)
1 .

As in the past chapters, we introduce an alternative solution of

Y (x) = y(x) + εη(x),

where the arbitrary auxiliary function η(x) is continuously differentiable on
the interval x0 ≤ x ≤ x1 and satisfies

η(x0) = 0, η(x1) = 0.

The variational problem in terms of the alternative solution is

I(ε) =

∫ x1

x0

f(x, Y, Y ′, . . . , Y (m))dx.
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The differentiation with respect to ε follows

dI

dε
=

∫ x1

x0

d

dε
f(x, Y, Y ′, . . . , Y (m)dx,

and by using the chain rule the integrand is reshaped as

∂f

∂Y

dY

dε
+

∂f

∂Y ′
dY ′

dε
+

∂f

∂Y ′′
dY ′′

dε
+ . . .+

∂f

∂Y (m)

dY (m)

dε
.

Substituting the alternative solution and its derivatives with respect to ε the
integrand yields

∂f

∂Y
η +

∂f

∂Y ′ η
′ +

∂f

∂Y ′′ η
′′ + . . .+

∂f

∂Y (m)
η(m).

Hence the functional becomes

dI

dε
=

∫ x1

x0

(
∂f

∂Y
η +

∂f

∂Y ′ η
′ +

∂f

∂Y ′′ η
′′ + . . .+

∂f

∂Y (m)
η(m))dx.

Integrating by terms results in

dI

dε
=

∫ x1

x0

∂f

∂Y
ηdx+

∫ x1

x0

∂f

∂Y ′ η
′dx+

∫ x1

x0

∂f

∂Y ′′ η
′′dx+ . . .+

∫ x1

x0

∂f

∂Y (m)
η(m)dx,

and integrating by parts produces

dI

dε
=

∫ x1

x0

η
∂f

∂Y
dx−

∫ x1

x0

η
d

dx

∂f

∂Y ′ dx+

∫ x1

x0

η
d2

dx2
∂f

∂Y ′′ dx−

. . . (−1)m
∫ x1

x0

η
d(m)

dx(m)

∂f

∂Y (m)
dx.

Factoring the auxiliary function and combining the terms again simplifies to

dI

dε
=

∫ x1

x0

η(
∂f

∂Y
− d

dx

∂f

∂Y ′ +
d2

dx2
∂f

∂Y ′′ − . . . (−1)m
d(m)

dx(m)

∂f

∂Y (m)
)dx.

Finally the extremum at ε = 0 and the fundamental lemma produces the
Euler-Poisson equation

∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2
∂f

∂y′′
− . . . (−1)m

d(m)

dx(m)

∂f

∂y(m)
= 0.

The Euler-Poisson equation is an ordinary differential equation of order 2m
and requires the aforementioned 2m boundary conditions, where m is the
highest order derivative contained in the functional.

For example, the simple m = 2 functional

I(y) =

∫ x1

x0

(y2 − (y′′)2)dx
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results in the derivatives

∂f

∂y′′
= −2y′′,

and
∂f

∂y
= 2y.

The corresponding Euler-Poisson equation derivative term is

d2

dx2
∂f

∂y′′
=

d2

dx2
(−2y′′) = −2

d4

dx4
y,

and the equation, after cancellation by −2, becomes

d4

dx4
y − y = 0.

Clearly the solution of this may be achieved by classical calculus tools with
four boundary conditions. Application problems exploiting this will be ad-
dressed in Chapters 9 (the natural spline) and 11 (the bending beam).

4.2 The Euler-Poisson system of equations

In the case of a functional with multiple functions along with their higher
order derivatives, the problem gets more difficult. Assuming p functions in
the functional, the problem is posed in the form of

I(y1, . . . , yp) =

∫ x1

x0

f(x, y1, y
′
1, . . . , y

(m1)
1 , . . . , yp, y

′
p, . . . , y

(mp)
p )dx.

Note that the highest order of the derivative of the various functions is not
necessarily the same. This is a rather straightforward generalization of the
case of the last section, leading to a system of Euler-Poisson equations as
follows:

∂f

∂y1
− d

dx

∂f

∂y′1
+

d2

dx2
∂f

∂y′′1
− . . . (−1)m1

d(m1)

dx(m1)

∂f

∂y
(m1)
1

= 0,

. . . ,

∂f

∂yp
− d

dx

∂f

∂y′p
+

d2

dx2
∂f

∂y′′p
− . . . (−1)mp

d(mp)

dx(mp)

∂f

∂y
(mp)
p

= 0.

This is a set of p ordinary differential equations that may or may not be cou-
pled, hence resulting in a varying level of ease of the solution.
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4.3 Algebraic constraints on the derivative

It is also common in engineering applications to impose boundary conditions
on some of the derivatives (Neumann boundary conditions). These result in
algebraic constraints posed on the derivative, such as

I(y) =

∫ x1

x0

f(x, y, y′)dx

subject to

g(x, y, y′) = 0.

In order to be able to solve such problems, we need to introduce a Lagrange
multiplier as a function of the independent variable as

h(x, y, y′, λ) = f(x, y, y′) + λ(x)g(x, y, y′).

The use of this approach means that the functional now contains two unknown
functions and the variational problem becomes

I(y, λ) =

∫ x1

x0

h(x, y, y′, λ)dx,

with the original boundary conditions, but without a constraint. The solu-
tion for this unconstrained, two function case is obtained by a system of two
Euler-Lagrange equations.

Derivative constraints may also be applied to the case of higher order deriva-
tives. The second order problem of

I(y) =

∫ x1

x0

f(x, y, y′, y′′)dx

may be subject to a constraint

g(x, y, y′, y′′) = 0.

In order to be able to solve such problems, we also introduce a Lagrange mul-
tiplier function as

h(x, y, y′, y′′) = f(x, y, y′, y′′) + λ(x)g(x, y, y′, y′′).

The result is a variational problem of two functions with higher order deriva-
tives as

I(y, λ) =

∫ x1

x0

h(x, y, y′, y′′, λ)dx.
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Hence the solution may be obtained by the application of a system of two
Euler-Poisson equations.

Finally, derivative constraints may also be applied to a variational problem
originally exhibiting multiple functions, such as

I(y, z) =

∫ x1

x0

f(x, y, y′, z, z′)dx

subject to

g(x, y, y′, z, z′) = 0.

Here the new functional is

h(x, y, y′, z, z′, λ) = f(x, y, y′, z, z′) + λ(x)g(x, y, y′, z, z′).

Following above, this problem translates into the unconstrained form of

I(y, z, λ) =

∫ x1

x0

f(x, y, y′, z, z′, λ)dx

that may be solved by a system of three Euler-Lagrange differential equations

∂h

∂y
− d

dx

∂h

∂y′
= 0,

∂h

∂z
− d

dx

∂h

∂z′
= 0,

and
∂h

∂λ
− d

dx

∂h

∂λ′
= 0.

For example, the variational problem of

I(y, z) =

∫ x1

x0

(y2 − z2)dx = extremum,

under the derivative constraint of

y′ − y + z = 0,

results in

h(x, y, y′, z, z′, λ) = y2 − z2 + λ(x)(y′ − y + z).

The solution is obtained from the following three equations

2y − λ+ λ′ = 0,

−2z + λ = 0,
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and
y′ − y + z = 0.

The elimination of the Lagrange multiplier results in the system of

y − z + z′ = 0,

and
y′ − y + z = 0,

whose solution follows from classical calculus.

4.4 Linearization of second order problems

It is very common in engineering practice that the highest derivative of interest
is of second order. Accelerations in engineering analysis of motion, curvature
in description of space curves, and other important application concepts are
tied to the second derivative.

This specific case of quadratic problems may be reverted to a linear prob-
lem involving two functions. Consider

I(y) =

∫ x1

x0

f(x, y, y′, y′′)dx = extremum.

with the following boundary conditions given

y(x0), y(x1), y
′(x0), y′(x1).

By introducing a new function

z(x) = y′(x),

we can reformulate the unconstrained second order variational problem as a
variational problem of the first order with multiple functions in the integrand

I(y, z) =

∫ x1

x0

f(x, y, z, z′)dx = extremum,

but subject to a constraint involving the derivative

g(x, y, z) = z − y′ = 0.

Using a Lagrange multiplier function in the form of

h(x, y, z, z′, λ) = f(x, y, z, z′) + λ(x)(z − y′),
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and following the process laid out in the last section we can produce a system
of three Euler-Lagrange differential equations.

∂h

∂y
− d

dx

∂h

∂y′
=
∂f

∂y
− dλ

dx
= 0,

∂h

∂z
− d

dx

∂h

∂z′
=
∂f

∂z
+ λ− d

dx

∂f

∂z′
= 0,

and
∂h

∂λ
− d

dx

∂h

∂λ′
= z − y′.

This may, of course, be turned into the Euler-Poisson equation by expressing

λ =
d

dx

∂f

∂z′
− ∂f

∂z

from the middle equation and differentiating as

dλ

dx
=

d2

dx2
∂f

∂z′
− d

dx

∂f

∂z
.

Substituting this and the third equation into the first yields the Euler-Poisson
equation we could have achieved, had we approached the original quadratic
problem directly:

∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2
∂f

∂y′′
= 0.

Depending on the particular application circumstance, the linear system of
Euler-Lagrange equations may be more conveniently solved than the quadratic
Euler-Poisson equation.





5

The inverse problem of calculus of variations

It is often the case that the engineer starts from a differential equation with
certain boundary conditions, which is difficult to solve. Executing the inverse
of the Euler-Lagrange process and obtaining the variational formulation of
the boundary value problem may also be advantageous.

It is not necessarily easy, or may not even be possible to reconstruct the
variational problem from a differential equation. For differential equations,
partial or ordinary, containing a linear, self-adjoint, positive operator, the
task may be accomplished. Such an operator exhibits

(Au, v) = (u,Av),

where the parenthesis expression denotes a scalar product in the function
space of the solution of the differential equation. Positive definiteness of the
operator means

(Au, u) ≥ 0,

with zero attained only for the trivial (u = 0) solution. Let us consider the
differential equation of

Au = f,

where the operator obeys the above conditions and f is a known function. If
the differential equation has a solution, it corresponds to the minimum value
of the functional

I(u) = (Au, u) + 2(u, f).

This may be proven by simply applying the appropriate Euler-Lagrange equa-
tion to this functional.
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5.1 The variational form of Poisson’s equation

We demonstrate the inverse process through the example of Poisson’s equa-
tion, a topic of much interest for engineers:

Δu(x) =
∂2u

∂x2
+
∂2u

∂y2
= f(x, y).

Here the left-hand side is the well-known Laplace operator. We impose Dirich-
let type boundary conditions on the boundary of the domain of interest.

u(x, y) = 0; (x, y) ∈ ∂D,

where D is the domain of solution and ∂D is its boundary. According to the
above proposition, we need to compute

(Au, u) =

∫ ∫
D

u(
∂2u

∂x2
+
∂2u

∂y2
)dxdy.

Applying some vector calculus results in

(Au, u) =

∫
∂D

(u
∂u

∂y
dx− u

∂u

∂x
dy) +

∫ ∫
D

(
∂u

∂x
)2 + (

∂u

∂y
)2dxdy.

Due to the boundary conditions, the first term vanishes and we obtain

(Au, u) =

∫ ∫
D

(
∂u

∂x
)2 + (

∂u

∂y
)2dxdy.

The right-hand side term of the differential equation is processed as

(u, f) =

∫ ∫
D

uf(x, y)dxdy.

The variational formulation of Poisson’s equation finally is

∫ ∫
D

((
∂u

∂x
)2+(

∂u

∂y
)2+2uf)dxdy =

∫ ∫
D

F (x, y, u, ux, uy)dxdy = extremum.

To prove this, we will apply the Euler-Lagrange equation developed in Section
3.3. The terms for this particular case are:

∂F

∂u
= 2f,

∂

∂x

∂F

∂ux
=

∂

∂x
2ux = 2

∂2u

∂x2
,

and
∂

∂y

∂F

∂uy
=

∂

∂y
2uy = 2

∂2u

∂y2
.
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The resulting equation of

2f − 2
∂2u

∂x2
− 2

∂2u

∂y2
= 0

is clearly equivalent with Poisson’s equation.

5.2 The variational form of eigenvalue problems

Eigenvalue problems of various kinds may also be formulated as variational
problems [12]. We consider the equation of the form

Δu(x)− λu(x) = 0, (5.1)

where the unknown function u(x) defined on domain D is the eigensolution
and λ is the eigenvalue. The boundary condition is imposed as

u(x, y) = 0,

on the perimeter ∂D of the domainD. The corresponding variational problem
is of the form

I =

∫ ∫
D

((
∂u

∂x
)2 + (

∂u

∂y
)2)dxdy = extremum, (5.2)

under the condition of

g(x, y) =

∫ ∫
D

u2(x, y)dxdy = 1.

This relation is proven as follows. Following the Lagrange solution of con-
strained variational problems introduced in Section 2.2, we can write

h(x, y) = u(x, y) + λg(x, y),

and

I =

∫ ∫
D

((
∂u

∂x
)2 + (

∂u

∂y
)2 + λu2(x, y))dxdy.

Note that the λ is still only in the role of the Lagrange multiplier, although
its name hints at its final meaning as well. Introducing

U(x, y) = u(x, y) + εη(x, y)

the variational form becomes

I(ε) =

∫ ∫
D

((
∂u

∂x
+ ε

∂η

∂x
)2 + (

∂u

∂y
+ ε

∂η

∂y
)2 + λ(u+ εη)2)dxdy.
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The extremum is reached when

dI(ε)

dε
|ε=0 = 0,

which gives rise to the equation

2

∫ ∫
D

(
∂u

∂x

∂η

∂x
+
∂u

∂y

∂η

∂y
+ λuη)dxdy = 0. (5.3)

Green’s identity in its original three-dimensional form was exploited on sev-
eral occasions earlier; here we apply it for the special vector field

η∇u
in a two-dimensional domain. The result is

∫ ∫
D

(∇η · ∇u)dA =

∫
∂D

η(∇u · n)ds−
∫ ∫

D

η∇2udA.

Since the tangent of the circumference is in the direction of

dx i+ dy j,

the unit normal may be computed as

n =
dy i− dx j√
dx2 + dy2

.

Finally utilizing the arc length formula of

ds =
√
dx2 + dy2,

the line integral over the circumference of the domain becomes

∫
∂D

η(
∂u

∂x
dy − ∂u

∂y
dx).

Applying the above for the first two terms of Equation (5.3) results in

∫ ∫
D

(
∂u

∂x

∂η

∂x
+
∂u

∂y

∂η

∂y
)dxdy =

∫ ∫
∂D

(η(
∂u

∂x
+
∂u

∂y
) · n)ds−

∫ ∫
D

(
∂2u

∂x2
+
∂2u

∂y2
)ηdxdy =

∫
∂D

∂u

∂x
ηdy − ∂u

∂y
ηdx−

∫ ∫
D

Δuηdxdy.

The integral over the boundary vanishes due to the assumption on η, and
substituting the remainder part into Equation (5.3) we obtain

−2

∫ ∫
D

(Δu− λu)ηdxdy = 0.
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Since η(x, y) is arbitrarily chosen, in order to satisfy this equation

Δu− λu = 0

must be satisfied. Thus we have established that Equation (5.2) is indeed
the variational form of Equation (5.1) and the Lagrange multiplier is the
eigenvalue.

5.2.1 Orthogonal eigensolutions

The eigenvalue problem has an infinite sequence of eigenvalues and for each
eigenvalue there exists a corresponding eigensolution that is unique apart from
a constant factor. Hence the variational form should also provide means for
the solution of multiple pairs.

Let us denote the series of eigenpairs as

(λ1, u1), (λ2, u2), . . . (λn, un).

Assuming that we have already found the first pair satisfying

Δu1 − λ1u1 = 0,

we seek the second solution u2, λ2 �= λ1 following the process laid out in the
last section. Then for any arbitrary auxiliary function η it follows that

∫ ∫
D

(
∂u2
∂x

∂η

∂x
+
∂u2
∂y

∂η

∂y
+ λ2u2η)dxdy = 0.

Applying an auxiliary function of the special form of

η = u1,

we obtain

∫ ∫
D

(
∂u2
∂x

∂u1
∂x

+
∂u2
∂y

∂u1
∂y

+ λ2u2u1)dxdy = 0.

The same argument for the first solution results in

∫ ∫
D

(
∂u1
∂x

∂η

∂x
+
∂u1
∂y

∂η

∂y
+ λ1u1η)dxdy = 0.

Applying an auxiliary function of the special form of

η = u2,

we obtain

∫ ∫
D

(
∂u1
∂x

∂u2
∂x

+
∂u1
∂y

∂u2
∂y

+ λ1u1u2)dxdy = 0.
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Subtracting the equations and canceling the identical terms results in

(λ2 − λ1)

∫ ∫
D

u1u2dxdy = 0.

Since

λ1 �= λ2,

it follows that

∫ ∫
D

u2u1dxdy = 0

must be true. The two eigensolutions are orthogonal. With similar arguments
and specially selected auxiliary functions, it is also easy to show that the sec-
ond solutions also satisfy

Δu2 − λ2u2 = 0.

The subsequent eigensolutions may be found by the same procedure and
the sequence of the eigenpairs attain the extrema of the variational problem
under the successive conditions of the orthogonality against the preceding so-
lutions.

5.3 Sturm-Liouville problems

The process demonstrated in the last section in connection with Laplace’s
operator may be applied to arrive at eigenvalues and eigensolutions of other
differential equations as well. The differential equations of the form

− d

dx
(p(x)

dy

dx
) + q(x)y(x) = λy(x),

are called the Sturm-Liouville differential equations. Here the unknown so-
lution function y(x) is the eigensolution and λ is the eigenvalue. The known
functions p(x) and q(x) are continuous and continuously differentiable, re-
spectively. The boundary conditions imposed are

y(x0) = 0

and
y(x1) = 0.

The corresponding variational problem is posed as

I(y) =

∫ x1

x0

(p(x)y′2(x) + q(x)y2(x))dx = extremum,
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subject to the above boundary conditions and the additional constraint of

∫ x1

x0

y2(x)dx = 1.

The engineering importance of these problems lies in the fact that, depend-
ing on the choice of the coefficient functions p(x), q(x), various influential
functions may be generated as the eigensolutions. For example, the Bessel
functions, Hermite, Chebyshev, and Laguerre polynomials may be derived
from Sturm-Liouville equations with various selections of the coefficient func-
tions.

The simplest form of the Sturm-Liouville equations is with

p(x) = 1

and
q(x) = 0,

leading to

− d

dx
(
dy

dx
) = λy(x).

Straightforward integration indicates the possibility of a solution in the form
of trigonometric functions. Surely, a solution of the form

y(x) = cisin(ix), i = 1, 2, . . .

would satisfy the equation with a judicious choice of the constant ci and
boundary conditions. We will assume boundary conditions of

y(0) = 0

and
y(π) = 0.

The selection of this boundary is for the convenience of dealing with this
function family and does not restrict the generality of the discussion. Fur-
thermore, it is well established that

∫ π

0

sin(ix)sin(jx)dx = 0; i �= j,

hence these solutions are orthogonal. The constraint equation is easy to eval-
uate, since for i = 1, for example,

∫ π

0

(c1sin(1x))
2dx = c21

∫ π

0

sin2(x)dx = c21(
1

2
x|π0 − 1

4
sin(2x)|π0 ).

Substituting the boundary values results in

c21
π

2
= 1,
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producing the constant necessary to satisfy the constraint:

c1 =

√
2

π
.

The generic solution may be obtained from the form

∫ π

0

(cisin(ix))
2dx = c2i

∫ π

0

sin2(ix)dx = c2i (
1

2
x|π0 − 1

4i
sin(2ix)|π0 ).

Considering the boundary conditions, the second term vanishes and

c2i
π

2
= 1,

which yields the generic coefficients as

ci =

√
2

π
.

In order to establish the eigenvalues, we execute the operations posted by the
differential equation for the generic solution,

− d

dx
(cisin

′(ix)) = − d

dx
(icicos(ix)) = i2cisin(ix)),

which must be equal to the right-hand side of

λcisin(ix).

This results in the eigenvalue of

λ = i2.

A more generic discussion of this case is presented in [10]. It is noteworthy
that even this simplest form of Sturm-Liouville problems leads to an engineer-
ing application, the vibrating string problem, the subject of Section 11.1.

5.3.1 Legendre’s equation and polynomials

A very important sub-case of the Sturm-Liouville problems is when

p(x) = 1− x2,

along with

q(x) = 0.

The form of the equation becomes

d

dx
((1 − x2)

dy

dx
) + λy(x) = 0,



The inverse problem of calculus of variations 65

subject to the boundary conditions

y(−1) = 0,

and

y(1) = 0.

The associated variational problem becomes

I(y) =

∫ +1

−1

(1− x2)(
dy

dx
)2dx = extremum,

subject to the constraint

∫ +1

−1

y2dx = 1.

It is easy to obtain the Euler-Lagrange equation of this constrained variational
problem as

∂

∂y
((1− x2)y′2 − λy2)− d

dx
(
∂

∂y′
((1 − x2)y′2 − λy2)) = 0.

Here λ again is only the Lagrange multiplier connecting the constraint, but its
final disposition is pre-ordained. The equation with some algebra simplifies to

d

dx
((1 − x2)y′) + λy = 0,

which is of course the equation we started from. The eigenvalues of this prob-
lem are of the form

λ = i(i+ 1),

and the eigensolutions are

y(x) = ciLei(x).

Here ci are constants and Lei are the Legendre polynomials. The first few
values of the eigenpairs are shown in Table 5.1.

The eigensolution functions are shown graphically in Figure 5.1.

The first eigensolution with

λ0 = 0

and

y0(x) = 1
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TABLE 5.1

Eigenpairs of Legendre
equation

i λ Lei(x) ci

0 0 1
√
1/2

1 2 x
√
3/2

2 6 (3x2 − 1)/2
√
5/2

3 12 (5x3 − 3x)/2
√

7/2

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.5  0  0.5  1

Le0(x)
Le1(x)
Le2(x)
Le3(x)

FIGURE 5.1 Eigensolutions of Legendre’s equation

is clearly a trivial solution, since both terms of the left-hand side of the equa-
tion vanish. The first non-trivial solution may be verified as

d

dx
((1 − x2)(x)′) + 2x =

d

dx
(1− x2) + 2x = −2x+ 2x = 0.

Furthermore, the satisfaction of the constraint equations is seen as

∫ +1

−1

y2dx = c21

∫ +1

−1

x2dx = c21
x3

3
|+1
−1 = c21

2

3
.

The constant of
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c1 =

√
3

2

will enforce the satisfaction of

∫ +1

−1

y2dx = 1.

In fact, the generic form of the constants may be obtained by

ci =

√
2i+ 1

2
.

Finally, Sturm-Liouville problems may also be presented with functions of
multiple variables. For example, in three dimensions the equation becomes

−∇(p(x, y, z)∇u(x, y, z)) + q(x, y, z)u(x, y, z) = λu(x, y, z)

leading to various elliptic partial differential equations that all have engineer-
ing implications.





6

Analytic solutions of variational problems

This chapter presents a handful of analytic methods for solving variational
problems. They include the methods of Laplace transformation, separation
of variables, complete integrals, and Poisson’s integral formula. The method
of gradients, with high relevance to engineering optimization, concludes the
chapter.

6.1 Laplace transform solution

The first method we discuss in this chapter transforms the original variational
problem by applying the Laplace transform and producing an auxiliary dif-
ferential equation.

Let us consider the variational problem of

I(t, x) =

∫
f(t, x)dt = extremum,

and apply the Laplace transform to the function as

∫ ∞

0

e−stf(t, x)dt.

During this transform we regard time as the independent variable and x as a
parameter. Note that the transformation of the boundary conditions is also
required to obtain the complete auxiliary problem.

Let us illustrate this by the Euler-Lagrange differential equation of one spa-
tial and one temporal independent variable of the form

a2
∂2u

∂x2
− ∂u

∂t
= 0,

with initial condition

u(t = 0, x) = 0,

69
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and boundary conditions
u(t, x = 0) = 0

and
u(t, x = 1) = B.

Executing the Laplace transform on the boundary conditions results in

u(s, 0) =

∫ ∞

0

e−stu(t, 0)dt =
∫ ∞

0

e−st0dt =
0

s
= 0

and

u(s, 1) =

∫ ∞

0

e−stu(t, 1)dt =
∫ ∞

0

e−stBdt =
B

s
.

Transforming the yet unknown solution as

u(s, x) =

∫ ∞

0

e−stu(t, x)dt,

we produce the auxiliary equation in the form of

a2
d2u

dx2
− su = 0.

This equation is now ordinary. By integrating twice and applying Euler’s
formula the solution of the auxiliary equation becomes

u(s, x) =
B

s

sinh(x
√

s
a )

sinh(
√

s
a )

.

Finally, inverse Laplace transformation yields the solution of the original prob-
lem in the form of

u(t, x) = B(x+
2

π
Σ∞
k=1

(−1)k

k
e−(kπa)2tsin(kπx)).

This is the analytic solution of the one-dimensional heat conduction prob-
lem with constant temperature (B) at the boundary. The two- and three-
dimensional heat conduction problems will be the subject of further discus-
sion in the next section.

Let us now consider another Euler-Lagrange equation whose temporal deriva-
tive is also of second order

a2
∂2u

∂x2
− ∂2u

∂t2
= 0.

The initial conditions are

u(t = 0, x) = 0,
∂u

∂t
(t = 0, x) = 0.
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The boundary conditions are

u(t, x = 0) = 0,
∂u

∂x
(t, x = 1) = B.

The boundary conditions are transformed again as

u(x = 0) = 0

and
du

dx
(x = 1) =

B

s
,

where s is the Laplace variable. The auxiliary equation becomes an ordinary
differential equation of

d2u

dx2
=
s2

a2
u,

Integrating this equation we obtain the result in the form

u(s, x) =
aB

s2
sinh( sxa )

cosh( sa )
.

Finally the inverse transformation yields the solution of the original problem
at any point in the domain at any time as

u(t, x) = B(x− 8

π2
Σ∞
k=0

(−1)k

2k + 1
sin(

πx

2
(2k + 1))cos(

πat

2
(2k + 1))).

This is the analytic solution to the problem of the compression of a unit length
beam along its longitudinal axis. The coefficient a and boundary condition
B represent the physical characteristics of the beam and the problem, respec-
tively. They will be introduced in connection with the solution of a beam
bending under its weight, presented in Section 11.3.

6.2 Separation of variables

The method discussed here has a resemblance to the Laplace transform so-
lution since it also uses a transformation of the solution. We address the
problem of

∂u

∂t
= h2(

∂2u

∂x2
+
∂2u

∂y2
).

We impose uniformly zero boundary conditions as

u(x, 0, t) = u(x, b, t) = 0; 0 ≤ x ≤ a,
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and

u(0, y, t) = u(a, y, t) = 0; 0 ≤ y ≤ b.

The initial solution is given as a non-zero function of the spatial coordinates

u(x, y, 0) = f(x, y).

The separation of variables method seeks a solution in the form of

u(x, y, t) = e−λtu1(x)u2(y),

where λ is a yet unknown constant. Substitution and differentiation yields

−λu1u2 = h2(u′′1u2 + u1u
′′
2).

Conveniently reordering produces

u′′1
u1

+
λ

h2
= −u

′′
2

u2
= k2,

where k is a constant since the left-hand side is independent of y and the
right-hand side is independent of x. Introducing

q2 =
λ

h2
− k2,

we obtain a system of ordinary differential equations:

u′′1 + q2u1 = 0,

and

u′′2 + k2u2 = 0.

Their solutions are easily obtained as

u1(x) = a1sin(qx) + b1cos(qx),

and

u2(y) = a2sin(ky) + b2cos(ky).

The boundary conditions imply that b1 = b2 = 0 as well as

sin(qa) = 0,

and

sin(kb) = 0.

Here a, b are the original spatial boundaries. Due to the periodic nature of
the trigonometric functions

q =
mπ

a
,m = 1, 2, ..



Analytic solutions of variational problems 73

and

k =
nπ

b
, n = 1, 2, ..

Substituting produces the unknown variable as

λmn = h2((
mπ

a
)2 + (

nπ

b
)2),

and the solution function of

u(x, y, t) = Σ∞
m=1Σ

∞
n=1cmne

−λmntsin
mπx

a
sin

nπy

b
.

The final unknown coefficient cmn is obtained by the satisfaction of the initial
condition:

f(x, y) = Σ∞
m=1Σ

∞
n=1cmnsin

mπx

a
sin

nπy

b
,

from which the value of

cmn =
4

ab

∫ b

0

∫ a

0

f(x, y)sin
mπx

a
sin

nπy

b
dxdy

emerges. It is easy to generalize this solution to the three-dimensional prob-
lem of

∂u

∂t
= h2(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
).

We impose uniformly zero boundary conditions on three spatial dimensions as

u(x, y, 0, t) = u(x, y, c, t) = 0; 0 ≤ x ≤ a, 0 ≤ y ≤ b.

u(x, 0, z, t) = u(x, b, z, t) = 0; 0 ≤ x ≤ a, 0 ≤ z ≤ c.

and

u(0, y, z, t) = u(a, y, z, t) = 0; 0 ≤ y ≤ b, 0 ≤ z ≤ c.

The initial solution is given as a non-zero function of the three spatial coor-
dinates,

u(x, y, z, 0) = f(x, y, z).

The solution with

λmnr = h2((
mπ

a
)2 + (

nπ

b
)2) + (

rπ

c
)2),

becomes

u(x, y, z, t) = Σ∞
m=1Σ

∞
n=1Σ

∞
r=1cmnre

−λmnrtsin
mπx

a
sin

nπy

b
sin

rπz

c
.
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The coefficient of the solution is also a straightforward generalization as

cmnr =
8

abc

∫ c

0

∫ b

0

∫ a

0

f(x, y, z)sin
mπx

a
sin

nπy

b
sin

rπz

c
dxdydz.

These last two solutions were the analytic solutions to the two- and three-
dimensional heat conduction problems. The computational solution of the
two-dimensional problem will be further addressed in Chapter 12.

Let us now solve a problem of two spatial variables again, but with a tem-
poral variable whose second derivative is present:

h2(
∂2u

∂x2
+
∂2u

∂y2
) =

∂2u

∂t2
.

We assume constant boundary conditions:

u(0, y, t) = u(a, y, t) = 0,

and
u(x, 0, t) = u(x, b, t) = 0.

The a, b are the dimensions of the domain. We seek the solution in the sepa-
rated form of

u(x, y, t) = eiλtv(x, y).

Note the presence of the imaginary unit i in the exponent for later conve-
nience. We introduce the constant

k2 =
λ2

h2
.

Substitution yields the new differential equation

∂2v

∂x2
+
∂2v

∂y2
+ k2v = 0.

The new boundary conditions are

v(0, y) = v(a, y) = 0,

and
v(x, 0) = v(x, b) = 0.

Furthermore, we separate the variables of this equation as

v(x, y) = u1(x)u2(y).

This leads to the system of equations

1

u1

d2u1
dx2

= − 1

u2

d2u2
dy2

− k2 = −m2.
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Here m is another yet unknown constant. The now familiar system of ordi-
nary differential equations arises again

d2u1
dx2

+m2u1 = 0,

and
d2u2
dy2

+ q2u2 = 0,

with q2 = k2 −m2. The new boundary conditions are

u1(0) = u1(a) = 0,

and
u2(0) = u2(b) = 0.

Following the road paved earlier in this section, the first equation yields

u1(x) = A1sin(mx),

with ma = nπ, n = 1, 2, 3, ... and the second equation

u2(y) = A2sin(qy),

with qb = rπ, r = 1, 2, 3, .... Exploiting the relation

k2 = m2 + q2 = π2(
n2

a2
+
r2

b2
)

we obtain the original parameter of the transformation

λnr = hπ

√
n2

a2
+
r2

b2
.

Finally by substituting and using Euler’s formula we obtain

u(x, y, t) = Σ∞
n=1Σ

∞
r=1cnrcos(λnrt)sin

nπx

a
sin

rπy

b
.

The initial displacement represented by f(x, y) aids in finding the final coef-
ficient as

cnr =
4

ab

∫ b

0

∫ a

0

f(x, y)sin
nπx

a
sin

rπy

b
dxdy.

This is the analytic solution of the problem of the vibrating membrane. A
more general solution of this problem with variable boundary conditions is
presented in Chapter 11.

Finally, let us consider an Euler-Lagrange equation of the first order with
many independent variables in the implicit form of

F (x1, x2, ...xn, u,
∂u

∂x1
,
∂u

∂x2
, ...

∂u

∂xn
) = 0,
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whose generic solution is

u(x1, x2, ...xn; a1, a2, ..., an) = 0.

The solution to such problems may be found by a repeated use of the separa-
tion of variables and the constant k. Let us first separate one variable as

u(x1, x2, ...xn) = u1(x1) + u2(x2, x3, ...xn).

This corresponds to the following differential equation

F1(x1, u1,
∂u1
∂x1

) = F2(x2, x3...xn, u2,
∂u2
∂x2

,
∂u2
∂x3

, ...
∂u2
∂xn

) = k2.

The equation may be satisfied by solving a pair of equations with an unknown
constant:

F1(x1, u1,
∂u1
∂x1

) = k2,

and

F2(x2, x3...xn, u2,
∂u2
∂x2

,
∂u2
∂x3

, ...
∂u2
∂xn

) = k2.

The first equation becomes an ordinary differential equation whose solution
is easily obtained. The second equation may again be further separated and
the same process continued.

6.3 Complete integral solutions

For certain types of problems a complete integral solution is available [16].
The complete integral form presents a parametric family of general solutions.
The particular solution of a specific problem can then be obtained from the
general complete integral solution by selection of the parameters.

We will first demonstrate generating a complete integral solution by ex-
ploiting the concept of separation of variables introduced in the last section.
For the simplicity of the discussion, and without loss of generality, we will do
this with an example of only two independent variables.

F (x, y, u,
∂u

∂x
,
∂u

∂y
) = 0.

We seek the complete integral solution as

u(x, y, u, a, b) = 0.
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where the a, b are yet unknown coefficients. Let us generate the complete
integral solution for the equation of

(
∂u

∂x
)2 + (

∂u

∂y
)2 = 1.

The separated solution is of the form

u(x, y) = u1(x) + u2(y).

The first differential equation with a constant k is then

F1(x, u1,
du1
dx

) = (
du1
dx

)2 = k2.

The solution comes by

du1 = kdx,

from which

u1 = kx+ k1

emerges. Similarly the second, in this case also ordinary equation is

F2(y, u2,
du2
dy

) = 1− (
du2
dy

)2 = k2.

The solution of

du2 =
√
1− k2dy

yields

u2 =
√
1− k2y + k2.

Finally the complete integral solution for this problem is

u(x, y, a, b) = ax+
√
1− a2y + b,

with a = k and b = k1 + k2. The complete integral solution satisfies the
original problem

(
∂u

∂x
)2 + (

∂u

∂y
)2 = 1,

since
∂u

∂x
= a,

∂u

∂y
=

√
1− a2,

and

a2 + 1− a2 = 1.

This is a two-parameter family of solutions from which any particular solu-
tion may be obtained. Surely any selection of the parameter b will satisfy
the original equation. As far as the parameter a is concerned, selecting for
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example a = 1/2 will result in

∂u

∂x
=

1

2
,
∂u

∂y
=

√
1− 1

4
,

and
1

4
+ 1− 1

4
= 1.

During generating a complete integral solution, the separation strategy de-
pends on the given differential equation. When second derivatives are also
present a product type separation may be used. For example, for the equation

∂2u

∂x2
− ∂u

∂y
= 0

the separated solution of the form

u(x, y) = u1(x) · u2(y)
is recommended. The pair of differential equations in this scenario are

1

u1

d2u1
dx2

= k2,

and
1

u2

du2
dy

= k2.

The solution of this system is of the form

u(x, y) = (k1e
kx + k2e

−kx)ek
2y.

Note that three parameters are needed because of the presence of the second
derivative. Since this is the complete integral solution we have the freedom of
choice of the parameters. By setting them all to unity, a particular solution
emerges as

u(x, y) = (ex + e−x)ey = ex+y + ey−x.

To validate the solution we compute

∂2u

∂x2
= ex+y + ey−x

and
∂u

∂y
= ex+y + ey−x,

whose difference is the desired zero.
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Let us now consider simply using pre-computed complete integrals. Cer-
tain complete integral solutions actually contain integrals. Consider the non-
homogeneous differential equation type with non-constant coefficients

a(x)(
∂u

∂x
)2 + b(x)(

∂u

∂y
)2 = f(x) + g(y).

Such problems have a complete integral solution of

u(x, y) =

∫ x
√
f(t) + a1
a(t)

dt+

∫ y
√
g(t)− a1
b(t)

dt+ a2.

For example, the equation

(
∂u

∂x
)2 + (

∂u

∂y
)2 = x+ y

has a complete integral solution of the form

u(x, y) =

∫ x√
t+ a1dt+

∫ y√
t− a1dt+ a2.

There are also rather specific, but practical problems where the partial deriva-
tives occur in an exponential expression. The generic form of such problems is

∂u

∂x
= f(x)

∂u

∂y
+ g(x)e

∂u
∂y .

The complete integral solution of this problem is in the following form

u = a1

∫ x

0

f(t)dt+ ea1
∫ x

0

g(t)dt+ a1y + a2.

For an example of this case, the equation

∂u

∂x
= x2

∂u

∂y
+ xe

∂u
∂y ,

has a complete integral solution in the following form

u = a1x
3/3 + ea1x2/2 + a1y + a2.

Finding a particular solution from a complete integral solution is not always
trivial. From the complete integral solution of the form

u = f(x1, x2, ..., xn, a1, a2, ..., an)

the introduction of another set of coefficients as

∂f

∂ai
= bi
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results in a new complete integral solution of

u = f(a1, a2, ..., an, b1, b2, ..., bn).

This may provide an easier way toward the particular solution form.

6.4 Poisson’s integral formula

We consider Laplace’s equation in two dimensions that plays a fundamental
role in mathematical physics:

∂2u

∂x2
+
∂2u

∂y2
= 0.

We will assume a circular domain and use the polar coordinate form as

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂φ2
= 0,

where r =
√
x2 + y2, φ = arctan yx . Here the r is the radius and the φ is the

polar angle. Using the separation of variables again, we seek the solution in
the form of

u(r, φ) = u1(r)u2(φ),

with the notational convention also followed. Substituting into the equation
we obtain

1

u1(r)
(r2

d2u1
dr2

+ r
du1
dr

) = − 1

u2

d2u2
dφ2

= k2,

where k2 is the yet unknown coefficient. The resulting pair of ordinary differ-
ential equations becomes

r2
d2u1
dr2

+ r
du1
dr

− k2u1 = 0

and
d2u2
dφ2

+ k2u2 = 0.

The general solutions of these equations were derived in an earlier section.
For k = 0 the separate solutions are

u2,0(φ) = a0φ+ b0
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and
u1,0(r) = c0ln(r) + d0.

The complete solution for the k = 0 case is

u0(r, φ) = (a0φ+ b0)(c0ln(r) + d0).

In the case of k �= 0 the separated solutions are

u2,k(φ) = akcos(kφ) + bksin(kφ),

and
u1,k(r) = ckr

k + dkr
−k.

The solution of the problem is then

uk(r, φ) = (akcos(kφ) + bksin(kφ))(ckr
k + dkr

−k).

We assume a uniquely defined solution function, therefore

uk(r, φ) = uk(r, φ+ 2π),

which implies that k can only be an integer. Executing the multiplication and
introducing the products

ak = akck,

bk = bkck,

ck = akdk

and
dk = bkdk,

we obtain

uk(r, φ) = Σ∞
k=1r

k(akcos(kφ)+ bksin(kφ))+Σ∞
k=1

1

rk
(ckcos(kφ)+ dksin(kφ)).

The constants may be found by the boundary conditions. Dictating that the
solution should be non-zero and bounded at the origin implies that

a0, c0, ck, dk = 0.

Because the Laplace equation is linear and homogeneous, the solution is the
sum of the k = 0 and k �= 0 solutions:

u(r, φ) = a0 +Σ∞
k=1r

k(akcos(kφ) + bksin(kφ).

Here a0 = b0d0. Let us impose another, external boundary condition at the
outermost radius of our interest as

u(rmax, φ) = f(φ).
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Substituting into the solution form we get

f(φ) = a0 +Σ∞
k=1r

k
max(akcos(kφ) + bksin(kφ)).

Hence the coefficients become

a0 =
1

2π

∫ 2π

0

f(φ)dφ,

ak =
1

rkmaxπ

∫ 2π

0

f(φ)cos(kφ)dφ,

and

bk =
1

rkmaxπ

∫ 2π

0

f(φ)sin(kφ)dφ.

Bringing the now resolved coefficients into the generic solution form and in-
troducing a new integral variable ψ we obtain

u(r, φ) =
1

2π

∫ 2π

0

f(ψ)dψ+

1

π
Σ∞
k=1(

r

rmax
)k(sin(kφ)

∫ 2π

0

f(ψ)sin(kψ)dψ + cos(kφ)

∫ 2π

0

f(ψ)cos(kψ)dψ).

Employing the algebraic identity of

cos(ψ − φ) = cos(φ)cos(ψ) + sin(φ)sin(ψ),

we can write

u(r, φ) =
1

2π

∫ 2π

0

f(ψ)dψ +
1

π
Σ∞
k=1

∫ 2π

0

f(ψ)(
r

rmax
)kcos(k(ψ − φ))dψ.

Since for 0 ≤ r ≤ rmax the series of

Σ∞
k=1(

r

rmax
)kcos(k(ψ − φ))

is monotonically convergent, the order of the integration and summation may
be changed. This results in the form:

u(r, φ) =
1

π

∫ 2π

0

f(ψ)(
1

2
+ Σ∞

k=1(
r

rmax
)kcos(k(ψ − φ)))dψ.

Finally, we use Euler’s formula to replace the cos term as

cos(k(ψ − φ)) =
eik(ψ−φ) + e−ik(ψ−φ)

2
.

In the above expression i =
√−1 is the imaginary unit. Substituting the

above and after some algebraic manipulations we obtain

u(r, φ) =
1

2π

∫ 2π

0

f(ψ)
r2max − r2

r2max − 2rmaxrcos(φ − ψ) + r2
dψ.
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This formula is known as Poisson’s integral formula. With this the solution
value of Laplace’s equation on a bounded circular domain may be obtained at
any radius 0 ≤ r ≤ rmax and at any angle φ + j2π, j = 0, 1, 2, ..., for a given
boundary value function f(φ).

Laplace’s equation of course also occurs in three-dimensional form fre-
quently as

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0.

Assuming a circular domain as above, the z dimension’s presence leads us to
use cylindrical coordinates

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂φ2
+
∂2u

∂z2
= 0.

Following the method laid out above, we seek the solution in the form of

u(r, φ) = u1(r)u2(φ)u3(z).

Substitution yields

1

u3

d2u3
dz2

= − 1

u1

d2u1
dr2

− 1

u1r

du1
dr

− 1

r2φ

d2u2
dφ2

.

Relying on the insight gained in the last sections using an unknown coefficient,
for the left-hand side we chose the solution of

1

u3

d2u3
dz2

= k2.

This choice yields

u3(z) = c1e
kz + c2e

−kz.

The right-hand side of the problem may be written as

r2

u1

d2u1
dr2

+
r

u1

du1
dr

+ k2r2 = − 1

u2

d2u2
dφ2

= m2,

where m is another yet unknown constant. In order to have a solution as a
uniquely defined function in φ, m is again an integer. The right-hand equation
becomes an ordinary differential equation as

d2u2
dφ2

+m2u2 = 0,

whose solution is

u2(φ) = c3cos(mφ) + c4sin(mφ).
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Finally the remaining equation is of the Bessel kind:

r2
d2u1
dr2

+ r
du1
dr

+ (k2r2 −m2)u1 = 0.

The solution of such a differential equation when m is not an integer is of the
form

u1(r) = c5Jm(kr) + c6J−m(kr),

where J are the Bessel functions of the first kind, defined by the formula

Jm(x) =

∞∑
n=0

(−1)n

n!(n+m)!
(
x

2
)m+2n,

This is a convergent series for any x = kr value. The J−m function in the
expression is simply defined by

J−m(x) = (−1)mJm(x).

However, in our case m is an integer and then the solution is

u1(r) = c5Jm(kr) + c6Ym(kr).

The Bessel function of the second kind is defined as

Ym(x) = lim
p→m

cos(pπ)Jp(x) − J−p(x)
sin(pπ)

.

The limit is needed since the denominator is zero for any integer multiple of
π. Therefore, this function is infinite at the origin, hence to assure that at
r = 0 we have a bounded solution, we choose c6 = 0. Then the term with Ym
drops out and the solution of this equation becomes

u1(r) = c5Jm(kr).

When m is an integer, Bessel functions of the first kind can also be computed
from integral formulae:

Jm(x) =
1

π

∫ π

0

cos(xsin(t))cos(mt)dt,

when m is even, and

Jm(x) =
1

π

∫ π

0

sin(xsin(t))sin((m+ 1)t)dt,

when m is odd.

Finally, rejoining the separated solutions we obtain

u(r, φ, z) = Σ∞
m=0(e

kz(amcos(mφ) + bmsin(mφ))+
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+e−kz(dmcos(mφ) + emsin(mφ))Jm(kr)).

Here am, bm, dm, em are various products of the above ck constants to be
specified by the boundary conditions. This is the general solution of the
three-dimensional Laplace’s equation in cylindrical coordinates.

6.5 Method of gradients

The final method in this class of solutions is that of the gradients. Let us focus
on the very first variational problem we were faced with at the beginning of
the book:

I(y) =

∫ 1

0

f(x, y, y′)dx = extremum.

The gradient of this functional, based on [10] is

I ′(y) =
∫ x

0

(

∫ 1

t

∂

∂y
f(s, y(s), y′(s))ds +

∂

∂y′
f(t, y(t), y′(t)))dt.

I(y) is at an extremum when I ′(y) = 0. With this gradient, we can construct
a procedure as follows. Starting from an initial solution y1(x), we compute
successive approximations as

yi+1 = yi − αiI
′(yi), i = 1, 2, ...

where the constant may be determined from

minαi≥0I(yi − αiI
′(yi)).

The sequence of

I(y1) ≥ I(y2) ≥ ... ≥ I(yi)

is continued until the following condition is satisfied:

I(yi)− I(yi+1)

I(yi)
< ε, I(yi) �= 0.

Here ε is an appropriately chosen small number.

Let us illuminate this procedure with a simple example of seeking the so-
lution of the variational problem of

I(y) =

∫ 1

0

(2xy + y2 + y′2)dx = minimum.
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The two parts of the gradient of this functional are computed from the above
formula as

∫ x

0

∂f

∂y′
dt =

∫ x

0

2y′(t)dt = 2y(x),

and ∫ x

0

∫ 1

t

∂f

∂y
dsdt =

∫ x

0

∫ 1

t

(2s+ 2y(s))dsdt.

The first term of this integral is

∫ x

0

∫ 1

t

2sdsdt =

∫ x

0

s2|1tdt =
∫ x

0

(1− t2)dt = x− x3

3
.

Since we do not know y(x) yet the second term cannot be integrated and kept
in integral form. So the gradient of this example is

I ′(y) = 2y(x) + x− x3

3
+ 2

∫ x

0

∫ 1

t

y(s)dsdt.

The successive approximation procedure for this becomes

yi+1(x) = yi(x)− αi(2yi(x) + x− x3

3
+ 2

∫ x

0

∫ 1

t

yi(s)dsdt).

From the initial solution y1(x) = 0 we obtain the starting gradient of

I ′(y1) = x− x3

3
.

The procedure’s first step produces

y2(x) = y1(x)− α1I
′(y1) = −α1(x− x3

3
).

Substituting into the functional we obtain

I(y2) =

∫ 1

0

(−2α1(x
2 − x4

3
) + (x− x3

3
)2 + α2

1(1− x2)2)dx.

Executing the posted operations, grouping, and integrating, will result in the
quadratic expression

I(y2) =
4

15
(
59

21
α2
1 − 2α1)

whose minimum is at

α1 =
21

59
.

Hence

y2(x) = −21

59
(x− x3

3
)
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and

I(y2) = − 28

295
.

We then compute I ′(y2) and the solution of

minα2≥0I(y2 − α2I
′(y2))

produces the next iteration in the form of

y3(x) = y2(x) − α2I
′(y2).

Then the process continues until convergence is achieved.

The gradient method is fundamental in engineering optimization problems
of variational origin. In practical solutions, however, the gradient is computed
by evaluating the solution function at discrete locations in the solution do-
main. This is the approach in structural optimization where the finite element
method (to be discussed in detail in Section 12.5) is used.





7

Numerical methods of calculus of variations

In the last chapter we focused on analytical solutions. Application problems
in engineering practice, however, may not be easily solved by such techniques,
if solvable at all. Hence, before we embark on applications, it seems prudent to
discuss solution techniques that are amenable for practical problems. These
methods produce approximate solutions and are, as such, called numerical
methods.

It was mentioned in the introduction that the solution of the Euler-Lagrange
differential equation resulting from a certain variational problem may not be
easy. This gave rise to the idea of directly solving the variational problem.
The classical method is the Euler method.

The most influential method is that of Ritz. The methods of Galerkin and
Kantorovich, both described in [13], could be considered extensions of Ritz’s.
They are the most well-known by engineers and used in the industry. Finally,
the boundary integral method is also useful for certain kind of engineering
problems.

7.1 Euler’s method

Euler proposed a numerical solution for the variational problem of

I(y) =

∫ xn

x0

f(x, y, y′)dx = extremum

with the boundary conditions

y(x0) = y0; y(xn) = yn,

by subdividing the interval of the independent variable as

xi = x0 + i
xn − x0

n
; i = 1, 2, . . . , n.

89
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Introducing

h =
xn − x0

n
,

the functional may be approximated as

I(yi) =

∫ x1

x0

f(xi, yi, y
′
i) = h

n−1∑
i=1

f(x0 + ih, yi,
yi+1 − yi

h
)dx = extremum.

Here the approximated solution values yi are the unknowns and the extremum
may be found by differentiation:

∂I

∂yi
= 0.

The process is rather simple and follows from Euler’s other work in the nu-
merical solution of differential equations. For illustration, we consider the
following problem:

I(y) =

∫ 1

0

(2xy + y2 + y′2)dx = extremum,

with the boundary conditions

y(0) = y(1) = 0.

Let us subdivide the interval into n = 5 equidistant segments with

h = 0.2,

and
xi = 0.2i.

The approximate functional with the appropriate substitutions becomes

I(yi) = 0.2
4∑
i=1

(0.4iyi + y2i + (5(yi+1 − yi))
2).

The computed partial derivatives are

∂I

∂y1
= 0.2(0.4 + 2y1 − 2(y2 − y1)

0.04
) = 0,

∂I

∂y2
= 0.2(0.8 + 2y2 − 2(y3 − y2)

0.04
+

2(y2 − y1)

0.04
) = 0,

∂I

∂y3
= 0.2(1.2 + 2y3 − 2(y4 − y3)

0.04
+

2(y3 − y2)

0.04
) = 0,

and
∂I

∂y4
= 0.2(1.6 + 2y4 +

2y4
0.04

+
2(y4 − y3)

0.04
) = 0.
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TABLE 7.1

Accuracy of Euler’s
method

i xi yi y(xi)

1 0.2 -0.0286 -0.0287
2 0.4 -0.0503 -0.0505
3 0.6 -0.0580 -0.0583
4 0.8 -0.0442 -0.0444

This system of four equations yields the values of the approximate solution.
The analytic solution of this problem is

y(x) = −x+ e
ex − e−x

e2 − 1
.

The comparison of the Euler solution (yi) and the analytic solution (y(xi)) at
the four discrete points is shown in Table 7.1.

The boundary solutions of y(0) and y(1) = 0 are not shown since they are
in full agreement by definition.

7.2 Ritz method

Let us consider the variational problem of

I(y) =

∫ x1

x0

f(x, y, y′)dx = extremum,

under the boundary conditions

y(x0) = y0; y(x1) = y1.

The Ritz method is based on an approximation of the unknown solution
function with a linear combination of certain basis functions. Finite element
or spline-based approximations are the most commonly used and will be the
subject of detailed discussion in Chapters 9 and 11. Let the unknown function
be approximated with

y(x) = α0b0(x) + α1b1(x) + . . .+ αnbn(x),

where the basis functions are also required to satisfy the boundary conditions
and the coefficients are as yet unknown. Substituting the approximate solu-
tion into the variational problem results in
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I(y) =

∫ x1

x0

f(x, y, y′)dx = extremum.

In order to reach an extremum of the functional, it is necessary that the
derivatives with respect to the unknown coefficients vanish:

∂I(y)

∂αi
= 0; i = 0, 1, . . . , n.

It is not intuitively clear that the approximated function approaches the
extremum of the original variational problem, but it has been proven, for
example in [13]. Let us just demonstrate the process with a small analytic
example. Consider the variational problem of

I(y) =

∫ 1

0

y′2(x)dx = extremum,

with the boundary conditions

y(0) = y(1) = 0,

and constraint of

∫ 1

0

y2(x)dx = 1.

Since this is a constrained problem, we apply the Lagrange multiplier tech-
nique and rewrite the variational problem as

I(y) =

∫ 1

0

(y′2(x)− λy2)dx = extremum.

Let us use, for example, the basis functions of

b0(x) = x(x− 1)

and
b1(x) = x2(x− 1).

It is trivial to verify that these also obey the boundary conditions. The ap-
proximated solution function is

y = α0x(x− 1) + α1x
2(x− 1).

The functional of the constrained, approximated variational problem is

I(y) =

∫ 1

0

(y′2 − λy2)dx.

Evaluating the integral yields

I(y) =
1

3
(α2

0 + α0α1 +
2

5
α2
1)− λ(

1

30
α2
0 +

1

30
α0α1 +

1

105
α2
1).
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The extremum requires the satisfaction of

∂I

∂α0
= α0(

2

3
− λ

15
) + α1(

1

3
− λ

30
) = 0

and
∂I

∂α1
= α0(

1

3
− λ

30
) + α1(

4

15
− 2λ

105
) = 0.

A nontrivial solution of this system of equations is obtained by setting its
determinant to zero, resulting in the following quadratic equation

λ2 − 52λ+ 420

6300
= 0.

Its solutions are

λ1 = 10;λ2 = 42.

Using the first value and substituting into the second condition yields

α1 = 0

with arbitrary α0. Hence

y(x) = α0x(x− 1).

The condition

∫ 1

0

y2dx =

∫ 1

0

α2
0x

2(x − 1)2dx = 1

results in
α0 = ±

√
30.

The approximate solution of the variational problem is

y(x) = ±
√
30x(x− 1).

It is very important to point out that the solution obtained as a function
of the chosen basis functions is not the analytic solution of the variational
problem. For this particular example the corresponding Euler-Lagrange dif-
ferential equation is

y′′ + λy = 0

whose analytic solution, based on Section 5.3, is

y = ±
√
2sin(πx).

Figure 7.1 compares the analytic and the approximate solutions and plots
the error of the latter.
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FIGURE 7.1 Accuracy of the Ritz solution

The figure demonstrates that the Ritz solution satisfies the boundary con-
ditions and shows acceptable differences in the interior of the interval. Finally,
the variational problem’s extremum is computed for both cases. The analyt-
ical solution is based on the derivative

y′ =
√
2πcos(πx),

and obtained as

∫ 1

0

y′2(x)dx = 2π2

∫ 1

0

cos2(πx)dx = π2 = 9.87.

The Ritz solution’s derivative is

y′ = −
√
30(2x− 1).

and the approximate extremum is

∫ 1

0

y′2(x)dx = 30

∫ 1

0

(2x− 1)2dx =
30

3
= 10.

The approximate extremum is slightly higher than the analytic extremum,
but by only a very acceptable error.
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7.2.1 Application: solution of Poisson’s equation

The second order boundary value problem of Poisson’s, introduced earlier, is
presented in the variational form of

I(y) =

∫ ∫
D

((
∂u

∂x
)2 + (

∂u

∂y
)2 + 2f(x, y)u(x, y))dxdy

whose Euler-Lagrange equation leads to the form

∂2u

∂x2
+
∂2u

∂y2
= f(x, y),

as was shown in the last chapter. For the simplicity of the discussion and
without the loss of generality, we impose the boundary condition of

u = 0

on the perimeter of the domain D. Ritz’s method indicates the use of the
basis functions

bi(x, y)

and demands that they also vanish on the boundary. The approximate solu-
tion in this two-dimensional case is

u(x, y) =
n∑
i=1

αibi(x, y).

The partial derivatives are

∂u

∂x
=

n∑
i=1

αi
∂bi(x, y)

∂x
,

and
∂u

∂y
=

n∑
i=1

αi
∂bi(x, y)

∂y
.

Substituting the approximate solution into the functional yields

I(u) =

∫ ∫
D

((
∂u

∂x
)2 + (

∂u

∂y
)2 + 2f(x, y)u(x, y))dxdy.

Evaluating the derivatives, this becomes

I(u) =

∫ ∫
D

((
n∑
i=1

αi
∂bi
∂x

)2 + (
n∑
i=1

αi
∂bi
∂y

)2 + 2f(x, y))
n∑
i=1

αibi)dxdy,

which may be reordered into the form

I(u) =
n∑
i=1

n∑
j=1

cijαiαj +
n∑
i=1

diαi.
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The coefficients are

cij =

∫ ∫
D

(
∂bi
∂x

∂bj
∂x

+
∂bi
∂y

∂bj
∂y

)dxdy

and

di =

∫ ∫
D

f(x, y)bidxdy.

As above, the unknown coefficients are solved from the conditions

∂I(u)

∂αi
= 0, i = 1, 2, . . . , n,

resulting in the linear system of equations

n∑
j=1

cijαj + dj = 0, i = 1, 2, . . . , n.

It may be shown that the system is nonsingular and always yields a nontrivial
solution assuming that the basis functions form a linearly independent set.
The computation of the terms of the equations, however, is rather tedious
and resulted in the emergence of the next method.

7.3 Galerkin’s method

The difference between the Ritz method and that of Galerkin’s is in the fact
that the latter addresses the differential equation form of a variational prob-
lem. Galerkin’s method minimizes the residual of the differential equation
integrated over the domain with a weight function; hence, it is also called the
method of weighted residuals.

This difference lends more generality and computational convenience to
Galerkin’s method. Let us consider a linear differential equation in two vari-
ables:

L(u(x, y)) = 0

and apply Dirichlet boundary conditions. Galerkin’s method is also based on
the Ritz approximation of the solution as

u =

n∑
i=1

αibi(x, y),
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in which case, of course there is a residual of the differential equation

L(u) �= 0.

Galerkin proposed using the basis functions of the approximate solution also
as the weights, and requires that the integral vanishes with a proper selection
of the coefficients:

∫ ∫
D

L(u)bj(x, y)dxdy = 0; j = 1, 2, . . . , n.

This yields a system for the solution of the coefficients as

∫ ∫
D

L(

n∑
i=1

αibi(x, y))bj(x, y)dxdy = 0; j = 1, 2, . . . , n.

This is also a linear system and produces the unknown coefficients αi. We il-
lustrate the computational technique of Galerkin’s method also in connection
with Poisson’s equation:

L(u) =
∂2u

∂x2
+
∂2u

∂y2
− f(x, y) = 0.

For this Galerkin’s method is presented as

∫ ∫
D

(
∂2u

∂x2
+
∂2u

∂y2
− f(x, y))bjdxdy = 0, j = 1, . . . , n.

Therefore

∫ ∫
D

(

n∑
i=1

αi
∂2bi
∂x2

+

n∑
i=1

αi
∂2bi
∂y2

− f(x, y))bjdxdy = 0, j = 1, . . . , n.

Reordering yields

n∑
i=1

αi

∫ ∫
D

(
∂2bi
∂x2

+
∂2bi
∂y2

)bjdxdy −
∫ ∫

D

f(x, y)bjdxdy = 0, j = 1, . . . , n.

The system of equations becomes

Ba = b

with solution vector of

a =

⎡
⎢⎢⎣
α1

α2

. . .
αn

⎤
⎥⎥⎦ .



98 Applied calculus of variations for engineers

The system matrix is of the form

B =

⎡
⎢⎢⎣
B1,1 B1,2 . . . B1,n

B2,1 B2,2 . . . B2,n

. . . . . . . . . . . .
Bn,1 Bn,2 . . . Bn,n

⎤
⎥⎥⎦

whose terms are defined as

Bj,i =

∫ ∫
D

(
∂2bi
∂x2

+
∂2bi
∂y2

)bjdxdy.

Finally, the right-hand side vector is

b =

⎡
⎢⎢⎣

∫ ∫
D f(x, y)b1dxdy∫ ∫
D
f(x, y)b2dxdy
. . .∫ ∫

D
f(x, y)bndxdy

⎤
⎥⎥⎦ .

Note that if Galerkin’s and Ritz’s methods are applied to the same problem,
the approximate solutions found are identical.

7.4 Kantorovich’s method

Both the Ritz and Galerkin methods are restricted in their choices of basis
functions, because their basis functions are required to satisfy the boundary
conditions. The clever method of Kantorovich, described in [13], relaxes this
restriction and enables the use of simpler basis functions.

Consider the variational problem of two variables

I(u) = extremum, (x, y) ∈ D,

with boundary conditions

u(x, y) = 0, (x, y) ∈ ∂D.

Here ∂D again denotes the boundary of the domain.

The method proposes the construction of a function, such that

ω(x, y) ≥ 0, (x, y) ∈ D,

and
ω(x, y) = 0, (x, y) ∈ ∂D.
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This function assumes the role of enforcing the boundary condition and the
following set of simpler, low order basis functions are adequate to present the
solution:

b1(x, y) = ω(x, y),

b2(x, y) = ω(x, y)x,

b3(x, y) = ω(x, y)y,

b4(x, y) = ω(x, y)x2,

b5(x, y) = ω(x, y)xy,

b6(x, y) = ω(x, y)y2,

and so on, following the same pattern. It is clear that all these basis func-
tions vanish on the boundary by the virtue of ω(x, y), even though the power
function components do not.

The question is how to generate ω(x, y) for various shapes of domains. For
a centrally located circle with radius r, the equation

x2 + y2 = r2

implies very intuitively the form of

ω(x, y) = r2 − x2 − y2.

Obviously the function is zero everywhere on the circle and non-zero in the
interior of the domain. It is also non-zero on the outside of the domain, but
that is irrelevant in connection with our problem.

One can also consider a domain consisting of overlapping circular regions,
some of which represent voids in the domain. Figure 7.2 shows a domain of
two circles with equations

x2 + y2 = r2

and
(x− r/2)2 + y2 = (r/2)2.

Reordering the latter yields

x2 − xr + y2 = 0,

and in turn results in

ω(x, y) = (r2 − x2 − y2)(x2 − rx+ y2).

Clearly on the boundary of the larger circle the left term is zero and on the
boundary of the smaller circle the right term is zero. Hence the product
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FIGURE 7.2 Domain with overlapping circular regions

function vanishes on the perimeter of both circles, which constitutes the now
nontrivial boundary.

Let us now consider the boundary of a rectangle of width 2w and height
2h, also centrally located around the origin. The equations of the sides

x = ±w,
and

y = ±h,
imply the very simple form of

ω(x, y) = (w2 − x2)(h2 − y2).

The verification is very simple,

ω(x, y) = 0, (x, y) = (±w,±h).

The construction technique clearly shows signs of difficulties to come with
very generic, and especially three-dimensional domains. In fact such difficul-
ties limited the practical usefulness of this otherwise innovative method until
more recent work enabled the automatic creation of the ω functions for generic
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two- or three-dimensional domains with the help of spline functions, a topic
that will be discussed in Chapter 11 at length.

We shall now demonstrate the correctness of such a solution. For this we
consider the solution of a specific Poisson’s equation:

∂2u

∂x2
+
∂2u

∂y2
= −2,

with
u(x, y) = 0, (x, y) ∈ ∂D,

where we designate the domain to be the rectangle whose ω function was
specified above. We will search for Kantorovich’s solution in the form of

u(x, y) = (w2 − x2)(h2 − y2)(α1 + α2x+ α3y + . . .).

The method, as all direct methods, is approximate, so we may truncate the
sequence of power function terms at a certain power. It is sufficient for the
demonstration to use only the first term.

We will apply the method in connection with Galerkin’s method of the last
section. Therefore the extremum is sought from

∫ +w

−w

∫ +h

−h
(
∂2u

∂x2
+
∂2u

∂y2
+ 2)ω(x, y)dydx = 0.

Executing the posted differentiations and substituting results in

∫ +w

−w

∫ +h

−h
−2α1(w

2 − x2)(h2 − y2)2 − 2α1(w
2 − x2)2(h2 − y2)+

2(w2 − x2)(h2 − y2)dydx = 0.

Since we only have a single coefficient, the system of equations developed ear-
lier boils down to a single scalar equation of

bα1 = f,

with

b =

∫ +w

−w

∫ +h

−h
((w2 − x2)(h2 − y2)2 + (w2 − x2)2(h2 − y2))dydx,

and

f =

∫ +w

−w

∫ +h

−h
(w2 − x2)(h2 − y2)dydx.

After the (tedious) evaluation of the integrals, the value of

α1 =
5

4(w2 + h2)
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FIGURE 7.3 Solution of Poisson’s equation

emerges. In turn, the approximate Kantorovich-Galerkin solution is

u(x, y) =
5

4

(w2 − x2)(h2 − y2)

w2 + h2
.

The solution is depicted graphically in Figure 7.3 using

w = h = 1.

The figure demonstrates that the solution function satisfies the zero boundary
condition on the circumference of the square. To increase accuracy, additional
terms of the power series may be used. The method also enables the exploita-
tion of the symmetry of the domain. For example, if the above domain would
exhibit the same height as width,

s = w = h,

the solution may be sought in the form of

u(x, y) = (s2 − x2)(s2 − y2)(α1 + α23(x+ y)),

where α23 denotes the single constant accompanying both the second and
third terms.
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A generalization of this approach is necessary to eliminate the difficulties
of producing an analytic ω function for practical domains with convoluted
boundaries. The idea is to use an approximate solution to generate the ω
function as well.

Let us consider the two-dimensional domain case and generate a surface
approximation over the domain in the form of

ω(x, y) =

n∑
i=0

m∑
j=0

Ci,jBi(x)Bj(y),

where the two sets of B basis functions are of common form, but dependent
on either of the independent variables. The coefficients Ci,j are either sam-
pling points of the domain, or control points used to generate the surface.
The latter case applies mainly to the interior points, and the earlier to the
boundary.

This requires a simple Cartesian discretization of the domain along topo-
logical (possibly even equidistant) lines. The B-spline fitting technique intro-
duced in Chapter 9 will provide the means for accomplishing this.

7.5 Boundary integral method

The boundary integral method is related to Kantorovich’s method in the
sense that both make use of the boundary-interior distinction of a variational
problem. We will discuss this method in connection with a two-dimensional
variational problem; however, the technique and conclusions apply to three
dimensions as well. Let us consider the problem of

L(x, y)u(x, y) = f(x, y),

where L(x, y) is a two-dimensional linear operator and the problem is defined
on the domain (x, y) ∈ Ω. The domain’s boundary is Γ and the outward
normal of the boundary, n, is defined.

The boundary integral method finds the solution in the form of

u(x, y) =

∫
Ω

G(P,Q)f(x, y)dΩ.

Here G(P,Q) is Green’s function corresponding to the particular linear oper-
ator. It is defined in terms of two points, P = (xp, yp), Q = (xq, yq) as
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L(G(P,Q)) = δ(P −Q),

where δ is the Dirac function. Let us work with the two-dimensional Poisson’s
equation of the form

Δu(x, y) = f(x, y).

Here L(x, y) = Δ = ∇2 and its Green’s function is

G(P,Q) =
1

2π
ln(r),

where

r =
√

(xp − xq)2 + (yp − yq)2.

Green’s theorem’s generic form (a consequence of Gauss’ divergence theorem)
may be written as

∫
Ω

(u∇2v − v∇2u)dΩ =

∫
Γ

(u
∂v

∂n
− v

∂u

∂n
)dΓ.

Using Green’s function in place of v we obtain

∫
Ω

(u∇2G−G∇2u)dΩ =

∫
Γ

(u
∂G

∂n
−G

∂u

∂n
)dΓ.

By definition

L(G(P,Q)) = ∇2G(P,Q) = δ(P −Q),

and due to the characteristics of the Dirac function the first term on the
left-hand side reduces to u(x, y). Substituting the original equation into the
second term the resulting boundary integral solution becomes

u(x, y) =

∫
Ω

Gf(x, y)dΩ +

∫
Γ

u
∂G

∂n
dΓ−

∫
Γ

G
∂u

∂n
dΓ.

The first term on the right-hand side is the applied load in the domain and
it is zero when the homogeneous Laplace problem is solved. The second term
contains the Dirichlet boundary conditions via given boundary values of the
function. The third term represents the Neumann boundary conditions by
given derivatives with respect to the normal. It is possible that both types
are given at the same time.

Assuming that the set of discretized points on the boundary are qj , j =
1, ..m and boundary conditions are given, the solution at any point in the
interior may be computed as

u(x, y) =

∫
Ω

Gf(x, y))dΩ + Σmj=1u(xqj , yqj )

∫
Γj

∂G(p, qj)

∂n
dΓj−
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−Σmj=1

∂u(xqj , yqj )

∂n
)

∫
Γj

G(p, qj)dΓj .

Here the boundary segments are assigned to the given boundary points as

Γ = Σm−1
j=1 Γj .

It is also possible to produce a discretized solution at a set of given interior
points pi, i = 1, ...n. In this case a matrix formulation is possible (using the
homogeneous case for simplicity of the presentation) as

u(xpi , ypi) = Σmj=1Ai,ju(xqj , yqj )− Σmj=1Bi,j
∂u(xqj , yqj )

∂n
,

where the matrix coefficients contain the pre-computed integrals

Ai,j =

∫
Γj

∂G(pi, qj)

∂n
dΓj ,

and

Bi,j =

∫
Γj

G(pi, qj)dΓj .

Let us now gather the solution points into the array

u =

⎡
⎢⎢⎣
u(xp1 , yp1)
u(xqp , yp2)

. . .
u(xpn , ypm)

⎤
⎥⎥⎦ .

Then the solution may be written as a simple matrix equation:

u = Av − Bt,

where the vector containing the boundary condition displacement values is

v =

⎡
⎢⎢⎣
u(xq1 , yq1)
u(xq2 , yq2)

. . .
u(xqm , yqm)

⎤
⎥⎥⎦

and the vector holding the tangents is

t =

⎡
⎢⎢⎢⎣

∂u(xq1 ,yq1 )

∂n
∂u(xq2 ,yq2 )

∂n
. . .

∂u(xqm ,yqm )
∂n

⎤
⎥⎥⎥⎦ .

This is the approach of software tools using the boundary element method.
The method is of engineering importance when the solution of a problem in
the interior is largely homogeneous and the important solution variation is at
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or close to the boundary.

Let us now consider the case when only boundary tangents (Neumann
boundary conditions) are given. Then the unknowns may be both in the
interior and on the boundary as

u(xpi , ypi) = u(xqj , yqj ),

when i = j. By the definition, the Green’s function for the Laplacian operator
is singular when the solution point coincides with a boundary condition point
and the solution integrals become improper. Hence the evaluation of the
matrix coefficients must deal with that issue.

Nevertheless, the problem can be reformulated as

Σmj=1(Ai,j +
1

2
δij)u(xqj , yqj ) = Σmj=1Bi,j

∂u(xqj , yqj )

∂n
,

where δij is the Kronecker delta. The problem is then of the form

Au = Bt.

Since the matrix on the left-hand side is now square, the system of equations
may be formally solved as

u = A
−1
Bt.

The singularity of the integrals carry into the system matrix by making it
numerically ill-conditioned and requiring specialized solution techniques that
avoid computing an explicit inverse.

This formulation is very similar to the finite element solution, a subject of
detailed discussion in Chapter 12. This similarity is exploited in industrial
applications where part of the physical problem is solved by the finite element
method and part by the boundary integral method.

The method is easily generalized to the three-dimensional Laplace operator
whose Green’s function is of the form

G(P,Q) =
−1

4πr
.

Finding the Green’s function for other operators is also possible. For example,
the Green’s function for the operator

L(x, y, t) = ∂2t −∇2

is defined also in terms of the Dirac function and the radius r as

G(P,Q) =
δ(t− r)

4πr
.
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This is the so-called d’Alembert operator of the wave equation that will be
the subject of a mechanical problem (the elastic string) in Section 11.1.
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8

Differential geometry

Differential geometry is a classical mathematical area that has become very
important for engineering applications in the recent decades. This importance
is based on the rise of computer-aided visualization and geometry generation
technologies.

The fundamental problem of differential geometry, the finding of geodesic
curves, has practical implications in manufacturing. Development of non-
mathematical surfaces used in ships and airplanes has serious financial impact
in reducing material waste and improving the quality of the surfaces.

While the discussion in this chapter will focus on analytically solvable prob-
lems, the methods and concepts we introduce will provide a foundation ap-
plicable in various engineering areas.

8.1 The geodesic problem

Finding a geodesic curve on a surface is a classical problem of differential ge-
ometry. Variational calculus seems uniquely applicable to this problem. Let
us consider a parametrically given surface

r = x(u, v)i+ y(u, v)j + z(u, v)k.

Let two points on the surface be

r0 = x(u0, v0)i+ y(u0, v0)j + z(u0, v0)k,

and

r1 = x(u1, v1)i+ y(u1, v1)j + z(u1, v1)k.

The shortest path on the surface between these two points is the geodesic
curve. Consider the square of the arc length

ds2 = (dx)2 + (dy)2 + (dz)2,

111
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and compute the differentials related to the parameters.

ds2 = E(u, v)(du)2 + 2F (u, v)dudv +G(u, v)(dv)2.

Here the so-called first fundamental quantities are defined as

E(u, v) = (
∂x

∂u
)2 + (

∂y

∂u
)2 + (

∂z

∂u
)2 = (r′u)

2,

F (u, v) =
∂x

∂u

∂x

∂v
+
∂y

∂u

∂y

∂v
+
∂z

∂u

∂z

∂v
= r′ur

′
v,

and

G(u, v) = (
∂x

∂v
)2 + (

∂y

∂v
)2 + (

∂z

∂v
)2 = (r′v)

2.

Assume that the equation of the geodesic curve in the parametric space is
described by

v = v(u).

Then the geodesic curve is the solution of the variational problem

I(v) =

∫ u1

u0

√
E(u, v) + 2F (u, v)

dv

du
+G(u, v)(

dv

du
)2 du = extremum

with boundary conditions

v(u0) = v0,

and

v(u1) = v1.

The corresponding Euler-Lagrange differential equation is

Ev + 2v′Fv + v′2Gv
2
√
E(u, v) + 2F (u, v)v′ +G(u, v)v′2

−

d

du

F +Gv′√
E(u, v) + 2F (u, v)v′ +G(u, v)v′2

= 0,

with the notation of

Ev =
∂E

∂v
, Fv =

∂F

∂v
,Gv =

∂G

∂v
,

and

v′ =
dv

du
.

The equation is rather difficult in general, and exploitation of special cases
arising from the particular surface definitions is advised.



Differential geometry 113

When the first fundamental quantities are only functions of the u parame-
ter, the equation simplifies to

F +Gv′√
E(u, v) + 2F (u, v)v′ +G(u, v)v′2

= c1.

A further simplification is based on the practical case when the u and v
parametric lines defining the surface are orthogonal. In this case

F = 0,

and the equation may easily be integrated as

v = c1

∫ √
E√

G2 − c21G
du + c2.

The integration constants may be resolved from the boundary conditions.

When the function in the integral only contains the v function explicitly,
and the F = 0 assumption still holds, then the equation becomes

Gv′2√
E +Gv′2

−
√
E +Gv′2 = c1.

Reordering and another integration brings

u = c1

∫ √
G√

E2 − c21E
dv + c2.

8.1.1 Geodesics of a sphere

For an enlightening example, we consider a sphere, given by

x(u, v) = Rsin(v)cos(u),

y(u, v) = Rsin(v)sin(u),

and

z(u, v) = Rcos(v).

The first fundamental quantities encapsulating the surface information are

E = R2sin2(v),

F = 0,

and

G = R2.
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Since this is the special case consisting of only v, the equation of the geodesic
curve becomes

u = c1

∫
R√

R4sin4(v) − c21R
2sin2(v)

dv + c2.

After the integration by substitution and some algebraic manipulations, we get

u = −asin cot(v)√
( Rc1 )

2 − 1
+ c2.

It follows that

sin(c2)(Rsin(v)cos(u))− cos(c2)(Rsin(v)sin(u))− Rcos(v)√
( Rc1 )

2 − 1
= 0.

Substituting the surface definition of the sphere yields

x sin(c2) + y cos(c2)− z√
( Rc1 )

2 − 1
= 0

and that represents an intersection of the sphere with a plane. By substituting
boundary conditions, it would be easy to see that the actual plane contains
the origin and defines the great circle going through the two given points. This
fact is manifested in everyday practice by the transoceanic airplane routes’
well-known northern swing in the Northern Hemisphere.

8.2 A system of differential equations for geodesic curves

Let us now seek the geodesic curve in the parametric form of

u = u(t),

and

v = v(t).

The curve goes through two points

P0 = (u(t0), v(t0)),

and

P1 = (u(t1), v(t1)).
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Then the following variational problem provides the solution:

I(u, v) =

∫ t1

t0

√
Eu′2 + 2Fu′v′ +Gv′2dt = extremum.

Here

u′ =
du

dt
, v′ =

dv

dt
.

The corresponding Euler-Lagrange system of differential equations is

Euu
′2 + 2Fuu

′v′ +Guv
′2

√
Eu′2 + 2Fu′v′ +Gv′2

− d

dt

2(Eu′ + Fv′)√
Eu′2 + 2Fu′v′ +Gv′2

= 0,

and

Evu
′2 + 2Fvu

′v′ +Gvv
′2

√
Eu′2 + 2Fu′v′ +Gv′2

− d

dt

2(Fu′ +Gv′)√
Eu′2 + 2Fu′v′ +Gv′2

= 0.

In the equations the notation

Eu =
∂E

∂u
, Fu =

∂F

∂u
, Gu =

∂G

∂u

was used.

A more convenient and practically useful formulation, without the explicit
derivatives, based on [8] is

u′′ + Γ1
11u

′2 + 2Γ1
12u

′v′ + Γ1
22v

′2 = 0,

and

v′′ + Γ2
11u

′2 + 2Γ2
12u

′v′ + Γ2
22v

′2 = 0.

Here

u′′ =
d2u

dt2
, v′′ =

d2v

dt2
.

The Γ are the Christoffel symbols that are defined as

Γ1
11 =

GEu − 2FFu + FEv
2(EG− F 2)

,

Γ1
12 =

GEv − FGu
2(EG− F 2)

,

Γ1
22 =

2GFv −GGu − FGv
2(EG− F 2)

,

Γ2
11 =

2EFu − EEv − FEu
2(EG− F 2)

,
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Γ2
12 =

EGu − FEv
2(EG− F 2)

,

and

Γ2
22 =

EGv − 2FFv + FGu
2(EG− F 2)

.

These formulae all require that

EG− F 2 �= 0

which is true when a parameterization is regular.

8.2.1 Geodesics of surfaces of revolution

Another practically important special case is represented by surfaces of revo-
lution. Their generic description may be of the form

x = u cos(v),

y = u sin(v),

and

z = f(u).

Here the last equation describes the meridian curve generating the surface.
The first order fundamental terms are

E = 1 + f ′2(u),

F = 0,

and

G = u2.

The solution following the discussion in Section 8.1 becomes

v = c1

∫ √
1 + f ′2(u)

u
√
u2 − c21

du+ c2.

A simple sub-case of this class is a unit cylinder, described as

x = cos(v),

y = sin(v),

and

z = u.

The geometric meaning of the v parameter is the rotation angle generating
the cylinder’s circumference and the u parameter is the axial direction of the
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surface. The fundamental terms are

E = 1,

F = 0,

and

G = 1.

The equation of the geodesic curve on the cylinder following above is

v = c1

∫
1

1
√
1− c21

du+ c2,

or

v = c1
1√

1− c21

∫
du+ c2.

With

c3 = c1
1√

1− c21

and integration we obtain

v = c3u+ c2.

In the general case, this is a helix on the surface of the cylinder going through
the two points. This is also a line in the parametric space. This fact is geo-
metrically easy to explain because the cylinder is a developable surface. Such
a surface may be rectified onto a plane. In such a case the geodesic curve is
a straight line on the rectifying plane. The only curvature of the helix will be
that of the cylinder.

The constants of integration may be determined from the boundary condi-
tions. For example, assume the case shown in Figure 8.1, where the starting
point is at

P0 = (x0, y0, z0) = (1, 0, 0)

corresponding to parametric coordinates

u(t0) = 0, v(t0) = 0.

The endpoint is located at

P1 = (x1, y1, z1) = (0, 1, 1)

corresponding to parametric coordinates

u(t1) = 1, v(t1) = π/2.
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FIGURE 8.1 Geodesic curve of a cylinder

Substituting the starting point yields

0 = c3 · 0 + c2,

which results in

c2 = 0.

The endpoint substitution produces

π/2 = c3 · 1 + c2,

and in turn

c3 =
π

2
.

The specific solution for this case in the parametric space is

v =
π

2
u.

The Cartesian solution is obtained in the form of

x = cos(v),
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y = sin(v),

and
z =

v

π/2
.

It is easy to see that the latter equation makes the elevation change from zero
to 1, in accordance with the turning of the helix.

Since the parametric space of the cylinder is simply the rectangle of the
developed surface, it is easy to see some special sub-cases. If the two points
are located at the same rotational position (v = constant), but at different
heights, the geodesic curve is a straight line. If the two points are on the same
height (u = constant), but at different rotational angles, the geodesic curve is
a circular arc.

The last two sections demonstrated the difficulties of finding the geodesic
curves even on regular surfaces like the sphere or the cylinder. On a general
three-dimensional surface these difficulties increase significantly and may ren-
der using the differential equation of the geodesic curve unfeasible.

8.3 Geodesic curvature

Let us consider the parametric curve

r(t) = x(t)i + y(t)j + z(t)k

on the surface

S(u, v) = x(u, v)i+ y(u, v)j + z(u, v)k.

Let n denote the unit normal of the surface. The curvature vector of a three-
dimensional curve is defined as

k =
dt

dt
= t′,

where t is the tangent vector computed as

t =
dr

dt
,

and also assumed to be a unit vector (a unit speed curve) for the simplicity
of the derivation. Then the unit bi-normal vector is

b = n× t.
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We represent the curvature vector with components along the bi-normal vec-
tor and the normal vector n at any point as

k = κnn+ κgb.

The coefficients are the normal curvature and the geodesic curvature, re-
spectively. Taking the inner product of the last equation with the b vector
and exploiting the perpendicularity conditions present, we obtain

b · k = κg.

Substituting the definition of the bi-normal and the curvature vector results in

κg = (n× t) · t′.
For the more generic case when the tangent and normal vectors are not of
unit length, the geodesic curvature of a curve is defined as

κg =
r′′(t) · (n× r′(t))

||r′(t)||3 .

A curve on a surface is called geodesic if at each point of the curve its principal
normal and the surface normal are collinear. Therefore:

A curve r(t) on the surface S(u, v) is geodesic if the geodesic cur-
vature of the curve is zero.

In order to prove that, the terms are computed from the surface informa-
tion, such as

r′ = t =
∂f

∂u
u′ +

∂f

∂v
v′ = fuu

′ + fvv
′.

The application of the chain rule results in

r′′ = t′ = fuu(u
′)2 + 2fuvu

′v′ + fvv(v
′)2 + fuu

′′ + fvv
′′.

After substitution into the equation of the geodesic curvature and some alge-
braic work, while employing again the Christoffel symbols, [8] produces the
form

κg =
√
EG− F 2(Γ2

11(u
′)3 + (2Γ1

12 − Γ1
11)(u

′)2v′+

(Γ2
22 − 2Γ1

12)u
′(v′)2 − Γ1

22(v
′)3 + u′v′′ − u′′v′).

Since
EG− F 2 �= 0,

the term in the parenthesis must be zero for zero geodesic curvature. That
happens when the following terms vanish

u′′ + Γ1
11u

′2 + 2Γ1
12u

′v′ + Γ1
22v

′2 = 0,
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and
v′′ + Γ2

11u
′2 + 2Γ2

12u
′v′ + Γ2

22v
′2 = 0.

This result is the decoupled system of equations of the geodesic, introduced
in Section 8.1, hence the vanishing of the geodesic curvature is indeed a char-
acteristic of a geodesic curve.

Finally, since the recent discussions were mainly on parametric forms, the
equation of the geodesic for an explicitly given surface

z = z(x, y(x))

is quoted from [8] for completeness’ sake without derivation:

(1 + (
∂z

∂x
)2 + (

∂z

∂y
)2)

d2y

dx2
=
∂z

∂x

∂2z

∂y2
(
dy

dx
)3+

(2
∂z

∂x

∂2z

∂x∂y
− ∂z

∂y

∂2z

∂y2
)(
dy

dx
)2+

(
∂z

∂x

∂2z

∂x2
− 2

∂z

∂y

∂2z

∂x∂y
)
dy

dx
− ∂z

∂y

∂2z

∂x2
.

The formula is rather overwhelming and useful only in connection with the
simplest surfaces.

8.3.1 Geodesic curvature of helix

Let us enlighten this further by reconsidering the case of the geodesic curve
of the cylinder discussed in the last section. The geodesic curve we obtained
was the helix:

r(t) = cos(t)i + sin(t)j +
t

π/2
k.

The appropriate derivatives are

r′(t) = −sin(t)i+ cos(t)j +
1

π/2
k

and
r′′(t) = −cos(t)i− sin(t)j + 0k.

The surface normal is computed as

n =
∂S

∂u
× ∂S

∂v
.

In the specific case of the cylinder

S(u, v) = cos(v)i + sin(v)j + uk,
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it becomes

n = cos(t)i + sin(t)j + 0k.

The cross-product and substitution of v = t yields

n(t)× r′(t) =
2

π
sin(t)i− 2

π
cos(t)j + (sin2(t) + cos2(t))k.

The numerator of the curvature becomes zero, as

(−cos(t)i− sin(t)j + 0k) · ( 2
π
sin(t)i− 2

π
cos(t)j + (sin2(t) + cos2(t))k) = 0.

Since the denominator

||r′(t)||3 = (

√
1 + (

1

π/2
)2)3

is not zero, the geodesic curvature becomes zero. Hence the helix is truly the
geodesic curve of the cylinder.

The concept of geodesic curves may be generalized to higher-dimensional
spaces. The geodesic curve notation, however, while justified on a three-
dimensional surface, needs to be generalized as well. In such cases one talks
about finding a geodesic object, or just a geodesic, as opposed to a curve on
a surface.

8.4 Generalization of the geodesic concept

Heretofore we confined the geodesic problem to finding a curve on a three-
dimensional surface, but the concept may be generalized to higher dimensions.
Physicists use the space-time continuum as a four-dimensional (Minkowski)
space and find geodesic paths in that space. The arc length definition of this
space is

ds2 = dx2 + dy2 + dz2 − cdt2,

where t is the time dimension and c is the speed of light. The variational
problem of minimal arc length may be posed similarly as in Section 8.1 and
may be solved with similar techniques. Einstein used this generalization to
explain planetary motion as a geodesic phenomenon in the four-dimensional
space.
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Another important generalization is in the area of dynamical analysis of
mechanical systems, a topic of Chapter 12. The motion of the system will be
described in terms of n generalized coordinates qi and their time derivatives
q̇i, the generalized velocities. These generalized coordinates, along with their
constraint relationships, define an n-dimensional space, sometimes called the
mechanical space.

The system will strive to reach an energy minimal equilibrium described by
a variational problem in the form of

I =

∫ t1

t0

f(t, q1, . . . , qn, q̇1, . . . , q̇n)dt = extremum.

The solution of this is mathematically equivalent to finding the geodesic path
in the n-dimensional mechanical space.

To demonstrate the meaning of a mechanical space, let us consider a parti-
cle that is constrained to move on a two-dimensional surface, say a cylinder,
enforced by some constraint. Then the particle’s move in this two-dimensional
mechanical space (the surface) is along the geodesic curve of the surface. This
abstraction to higher dimensions is sometimes called the geometrization of me-
chanics.

Hamilton spearheaded this generalization and this will lead to Lagrange’s
equations of motion. The approach is of utmost importance in computational
mechanics, the subject of extensive discussions in Chapter 12.
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Computational geometry

The geodesic concept, introduced in the last chapter purely on variational
principles, has interesting engineering aspects. On the other hand, the an-
alytic solution of a geodesic curve by finding the extremum of a variational
problem may not be easy in practical cases.

It is reasonable to assume, however, that the quality of a curve in a geodesic
sense is related to its curvature. This observation proposes a strategy for cre-
ating good quality (albeit not necessarily geodesic) curves by minimizing the
curvature.

Since the curvature is difficult to compute, one can use the second derivative
of the curve in lieu of the curvature. This results in the following variational
problem statement for a smooth curve: Find the curve s(t) that results in

I(s) =

∫ tn

t0

k(s′′)2dt = extremum.

The constant k represents the fact that this is an approximation of the
curvature, but will be left out from our work below. This variational problem
leads to the well-known spline functions.

9.1 Natural splines

Let us consider the following variational problem. Find the curve between
two points P0, P3 such that

I(s) =

∫ t3

t0

(
d2s

dt2
)2dt = extremum,

with boundary conditions of

P0 = s(t0), P3 = s(t3),

125
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and additional discrete internal constraints of

P1 = s(t1), P2 = s(t2).

In essence, we are constraining two interior points of the curve, along with
the fixed beginning and endpoints. We will, for the sake of simplicity, assume
unit equidistant parameter values as

ti = i, i = 0. . . . , 3.

While the functional does not contain the independent variable t and the de-
pendent variable s(t), it is of higher order. Hence the Euler-Poisson equation
of second order applies:

∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2
∂f

∂y′′
= 0,

and in this case it simplifies to

d4

dt4
s(t) = 0.

Straightforward integration yields the solution of the form

s(t) = c0 + c1t+ c2t
2 + c3t

3,

where ci are constants of integration to be satisfied by the boundary condi-
tions. Imposing the boundary conditions and constraints yields the system of
equations

⎡
⎢⎢⎣
1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27

⎤
⎥⎥⎦

⎡
⎢⎢⎣
c0
c1
c2
c3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
P0

P1

P2

P3

⎤
⎥⎥⎦ .

The inversion of the system matrix results in the generating matrix

M =

⎡
⎢⎢⎣

1 0 0 0
−11/6 3 −3/2 1/3

1 −5/2 2 −1/2
−1/6 1/2 −1/2 1/6

⎤
⎥⎥⎦

for the natural spline. For any given set of four points

P =

⎡
⎢⎢⎣
x0 y0 z0
x1 y1 z1
x2 y2 z2
x3 y3 z3

⎤
⎥⎥⎦

the coefficients of the solution may be obtained by

C =MP,
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with distinct coefficients for all coordinate directions as

C =

⎡
⎢⎢⎣
cx0 c

y
0 c

z
0

cx1 c
y
1 c

z
1

cx2 c
y
2 c

z
2

cx3 c
y
3 c

z
3

⎤
⎥⎥⎦ .

For example, the points

P =

⎡
⎢⎢⎣
1 1
2 2
3 2
4 3

⎤
⎥⎥⎦

result in coefficients

C =

⎡
⎢⎢⎣
1 1
1 13/6
0 −3/2
0 1/3

⎤
⎥⎥⎦ .

The parametric solution curve is of the form

x(t) = 1 + t,

y(t) = 1 + 13/6t− 3/2t2 + 1/3t3.

The example solution curve is shown in Figure 9.1, where the input points
are connected by the straight lines that represent the chords of the spline.
The spline demonstrates a good smoothness while satisfying the constraints.

Several extensions of this problem are noteworthy. It is possible to pose the
variational problem in two-parameter form as

I(s) =

∫ ∫
D

((
∂

∂u
s(u, v))2 + (

∂

∂v
s(u, v))2)dudv = extremum.

The Euler-Lagrange equation corresponding to this problem arrives at Laplace’s
equation:

∂2

∂u2
s(u, v) +

∂2

∂v2
s(u, v) = 0.

This is sometimes called the harmonic equation, hence the splines so obtained
are also called harmonic splines.

It is also often the case in practice that many more than four points are
given:

Pi = (xi, yi, zi), i = 0, . . . , n.
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FIGURE 9.1 Natural spline approximation

This enables the generation of a multitude of natural spline segments, and a
curvature continuity condition between the segments may also be enforced.
Finally, the direct (for example Ritz) solution of the above variational problem
leads to the widely used B-splines, a topic of the next chapter.

9.2 B-spline approximation

As shown in Chapter 7, when using numerical methods an approximate solu-
tion is sought in terms of suitable basis functions:

s(t) =
n∑
i=0

Bi,k(t)Qi,

where Qi are the yet unknown control points (i=0,. . . ,n) and Bi,k are the basis
functions of degree k in the parameter t. For industrial computational work,
the class of basis functions resulting in the so-called B-splines are defined in
[1] as
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Bi,0(t) =

{
1, ti ≤ t < ti+1

0, t < ti, t ≥ ti+1

The higher order terms are recursively computed:

Bi,k(t) =
t− ti

ti+k − ti
Bi,k−1(t) +

ti+k+1 − t

ti+k+1 − ti+1
Bi+1,k−1(t).

The basis functions are computed from specific parameter values, called
knot values. If their distribution is not equidistant, the splines are called
non-uniform B-splines. If they are uniformly distributed, they are generating
uniform B-splines.

The knot values are a subset of the parameter space and their selection
enables a unique control of the behavior of the spline. For example, the use of
duplicate knot values inside the parameters span of the spline results in a local
change. The use of multiple knot values at the boundaries enforces various end
conditions, such as the frequently used clamped-end condition. This control
mechanism contributes to the popularity of the method in computer-aided
design (CAD), but will not be further explored here.

Smoothing a B-spline is defined by the variational problem

Is(Q) =

∫ tn

t0

(
n∑
i=0

B′′
i,k(t)Qi)

2dt = extremum.

The derivative of the basis functions may be recursively computed. For k = 1,
since Bi,0 are constant

d

dt
Bi,1(t) = B′

i,1(t) =
1

ti+1 − ti
Bi,0(t)− 1

ti+2 − ti+1
Bi+1,0(t).

For k = 2

d

dt
Bi,2(t) = B′

i,2(t) =
1

ti+2 − ti
Bi,1(t) +

t− ti
ti+2 − ti

B′
i,1(t)−

1

ti+3 − ti
Bi+1,1(t) +

ti+3 − t

ti+3 − ti+1
B′
i+1,1(t).

Substituting the k = 1 derivative into the second term results in

t− ti
ti+2 − ti

B′
i,1(t) =

t− ti
ti+2 − ti

(
1

ti+1 − ti
Bi,0(t)− 1

ti+2 − ti+1
Bi+1,0(t)) =

1

ti+2 − ti
(
t− ti

ti+1 − ti
Bi,0(t) +

ti − t

ti+2 − ti+1
Bi+1,0(t)).

The content of the parenthesis is easily recognizable as Bi,1(t), hence this term
is identical to the first. Similar arithmetic on the second two terms results in
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the derivative for k = 2 as

d

dt
Bi,2(t) = B′

i,2(t) =
2

ti+2 − ti
Bi,1 − 2

ti+3 − ti+1
Bi+1,1.

By induction, for any k value the first derivative is as follows:

d

dt
Bi,k(t) = B′

i,k(t) =
k

ti+k − ti
Bi,k−1(t)− k

ti+k+1 − ti+1
Bi+1,k−1(t).

A repeated application of the same step will produce the needed second deriva-
tive B′′ as

d

dt
B′
i,k(t) = B′′

i,k(t) =
k

ti+k − ti
B′
i,k−1(t)−

k

ti+k+1 − ti+1
B′
i+1,k−1(t).

The spline, besides being smooth (minimal in curvature), is expected to ap-
proximate a given set of points Pj ; j = 0, . . . ,m, with associated prescribed pa-
rameter values (not necessarily identical to the knot values) of tj ; j = 0, . . . ,m.
If such parameter values are not given, the parameterization may be via the
simple method of uniform spacing defined as tj = j; 0 ≤ j ≤ m. Assuming
that the point set defined is geometrically semi-equidistant this is proven in
industry to be a good method for the problem at hand. If that is not the case,
a parameterization based on the chord length may also be used.

Approximating the given points with the spline is another variational prob-
lem that requires finding a minimum of the squares of the distances between
the spline and the points.

Ia(s) =

m∑
j=0

(s(tj)− Pj)
2 = extremum.

Substituting the B-spline formulation and the basis functions results in

Ia(Q) =
m∑
j=0

(
n∑
i=0

Bi,k(tj)Qi − Pj)
2.

Similarly, in the smoothing variational problem we also replace the integral
with a sum over the given points in the parameter span, resulting in

Is(Q) =

m∑
j=0

(

n∑
i=0

B′′
i,k(tj)Qi)

2.

Finally, the functional to produce a smooth spline approximation is the sum
of the two functionals

I(Q) = Ia(Q) + Is(Q).
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The notation is to demonstrate the dependence upon the yet unknown control
points of the spline.

According to the numerical method developed in Chapter 7, the problem
has an extremum when

∂I

∂Qi
= 0,

for each i = 0, . . . , n. The control points will be, of course, described by
Cartesian coordinates; hence, each of the above equations represents three
scalar equations.

The derivative of the approximating component with respect to an unknown
control point Qp yields

2
m∑
j=0

Bp,k(tj)(
n∑
i=0

Bi,k(tj)Qi − Pj),

where p = 0, 1, . . . , n. This is expressed in matrix form as

BTBQ −BTP

with the matrices

B =

⎡
⎢⎢⎣
B0,k(t0) B1,k(t0) B2,k(t0) . . . Bn,k(t0)
B0,k(t1) B1,k(t1) B2,k(t1) . . . Bn,k(t1)
. . . . . . . . . . . . . . .

B0,k(tm) B1,k(tm) B2,k(tm) . . . Bn,k(tm)

⎤
⎥⎥⎦ ,

P =

⎡
⎢⎢⎣
P0

P1

. . .
Pm

⎤
⎥⎥⎦ ,

and

Q =

⎡
⎢⎢⎣
Q0

Q1

. . .
Qn

⎤
⎥⎥⎦ .

For degree k = 3 the basis functions may be analytically computed as:

B0,3 =
1

6
(1− t)3,

B1,3 =
1

6
(3t3 − 6t2 + 4),

B2,3 =
1

6
(−3t3 + 3t2 + 3t+ 1),
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and

B3,3 =
1

6
t3.

Furthermore, for uniform parameterization the B matrix is easily computed
by hand as

B =
1

6

⎡
⎢⎢⎢⎢⎣

1 4 1 0
0 1 4 1
−1 4 −5 8
−8 31 −44 27
−27 100 −131 64

⎤
⎥⎥⎥⎥⎦ .

The derivative of the smoothing component of the functional, with respect
to an unknown control point Qp yields

2
m∑
j=1

B′′
p,k(tj)

n∑
i=0

B′′
i,k(tj)Qi,

where p ∈ [0, . . . , n]. This results in a smoothing matrix

D =

⎡
⎢⎢⎣
B′′

0,k(t0) B′′
1,k(t0) . . . B

′′
n,k(t0)

B′′
0,k(t1) B′′

1,k(t1) . . . B
′′
n,k(t1)

. . . . . . . . . . . .
B′′

0,k(tm) B′′
1,k(tm) . . . B′′

n,k(tm)

⎤
⎥⎥⎦ .

These second derivatives for the cubic case are

B′′
0,3 = 1− t,

B′′
1,3 = 3t− 2,

B′′
2,3 = −3t+ 1,

and

B′′
3,3 = t.

For uniform parameterization, the smoothing matrix is computed as

D =
1

6

⎡
⎢⎢⎢⎢⎣

1 −2 1 0
0 1 −2 1
−1 4 −5 2
−2 7 −8 3
−3 10 −11 4

⎤
⎥⎥⎥⎥⎦ .

The simultaneous solution of both the smoothing and approximating prob-
lem is now represented by the matrix equation

AQ = BTP
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FIGURE 9.2 Smooth B-spline approximation

where the system matrix is

A = BTB +DTD.

The solution of this system produces the control points for a smooth approx-
imation.

Figure 9.2 shows the smooth spline approximation for a set of given points.
The input points as well as the computed control points are also shown. Note
that, as opposed to the natural spline, the curve does not go through the
points exactly, but it is very smooth.

9.3 B-splines with point constraints

It is possible to require some of the points to be exactly satisfied. For the
generic case of multiple enforced points, a constrained variational problem is
formed.
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I(Qi) = extremum,

subject to

s(tl) = Rl; l = 0, 1, . . . , o.

Here the enforced points Rl represent a subset of the given points (Pj), while
the remainder are to be approximated. The subset is specified as

Rl =MPj; l = 0, 1, . . . , o; j = 0, 1, . . . ,m, o < m,

where the mapping matrixM has o rows and m columns and contains a single
non-zero term in each row, in the column corresponding to a selected inter-
polation point. For example, the matrix

M =

[
0 1 0 0
0 0 1 0

]

would specify the two internal points of four Pj points, i.e.,

R0 = P1

and
R1 = P2.

This approach could be used to specify any pattern, such as every second or
third term, or some specific points at intermittent locations.

Introducing the specifics of the splines and Lagrange multipliers, the con-
strained variational problem is presented as

I(Qi, λl) = I(Qi) +

o∑
l=0

λl(

n∑
i=0

Bi,k(tl)Qi −Rl).

The derivatives of I(Qi) with respect to the Qp control point were computed
earlier, but need to be extended with the derivative of the term containing
the Lagrange multiplier:

o∑
l=0

Bp,k(tl)λl

n∑
i=0

Bi,k(tl).

Utilizing the earlier introduced matrices, this term is

BTMTΛ,

where Λ is a column vector of o+ 1 Lagrange multipliers,⎡
⎢⎢⎣
λ0
λ1
. . .
λo

⎤
⎥⎥⎦ .
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The derivatives with respect to the Lagrange multipliers λl produce

(
n∑
i=0

Bi,k(tl)Qi −Rl) = 0; l = 0, 1, . . . , o.

This results in o+ 1 new equations of the form

n∑
i=0

Bi,k(tl)Qi = Rl,

or in matrix form, using the earlier matrices:

MBQ = R,

where R is a vector of the interpolated points. The two sets of equations may
be assembled into a single matrix equation with n+1+o+1 rows and columns
of the form

[
A BTMT

MB 0

] [
Q
Λ

]
=

[
BTP
MP

]
.

The first matrix row represents the constrained functional and the second
row represents the constraints. The simultaneous solution of this (symmetric,
indefinite, but still linear) system produces the optimized (approximated and
smoothed) and selectively interpolated solution.

The solution of this problem is accomplished in the following steps. First
the unknown control points are expressed from the first row of

AQ +BTMTΛ = BTP

as functions of the unknown Lagrange multipliers. Substituting into the sec-
ond equation is the way to compute the multipliers:

Λ = (MBA−1BTMT )−1(MBA−1BTP −MP ).

Finally, the set of control points, which are solutions of the constrained vari-
ational problem, are obtained explicitly from the first equation as

Q = A−1(BTP −BTMTΛ).

The effect of point constraints is shown in Figure 9.3 in connection with
the earlier example, constraining the spline to go through the second and the
fourth points. The dashed curve is the original curve while the dotted curve
is the new curve and it demonstrates the adherence to the constraint, at the
same time maintaining the quality of the approximation and the smoothness.
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FIGURE 9.3 Point constrained B-spline

9.4 B-splines with tangent constraints

It may be desirable for the engineer to be able to enforce constraints posed
by specifying tangents at certain points. These are of the form

s′(tl) = Tl; l = 0, 1, . . . , o,

assuming for now that the tangents are given at the same points where inter-
polation constraints were also given. The constrained problem shown in the
prior section will be extended with the additional constraints and Lagrange
multipliers:

o∑
l=0

λl(

n∑
i=0

B′
i,k(tl)Qi − Tl); l = 0, 1, . . . , o.

The derivative with respect to the new Lagrange multipliers is

n∑
i=0

B′
i,k(tl)Qi − Tl = 0; l = 0, 1, . . . , o.
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This results in o+ 1 new equations of the form

n∑
i=0

B′
i,k(tl)Qi = Tl,

or in matrix form, using some of the earlier matrices:

MCQ = T,

where T is a vector of the given tangents and the matrix of first derivatives is

C =

⎡
⎢⎢⎣
B′

0,k(t0) B′
1,k(t0) . . . B

′
n,k(t0)

B′
0,k(t1) B′

1,k(t1) . . . B
′
n,k(t1)

. . . . . . . . . . . .
B′

0,k(tm) B′
1,k(tm) . . . B′

n,k(tm)

⎤
⎥⎥⎦ .

The first derivatives of the basis functions for the cubic case are

B′
0,3 = −1

2
(1− t)2,

B′
1,3 =

3

2
t2 − 2t,

B′
2,3 = −3

2
t2 + t+

1

2
,

and

B′
3,3 =

1

2
t2.

For the uniform case the C matrix containing the first derivatives is

C =
1

2

⎡
⎢⎢⎢⎢⎣

−1 0 1 0
0 −1 0 1
−1 4 −7 4
−4 15 −20 9
−9 32 −39 16

⎤
⎥⎥⎥⎥⎦ .

The three sets of equations may be assembled into one matrix equation
with n+ 1 + 2(o+ 1) rows and columns of the form

⎡
⎣ A BTMT CTMT

MB 0 0
MC 0 0

⎤
⎦
⎡
⎣ Q
Λp
Λt

⎤
⎦ =

⎡
⎣B

TP
MP
MT

⎤
⎦ .

The index of the Lagrange multipliers refers to points (p) or tangents (t).

The restriction of giving tangents at all the same points where interpola-
tion constraints are also given may be relaxed and the points with tangential
constraints may only be a subset of the points where interpolation constraints
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are placed. In this case the final equation is

⎡
⎣ A BTMT CTNT

MB 0 0
NC 0 0

⎤
⎦
⎡
⎣ Q
Λp
Λt

⎤
⎦ =

⎡
⎣B

TP
MP
NT

⎤
⎦ .

Here the N mapping matrix is a subset of the M mapping matrix. The solu-
tion of this problem is similar to the solution of the simply constrained case,
albeit a bit more tedious, due to the fact that the constraints are now of two
different kinds. First the solution in terms of the multipliers is expressed

Q = A−1BTP −A−1
[
BTMT CTNT

] [Λp
Λt

]
.

Then there is a matrix equation to compute the multipliers from

[
MB
NC

]
Q =

[
MP
NT

]
.

The sets of multipliers are obtained as

[
Λp
Λt

]
= (

[
MB
NC

]
A−1

[
BTMT CTNT

]
)−1(

[
MB
NC

]
A−1(BTP )−

[
MP
NT

]
).

Finally, the desired set of control points satisfying the constrained variational
problem are

Q = A−1(BTP −BTMTΛp − CTNTΛt).

Let us use again the same set of points, but enforce the curve going through
the second point with a tangent of 45 degrees.

The dotted curve in Figure 9.4 demonstrates the satisfaction of both con-
straints, going through the second point and having a 45-degree tangent. It
is also very clear that such a strong constraint imposed upon one point has
a significant, and in this case detrimental, effect on the shape of the curve at
least as far as the approximation is concerned. The smoothness of the curve
is still impeccable.

In practical applications, some heuristics, like setting the tangent at a cer-
tain point parallel to the chord between the two neighboring points, can be
used successfully. Then

Ti =
Pi+1 − Pi

||Pi+1 − Pi||
.

This would result in different control points and a much smaller deformation
of the overall curve may be obtained. Systematic and possibly interactive ap-
plication of this concept should result in good shape preservation and general
smoothness.
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FIGURE 9.4 Tangent constrained B-spline

9.5 Generalization to higher dimensions

The spline technology discussed above is easily generalized to higher-dimensional
spaces. Let us consider surfaces given in the form of

z(x, y) = f(x, y)

first. A B-spline surface is defined by a set of control points as

s(u, v) =

n∑
i=0

m∑
j=0

Bi,k(u)Bj,k(v)Qij ,

where now we have two distinct knot value sequences of

ui; i = 0, 1, . . . , n,

and
vj ; j = 0, 1, . . . ,m.

The topological rectangularity of the control points is not necessary and may
be overcome by coalescing certain points or adjustments of the knot points.
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The control points to provide a smooth approximation of the given geometric
surface are selected from the variational problem of

I(s)

∫ ∫
(f(x, y)− s(x, y))2dxdy = extremum.

Substituting the surface spline definition and sampling of the given surface
results in another, albeit more difficult, system of linear equations from which
the control point locations may be resolved in a similar fashion as in the case
of spline curves before.

Finally, it is also possible to describe some geometrical volumes with the
B-spline technology. Consider the form

s(u, v, t) =

n∑
i=0

m∑
j=0

p∑
l=0

Bi,k(u)Bj,k(v)Bl,k(t)Qijl,

where now the third set of knot values

tl; l = 0, 1, . . . , p

defines the direction through the volume starting from a surface. Topological
rectangularity considerations again apply, but may be overcome with some
inconvenience.

Both of these generalizations are important in computer-aided design (CAD)
tools in the industry. They represent an efficient way to describe general (non-
mathematical) surfaces and volumes.

Another, very important higher than three-dimensional extension occurs in
computer-aided manufacturing (CAM). The calculation of smooth tool-paths
of five-axis machines includes the three Cartesian coordinates and two addi-
tional quantities related to the tool position. This is important in machining
of surface parts comprised of valleys and walls.

The positioning of the cutting tool is customarily described by two angles.
The tool’s “leaning” in the normal plane is one that may be construed as a
rotation with respect to the bi-normal of the path curve. The tool’s “swaying”
from the normal plane, which constitutes a rotation around the path tangent
as an axis, may be another angle.

Abrupt changes in the tool axes are detrimental to the machined surface
quality as well as to the operational efficiency. Hence it is a natural desire to
smooth these quantities as well. The variational formulation for the geomet-
ric smoothing of the spline, shown above, accommodates any number of such
additional considerations.
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Finally, the recent emergence of the additive manufacturing technology
brought further importance to the spline based surfaces and volumes. In
the additive manufacturing process, also known as 3D printing, the desired
shape of a product is described by the two- and three-dimensional splines
developed above. The process is systematically depositing material until the
final shape is achieved. The spline formulations enable easy computation of
the intermediate shapes of the printing process.
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Variational equations of motion

We encountered variational forms of equations of motion in prior chapters, for
example, when solving the brachistocrone problem in Section 1.4.2. Several
dynamic equations of motion will be derived from variational principles in this
chapter.

10.1 Legendre’s dual transformation

This transformation invented by Legendre is of fundamental importance. Let
us consider the function of n variables

f = f(u1, u2, ..., un).

Legendre proposed to introduce a new set of variables by the transformation of

vi =
∂f

∂ui
, i = 1, 2, ..., n.

The Hessian matrix of this transformation is

H(f) =

⎡
⎢⎢⎢⎢⎣

∂2f
∂u2

1

∂2f
∂u1∂u2

... ∂2f
∂u1∂un

∂2f
∂u2∂u1

∂2f
∂u2

2
... ∂2f

∂u2∂un

... ... ... ...
∂2f

∂un∂u1

∂2f
∂un∂u2

... ∂2f
∂u2

n

⎤
⎥⎥⎥⎥⎦ .

If the determinant of this matrix, sometimes called the Hessian, is not zero,
then the variables of the new set are independent. This means that they could
also be obtained as functions of the original variables.

We define a new function in terms of the new variables

g = g(v1, v2, ..., vn).

The two functions are related as

g = Σni=1uivi − f.

143



144 Applied calculus of variations for engineers

The notable consequence is the spectacular duality between the two sets. The
original variables can now be expressed as

ui =
∂g

∂vi
, i = 1, 2, ..., n.

and the original function regained as

f = Σni=1uivi − g.

Legendre’s transformation is completely symmetric.

Let us now look at a function of two sets of variables:

f = f(u1, u2, ..., un, w1, w2, ..., wn).

If the variables of the second set are independent of the first, they are consid-
ered to be parameters and the transformation will retain them as such:

g = g(v1, v2, ..., vn, w1, w2, ..., wn).

The relationship between the two functions regarding the parameters is

∂f

∂wi
= − ∂g

∂wi
, i = 1, 2, ..., n.

This transformation will be instrumental when applied to the functions intro-
duced in the next sections.

10.2 Hamilton’s principle for mechanical systems

Hamilton’s principle was briefly mentioned earlier in Section 1.4.2 in connec-
tion with the problem of a particle moving under the influence of a gravity
field. The principle, however, is much more general and it is applicable to
complex mechanical systems. For conservative (energy preserving) systems,
Hamilton’s principle states that the motion between two points is defined by
the variational problem of

∫ t1

t0

(Ek − Ep)dt = extremum,

where Ek and Ep are the kinetic and potential energy, respectively. Introduc-
ing the Lagrange function

L = Ek − Ep,
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the principle may also be stated as

∫ t1

t0

Ldt = extremum,

where the extremum is not always zero. The advantageous feature of Hamil-
ton’s principle is that it is stated in terms of energies, which are independent
of the selection of coordinate systems. Hamilton’s principle is of fundamental
importance because many of the general physical laws may be derived from
it as we will see in the next sections.

10.2.1 Newton’s law of motion

We consider the simplest mechanical system of a mass particle, but since
any complex mechanical system may be considered a collection of many mass
particles, the following is valid for those as well. Let the mass of the particle
be m and its position defined at a certain time t by the coordinates:

qi(t), i = 1, 2, 3,

where q1(t) = x(t), q2(t) = y(t), q3(t) = z(t).

The kinetic energy of the particle is then

Ek = Σ3
i=1

1

2
mq̇2i .

The mass particle is moving from its position at time t0 to a position at
time t1. We assume that there is a force F acting on the particle to result in
this motion and the mechanical system is conservative, hence there exists a
force potential such that

Fi = −∂Ep
∂qi

, i = 1, 2, 3.

Here Fi are the components of the force in the coordinate directions. Hamil-
ton’s principle dictates that

∫ t1

t0

Ldt =

∫ t1

t0

(Ek − Ep)dt = extremum.

Substituting the kinetic energy results in

∫ t1

t0

(Σ3
i=1

1

2
mq̇2i − Ep)dt = extremum.

Applying the Euler-Lagrange equation

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0
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for this variational problem yields

∂Ep
∂qi

+
d

dt
(mq̇i), i = 1, 2, 3.

The first term yields the acting force components, the differentiation produces
the acceleration, and the formula becomes

mq̈i = Fi, i = 1, 2, 3.

This is Newton’s second law of motion, better known in the form of

F = ma.

10.3 Lagrange’s equations of motion

We now consider a mechanical system of n mass points with distinct masses
mj , j = 1, ..., n and generalize the coordinates as

q1 = x1, q2 = y1, q3 = z1; q4 = x2, q5 = y2, q6 = z2; ...

and

q3n−2 = xn, q3n−1 = yn, q3n = zn.

They are gathered into a vector q. The mass particles are

m1 = m2 = m3 = m1;m4 = m5 = m6 = m2; ...

and

m3n−2 = mn,m3n−1 = mn,m3n = mn.

Note the distinction between the subscripts and superscripts. To represent
the system with Newton’s law we simply extend the form derived in the last
section to this case as

miq̈i = fi, i = 1, 2, 3, ..., 3n.

Now our variational problem contains multiple functions

I(q, q̇, q̈) = extremum.

The system of Euler-Lagrange equations of this problem is called Lagrange’s
equations of motion. Note the emphasis on the plural. With the Lagrangian
expression

L = Ek − Ep,
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Lagrange’s equations of motion are

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0; i = 1, 2, . . . , 3n.

These equations provide the computational solution for practical mechanical
systems. In most cases the kinetic energy is only a function of the locations
and the potential energy is only a function of the velocities. Hence

∂Ek
∂qi

= 0,

and
∂Ep
∂q̇i

= 0.

This produces a simpler version of Lagrange’s equations as

d

dt

∂Ek
∂q̇i

+
∂Ep
∂qi

= 0; i = 1, 2, . . . , 3n.

This form will be used in several later sections.

10.4 Hamilton’s canonical equations

Hamilton’s canonical equations are the result of the application of Legendre’s
transformation to the Lagrangian function.

Since the Lagrangian is a function of generalized coordinates and time as

L = L(qi, q̇i, t),

for i = 1, 2, . . .3n. One can select either the displacements or the velocities
as the set of variables to transform, following Legendre’s dual transformation
steps. Hamilton’s insightful idea was to transform the velocity components:

pi =
∂L

∂q̇i
.

The result is a significant simplification of the equation of motion as we will
see. The total differential of the Lagrangian is

dL =
∂L

∂t
dt+

n∑
i=1

(
∂L

∂qi
dqi +

∂L

∂q̇i
dq̇i).
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Differentiating and applying Lagrange’s equation we obtain

ṗi =
d

dt
pi =

d

dt

∂L

∂q̇i
=
∂L

∂qi
.

Hence the total differential of the Lagrangian becomes

dL =
∂L

∂t
dt+

n∑
i=1

(ṗidqi + pidq̇i).

Exploiting that
d(piq̇i) = dpiq̇i + pidq̇i,

and reordering yields

d(

n∑
i=1

piq̇i − L) = −∂L
∂t
dt−

n∑
i=1

(ṗidqi − q̇idpi).

The left-hand side term is called the Hamiltonian

H =

n∑
i=1

(piq̇i − L) = f(pi, qi, t),

which is now only a function of the new and old generalized displacement
variables and time. Its total differential is

dH =
∂H

∂t
dt+

n∑
i=1

(
∂H

∂pi
dpi +

∂H

∂qi
dqi).

Matching terms between the dH and dL differentials produces the relationship

∂H

∂t
= −∂L

∂t
.

Hamilton’s canonical equations are then

q̇i =
∂H

∂pi
,

and

ṗi = −∂H
∂qi

,

for i = 1, 2, . . .3n. The pi, qi are called canonical variables. These bring twice
as many first order equations as second order equations of Lagrange; other-
wise they are equivalent. In many cases these equations are simpler to solve.

Legendre’s duality is clearly present. The time variable is the parameter
unchanged by the Legendre transformation and it satisfies the same equation
derived in Section 10.1 as

∂H

∂t
= −∂L

∂t
.
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The dual relationship of the Lagrangian and Hamiltonian functionals is also
clearly satisfied with

H = Σni=1piq̇i − L,

and
L = Σni=1piq̇i −H.

The double dimensional space of the canonical variables is called the phase-
space, sometimes also called the q − p space. When the time variable t is
added, the space is called the state-space, an instrumental platform in struc-
tural mechanics.

10.4.1 Conservation of energy

The relationship between the two functionals is not always easy to establish.
Let us consider conservative systems in which the potential energy is only a
function of the displacement generalized variables as

Ep = Ep(q),

while the kinetic energy is a quadratic function of the derivative generalized
variables (or generalized velocities):

Ek = Ek(q̇
2
i ).

Hence

2Ek = Σni=1

∂Ek
∂q̇i

q̇i.

Substituting the canonical variables from the last section we obtain

2Ek = Σni=1

∂L

∂q̇i
q̇i = Σni=1piq̇i.

Therefore the Hamiltonian becomes

H = Σni=1piq̇i − L = 2Ek − (Ek − Ep) = Ek + Ep.

This relationship states that the Hamiltonian is the sum of kinetic and po-
tential energy. Let us now further investigate the Hamiltonian. Since it is of
the form

H = H(q1, q2, ..., qn, p1, p2, ..pn),

its derivative with respect to time is

dH

dt
= Σni=1(

∂H

∂qi
q̇i +

∂H

∂pi
ṗi).
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By virtue of the canonical equations

dH

dt
= 0,

from which it follows that

H = constant = Etotal.

This is the law of conservation of energy, stating that for a conservative sys-
tem the total energy (which is the Hamiltonian) is constant.

10.5 Orbital motion

We now address the orbital motion of two celestial bodies moving under each
other’s gravitational influence. It is known from Newtonian mechanics that
such a motion is planar and we can confine our discussion to the x− y plane.

We will assume that the central body is located at the origin and the mov-
ing body has unit mass. The location of the moving body at time t is at
coordinates x, y, and it is moving on a path

u(x, y, t).

The distance between these bodies is

√
x2(t) + y2(t).

Newton’s law of gravitation states that the gravitational potential acting on
the moving body is

Ep = − γ√
x2 + y2

.

Here the constant γ is the universal gravitational constant generated by the
mass of the central body. The velocity of the orbiting body is

√
ẋ2 + ẏ2,

hence its kinetic energy is

Ek =
1

2
(ẋ2 + ẏ2).

Let us first observe this in the Lagrangian framework. The Lagrangian be-
comes
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L =
1

2
(ẋ2 + ẏ2)− −γ√

x2 + y2
.

We have two generalized displacement variables and their velocities as

q1 = x, q2 = y, q̇1 = ẋ, q̇2 = ẏ.

Lagrange’s equations of motion are obtained by evaluating

d

dt

∂L

∂q̇i
, i = 1, 2.

The results are ẍ and ÿ. The other component comes from computing

∂L

∂qi
, i = 1, 2,

and produces the equations

−γx(x2 + y2)−3/2,−γy(x2 + y2)−3/2.

The two Lagrange equations of motion are

ẍ+ γx(x2 + y2)−3/2 = 0

and

ÿ + γy(x2 + y2)−3/2 = 0.

Now turning to Hamilton’s formulation, we introduce the canonical variables

pi =
dqi
dt
.

Specifically in our case they are

p1 = ẋ, p2 = ẏ.

The other generalized variables remain as q1 = x, q2 = y. The Hamiltonian
is, as shown in the last section, of the form

H =
1

2
(p21 + p22) +

−γ√
q21 + q22

.

The canonical equations are

ṗi = −∂H
∂qi

= −γqi(q21 + q22)
−3/2, i = 1, 2,

and

q̇i =
∂H

∂pi
= pi, i = 1, 2.
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The resulting canonical system of four equations becomes

p1 =
dx

dt
,

p2 =
dy

dt
,

ṗ1 = −γx(x2 + y2)−3/2,

and
ṗ2 = −γy(x2 + y2)−3/2.

It is easy to see by differentiation and substitution that the solution of this
system is identical to the Lagrange solution.

Polar coordinate transformation enables us to further simplify this problem.
The kinetic energy is then

Ek =
1

2
(ṙ2 + r2φ̇2)

and the potential energy becomes

Ep = −γ 1
r
.

The solution of this problem by either Lagrange’s or Hamilton’s method is
left to the reader but the final result is shown as

r =
b2

γ

1

1 + ecos(φ)
.

This equation describes the trajectory of the orbiting body in relationship to
the one in the center. The e term, called the eccentricity, is

e =

√
1 +

2ab2

γ2
,

and a, b are constants of integration that occurred during the solution. They
are resolved from the physical conditions. The b constant is the θ angular
momentum of the orbiting body and the a is the energy of the orbit.

Specifically the orbital trajectory is an ellipse when e < 1, a parabola when
e = 1, and a hyperbola when e > 1. The minimum value of the elliptic tra-
jectory radius is

rmin =
θ2

γ

1

1 + e
,

while its maximum is at

rmax =
θ2

γ

1

1− e
.
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These are the lengths of the minor and major axis of the elliptical path of the
orbiting body.

10.6 Variational foundation of fluid motion

Until now we have focused on particles of mechanical systems. To provide
a foundation for a later topic we now consider a fluid ”particle” in the form
of an infinitesimally small volume ν. We will assume that this elementary
volume of fluid will not change but, true to the behavior of fluid, could move
by the displacement vector u = (ux, uy, uz). The condition of the unchanged
volume may be expressed as

∫
ν

(
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

)dν =

∫
ν

∇ · udν = 0.

Let us now follow the Hamiltonian avenue again. The mass of the infinitesi-
mal volume of fluid is

dm = ρdν,

where ρ is the density of the fluid. Then the kinetic energy of the infinitesimal
mass of fluid is

ek =
1

2
ρv2dν.

The potential energy of the fluid element is in the form

ep = ρφdν,

where φ is the gravitational potential. The lower case e letters indicate the
energy of the small fluid volume as opposed to the total fluid. The variational
form of our problem then is

∫ t1

t0

(ek − ep)dt = extremum.

Combining all the elementary fluid volumes and substituting yields

∫ t1

t0

∫
ν

ρ(
1

2
v2 − φ)dνdt = 0.

This is subject to an auxiliary condition we usually add by a scalar Lagrange
multiplier λ. Exploiting the identity

∇ · (λu) = λ(∇ · u) +∇(λ) · u,
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we obtain
λ(∇ · u) = ∇ · (λu)−∇(λ) · u.

Substituting into the volume condition

∫
ν

λ(∇ · u)dν =

∫
ν

(∇ · (λu)−∇(λ) · u)dν = 0.

The first term may be transformed into a surface integral of the volume and
as such vanishes, hence the second term represents the condition in the vari-
ational problem as

∫ t1

t0

∫
ν

(ρ(
1

2
v2 − φ)−∇(λ) · u)dνdt.

The Euler-Lagrange differential equation corresponding to this variational
problem now becomes

−ρdv
dt

− ρ∇(φ) −∇(λ) = 0.

By reordering we obtain

dv

dt
= −∇(φ)− 1

ρ
∇(λ).

What remains to be found is the physical meaning of the Lagrange multiplier.
Let us assume that the fluid is in equilibrium, then v = 0. The equation then
simplifies to

∇(φ) +
1

ρ
∇(λ) = 0.

In the case of incompressible fluid ρ = constant = ρ0 and may be moved into
the differential operator. Hence the equation may be simplified to

φ+
λ

ρ0
= constant.

The gravitational potential φ at a height (or depth as we will see) is

φ = −gz,
hence we obtain

λ = ρ0g(z − z0).

The integration constant above is captured in the reference height z0. This is
really Archimedes’ law of hydrostatics, known in the form of

p = ρ0g(z − z0).

Hence the physical meaning of the Lagrange multiplier is the pressure p.
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If we relinquish the incompressibility condition but assume that the density
is a function of the pressure, then

∇p
ρ

=
∇p
f(p)

= ∇P,

where

P =

∫
dp

f(p)
.

The hydrostatic equilibrium is then

φ+ P = constant.

For isothermic (constant temperature) fluids the form

P =
p0
ρ0
log

ρ

ρ0

applies, resulting in

p = p0e
−αz.

This fluid pressure solution is based on the gravitational potential and α is a
constant specific to the fluid medium. For air it is 0.1184km−1 resulting in
Laplace’s atmospheric formula of

p = p0e
−0.1184z,

where z is measured in kilometers and p0 is the pressure at sea level. The
negative exponent indicates the decrease of atmospheric pressure at higher
elevations.

In fluid dynamics applications at the same height the gravity potential is
constant and its derivative vanishes. Using this, and introducing the pressure
instead of the multiplier in our above solution and further differentiation yields

ρü = −∇p,
which is the well known Euler equation of fluid dynamics. This will be the
starting equation of the computational formulation discussion in Section 12.4.

Finally, fluid dynamics problems with viscous flows around structural com-
ponents or confined by structures are governed by the general Navier-Stokes
equations. These equations are beyond our present focus, but may also be
derived by applying Newton’s second law to fluid motion.
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Analytic mechanics

Analytic mechanics is a mathematical science, but it is of high importance
for engineers as it provides analytic solutions to fundamental problems of
engineering mechanics. At the same time it establishes generally applicable
procedures. Mathematical physics texts, such as [5] and [6], laid the founda-
tion for these analytic approaches addressing physical problems.

In the following sections we find analytic solutions for classical mechanical
problems of elasticity utilizing Hamilton’s principle. The most fitting applica-
tion is the excitation of an elastic system by displacing it from its equilibrium
position. In this case the system will vibrate with a frequency characteristic
to its geometry and material, while constantly exchanging kinetic and poten-
tial energy.

The case of non-conservative systems, where energy loss may occur due to
dissipation of the energy, will not be discussed. Hamilton’s principle may be
extended to non-conservative systems, but the added difficulties do not en-
hance the discussion of the variational aspects, which is our main focus.

11.1 Elastic string vibrations

We now consider the vibrations of an elastic string. Let us assume that the
equilibrium position of the string is along the x axis, and the endpoints are
located at x = 0 and x = L. We will stretch the string (since it is elastic) by
displacing it from its equilibrium with some

ΔL

value, resulting in a certain force F exerted on both endpoints to hold it in
place. We assume there is no damping and the string will vibrate indefinitely
if displaced, i.e., the system is conservative.

A particle of the string located at the coordinate value x at the time t has
a yet unknown displacement value of y(x, t). The boundary conditions are:

157
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y(0, t) = y(L, t) = 0,

in other words the string is clamped at the ends. In order to use Hamilton’s
principle, we need to compute the kinetic and potential energies.

With unit length mass of ρ, the kinetic energy is of the form

Ek =
1

2

∫ L

0

ρ(
∂y

∂t
)2dx.

The potential energy is related to the elongation (stretching) of the string.
The arc length of the elastic string is

∫ L

0

√
1 + (

∂y

∂x
)2dx,

and the elongation due to the transversal motion is

ΔL =

∫ L

0

√
1 + (

∂y

∂x
)2dx− L.

Assuming that the elongation is small, i.e.,

|∂y
∂x

| < 1,

it is reasonable to approximate

√
1 + (

∂y

∂x
)2 ≈ 1 +

1

2
(
∂y

∂x
)2.

The elongation by substitution becomes

ΔL ≈ 1

2

∫ L

0

(
∂y

∂x
)2dx.

Hence the potential energy contained in the elongated string is

Ep =
1

2
FΔL =

F

2

∫ L

0

(
∂y

∂x
)2dx.

We are now in a position to apply Hamilton’s principle. The variational prob-
lem becomes

I(y) =

∫ t1

t0

(Ek − Ep)dt =
1

2

∫ t1

t0

∫ L

0

(ρ(
∂y

∂t
)2 − F (

∂y

∂x
)2)dxdt = extremum.

The Euler-Lagrange differential equation for a function of two variables, de-
rived in Section 3.2, is applicable and results in

F
∂2y

∂x2
= ρ

∂2y

∂t2
. (11.1)
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This is the well-known differential equation of the elastic string, also known
as the wave equation.

The solution of the problem may be solved by separation. We seek a solu-
tion in the form of

y(x, t) = a(t)b(x),

separating it into time and geometry dependent components. Then

∂2y

∂x2
= b′′(x)a(t)

and
∂2y

∂t2
= a′′(t)b(x),

where

b′′(x) =
∂2b

∂x2
,

a′′(t) =
∂2a

∂t2
.

Substituting into Equation (11.1) yields

b′′(x)
b(x)

=
1

f2

a′′(t)
a(t)

,

where for future convenience we introduced

f2 =
F

ρ
.

The two sides of this differential equation are dependent on x and t, respec-
tively. Their equality is required at any x and t values, which implies that
the two sides are constant. Let’s denote the constant by −λ and separate the
(partial) differential equation into two ordinary differential equations:

∂2b

∂x2
+ λb(x) = 0,

and
∂2a

∂t2
+ f2λa(t) = 0.

The solution of these equations may be obtained by the techniques learned in
Chapter 5 for the eigenvalue problems. The first equation has the eigensolu-
tions of the form

bk(x) = sin(
kπ

L
x); k = 1, 2, . . . ,
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corresponding to the eigenvalues

λk =
k2π2

L2
.

Applying these values we obtain the time-dependent solution from the second
equation by means of classical calculus in the form of

ak(t) = ckcos(
kπf

L
t) + dksin(

kπf

L
t),

with ck, dk arbitrary coefficients. Considering that at t = 0 the string is in a
static equilibrium position

a′(t = 0) = 0

we obtain dk = 0 and the solution of

ak(t) = ckcos(
kπf

L
t).

The fundamental solutions of the problem become

yk(x, t) = ckcos(
kπf

L
t)sin(

kπ

L
x); k = 1, 2, . . . .

For any specific value of k the solution is a periodic function with period

2L

kf

and frequency

kπf

L
.

The quantities

λk =
kπ

L

for a specific k value are the natural frequencies of the string. The correspond-
ing fundamental solutions are natural vibration modes shapes, or the normal
modes. The first three normal modes are shown in Figure 11.1 for an elastic
spring of unit tension force, mass density, and span. The figure demonstrates
that the half-period decreases along with increasing mode number.

The motion is initiated by displacing the string and releasing it. Let us
define this initial enforced amplitude as

y(xm, 0) = ym,
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FIGURE 11.1 Normal modes of elastic string

where the xm describes the location of the initial stationary displacement of
the string as an internal value of the span

xm ∈ (0, L).

Then the initial shape of the string is a triangle over the span, described by
the function

f(x) =

{ ym
xm
x, 0 ≤ x ≤ xm,

ym + ym
xm−L(x− xm), xm ≤ x ≤ L.

The unknown coefficient may be solved from the initial condition as

y(xm, 0) = f(xm) = ckcos(
kπf

L
0)sin(

kπ

L
xm) = ym,

from which

ck =
ym

sin(kπL xm)
.

Note that if the interior point is the middle point of the span,

xm =
L

2
,
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then the first coefficient will be simply the ym amplitude:

c1 = ym,

since

sin(
π

L

L

2
) = sin(

π

2
) = 1.

Similar, but not identical, considerations may be applied for the coefficients
of the higher normal modes.

The natural frequencies depend on the physical conditions, such as the pre-
applied tension force distribution and the material characteristics embodied
in the unit weight ρ. Specifically, the higher the tension force F in the string,
the higher the frequency becomes. A very tight string vibrates very quickly
(with high frequency), while a very loose string vibrates slowly.

11.2 The elastic membrane

We now turn our attention to the case of an elastic membrane. We assume
that the membrane is fixed on its perimeter L, which surrounds the domain
D of the membrane. We further assume that the initial, equilibrium position
of the membrane is coplanar with the x− y plane.

z(x, y, t) = 0.

The membrane is displaced by a certain amount and released. The ensuing
vibrations are the subject of our interest. The vibrations are a function of the
location of the membrane and the time as

z = z(x, y, t).

We will again use Hamilton’s principle after the kinetic and potential energy
of the membrane are found. Let us assume that the unit area mass of the
membrane does not change with time, and is not a function of the location:

ρ(x, y) = ρ = constant.

The velocity of the membrane point at (x, y) is

v =
∂z

∂t
,
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resulting in kinetic energy of

Ek =
1

2

∫ ∫
D

ρv2dxdy

or

Ek =
1

2

∫ ∫
D

ρ(
∂z

∂t
)2dxdy.

We consider the source of the potential energy to be the stretching of the
surface of the membrane. The initial surface is

∫ ∫
D

dxdy,

and the extended surface is

∫ ∫
D

√
1 + (

∂z

∂x
)2 + (

∂z

∂y
)2dxdy.

Assuming small vibrations, we approximate as earlier in the case of the string

√
1 + (

∂z

∂x
)2 + (

∂z

∂y
)2 ≈ 1 +

1

2
((
∂z

∂x
)2 + (

∂z

∂y
)2).

Hence the surface change is

1

2

∫ ∫
D

(
∂z

∂x
)2 + (

∂z

∂y
)2dxdy.

The stretching of the surface results in a surface tension σ per unit surface
area. The potential energy is equal to σ multiplied by the surface change.

Ep = σ
1

2

∫ ∫
D

(
∂z

∂x
)2 + (

∂z

∂y
)2dxdy.

We are now in the position to apply Hamilton’s principle. Since

I(z) =

∫ t1

t0

(Ek − Ep)dt = extremum,

substitution yields the variational problem of the elastic membrane:

I(z) =
1

2

∫ t1

t0

∫ ∫
D

ρ(
∂z

∂t
)2 − σ((

∂z

∂x
)2 + (

∂z

∂y
)2)dxdydt = extremum.

The Euler-Lagrange differential equation for this class of problems following
Section 3.4 becomes

σ(
∂2z

∂x2
+
∂2z

∂y2
) = ρ

∂2z

∂t2
,
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or using Laplace’s symbol

σΔz = ρ
∂2z

∂t2
.

The solution will follow the insight gained at the discussion of the elastic
string and we seek a solution in the form of

z(x, y, t) = a(t)b(x, y).

The derivatives of this solution are

Δz(x, y, t) = a(t)Δb(x, y),

and
∂2z(x, y, t)

∂t2
= b(x, y)

∂2a(t)

∂t2
.

Substitution yields

σΔb

ρb
=
∂2a(t)

∂t2
/a(t).

Again, since the left-hand side is only a function of the spatial coordinates and
the right-hand side is of time, they must be equal and constant, assumed to
be −λ. This separates the partial differential equation into two ordinary ones:

∂2a(t)

∂t2
+ λa(t) = 0,

and

σΔb(x, y) + λρb(x, y) = 0.

The solution of the first differential equation is

a(t) = c1cos(
√
λt) + c2sin(

√
λt).

Since initially the membrane is in equilibrium,

da

dt
|t=0 = 0

this indicates that

c2 = 0.

Hence

a(t) = c1cos(
√
λt).

In order to demonstrate the solution for the second equation, let us omit the
tension and material density for ease of discussion. The differential equation
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of the form

Δb(x, y) + λb(x, y) = 0,

is the same we solved analytically in the case of the elastic string; however, it is
now with a solution function of two variables. The solution strategy will con-
sider the variational form of this eigenvalue problem introduced in Section 5.2:

I(b) =

∫ ∫
D

((
∂b

∂x
)2 + (

∂b

∂y
)2 − λb2(x, y))dxdy = extremum.

11.2.1 Circular membrane vibrations

Let us restrict ourselves to the domain of the unit circle for simplicity. The
domain D is defined by

D : (1− x2 − y2 ≥ 0).

We use Kantorovich’s method and seek an approximate solution in the form of

b(x, y) = αω(x, y) = α(x2 + y2 − 1),

where α is a yet unknown constant. It follows that on the boundary ∂D

ω(x, y) = x2 + y2 − 1 = 0,

hence the approximate solution satisfies the zero boundary condition. With
this choice

I(α) = α2

∫ ∫
D

(4x2 + 4y2 − λ(x2 + y2 − 1)2)dxdy = extremum.

Introducing polar coordinates for ease of integration yields

I(α) = α2

∫ 2π

0

∫ 1

0

4r3 − λr(r2 − 1)2drdφ = extremum.

The evaluation of the integral results in the form

I(α) = (2π − λ
π

3
)α2 = extremum.

The necessary condition of the extremum is

∂I(α)

∂α
= 0,

which yields an equation for λ

2α(2π − λ
π

3
) = 0.
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The eigenvalue as the solution of this equation is

λ = 6.

The unknown solution function coefficient may be solved by normalizing the
eigensolution as

∫ ∫
D

b2(x, y)dx = 1.

Substituting yields

α2

∫ 2π

0

∫ 1

0

r(r2 − 1)2drdφ = 1.

Integrating results in

α2 π

3
= 1.

Hence

α =

√
3

π
.

The solution of the second equation is

b(x, y) =

√
3

π
(x2 + y2 − 1).

The complete solution of the differential equation of the elastic membrane of
the unit circle is finally

z(x, y, t) = c1cos(
√
6t)

√
3

π
(x2 + y2 − 1).

The remaining coefficient may be established by the initial condition.
Assuming the center of the membrane is displaced by an amplitude A,

z(0, 0, 0) = A = c1

√
3

π
(−1).

from which follows

c1 = −A
√
π

3
.

The final solution is

z(x, y, t) = −Acos(
√
6t)(x2 + y2 − 1).

The shape of the solution is shown in Figure 11.2. The figure shows the solu-
tion of the half-membrane at three distinct time steps. The jagged edges are
artifacts of the discretization; the shape of membrane was the unit circle.
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FIGURE 11.2 Vibration of elastic membrane

11.2.2 Non-zero boundary conditions

So far we restricted ourselves to trivial boundary conditions for the sake of
clarity. In engineering practice, however, non-zero boundary conditions are
very often imposed. These, also called enforced motion, boundary conditions
are the subject of our focus here.

Let us consider the membrane with a flexible boundary allowing some or
all of the boundary points to attain non-zero displacement from the plane.
Let the arc length differential of a section of the boundary in equilibrium be
denoted by ds. The reactive force on the section due to displacement z is

−p(s)z(x, y, t)ds,
where the negative sign indicates the force’s effort to pull the boundary back
toward the equilibrium position and opposite from the displacement. The
potential energy of the boundary section may be computed by

p(s)ds

∫
zdz =

1

2
p(s)z2ds.

The total potential energy due to the reactive force on the boundary L is
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ELp =
1

2

∫
L

p(s)z2ds.

Applying Hamilton’s principle for this scenario now yields

I(z) =
1

2

∫ t1

t0

(

∫ ∫
D

ρ(
∂z

∂t
)2 − σ((

∂z

∂x
)2 + (

∂z

∂y
)2)dxdy −

∫
L

p(s)z2ds)dt.

The newly introduced boundary integral’s inconvenience may be avoided as
follows. First, it may also be written as

∫
L

p(s)z2ds =
1

2

∫
L

(p(s)z2
ds

dy
dy + p(s)z2

ds

dx
dx).

Introducing the twice differentiable

P =
1

2
pz2

ds

dy

and

Q = −1

2
pz2

ds

dx

functions that are defined on the boundary curve L the integral further
changes to

∫
L

pz2ds =

∫
L

(Pdy −Qdx).

Finally, with the help of Green’s theorem we obtain

∫
L

pz2ds =

∫ ∫
D

(
∂P

∂x
+
∂Q

∂y
)dxdy.

Hence the variational form of this problem becomes

I(z) =
1

2

∫ t1

t0

∫ ∫
D

(ρ(
∂z

∂t
)2 − σ((

∂z

∂x
)2 + (

∂z

∂y
)2)− (

∂P

∂x
+
∂Q

∂y
))dxdydt.

This problem is identical to the one in Section 3.5, the case of a functional
with three independent variables. The two spatial independent variables are
augmented in this case with time as the third independent variable. The cor-
responding Euler-Lagrange differential equation becomes the same as in the
case of the fixed boundary

σΔz = ρ(
∂2z

∂2t
),

with the addition of the constraint on the boundary as

σ
∂z

∂n
+ pz = 0,
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where n is the normal of the boundary. The solution may again be sought in
the form of

z(x, y, t) = a(t)b(x, y),

and as before, based on the same reasoning

a(t) = c1cos(
√
λt) + c2sin(

√
λt).

The b(x, y) now must satisfy the following two equations.

σΔb+ λρb = 0; (x, y) ∈ D,

and

σ
∂b

∂n
+ pb = 0; (x, y) ∈ L.

The solution of these two equations follows the procedure established in the
last section.

11.3 Bending of a beam under its own weight

The two analytic elasticity examples presented so far were one- and two-
dimensional, respectively. The additional dimensions (the string’s cross-section
or the thickness of the membrane) were negligible and ignored in the presen-
tation. In this section we address the phenomenon of the bending of a beam
with a non-negligible cross-section and consider all three dimensions.

In order to deal with the problem of the beam, we introduce some basic
concepts of elasticity for this specific case only. A fuller exposition of the topic
will be in the next chapter. Let us consider an elastic beam with length L and
cross-section area A. We consider the beam fully constrained at one end and
free on the other, known as a cantilever beam, with a rectangular cross-section
of width a along the z axis and height b along the y axis as shown in Figure
11.3. The axis of the beam is aligned along the x axis.

The relationship between the stress resulting from an axial force exerted on
the free end of the beam and its subsequent deformation is expressed by the
well-known Hooke’s law

σ = Eε,

where the constant E, called Young’s modulus, expresses the inherent elastic-
ity of the material with regards to elongation. The relationship between the
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FIGURE 11.3 Beam cross-section

stress (σ) and the force (F ) is

σ =
F

A
.

The strain (ε) describes the relative deformation of the beam, and in the axial
case this is

ε =
dl

l
,

where dl is the elongation along the beam’s longitudinal direction. In different
deformation scenarios, like the ensuing bending, the formulation for the strain
may vary and will be discussed in more detail later.

The energy equilibrium of this problem is again based on Hamilton’s princi-
ple; however, since in this particular example we consider a static equilibrium,
there is no kinetic energy. In this case Hamilton’s principle becomes the prin-
ciple of minimal potential energy. The two components of the potential energy
are the internal strain energy and the work of forces acting on the body.

The internal energy related to the strain is
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Es =
1

2

∫
V

σεdV.

Substitution of Hooke’s law yields

Es =
1

2
E

∫
V

εεdAdx.

The strain energy of a particular cross-section is obtained by integrating as

Es(x) =
1

2
E

∫ b

−b

∫ a

−a
ε2dzdy.

The bending will result in a curved shape with a radius of curvature r and
a strain in the beam. Note that the radius of curvature is a function of the
lengthwise location since the shape of the beam (the subject of our interest)
is not a circle.

The relationship between the radius of curvature and the strain is estab-
lished as follows. Above the neutral plane of the bending, which is the x− z
plane in our case, the beam is elongated and it is compressed below the plane.
Based on that at a certain distance y above or below the plane the strain is

ε =
y

r
.

Note that since y is a signed quantity, above yields zero strain in the neutral
plane, positive (tension) above the plane and negative (compression) below.
Using this in the strain energy of a particular cross-section yields

Es(x) =
E

2

∫ b

−b

∫ a

−a

y2

r2
dzdy =

E

2

4ab3

3

1

r2
=
EI

2

1

r2
,

where

I =
4ab3

3

is the moment of inertia of the rectangular cross-section. The total strain
energy in the volume is

Es =
1

2
EI

∫ L

0

1

r2
dx.

We assume that the only load on the beam is its weight. We denote the
weight of the unit length with w. The bending moment generated by the
weight of a cross-section with respect to the neutral plane is

dM = ydG,



172 Applied calculus of variations for engineers

where y is the distance from the neutral plane and dG is the weight of the
cross-section. Using the unit length weight of the beam, we obtain the mo-
ment as

dM = ywdx =M(x)dx.

The total work of bending will be obtained by integrating along the length of
the beam:

W =

∫
dM =

∫ L

0

M(x)dx = w

∫ L

0

ydx,

since the unit weight is constant. We are now ready to state the equilibrium
of the beam

Es =W

as a variational problem of the form

I(y) =

∫ L

0

(Es(x) −M(x))dx = extremum,

or

I(y) =

∫ L

0

(
1

2
EI

1

r2
− wy)dx = extremum.

Since the radius of curvature is reciprocal of the second derivative of the bent
curve of the beam,

r =
1

y′′(x)
it follows that

I(y) =

∫ L

0

(
1

2
EIy′′2(x)− wy)dx = extremum.

The problem above is a special case of the form

I(y) =

∫
L

f(y, y′′)dx = extremum,

where neither the y nor the y′ term exists explicitly. It is also a case of higher
order derivatives discussed in Section 4.2 and results in the Euler-Poisson
equation of order 2:

∂f

∂y
− d

dx

∂f

∂y′
+

d2

dx2
∂f

∂y′′
= 0.

Since in this case

f(y, y′′) =
1

2
EIy′′2 − wy,
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the first term is simply

∂f

∂y
= −w.

The second term vanishes as the first derivative of the unknown function is
not explicitly present. With

∂f

∂y′′
= 2

1

2
EIy′′,

the third term becomes

d2

dx2
∂f

∂y′′
= EI

d4

dx4
y.

Hence the solution obtained from the Euler-Poisson equation tailored for this
case is

d4y

dx4
=

w

EI
.

Direct integration yields the final solution of

y(x) =
w

24EI
(x4 + 4c1x

3 + 12c2x
2 + 24c3x+ c4),

where the ci are constants of integrations. The solution curve yields the shape
of the bent beam shown in Figure 11.4.

In the figure unit physical coefficients were used for the sake of simplicity
and the coefficients of integration are resolved from the boundary conditions
as follows. At the fixed end, the beam is not deflected, hence

y(x = 0) = 0,

which implies

c4 = 0.

Furthermore, at the fixed end, the tangent of the curve is horizontal as

y′(x = 0) = 0,

implying

c3 = 0.

Finally at the free end the beam has no curvature, hence both second and
third derivatives vanish. Therefore

y′′′(L) = 0

yields
c1 = −L,
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and

y′′(L) = 0

results in

c2 =
L2

2
.

With these, the final solution becomes

y(x) =
w

24EI
(x4 − 4Lx3 + 6L2x2),

which is the source of maximum deflection often quoted in engineering hand-
books:

y(L) =
wL4

8EI
.

Finally, it is worthwhile to point out the intriguing similarities between this
problem and the natural spline solution of Chapter 9.

The scenario is also often presented as a problem of optimization. In engi-
neering practice it is a natural desire to minimize the deflection of the beam
under its own weight, since very likely there is an additional load applied to
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it as well.

In our case it is easy to see that to minimize the deflection, either of the
quantities in the denominator, the Young’s modulus or the moment of inertia,
should be increased. Assuming that the material type is dictated, hence E is
fixed, we can still address the shape. Since the chosen cross section is rectan-
gular, it follows that the higher the b dimension, the smaller the deflection is.

This, however, cannot be carried to the extreme: Some minimal and max-
imal ratios of dimensions of rectangular cross sections are usually given as
constraints. The mathematical problem becomes

I =
4ab3

3
= maximum,

subject to

rmin ≤ b

a
≤ rmax.

This is a constrained optimization problem whose solution is intuitively at the
maximum ratio

Imax =
4r3maxa

4

3
.

This is a simplest problem of shape optimization, a topic of high importance
in structural engineering. The method of gradients in Section 6.5 provides the
foundation for the variational solution of such problems.
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Computational mechanics

The algebraic difficulties of analytic mechanical solutions are rather over-
whelming and become insurmountable when solving real-world problems. Com-
putational mechanics is based on the discretization of the geometric continuum
and describing its physical behavior in terms of generalized coordinates. Its
focus is on computing numerical solutions to practical problems of engineering
mechanics.

12.1 Three-dimensional elasticity

One of the fundamental concepts necessary to understanding continuum me-
chanical systems is a generic treatment of elasticity described in detail in the
classical reference of the subject [17]. When an elastic continuum undergoes
a one-dimensional deformation, like in the case of the bar discussed in Section
11.3, Young’s modulus was adequate to describe the changes.

For a general three-dimensional elastic continuum we need another coeffi-
cient, introduced by Poisson, to capture the three-dimensional elastic behav-
ior. Poisson’s ratio measures the contraction of the cross-section while an
object such as a beam is stretched. The ratio ν is defined as the ratio of the
relative contraction and the relative elongation:

ν = −dr
r
/
dl

l
.

Here a beam with circular cross-section and radius r is assumed. Poisson’s
ratio is in the range of zero to 1/2 and expresses the compressibility of the
material. The two constants are also often related as

μ =
E

2(1 + ν)
,

and

λ =
Eν

(1 + ν)(1 − 2ν)
.

177
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Here μ and λ are the so-called Lamé constants.

In a three-dimensional elastic body, the elasticity relations could vary sig-
nificantly. Let us consider isotropic materials, whose elastic behavior is inde-
pendent of the material orientation. In this case Young’s modulus is replaced
by an elasticity matrix whose terms are only dependent on the Lamé constants
as follows

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ+ 2μ λ λ 0 0 0
λ λ+ 2μ λ 0 0 0
λ λ λ+ 2μ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Viewing an infinitesimal cube of the three-dimensional body, there are six
stress components on the element,

σ =

⎡
⎢⎢⎢⎢⎢⎢⎣

σx
σy
σz
τyz
τxz
τxy

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The first three are normal and the second three are shear stresses. There are
also six strain components

ε =

⎡
⎢⎢⎢⎢⎢⎢⎣

εx
εy
εz
γyz
γxz
γxy

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The first three are extensional strains and the last three are rotational strains.
The stress-strain relationship is described by the generalized Hooke’s law as

σ = Dε.

This will be the fundamental component of the computational techniques for
elastic bodies. Let us further designate the location of an interior point of the
elastic body with

r(x, y, z) = xi+ yj + zk =

⎡
⎣xy
z

⎤
⎦ ,
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and the displacements of the point with

u(x, y, z) = ui+ vj + wk =

⎡
⎣ uv
w

⎤
⎦ .

Then the following strain relations hold:

εx =
∂u

∂x
,

εy =
∂v

∂y
,

and

εz =
∂w

∂z
.

These extensional strains manifest the change of rate of the displacement of
an interior point of the elastic continuum with respect to the coordinate di-
rections.

The rotational strains are computed as

γyz =
∂v

∂z
+
∂w

∂y
,

γxz =
∂u

∂z
+
∂w

∂x
,

and

γxy =
∂u

∂y
+
∂v

∂x
.

These terms define the rate of change of the angle between two lines crossing
at the interior point that were perpendicular in the un-deformed body and
get distorted during the elastic deformation.

The strain energy contained in the three-dimensional elastic continuum is

Es =
1

2

∫
V

σT εdV =
1

2

∫
V

[
σx σy σz τyz τxz τxy

]

⎡
⎢⎢⎢⎢⎢⎢⎣

εx
εy
εz
γyz
γxz
γxy

⎤
⎥⎥⎥⎥⎥⎥⎦
dV.

We will also consider distributed forces acting at every point of the volume
(like the weight of the beam in Section 11.3), described by
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f = fxi+ fyj + fzk =

⎡
⎣ fxfy
fz

⎤
⎦ .

The work of these forces is based on the displacements they caused at the
certain points and computed as

W =

∫
V

uT fdV. =

∫
V

[
u v w

]
⎡
⎣ fxfy
fz

⎤
⎦ dV.

The above two energy components constitute the total potential energy of the
volume as

Ep = Es −W.

In order to evaluate the dynamic behavior of the three-dimensional body,
the kinetic energy also needs to be computed. Let the velocities at every point
of the volume be described by

u̇(x, y, z) = u̇i+ v̇j + ẇk =

⎡
⎣ u̇v̇
ẇ

⎤
⎦ .

With a mass density of ρ, assumed to be constant throughout the volume, the
kinetic energy of the body is

Ek =
1

2
ρ

∫
V

u̇T u̇dV.

We are now in the position to write the variational statement describing
the equilibrium of the three-dimensional elastic body:

I(u(x, y, z)) =

∫
V

(Ek − Ep)dV = extremum,

which is of course Hamilton’s principle.

The unknown displacement solution of the body at every (x, y, z) point is
the subject of the computational solution discussed in the next sections.

12.2 Lagrangian formulation

The equations will be obtained by finding an approximate solution of the vari-
ational problem based on the total energy of the system as follows. For
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I(u) =

∫
v

f(u(x, y, z))dv = extremum,

we seek the (approximate) solution in the form

u(x, y, z) =
n∑
i=1

q
i
Ni(x, y, z).

The yet unknown coefficients, the q
i
values, are displacements at i = 1, 2, . . .

discrete locations inside the volume. These are also known as generalized dis-
placements and discussed in an earlier section [15].

The variational problem, based on the total energy of the system, in this
case is

I(u) =

∫
v

(
1

2
ρu̇T u̇− (

1

2
σT ε− uT f))dv = extremum.

Let us organize the generalized displacements as

q =

⎡
⎣ q1. . .
q
n

⎤
⎦ ,

where, in adherence to our three-dimensional focus

q
i
=

⎡
⎣ qi,xqi,y
qi,z

⎤
⎦ .

Using this, the approximate solution becomes

u(x, y, z) = Nq

with the matrix of basis functions

N(x, y, z) = Nxi+Nyy +Nzk =

⎡
⎣N1 0 0 . . . Nn 0 0

0 N1 0 . . . 0 Nn 0
0 0 N1 . . . 0 0 Nn

⎤
⎦ .

The basis functions are usually low order polynomials of x, y, z, and will be
discussed in detail in Section 12.5.3.

Let us apply this to the terms of our variational problem, starting with the
kinetic energy. Assuming that the velocity is also a function of the generalized
velocities,

u̇(x, y, z) = Nq̇,
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where

q̇ =

⎡
⎣ q̇1. . .
q̇
n

⎤
⎦ ,

we obtain

Ek =

∫
V

1

2
ρu̇T u̇dV =

1

2
q̇t

∫
V

NTρNdV q̇.

Introducing the mass matrix

M =

∫
V

NTρNdV,

the final form of the kinetic energy becomes

Ek =
1

2
q̇TMq̇.

Now let’s focus on the strain energy. Note that the strain is now also ex-
pressed in terms of the basis functions. Hence

ε(N) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑n
i=1 q

t
i
∂N
∂x∑n

i=1 q
t
i
∂N
∂y∑n

i=1 q
t
i
∂N
∂z∑n

i=1 q
t
i
(∂N∂z + ∂N

∂y )∑n
i=1 q

t
i
(∂N∂z + ∂N

∂x )∑n
i=1 q

t
i
(∂N∂y + ∂N

∂x )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

or in matrix form

ε(N) = Bq,

where the columns of B are

Bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂x
∂Ni

∂y
∂Ni

∂z
∂Ni

∂z + ∂Ni

∂y
∂Ni

∂z + ∂Ni

∂x
∂Ni

∂y + ∂Ni

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

With this, the integral becomes

∫
V

εT (N)Dε(N)dV =

∫
V

qTBTDBqdV.
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The total strain energy in the system is

Es =
1

2
qT

∫
V

BTDBdV q.

Introducing the stiffness matrix of the system as

K =

∫
V

BTDBdV,

the strain energy term is of final form

Es =
1

2
qTKq.

A similar approach on the second term of the potential energy yields

∫
V

qTNT fdV.

Introducing the total active force vector on the system as

F =

∫
V

NT fdV,

this term becomes

qTF.

The total potential energy is their difference

Ep =
1

2
qTKq − qTF.

We are ready to find the value of the unknown solution components and will
use the simpler form of Lagrange’s equations of motion from the earlier sec-
tion as

d

dt

∂Ek
∂q̇i

+
∂Ep
∂qi

= 0; i = 1, 2, . . . , n.

The first term is evaluated as

∂Ek
∂q̇

=Mq̇.

Then

d

dt
(Mq̇) =Mq̈.

Here the generalized accelerations are

q̈ =

⎡
⎣ q̈1. . .
q̈
n

⎤
⎦ .
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The second part results in the two terms

∂Ep
∂q

= Kq − F = 0.

The final result is

Mq̈ +Kq = f.

This is the well-known equation of the forced undamped vibration of a three-
dimensional elastic body.

12.3 Heat conduction

While staying on the mechanics territory, we now explore the area of heat con-
duction. This phenomenon occurs when the temperature between two areas
of a body differs. In this application every point in space is associated with
a scalar quantity, the temperature, hence these type of problems are called
scalar field problems.

For our discussion, we will assume that the body does not deform under the
temperature load. This assumption, of course, may be violated in real life.
Serious warping of objects left in the sun is a strong example of that scenario.

Two more restrictions we impose. We’ll consider two-dimensional problems
for simplification of the discussion. We will also only consider the steady state
solution case, when the temperature at a certain point is independent of the
time.

The differential equation of the heat conduction per [4] for this case is

∂

∂x
(k
∂T

∂x
) +

∂

∂y
(k
∂T

∂y
) +Q = 0,

where the temperature field

T = T (x, y)

is a function of the location and k is the thermal conductivity of the material
of the object. In general the conductivity may be a function of the location
as well. The Q is a heat source in the model, called such when it generates
heat, but called a sink when it absorbs heat.
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Since the differential equation is given, we’ll use the techniques developed
in Chapter 5 when dealing with the inverse variational problem. Accordingly,
the solution of a differential equation of the form

Au+ f = 0,

corresponds to the extremum value of the functional

I(u) = (Au, u)− 2(u, f).

For the heat conduction differential equation, this means

I(T ) =
1

2

∫ ∫
D

(k((
∂T

∂x
)2 + (

∂T

∂y
)2)− 2QT )dxdy = extremum.

Following the avenue charted in the last section for the elasticity problem,
we’ll approximate the temperature field in terms of basis functions by

T (x, y) =

n∑
i=1

TiNi.

Then

∂T (x, y)

∂x
=

n∑
i=1

Ti
∂Ni
∂x

,

and
∂T (x, y)

∂y
=

n∑
i=1

Ti
∂Ni
∂y

.

We introduce a vector of the generalized temperatures

T =

⎡
⎣ T1. . .
Tn

⎤
⎦

and Bi, i = 1, . . . , n columns of a B matrix as

Bi =

[ ∂Ni

∂x
∂Ni

∂y

]
.

We also concatenate the Ni into the matrix N

N =
[
N1 . . . Nn

]
.

This architecture of the N matrix is simpler than in the case of the elasticity,
reflecting the fact that this is a scalar field problem. The elasticity was a vector
field problem as the solution quantity at each point was the displacement
vector of three dimensions.
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Then in matrix form we obtain the approximate temperature field solution
as

T (x, y) = NT,

and

(
∂T

∂x
)2 + (

∂T

∂y
)2 = (BT )T .

We apply these to the variational problem. The first part becomes

1

2

∫ ∫
D

k((
∂T

∂x
)2 + (

∂T

∂y
)2)dxdy =

1

2

∫ ∫
D

kTTBTBTdxdy.

The second part changes as

−
∫ ∫

D

QTdxdy = −
∫ ∫

D

QNTdxdy.

With the introduction of a “temperature stiffness matrix” of

K =

∫ ∫
D

kBTBdxdy,

and the load vector of

Q =

∫ ∫
D

QNdxdy,

finally, we obtain the variational problem of

I(T ) =
1

2
TTKT −QT = extremum,

from which the now familiar result of

KT = Q

emerges.

This simpler two-dimensional case will be used to illuminate the computa-
tional details of the generalized coordinate selection and processing in Section
12.5, after reviewing another mechanical application involving fluids.

12.4 Fluid mechanics

As a final application we discuss a problem of fluid mechanics discussed in
detail by [19], where the fluid is partially or fully surrounded by an external
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structure and the dissipation of energy into the surrounding space is negligible.

Assuming small motions, the equilibrium of a compressible fluid inside a
cavity is governed by the Euler equation derived in Section 10.5

ρü = −∇p,
where ü is the acceleration of the particles and p is the pressure in the fluid.
Furthermore, ρ is the density and ∇ is the differential operator.

We also assume locally linear pressure-velocity behavior of the fluid as

p = −b∇u,
where b is the so-called bulk modulus related to the density of the fluid and
the speed of sound. Differentiating twice with respect to time and substitut-
ing the Euler equation we get Helmholtz’s equation describing the behavior
of the fluid:

1

b
p̈ = ∇(

1

ρ
∇p).

The following boundary conditions are also applied. At a structure-fluid in-
terface

∂p

∂n
= −ρün, (12.1)

where n is the direction of the outward normal. At free surfaces:

u = p = 0.

Since the equilibrium differential equation of the physical phenomenon is
given at this time, the inverse problem approach introduced in Chapter 5 will
be used again. Accordingly, for the differential equation of

Au = 0,

the variational problem of

I(u) = (Au, u)

applies. Here the inner product is defined over the continuum. For our case
this results in

∫ ∫ ∫
V

[
1

b
p̈− 1

ρ
∇ · ∇p]pdV = 0. (12.2)



188 Applied calculus of variations for engineers

Following the earlier sections, we will also assume that the pressure field is
approximated by basis functions as:

p(x, y, z) =
n∑
i=1

Nipi = Np.

The same holds for the derivatives:

p̈(x, y, z) = Np̈.

Separating the two parts of the Equation (12.2), the first yields

∫
V

1

b
p̈pdV =

∫
V

1

b
pp̈dV = pT

∫
V

1

b
NTNdV p̈.

Introducing the mass matrix

M =

∫
V

1

b
NTNdV,

this term simplifies to

∫
V

1

b
p̈pdV = pTMp̈.

Let us now turn our attention to the second part of Equation (12.2). Inte-
grating by parts yields

−
∫
V

(
1

ρ
∇ · ∇pp)dV =

∫
V

1

ρ
∇p · ∇pdV −

∫
S

1

ρ
∇ppdS.

From the above assumptions, it follows that

∇p = ∇Np,
and we obtain

pT
∫
V

(
1

ρ
∇NT )∇NdV p+ pT

∫
S

NT ündS.

Here the boundary condition stated in Equation (12.1) was used. Introducing

K =

∫
V

1

ρ
∇NT∇NdV,

the first part simplifies to

pTKp.

The force exerted on the boundary by the surrounding structure is

F =

∫
S

NT ündS.
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Substituting and reordering yields

pTMp̈+ pTKp+ pTF = 0.

Finally, the equilibrium equation is

Mp̈+Kp+ F = 0.

This, as all the similar problems of this chapter, may be solved by efficient
numerical linear algebra computations and will not be discussed further here.

12.5 The finite element method

In order to conclude the mechanical applications presented in the past three
sections, we need to elucidate their common, and thus far omitted, computa-
tional details. The most practical and wide spread general purpose computa-
tional method is that of the finite elements.

Computational solutions via the finite element method achieved an unpar-
alleled industrial success. The topic’s details cover an extensive territory [14]
but from this point on we’ll discuss only the main components.

These components are: the discretization of the geometric domain by fi-
nite elements, the computation of the basis functions used in the approximate
solutions, and the assembly of the system matrices. These components are
described here once to further emphasize the point of their commonality, or
even application independence.

12.5.1 Finite element meshing

The discretization of generic three- or two-dimensional domains is usually by
finite elements of simple shapes, such as tetrahedra or triangles. The foun-
dation of many general methods of discretization (commonly called meshing)
is the classical Delaunay triangulation method. The Delaunay triangulation
technique in turn is based on Voronoi polygons. The Voronoi polygon, as-
signed to a certain point of a set of points in the plane, contains all the points
that are closer to the selected point than to any other point of the set.

In Figure 12.1 the dots represent such a set of points. The irregular (dotted
line) hexagon containing one point in the middle is the Voronoi polygon of
the point in the center. It is easy to see that the points inside the polygon
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FIGURE 12.1 Delaunay triangularization

are closer to the center point than to any other points of the set. It is also
quite intuitive that the edges of the Voronoi polygon are the perpendicular
bisectors of the line segments connecting the points of the set.

The union of the Voronoi polygons of all the points in the set completely
covers the plane. It follows that the Voronoi polygon of two points of the
set do not have common interior points; at most they share points on their
common boundary.

The definition and process generalizes to three dimensions very easily. If
the set of points are in space, the points closest to a certain point define a
Voronoi polyhedron.

The Delaunay triangulation process is based on the Voronoi polygons by
constructing Delaunay edges connecting those points whose Voronoi polygons
have a common edge. Constructing all such possible edges will result in the
covering of the planar region of our interest with triangular regions, the De-
launay triangles.

The process starts with placing vertices on the boundary of the domain
in an equally spaced fashion. The Voronoi polygons of all boundary points
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are created and interior points are generated gradually proceeding inward by
creating Delaunay triangles. This is called the advancing front technique.

The process extends quite naturally and covers the plane as shown in Figure
12.1 with six Delaunay triangles where the dotted lines are the edges of the
Voronoi polygons and the solid lines depict the Delaunay edges. It is known
that under the given definitions no two Delaunay edges cross each other.

Finally, in three dimensions the Delaunay edges are defined as lines con-
necting points that share a common Voronoi facet (a face of a Voronoi poly-
hedron). Furthermore, the Delaunay facets are defined by points that share
a common Voronoi edge (an edge of a Voronoi polyhedron). In general each
edge is shared by exactly three Voronoi polyhedra; hence, the Delaunay re-
gions’ facets are going to be triangles. The Delaunay regions connect points of
Voronoi polyhedra that share a common vertex. Since in general the number
of such polyhedra is four, the generated Delaunay regions will be tetrahedra.
The triangulation method generalized into three dimensions is called tessella-
tion.

12.5.2 Shape functions

We will demonstrate the finite element method by assuming that the meshed
domain in the prior section represents an irregularly shaped membrane prob-
lem and only out-of-plane deformations of the membrane are considered. This
will simplify the presentation of the method while still capturing its intrica-
cies. The three-dimensional elasticity formulation is simply a generalization
of the process presented below.

In the prior sections we used the Ni basis functions to describe the approx-
imate solutions. In order to approximate the solution inside the domain, the
finite element method uses a collection of low order polynomial basis functions.
For a triangular element discretization of a two-dimensional domain, as shown
in Figure 12.1, bilinear interpolation functions are commonly used in the form:

u(x, y) = a+ bx+ cy.

Here u represents any of the q, T , or p physical solution quantities introduced
in the past three sections.

In order to find the coefficients, let us consider a triangular element in the
x − y plane with corner nodes (x1, y1), (x2, y2), and (x3, y3). For this partic-
ular triangle we seek three specific basis functions, called shape functions in
the finite element field, satisfying

N1 +N2 +N3 = 1.
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We also require that these functions at a certain node point reduce to zero
at the other two nodes. This is called the Kronecker property and presented as

Ni =

{
1 at node i,
0 at node �= i.

Furthermore, a shape function is zero along the edge opposite to the particular
node at which the shape function is non-zero.

The solution for the nodes of a particular triangular element e can be ex-
pressed in matrix form as

ue =

⎡
⎣u1u2
u3

⎤
⎦ =

⎡
⎣1 x1 y1
1 x2 y2
1 x3 y3

⎤
⎦
⎡
⎣ab
c

⎤
⎦ .

This system of equations is solved for the unknown coefficients that produce
the shape functions

⎡
⎣ab
c

⎤
⎦ =

⎡
⎣ 1 x1 y1
1 x2 y2
1 x3 y3

⎤
⎦
−1 ⎡

⎣u1u2
u3

⎤
⎦ =

⎡
⎣N1,1 N1,2 N1,3

N2,1 N2,2 N2,3

N3,1 N3,2 N3,3

⎤
⎦
⎡
⎣u1u2
u3

⎤
⎦ .

By substituting into the matrix form of the bilinear interpolation function

u(x, y) =
[
1 x y

]
⎡
⎣ab
c

⎤
⎦ =

[
1 x y

]
⎡
⎣N1,1 N1,2 N1,3

N2,1 N2,2 N2,3

N3,1 N3,2 N3,3

⎤
⎦
⎡
⎣u1u2
u3

⎤
⎦ ,

we get

u(x, y) =
[
N1 N2 N3

]
⎡
⎣u1u2
u3

⎤
⎦ .

Here the N1, N2, N3 shape functions are

N1(x, y) = N1,1 +N2,1x+N3,1y,

N2(x, y) = N1,2 +N2,2x+N3,2y,

and

N3(x, y) = N1,3 +N2,3x+N3,3y.

The shape functions, as their name indicates, solely depend on the coordinates
of the corner nodes and the shape of the particular triangular element of the
domain. With these we are able to approximate the solution value inside an
element in terms of the solutions at the corner node points as

u(x, y) = N1(x, y)u1 +N2(x, y)u2 +N3(x, y)u3.
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FIGURE 12.2 Parametric coordinates of triangular element

The shortcoming of this direct approach is that the coefficients of the shape
functions are different for each element and they would have to be computed
for all elements in the domain.

It is practical therefore to generate the shape functions for a standard,
parametrically defined element. In that case the shape functions and their
derivatives may be pre-computed and appropriately transformed as was orig-
inally proposed in [20]. Let us define a parametric coordinate system for the
triangular element as shown in Figure 12.2.

The relationship between the geometric and parametric coordinates is de-
fined by the bidirectional mapping

x = x(v, w), y = y(v, w)

and
v = v(x, y), w = w(x, y).

The v axis is directed from node 1 with coordinates x1, y1 to node 2 with
coordinates x2, y2. The w axis is directed from node 1 with coordinates x1, y1
to node 3 with coordinates x3, y3. The pairing between the geometric and
parametric coordinates of the nodes of the triangle is shown in Table 12.1.

Let us now compute the shape functions in terms of these parametric coor-
dinates:
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TABLE 12.1

Coordinate pairing of
triangular element

node x y v w

1 x1 y1 0 0
2 x2 y2 1 0
3 x3 y3 0 1

Ni(v, w) = Ni(v(x, y), w(x, y)).

Specifically, we choose

N1(v, w) = 1− v − w,

N2(v, w) = v,

and
N3(v, w) = w.

These shape functions also satisfy the Kronecker property stated above and
the conditions of polynomial completeness:

3∑
i=1

Ni(v, w) = 1− v − w + v + w = 1,

3∑
i=1

Ni(v, w)xi = x

and
3∑
i=1

Ni(v, w)yi = y.

The last two equations imply that the location of any point inside the element
will also be represented by these shape functions as

x = N1(v, w)x1 +N2(v, w)x2 +N3(v, w)x3 ,

and
y = N1(v, w)y1 +N2(v, w)y2 +N3(v, w)y3.

Such elements are called iso-parametric elements since both the geometry and
the solution function inside the element are approximated by the same para-
metric shape functions. Substituting the shape functions we obtain

x = (1− v − w)x1 + vx2 + wx3 = x1 + (x2 − x1)v + (x3 − x1)w,

and

y = (1− v − w)y1 + vy2 + wy3 = y1 + (y2 − y1)v + (y3 − y1)w.
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This formulation is a crucial component of the standardized element matrix
generation as we will see it in the next section.

12.5.3 Element matrix generation

In order to compute a particular matrix, for example, the mass matrix M
introduced in Section 12.2, we proceed element by element. We consider all
the nodes bounding a particular element and compute the matrix for that
particular element. Thus,

Me = ρ

∫ ∫
x,y∈De

N(x, y)TN(x, y)dxdy,

where the N(x, y) matrix is the local shape function matrix of the particular
triangular element and De is its geometric domain.

Using the parametric coordinates, however, the above elemental mass ma-
trix integral may be evaluated as

Me = ρ

∫ 1

v=0

∫ 1−v

w=0

N(v, w)TN(v, w)det(
∂(x, y)

∂(v, w)
)dwdv.

The matrix of the determinant, called the Jacobian matrix, is computed as
follows

J =
∂(x, y)

∂(v, w)
=

[
∂x
∂v

∂y
∂v

∂x
∂w

∂y
∂w

]
.

For our triangular element this matrix is of the form

J =

[
x2 − x1 y2 − y1
x3 − x1 y3 − y1

]

and its determinant is

det(J) = (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1).

This determinant is a different value for each element, however, since it is
a constant, the determinant term could be moved outside of the integral, a
fact of further importance. The value of the determinant is indicative of the
quality of the finite element. A very small value indicates an ill-shaped finite
element that will be detrimental to the solution quality as we will see later.

Since the matrix of the shape functions is organized as

N(v, w) =
[
N1 N2 N3

]
,
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the N(v, w)TN(v, w) product needed for the mass matrix is of the form

N(v, w)TN(v, w) =

⎡
⎣N

T
1 N1 N

T
1 N2 N

T
1 N3

NT
2 N1 N

T
2 N2 N

T
2 N3

NT
3 N1 N

T
3 N2 N

T
3 N3

⎤
⎦ .

These terms are only functions of the v, w parametric variables, hence they
may be pre-computed as

N(v, w)TN(v, w) =

⎡
⎣ (1 − v − w)2 (1− v − w)v (1− v − w)w
v(1 − v − w) v2 vw
w(1 − v − w) wv w2

⎤
⎦ .

The matrix is symmetric and the integral over the parametric domain of the
triangular finite element becomes

Me = ρdet(J)

∫ 1

v=0

∫ 1−v

w=0

N(v, w)TN(v, w)dwdv.

In this form the evaluation of the integrals is still cumbersome due to the
variable upper limit of the inner integral. They may be further transformed
to enable easier integration by the substitution

w =
1− v

2
+

1− v

2
r,

and

v =
1

2
+

1

2
s.

This will of course modify N(v, w), a function of v, w, to N(s, r), a function
of s, r, and brings the consequences

dv =
1

2
ds

and

dw =
1− v

2
dr.

Finally the integrals become

Me = ρdet(J)

∫ 1

s=−1

1

2

∫ 1

r=−1

N(s, r)TN(s, r)(
1

4
− 1

4
s)drds.

These may now be easily integrated for the standard element a priori and only
once. During computation of the finite element solution the standard element
matrix is multiplied by values in front of the integrals that are characteristic
of the shape of the particular element. This is a fundamental aspect of prac-
tical finite element analysis.

The generation of the stiffness matrix will require the computation of the
B matrix described in Section 12.2. For our simplified case the matrix is of
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the form:

B(x, y) =

⎡
⎣
∂N1

∂x
∂N2

∂x
∂N3

∂x

∂N1

∂y
∂N2

∂y
∂N3

∂y

⎤
⎦ .

Since the shape functions are defined in terms of the parametric coordinates,
the derivatives of the local shape functions are computed by using the chain
rule as

∂Ni
∂v

=
∂Ni
∂x

∂x

∂v
+
∂Ni
∂y

∂y

∂v

and
∂Ni
∂w

=
∂Ni
∂x

∂x

∂w
+
∂Ni
∂y

∂y

∂w
.

These relations may be gathered as

[
∂Ni

∂v
∂Ni

∂w

]
=

[
∂x
∂v

∂y
∂v

∂x
∂w

∂y
∂w

] [ ∂Ni

∂x
∂Ni

∂y

]
.

The first term on the right-hand side is

[
∂x
∂v

∂y
∂v

∂x
∂w

∂y
∂w

]
= J,

as we found it earlier. Hence

[
∂Ni

∂v
∂Ni

∂w

]
= J

[ ∂Ni

∂x
∂Ni

∂y

]

and [ ∂Ni

∂x
∂Ni

∂y

]
= J−1

[
∂Ni

∂v
∂Ni

∂w

]
.

The inverse of the Jacobian matrix may be computed by

J−1 =
adj(J)

det(J)
.

This equation clarifies the earlier warning comment about the numerical prob-
lems arising from elements with a very small Jacobian determinant that is in
the denominator. Hence we now have arrived at the B matrix with shape
function derivatives with respect to the parametric coordinates as

B(v, w) = J−1

⎡
⎣
∂N1

∂v
∂N2

∂v
∂N3

∂v

∂N1

∂w
∂N2

∂w
∂N3

∂w

⎤
⎦ .
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Using the terms of the Jacobian matrix we obtained earlier, the adjoint is

adj(J) =

[
y3 − y1 x1 − x3
y1 − y2 x2 − x1

]
,

and the determinant becomes

det(J) = (x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1).

Therefore the inverse matrix contains the element specific coordinates. It is
easy to find from the preceding that

∂N1

∂v
= −1,

∂N1

∂w
= −1,

∂N2

∂v
= 1,

∂N2

∂w
= 0,

and
∂N3

∂v
= 0,

∂N3

∂w
= 1.

For our specific element we obtain

B(v, w) = J−1

[−1 1 0
−1 0 1

]
.

The elemental stiffness matrix, with the inclusion of the material specific elas-
ticity matrix D, may now be computed as

Ke = det(J)

∫ 1

v=0

∫ 1−v

w=0

B(v, w)TDB(v, w)dwdv.

This element stiffness matrix is of order 3 by 3 for our triangular element with
a scalar field solution.

The integral transformation shown in connection with the mass matrix is
also executed here as

Ke = det(J)

∫ 1

s=−1

1

2

∫ 1

r=−1

B(s, r)TDB(s, r)(
1

4
− 1

4
s)drds.

However, due to the content of the B matrix and the presence of the elasticity
matrix, this integral cannot be evaluated a priori; it has to be computed during
the solution. For the sake of efficiency the integrals are numerically evaluated,
usually by Gaussian quadrature.

The integrals are replaced by weighted sums and the integrand is evaluated
at strategically selected points called the Gauss points:

Ke =
1

2
det(J)

n∑
i=1

ci

n∑
j=1

cjB
T (si, rj)DB(si, rj)(

1

4
− 1

4
si).
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TABLE 12.2

Gauss points and weights

n i ti ci

1 1 0 2

2 1 −0.577350 1
2 2 0.577350 1

3 1 −0.774597 0.555556
3 2 0 0.888889
3 3 0.774597 0.555556

4 1 −0.861136 0.347855
4 2 −0.339981 0.652146
4 3 0.339981 0.652146
4 4 0.861136 0.347855

Table 12.2 shows the si = ti, rj = tj Gauss point locations and correspond-
ing ci weights [2].

For very simple elements first order (n = 1) integration suffices. For ele-
ments representing more difficult physics the second and third order formulae
are used. Fourth order integration is sometimes used for quadratic or higher
order elements.

Finally, the elemental load vector is also obtained by integrating with the
shape function matrix as

Fe = det(J)

∫ 1

v=0

∫ 1−v

w=0

N(v, w)T fdwdv.

Here f is the vector of forces acting on the nodes of the element

f =

⎡
⎣ f1f2
f3

⎤
⎦ .

We are now in a position to be able assemble the elemental matrices and ob-
tain the solution of the problem on the complete domain.

12.5.4 Element matrix assembly and solution

Since the element matrices have been developed in terms of the local v, w
parametric coordinate system, before assembling they must be transformed



200 Applied calculus of variations for engineers

to the global x, y coordinate system common to all the elements. The coordi-
nates of a point in the two systems are related as

⎡
⎣xy
1

⎤
⎦ = T

⎡
⎣ vw
1

⎤
⎦ .

The transformation matrix is formed as

T =

⎡
⎣ vx wx x1vy wy y1

0 0 1

⎤
⎦ ,

where
v = vxi+ vyj

and
w = wxi+ wyj

are the vectors in the global system defining the local parametric coordinate
axes. The point (x1, y1) defines the local element system’s origin as was shown
in Figure 12.2.

The same transformation is applicable to the solution values. The global
solution values are related to the local elemental solution values by the same
transformation matrix in the form of

⎡
⎣ue,xue,y

1

⎤
⎦ = T

⎡
⎣ ue,vue,w

1

⎤
⎦ .

Hence, the element solutions in the two systems are related as

uge = Tue

or
ue = T−1uge.

The uge notation refers to the element solution in the global coordinate system.

Let us now consider an elemental solution with the local element matrix
and the local load vector as

Keue = Fe.

The relationship between the load vector in local terms and its version in the
global coordinate system is similar:

F ge = TFe,

or
Fe = T−1F ge .
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Substituting into the elemental solution, we obtain

KeT
−1uge = T−1F ge ,

Pre-multiplying by T and exploiting the emerging identity matrix results in

TKeT
−1uge = F ge ,

or

Kg
eu

g
e = F ge .

Here

Kg
e = TKeT

−1

is the element matrix transformed to global coordinates. This transformation
follows the element matrix generation and precedes the assembly process.

Finally, the K global stiffness matrix is assembled as

K =

m∑
e=1

LgeK
g
eL

T
ge,

where Lge is a Boolean matrix mapping the element local node numbers to
the global node numbers. If, for example, the element is described by nodes
1, 2, and 3, then the terms in Kg

e contribute to the terms of the 1st, 2nd, and
3rd columns and rows of the assembled, global K matrix. Let us assume that
another element is adjacent to the edge between nodes 2 and 3 whose third
node is numbered 4. The second element’s matrix terms will contribute to
the 2nd, 3rd, and 4th columns and rows of the global matrix.

The individual element matrices are mapped to the global matrix that is of
size 4 by 4, reflecting the presence of the 4 node points as

LgeK
g
1L

T
ge =

⎡
⎢⎢⎣
K1(1, 1) K1(1, 2) K1(1, 3) 0
K1(2, 1) K1(2, 2) K1(2, 3) 0
K1(3, 1) K1(3, 2) K1(3, 3) 0

0 0 0 0

⎤
⎥⎥⎦ ,

and

LgeK
g
2Lge =

⎡
⎢⎢⎣
0 0 0 0
0 K2(1, 1) K2(1, 2) K2(1, 3)
0 K2(2, 1) K2(2, 2) K2(2, 3)
0 K2(3, 1) K2(3, 2) K2(3, 3)

⎤
⎥⎥⎦ .

Here the subscript is the element index e = 1, 2 and the row, column indices
in the parenthesis refer to the local element node numbers. The assembled
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global finite element matrix is then

K =

⎡
⎢⎢⎣
K1(1, 1) K1(1, 2) K1(1, 3) 0
K1(2, 1) K1(2, 2) +K2(1, 1) K1(2, 3) +K2(1, 2) K2(1, 3)
K1(3, 1) K1(3, 2) +K2(2, 1) K1(3, 3) +K2(2, 2) K2(2, 3)

0 K2(3, 1) K2(3, 2) K2(3, 3)

⎤
⎥⎥⎦ .

The assembled global load vector is similarly obtained:

F =

2∑
i=1

LgeF
g
e,i =

⎡
⎢⎢⎣

F1(1)
F1(2) + F2(1)
F1(3) + F2(2)

F2(3)

⎤
⎥⎥⎦ .

The notation convention is the same as in the element matrix assembly.

The global solution is then obtained from the matrix equation

Ku = F,

where K is the global stiffness matrix and F is the global force vector. The
global solution vector is

u = K−1F =

⎡
⎢⎢⎣
u1
u2
u3
u4

⎤
⎥⎥⎦ ,

and the solution inside of a particular element is

u(x, y) = N i
1u
i
1 +N i

2u
i
2 +N i

3u
i
3.

The superscript i indicates that the shape functions and node point values
are associated with the i-th element. For the first element in the above hy-
pothetical two element model u1j = uj , j = 1, 2, 3 and for the second element

u2j = uj+1, j = 1, 2, 3.

Naturally the M matrix is similarly transformed and assembled as

M =
m∑
e=1

LgeM
g
eL

T
ge.

This process is the same for any number of elements contained in the finite
element discretization of the geometric model.

In conclusion, let us emphasize the fact that in all three mechanical engi-
neering disciplines (structural elasticity, heat conduction, or fluid mechanics)
we used the same computational technique to capture the behavior of the
physical phenomenon over the geometric domain.
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Furthermore, it is important to notice the finite element method’s transcen-
dence of the multiple engineering disciplines. For example, as demonstrated
in [3], the governing equation in electrostatics is also Poisson’s equation, albeit
the participating terms have different physical meanings.

The applicability of a certain variational problem to unrelated disciplines
is straightforward; one only needs to adhere to the differences in the physics.
This fact makes the techniques demonstrated in this book extremely useful in
a wide variety of engineering applications.





Closing remarks

Hopefully the engineers reading this book find its theoretical foundation clear
and concise, and the analytic and computational examples enlightening. The
focus of the applications on mechanical engineering reflects only the author’s
personal expertise and is not meant to imply any restriction of applicability
to other engineering disciplines.

The book was designed to be a self-contained coverage of the topic specifi-
cally addressed to the practicing engineer or engineering student reader. Dif-
ficult discussions about spaces of functions and rigorous proofs were avoided
to make the topic accessible with a standard engineering mathematics foun-
dation.

With more numerical examples and exercises added, the book may be used
as a textbook in the engineering curriculum. It could also be a practical al-
ternative to the abstract approaches frequently used in teaching calculus of
variations in advanced mathematics courses.

The reference list reflects the lack of recent attention to the topic of the
calculus of variations. The original publications, however, are not only listed
here for historical homage. The most readable, despite the archaic style, may
be the oldest ones, albeit most of them were not specifically written for an en-
gineering audience. This shortcoming is intended to be corrected by this book.

The reference list is also rather short, containing only those publications
that directly influenced the writing of this book. They are all available, some
of them in inexpensive reprints, and accessible in English.
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