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Preface to the Dover Edition

This is a minor revision of the original 1969 publication. Some false
statements have been changed. Clarifying remarks have been added in
certain places and a short supplementary bibliography has been added.
Misspellings, imperfect mathematical symbols, and numerous other
errors have been corrected.

GEORGE M. EWING
Norman, Oklahoma

Preface to the Original Edition

The name calculus of variations comes from procedures of Lagrange
involving an operator 3 called a variation, but this restricted meaning has
long been outgrown. The calculus of variations broadly interpreted
includes all theory and practice concerning the existence and charac-
terization of minima, maxima, and other critical values of a real-valued
functional. To say much less would exclude works of eminent authors
whose titles indicate contributions to variational theory but whose meth-
ods include no calculus in the early sense.

This book is an introduction, not a treatise. It is motivated by potential
applications but is not a mere compendium of partially worked examples.
It selects a path through classical conditions for an extremum and mod--
ern existence theory to problems of recent origin and with novel features.
Although it begins with mild presuppositions, the intent is to expose the
reader progressively to more substantial and more recent parts of the
theory so as to bring him to a point where he can begin to understand
specialized books and research papers. This entails compromise. Less
than the traditional space is devoted to necessary conditions and suffi-
ciency for local extrema of a succession of problems to give more atten-
tion to global extrema, to so-called direct methods, and to other twen-
tieth-century topics. An introduction to Hamilton—Jacobi Theory makes
contact with the Dynamic Programming of R. Bellman and the Max-
imum Principle of L. S. Pontryagin.

Chapters 1 through 6 have been used with classes including members
with no special preparation beyond a course in advanced calculus. There
are accordingly numerous elaborative comments and warnings against
pitfalls. Certain prerequisite materials are collected in Chapter 1 for

vii



ready reference. The major objective is insight, not practice in writing
Euler equations or in other techniques; hence emphasis is on conceptual
and logical features of the subject. Nevertheless, the often formidable
gap between theory and the analysis of particular problems is bridged by
treatment of a number of examples and many exercises for the reader.

Chapters 7 through 12 require more mathematical maturity or else
willingness to supplement the text as individual needs may require. The
exposition is, however, largely self-contained. A brief treatment of the
Lebesgue theory of integration, which is essential for important parts of
modern variational theory, is in Chapter 8 for those who need it. A
number of the cited books and some of the cited articles can be used in
direct support of material in the text, but others begin at or beyond
positions covered here and are listed in the bibliography as information
on recent trends and names associated therewith. Previous experience in
modern real analysis, theory of differential equations, functional analy-
sis, or topology will be helpful, but a reader with serious intentions who
lacks this advantage can still make effective use of much of the second
half of the book.

Variational theory has connections with such fields as mathematical
physics, differential geometry, mathematical statistics, conflict analysis,
and the whole area of optimal design and performance of dynamical
systems. These interrelations suggest the importance of the subject, why
one book cannot be comprehensive, and why this is not an easy subject
for the beginner. One never has adequate preparation for all the things
with which he may be confronted under variational theory and its ap-
plications.

The author is indebted to many sources, particularly to works of G. A.
Bliss, E. J. McShane, and L. Tonelli; to his association with W. T. Reid; to
Marston Morse, under whose encouragement he was privileged to spend
a postdoctoral year; to his teacher, W. D. A. Westfall; and to various
.colleagues, friends, and students.

Thanks are extended to W. T. Reid and D. K. Hughes for identifying
flaws in parts of the manuscript, but this is not to suggest a shared
responsibility for such flaws as may remain.

This book was sponsored in its initial stage during the summer of 1964
by the Office of Scientific Research of the Air Research and Development
Command through Grant AF-AFOSR-211-63 to the University of
Oklahoma Research Institute, for which the author expresses his appre-
ciation.

GEORGE M. EWING
Norman, Oklahoma



Chapter 1

INTRODUCTION
AND ORIENTATION

1.1 PREREQUISITES

The reader is assumed to be familiar with concepts and methods usually
covered. by courses called advanced calculus or introduction to real
analysis. Among the things presupposed are elementary set theory,
real numbers, various kinds of limits and continuity, derivatives, ordinary
differential equations of the first and second order, functions defined
implicitly, and the Riemann integral.

A résumé of such topics is given in this chapter for review and
reference and to introduce terminology, notations, and points of view
to be found throughout the book. It is suggested that the chapter be
read quickly for content, then returned to later for more details as needs
may arise. Development of variational theory begins with Chapter 2.

1.2 FUNCTIONS

Given two nonempty sets X and Y of any nature, a function traditionally
has been described as a correspondence under which to each x € X is
associated y € Y. This lacks the precision of a definition and is indeed

1



2 CALCULUS OF VARIATIONS WITH APPLICATIONS

circular, since the term correspondence, like mapping, operation, or
transformation, is a synonym for function.

A way of avoiding this objection is to define a function f from X to
(or into) Y, written f: X — Y to mean a set of ordered pairs (x,y), x € X,
y € Y, such that each x € X is the first component of exactly one pair
(x,9) € f. Thus single-valuedness is part of the definition. Set X is the
domain of f, the set {y € Y: (x,5) € f} is the range of f. The function f
is a subset of the cartesian product X XY, that is, of the set of all pairs
(x,y) of respective elements from X and Y. Thus function becomes
synonymous with graph of a function, by which is meant the ideal graph,
not the approximation that one draws.

We follow the practice of identifying the domain X of f when we write
f: X = Y but of mentioning a set Y, which in general is a superset of the
range. For example, such a statement as f(x) = 1/(x*+ 1) serves to de-
fine a function f: R —> R, R being the set of all real numbers. The
domain of fis the entire set R; the range of this fis a subset of R, namely,
the half-open interval (0,1]= {y € R: 0 <y=<1}. Hence we can
describe f more precisely as a function or mapping from R onto (0,1], but
often it suffices merely to exhibit a set of which the range is a subset.

Brackets and parentheses will be used for intervals of real numbers as
follows.

[a,b] = {y E Ria<y=<b},
(ab) ={y ER:a<y< b},
(ab] = {y E Ria<y=<b},
[a,b) = {y E Ria<y<b}.

The symbol for identical equality is used here and elsewhere to indicate
that the symbol on the left is being defined.

Symbol R™ denotes the cartesian product of n repetitions of the set R,
that is, the set of all elements x = (x', ... x") of ordered n-tuples of real
numbers. Elements x are alternatively spoken of as points or as vectors.
For n=1, 2, and 3 one visualizes either a point in the appropriate car-
tesian coordinate system or a directed segment with components x* in
the respective directions of the axes. Few people attempt to visualize
R™ for n > 3, but it is often suggestive to draw planar sketches that can
be thought of as crude projections into the plane of points, segments, or
other objects from R™ Our superscripts distinguish among the co-
ordinates or components of x. We use subscripts to distinguish among
different points. For example, xo = (x}, . . . ,x3) and x, = (x}, . . . ,xl*) denote
two points in R™ or two n-vectors.

A function f: 4 C R™— R", m = 1, n = 1, that takes each x € 4 to
y=f(x) € R"is often called a vector-valued function. For n =1 it is real-
valued.

A sequence is a function f£f N— § whose domain is the set N=
{1,2,3, ...} of natural numbers (positive integers). The set S can be of
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any nature. We shall be concerned with cases in which $=R", n = 1,
and also with cases in which § is a set of functions f: [a,b] = R™

For many years the symbol f (x) has been used either for the image of
an element x in the domain of f or alternatively as a symbol for the
function f, depending on the context. Itis essential to distinguish between
the two ideas, function and a value of a function, and it is increasingly
the practice to restrict symbols fand f(x) to these respective meanings.
One must, however, recognize that there remain many useful books and
articles even of recent date that follow the older convention. This applies
in particular to the literature on variational theory and its applications.

We must deal frequently in later chapters with composite functions.
For example, given f. R — R with values f(x) =x*> and gt R— R
with values g(¢) = ¢!, the function f composed with g, written f° g: R = R
or f(g): R— R, has values (f° g)(t) = f[g(¢)] = ¢*. Similarly, the
function g ° f, read “g composed with f,” has values (g ° f) (x) = g[f(x)]
= exp x%.

A recurring example in following chapters is a function with values
fLty(2).,3(¢)]. It is the composition of a function f: [a,b] XRXR —R
with a function g: [a,b] = R3. This g is a vector-valued function with
three components:

g':[ab] =R, g(t)=t¢
g% [a.b] > R, (1) =»y(1),
g:lapl >R, ) =35,

in which y(¢) and j(¢) are respective values at ¢t € [a,b] of a given
function y: [a,b] — R and its derivative j: [a,b] = R.
We shall not repeat such a detailed description again but simply
exhibit a typical value f[¢,(¢),5(¢)] of f g when this function is needed.
When a composition f ¢ g is mentioned in this book the functions fand
g will always be so related that the domain of fcontains the range of g.

1.3 THE EXTENDED REAL NUMBERS

The set R of real numbers, augmented by two symbols + (read “plus
infinity” and often written without the +) and — subject to the postu-
lates written below, constitutes the set R* of extended reals. The inverted
Ais to be read “for all” or “for every.”

(1)) —»<a <, Va ER,
(i) a+o=o00+g=0o, V a € R* except—,
(iil) a+ (—») = —o00+g=—0», YV a € R* except o,

(1.1) (iv) a(x®) = (£w)qg =% if0<a €Rora=,
(v) a(x®o) = (x®)g=Fwo if0 >a € Rora=—,

(vi) a/£® =0, Va €R.
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Such expressions as ®—o, —w+ 0, ®fo, and 0(»), like 0/0, remain
meaningless. We shall later mention the special convention of assign-
ing the value 0 to 0(%=®) in integration theory, but this is not a useful
convention in general and need not concern us at the moment.

1.4 BOUNDS, MAXIMA, AND MINIMA

That a subset § of R* has an upper bound B means that s < B, Vs € §.
A lower bound b of S is similarly defined. Clearly B =« and b = —x are
an upper and a lower bound for any such set §. Only when there is a
finite (that is, a real) upper or lower bound do we have something
distinguishing to say. Hence, even in discussions that admit ® or —x, to
say that a set is bounded means that it has finite upper and lower bounds.

We seldom have occasion in this book to extend R", n > 1, by adjoin-
ing points some of whose coordinates are © or —. That a subset § of
R™ is bounded means that, for each j, the coordinates x’ of points x € §
constitute a bounded subset of R. Thus, if S is bounded, it is a subset
of the cartesian product of » intervals in R. Such a product is called an
n-dimensional interval or an n-dimensional box. It is not difficult to verify
that there exist n-dimensional balls (defined in Section 1.10) containing
a given box and vice versa, hence that boundedness of S could have been
defined by requiring the existence of a ball containing S.

If a set S of real numbers has a finite upper bound, it is a fundamental
property of real numbers, a theorem or a postulate depending upon
how the real numbers have been introduced, that § has a least upper
bound or supremum. If S has no finite upper bound, the least upper
bound or supremum is ©. Among the symbols for the supremum of S
are

supS, sup{x:x € S}, sup x.

The infimum or greatest lower bound of a subset § of R* is similarly
defined and is denoted by such symbols as

inf S, inf{x: x € S}, inf x.

If and only if there is a largest element x* in S, then x* is called the
maximum of § and its value is represented by

max S, max{x: x € S}, max x.

Similarly, if § includes a smallest element x, among its elements,
we call x, the minimum of § and use such symbols as

min S, min {x: x € S}, min x.
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Given any subset § of R* there is always an answer to the question:
What are inf § and sup S? If it is meaningful to speak of max §, that is,
if there is a largest extended real number in §, then max S=sup §
and under similar circumstances min S = inf S. If, for example, S is the
open interval (0,1), then inf § = 0 and sup § = 1 but neither max § nor
min § exists.

If S is a finite nonempty set, min § and max § always exist; if S is an
infinite set either or both of the two can fail to exist. If S is the empty
set @, then every extended real number is both an upper bound and a
lower bound of §. It follows that inf § = and sup § =—ox. Clearly
min ¢ and max ¢ are meaningless.

1.5 LIMITS

By the 8-neighborhood U(8,xy) of xo € R we shall mean the open interval
(x0—8, %o+ 8), 8 > 0. Alternatively stated,

(1.2) U(8,x) = {x € R: |x—x,| < 8}.

We shall use V(8,%,) for the deleted 8-neighborhood.

(1.3) V(8,%) = U(8,x) —{xo} = {x € R:0 < |x—x,| < 8}.

Neighborhoods and deleted neighborhoods of © and —x are defined
as follows:

(1.4) U(8,°) = {x € R*: x > 1/8},

(1.5) V(8,0) = U(§,0) —{w} = {x € R:x > 1/8},

(1.6) U(8,—) = {x € R*:x < —1/8},

1.7) V(8,—») = U(§,—») —{—x} = {x € R:x < —1/8}.

In stating various definitions and theorems it is convenient to use
symbols ¥ and = introduced in Sections 1.2 and 1.3 and also

3, read “there exists,”
=, read “implies,”
<, read “is logically equivalent to.”

The reader is assumed to be familiar with symbols U and N for the
union and intersection of sets and with the meaning of these operations.
We have already followed the practice of using braces either enclosing
symbols for typical elements or enclosing conditions that serve to select
the elements as a symbol for a set. We use the ordinary minus sign for a
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difference between sets and the simple inclusion symbol C (without the
bar underneath preferred by some writers). Thus 4 C B means that 4
is a subset of B, possibly a proper subset and possibly equal to B. We
agreethat4 =B ©4 C BandB C 4.

Thata € R*is an accumulation (cluster) point of S C R* means that

SNV(sa) o, V&>0.

A function f: § C R — R* is said to have the limit \ € R* at a, an
accumulation point of S, if

(1.8) V€>0,35,,>0 suchthat x € S N V(8,a) > f(x) € U(e,\).

This formulation includes various familiar cases that have often been
treated separately, for example, a function 2 R — R* or a function
(sequence) f: N = R*. Either \ or a can be ® or — as well as finite.

Subscripts a,e on § in (1.8) signify that, in general, § depends on the
choice of both a and € even though, for certain functions f, 8 may be
independent of a or e. We avoid using 8(a,€), since this might be mis-
taken to mean that 8 was a function having 8 (a,€) as a value and we prefer
not to say this. Observe that §,, is not unique. Given any one such value
for which (1.8) is true, every positive real number smaller than the first
one also serves. Although there is often a largest such 8, we seldom need
to identify this value when using (1.8). Similar remarks apply to other
definitions that involve an €.

The limit defined by (1.8) is a deleted limit. Some writers also define a
nondeleted limit by replacing the deleted neighborhood V'(8,a) with the
nondeleted neighborhood U(8,a). All limits mentioned in this book will
be deleted limits unless there is explicit statement to the contrary.

There may or may not exist an element A of R* with the property
stated in (1.8). Since a is an accumulation point of S, there necessarily
exists a sequence {x, € S: n € N} having a as limit, but the correspond-
ing sequence {f(x,) € R*: n € N } need have no limit. However,
every sequence of extended reals has at least one subsequence with a
finite or infinite limit. That a bounded sequence necessarily has such a
subsequence is a classic theorem. If the given sequence has no finite
upper (or lower) bound, it is easy to verify the existence of a subsequence
having, in accord with (1.8), the limit ® (or —), respectively. Thus
there exists a sequence {x,} with the limit ¢ such that the sequence
{f(x,)} of functional values has a limit, finite, , or — as the case may
be.

Given f: § C R — R* and the accumulation point a of § in the broad
sense stated above, consider the class of all sequences {x,} such that x,
has the limit @ and such that f(x,) has some limit A\ € R*. Denote by
{A} the subset of R* consisting of all such limits A. In the special case
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where f has a limit under definition (1.8), set {A} is a singleton set. It is
easy to construct sequences such as 0, 1, 0, 1, 0, 1,... for which {A}
consists of exactly two elements or other examples for which {A} has
a preassigned finite number of elements. For the examplef: R— {0} = R,
f(x) =sin(1/x), and with a = 0, the set {A} is the closed interval [—1,1],
whereas, if f (x) = (1/x?) sin(1/x), then {A} = R*.

The limit inferior and limit superior of a function f at an accumulation
point of its domain can be defined by the statement that

(1.9 lim,inf f = inf{A},
(1.10) limgsup f = sup{A}.

Clearly lim inf f < lim sup f. Iff (read “if and only if”’) equality holds,
{A} is a singleton set and fhas a limit at a as defined by (1.8).

In the event that there is a sequence {x,} in § converging to a from the
left (or right) we can define left and right limits inferior by using,
respectively, the subsets of {A} obtained by considering only sequences
{x.} such that x, < a (or x, > a) for all n. One-sided limits superior are
similarly defined. These four limits are denoted by

(1.11) lim,_inf £, limginf £,
(1.12) lim,_supf, limg.sup f.

Iff the left (or right) limits inferior and superior are equal, the
common value can be used as the definition of the left (right) limit of
f at a. Iff the left and right limits of f at a both exist and are equal, the
common value has the property of A in (1.8).

Exercise 1.1

1. Given f: {x € R: x # 0} = R, f(x) = 1+2sin(1/x) or —2+sin(1/x)
according as x < 0 or > 0, identify the relevant subsets of {A} and
determine the four limits (1.11) and (1.12).

2. Discuss (1.11) and (1.12) for the special case in which fis a sequence;
that is, the domain of fis the set N of positive integers and a = c.
Construct an example of a sequence of real numbers such that the
set {A} consists of exactly three different numbers. What is the set
{\} if f(n) = (1/r,)? sin(1/r,), where {r,: n € N} is a sequentializa-
tion of all rational real numbers?

3. If fand g both have finite limits at @, use (1.8) in proving that f+¢
has a limit at a. Point out by an example why this conclusion would -
not in general be correct without the restriction to finite limits. If one
of the given limits is finite and the other is © or —, is it or is it not
true that f+ g has a limit and why?
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1.6 CONTINUITY AND SEMI-CONTINUITY

We shall be mainly interested in functions f: I = R, where I is an interval
of the reals of positive length. However, the definition can just as easily
be stated for the more general case in which the domain of fis any non-
empty subset S of the reals.

That f is continuous at ¢ € § (¢ may or may not be an accumulation
point of §) means that

(1.13) Ve > 0,36, >0, suchthat x € S N V(,,c)
> Ifx)—fle)| < e

The final inequality has been used rather than to require that f(x)
€ U(e,f(c)) in order to make finiteness of f(c) part of the definition of
continuity at ¢. Although it is useful to our purposes to include = or
— in the ranges of certain functions, we prefer never to say that a
function f is continuous at a point ¢ if f (¢) = % or —.

The function fis called continuous on S if it is continuous at each ¢ € §.
Itis called uniformly continuous on S if there is a 8, free of ¢ such that (1.13)
holds (with 8 in place of ., for every ¢ € §. The following equivalent
definition of uniform continuity is often convenient.

(1.14) Ve > 0,35.>0 suchthat xx' € §
and [x—x'| < 8. [f(x)—f(x')| < e

One defines left (right) continuity of fat ¢ by adding to (1.13) the res-
triction x < ¢ (x > ¢). If the domain § of fis a closed interval [a,b], then
there is no x below a in S and the definition of left continuity applies
vacuously at a. A similar remark applies to right continuity at b.

If the final inequality in (1.13) is replaced by f(x) > f(c) —e or by
f(x) < f(c) + €, we have respective definitions of lower and upper semi-
continuity at ¢ and with the restriction built into (1.13) that £ (¢) be finite.
In contrast with the concept of continuity, it is convenient to speak of
semi-continuity even when f(c) = ® or —«. The respective statements
that

(1.15) liminf f = £ (c)
and
(1.16) limesup f < f(c)

serve as definitions of lower and upper semi-continuity without the res-
triction that f(¢) be finite. Function fis continuous at ¢ € S iff (1.15)
and (1.16) both hold and f (¢) is finite.
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The simplest examples of functions that are semi-continuous but not
continuous at ¢ are obtained by starting with a point ¢ that is both a point
and an accumulation point of the domain of a function f continuous at ¢
and then altering the value f (¢).

Exercise 1.2

1.

2.

3.

4.

5.

Given that f(x) = 1—x* or 0 according as x # 0 or = 0, verify that f
is lower semi-continuous at every real c.

Investigate the semi-continuity of the Dirichlet function with values
f(x) = 1or0according as x is irrational or rational.

Construct an example of a function f: R — R that is uniformly con-
tinuous on R.

Construct your own proof of the classic theorem that, if f: [a,b] = R
is continuous on [a,b], then fis uniformly continuous on [a,b].
Construct an example of a function f: § C R — R that is continuous
on § but not uniformly continuous on S.

. Define left and right lower and upper semi-continuity. Construct

an example of a function f+ R — R right continuous at 0, not left
continuous at 0, but left lower semi-continuous at 0.

1.7 DERIVATIVES

We restrict attention to a function f: [¢,b] = R, b > a. Given x and
¢ € [a,b], define the difference quotient

(1.17) Q(x.¢) =&’2#, x #c.
With ¢ fixed and with reference to (1.11) and (1.12), define
(1.18) (D7f)(c) = lime_sup Q,

(1.19) (D-f)(¢) = lim _inf Q,

(1.20) (D*f) (¢) = lim.4sup Q,

(1.21) (D+f)(¢) = limg,inf Q.

Consistently with Section 1.5, each right member may be finite, o,
or —. Statements (1.18) through (1.21) define four functions

D7f: (a,b] — R*,

(1.22) D_f: (a,b] — R,

D*f. [a,b) — R*,
D.f: [a,b) — R*,
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called the upper left, lower left, upper right, and lower right, derivate of f,
respectively. Parentheses around D7, etc., in (1.18) through (1.21) are
omitted by some writers. They are included here to emphasize that we
are stating the values at ¢ of the respective functions (1.22).

Clearly (D_f)(c) < (D7f)(¢). Iff equality holds, the common ex-
tended real value is by definition the left derivative of f at ¢ and is denoted
by f'~(c). The right derivative of f at c is similarly defined and is denoted
by f'*(c). Iff f'~(c) and f'*(c) exist and are equal, the common ex-
tended real value is called the derivative of f at ¢ and is denoted by the
familiar symbol 1 (c).

The domains of the function f'~, f'* are, in general, proper subsets of
the respective half-open intervals (a,b] and [a,b), and that of f' is a
subset of the open interval (a,b). It is, however, convenient, in the event
that f'*(a) exists, to extend the domain of f” to include x = a by the ad-
ditional definition f'(a) = f'*(a). Similarly, if f'~(b) exists, we define
f'(b) = f'~(b). Alternatively stated, f'(c) is now defined at ¢ € [a,b]
iff all derivates that are defined at ¢ have a common extended real value
and then f'(¢) is this common value.

The function f is said to be differentiable at ¢ iff f'(c) exists. Some
authors make finiteness part of the definition of the derivative, as we
have not. Given, for example, the function f: R — R, f(x) = x3, we
say, from the viewpoint of this section, that fis everywhere differentiable.
Specifically,

(1.23) fl (x) — {% x_zl3’ x % 0,

oo, x=0.

The discussion of this section applies after appropriate modifications
when the domain of fis not the closed interval [a,b] but is an interval
of some other type, possibly of infinite length, as in the preceding
example, or when the domain of fis some other subset S of R.

Exercise 1.3

1. Given f: R — R, f (x) = |x|, identify the domains of ', '+, and state
the values of these functions in form (1.23).

2. Given fi: R— R, f(x) =x sin(1/x) if x# 0 and f(0) =0, deter-
mine the values of the four derivates at 0.

3. Given that f(x) = x® or —x* according as x is rational or irrational,
identify the domain of f' and determine f'(x) at each point x of
that domain.

4. If f(x) = x*® for all real x, demonstrate that f does or does not have
a derivative at 0 under our definition, whichever is correct.

5. State and prove Rolle’s theorem for a function f: [a,b] = R that is
continuous on [a,b] and differentiable on (a,b).
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6. Explain the difference between f'~(c), the left derivative at ¢,
and f"(¢—), the left limit at ¢ of f'. Explain similarly the conceptual
distinction between f"*(c) and f'(c+). Finally, illustrate these dis-
tinctions by the following function £: R — R with ¢ = 0:

x2sin(1/x), x <0,
f(x) = {0’ X = 0,
x2, x> 0.
7. Given the absolute value function | - |: R = R, |x| being the absolute
value of x, identify the domain of the derivative | - |" of this function.
Explain why

2
[, el de=l2l— -1 =2—1=1.

8. Given the unit step-functionu: R — R,

0, x <0,
u(x) =14, x=0,

1, x>0,

state the values for u'(x) for x < 0,=0, and > 0. Explain why u’
is not Riemann integrable over [—2,1] or any other interval of which
0Ois a point.

1.8 PIECEWISE CONTINUOUS FUNCTIONS

Let S denote a closed interval [a,b] less a finite, possibly empty, set of
interior points of [a,b]. Visualize S as either [a,b] or as [a,b] with a pos-
sible finite number of interior points removed. A function ¢: § — R is
called piecewise continuous (abbreviated PWC) on [a,b] if

(1) ¢ is bounded on S,

(i1) the right limit ¢ (x+) exists and is finite on [a,b),
(iii) the left limit ¢ (x—) exists and is finite on (a,b],
@iv) ¢(x—) = (x+) onS N (a,b).

The domain § of such a function is either the whole of [a,b], the union
[a,c) U (c,b] of two half-open subintervals, or a union [a,c;) U (cy,62)
>+ U (cp=1-¢n) U (cn,b]. The restriction of ¢ to any interval I of this
decomposition of § into intervals is continuous on I.

The following are examples of PWC function on [-1,1].

(1.25) b, d(x)=1, x € [-1,0) U (0,1],
29 _1’0 2
(1.26) , ¢<x>={’£+1, J;g EO,I].)
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We have left the function ¢ undefined at points of the finite set [a,6] —§
because this is precisely the type of function with which we must deal
in Section 2.5. If we had different purposes in mind we might require
as part of the definition of piecewise continuity on [a,b] that the domain
of ¢ be the whole of [a,b].

Exercise 1.4

1. Extend the function ¢ of (1.25) to [—1,1] by assigning the arbitrary
real value 7 as ¢(0). Explain why this extension of ¢ is Riemann

integrable over [—1,1] and that f_ll ¢(x) dx = 2 independently of r.

Because of these facts, one often says that the original ¢ is integrable
over [—1,1] even though its domain lacks point 0 of [—1,1].

2. Extend the function ¢ of (1.26) to [—1,1] and evaluate f_ll b(x) dx.

3. Formulate a general theorem on the Riemann integrability over
[a,b] of a function ¢: [a,b] = R that is PWC on [a,b] but otherwise

. . b
arbitrary. Describe a procedure for evaluating L ¢(x) dx and illus-

trate by an example in which ¢ is continuous on [a,¢), (¢,d), and (d,b].

1.9 CONTINUOUS PIECEWISE SMOOTH
FUNCTIONS

A function ¥: [a,b] = R will be called smooth on a subinterval I of its
domain if its restriction to I has no discontinuities in direction, that is,
if its derivative §’ exists and is continuous and is hence finite on I.
Usages vary among mathematicians. The word smooth may be assigned
a different meaning elsewhere.

In this book a function ¥: [a,b] = R will be called piecewise smooth
(abbreviated PWS) on [a,b] if its value ¥(x) is an indefinite integral of a
function ¢ that is PWC on [a,b]. More explicitly stated, that ¢ is PWS
on [a,b] will mean that

(1.27) b = [ ¢(&) de+b(a),  Vx € [ab].

Since an integral with a variable upper limit x is continuous in x we
have made continuity on [a,b] part of the meaning of PWS on [a,b].
Even though the term piecewise smooth does not include any reference
to continuity, it is nevertheless partially descriptive of a function ¥
satisfying (1.27) and short enough to be convenient. It is used in this
book as it has been in this same sense by Akhiezer (see the Bibliography,
reference I, first page of chapter 1) and others. If one goes to other
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subjects, he will find the same term used for essentially a larger class
of functions { that are not necessarily continuous on [a,b].

A function ¢ that is PWS in the sense of (1.27) is said to be of class D’
by many writers, the symbol being suggested by the partially descriptive
term, discontinuous derivative. Others use a variant, D', of the preceding
symbol. Similarly, a function  that is smooth on [a,b], that is, which has
a continuous first derivative on [a,b], is said to be of class C’ or of class
(%

If a function ¢ is smooth (is of class C’, is of class C') on [a,b], then itis
PWS (is of class D', is of class D*). The PWS function ¢ on [a,b] is smooth
on [a,b] iff the PWC function ¢ appearing in (1.27) is continuous on [a,b].

One verifies from (1.27) and the definition of a derivative that if ¢ is
continuous at x, that is, if x is in the set § of Section 1.8, then

(1.28) ¥ (x)=¢(kx), Vx€ES.

Given t € [a,b] —S, we can use (1.27) and the definitions of left and
right derivatives to find that

Y'=(t) =¢(t—) and P () =d(t+).

Exercise 1.5

1. If ¢: [a,b] = R is Riemann integrable over [a,b], prove that there
exists w € R such that

[} 6(x) de=uis—a).

What can be said of the value of u if¢is continuous on [a,b]? Ifpis
not continuous on [a,b]?

2. Given (1.27), (1.28), and the mean value theorem of problem 1,
prove that ¢'~(x) =¢'(x—) on (a,b] and that §'*(x) =¢'(x+)
on [a,b).

3. Given that : [a,6] = R is PWS on [a,b], prove that its derivative §’
is integrable over [a,b] in the sense of problem 1, Exercise 1.4,
and that

[[vwdu=9()—(a), Vx € [ab).

1.10 METRIC SPACES

Let S be a nonempty set with elements x, , z, . . . of an arbitrary nature.
Any function d: § X § — R that satisfies the following postulates (axioms)
is called a distance or a metric.
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gi) dEx,y; =0, 4
1.29 (i) d(x,y) =0 iffx=y,
42 (iii) d(x.y) = d(y,x),

(iv) d(x,y) +d(y.z) = d(x,2).

The given set S together with a distance d with properties (1.29)
constitutes a metric space. Alternatively stated, a metric space is an ordered
pair (S,d), of which $ is a nonempty set and d is a distance.

Of major importance among metric spaces are the euclidean spaces
E,,n=1,2,...,E,= (R"d), where R" is the n-fold cartesian product
of the set R of reals and d(x,y) is the euclidean distance |x—y|,

no U2
(1.30) =yl = [2 =52]

For n =1, |x—3| is an ordinary absolute value. For a general n, we read
the symbol |x—y| as “the norm (length or modulus) of the difference
vector” or “ the distance between x and y,” whichever seems more
convenient at a particular time.

If we understand symbols |x—y| and |f(x) —f(c)| in the sense of
(1.30), then much of Sections 1.5 and 1.6 automatically covers higher-
dimensional cases. The set denoted by U(8,x,) in (1.2) is by definition
the n-dimensional open ball and definition (1.13) of continuity at ¢ can
now be taken as the definition of continuity at ¢ € R? of a function
fR?— Re.

Euclidean distance (1.30) clearly has properties (1.29)(1), (ii), and (iii).
That it also has the triangle property, (1.29)(iv), is intuitively evident
when n=1, 2, 3. A proof of this property for a general = is not very
difficult.

If S is a suitable set of functions and d is a distance, then the metric
space is also a function-space. For example, given the fixed interval
[a,b], let S be the set of all functions x: [a,b] = R" each continuous on
[a,b] and define

(1.31) d(xy) = sup x(£) =y(®)|.

One sees easily that d has properties (1.29) (i), (ii), and (iii). To see that
it has the triangle property, observe first that the distance |x(t) —z(t)|
for E, is continuous in ¢; consequently, there exists, by a classic theorem
on the existence of a greatest value, t; € [a,b] such that

|x(t1) —z(2) | =d(x,z).
By the triangle inequality for E,,

(1.32) [x(t,) —y(t) |+ Iy(tl)'—z(tl)l = d(x,2),
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while, as a consequence of definition (1.31), d(x,y) and d(y,z) dominate
the respective terms on the left in (1.32).

Exercise 1.6

1. Prove algebraically that euclidean distance between points of R* has
the triangle property.

2. Given the cartesian plane RZ?, define d(x,y) as 0 or 1 according as
x = yorx # yand verify that (R?d) is a metric space.

3. Define d(x,y) = |x—y|'* for real numbers x, y and show that (R,d)
is a metric space.

4. Let S be the set of all smooth functions x: [0,1] = R, define d(x,y)
by (1.31), and define r(x,y) as d(x’,y") for the derivatives x' and y’ of x
and y. Show that (S, d+ ) is a metric space but that (S,7) is not.

1.11 FUNCTIONS DEFINED IMPLICITLY

Given a function f whose domain 4 and range B are subsets of R” X R?
and R?, respectively, and given an equation f(x,y) = 0 known to hold at
(x0,0) € R?X RY, it is often crucial to know whether there is a function
¢ from RP to RY, such that

(1.33)  flx,¢(x)]=0  forallxin some open subset of R? containing x,.

A function ¢ satisfying (1.33) is said to be implicitly defined by the equation
f(x9) =0.

Few equations f (x,y) = 0 are simple enough so that by a sequence of
elementary operations one can find an equivalent equation with y or x
on the left and with a right member free of y or x, respectively. As a
substitute we need theorems on the existence of a function ¢ with pro-
perty (1.33), traditionally called implicit function theorems.

A variety of such theorems is to be found in books on advanced cal-
culus, real analysis, or functions of real variables. The following is a
typical example for the casep =g = 1.

Theorem 1.1

Given a function f: A C (RXR) — R that is continuous on A and has
continuous first-order partial derivatives fr and f, on A, if f(xo,50) = 0 at an
interior point (xo.%) of A and if f,(x,y0) # 0, then there exists a function ¢
Jfrom an open interval I = (xo— 8, xo+ 8) to R such that

() flx.d(x)] =0, Vx € I, with ¢ unique,
(ii) @' (x) exists and is continuous on I, hence ¢ is continuous on I, and

(iii) ¢'(x) =—fzlx.0(x)]/fulx.¢(x)],Vx € I
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This theorem and its extension to a general p and g are local existence
theorems. When we examine a proof we find that 8 is positive but that
this is all we can say about it. It may turn out to be large for certain
particular functions f. However, given an arbitrarily small positive real
number ¢, there are functions f satisfying the hypotheses of the theorem
and for which 8 < e. Consequently, in the usual absence of a determina-
tion of 3, one views the conclusions conservatively and realizes that 8 is
possibly quite small.

It is possible to relax the hypotheses and still obtain conclusion (i)
without (ii) and (iii). With suitably strengthened hypotheses we can
prove conclusion (i) for an interval I given at the outset and not merely
for an interval of undetermined possibly small length that appears in
the proof. The last type is a global implicit function theorem.

A simple example of a global implicit function theorem is that in which
f(x,y) is of the form x—g(y) = 0, with g as a monotone function from
R to R. There then exists a function ¢: R — R such that

x—gle(x)]1=0, Vx € R.

1.12 ORDINARY DIFFERENTIAL EQUATIONS

In later chapters we shall meet a number of first- and second-order
equations

(1.34) y = g(x,y)
and
(1.35) y' = h(x,y,5").

A solution of (1.34) means traditionally a function y on some interval J
such that
y'(x) =glxy(x)], Vxe€L

For right members g(x,y) of certain particular forms, there are devices
found in elementary books that yield expressions for y(x) involving some
finite combination or other of known functions and/or integrals of such
functions. These cases are the exceptions. In general, the analyst must
use existence theory in order to proceed. If a solution exists, there are
numerical methods for approximating it with the aid of modern
computers.

Experience with elementary examples leads one to anticipate that,
under reasonable hypotheses on the right member of (1.34), the equa-
tion should have a unique solution satisfying a preassigned condition

(1.36) y(&) = .
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The following is a local existence theorem that speaks to this point.

Theorem 1.2

Given a function g: A C (RXR) = R that is continuous on A and satisfies
a so-called Lipschitz condition

(1.37)  |g(xy) —g(x,2)| <kly—z], VY(xy), (x2) € 4,

then, given any point (£,m) interior to A, there exists a positive 8 and a function
y: 1= (£—8,¢+8) = R such that

®y(€) =,
(i) y'(x) = glx,y(x)], YV x € I, and
(1i1) this solution y is unique.

Examination of a proof will reveal that the solution y involves the value
7 and might be written y(7, -), the dot indicating that the value of the
function at x will be y(9,x). We thus have a general solution, that is, a
one-parameter family of solutions with 7 as the parameter or arbitrary
constant.
To investigate a second-order equation (1.35), it is convenient to set
" = zand study the system
y =z
2= h(x,3,2),

of first-order equations. This is a special case of the more general system
y' = g(x,9,2z) and 2’ = h(x,y,z).

If for a general n we shift to vector notation and to a dot in place of
the prime we can reinterpret (1.34) as meaning the system

¥ =2g(x),

= g"(xy).

Both primes and dots are used in this book to denote derivatives with-
out any explicit restriction in the case of the dot that the differentiation
is with respect to time.

An extension of Theorem 1.2 to this case is obtained by taking as g
a function from 4 C (R XR") to R", interpreting (1.37) as a condition
in terms of euclidean norms (1.30) and understanding (£,m) to mean
(&', . ..,m"). There exists under this revision of hypotheses a unique
function y(7,') depending on n parameters, the components of 7,
such that y(7,€) = n and the vector equation

¥(m.x) = glx,y(n.x)]
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holds for each fixed n such that (¢,m) is interior to 4 and for all x on
an interval I, containing ¢ and generally depending on 7.

1.13 THE RIEMANN INTEGRAL

The reader is assumed to be familiar with some definition of the Riemann
integral, either as a limit of Riemann sums

ZH(E:) (% — %i-1)

or by way of upper and lower sums.

Given the bounded function ¢: [a,b] = R, a sufficient condition for
¢ to be Riemann integrable over [a,b] is that ¢ have at most a finite
number of discontinuities. This condition is not necessary. We mention
in passing that a necessary and sufficient condition for Riemann integra-
bility of the bounded function ¢ is that the set of points in [a,b] at which
¢ is discontinuous be a set of Lebesgue measure zero, a term to be
defined in Chapter 8.

We shall often have occasion to differentiate an integral with respect
to a parameter in accord with the following classic theorem.

Theorem 1.3

Given two intervals I, and I, of the reals each of positive length and three
Sfunctions f: I XI, > R, g: I, = I, and h: I, = I, with values denoted by
f(x,a), g(a), and h(a), suppose that f and its partial derivative f . are both
continuous on I, X I, and that g and h have finite derivatives at a point 8 of I,.
Then g(B) and h(B) are values in I,, the function F: I, = R with values

h(a)
F(a) = fg(w f(x,e) dx

ka.s a finite derivative at 3, and

F/(B) = [ fulx.B) dx+£h(B).BI¥ (B) —fg(B)Blg" (B).

Let f be the function mentioned near the end of Section 1.2 and re-
quire that f be continuous on its domain. If y: [a,b] — R is PWS, it
follows from the appropriate definitions that the composite function of
Section 1.2 with values ft,5(t),5(#)] has at most a finite number of dis-
continuities on [a,b], namely, discontinuities at those ¢ at which y has
corners. Therefore, this composite function is Riemann integrable over

[a,b] in the sense of problem 1, Exercise 1.4, a fact needed frequently in
later chapters.
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In Section 2.6 we shall need the derivative of a function F, where
151
F(E) = fto f[t’ )’o+€7),).'o+€7.)] dt

with suitable hypotheses on fand with y,+ en known to be PWS on [f,,,].
The composite integrand satisfies the hypotheses of Theorem 1.3
iff 3o+ en happens to be smooth on [#,t;]. In general j,+ e has dis-
continuities at one or more interior points c;, . . . ¢, of the interval. Set
o = to, Cny1 = 1, and express the integral as the sum of integrals over
intervals [¢;—1,¢;],i=1, ... ,n+ 1. Hypotheses of Theorem 1.3, although
not satisfied on the interval [f,t,], are satisfied on the subinterval
[¢i—1,¢;] provided that we interpret $(c;—,) as 5*(c;—;) and $(c;) as 37(c;).
The n+ 1 integrals obtained by Theorem 1.3 as derivatives of the separate
integrals can then be combined into an integral over [f,t,] of the deriva-
tive of the integrand, exactly what we would have obtained if we had
applied the conclusion of Theorem 1.3 to the original integral without
justification. Upper and lower limits on the various integrals are all
independent of €; consequently, the boundary terms in the general
expression for the derivative are both zero.

Similar procedure can be used to justify the expression we shall
exhibit for F”(e) in Section 2.12 and the derivatives of integrals in other
sections.

We shall apply integration by parts to a number of definite integrals.
That the familiar technique is meaningful and valid under a variety of
circumstances is attested by a number of theorems, of which we give
three.

Theorem 1.4

Ifu: [a,b] = R and v: [a,b] = R are both smooth on [a,b], then
(1) wv', vu', and (uv)' = uv' +vu' are all Riemann integrable over [a,b] and

b b
(i1) fa u(t)v' () dt = u(b)v(b) —u(a)v(a) — J; v(t)u'(t) dt.
PROOF

That « and v are smooth on [a,b] means (Section 1.9) that u, v, v’
and v' are all continuous on [a,b]. It follows that uv', vu’, and (uv)’
=wuv' +vu' are continuous on [a,b)] and hence Riemann integrable
over [a,b]. Conclusion (ii) is then obtained by integration of (uv)’ over
[a,b].

In Section 2.6 and elsewhere, an extension of Theorem 1.4 to func-
tions u and v that are PWS in the sense of Section 1.9 is needed.

Theorem 1.5

If u: [a,b] = R and v: [a,b] = R are both PWS on [a,b], then conclusions
(i) and (ii) of the Theorem 1.4 remain valid.
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PROOF

Since u and v are PWS on [a,b] they are both continuous on that
interval. It follows that uv’, vu', and (uv)’ = uv’ +vu’ are PWC on [a,b]
and hence Riemann integrable over [a,b]. Recall with possible reference
to problem 1, Exercise 1.4, that when a function such as v’ is PWC it
can be assigned an arbitrary real value at each point ¢ where it is dis-
continuous. Let ¢, ... ,c, be all points of [a,b] at each of which «’ or v’
or both have a discontinuity and set ¢y = #, ¢,+1 = t;. The hypotheses of
Theorem 1.4 are satisfied on each closed subinterval [¢;—;,¢;] provided
that we take u'(¢;—;) and «'(¢;) to mean the respective right and left
derivatives of u at these points and similarly for v. Consider the n+1
equations (ii) expressing the result of integration by parts over [¢;_;,¢;],
i=1,...,nm+1. The sum of the left members is the left member of (ii)
as written in Theorem 1.4 and similarly for the sum of the right members.

The next and final theorem of this section is for possible reference in
connection with Chapters 8 and 9. Readers not already familiar with the
Lebesgue integral and absolutely continuous functions need not concern
themselves with the theorem for the time being.

Theorem 1.6

Ifu: [a,b] = R and v: [a,b] = R are both absolutely continuous on [a,b],
then

(i) uv',vu', and (uwv)’ = wv' +vu’' are all Lebesgue integrable over [a,b], and
) [ u(®)v' (0 dt=u(b)o(d) —u(@)v(a) — [ v()u' (1) dt,
with. the integrals now understood as Lebesgue integrals.

PROOF

Since u is absolutely continuous, it is of bounded variation and hence
is expressible as the difference between two monotone functions by
standard theorems (Theorems 8.24 and 8.23). The derivative u’(¢)
then exists and is finite at each point ¢ of a set [a,b] —Z,, where Z, is
of measure zero (Theorem 8.32). Similarly, v’ (¢) exists and is finite on
[a,b] —Z; with Z, of measure zero. The product uv is necessarily ab-
solutely continuous; hence its derivative (uv)’ (t) also exists and is finite
on [a,b] except for a set Z; of measure zero. One next verifies by
essentially the treatment of the derivative of a product in elementary
calculus that the equation

(uwv)' (t) = u(t)v' (t) +v(t)u'(2)

is meaningful and valid for all ¢t € [a,b]—Z,Z=Z, U Z, U Z;. The
set Z has measure zero.
If we reinterpret the symbol «'(¢) by arbitrarily assigning it the value



SEC. 1.14 INTRODUCTION AND ORIENTATION 21

zero on Z but retain its original meaning as the derivative of u on
[a,b] —Z and do the same for v'(t) and (uv)'(t), then the equation
above holds everywhere on [a,b].

By the Fundamental Theorem of the Integral Calculus (Theorem
8.38),

f: (uv)'(t) dt = (uv) (b) — (uwv) (@) = u(b)v(b) —u(a)v(a).

The function u being absolutely continuous is bounded and measurable
on [a,b] and v’ is Lebesque integrable over [a,b], hence measurable
on [a,b]. The product uv' of functions measurable on [a,b] is measurable
on [a,b][Theorem 8.11(v)]. Let M denote an upper bound for |u|.
Then 0 < |uv'| < M|v'|. The function 0 is clearly integrable over [a,b]
and |v'| is integrable (problem 9, Exercise 8.4); hence M|v'| is integrable.
It follows from the double inequality above that |uv'| is integrable
(problem 7, Exercise 8.4) and, since uv' is measurable, itis then integrable
(problem 9, Exercise 8.4). We see in the same manner that vu' is in-
tegrable over [a,b]. Consequently,

[0 ) @ di= [ u(®v @) de+ [} oo () de,

and the proof is complete.

—~

1.14 WHAT IS THE CALCULUS OF
VARIATIONS?

Let % denote a given class of functions y: [a,b] = R and consider a
function J: # — R, often called a functional, the suffix “‘al” serving as a
reminder that a value J(y) depends not upon the choice of a point y
in some subset of R" but upon the choice of a function y in a set of # of
functions. Since, however, the definition of a function as stated in Section
1.2 covers the case J:  — R as well as the more familiar types studied
in elementary calculus, we shall generally omit the suffix.

If, for example, [a,b] is a fixed interval and # denotes the class of
all functions y that are Riemann integrable over [a,b], then

(1.38) J0) = [ y(x) dx

is a value of a functionJ: % — R.

If & is a suitable class of functions y: R —> R, then J(y) = y(c) is a
value of a functionJ: # — R. .

Variational theory is concerned with the existence and determination
of yo € # such that J(y,) is a minimum or a maximum value of J(y)
and also with so-called stationary values to be defined later that may or
may not be extreme values. To say that J(y) is an extremum means that
itis a minimum or a maximum.
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The two examples mentioned above are overly simple. We close this
chapter with some more complex examples drawn from the rich and
constantly growing supply. We are interested for the moment only in
the forms of typical problems, not in how to deal with them.

EXAMPLE 1.1

Given a particle of fixed mass m that is required to move from position
3(0) =0 to y(T) =Y during the fixed time T. Does there exist, in the
class & of all PWS functions y: [0,T] — R having the stated initial and
terminal values, a particular y such that the average kinetic energy

T
JG) = [, 4m5?(s) dt

has a minimum value? If so, what function y, minimizes J(y), and is it
unique? On the basis of Chapter 3 there is a unique such y,, namely, the
linear function with the assigned initial and terminal values.

EXAMPLES 1.2and 1.3

Enlarge the class # of Example 1.1 by assigning no value for y(T). We
can theninvestigate the existence and possible nature of y, € % minimiz-

ing

J(y) = y*%(T)
or

T
J(y) = yz(T)+f0 +m$2(¢) dt.

These minimum problems are simple examples of the Problem of
Mayer and the Problem of Bolza to be treated in Chapter 5.

—p X

My; (%95 Yo)

FiGure 1.1
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EXAMPLE 1.4

An idealized double pendulum consists of masses m, and m, attached
to weightless inextensible cords of lengths 7;, 7, as shown in Fig. 1.1.
What system of differential equations in the signed angular displace-
ments 6,, 6, and the time ¢ will govern the motions of the two particles?

These equations are found by variational methods in Example 4.5.
If one is sufficiently adept at identifying all static and dynamic forces
affecting the two particles, the desired equations can be derived directly
from Newton’s laws of motion. The calculus of variations, although not
essential for this problem, offers certain advantages.

EXAMPLE 1.5

The mathematical model for a certain industrial process involving
consecutive chemical reactions is the pair of equations

(1.39) x=—Axp™,  j+i=Byp",
subject to the boundary conditions
(1'40) t0=05 x(O) =a, )’(0)=b, x(T) =h’ y(T) =k.

Symbols 4, B, m, n, a, b, h, and k denote constants; x y, and p are
functions on [£,,T] to R, but terminal time T is not fixed. Indeed, T
depends upon the choice of a triple (x,y,p) of functions from [0,T] to R
satisfying (1.39) and (1.40). If the constants a, b, h, and k have been chosen
arbitrarily, we do not know whether there exists such a triple (x.,y,p).
The terminal state [x(T),y(T)] = (k,k) may notbe attainable by a system
satisfying the other conditions (1.40) together with the dynamical
equations (1.39).

If, however, we suppose given a positive time T and regard p(t) as
given, 0 < ¢t < T, with p restricted to be continuous on [0,T] for sim-
plicity, then equations (1.39) are linear in x and y with continuous
coefficients. There are theorems for such systems of linear equations
that ensure the existence of a pair x: [0,7] = R and y: [0,T] > R
having the initial values x(0) =a, y(0) =54 and satisfying (1.39) with
the given p on the given interval [0,T]. The set of attainable terminal
states can be defined as the set of all pairs [x(T),y(T)] of terminal values
corresponding to all choices of a positive time T and of a continuous
function p.

Since our purpose at the moment is to exhibit a typical problem and
not to investigate the questions to which it gives rise, let us simply
suppose that the values 2 and k& mentioned under (1.40) constitute
an attainable terminal state. The time T at which the state (h4,k) is
attained then depends upon the choice of a triple (x,y,p) satisfying
(1.39) and (1.40) and we regard T as a value J(x,y,p) of a function J,
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the domain of which consists of all triples (x,y,p) satisfying (1.39) and
(1.40). We wish to know whether there is a particular such triple
minimizing

J(xy.p) =T,

and, if so, how to determine the minimizing triple.

This more complex problem of Mayer will be discussed further in
Examples 5.2 and 5.9. In the terminology of control theory, it is a time-
optimal control problem in two state variables x, y representing con-
centrations of reactants and one control variable p representing a
controlled pressure.

EXAMPLE 1.6
Consider the problem of maximizing

Joom) = [ 5 di

on the class of all PWS triples (y,u,m): [#,t;] = R? satisfying the side-
conditions

(1.41) mi+cm+mg=0, H—v=0, m=<0
and the end-conditions
(1.42) 6%,=0, y(%) =0, v(t) =0, m(t) =M, m(t)=M, <M,

Equations (1.41) are an overly idealized but much used mathematical
model for the vertical motion of a rocket-propelled vehicle of decreasing
mass m(¢). End values (1.42) leave the time of flight ¢, free but fix the
initial and terminal values of the mass. Since the value of the integral
is y(£,) —y(t), with y(%) = 0 by (1.42), and also v(%,) = 0, we see that the
idealized missile is to start from rest at the origin at the time 0 and that
with a given mass M,— M, of propellant we wish to achieve a maximum
terminal height y(#;) by selecting, if possible, from among all PWS
triples (y, v, m) satisfying (1.41) and (1.42) a particular such triple corre-
sponding to which the terminal height y(¢,) has a maximum value.

This is a reasonable-looking mathematical problem even if one doesn’t
know yet at which end to attack it. One is inclined to guess from the
nature of the physical problem behind the mathematical formulation
that there ought to exist a maximizing triple in the given class of triples
and that it only remains to find a way of identifying it. In actuality,
however, there exists no such triple for this example. Everyone prefers
problems with solutions, but intuition alone is not sufficient to identify
them and we often need theorems on the existence of solutions.

A dynamical system from any branch of science or engineering is a
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source of variational problems. We are always interested in optimal
design, optimal control, and optimal performance. When these vague
desires are translated into the language of mathematics we sometimes
must maximize or minimize a real-valued function of types met in the
ordinary calculus, but often it is a real-valued functional.

Variational theory also has potential applications to conflict analysis
and this brings it into contact with the social and behavioral sciences,
including mathematical economics and the dynamics of military opera-
tions.

Although problems of the types described in this section bear a super-
ficial resemblance to maximum and minimum problems from the first
course in calculus, it is well for a beginner to anticipate that the former
are generally much more complicated. Particular examples tend to be
of two kinds. First are artificial ones deliberately constructed to illustrate
some aspect of the theory and yet simple enough so that one can see
exactly what is going on. In contrast are those that arise in a natural
manner as the formulations of optimization questions that are important
per se.

A complete analysis of a variational problem of the second type can
demand considerable knowledge and ingenuity, absorb hundreds of
man hours, and entail all the hazards of a doctoral dissertation or of any
research project. Relatively few particular examples of the difficult kind
have ever been definitively treated. One does what he can, and often
even a partial analysis yields a certain amount of firm information
that can be quite useful.



Chapter 2

NECESSARY
CONDITIONS FOR
AN EXTREMUM

2.1 INTRODUCTION

This chapter is mainly devoted to the simplest problem of the calculus
of variations, or, in more technical language, the classic fixed-endpoint
nonparametric problem in the plane. Since all problems appearing in
Chapters 2 through 5 are of the type called nonparametric, it will be
convenient to understand this without repeating that qualification. Most
variational problems arising from questions in engineering and science
are of this type. A second type, called parametric, is introduced in
Chapter 6.

Various references from the list near the end of the book will be cited
in this and other chapters using such notations as (VI, pp. 73-74) for a
book or (7b, p. 598) for an article.

26
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2.2 THE FIXED-ENDPOINT PROBLEM
IN THE PLANE

Let [#,t;] be a nondegenerate compact interval, that is, a closed interval
of positive finite length. Let % denote the class of all PWS functions
y: [to.t1] = R satisfying end conditions

@1 ¥(t) = ho,  3(t1) = M.

Let f: [to,t;] X R2—> R be a function with values f(t.y,7), ¢t € [to.t1],
(y,r) € R2% We wish to express various conclusions in terms of partial
derivatives of f; hence the discussion must be restricted at each stage to
functions f having the needed derivatives. Appropriate hypotheses on f
could be stated with each theorem, but it is convenient to agree at the
outset that f together with any partial derivatives f, frr, fus, €tc., that may
appear will be understood to exist and be continuous at all triples (¢,y,r)
of the domain of f that are appropriate to a particular theorem or dis-
cussion. This agreement will be referred to as the blanket hypothesis.

Given the class % described above, consider the functional J: # — R
with values

2.2) J6) = [ fusd,  yEW.

Functions y € ¥ are called admissible; they and only they are admitted
to competition. By the problem J (y) = minimum, we shall mean the follow-
ing combination of questions:

(i) Does there existy, € ¥ such thatJ (y) < J(y),Vy € &?
(ii) If so, is the minimizing admissible yo unique?
(iii) How can all such y, be characterized?

A function y, € # such that J(y,) < J(y), V y € # is said to furnish
the global or absolute minimum of J(y). This, as remarked by Bolza
(X,p. 10), is the ultimate objective. Local or relative minima, which are
also important, are defined in Section 2.4.

To characterize y, means to determine it. Ideally, this means to be able
to say that y,(f) = #2 or sin ¢ or some combination of familiar special
functions. This can be done only for exceptionally simple examples. It
can occur, for instance, that a unique minimizing y, is known to exist,
to have no corners, and to satisfy a certain known differential equation.
This could be a sufficient indirect characterization for the purposes of
further mathematical development.

By an analysis of the problem J(y) = minimum we mean either a sub-
stantiated negative answer to question (i) or a positive answer together
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with a characterization of all minimizing functions y,. This describes an
ideal that is seldom attained. One often achieves a partial analysis and
for lack of time or because of difficulties can go no further.

We have avoided the term “solution of the problem,” because this
tends to be used with several different meanings. An analysis as defined
above may be called a solution, or more often a published partial analysis
of a special problem is cited as that author’s solution of the problem. A
minimizing function y, is frequently called a solution of the problem. In
many instances a function y, satisfying the first necessary condition for a
minimum is referred to as a solution, when all that is known for certain
of y, is that it is a solution of an Euler equation.

An analysis need not and often does not take up questions (i), (ii),
and (iii) in that order.

We have followed the common convention of phrasing the discussion
in terms of minima and shall continue to do so. Since J (y,) is a maximum
of J(y) iff —J(y,) is a minimum of —J(y), any statements or results for
minima immediately translate into statements for maxima; hence it is
unnecessary to give a separate complete discussion of maxima. For
instance, the inequality —J(y,) < —J(y) is equivalent to J(y) = J(y)
and that this hold for all admissible y defines J(y,) as the global maximum.

2.3 MINIMA OF ORDINARY POINT-FUNCTIONS

It is helpful to be reminded of some of the facts concerning minima of
an ordinary function ¢: [a,b] = R in preparation for analogous
concepts and results for the function J of Section 2.2.

If ¢ is continuous on [a,b], we have the classic theorem that there
exists o € [a,b], not necessarily unique, such that

23) (%) < ¢(x), Vx€ [ab]

Such a value ¢ (x,) is the global or absolute minimum of ¢ (x) on [a,b].
If there is a positive § such that

then ¢(x,) is a local or relative minimum. Clearly (2.3) is a stronger
statement than (2.4). If ¢ (x,) is the global minimum, then it is also a local
minimum but not conversely, as one sees from simple examples.

Since a real-valued function ¢ can be very complicated, there is no
general method for locating values x, for which (2.3) or (2.4) holds. If,
however, ¢ has first and second derivatives on the open interval (a,b)
and has a minimum of either kind at x, € (a,b), then itis necessary that

(2.5) ¢ (%) =0, ¢"(x) =0.
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That conditions (2.5) are not sufficient for a minimum is shown by such
examples as ¢ (x) = x® or —x* with x, = 0. If, however, x, € (a,b) and

(2.6) ¢ (%) =0,  ¢"(x) >0,

these are sufficient to guarantee that ¢(x,) is a local minimum. This
does not exclude the possibility that ¢ (x,) is actually the global mini-
mum. The question simply remains open.

The combination of conditions

2.7 ®' (%) =0, ¢"(x) =0, Vx € [a,b],

is sufficient for ¢(x,) to be the global minimum. Conditions (2.6)
interpreted descriptively say that ¢ has a horizontal tangent and is
convex at xo. The second condition as strengthened in (2.7) says that ¢ is
convex everywhere on [a,b]. Contemplate the difference.

Necessary conditions for ¢(a) or ¢(b) to be a minimum are, res-
pectively, that

(2.8) ¢’ (@) =0 o ¢'(b)<0O.

Consideration of some simple examples will show that ¢"(a) can be of
either sign when ¢ (a) is a minimum, and similarly for ¢"(b).

Exercise 2.1

Construct an elementary example of a function ¢: I — R to illustrate
each of the following possibilities.
1. Iis an open interval and ¢ has a relative but no global minimum on I.
2. I'is any kind of interval and ¢ has infinitely many local minima on I.
Does such a ¢ necessarily have a global minimum on I, and why?
3. ¢(x,) is a minimum of some kind and ¢'(x), ¢"(x) both exist and
are finite on [a,b] but (2.6) does not hold.
. ¢ is not continuous on [a,b] but (2.3) holds.
. %9 € (a,b) and ¢ (x,) is a global minimum but ¢’ (x,) does not exist.

(AR

2.4 DIFFERENT KINDS OF MINIMA OF J(y)

The global minimum of J(y) has been defined in Section 2.2. With
reference to Section 1.10, we now denote the distance (1.31) by dy(x,y)
and call it a distance of order zero. We also define a distance of order one

(2'9) dl (xvy) = do(x,y) + 5uP{|3.C(t) _i(t) |: t e [to’tl]*}:
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where [#,%;]* denotes the closed interval [fy,%] less those ¢, if any, where
the derivatives %(¢) or §(¢) fail to exist. Functions x and y are understood
to be admissible, as defined in Section 2.2, and hence are PWS in the
sense of Section 1.9; therefore, right derivatives exist everywhere on the
half-open interval [t,,t;) and left derivatives everywhere on (fo.t].
We can omit the star in stating (2.9) without change in the meaning if
we look ahead to convention (2.17) in Section 2.6.

Observe that if d;(x,y) <&, then |x(t)—y(¥)| <8, YVt €E [t.t],
and |X@®—3@®) | <8, Vt € [to,t,]*. Moreover, di(x,y) <& = | x(f)
=@+ 12@) =5 <8,V ¢ € [to,t]*.

A neighborhood of order zero Uy(8,x) = {y € ¥: do(x,y) < 8} is easily
visualized. A function y € Uy(8,x) is in the strip of the (t,y) plane
bounded by x(t) + 8 and x(t) —8é.

A neighborhood of order one U,(d,x) = {y € ¥: dy(x,y) < 8} is not so
easily visualized. In order that y be in U,(8,x), it is necessary that y and
5 be in the respective zero-order neighborhoods Uy(8,x), Uy(8,%), but
this is not sufficient. A sufficient condition is that y and j be in zero-
order neighborhoods Up(a,x), Us(B,%) such that e+ g < 8. In descrip-
tive language y € U,(8,x) means that y(¢) and j(t) are, respectively,
near to x(t) and X (), Vit € [to,t;]1*.

Observe that d;(x,y) < & implies that dy(x,y) < 8 but not conversely.
Alternatively stated, y € U,(8,x)impliesy € Uy(38,x), but not conversely.

If there is a function y, € # and a positive & such that

(2.10) J(p) <J(), Yy €F N Usd:),

then J (y,) is called a strong local (or strong relative) minimum.
Similarly, if

(2.11) J(yp) <J(y), Vy€F N Ui(d),

then J(y,) is called a weak local (or weak relative) minimum.

The global minimum defined in Section 2.2, the strong local minimum
defined by (2.10), and the weak local minimum defined by (2.11) com-
pare y, with successively smaller classes of functions y € #. If J(y,) is
a global minimum, then it is necessarily a strong local minimum but not
conversely. If J(y,) is a strong local minimum, then it is also a weak local
minimum but not conversely. This ordering of the three types of minima
is conveniently described by saying that one type is stronger (weaker) than
another, respectively, if the inequality J(y,) < J(y) holds for a larger
(smaller) class of functions y than it does for the other.

Any property that y, € ¢ must have to furnish a minimum of one of
the three types must then also obtain if y, furnishes a stronger type of
minimum. Any conditions that may be sufficient to ensure that J(y,)
is 2 minimum of one type automatically ensure that J(y,) is a minimum of
weaker type.
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These distinctions and relations among three types of minima have
been important ingredients in the calculus of variations since the time
of Weierstrass.

The reader may notice that the terms zero-order and first-order for
distances and neighborhoods seem to be counter to the ordering of types
of minima described above. This use of the words first (or one) and
zero is consistent with that of McShane (33f) and of Akhiezer (I,p.5).
One might prefer to use the adjective weak for neighborhoods and
distances associated with the weak minimum and similarly for the word
strong. However, in view of the fact that U,(8,y) C U,(8,y), to say weak
and strong in place of one and zero is counter to a dominant usage in
comparing neighborhood topologies.

Exercise2.2

1. Formulate definitions for global, strong local, and weak local
maxima. Discuss relationships among the three.

2. Given y(t) =t? and z(t) =1, t € [—1,1], find the values of dy(y,z)
and d,(y,z).

3. Given the sequence {y,: [027] = R: n € N}, y.(t) = (sinnt)/n
together with yo: [0,27] = R, 3(t) =0, show whether or not
do (Yn>30) = 0and d; (yn,3%) = 0.

4. Given a sequence of functions of general term y,: [a,b] = R, if
there is a function y,: [a,b] = R such that dy(y,,y,) — 0, verify that
y» converges uniformly to y, and conversely. What can be said of the
convergence of y, and , if d, is replaced by d,?

2.5 THE LEMMA OF DU BOIS REYMOND

Theorem 2.1

If m: S — R with S defined as in Section 1.8 is a fixed PWC function and if
the relation

t1 .
2.12) [ midt=0

holds for every PWS function m: [to,ti] = R such that m(to)= m(t) =0,
then m(t) is constant on [ty,t,] except possibly for a finite number of points in
(to.t1) , at which m(t) remains undefined.

PROOF

If m(¢) is to be a constant ¢ in the sense stated in the theorem, then it
must satisfy the equation

(2.13) c=

61
m dt.

L=t Je
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Since 7 (t) is required to vanish at ¢, and ¢,, then

121 .
[ (@) dt=c[n(t) —n(t)] =0,
and we see with the aid of hypothesis (2.12) that
t1 .
(2.14) ) | (m—c)yhdi=0.

The particular function 7 with values

2.15) () = [} m(r) =<l dr

is PWS under definition (1.27). Clearly 7(t) = 0, while n(¢;) =0 by
(2.13); hence this function 1 has the properties required in the theorem.
Moreover, 7j(t) = m(t) —c¢ except for a possible finite subset of [¢o,]
by (1.28) or the discussion following Theorem 1.3 in Section 1.13.
After substituting ) = m — ¢ in (2.14) we have that

t
2.16) J, (m=c)*di=o.

Let ¢, be any point of [t,t] at which m is continuous. If m(t;) # ¢,
then m(¢) must differ from ¢ on some subinterval of [¢,t,] of positive
length. Integral (2.16) cannot then vanish as stated and, from this con-
tradiction, we infer that m(t,) = ¢, hence that m(¢) = ¢ wherever m is
continuous.

The proof is complete but we remark further of m that what has been
shown is that m consist of a horizontal segment in the (¢,m) plane, pos-
sibly punctured by removal of a finite number of points.

2.6 THE EULER NECESSARY CONDITION

In stating the next theorem and others to follow we use the phrase
“if yo minimizes J(y)” as an abbreviation for “if y, furnishes at least a
weak local minimum for J(y).”

It is also convenient in stating the Euler condition and other conditions
later to adopt the special convention that

(2.17) when a condition involves [ty,t,] and the symbol 5(t), then at any
interior point where the derivative of the PWS function y fails to
exist, the stated condition is understood to hold with 5(t) interpreted
as either §~(t) or y*(2).

Here and elsewhere in this chapter when we mention a problem it is
always that of Section 2.2 unless there is explicit statement to the contrary.
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Theorem 2.2
If yo minimizes J (y) on %, then there exists a constant ¢ such that

@18)  Altn® 5601 = [ filrgo@) JoDdr+e, Vi € [tata],
subject to convention (2.17).

PROOF

Let n: [t.t;] > R be PWS with n(%) =n(¢4;) =0 but otherwise
arbitrary. Then y,+en € % for each real e. Moreover, y,+ €n and j,+ €7)
converge, respectively, to y, and j, as € — 0; consequently, given 8 > 0,
then if |e| is sufficiently small, yo+ e is in the neighborhood U, (8,y,)
appearing in definition (2.11). Thus if J(y,) is a weak local minimum or
if it is one of the stronger types of minima discussed in Section 2.4,
we can proceed as follows.

The function F: R — R,

t1
2.19) F(e) = [ f(t. 3o+ en, 5o+ eh) dt,
necessarily has a local minimum at e = 0, an interior point of the domain
of F. The blanket hypothesis on f permits us to differentiate F and we
have as a necessary condition on y, that
(2:20) F'(0) =0.
By applying Theorem 1.3 in the manner described in Section 1.13,
@21) F'(&) = [ (fin+£h) de,
with the arguments t,y,+en, j+e€) of f, and f, suppressed. After

setting € =0, integration by parts of the first term with the aid of
Theorem 1.5 yields the relation

(2.22) [ pmae=n) [ fyar]t = [ [ foara

The first term on the right vanishes as a result of our choice of 7; hence,
by (2.20), (2.21), and (2.22),

@2) [ (1t 30 = [ fillr30(r) 5or)] dr}y de =00,

The Lemma of du Bois Reymond was designed for the next step. The
expression in braces fails to be defined and continuous only at those
possible points of [#,t;] corresponding to corners of the minimizing
function y,; therefore, the expression is PWC on [¢,t] and plays the



34 CALCULUS OF VARIATIONS WITH APPLICATIONS

role of m in Theorem 2.1. That theorem implies (2.18) except for those
t, if any, that correspond to corners of y,.

To establish that (2.18) holds for all ¢ € [t,t] subject to convention
(2.17), it remains to investigate corners. If ¢, corresponds to a corner,
observe that the integral in (2.18) is continuous in ¢ on [f,t] and hence
at t,. If t = ¢, from the left and then from the right 5(¢) = y(;—) and
Yo(to+), respectively. But the left and right limits of §(¢) at ¢, are equal
to the left and right derivatives §(¢;) and j*(t,), respectively, as pointed
out by problem 2, Exercise 1.5. Consequently (2.18) holds at ¢, in the
sense of (2.17).

The preceding proof applies without change if J(y) is 2 maximum of
any of the types considered in Section 2.4.

Theorem 2.3
If yo minimizes J(y) on % and if t is any point of [to,t,] where the derivative
Yo(2) exists, then, at such a value t, d%f,[t,yo(t),j)o(t)] exists and

@29 Folt3o(®) 30(0] = 5 £ l1m( (0]

Moreover, (2.24) holds everywhere on [t,t,] in the sense of convention (2.17).
PROOF

We can differentiate (2.18) by Theorem 1.3 at any ¢t where the integrand
is continuous. If j, is discontinuous at ¢ € (ty,t,), the respective right and
left derivatives of the integral are given by the integrand with §(¢+) and
J(t—) as respective values of the third argument.

Theorem 2.4 (Hilbert)

If yo extremizes J (y) on %, if t, is a point of [to,t1] such that 3o (t,) exists, and
if frrlta:yo(82) Jo(t2) ] # O, then (i) ¥o(2;) exists and is finite, (ii) there exists a
subinterval I of [to,t,] containing t, such thatyy is continuous on I, and (iii)

(2.25) Jo=fr +fry5’o(t) + frr¥o(t), Vi €I,
the arguments of fy, fres frv» and frr being tyo().50(t). If the hypotheses hold
everywhere on [to,t;], then so also do the conclusions.

PROOF

Abbreviate y(t2), Jo(tz) by Yoo, Joz. Set Ayo= yo(t2+ At) — 9y, and Ao
= 3o(t,+At) — oo Restrict At to be positive or negative, respectively, if
t; coincides with £, or #;; otherwise, At may have either sign but not the
value zero.
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By the mean value theorem for a function of three arguments,

Af, Ay, . Ay
.26 2Jr_ —20 -0
(2.26) At Sty R

arguments £+ 60 Az, Y02+ 0 Ayy, Yoo+ 60 AYy of fri, fry» 2and fr being sup-
pressed.

Function y, being admissible, is PWS. Since 5, (¢;) exists by hypothesis,
t, is not the abscissa of a corner, and therefore J, exists and is continuous
on some interval I; to which ¢, is interior. It follows that Ay, and Ay,
converge to 0 with Atz. We observe that Ay,/At has a finite limit, namely,
o(22). The limit of the left member of (2.26) exists and equals the left
member of (2.24) by Theorem 2.3.

It follows from (2.26) and our hypothesis on f, that Aj/At is expres-
sible as a quotient with £, in the denominator. Each term in the numerator
has a finite limit as a result of the blanket hypothesis on f and conclusions
in the preceding paragraph. The denominator has a limit, which is not
zero by hypothesis. Consequently Ajy/At has a finite limit, which by defini-
tion is ¥ (#,) and (2.25) holds at ¢,.

Under the blanket hypothesis, f,. is continuous and, since f,.[t,
Yo(t2).Jo(tz)] # 0 and j, is continuous on the interval I,, there must
exist an interval I,, to which ¢, is interior, such that f,-[,30(¢) ,50(¢) ] does
not vanish on I,. For the same reasons stated in the preceding paragraph,
Yo(t) exists and is finite, (2.26) is satisfied on I,N I,, and this is the
interval I mentioned in the theorem.

Observe that the three forms of the Euler condition apply under in-
creasingly more restrictive conditions as we pass from the du Bois
Reymond form (2.18) to (2.24) to (2.25).

The most widely known result from the calculus of variations appears
to be form (2.24) of the Euler condition, and there is a tendency in
applying the calculus of variations to problems in the sciences to ignore
the hypotheses of Theorem 2.3 and to treat (2.24) as a universal solvent.
If a smooth solution y, of (2.24) satisfying the given end-conditions can
be found, then J(y,) is often supposed to be the desired minimum or
maximum value of J(y), whichever of the two may be desired.

Such a step is based on a combination of assumptions: (i) that the nature
of the intended application is sufficiently clear to the analyst so that he
knows there must be a minimum or maximum as the case may be,
(ii) that the mathematical model for the original extremum problem
represented by the variational problem is a sufficiently realistic approxi-
mation to the original so that the analyst’s intuition can safely be trans-
fered to the mathematical problem, and (iii) that the solution of the
latter, now assumed to exist, is necessarily smooth. Any or all of such
assumptions can turn out to be false.

All that has been proved thus far is that, if the integral J(y) of Section
2.2 has a minimum or a maximum value J(y,), then y, satisfies (2.18),
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whereas if y, has certain other properties, it satisfies (2.24) or (2.25).
A function y, € # satisfying one of these equations is a candidate. It
may minimize or maximize or it may not. To determine whether it
actually furnishes an extreme value for J(y) and of which type requires
further investigation.

We mention in this connection that the term extremal is variously used
in the literature, sometimes for any smooth function y satisfying the
Euler condition and again with other meanings. We prefer to avoid
the term as misleading, even though it is traditional and will be found in
various of the books that we cite. An extremal may or may not yield an
extreme value of J (y).

2.7 EXAMPLES

It frequently happens that a minimizing PWS function y, is actually
smooth and even has a second derivative on [f,t;]. We may not know
of a particular example whether or not this will be so or even whether
a minimizing y, exists. Nevertheless, in practice we often begin by
examining (2.24) or (2.25).

The second-order differential equation (2.25) is in general nonlinear,
and very few such equations have elementary solutions. We can turn
to numerical methods for an example that is important enough to
justify this investment but, as has been remarked, even if we solve an
Euler equation this is only one step in the analysis of a problem.

We shall restrict ourselves at present to examples having simple Euler
equations.

EXAMPLE 2.1
f(t,y,r) is free of t and y. Equation (2.25) is then of the form
(2.27) fr(3)y=0.

The equation =0 has the general solution y=at+b. If the first
factor has a real zero j = m, then y = mt+b is a solution of (2.27), but it
is already included in the result for the other factor. An extremizing
function with a corner must satisfy (2.18) on the given interval [#,¢,] and
(2.24) on each subinterval that is free of corners. The reader should
verify that y=at + b also satisfies (2.24) for the present problem. Verify
that an admissible y, satisfying (2.27) need not be linear in ¢if f (t,y,7) =
(r+ 1D%0,0or(r — 1)*whenr < —1, —1=r=1, orr> 1, respectively.

EXAMPLE 2.2

f(t.y,r) = 1°. The fixed endpoints are (0,0) and (1,1). This is a special case
of Example 2.1; hence yo, yo() = t, may possibly minimize or maximize
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J(y) or it may not if all we have to go on is Section 2.6. Theorems in
Chapter 3 will tell us that this function y, furnishes the global minimum
for the present example and that it is unique.

We can often get negative information by simply trying out some
particular admissible functions. Any function y with values y(¢f) = af?
+ (1—a)tis admissible for this problem. By elementary calculation

1 az
J(y) = f (2at+1—a)?2dt= §-+ 1,
0
and J(y) = © as a —> o or —». Therefore, J(y) has no global maximum.
Conceivably some function y; might furnish a strong or weak relative
maximum, but the necessary condition of Legendre in Section 2.11 will
eliminate this possibility.

EXAMPLE 2.3

f(t.y,r) =132, with the fixed endpoints (0,0) and (1,0). The global mini-
mum of the given point-function f is clearly zero, corresponding to r = 0.
Therefore, the example

J(y) = J: 3% = global minimum on %

has the unique minimizing function y, %(t) = 0. Moreover, we have
the strict inequality J(y,) < J(y) for all y € ¥ distinct from y,, and we
say thatJ(y,) is a proper global minimum. This is an exceptional example,
so simple that all the facts constituting a complete analysis in the sense
of Section 2.2 are available by inspection.

We know from Section 2.6 that this function y,, since it has no corners,
must satisfy the Euler condition in form (2.24), namely, the equation

d[3. d0
2.28) 4 [?yzu)] =D=0.
If we consider (2.25), which for this example is the equation
3454 =0,

we see that it reduces to the meaningless form 0/0 if y = y,. Under the
blanket hypothesis stated in Section 2.2, Theorem 2.4 includes the tacit
hypothesis that all derivatives of f appearing in the theorem exist and
are continuous. Therefore, the theorem does not apply to the present
example because of the fact that

.ff'r(t,y"r) = {%7-1/2, r> 07

o, 1'=O’

so that f,, is not continuous at r = 0. We remark, with reference to the
first paragraph of this section, that although (2.25) is often the first thing
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we examine in approaching an example, we must be prepared to go back
to (2.24) or (2.18).

EXAMPLE 2.4

f(t,y,r) = 1V with the fixed endpoints (0,0) and (1,0). It is again clear by
inspection that y,, () = 0, furnishes a proper global minimum, and yet
not even (2.18) is applicable. The left member is meaningless. The tacit
hypotheses in Theorem 2.2 are, in accord with the blanket hypothesis,
that £, f,, and f, exist and are continuous for all ¢ € [#,;] and all real
values of y and .

The present function fis not defined if » < 0 and f; is not continuous
atr=20.

EXAMPLE 2.5

f(t,y,r) = r* with the fixed endpoints (0,0) and (1,0). The smooth admissible
function y,, y,(¢) = 0, again furnishes a proper global minimum. Equa-
tion (2.25) is 125§ = 0, and clearly the above function y, is a solution of
this equation. Observe, however, that f..[t,y(¢).5(¢)] = 1253(2) = 0;
consequently, a hypothesis of Theorem 2.4 is not satisfied. The hypo-
theses of this theorem are sufficient to imply that a minimizing function

yo will satisfy (2.25) but not necessary to that end, as shown by this
example.

Exercise2.3

In problems 1 through 4 find a function y, satisfying (2.25) and
through the given endpoints.

. [ (3*+2y) dt, (0,0) and (1,1).

. | (5*+2yy) dt, (—1,1) and (2,0).

. J (*+2t5+ ) dt, (0,0) and (1,0).
. J (324295 +9?) dt, (0,0) and (2,1).

OO0 N

5. To what does (2.18) reduce in the special case where f(t,y,7) is free
of y? Construct an example with both ¢ and r present such that
(2.18) has an elementary solution.

6. Discuss the Euler condition for the case in which f(2,y,7) is free of ¢
with the help if necessary of (X,p.27), (XI,p.32), (XXXII,pp.42-43),
or some other reference.

7. Discuss the degenerate case in which f@y.) is free of 7, illustrating
your conclusions by examples.

8. Discuss the special case f(ty,r) =[r—g(ty)]%. Give an example
for which you can demonstrate thatJ (y,) is an extremum.

9. Given that f(t,y,r) = g%(t,y,")h(t,y,r) with g and h subject to the blanket
hypothesis, what relation does the first-order equation g(z,y,5) = 0
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have to the second-order equation (2.25)? Construct an example for
which (2.25) has an elementary general solution.

10. Discuss the so-called inverse problem of the problem of Section 2.2
with reference to (X,pp.30-32), (X1,pp.37-39), or (I,pp.164-166).
Identify the class of integrands f for which the general solution of
(2.25)isy = at+b.

11. Given ¢ (t,r) = —8¢?, regard t as a parameter and find values
r(¢t) that minimize or maximize ¢(¢,r). Then given J(y) = [(5*
—8232) dt and the initial point (0,0), find a terminal point (1,k) and
a function y, through these points and satisfying the first-order
equation § =r(?). Is J(y) a maximum or a minimum and of which
type? t2

12. C}},irx)ren J(y) = f 4 S(ty5) dt, where y is now a PWS vector-valued
function y = (3',...,y") through fixed points (¢,5',... " in R*,
the procedure used in proving Theorem 2.2 can be applied to any
one component y of y. State and prove such a theorem.

2.8 THE WEIERSTRASS NECESSARY
CONDITION

The function E: [f,t,] X R® — R defined by the equation

(2'29) E(t,y,T,Q) Ef(t,y:q) —f(t’yyr) - (q_r)fr (M’J)

is called the Weierstrass excess-function (for a reason that will appear in
Section 3.4) or simply the E-function. It is easily remembered by observ-
ing that, with ¢ and y fixed, it is the difference between a term which we
now write as f(g) and the first two terms of a Taylor expansion for
f(g) in powers of g—.

Theorem 2.5
If yo € ¥ furnishes either a strong local or a global minimum for J (y) , then
(2.30) E[t.(t),5(t),q) = 0, Vit E [ty,t,) andYq € R,
with symbol §,(t) understood in the sense (2.17).
PROOF

Givent € [to,t;) and not the abscissa of a corner of y,, select a number
a € (7,t] that is so near to 7 that the interval [r,a) does not include the
abscissa of a corner of y,. Let Y denote the linear function with values

(2.31) Y(t) = yo(7) +q(t—7)

in which g denotes an arbitrary real number, different from j, ().
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Givenu € [7,a), define

yo(t), tE [t017] U [a1t1],
(2.32) y(t) = 1Y (), t € [ru],

o(tu), t€ [ual,
with
23%) B (1) = po() + L=l ()

One verifies that the function y: [f,t;] = R with values (2.32) is
admissible, that it coincides with y, except generally on the interval
(7,a), and that if ¢ > j(7), then y has the nature suggested by the path
02341 in Fig. 2.1. If ¢ < %(7), the point labeled 3 would fall below
y0. When u = 7 we see from (2.32) and (2.33) that y(¢) reduces to y,(t) on
the entire interval [£,,¢,].

b
7

e an - e a» e e e =

N e e e e e - -
Qoo on e o -

u
Ficure 2.1

Define ® (u) = J(y) —J (%) - The function ®: [r,a) — R is differenti-
able and, under the hypothesis that J(y,) is at least a strong local
minimum, we have as a necessary condition on y, from (2.8) that

(2.34) ®'(7) = 0.
Since y and y, coincide along paths 02 and 41 in Fig. 2.1,
®(w) = [ LAEY.F) = flt050)] de
+ [T ST (Lade(t) ] =£ (t30.0) } i,

or, after rearranging the right member,

®(w) = [ FeYP) di+ [, Fltb(tu) b)) de— [ f(Eo0) d.
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The last integral is free of u. Theorem 1.3 on differentiation of an
integral with respect to a parameter applies to each of the other integrals
and we find that

@' (u) = fwY (w),¥ (w)] .
(2.35) —flud () de(wa) 1+ [, {AL 1o +£[ Jbu} de.

The integrand in (2.35) has the same form as that in (2.21). After
setting u = 7, integrating the second term by parts, and using property
(2.24) of y,, the integral in (2.35) is found to have the value

L [750(7) 3o (7) 1o (7.7).

By elementary differentiation of (2.33) with respect to « and then setting
u =7, we find that

pulrir) = V(1) =30().
Therefore, the necessary condition (2.34) on y, is expressible in the form

E[7.90(r) 3o(r) .Y (z)] = 0.

That }.’(7) is the derivative at 7 of the .auxiliary function ¥ can now be
forgotten. The important thing is that Y(r) is an arbitrary real number
g. We have thus proved the necessity of the condition

(2.36) E[7,5(7),5(7) 4] = 0, Vg €R,

subject thus far to the restrictions introduced at the beginning of the
proof that t, < 7 < t, and that 7 is not the abscissa of a corner.

Under our blanket hypothesis on £, the function E is continuous on
its domain. Let 7 — ¢, from below. It follows that (2.36) must also hold
with 7 = ¢,. If yo(¢;) is a corner, let 7 — ¢, in (2.36) once from below and
once from above. Then J(7) — 3;(t) and 3} (%), respectively, as a
result of problem 2, Exercise 1.5, so that (2.36) must hold in the sense of
convention (2.17) for all¢ € [#,,] and all real q as stated in the theorem.

Exercise 2.4

1. Identify features of the proof of Theorem 2.5 that depend upon
the restrictions (i) 7 € [t,t;) and (ii) 7 is not the abscissa of a corner.

2. Prove as a corollary to Theorem 2.5 the Weierstrass necessary con-
dition for a strong local or a global maximum by applying Theorem
2.5t0—J.
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3. Given the integral J (y) = [ (1+3?)"* dt with the fixed endpoints
(0,0) and (1,1), find the function y, satisfying the Euler condition and
show that y, also satisfies the Weierstrass necessary condition for a
minimum.

4. Point out in the statement and proof of Theorem 2.5 those features
that exclude the weak local minimum. Then modify the proof by
suitably bounding the value of |Y (r) —yo()] so as to obtain a
Weierstrass necessary condition for J(y,) to be a weak local mini-
mum. State carefully the theorem that goes with your proof.

29 THE ERDMANN CORNER CONDITIONS

Theorem 2.6

If J(yo) i a weak local extremum of J(y) on ¥ and [Ly(1)] is a corner, then

(2.37) Sty ()35 ()] = frltyo () 38 (0)].

PROOF

The proof has already been given in the second paragraph following
(2.23).

Theorem 2.7

If J(y) is a strong local extremum of J(y) on % and [t,y(t)] is a corner, then

(2.38)  fltyo(0) 35 ()] —=35(0) fr[ty0(8) 35 (1)]
= f[t.y0(0) .55 ()1 =55 () fr[t30(0) 3 () ].
PROOF

Suppose that J(y,) is a strong local minimum. Apply the Weierstrass
necessary condition (2.30) first with §,(¢) = ¥5 (¢) and ¢ = ¥} (¢) and again
with $o(t) = 3¢ (¢) and g = 35 (¢). From these two inequalities and (2.37),
relation (2.38) follows. If J(y,) is a strong local maximum, proceed
similarly with reference to problem 2, Exercise 2.4.

EXAMPLE 2.6

Sty.r) = (*—1)% Write p and ¢ for the respective left and right
derivatives. Equations (2.37) and (2.38) for this example are

p(p*—1) =4q(¢—1),
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PF-DEP+1) = (-1 3gF+1).

This system of equations has infinitely many trivial solutions with p = q.
The only nontrivial solutions are found to be (p,g) = (1,~1) and (—1,1).
The algebra, although elementary, is a little tedious.

Given an example for which the integrand involves ¢ and/or y, the pair
of equations (2.37), (2.38) is unlikely to be solvable by elementary
algebra and one must be prepared if necessary to select or devise an
approximation procedure.

Theorems 2.6 and 2.7 and the conclusion for Example 2.6 ensure that
the only slopes that can occur at a corner of a minimizing function are
1 and —1. The integral

JO)=JG>—1)%dt

clearly assumes its infimum zero if j(¢) =1 or —1 for all values of ¢.
Consequently, given as the fixed endpoints any two that can be joined
by a piecewise linear function consisting of alternate line segments of
slopes 1 and —1, such a function furnishes a global minimum for
J(y). Such points as (0,0) and (1,2) cannot be joined by such a function
and J(y) # 0 for the linear function y,, yo(¢) = 2t, satisfying the Euler
equation. Whether J(y,) is some kind of extremum remains open until
some of the results in Chapter 3 become available.

We have remarked that an extremizing function in the class of PWS
functions often turns out to be smooth. The next theorem gives a
sufficient condition for this to occur.

Theorem 2.8

If frr(ty,7) # 0,V t € (to,t1), Y (y,r) € RZ, then no function y, having a
corner can minimize or maximize J(y) on %Y.

PROOF

Suppose that J(y,) is an extremum of any type and that [t,,(¢)] is
a corner. Then by Theorem 2.6 with p and g for the two derivatives,

(239) fr[t,yo(t) ’p] —fr[t,yo(t) ,‘1] =0.

By the Mean Value Theorem of the Differential Calculus, the left
member can be expressed as

(b—q) frr[t:30(8) . g +0(p—¢q)], 0<6<1,
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and this must vanish by (2.39). From this contradiction with the given
hypothesis, we infer the truth of the theorem.

2.10 THE FIGURATIVE

With (t,y) fixed, consider f as a function from R to R and set u = f (r)
with ¢, y suppressed. This function fis called the figurative (or indicatrix)
at (t,y). Except in cases where f'is free of (t,y), we have a family of figura-
tives with (¢,y) as parameter.

One verifies by elementary calculus that the line tangent to the figura-
tive at (r,u) = [.f (¢t,9,9)]1s

(240) u =f(t7y’5') + (Y—i)ﬂ(t,y,i’)-

The difference between the ordinate u = f(1,y,r) to the figurative and
that to this tangent line is precisely E (¢,y,,7).

It is a further exercise in the calculus to verify that the two corner
conditions (2.37), (2.38) are satisfied at (¢,y) iff the figurative has a
double tangent, more precisely, iff the tangent lines at (r,u) = (p,u) and
(q,u) coincide.

These observations are an aid in verifying for a particular example
whether or not the Weierstrass necessary condition (2.30) or the Erdmann
corner conditions (2.37), (2.38) are satisfied. Consequently they are an
aid in constructing examples.

Example 2.6 is a stock example. One readily visualizes the graph of
the quartic u = (©*—1)%= (r—1)%(r+ 1), tangent to the r axis at each
of two minimum points (—1,0), (1,0) and having a relative maximum
(0,1). Clearly any solution y=mt+b of (2.25) with slope m =1 or —1
corresponds to a tangent line (2.40) that is below the figurative; hence
each such function y satisfies (2.30). Moreover, identification of the
double tangent property is easier for this example than the details of
solving the simultaneous equations discussed in Section 2.9.

A minimizing or maximizing function y, with corners traditionally
has been called a discontinuous solution of the given extremum problem.
Of course, it is the derivative j that has discontinuities and not y.

One can ask whether it might be worthwhile to extend the domain
% of J by admitting functions y with discontinuities. This requires a new
formulation of the problem, since the Riemann integral with the inte-
grand f affected by j is no longer adequate. Although such a move seems
a bit artificial unless one is able to point to an important example that
depends on it, there were unsuccessful attempts in the 1920s mentioned
in (18b) and Lawden discusses such an extension in (27a). Example
1.6, Section 1.14, is such an example.
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2.1 THE LEGENDRE NECESSARY
CONDITION

This condition was published by Legendre in 1786 and, although his
proof was faulty, it can be derived (X,p.47) independently of the
Weierstrass condition, which appeared circa 1879. Granted the
Weierstrass condition, however, then that of Legendre is an easy corol-
lary. It continues to be useful even though it is weaker than the Weier-
strass condition. Each of these conditions is an analogue of the necessary
condition ¢” (a) = 0 for a minimum of a point-function.

Theorem 2.9
Ify, € ¥ minimizes J(y) on %, then, in the sense (2.17),

(2.41) Serlt30(8) 50(1)] = 0, Vite [th].
PROOF

The hypothesis that y, minimizes is understood to mean that J (y,) is at
least a weak local minimum but may be a strong local minimum or the
global minimum.

Apply Taylor’s Formula with second-order remainder to f (2,y,q) as a
function of gin powers of g—3. With ¢, y suppressed, we find that

F@ =16+ a=» £+ £5+0-9)];
hence, by definition (2.29) of the E-function,

° = (q_5))2 3 2
(2.42) E(t.y.5.9) 5 frelty.y+6(g—3)], 0<6<1.

NowJ (y,) is a minimum by hypothesis and, by the companion theorem
to Theorem 2.5 called for in problem 4, Exercise 2.4, inequality
(2.30) must hold at each ¢ for all g such that |g— 5 (t)| is sufficiently small.
Suppose that for some ¢, not the abscissa of a corner, f;;[t:,50(t2),Jo(t2)]
< 0. It then follows that

SFrr{tay0(22),50(22) +0[g—H0(8)1} <O

for all ¢ sufficiently near to j,(%,). The right member of (2.42) is then
negative for all such ¢, in contradiction to the Weierstrass necessary
condition for a weak local minimum. If ¢, is the abscissa of a corner, re-
peat the last steps once with 5 (2;) and once with §§(2;) in place of Jo(tz).
From the contradiction we infer the truth of the theorem as stated.
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Exercise 2.5

1.

Obtain, as a corollary to Theorem 2.9, the Legendre necessary
condition for a maximum. Given f(¢,r) = (#**—1)? with general
solution y = mt+ b to the Euler equation (2.25), apply the Legendre
condition to the functions y;,y; (£) = 1 and y,,y,(¢) = 2¢.

. Given fity,)=(1+r)"? find a solution y, of (2.25) through

(0,0) and (1,1). Show that the integral based on this integrand can
have no extremizing function with a corner. Show that y, satisfies
both the Weierstrass and Legendre necessary conditions.

. Demonstrate the equivalence of the two corner conditions with the

double tangent property of the figurative.

. Discuss the possible location of corners and determine left and right

slopes at such corners for the problem [ (52— 4t*?)? dt = minimum
with endpoints (—1,1) and (2,¢8).

. The same for [sin j dt with endpoints (0,0) and (1,1).
. Point out why the problem [ |(5—1) (+1)| dt = minimum with end-

points (0,0) and (1,1) is pathological. What can be said by inspection
concerning the class of piecewise linear admissible functions y having
alternate slopes of 1 and —1?

. Given f (t,y,r) = (r*—1)%(4—1?), examine the figurative. Depending

on the choice of the two fixed endpoints, what can be said about
possible weak (strong) minima and maxima of J(y)?

. Obtain all the information available from the theory, as developed

thus far, concerning possible minima or maxima of

(1

o,
J@y) = f(o,m e dt.

. Define F(t,y,0.9) = fr-(t.y.0) —fr(t.3,9) and G(t,y.p,9) = f(t.y.p)

—pfr(t.y.0) — [ f(t,3,9) —af+(t,5,9)]. With such aid as may be needed
from the literature on implicit functions, formulate a theorem giving
conditions sufficient for the pair of equations F(t,y,p.q) =0,
G(t,y,p,q) =0 to determine p and ¢. Then interpret this result in
terms of possible extremizing functions y with corners for an integral
with integrand f.

2.12 THE JACOBI NECESSARY CONDITION

We have seen that an extremizing PWS function y, is often smooth. In
this section we consider only the smooth case.

If y, is smooth and J (y,) is 2 minimum of any one of the types that have

been discussed in Section 2.4, then the function F of (2.19) must satisfy
both of the conditions

(2.43) F'(0) =0, F'(0) = 0.
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By differentiation of expression (2.21) for F’ (¢) we find that
F'(€) = [ (i 2femi+ £ #?) di,

arguments of fyy, €tC., being ¢, yo+ €, Jo +€1); therefore,

@44)  F'(0)= [ Ufn(taodoln+2fun( Y +fim( )i?] de.

With y, understood as a fixed minimizing function, let # be the class
of all PWS 7: [to,t:] = R such that 9 (%) = n(t,) = 0. We now denote the
integral (2.44) by £ (1) and the integrand by 2w(¢,9,%). Thus

(2.45) L) = [ 2(tnH) d,

and, since J(y) is a minimum by hypothesis, it follows from (2.43,)
that #(n) = 0 on #. By inspection of (2.44), .#(n) =0 if n(¢) = 0;
consequently, £ (n) has the minimum value zero on #.

The problem £ () = minimum on &, called the accessory minimum
problem, has the following Euler equation in form (2.25):

(2.46) Wy = 0%+ Oiml) + 057

In order that this be a necessary condition for the accessory problem by
application of Theorem 2.4 to that problem, we proceed subject to the
further hypothesis that condition (2.41) for the original problem holds
with the strict inequality, namely, that

(2.47) Ser[t.30(8) 30(8)] > 0, Vit € [tot].

We find by differentiation of  that

w‘h"‘)(t’n ’7.)) =frr[t’y0(t) ’).'O(t)] ’

hence by (2.47) and Theorem 2.4 that form (2.46) of the Euler equation
applies and moreover by Theorem 2.8 that no minimizing n € # for
#(m) can have a corner.

If u: [to,t,] = R satisfies (2.46) on [to,%;] together with the condition
u(ty) = u(t;) = 0 but u(t) does not vanish if ¢, < ¢t < t,, then ¢, is said to
be a conjugate value to ty and [2,5(2;)] is called a conjugate point to the
initial point [#,y,(%) ] of yo.

Theorem 2.10

If yo is a smooth function minimizing J(y) on the class % of PWS functions
and if (2.47) holds, then there cannot exist a value t, conjugate to to with t, < t,.
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PROOF

Suppose the contrary —that there is a value ¢, conjugate to f and that
t, < t;. Then there is a solution u(t) of the Jacobi equation (2.46)
vanishing at ¢, and ¢, but nowhere between. Define no € # by the rela-
tion

Z [u@®), wstst,

(248) mo(t) = {0, < t<t.

We find, by differentiation of 2w, or alternatively by Euler’s Theorem
for homogeneous functions, that

(2.49) 20w = N, +nw;.
Observe that 7, defined by (2.48) satisfies the Euler equation

250) nltmo(8) A0(8)] = e 1sm0(0) 1a(6)]

on each of the half-open intervals [fy,t;), (f,t;]. After substituting the
right member of (2.50) for w, in (2.49) we see that

20 = n%w;, +Nws= %('I)wﬁ) , t € [tots) U (t,].
Therefore,
t2 151
£ (o) = [, dlnows(tmosio)1+ [, 20 (tmosio) dt.

0

The second integral vanishes by the definition of n,, the first from the
fact that 94(%) =n4(t) = 0. Thus _# (n,) = 0, the infimum of ¢ (n) on
#,so that ), is a minimizing function.

However, by standard existence theorems, the second-order equation
(2.46) with nonvanishing coefficient of % has a unique integral curve
through a given point in a given direction so that the solution u appear-
ing in (2.48) cannot have the derivative u(%) =0. For if #(z) =0,
then (t) would vanish identically on [ty,t,], which it does not under
our hypothesis that ¢, is conjugate to f. Therefore, the minimizing func-
tion 7, for _# (n) has a corner contrary to our observation that this is
inconsistent with (2.47) and Theorem 2.8. From this contradiction we
infer the truth of the theorem.

2.13 OTHER FORMS OF THE JACOBI
CONDITION

We suppose given y, € ¥ satisfying the hypotheses of Theorem 2.10.
As a consequence of (2.47), the blanket hypothesis on f, and existence
theory for differential equations, Euler equation (2.25) for f has a two-
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parameter family of solutions y(t,a,b) that includes yo(¢). Moreover, the
partial derivatives Yq, Y, Y Yar» Yo all exist and are continuous for
t € [t,t,], and for a and b, respectively, near the particular values
ay, bo such that

(2.51) y(t,a0,00) = 30(t), V¢t € [tots].

The Euler equation in form (2.24), namely,
d
(2'52) f!l [t,y (t5a’,b) ’yt(t,a7b) ] = Efr [t’y (t,d,b) ,}’z(t,a,b) ] ’

holds for all ¢, a, b mentioned above. With ¢ held fixed, we differentiate
with respect to ¢ and find that

(2.53) fa vv)a + forYar = % r_fryya +f;-ryat] .

We also find by differentiation of  that

(2.54) Oy = fyyn+ fur M) and 08 = fyrn+ frrM;

consequently (2.53) is the Jacobi equation (2.50) with y,, y.: replacing
7, 1) and consequently y,(¢,a4,b,) is a solution of the Jacobi equation. We
find in the same way that y,(2,a,,,) is a solution.

Situations arise in which one wishes to use various one-parameter
subfamilies of y(¢,a,b). For example, let a and b be differentiable func-
tions of a parameter a with a(a,) = gy and b(a,) = b, and set

¢ (t,a) = y[ta(a).b(a)].

Then ¢4 (t,00) = ya(t,a0,b0) a’ (o) + y5(2,80,00) b’ (@tp) is a linear combina-
tion of solutions of the Jacobi equation. Equation (2.46) is seen to be
linear in  with the aid of relations (2.54), and hence ¢,(t,c) is another
solution of (2.46).

If ¢(t,a) is the particular one-parameter family consisting of all
solutions of (2.25) through the initial point [#,3%(%)], the Jacobi condi-
tion has the following geometric interpretation [(VIL,p.131), (X,p.60),
and (I,p.81)]. The family ¢(¢,a) either has no envelope or, if it does
have, the minimizing function y, for J(y) cannot touch the envelope at
a point with abscissa smaller than ¢,.

Since a conjugate point has been defined preceding Theorem 2.10
by way of a solution u of (2.46), conceivably that point is dependent on
the choice of u. That this fortunately is not the case is shown by the
next theorem.
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Theorem 2.11

The conjugate value t, is independent of the particular choice of a solution of
the Jacobi equation. Any two solutions vanishing at t, differ by a nonzero constant
Sfactor.

PROOF

Let m,(¢), m2(¢) be distinct solutions of (2.46), both vanishing at ¢, and
neither of which vanishes identically on [f,t]. Then %,(%) # 0 and
72(%) # 0and there is a constant k such that

N1 (t0) — k72(%) = 0.

The linear combination m,(¢) —km.(¢) is a solution, which together
with its derivative has the value 0 at ¢); consequently, this solution must
be identically 0 on [tt]. It follows that 7,(¢) = kn.(t), £ # 0, and
therefore that a conjugate value based on either 7, or 7, is also deter-
mined by the other.

Exercise 2.6

1. State a companion theorem to Theorem 2.10 for the case of a maxi-
mum and prove it as a corollary to Theorem 2.10.

2. Demonstrate that the Jacobi equation (2.46) is linear in m. Then
show that if m; and 7, are any solutions, so also is am + b7, for any
constants a, b.

3. Given the problem [ (3*+3) dt = minimum with endpoints (0,0) and
(1,1), find a function y, satisfying the Euler condition and through
these points. Then show that y, satisfies the Weierstrass, Legendre,
and Jacobi conditions.

4. If f(¢,3,5) =3*+25*+ty* and the fixed endpoints are (0,0) and (1,0),
verify that y,(¢) = 0 is an admissible function satisfying the Euler
condition without finding a general solution of that equation. Then
show that y, satisfies the Jacobi condition.

5. Given relation (2.51) and that y,(to,a0,b0), ¥5(f0,a0,00) are not both
zero, state reasons why

A t,t = ya(taa07b0) yb(t5a0,b0)
(2‘56) ( 0) ya(t07a0ab0) yb(to,ao,bo)

is a solution of the Jacobi equation that can be used to locate possible
conjugate points.

6. If J(y) = [ (3*—9?) dt and the endpoints are (0,0) and (4,0), what
definite statement can be made about the problem J(y) = extremum
with the aid of (2.56)?
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7. Point out why the proof of Jacobi’s condition breaks down for the
integrand f(¢,y,5) = 3 when the endvalues (%), y(¢,) are equal.

8. Investigate all the necessary conditions discussed in this chapter
for [ (3*-+9yJ+5?) dt with endpoints (0,0) and (1,1).

9. Given the fixed interval [t,,t] and the class # of all functions
9: [to,t1] = R with fixed endvalues each of which has a continuous
derivative § and a PWC second derivative ¥, derive an Euler necessary
condition for the problem J(y) = extremum on %, where J(y)
= [ f(t,3,3,)) dt, first in an integral form analogous to (2.18) and then
in other forms.

10. With the interval [#,t,] fixed, let % be the class of all PWS functions
y: [to,t,] = R such that y(%) = ko but with y(¢;) free. Given that J (y,)
is a minimum on %, point out why, as a corollary to Theorem 2.2,
relation (2.18) remains necessary and show that we have the further
necessary condition f,[2;,50(t1) 5o (£1)] = 0.

11. With ¢, fixed but not ¢, let # be the class of all PWS functions y:
[to,t] = R such that y(&,) = hy and y(¢;) =Y (¢,), where Y: R—> R
is a given differentiable function. Show, as a corollary to Theorem
2.2, that (2.18) is necessary and show that the classical transversality
condition

(2.57) S tyo(t:) Jo(t:) 1+ [i(tl) =50 (t) 1+ [t1:50(t1) 0 (8)] = 0

is then also a necessary condition for an extremum.

2.14 CONCLUDING REMARKS

It is easy to construct problems such as Examples 2.3 and 2.4 of Section
2.7 where the integrand f fails to meet the hypotheses of some or even
all of the theorems in this chapter. Sometimes parts but not all of the
existing theory are applicable to an example, and beyond that the
analyst is dependent upon his own ingenuity.

The basic problem is not always formulated in precisely the pattern
of our Section 2.2. We have admitted all PWS functions y: [£,;] = R
with the given endvalues and the domain of fis [to,?,] X R%. However,
examples not covered by this formulation can occur. The domain of f
might be some smaller set. Sometimes there is a constraint (restriction)
on the values y(t) or §(¢) associated with an admissible function. We
prefer to regard such modifications as separate problems and have not
included them in this chapter.

A reader meeting the calculus of variations for the first time is likely
to feel at this stage that a.great many things are not completely clear.
This is normal. We are just getting started. To feel otherwise is either a
mark of genius or indication of real trouble.
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One may wonder, for example, why admissible functions y in Section
2.2 were taken to be PWS. This has been a common practice for about
a century. Prior to that time admissible functions were usually required
to be smooth in the sense of Section 1.9 or even to have higher deriva-
tives, but it is desirable to admit the largest class of functions for which
the theory can be developed. Why not then enlarge the class still further
to some proper superset of the PWS functions satisfying end-conditions
(2.1)? A need for such a move was indeed recognized by Weierstrass
around 1879. Work in this direction, which has played an important
role in modern variational theory, requires other integrals than that of
Riemann. In keeping with the introductory character of this book,
only the Riemann integral is presupposed and all integrals used in
Chapters 1 through 6 are to be understood in the sense of Riemann. A
sufficient (although not necessary) condition for (2.2) and similar
integrals to be meaningful under the Riemann definition is that y be
PWS. Essential steps in many of the proofs in the first six chapters
depend upon properties of integrals, which we suppose to be known for
those of Riemann but not necessarily known for other integrals. Our
basic problem in Section 2.2 has not been formulated with caprice but
with historical, pedagogical, and other considerations in mind.



Chapter 3

SUFFICIENT
CONDITIONS FOR
AN EXTREMUM

3.1 INTRODUCTION

Recall with reference to (2.5) and (2.6), Section 2.3, that, to obtain
sufficient conditions for a local minimum of a twice-differentiable point-
function ¢, one strengthens a combination of necessary conditions. After
further strengthening in (2.7), we have conditions sufficient for a global
minimum.

It is then reasonable to hope that, by suitably strengthening certain
combinations of the necessary conditions found in Chapter 2, we can
generate conditions sufficient to ensure that J(y,) is a weak local, strong
local, or global minimum, as the case may be.

This chapter presents such a development of sufficient conditions for
the problem of Section 2.2. Also included are some sufficient conditions
for a global extremum of the general fixed-endpoint nonparametric
problem in (n+ 1)-space, n = 1.

Although the class # of Chapter 2 included all PWS functions y
satisfying the given end-conditions, often a function y, without corners
has the desired extremizing property. We confine attention to smooth
functions y, in Sections 3.2 through 3.7.

53
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It is convenient to follow Bliss in referring to the respective necessary
conditions of Euler, Weierstrass, Legendre, and Jacobi by the Roman
numerals I, I, III, and IV and to recall that the theory given in Chapter
2 for the Jacobi condition IV was only for the case of a smooth y, and
was subject to the strengthened form (2.47) of the Legendre condition.

Since Bolza’s books continue to be useful, it should be noticed that his
11, I1I, and IV must be translated into III, IV, and II of Bliss. We also
remark in passing that there is a fifth necessary condition (XI,pp.117-
119) due to Bolza but that it is seldom used and does not appear among
the usual sets of sufficient conditions. Although there possibly remain
still other undiscovered necessary conditions, searching for them seems
unlikely to be a profitable endeavor.

Various strengthened forms of conditions II, I1I, and IV that are to
appear in theorems are listed in this section for reference and com-
parison. An accent on II or III signifies exclusion of the equality in
the corresponding necessary condition; an accent on IV indicates the
inclusion of an equality. Subscript N on II or III means that the condi-
tion must hold for triples (x,y,p) in a neighborhood of lne elements
[£.90(2),50(2)] of yo. We use subscript R to suggest a further strengthen-
ing to all real values of certain arguments.

In the various conditions I, 1I, III, and IV and their strengthened
forms it is important to take notice of precisely what arguments appear
in each of the last two positions of symbol f,,(¢, - , -) and the last three
positions for E(¢, -, -, *).

IT" E[t,9(¢).50(t),q] > 0,V (t,q) suchthatt € [to,t,] and g # 5(t).

Iy E[ty,p,9] = 0, Y (t,9,p,q) such that t € [to,t,], ¢ € R and such that
ly—3(t)| and |p—50(t)| aregrespectively, below some pair & and &' of
positive real numbers.

IIz E[t,5.0.9] = 0,V (t,y,p,9) suchthatt € [t,t,] andy,p.q € R.

IT,, Condition 11y with the strict inequality wherever ¢ # p.

11z Condition 11y with the strict inequality wherever ¢ # p.

I frrlty0(8)50(t)] >0,V ¢ € [to,t1].

Iy frr(ty.0) = 0, Y (¢,3,p) such that t € [ty,t;] and such that |y—yo(t)|
and |p—50(t)| are, respectively, below some pair & and &' of positive real
numbers.

111y Condition 111y with the strict inequality.

I1I; fr(t.y.0) = 0,Y (t,y.p) suchthatt € [t,,t,] andy,p € R.

111z Condition 111y with the strict inequality.

IV’ No value t, conjugate to ty is on the half-open interval (t,t,].

Since sufficient conditions (2.6) for a local minimum of a point-
function are obtained from necessary conditions (2.5) by replacing a
weak inequality with a strict inequality, it is plausible that perhaps the
combination of conditions I, II', III', and IV’ may be sufficient for a
minimum of J(y). That this is not sufficient for a strong local minimum
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is pointed out by Bolza with an example (XI,pp.116-117). The conditions
do turn out to suffice for a weak local minimum and indeed with II’
omitted.

3.2 FIELDS

Suppose given a particular solution y,: [£,t,] = R of the second-order
Euler equation (2.25) together with a one-parameter sub-family ¢ (-,«)
of the two-parameter totality of solutions of (2.25) with the following
properties:

G @ (o) =3(t), VitE [t,4].
This means that y, is included for a = ay in the family ¢ (- ,a) of
functions satisfying (2.25).

(8.1) (i) The relation y—¢ (t,) = O defines implicitly a functiona: S —> R
where S is a subset of the (t.y) plane containing a set of the form
{@y):tost < t;,9(t) —k <y < 9(t)+k,0< k< oo},
Moreover, the partial derivatives a, and o, are required to exist
and to be continuous on S.

(8.1) (iii) The function ¢ together with its partial derivatives ¢, Pas Pras Pu
exists and is continuous in (t,) for t in [t,t,] and a in some
interval I to which oy is interior.

Existence theory for solutions of differential equations and for im-
plicit functions will supply conditions on the integrand fthat will imply
the three properties (3.1) but we shall proceed on the basis of (3.1)
rather than to digress into a development of these important related
matters.

We visualize such a family ¢ (-,«) as a sheaf of integral curves of
(2.25) covering a subset S of the strip {(¢,y): to < t < t;} of the (t,y)
plane with exactly one such curve through each point of S.

Define a function p: S — R called the slope-function, by the equation
3.2) p(ty) = dlt.a(ty)].

This is the slope at (¢,y) € S of the unique function ¢ (-,a) of the given
family through (¢,y) . It follows that

3.3) pltd(ta)] = ¢e(tia),

and, as a consequence of (3.1)(iii), that p has finite partial derivatives
P, py- By differentiation of (3.3),
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(3'4) pt[t’d)(tya)] +py[t7¢(taa)]¢t(t’a) = ¢tt(t’a)’

or, with the aid of (3.3),

(3'5) Pt(t,}’) +P(t’y)l’y(t’}’) =¢lt[l7a (t,}’)]~

The ordered pair (S,p) consisting of the domain § of the function
a of (3.1)(ii) and the slope function p is called a field & about y, and y, is
said to be embedded in the field %. The word field has a similar meaning
in mathematical physics, for example, a force field.

The simplest case is that of any integrand f (Bolza, XI,p.39) cor-
responding to which y = at+ b is a general solution of the Euler equation
(2.25). If, for example, the fixed endpoints are (0,0) and (1,1), the family
of parallel lines y = ¢ (¢,&) = t+a or any pencil of lines y—k = a(t—k)
with fixed & < 0 or > 1 defines a field (S,p) such that § is the entire strip
{(t.y): 0 < t=< 1} of the (t,) plane. Of course, the maximal set § on
which p is defined by any one of these families is larger than this strip,
but the latter is all that is needed. The family y = at fails to define a field
(S,p) because of the defect that p is not defined at the point (0,0), and a
similar remark applies to each k € [0,1] in the above example. It is
essential that S be simply covered by the family, that is, that through each
(t,y) € S pass exactly one function ¢ (-,&) of the family which generates
the field.

As soon as we go to more complicated examples, the possibilities
become chaotic. For instance, if the general solution of the Euler equa-
tion is y = a cos t+ b sin ¢ and the end values ¢, and ¢, differ by more than
7, there exists no field about y,. If the fixed endpoints are (0,0) and
(27,0), then y,(f) = sin ¢ is a member of the family a sin ¢, but this family
does not define a field with property (3.1)(ii) on any set S. Neither does
any other one-parameter family of solutions of (2.25).

Few integrands fyield an Euler equation for which there is an elemen-
tary general solution. When there is one we can investigate the existence
and extent of fields directly from this general solution. To proceed with
a general theory we need the following existence theorem.

In the proof of this theorem and hence in others to follow that make
use of it, we need to strengthen the formulation of Section 2.2 by
supposing the domain of the integrand f to be [, —e, t;] X R%, where
e is some positive number. The blanket continuity and differentia-
bility hypothesis on f is now understood to apply to this enlarged
domain.

Theorem 3.1

If yo: [to,ta] = R is a smooth function in ¥ satisfying conditions 1, 111, and
1V’ then there exists a field F about y,.
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PROOF

The details depend upon properties of solutions of differential equa-
tions, for which we refer to Bliss (V1I,pp.154-157), Bolza (X,pp.78-83),
and (XI,pp.100-102) and to books on the theory of differential equations.
We shall give only a descriptive outline.

Condition IV’ ensures that the one-parameter family of solutions of
(2.25) through [#,50(f,)] either has no envelope or, if there be one,
that no point [t,5(¢)], tp < t < t,, is on the envelope. This family fails
to define a field because of the fact that all members include the initial
point of y,. However, under our hypotheses, y, has an extension from
[to,,] to an interval [t,—eo,t;] satisfying (2.25) on the larger interval
with ¢, between 0 and the ¢ mentioned preceding the theorem. The
one-parameter family of solutions of the Euler equation (2.25) through
[to— e0,30(to—€0) ] simply covers a subset of the (¢,y) plane of the type
described in condition (3.1)(ii), and this family determines a field (S,p).
This theorem provides no information on the extent of the field, that
is, on the possible value of & in (3.1)(ii). Given an example that meets the
hypotheses of Theorem 3.1, it may be possible to verify from features
of the example that k = =, alternatively stated, that the common domain
S of a and p is the infinite strip {(£,y): &t < ¢ < #,}, in which event we
have a global field or field in the large. There is no simple criterion that
identifies such cases. All that the theorem guarantees is that there is
a field (S,p), with set S possibly being a thin band about y,. Such a field
in the small or local field suffices for sufficiency theorems on local extrema.

3.3 THE HILBERT INTEGRAL

Given a field & = (S,p), consider the functional J*: # — R defined by
the equation

36  J*0) = [ {fltaptp)]+ B—p(tn) 1 £ly.0(t3) 1} dt
=[ {1 1-pf Da+£l 1d.

This integral, due to Hilbert, is a curvilinear integral of the form
[ P dt+Qdy, which, by a classic theorem, is independent of the choice
of a PWS function y in the set S through fixed endpoints iff P,(t,y)
= Q) on S. This condition applied to (3.6) can be expressed in the
form

3.7 Sy =fn+frvp+frr(pt+ppy)y

the arguments of p, p,, p, being (¢,y) and those of f,, etc., being [t,y,p(2,y)].
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Let ¢ (-,a) be the one-parameter family that generates the given field
& . It follows from (3.2) through (3.5) and the blanket hypothesis on f
that (3.7) is valid, and therefore we have proved the following theorem.

Theorem 3.2

Given any PWS functions y, and y, in the set S associated with a field F such
thaty,(t) and y;(t) have common end values, then J*(y,) = J*(,).
Hilbert’s integral is commonly referred to as invariant, which is

another way of saying that it is independent of path in the sense of
Theorem 3.2.

3.4 THE FUNDAMENTAL SUFFICIENCY
THEOREM

The Weierstrass E-function or excess-function is so named because its
average value represented by the integral in the next theorem is a
measure of the (positive or negative) excess of J (y) over J (3).

Theorem 3.3 (Weierstrass—Hilbert)
If yo is a smooth admissible function embedded in a fild F = (S, p) and y is
any PWS functionin S through the same endpoints as yo, then
131 .
3:8) J(5) =J(3) = [, E{t:y(0)p[ta()]5(0)} de.
PROOF

That J*(y) =J (%) is immediate from the definition of the E-function
and the fact that $(t) = p[t,3(2)], Yt € [to,t]- By Theorem 3.2,
J*(y) = J*(30). It follows that

J(3) = (30) =T () —T*(3) =J () =I*(3),
and the last difference is precisely the right member of (3.8).

Theorem 3.4 (Fundamental Sufficiency Theorem)
If yo is a smooth admissible function embedded in a Sreld '.97 = (S.p), if yis
any PWS function in S through the same endpoints as yo, and if
E{ty®).plty®), 5()} = 0 (>0 provided5(t) # p[ty(D)]),
then
(3.9) Joo) <J6)  (<IM).
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PROOF

Use (3.8).

There is no restriction on slopes y(¢) in Theorems 3.3 and 3.4; hence,
if either alternative inequality involving the E-function holds for all
admissible functions y in some strip,

{(ty) € R%:t € [to,t:],30(t) =k < 3 < yo(t) +k, k> 0}

about y,, it follows from Theorem 3.4 that J(y,) is a strong local mini-
mum, called improper or proper according as equality can or cannot hold
in (3.9).

This conclusion by itself does not exclude the possibility that J(y,) is
actually a global minimum. The question simply remains open unless
some way to settle it can be found. Sometimes for a particular example
it can be verified that there is a field (S,p) for which S is the infinite strip
bounded by ¢ =, and ¢ =1, and that the inequality on the E-function
holds for all admissible functions y in this strip. Theorem 3.4 then shows
that J (y,) is a global minimum, improper or proper as the case may be.

Certain examples not satisfying the hypotheses of Theorem 3.4
fall under the following modification of that theorem.

Theorem 3.5

If yo € ¥ is smooth and embedded in a field F = (S.,p), ify € ¥ isin S, if,
for some positive 8', |3 (t) —Jo(t)| < &', Yt € [to,t,], and if for all such y

E{ty(0)plty (0150} =0 (>0provided5(2) # plty(8)]),
then

(3.10) J)<J() or  (<IO)

When this theorem applies it establishes that J(y,) is a weak local
minimum, ‘proper or improper according as < or < holds. For com-
parison functions y with corners, the restriction |y(¢) —%(t)| < & is to
be understood in the sense of convention (2.17).

Companion theorems for maxima are obtained by reversing the
inequalities on E in Theorem 3.4 and 3.5. This yields a reversal of in-
equalities in (3.9) and (3.10).

3.5 EXAMPLES
EXAMPLE 3.1
f(ty,r) =ar*+br+c,a# 0.
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Discussion

Whatever the endpoints (f.,h), (¢1,2,) may be, so long as , < ¢,
a function y, y0(¢) = at+ B satisfies condition I. The figurative is a para-
bola that is convex or concave according as a > 0 or a < 0; hence y,
satisfies I1' and III' or the corresponding conditions for a maximum.
Since we know the general linear solution of (2.25), the most convenient
form of condition IV is in terms of the determinant A of relation (2.56)
attached to problem 5, Exercise 2.6. We find that there is no value ¢,
conjugate to f,, therefore that IV’ is satisfied. Thus there exists a field
in the small by Theorem 3.1 but, by the earlier discussion in Section 3.2,
we actually have a field in the large. It therefore follows from Theorem
3.4 that y, is the unique admissible function such that J(y,) is the global
minimum or maximum of J(y) on # according as a> 0 or a< 0,
respectively.

This is a complete analysis of the problem for this special type of
integrand f. A positive answer to the existence problem [question (i),
Section 2.2] comes out as a by-product.

EXAMPLE 3.2
f(ty,r) = r* =272t/ (y? + 1) with the fixed endpoints (1,0) and (2,0).

Discussion

The reader is asked to examine the Euler equation in form (2.24).
To obtain an elementary general solution appears hopeless but we have
picked the example so that yo, %(t) = 0 is easily seen to satisfy the equa-
tion and to have the required end values. We find that

frr(t,}’,i) = 125]2_4”()’24— 1)7

hence that f,..[t,9(t) ,90(t) ] = —4t and condition III' for a maximum is
satisfied. To investigate the Jacobi condition without a general solution
of (2.25) at our disposal we return to the integrand of (2.45) for the
accessory problem and find that, in the present instance,

2 (¢,m,7) = — 479>

The Jacobi differential equation, which is the Euler equation (2.24) for
this integrand, is of the form d(tn)/dt = 0, hence t) = aand n=alnt+b.
A particular solution vanishing at t =1 but not identically is n =a In ¢,
a # 0. Clearly 7(f) vanishes nowhere except at ¢, = 1; therefore, there
exists no value conjugate to # and condition IV’ holds. Our function
yo satisfies I, III’, and IV’, and hence a local field exists by Theorem 3.1.
Finally, to examine the E-function, think of the family of figuratives.
Regardless of the choice of ¢t € [1,2] and y, the figurative is a quartic
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polynomial in r with a relative maximum at r = 0 and a global minimum
at 7 = =[¢/(»*+ 1) ]*2. The companion theorem for maxima to Theorem
3.5 applies and J(y,) is weak local maximum. The reader is asked to
investigate the solutions y,(¢) and y.(t) of the two differential equations
3(t) = r corresponding to the two values of r that minimize the given
integrand, verifying that a solution y,(¢) through (1,0) of one of the
equations intersects a solution y,(¢) through (2,0) of the other. Then
observe that the composite function y(t) = y,(¢) or 3 (t) according as
1< t< (0.5+V2)28 or (0.54+V2)28 < x < 2 furnishes a global mini-
mum for the given integral.

Exercise 3.1

1. If f(t,y,r) =7° and the endpoints are (0,0) and (1,1), show that
J(y) has a weak local minimum. Then show with the aid of admiss-
ible functions of the form

) = {—t/e, 0st=<e,
Y 1+(1+eit—1/(1—e), e<t<]l,

and by letting € — 0 through positive values that the function y,
that furnishes a weak local minimum does not furnish a strong local
minimum.

2. If f(t,y,r) =r*—»* and the endpoints are (0,0) and (#/2,1), establish
that there exists a field in the large and that there is an admissible
function y, furnishing a proper global minimum.

For each of problems 3 through 6, find a function y, satisfying the
Euler equation and having the given end values. Then either show that
Theorem 3.1 applies or establish that there is a field about y, by direct
use of the Euler equation.

3. Investigate J(y) = [ [1+3?]2dt with the endpoints (1,1) and
(3,0) for possible extreme values.

4. Given J(y) = J (*+1t?*) dt with the endpoints (0,0) and (1,0),
observe that y,(¢) =0 satisfies the Euler equation and end-condi-
tions. Then investigate the minimizing or maximizing nature of
3. A general solution of the Euler equation can be found in
the form y= aS,(¢) +btS;(t), where S; and S, are power series.
Consider other choices of endpoints.

5. If f(t,y,r) is free of y and there exists a smooth function y, satisfying
the Euler equation and having the required end values, demonstrate
that yo+a is a solution for all real a and that there exists a field in
the large. Construct a particular example with both ¢ and r present
for which you can show with the aid of Theorem 3.4 that J(y,) is
the global minimum and supply the details of a complete analysis
of the problem.
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6. J(y) = [ (¢¥+tyy) dt with endpoints (0,0) and (1,0). Say the most
that you can about the minimizing or maximizing nature of y,(t) = 0.

The next three problems have integrands that fail to satisfy the blanket
hypothesis, and yet parts of the theory apply.

7. Investigate J (y) = [ 5*[1—100y?]¥2dt with the fixed endpoints
(0,0) and (1,0).

8. Investigate J(y) = J*[1—1005*]*2dt with the fixed endpoints
(0,0) and (1,0).

9. Investigate J(y) = [ 3*? dt with the fixed endpoints (0,0) and (1,1);
also with (0,0) and (1,0).

3.6 SUFFICIENT COMBINATIONS OF
CONDITIONS

This section depends upon Sections 3.2, 3.3, and 3.4 and hence is
restricted to smooth functions y,. Our methods, in particular those of
Section 3.3, continue to admit general PWS comparison functions.

Theorem 3.6

If the smooth function y, € ¥ satisfies conditions I, Iy (or IIY), IIT', and
IV’, then J (y,) is a strong (or proper strong) local minimum.

PROOF

A local field about y, exists by Theorem 3.1. Recall that p(¢,y) is the
slope at (t,y) € S of the unique function through (t,y) from the family
that generates the field (S,p). As a consequence of property (3.1)(iii) in
the definition of a field, the function p: S — R is continuous on S§.
Consider relation (3.8) with hypothesis IIy above. It follows with the aid
of the continuity of p that the integrand on the right in (3.8) is non-
negative provided that |y(t) —y,(¢)| is below some positive constant
forallt € [ty,t;]. If the alternative hypothesis 11y holds, then similarly the
integrand in (3.8) remains positive. The alternative conclusions of the
theorem then follow from Theorem 3.4.

It can be verified that conditions III’ and Ily taken together imply
that IIy holds on a smaller neighborhood of y, than that for which the
given inequality IIy holds. It follows that I, IIy, III’, and IV’ actually
suffice for a proper strong local minimum.

Theorem 3.7

If the smooth function y, € ¥ satisfies conditions 1, I11", IIly, and IV’ (or I,
111y, and IV'"), then J (y,) is a strong (or proper strong) local minimum.
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PROOF

Condition IIIy implies III’; hence, under either of the alternative
hypotheses, we have I, III', and IV’ and consequently have a local field
by Theorem 3.1. We then use relation (2.42) in the form

(.11)  E[t,y.p(t,),q] = tlg—p(t,y) 1*fr{t,y.0(ty) +0[g—p(2,y)]1},

to see that IIIy and III} respectively, imply IIy and II}. The theorem
is then a corollary to Theorem 3.6.

Theorem 3.8

If the smooth function yo € ¥ satisfies 1, 111', and IV’, then J (yo) is a proper
weak local minimum.

PROOF

The present hypotheses are identical with those of Theorem 3.1;
consequently a local field exists. It follows from III', the continuity
of p, and the continuity of f,,, under our blanket hypothesis, that
Sferlty,p(ty)] > 0, provided that |y—yo(f)| is sufficiently small for all
t € [to,t1]. The last factor on the right in (3.11) is positive provided that y
and q are uniformly near y,(f) and jJo(¢) for all ¢ € [t,t,]. The stated
conclusion is then a consequence of Theorem 3.5. This also can be
proved (X, pp. 68-71) without any use of the notion of a field.

Theorem 3.9

If the smooth function yo € ¥ is embedded in a field (S,p) in the large, that
is, a field such that S is the infinite strip {(¢,y): to < t < t,}, then Ilg or 11l
is sufficient for J(yo) to be a global minimum, and either 11 or 111} is sufficient for
a proper global minimum. Moreover, under either of the last two alternatives,
Yo is the unique function furnishing the proper global minimum.

PROOF

The various conclusions follow from Theorem 8.4 and relation (3.11).

To apply any of these theorems to a problem J(y) = maximum,
consider the equivalent problem, —J(y) = minimum.

It can require considerable ingenuity to apply the theorems to
particular examples. Even in those exceptional cases for which the Euler
equation (2.25) has an elementary general solution, it can be difficult
to determine whether there are values of the two parameters consistent
with the given end values. If such values have been found, it still requires
ingenuity to verify whether or not an expression in terms of E or f., is
nonnegative or whether the strengthened Jacobi condition IV’ holds.

Given a particular example, the various strengthened forms of condi-
tion II and III are related to the convexity of fin r and hence to the
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family of figuratives. If the hypotheses of Theorem 3.8 hold for a certain
%0, one should not be content with the weak conclusion of that theorem
until he has looked into the possibility that y, may satisfy the hypotheses
of one of the stronger theorems. For some examples it is best to ignore
the theorems of this section and work directly with Theorem 3.4 or 3.5.

3.7 PROBLEMS FOR WHICH CONDITION III'
FAILS

There is a gap between the set of necessary conditions I, II, and III
and hypotheses of any of the sufficiency theorems of Sections 3.4 and
3.6. The theory of the Jacobi condition depends upon the hypothesis
that the function y, being examined is nonsingular (regular), that is, that
9o satisfies condition III'. If it does, then condition IV is also necessary.

It is easy to find examples for which f,.[¢,5(2) .3(t)] vanishes at one
or more points of [t,;] or even for which this expression vanishes
identically on [#,!;]. [See Mancill (31a) or Miele (36b).] The function
yo is then called singular (nonregular). Hypotheses of Theorems 3.1,
3.6, 3.7, and 3.8 include III' and hence exclude the singular case.
Theorems 3.4, 3.5, and 3.9 are still available provided we can establish
directly from the properties of a particular example that there exists a
field in the small or in the large as the case may be.

We can partially close the gap between necessary conditions and suffi-
cient conditions by an elementary device discussed in reference (12a) of
adding a penalty term.

Let J(y) be the usual integral and let y, be an admissible function
satisfying the Euler condition. With % as a real-valued parameter, define

(3.12) 10) = [, U (t93) +RE—50(0)1) de.

Since Jo(y) =J(y), it is clear from the form of (3.12) that if J(y,) is a
minimum of J(y) of any of the types discussed, then Ji(y,) is some type
of minimum for Ji(y). By Chapter 2, if J(y,) is a minimum, y, must
satisfy conditions I, I1, and III for J. An effect of the penalty term is
to ensure that y, will then satisfy III' for Ji; consequently, y, must satisfy
the Jacobi condition IV for J,. If y, satisfies the strengthened Jacobi
condition IV’ for the integral J,(y), then y, satisfies all of the conditions I,
IIT", and IV’, and this ensures by Theorem 3.8 that J,(y,) is a weak local
minimum of J,. If y, happens to satisfy the condition 11, (or II}) forJ,,
then J,(y,) is a strong (or proper strong) local minimum for J,.

EXAMPLE 3.3
J(y) = [ $* dt with endpoints (0,0) and (1,0).
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Discussion

We have remarked under Example 2.5 that y,(¢) = 0 satisfies Euler
equation (2.25). Since 0 is the global minimum of the integrand, it is
clear that J(y,) =0 is the global minimum of J(y). However, we wish
to consider the integral J(y) = [ (y*+42)?) dt for this example. It is
easy to verify that if k # 0, then y, satisfies I, III’, and IV’ for J; and,
using the family y=a to define a field (S,p), where S is the infinite
strip bounded by t=0 and 1 and p (t,y) = 0, we verify that y, satisfies
I1;. Therefore, by Theorem 3.9,

(3.13) Ji(390) < Ji(y) ifyo#y € Yandk # 0.

Since this is true for all nonzero & and since it is clear from the form of
(3.12) that J,(y) = J(y) as £— 0, it then follows from (3.13) that
J (%) < J(y). From this argument based on Theorem 3.9 and J; we
can only infer the weak inequality in the limit, even though we had the
strict inequality in (3.13). That actually J (y,) < J(y) if y # y, was clear
by inspection, and this conclusion also would be obtainable by applying
Theorem 3.4 directly toJ.

For more complex integrands, we would generally have a field
(Sk,px) depending on k with a set S, being a proper subset of the strip
bounded by ¢, and ¢, and (3.13) would hold iff y is in S.. Hence we could
only conclude that J;(y,) is a local minimum. Moreover, we could only
establish that y, furnishes a local minimum, for the original integral
J, if we could verify for the example that S, does not collapse onto y, as
k= 0.

Although the use of J; sheds light on the theory, it provides no
panacea for attacking particular examples. Indeed there are no panaceas!

EXAMPLE 3.4
f(ty.3) =2+ 5.

Discussion

This falls under the degenerate case of an integrand that is linear
in (X1, pp. 35-37). The Euler equation (2.25) is 2¢ = 2y; hence the only
possibility for an extremizing function is yo, y,(t) = ¢. Given a pair of
endpoints not both on this line, there can exist neither a minimizing nor
a maximizing function. Given a pair of endpoints such as (0,0) and (1,1),
whether J(y,) is an extremum of some type remains an open question.
There is no use in looking for a field, hence none of the Theorems 3.1
through 3.9 applies to this integral.

After adding the penalty term £2(j—1)2, we have an integral J,, for
which the Euler equation is
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If k # 0, the general solution is y = a exp (t/k) + b exp (—t/k) +t, and with
b=a=a/2 we have the one-parameter family y=a cosh(t/k)+¢,
which generates a field on the infinite strip {(£,9): 0 < ¢ < 1} provided
k # 0. Moreover, y, satisfies condition I11;; hence from Theorem 3.9 we
again reach conclusion (3.13). Letting k£ — 0, we see that J(y,) <J(y)
for every admissible y distinct from y,.

If we change the sign of the penalty term the Euler equation becomes

k2y+y =1t

and the general solution is y = a cos (t/k) +bsin(¢/k) +t. The integral
—J, now satisfies 111, if £ # 0; hence if y, is embedded in a field we would
have the inequality —Ji(yo) < —J(y) or Ji(yo) > Ji(y) if y # y and
are tempted to conclude that J(y,) = J(y). This with the complemen-
tary inequality above would imply that J(y,) =J(y), therefore that J is
independent of the choice of an admissible y. This is manifestly false
in view of the fact that J is not of the special form described following
(3.6). We must infer that either our supposition of the existence of a
field about y, was false for values of % near zero or, if there is a field
(Si,px) as k — 0, then the set S, must converge to y = {(t,y)|y=1¢,0 <
t < 1} as £ — 0. Consider the Jacobi condition in terms of the solution
A(t,ty) of (2.56). We verify that A(¢,0) = sin (¢/k), hence that, if kwr < 1,
then A(t,0) vanishes for ¢t = km < 1. Thus y, does not satisfy the Jacobi
necessary condition and Ji(y,) cannot be a maximum for values of %
near zero. Our conclusion for the problem remains as stated at the end
of the preceding paragraph.

EXAMPLE 3.5
J(y) = [ (3*—»?) dt with endpoints (0,0) and (1,0).

Discussion

This is not a very formidable-looking integral. The figuratives
corresponding to fixed values of y are all convex; hence one is likely to
guess that there will be a function y, satisfying 1Iy and enough other
conditions to ensure that J(y,) is some sort of minimum. If the last term
of the integrand were +y%, then y,(t) =0 would clearly furnish the
infimum 0 of possible values of J(y). However, with the given term
—y% one anticipates that J(y) can be negative for some admissible
functions.

The Euler equation is

(3.14) 12)%'=—2y

and y,(¢) = Ois asolution having the given end values. No other constant-
valued function satisfies this equation; hence, if y is any solution distinct
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from y,, then dy does not vanish identically. For any values of ¢ such that
(dy) (¢) # 0, (3.14) implies that

* d 4 *
(3.15) 12y3d—z=—2y or 12y3dy = —2y dy.

The last form is needed to integrate, but before doing so we remark
that the operations performed have introduced extraneous solutions
y (¢) = =a # 0. All other solutions of this equation satisfy (3.14).

From (3.15) we find by integration that

35 =at-y,
hence that

(3.16) R

V3 T (az_yz)m'

The last form conveniently rejects the extraneous solutions. It also
rejects the solution y,(f) =0, but other solutions of (3.14) are now
expressible in terms of an integral.

Observe that f,(t,,5) = 12%, consequently that y, fails to satisfy III'
and hence that Theorem 3.1 for the existence of a field is inapplicable.
The hypotheses of this theorem are sufficient for the existence of a
local field but not necessary as shown by Example 3.3, for which III’
also fails.

A numerically oriented reader may think of tabulating values for

v ds
‘\/g't:ij‘o W_l

for a spread of values of a and y in search of evidence of the existence of
a field about y,. This would furnish presumptive evidence, not a proof,
but might suggest the structure of a proof. If there were such a field,
the strict convexity of the integrand in j and Theorem 3.4 would assure
that J (y,) is a proper strong local minimum. We shall see that this
gambit cannot succeed, but it might do so for some other problem.
Another move is to add the penalty term k232 to the integrand.
Although y, satisfies necessary conditions I and III' for the integral
Ji defined by (3.12), y, does not satisfy the necessary condition IV of
Jacobi for values of & near zero, and therefore Jy () is not even a weak
local minimum for such values of k. It follows from the relationship
(3.12) between J and J;. that J (y,) is not a weak local minimum. We also
can show this by a judicious selection of particular admissible functions.
Clearly y,,y.(¢) = a (t2—¢) is admissible for all real values of « and,
since y,(¢) and 5,(f) = @ (2t—1) both converge to zero with a, then y,
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is in any preassigned first-order neighborhood of y, provided that
|| is sufficiently small. By elementary calculation we find that

6a2—1) a?
J (3) =(_T)—;

consequently J (y,) < 0 for all @ such that 6a* < 1. J (y,) is not even a
weak local minimum.

The preceding examples serve to exhibit some of the gymnastics that
one must be prepared to employ.

Exercise 3.2

Investigate each of the given integrals for minima and maxima on the
class % of smooth functions with the given endpoints. Identify the type
of minimum or maximum found in each case or explain why there is
no minimum or maximum.

1. § (35—3%) dt, (0,0) and (1,1).

9. [ e¥¥dt, (0,0) and (1,0).

3. [ t232dt, (0,0) and (1,0).

4. fy?dt, (=1,0)and (1,0).

5. [ (£2—y2+9y) dt, (—1,0) and (1,0).
6

. f&”th‘l’ (0,0) and (1,1).

<

. th‘cl, (0,0) and (1,3).
. [ 5G+y) d, (0,0) and (1,0).
. f (y—z;—yzﬂy;—ff—z)z dt, (0,0) and (2,0).

[{=J e <]

(a) Verify that y,(t) = 2t— ¢ satisfies the end conditions and that
J(y0) = 0 by direct substitution of y, into the integrand. What
conclusions follow?

(b) Find the envelope of the one-parameter family y = 2ot — ot

(c) Explain why the results under (a) and (b) do not contradict the
Jacobi necessary condition IV.

. J(y) = [3*dt and the fixed endpoints are (0,0) and (2,0). Then
yo(t) = 0 satisfies I and the end-conditions. Determine by examina-
tion of Iy the class of functions for which, as a consequence of (3.8),
Ji(y) —Ji(3) > 0. Then explain why, for this example, we cannot
conclude by letting & — 0 that y, furnishes a local minimum for the
original integral J(y).

1

(=3
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3.8 SUFFICIENT CONDITIONS WHEN
THERE IS A CORNER

Necessary conditions I, II, and III as given in Chapter 2 apply to a mini-
mizing function y, with one or more corners. We did not consider the
Jacobi condition for such a solution and shall not do so in this book,
but it is possible to do so and to obtain sufficiency theorems analogous
to those of Section 3.6. We point out briefly how the approach of
Section 3.4 can be extended.

It is well known, for the ordinary line integral J(y) = [P(t,y) dt
+Q(t,y) dy= [ (P+3yQ) dt, that J(y) is independent of the choice of a
PWS path joining (t,kh) and (ty) iff the function W defined by the
relation

W(t,y) - J-(t.zl)

wom P(Tm) dr+Q(7.m) dn

has the total differential
(3.17) dW = P(t;) dt+Q(t.y) dy.

Suppose given the problem J(y) = minimum on the class % of PWS
functions with fixed endpoints and that y, € %, having a corner at ¢,
between f, and ¢, satisfies necessary conditions I, II, III, and the
Erdmann corner conditions. Suppose further that a one-parameter
family ¢(-,a) of solutions of (2.18) has been found, which includes
9y as a member, such that, for each a, ¢(-,a) has exactly one corner
satisfying the Erdmann conditions, such that the corners are all in the
set of points (¢,y) constituting a function g or a vertical segment and
such that a suitable subset S of the strip bounded by ¢, and ¢, is simply
covered by this family with y, interior to S except for its endpoints on
the boundary lines of the strip. The circumstances we have described
are indicated by Fig. 3.1.

Let p(t.y) or q(ty), respectively, denote the slope of that function
¢(-,a) through (¢,y) when that point is to the left or right of g, and let
r(t,y) denote p(t,y) or g(t,y), whichever applies. We can leave r unde-
fined on g, set r(¢,y) = p(t,y) on g, or set r(t,y) = q(¢,y) on g.

We thus have a field & = (S,r) about y,, which does not precisely
fit Section 3.2 because of the corners but extends the notion of that sec-
tion. That such a family ¢(-,&) and field exist can be proved in a theorem
like Theorem 3.1 with IV’ now being the Jacobi condition that is not
discussed in this book.

Consider W defined by the relation

(8.18) W(ty) = [ {flemar(zm)] —r(r) £ 1} dr+£ 1dn.

(to,h)
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g

to t

Ficure 3.1

One finds that relation (3.17) applies to this case and that

(3.19) dW = {f[t.y,r(ty) ] —r(ty) [ 1} dt+£[ Ty

Verify, as a result of our hypothesis that ¢(-,a) satisfies the corner
conditions together with the blanket hypothesis on £, that the coefficients
of dt and dy are both continuous on g as well as elsewhere in the set S
covered by the field.

Integral (3.18) is the Hilbert integral in a slightly different notation
than (3.6). The above observations are an outline of a proof that Theorem
3.2 on independence of path of the integral remains valid for such a field
as that of Fig. 3.1. Granted this, the proof of (3.8) in Section 3.4 goes over
to the present case. Similar remarks apply if y, has two or more corners.
This section merely opens the subject of conditions on a function y,
with corners sufficient for J(y,) to be an extremum.

EXAMPLE 3.6
J(y) = [(5*— 1) dt with fixed endpoints (0,0) and (2,0).

Discussion

Let y, consist of points (¢,) on the broken line from (0,0) to (1,1) to
(2,0) and let # = (S,p) be the field in the large defined by the family y,
+a. The corners all lie on the vertical line ¢ = 1. It is suggested to the
reader as an exercise that he think through the details associated with

(8.18), (3.19), and (3.8) for this example and verify that, as a consequence
of (3.8),J (yo) is a global minimum.
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3.9 EXTENSIONS, OTHER METHODS

The fixed-endpoint nonparametric problem in (n+ 1)-space is that of
extremizing an integral

t
J(y) = L f(ty3) de

on the class & of all PWS vector-valued functions y: [t,,t;] — R™ having
fixed endpoints [f,,y(t)], [t,y(t)]. It can be treated along generally
similar lines to those presented here for the case n=1. There are
necessary conditions I (Euler), II (Weierstrass), III (Legendre-Clebsch),
and IV (Jacobi-Mayer) and also sufficiency theorems similar to those of
Sections 3.4 and 3.6.

An important difference between the cases » =1and n > 1 occurs in
the theory of fields. When n = 1, any one-parameter family of solutions
of the Euler equation that simply covers a suitable set S to which a parti-
cular solution y, of that equation is interior generates a field about y,.
Further conditions must be satisfied in the higher-dimensional cases.
Such fields, called Mayer fields, are treated by Bliss (IX, Chap. 2) for n =2
and (IX, Chap. 4) for a general n.

An introduction to the general Problem of Bolza is given in Chapter 5.
Development of the theory for these more complex problems began
in the early days of the calculus of variations, at least as far back as
Lagrange, but major results and refinements have come in the twentieth
century. This area continues to be an active field of research with many
unanswered questions. The Problem of Bolza as formulated by Bliss
(IX, p. 189) was often mentioned as the most general single integral
problem of the calculus of variations, but various more general cases
have recently become important because of the wide interest in systems
optimization. See, for example, Hestenes (XXI) and (20f).

Sufficiency theorems considered in preceding sections have all been
based on fields. A second so-called expansion method uses suitable expan-
sions of the integrand such as that of Taylor. This approach has long
been effective for weak local extrema. It was first applied to sufficiency
for strong local minima by E. Levi in 1911 and has been extended by
W. T. Reid (45b,c,d) to Bolza Problems. We shall not include any of
this work in the present book but Section 3.12 exhibits a sufficiency
theorem for global minima involving expansion. A third type of suffi-
ciency theorem proved by the indirect method of arriving at a contradic-
tion was used by McShane (33k) and by Hestenes (20b,d,e).

The literature on sufficiency has relatively little to say about global
minima. A traditional view (X,pp.10-11) has been to the effect that one
needs merely to identify all relative minima of J(y) and then to pick
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out the least of the lot. If we ignore as exceptional the possible case
with infinitely many relative minima, there is still a great deal left to the
imagination. And yet in many examples a global minimum or maximum
is precisely the goal. This is certainly the case in systems optimization.
Granted a criterion for optimality, one desires the best of all programs,
not merely one that is best in comparison with other nearby programs.
Sections 3.11 and 3.12 of this chapter are devoted to some relatively
simple sufficiency theorems for global minima.

3.10 CONVEX SETS AND CONVEX
POINT-FUNCTIONS

Section 2.3 reminds us that the existence and determination of minima
of a function ¢: [a,b] = R are related to convexity of ¢ without assum-
ing any knowledge of this topic beyond that provided in elementary
calculus. We now examine convexity of subsets of R* and of ordinary
functions in preparation for extension of these ideas to function
spaces and to functions J of the calculus of variations. For further infor-
mation see Hestenes (XXI,pp.45-48) or T. Bonnesen and W. Fenchel,
Theorie der konvexen Kérper (Springer, Berlin, 1934, reprinted by Chelsea,
New York, 1948), pages 18-21.

That a subset K of R™ is convex means that, for every pair of points x
and y of K, the point z=x+7(y—x) = (1—7)x+7y is in K for every
7 € [0,1]. Such points z constitute the segment in R" with endpoints
x and y. Since 7= 0 and 1 yield points x and y which were chosen in K,
the content of the definition is the same if the closed 7-interval is re-
placed by the open interval (0,1).

Given that K is convex, a function ¢: K — R is called convex on K if

3.20) ¢(x)+7[d(¥) —d(x)] = d[x+7(y—x)],Vxy € K,V7 € [0,1].

If —¢ is convex on K, then ¢ is said to be concave on K. In contrast with the
use of these terms in optics, convexity and concavity of functions are
not intrinsic properties of curves and surfaces. For example, ¢(x) = x*
and ¥(x) = —? yield the same parabola but differently located in the
coordinate plane, and the functions ¢ and ¢ are, respectively, convex
and concave.

The only convex subsets of the set R of real numbers are intervals of
finite or infinite length including R itself, singleton sets, and the empty
set. The last two degenerate cases are of little interest here. Most of the
figures of elementary plane and solid geometry when regarded as point
sets in R? and R? are seen to contain a segment if they contain its end-
points. One easily visualizes other convex subsets of R* or R®, some
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bounded and others not. Most sets are not convex, for example, a star-
shaped set. The reader should use the definition of a convex set in
verifying the following properties of convex subsets of R™.

The intersection of finitely or infinitely many convex subsets of R”.
is a convex subset of R", possibly degenerate. Unions and differences of
convex sets are in general not convex.

If K is a convex subset of R*, then any subset H of K obtained by fixing
the same coordinates of all points of K is convex. For instance the cir-
cular disc K = {(x,y) € R* x®+y* < 25} is clearly convex and the subset
H = {(x,9) € R* x*+4* < 25, x= 3} is a segment, hence also a convex
subset of R%. Moreover, such sets as K and H can be regarded as convex
subsets of R?, p = 3.

If K,, and K, are convex subsets of R™ and R", then the cartesian pro-
duct K, X K, is a convex subset of R™ X R*= R™*",

Definition (3.20) of a convex function ¢ says that the segment joining
two points [x,¢(x)] and [y,¢(y)] of ¢ contains no point {x+7(y—x),
d(x)+7[p(y) —d(x)]} that is below the corresponding point {x+ 7(y —x),
¢[x+7(y—=x)]} of the function. We can thus easily distinguish among
examples that are convex, concave, or neither, provided that n=1 or 2
and the graph of ¢ is simple enough to visualize. In general, we must
depend upon definition (3.20). The following properties of convex
functions, which are direct consequences of that definition, are useful.

If ¢ and ¢ are both convex on K, then ¢+ is convex on K. Thus if
K=R, ¢(x) =x% and ¥(x) = cosh x; then ¢+ is convex on R. If ¢
and ¥ are convex on respective subsets K, and K, of R™ and R", then
¢+ is convex on the convex subset K,, X K, of R™*". For example, if
¢(x) =x2,x € R and Y(y) =—cosy, y € [-7/2,w/2], then the function
f = ¢+ with values f (x,y) = x—cos y is convex on the set {(x,5) € R%:
x € R,y € [—n/2,m/2]}. Differences ¢ — ¢ and products ¢¢ of convex
functions are generally not convex.

If ¢: K — R is convex on K, then ¢ restricted to any convex subset
H of K is convex on H. If K is a subset of R", then ¢ can also be regarded
as a convex function from a subset of R?, p > n, to R. For example, if
¢: R — R has values ¢(x,y) = x>+ 4y, then ¢(x,3) gives the values of a
convex function from R to R. Also the function ¢: R — R with values
¢ (x) = «%, visualized as a parabola, can also be considered as a convex
function with domain R? and values ¢ (x,y) = x* that are independent
of y and which we visualize as a parabolic cylinder in R®.

Although definition (3.20) mentions neither the continuity nor dif-
ferentiability of a convex function ¢, we shall point out that continuity
of ¢ at most points of K together with the existence and finiteness of
certain first-order derivatives is a consequence of (3.20).

Given an interior point x of the convex subset K of R™ and a function ¢
that is convex on K, let @ and b be distinct points of K such that x =
(a+b)/2 and set y = (a—b)/2. Then x—y and x+y are in K as is x+ hy
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if h € (0,1) is near 0 or 1. With % so near 0 that x+ Ay is in K, replace
x,9, and 7 in (3.20) by x—y, x+ Ay, and 1/(1 + &) and find that

(3.21) é(x) —d(x—y) < [¢(x+hy) —d(x)]/h= Q.

With y and 7 in (3.20) replaced by x+ y and %, we obtain the inequality

(3.22) Q= [p(x+hy) —d(x)]/h < $(x+3) —d(x).

With points x, a, and b of K fixed, we see from (3.21) and (3.22) that the
quotient Q is bounded. If y in (3.22) is replaced by 6y, € (0,1) and we
divide through by 6, we see that Q is nondecreasing in 4 and hence that
Q has a finite limit as & — 0+. Since points a and b chosen above in K
are distinct, y= (a—b)/2 is not the zero-vector; hence quotient Q in
(8.21) and (8.22) can be written in terms of the unit vector y/|y| as

¢ [x+RlylO3/Iy])]— S (x)1/h.

One sees with reference to the usual definition of a directional derivative
that the finite limit of Q/|y| as A = 0+ is the directional derivative of ¢
at x in the direction of y. We denote this derivative by ¢’ (x;y).

In the case n =1, x and y are real numbers and ¢’ (x;y) is the right
derivative ¢'* (x) or the negative of ¢'~(x) defined in Section 1.7 accord-
ing as the fixed y is positive or negative. Since these derivatives are finite,
¢ is both right and left continuous at x and hence continuous at x, an
arbitrary interior point of K. If the interval K includes an endpoint ¢,
elementary examples show that ¢ need not be continuous at ¢. More-
over, if ¢ is not continuous at an endpoint ¢ of its domain, then ¢'~(c)
= o or ¢'*(¢) =—» according as c is a right or left endpoint of K. If
x,y,and zarein K and x < y < z, it can be proved that

(3.23) ¢t (x) < d'"0) < ¢t () < ¢'7(2).

It also can be proved that the left and right derivatives are equal and
hence that the derivative ¢’ (x) exists at all but a countable set of points
of K. Granted the nondecreasing character (3.23) of ¢'* and ¢', these
functions are then Riemann integrable over any subinterval of K on
which their values are bounded and, if 2 and x are endpoints of such an
interval, it can further be proved that

4 T
(3.24) d(x) = [ ¢'*(s) ds+d(a) = [ ¢'°(s) ds+(a).
Conversely, an indefinite integral of any bounded nondecreasing func-

tion is convex.
Although ¢'(x) can fail to exist at the points x of a countable set, there
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are many convex functions ¢: K — R such that ¢'(x) exists and is con-
tinuous at every point of K. Given such a function ¢, it follows from
(3.20) and the Mean Value Theorem of the Differential Calculus that,
ifxand yarein Kand 0 < 7 < 1, then there exists 6 € (0,1) such that

() —d(x) = {plx+70—x)]1—d(x) }r=¢'[x+6r(y—x)] (r—x).
Since ¢' is continuous by hypothesis, we can let 7 = 0+ and find that
(3.25) ¢ —¢x)—d'(x)(y—x) =0, Vxy EK.

It follows, by application of the Mean Value Theorem to ¢(y) —¢(x),
that there exists 8, € (0,1) such that

{¢'[x+6,(3—x)]—¢'(x)} (y—x) = 0.

In the event that ¢" also exists and is continuous on K, we can apply
the Mean Value Theorem to the expression in braces to obtain the
existence of §, € (0,1) such that

(3.26) ¢"[x+0:0:,(y—x)] (y—x)2 = 0, Vxy € K.

If x5 €K and x # y, it follows that ¢"[x+6,0,(y—x)] = 0. With x
fixed, lety = x and conclude from the continuity of ¢" that

3.27) ¢"(x) =0, VxeK.

If n > 1, we can hold all but one of the coordinates of x fixed and
obtain similar properties of all first-order partial derivatives of a convex
function ¢: K C R® — R. If this function ¢ has continuous first-order
derivatives ¢; = 8¢/dx’, i=1,---, n on K, the extension of (3.25) is
the condition that

(3.28) ¢(») —b(x) —di(x) ' —«') =0, Vxy €K,

with summation on ¢ This is derived from (3.20) by using the Mean
Value Theorem for a function of n-variables. The similar extension of
(3.27) for the case in which all second-order derivatives ¢; = 92¢/dx'9x’
are continuous on K is obtained as follows.

Corresponding to (3.26) and with summation on two indices i and j we
find that

diilx+0.0,(y—x)] 0,(5'—x) (¥ —%) =0, 6, € (0,1) and 6, € (0,1).
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The positive factor 6, can be dropped and it follows that
bis(x+ 620, (y—x)] w'd = 0,

where u = (y—x)/|y—=x| is the unit vector corresponding to any pair
x,y in K with y # x. With x fixed, let y = x with the direction of y—x
fixed and hence the unit vector u fixed. It follows that ¢;(x)uiw’ = 0.
If weseta = Au, A = 0, then

(3.29) dix)aie’ = 0, Vx € K, and Yo € R™ such that either a = 0 or
the vector o has the same direction as y—x for some y in K. If xis an
interior point of K, this is no restriction on c.

We have shown under respective hypotheses on derivatives that
(3.20) implies (3.28) or (3.29). It can be verified that if first derivatives are
continuous, then (3.28) implies (3.20), and if second derivatives are
continuous that (3.29) implies (3.20).

Convexity on K of a function ¢ as defined by (3.20) or under further
restrictions on ¢ by (3.28) or (3.29) is a global property of ¢, that is, a pro-
perty involving all points of K and the corresponding values of ¢.

We shall say that ¢ is convex at x relative to K (often abbreviated to
simply convex at x) if corresponding to the fixed x € K and to each
y € K s a positive real number €., such that

(3.30) 0 < 7 < €z, = inequality (3.20).

The function ¢ is convex on K if and only if it is convex at x relative to K
at every point x of K. The function ¢: R — R with values ¢(x) =% or 1
according as x> < 1 or x2 > 1 is seen from its graph to be convex at 0
relative to R but not convex on R. The function ¢: R — R with values
¢ (x) = 2x>—x* is neither convex on R nor even convex at 0 relative to R,
but the restriction of ¢ to (—V/2,V/2) is convex at 0 relative to this open
interval and the restriction of ¢ to (—\/?7/3,\/?7/3) is convex on that
interval.

The preceding concepts and results are useful in the remainder of
this chapter and in parts of later chapters. We mention in contrast
another definition of convexity at x that will not be used. If n=1,
if x,y, and z are in the domain K of ¢ with x fixed, and if y < x < 2,
then the condition that

(3.31) [o(x) =]/ (x—y) < [¢p(2) —d(x)]/(z—x) ify<x<z

between slopes of chords certainly states a property commonly associated
with convexity at x. The function ¢: R — R with values ¢(x) = x*® has
property (3.31) with x =0 in that condition, but this function is not
convex at 0 in the sense (3.30) relative to any convex subset K of R.
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3.11 CONVEXITY OF INTEGRALS AND
GLOBAL MINIMA

We have seen in Theorem 3.9 and elsewhere that a global minimum can
be identified if a field (S,p) about y, covers an infinite strip of the
(t,9) plane and if either the figurative is convex in r for each fixed
(t,y) € SorevenifE[ty,p(ty),q] = 0foreach (¢,) in S and each real q.
Thus far in this book this is the only means at our disposal.

If J(3) is a global minimum, then J(y,) is necessarily a weak local
minimum; hence in seeking a global minimum it suffices to examine
only those admissible functions y, that furnish a minimum of the latter
type. Given such a y, we can then ask for additional conditions sufficient
to guarantee that J(y,) is actually the desired global minimum.

These ideas can be discussed just as easily for the nonparametric
fixed-endpoint problem in a general (n+ 1)-space as for the particular
case n=1. Let % now denote the class of all vector-valued functions
9:[to,ti] = R™, y= (3, ..., y*) that are PWS and have fixed endvalues
y(t),y(¢,). That y is PWS means by definition that each component
y*is PWS in the sense of Section 1.9.

Givenx,y € #, define a function z: [0,1] X [¢,,¢,] — R™ with values

(3.32) z(7,t) = (1—7)x(t) +71y(2)
=x(t) +7ly() —x()],7 € [0,1],t € [to,t4]-
For each fixed 7 € [0,1], we see that z(r,") € #. With x,y € ¥ both
fixed, the mapping ¢ [0,1] = &, where {(7) =z(7,-) is called a
deformation. The function x is deformed continuously onto y as 7 traverses
its unit interval [0,1].
The function z with values (3.32) is seen to have these properties:

(3.33) 2(0,¢) = x(t) and z(1,¢) = y(2), t € [to,ty].

(8.34) lz(7,t) —x(8)| = 7 |y(t) —x(¢)| = Owith ,

|y — x| being the euclidean distance,
and

(3.35) |ze(7,t) —%()| = 7[3(¢) —%2(¢)| = Owith .
It is immediate from (3.32) and the fact that x and y are PWS that
(3.36) The T-derivatives z. and z; of z and its t-derivative exist and are

finite for all 7 € [0,1] and t € [to,t,) except for those t, if any,
that correspond to corners of x or y.
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We are again interested in minima of a functionJ: # — R, where

t1
Jo) = [ fty) dt,

but fis now a function from [#e,#;] X R** to R. We understand that fis
subject to a blanket continuity and differentiability hypothesis.

The definitions of strong and weak minima stated in Section 2.4
apply to the present case, in which y has n components, provided that
|x—9| and |%x —3| are interpreted as lengths of n-vectors x—yand £ —3.

To say that [ is convex or strictly convex at x € % relative to %, respective-
ly, will mean that corresponding to x and to every y E #, y + x,is a
positive number ¢, such that if

(3.37) 0<7<ery

then
3.38) @(7) =J(x)+7J(y)—J(x)]—=J[z(7,-)] =0 (or> 0).

Theorem 3.10

If J(yo) is a weak local minimum of J(y) on % and J is convex at y, relative
to ¥, then J(yo) is a global minimum.
PROOF

Let y be an arbitrary but fixed function in #. Since J is convex at y, and
7 satisfies (3.37), then

(3.39) T[J(») —J(30)] = J[z(7, )] =T (3).

By properties (3.34) and (3.35) of z, there must exist a positive number d,
depending on y,, y, and & such that, if

0<rt<d,

then z(r, *) is in the first-order neighborhood U,(8.y,) of the definition
of a weak local minimum. With 7 satisfying these inequalities as well as
(3.37), relation (3.39) holds and the right member is nonnegative.
Since 7 > 0 we see that J(y) —J(y,) = 0 and, since y is in # but other-
wise arbitrary, the proof is complete.

Theorem 3.11

A necessary and sufficient condition for J (y0) to be a proper global minimum
of J(y) on % s that (i) J(yo) be a weak local minimum and (ii) J be strictly
convex at y, relative to % .
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PROOF

To show that (i) and (ii) imply that J(y,) is a proper global minimum,
follow the preceding proof with a strict inequality in (3.39). For the con-
verse, one finds by differentiation of (3.38) that

(3.40) @' (0) = J:: Lf (£:3:9) —f (£,30,50) — fu(E30s30) = 22— fr(£:30:30) * 2] dt,

where f, -z, denotes the scalar product of the n-vector whose com-
ponents are the partials of f with respect to components of y by the n-
vector z,, with a similar description for the other dot product.

After an integration by parts like that in Section 2.6 of the next to
last term, we use the Euler condition (now a system of » Euler equations
found in the treatment of problem 12, Exercise 2.3) in form (2.18),
which y, must satisfy under the present hypothesis that J(y,) is a weak
local minimum. From this property of y, and the fact that z(0,t)
= y(t;) —%0(t;) = 0, relation (3.40) reduces to

(3.41) '(0) =J(y) —J (30)-

The right member is positive if the function y is distinct from y,,
since J(y) is a proper global minimum. By inspection of (3.38), ®(0)
=0 and, by (3.41), ®'(0) > 0; hence (3.38) must hold with > for sufh-
ciently small positive 7. This completes the proof of conclusion (ii).
To verify (i), simply observe that J(y,) being a proper global minimum
implies thatJ(y,) is a weak local minimum.

A sufficient condition for convexity or strict convexity of J at y, € ¥
is that the integrand f(¢,y,r) be convex in (y,r) or strictly convex in (y,r)
at [yo(£),50(8)] for each ¢ € [4,t]. In applying (3.20) and subsequent
remarks to f, the number 2n replaces the previous n and the 2n com-
ponents of the pair (y,) replace the n components of x.

EXAMPLE 3.7
J (3*+yy+y?) dt with endpoints (0,0) and (1,1).

Discussion
One finds readily that y,, where

(8= Dyo(t) = e+ =707,

satisfies conditions I, III’, and IV’, hence that y, furnishes a weak local
minimum by Theorem 3.8. The quadratic form (3.29) for the present
integrand, f(t,y,r) =r*+ry+y?, is Qa) = 20+ a0+ ayo; +205 =
2(a2+ aya, +aZ). We observe that Q(a) is free of ¢ and has a negative
discriminant; hence Q(a) # 0, a # 0, and, since it is clearly positive
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for (a;,a,) = (1,0), it is positive if « # 0. It follows that f (¢,y,7) is strictly
convex in (y,r), hence strictly convex at (y,r) = [y,(¢) 5 ()] in the sense
of (3.30). By Theorem 3.11, J (y,) is a proper global minimum.

We shall avoid higher-dimensional examples. The reader who may
wish to consider such cases will find criteria for identifying positive
definite and semi-definite quadratic forms in many books.

Integrands that are convex or even convex in (y,7) in the sense of
(8.30) are of rare occurrence among all possible integrands f(,y,r).
They often are met in the Hamiltonian integrals considered in Chapter
4, in the accessory minimum problem related to the Jacobi condition,
and in certain optimization problems from control theory.

In view of the fact that Theorem 3.11 gives necessary and sufficient
conditions, it would be pleasing if we had a less stringent sufficient
condition for the convexity of J than convexity of fin (y,r).

3.12 A NAIVE EXPANSION METHOD

Letx, 9, p, and ¢ be n-vectors and define

(342) G(t»xay,P,Q) = f(t,y,LI) _f(t’xvp)

- (y_x) 'fy(t’x,P) - (q_P) 'f;'(t,x,ﬁ),
in which dots again indicate scalar products. The right member is the
difference between f(¢,,9) and the first 2z+ 1 terms in a Taylor expan-
sion of f (t,,q) for fixed ¢ about the point (y,q) = (x,p) of 2n-space.

The problem J(y) = minimum on % is again the nonparametric fixed

endpoint problem in (n+ 1)-space. The Euler necessary condition [/
in form (2.18) for this problem is the vector equation

(3.43) felty(@),5(1)] = J.:ofy['T?y (7),5(r)] dr+e,

and the following theorem is somewhat similar to Theorem 3.3.

Theorem 3.12
If yo € ¥ satisfies the Euler necessary condition (3.43) and y is an arbitrary
admissible function, then

(3.44) J(0)=J (30) = [ Glt30(0)3(8),30(8),5 (0] de.

PROOF

With function y, fixed, define an integral J* similar to and yet distinct
from the Hilbert invariant integral,
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(345) J*(9) = ["Lf (t3050) + (5=30) Fu (630.50)
+ (3=30)-fr (t30,50)] de.

If we integrate the second term by parts and use (3.43) together with the
fact that y and y, have common end values, we find that

(3.46) J*(y) = J (%)

We are interested in the left member J(y) —J(yo) of (3.44), which, in
view of (3.46), is equal to J(y) —J*(y), and the latter is precisely the right
member of (3.44).

It is convenient to state the next theorem in terms of conditions that
we denote by IT#, I1¥' and define as follows.

II§ G[tyyo(t),}’,y.o(t)ﬂ] = 0’ Vt € [t05t1]7 V()’,Q) € RZ.
IIF" Glt.y0(2),9.30(2) g1 > O, Yt € [to,ta], YV (5.9) # [50().50(2)].
Theorem 3.13

Ify, € ¥ satisfies conditions 1 and IIE(IIE'), then J(yo) is the global minimum
(proper global minimum) of J(y)on % .

PROOF

This is an intermediate corollary to Theorem 3.12.

With n = 1, the gap between hypotheses 11} or II}' of Theorem 3.13
and necessary condition II given in Chapter 2 is greater than that
between sufficient conditions in Section 3.6 and the combined necessary
conditions of Chapter 2. A similar remark applies to Theorem 3.13 and
the higher-dimensional analogues of Section 3.6.

In the event that f, [¢,%(t),5 (¢)] vanishes identically, which neces-
sarily is the case if fis free of y, conditions 11} and II¥' reduce to IIg and
11 stated in Section 3.1.

It follows from problem 6, Exercise 3.3, which follows, that II# is
equivalent to the statement that the surface u = f(t,y,r) of parameter ¢in
(y,7,u)-space include, for no fixed ¢, any point below the plane tangent to
that surface at [x,p,f(t,x,p)]. That f(¢,y,r) be convex in (y,r) at (x,p) =
[70(2),54(t)] for each ¢t is a condition that implies II§. Similarly that

f(t.y,7) be strictly convex in (y,7) at (x,p) = [90(¢),5(¢) ] implies 11}’.

Theorem 3.13, in contrast with Theorem 3.11, does not include the
hypothesis that J (y,) be a weak local minimum. There is no requirement
in the proof of Theorem 3.13 that y, be smooth. Although the class of
problems for which this theorem is an effective tool is limited, its
simplicity recommends it. When it does apply, it is useful. We shall
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extend this theorem to certain Bolza Problems in Chapter 5 and apply
the extension in characterizing the global extremum for a problem in
missile trajectory optimization. An extension of Theorem 3.13 to prob-
lems with time delays has been considered by D. K. Hughes (21a).

EXAMPLE 3.8
| (3®+yy+9?) dt with endpoints (0,0) and (1,1).

Discussion

A function y, satisfying the Euler condition I is given under Example
3.7. Since the integrand £ (,y,7) is strictly convex in (y,7), we know, by
Theorem 3.13, thatJ (y,) is a proper global minimum.

Examples simple enough to be analyzed readily and completely by
one method often yield to other methods. It is not difficult to verify,
for this one, that there exists a field in the large about y, and to conclude
either from Theorem 3.9 or directly from the Fundamental Theorem
3.4 that J (y,) is a global minimum. This procedure is, however, much
longer than that in the preceding paragraph or that under Example 3.7.

EXAMPLE 3.9
I (32 —9?) dt with endpoints (7[6,1/2) and (7/2,1).

Discussion

The familiar hyperbolic paraboloid or saddle surface with equation
u = r2—4? is neither convex nor concave. Neither the function f with
values f(y,r) = r2—y® nor its negative is even convex in the sense of
condition II%; hence Theorem 3.13 is not sufficiently discriminating to
tell us whether the function y,,5, (tf) = sin ¢, satisfying the Euler equation
and the given end conditions furnishes an extreme value. Another
approach that yields a partial analysis of this example is to transform the
integral into one for which Theorem 3.12 is effective.

Set y=(—z)¥2, 2 < 0. Then z=—9? and there is a one-one corres-
pondence between positive-valued functions y: [#/6,m/2] = R with
end values $ and 1 and negative-valued functions z: [#/6,#/2] — R with
end values —% and —1. Moreover, y = —2%/2(—z)'?; hence y is PWS iff z is
PWS. The original integral J (y) transforms into

I1(z) = j [(—22/42) +7] dt.

The Euler equation for I(z) is 2z8— 2+ 422 = 0 and the solution z, () =
—sin? ¢ corresponds to yo(t) = sin ¢ for J (y). The integrand of (3.44) for
I(2) is found to be

(3.47) G (8,29,2,20,2) = — [(£—2z cot t)?/4z]
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and, if z is any negative-valued admissible function for I (z) with values
z(¢) bounded away from 0, then the right member of (3.47) is non-
negative. With this restriction on z, we verify from the proof of Theorem
3.12 that (3.44) is applicable and therefore that I(z) < I(z) if z(¢) is
negative definite and hence, by the continuity of z on [#/6,7/2], bounded
away from 0. It follows that J(y,) < J(y) if y is admissible and positive
definite.

This is a more illuminating conclusion than that obtainable by applica-
tion of Theorem 3.6 or 3.7 to the present example. We would then know
only that J(y) <J(y) if y is admissible and in some zero-order
neighborhood U, (8,y,) without necessarily knowing the size of the
neighborhood. If, however, we follow the hint of problem 2, Exercise
3.1, with possible reference to Theorem 3.9, it can be verified that
J (o) =< J(y) for every admissible y and indeed that the strict inequality
holds if y is distinct from y,.

Exercise 3.3

Draw upon all of Chapters 2 and 3 in investigating the existence and
nature of minimizing PWS functions for problems 1 through 5. Some
of these examples have pathological features.

1. J) = [ (e¥—ty5) dt with endpoints (0,0) and (1,0).

2. J(y) = f (5% + 2ty + y?) dt with endpoints (0,1) and (1,1).

3. J0) = [ V5V1+3 dt with endpoints (0,0) and (1,1).

4. Jy) = f (t5* — 3yy%) dt. Choose a pair of endpoints.

5.J) = [ (VI+3— V1= dtwith endpoints (0,0) and (1,0).
6

. Consider the “surface” in (2n+ 1)-space with equation u = f{(t,y,r)
with ¢ fixed and (y,r,u) variable. Establish conclusions similar to those
of Section 2.10. Show that, if fis convex in (y,7) for each fixed ¢, then
condition IIf holds as a consequence of the blanket hypothesis on f
and results in Section 3.10.

7. If $:K = R™ and ¢:K — R" are convex on the common convex
domain K and a and B are positive, show that a¢+ B is convex
onKk.

8. Discuss the conclusions available from Theorem 3.13 and problem 6
above forJ (y) = [ (92 +9?) dt.

9. Given that y, satisfies the hypothesis of Theorem 3.13. Does it follow
that y, satisfies all the necessary conditions I, II, III, and IV. Give
reasons for an affirmative answer or construct a counter example,
whichever is possible.

10. We have remarked under Example 3.9 that r2—y? is not convex in
(7,y). Given the endpoints (0,0) and (7/2,1) of problem 2, Exercise
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11.

12.

13.
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3.1, and the conclusion for that problem, is J locally convex at the
admissible y, through the given endpoints relative to % or not, and
why?

Verify that a linear integrand P (¢,y) +Q (%)) is both convex and
concave in j. Investigate extrema of an integral with this integrand
distinguishing between the cases Py(ty) = Qfty) and Py(ty) *
Q, (t,y) with reference to Sections 3.7 and 3.12. Finally, discuss the
example [ (12+y%+yy) dt with endpoints (—1,0) and (1,0).
Investigate the integral J(y)} = [ [a()5*+b(t)5+c(t)] dt by the

methods of Section 3.12 given only that the coefficients are con-

tinuous and a(t) > 0on [f,t].

Point out precisely what the Weierstrass necessary condition II says-
in terms of convexity of f. Do the same for conditions II’, II, and
IIg.



Chapter 4

VARIATIONS AND
HAMILTON’S
PRINCIPLE

4.1 INTRODUCTION

This chapter arbitrarily groups together two subjects that are not
necessarily dependent but which are often so grouped in books on
rational mechanics or other topics from physics or engineering. The
reader who has encountered this approach to the calculus of variations
elsewhere may have been surprised at not finding it earlier in the present
book. It has been deferred until this point so that it can be viewed with
the perspective provided by Chapters 2 and 3.

Since derivatives and differentials have played an important part in
the investigation of extrema of point-functions ¢, it would be natural to
ask whether one can introduce similarly useful concepts for a function
J. Although this question does not appear to have received attention by
Euler and his predecessors, Lagrange introduced an operator & analo-
gous to differentiation around 1760. For many years thereafter it was
traditional to define this operator more or less along the lines of our
next section and to use it extensively. It was called a variation and the
collection of techniques associated with it became known as the calculus

85
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of variations. That it is by no means essential is illustrated by its complete
absence from Chapters 2 and 3 and indeed from all chapters except the
present one. We shall point out by examples that it can be misleading.

This chapter represents both an interlude and a change of pace and
can be omitted with little effect on the study of the remainder of the
book.

The intent of the first part of the chapter (Sections 4.2 through 4.5) is
to acquaint the reader with the notation and flavor of the highly formal
approach to variational problems that was common in the early literature
and is also to be found in some of the books and articles of recent date.
If one hopes to make unrestricted use of available material on the
calculus of variations and its applications, he must be prepared to meet
and follow these methods and yet at the same time to be aware of their
limitations.

4.2 THE OPERATOR o

Recall with reference to Section 2.6 that in deriving the Euler necessary
condition we used comparison functions of the form

4.1) ¥y =y ten.

The term e, which is a functional increment analogous to the numer-
ical increment Ax in the definition of a derivative, will now be called the
variation of y, or simply the variation of y with the subscript suppressed
and will be denoted by 8y. Thus

4.2) dy=en.

By differentiation of (4.1), dy = dy, + €7 dt. The last term is the increment
of dy due to the functional increment €7 = 8y added to y. This suggests
the introduction of

4.3) Sdy = endt,

called the variation of dy. The right member of (4.3) is clearly the differen-
tial of the right member of (4.2); hence we have the theorem based on
definitions (4.2) and (4.3) that

44) Sdy=4d8y,
which is described by saying that operators 8 and d commute.

We also define the variation of y by the statement that

8y = em,
from which it follows that
d(em) _ d(3y)

== ==
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Using the operator D to denote differentiation with respect to ¢, we see
from the last result that

(4.5) 8Dy=D 8y,
that is, that 8 and D also commute.
Next set
(4.6) ¢ () = f(t,y+en,y+en)

and restrict attention to those integrands f such that ¢ is equal to the

sum of its Maclaurin series provided that |e| is sufficiently small.
Forsuche,

14 0
() =00 +¢' O+ & D+
Define the kth variation 8*f of f by the statement that
4.8) 84 = ¢®(0)ek

and the total variation Af of fas the difference

4.9 Af= ¢(e)—d(0).
As a theorem that follows from (4.6) through (4.9),
2 3
Af=8f+ g f+ 63—{+

For the case k£ = 1, it follows from (4.6) and (4.8) that
(4.10) 8f = fu(£,9.5) 8y +£,(t,5.5) 85,

a form that is easily remembered by its similarity to the pattern of the
total differential of a function of two variables. Similarly,

(4.11) 8% = f1u (8y) + 21, (8y) (8%) + £+(85)%,

in which arguments (t,,5) of f,,, etc., are suppressed.

We have followed Bolza (X, pp. 15-20) and (XI, pp. 20-21) in phrasing
these definitions. Practice is not uniform. Akhiezer (I, pp. 92-93) and
others include a factor € on the right in (4.10), €2 in (4.11), etc., but these
are differences in detail and need not concern us here even though they
must be watched in consulting different sources.

One can define the kth variation of an integral J and its total variation as
follows. GivenJ = [ fdt with limits &, ¢, suppressed,
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4.12) o] = [o¥fdt
and
(4.13) AT = [Afat.

These definitions are so phrased that operators §* and A both commute
with the integral sign.

An operation is merely another name for a function or mapping. If
one pauses to identify the domain and range of function §, without
which the discussion is hazy, he sees that § is applied to a variety of dif-
ferent kinds of mathematical objects.

We have now constructed a formalism somewhat comparable to that
associated with differentiation and with which one becomes proficient
after a little practice.

4.3 FORMAL DERIVATION OF -THE
EULER EQUATION

Starting with an integral

JO) = [ Ferd) d

suppose that J(y) is a minimum or maximum and apply & to each side.
We find that

8J =" ofdi= jt“ (f8y+£89) dt.
to 0

By definition (4.2) and the condition 1 () = 1 (#) = 0 of Section 2.6, we
find that, with y fixed, 8y is a mapping from [£0,¢1] to the reals with values
®)(ts) = (8) (1) = 0.

Although we could proceed as in Section 2.6 to a du Bois Reymond
integration by parts of the first term of the integrand, we elect to use a
Lagrange integration by parts, that is, of the last term. We find that

" frspae=piesosoneno] [ (Gr) o

The first term on the right vanishes and hence

(4.14) 57— f (5-2r) oy

The right member is an expression for € times the F’(0) of Section 2.6.
Consequently, if J(y) is either a minimum of maximum, it is necessary
that 8J = 0, a condition analogous to the vanishing of the first derivative
¢' (a) of a point-function ¢: R = R when ¢ (a) is an extremum.
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Suppose that for some interior point ¢ of [,t],

(*15) X051 =% Flb50501 # 0.

The left member, being continuous in ¢ under our blanket hypothesis on

£ then differs from zero on some open interval I. Since 8y vanishes at ¢,
and ¢, but is otherwise arbitrary, we can choose 8y so that (8y) (t) # 0O on
I and (8y) (¢) = 0 on [ty,t;] —1. In addition to these properties, we can
also require that 8y be smooth on [t,t,] if we wish. With such a 8y, the
right member of (4.14) cannot vanish and we contradict the condition
8J = 0. Hence we must infer that condition (4.15) can hold nowhere on
the open interval (ty,¢;), or equivalently that the Euler equation (2.24)
must hold on (,¢,).

We have not stated explicitly what functions y are admitted. If the
domain % of J consists of those y:[f,t;] = R that are smooth and have
fixed end values, then all steps in the preceding derivation are valid pro-
vided that 8y is chosen to be smooth on [#,t,]. Moreover, the left mem-
ber of (4.15) is continuous at f, and at ¢, and, since (2.24) must hold on
(%o,t1), (2.24) must also hold at ¢, and ¢, hence on the closed interval [¢,¢,].

With reference to Theorem 2.3 we see that the Lagrange integration
by parts and the continuity argument applied to (4.15) tacitly assume that
the extremizing function y is smooth. Under this hypothesis, now made
explicit, we can still admit all PWS comparison functions y with the fixed
end values, as was done in Chapter 2, and the derivation of this section
becomes an alternative proof that the Euler equation in form (2.24) is a
necessary condition on a smooth extremizing function.

It is typical of old-style formal calculus of variations that it proceeds
often without saying precisely what extremum problem is being con-
sidered, and it is then necessary for the reader to supply a problem for
which the steps in the derivation are meaningful and valid.

Exercise 4.1

1. Given J(y) = [ (37 +2ty+»?) dt with end values of y fixed, derive the
Euler equation in form (2.24) by applying 8 and tracing through all

the steps.

2. Given J(y) = [ fit,y,) dt with end values of y fixed, where y now has n
components ¥, ... ,y", let 8 now mean the vector with components
8y =en’, i=1,... ,n. Derive the system of n Euler equations (4.15)

using the 8-calculus.

3. Given J(y) = [ f(t,y,5%) dt on the class of functions y:[tp,t] = R
having continuous first and second derivatives on [¢o,¢,] and such that
y(2) and %(t) have assigned values at ¢, and ¢,, define 8% and derive
the Euler necessary condition

d, &,
S~ gt gefr="0
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by the 8-process. Also derive this condition by an extension of the
methods of Section 2.6.

44 THE SECOND VARIATION

As a consequence of (4.13) and other definitions in Section 4.2,

t1 3}
AJ =f (fy 8yt f-89) dt+% f [fou(89)2 + 2 £,r(8y) (89) + frr(85)*)dt + - - -.
to T Jto

Given that 8J = 0, it is plausible by analogy with the theory of minima
of point-functions based on Taylor expansions to anticipate the addi-
tional necessary condition that %] = 0. That this is indeed correct can
be seen from Section 2.12. We are also inclined to guess that if the pair of
conditions 8J = 0 and 82J > 0 both hold for a certain y, then this should
be sufficient to guarantee that J(y) is some sort of a minimum.

That this is not a valid conclusion will be pointed out by an example.
Before doing so, we call attention to the fact that the variations 8y = e
that we have used are so-called weak variations because of the fact that
both 8) =€7 and 8y =en converge to zero with e. Thus, given any
positive e, y+8y will be in the first-order neighborhood U,(e,y) of y
provided that |e| is sufficiently small. The most for which we can hope
from the combined conditions 6J =0 and 82J > 0 is then that con-
ceivably they may imply that J(y) is a weak local minimum. The following
is a counterexample.

EXAMPLE 4.1
J@y) = [ (y*—3) dt with endpoints (0,0) and (1,0).

Discussion

The Euler equation in form (2.25) is 3)5+y = 0 and, by inspection, the
function y,, yo(t) = 0 is a solution through the given endpoints. We then
know that (8J)(y,) = 0 without using the §-technique. We next find that

(82J)(30) = J, 206y)* .

This is clearly positive unless the continuous function 8y: [0,1] = R is
identically zero, and it would be quite difficult to convince someone who
has been indoctrinated with pre-Jacobi calculus of variations that J(yo) is
not a weak local minimum.

However, in the light of Chapters 2 and 3, we notice that the figurative
u =3y —7* is neither convex nor concave in 7. We see from Section 2.10
that E[t,5(2),50(¢),q] can be negative for slopes ¢ arbitrarily near y(?);
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hence Theorem 3.3 suggests the possibility of functions y that are near
to y, even in terms of first-order distance and such that J(y) < J(y).
The example was picked for these features and also for the fact that
frrlt.y0(8).50(8)] = —634(t) = 0 for all ¢. The strengthened Legendre condi-
tion III' fails with a vengeance; neither the theory of the Jacobi condi-
tion, for which I1I" is a hypothesis, nor any sufficiency theorem in Section
3.6 is applicable. We may think of Section 3.7, but it will be of no help for
this example. It is also relevant to verify with reference to Section 4.2
that the total variation AJ for this example reduces to two terms,
namely, that

AT =480T +48%T = [, [(39)*— (85)%] dt.

In order that J(y,) be a weak relative minimum, it is necessary that AJ be
positive for all 8y such that |(8y)(#)| and |(87)(¢)| are sufficiently small. The

form of the integrand above is such as to make this eventuality appear
doubtful.

These observations serve to disturb confidence in the conclusion
suggested by the form of §2J, but they are not enough to confirm nor
deny it. We turn to special admissible functions y: [0, 1] = R,

o= 0=t=e
YO = \ese—iez—1), er<t<l,
for which the derivative is

'(t)={’ 0=<t<é
Y= ene—1, e<t=<l.

One finds by calculation of the given integral for the function y, that
J@yo) =—¢€[1—€/3—€*/(e2—1)%].

For |e| sufficiently small, the bracketed expression remains positive;
consequently, J(y) changes sign with e for values of e arbitrarily near
zero. We have confirmed the suspicions raised above. Positiveness of the
second variation does not imply even a weak local minimum.

A second but less subtle way in which one can be misled by the second
variation is illustrated by the next example.

EXAMPLE 4.2.
J(9) = [ (2 —»?) dt with endpoints (0,0) and (2,0).

Discussion
We find that

527 = [ [(89)*— (8)%) de.
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The integrand viewed simply as a real quadratic form in 8y and &) is clear-
ly not of fixed sign for all choices of values for these quantities, and one
might jump to the conclusion that 82J is not of fixed sign and hence that
J(y) can have neither a minimum nor a maximum value. However, &) and
8y are not independent, as one sees from the definitions in Section 4.2.

We again turn to Chapters 2 and 3. The general solution of (2.25) is
9= a.cos t+ b sin ¢ and the unique solution through the given endpoints
is o, yo(t) = 0. This is found to satisfy the hypotheses of Theorem 3.6 and
other sufficiency theorems of Section 3.6 that guarantee a strong local
minimum. That J(y,) is actually a global minimum can be shown by
constructing a field in the large.

Exercise 4.2

1. Show for Example 4.2 how to select a one-parameter family of solu-
tions of (2.25) that generates a field on the strip bounded by ¢t = 0 and
¢t =2 and discuss the application of Theorem 3.4 to this example.

2. Given J(y) = [ (y*—35* dt and the fixed endpoints (0,0) and (1,0),
observe that y,, y(t) = 0 satisfies the Euler equation and express the
general solution of the Euler equation in terms of an integral with a
variable upper limit. Examine the expression for 82J and 83J and
guess whether or not J(y) is an extremum. Then try to prove or
disprove your conjecture with reference to Chapters 2 and 3.

3. Investigate similarly J(y) = [ (y*+5*) dt with the endpoints (0,0) and
(1,0), this time also examining §*J.

4. With n as a fixed PWS function on [0,1] and n(0) = n(1) = 0, consider
the function F defined by (2.19) for the particular integrand y*—5* of
Example 4.1. Verify that if y,(¢) = 0, then F'(0) =0 and F"(0) > 0,
and state precisely what conclusion concerning the value J(y,) is
implied by (2.6). This may appear to contradict our analysis of Exam-
ple 4.1. Explain why it does not.

5. Apply the necessary condition of problem 4, Exercise 2.4, to
Example 4.1.

4.5 CONCLUDING REMARKS ON THE
0-CALCULUS

The 8-formalism is a technique for generating Euler equations in form
(2.24). For problems with variable endpoints (see Exercise 2.6, problem
11, and also Section 5.2) one can also obtain the so-called transversality
conditions with the use of 8, but this is not done in the present book. All
such results can be obtained without use of the operator § and, once
obtained, can be applied directly to particular examples.
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Those who have developed facility with the 8-technique tend to repeat
the full ritual exhibited in Section 4.3, including a Lagrange integration
by parts with every example. This is not only inefficient repetition that
can be omitted by simply writing the Euler equation but is conducive to
errors. For complex problems like those of Chapter 5, a great many steps
are required to do the job that corresponds to Section 4.3 for the simple
problem. It is very easy to overlook a term or make some other elemen-
tary blunder in the course of a sequence of equations running through
several pages.

The second variation is an inadequate tool for dealing with the impor-
tant question of sufficiency. This is the fatal weakness of the formal
approach to the calculus of variations.

In addition to the weak variations discussed here, there are strong
variations w(t,€) having derivatives w(t,€), which, in contrast with the €7 in
our definition of 8j, need not converge to zero with €. Much attention
was given to these matters in the nineteenth century, but such work is
not a part of the mainstream. In our derivation of the Weierstrass
necessary condition in Section 2.8, the difference y(¢) —y,(f) between the
comparison function y of (2.32) and the minimizing function y, was a
strong variation, but there was no need to use that term. For further
information on strong variations, see Bolza (XI, 45-53) or Osgood
(XXXI, pp. 357,379).

We also mention that a number of mathematicians, among them V.
Volterra and M. Fréchet, have defined derivatives or differentials in the
context of general functional analysis. A review of this area up to 1931 is
provided by the dissertation of R. G. Sanger (XV, for the years 1931-
1932). There is a continuing active interest in the Fréchet differential,
which extends the notion of a first variation 8J and which will be found
in books on functional analysis.

4.6 INTRODUCTION TO HAMILTON’S
PRINCIPLE

The remainder of this chapter, like the first part, is largely indepen-
dent of the rest of the book. Brief treatment of this subject usually has
been included in introductions to the calculus of variations, and we
follow that tradition. See, for example, Akhiezer (I, pp. 186-189),
Bliss [5(a), pp- 710-714], Bolza (XI, pp. 5564-557), Pars (XXXII, pp. 128-
136), and Weinstock (XXXVII, pp. 74-92). For a more extensive treat-
ment see Lanczos (XXIII) or Osgood (XXXI, pp. 356-388).

The variational principle usually ascribed to W. R. Hamilton by
American and west European authors is called-the Hamilton-Ostro-
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gradski Principle by Akhiezer (I, p. 186), with the name of M. V. Ostro-
gradski, a contemporary of Hamilton, included.

A particle or point-mass is an idealization consisting of a point with
positive mass. For certain purposes of analysis an extended body of
mass m can be replaced by a particle of mass m located at the center of
mass of the body.

Given a system of n particles with respective positions (x;,y;,z;) at time ¢
in a cartesian coordinate system and with respective fixed masses m;, ¢ =

1,...,n, the kinetic energy T of the system can be defined by the relation
4.16) T = {my&2+3+2), summedonifrom1 ton.

There may or may not exist a function U called a potential from a
subset S of R3"*! to R with values U(t,x,,3,,2;, . - . s%n,¥n:22) and such that
values of its partial derivatives

Upo Uyp Usy  i=1,...m

are the components of force acting on the ith particle in the respective
directions of x, y, and z coordinate axes at time ¢.

If and only if there exists a potential U, the particles are said to bein a
conservative field and Hamilton’s Principle asserts that the motions of all
the particles will be such that the 3n Euler equations in form (2.25) for
the integral

4.17) J 09021 - - Xnrta) = [ (T+U) dt

will hold on every time interval.

The present discussion is in the spirit of classical mechanics, which
excludes discontinuities of derivatives. We accordingly ignore the
integral form (2.18) of the Euler condition and generally use (2.25) but
may occasionally use (2.24).

It is shown at the end of Section 4.8 that Hamilton’s Principle is essen-
tially equivalent to a set of differential equations for a dynamical system
that are obtained from Newton’s law of motion F = Ma. The principle is
a concise alternative way of stating something that is already a part of
newtonian mechanics.

The principle frequently is stated in terms of the operator § and a
function ¥ = —U by the equation

(4.18) 8 [(T—mydi=o.

There seems to be no general agreement on notation or signs in poten-
tial theory. One writer’s potential may be our U, another’s our V, or the
meanings of these symbols may exchange the meanings given above.

If %(2) is the position of a particle moving on the y axis and if the velo-
city %) =0, this situation is described by saying that the particle is
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stationary at ¢ or that y is stationary at ¢,. By imperfect analogy, an
integral J is often said to be stationary at y, or J(y,) is called a stationary
value of the integral if the first variation of J is zero at y,. This stationarity
of a functional has no intuitive interpretation comparably simple to that
of an object that is “instantaneously at rest” in the sense that its velocity
vanishes at a particular time. That J is stationary at y, means that (87 ) ()
= 0, that is, that y, satisfies the Euler necessary condition for an extre-
mum, no more and no less.

It is frequently, although incorrectly, stated that Hamilton’s Principle
requires motions that minimize the integral in (4.18), for example, in
(X, p. 554) or (XXXVII, p. 74). This is true for sufficiently short time
intervals but not in general, as will be seen from Example 4.4. The only
part of variational theory required by Hamilton’s Principle is the Euler
necessary condition in form (2.24) or (2.25) for the Hamiltonion integral
(4.17). This determines the motions. There is no need to investigate
other necessary conditions nor sufficiency criteria to use Hamilton’s
Principle.

4.7 EXAMPLES

EXAMPLE 4.3

Investigate the idealized planar motion of a particle of mass m in the vicinity
of a flat motionless earth with constant downward gravitational acceleration g.

Discussion
The n of Section 4.6 is unity. Choose the plane of motion as the (x,y)
plane with upward-directed y axis. Then z(¢) = 0 and z is eliminated from
the analysis. By (4.16),
T =3im(x2+5?).

In order to seek a potential U, we can ask what work is required to lift a
particle of weight mg from any fixed height y, to height y. The result, by
elementary physics, is

U(x,y) = mg(y—y)-

One verifies that U, =0, U, = mg, and hence that the components of
force acting on the particle are 0 and —mg in the respective coordinate
directions, as they should be. Observe that this result is independent of
the choice of y,, therefore that we may as well take y; = 0 for simplicity
and use the Hamilton integral

(4.19) J(xy) = [ [m(#+5) —mgy] de.
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The condition for stationarity of J, 8/ = 0, is equivalent to the pair of
Euler equations

d d
gm0 =0
which, for integral (4.19), are
m% =0, my+mg=0.

These familiar equations are derived in many elementary books on
physics or calculus without any need to mention Hamilton. Our object
here is simply to see how such a result fits into the present framework.

EXAMPLE 4.4

Apply Hamilton’s Principle to the motion of a particle of mass m on a friction-
less x axis, the only force being directed toward the origin and with magnitude
proportional to the displacement from the origin.

Discussion

Everyone knows that the answer is the differential equation is ¥+ kx =
0 for simple harmonic motion, but we wish to see how to get it by the
present method. To find the work we must integrate force kx with

respect to distance. Thus
V=[lxde = e,

where again we take the most convenient constant of integration, namely,
zero. Clearly T = $m#* and integral (4.18) is

(4.20) J(x) = [ ¥(m#— ke2) dt,

for which the Euler equation is the one stated above.

This concludes the use of Hamilton’s Principle in this example, but we
now investigate when a smooth function x,: [#,t;] = R satisfying condi-
tion I for (4.20) will minimize J(x) on the class of PWS functions each of
which is coterminal with xo. To simplify the details, take m = k = 1. This
is essentially the integral of Example 4.2. The solution x,(f) = 0 on the
interval [0,2] that minimizes J(x) according to Example 4.2 has a trivial
interpretation. The particle remains at rest. Nevertheless, this solution
%(¢) on various intervals [0,t,] will serve our purpose.

The figuratives u =#r*—x%) constitute a family with parameter x.
They are convex parabolas and f,.(¢,x,r) = 1, a constant; hence condition
I1I; holds and this implies III' and IIy. The solution A(t,0) of Jacobi’s
equation, vanishing at ¢t = 0, is

A(t,0) =—sint;
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henceift, < , x, satisfies I, IIy, III’, and IV’ and, by Theorem 3.6, J (x,)
is a proper strong local minimum. It can be shown that a field in the
large exists and that actually J(x,) is a global minimum. If, however,
t; > 7, then IV does not hold. This condition is necessary as a conse-
quence of III' and of Theorem 2.10; therefore, J(x,) is not a minimum
of any type when ¢, > .

However, x,(f) = 0 describes the only state of the idealized physical
system that can occur with boundary values x4(0) = 0, x4(,) = 0if ¢, is not
of the form nr. Pars discusses the exceptional case (XXXII, pp. 130-133)
pointing out, for n = 1, that all functions x, x(f) = b sin ¢ yield the mini-
mum of the integral.

4.8 SIDE-CONDITIONS. AND NEW
COORDINATES

Frequently the domain of J is the subclass of smooth 3n-tuples consisting
of those that satisfy given relations

(4.21) bp(*1,91:215 « + + XnYnsZn) = 0, B=1...,m< 3n,

called side-conditions or constraints in addition to possible endpoint condi-
tions. If m in (4.21) were more than 3» and the constraints were indepen-
dent, as we have tacitly supposed, thén the 3n real numbers x;, . .. 2,
would be overdetermined; that is, the constraints would be inconsistent.
If m were 3n and the constraints were consistent, then the positions of the
particles would be completely determined by the constraints, and such
positions if unique would correspond to both a degenerate global mini-
mum and global maximum of the Hamiltonian integral.

If m < 3n and system (4.21) can be solved for any m of the 3n arguments
in terms of the others, we can eliminate these from the Hamiltonian
integral. It is frequently best tactics to replace the original rectangular
coordinates of the n particles by new variables and to express T and ¥ in
terms of these variables.

EXAMPLE 4.5

Apply Hamilton’s Principle to the ideal double pendulum of Example 1.4 in
Section 1.14.

Discussion
Itis clear, with reference to Fig. 1.1, that
(4.22) T = $m (2 +37) +dmy (+55),
that
(4.23) V = mg(r,— 1) +mgl(ri— 1) + (r:— 3)],
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and that there are two side-conditions

(4.24) Bi=rh  (e—x)2t (e’ =7k

Since there are four coordinates x;, y;, X, y2 and two conditions (4.24),
the mechanism is said to have 4 —2 = 2 degrees of freedom.

Figure 1.1 suggests the possibility of using 6;, 6, as new variables and
we see from the figure that

x; =7, 8in 6, 93 =1, €08 0,

(4.25) .
X, =7, 5in 0, +7,85in 0, 9y, =1;C086;+72C086,.

After substituting these expressions into (4.22) and (4.23), we find that

T = $myr302 + my[r363 + 1363 + 2r,76,6, cos(0, —0,))
and
V = mygr,(1—cos 6;) + myg{r,(1 — cos 6;) + r5(1 — cos 0;)].

Observe that the side-conditions (4.24) are incorporated in these
expressions for T and ¥ and that we need make no further explicit use of
the side-conditions.

With f= T—V, the condition & = 0 is equivalent to the pair of Euler
equations

d

5o =@k iTb?

Exercise 4.3

1. Verify that the differential equations for the double pendulum are

(my + m2)rlb.l + mz"'zb'z cos(6;—6,)
- mzrzé§ sin (0, —6,) + (m, +mg) g sin 6, = 0,
10y + 1101 cos(0;, —0,) + 7,63 sin(6, —0,) + g sin @, = 0.

2. Investigate the ideal simple pendulum along the lines of Example
4.5, finding a differential equation for 6, the signed angular displace-
ment of the cord from the vertical, by Hamilton’s Principle.

3. Apply Hamilton’s Principle to the problem of two bodies of masses
m,, my that are subject to a mutual attraction of magnitude km,m,/r*
but to no other forces.

We turn now to the relationship between Hamilton’s Principle (4.18)
and Newton’s second law of motion F = Ma. Given particles with fixed
masses. m; and positions (x;,3;,2;) at time ¢, 1=1,...,n, let X;, ¥;, Z;
denote the components of force at time ¢ acting upon the particle of
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mass m; in the directions of the coordinate axes. Then, by Newton’s law,
(4.26) m,~5c'i = Xi mfy',- = Yi and m,-?i = Zi.

Suppose that all coordinates (x;y;z;), ¢=1,...,n, are expressible
in terms of generalized coordinates q,, . . . ,q, by equations of the form

X = xi(qb .- aqk’t)9
(4‘27) )i = yi(qh o .. 7qk?t),

= Zi(qh ... ’qk9t)'

We suppose further that all first- and second-order partial derivatives of
X, %, and z; that may be convenient to this discussion exist and are
finite and that the new coordinates are independent of each other, so
that no smaller number than & new coordinates will serve. The dynamical
system is then said to have k degrees of freedom. In Example 4.5 there are
two degrees of freedom represented by the generalized coordinates
0, and 6,, and equations (4.25) represent a special instance of (4.27) with
right members that are free of ¢ and with no equations for z; stated since
itis understood that z; = z, = 0.
It follows from (4.27) that

(4.28) % = (0x;/3q,) g+ 3x;/0t with summation on r.

Since the right members of equations (4.27) do not involve derivatives
gr, we see from (4.28) that

(4.29) 0%/9q, = ox;/9q,, i=1,...,n and r=1,....k
We also have equations like (4.28) and (4.29) with y and z in place of x.
From expression (4.16) for the kinetic energy T we find by differen-

tiation that

aT/a‘;r =m; (’.Cia’.ci/aqr+5’ia).’i/a‘;r+ iiazi/a‘jr)y
summedoniwithr=1,... k.

It follows with the aid of (4.29) and the companion equations for y and
zthat
8T/8G, = m;(%X;0x;/3q,+ 3;0y:/3q, + 2:9z:/3q;).

Taking the derivative of each side with respect to ¢, we have that

(4.30) d(98T/34,)/dt = m; (X;0x;/0q,+ ¥:9y:/99, + %:92:/3q;)
+m; [%;d (0x;/9g, ) [dt + 3;d (8y:/9q,) [dt + 2:d (8z:/8g, ) dt].
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We find by differentiation of expression (4.16) for T with respect to
gr that

(4.31) 0T/3q, = m; (%;0%;/3q, + 5:89:/3q, +2;02:/3¢,) -
Itis a further consequence from (4.27) that
0%;/8g, = d(9x;/3q,)/dt

with similar equations in y and z; hence from (4.31),

d d . d
(432) aYﬂlaqr =m; [‘ila ( 3xi/311r) + 5’1& ( ayi/aqr) + Zizt' ( ali/alh) ] .

Suppose finally that there exists a potential U= U(t,x;,91,21,- - - »
Xn,¥n>2a), hence that the right members of equations (4.26) are the partial
derivatives of U with respect to x;, y;, and z;. We can express U in terms of
q1, - - - ,qx by means of (4.27) and

(4.33) 3U/ag, = (8U/ax;) (8x;/8¢.) + (0U/oy;) (3y:/3¢,) + (8U/dz;) (3z:/dq;)
= X;0x;/8¢, + Y;9y;/09. + Z,9q,,
while

(4.34) aU/33, =0

since the expression for U described above is free of §,.
It follows from (4.30) through (4.34) that

d d
(435) 3 (3T/od,) —3TJag, = 3UJag, ==, (3U/34) +0Uldq,
g r=1,...,k

These are the Euler equations for the integral (4.17) in terms of the
independent coordinates ¢,. With —V in place of U, we obtain the Euler
equations for the integral (4.18).

The case & = 3n in which

Xi = G3i-2> Yi= 43i-1> Zi = {3i, 1= 17 BRI ()

is included under (4.27) and the preceding discussion. One verifies for
this case with the aid of the third member of (4.33) and the fact that

T =4%m; (§Ri-2+ 331+ 43:)
that equations (4.35) reduce to the equations (4.26) expressing Newton’s

second law. The examples in Section 4.7 involve no constraints and
hence fall under this case.
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When constraints are present, as in Example 4.5, one hopes to use
them so as to express integral (4.17) or (4.18) in terms of a set of in-
dependent coordinates before introducing the variation of the integral.
This is an essential feature of Euler equations (4.35). Unless the con-
straints are of simple form, it will not be possible to obtain a system of
equations (4.27) with right members that are combinations of elementary
functions.

49 THE GENERALIZED HAMILTON
PRINCIPLE

The extension of (4.10) to the case in which the y of that relation has
many components can be applied to a potential ¥. We now have 3n
components X;,1,21, - - - »%p,¥n,2, and, by the extension of (4.10),

(4.36) 8V = (9V/ax;) &x;+ (3V/ay;) 8y + (aV[dz;) 8z,
with summation on i from 1 to n.

A potential V has the dimensionality of work, hence so also does &V,
which can be thought of as work against a force-field that results from
giving the respective n particles displacements 8x;, 8y;, 6z; in the respec-
tive coordinate directions. However, such displacements are not actually
executed by the moving particles. Given their positions [x;(t),y:(¢),
z(¢)], i=1,...,n at time ¢ on a possible set of paths, then [x;(¢)+
(8x;) (), y: (¢) + (8y:) (¢), z; (¢) + (8z;) (¢)] represents positions for this
same time ¢ on another set of paths for the n particles. Since the particles
will not actually move in the directions corresponding to 8x;, 3y;, 8z,
(4.36) is called virtual work.

Condition (4.18) and relation (4.36) are restricted to conservative
systems, for which the forces are the negative partial derivatives of V.
There must be no frictional or other dissipative forces. For a system that
includes such forces, let X;, Y;, Z; denote components of the resultant
force affecting the particle of mass m; and set

(4.37) Wg . Xi Sxi + Yi 8}’1 + Zi 811'.

This reduces to (4.36) iff the only forces are conservative. We have used
the symbol W; rather than W to avoid the question whether the right
member is or is not the variation (4.10) of some function.

It can be shown that the particles will move in such a way that

(4.38) [ (6T—w;) de=o.
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This is Hamilton’s Principle for a general, not necessarily conservative
system. This condition does not say that a functional J must have a
minimum or even, as in the special case (4.18), that a functional must be
stationary.

EXAMPLE 4.6

A particle moves on an upward directed y axis subject to its weight and to a
frictional force of respective magnitudes mg and k|5|. Apply (4.38) to obtain the
equations of motion.

Discussion
Clearly T = $m)*. The resultant force acting on the particle is mg+ ky;
hence
W5 = (mg+kj) 8y,
and (4.38) is the equation

(4.39) f [my85 — (mg+ky) 8y] = 0.

Since we did not start with an integral J (y), we do not have an integrand
f for which to write an Euler equation but must integrate the term in
8) by parts. After doing so and using end-conditions (8y)(t,) = (8y)(t;) =
0, as was done in Section 4.3, relation (4.39) reduces to

f— (my+mg+ky) 8y =0,

and, as a consequence of the arbitrary nature of 8y, we conclude as in
the derivation of (2.24) by the procedure of Section 4.3 that

my+ky+mg = 0.

Given a second-order ordinary differential equation, there is
(XI, pp. 37-39) a large class of integrands f for which the given equation
is the Euler equation (2.25). One such in the present instance is

f(ty,r) = exp[—k/m2g(mr+ ky)].

This has no immediate physical interpretation comparable to T—V in
(4.18). Conceivably, the general Hamiltonian integral (4.38) could
always be replaced by a condition 8 fdt= 0, in form (4.18), for which
f has a useful physical interpretation, but whether such is the case is not
known to the author.
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4.10 APPLICATIONS TO ELECTRIC
NETWORKS

An idealized lumped parameter electric network consists of inter-
connected resistors, inductors, and capacitors with respective associated
positive constants denoted by R, L, and C, together with energy sources.
We consider the case of a voltage source characterized by a real-valued
function E defined for nonnegative time ¢.

Given an electric network and a time ¢, each capacitor will carry a
charge ¢(t) and each branch will carry a current ¢ (¢). The quantity

(4.40) = $S;q%, summed on j,

where elastance §; is the reciprocal of the capacitance C; of the jth
capacitor, is analogous to the potential of a mechanical system. Whether
a branch contains a capacitor or not, we can always replace the current :
by the symbol § and the quantity

(4.41) T=3%Lgz, summed on k,

is analogous to the total kinetic energy of all masses in a mechanism.

Given a conservative network and hence one which consists only of
L’s and C’s with. no resistors or voltage sources, Hamilton’s Principle
applies in form (4.18) with the V and T given above. If resistors or voltage
sources are present, we need the general form (4.38). A resistor R and a
voltage E contribute respective terms

Ry 8qx and —E3qx
to the expression for W;.

EXAMPLE 4.7

Given a closed loop consisting of L, R, C, and E connected consecutively in
series, we have one term (4.41) and

We=8(3Sq?) + (RI—E) 8¢;
therefore (4.38) has the form
[{8GLe) —8(Se®) — (RG—E) 8} d.

After carrying through the details, we find the familiar differential
equation

.(4.42) L§+R{+Sq=E.
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Exercise 4.4

1. Verify (4.42) as a consequence of the vanishing of the integral
4.38).

2. fﬁ singIe loop consists of L and C in series. Use Hamilton’s Principle
to obtain the equation LC§+ ¢ = 0.

3. Given the two-loop circuit in Fig. 4.1 with §y, §, now being so-called
circulating currents so that the downward current in the resistor is
¢1— g, verify that (4.38) is of the form

[ 38 (Lig2+ Lod2) —18(S1g3+S203)
+R(§1—§2)8(q1—¢qs) —E3q:} dt=0;

then find two differential equations.

———200~ ls'r \.Q%O.Q/—ll——

1

<E> i,\) * ‘3=\_>

FiGure 4.1

4.11 CONCLUDING REMARKS

With the exception of Example 4.5 we have followed the common
textbook custom of giving simple examples for which the differential
equations of the system are more easily obtained in other ways. For such
examples from mechanics one can identify the forces and use Newton’s
second law; for the electrical examples, Kirchhoff’s laws suffice.

When we turn to more complex examples, Hamilton’s Principle can
offer tactical advantages. To obtain the differential equations for
problem 1, Exercise 4.3, directly from Fig. 1.1 and Newton’s law F = Ma,
one must include the centrifugal force acting at an arbitrary time ¢ on
the lower particle, a step that is somewhat tricky.

One must not, however, expect Hamilton’s Principle to be a panacea
for attacking particular examples. Its major contribution is to the
conceptual and theoretical framework of certain parts of mathematical
physics.
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The principle can be extended to systems for which the domain of
J is a class of functions of more than one variable. It then leads us to
Euler equations for multiple integrals, to be mentioned in Chapter 12.

In dealing with the generalized Hamilton Principle, the operator &
is a convenient tool. Although it has been used throughout the chapter
to familiarize the reader with it, it could just as well be eliminated from
all but the last two sections.



Chapter 5

THE
NONPARAMETRIC
PROBLEM OF BOLZA

5.1 INTRODUCTION

We shall now consider an extension of the ideas of Chapters2 and 3 to a
type of problem published by Bolza (7a) in 1913. The domain % of the
functional J consists of all continuous PWS vector-valued functions
y= (9%, ...,y") each of which is from some interval [t,,t,] to R* and each
of which satisfies given constraints (side-conditions) ¢ (¢,%,%) =0
together with given end-conditions (initial and terminal conditions).
The end-conditions may or may not fix the interval [, 4], the initial
value y (%), or the terminal value y (¢;).

Any dynamical system for which the mathematical modelis a system of
ordinary differential equations is a possible source of Bolza Problems of
the type to be discussed. These dynamical equations are supposed to be
given together with a suitable function J that is a measure of perform-
ance of the system. One then desires a minimum or maximum value of J.

106
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5.2 EXAMPLES

EXAMPLE5.1

Given an ideal pure inductor with coefficient of inductance L in series
with a capacitor of capacitance C and a voltage ¥, we have in accord with
standard electric circuit analysis the system of equations

(5.1) Li+Q/C=V and Q=I,

in which Q denotes the charge on the capacitor and I the current.
These are the side-conditions or constraints. As end-conditions take

(5-2) to = 0, tl =, Q_(to) = 0, I(to) = 0, Q(tl) = az > 0.

Does there exist among all triples (Q,I,V) of continuous PWS
functions satisfying conditions (5.1) and (5.2) a triple (Q,, I, ¥,) such
that the terminal energy $LIZ(t;) in the magnetic field of the inductor
is a minimum? If such a minimizing triple does exist, what are the
functions Q,, Iy, ¥y, and are they unique?

The state of this system at time ¢ is given by the pair of values Q (), I(t),
while we think of V() as controllable. The criterion of optimality is the
function J with values

J(Q,1,V) = 3LI(¢,).

As stated above, the objective is a minimum value for J. In another
problem we might desire a maximum of a function.

This problem is possibly of no practical importance but will be used
for further illustration under Example 5.8 in Section 5.9.

EXAMPLE 5.2

See Example 1.5, Section 1.14. This example is essentially that of
reference (29a). We are interested in the existence and characterization
of a triple (xo, yo, o) among all continuous PWS triples (x, y, p) satisfying
the constraints (1.39) and end-conditions (1.40) and such that the time T
required for the state [x(t),y(¢)] to go from (a,b) to (&, k) have the
least possible value. We thus desire the global minimum of

(5'3) Jl (x’y,p) = T,

or, alternatively stated after integrating the first equation (1.39), the
global maximum of

(5.4) s = [ (L)rma

to

The problem will be examined further as Example 5.9 in Section 5.9.
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5.3 FORMULATION OF THE PROBLEM
OF BOLZA

In stating or treating an example generated by a potential application,
it is helpful to use established symbols from the field in which the
example arises as in Example 5.1. In discussing the theory we use a
neutral vector notation.

Let % denote the class of all PWS functions y: [t,t;] = R™ satisfying
side-conditions

(5.5) &s(t,y,5) =0, B=1,...,m, 0=m<n,
and end-conditions

(5.6)  Pulto, y(to),th}’(tl)] =0, nw=1,...,p,2<p<2n+2.

Functions y € ¥ are called admissible. They and only they are admitted
to competition. Given a functional J,

(5.7) T () = glto,y(to), 1,y )1+ [ £ (1,5,5) d,

the Problem of Bolza is by definition that of the existence and character-
ization of admissible functions y, such that J (y,) < J(y) or = J(y) for
all y € ¥ or such that J (y,) is a strong or weak local extremum, terms
that will be defined presently in such a way as to include as special
cases the meanings given in Section 2.4.

Having exhibited an outline of the problem, we now fill in some
essential details. That y is PWS means that every component y* of y is
PWS under the definition of Section 1.9; hence each yi is continuous,
and again we understand continuity to be included under the descriptive
term PWS. If at least one component of y has a corner in the sense of
Section 1.9, then y is said to have a corner. That a PWS function y
satisfies a differential equation (5.5) on an interval means that ¢4[¢, y(2),
5(¢)] = 0 for all ¢ not corresponding to corners and that, if ¢ corresponds
to a corner, the equation holds with §(¢) interpreted as either 57(¢) or
yH(2).

Our formulation is essentially but not precisely that of Bliss (IX, pp.
189, 193-194). The domain of f and of each function ¢, is understood
to be a cartesian product (a,b) X R*X R*, where the interval (a,b)
contains all intervals [¢),t,] consistent with end-conditions (5.6). The
domain of g and of each y, is an open subset of R?"*2 Jarge enough to
contain all (2n+2)-tuples [t,y (%), ¢, y(¢)] that are attainable. That
such a set of end values is attainable means that there exists a PWS
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function y satisfying system (5.5) in the sense described above and that
the domain [f,t] of y and the end values y(t),y(#;) satisfy system
(5.6). Consequently, if each equation (5.5) is a differential equation as
the notation ¢4 (t,y,y) = 0 suggests, if all partial derivatives of f, ¢g, g,
and ¥, that we may wish to introduce exist and are continuous and if
each of the systems (5.5) and (5.6) consists of independent equations,
then all major results in Bliss (IX, part II) apply to the present problem.
We call attention in Exercise 5.3, problem 7, to the case in which con-
straints (5.5) are free of j.

We adopt a blanket hypothesis to the effect that all partial derivatives of
f, &5, g, and ¥, that may be needed at a given stage of the discussion
exist and are continuous. We must be prepared to distinguish between
subscripts 8 and u that are indices and additional subscripts that denote
partial differentiation. Notation becomes heavy in places, and although
such symbols as y, and y, are generally reserved for particular admissible
functions, they will be used occasionally as abbreviations for y(#) and
y(t,) in such expressions as the left member of (5.6) or in the g term of
(5.7).

The formulation has not required explicitly that the m+ p conditions
(5.5) and (5.6) be consistent. If they are not, then the class % is empty
and there can exist no optimizing admissible function. In practice, if
one starts with an idealized physical system and chooses side and end-
conditions carefully, they usually turn out to be consistent and also
independent. Bliss imposes conditions (IX, p. 193, Sec. 70) on the ranks
of certain matrices that ensure independence of the m conditions (5.5)
and of the p conditions (5.6). Consistency and independence are less
likely to occur if an example is constructed by choosing functions ¢z and
Y, more or less arbitrarily.

In the event that f(¢,y,7) vanishes identically, the Bolza Problem is
called a Problem of Mayer after Adolph Mayer, who published on such
problems in 1878. If g(%,9%o,t,y) is identically zero, the problem
becomes a Problem of Lagrange. Particular examples of this type were
studied by Euler, but Lagrange is given credit because of his systematic
investigation and use of what are usually called Lagrange multipliers,
even though his proofs were faulty. Only as recently as the 1940s did the
theory reach a relatively complete state. Among major contributors
have been O. Bolza, G. A. Bliss, C. Carathéodory, L. M. Graves, M. R.
Hestenes, E. J. McShane, Marston Morse, and W. T. Reid. For refer-
ences see Bliss (5a, pp. 743-744), (IX, pp. 287-291) and the bibliography
at the end of this book.
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5.4 ALTERNATIVE FORMS OF A PROBLEM

Although the Problems of Mayer and Lagrange are special cases of that
of Bolza, the latter is equivalent to either a Mayer or a Lagrange Problem
if we are willing to add a component to y.

Given the problem of Section 5.3, introduce the additional side-
condition y"*! = 0 and the additional end-condition

Y (t) = g(tosYortrsy1)/ (b1 — o)

The original Bolza Problem is then equivalent to the Lagrange Problem

Ji(y) = f:: [f(t,y.5) +y**1] dt = extremum on ¥,

where %, consists of all PWS functions (y', ... ,y"y**?") satisfying (5.5)
and (5.6), respectively, augmented by the side- and end-conditions
given above.

Again given the Bolza Problem we can adjoin the condition

&n+l —f(t,y,y') =0

to (5.5) and y**(¢,) = 0 to (5.6). As a consequence of these conditions,
() = [, fIra(r)p(r)] dr
and the original problem is equivalent to the Mayer Problem
J2(9) = glto,Yo,t1, 1) + Y2+t = extremum on ¥,

where %, consists of all PWS vector-valued functions with »+1 com-
ponents satisfying the augmented systems (5.5) and (5.6).

Sometimes itis possible to choose among alternative forms of a problem
without increasing the values of n, m, and p as illustrated by the two
functionals in Example 5.2. As another example, suppose given a pro-
blem with the side-conditions

(5.8) mo+cm+kolv|+mg=0 and F—v=0,
with ¢, k, and g being positive constants.

If for the moment we regard v and y as known, then (5.8) is a differential
equation of the first order in m and, after division by m and integration,
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mlty) _ [ (kelel | .
(5.9) clnm(t‘l’)—fto( m +v+g)dt

51
=f lLylnvlde(tl) —v(t) + (4, — 1) g-
to

To minimize the ratio m(f)/m(¢,) subject to side-conditions (5.8) and a
given set of end-conditions is then equivalent to minimizing any of the
three expressions (5.9). The three minimum problems are, respectively,
examples of the Problems of Mayer, Lagrange, and Bolza.

Each of the three is a mathematical model for the problem of pro-
gramming the vertical motion near the earth of a rocket propelled
vehicle so as to minimize the ratio of initial to terminal mass. Under the
classical formulation of Section 5.3 with PWS vector-valued functions
(y,v,m), each of these equivalent minimum problems will, like Example
1.6, fail to have a minimizing triple (y,,v0,m9) except when initial and
terminal values of v are chosen in a special manner.

5.5 CONSTRAINED EXTREMA OF
POINT-FUNCTIONS

Given a finite set of functions ¢,: R*—> R, a= 0, 1,...,m < n, each
having finite first-order partial derivatives, let S denote the subset of
R™ consisting of all points x = (x, . . . ,x") satisfying the system of equa-
tions

(5.10) dux) =0, a=1,...m<n.

Consider the problem ¢(x) = extremum on S. The case m = n in which §
is generally empty or at most a finite set need not concern us.

Theorem 5.1

Given the functions ¢po: R* = R, a = 0,1, ... ,m described above and given
%o € R™ satisfying the system of equations (5.10), then a necessary condition for
do(xo) to be a relative extremum on S is that there exist constants No, Ny, . . . An
not all zero such that the partial derivatives OF[oxi,i=1,...,n of F = Ag¢po+
oo A all vanish at x,.

PROOF
(Bliss). The equation

(5.11) Go(x) = Polxo) +u

clearly holds for (x,u) = (x0,0). Consider the following matrix, in which
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¢o; denotes 3¢, /dxi, a =0,1,... ,mandi=1,...,n > m:

bo1(%0) Boalxo) - - - Pon(xo)
b11(x0) Dralxe) - - PralX0)

(5.12)

Bra(0) bmae) “  Bralo)

If the determinant of the first m+1 columns is not zero, then, by a
standard existence theorem for implicit functions (the extension of
Theorem 1.1 to m+ 1 variables), the system of m+ 1 equations (5.11) and
(5.10) determines a unique (m+ 1)-tuple (x%,...,x™*!) corresponding to
each point (x™*2, ... x"u)near (x§"*%, ... x2,0), for some of which u > 0
and for others of which u < 0; consequently ¢¢(xo) can be neither a
minimum nor a maximum. This same conclusion is similarly reached if
any other combination of m+1 columns of (5.12) has a nonvanishing
determinant. We therefore infer that, in order for ¢¢(x,) to be an ex-
tremum, it is necessary that the rank of matrix (5.12) be below m+1.
This is known to be a necessary and sufficient condition for the n-vectors
whose components are rows of the matrix to be linearly dependent,
which means by definition that there exist constants Ag, A;, . . . ,An, notall
zero, such that

(5.13) NoPoi(X0) + Mid1i(%o) +* + * + AmPmi(x) =0, i=1,... .

This is the stated conclusion.

Given m+ 1 functions, then, by choice of labels, any one of them can
be the ¢, of the preceding theorem; hence the conclusion is independent
of which function ¢, is to be maximized or minimized so long as the
others equated to zero provide the constraints or side-conditions. This
observation is the Reciprocity Theorem for constrained extrema.

If (5.13) holds for a given set of Lagrange multipliers, it also holds for
any set obtained by multiplying all those of the first set by the same
constant. Of course (5.13) holds trivially if A, =0, a =0, . . . ,m. If there
exists no nontrivial set of multipliers satisfying (5.13) with Ay = 0, then
the point x, € R" is called normal. If there is a set of multipliers satis-
fying (5.13) with Ay =0 and some A, # 0, then x, is abnormal. In the
normal case we can always replace a nontrivial set of multipliers by
L, Ai/Xo, - - . ,Am/Ao OF realize the same end by simply setting Ao = 1.

The normal case, as its name suggests, is the one most frequently
encountered. It takes a little care to construct an example that involves
an abnormal point.
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EXAMPLE 5.3.

x—1y = extremum subject to the constraint x2+y*> = 0. Set
F(x,y,MM1) = Ao(x—y)+ Ar(x2+y%).
Then, by (5.13),

Xo+ 2A1x = O,
(5.14)
"‘Xo + 2A1y = 0,

whence by addition, 2\,(x+y) = 0. Now we can choose A\, # 0, since
otherwise (5.14) requires that Ay = A\; =0, contrary to Theorem 5.1. It
follows that x+y = 0, hence from the constraint and (5.14) that (x,y%) =
(0,0) is an abnormal point and that A, = 0. Observe that the set S deter-
mined by the side-condition consists of the single point (0,0).

Lagrange multipliers are treated inadequately in a number of text-
books. Frequently no proof of the existence of multipliers is attempted.
The function F with A, arbitrarily chosen as unity is simply presented
along with one or two examples that fall under the normal case. Some-
times there is a proof with the hypotheses loaded so as to exclude the
abnormal case.

We shall not discuss sufficient conditions for constrained extrema of
point-functions.

Exercise 5.1

Find critical points, that is, points satisfying necessary condition (5.13)
and the given constraint.

1. x%2+ 5% = extremum, 4x*+ 3y = 12.

2. x+ 2y— 322 = extremum with the constraints x—y =2 and x+2y = 4.

3. x+2y = extremum with constraining inequalities x+y—1 > 0 and
y—x—1 < 0. To bring this under Theorem 5.1, set x+y—1=w?®
andy—x—1=—22

5.6 DIFFERENT KINDS OF EXTREMA

We now extend the concepts of Section 2.4 to the Bolza Problem (5.7).
That y, € # furnishes a global minimum means, as in Chapter 2, that

(6.15) Jo) <J@p), VyeE
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We also wish to define local minima.

Let x: [t,,t;] = R™and y: [ue,u;] = R"be two vector-valued functions in
the class % of all such functions that are PWS and satisfy side-conditions
(5.5) and end-conditions (5.6). The domains of x and y are in general
distinct intervals. Although there conceivably may be occasions in which
it becomes desirable to include among admissible functions degenerate
cases for which the interval consists of a single point, we confine attention
here to those whose domains are intervals of positive length. A suitable
modification of what follows would serve to include the degenerate
functions.

Let h: [tost;] —> [uo,u,] be the linear function with values

U,

0
to

(5.16) h(8) = o+ 2—

t (t_to) .

Define a distance of order zero dy(x,y) between x and y by the statement
that

(5.17) do(x,9) =sup{lt—h(t)|:t € [to,ts1}
+sup{|x(¢) —y[~()]|:t € [to,t:,]}.

The first expression with bars is an ordinary absolute value, the second
is euclidean distance between two points in n-space. Both x and the
composite function y°k are continuous on [#,t]; hence the euclidean
distance |x(¢) —y[A(¢)]] is continuous in ¢ on [#,¢,], and there must exist
t* € [to,t] at which the supremum is realized. A similar remark applies
to the first term on the right in (5.17). Thus each supremum in (5.17) is
actually a maximum.

It can be verified that dy(x,y) has all of the properties required in the de-
finition (Section 1.10) of a metric space. In the special case [uo,u;] = [t,1:],
the function A reduces to the identity mapping k(t) = t and (5.17) becomes
the extension to n-space of the zero-order distance of Section 2.4.

Also define a first-order distance

(5.18) dy(x,y) = do(x,9) +sup{|(¢) —5[h(t)]|:t € [to,t]*},

where [f,4,]* denotes the interval [t,¢] less the finite set of points
corresponding to possible corners of x or y, at which values of ¢ either
#(8), [k(t)] or both fail to exist.

We shall understand neighborhoods of orders zero and one to be
defined by the same statements used in Section 2.4 but now for distances
(5.17) and (5.18).

Our choice of the linear mapping % in definitions (5.17) and (5.18) is
arbitrary. It happens to be the simplest strictly increasing function from
an interval of positive length to an interval of positive length and it
suffices for our purposes.
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Any other distance di(x,y) so related to do(x,y) that every neighborhood
U(8,,%) contains a neighborhood Uy(8;,x) and vice versa would serve as
well. A similar remark serves to characterize the class of acceptable first-

order distances. )
If there is a function y, € % and a positive real number & such that

(5.19) J(y) <J(3), Yy € Z N Uydy),
then J(y,) is a strong local minimum. Similarly, if
(5.20) J(yo) <J(y), Vy€Z N Uy

then J(y,) is a weak local minimum. These definitions, identical in form
with (2.10) and (2.11), extend the content of (2.10) and (2.11) to the pres-
ent more general problem. Three types of maxima are defined by
reversing the inequalities in (5.15), (5.19), and (5.20).

Exercise 5.2

. x(¢) =t,0<t=<1,and y(w)=u—1,1 < u < 2. Find dy(x,y) and d,(xy).

2. Show that the set of all PWS functions y from a compact interval of
positive length to R™ together with the distance of order zero de-
fined by (5.17) constitutes a metric space.

3. Denote the second term on the right in (5.18) by a(x,y). Show that
a(x,y) lacks exactly one of the properties (1.29) but that d,(x,y) has all
properties (1.29).

4. Let y,: [-1,1] = R be the fixed function with values y,(f) = ¢. Describe
the class of all functions y: [1g,u,] = R that are in the neighborhood
U(8,30)-

5.7 THE MULTIPLIER RULE

We now investigate the analogue of Theorem 5.1 for the Problem of
Bolza formulated in Section 5.3. We shall need constant multipliers
Aose1, - - - »¢, together with multipliers A, (z), . . . , A, (2).

Results are stated with the aid of auxiliary functions F and G defined
as follows:

(5:21) F(tyrN) = Aof (t.y,1) + As(O)bs(t,y,7)s
(5'22) G(to,yo,tl ’yl) = Aog(to»}’o»tl ’yl) + eull’u(to»yo,tx yyl)'

Repeatef:l indices B in (5.21) and u in (5.22) are understood to indicate
summation from 1 to m and 1 to p, respectively. Although the right mem-
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ber of (5.22) involves Ao, e, ... ,e,, it is convenient to suppress these
arguments in the symbol on the left for a value of G.

Theorem 5.2, which follows, is the Euler necessary condition for our
Bolza Problem. Theorem 5.3 is the transversality condition. The combined
results of these theorems are called the Multiplier Rule by Bliss (IX,
p- 202). At a time when only fixed-endpoint problems had been investi-
gated, the same term referred only to Theorem 5.2.

Theorem 5.2

Ifx: [to,t;) = R™ minimizes J(y) on ¥, there exist multipliers

(5.23) )\09 Al(t)’ LR ’Am(t)
with the following properties:
() If o =0, then \y(2), . . . ,Am(t) do not vanish simultaneously anywhere on
[to,t1]-
(i) Ay, ... Ay are continuous on [to,t,] except possibly at t values where X is
discontinuous.

(iti) They satisfy with x and a certain constant n-vector c the vector-equation
t
6.24)  F[tx() 2OAM0D] = [, Flrx(r) 20 A()] dr+e.
Symbols F, and F, denote n-vectors whose components are the partial
derivatives of F with respect to components of r and of y, respectively.
Equation (5.24) is equivalent to a system of 7 scalar equations.

For any ¢ at which # and hence also \ are continuous, we can differ-
entiate (5.24) to obtain the vector equation

(5.25) Fyltx(0) x(1),A0)] = % F[t.x(8),%(1),M(1)]-

In stating the next theorem we use the abbreviation xj = x(t,), i =
1,...,nand similarly for xi, £, and X;. We also set

[Fl; = Fltx(8) () A ()],  j=0,1

anduse [Fi]j’ i=l-,...,nandj=0,1

for the components of F, evaluated at ¢, and ¢,.

Theorem 5.3
Ifx: [to,t,] = R™ minimizes J (y) on ¥, there exist constant multipliers

(5.26) Ao, €15 .- 56p
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with the following properties:

(1) Ao, Mi(2), . .. ,Au(t) have all properties stated in the preceding theorem.
(i1) Agser, - - - &, are not all zero.
(ili) The following 2n+ 2 transversality equations hold:

3G/dty+ %0G/axy—[F]o = 0, with summation on i from 1 to n,

3G/t + %iaGloxi+ [F], =0, with summation oni from 1 ton,
(5.27)
3G/dxi—[Filo= 0, i=1,...n,

aG/oxi + [Fi], =0, i=1,...,n

System (5.27) is equivalent to the Transversality Condition stated by
Bliss[IX, p. 202, (74.9)] in a more compact form. The reader is asked to
verify that (5.27) also is equivalent to the system of (2n+2) equations

[F]O_J.C:)[FJ():aG/ato, Su‘mmedoni,

[Fli—%[F:], =—aG/et,, summed on i,
(5.27%)
[Filo = 3G/ax}, i=1,....n,

[F:l = —0G/axi, i=1,...,n

In applications of the Multiplier Rule to particular examples (see
Sections 5.9 and 5.12), it seems to make little difference whether one uses
form (5.27) or (5.27*). However the (n+ 1)-vector with components

[F1;— %i[F:);, summed on i, and [F3);, j=12,

known as the transversality vector, has a geometrical interpretation that
can be helpful. If, for example, we look ahead to Section 5.9, Example
5.4, we see from the classical form (5.34) of the transversality condition
for the case n =1 [also given in a slightly different notation by (2.57) in
problem 11, Exercise 2.6], that this condition requires the transversality
vector to be perpendicular to the graph of Y.

Proof of the Multiplier Rule (Theorems 5.2 and 5.3) is both formidable
and tedious, and we shall sketch only a part of it here. After completing
this chapter, a reader will have acquired a feeling for what the rule says
and does and it will then be easier to endure the details of a complete
proof. Those who have a serious interest in variational theory must,
sooner or later, study some of the proofs. Two important sources are a
long paper (5a) of Bliss and a portion (IX, pp. 201-203) of his Lectures,
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which supersede the original paper (7a) of Bolza. A recent book (XXI)
and paper (20f) of Hestenes give corresponding results for what he calls
(20f, p. 24) the optimal control formulation of the Problem of Bolza.

The special case under the Bolza Problem of Section 5.3 in which both
endpoints are fixed and there are no side-conditions (5.5) is the problem
in (n+ 1)-space to which problem 12, Exercise 2.3, and problem 2, Exer-
cise 4.1, have directed attention. The function F of (5.21) now reduces to
the integrand f and the Euler condition is (5.24) with F reduced to f. The
ith one of the system of n equations to which the vector equation (5.24) is
equivalent can be derived from J(x!,... xi+emn,... x") by following
Section 2.6. Observe that a variation en is added only to the ith argument.
With » = 1 we are back to the problem of Chapters 2 and 3.

Comparison functions of the simple form x+en will not in general
satisfy nonlinear side-conditions or end-conditions. Granted, however,
that x: [£,,t;] = R™ is admissible, Bliss proves (IX, pp. 194-201, 213-215)
that, if x is normal under the definition given in Section 5.8, then it can
be embedded in a family y(-,b): [ty(d),t:(b)] = R™ of parameter b= (!,
...,bP*") such that y(-,b) is admissible and such that y(-,0) = x, hence such
that the domain [#,(0),,(0)] of y(-,0) is the interval [ty,t,] of x. Our ad-
missible functions are those in the class I of Bliss (IX, p. 194). That y(-,b)
is admissible in the sense of Section 5.3 means that, for each b, y(-,b) is
PWS, that

¢B[t?y(t’b)’}.'(t5b)] =0, B= 1,...,m,
and that
‘l‘n{to(b) ,)’[to(b) ’b] 9t1 (b) ay[tl(b) ’b]} = 07 = 1: .. ,P-
It then follows from definitions (5.21) and (5.22) that

(5.28) Flt,y(t,b),5(t,0) A] = Nof [t,3(£,0) ,5(2,0) ]

and that

(5.29)  G{to(6),y[20(6) 01,11 (b) ,y[t:(b) 0]}
= )\Og{tO(b) ,)’[to(b) 7b] atl(b) ’y[tl(b) 7b]}-

Consider the real-valued function _¢ with values
t1(d)
(5.30) Zb) =6{ }+ [, FI 1d,

in which arguments of the left members of (5.28) and (5.29) have been
omitted. By hypothesis in Theorems 5.2 and 5.3, J[y(-,0)] is a mini-
mum, that is, at least a weak local minimum; consequently, _#(0) is a
minimum of _#(b).
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Our blanket hypothesis of Section 5.3 and various omitted details
ensure that ¢ has partial derivatives at b = 0 with respect to all com-
ponents b of b. It is convenient to abbreviate 3,£/9b° by £,. Since
#(0) is a minimum, we have the necessary condition

(5.31) £,00=0, o=1,...,p+1.

In writing expressions for the partial derivative ¢, we shall use the
further abbreviations:

G; = 3G/34;(5) |p=os j=0,1.

Gi; = 8G/3y'[t;(5),0] |o=0, ji=0,1,i=1,...,n

¥ = 3yi(8,6) /96| p=s, i=1l,...mo=1,...,p+1.
35 = 954(2,6) /067 | p=0, i=1,...no=1,...,p+1.
tio = 9t;(6) /967 |p=0, i=0,1,0=1,...,p+1.

In various expressions to follow, a repeated index i in a term will imply
summation from 1 to n.
By differentiating _# with respect to b and then setting 4 = 0 we find

that
ja’(o) = Got00'+ Gio{j’i[t()(o) ,O]t(),-‘i‘){i,[to(o) 70] } + Gltlo
+ G {y[t:(0),01t,0 +5:[:(0),01} + [Flitio — [Flotos

+ [ A [65(60) 5(60), M) 115(60) + F [ 135(6,0)} e

to(0)

Integration by parts of the first term of the integrand yields the

expression
41(0)

. £1(0) o L )
2ol (0),0] [0 Ey di— [\ (35(20) [ Fye ds)ae.

Y
After regrouping of terms we then have that
F(0) = {Go+53Gio— [Flo}too+ {G1 +5iGu + [Fli }t1o
+ il a(0).0] + Ginyils (00,01 4351, (0),0 [ F e
+ ;::) (Fi— t:(o) Fyi ds)55(8,0) dt.
The expression for _#,(0) vanishes as a consequence of (5.31) for

o=1,..,p+1.
It can be shown (IX, pp. 199-200) that, given any real number A, and
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any vector ¢ = (c',...,c") with real components, there exists a unique
set of multipliers A;(t), ..., A, (¢) continuous except possibly at those ¢
corresponding to corners of the minimizing function y(:,0) =x and
such that (5.24) holds.

We then see by setting ¢ = ¢, in (5.24) that ¢! = [F;],, hence that

£1(0)
1;0(0) Fy"dt = [F:],— [Fle.

Returning to the last expression for _#,(0), replace the expression in
parentheses to the right of the last integral sign by ¢’. The integral is

then seen to have the value ¢{yi[#(0),0] —yi[£(0),0]}. With the
aid of these results it follows that

Fo(0) ={ Moo+ { i+ {Gi— [Filo}ri[£:(0),0]
+{G; + [Fi]:} ¥5[4.(0),0],

in which the first two terms are abbreviations for those in the preceding
expression for #,(0). By (5.31), #,(0)=0,0c=1,...,p+1. From this,
with the aid of other omitted details, it can be shown that the multipliers
As and ¢, can be so chosen that all expressions in braces in the last
equation vanish and that moreover this occurs for a set of constant
multipliers (5.26) not all zero and a set of multipliers (5.23) not all zero
for any t € [t,(0),t,(0)] and for which the Euler equations (5.24)
continue to hold. The equations so obtained are precisely the (2n+2)
transversality equations (5.27).

5.8 NORMALITY

Given one set of multipliers (5.23) and (5.26) for which (5.24) and (5.27)
hold, another such set of multipliers is obtained by multiplying all the
first ones by the same constant. If that constant is zero, we get a trivial
set of multipliers.

If there are no nontrivial multipliers (5.23) with A, = 0, the admissible
function x: [t,,t,] —> R" is called mormal, otherwise abnormal. In the
normal case, which is the one usually encountered, we can divide all
multipliers (5.23), (5.26) by A, or alternatively set A, = 1 as in Section 5.5.

In the event that the Bolza Problem (5.7) has a smooth normal mini-
mizing function x, then x satisfies (5.25) on its interval. We now have
the combined system of
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n Euler equations (5.25),

2n+2 transversality equations (5.27),
m side-conditions (5.5),

b end-conditions (5.6),

for the determination of

n components of x (¢),

2n+2 end values ¢y, x* (), t,, x1 (¢,),
m multipliers A, (), .. ., An (),
p multipliers ey, . . ., ¢,.

It is reasonable to anticipate that the (m+3n+p+2) equations will
determine the like number of enumerated mathematical objects but
that the latter may not be unique.

If the minimizing function x has corners, then n constants ¢ also enter
the discussion. If x is abnormal with or without corners there appear to
be various possibilities, which we shall not attempt to classify here.

The problem of solving the system of (m+3n+p+2) equations can
be formidable even in those exceptional cases where the components of
x and A turn out to be expressible in elementary closed form or in
quadratures. In an example to be given in Section 5.12, m+3n+p+2 =
22. This and our other examples have been selected with care.

An optimization question arising in engineering can easily lead to a
Bolza problem with large values of m, n, and p and such other complica-
cations as corners. The mass of detail required by an application of the
Multiplier Rule easily can excede the ability and patience of an analyst.
Moreover, the Euler equations (5.24) or (5.25) and transversality equa-
tions (5.27) will usually involve nonlinearities that exclude the possibility
of an elementary solution in closed form, and one must accept numerical
methods and approximations. These complexities have long stood in the
way of realization of the full potentiality of variational theory for
optimization problems with applications.

5.9 APPLICATION OF THE MULTIPLIER RULE
TO EXAMPLES

EXAMPLE 5.4

J(y) = [ f(t,,3) dt with n =1, m = 0, and p = 3. The three end-conditions
are
to=a, y(t) =b, and y(t,) =Y (t)

where Y: R = R is a given smooth function.
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This is the classic nonparametric problem in the plane with variable
right endpoint. (See problem 11, Exercise 2.6.)

Discussion
With reference to Theorems 5.2 and 5.3 take
F(t,y,’,’\) = )\Of(t’yrr)
and

G (to,30,0,0) = e (to—a) + e (90— b) +e3[y — Y (,)].

There is one Euler equation,
- t .
(5.32) Nofr=No [ fudr+ec,

and there are four transversality equations,

&1+ €250 —Nof (t0,30,30) =0,
—es¥ 1+ es + Mo f (t1,31,51) =0,
e2—Nof r(to,30,50) =0,
es+Xofr(ty,31.5:1) = 0.

(5.33)

Observe first that if Ap=0, then, by (5.33), ¢, =e;=¢;=0. But
Theorem 5.3 assures that values for these multipliers exist that are not
all zero; hence, if there is an extremizing function y, it must be normal.
We accordingly set Ao = 1. Next eliminate ¢; between (5.33;) and (5.33,).
This yields the prototype transversality condition (2.57), which in the
present notation is

(5.34) S (t,y5) + ()}1‘_5’1 ) fr(t1,91,5:1) = 0.

If one thinks of the sketch that goes with this example it will be clear why
the name of the condition was chosen. Itis a condition on the minimizing
function where it cuts across the fixed function Y.

EXAMPLE 5.5
J(y) = f “ f(t,3,9) dt, with n = 1, a side condition of the form
to

(5.35) [ h(t3.3) dt = k= const.,

with fixed endpoints to = ag, ¥(to) = bo, t,=ay, y(t;) = b,.
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Discussion

If h(ty)) = (1 + )*)'2, consider maximizing the area of the planar
region bounded by y, the ¢ axis, and ordinates at ¢ = ¢, and ¢,. Condition
(5.35) now requires that the perimeter of this region be a constant for
ally € @. This is the original isoperimetric problem. It is now customary to
call the more general problem above an isoperimetric problem and to
speak of (5.35) as an isoperimetric side-condition. See Akhiezer (I, pp. 113-
117) for the case of several such side-conditions.

The present problem can be restated as a Bolza Problem by setting

(5.36) 2(0) = [, hlry (@) 3] dr.
Then
(5.37) () =h[ty(®),5()].

Equations (5.36) and (5.35) provide end-conditions z(t)) =0, z(¢;) = k.
We now have a Bolza Problem withn=2,m=1,p = 6.

EXAMPLE 5.6

t1
J(y.z) = L | 9* dt subject to one side-condition 5—%*=0 and five end-
conditions.

=0, y(t) =0, =1, y(,) =1, z(4)=2.

Discussion

We illustrate the use of a tactic that is occasionally effective. Consider
the new problem obtained by deleting the side-condition and the
end-condition on z. By any of several approaches from Chapter 3, we
find that there is a unique function yo,%(t) = ¢, furnishing a global
minimum for this problem. If we now determine z,(¢) =¢+1 or —t+3
from the two conditions involving z, the vector (3,z) is seen to furnish
a global minimum for the original problem. The effect of the side-
condition is to require that an admissible function y have a nonnegative
derivative j. In applying methods of Chapters 2 and 3 we admitted all
functions in the class % of those chapters. Since the minimizing function
9o for the modified problem happens to be in the proper subclass
%, consisting of those y € # with nonnegative derivatives, then y, and
the corresponding z, automatically constitute a minimizing pair for the
original problem.

Be reminded that the Multiplier Rule is only a necessary condition and
that we have not investigated sufficient conditions for the Bolza Problem.
We are able to give a complete analysis of this example only because of
its special features.
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EXAMPLE 5.7

[McShane (33e, pp. 818-819)]. J(y,z) = f: (3> + 2%) dt subject to the side-
condition '

(5.38) y+2=0,
and the fixed endpoint conditions

tO = Oy tl =1,
(5.39) y(to) =0, y(t) =0,

z2(t) =0, z(t)=0.

Discussion

The Euler equations are

2)\oi"'}\l ) =a,
(5.40)
202+ 3\, (£) 22 = ¢,.

The integrand being a sum of squares, it is clear that infJ(y,z) = 0 on
the class of admissible functions, which is the class of PWS pairs (y,z)
satisfying (5.38) and (5.39). By inspection, y,(t) = 0 and z,(¢) = 0 satisfy
(5.38) and (5.39). This pair also satisfies (5.40) with any value whatever
for Ay and with A, (t) = ¢; = const. We can, in particular, choose A, = 0;
hence the pair (,2,) is abnormal. This might be a source of trouble but,
in the present simple instance, we can observe that J(y,,zo) = 0, which is
the infimum mentioned above, and therefore (y,,2) furnishes the global
minimum.

EXAMPLE 5.8
Apply the Multiplier Rule to Example 5.1 of Section 5.2.

Discussion
We can ignore the factor % in seeking a minimum. To simplify the
algebra, consider the case L = C = 1. Then

FO)=M@OUT+Q-V)+X()(0—1)
and
G( )=+ estytes(ty—7) +e3Qpt ey +es(Q—a?).

With reference to the statement about notation at the beginning of
Section 5.3, we remark that it is essential for each person to adopt a
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systematic procedure for translating back and forth between such nota-
tion as (Q,1,V) and the (x',x%,x*) of the Multiplier Rule. The details are
so complex that it is extremely easy to make costly mistakes.

The three Euler equations are

t
(@)= [ M@ dra,
(5.41) M) == [ Nalr) drta,
0=_J;:A'l (T) dr+ C3.

Theorem 5.2 ensures only that A, and A, are piecewise continuous, but
an integral is continuous with respect to a variable upper limit; hence,
by the first two equations (5.41), A, and X, are actually continuous in this
instance. We can, therefore, differentiate the third equation finding that
A (t) =0 and then differentiate the second to find that A\, (¢) =0.
Theorem 5.2 tells us that Ag,A\;,\; need not all vanish; therefore we can
choose Ao =1 for simplicity. This is all the information obtainable from
the Euler equations for this example.
The 2n+ 2 = 8 transversality equations are

el+éoe3+ioe4 = 0,
82+Q125+21‘111 = 0,

es5=0, ¢,=0, 0=0, =0, 2I,=0, 0=0.

These require that ¢, =¢, = ¢; =¢, = ¢;=0. The one piece of useful
information comes from the next to last transversality condition, 21,=0,
which means that 27 (¢,) = 0, with ¢, = 7.

This will obviously be the desired solution if it is possible to realize
the value I (7) =0 by means of a triple (Q,I,V) satisfying the given
side- and end-conditions. To investigate this, we find by variation of
parameters that the solution of equations (5.1) satisfying the given initial
conditions Q(0) =1(0) =0is

=sint [ d ‘V(r) sin d
Q—smtfoV(f) cosT 1-—costf0 (r) sindr,

(5.42) , .
I= costf V(r) costdr+ sintf V(7) sint dr.
L) 0

Inorder that Q (7r) = a?and I (w) = 0, it must happen that

fo V(r)sint dr = a?, fo V(r) costdr=0.
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By inspection, V(t) = a?/2 satisfies these conditions. Finally, from
(5.42),

Q(t) = (a?/2) (I —cos t) and  1(t) = (a?/2) sint

complete the optimal triple.

We have not developed any general sufficient conditions for the Bolza
Problem. That we are able to exhibit the above triple (Q,,V) and to
establish that it furnishes a global minimum I*(w) =0 is because of
favorable features built into this particular example. One should always
look for such features.

EXAMPLE 5.9
Investigate Example 1.5, Section 1.14.

Discussion

A frontal attack on the Mayer problem J(x,y,p) =T = minimum
subject to conditions (1.39) and (140) yields Euler and transversality
equations that appear to have no elementary solution.

Lefkowitz and Eckman do not proceed in this manner in (29a). They
introduce new variables

(5.43) v = In(a/x) and u = y/x.
With reference to Section 1.14, we find that
0 =—x[x = Ap™,

hence that
dt=a(l—u)'*dv,

with new symbols defined as follows:

_n Bp" n BAm
B = > r= I_Ap”" and o VS

It follows that the total time T for the process is
14
T=[ (1-u)'~*dv, V=In(alb).

The original reaction equations (1.39) imply that

d
(5.44) u =pu+l, where u' means d—:,

and the problem of minimal time T now becomes the Lagrange Problem

_Lvl (1—p)' =8 dv = minimum
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subject to one side-condition (5.44) and four end-conditions
'Uo=0, 'U]=V=ln(a/b),

(5.45)
u(vo) =bla,  u(vy) =klh,

with no end-condition on u.
To apply Theorem 5.2 set

F()=X(Q—p)"P+ A\ (v) (' — pu—1).

Since u' does not appear, the Euler equation for s reduces to

(5.46) AN(1=B)(1—p) =N (v)u=0,
while that for u is

(5.47) M) =— fo A () (s) ds+c.
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If A\ (v) were to vanish anywhere on [0,V], then, from (5.46), Ao =0.
We see from conclusion (i).of Theorem 5.2 that if there is a minimizing

pair, it is normal and we set Ao = 1.
By (5.46),

M) =0-B)A—u)?u(v).

From (5.47), Aj(v) = —A;(v) u(v). It follows that

(5.48) Bup' =1—p, p' =—-
and from this and (5.44) that

du _ 1—p
'Budu_p.u+1
or

du B _ Be
d,u.+p,—lu— 1_#u.

This Bernoulli equation can be solved for »(u ) in terms of a quadrature,
but it is messy. After this result is substituted into (5.48) we can express
v(w) in terms of two successive quadratures. This classical ritual is not
really worth pursuing. One can approximate a solution for u(v) and
w(v) directly from the pair of equations (5.44) and (5.48) using numerical

methods.
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We shall leave open the question whether this pair minimizes the
integral. It has been shown only that this pair satisfies a necessary con-
dition for a minimum.

Exercise 5.3

1. Find a smooth function y satisfying all conditions of Theorems
5.2 and 5.3 for the integral [ j? dt, n=1, with no side-condition
and with end-conditions £, = 0,y (%) = 1,and y(¢,) = £

2. Investigate the isoperimetric problem [ydt= minimum with the
side-condition [ (1+3?2dt= 3 and the fixed endpoints (0,0), (2,0).
Point out why if we replace 3 by a constant k = 7, the problem can
have no solution under the formulation of this chapter.

3. Treat Example 5.6 by first using the side-condition to replace the
given integral by [ z%d:.

4. Change Example 5.6 by adjoining the additional end-condition
z(t,) = 1. Then obtain all the information provided by the Multiplier
Rule.

5. Given the problem [ f(t.5) dt = extremum, with y= (y,...,%"),
with g isoperimetric side-conditions [ hg(t,y,5) dt=Fks,B=1,...,q,
and fixed endpoints, prove that if there is a solution y,, then the
multipliers A;(¢) of Theorem 5.2 will be of the form A4(¢) = const.

6. Theorems 5.2 and 5.3 have both been stated for the case of a mini-
mum. Consider the application of these theorems to the problem
—J(y) = minimum, which is equivalent to J(y) = maximum. What
changes in the wording of these theorems are needed to obtain
companion theorems for maxima?

7. GivenJ(y) = [ [y— (2t—1)]?2 dt with fixed endpoints (0,0) and (1,0),
we find, by Chapter 3, that y,(t) = £*—¢ furnishes the global mini-
mum. Suppose, however, that we introduce the constraint y = 0.
To fit the pattern of Section 5.3, use a device of F. A. Valentine
(XV for years 1933-1937), replacing the inequality by an equality
y=z2. We now have a Bolza Problem withn=2,m=1, p=4 and
with a side-condition that is free of derivatives. Granted that the
Multiplier Rule applies to this case [for proof, see Bliss (5a, pp. 703-
705)] extract all the information that it provides.

8. Given J(y) = [ (*+)?) dt with no side-conditions and the end-
conditions t, =0, y(t) =h,, t =T =const,, find a function y,
satisfying the Multiplier Rule.

9. With reference to Section 2.9 and Euler condition (5.24), formulate
and prove an Erdmann corner condition for the Bolza Problem.

10. With reference to Sections 2.8 and 2.11 and if necessary to Bliss (IX)
or some other book, formulate an E-function for the Bolza Problem
in terms of the auxiliary function F and derive necessary conditions
of Weierstrass and Legendre for the Bolza Problem.
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5.10 FURTHER NECESSARY CONDITIONS,
SUFFICIENT CONDITIONS FOR
LOCAL EXTREMA

Necessary conditions extending those of Weierstrass, Legendre, and
Jacobi from the simple problem of Chapter 2 to that of this chapter are
discussed by Bliss in (5a) and (IX, Chap. VIII). For additional informa-
tion on the Jacobi. condition, see Reid (45a); on the Weierstrass and
Legendre-Clebsch conditions, see Graves (18c) and McShane (33e). The
theorems of McShane in contrast with earlier proofs are not restricted
to normal minimizing functions.

Sufficiency theorems for both weak and strong local minima, the
statements of which resemble those in our Section 3.6 for the simple
problem, are to be found in Bliss (IX, Chap. IX) and (5a, Chap. IV).
Also see Hestenes (20a,c), McShane (33k), Morse (38a,b,c), and Reid
(45b,c).

All these developments require considerable ingenuity as well as
patient detail. We shall not pursue them here.

In the remainder of this chapter we turn to the easier task of extend-
ing a sufficiency theorem in Section 3.12 for global extrema to a special
class of Bolza Problems. For a similar extension of Section 3.11, see
(12h, pp. 104-105).

5.11 SUFFICIENT CONDITIONS FOR
GLOBAL EXTREMA

Define, using the vector notation employed in (5.24) together with the
function F of (5.21),

(5'49) G(t’x’y’p’q’x) = F(lVy’q’A) —F(t’x’p’x)
- (y_x) ° Fy(t,x,PJ\) - (q—I’) : Fr(t,xJ)’)\)'

This function G of six arguments generalizing that of (3.42) is not to be
confused with the function (5.22), also called G.

The theorems of this section are phrased in terms of the Lagrange
Problem. In view of Section 5.4 we can anticipate that they are adaptable
to certain other Bolza Problems. They can sometimes be applied to a
Bolza Problem with the g term present by way of suboptimization, a
device exhibited in the next section of this chapter. We call attention to
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the fact that although multipliers, the Euler equations (5.24), and the
transversality equations (5.27) are used in proving the two theorems that
follow, these ingredients enter the discussion as hypotheses. Hence the
proofs and conclusions are independent of the fact that the Multiplier
Rule is a necessary condition on a minimizing function y and are there-
fore unaffected by the fact that we have not given complete proofs of
Theorems 5.2 and 5.3.

Theorem 5.4

Given a Lagrange Problem for which t, and t, are fixed and given y, €Y
that satisfies the Euler equation (5.24) with a set of multipliers Ao = 1,A1(?), . . .,
)\m(t), then'

t

350) () —J(0) = [, Glt30(t) 3(8) 5o(t).FONE)] dt

+ [y(tl) _yo(tl)] : Fr[thyo(tl)ay.()(tl)’}\(tl)]
— [y(to} =30 (ta) ] - Frlto:30(t0) ;30 (to) A (20) 1.

PROOF

Define an auxiliary integral J #,
t . .
(6.51)  JE(y) = fm [F(t,30.30M) + (3=30) * Fy( )+ (5=30) - F.( )] at.

After a du Bois Reymond integration by parts (that is, of the middle
term), we use the consequence of Euler equations (5.24) that

a=F, (20,30 (20) »30 (1) A (1) ]

to find that J*(y)—J*(y,) equals the expression after the integral in
(5.50). Now y, E¥ must satisfy side-conditions (5.5) and A, =1 by
hypothesis. It follows that J* (y,) = J (), whence

J(3) =J (3) =J () —J*(30) = [JO) =I*») ]+ [J* () —=I*(3)].

This is the stated result (5.50).
Denote by II% and II%’, respectively, the conditions

(5.52)  Glty0(2),3.50(8) g A (8)] =0,  forall
t € [to,t,] and all (y,q) € RE.

(653)  Glt3o(8).9.30(t) g ()] >0, forall
t € [to,t] andall (y.9) # [50(2).5o(2)].

At a possible corner we interpret these conditions [in accord with con-
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vention (2.17)] to mean that the inequalities hold with §,(¢) as either the
left or right derivative.

Theorem 5.5

Suppose given a Lagrange Problem with end-conditions (5.6) that fix t, and
ty and that, fori=1,...,nandj =0, 1, either fix y(t;) or are independent of
¥ (t;). If, moreover, y, satisfies the Multiplier Rule with Ao = 1 and if 11} or 11’
holds, then J(y) —J(y) = 0 or > 0, respectively, for all y € ¥ or for all
y € ¥ distinct from y,.

PROOF

The last two Transversality equations (5.27) applied to a Lagrange
Problem [g of (5.7) identically zero] imply that

J
(5.54) e“a[yzolb(‘;’)] =iFri[ti’yo(tj)’§0(tj)’k(tj)]:+ lf] = 0: - lf] = 1:

t=1,...,n,7=0,1; summation on u from 1 to p.

If all end-conditions (5.6) are free of a particular end-value yi(t;), the
left member of the corresponding equation (5.54) vanishes and the right
member of that equation then points out a vanishing term in one of the
dot products of (5.50). If the end-conditions either explicitly or implicitly
fix the value yi(t;) for ally € %, then ¥ (;) —»i(¢;) = 0 and again a term is
eliminated from (5.50). Under the hypotheses of the theorem, all terms
on the right in (5.50) except the integral are eliminated in one or the
other of these two ways; hence the alternative conclusions of Theorem
5.5 follow from (5.50).

Sufficiency Theorem 5.5 has quite restrictive hypotheses and hence
applies to a restricted class of problems. However, in contrast with much
of the sufficiency theory for local minima mentioned in Section 5.10, it
has the advantage of not requiring a strengthened Legendre condition
or any mention of a Jacobi condition, a field, normality, or nonsingularity
(IX, p. 204, [74.12]). Moreover, the function ¥, in Theorem 5.5 need not
be smooth.

A complete analysis of a particular example including a precise
characterization of all admissible functions y, that furnish a global
minimum is difficult. Textbook examples are often chosen with inte-
grands fthat are sums of squares and with linear side and end-conditions.
Theorem 5.5 is effective with such examples and others that have suffi-
cient convexity and linearity, among which are some of the problems
termed linear by A. Miele (36b). An example of this type treated in
Section 5.12 will .also serve to point out how Theorem 5.5 can be used
to reduce a given Bolza Problem for which the time interval is not
fixed to an ordinary minimum problem.
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When Theorem 5.5 does apply, it is recommended not only by its
simplicity but because it identifies the real desideratum, namely, a
global extremum. In systems optimization one wants the best of all
programs or designs, not merely one that is best in comparison with
others that are nearby.

One would like to have theorems that extend the content of our
Theorem 3.9 to various classes of Bolza Problems even though the
applicability of such a theorem to an example would be limited by the
difficulty of constructing a field in the large. The author in collaboration
with W. R. Haseltine has used this approach (12g) with an example of
long standing.

In view of the likely increased use of numerical methods as time
goes on, we suggest the desirability of having sufficiency criteria,
possibly in terms of probabilistic statements, applicable to the end
results of a numerical program.

There has been a tendency to place confidence in the output of a
direct numerical procedure intended to approximate an optimizing
function for a variational problem if the process appears to converge,
if one or more other procedures in some sense independent of the first
appear to converge to the same result, and if, when the algorithm is
applied to an elementary example with known results in closed form,
it converges to these results. In courtroom language this is certainly
presumptive evidence in favor of the procedure under test. However,
contemplate the conceivable unhappy possibilities that might occur un-
less one has criteria that exclude them. Suppose, for example, that a
global minimum is desired but that it does not exist or that it does exist
and yet the process happens to converge to a local minimum distinct
from the global minimum, to a local maximum, or to a stationary value
of J(y) that is neither a minimum nor a maximum of any type.

EXAMPLE 5.10

Imvestigate the effectiveness of Theorem 5.5 for the fixed-endpoint isoperi-
metric problem already replaced by a Bolza Problem under Example 5.5.

Discussion
The single side-condition (5.37) rewritten in the form (5.5) is
®u(ty,2.3,2) = 2—h(ty.5) =0
and the six end-conditions expressed in the form (5.6) are
Wil 1=to—a,=0, bl ] =t—a,=0,

o[ 1 =19(t) —b,=0, Ul I =yt)—b=0,
Y[ 1 =12(8) =0, Us[ 1 =2(t;,)—k=0.
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The auxiliary functions (5.21) and (5.22), the second of which is now
written G, to avoid confusion with (5.49), are

F( ) = Nf(t9.3) + M () [2—h(2,5)]
and
Gi( ) = e;(to—ao) + e2(yo— bo)
+eszotes(ti—ay) +es (91— by) +es (2, — k).

One finds with reference to (5.24) that the Euler equations are
t
Nofr(83:5) — M ()R (2,,5) =fao Nofu( ) =N (P)hy( )] dr+ ¢!
and Al(t) = (:2.

By following (5.27) we obtain the transversality equations

e1+ o+ e3Zo— Nof (f0,0,30) = 0,

esteshy + ety + Mof (8,91,3:) =0,

€2~ [Nofr (20,30,50) — A1 (f0) r(t0,30,0) ] = 0,
es— M (%) =0,

e+ [)\er(thyl’}.’l) =M () h(t,91,5)] =0,
es+ )\l(tl) =0.

The second Euler equation requires that A, (¢) be constant. Theorem
5.5 will then identify a global minimum according as there does or does
not exist a pair (y,z) admissible in the sense of Section 5.3 and satisfying
these Euler and transversality equations with some set of multipliers
Xo # 0,Ay, €1, . . . , ¢ and hence with a set such that A\, = 1 as required by
Theorem 5.5 and moreover such that the function (5.49), now called G.,
has the convexity property (5.52) or the strict convexity (5.53). Alterna-
tively, Theorem 5.5 will establish that J(y) is a global maximum if —G,
has property (5.52) or (5.53).

Consider the special case of the original isoperimetric problem, in
which f(¢,39,7) =y and h(t,y,r) = (1+r2)¥2 Let the fixed endpoints be
(—1,0) and (1,0) and assign the value £ =3 to the side-integral (5.35).
We look first at the Euler equation for y in the differentiated form (5.25)
and suppose, moreover, that the second derivative 5(¢) exists on [—1, 1].
The equation can then be expressed in the form

— A/ (145772 = Xo.

Since A, = 0 implies that Ag= 0 and we wish to use Theorem 5.5, which
requires that A\, = 1, we consider only the case A, # 0 and setAo= 1. The
Euler equation then says that the signed curvature of yis a constant — 1/A,.
If we take a circular arc of the required length 3 joining (—1,0) and (1,0),
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then A\, must be positive or negative according as y is above or below the ¢
axis, respectively. The reader is asked to verify that Theorem 5.5 applies
as stated to show the y with negative values furnishes a proper global
minimum and that the unstated companion theorem for maxima applies
to the y with positive values.

Observe that in formulating this particular isoperimetric problem we
chose the fixed length 3 to be below the length 7 of a semicircle of
diameter 2. With 7 in place of 3, one suspects that the two semicircles
furnish extreme values but y is no longer PWS because of the fact that
the derivatives 5(—1) and 5(1) are not finite. The classical theory with
PWS admissible functions no longer suffices. If the fixed length exceeded
7 we could guess that circular arcs greater than semicircles are needed,
but no function y as defined in Section 1.2 corresponds to such an arc
because of the fact that it is cut by certain vertical lines in two points.
There does not exist in the class % of all PWS functions y: [—1,1] = R of
fixed length k a particular function y, that either minimizes or maxi-
mizes the integral [2, y dt unless & is on the half-open interval [2,7).

The question of the existence and characterization of a curve of
length k = 7 joining (—1,0) and (1,0) and which together with the
segment joining these points bounds a subset of the plane of maximal
or minimal signed area remains. To treat it by variational methods it
should be formulated as a parametric problem of the calculus of varia-
tions, a topic introduced in Chapter 6.

Exercise 5.4

1. Investigate the problem J(yu) = [# (y*+ u? dt = global minimum
subject to the side-condition y+y-+u =0 and the end-conditions
to=0,t =1,and y(¢) = 1.

2. Problem 1 modified by adding a fourth end-condition y(¢;) = 0.

5.12 ANALYSIS OF A PROBLEM FROM
ROCKET PROPULSION

Consider the particle idealization of a rocket-propelled vehicle moving
near a fixed flat earth on an upward-directed y axis subject to thrust
—cim and weight mg but to no other force. Under these simplifying
hypotheses, the equation for the trajectory is my+ ¢ +mg = 0.

To transform this into a linear equation, set

(5.55) [=clnm.

The derivative | = cri/m is then, except for sign, the thrust per unit mass.
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As a further ingredient in the formulation, we suppose given that
(5.56) ~a<l<0, a>0.

If the vehicle is to start from rest at the origin with an assigned initial
mass M, and if the burnout mass is M,, we wish to determine a function
m with these end values and such that the summit altitude is the global
maximum.

Our complete mathematical model is the Lagrange Problem

(5.57) J(y,0,l,2) = f: 3 dt = global maximum on ¥ ,

where % is now the class of all PWS quadruples (y,,1,2) satisfying side-
conditions

o+ i+ g
(5.58) y—v,
a(sinz—1)—2/

b

-

0
0
0

’

and end-conditions
(5.59) =0, y(to) =0, v(to)) =0, Ute) =Ly, U(tr)=L,,

in which L, and L, are related to the end values of m by (5.55). We
understand that Ly > L; > 0.

The third constraint (5.58) is a device mentioned to the author by
W. T. Reid for obtaining a single equality equivalent to (5.56) with the aid
of an auxiliary variable z. Other devices for replacing (5.56) by equality
constraints are in Valentine’s dissertation (XV for years 1933-1937) and
Miele (36b). It is essential that we use 2 and not z in this constraint. We
wish to permit discontinuities of /. If we had used z, the continuous
fourth component of a PWS vector function, then the constraint would
restrict / to be continuous and the Lagrange Problem would turn out to
have no solution. One may not know in advance that this will happen but
is playing safe in using 2.

Another ever-present danger is that an essential side- or end-condition
has been overlooked. Such a flaw in the formulation may reveal itself
through some absurd conclusion after much labor has been squandered
on the wrong problem, or worse, it may not be detected at all. The ques-
tion arises whether an end-condition v(t,) = 0 should have been in-
cluded in (5.59). The answer, in this case, is that a maximizing quadruple
for (5.57) will automatically have this property but such answers are
clearer a postiori than at the outset.

This problem involves two state variables y, v and two control variables
[,z. It does not meet the restriction of Pontryagin et al. in (XXXIII) to
control problems with integrand and side-conditions that are free of
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derivatives of the control variables or with end-conditions that are free of
the control variables.

We wish to use Theorem 5.5, which requires that both # and ¢, be
fixed; therefore we study first, not the given problem, but an auxiliary
problem J(v,y,l,z) = global maximum on ¥r where %7 is the subclass of ¥
consisting of all quadruples in % satisfying the additional end-condition

(5.60) L,=T, T>0.

Such procedure is called suboptimization since we shall be optimizing on
the proper subclass ' of the original .

To abbreviate the presentation, various details will be suppressed. It
turns out that the multiplier A, can have the value unity. We give it that
value at the start. Then functions F and G defined by (5.21) and (5.49)
are

(5.61) F() =5+ @++) +10G—v)
+3(t) [a(sinz—1) -9,
(5.62) G( ) = ars(t) [sin 2—sin zo— (2 —Z,) cos Z,].

The Euler equations are found to be
1+A:(t) =1,
(5.63) M) = [ —ha(r) dr ety

A1 () —20;5(2) =cs,

A3 (2) cos 2(t) = cq.

Only four of the 2n+2 =10 transversality equations yield useful
information. These are

M) =0,

1+ () =0,

A;(tp) cos 2(t) =0,

(5.64) A3(2) cos 2(¢) = 0.

The other seven serve only to determine values of the multipliers .

Experience with optimization theory for rocket trajectories leads one
to expect that the best burning program will consist of maximal thrust
from ¢ = 0 to burnout time

(5.65) ty = (Lo—Ll)/a,

followed by coasting. In terms of constraint (5.58;) this would mean that
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. —1, 0<t<t¢,
(5.66) smzo={ 1, h<t<T.
We proceed on the basis of this educated guess. To shorten the exposi-
tion, we omit sifting all the quadruples (y,,/,z) and multipliers A,(?),
N2(), As(?) that satisfy the combined system of 16 equations (5.58), (5.59),
(5.60), (5.63), (5.64), which for an unfamiliar problem would generally be
essential to a definitive analysis.

Granted (5.66), we must still make use of the 16 equations to determine
the particular quadruple (yo,vo.lp.20) and the associated multipliers,
which are given below. Alternative expressions (5.67) arranged in two
columns apply on the respective intervals 0 < t< 1, and £, < t< T.
Equations (5.68) apply for0 < ¢t < T.

w(t) = (@a—g)22, —gt?2+at,(2—1,),

vo(t) = (@ —g)t, —gt+ 2aty,
6.67) l:(t) =Ly—at, L, WLo_batb,
20(2) = 3mt/2. (37,/2) + 7 (t—1,)/2.

(5.68) Al(t) =t—T, Ag(t) =—1, 2)\3(t) =t—1.
We find using (5.62), (5.67), and (5.68) that

_ fa(t—t)(sinz+1), 0st<t,
(5.69) 26() = {a(t—tb)(sini—l), Lh<t<T.

It is clear from the form of (5.69) that condition II# holds for —G, hence
that Theorem 5.5 applies to —J, and therefore that J(vg,%0.%,2) is the
global maximum on #; of (5.57). We have a definitive conclusion for the
auxiliary problem.

To complete the original maximum problem on %, consider the whole
class of auxiliary problems of parameter T corresponding to different
classes #r, T > t, of admissible quadruples. One verifies from (5.67) that
the maximum of yo(T) necessarily occurs for T > #,. By the second
expression for y,(t), we discover that the terminal velocity v,(T) is
necessarily zero. It follows that

max 9(T) = (2a — g)at}/g

is the greatest of all summit heights for the original problem.

Figure 5.1 shows three forces, drag, weight, and thrust, acting on the
particle idealization of a rocket-propelled vehicle moving in a vertical
plane near a flat stationary earth. Notation in the figure shows each force
as the product of a scalar times a unit vector with the latter represented
by its components in the directions of the respective x and y axes. Symbols
k, g, ¢ are positive constants and m is the total mass at time ¢.



138 CALCULUS OF VARIATIONS WITH APPLICATIONS

—cr (cos ¢, sing)

FiGure 5.1

The differential equations for the motion are

miu+cmcosd+hu=0,

(5.70) mI+cmsing +khkv+mg=0,
.=
v

0
=0.

<o B
|

Exercise 5.5

1. With m a fixed smooth nonincreasing function whose value goes
from an assigned initial value m(0) to a burnout value m(t), let
t; denote a positive time such that y(¢,) =0 and define the range
R(x,y,u,u.9) as the largest x(t,). If the idealized vehicle starts from
rest at the origin, investigate the problem R (x,y,u,v,¢) = maximum.
For a more general version, see (12i).

5.13 CONCLUDING REMARKS

The Bolza Problem treated in this chapter, which essentially follows the
formulation of Bliss (IX, pp. 189, 193-194), includes many nonparametric
variational problems that originally arose as separate problems and are
so dealt with in various books and papers. There are a number of other
Bolza Problems that include or overlap the coverage of this one. See, for
example, Hestenes (20b,f), (XXI), Pontryagin et al. (XXXIII), and
Reid (45d,f).

The remainder of the book can be used with a degree of flexibility.
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Although the order in which the chapters appear is recommended to
those who intend to cover them all, they can be read in almost any
order if one is willing to do a little cross-referencing or to accept an
occasional assertion based on something that he has skipped. Chapter 6
provides some background for Chapter 7 but only Sections 6.3 and 6.4
are essential as a prerequisite, The content of Chapter 8 is essential for
Chapter 9, but the reader who is already familiar with the Lebesgue
integral can omit Chapter 8 or scan it rapidly for vocabulary, notation,
and coverage. Chapters 10 through 12 have little dependence upon each
other but draw ideas from certain of the earlier chapters. Since the
original printing, sufficient conditions for global extrema of the type
treated in Sections 3.12 and 5.11 have been extended and refined in the
author’s papers 12(j),(k), listed in the Supplementary Bibliography, page
340.



Chapter 6

PARAMETRIC PROBLEMS

6.1 INTRODUCTION

The independent variable has been denoted by ¢ in preceding chapters
in deference to the fact that optimization problems suggested by dynami-
cal systems involve functions y = (', ...,y™) with values that depend
upon the time. The traditional symbol for a nonparametric integral is

6.1) [ ey de

with x and y’, respectively, in place of ¢ and 3.

Given the integral (6.1), we can again introduce the symbol ¢ by think-
ing of x and y as differentiable functions from a common interval
[to-t1] to the reals. Then t is called a parameter and we have the familiar

results that y (x) =5()/2()  and  dx=%(t) dt.

If these are substituted into (6.1) in a purely formal manner, we obtain
an integral,

(6.2) f F(x,y,%,y) dt where F(x,9,%,5) = f(x,9,5/%)%.

Observe that x has one component but that y in general has m = 1
components. If m > 1 it is usually convenient to express integral (6.2)
in the more abbreviated notation

(6.3) [FOP d,  y=y,... yn=m+1,
with y%, %, .. ., y*respectively, replacing x, y*, . . ., y™

140
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Either (6.2) or (6.3) is called a parametric integral, a term to be
defined more precisely in Section 6.6. Familiar examples in the case
n = 2 are the length integral

(6.4) [+ ar
and the ordinary curvilinear integral
(6.5) [[P(x3)%+Q(x.9)3] at

that appears in vector analysis, mathematical physics, and the theory of
integration of functions of a complex variable.

The subject of this chapter could be developed in the pattern of Chap-
ters 2 and 3 by proving necessary conditions of Euler, Weierstrass,
Legendre, and Jacobi and then sufficiency theorems for local extrema.
See for example, Akhiezer (I, pp. 37-45, 63-64), Bliss (IX, Chap. V),
Bolza (X, Chap. IV), (XI, Chap. 5), and Pars (XXXII, Chap. IX).

Some of these results will be given but our emphasis is on the nature
of curves and of parametric problems together with a fruitful interplay
between certain of the latter and corresponding nonparametric pro-
blems. The formal relationship between integrals (6.1) and (6.2) must not
be mistaken to suggest that a parametric variational problem based on
(6.2) is merely a restatement in parametric form of the nonparametric
problem of extremizing (6.1). That they are distinct problems will be
pointed out.

6.2 WHAT IS A CURVE?

We wish to define the term curve in a manner that is both intuitively
acceptable and suitable for the theory of curvilinear integrals. The word
is often used loosely, sometimes for the set {(ty) € R™1: y=y(¢),
t € [a,b]}, which is the function y: [a,b] = R™ under the definition of
Section 1.2, and again for the projection of this set into the y-space,
that is, for the set {y € R™ y=y(¢t), ¢t € [a,b]} of image points jy.

A number of books and articles in dealing with nonparametric inte-
grals (6.1) speak not of a function y but of the curve y or the curve
y=19(x), a practice that is somewhat misleading. In analytic geometry,
differential geometry, mathematical physics, or wherever one meets
parametric equations y = y(t), the tendency is to identify the word
curve with the set of image points y(¢) in R" unless there is an explicit
warning against it.

The intuitive notion actually needed is that of the path traced out by a
moving point y(¢t) in R™ as ¢ traverses its interval [a,b] from a to b.
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The point y(¢) may move through the set of image points in such a way
that there is a one-one correspondence between image points and
values of t. Again the path may intersect itself in certain points so as to
form loops or may retrace parts of itself through reversals in direction.

Consider, for the case » =2 and using (x,y) for a point in the plane,
such examples as

(6.6) x(t) = cos t, y(t) = sint, O0st<m,
(6.7) x(t) = cos ¢, y(¢) = |sint|, 0<t<2m,
(6.8) x(t) = —cost, y(t) =sint, 0<t<m.

These all yield the same point set or graph in the (x,y) plane, namely,
the upper half of the unit circle with center at the origin, but the three
parametrizations represent three different paths. The point [x(2),y(¢)]
traces the graph from right to left under (6.6) but from left to right
under (6.8). It traces the graph twice, once in each direction, under (6.7).
The reader is asked to try out (6.6) through (6.8) in the length integral
(6.4) and such other elementary examples as [ (xj—y%) dt or [ (xj+ %) dt.

Given one continuous parameterization x: [a,b] = R" there are
always infinitely many others y: [¢,d] = R"such that the sets {x({) € R™:
t € [a,b]} and {y(u) € R™: u € [¢,d]} are identical and such that the
point y (x) moves through this set in the same manner as x(¢) when the
respective parameters progress through their intervals.

6.3 FRECHET DISTANCE BETWEEN
MAPPINGS

Given compact intervals [a,b] and [c,d] of positive length, a function
h: [a,b] = [c,d] is called a homeomorphism if it is one-one and if & and its
inverse A™! are continuous on their respective intervals. Such a homeo-
morphism is either sense-preserving [h(a) = c, k(b) = d] or sense-reversing
[A(a) = d, h(b)=c]. Since the value of an integral (6.3) depends in
general upon the direction in which x(¢) moves through the image set,
we are guided in restricting attention to the sense-preserving homeo-
morphism, henceforth abbreviated by SPH. Because of this restriction,
the curves we shall define are said to be oriented.

Fréchet distance between functions x: [a,b] = R" and y: [¢,d] — R",
denoted here by p(x,y), is defined as follows:

(6.9) p(xy) = iilfSlprx(t) —y[R ()],

in which one first takes the supremum with respect to ¢t € [a,b], with A
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fixed, of the euclidean distance |x(t) —y[A(t)]| defined by (1.30) and
then the infimum of all such suprema with respect to % over the class of
all SPH’s.

Intuition suggests that the two functions

(6.10) x:[0,1] — R?, x(t) =x2(t) =2t
and
(6.11) y: [0,2] = R%,  y'(u) =y (u) =u,

ought to represent the same oriented (or directed) curve C, whatever
the precise definition of such a curve may be. Each of these functions
maps its interval onto the line segment in the plane with endpoints
(0,0) and (2,2). Moreover, x(t) and y(u) both move from (0,0) to (2,2)
with no reversals of direction. Clearly the function k: [0,1] — [0,2],
u = h(t) = 2t,is an SPH and

(&) =3[R (]| = [(2t—2t)*+ (2t—2¢)*]"* = 0.

Consequently the supremum in (6.9) is 0 for the particular 4 being used.
No such supremum can be negative and hence p (x,y) = 0.

A similar result is obtained any time that there exists an SPH such that
y[h ()] = x(2), for all t € [a,b]. Thatp (x,y) can vanish when there is no
such & is shown by the next example.

EXAMPLE 6.1
t, O0st<l,
6.12) x:[0,3] — R2, x(t) = x2(t) =41, lst=<2
t—1, 2< t=<3.

As the second mapping y, take (6.11). One verifies easily that (6.12)
yields the same set of image points as do (6.10) and (6.11) and that under
mapping (6.12) the point x(¢) again moves from (0,0) to (2,2) with no
changes of direction. However, point x(t) remains at (1,1) while ¢ is on
the interval [1,2]. There is no SPH such that y[A(¢)] = x(¢). Given
e > 0, consider the SPH, k,: [0,3] — [0,2],

(1—e)t, O0st=<1,
(6.13) he(t) = {(1—e)+2e(t—1), 1<t< 2,
(14+e)+(1—e)(t—2), 2<t=< 3.

This example has been constructed by choosing x! =x?=¢, where
¢: [0,3] — [0,2] is not an SPH. The relationship of %, to ¢ is indicated
by Fig. 6.1 The reader should verify that

suplx(t) —y[he ()] = eVa.
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FiGure 6.1

Since ¢ > 0 but otherwise arbitrary, the infimum of all values of V2 is
0; hence p(x,y) = 0.

Definition (6.9) is so designed that the condition p (x,y) = 0 makes
precise the relation between mappings x and y described in the last
paragraph of Section 6.2. Two mappings x: [¢,b] = R™ and y: [¢,d] =
R" are called Fréchet-equivalent iff p(x;y) =0. We define a continuous
oriented Fréchet curve in E,, henceforth to be called simply a curve in E,
or a curve, to be any class consisting of all continuous mappings y: [¢,d] —
R™ each of which is equivalent to a particular such mapping x. Each
mapping in such a class is a parameterization or representation of a curve
C; thatis, y: [¢,d] = R" is a representative element of the infinite class
that constitutes a curve. We speak of a curve in E,, the euclidean n-space
defined in Section 1.10, because of the fact that euclidean distance
rather than some other distance between points x(t) and y[4(¢)] of R*
has been used in definition (6.9). The term graph of a mapping has been
used in Section 6.2. It can be verified that two Fréchet-equivalent
mappings have the same graph. Consequently we define the graph of a
curve C as the graph of an arbitrary representation of C.

This definition of a curve may seem queer until one lives with it for
awhile, but it is exactly what is needed in a theory of curvilinear integrals.
The use of equivalence classes is, moreover, a time-honored tactic in
mathematics. As one of many other instances, a Cantor real number is
an equivalence class of Cauchy sequences of rational numbers.

One sees immediately from definition (6.9) that p(x,y) = 0, that



SEC. 6.3 PARAMETRIC PROBLEMS 145

p(x,x) =0, and that p(x,y) = p(y,x). The theorem that follows estab-
lishes the triangle inequality. Thus Fréchet distance p has all the pro-
perties (1.29) except that p(x,y) =0 does not imply that y is the same
mapping as x. Such a distance p is called a pseudo-metric.

Theorem 6.1

Fréchet distance p between continuous mappings has the triangle property

(6.14) p(x.y) +p(y.2) = p(x,2).
PROOF

Let x: [a,b] = R y: [¢c,d] = R™, and z: [¢,f] = R" be continuous
mappings of nondegenerate compact intervals into R™. Given € > 0,
there exist by definition (6.9), SPH’s

h:[a,b] = [c,d] and  k:[c,d] = [ef]

such that

(6.15) sup |x(1) =3[ ()]] < p (x.y) +e/3
and

(6.16) sup |y (u) —z[k(u) ]| < p(5.2) +/3.

The composite function k o k with values v= (ko k) (¢) =k[k()] is
necessarily an SPH from [a,b)] onto [e,f]. From the definition of
supremum, there exists ¢, € [a,b] such that

6.17)  |x(te) —(z ok o h)(t)]| > sup |x(t) — (z o k o k) (£)| —&/3.
t
Set u, = k(t.) and v, = k(u.). Then from (6.15) and (6.16),

lx(te) —y ()| < p(x,3) +€/3
and

Iy(ue) —Z('Ue)l < p(y,z) +€/3-

From these two relations together with (6.17) and the triangle inequality
for the euclidean distance (1.30),

p(x,3) +p(y.2) > sup |x(8) = (z° ko h)(t)| —€

and the first term on the right dominates p (x,z) by definition (6.9).
Since € is positive but otherwise arbitrary, the stated conclusion (6.14)
follows.
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Our restriction to continuous mappings x: [a,b] = R™ and hence to
continuous curves C has been somewhat arbitrary. It is a convenience
because there is an extensive theory of continuous curves from which to
draw and, moreover, it is the usual practice. However, see R. E. Hughs
(22a) for a treatment of discontinuous curves. Our proof of Theorem
6.1 makes no use of continuity. The various steps and hence the con-
clusion are valid if x,y, and z are bounded but otherwise arbitrary
functions from intervals to R™.

6.4 FRECHET DISTANCE BETWEEN CURVES

Let € denote the class of continuous curves C in E,. Each such curve is
a class {x} consisting of all continuous functions x each of which is from
some interval of positive finite length to R™ and each pair x; and x, of
which are at Fréchet distance p (x;,x,) = 0 from each other.

Given C; = {x} and C, = {y} in the class ¥, we define a distance

(6.18) d(Cy,C,) = p(xy), x € Cyandy € C,.

If ¢ and 7 are also respective representations of C; and C,, that is,
¢ € {x} and n € {y}, it then follows from the triangle inequality for p
that

p(xy) < p(x£)+p(&m)+p(n,y) =p(m)

and

p(Em) < p(&,x)+p(xy)+p(ym) =p(x.5).

Consequently, p (£,m) = p (x,9) and d(C,,C,) is seen to depend only on
C, and C,, as the symbol (6.18) already indicates.

Exercise 6.1

1. With d defined by (6.18), point out that (%,d) is a metric space.

2. Given x: [0,1] = R?, x!(t) = x2(t) = ¢, and y: [-1,1] = R%, y'(u) =
u, y*(u) = u*—1, find the value of p (x,y).

3. Given x: [-1,1] > R? x'(t) =2, x*(t) =0 and y: [0,3] — R?,
' (u) = u, y?(u) = u?/9, find p (x,y).

4. Given x: [0,7] = R?, x(t) = (cost, sint) and y: [0,7] = R, y(¢) =
(cos®t, sin® t), show that p (x,y) = .

5. Let C be a given Fréchet curve in E,, let x: [a,b] = R" be any one of
its representations, and let [¢,d] be any closed interval of positive
finite length. Show that C has at least one representation y with the
given interval [c,d] as its domain.
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6. Starting with the cartesian plane R? and the non-euclidean distance
d(x,y) = |x'—9*| + |x®*—»?| between points x and y of R2, replace
(6.9) by the definition

p(x,y) = iI:fSltlp d{x(t),y[r ()]}

What difference if any is there between a Fréchet curve based on this
definition of p and that based on definition (6.9)?

7. Let (S,d) be an arbitrary metric space, consider continuous
mappings x: [a,b] = (S,d), and define p (x,y) = inf sup d{x(¢),y[k(®)]}.
Discuss the extension of Sections 6.3 and 6.4 to this case.

6.5 PIECEWISE SMOOTH CURVES

A curve C will be called PWS if C has at least one representation x:
[a,b] = R™ that is PWS on [a,b]. This means that each component of
x is PWS on [a,b] in the sense of Section 1.9. If A: [¢,d] — [a,b] is any
PWS SPH, then the composite function x o k: [¢,d] = R" is PWS on
[¢,d] and p (x,x o k) = 0, hence a PWS curve C actually has infinitely
many PWS representations.

In the remainder of this chapter any curve C or representation x that
is mentioned will be understood to be PWS unless there is explicit
statement to the contrary. This is a sufficient condition for an integral
(6.3) with a continuous integrand F to be meaningful as a Riemann
integral. We shall relax such restrictions in subsequent chapters.

A PWS curve C also has infinitely many representations that are not
PWS. It is not difficult to construct an SPH between two fixed intervals
that has infinitely many corners and to see that there are indeed
infinitely many different ones having this property and hence that are
not PWS. The composite function x o 4 fails to be PWS for each such 4.
Such representations must be avoided in the present chapter.

We shall want to use partial derivatives of our integrands, but a
function F with values F(x,y,p,q) like that in (6.2) generally is not
differentiable with respect to p or g at a point of its domain of the form
(x,9,0,0). We therefore shall restrict ourselves part of the time to the
use of what are called regular representations. By definition, a PWS
representation x: [a,b] = R™ is called regular if the derivative vector
%(t) vanishes nowhere on [a,b] with this understood to mean that, if
x(t) is a corner, then neither the left nor the right derivative at ¢ is zero.
Every PWS curve C has infinitely many regular and also infinitely many
nonregular (singular) representations.
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Exercise 6.2

1. Establish that x(t) = (£3,3), —-1<¢t=<1 and y(u) = (w,u), -1 <
u < 1 represent the same smooth curve C and that one of them is
regular and the other singular, that is, nonregular.

2. Given thatx: [a,b)] = R"is PWS and regular on [a,b], define

s(®) = [ 1#(r)] dr.

Show that the function s: [a,b] — R is an SPH and the composite
function x o s7!, where s™! is the inverse of s, is a regular representa-
tion equivalent to the given representation.

6.6 PARAMETRIC INTEGRALS AND
PROBLEMS

Parametric integrals are encountered under two kinds of circumstances.
Questions from geometry involving the notions curve or path of a
moving point are most appropriately stated and treated in terms of
parametric equations. If, for example, we wish to study the length of
plane curves, the nonparametric length integral [ [1+ (y')2]¥?dx is an
inadequate tool, since it automatically restricts attention to paths that
are the graphs of real-valued functions. Since such paths intersect a line
x = const. in at most one point and since paths in general can intersect
such lines in many points, one needs the parametric integral (6.4).
Certain considerations in mathematical physics are also essentially
geometric, hence are properly formulated in terms of the parametric
integral (6.5) or its counterpart for three-space. Such situations occur,
for example, in the study of electric and magnetic fields. On the other
hand, there are questions of which many examples have been given in
preceding chapters in which the concern is with real- or vector-valued
functions y and not with curves. The initial and seemingly natural
formulation of these questions in mathematical language is nonpara-
metric, and yet it is sometimes an aid to the analysis if one shifts to
parametric form in the manner indicated by (6.2).

Usually the parametric integrand F(x,y,p,q) corresponding via (6.2)
to a well-behaved nonparametric integrand f(x,y,r) is discontinuous at
p = 0. For instance, if f(x,y,r) = 7%, then F(x,y,p.q) = ¢*/p.

We turn now to a formulation of parametric variational problems so
phrased as to include both those of the more traditional geometric type
and those generated by nonparametric problems.

Shifting to the notation of (6.3), let 4 be a nonempty open subset of
R™ with points denoted by such symbols as x, y, and z. Let B be a non-
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empty subset of R” such thatif r € Bandr # 6 = (0,0, . . ., 0), the origin
of R", then the half-line or ray determined by 6 and r (possibly including
6 and possibly not) is contained in B. We require further of B that it be
an open subset of R™ or that it be the union of such a set with the
singleton set {6} consisting of the point 6.

Consider a function F: 4 X B — R subject to a blanket hypothesis similar
to that in Section 2.2. By this we mean that F is required to be continuous
on 4 X Btogether with any partial derivatives of F that may be mentioned
in a particular theorem or discussion. Sometimes an expression F (y,r)
for values of F is given without explicit description of the sets 4 and B.
When this occurs we shall understand that 4 and B are the maximal sets
with the stated properties such that F has the continuity and differentia-
bility described above.

Suppose given some theorem involving a function F but no derivatives
of F. The blanket hypothesis then requires only that F be continuous on
AXB. If n=2and F(x,y,p,q) = (p*+ ¢*) "2, the maximal sets mentioned
above are 4 = R? and B = R2. For the example F(x,y,p,9) = ¢*/p, these
sets are A =R? and B = {(p,q) € R% p # 0}. Some other theorem
might require first-order partial derivatives of F. The origin (0,0) would
then have to be excluded from the set B for the first example above.

The flexible meaning given to the symbol B and to the blanket
hypothesis on F, which has seemed convenient to the author, has two
objectives. Many assertions involving derivatives of F are meaningful
if and only if those derivatives exist and are continuous and we prefer
to abbreviate various statements including steps in proofs by not having
to repeat this fact. Second, some statements about F are free of deriva-
tives while others may involve derivatives of the first order, etc.; hence
some parts of the theory apply to a larger class of functions F than do
others. In comparing results from different books, one needs to check
hypotheses of one author against those of another since the practice is
not uniform. For example, Hestenes (XXI, p. 79) restricts his discussion
at the outset to parametric integrands with continuous second-order
derivatives while Bliss (IX, p. 105) requires continuous fourth-order
derivatives. Similar remarks apply to the set that we have denoted by B.
Some authors explicitly exclude the case in which the origin r =0 is a
point of B as we have not.

Consider an integral (6.3) with integrand F subject to the blanket
hypothesis. Let C be any Fréchet curve having a PWS representation
y: [to,t;] = R™such that

(6.19) [»(®),5()] € AXB, Vit € [to,t].
Under the blanket hypothesis, F is continuous, and by (6.19) the compo-

site function F[y,j] is meaningful and Riemann integrable over [#,t,].
An integral (6.3) is called a parametric integral if its value is the same for
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all PWS representations having property (6.19) and representing the
same Fréchet curve C. The function F is then a parametric integrand.
Since the value of a parametric integral depends only on the choice of
a curve C and not upon the particular choice of a representation with
property (6.19), its value will generally be denoted by J(C).

Let € denote the class of all PWS curves C having PWS representations
that satisfy (6.19) together with given end-conditions. The question of
existence and characterization of a curve C, € € such that J(C,) is a
global extremum is then a parametric problem of the calculus of variations.
We shall define local extrema presently. The curves C € € are called
admissible curves and the representations with property (6.19) of admis-
sible curves are admissible representations.

One may wonder at this juncture how parametric integrands and
integrals are to be identified. The answer is found in Section 6.7.

6.7 HOMOGENEITY OF PARAMETRIC
INTEGRANDS

The theorem of this section is free of derivatives of F; hence, under the
blanket hypothesis, F is understood to be continuous on 4 X B even
though this is not stated in the theorem.

Theorem 6.2

Given an integrand F: AX B —> R, the integral (6.3) has the same value for
all PWS representations with property (6.19) of an arbitrary curve C having such
a representation if and only if

(6.20) F(x,kr) = kF(x,r), V(x,r) € AXBandVk = 0or > 0,
respectively, accordingas @ € B or 0 € B.
PROOF

Let y: [to,ty] = R™ be a PWS representation with property (6.19).
Let : [ug,u;] = [to,t,] be an SPH such that Ji(u) exists and is finite and
positive on [£y,t,]. Set

(6.21) z(u) = y[h(u)].
Then
(6.22) 2(u) = 5[h(u)1h(x).

with the equation understood in the sense of (2.17) if z(u) should be a
corner point. It is immediate from definition (6.21) of z that it is Fréchet
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equivalent to y. Since y satisfies (6.19) by hypothesis, it follows from (6.22)
and the positiveness of & that Z(u) € B, hence that [z(u),2(u)] € 4 X B.

Given that integral (6.3) has the same value for every PWS repre-
sentation y satisfying (6.19) of an otherwise arbitrary curve C, this must
be true in particular for every curve represented by a restriction of the
given function y to a subinterval [,t] of [f.t]. It follows that the equa-
tion h(y, u

[ Fly0) 501 de= [ Flz(@) 2(e)] da

0

is an identity in u. We differentiate with respect to « using Theorem 1.3
and the continutiy of F on 4 X B, finding that

(6.23) F{y[h(w) 1,30k (w) 1}h(x) = Flz(u) ()]

is an identity in « in the sense (2.17).

In view of the arbitrary nature of the mappingsy and , we can suppose
them so chosen that z(u;) = y[h(u,;)] = y(¢;) is an arbitrary point of 4,
that 7z(u1) is an arbitrary positive real number %, and tl.lat 3(4) is an
arbitrarily selected point 7 in B, hence that 2(u,) = 3(#) () given by
(6.22) is the point kr of B. If we substitute «,; and ¢, = h(y,) into (6.23), we
obtain the desired conclusion (6.20) with % restricted to be positive.

If the origin § € B, then F is continuous at points (x,0), x € 4, under
the blanket hypothesis. Let 4 tend to 0 through positive values in (6.20)
and verify both that F(x,0) = 0 and that (6.20) holds with £ = 0.

Suppose conversely that (6.20) holds as stated in the two respective
cases. Lety: [#,4,] = R"and z: [ug,u;] = R™be two PWS representations
with property (6.19) of the same curve C. Example 6.1 has shown that
there may be no SPH that transforms z into y.

With reference to problem 2, Exercise 6.2, we can define

©624) s =[B@ld  ad s = [ 2)|d.

If y and z should happen to be regular, then s; and s, would both be
strictly increasing, and proof that integral (6.3) has the same value for
both y and z would be easier. Since y and z are not in general regular, we
use a result to be proved in Section 7.6 that every curve C of positive
finite length L has a particular representation X: [0,L] — R" in terms of
distance s along the curve as parameter. This representation is PWS
when C is PWS.

Granted this representation of the curve C already represented by
both y and z, we see with the aid of (6.24) that

¥y =X[s()]  and  5(2) =X[5:()15:(8) = X[s:(1)]15(2) |
and similarly that

2(w) =X[n(w)]  and  2(u) = X[s(u) 13 (w) = X[s0()] |2 .
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Now (6.20) holds and y is a representation with property (6.19) by
hypothesis. From this and the preceding relations,

Fly(),5()] dt = F{X[5,(£)1.X[5: () 133, (¢) dt = F{ }ds,
whether the origin 6 of R is or is not a point of B. Similarly,
Flz(u),2(w)] du = F{X[52(2)],X[5:() 1}3 () dt = F{ } ds,.

In the two expressions at the extreme right, symbols s, and s, can just
as well both be called s. It follows that

6.25) [ FIy(®)3() de= [, FIX(s).K(s)] ds = [ Flz(u) 2(x)] du.

This completes the proof.

One distinguishes between integrals of the form (6.3) that are para-
metric and those that are not on the basis of Theorem 6.2, that is, on
the basis of whether F is or is not homogeneous of the first degree in r
as stated in (6.20).

We remark that the restriction in this chapter to PWS curves C,
although a customary ingredient in the classical theory of parametric
integrals, will be relaxed in Chapter 7. Such a move has certain ad-
vantages and is a characteristic of modern calculus of variations.

Exercise 6.3

1. Verify that (6.4) and (6.5) are parametric integrals with the aid of
Theorem 6.2.

2. Given [F(t,y,y) dt with F depending upon ¢, suppose that this is a
parametric integral and obtain a contradiction.

6.8 CONSEQUENCES OF THE HOMOGENEITY
OF F

Given that

(6.26) F(y,kr) = kF(y,r), (y,r) € AXB, k>0,

we can differentiate with respect to £ under the blanket hypothesis on F
and find that

(6.27) Fr(ykr) -7 = F(y1),

in which the dot denotes a scalar product. The restrictions on (y,7) and
k stated in (6.26) are to be understood through this section. With k=1,
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the last identity reduces to a special case of Euler’s theorem on homo-
geneous functions, namely, that

(6.28) F.(y,r) -7 = F(y.r).

After writing the left member as a sum, we differentiate with respect
to 77 and find that

(6.29) Fi.i(y,r)r* =0, summedoniwithj=1,... n.

The n equations (6.29) hold for all pairs (y,r) € AXB and hence
for vectors 7 distinct from the zero n-vector. Consequently, by a standard
theorem on systems of linear homogeneous equations, the determinant
(6.30) |Friri(y,r)| = 0.

For the case n =2 and in the notation of (6.2), identity (6.30) says that

Fz3(x,9,%.3)Fgs( ) = F3( ).
System (6.29) for this case can be written in the form
Fzz(x,y,%5)%+Fz3( )3 = 0,

Fpa( )2+ Fgs( )3 = 0.

After multiplying these respective equations by % and j and using the
fact that Fgs= Fgs, a consequence of the blanket hypothesis on F,
we find that

(6.31) %°F 23 = —3yF 35 = 5°F 33.
One can define a function F;: A XB — R,

Fz2( )9 if 3#0,
(6.32) Fy(x,y25) ={—Fz3( )%  if2+#0,
Fgs( )/% if £#0.

Function F, plays a role in the theory of parametric variational problems
in the plane [Bolza (X,p.121), (XI,p.196), and other books] analogous
to that of f,, for the corresponding nonparametric problem. For the
extension of F; to the cases n > 2, see Carathéodory (XII,p.216).

Differentiating F with respect to a component of r lowers the degree
of homogeneity in r by one. It is thus clear from (6.32) that F, is positive
homogeneous in 7 of degree — 3.
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The Weierstrass E-function for a parametric integrand F(y,r) can be
defined by the statement that

As a consequence of identity (6.28) we also have the alternative forms

E(y.p.9) =F(y,9) —q - F:(y,p) = q- [F.(y,9) —F.(y,p)].
For each fixedy € 4, the equation
(6.34) u=F(y,7)

determines a ‘“‘surface” in R"*! called a figurative. As a consequence of
the positive homogeneity (6.26) of F in 7, if (r,u) is a point on the figura-
tive, then so also is (kr,ku) for every positive k. Consequently, the figura-
tive is a ruled surface made up of rays issuing from the origin (r,u)
= (6,0) of R™*. In the event that the set B belonging with F includes the
origin, r = 8, of R", then the origin of R"*! is understood to be included
as a point of each of these rays, and the figurative is a cone with the origin
as a vertex. There may be other vertices, as the following examples show.

EXAMPLE 6.2

n=2, F(xy.p,q) = (p*+¢°)"
The figurative is the upper half of a right circular cone including the
vertex (r,u) = (0,0).

EXAMPLE 6.3

n=2, F(x)5,p,9) = 3xp+2yq.
Since x and y are present, we have a family of figuratives with x and
y as parameters. Each figurative, corresponding to a fixed pair (x.,y), is

a plane, hence a cone with the origin as a vertex. Every point of a plane
is a vertex.

EXAMPLE 6.4

n=2, F(xy.p.q) = |qg—pl.

The figurative consists of two half-planes forming a dihedral angle
with the line g—p = 0, u = 0, as edge. Every point of this line, including
the origin, is a vertex.

Exercise 6.4

1. With n=2, describe the figuratives u = F(x,y,p,g) in the cases
F(x,3.0.9) = |pl, (B*— )", (p*+ )"
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2. Given that n=2 and F(x,y,p,q) = ¢*/p with B given as the half-
plane p > 0, describe the figurative.

3. Show for the case n =2 that the difference between the ordinate
u=F(y,r) to a figurative and the ordinate to a tangent plane to
this figurative is expressible in terms of the E-function. Then in-
vestigate the extension of this result to a general n.

6.9 THE CLASSICAL FIXED-ENDPOINT
PARAMETRIC PROBLEM

Given a parametric integrand F:4 XB — R, let € denote the class of
all PWS Fréchet curves C each of which has at least one PWS representa-
tion y: [t,t;] = R™ with property (6.19) and with fixed initial and
terminal points. Such curves C and such representations y are called
admissible.

Consider the problem

(6.35) J(C) = [ F(y3) dt = minimum on'%.
If C,yis an admissible curve such that
(6.36) J(Cy) = J(O), VCEG®%,

then J(C,) is a global minimum, called proper if the strict inequality holds.

Fréchet distance (6.18) between curves C, and C, is independent of
derivatives of the respective representations. That the distance d(C,,C,)
be small implies that given any representation x: [a,b] = R™of C,, there
must be, in accord with problem 5, Exercise 6.1, a representation
y: [a,b] = R™ of C, with the same domain as x and such that the euclidean
distance |x(t) —y(¢)| be small for all ¢t € [a,b]. If d(C,,C;) =, then the
graph of C, is a subset of the union of all closed balls of radius r with
centers in the graph of C; and similarly with the roles of C, and C,
exchanged. The distance |%(t) —5(¢)| between derivatives can be large
when d(C,,C;) is small. Therefore, Fréchet distance d is a distance of
order zero denoted in the remainder of this section by d, and, if Gy is a
curve in € such that

(6.37) J(Cy) = J(C), VC € % N Uy(3,Cy),

where Uy(8,Co) = {C € €: dy(C,C,) < 8}, then J(C,) is a strong local
minimum, again called proper if the strict inequality holds. That it is
possible to define several first-order distances and neighborhoods that
lead to a definition of a weak local minimum has been shown by McShane
(33f). However, in the interest of brevity it seems best not to follow this
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approach. We shall say that J(C,) is a weak local minimum if, given a
particular PWS representation yo: [a,b] = R" of C,, then

(6.38) J(Cy) = J(C) for all C € ¥ having representations y: [a,b] — R™
with the same domain as y, and such that, for some positive 8,
ly(6) =3 ()| < & for all t € [a,b] and |5(t) —Ho(t)| < & for all
t € [a,b] in the sense of convention (2.17).

6.10 THE CLASSICAL PARAMETRIC PROBLEM
OF BOLZA

The parametric problem analogous to the nonparametric problem
formulated in Section 5.3 can be stated briefly as follows.

In addition to an integrand F: 4XB — R with the nonnegative
homogeneity (6.20), we use real-valued functions ¢, all having the same
domain as F and the same homogeneity property.

Let € be the class of all PWS curves C having PWS representations
y: [to,ti] = R™ that satisfy condition (6.19) together with side-conditions

(6.39) és(y,9) =0, B=1...m<n—]1,
and end-conditions

(6.40) Yuly(t),5()]1=0, p=1...,p<2n.
Given

J(€) = ely(w) )]+ [ F(.5) dt,

the basic problem is that of the existence and characterization of a curve
C, € % that furnishes a global extremum for J(C) on %. Again, we may
also be interested in strong or weak local extrema.

In order that this be a curve-problem, not a function-problem, and
hence be properly called parametric, observe that in addition to the
homogeneity of F and ¢, already stated, all the functions F, g, ¢, and
Y. must be free of the parameter ¢.

For treatment of this problem see M. F. Smiley (XV, years 1933-1937)
and various papers in his bibliography.

6.11 THE EULER NECESSARY CONDITION

Suppose given a fixed-endpoint parametric problem as formulated in
Section 6.9 and recall that the class € of admissible curves consists of
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those with PWS representations y: [¢,t;] = R™ having property (6.19)
and fixed end values.

Theorem 6.3

If J(Cy) is at least a weak local minimum for the integral (6.35) on €, then
to each regular admissible representation yy: [to,ty] = R™ of C, corresponds a
constant vector ¢ such that the vector-equation

(6.42) FoIyo(0) 5001 = [, Fu[30(r) 3o(r)] dr +¢

holds in the sense (2.17) on the domain [t,,t,] of yo.

PROOF

The standard proof, which follows that of Theorem 2.2, Section 2.6,
need not be given in detail. Let n: [#,t,] = R have the properties stated
in Section 2.6 and let y be the representation whose jth component is
y3+en but whose other components coincide with those of y, The
reader should verify that, if |e| is sufficiently small, such a function y will
satisfy the requirements of definition (6.38). We need the openness of
the sets 4 and B, stated in Section 6.6, in order that the representations
used in this proof be admissible at least when € is near zero. By following
Section 2.6 we obtain the equality of jth components of the respective
members of Euler condition (6.42).

As an immediate corollary, we use the continuity in ¢ of the integral
in (6.42) and obtain the Weierstrass-Erdmann corner condition

(6.43) Fr[90(8),55 (8)]1 = F.[y(2),53 () ].

Continuing in the pattern of Section 2.6, differentiate (6.42) at any
t € [to,t;] not corresponding to a corner and find that

d
(6.44) Fy[y0(2).30(8)1 = 2, Fr[30(2) 50 ()]

The right member can be expanded, provided that the various deriva-
tives all exist to yield the system of scalar equations

(6.45) Fyi= F,i,i§(t) + F,i,5§(t), summedonjwithi=1,... n.

Forms (6.42), (6.44), and (6.45) correspond to the respective forms
(2.18), (2.24), and (2.25) of the Euler condition for the problem of
Chapter 2.

EXAMPLE 6.5
n = 2 and F (y,r) is free of y.
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Discussion

One often starts with (6.45), even though cases analogous to those
illustrated by examples in Section 2.7 may occur and we would have to
turn to (6.44) or (6.42), which hold with fewer restrictions on y,.

For the present example and with (x,y) in place of y = (3',5%), the two
equations (6.45) are

Fa[2(2).50 () 1% (2) + F23 B =0,
Fs; @ +Fgl 15(@) =0.
By inspection, these equations hold if X, (¢) = 5, (¢) = 0 and hence if

%o(t) = ayt+ b, and  yo(t) = apt+b,.

Since the vector-valued function (xo,%): [,t] = R? is a representa-
tion of a possible extremizing curve C,, the parameter interval can be
chosen at pleasure as any interval of positive finite length —say [0,1] or
any other. After making a choice, the given fixed endpoints will deter-
mine the coefficients a,, by, a,, b,.

The curve C, having a regular PWS representation of the above form
has infinitely many other such representations, among which are those
obtainable from this one by setting ¢ = ¢ (u), where ¥: [uo,u,] = [fo,t1]
is any SPH that is PWS and such that its derivative ¥ (u) is always
positive.

The following theorem gives an alternative form due to Weierstrass
of the Euler condition (6.45) in the special case n = 2.

Theorem 6.4
If n=2, a regular representation (x,y): [to,t;] = R? satisfies the Euler
equations (6.45) iff
(646)  Fj(xy49)— Fuz(xpif)+ GF—5%)Fi(x.25) = 0.
PROOF

System (6.45) for the case » =2 and in the (x,y) notation is the pair of
equations

F,= F.i‘z+§F5y+3‘.F§5+3"Fil7y
(6.47)

Fy=3F3.+§F g, +¥F33+%F 3.

By Euler’s theorem on homogeneous functions applied to F, [the
relation analogous to (6.28) obtained similarly by starting with the
identity F(x,kr) = kF(x,r) ], we obtain the identity

Fy=2%F;3+5F.3.
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Using this and definition (6.32) of F,, we can express the first equation
(6.47) in the form

(6.48) J[Fzs—Fay+ (BF—3%)F,] = 0.
Similarly, from the second equation (6.47),
(6.49) 2[F2,—Fz3+ (X —35)F,] = 0.

Since (x,y) is regular by hypothegis, %(¢) and %(t) cannot vanish
simultaneously; consequently (6.48) and (6.49) imply (6.46). Clearly
(6.46) implies (6.48) and (6.49), and these two are equivalent to system
(6.47).

6.12 NECESSARY CONDITIONS OF
WEIERSTRASS AND LEGENDRE

Let ¥ again be the class of admissible curves for the fixed-endpoint
problem of Section 6.9 and recall that admissible representations
satisfy (6.19).

Theorem 6.5

If J(Cy) is a strong local or a global minimum for the integral (6.35) on €
and yo: [to,t1] = R™ s a regular admissible representation of Co, then

(6.50) E[yo(2),5%(t),q]1 =0, VYtE€E [t ,t,]and¥qg EB

with the symbol 5, (t) understood in the sense of convention (2.17).

PROOF

We follow the proof of Theorem 2.5. The reader can construct his
own figure similar to Fig. 2.1 without the axes. The graph of y, that one
draws now represents a projection into the plane of a graph from R"
and it can have loops and multiple points, which are excluded under the
restrictions of Chapter 2.

Given 7 € [t,t) and not corresponding to a corner of y,, select a
number a € (7,t;) that is so near to 7 that no parameter value ¢ in [7,a)
corresponds to a corner of y,. Let Y denote the vector-valued function
with values

Y (&) = yo(r) +4q(t—17),

in which ¢ denotes an arbitrary point other than 6 of the set B that
appears in the formulations of this chapter and is also unequal to j, (7).
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Given u € [r,a) and that u is so near to 7 that Y (¢) remains in the set
Aift € [r,u], define

yo(t), t € [tO’T] U [artl]y
(6.51) y(t) = 1Y (), t € [r,u],

& (t,u), t € [u,a],
with

Y () —0(u)

B (60) = 30(0) +———

(a—1t).

The function y: [to,t;] = R™ with values (6.51) is admissible and
coincides with y, except generally on the interval (7,a). When u=r,
y(¢) reduces to yo(¢) on the entire interval [¢,t,].

Define ® (u) = J(y) —J(%). The function ® with these values is
differentiable and, as a consequence of the hypothesis on y,, we have the

necessary condition
®'(7) = 0.

Since y = yoon [£,7] U [a,t;] we see that

@ (u) = [ F(V.V) dt+ [ F($,60) di— [ F (30,3) .

We obtain an expression for ®’(u) by means of Theorem 1.3 after
observing that the last term is free of u. The result is that

@' (u) = F[Y (0),Y ()] —F[o (w,u) . (w,u)]
+ [T AR, [6 (60),6(t)] - bultw) + Fo[ 1+ dultu)} de.

After integrating the first term by parts, we use the fact that ¢, (a,u) =0,
set u=7, and see that ¢ (¢,7) = yo(t) must satisfy the Euler equation
(6.44) since y, has no corners for ¢ in the interval [7,a). We then see,
with reference to form (6.33) of the E-function, that our necessary
condition is the inequality

®' (1) =E[y(7).0(r),q] =0, VgqE€EB,

subject to the restriction at the beginning of the proof that v * ¢, and
that y,(7) is not a corner.

To remove these restrictions, use the blanket hypothesis on F as
stated in Section 6.6 to obtain the continuity of E. Then let 7 — ¢, from
below and find that the above inequality holds with 7= ¢,. If &, € (t,t,)
corresponds to a corner, let 7 — ¢, from below and also from above. The
inequality holds at ¢ in the sense of convention (2.17), that is, with
either 55 or 37 in place of 5. The inequality thus holds for all7 € [f,!,].
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Finally replace 7 by ¢ so as to express the conclusion in the stated form
(6.50).

If in the definition of Y we restrict the vector ¢ by the condition that
g—35o(t) be of suitably small norm so that y is in the first-order neighbor-
hood of y, that appears in our definition of a weak local minimum, then
the preceding proof yields the following theorem as a corollary.

Theorem 6.6

IfJ (C,) is a weak local minimum. for the integral (6.35) and yo: [a,b] = R™
is a regular admissible representation of C,, then there exists a positive real
number & such that

(6.52) E[y(2),5,(¢),q1 =0, VY t€E [t,,,]andV¥ ¢ €EB
such that |[g—%(¢)| < 8.

Companion theorems for maxima to Theorems 6.5 and 6.6, obtained by
applying these theorems to —J, yield (6.50) and (6.52) with reversed
inequalities.

Weierstrass necessary conditions for nonparametric variational
problems in (n+ 1)-space are available as byproducts from the preceding
discussion. We can replace integral (6.35) by (6.1) and hence replace
F(y,r) throughout the proof of Theorem 6.5 by f(x,y,7). Since we have
not used the homogeneity of F in that proof and the only differentiations
are with respect to components of y and r, every step can be rewritten
in terms of f. For the case n = 1, we recover Theorem 2.5. Comparison
of the proof of that theorem in Section 2.8 with the proof of Theorem
6.5 will accentuate and clarify these remarks.

Theorem 6.7

If J(Co) is at least a weak local minimum of the integral (6.35) on € and
Yo: [to,t,] = R™ is a regular admissible representation of Co, then the quadratic
Jform
(6.53) Fripi [yo(2),50(0) 10" = 0, YV t € [to,ta],

Y n-vector v not a multiple Ao (t) of 3,(¢) by a scalar.
PROOF

Under our blanket hypothesis on F, F(y,q) has for a fixed y, the
following Taylor expansion with remainder:

654)  F(3.q) =F(5,5) + (¢'—3)Fi(y.5)
+4(¢'—5) (@ —F)Firi[y3+0(¢—35)], 6 € (01),
with summation on i and j from 1 to n.
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It follows from definition (6.33) of the E-function that
(6.55) E (y,9,q9) = last term in (6.54).

To complete the proof, ignore the factor %, use Theorem 6.6, multiply
¢—75 by an arbitrary real number a, and denote the resulting vector by
v. Conclusion (6.53) is correct without the stated restriction on wv.
Observe that, if identity (6.29) is multiplied by 7’ and summed on j, the
result is identically zero, hence that if v = Ay,(¢), then (6.53) holds
trivially in the form 0 = 0.

In the notation of Bliss, the respective necessary conditions (6.42),
(6.50), and (6.53) of Euler, Weierstrass, and Legendre are again
designated by the Roman numerals I, II, and II1. Of course (6.52) is also
a Weierstrass necessary condition, but when this term is mentioned
without a qualification it is customarily understood to mean form (6.50)
for the strong minimum. There is also a Jacobi necessary condition IV
for the problem of Section 6.9, but we shall not discuss it. See Bliss
(IX, pp. 116-124).

Analogues of these conditions for more general parametric problems
including the parametric Bolza Problem of Section 6.10 are also to be
found in the literature.

Sufficiency theorems for local extrema of a variety of parametric
problems stated in terms of strengthened forms of the four necessary
conditions are also available. The statements of such theorems resemble
those given in Section 3.6 for the nonparametric problem in the plane.
Again see Bliss (IX, pp. 124-132), Pars (XXXII, Chap. IX) for the case
n = 2, and other standard reference material.

Exercise 6.5

1. With =2 and using (x,y) for a point in the plane, show that
xo(t) = 30(t) =t, 0 < ¢t < 1, is a representation satisfying the Euler,
Weierstrass, and Legendre necessary conditions for the problem,
J #2+3$%Y? dt = minimum with the fixed endpoints (0,0) and (1,1).

2. Recall that a binary quadratic form au®+ 2buv+ cv? is of fixed sign
iff its discriminant 4 (#* —ac) < 0. Show as a corollary to Theorem
6.7 that, in the case n =2, Fy[x,(2),70(¢),%(t),50(¢)] = 0 is necessary
for a minimum and that <0 is necessary for a maximum.

3. Investigate the conclusions obtainable from an application of
(6.46) to Example 6.5.

4. Discuss for a general n the various conclusions obtained from
Sections 6.9, 6.11, and 6.12 for a fixed-endpoint problem based on an
integrand F that is free of y.

5. Construct, with possible reference to Chapter 2 for a hint, an
example of a parametric problem that has an extremizing curve C,
with one or more corners.
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6. Given the Multiplier Rule as a necessary condition for the non-
parametric Bolza Problem, investigate what this implies for an
extremizing representation y, for the parametric Bolza Problem of
Section 6.10.

6.13 RELATED PARAMETRIC AND
NONPARAMETRIC PROBLEMS OF
LIKE DIMENSIONALITY

Parametric problems arise from the two sources described in Section 6.6
except for artificial examples obtained by constructing continuous
homogeneous integrands F at pleasure.

A parametric variational problem of the traditional geometric type
accepts both positive and negative values %(t) of the derivative of the
first coordinate of the moving point (x,y). If, however, we start with a
nonparametric integral (6.1), with x understood to run over an interval
[a,b], and then pass to the associated parametric integral (6.2), we must
restrict x to be increasing in ¢ or else lose an essential feature of the
nonparametric problem.

There is a formal one-one correspondence between integrals (6.1),
(6.2). Replace symbols £, §, and dt of the parametric integral by 1, ¥’ and
dx, respectively, to obtain its nonparametric counterpart. There is not,
however, a one-one correspondence between the class of all PWS
Fréchet curves with fixed endpoints and the class % of all PWS functions
y with these same endpoints as remarked in Section 6.6. If €, denotes the
proper subclass of € consisting of those curves C € € each of which
has a representation (x,y): [f,t;] = R™*! such that x is strictly in-
creasing on [f,t,], then there is a one-one correspondence between
€, and %.

Parametric and nonparametric fixed-endpoint problems

(6.56) Jp(C) = minimumon % and  Jyp(y) = minimum on %

with the integrals formally related as in (6.2) are in general quite distinct
problems.

EXAMPLES 6.6
Consider possible minima of the following pairs of integrals (6.56):

(i) [ ®|3|dt and [ x2|y’|dx with endpoints (—1,—1) and (1,1),
@) T (G20 (3/%) —11%dt and [ (y')2(y' —1)? dx with endpoints (1,1)
and (2,0),
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(i) S [PFG—%)21"dt and [ [(y)2(y' —1)?]"*dx with endpoints (1,1)
and (2,0),
(iv) [ [#+352]"2dtand [ [1+ (y')2]V2 dx with endpoints (0,0) and (1,1).

Discussion

The infimum of both integrals (i) with nonnegative integrands is zero.
This is realized for the parametric integral J, (C) by the curve C, whose
graph is the piecewise linear path from (—1,—1) to (0,—1) to (0,1) to
(1,1). The piecewise linear function y, joining (—1,—1) to (0—e,—1) to
(0+€,1) to (1,1), € > 0, yields the value Jyp(yc) = 2€%/3, but there is no
functiony, € # that yields the infimum 0 of Jyp (y).

For (ii) let C. be the admissible curve whose graph is the broken line
from (1,1) to (1—¢,0) to (2,0) withe > 0. By elementary integration

Jp(C) == (1/e) [(1/e) —17% .

the infimum of which is —». The maximal sets 4 and B for this para-
metric integrand are 4 =R? and B = R? less all points with abscissa
p=0. Thus the class of admissible representations (x,y): [fy,t;] = R?
excludes by way of condition (6.19) those such that £(t) vanishes any-
where on its parameter interval. The value of the parametric integral (ii)
for any choice of an admissible representation is a real number; hence
the infimum of Jp (C) is realizable by no choice of an admissible repre-
sentation of an admissible curve. One finds however with reference to
Example 2.1, Section 2.7, and to Theorem 3.9 and from the observation
that the family of linear functions of slope —1 provides a field in the large
that the function yo; y(x) = 2—x furnishes a global minimum for the
nonparametric integral.

The two integrands (iii) are nonnegative; hence their respective
infima on € and % are nonnegative. The parametric integrand clearly
vanishes for any PWS representation of the curve C, having as its graph
the broken line from (1,1) to (0,0) to (2,0); hence the global minimum of
Jp(C) is Jp(Co) = 0. The global minimum of the nonparametric integral
also exists, as one finds by the same procedure outlined in the last para-
graph. It is Jyp(y) = V2, where y is again the linear function with
values y,(x) = 2 —x.

The pair of length integrals (iv), in contrast with (i), (i), and (iii), both
have the same global minimum. The admissible representation x,(t) =
30(t) =t € [0,1] satisfies the Euler condition for the parametric integral
by Example 6.5. Since we have not discussed sufficient conditions for
parametric integrals, let us accept for the moment that the Fréchet curve

C, having this representation is the curve of least length. Clearly
Jp(Co) = V2.
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It happens that the minimizing curve C, in the class € of all admissible
PWS curves is actually in the subclass that we have called %,. Granted this
result, we have as an immediate corollary that the function y,,5(x) = x
corresponding to the graph of C, minimizes the corresponding non-
parametric integral. That Jyp(y,) = V2 is the global minimum of
J () on % can also be established by methods of Chapter 3.

Exercise 6.6

1. Show for the nonparametric integral (ii) under Examples 6.6 that

E[x,3.p(x5),5'1= (' +1)[(p')*—4'+8].

Justify the assertions that have been made concerning this integral
by direct use of the E-function and also by considering the figurative.
Explain why the minimum value of the integral is proper.

2. Justify the conclusions that have been stated for the nonparametric
integral of Example 6.6(iii) by studying the figurative.

6.14 AN ADDENDUM TO THE
EULER CONDITION FOR A
NONPARAMETRIC INTEGRAL

The fixed-endpoint nonparametric problem of minimizing integral
(6.1), as a very special case of the Bolza Problem of Chapter 5, has the
Euler necessary condition (5.24).

Consider the related parametric extremum problem on the class
%, described in Section 6.13. Every curve C € %, has a representation
(x,59) such that x(¢) = ¢, and this representation is clearly admissible.
There is a one-one correspondence between admissible PWS functions
y: [%0,%;] = R™ for the nonparametric problem and admissible PWS
representations

(6.57) x(@) =1t  y[x(@®)] =1

for the parametric problem. Moreover, the parametric problem on %, is
equivalent to the nonparametric problem in the sense that a representa-
tion (6.57) furnishes a given type of extremum for the former iff the
corresponding function y furnishes that type of minimum for the latter.

It follows that the Euler equation (6.42) is a necessary condition on
such a pair (6.57). Starting with the identity

F(x,9,%,5) = f(x,9,7)%, where r is the m-vector y/%,
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we see that

6.58)  Fa(x3.%3) =f(x3,7)—7- fr(x37r) and F()=f()

“and also that
(6.59) Fy(x,,%5) = fr(x37r) and  F,()=f,().

The first of the m+ 1 scalar equations equivalent to the vector equation
(6.42), written with the aid of (6.58) in the notation of the nonparametric
problem, is of the form

(6.60) . :
f[x,)'o(x), iﬁ(x)] _ﬁo(x) 'fr[x,yo(x) 75’0(x)] = Lofz[f,yo(f),)’.o(f)] df +ec.

The remaining m equations obtained similarly from (6.59), in contrast
with (6.60), provide nothing new. They are equivalent to equation (5.24)
with the present m playing the role of # in Section 5.7.

The integral in (6.60) is continuous in its variable upper limitx. If x = x,
corresponds to a corner it follows that values of the left member with
Jo (x0) O J (%) in place of y,(x,) must be equal. This is the extension of
(2.38) to a general n. The extension of (2.37) is similarly obtained with the
aid of (6.59) and (6.42).

6.15 RELATED PARAMETRIC AND
NONPARAMETRIC PROBLEMS OF
DIFFERENT DIMENSIONALITY

Given a parametric integrand F (y,5), where y is a vector-valued function
with » components, we can regard it as a nonparametric integrand in the
(n+ 1)-space of points (t,y) even though F is free of t. Various theorems,
methods, and results for nonparametric problems can then be exploited.

Consider, for example, the parametric length integral (6.4) for plane
curves and the variational problem with fixed endpoints (0,0) and (1,1)
that occurs in the fourth of Examples 6.6. With [#,¢,] as an arbitrary but
fixed compact interval of positive length, think of the nonparametric
problem in three-space:

(6.61) J(x,9) = f (%2 + $2 112 dt = minimum
with the fixed endpoints (4,0,0) and (¢,,1,1). Theorem 5.2 for non-

parametric problems applies to yield a pair of Euler equations and we
are led to the particular solution
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(6.62) xo(2) = 30(t) = (t— )/ (i —to),

satisfying the given end-conditions.

Because of the convexity of the integrand in X and j, Theorem 3.13
is applicable and we find that J(xy,5,) is the global minimum of the
nonparametric integral J(x,y). If we now revert to the context of planar
PWS Fréchet curves, we know that integral (6.61) is independent of the
choice of an admissible representation as a consequence of Theorem 6.2.
It follows that the curve C,, of which (6.62) is one representation,
furnishes the least length V2 among all PWS curves joining (0,0) and
(1,1) in the plane. The gap in our discussion of Example 6.6(iv) is now
filled.

This overly simple example serves to suggest that similar ideas also
apply to more complex problems.

6.16 CONCLUDING REMARKS

Parametric problems were introduced by Weierstrass about 1872. The
literature then tended to separate into two parts, one on parametric
problems, the other on nonparametric problems. Methods and con-
clusions were similar and yet different in important details.

Optimization problems from differential geometry such as the quest
for paths of least length or surfaces of least area are appropriately
formulated as parametric problems. If, for example, one desires the
shortest path joining fixed points in the plane, he is not content to know
that a curve C, is of smaller length than any other curves C in the
class %, of Section 6.13. He wants to establish that C, has smaller length
than any other curve in the larger class € of Sections 6.9 and 6.13 or bet-
ter still that it has smaller length than any other continuous Fréchet curve
having the given endpoints. This last objective cannot be achieved under
the classical restriction of PWS curves, but it is covered by Theorem 7.19.

Variational problems concerning the design or control of dynamical
systems may involve ¢ explicitly and usually lack the homogeneity
property (6.20) and hence are generally nonparametric. Although this
book is oriented toward applications, we cannot afford to ignore para-
metric problems. McShane achieved (33b,c) advances in existence theory
for nonparametric problems with the aid of associated parametric
problems and obtained (33k) sufficient conditions for a nonparametric
Bolza Problem with the aid of a parametric problem. In Section 10.2
we replace a novel nonparametric Mayer Problem by a classical para-
metric Mayer Problem. It seems likely that further opportunities can
be found for exploiting known methods or results for one type of
problem as tools in the analysis of one of the other type.



Chapter 7

DIRECT METHODS

7.1 INTRODUCTION

The work in earlier chapters has depended heavily upon the use of
Euler equations and upon the existence and properties of families of
solutions. Such traditional methods in the calculus of variations are
called indirect. In contrast, procedures that avoid the intervention of
differential equations, hence of dependence upon the theory of such
equations, and that emphasize convergence properties of functionals
and of classes of admissible curves and functions are called direct.

The term direct methods is applied to the approach to existence theory
initiated by Hilbert (X,pp.245-263; XI,pp.428-436) and developed by
Tonelli (XXXV, XXXVI), McShane, and others. Various computation-
ally oriented procedures intended to converge to an optimizing function
are also described as direct.

This chapter is concerned with the theory of length, the sequential
compactness of important classes of curves and functions, the semi-con-
tinuity of functionals, and the existence of global extrema. Such topics
mark a shift in content and viewpoint to ideas that have come to the fore
in the twentieth century. We exhibit few optimizing functions for par-
ticular problems. Our major objective is to investigate the structure of
problems and moreover to do so under materially weaker restrictions
on integrands and on admissible functions.

168
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7.2 GLOBAL EXTREMA OF REAL-VALUED
FUNCTIONS

Recall the classic theorem that, if the function ¢: [a,b] — Riscontinuous
on the compact interval [a,b], then there exists x4 € [a,b] such that ¢ (x4)
< ¢(x), Yx € [a,b] and also x* € [a,b] such that ¢(x*) = ¢(x),
Vx € [a,b]. The usual proofs with minor changes in wording extend
to the case of the global minimum and maximum of a continuous
function ¢: K C R* — R, where the domain K is any nonempty compact
subset of R™.

We would like to have theorems of this kind for curve-functions
J: € = R, but unfortunately the only such functions that turn out to be
continuous in a sense to be defined presently are those of the form

J(C) = [ Plx()] %) at,

with integrands that are linear in the components of X(¢).

However, many interesting functionals J are found to be lower or
upper semi-continuous, and these properties with other suitable
hypotheses suffice for theorems on the existence of the global minimum
and global maximum, respectively.

Let K now denote a set of elements of any kind for which there is a
suitable notion of convergence to a limit. Among other things K canbe a
subset of R", or a metric space (S,d) whose elements are functions y
or curves C. Suppose further that K is sequentially compact, by which we
mean that every sequence in K has at least one subsequence converging
to an element of K. It is well known and not difficult to prove that every
bounded and closed subset of R? is sequentially compact. We prove that
certain important classes of functions y and of curves C are sequentially
compact in Sections 7.7 through 7.9.

Theorem 7.1

Given a nonempty sequentially compact set K and a function J: K — R
that is bounded below and lower semi-continuous on K, there exists x, € K such
that

PROOF

Set y = inf{J(x): x € K}. By hypothesis J has a lower bound, hence
v > —. As a consequence of the definition of infimum there exists a
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sequence {x, € K: v € N} suchthatlimJ(x,) = vy, and since K is sequen-
tially compact we can suppose sequence {x,} so chosen that it has a limit
x, € K.

That J is lower semi-continuous on K means that, for every y, in K
and every sequence {y,} in K with limit y,, lim inf J(y,) = J (), hence
that lim inf J (x,) = J(x,). These observations combine to say that

J(x) < liminfJ(x,) = im J(x,) =y < J(x,).

The outer terms being equal, all terms must be equal; consequently,
J(x,) =v and (7.1) holds. Thus J(x,) is the global minimum of J(x)
onK.

Exercise 7.1

1. Given the function ¢: [—1/#,1/m] — R with values ¢(x) = 1+sin 1/x
or 0 according as x # 0 or =0, point out that the hypotheses of
Theorem 7.1 are satisfied and exhibit one sequence {x,} with the
property of that sequence in the proof of Theorem 7.1. Do the same
with ¢(0) = —2 in place of 0.

2. Formulate and prove a theorem similar to Theorem 7.1 on the exis-
tence of the global maximum of an upper semi-continuous function.

7.3 LENGTH OF A MAPPING

Given a compact interval [a,b] of positive length and a continuous func-
tion x: [a,b] — R", let = denote a partition of [a,b], which means a finite
subset {to.l;, - . . .t} such thata=1t, < ¢, - - - < t,, = b. The length £ (x)
of x is, by definition,

(7.2) L(x) = sup 3 |x(t) —x(tir)|.

The sum on i can be thought of as a sum of lengths of consecutive
chords that join endpoints x(a) and x(b). The supremum is on the class
of all partitions 7 of [a,b]. If and only if x maps the interval [a,b] onto
a single point of R the sum in (7.2) is zero for every choice of the
partition 7 and hence .#(x) = 0.

Clearly #(x) = 0. If the path traced by x(t) is sufficiently crinkly,
Z(x) = . If £(x) < x, then x is called rectifiable.

The supremum in (7.2) is also called the total variation of the function
x. It seems convenient in the present chapter, however, to follow
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a traditional restriction and to use the alternative term only in the case
n=1. Among several symbols for the total variation or length .#(x)
of a function x: [a,b] = R is T(x; [a,b]). If T(x; [a,b]) < o, then x
is said to be of bounded variation on [a,b], and this is abbreviated by saying
thatxis BV on [a,b].

Theorem 7.2

A mapping x: [a,b] = R™ is rectifiable iff each component ¥* of x is BV
on [a,b].

PROOF

Use the definitions and the inequalities
w7 () = (1) | < [x(t) —x(tia) | < 3 |2 (8)) = (8i-) |,
J

together with the sums of the three expressions with respect to i.

7.4 LOWER SEMI-CONTINUITY OF LENGTH

Theorem 7.3

Given the compact interval I = [a,b] of positive length and a sequence
{x,: v € N} of continuous functions x,: I — R™ converging pointwise to
Xo- I— R s then

(7.3) liminf L (x,) = L (x,).

PROOF
CASE 1, Z(x,) <

Given € > 0, there exists by definition (7.2) a partition 7, of I consist-
ing of points ¢;,i =0, . .. ,k such that
(7.4) 2 |%0 (%) —%o(ti-1) | > & (x0) —€/2.

With € and = fixed, there exists, as a consequence of the convergence
of x,(t;) to x(t;), i=0,...,k, an integer M, such that if v > M,, then
px,,(ti)—x,,(t,-_l)l—ixo(ti)—xo(ti_l)] ‘< €/2k for every value of i. It
ollows that

(7.5) loy (&) =2, (ti=1) | > |20 (8:) — %0 (t-1) | —€/2k.
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After summation on i we see with reference to definition (7.2) of length
and (7.4) that

L) > Llx)—e  ifv> M,

from which conclusion (7.3) follows.

CASE 2, £ (x,) =

Given € > 0, there exists a partition 7, of I such that
Ei [0 () — %0 (t:-1)| > 1/e.
Inequality (7.5) again holds and consequently
Z(x,) > 1lle—¢€/2 if v> M,.

It follows that .# (x,) — «; hence the desired conclusion holds in the
form lim .% (x,) = & (x,) -

We frequently wish to replace a given continuous mapping y: [¢,d]
— R" by a Fréchet-equivalent (defined in Section 6.3) continuous map-
ping x having an assigned domain [a,b]. That this can be done is easily
seen with reference to definition (6.9) of the distance p. Let 2 be an SPH
that maps [a,b] onto [¢,d] and define x as the composition y ° . Thus
x(t) = 9[h(t)], t € [a,b], and the euclidean distance |x(¢) —y[h(¢)]] is
identically zero on [a,b]. Consequently, p(x,y) = 0.

Theorem 7.4

Given the compact intervals I, Iy, . . ., of positive length, given continuous
mappings y,: I, > R, v=20, 1, ..., and given that p(y,,5) —> 0 as v —> =,
then

(7.6) liminf.% (y,) = £ (3).

PROOF

Let &, be an SPH that maps I, onto I, with the property that sup|y,(t)
=9 [2,(8)]] < p(y0,y,) +1/v and define x,(¢) = y,[h,(2)], t € I,. Thus
x,: Iy — R" is Fréchet-equivalent to y,: I, = R" and one verifies from
definition (7.2) of £ that Z(x,) = .Z(y,). The stated conclusion then
follows from Theorem 7.3. '

One defines lower semi-continuity of a functional, in particular of
%, by following the pattern of the corresponding definition (1.15)
for a point-function with convergence of y, to y, now taken to mean that
p(91,3%) — 0. If inequality (7.6) holds for every sequence {y,: v € N}
such that p(y,,%) — 0, the functional .# is lower semi-continuous at
¥0. This is what Theorem 7.4 asserts.
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7.5 LENGTH OF A CURVE

Recall the definition of a Fréchet curve C in E, in Section 6.3 and of
Fréchet distance d between curves in Section 6.4.

Theorem 7.5

If x and y are any two representations of the same Fréchet curve C in E,, then
Z(x)=Z(y).

PROOF
Since x and y both represent C, we have that p(x,y) = 0 by the defini-
tion of a Fréchet curve. Set z, =y, v=1, 2, .. .. Clearly £ (z,) has the

limit & (y) as v = o; consequently, by Theorem 7.4
Z(y) =liminf £ (z,) = £ (x).

Repeating the argument with the roles of x and y reversed, we obtain the
complementary inequality % (x) = £ ().

In view of this theorem we can define the length L(C) of a Fréchet
curve C as follows.

(7.7 L(C) = & (x), where x is an arbitrary representation of C.

That 0 < L(C) < « follows from the corresponding property of .#(x).
A curve-function J is called lower semi-continuous at C, if, for every
choice of a sequence {C,:v € N} such that Fréchet distance d(C,,C,) — 0,

liminfJ(C,) = J(C,).

Theorem 7.6

Given the class € of all continuous oriented Fréchet curves in E,, the function
L: € — R*is lower semi-continuous at each Cy € €.

PROOF

Let y,: I, = R™ be a representation of C,, v=0,1,2,.... The desired
conclusion is immediate from definition (7.7) and Theorem 7.4.

7.6 THE REPRESENTATION IN TERMS OF
LENGTH

Given a Fréchet curve C represented by x: [a,b] = R™ let C,, called a
subcurve of C relative to x be the curve represented by the restriction of x
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to a subinterval [a,t] of [a,b]. All intervals I that are domains of rep-
resentations of curves have been required thus far to be a positive
length. It is now convenient to relax this condition and to include the
degenerate representation x: [a,a] = R* of the subcurve C, ,. Clearly
there is exactly one image point. If we modify the definition of partition
preceding (7.2) so as to require only that a=f, <t <---<f=>»>
with weak inequalities, then % (x) = L(C,,,). = 0 for a degenerate curve.

We see from definitions (7.2) and (7.7) that L(C;,) is nondecreasing
in ¢ on [a,b]. The representation x is called proper if L(C,,) is strictly
increasing, otherwise improper. The representations y and x of our
Example 6.1 are proper and improper, respectively.

Theorem 7.7

Given a Fréchet curve C in E, of positive finite length, then among the
representations of C is a particular one, X: [0,L(C)] — R", with the important
property that, if Cy s is a subcurve of C relative to X, then

(7.8) L(Cyxs) =s, Vs € [0,L(C)].

This mapping X, traditionally called the parameterization of C in
terms of arc length, is useful in vector analysis, the theory of functions
of a complex variable, and in differential geometry as well as in varia-
tional theory. The existence of X is often taken for granted. It is easy to
prove for a smooth curve C in the manner suggested under our problem
2, Exercise 6.2, provided one is given a proper representation of C to
start with, but this is a substantial gift.

PROOF OF THEOREM 7.7

Let x: [a,b] — R™ be an arbitrary representation of C with 0 < b—a
< o, Let s: [a,b] = [0,L(C)] be the function with values s(¢) = L(C,,).
Intuition says loudly that since the function x is continuous and L(C)
= % (x) is finite, then surely

(a) the function s is continuous on [a,b).

A proof of () follows the proof of the theorem.

Since s is clearly nondecreasing, it has a countable set, empty, finite,
or denumerable as the case may be, of intervals of constancy. Define
t(s) as the maximal ¢ such that s(¢) = 5. Thusif s(¢) = s, for one and only
one value t;, then t(s;) = ¢;; if s(¢) =s, for more than one value of ¢,
then the totality of such values must, as a result of the continuity of s,
comprise a closed interval [¢,f] and ¢(s;) =¢,. The choice of the
maximal value ¢ rather than the minimal value ¢, or some other explicit
value belonging to [t;,¢;] such as the midpoint represents an arbitrary
step in the proof. The function ¢: [0,L(C)] — [a,b] that we have chosen
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as a tool is an (not the) inverse of the function s. The function ¢ is strictly
increasing. There is a one-one correspondence between intervals on
which s(¢) is constant and possible discontinuities of ¢(s).

Next define X(s) = x[t(s)], 0 =< s < L(C) and verify that X is con-
tinuous on [0,L(C)] even though t(s) may not be. Consequently, X
represents some continuous Fréchet curve. We hope that it is the same
curve C with which we started. To establish that it is, we must show that
p(X,x) =0. To that end we shall show (in a manner reminiscent of
Example 6.1) that the function s can be approximated arbitrarily closely
by an SPH.

Define h,: [a,b] = [0,L(C)] by assigning values

L(C)

he®) = TCy+e

[s(t)+bia (t—-a)], e> 0.

Then

_ —es(p) L(C) e _
(0 =0 = 8 oyl =a )]

tends to zero uniformly in tas ¢ = 0. It follows that

inf sup|X [k ()] —X[s()]| =0

and, since X[s(¢)] = x(¢),, we have proved that p(X,x) = 0.

To complete the proof of (7.8) we must establish that, if s=s(¢),
then Cyx; and C;, are one and the same curve. We have shown already
that this is so if = b and s(¢) = L(C). Itis easy to verify for the degener-
ate case, t=a and s(t) =0. If ¢ € (a,b), the entire argument preceding
this paragraph can be applied with [a,t] in place of [a,b] and with C,,,
in place of C.

PROOF OF (a)

Given the continuous function x: [a,t] = R", let .Z (x; [¢t,t']) denote
the length of the restriction of x to the subinterval [¢,t'] of [a,b]. Given
also that € > 0, there exists a partition 7= {to,t;, . . . ,tx} depending
on € such that

2 (x [ab]) — é () —x(te)| < .

Let 7 be a fixed point of [a,b). We can suppose the partition 7 to have
been so chosen that 7 =1¢; € = for, if not, we can now adjoin 7 to 7 and
the preceding inequality still holds. Let 4 be a positive number so small
that no partition point is between 7 and 7+ 4. We can then adjoin 7+ 4
to the partition 7 and, after relabeling the partition points, 7+ 4 be-
comes t;,,. We continue to use & for the number of subintervals.
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One ca'n verify that s is additive, that is, that
ZL(x; [a1]) =L (x; [a,45]) = L (x; [t:441])
and
2 (5 [ab) = 3 £ (5 [h),

hence from the inequality on the preceding page that

g {Z (x;[t-,t:]) — |x (&) —x(8-1) |} < €.

Each term in this sum being nonnegative must be below € and, since
tj =7and tj+1 = T+h,

Lx; [r,7+h]) < |x(r+h)—x(1)|+e

We can finally suppose % to have been so chosen that, as a result of the
continuity of x, the first term on the right is below e. It follows that

s(t+h)—s(7) =L(x; [v,7+1k]) <2

consequently s is right continuous on [a,b) . The proof of (a) is completed
by a similar argument with 2 < 0 showing that s is left continuous on
(a,b]. ’

The following is a useful corollary to Theorem 7.7.

Theorem 7.8

Every Fréchet curve C in E, of finite length has a representation £: [0,1] = R*
with the property that if C¢,. is a subcurve relative to &, then

(7.9) L(C,) =tL(C), Vi€ [0,1].
PROOF

If L(C) >0, then Theorem 7.7 is applicable and we define £(t)
= X[tL(C)]. The reader should verify from definition (6.9) that p (¢,X)
=0 and hence that ¢ represents C. To establish (7.9) we must verify
next that the subcurves Cxs and C,, of C are one and the same iff
s =tL(C). Then (7.9) follows from (7.8).

In the degenerate case L(C) =0, the graph of C is a single point a
of R* The mapping ¢: [0,1] = R® such that £(¢) = a for all ¢t € [0,1]
then has property (7.9).

The representation ¢ in Theorem 7.8 is sometimes called the representa-
tion of C in terms of reduced length.

&
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Theorem 7.9

The representations X and € satisfy respective Lipschitz conditions

(7.10) |X(52)_X(51)| = 152—51|’ Vsi,8 € [O,L(C)]

and

(7.11)  [&(t) —€(t)] < [—4|L(C), Vit € [0,1].
PROOF

If s, <s,, denote by C,,, the subcurve of C represented by the res-
triction of X to [s;,s;]. Verify that L(C,;) = L(Cyxs,) —L(Cx,,). In-
equality (7.10), which says that the length of a chord is dominated by
the length of the corresponding subcurve, then follows from the
definitions of .# and L and (7.8).

Given the left member of (7.10), set s;=#L(C), i=1,2. We then
have from (7.10) and the definition of £(¢) for the case L(C) > 0 that
(7.11) holds. In the case L(C) = 0, £(¢) = a and (7.11) is trivially true.

Exercise 7.2

1. Define the norm ||zl} of a partition 7 of an interval as the largest of
the differences t;—t;_,. Given a continuous function x: [a,b] — R,
prove that 3 |x(#) —x(t-;)| has the limit .#(x) defined by (7.2) as
|l7]l = 0 and hence that this limit may be either finite or .

7.7 THE HILBERT COMPACTNESS THEOREM

Theorem 7.10

The class € consisting of all Fréchet curves C whose graphs are subsets of a
given sequentially compact (hence compact, hence bounded and closed) non-
empty subset A of R™ with lengths L(C) at most a nonnegative constant \ is a
sequentially compact class of curves.

PROOF

If A =0, then the graph of each C € ¥ consists of a single point and a
sequence {C,: ¥ € N} in % has a limit iff the sequence of graphs con-
verges to a point. That an arbitrary sequence of points in a sequentially
compact set 4 has at least one convergent subsequence is a classic
theorem. Having disposed of the trivial case, we suppose in the re-
mainder of the proof that A > 0.

Let {C,: v € N} be an arbitrary sequence in €. We must show that at
least one subsequence converges in terms of Fréchet distance d to a curve
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Cyin %. Let {¢,: [0,1] = R™ v € N} be the sequence of reduced-length
representations of the curves C,. Each ¢, satisfies a condition (7.11),
hence

(71.12) &) —&@)| < At—t'|, Vet € [01],v=12,....

Let T = {t,: : € N} be a fixed sequence in [0,1] that is dense in [0,1];
that is, each point of [0,1] is an accumulation point of points . In
particular, T can be a sequentialization of all rational reals in [0,1].

The sequence {¢,(4)} of values at ¢ is in general a nonconvergent
sequence in A4 but, by the given sequential compactness of 4, it has a
subsequence {&,,(t,)} converging to a point which we denote by &(¢,).
Points of the sequence are in 4 and 4 is closed; hence &y(;) € 4.

Proceeding inductively, suppose that {£,,: v € N} is a subsequence of
the original sequence {£,} such that the point-sequences {£x.(t;): v € N}
have respective limits &(¢;), i=1,...,m, in 4. Sequence {&n,(tm+1):
v € N} is in general divergent, but again there must be a subsequence
{&m+1w (tm+1) } Of this point sequence that converges to a point £o(tm+1) of
A. The sequence {¢+1): ¥ € N} of functions is then a subsequence of
the original {¢,} such that the sequence {£m+1(t:): v € N} converges
to a point of 4 fori=1,...,m+ 1. The inductive step from m to m+1is
complete.

Accordingly, there is a double sequence,

§11’ ley 5137 ..

(713) §217 §229 §237 ..

fm'lv §m2’ §m3’ LR

Each row of this infinite array is a subsequence of its predecessor and of
{£.} and such that, for each m, the mth row converges for the first m
terms ¢y, . . ., t, of T. The proof is completed with the aid of two lemmas,
(a) and (B), the proofs of which are at the end of the main proof.

(@) The diagonal sequence {&,(t): v € N} converges to points
&) € 4,i=1,2,....

(B)  [&(8) =& ()| < Mt—1yl, Ve, €T.
Granted (a) and (B) we extend the domain of &, from T to [0,1] as

follows. Given ¢ € [0,1]—T, let {7;:¢ € N} be a sequence in T con-
verging to t. In view of the compactness of 4, we can, moreover, suppose
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that 7; has been so selected that the sequence {£,(7;):7 € N} has a limit.
Define

(7.14) & (t) = lim &(7:), t € [01)—T.

To see that the left member depends only on ¢ and not on the sequence
{:}, let {r¥ € T:i € N} be another sequence with ¢ as limit. By the
triangle property of euclidean distance,

|€0(T8) — &0(2) | < |Eo(7F) — &o(75) | + € (75) — Eo(2) |-

Respective terms on the right converge to zero as ¢, = © by (8) and
(7.14); hence lim &,(7F) = &,(¢).
We need the additional lemmas:

(B)  1&o(t) =&o(t)| < Me—¢|, Ve € [01].
(at)  The diagonal sequence {£,,(t) } converges for allt € [0,1].
(at+)  Indeed this convergence is uniform on [0,1].

It is immediate from (B+) that &, is continuous on [0,1] and hence is
a representation of some curve C, whose graph is in 4. It follows from
(B+) and definition (7.2) of . that .# (&,) < A and hence from defini-
tion (7.7) of L that L(C,) < A, consequently Co, € ¥. The uniform
convergence (at+) of ¢, to &, assures us that p (£,,,&) — Oasy —> .

This completes the proof except for the lemmas, to which we now
turn.

PROOF OF (a)

Select t, € T and € > 0. The mth row of array (7.13) has been so
selected that £, (tn) = &o(tn) as v — «; hence there is an N, ., depend-
ing on € and t,, such that

v> Nem > |§mv(tm) _fo(tm)l <e

All symbols £,, on the diagonal of the array with v > N_ ,, = max(m,N, )
are new labels for certain terms ¢, in row m with v > N, ,,. Conse-
quently,

v > Né.m $ Igw(tm) _fo(tm)l <e.

PROOF OF (B)

Suppose that, for some pair 4,5 € T, |£0(8) —&(5)| > Nt —t;|. With
t;,t; fixed and hence &y(t;), &o(t;) fixed and given € > 0. select v so large
that

(7.15)

10 (t) = £(8) | = 1€0(8) = &0(8) ]| < €.
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With e sufficiently small and the hypothesis on £, with which we started,
(7.15) denies that ¢,, has property (7.12) and hence we must infer the
truth of (B).

PROOF OF (B+)

Let {r;} and {7;} be respective sequences in T with limits ¢ and ¢'.
If the stated condition (B+) does not hold we can use sequences {£y(7;)}
and {&y(7;)} to obtain the same kind of contradiction used in the last
proof.

PROOF OF (at)

Given t € [0,1] and € > 0, there necessarily exists ¢; € T such that
[t;—t] < €/3N. It follows from (7.12) that |£,,(t) —€,, ()| < €/3 and from
(B+) that [&(t) —&(t)| < €/3. By Lemma («) there is an integer N¢;
depending on € and ¢; such that

v > Ng; 2 |€,(86) —&(t)] < €/3.

As a consequence of the three preceding inequalities and the triangle
property of euclidean distance,

(7°16) ‘gvv(t)_go(t)l <e

provided that v > N;. But the left member is free of : and hence the
inequality holdsif v > N_, with

N.,=min{N.;: t; € Tand |t;—t| < €/3\}.

This completes the proof.
PROOF OF (at++)

To show that there exists an N depending only on € such that (7.16)
holds for all ¢t € [0,1] if v > N, suppose the contrary. Then, for some
positive number €, there is a strictly increasing sequence {v;:i € N}
and, corresponding to v;, a number 7; € [0,1] such that

|§Vl'lli(7i) - §0(Ti) | = €.
The sequence {7;: i € N} must have a subsequence converging to some

t € [0,1]; hence we can suppose that v; and 7; were so selected that
7; — t. By the triangle inequality

[€0i(7) = €o(T)| < |€0(T3) — Eu(D)] + [€,0,(8) — £0(8) [+ [&0(8) — &0 (7).

The first and third terms on the right converge to zero as a consequence
of the Lipschitz conditions (7.12) and (B+), respectively, and the second
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term by (ot). We thus have a contradiction and infer that (a++) is
valid.

7.8 THE ASCOLI-ARZELA THEOREM

The functions x: [a,b] = R™of a class & of such functions with a common
domain [a,b] are called equicontinuous on [a,b] if

(7.17) Ve > 0,35(e) >0
suchthatx € Z,t,t' € [a,b] and |t—¢'| < 8(e),
> |x(t) —x(t')| s e.

Observe that (7.17) is stated with < in the final inequality. Definitions of
limits and of different kinds of continuity are, by custom, usually stated
with strict inequalities. The content of these definitions remains the
same, however, if weak inequalities are used. Doing so in (7.17) is a
convenience in proving the next theorem.

If £ consists of a single element x, this reduces to the definition of
uniform continuity on [a,b] of that function. In general, definition
(7.17) embodies two kinds of uniformity, uniformity both with respect
to t € [0,1] and to x € £. Alternatively stated, the 8(e) in (7.17) is
free of both ¢ and x.

Equicontinuity of an infinite class £ is a strong property, and yet such
classes are not difficult to find. Given an infinite class of Fréchet curves
C, of lengths L(C) < X\, the reduced length representations ¢ are
equilipschitzian; that is, they satisfy a common Lipschitz condition (7.12).
This is seen to imply equicontinuity but not conversely.

The functions x of a class £ are said to be equally (uniformly) bounded
on a common domain [a,b] if there are real numbers »’ and M, j =
1,...,nsuch that

(7.18) m? < x(t) = M/, Vit € [a,b], Vx € £Z,j=1,...,n.

The following theorem is one of a number of versions of a theorem
sometimes ascribed to Ascoli and again to Arzela.
Theorem 7.11

Given a set of real numbers m’ and M? and a function 8 from the positive reals
to the positive reals with values 8(€), the set & consisting of all functions
x: [a,b] — R™ that satisfy (7.17) and (7.18) is sequentially compact in terms of
uniform convergence.

PROOF

It must be shown that an arbitrary sequence {x, € £:v € N} has a
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subsequence converging uniformly to a function x in £°. The proof is
generally similar to that of Theorem 7.10. We give an outline for the
case n = 1 and suggest that the reader supply the details.

Let T = {t; € [a,b]:¢ € N} be a fixed sequence thatis dense in [a,b].
By successive selection of subsequences we define a double sequence

X115 X125 X135 - - +

(7.19) X21, X22, X235 -+ - -

Xm1> Xm2s> Xm3; - - -

such that the simple sequence in the mth row converges for t,, 2, ..., tn
and verify that the diagonal sequence {x,,(t): v € N} converges to a
limit denoted by x,(t) for each ¢t € T. One then extends x, from T to
[a,b] in the manner of the preceding proof except that (7.17) must be
used in place of the Lipschitz condition that we no longer have. It
remains to show that x, is in the class £, that x,, converges to x,, and that
this convergence is uniform.

Granted that the theorem is true for n = 1, letx, = (x1,...,x?),v € N,
be a sequence in £&. We construct another array like (7.19), which
terminates with the nth row in the following manner.

Let {x;,: v € N} be a subsequence of {x,} such that the sequence
{x},} of first components converges uniformly on [a,b] in accord with
the case n =1 to a limit x}. Let {x,,} be a subsequence of {x,,} such that
{x},} converges uniformly to a limit x§. Sequence {x},} as a subsequence
of {x},} automatically converges to x§; hence first and second compo-
nents of the functions x,, both converge. Continuing thus, we arrive
after n steps at a sequence {x,:v € N} such that the sequences
{x,:v € N} of components converge uniformly to x},j=1,...,n. It
follows that {x,,} converges uniformly to the function x,: [a.b)] > R"
defined as the function whose n components are x}, . . ., x2.

Exercise 7.3

1. Granted the Ascoli-Arzela Theorem, obtain the Hilbert Compact-
ness Theorem as an easy corollary with the aid of reduced-length
representations of the curves.

2. Let € denote the class of all Fréchet curves C of lengths L(C) < \
whose graphs are subsets of a given compact subset 4 of R” with
the initial and terminal points of graph C in respective nonempty
disjoint closed subsets S; and S, of 4. Point out with the aid of
Theorem 7.10 that this class ¥ is sequentially compact.

3. Let 4 be the two-sphere {(x,5,2) € R3: x>+ 52+ 2% = 25}. Given the
set S, consisting of the single point (0,0,5) and S, = {(x,y,z) € 4:
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z=—4}, let € be the class of all Fréchet curves whose graphs are
subsets of 4 and join §; to S,. The last clause means that if x: [a,b] —
R?® represents a curve C € €, then x(a) € S, and x(b) € §,. With
Theorem 7.1 as a guide, use Theorems 7.6 and 7.10 in proving that
there exists a curve C, of least length in the class .

4. Supply a proof of Theorem 7.11 by filling in all the missing details
in the given outline of a proof.

5. Let y,: [0,2] = R be the sawtooth function consisting of all points
[x,9,(x)] on the oblique sides of v consecutive equilateral triangles
whose bases, each of length 1/v, fill the interval [0,1] together with
all points (x,0),x € (1,2]. Let x,(x) =x,x € [02], v=1,2,....
Describe precisely the reduced-length representation (£,,7,) of the
curve C, represented by [x,(x),y,(x)]. Verify that sequence (&,,7,),
v=1,2,... has a limit pair (x5, ) but that this pair is not the
reduced-length representation of the curve C, to which C, con-
verges.

6. Identify reasons why the Ascoli-Arzela theorem does or does not
(whichever is correct) apply to the sequence {y,: v € N} described in
problem 5.

79 THE HELLY COMPACTNESS THEOREM

Let % denote the class of all functions y: [a,b] = R, each of which is
nondecreasing on the common interval [a,b] of positive finite length.
Let %, be the equally bounded subclass consisting of all y € % such
that

(7.20) m<y(t) <=M, VYt € [a,b].

Theorem 7.12

The class ¥,y is sequentially compact in terms of pointwise convergence.
Alternatively stated, every sequence in ¥y has at least one subsequence
converging pointwise to a function in the class % n,y.

PROOF

Let {y,:v € N} be an arbitrary sequence in %,,, define T as in
Sections 7.7 and 7.8 with points a and b both placed in T, and follow the
proofs of Theorems 7.10 and 7.11 until an array like (7.19) is obtained.
The general element of the array is now ym,. Set z, =y,,. Then, as
before, z,(t) converges for each ¢t € T to a limit y(¢). Thus far y, is a
real-valued function with domain 7. We wish to extend y, to the whole
of [a,b]. Define

A(t) = liminfz,(¢) and A(t) = limsup z,(¢).
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We shall show following the main proof that
() X and A are both nondecreasing on [a,b].

Each of these functions is then necessarily continuous on [a,b] except
for a countable (empty, finite, or denumerable as the case may be)
subset of [a,b] at each point of which it has a finite jump. We have
remarked that z,(¢) converges on T, hence

(7.21) () = A(2) = 50(2), VeeT.

Moreover, every point of [a,b] is an accumulation point of points of T.
Given t € [a,b] —T, then ¢t is necessarily an interior point of [a,b]
because T was chosen to include both a and b. Since T is dense in [a,b],
there are points of T on either side of ¢ and arbitrarily near to ¢ and
hence there is a sequence {t; € T:i € N} converging to ¢t with terms ¢;
alternately to the left and to the right of ¢.

Both A and A may be continuous at t. If so, then as a consequence of

(7.21) A(¢) and A(t;) necessarily have a common limit as ¢ = « and we
define

(7.22) y0(¢) = lim A () = lim A(¢;)
if X and A are both continuous at t.

We shall show at the end of the proof that
(7.23) lim z,(¢) = y0(t) if N and A are both continuous at t.
In the event that neither A nor A has any discontinuities, we shall be
through.

If this is not the case, let 74, 7,,...,7x OF Ty, 7Ts, ... be the finite or
infinite sequence in [a,b], as the case may be, consisting of points at

which A or A or both or them are discontinuous. In the infinite case we
apply the diagonal process again. Consider the array

231 (2), 212(2), 213(2), - - .
(7.24) 221 (2), 205(2), 225(2), . . .

Zk;(t), Zkz(t), Zka(t), ..

with the first row being a subsequence of the sequence {z,(t): v € N}
that converges for 7;, the second row being a subsequence of the first
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row that converges for 7, and 7,, the kth row being a subsequence of
each preceding row so chosen that it converges for 7y, s, . . ., 7, and so
on. The diagonal sequence z,,(t) then converges for 7,,7;, ..., and we
complete the extension of y, by defining

(7.25) yo(7:) = lim z,,(7;), i=1,2,....

In the case of a finite sequence 7;, 7, . . ., Tk, the construction of the array
terminates with the £th row and we define

(7.26) _’)’0(7'1') = lim Zk,,(Ti), 1=1, 2, ...,k

Thus, regardless of the case that may occur, we now have a function
¥o: [a,b] = R. Since each value y,(¢) is the limit of a sequence of values
y(t) of functions satisfying (7.20), the limit y,(¢) must satisfy these
inequalities. It remains to show that y, is nondecreasing. If so, it is in the
given class and the proof is complete.

Suppose that there exist ¢;,5, € [a,b], t; < ¢, such that yo(t;) —y,(%)=
p > 0. Given € > 0, select v so large that, in accord with (7.23) and the
structure of array (7.24),

Izw(tj) —J?o(tj)| < 17/3, ]= 1, 2.
Then
zn(t) > y0(ty) —p/3 and 2, (t2) > —9o(t:) — /3.
By addition of these inequalities we deny that z,, is nondecreasing and

hence must infer that y, is nondecreasing.
It remains to prove statements (a) and (7.23).

PROOF THAT A IS NONDECREASING

Let {w,(¢): v € N} be a subsequence of {z,(t): v € N} so chosen that
w,(t), t. € (a,b], has, in accord with definition (1.9) of the limit inferior
as applied to a sequence, the limit A(%,). Select t; € [a,b], t; < £, and let
{v,(t)} be a subsequence of {w,(£)} such that v,(t,) has a limit. Since
v, € %, we know thatv,(t;) = v,(t,),v=1,2,...; therefore,

A(tz) = lim U,,(tz) = lim 'Up(tl) = A(tl).

That A is nondecreasing can be similarly proved.
PROOF OF (7.23)

Given € > 0, let j be an integer so large that, for the value ¢ of (7.22)
and (7.23),

(7.27) IN(%) —30(2)| < €/6 and IN(%541) —30(2)| < €/6,



186 CALCULUS OF VARIATIONS WITH APPLICATIONS

and hence

(7.28) IN(8) = N(t41) | < €/3.

Next selectv so large that

(729) o) —AE)| <e/6  and (b)) ~Mt)| < €f6.
By (7.28), (7.29), and the triangle property of absolute values,

(7.30) |Zv(tj+1) —z,,(t,-)l = |Zv(tj+1) = A(t41)]
+ A (t51) =A%) |+ [N () — ()| < 2¢/3.

Again by the triangle inequality
(7.31)  |z(8) =30 | < |2,(8) =2, (8) | + |2, (5) = M) |+ [M () —30(D)]-

Recall that the sequence {¢;} chosen preceding (7.22) consists of terms
alternately below and above t¢. It follows from this and the monotonicity
of z, that the first term on the right in (7.31) is dominated by the left
member of (7.30) and hence by 2¢/3. The second and third terms on the
right in (7.31) are below €/6 by the first inequalities (7.29) and (7.27),
respectively; consequently [z,(t) —y(t)| < € provided that » is sufficiently
large.

The Hilbert and Ascoli-Arzela theorems have been widely used in
the proofs of theorems of the calculus of variations. The Helly theorem
and its extensions (8b,c, 41a) are effective with certain problems having
monotonicity restrictions on admissible functions. See, for example,
(8d) or (12g).

Exercise 7.4

1. State an immediate corollary to the Helly Theorem 7.12 for a class
of equally bounded nonincreasing functions and point out why it
follows easily from Theorem 7.12.

2. State and prove, using Theorem 7.12, a similar theorem for the class
% of all nondecreasing functions y: (a,b) = R. Observe at the outset
that such functions need not be bounded.

3. Given a function y:- [a,b] = R that is BV on [a,b], then y=p—n,
where p and n are both nondecreasing or both nonincreasing on
[a,b]. Given a sequence {y,: ¥ € N} of such functions, each of total
variation & (y,) = T(y,; [a,b]) < A and such that m < y,(t) < M,
t € [a,b], v=1,2,..., prove using Theorem 7.12 that there
exists a subsequence converging to a limit yo: [a,b] — R. Also prove
that T'(y; [a,b]) < Aand thatm < y, < M.
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4. Let {r,: m € N} be a fixed sequentialization of all rational real
numbers. Let u be the unit step-function (problem 8, Exercise 1.3).
Precisely how much can be said of the sequence of partial sums of the
infinite series Z (3)™u(t—r,) on the basis of the Helly Theorem
7.12? On the basis of everything you may know about infinite series
of functions?

5. Let a(x) be the piecewise linear function that joins (0,0) to (2,2)
to (3,1) to (5,3). Establish that there exists a function y,: [0,5] = R
furnishing a global minimum for the integral

J6) = [} [y—a(x)]2dx

on the class # of all nondecreasing functions y: [0,5] = R. End
values y(0) and y(5) are free.

6. Consider the classical nonparametric Bolza Problem of minimizing
the integral of problem 5 subject to the side-condition y = 22, a device
for requiring that y be nondecreasing. Verify that y,(x) = x, %, or
x—2 according as x € [0,3], (},%], or (3,5], together with an appro-
priate z, and a multiplier, satisfies the Multiplier Rule of Chapter 5.
Then try to devise, drawing from Chapter 5 or any other source, a
demonstration that y, furnishes a smaller value for J(y) than any
other nondecreasing PWS function y: [0,5] = R and indeed that
this conclusion holds without the restriction that y be PWS.

710 THE WEIERSTRASS INTEGRAL

The compactness theorems of the last three sections and problems 2
and 3, Exercise 7.3, lead one to hope that existence theorems for other
curve-functions J or functionals J can be constructed along the lines of
Theorem 7.1.

Such a proof requires a sequence {x,} of admissible functions con-
verging to an admissible function x, such that J(x,) converges to the
infimum y of J (x). If one is restricted to the Riemann integral and hence
to functions x such that F(x,%) is Riemann integrable, the composite
function F(xg,%) is not necessarily Riemann integrable. It becomes
necessary to replace the Riemann integral by some other that is free
of this defect if we are to proceed.

Weierstrass was aware of this need and defined such an integral
around 1879. It was subsequently used by Hilbert and Osgood and
until about 1912 by Tonelli. In the meantime the Lebesgue integral
had appeared and Tonelli adapted it to the needs of variational theory in
his subsequent work. It has become increasingly important for the cal-
culus of variations as it has quite generally for the other parts of mathe-
matics known collectively as analysis.
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We include a brief account of the Weierstrass integral for several
reasons. Because of its relative simplicity we can lead rather quickly
to some typical existence theorems for variational problems. Proofs of
certain theorems of the calculus of variations when made in terms of the
Weierstrass integral are essentially simpler and exhibit more clearly
the details of what is going on than do similar proofs in terms of the
Lebesgue integral. Although the latter is a generally superior tool,
there has been a continuing interest in the Weierstrass integral, as in-
dicated by such papers as Aronszajn (la), Cesari (9b,c), Ewing (12c,d,e),
Menger (34a,b), Morse (38e, part I1I), and Pauc (43a,b).

In anticipation of the needs of certain proofs that use the Hilbert
Compactness Theorem 7.10 we suppose given a nonempty subset A
of R" that is the closure of a bounded open subset (rather than the open
set A of Section 6.6, which is not necessarily bounded). The set B is now
the closure of a set with the properties of B in Section 6.6; namely, B is
the closure of a nonempty open set in R™ that contains all points &7,
k = 0, on every ray determined by the origin § and a point r # 6 of B.

Suppose given a parametric integrand F: 4 X B — R with the follow-
ing properties (i) and (ii).

(1) Fis continuous on A X B.
(i) F(x,kr) = kF(x,r), V(x,v) € AXBandVk= 0.

We need to assume neither the continuity nor even the existence of any
partial derivatives of F. However, conditions (i) and (ii) in terms of the
closed sets 4 and B are rather strong and hence some functions that
satisfy the conditions on F of Chapter 6 are now excluded.

In certain theorems we require that

(i) B have the additional property of convexity and that F(x,r) be convex
inr for each fixedx € A.

Definitions of a convex subset K of R" and of a function that is convex
on K are in Section 3.10.
At times we shall require that

(iv) F(x,r) >0, Vx € AandVr € B,r # 6 .
A continuous rectifiable curve C is now called admissible for a given varia-
tional problem if it has at least one representation x: [a,b] = R" satisfy-

ing the end-conditions and possible side-conditions of a given problem
and such that

x(t) € 4, Vi € [a,b]
(7.32)

x(t')—x(t) € B, Vit € [a,b]witht <¢'.
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If a sequence {x,: v € N} of representations with properties (7.32)
converges to a function xy: [a,b] = R™, one verifies from the closedness
of sets A4 and B that x, also has properties (7.32). It follows from defini-
tion (6.9) of Fréchet distance that, if x has properties (7.32) and p(x,y)
= 0, then y has properties (7.32).

Given that x: [a,b] = R™ is a representation with properties (7.32),
let 7 be a partition of [a,b], set A;x = x(¢;) —x(¢;—;), and consider the
Weierstrass sum

(7.33) S(x;F; [a,b]) = T Flx(t;-,),Ax].

That x is Weierstrass integrable relative to F over [a,b] means that the
sum (7.33) has a finite limit as the norm of =, denoted by ||7||, tends to
zero. We denote this limit by %" (x;F; [a,b]) and call it the Weierstrass
integral of x relative to F over [a,b]. Thus x is integrable in this sense if

(7.34) VYe>0,3v.> Osuchthat|n|| < v |S(x;F)— ¥ (x;F)| <e€.

The third argument [a,b] of S and #” has been suppressed.

The left endpoint ¢;_, of the subinterval [¢;,_,,%] of [a,b] under 7 can
be replaced in the sum (7.33) by an arbitrary point of the subinterval
without affecting either integrability or the integral.

Theorem 7.13
If F has properties (i) and (ii) and x: [a,b] = R™ is a PWS function with
properties (7.32), then the composite function F(x,X) is Riemann integrable and
b
(7.35) W (x;F; [a,b]) = L F(x,x) dt (Riemann).

PROOF

Suppose initially that the derivative % is continuous. The sum (7.33)
can be written in the notation

> Flx(ti-1), Axt, . . ., Ax"]

After applying the Mean Value Theorem of the Differential Calculus
to each difference A;x’ and using the homogeneity (ii) of F, this becomes

(7.36) 2 Flx(tim), % (1i1), . 52" (100) ] (i — ti1) -

If the n+1 values ¢;,,,73,...,7:, were all the same, the continuity
(1) of F and the continuity of x and % would suffice for the stated con-
clusion. The difference between such a sum and the sum (7.36) can be
shown to converge to zero with 7| as a consequence of the properties
of F and the uniform continuity of x and % on [a,b].
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For the general case in which x is only PWS, one can apply the pre-
ceding approach to each of the subintervals on which x is smooth.

This theorem and the one to follow show that the Weierstrass integral
is an extension of the classical parametric integral discussed in Chapter
6 from PWS representations x to continuous representations of finite
length.

Theorem 7.14

If F has properties (i) and (ii) and x: [a,b] = R™ is a continuous rectifiable
function with the two properties (7.32), then x is Weierstrass integrable relative
to F over [a,b].

A proof under the present hypotheses can be constructed along the
lines of Aronszajn (la; III, p.235) or Ewing (12c,pp.677-678). The special
case in which F(x,X) = || and %" is the length .# is the relatively easy
problem 1, Exercise 7.2. Since the corresponding result for Lebesgue
integrals with a weaker hypothesis on F is given in Section 9.5, we omit
the proof.

Theorem 7.15

If F has properties (i) and (ii) and if x: [a,b] = R™ and y: [c,d] > R®
both have properties (7.32) and both represent the same continuous rectifiable
Fréchet curve C, then

W (x;F;[a,b]) =% (y;F;[c,d]).

We again omit the proof. In view of Theorem 7.13, one sees that
Theorem 6.2 essentially covers the case in which x and y are PWS.
Theorem 7.5 is the special case of Theorem 7.15 in which F(x,x) = ||.
For proof of the theorem as stated, one can follow that of (12c, Theorem
2.4) or see Section 9.5.

Granted Theorem 7.15, we define the Weierstrass curvilinear integral
W(C;F) of the admissible curve C relative to F by the statement that

(7.37) W(C;F) = # (x;F;[a,b]),

where x: [a,b] = R™ is an arbitrary representation with properties (7.32) of
the given curve C.

Theorem 7.16

If F has properties (i), (i), and (iii) and \ is an arbitrary positive real number,
then W (C;F) is lower semi-continuous on the class € of all continuous rectifiable
curves C each of which has a representation with properties (7.32) and a length
L(C) s\
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PROOF

The theorem means that given n = 1 and given a curve C, € ¢ and
an arbitrary sequence {C, € €: v € N} such that L(C,) < A and such
that the Fréchet distance (Section 6.4) d(C,,C,) — 0, then
(7.38) Tim inf W(C,;F) = W(C,;F).

Let x,: [a,b] = R" be a representation of C, with property (7.32).
Given € > 0, let 7 be a partition of [a,b] of norm so small that

(7.39) 2 Flxo(ti-1),Bix0] > W(Co;F) —€

and also so small that, if 7, and 7, are in any one of the closed sub-
intervals [#-,,4] and if u is any unit vector in B, then

(7.40) |F[xo(71) u] — Flx0(72) ,u]| < e

Given e > 0, any curve C € € at Fréchet distance below ¢ from C,
has a representation x: [a,b] — R™satisfying the condition that

[ (t) —x0(2)| < e, V¢ € [a,b].

We can, moreover, require that ¢ be so small that (7.40) holds with x,
replaced by x and that

(7'41) |F[x(ti—1)’Aix] _F[xo(ti—l)ﬁAixO]l < E/k, 1= la LI aka

in which % denotes the number of subintervals of [a,b] under the parti-
tion 7r.

Let m;, tiy =17y <7, < --+ < 7y, =1, be a partition of [#_,,4] and set
Ayx = x(7;) —x(7;-;). Observe that

742 S Flx(ri)b08] = £ Fls(ro) dox] + Re
where
(7.49 Ri= 3 {Flx(rin), Agx] — Fle(ro), A}

As a consequence of the homogeneity (ii) of F and the convexity (iii)
of both the set B and the function F, we see that, if , and 7, are in B,
then (r, +7,)/2 and hence r, + r; are in B. It follows that

F(x771+72) = F(x’rl) +F(x,r2),

and this extends by induction to any finite sum of elements of B. From
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this, together with (7.42) and (7.43) and the fact that 7, = ¢;_;, we have
that

(7.44) > Flx(75-1),Ai¢] = F[x(ti-1),Ax] + R,
The conditions imposed on ¢ ensure via (7.40) for x that
IRl <eZ |Awl
and after summing on ¢ that
(7.45) > R;=—€eL(C) = —e\.

We can suppose in view of Theorem 7.14 that the partitions ;,
i=1,...,k have been chosen with norms so small that

(7.46) W(CF) >3 Ej: Flx(7;-,),0x] —e.
It follows from (7.41) that
(7.47) 2 Flx(ti1),Ax] > 3 Flxo(timr) ,A%0] —¢,
and from (7.44) that
(7'48) 21 ; F[x(Tj—l)’Aiix] = 2 F[x(ti—l)’A'Ex] +2 Ri-
By adding inequalities (7.39) and (7.45) through (7.48) we find that
W(C;F) > W(Cy;F) —€(3+1).
Finally, let C run over any sequence C,, v = 1,2, . .. such that d(C,, C,) =
0 and obtain the stated conclusion (7.38).
Proofs concerning variational integrals of the Weierstrass type,
although often straightforward, can require more space than similar

proofs in terms of Lebesgue integrals, but the latter presuppose the
content of Chapter 8 and parts of Chapter 9.

7.11 EXISTENCE THEOREMS FOR
PARAMETRIC PROBLEMS

Proofs of the existence of a curve or function yielding the global mini-
mum for a variational problem not only provide an important fact but
also insight to the structure of the problem. Hilbert was a pioneer in
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this sector followed by Tonelli, whose many works over a span of some
40 years from around 1910 were a major inspiration to a considerable
literature by his students and by others in a number of countries.

Proofs in the Tonelli tradition are characterized by the use of semi-
continuity of the functional. The variety of such theorems is too great
to review here but we give a sample.

Theorem 7.17

If F: AXB — R has properties (i), (ii), (iii), and (iv) and € denotes the class
of all admissible Fréchet curves C with graphs in A and having initial and
terminal points in disjoint closed subsets S, and S, of A, then, if € is not empty,
there exists Cy € € such that

(7.49) W(Cy,F) < W(C;F), VCE€E®.

We begin by inserting two lemmas.

(a) Properties (i), (i), and (iv) of F and the properties of sets A and B
stated in Section 7.10 imply that there exist positive constants m and M
such that

m|r| < F(x,r) < M|r|
if (x,r) € AXBandr # 0.
PROOF OF ()

Since B is closed, the subset of B consisting of points 7 at unit distance
from the origin is bounded and closed, hence compact. Consequently,
the set S=AX{r € B:|r| =1} is a compact (bounded and closed)
subset of R?". By the continuity (i) of F there exist (x4,r) and (x*,r*)
€ § at which F(x,r) attains its infimum m and supremum M on S,
respectively. That m > 0 follows from the continuity (i) of F and its
positiveness when r # 0. Thus givenx € 4 and r # 0, we have that

m < F(x,r/|r]) < M.

The stated conclusion then follows from the homogeneity (ii) of F.

(B) If C is an admissible curve whose graph is a subset of A and if F has
properties (i), (ii), and (iv), then
mL(C) < W(C;F) < ML(C).
PROOF OF (B)
If r # 0, we use Lemma (a). If r =0, it follows from (i) and (ii) that
F(x,0) = 0 and hence that the inequalities

(7.50) mlr| < F(x,r) < M]r|
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hold in the form 0 < 0 < 0. Thus (7.50) holds for all (x,r) € 4 XB.
The conclusion of Lemma (B) then follows from problem 1, Exercise
7.2, and the definitions (7.33) and (7.37).

PROOF OF THEOREM 7.17

Set y = inf{W(C;F): C € %}. By property (iv) of F, y = 0. Given any
positive integer v, there exists by the definition of infimum a curve C,
€ % such that W(C,;F) < y+1/v; consequently W(C,;F) converges to
7. Such a sequence as {C, € €: v € N} is called a minimizing sequence,
a term which anticipates the truth of the theorem. By Lemma (B),
L(C,) = (1/m) W(C,;F); hence there is some real number A such that
L(C,) =\, v=1,2,.... The Hilbert Compactness Theorem now applies
to ensure that the sequence {C,} has a subsequence converging to a
curve Cy whose graph is necessarily a subset of the compact set 4. We
can avoid further notation by supposing that the original sequence
{C.} has been so selected that it is already such a sequence. Let ¢,
[0,1] = 4 be the reduced-length representation of C, used in the
proof of the Hilbert theorem. Since £,(0) € S, and ¢,(1) € S, with §,
and S, closed by hypothesis and since Fréchet distance d(C,,C,) — 0,
it follows that the respective limits £,(0) and &,(1) are points of S,
and S;. Moreover, since C, is admissible, £, satisfies (7.32) and, since ¢,
converges to &, &, satisfies (7.32) and C, is admissible.

Our present hypotheses include those of Theorem 7.16; therefore,
(7.38) applies and

y=lmW(C,;F) =liminf W(C,;F) = W(Cy;F) = y.

The outer terms being equal, equality must hold at each step. Therefore,
W (Cy;F) = v and this is equivalent to the desired conclusion (7.49).

Observe that this theorem includes the fixed-endpoint problem in
which §; and S, are singleton sets and also various other problems.
For instance, S, may be the graph of a continuous function g: [a,b)] — R"
and, if n > 2, S, could be the graph of a continuous function k: [a,b]
X [¢,d] = R™ Then S, is a “curve” and S, a “surface” in the sense of
these terms in classical analytic geometry.

We comment further on the fact that the sets 4 and B introduced in
Section 6.6 and used thereafter in Chapter 6 were open in order that
certain functions y in a neighborhood of an admissible y, would also be
admissible in the proofs of necessary conditions. In contrast with the
needs of Chapter 6, proofs in the present discussion require that 4
be compact and that B be closed. Consequently, theorems of Chapters 6
and 7 may not both apply to the same problem.

A similar situation exists in the theory of extrema of a differentiable
point-function ¢. The extremizing values x, and x* mentioned at the
beginning of Section 7.2 may be interior points of [a,b] or they may be
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boundary points. We are reminded in Section 2.3 that the most familiar
necessary conditions for a local extremum of ¢ are for the case in which
the extremum occurs at an interior point of its domain, but there are
also such results as (2.8) for the case of a minimizing boundary point.
Similarly, the graph of the minimizing curve C, of Theorem 7.17 may
or may not include boundary points of the set 4. There is a literature on
minimizing curves or functions that include portions of such a boundary,
for example, Bolza (X,pp.41-43), (XI,pp.392-407) and Mancill (XV,
years 1933-1937), but we do not discuss. this topic in the present book.

Chapter 6 admits only PWS curves and representations but our ad-
missible curves and representations are now merely rectifiable. Thus
the minimizing curve G, of Theorem 7.17 is known only to be continuous
and of finite length. It may happen to be PWS and its graph may happen
to consist entirely of interior points of 4. Granted these properties of
Co, then various results in Chapter 6 would be applicable, including the
classical necessary conditions of Euler, Weierstrass, and Legendre,
together with that of Jacobi, which we did not treat. Unfortunately
there are no simple or general criteria for identifying those cases
under Theorem 7.17, in which C, has these additional properties, but
one finds that they often occur for examples that are simple enough so
that all details can be checked out.

The next existence theorem will shed a little light on the preceding
remarks. For simplicity we take n = 2.

Theorem 7.18

Given a function F:R*X R? — R with properties (i), (ii), (iii), and (iv) and
the class € of all continuous Fréchet curves of finite length whose graphs are in
R? and join distinct fixed points of R?, then there exists Cy € ¥ such that

W(Cy;F) < W(C;F), VC € %¢.
PROOF

The present class € is clearly not empty. Sety = inf{W(C;F): C € ¢}
and let {C, € %: v € N} be a minimizing sequence. In view of Lemma

(B) to the preceding theorem we can suppose C, to have been so chosen
that the length

(7.51) L(C,)) = (1/m)W(C,F) < (y+1/v)/m, v=12,....

Let us now denote by 4 the compact subset of R? bounded by the ellipse
consisting of all points of R? the sum of whose distance from the two
fixed points in the theorem is (y+2)/m. By the Hilbert Compactness
Theorem the sequence {C,} has a subsequence, again denoted by
{C.,}, converging in terms of Fréchet distance to a curve C, that is
necessarily in the class €.
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The semi-continuity of length L (Theorem 7.6) assures that
(7.52) liminf L(C,) = L(C,);

hence from (7.51) and our choice of the set 4, L(C,) < (y+1)/m and
the graph of C, is interior to 4.

By Theorem 7.16. W(C;F) is lower semi-continuous on the class of
curves of length at most A = (y+ 1) /m, and therefore we again have the
inequalities

y=1lim W(C,;F) =liminf W(C,;F) = W(Co;F) = v,

which imply that W(Cy;F) = v, and the proof is complete.

Although we know in this instance that the graph of C, is interior to 4,
we still cannot say in general whether C, is PWS. There is a literature on
extensions of some of the classical necessary conditions including that of
Euler to the case of a general rectifiable extremizing curve or function,
but the usual approach, for example, in Tonelli (XXXV) or Reid (45¢),
has been in terms of the Lebesgue integral.

Existence theorems, whether in the calculus of variations or else-
where, frequently provide no way in which to determine the thing
that has been shown to exist. Generally speaking, one can obtain
stronger conclusions if and only if he pays for them with stronger
hypotheses. Hypotheses of the next theorem are so strong that it provides
both the existence and identification of the minimizing curve. The
theorem is suggested by such classical results as Example 2.1 and
Theorem 3.9.

Theorem 7.19

If F is free of x and has properties (i), (i), and (iii), if the set A is convex, if
B = R™ and ¥ is the class of all rectifiable Fréchet curves with graphs in A and
joining fixed points h and k, then the curve Cy € € having the linear represen-
tation xo: [0,1] = R", x,(t) = h+t(k—h) furnishes a global minimum for
W(C;F). Moreover,

W(Co;F) =F(k—h).
PROOF
As a consequence of (iii) and (ii) we have the inequality

(7.53) F(Zr) <3 F(r)

explained following (7.43) in the proof of Theorem 7.16. Given the func-
tion x, mentioned in the theorem let 7 be a partition of [0,1] that
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generates m abutting subintervals [#;_,,%;] of equal length. By property
(ii) of F,

F(k—h) = F[x(1) —x0(0)] = mF{[xo(1) — x0(0) ]/m}.

Each of the m vectors x,(t) —xo(ti—y) equals [x0(1) —x,(0)]/m, and
therefore

F(k—h) =3 Flxo(t;) —xo(t:i=y)].

Let |7 = 0 and use (7.34), Theorem 7.14, and definition (7.37) to
conclude that

(7.54) F(k—h) = W(CyF).

If x: [0,1] = R™ represents an arbitrary curve C € &, it follows from
(7.53) that

F(k—h) = 3 Flx(t) —x(ti-y)]
and by letting ||7]| = 0 that
(7.55) F(k—h) < W(C;F).

The conclusions stated in the theorem follow from (7.54) and (7.55).

Recall the form of the parametric Problem of Bolza in Section 6.10.
That a PWS representation y of an admissible curve satisfies a side-
condition ¢(y,5) =0 on an interval [a,b] means that ¢[y(¢),5(¢)] and
¢[y(¢),3*(¢)] vanish on the half-open intervals (a,b] and [a,b), res-
pectively. With ¢ (y,r) continuous on 4 X B, one verifies that y satisfies
the differential equation in this sense iff

(7.56) [ o@D 3(M1dr=0, Vi€ [ab].

If ¢ is both nonnegative and continuous, then y satisfies the differen-
tial equation on [a,b] iff

b
(7.57) J, ¢ 31 dr=0.

It follows from Theorem 7.13 that, if ¢(y,r) has the stated properties
and is also homogeneous in r, then these conditions can be stated in
terms of the Weierstrass integral as

(7.58) W (y:9;lat]) =0, Vi€ [a,b]
and
(7.59) YV (y;¢;[a,b]) = 0.
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The last conditions are meaningful, in the light of Theorem 7.14,
if y is merely BV on [a,b]. Such a function y satisfying (7.58) or (7.59)
will be called a generalized solution of the differential equation ¢(y,5) = 0.
Moreover, by Theorem 7.15 these conditions can be expressed by means
of Weierstrass curvilinear integrals in the form

(7.58%) W(Cys9) =0, Vit €E [a,b]
and
(7.59%) W(C:¢) =0.

We wish to formulate a parametric Bolza Problem with the aid of the
following functions:

F:AXB—R with properties (i), (i1), (iii), and (iv),
¢p:AXB —> R with properties (1), (ii), (iii), and (iv),
Xo:4— R continuous on A,

g:AXA—>R continuous on A X A,
YuAXA—>R continuous on A X A.

Consider the problem
(7.60) J(C) = g[y(t) .3(t,) 1+ W(C;F) = minimum

on the class € consisting of all rectifiable Fréchet curves possibly
satisfying side-conditions

W(C;¢s) =0, B=1,...,m,

and/or

X[y(®)]1=0, Vt€E [tti]l,a=1,...,4
and satisfying end-conditions

uly(t),y ()] =0, w=1,..,p=2.

The word “possibly,” together with “and/or,” conveys the qualification
that there may be side-conditions of either, neither, or both kinds.

Clearly many types of problems are included under this formulation.
For instance, if g=0 and W(C;F) is the length L(C), if there is one
side-condition |y(¢)| =a > 0 of the second kind and end-conditions
y(t) =hy € R™, y(t,) =k, € R* with |ho| = |ky| = a, then we have the
problem of a curve of least length on the (n—1)-sphere joining two
fixed points.
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Exercise 7.5

In responding to problems 1 and 2, one can follow much of the proof
of Theorem 7.17. Since the Hilbert Theorem 7.10 is involved, it is
helpful to remember the use of reduced-length representations in the
proof of that theorem. '

1. Given functions F, ¢g, X &, and . with the properties stated above
and a problem (7.60) having at least one side-condition of each of the
two types, and given further that the class of admissible curves is
not empty, prove that there exists Cy € € such that J(C,) < J(C)
forallC € €. Isit possible for % to be a finite class?

2. Let p’: A— R be continuous on 4, j=1,...,n. Given that B is
convex, show that definition (3.20) of a convex function is satisfied
in r for each fixed y by ¢ (y,7) = |p?(y)7’| (summed onj). Then state
and prove an existence theorem for the fixed-endpoint Lagrange
Problem W (C;F) = minimum subject to a single side condition
W (C;¢) =0, where ¢ is of the form |p(y)7r7|.

3. Given that p’: 4 — R is continuous on 4, j=1,...,n, and that
¢ (3,7) = p’(y)r?, point out why Theorem 7.16 applies to both of the
integrals W(C;¢) and W(C;—¢). Given also that F has properties
(1), (i1), (i), and (iv), that J(C) = W (C,F), and that € is a nonempty
class of rectifiable Fréchet curves satisfying (7.58*) with the given ¢
and satisfying the end-conditions |y(%)| =0 and [y(t,)| = 5, prove
that there exists C, € € such thatJ(C,) is the global minimum.

4. Given the Mayer Problem J (C) = g[y(t),y(¢;)] = minimum with one
side condition W (C;¢) = 0, where ¢ has properties (i), (ii), and (iii)
but not (iv), let € be the class of all Fréchet curves satisfying the side
condition and joining fixed endpoints. Point out why we cannot
prove that there is a minimizing curve C, by simply following the
proof of Theorem 7.17.

5. If J(C) is the length L(C) and we have fixed endpoints and one
side-condition W(C;¢) =a # 0, where ¢ has properties (i), (ii),
(iii), and (iv), point out why there is a minimizing sequence {C,}
converging to a curve C, and yet C, may not be in the class € of
curves joining the fixed endpoints and satisfying the side-condition.

6. Formulate and prove an extension of Theorem 7.18 fromn=2to a
general n.

7. Devise a proof for the special case of Theorem 7.15 in which F is free
of x and convex in r, drawing hints from Sections 7.4 and 7.5.



200 CALCULUS OF VARIATIONS WITH APPLICATIONS

7.12 NONPARAMETRIC WEIERSTRASS
INTEGRALS

In view of Theorem 7.15, the integral treated in Sections 7.10 and 7.11 is
parametric, but we have remarked in Section 6.6 and elsewhere that
many optimization questions lead to nonparametric variational problems
and indeed that the mathematical model for an optimization problem
from the sciences is usually of the nonparametric type. We have seen in
Section 6.13, under classical hypotheses, that a parametric problem is
equivalent to a nonparametric problem provided that the integrands are
related as in (6.2) and that the class of admissible curves is restricted to
curves C with representations (x,y): [f,5,] — R™*! such that x is strictly
increasing.

We now point out one way in which these ideas can be extended to the
setting of the present chapter and how the Weierstrass integral can be
adapted to such circumstances.

Suppose given a nonparametric integrand f: A X R™ — R, where 4 is
again the closure of a bounded open subset of the encompassing space,
presently R™*' with points (x,5) = (x,%',...,9™). To simplify the
discussion we restrict attention to a function f that is continuous and
nonnegative on its domain and such that, for each choice of (x,y) € 4
and ¢ € R™, f(x,y,9/p)p has a limit, finite or » as p tends to 0 through
positive values. Then with suggestions from McShane (33c), Aronszajn,
and Pauc (43a, pp. 66-76), we define an associated parametric integrand
F: AXB— R* with B = {(p,q) € R™*': p = 0, € R™} by assigning
the values

(f(x,3,9/p)p  ifp >0,
(7.61) F(x.9,p,9) = {

This parametric integrand inherits continuity from the given function
J at every point of A X B having a positive third coordinate p. If g # 0,
then usually F(x,y,0,q) =, but F(x,5,0,0) = 0. For the special case in
which fis linear in r; f(x,y,7) = a°(x,y) + a’(x,y) r’, with summation on j,
and the coefhicients a’, j = 0,1, . . ., m, are continuous on 4, the integrand
(7.61) is continuous on 4 X B. A similar conclusion is reached if fis the
integrand for the nonparametric length integral. In such cases Sections
7.10 and 7.11 apply, but these are exceptional. For such a simple non-
parametric integrand as f(x,y,7) = 7%, the square of r, one verifies from
(7.61) that

q*lp ifp >0,
(7.62) F(x,,p,9) =10 ifp=q=0,
® ifp=0,q # 0.
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The continuity of F has been used throughout the last two sections.
Although Pauc has pointed out (43a, pp. 66, 67) with reference to an
unpublished work of Aronszajn a way in which the Weierstrass integral
can be extended to such unbounded integrands as (7.62), the relative
simplicity of the theory for a continuous integrand F is lost.

Among the advantages of the Lebesgue integral is the facility with
which unbounded integrands or extended real-valued integrands are
treated. Lebesgue integrals of the form encountered in variational
theory are discussed in Chapter 9.



Chapter 8

MEASURE,
INTEGRALS, AND
DERIVATIVES

8.1 INTRODUCTION

Both parametric and nonparametric integrals, understood in the sense
of Lebesgue’s definition, are important ingredients in modern calculus
of variations. In preparation for their introduction in Chapter 9 and in
order that the book be reasonably self-contained, this chapter presents
the basic theory of the Lebesgue integral as far as the Fundamental
Theorem of the Integral Calculus. The reader should spend little time
on the parts he already knows beyond observing what is there for
possible later reference.

There are a number of approaches to this material. We elect a
traditional one in which measure precedes the integral in the belief that
this encourages insights that are more easily missed if one follows a
streamline path to the convergence theorems. Although there are a
number of books on measure and integration, few show any orientation
to the special requirements of variational theory. It becomes a barrier
to progress in the latter if one must identify and extract what is needed
from several sources with differences in notation, in sequencing of
concepts and results, and in level of generality and conciseness.

202
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We are primarily interested in ordinary Lebesgue measure of subsets
of the real numbers R and in integration with respect to this measure.
However, much of what we do and say applies with little or no change
to other important measures and integrals. Also needed is the related
theory of differentiation of functions y: [a,b] — R™ of bounded variation
so as to deal ultimately with integrals of composite integrands F(y,5)
and f(x,y,y") in problems of the calculus of variations.

8.2 LINEAR LEBESGUE OUTER MEASURE

Given R, the set of reals, and A C R, consider the family (or set) of all
countable open coverings of A, that is, of all finite or denumerable unions
U (a;,b;) of open intervals that contain A. We adopt the convention that,
when a union or summation symbol precedes a symbol with an index
such as i or n, the range of that index is either the entire set N of positive
integers or a finite subset {1,2, ..., m} of N unless some other index set
is explicitly stated.

We do not require that the intervals (a;,b;) of a countable covering be
disjoint and we regard the empty set ¢ as a particular open interval,
namely (g,a) ={x € R:a < x < a}. Consequently, a finite union,
U (a;,b;) is equivalent to a denumerable union for which all intervals
beyond a certain one are empty.

Linear Lebesgue outer measure is a set function p*: 2 (R) —> R* whose
domain #Z (R), called the power set of R, is the set of all subsets of R.
Given A C R, u*(A) is defined as follows.

8.1 p¥) = inf {X (bi—a:): 4 C U(a;b)},

the infimum being on the class of all countable open coverings of 4. It
is not difficult to verify that

n*(¢) =0,
0= pu* < o
8.2) w*(4) )
w*(4) < u*(B) if4 C B,
r¥(U4;) < 3 p*(4).
Exercise 8.1

1. If I is an interval (a,b), [a,b], (a,b], or [a,b), verify that u*(I) =
b—a.

2. If 4 is a countable subset of R cover element x; with a single open
interval of length €/2? and show that u*(4) = 0.
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3. Prove the third assertion (8.2).

4. Prove the fourth assertion (8.2). One may suspect that, if the sets
4; are disjoint, then equality must hold. This is not so, but an
example would require nonmeasurable sets and this need not
concern us.

8.3 LEBESGUE MEASURABILITY
AND MEASURE

Let A4 be a fixed subset of R; let C(4), called the complement of A, denote
the set R—A4; and let T, called a test set, vary over the power set Z (R). If

(8.3) p*(T) = p*(T N 4) +u*[T N C4)], VT CR,

then 4 is said to be Lebesgue measurable, and the Lebesgue measure p(A)
is by definition

(8.49) n(d) = p*(4) provided that (8.3) holds.

Thus w is a set-function whose domain is the subset of #(R) consisting
of the measurable subsets of R.

One’s initial reaction may be not only that (8.3) looks quite restrictive
but that it cannot effectively be applied to a particular set. One certainly
cannot check out (8.3) for each of uncountably many test sets T by taking
each of them in turn. Ways around this impass must be found. It actually
turns out that the class of sets satisfying (8.3) is very large.

Theorem 8.1
If A is measurable, then C (A) is measurable and

(8.5) w(T) =u(T N A)+ulT N C4)].
PROOF

Given that (8.3) holds, then, since C[C(4)] = 4, (8.3) also holds with 4
replaced by C(4). Observe that such equations as (8.3) and (8.5) may on
occasion hold in the form « = «, for example, when T = R.

Theorem 8.2
A sufficient condition for the measurability of A is that

(86) w*(T) = p*(T N A)+p*[T N C(A)]  ifu*(T) <.
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PROOF
T= (T N 4) U [T O G(4)]; hence by (8.2,),
p*(T) < w*(T N 4)+p*[T N C(4)],

which with (8.6) implies (8.3). Inequality (8.6) clearly holds if u*(T) = o;
hence it suffices to examine only those T such that u*(T) < .

Theorem 8.3

If u*(A) =0, then A is measurable and u(4) = 0.
PROOF

For an arbitrary test set T,

TNACA and T NC(4) CT;
hence, by (8.2;),
p¥(T NA)<pu*(4)=0 and p*[T N C(A4)] < p*(T).
It follows that
w*(T N A)+p*[T N C(4)] < ux(T),

which is (8.6). That u(4) =0 then follows from our hypothesis that
p*(A) = 0 and definition (8.4).

Theorem 8.4
A countable set A is measurable and u(A4) = 0.
PROOF

Use problem 2, Exercise 8.1, and Theorem 8.3.

Theorem 8.5

Every open subset G of the reals is the union of countably many disjoint open
intervals. Moreover, there is only one such set of open intervals.

PROOF

The empty set ¢ is the empty open interval (a,a). Given x € G, there
necessarily exists an open interval I, = (x—§&;,x+8;) of maximal
length such that x € I, C G. Each such interval contains a rational real
number and the set of all such numbers is denumerable. The class of
distinct such intervals I, must therefore be countable (finite or de-



206 CALCULUS OF VARIATIONS WITH APPLICATIONS

numerable), and the union of these intervals is G. That the decomposi-
tion of G into open intervals is unique and that they are disjoint is left
as an exercise.

Theorem 8.6
Every interval I with endpoints a and b is measurable and . (I) = b—a.
PROOF

The degenerate cases I = (a,a) = ¢ and I = [a,a] consisting of the
single point a are covered by Theorems 8.3 and 8.4. We give the details
for an open interval (a,b) of finite length.

Let T be an arbitrary open test set. If a or b is in T, such a point can be
deleted with essentially no effect. We can therefore suppose that neither
a nor b is in T. Let U (a,,b,) be the decomposition of T into open
intervals assured by Theorem 8.5. Let U'(a,,b,) and U"(an,b,) be
respective subunions of intervals (a,,b,) that are contained in the given
interval (a,b) and in C[ (a,b)] = R— (a,b).

By definition (8.1), u*(T) < ¥, (b,—a,) but, since the intervals are
disjoint and their union is T, equality must hold. Similarly,

w¥[T N (a,0)] =3’ (by—ax)
and p*{T N Cl(a,b)]} = Z" (br—ax);
hence (8.3) holds for any open test set 7.
Given an arbitrary test set T and € > 0, there exists, by the definition
of u*, an open set G, namely, a union of open intervals, such that

8.7 p*(Ge) < u*(T) +e.

Now T N (a,b) C G N (a,b) and T— (a,b) C G.— (a,b); therefore,
bY (8’23)7

p*[T N (a,b)] < p*[G N (a,b)]
and  p*[T—(a,b)] < p*[G.— (a,b)].

From these relations, with the aid of (8.7) and the conclusion above that
(8.3) holds if T'is open, now used with G.in place of T, we find that

p*(T) +e > p*[T N (a,b)]+u*[T— (a,b)].

Since € > 0 but otherwise arbitrary, it follows that the right member is
dominated by u*(T). This is (8.6) in view of the fact that T— (a,b) =
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T N C[(a,b)] and the proof that (a,b) is measurable is complete. That
wn(I) = b—afollows from problem 1, Exercise 8.1, and definition (8.4).

Theorem 8.7
If A and B are measurable, so alsoare A U B,A—B,and 4 N B.

PROOF
By the hypothesis on 4,

(8.8) p¥(T) = p*(T N A) +p*(T—A4), VT C R.

Since B is also measurable, (8.3) applies to B with T—4 as the test set,
thatis,

w*(T—4) = p*[(T—4) N B]+p*[(T~4) —B]
= p*[ J+u*[T—(4 U B)].
Substitution of the last expression into (8.8) yields that
8.9) wX(T) =p*(T N 4) +p*[(T—4) N B]+p*[T—(4 U B)].
One verifies that
TN AUB)=(TNA)UI[(T-4) N B].

From this, together with (8.2,) and (8.9), follows that
(8.10) w*(T) = p*[T N (4 U B)]+p*[T—(4 U B)];

therefore, 4 U B is measurable in consequence of Theorem 8.2.
To prove that A—B is measurable observe that A—B =4 N C(B),
hence that

C(4—B) =[C(4)] U B.

The right member is measurable by Theorem 8.1 and the preceding
result. Hence C(4 —B) is measurable and, by Theorem 8.1, 4 — B is then
measurable.

Finally, 4 N B=B—C(4) is measurable by Theorem 8.1 and the
measurability of a difference.

Theorem 8.8

Every countable union U A; of measurable sets is measurable. Moreover,

(8.11) r(UA4;) =3 n(4;)  ifthesets A; are disjoint.
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PROOF

Since 4, U 4, is measurable by Theorem 8.7 and U*'4; = (U14;)
U Ap+1, we have by induction that every finite union is measurable.

To establish (8.11) for a finite union, set S, = U?4; and, proceeding
inductively, suppose that

8.12) W*(T O Sy) = ﬁl wH(T N 4).

Using T N Si4y as a test set, we know from the measurability of Sy,
already established, that

(T N Spyy) = p*[(T N Spq) N Sk]+;.L*[T N Sprr—Sk]
=p*[T N S ]+ w*(T N Agsr).

After using expression (8.12) for the next to last term we have completed
a proof by induction that

* N nAi = S ).
613 w*(T U ) zl,,,*(TnA,)

Choosing T = U?4; and using definition (8.4) yields (8.11), in case the
union is finite.

For the proof of (8.11) in the denumerable case, suppose initially that
the sets 4; are disjoint. By the measurability of a finite union, with (8.13)
and (8.2;3),

wH(T) = wH(T 0 U 4)+w(T— U 4)
= 3 uH(T 0 A+ )

>3 u*(T N 4) + w*(T—U 4,).
1 1

In view of Theorem 8.2 we can restrict attention to test sets of finite
outer measure. Then

p.*(T N LlJ Ai) < oo,
Now T N U$4; D T N U4; consequently,

@19 w(TN YA)=us TN §a)=3 u*(T N 4).
1
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Denote by A the necessarily finite limit of this sum as n — . Observe
that
@ n -
TNUA4=(TNnY4)u(Tny4),

n+1

whence

© n ©
@815 wH(T N U 4)< S w(T N 4) +p¥(T N UA,).

Moreover,
T0G4=3,T 04,
so that
(8.16) w(T N Ya) <3 pe(T N 4.

Because of the convergence of the sum in (8.14), the right member of
(8.16) has the limit zero; consequently, from (8.15),

(8.17) wX(T N C:) 4) <\

Letting n — « in the inequality with u*(T) on the left that precedes
(8.14), we see that

wH(T) = A+ ux(T—Q 4),
therefore, with the aid of (8.17), that
(8.18) p*(T) = u¥(T 0 Y 4)+p*(T— U 4,).

This says, by Theorem 8.2, that U} 4; is measurable. It follows from
(8.14) and (8.17) that

w(T 0§ a) =Sux(T N 4.
1
The particular test set, T = U7 4; then yields (8.11).
If the sets 4; are not disjoint, define B, = 4,, B, = 4,—A,,..., B;
= A;— U?4;,.... The B; are disjoint and
G Bi = G Ai.
1 1
The union on the left is measurable by (8.18) with the present B; in the

role of the A; of (8.18); consequently the right member is measurable
and the proof is complete.
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Theorem 8.9

Every countable intersection N A; of measurable sets is measurable.
PROOF

Use Theorems 8.1 and 8.8 and the De Morgan “law” that C(N 4;)
=U C(A,).
Given a sequence {4,: n € N} of sets, define

(8.19) liminfd4, = U N 4,,
n=1 m=n
(8.20) limsup 4, = ’Ql 7'Ll_inA,,,.

It can be verified that lim inf 4, C lim sup A4,. If and only if equality
holds, the common set is, by definition, the limit of the sequence of sets.
By Theorems 8.8 and 8.9, if the sets 4, are all measurable, then sets
(8.19) and (8.20) together with lim 4,, when it exists, are all measurable.

This section can be summarized as follows. Every open subset G of
the reals is Lebesgue measurable by Theorems 8.5 and 8.6; hence every
closed subset is measurable by Theorem 8.1. Every set that can be con-
structed by countable unions and intersections or a succession of such
operations upon measurable sets is measurable; hence many sets that
are neither open nor closed are measurable. Loosely stated, all subsets
of R that one is likely to deal with are measurable. The only known
examples of nonmeasurable sets are constructed with the aid of what is
known as the Axiom of Choice.

Exercise 8.2

1. If {x} is a singleton subset of R and 4 is any measurable subset of
R, show that A U {x} and 4 —{x} are measurable and of the same
measure as 4. Replace {x} by any finite set and extend the preceding
results by induction.

2. Granted the results proved in this section, show that intervals
[a,b] of finite length and that intervals [a,b) or (a,b] of either
finite or infinite length are measurable and that in each case the
measure is b—a.

8.4 MEASURABLE FUNCTIONS

Given a measurable subset E or R and a function f: E — R*, we denote
the set {x € E: f(x) > a} by the abbreviation {f(x) > a} and use
symbols {f(x) < a}, {f(x) =a}, {f(x) =}, {a <f(x) <Bb}, etc,

with similar meanings.
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A function f: E = R* is called measurable on E if the sets

@21)  {f(x) = a},{f(x) <a},{f(x) <a},and {f(x) > a}

are all measurable for every real number a. This definition may seem to
be rather artificial. It is designed, however, to give us exactly the func-
tions we shall want in defining the Lebesgue integral.

Observe that {f(x) < a} = E—{f(x) = a}; hence if every set of the
first type (8.21) is measurable, so also is each set of the second type.
Granted this, then the set

U@ =at= 0 (U@ =a 0 {6 <a+y})

is measurable. Also
{fx) sa}={f(x) <a} U {f(x) =a}

is measurable, and finally
{f(x) > a} =E—{f(x) < a}

is measurable. Consequently it would suffice to use only sets of the first

type (8.21) in the definition of a measurable function. It can be verified

that any one of the other types (8.21) would also suffice in the definition.
Granted that fis measurable on E under definition (8.21), such sets as

{fx) = o} = N {fix) > n} and {a < flx) < b} = {fix) > a} N {f(x) < b},

a,b € R, are all measurable.

Theorem 8.10

Given a measurable set E, a function f: E — R* measurable on E, and a
measurable subset S of E, then frestricted to S is measurable on S.

PROOF

{x € S:f(x) =a} =S N {x € E: f(x) = a} and the set on the right
is measurable by Theorem 8.7.

Theorem 8.11

If E is measurable and if f: E — R* and g: E — R* are both measurable on
E, then each of the following functions is measurable on the subset of E con-
sisting of all x € E for which the stated function is meaningful:

(@) ctf, c€R* (i) f+g (v fg
(i) cg, ¢ € R* (iv) f—g (Vi) flg



212 CALCULUS OF VARIATIONS WITH APPLICATIONS

The purpose of the phrase “for which the stated function is meaning-
ful” is to exclude meaningless expressions such as ®— in conclusions
(i), (iii), and (iv); or 0() in (ii) and (v); or 3/0, ®/x, etc., in (vi).

PROOF OF (iii)

The residual set S on which we wish to prove that f+ g is measurable is

S=E—({f(x) =} N {g(x) =—}) U ({f(x) =—=} N {g(x) ==}).
We now establish that the set
(8.22) {x € S: f(x)+g(x) > a}, a €ER

is measurable. We suppose that conclusions (i) and (ii) have already been
proved. Set S as a difference between measurable sets is measurable;
hence g is measurable on § by Theorem 8.10. By (ii) with ¢ =—1,—g is
measurable on §; hence a— g is measurable on § by (i). The inequality
f(x)+g(x) > a is equivalent to f(x) > a—g(x). We complete the in-
vestigation of set (8.22) by showing that the set {x € S: f(x) > a—g(x)}
is measurable. Let 7, 75, 73, . . . be a fixed sequentialization of all rational
real numbers. Now

{x € S:f(x) >a—g(x)}
=N {x € S:f(x)>nr}t N{x € S:a—gx) <n}).

The set on the right is measurable by Theorems 8.8 and 8.9; therefore,
the set on the left and consequently set (8.22) is measurable.

Theorem 8.12

Given a measurable set E and a sequence {f,: E = R*: n € N} of functions
all measurable on E, then each of the following functions is measurable on E :

(i) supfa (i) limsupf, (v) limf,, ifitexists
(i) inff, (iv) liminff, i) If]
PROOF

To prove (i), set G = supf,. Then G(x) =supf,(x), Vx € E. The
set {G(x) > a} = U, {f.(x) > a}. Each set in the union is measurable
under the hypothesis that f, is measurable on E; hence the union is
measurable by Theorem 8.8. Conclusion (ii) follows from (i) and
Theorem 8.11(ii) together with the fact that inf f,, = —sup(—f,). The
index 7 in these proofs can either run over the entire set N of positive
integers or over a finite subset of N, in particular over the set {1,2} of
two elements.
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Let 0 denote the function whose value at every point of E is the real
number 0. Function 0 is easily verified to be measurable on E. If fis also
measurable on E, then sup(f,0) and inf(f,0) are measurable on E.
Define

* = sup(f,0) and  f~ = —inf(f,0)
and observe that
(8.23) fl=f*+1.

Conclusion (vi) then follows from Theorem 8.11 (iii).

Conclusion (iii), (iv), and (v) of this theorem follow from (i) and (ii)
and the respective definitions

liminf f, = sup inf f,,
n=1 m=n

lim sup f, = inf sup fn,

n=1lm=n

which are equivalent to (1.9) and (1.10) for the special case in which
the fof those definitions is a sequence and the a is .

When we deal later with Lebesgue integrals of the form [ f(¢,y.5) dt
we shall wish to know that j is measurable.

Theorem 8.13

Given a function y: [a,b] = R that is measurable on [a,b] and given that
the derivative §(t) exists, finite, ©, or —, at each point of a measurable subset
E of [a,b], then the function y: E — R* is measurable on E.

PROOF

By the definition of a derivative (Section 1.7), the difference quotient

y(x+h) —y(x)
(8.24) PE o

has a finite or infinite limit at each point of E. In the light of problem 1,
Exercise 8.2, we can suppose without loss of generality that neither @ nor
b is a point of E and avoid such details as restricting & to be positive if
xin (8.24) is a or negative if x is b.

Now y is measurable on E by Theorem 8.10. If we define y(x+4) to
be y(a) or y(b), respectively, when x+h < a or > b, it is easy to verify
from definition (8.21) that the translation of y with values y(x+5) is
measurable on [a,b] and hence, by Theorem 8.10, on E. The constant-
valued function ¢: [a,b] = R with values ¢(x) = his clearly measurable
on [a,b] and hence, by Theorem 8.10, on E. Consequently, by Theorem
8.11(iv) and (vi), quotient (8.24) is a value of a function measurable on E
provided 2 # 0. This is true, in particular,if k= 1/n,n=1,2, .. ..
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Let n — . The limit of (8.24) exists by hypothesis if x € E. Hence if
f2(x) now denotes quotient (8.24) with & = 1/n, the desired conclusion
follows from Theorem 8.12(v).

Exercise 8.3

1. Given f: [a,b] — R, if fis continuous on [a,b], show that fis measur-
able on [a,b] by showing that the set {x € [a,b]: f(x) =c} is
closed. Alternatively, show that {x € [a,b]: f(x) > c} is open.

2. Given f: [a,b] — R, if fis lower or upper semi-continuous on [a,b],
show that fis measurable on [a,5].

3. Point out that the Dirichlet function, 2 R — {0,1}, f(x) =0 or 1
according as x is rational or irrational, is measurable on R.

4. Given that the infinite series Za,x" converges on [—1,1], point out
with the aid of theorems of this section that the function f defined
by this series is measurable on [—1,1].

5. Given a measurable set E, an extended real-valued function f
that is measurable on E and a set Z of measure zero, show that an
arbitrary extension f* of f from E to E U Z obtained by assigning
extended real values f*(x), x € Z—E, at pleasure, is measurable
onE U Z.

6. Given that every set of the form {f(x) > a} is measurable, prove
that every set of the form {f(x) = a} is measurable. With reference
to the discussion following (8.21), point out why any one of the sets
(8.21) would suffice in the definition of a measurable function.

7. Prove that the function (v) under Theorem 8.11 is measurable over
a suitable subset S of E.

8. Show for the translated function in the proof of Theorem 8.13
that {y(x+h) = a} is measurable for every real value of a.

The theorems and problems of this section show that all functions
f: E C R—> R* that one is likely to encounter are measurable on E.
The only examples of nonmeasurable functions are defined with the
aid of nonmeasurable sets and are very complicated.

8.5 THE LEBESGUE INTEGRAL

Let E be a nonempty measurable subset of R, 0 < u(E) < ». By a
measurable partition w of E we mean a finite class {Ey, ... ,E,}, n =1
of disjoint nonempty measurable subsets of E whose union is E.

Given a function fi E — R that is bounded and measurable on E,
set

m; = inf{f (x): x € E};}, m = inf{f(x): x € E},

(8.25)
M; = sup{f(x):x € E;}, M = sup{f(x):x € E}.
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These traditional symbols m and M must not be mistaken to suggest

that f(x) has minimum and maximum values on the respective sets. The

sets E; and E are in general not closed and f may be badly discontinuous.
Let £; be an arbitrary element of E; and consider the inequalities

(8.26) mu(E) <3 mu(E) < 3 f(&)(E)
< X Mu(E;) < Mu(E).

The first and third sums (8.26), called lower and upper sums, respectively,
will be denoted by s(f;E;7) and S(f;E;m).

Define lower and upper integrals of f over E,
(8.27) I (f;E) = sups(fiE;m) and I*(fiE) = inf S(f,E;m).

For such a simple function f as one having a constant value on E, the
upper and lower sums are independent of the choice of #. In general,
s( fE;m), for fixed f and E, has infinitely many values corresponding to
different choices of 7r . This is the set whose supremum defines the lower
integral. Similar remarks apply to upper sums and the upper integral.

Given two measurable partitions 7’ and 7" of E, let 7 denote the class
consisting of all nonempty intersections E; N E] of respective sets from
the classes 7’ and 7". One verifies that 7 is a measurable partition of E
and that

s(fE;w') <s(fiE;m) < S(fEw) < S(fE;#n"),
hence thats(f,E;7') < S(f;E;#"). It follows that
(8.28) I.(f;E) < I*(fiE).

In the event that I, (f;,E) = I*( f,E), then fis said to be integrable over E
in the broad sense and the common value, denoted by I( £;E), is the integral
of fover E. If, in addition, the common value is finite, then fis said to
be integrable over E. There is not a standard terminology. Some writers
use the respective terms integrable over E and summable over E for the
notions integrable over E in the broad sense and integrable over E as
defined above.

Neither is there a standard notation. Among the several alternatives
to symbol I( f;E) are

[t fofou and [ o) ds.

When either of the last two forms is used, one must understand that
nothing has been said about differentials or is to be inferred. The one
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and only purpose of symbol du is to remind us that the integral has been
defined using a measure u . We shall see in Theorem 8.15 that the
integral I(f;E) is an extension of the ordinary Riemann integral. The
last symbol above is simply a slight modification of the traditional symbol
for that integral. If one meets the more familiar symbol [? f(x) dx, he
must often decide from the context whether it is intended as a Lebesgue
or a Riemann integral over the set E = [a,b].

Theorem 8.14

If f is bounded and measurable on the nonempty set E of finite measure,
then f is integrable over E.

PROOF
We see from (8.26), (8.27), and (8.28) that

(829) I*(f3E)—I14(f5E) < S(fiEsmw) —s(f3Em) < 3 (My—m;)u (E;).

This is valid for any measurable partition . It suits the purpose of this
proof to use partitions of a special form. Relabel the interval [m,M],
in which all values f(x) fall, as [y,5,~,] and introduce y,, ys, - - . ;¥a—2
with y;—y;-; = (M—m)/(n—1), i=1,...,n—1. Using the notation for
sets from (8.21), set

E;, = {yi—l =f(x) <y}, i=1,...n—1
and

En = {f(x) =yn—1}'

For the partition 7, determined by these sets, m; =y, and M;=y,
i=1,...,n—1, while m, = M, = y,,. It follows from (8.29) that

M—m
n

M-

(8.30) I*(fiE)—I,(fiE) < - ™ W(E).

S u(E) <

Since the first member if free of n while the last member — 0 as n — o,
the left member must be zero.
Theorem 8.15

If E is an interval [a,b] of finite length and the bounded function f: [a,b]

— R is Riemann integrable over [a,b], then f is Lebesgue integrable over
[a,b] and

(831) 1(£:[a.6]) = [, £(x) d (Riemann).
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PROOF

The usual definition of the Riemann integral by way of upper and
lower sums employs closed subintervals [a;_,,a;] that are not overlapping
but have common endpoints.

Define

ki = inf{f(x):x € [ai-,a]},  Ki=sup{f(x):x € [ai1,a:]}.

The disjoint intervals E; = [a;—y,a;), i=1,...,n—1 and E, = [ay-1,a.],
with @, = a and a, = b, constitute a measurable partition of [a,b] in the
sense of this section. Let m; and M; be defined by (8.25) for this particular
type of partition. Then

m; = k; and M; < K;, i=1,...,n
Moreover,

S ki(ai—aim) < X mi(a;—ain) < I,(fi[a,b])
< I*(fila,b]) < 3 Mi(a;—aiy) < 3 Ki(a;—aiy).

By hypothesis, f is Riemann integrable; hence as max(a;—a;_,) — 0
the outer terms both converge to the Riemann integral. This implies
that the third and fourth terms, being constants, must be equal. There-
fore, fis Lebesgue integrable and (8.31) holds.

That I(f;[a,b]) exists for functions fthat are not Riemann integrable
over [a,b] is shown by examples. Let f: [0,1] — R be the Drichlet func-
tion with values 0 or 1 according as x € [0,1] is rational or irrational.
For every partition of [0,1] into subintervals the lower and upper
(Darboux) sums associated with the Riemann integral have respective
values 0 and 1. This function accordingly is not Riemann integrable.
However, if we use the measurable partition = = {E,,E,}, where E,
and E; consist of all rationals and all irrationals in [0,1], respectively,
then u(E,) = 0 and w(E,) = 1, the lower and upper sums s(f;[0,1];7) and
$(£;[0,1];m) are both unity; consequently, I, (f;[0,1]) = I*(f;[0,1]) =1
Function f'is Lebesgue integrable over [0,1] and I(£;[0,1]) = 1.

The Lebesgue definition also extends the Riemann concept signifi-
cantly in another way; namely, the integral I(f;E) replaces a closed
interval [a,b] by a general nonempty measurable set E. Thus far we
have excluded the rather trivial case in which E is empty. Given a func-
tion f: ¢ — R that is otherwise arbitrary define

(8.32) 1(f:8) = 0.

A function s: E — R is called simple if there is a measurable partition
w of the measurable set E into disjoint measurable subsets E;,: =1, . . . ,n,
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with s(¢) a constant ¢; on E;. If we examine (8.25), (8.26), and the proof
of Theorem 8.14, we see that when f is bounded and measurable and
w(E) < o, there are two sequences {s,(¢): v € N} and {S,(¢): » € N}
of simple functions with

s,(t) =my and S,(t)=M; omE,i=1,...,n
and with
5,(t) < f(t) < S,(t) onE.
Each of the functions s, and S, is bounded and measurable on E so that

integrals I(s,;E) and I(S,;E) both exist by Theorem 8.14 and, moreover,
from the nature of s, and §,,

I(s;E) = X mn(E;)  and  1(S,E) =3 Mip(E;).
Consequently, Theorem 8.14 shows that
(8.33) lim I(s,;E) = limI(S,;E) = I(f;E).

Let f: E — R* be nonnegative and measurable on E and define
(8.34) I(f;E) = sup{I(s;E): sissimple,0 < s < f}.

If f happens to be bounded, then I(fE) is the same real number
already defined and which exists by Theorem 8.14.

As an immediate consequence of the meaning of supremum, we see
from (8.34) that there must exist a sequence {s,: n € N} of nonnegative
simple functions all below fsuch that

(8.34%) I(f:E) =lim I(s,;E), finite or o

as the case may be. Moreover, we can suppose that s, < s,3,, 2 =1,2,...,
for if this is not so for the sequence in (8.34*), we can define s¥(x) =
max{s,(x): m < n} and use s¥* in (8.34%*).

If f: E — R* is measurable on E but not otherwise restricted, then
f=f*—f-, where f* and f~ are the nonnegative functions defined
preceding (8.23). Extended real numbers I(f*;E) and I(f—;E) are
then given by (8.34) and we can define

(8.35) I(£;E) = I(f*;E) —I(f~E)
provided that at least one term on the right is finite.

When the right member is the meaningless expression ©—o, fis not
integrable over E even in the broad sense.
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Consistently with the terminology introduced following (8.28), we
say that fis integrable over E in the broad sense if I (f;E) exists and is
finite, ®, or — and understand by the shorter statement that f is in-
tegrable over E that I (f;E) exists and is finite. Clearly fis integrable over
E in the general case (8.35) if and only if both f* and f~ are integrable
overE.

The set E has been understood to be of finite measure, as stated at the
beginning of the section. We shall continue to understand that any
measurable set E that may be mentioned is of finite measure unless
there is an explicit statement to the contrary. That u(E) < » does not
imply that the set E is bounded.

However, if w(E) =, I(f;E) can be defined as follows. Set E, =
[-n,n] N E. Then I(f*;E,) and I(f~;E,), both defined by (8.34), are
both nondecreasing in n. Define

(8.36) I(fE) = lim I(f*En)—lkim I(f~E,),

provided that at least one of these limits is finite.

Continuing the terminology already introduced, we say that f is
integrable over the set E of infinite measure iff both limits on the right
are finite and that f is integrable in the broad sense if at least one of
these limits is finite. If both of these limits are «, fis simply not integrable
over E even in the broad sense. Henceforth when we say that a function
fis integrable over a set E we shall understand without saying so that E
is a measurable set and that f is measurable on E. Integrals have been
defined only over measurable sets and for functions measurable on those
sets.

Exercise 8.4
1. Given measurable partitions =’ ={E1,...,E,} and #"={Ejy,...,Ez}
and that E; N Ej # @, define m;; and M;; in the manner of (8.25) and
let m], m{, M, Mj be the similarly defined extended real numbers for
the sets E{ and Ej. Identify the reasons for the inequalities

m < my; and M; < Mj.

2. (a) Given that f(x) = « for all points x of a set Z of measure zero.
Verify directly from definition (8.34) that I (f;Z) = 0.

(b) Given that f(x) = 0 for all points x of a set A such that u (4) = .
Verify directly from definition (8.36) that I( f;4) = 0.

(c) Refer to the last sentence in Section 1.3 and formulate a special
convention on the interpretation of 0(+) and (=)0 when
these combinations occur in a discussion of Lebesgue integrals.

3. Given that f: E — R* is integrable over E and that g(x) = f(x) on

E except for the points x of a subset Z of E of measure zero, prove

that g is integrable over E and that I(g;E) = I(fiE).
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10.

11.

. Construct an example of an unbounded set E of finite measure and

a function fi E — R* that is simple enough so that the value of
I( f;E) can be determined on the basis of Section 8.5.

. If the function f: E — R* is integrable over E and 4 is a measurable

subset of E, prove that fis integrable over 4.

. If fand g are both integrable over E, prove that f+gand of, @ € R,

are both integrable over E and that

(i) I(f+g E)=I(fiE)+I(gE),
(i) I(efsE) = o (fiE).

. Given functions f, g, and & from E to R*, if fand k are integrable

over E, if gis measurable on E and f < g < hon E, prove

(i) gisintegrable overE,
(i) I(f;E) < I(gE) < I(KE).

. Given f: A U B — R* with 4 and B disjoint and that fis integrable

over 4 and also over B, prove that

(i) fisintegrable over4 U B,
(i) I(f;4 U B) =I(f;4)+I(fB).
(i) Extend this result to any finite union by induction.

. Prove that if f is integrable over E, then |f] is integrable over E.

Given that 4 is a nonmeasurable subset of E and that f (x) =—l or 1
according as x € 4 or x € E—A4, then |f(x)| = 1is integrable over
E but fis not. Prove that if | f| is integrable over E and fis measur-
able on E, then fis integrable over E.

Construct an example of a function f: [0,1] — R that is unbounded
and not of fixed sign, whose improper Riemann integral over [0,1] is
finite but such that the improper integral of |f] over [0,1] is ®. Then
point out that your function fis not Lebesgue integrable over [0,1].
With reference to problem 5, Exercise 8.3, show that if fis integrable
over E and Z is a set of measure zero, then an arbitrary extension
Sf*of ffromEtoE U ZisintegrableoverE U ZandI(f*;E U Z)=
I(f:E). ‘

8.6 CONVERGENCE THEOREMS

The theorems of this section are among the most useful results in the
Lebesgue theory. They exhibit some of the reasons for the importance
of the Lebesgue integral for modern analysis.
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Theorem 8.16. (Monotone Convergence Theorem)

Given a sequence {f,: E = R*: n € N} of functions integrable in the broad
sense on the common measurable domain E, if 0 < fo < fop,n=1,2,...,and
if fu(t) has a limit fo(t) € R*asn — = foreacht € E, then

() I(fn;E) has a limit, finite or »,
and
(i) UmI(fE) =I(f;E).

PROOF

Function f, is measurable on E by Theorem 8.12(v). Integrals I(f,;E),
n=1,2,... and I(fo;E) exist in the broad sense under definition (8.34)
and it follows from (8.34) and the monotonicity of £, in n that

I(fi;E) < I(fassE) < I(fi;E).

The monotone sequence {I(f,;E)} of extended reals necessarily has a
limit, finite or «, and

(8.37) lim I(f;E) < I(f;E).
We wish to complete the proof by establishing the complementary
inequality.
Given a € (0,1) and a simple function s, 0 < s < f;, define
E, = {t € E;f,(t) = as(t)}
and observe that E, C E,., and that U E, = E. It can be verified that

(8.38) I(as;E,) = al(s;E,) < I(fn;En) < I1(fm:E),

and from the nature of a simple function s and combinatorial properties
(Section 8.3) of measurable sets that

I(s;E) =limI(s;E,).

Letting n — o, we then see that
al(s;E) < im I (f,;E)
and, since this holds for all & € (0,1), that
I(s;E) < imI(f;E).
But this relation holds for all simple functions s, 0 < s < f;; hence, by

definition (8.34) applied to f,, I(fo;E) < lim I(f,;E), and the proof is
complete.
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Theorem 8.17 (Fatou’s Lemma)

Given a sequence {f,: E—> R*: n € N} of functions measurable on the
common measurable domain E, if there exists a function g: E —> R* that is
integrable over E and such thatf, = g,n=1,2, ..., then
(8.39) liminfI(f;E) = I(liminf f,;E).

PROOF

We first prove the theorem for the special case g = 0. Define g,: E —
R* as the function with values g,(t) = inf {f;(t):i = n}. Each g, is
measurable on E by Theorem 8.12(ii) and

(8.40) 0<g(t) Sg(t) <---.
By the definition of limit inferior [following (8.23)]
(8.41) lim inf £, (x) = lim g, (x) = sup{g.(x): » € N}.
Now f, = g, n=1,2,..., from which follows that
1(f;E) = I(gnE).

From the monotonicity (8.40) and the Monotone Convergence Theorem,
the right member has a limit, finite or , and

liminfI(f5;E) = imI(g,;E) = I(lim g,;E).

By the first equality (8.41), we then have the stated conclusion (8.39) for
the special case in which g = 0.
With g now only required to be integrable, set

(8.42) ha(x) = fu(x) —g(x)

and define 4 = E—{g(x) =} U {g(x) =—»}. Now g is integrable
over the measurable set {g(x) = } by problem 5, Exercise 8.4. If this set
is of positive measure, it follows from definition (8.34) that I(g;{g(x) =
©}) = o, contrary to the integrability of g over that set. Consequently,
n({g(x) = ©}) = 0 and similarly for the set {g(x) = —}. Relation (8.42)
is meaningful on 4 and %, = 0 on 4; consequently, by the special case of
the present theorem that is already proved,

(8.43) lim inf I(f,— g;4) = I[liminf (f,—g);4].

Since gis free of n,

lim inf (f,—g) =liminff,—g.
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Similarly and with the aid of problem 6, Exercise 8.4,
liminfI(f,—g;4) = liminf[I(f;;4) —1(g;4)]
= lim infI(f;4) —I(g;4).

The stated conclusion (8.39) then follows from (8.43).

Theorem 8.18 (Dominated Convergence Theorem)

Given a sequence {f,: E — R*: n € N} of functions measurable on the
common measurable domain E, if f,(t) has a limit fo(t) € R* forallt € E
and if there exists a_function g: E — R* that is integrable over E and such that
Ifal<gn=12,..., then

(i) lim f, is integrable over E
and
(1)) LmI(f;E) =I(limf,;E).

PROOF

By Theorem 8.12(v), lim f,, is measurable on E. Since I (g;E) < ®and
Ifal < g by hypothesis, one verifies that I(f};E) and I (f5;E) are finite
and obtains conclusion (i).

To prove conclusion (ii), observe that

—g<=*fa<g;

hence by Fatou’s Lemma applied first to f, and then to —f,, we have
that
liminfI(f,E) = I(foE)
and
lminfI(—fE) = I(—fgE).

The last statement is equivalent to the inequality
lim supI(fnE) < I(foE),

and since a limit inferior is always dominated by the corresponding limit
superior, conclusion (ii) of the theorem follows.

Two functions f: E — R* and g: E — R* are said to be equal almost
everywhere (abbreviated a.e.) if f(x) = g(x) on E except for the points x
of a subset of E of measure zero. Problem 3, Exercise 8.4, calls attention
to the fact that equality a.e. suffices for equality of the integrals. Hypo-
theses can be weakened in Theorems 8.16 and 8.18 by requiring only that
S converge to f, almost everywhere, in Theorem 8.17 only that f, = g
almost everywhere.
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Exercise 8.5

1. Given f(x) =1/Vx, x# 0, distinguish conceptually between the
Lebesgue integral I (f;(0,1]) and the improper or Cauchy-Riemann
integral

[of () dx = lim [ £ () ax.

Discuss the relation between the limit on the right and the Monotone
Convergence Theorem.

2. Let {r,:n € N} be a fixed sequentialization of all rational real
numbers on [0,1] and define f(x) = 0 if x =17, r,, ... OF 7, fo(x) =
1 if x is any other number in [0,1]. Point out that the Dominated
Convergence Theorem (indeed its special case known as the
Bounded Convergence Theorem) applies. Observe that each f, is
Riemann integrable but that lim f, is not.

3. The characteristic function xg(x) =1 or 0 according as x € E or
x € C(E). Given that E is measurable, point out that . is integrable
over E and that this integral is u.(E).

4. Recall the meaning of 3 7u,(x) in terms of the sequence of partial
sums. Formulate corollaries to the Monotone and Bounded Con-
vergence Theorems having as conclusions that

(1) X uyis integrable over E,
@) I(Z unE) =3 I(uE).

8.7 OTHER PROPERTIES OF INTEGRALS
Theorem 8.19 (Mean Value Theorem)

If fis integrable over E and u (E) < =, there existsac € R such that

inf{f(x):x € E} < a < sup {f(x):x € E}
and

(8.44) I(f;E) =aun(E).
PROOF

If fis bounded, m and M in (8.26) are both finite (that is, real), and it
follows from (8.26) and the given integrability of f that

mu (E) < I(f;E) < Mp (E).

Clearly (8.44) holds for some a € [m,M].
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If w(E) = 0, then, whether or not fis bounded, I(f;E) = 0 and (8.44)
holds for an arbitrary a. In the remainder of the proof suppose that
r(E) > 0.

If £ is nonnegative and not necessarily bounded, let {s,:n € N} be a
sequence of simple functions, nondecreasing in » and satisfying (8.34%*).
Then

(8.45) I(s;E) = ot (E)

by the proof for the bounded case. By our choice of s,, I(s;;E) is
nondecreasing in 7; hence so also is a,, as a result of our restriction that
1(E) > 0.Letn — . It follows from (8.34*) and (8.45) that

I(f;E) = au(E) where a = lim a,.

The reader should verify that « satisfies the inequalities stated in the
theorem.

In the general case apply the preceding case to both f* and f~ and
find that

I(f%E) = ap(E), 0<a<sup{f(x):f(x) =0}
and
—I(f5E) =—Bu(E), inf{f(x):f(x) <0} =—B=0.
By addition and definition (8.35),
I(f;E) = (a=B) u(E),

where (a— B) plays the role of the « in (8.44).

Observe that the restriction w(E) < ® in Theorem 8.19 is essential.
If w(E) =o and f is integrable, the left member of (8.44) is a real
number, hence is general not a ().

Theorem 8.20

Given a countable class of disjoint measurable sets A; and a nonnegative
function f: U 4; = R* that is integrable over each of the sets A;, then f is
integrable in the broad sense over U A; and

(8.46) I(f; U4;) = Z1(f;4;) < o

Moreover, f is integrable over U 4; iff either the number of sets A; is finite or the
infinite series in (8.46) has a finite sum.
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PROOF

The case in which the number of sets 4; is finite is problem 8, Exercise
8.4. We assume this result and address the present proof to the de-
numerable case.

Set S, = U 4; and define f,(x) as f(x) or 0 according asx € §, or not.

The sequence {f,: n € N} is nondecreasing in n and, by the Monotone
Convergence Theorem.

(8.47) HmI(fn Ud;) =1(f; Uds),

in which the union is over all :.
From the definition of f,, follows that

I(fu Ud) = 1(fs ) = I(f; 0 4)
and, by problem 8(iii), Exercise 8.4,
(8.48) 1 O 4) = 3 1054,
The left member of (8.47) is thus the limit as » — o« of the right member
of (8.48), and this is the second member of (8.46).

Theorem 8.21

If fis integrable over the union U 4; of a countable class of disjoint measurable
sets, then fis integrable over each set A; and

(8.49) I(f; U4:) =X I(f; 4:)-
PROOF

By problem 5, Exercise 8.4, f is integrable over each of the sets 4;;
hence so also are f* and f~.

Denote the given union by S. Since f is integrable over S, we have by
definition (8.35) that

I(f;8) =1(f*S) —I(f$).
By Theorem 8.20, the right member equals

ZI(f54:) =S I(f54:) = T U(fH4) —1(f54:)] = T 1(f;4:),

and the proof is complete.

The results of this section with problem 4, Exercise 8.5, can be de-
scribed by saying that under suitable hypotheses I(f;E) is countably
additive both in fand in E.
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8.8 FUNCTIONS OF BOUNDED VARIATION

In preparation for the theory of differentiation and the Fundamental
Theorem of the Integral Calculus, we turn to functions ¢ : [a,b] = R of
bounded variation, a concept already defined in Section 7.3. It is con-
venient in the first part of this section to use I as an alternative symbol for
the interval [a,b]. ’

Given¢: I — R and a partition 7 of I, define

(8.50) Vigslim) = 3 |¢(t) —d(tiy) |,
called the variation of ¢ on I relative tomr. Then
(8.51) T(¢;I) = sup {V(¢;I;7): m a partition of I}

is the total variation of ¢ on 1. Clearly 0 < T (¢;I) < .

Theorem 8.22
If ¢ is an interior point of [a,b], then

(8.52) T(¢;[a,b]) = T(&;[a,c]) +T(db;[c,0]).
PROOF

There necessarily exists a sequence {m,: v € N} of partitions of an
interval I such that V(¢;I;m,) = T(¢;I) as v —> «. Let {w,} now be
such a sequence for [g,b] and define

i, =, N [a,c] and my, =, N [¢,b].
In view of the triangle inequality,

o () —d(tima)| < |d(t) —d(c) |+ (c) —d (i),

we can and do suppose that ¢ is a point of each partition 7, and hence
that the sets my,, 7, both include ¢ and therefore are respective parti-
tions of [a,c] and [b,c]. One verifies that

(8.53) V(g;la,bl;m,) =V (¢;la.clim,) +V(d;[c,b];ms,).

Sequence 7, was chosen so that the left member converges but terms on
the right may not converge. Nevertheless, if v — , it follows that

T(¢;[a,b]) < limsupV(¢;[a,cl;m,,) +limsup V (¢;[c,b];m,)
< T(¢;[a,c]) +T($;[c,b]).
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To obtain the complementary inequality redefine 7, and m, as general
terms of sequences of partitions of [a,c] and [¢,4] such that terms on the
right in (8.53) converge to the respective total variations. Redefine m,
as my, U my,. Thenlet v = «in (8.53) and see that

T(¢;la,c]) +T(;[c,b]) <limsup V(¢;[a,b),7,) < T($;[a,b]).

This theorem extends by mathematical induction to any finite union
of abutting intervals.

Theorem 8.23

A function ¢:[a,b] = R is BV on [a,b] iff ¢ =p—n, where p and n are
monotone functions on [a,b] of the same type.

PROOF

Suppose first that f=p—n, where p and n are both monotone, but
in this half of the theorem one may be nondecreasing, the other non-
increasing. Then

V(g;la,bl;m) = Slp(t) —n ()] — [p(ti-1) —n (1) ]|
=3 |pt) —p(tim) |+ 2 In(l) —n(tioy)]
= [p(d) —p(a)|+[n(b) —n(a)| < .

The last expression, being independent of =, is an upper bound for
T(é;[a,b]).

Conversely, if ¢ is BV on [a,b], define functions p and n from [a,b]
to R as follows.

p@) =3T(d:[a])+é()]  and  n() =3T($;[a]) - ()]

By subtraction p—n = ¢. Verify with the aid of Theorem 8.22 that for
any t,t; € [a,0],t, <,

p(t) —p(t) =3[T($;[t1,0]) + & (t,) —é(4)].
It follows from definition (8.51) that the right member is nonnegative.
That n(t,) —n(t) = 0 is shown similarly. Clearly —p and — are both

nonincreasing. Moreover, p+x and n+x are strictly increasing while
—(p+x) and —(n +x) are strictly decreasing. By elementary algebra,

() =—n@) =[Ol = [p@O)+]—[n@O+ ] =—[n@) + ][O 1]
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Given an interval [a,b] of positive length and a function ¢: [a,6] = R,
¢ is called AC (absolutely continuous) on [a,b] if

(854) Ve > 0,35, > Osuchthat 3 |bi—ai] < 8.2
1 n
21: | (6;) —b(a:)| <e,

in which a; and b; are ends of n = 1 nonoverlapping but possibly abutting
subintervals [a;,b;] of [a,b] and n is an arbitrary positive integer.

Theorem 8.24

If¢: [a,b] > Ris ACon [a,b], then ¢ is BV on [a,b].
PROOF

A contrapositive argument is convenient. Suppose that ¢ is not BV
on [a,b]. Let 7, denote the particular partition comprising m+ 1 uni-
formly spaced points with (b—a)/m as the length of each subinterval.
For at least one subinterval of [a,b] under 7,,—call such a subinterval
[«,8] —we have that T(¢;[a,8]) = »; otherwise T (¢;[a,b]) would be
finite by the extension of Theorem 8.22 to m intervals. Let 7= {a=
TosT1, - - -» Tk = B} be an arbitrary partition of [a,8]. Then

S ln—mial=B—a= (b—a)/m.

This can be made arbitrarily near zero by choosing m to be sufficiently
large. But T(¢;[a,B]) = and, in accord with (8.51), 7 can be so
chosen that ¥ |é(7,) —é(7:,)| is arbitrarily large. Consequently,
there exists no 8, with the property required by (8.54); indeed (8.54) fails
with a vengeance.

A function ¢: [a,b] = R is called lpschitzian on [a,b] if there is a real
number & such that

(8.55) o) —@(t')| < klt—t'|, VYt € [a,b].
Theorem 8.25

If ¢ is lipschitzian on [a,b], then ¢ is AC on [a,b].
PROOF

If k=0, then ¢ (¢) is constant and (8.54) holds with an arbitrary real
value of 8. If £ > 0, choose 8, = €/k.

Theorem 8.26
If¢: [a,b] = Ris PWS on [a,b], then ¢ is lipschitzian on [a,b].
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PROOF

We discuss the case in which ¢ is smooth on each of two subintervals
[a,c] and [c,b] of [a,b]. Set k = sup {l()]: t € [a,b]} with symbol d>
interpreted under convention (2.17). If t and ¢’ are both in [a,c] or both
in [c,b], (8.55) is immediate from the Mean Value Theorem of the
Differential Calculus and our definition of k. If t € [a,c] andt' € [c,b],
then

(8.56) d()—o ) =[o(t")—d(c)]+[d(c) ()]
By the Mean Value Theorem, there exist £, and &, such that
$()—d(D)=¢(&E)(c—1) and  G(E)—d(c) = (&) (¥ —0).
It follows from (8.56) that ¢ satisfies the Lipschitz condition
(') = ()| <k[(t' —c) + (c—)] = k(¢ —1) = k|t'—1|.

Exercise 8.6

1. The following properties of a function ¢: [a,b] = R* are suc-
cessively more restrictive. For each of the stated properties find an
example of a function ¢ having that property but not having the
next property and demonstrate that the examples meet these specifi-
cations. The properties are measurable on [a,b], integrable over
[a,b], BV on [a,b], AC on [a,b], lipschitzian on [a,b], and PWS on
[a,b].

2. Consider the sequence of equilateral triangles having as bases the
intervals [3)',3)" '], n=1,2,....Let ¢ be the function from [0,1] to
R consisting of points (x,y) on the oblique sides of all these triangles
together with the point (0,0). Show that ¢ is lipschitzian on [0,1] and
determine the smallest constant k for which ¢ satisfies a Lipschitz
condition.

3. Show that the function ¢: [—1,1] = R, ¢ (x) = x3is ACon [—1,1].

4. Prove that if ¢ and ¢ are both AC on [a,b], then ¢+ and ¢ — ¢ are
ACon [a,b].

5. Given the Cantor set E defined as the subset of [0,1] obtained by
deleting the open middle third (3,%), then deleting the open third
of each of the remaining closed thirds [0,4],[3,1], then deleting the
open third of each of the remaining closed intervals of length
%, and so on, show that the Cantor set is of measure zero. Define the
Cantor-Lebesgue function w: [0,1] > R as follows. w(0) =0,
o(l)=1, o(t)=4%on (}3), then { and § on (3,%) and (§.9),
respectively. On each deleted open interval assign to w(f) the
constant value that is midway between those already assigned on
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adjacent intervals deleted at the preceding step in the construction.
Finally, for points ¢ € E define w(t) =sup{w(r):7 € [0,1]—
E, v < t}. Show that o does not satisfy the definition of absolute
continuity on [0,1].

8.9 THE VITALI COVERING THEOREM
The following theorem is basic to the theory of differentiation.

Theorem 8.27 (Vitali)

Given a subset E of the reals and a class K = {I,: a € A, an index set} of
compact intervals 1, of positive length such that

(8.57) p*(UI,) < ®,  suppose

(8.58) that, for every open interval I and pointx € I N E,
there exists I, € K such thatx € 1, C I.

Then there exists a countable subset of K consisting of disjoint intervals whose
union covers almost all of E.

PROOF

If E=¢ the theorem is trivially true. We now consider the case
E # g.

Let 4, be an arbitrary interval in K. If E C %, the theorem is true. If
E ¢ #,, there necessarily exists £, € K such that

(8.59) Iy C C(HF)) and
(L) > tsup {un(l,): C(£,) D I, € K}.

Proceeding inductively, suppose given the disjoint intervals
ﬂlyﬂg,--.,.ﬁm (S K
such thatifj=1,2,...,m—1, then #;,, C C(U}.£,) and

C(02) D I € K= u(l,) < 2u(F5u).

Then either E C UP*.#, and the theorem is true or, as in the case
m = 1 above, there exists, under hypothesis (8.58), £+, in K such that

(8.60) c((fm,): Fmer  and

(I mar) > $sup {n(LL): c((:ﬁ #,) D1, € K}.
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The sequence with general term £, that is thus inductively defined may
terminate with a certain #,. Then E C U%¥, and the theorem is true.
If this does not occur, we have an infinite sequence {.#,} with (8.60)
holding for m=1,2,.... In the event that E C U7} %, the theorem is
true. It remains to investigate the case in which this does not occur.

As a consequence of hypothesis (8.57) and the disjointness of the
intervals £, the infinite series 2 u(.#,) has a finite sum. As necessary
conditions for this,

(8.61) u(F,) > 0asy —>

and

(8.62) Ve > 0,3N. such that 3 u(S,) <e.
Ne

Now U¥f, C U?S,; hence C(UTS,) C CG(UYS,). Given

x € ENC(UPSL,), then x € C(U¥e#,) and, by hypothesis (8.58),
there exists & € K such that

xEFC C(qjﬂ,,).

With x, €, and N, fixed, if it were true for all positive integers m that
J C C(urg,), then, from (8.60),

r(F) <2u(Fnu), m=12,..,
in contradiction with (8.61). We infer that there is an integer n such that
n—1

(8.63) scc(ys) s sac(fs).

Since UT*#, is an expanding sequence of sets, C(UT*.4,) is a con-
tracting sequence. It follows that

(8.64) n > N,.

Moreover, from (8.63),

(8.65) S NI, #g.

By the second statement (8.60), u(#) < 2u(#,); hence, as a conse-
quence of (8.65), # C £¥, an interval concentric with #, and five times

as long.
In summary, we have now shown that

x € E N C(U #,) 3 3n > Nsuch thatx € 5%,
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from which, with reference to (8.64), we see that
-] -]
Enc(y.s,) cu.ss
1 Ne+1

Finally, by the definition of Lebesgue outer measure u* and (8.62), we
have that

wlEne(§ )] <u(0,#5) <3 nem <se
€ €

Since € > 0 but otherwise arbitrary, it follows with the aid of Theorem
8.3 that the set E N G(U £,) is measurable and of measure zero, com-
pleting the proof.

The following corollary is frequently useful.

Theorem 8.28

Given a bounded subset E of the reals, a class K = {I,: a € A} of compact
intervals of positive length with property (8.58) and a positive number €, there
exists a finite subset of K consisting of disjoint intervals £,,v=1, ..., n.such
that

@) Lj F, covers all of E except a subset Ey, p*(E,) < €

and

(i) 2 W(F,) —e < pH(E) < 3 u(F) +e.

PROOF

Hypothesis (8.57) of the Vitali Theorem is now a consequence of the
boundedness of E. Hence there exists, in accord with the definition of
1 *, an open subset G of R such that

(8.66) ECG and w(G) < u*(E) +e.

If we examine hypothesis (8.58) and refer to Theorem 8.5 we see that it
suffices to use the subset K of K consisting of only those intervals in K
each of which is a subset of G.

By the Vitali Theorem with K in place of K, there is a finite or in-
finite sequence {#, € K} of disjoint intervals such that U £, D E—E,,
w(E,) =0. Thus

E=E, U [U(E N J5,)]

and, consequently,

(8.67) w*(E) < p*(U 4,).
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Since U £, C G and the intervals £, are disjoint,

(8.68) 2 r(£) =pn(U F) < u(G) < p*(E)+e < T u(Sf) te.
CASEL. {£}IS A FINITE SEQUENCE

The number = of these intervals serves as the 7. in the theorem. Delete
the second and third members of (8.68), subtract € from each member
that remains, and obtain inequalities that imply conclusion (ii).

CASE 2. {#,} IS AN INFINITE SEQUENCE

Since U £, C G and p(G) < » by (8.66), the infinite series Zu(%,)
has a finite sum. Therefore corresponding to the given € is a numbern,
such that .

(8.69) S w(f,) <e
ne+1

Using (8.67), we then see that
p*(E) = 3 pu(S) < El (L) +e

From this and (8.68),

> u(F,) < u*(E)+e< § 1(F,) +2¢,
1

1

which yields conclusion (i) by subtraction of €. In case 2, the set
E, U [Ug. (E N F,)] plays the role of set E, in the theorem.

8.10 DERIVATIVES OF FUNCTIONS OF
BOUNDED VARIATION

Refer to Section 1.7 and also define the upper derivate D¢ as the function
such that

. (D*$) (0) ife=a
(D) (c) = [max [(D*$)(c), (D°$) ()]  ifa<c<b,
(D) (o) ifc="b.

The lower derivate D is similarly defined.

Theorem 8.29

Given a compact interval [a,b] of positive length and a function ¢: [a,b] —
R that is nondecreasing on [a,b], if Df = k on a subset E of [a,b], then

(8.70) ¢(b) —d(a) = ku*(E).
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PROOF

If E is empty, (8.70) is obvious. Given x € E, then either (D*¢) (x) = £
or (D~¢)(x) =k, with conjunctive “or’’; hence x is the right or left
endpoint of closed subintervals [«,8] of [a,b] of arbitrarily small posi-
tive length such that

(8.71) $(B) —¢(a) = k(B—a).

The class of all such subintervals [«,8] of [a,b] has properties (8.57)
and (8.58). Accordingly, given € > 0, there exists, by Theorem 8.28,
a finite set of disjoint intervals [a;,8;], the number of which is denoted
by n such that

872 WHE) <3 (Bi—a) +e.
We can suppose the notation so chosen that
a<a;<Pr1<ay<Br< - <ap<B,<b
It follows from (8.71) and (8.72) that
S [6(8) —d(e)] = k3 (Bi—a) > klu*(E) —e].
Since ¢ is nondecreasing, ¢(b) —¢(a) dominates the first member.
Conclusion (8.70) follows.

Theorem 8.30

Given a compact interval [a,b] of positive length and a nondecreasing function
¢: [a,b) = R, if, foreachx € E C [a,b],

(D) (x) <h <k < (Do) (x),
then E is Lebesgue measurable and p(E) = 0.

PROOF

Given x € E, then (D_¢)(x) < hor (D,.¢)(x) < k; hence x is an end-
point of arbitrarily short subintervals [«,B] of [a,b] such that

(8.73) *(B) — (@) < (B—a).

Given € > 0, there is by Theorem 8.28 a finite set of such intervals
[e;,B:], i=1,...,n (we henceforth suppress the subscript €), whose
union covers all of E except a subset of measure below ¢, and such that

é(m—a»—e<qu»
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Hence, by (8.73),

(8.74) 2 [6(8) — d(ew)] < hu*(E) +he.

Theorem 8.29, applied separately to each set E N [«;,8;], yields the
relations

¢(Bl) _¢(al) = kl"'k(E n [airBi])’ 1= la DRI (N

therefore, with the aid of Theorem 8.28 and the monotonicity (8.23)
of ¥,

®75) 3 [6(8) = (@) > kS w*(E O (2]
= (U E N [00,8]) > hw*(E) — ke,
As a consequence of (8.74), (8.75), and the fact that & < k, we verify that
p*(E) < (h+k)e/(k—h)
and, from the nature of € and Theorem 8.3, that the theorem is true.

Theorem 8.31

If [a,b] is a compact interval of positive length, a nondecreasing function
&: [a,b] = R has a finite derivative é(t) a.e. on [a,b].

PROOF
Define

E = {1 € [a,b]: (D$) (1) < (D¢)(1)}-

Let {r,: v € N} be a fixed sequentialization of all nonnegative rational
real numbers and define

Emn = {t € [a,b]: (D$) (1) < 7 < 70 < (D) (1)}.

Clearly E,, is empty if 7, = r,. Verify that E= U E,,,. By Theorem
8.30, w(Emn) = 0 if 7,, < 7,.. It then follows from the countability of the
class {Ep,: m,n € N} and Theorem 8.8 that u(E) = 0 and consequently
that ¢(¢) exists, finite or =, if t € [a,b] —E. To complete the proof it
remains only to see that the set S = {t € [q,b]: & (£) = =} is of measure
zero. By Theorem 8.29,

¢ () —d(a) = ku*(S), VE>0;
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hence, if u*(S) > 0, it would follow from consideration of arbitrarily
large values of k that ¢(b) —¢(a) = =, in contradiction with the hypo-
thesis that ¢ is real-valued.

The following is an immediate corollary to Theorems 8.31 and 8.23.

Theorem 8.32

If [a,b] is a compact interval of positive length, a function ¢: [a,b] = R
that is BV on [a,b] has a finite derivative $(t) a.e. on [a,b].

Exercise 8.7

1. Construct an example of a function ¢ that is monotone on an interval
and fails to have a finite derivative at each point of an infinite set
of points where it is discontinuous. Construct a second example
in which ¢ is continuous on its interval and d>(t) = o at infinitely
many points ¢ of that interval.

8.11 INDEFINITE INTEGRALS

Given a compact interval [a,b] and a function ¢: [a,b] — R* that is
integrable over [a,b] and hence by problem 5, Exercise 8.4, over every
subinterval [a,t] of [a,b], the function ®: [a,b] — R with values

®(t) = I(¢;[a,t]) +C, C = const.
is called an indefinite integral or simply an integral of ¢.

Theorem 8.33

If ® is an integral of b, then  is AC.
PROOF

It can be verified that given € > 0, there is a positive 8, such that if
E is a measurable subset of [a,b], then

(8.76) I(|¢;E) < € provided that n(E) < &..
With reference to definition (8.54) of absolute continuity, let [a;,5,], . . .,

[@r,0,] be nonoverlapping subintervals of [a,b]. By the definition of
® and Theorem 8.21,

2 @) —@(a)| < T I(¢l;[asb:]) = I(|9]; U [asbi])-
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The desired conclusion then follows from (8.76).

Theorem 8.34

If ¢: [a,b] > R is ACon [a,b] andzf&(t)—an on [a,b], then ¢(t)
= const. on [a,b]; hence $(t) must actually vanish everywhere on [a,b].

PROOF

Define E = {t € [a,b]: ¢(¢) =0}. Given € > 0 and ¢ € E, then ¢ is
the right or left end of arbitrarily short subintervals [«,8] of [a,b] such
that

®.77) l6(B) —d(a)| < e(B—a).

By Theorem 8.28, there is an integer, which we denote here by n.—1
rather than n. and then suppress €, together with disjoint intervals
[a1,B1], . . ., [@n-1,Bn-1] with property (8.77) and such that

(8.78) >: (Bi— ) —€ < p*(E) <z (Bi—a) +e.

We drop the asterisk on the middle term since E is measurable by
hypothesis, uw(E) = b — a.
Clearly b—a = 2(B; — a;); hence by the second inequality (8.78)

(8.79) b—a= Y (Bi—a;) >b—a—e.
Labels can be so chosen that

4 < B, <o<Py<-:<ap <P
Define B, = aand o, = b. Then

880) |6(6)—d(a)] < z 16(8) ~9(@)] + 3 [6a =9 (B,

It follows from (8.77) that the first sum is dominated by e€(b—a) and
from (8.79) that 3}(a; — B,_,) < €, consequently, from the absolute con-
tinuity of ¢, that the second sum tends to zero with e. In this last step €
plays the role of 3. in the definition of absolute continuity. The left
member of (8.80) is free of € and therefore must be zero.

The preceding argument, with [a,t] in place of [a,b], proves that
¢(t) = ¢(a) = const. and, by elementary calculus, $(¢) must vanish
identically on [a,b].
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Theorem 8.35

Given a compact interval [a,b] of positive length and a nondecreasing func-
tion ¢: [a,b] — R,

(i) the derivative d of ¢ is integrable over [a,b]
and

Qi) 1(p;[ab]) < ¢(b—) —d(at).

PROOF

As a consequence of Theorem 8.31, d.>(t) exists and is finite on a subset
E of [a,b] of measure b—a. Since ¢ is monotone, the sets {t € [a,b]:
¢(t) < a} are intervals, possibly empty for some values of a; therefore,
¢ is measurable on [a,b] and, by Theorem 8.10, measurable on E.

Denote by ¢* the function from R to R that coincides with ¢ on the
open interval (a,b) and set ¢*(t) = ¢(at) if t < a, ¢*(¢) = (b—) if
t = b. Define §: R — R by the relation

¥(2) = ¢*(t+h).

Neither the measurability nor the Lebesgue measure of a set is
affected by translation; hence ¢ like ¢ and ¢* is measurable on [a,b]. By
Theorem 8.11(iv), (vi), the difference quotient Q: R — R,

o = $0=¢"0)

is then measurable on [a,b], hence on E, while, by Theorem 8.13, the
derivative ¢* is measurable on E.
With & restricted to values 1/n, we see by means of Fatou’s Lemma that

(8.81) liminf I(Q;E) = I($*E) = 1($:[a,b]).

The asterisk is dropped in the last integral since & (t) = ¢*(t) on [a,b]
except possibly at a and 5. We can, moreover, interpret ¢, consistently
with problem 11, Exercise 8.4, as an arbitrary extension of the original
é fromE N (a,b) to [a,6] and i integrate over [a,b] rather than E.

One can verify that

1(Q:[a.b]) =+ 1(¢%s[a+h, b+h]) —3 163 [ab])

=Ly, b+h])——1(d>* [a,a+A]).

§~
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By application of the Mean Value Theorem, Theorem 8.19, to each of
the last two terms there are respective real numbers 8 and ay,

¢*(b) =B=¢*(b+h) and  ¢*(a) < ap < dp*(a+h)

such that

1(Q;[a,b]) = B—on = (b—) —an.

As h— 0, ap, = ¢ (at+). Thus 1(Q;[a,b]) has the limit ¢ (b—) — ¢ (at+)
and stated conclusions (i) and (ii) now follow from (8.81). We observe
in retrospect that the limit inferior in (8.81) is actually a limit.

Theorem 8.36

Given the compact interval [a,b], if : [a,b] = R* is integrable over [a,b],
hence over subintervals [a,t] of [a,b], and if I($;[a,t]) = O forallt € [a,b],
then ¢(¢) =0 a.e. on [a,b].

PROOF

Define E = {t € [a,b]: ¢(t) >k > 0}. Function ¢ being integrable
is measurable on [a,b]; hence E is a measurable set.

If w(E) > 0, there is necessarily a closed set F C E, with w(F) > 0and
(8.82) I(¢;F) > I(k;F) = ku(F) > 0.
By the additivity of the integral as a set-function.

(8.83) I(¢;[a.b]) =1(¢;[a,b] —F) +I1($;F) = I(¢;(a,b) —F) +1($;F),

the last equality being a consequence of problem 1, Exercise 8.2.

The open set (a,b) —F is the union of a countable set of disjoint open
intervals I, by Theorem 8.5. Let (a,8) be any one of these. Then,
under our hypothesis that I(¢;[a,t]) = 0 and with another application
or problem 1, Exercise 8.2,

1(¢;(a.B)) = I1(¢;[a,B]) —I(¢;[a,a]) = 0—0=0.
Therefore, I(¢; U I,) = 3I(¢;I,) = 0and, from (8.83) and (8.82),
1($;[a,b]) = I($;F) > 0,
contrary to the hypotheses that I(¢;[4,]) = 0 on [a,b]. Having reached

this by supposing that u(E) > 0, we must infer that w(E) = 0 for any
choice of the positive k.
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Clearly,
{t € [a,b]:1/n= ¢(t) > 1/(n+1)} C {t € [a,b]: d(t) > 1/(n+1)}.

The set on the right has measure zero; hence so also has the set on the
left. Moreover,

{t € [a,b]: ¢(t) > 0} ={t € [a,b]: p(t) > 1} U

[(:3{: € [a,b]:rlla é(t) > nj—l}]

Each set on the right being of measure zero, so also is the set on the left.
The preceding argument applied to —¢ shows that the set {¢t € [a,b]:
¢(#) < 0} is of measure zero, completing the proof of the theorem.

Theorem 8.37

If ¢: [a,b] = R* is integrable over the compact interval [a,b] of positive
length and ® is an integral of ¢, then ® (t) = ¢ (t) a.e. on [a,b].

PROOF

@ is AC by Theorem 8.33; hence, by Theorem 8.24, ® is BV and, by
Theorem 8.32, <D(t) exists and is finite a.e. on [a,b].

CASE1l. ¢ IS BOUNDED ON [a,b]

This means that there is a real number M such that |¢(¢)| < M on
[a,b], whence, with the aid of the Mean Value Theorem, Theorem 8.19,

D(+hr)—D() 1

(8.84) - =2I($[t,t+h]) <M,  h>0.

We understand without a shift in notation that ¢ has been extended
beyond b, as was the function ¢ in the proof of Theorem 8.35. Let E,
denote the subset of [a,t] on which <I>(t) exists and is finite. With 2= 1/n,
let n — . In the light of the bound M in (8.84), Lebesgue’s Bounded
Convergence Theorem applies and the integral over E, of the left
member of (8.84) converges to I (<I> E,). Since p([a,t]—E;) =0, we can
then replace E, by [a,t] and, by the same steps used near the end of the
proof of Theorem 8.35, the right member of the equation

nI{® (t+ 1/n) — ®(2);[a,b]} =nl (®;[t, t+ 1/n]) —nl (®;[a, a+ 1/n])

converges to () —®(a).
Since @ is given as an integral of ¢, we now see that

1(®;[a,t]) = ®(t) —®(a) = I($;[art])-
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It follows that I((i>—¢; [a,t]) =0 and from Theorem 8.36 that <i>(t)
= ¢(t) a.e.on [a,b].

CASE 2. ¢ IS NONNEGATIVE ON [q,b]

Let {s,:n € N} be a sequence of nonnegative simple functions,
nondecreasing in n with the property (8.34*). The integrals

(8.85) I(d—sn;[at]), I(d;[at]),and I(sa;[a,t])

are all bounded for t € [a,b] and are nondecreasing in t.
Define

@, (1) = ®(2) —1(sn;[a.i]).
Derivatives of both terms on the right exist and are finite a.e. on [a,b]
by Theorem 8.31; hence ®, has the same property. Moreover, the
derivative of the integral is s, a.e. on [a,b] by case 1 of the present proof;
consequently,

(8.86) ®,(2) =D () —s,(t) ae.on [a,b].

The left member is nonnegative when it exists by the monotonicity of
the first integral (8.85); hence

(8.87) <i>(t) =5,(t) a.e.onla,b], n=12,...
There is a subset 4, of [a,b] of measure 0 (possibly empty) on which
(8.87) fails. However, (8.87) is both meaningful [that is, @ (¢) exists] and

valid independently of » on the set [¢,0] — U4, a set of measure b—a.
If we let n — o, it follows from (8.87) and the convergence of s, to ¢ that

CiJ(t) = ¢(t) a.e.on[ab],
and therefore that
(8.88) 1(®—¢;[at]) = 0.

To obtain the complementary inequality we remark from Theorem
8.35 and the fact that @ is an integral of ¢ that

1(®;[a,6]) < ®(t) —®(a) =I(d;[a,t])

and hence that I (CiJ—d); [a,t]) =< 0. This with (8.88) and Theorem 8.36
yields the desired conclusion.
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CASE 3. THE GENERAL CASE
Express ¢ as ¢+ — ¢~ and define

O+(t) =1(¢%[at]) and P (¢) =1(¢7;[a.t]).

Clearly ® = ®*—®~. Apply case 2 separately to ®* and ¢~ and com-
plete the proof.

Theorem 8.38 (The Fundamental Theorem of the Integral Calculus)

Given a compact interval [a,b] of posit-ive length and a function ®;[a,b] —
R, the statement that

(8.89) 1(®;[a,6]) = D(t) —®(a), Vi€ [a,b]

is meaningful and valid if and only if ® is AC on [a,b].

Since the derivative of an AC function can fail to exist on some set Z
of measure zero, symbol & is to be understood as an arbitrary extension
without shift in notation of an original & from [a,b] —Z to [a,b].

PROOF

Suppose first that (8.89) holds as stated. It then holds for t =5 and
hence (8.89) says among other things that ® is integrable over [a,b].
By Theorem 8.33, ® as an integral is then AC on [a,b].

If conversely ® is AC on [a,b], then it is BV on [q,b] by Theorem
8.24 and @ (¢) exists and is finite a.e. on [a,b] by Theorems 8.23 and
8.31. Moreover, ® is integrable over [a,b] by Theorems 8.35, 8.23, and
the additivity of the integral. .

As a consequence of Theorem 8.33, I(®;[a,t]) is then AC on [a,b].
Define

(8.90) g(t) = @(t) —1(D;[a,t]).

The derivative g(¢) is seen to vanish a.e. on [a,b] with the aid of
Theorem 8.37. By an application of Theorem 8.34, we have that g(¢) is
constant on [a,b] and, setting t = a in (8.90), we find that this constant is
® (a). This completes the proof of (8.89).

Exercise 8.8

1. With reference to problem 5, Exercise 8.6, for the nature of the
Cantor-Lebesgue function , verify that an arbitrary extension
&* of its derivative & from [0,1]—E to [0,1] is integrable over
[0,1] and that I (&*;[0,1]) = 0 # (1) —w(0).

2. Establish that the function ¢:[—1,1] = R, ¢(x) =x'3, is AC on
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[—1,1] by demonstrating that an indefinite integral ® of this function
has property (8.89).

3. Formulate and prove as a corollary to Theorem 8.35 a companion
theorem for a nonincreasing function.



Chapter 9

VARIATIONAL
THEORY IN TERMS OF
LEBESGUE INTEGRALS

9.1 INTRODUCTION

A need in the calculus of variations for an integral with better con-
vergence properties than that of Riemann has been described in Section
7.10. One answer is the Weierstrass integral, which continues to find a
limited usefulness, but the Lebesgue integral is usually a superior tool.

In this chapter we show that, if yis BV on its interval and F is a semi-
continuous parametric integrand, then the composite function F(y,5)
is Lebesgue measurable. Its integral is generally not useful, however,
unless y is restricted to be AC, as will be pointed out. Similar remarks
apply to nonparametric integrals. Also included are certain theorems
concerning such integrals, a brief introduction to L,-spaces, and some
typical theorems on the existence of global extrema.

245
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9.2 VARIATIONAL INTEGRALS OF THE
LEBESGUE TYPE

The much used Theorem 8.5 on the decomposition of an open subset
of the reals into disjoint open intervals does not extend to higher
dimensions. For examp{e, an L-shaped open subset of the plane is not a
countable union of disjoint open two-dimensional intervals I = (a,b) X
(¢,d). The following theorem, which is independent of the dimension
p, will serve our purposes.

A half-open interval in R? is the cartesian product (Section 1.2) of p
one-dimensional intervals, either all of the type (a,b] or all of the type
[a,b). Open p-dimensional intervals and closed p-dimensional intervals
are similarly defined.

Theorem 9.1

Every open subset G of RP is a denumerable union of disjoint half-open
p-dimensional intervals.

PROOF

If p = 1, let (a,B) be an open interval and let {a,: n € N} be a strictly
decreasing sequence in (a,8) with « as limit. Then [a,,8) together with
the union U [a;4,,4;) provides a denumerable decomposition of (a,8).
A similar decomposition into disjoint intervals (a,b] is obtained with the
aid of a sequence {b,: n € N} in (a,B) that converges to B8 . Since an
open subset G of R is a countable union of disjoint intervals (a,8) by
Theorem 8.5, the stated conclusion follows.

Given p =2 and any positive integer k, consider the families of lines
x=u/2* and y = /2%, u,v=0,£1,*2,.... For each k the entire plane
R?is the denumerable union of all half-open intervals

9.1 [m/2%, (n+1)/2%) X [v/2%, (v+1)/2F).

For k=1, a subset, possibly empty, of the intervals (9.1) is contained in
G. There is then a subset of the intervals (9.1) with £ = 2 consisting of
such intervals as are contained in G but in none of the intervals (9.1)
selected at the preceding step. Proceeding inductively in this manner
we obtain a denumerable set of countable sets of intervals (9.1), which
are disjoint and the union of which can be verified to be the given set G.
The totality of all these intervals is clearly a countable set. One sees
easily that no finite union of such intervals can be an open set, hence that
the union is a denumerable union as stated in the theorem.
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The same type of proof with minor changes applies if p > 2. Clearly
the decomposition mentioned in the theorem is not unique.

Theorem 9.2

Given functions ¢°: [a,b] = R,j=1, ..., p, that are measurable on [a,b],
if G is an open subset of R? containing all points [$'(¢),...,dP(¢)], t €
[a,b], and if F: G = R* is semi-continuous on G, then the composite function
Fod¢ is measurable on [a,b].

PROOF

Suppose that F is lower semi-continuous on G. Consider the mapping
¢: [a,b] = R?, ¢ = (¢,...,¢7), and, given § C R?, let $*(S) denote
the set {¢t € [a,b]: ¢(t) € S}. Let I be a generic symbol for a half-open
interval of the type [¢',d') X---X[¢?,d?). Then ¢~'(I) consists of
thoset € [a,b] such that

9.2) d=sdity<d, j=1,...,p.

Since ¢’ is measurable by hypothesis, each subset 4; of [a,b] consisting
of those t satisfying (9.2) for a fixed j is measurable; hence the set
N ?4; is measurable by Theorem 8.9, and this is precisely the set ¢~*(I).
The open set G is a denumerable union of disjoint half-open intervals
I by Theorem 9.1; consequently, the set $~*(G) is a denumerable union
of disjoint measurable subsets of [a,b] and is measurable by Theorem
8.8. A similar remark applies to any open subset of G.

We point out next that, for each choice of the real number £, the set

9.3) Sk={y € G:F(y) >k}

is an open subset of G. If S is not open and hence not empty, there
must exist y, € Si and a sequence {y,: ¥ € N} converging to y, and such
that F(y,) < k. It follows from the lower semi-continuity of F at y, that

F(y) < liminfF(y,) <k,

in contradiction with the choice of y, in S); hence we must infer that
Sy is open as stated.
Observe finally that the subset

(9.9 {t € [a,b]: F[$(t)] > k}

of [a,b] is the image under ¢! of the set S; in R®. That the set (9.3) in
R? is open implies that the set (9.4) is a measurable subset of [a,b]. Since £
isreal but otherwise arbitrary, the composite function F © ¢ is measurable
under the discussion of Section 8.4.
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If F is upper semi-continuous, apply the preceding proof to —F and
use Theorem 8.11(i1).

Let f:[a,b] XR®"XR™—> R be a nonparametric integrand that is
lower semi-continuous at each point of the given domain. As a con-
sequence of Theorems 8.13 and 8.32, if y: [a,b] = R™is of finite length,
hence if each component y’ of y is BV on [a,b], there is a subset E; of
[a,b] of measure b—a such that the derivative y/ exists and is finite on
E; and is moreover measurable on E;. It follows that all components of
y are finite and measurable on the set

E = [a,b] — Y {[a,b] —E;},

which differs from [a,b] by a set of measure zero. In accord with
problem 5, Exercise 8.3, any extension of j from E to [a,b] obtained by
assigning extended real values to the components of (¢) at points of
[a,b] —E yields a function §: [a,b] = R™ with components measurable
on [a,b]. Symbol $ will now mean such an extension. Each component
3’ of y is BV, and hence, as the difference between monotone functions,
is seen to be measurable on [a,b].

Identify 2m+ 1 with the p of Theorem 9.2 and consider the function
¢ with components

oL(t) = ¢, diti(t) = yi(t), ditmHI(f) = 3i(h), i=1,...,m.

Extend f from the stated domain to R*™*! by setting f(¢,,7) = f(a,y,7)
or f(b,y,7), respectively, when ¢ < a or ¢t > b, so that f now has an open
domain and can be identified with the function F of Theorem 9.2. It
follows from this theorem that the composite function f(t,y,5) is measur-
able on [a,b]. Similar remarks apply to a parametric integrand.

A first requirement on a class % of admissible functions y: [a,b] =
R™ or R*, n =m+1, is that the derivative of y exists a.e. on [a,b]. With
j denoting the extension described above, we require further that
f(¢,3,5) or F(y,5), as the case may be, be integrable over [a,b], that is,
that the integral exist and be finite under (8.34) or (8.36). In view of the
differentiability (Theorem 8.32) of functions y with components that are
BV and the measurability of § on [a,b], a consequence of Theorem 8.13
and problem 5, Exercise 8.3, a profusion of functions f(¢3,5) and
F (%) will be integrable.

We often need to know that a change of variable is permissible.

Theorem 9.3

If g: [a,b] = R* is integrable over [a,b] and h: [a,B] — [a,b] is non-
decreasing and AC on [a,B] withh(a) = aand h(B) = b, then

(i) theproduct (g ° ) is integrable over [@,B]
(i) 1(g; [a:b]) =I((g > B)h; [@.B]).

and
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PROOF
Define G as an integral (Section 8.11), namely,

(9.5) G(t) =1(g;lat]), t € [a,b].
CASE 1

g is bounded and measurable on [a,b] and h(T) s bounded away from 0 on
the subset of [a,B] consisting of those T at each of which k(r) exists and is
finite. In this case there exists a positive real number Msuch that | g(t) | <
M. We see from (8.26) that

_M(tz—tl) = I(g; [tl’tz]) = M(tz_tl)r V [tl’t2] c [a7b],
hence, by definition (9.5) of G, that
9.6) |G () =G (t,)| < Mlt,—t,].

Thus G is lipschitzian and, by Theorem 8.25, is AC on [a,b]. Moreover,
by (9.6), given any finite set of nonoverlapping subintervals [a;,8;] of

[e.B],
2 |G (B)]—Glh(a)]| < MZ |h(B:) —h(es)].

Since his AC on [a,f)], it follows that G  his AC on [«,8].

. In view of Theorems 8.24 and 8.32, the derivatives (G ° h)'(7) and
h(7) both exist and are both finite on a subset 4 of [a,8] of Lebesgue
measure u(4) = B—a. The prime and the dot both denote differentia-
tion with respect to 7 in this proof. It follows from the Fundamental
Theorem 8.38 and definition (9.5) that

I1((G » b)'; [a,B]) = G[(B)] = G[h(a)] = G(b) —G(a) = I(g; [a,b]).
To complete the proof of case 1, we show that
(9.7) (G = 1) (x) = glh(r)Ji(r) ae. on [a,B].

One verifies by examining the respective difference quotients that, if
T € A, then

(G * h)'(r) = G[h(r)1h(r).

From (9.5) and Theorem 8.37 we know that G(t) = g(t) a.e. on [a,b],
consequently that G [(r)] = g[h(7)] except for points 7 in a subset of
[e, 8] that map into the points A(7) of a subset Z of measure zero. Now
h(r) is bounded from zero by hypothesis, hence h(*r) =§>00nd. It
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follows that the points 7 that mapped into Z constitute a subset of [a,8]
of measure zero. This completes the proof of (9.7).

CASE 2. g IS BOUNDED AND MEASURABLE ON ([a,}].

If h(B) = h(a), then k(7) =0 on [a,B], hence i(g o k) is integrable
and conclusion (ii) holds in the form 0= 0. Having disposed of the
trivial subcase suppose that 2(8) > h(a).

Next define a function k,: [a,8] — R,

1 —
() = 7h(n) + o @) + o Th(B) — A1},
and observe that k,(a) = h(a), that k,(8) = k(B), and that

1 h(B) —h(a)
n+1 B—a ’

(7 =n:ﬁl;{(f)+

hence that ’;,.(‘T) is bounded from 0. Since & is AC on [e,8] 50 also is Ay
It follows from case 1 that (g ° h,)k, is integrable over [«,8] and that

1(g; [2,6)) =I((g © k) hiy; [,8]).

Moreover Ig[h,,(f)];z,,(f)l < M;zn('r) and hence from the form of ;z,,
Lebesgue’s Dominated Convergence Theorem applies to the last
equation to show that

1(g; [a,b)) = I((g ° h)h; [@,B]).

CASE 3. g= 0 ON [ae,b] AND MEASURABLE ON [a,b]

Let g, = inf(g,n) denote the truncation of g at the level n. By case 2
we have the stated conclusions (i) and (ii) for g,. Let n — = and use the
Monotone Convergence Theorem 8.16.

CASE 4. THE GENERAL CASE
Apply case 3 separately to the functions g* and g~.

Exercise 9.1

1. Given that F:R*XR" —> R is semi-continuous on its domain and
has the homogeneity property (6.20), let £:[0,1] = R* be the
reduced-length representation of a given curve C. Identify theorems
that suffice to ensure the integrability of F(¢, f) over [0,1]. Do the
same for the mtegrablllty of F(X,X) over [0,L(C)], where X is
the representation in terms of length.
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9.3 THE LEBESGUE LENGTH-INTEGRAL

Given a continuous Fréchet curve Cin E, of finite length having x:[a,b] —
R™ as a representation, let C,, denote the subcurve represented by the
restriction of x to [a,t} C [a,b] and set

(9-8) S(t) = L(Cz,t)9 t € [a’b]'

Theorem 9.4

The derivative 3(t) exists and is finite a.e. on [a,b]. Moreover, x(t) also exists
and is finite and |%(t) | = 3(t) a.e. on [a,b].

PROOF

Each component %’ of x is BV as a consequence of Theorem 7.2; hence
the derivative #/(¢) exists and is finite on [a,b] except at the points of
a subset Z; of [a,b] of measure zero. It follows that all components of
the vector %(#) and hence the length | #(?) | of that vector exist and are
finite on [a,b] — UZ;, which is almost all of [a,b].

Clearly s is nondecreasing and hence finitely differentiable a.e. by
Theorem 8.31. Let 4 denote the subset of [a,b] of measure 6—a on
which both §(t) and |x(¢)| exist and are both finite. The length of any
subcurve dominates the length of the corresponding chord; that is,

s(t+h)—s(t) = |x(t+h)—x(t)|, .t t+h € [a,b].
If we choose ¢ as a point of 4, divide by 4, and let 2 — 0, we see that
9.9) () = |x()], tE A.
Let B denote the subset of 4 at points of which the inequality holds in

(9.9). The proof of the theorem is completed by showing that #(B) = 0.
Define )

$(t) = s(to) |%(8) — x(to)|
t—t |t — to

B, = {to € B:t EBand|t—1t| < 1/n> +1/n}.

It follows that .
to € By > 3(to) = |x(to)| +1/n >t € B,

and therefore that U B, C B. To establish the complementary inclusion,
suppose given t, € B. Then $(t,) > |%(t,) | and, for a sufficiently large n,,

$(to) > |2(to) |+ 1/n,.
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Moreover, since 3(t,) and [|%(t,)| are limits of respective difference
quotients, we know that if [t—1t| is sufficiently small—say below 1/n,,
then
() —sto) |x () —x(to) |
t—to [t —to]

+ 1/n,.

With n = max (n;,n,), we verify that {, € By; consequently, B C UB,,

Let n now be a fixed integer. The set B, may be empty and hence of
measure zero. If B, # ¢ and € > 0, let = be any partition of [a,b] of
norm below 1/n and also so small that

(9.10) L(x) =% |x(1) —x(miy)| < €.

Since the length % (x) =s(b) = X [s(:) —x(7:—1)], inequality (9.10) is
equivalent to the relation

(9.11) 2 ) —s(rni)]—2 |x(7:) —x(7ia)| <e.

Since B, is not empty, [7:4+1,7:] N B, # ¢ for at least one value of i. Let
T be a point of such a subinterval. If T is 7;_, or 7;, then by the definition
of B, and our choice of 7,

(9.12) s(71) —s(7mi21) > Ix(Ti) “x(Ti—n)| + (1, —Tina) n.
If T'is an interior point of [7;-,,7;], then

7n—T<1/n and T—7, < 1/n,
whence
s(7:) =s(T) > |x(7;) —x(T)|+ (7;—T)/n
and
$(T) = s(7i=1) > |x(T) —x(7i=1) |+ (T —7;y) .

By addition of these two inequalities and the triangle property of
absolute values we again get (9.12).

Let Z' denote summation over those ¢ such that [r;-,,r;] N B, # ¢.
By (9.12) with reference to the definition of Lebesgue outer measure we
verify that

n*(By) = 2’ (ri—7i21) < nZ' [S(Ti)_S(Ti-l) - lx(Ti)"x(Ti-l)l],

hence by (9.11) that u*(B,) < ne. But = is fixed and e is arbitrary;
consequently, u*(B,) =0 and, by Theorem 8.3, B, is measurable of
measure zero. Finally, u (U B,) < 3 u(B,) =0.

Recall definitions (8.51) and (8.54) of total variation and absolute
continuity.
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Theorem 9.5

A function ¢: [a,b] = R is AC on [a,b] gﬂ"the total variation T (¢;[a,t])
on the subinterval [a,t] is AC on [a,b].

PROOF

Suppose first that ¢ is AC on [a,b]. Then, given € > 0 and non-
overlapping subintervals [a;,b;] of [a,b] with length-sum below the
8, of definition (8.54) of absolute continuity, we know that

(9.13) 2 o(b) —d(a)| <e.

If the intervals [a;,b;] are subdivided, the new sum (9.13) remains below
€. It follows that 3 T(¢; [a:,b;]) < €, hence as a result of Theorem 8.22
that

9.19) S {T(¢;[a,b:]) —T($; [a,a:])} < € < 2

provided that = |b;—a;| < 8.

If, conversely, T(¢; [a,t]) is AC on [a,b], this means that there is a
positive 8* such that the left member of (9.14) is below € if 2 | b;—a; | <
8%. The left member of (9.14) dominates the left member of (9.13);
hence (9.13) holds and the proof is complete.

A vector-valued function x is said to have a given property—for
example, absolute continuity, bounded variation, etc.—if each com-
ponent of x has the stated property.

Theorem 9.6

Given a rectifiable Fréchet curve C in E,, a representation x: [a,b] — R™ of
C and the function s defined by (9.8), then s is AC on [a,b] if and only if x is
ACon [a,b].

PROOF
Let 7 be a partition of the subinterval [a,t] of [a,b]; let x’ be any
component of x and consider the inequalities

(9.15) 3 |x9(t) =2 (ti-)| < T lx () —x(ti-n)| < 33 |6 (8) — o (8:-1) .
i i i i

If the norm, ||#] = min|t;—¢_,|, tends to zero, the respective members

of (9.15) have limits satisfying the relations

T (x%;[a,t]) < s(t) < 2 T (x%;[a,t]).

J
By the same procedure applied to an arbitrary subinterval [a;b;] of
[a7b]’

(9.17) T(x%;[anbi]) < s(b) —s(as) < T T(x%[aybi])-
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The first inequality (9.17) with Theorem 9.5 and the fact that
(9.18) T(x%[as,b:]) = T(x% [a,5:]) — T(x%; [a,a:])

shows that, if s is AC on [a,b], then so also is x%, j =1, .. ., n, and hence x
is ACon [a,b].

If, conversely, x is AC on [a,b], this means that each component x’ is
AC; whence, by Theorem 9.5, the total variation of each x? is AC on
[a,b]. It follows from the second inequality (9.17) with the aid of (9.18)
that s is necessarily AC on [a,b].

Theorem 9.7 (Fundamental Theorem on the Lebesgue Length-Integral)
Ifx:[a,b] = R™represents a Fréchet curve C of finite length, then

() I(1zl;[a.t]) < L(Cr), VYt € [ab]
and
(i) equality holds in (i) iff x is AC on [a,b].

PROOF

Since s is monotone, its derivative § is integrable over [g,t] by Theorem
8.35 and problem 5, Exercise 8.4; hence, by Theorems 9.4 and 8.35,
|%| is integrable and

(9.19) I1($;[at]) = I(|%|;[a,t]) < s(t) —s(a) = L(Cz,).

To establish conclusion (ii) suppose first that x is AC. Then s is AC by
Theorem 9.6 and equality holds in (9.19) by the Fundamental Theorem
8.38 of the Integral Calculus. Given conversely that such equality holds
for all ¢t € [a,b], then s(¢) = I(5;[a,t]) and sis AC on [a,5] by Theorem
8.38. Then Theorem 9.6 ensures that x is AC on [a,b].

In contrast with the Weierstrass integral, the Lebesgue length-
integral usually does not give the length of the curve unless we provide
an AC representation. Every rectifiable curve C has such representa-
tions, of which the special representations in terms of length and
reduced length are two. We mention the representation in terms of
so-called u-length of Marston Morse (38d) together with the v-length
(50b, Sec. 2) of Edward Silverman. It is not known, insofar as the author
is aware, for which rectifiable curves C these representations are AC.
Without such information one must avoid using these representations
in Lebesgue integrals.

Exercise 9.2

1. Given x:[0,1] = R? with x’= w, the Cantor-Lebesgue function,
j=1,2 (see problem 5, Exercise 8.6), discover a simple AC function
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y that is Fréchet-equivalent to x. Given F(x,%3J) =xyt+3y) in
traditional notation, calculate the Lebesgue integral, [ F, for each
of the representations mentioned above.

2. Show with the aid of Theorem 9.3 and ideas from the proof of
Theorem 6.2 that if x: [a,b] = R” and y: [c,d] = R" are AC repre-
sentations of the same curve C and F is a continuous parametric inte-
grand, then the Lebesgue integrals I(F(x,%);[a,b]) and I(F(y,y);[c,d])
are equal.

3. Prove as a corollary to Theorem 9.4 that the ratio |x(¢+h) —x(¢)|/
[s(t+h) —s(£)] of the length of a chord to that of the corresponding
subcurve has the limit unity as # — 0 for almost all z.

4. Let x:[0,1] > R be the function consisting of the origin (0,0)
and all points [tx(¢)] on a sequence of semi-circles having as
diameters the intervals [})*3)" ], n=12,.... Investigate the
behavior of | x(h) —x(0) | /[s(k) —s(0)] as £ — 0.

9.4 CONVERGENCE IN THE MEAN AND
IN LENGTH

A sequence x,: [a,b] = R*, v=1,2,. .., is said to converge in the mean-p
toxo: [a,b] = R"if

b
fa |, —%o|” dt—> 0 as v — .

We are concerned at present only with the case p = 1.

A sequence C,, v=1,2,..., of Fréchet curves is said to converge in
length to a curve C, if both the Fréchet distance d(C,,C,) and the differ-
ence L(C,) — L(C,) converge to zero. If we define

(9.20) U(C1,Ce) = d(Cy,C3) +|L(C)) —L(Co) |,

it is easy to verify that ! has properties (1.29) required of a distance,
hence that convergence in length is equivalent to convergence in the
metric I. See Ayer and Radd (2a,b) and McShane (33f) for further
information and references.

Let £: [0,1] = R™ be the reduced-length representation introduced in
Theorem 7.8.

Theorem 9.8

Guven a sequence C,, v= 1,2, ..., of Fréchet curves and a Fréchet curve
Co, all of finite length and such that d(C,,C,) = 0 as v = =, then C, con-
verges in length to Cy if and only if the sequence § » converges in the mean to f o
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PROOF

The reduced-length representation ¢, of C, is AC on [0,1] as a
consequence of Theorems 7.9 and 8.25; therefore, by Theorem 9.7,
L(C,) =I(|£,;[0,1]), v=0,1,2,.... It follows with the aid of ele-
mentary inequalities that

IL(C) —LCl < [, 1l — ol de < [ o=l

and hence that convergence of the third member to zero implies con-
vergence in length.

To prove the converse, that convergence of the first member to zero
implies similar convergence of the third, requires a longer and more
delicate argument. Proofs are to be found in McShane (33f, pp. 51-54)
Rado (XXXIV, p. 247), and Tonelli (XXXV, Vol. 1, p. 186). It can be
done with the aid of Theorems 9.17 and 9.19.

9.5 INTEGRABILITY OF PARAMETRIC AND
NONPARAMETRIC INTEGRANDS;

WEIERSTRASS INTEGRALS

Let C be a continuous Fréchet curve of positive finite length and let
X:[0,L(C)] — R™ be its representation in terms of length discussed in
Section 7.6. If F: AXB — R is a parametric integrand that is lower
semi- continuous on its domain and bounded when 1 is bounded, then,
since |X(s)| =1 a.e., the composite function F(X, X) is bounded on a
subset of [0,L(C)] of measure L(C). The function F(X, X ) is measur-
able as a consequence of Theorems 9.2 and 8.10 and hence is Lebesgue
integrable over [0,L(C)] by Theorem 8.14 and problem 5, Exercise 8.3.

It then follows from the homogeneity of F and Theorems 9.3 and
9.6 with s in the latter playing the role of 4 in the former that, if x: [a,b] —
R™ is any other AC representation of C, then F(x,x) is integrable over
[a,8], although not in general bounded, and that the Lebesgue integrals
JF(X,X)ds and [ F(x,%) dt over their respective intervals are equal.
This generalizes Theorem 6.2.

Given a piecewise linear representation x: [a,b] —> R™ satisfying
conditions (7.32) and that F is continuous in (x,r) and homogeneous in
7, one can verify directly from the definitions or by Theorem 7.13 that
the integrals

b
J; F(x,%) dt (Riemann) and W (x;F;[a,b]) (Weierstrass)

both exist and are equal.
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If x is merely AC on [a,b], F(x,X) may not be Riemann integrable,
but, as remarked above, this function is Lebesgue integrable. Let

x,:[a,b] > R, v=1,2,...

be a sequence of piecewise linear functions converging in length to
x. The graph of x, can in particular be a suitable polygonal line in-
scribed in the graph of x. A theorem of Aronszajn [see Pauc (43a, p. 51)
or Ewing (12c, p. 684)] ensures that

(9.21) W (x,;F;[a,b]) = W (x;F;[a,b]) asv —> o,

A similar result can be obtained for Lebesgue integrals. It is proved in
(38g, pp. 348-349) under the additional hypothesis that F (x,r) be convex
in 7, but this hypothesis can be eliminated by a device of Tonelli used in
(12¢, p. 684). We conclude from these results that if x: [a,b] — R™is AC,
then the integrals

(9.22) L bF (x,x) dt (Lebesgue) and ¥ (x;F;[a,b]) (Weierstrass)

are equal. Whenever F(x,x) happens to be Riemann integrable, we see
from Theorem 8.15 that the first of these integrals also can be under-
stood in the sense of Riemann’s definition.

Statement (9.21) remains meaningful and valid if x is merely BV and
the cited proofs are for this case. The Lebesgue integral is a bit snobbish.
Unless we provide it with an AC function x it usually gives us an ir-
relevant value, as illustrated by the case of the length integral in Theorem
9.7. This fact is, however, seldom a handicap. We are generally able to
choose AC representations, either that in terms of length s or another
obtainable from this one by substituting s= h(t), where k is an AC
sense—preserving homeomorphism.

If C is restricted further to have at least one representatlon (x,9):
[a,6] = R™* such that x is strictly increasing, the various integrals,
whichever of them may apply, are now nonparametric in the sense
discussed in Section 6.13.

We have commented in Section 7.12 on the difficulty of including
unbounded integrands under the theory of the Weierstrass integral.
With F as the nonnegative function defined by (7.61), let F, denote its
truncation at the level v; that is,

F(x,3.0,9)  ifF(xy,p,9) <v
F,(x.y.p,q9) =
v ifF(xy,0,9) >v.



258 CALCULUS OF VARIATIONS WITH APPLICATIONS

Since F, is nondecreaseing in v, we have, by the Monotone Convergence
Theorem 8.16, that

b
[} F) de=1im [ F(x,8) dt.

If the nonparametric integrand f and its associated parametric integrand
F were not required to be nonnegative, we could write fas f*— f~, apply
the limit on » to the corresponding F* and F~ separately, and then
combine the results provided at least one is finite. Granted the Lebesgue
integral, these and other moves encountered in transferring back and
forth between a nonparametric functional and the corresponding
curve-function J become routine in contrast with analogous or substitute
moves restricted to the spirit of Chapter 7.

Frequently one wishes to work directly with a nonparametric formula-
tion. We have remarked following Theorem 9.2 that if f is semi-
continuous and y: [a,b] = R™ is BV, then the composite integrand
f(x,5,5) is measurable on [a,b]. Under various further restrictions
(f > 0, f bounded, etc.), f(x,y,5) is integrable over [a,b], but again the
integral has a generally irrelevant value unless we restrict y to be AC.

Exercise 9.3

1. Given the sequence of curves C, in problem 5, Exercise 7.3, point
out that this sequence does not converge in length to the curve
Co. Let £,: [0,1] = R? be the reduced-length representation of
C, v=0,1, 2,. Establish directly from examination of the
integral, fo |§,, §o| dt that this integral does not converge to zero.

2. Given that J(C,) = J:, F (f.,,f,.) dt, where £, is again the reduced-

length representation of C,,v=0,1,2,... consider the relation

HEC)=I(C) = [ Pk ~FEok) 1 di + [ [F(Goks) — F(Enks) dt.

Idenufy hypotheses on F under which the last integrand is dominated
in absolute value by an express:on of the form klf,, £, and, granted
this, prove that, if C, converges in length to Cy, than J(C,) — J(C,).

3. Given the nonparametric problem treated in our Chapters 2 and 3,
suppose that it has been shown that J(y,) <J(y) for all PWS
functions y with the given end values. Let z be an AC function with
these end values, let {,: v € N} be a sequence of piecewise linear
functions converging in length to z, and interpret all integrals as
Lebesgue. What conclusion is obtainable on the minimizing character
Ofyo?

4. If W(C;F) in the statement of Theorem 7.16 is replaced by the
corresponding Lebesgue integral, explain why the resulting state-
ment is or is not valid, whichever is correct.
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5. There is an extension [Reid (45e, p. 165)] of the du Bois Reymond
Lemma which says that if m: [#,5,] = R is a fixed measurable
function on [f,%] and if the integral [ mq)dt taken over [f,¢]
vanishes for every n: [#,t,] — R that is lipschitzian on [#,t] and
vanishes at the endpoints, then m(¢) is constant on [f,#] except
possibly for a subset Z of measure zero of that interval, at points of
which m(¢) remains undefined. With the proof of Theorem 2.2 as
a guide and with the aid of Theorem 1.6, prove that, if y, minimizes
J(y) on the class % of all AC functions y with fixed end values and
if the integrand f has suitable properties, then equation (2.18) holds
a.e.on [to,,].

6. Given the integrand f(t,y,r) = r? for a nonparametric problem in
the plane and the Euler necessary condition stated with the preced-
ing problem, point out why the derivative j,(¢) of a function satisfy-
ing this condition is necessarily continuous a.e. on [#,t]. Extend
this conclusion to a class of integrands f.

9.6 NORMED LINEAR SPACES

Although euclidean spaces E, (defined in Section 1.10) play a major role
in pure mathematical analysis and its applications, various other spaces
are also important. We have made use of several metric spaces in this
chapter and elsewhere. We turn now to a brief treatment of general
normed linear spaces and then to special cases that appear frequently
in modern variational theory.

In this section real numbers are denoted by lowercase Greek letters
except that we use 0 and 1 with the customary meanings. Addition and
multiplication of reals are respectively denoted by the symbol © and by
juxtaposition.

Consider a nonempty set S with abstract elements denoted by Roman
letters x, y,z, etc., except for a “zero element” §. We suppose given a
binary operation, alternatively stated a function +: $§X§ — S, called
addition, together with a function from R XS to S, called multiplication
by a scalar, that is, by a real number, a value of which is denoted by
juxtaposition.

The set S with the structure implied by the following postulates is
called a real linear space or a real vector space.

i) x+y=y+x.
() x+(y+z)=(x+y)+z
(i) I auniqued € S suchthat8+x=x,Yx € §.
(iv) Corresponding to eachx € S, auniquex € S such that x+% = 0.
V) Ix=x, VUx € Sand0x =0,Vx ES.
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i) a(Bx)=(eB)x, Yo, ER, Vx ES.
(vii) a(x+y) =ax+ay, Ya ER, Vxy € S.
i) (¢ ®B)x=oax+px, Yo, €ER, Vx ES.

One defines —x = (—1)x and proves that —x = X. It can be proved
from (iii) and certain of the other postulates that x+6 = x.

A familiar example of a real linear space is the set § = R" of elements
x=(x1,...,x") with x+y= (x149,..,x*+y*), 6= (00,...,0),
= (—x..,—x")and ax = (ax!,..., ax®).

A function ||*||: S = R subject to the additional postulates that follow is
called a norm.

(ix) 0= x| < o, Vx € S.

x) |l«ll = 0iffx = 6.

xi) |lax]|=le|lxl, Ve € R, Vx € S.
(xii) ety < Ikl +Ibll, Yxy € S.

We have already used the euclidean norm (1.30) with the linear space
R™ to constitute the particular normed linear space E,, the euclidean
n-space.

As a consequence of (xii),

9.29) [l =] = the—+51l

in which'|-| denotes ordinary absolute value of a real number. This is
the norm of E,.
To prove (9.23) use the inequalities

flell = e+ ) =3l < fle+ 5l + bl
and

loll = Il G+ ) — il < lbe + 51|+ x|

Every normed linear space is a metric space in the sense that if we
define

(9.24) d(x,y) = [x—)l,

then (S,d) is a metric space. A metric space is not in general either
normed or linear.

Let {x,: n € N} be a sequence in a normed linear space. The defini-
tions of a limit x, of a sequence and of a Cauchy sequence in terms of
the norm are, respectively, as follows.

(9.25) Ve > 0,3AN such thatn > N, > ||x,— x| < ¢,
(9.26) Ve > 0,3N,such that m,n > N> [[xn—x,]| < e
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A normed linear space is said to be norm-complete or simply complete
if every Cauchy sequence (9.26) has a limit x, € S. A complete normed
linear space is called a Banach space.

A function -: § XS — R subject to the following postulates is called an
inner product or a scalar product.

(xiii) 0<xx<ow, Vx € S.
(xiv) xx=0iffx=0.
(xv) xy=9yx, Vx,y €S.
(xvi) x(y+z) =xy+xz, Vxyz € S.
(xvil) (ax)y=a(xy), Ya ER, VYxy € S.

In the event that § is a real linear space with an inner product, we
can define || = (x-x)¥? and verify that this norm has properties (ix)
through (xii).

Theorem 9.9 (Cauchy-Buniakovski-Schwarz)

If x and y are elements of a real normed linear space with an inner product,
then

(9.27) -yl < [l floll
PROOF
If x =6 or y =0, clearly (9.27) holds with the equality. Suppose next
that neither x nor yis 6 . Then
0 < (ax—pBy) (ax—By) = a?-x—2afxy+ B¥-y.
Take 8 = ||d| and o = |p||. It follows that

0 < 2llxl*|p[F — 2lx[l [lylla-y = 2llell 1yl Cllell Nyl —2x-3)

and hence that x-y < [px||b]l. With —x in place of x we find similarly that
—x'y < ||| lyll. These last two inequalities are equivalent to (9.27). We
shall refer to (9.27) as the CBS inequality.

9.7 THE L,-SPACES

Return for a moment to the setting of Chapter 8. Suppose given a
universe X, a measure u, and a measurable subset E of X. Let p be a
positive real number and denote by S,(E), simply S,, the set of all
functions x: E = R* each of which is measurable on E and such that
|x|?is integrable over E.
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Define a function |||,: S, — R called a pseudo-norm or seminorm;

(9.28) el = ([ 1x12) .

Theorem 9.10 (Holder-Schwarz)
Givenx € S,(E) andy € S,(E), where
1 1
p>1,q9> l,and—+3= 1,

p
then

() xyisintegrable over E and (i) fz [xy] < [lc|lolllq-

PROOF OF (i)

Givent € E such that |y(¢)| < |x(¢)|*7, then
(9:29) 0 < |x(t)y(®)] < |x()7,
while if |y(£)| > |x(£)|?~%, then |x(t)| < |y(¢) [Y®~V = |y(¢)|?-%, whence
(9.30) 0 < lx()y®)] < ly@®)|«

Since x € S, and y € §,, x and y are understood to be measurable
onkE. Set

E;={t € E:|y(t)] < |x(t)|]*7}.

The set E, is then measurable by Theorem 8.11(v), Theorem 8.12(vi),
and the proof used for Theorem 8.11(iii). Since xy is measurable on E,
hence on E; by Theorem 8.10, and |xy| is dominated on E; by an

integrable function in (9.29), it follows by problem 7, Exercise 8.4, that
xy is integrable over E,. Similarly, xy is integrable over

E,={t € E: |x(t)| < |y(t)|*}.

By problem 8, Exercise 8.4, xy is integrable over E.
PROOF OF (i)

If x(£)y(¢) = 0 a.e. on E, the left member of conclusion (ii) is 0 and the
inequality holds. Consider the contrary case in which [x(¢)y(t)| > 0 on
a subset of E of positive measure. Then E has positive measure as do
the subsets of E on which |x(f)| > 0 and on which |y(t)| > 0. One
verifies easily that

(9.31)
ifa>0,b>0,a>0,8>0,anda+B =1, then a®b® < aa+pb
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and that the last inequality is equivalent to the relation
(9.32) alna+BInbd < In (aa+ B5).

Since a+ B =1, this is clearly true if a =b. If a < b and we grant that
the logarithmic function is concave (that the function —In is convex),
then we have (9.32). This inequality under the stated restrictions (9.31)
is simply a statement of the definition of concavity.

Next set

a=1p, B=1lg a=Ix7/[|xl, b=le/[ bl

From (9.31),
x| O

(L P ) [l o sl q [ ole

After integrating each side over E, we have conclusion (ii).

Look ahead to definition (9.33). Since | f xy] < [ |xy|, we see that
conclusion (ii) of Theorem 9.10 is a sharper inequality for S;(E) than
the CBS inequality (9.27).

Theorem 9.11 (Minkowski)
Givenx,y € S,(E) withp = 1, then

(1) x+y € S,(E)
and
(i) le+yllo < llxlo+ 50l
PROOF

If p =1, both conclusions are obtained with the aid of problems 6(i)
and 7, Exercise 8.4, and the triangle property |x+y| < |x|+|y|. If
x+y=0a.e., then (i) and (ii) are clearly true.

Consider the case in which p > 1 and |x+y| > 0 on a set of positive
measure. Define g by the equation 1/p+1/g =1 and observe that then
(p—1)q = p, hence that

|x+y]|P~1 € S (E).
We see that

+y|p= 1< -1 +y|P1,
[lx+917= [letsllety=s < [lxlle+yl>+ [ Iyllx+s]
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Apply the Holder-Schwarz inequality to each integral on the right and
then divide through by the positive quantity

(feta1e)™

We see with reference to postulates (ix) through (xii) for a norm that
the pseudo-norm ||x||, has properties (ix) and (xi). It has property (xii)
by Minkowski’s inequality but fails to have property (x) because ||x||, = 0
if x(t) = 0 a.e. This suggests that we define x,y € S,(E) to be equivalent
if x=y a.e. and set {x} = {y € S,(E):y(t) =x(t) a.e. in E}, 6={y €
So(E) :y(¢) = 0 a.e. in E}. We can then define a norm for the equivalence
class {x}, namely

HxHl> = Ibll, 3 an arbitrary element of {x},

and verify that this norm has all the properties (ix) through (xi). The
set of all such equivalence classes so normed is a normed linear space
called L,(E).

The notation used in introducing L,(E) is cumbersome. It is the
common practice to use an arbitrary representative x of a class {x} and
to write ||x||, for the norm. This causes no trouble if we simply remember
that sets of measure zero are of no consequence and that any x can be
replaced by any other element y of the class {x}.

Observe from Theorem 9.10(i) for the case p = ¢=2 that, if x and y
are in S, (E), so also is the product xy. In this case we can define

(9.33) xy = L xy

and verify that all postulates (xiii) through (xvii) for an inner product
are satisfied except that x-x =0 does not imply that x(t) = 0 but only
that x(t) =0 almost everywhere. However, if we reinterpret the left
member of (9.33) in accord with the preceding paragraph as an abbrevia-
tion for {x}-{y}, then {x}-{x} =0 if and only if {x} is the 6 defined
above.

Exercise 9.4

1. Point out that each of the following classes of functions with suitable
definitions of +, multiplication by a scalar, the element 6, and the
additive inverse will constitute a real linear space:

(1) the class # of all AC functions y: [a,b] = R™ with the common
domain [a,b],
(i) the class %, of all PWS functionsy € #.

2. Given the class %, of problem 1, show that sup {|y(¢)|:¢ € [a,b]} is

anorm.
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3. Show that sup {|y(?)|: ¢t € [a,b]}+sup {]i.(t)l:t € [a,b]*}, where
[a,b]* denotes the subset of [a,b] on which y(¢) exists, is also a norm
on%,.

9.8 SEPARABILITY OF THE SPACE L,([a])

Any space Y in which limits of sequences have been defined is called
separable if there exists a countable subset X of Y that is dense in Y. This
means that X= {x, € Y:v € N} and that every y € Y is the limit of
some subsequence of the sequentialized subset X. Thus separability
abstracts a familiar property of the real numbers R. The set of rational
reals or any of infinitely many other countable subsets of R will serve as
the set X in the definition. The spaces R", n > 1, are similarly seen to be
separable.

There is a classic approximation theorem of Weierstrass to the effect
that every function y: [a,b] = R that is continuous on [a,b] can be
uniformly approximated by a polynomial, that is, given y and € > 0,
there exists a polynomial p, of possibly high degree when € is small,
such that

[p(t) —y(2)| < €/2, V¢ € [a,b].

Each of the real coefficients of p can be approximated as closely as
desired by a rational real; consequently, there is a polynomial ¢ with
rational coefficients such that

lg(®) —p(t)| < €2, vVt € [a,b].

The class of all such polynomials g is countable. It follows from these
inequalities that

(9.34) [q(t) —y(t)| <e, Vt € [a,b].

The space L,([a,b]) mentioned in the section heading is understood
in the remainder of this chapter to be based on ordinary linear Lebesgue
measure. Interval [a,b] is fixed, and we shall usually suppress the symbol
for it and write simply L,. Functions x, x,, etc., are from [a,b] to R*.

Theorem 9.12

Given x € L,, there exists a sequence {x,:v € N} of functions that are
bounded and measurable on [a,b] such that |x, —x|| , = 0 with 1/v.
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PROOF
Take x,: [a,b] = R to be the two-sided truncation of x, namely,
v if x(t) >,
(9.85) x,(t) =1 x(¢) iof |x@)| <v,
—-v if x(t) <—w.

Clearly x, is bounded and x,(¢) = x(¢). To see that x, is measurable,
observe that x being in L, is measurable by the definition of L, and that
x, = sup [inf (x,v),—»] = inf [sup (x,—v),»]; consequently from either
of these expressions and Theorem 8.12(i) and (ii), x, is measurable.
Now
|, —x| < [x,|+ x| < 2]x],

whence
(9.36) |x,—x|? < 2°|x|".

It then follows from the integrability of |x|? and the Dominated Con-
vergence Theorem 8.18 that ||x, — x| , = 0 as stated.

The next two approximation theorems are not only useful to the
development of this section but in other places.

Theorem 9.13 (Egoroff)

If E is a Lebesgue measurable subset of the reals with uw(E) <  and {¢,:
v € N} is a sequence of measurable functions ¢,: E —> R* converging a.e.
on E to a limit ¢, then given € > 0, there exists a measurable subset E, of E
with w(E—E.) < € such that ¢, converges uniformly to o on E..

PROOF

Given the positive integers £ and v, define
Ey, = in {t € E: |$:(t) —do(t)| < 1/k}.

By the measurability of ¢; and theorems in Chapter 8, the set Ej, is
measurable. Define

L={t € E:limo¢,(t) = do(t)}.
Then, for each fixed k,
l,L=J1E,,,, DL

With £ fixed, the set Ej, expands with v, from which, with the preceding
inclusion and (8.2;),

lim (Ex) = w(J Ew) = u(L) = w(E).
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It follows that w(E — E,,) — 0, hence that there is an integer K depend-
ing on k such that
R(E—E;,) < €27k if v=K.
Set
Ee = le Ek](.

E.is measurable by Theorem 8.9 and, since E— N Ey = U (E—Eyy),

I'L(E—Ee) = p'[kL__Jl (E—Ek’()] = ]gl }L(E—Ek}() < szl 2 k=g,

It remains to show that ¢, = ¢, uniformly on E..
By the definition of Ey,,

[i(t) —do(2)| < 1/k, Vit € ExxandV¥i= K,

hence, by the definition of E,, for all ¢ € E.. This is the desired con-
clusion.

Theorem 9.14 (Lusin)

IfE C R with u(E) < » and ¢: E = R* is finite a.e. on E and measur-
able on E, then givene > 0, there exists a closed subset F such thatp (E—F.) <
€ and the restriction of ¢ to Fis continuous on F..

PROOF

Suppose initially that ¢ is a simple function as defined following (8.32),
hence that

o= 21 CiXE; >

where x is the characteristic function defined in problem 3, Exercise
8.5.

Given € > 0 and the positive integer i, it follows from definitions
(8.1) and (8.3) of Lebesgue outer measure pu* and measure u and from
the fact that E; as a measurable subset of E is of finite measure that
there exists a closed subset F; of E; such that

r(E;—F;) <e€/(n+1), i=1,...,n

For the same reasons there exists a closed subset F,,, of E— UE; such
that

w[(E= 0 E)—Fan] < el(n+1).
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Define

n+l1
F.= UF;

i=1
and verify that w(E—F,) < e. Since ¢(¢) is constant on each of the sets
F;, the restriction of ¢ to Fis clearly continuous on F..

Consider next the case in which ¢ is a general nonnegative measur-
able function on E. Let {s,:n € N} be a sequence of nonnegative
simple functions tending monotonely from below to ¢ as in relation
(8.34*). We know by the preceding case that, for each positive integer
n, there is a closed subset F,, of E with

w(E—F,) < ¢/2"*!
and such that the restriction of s, to F,, is continuous on F,. Now define

F= FiF,,.
Then F is closed and
R(E—F)=p[U (E—Fy)] < Jp(E—F,) < Y /2™ =¢/2.

By Egoroff’s Theorem with the present F in the role of E in that
theorem, there is a measurable subset E.4 of F such that u(F—E,) <
€/4 and hence pn(E—Egys) < 3€/4 such that s, converges uniformly on
Eq4 to ¢. The restriction of s, to Eg,, a set not dependent on n, is con-
tinuous on that set; hence, by the uniform convergence of s, to ¢ on
E,, the restriction of ¢ to that set is continuous on that set.

Finally, there exists a closed subset F, of Eg, such that w(E ,—F,) <
€/4 and hence such that u(E—F,) < e. Clearly the restriction of ¢ to
F,is continuous on F,.

In the general case we can express ¢ in the form ¢*— ¢~ and apply the
preceding case to each of the nonnegative functions ¢* and ¢~.

We now return to functions whose domains are the interval [a,b].

Theorem 9.15

If ¢: [a,b] = R is bounded and measurable on [a,b], there exists a sequence
{¢.:v € N} of functions d,: [a,b] — R, each continuous on [a,b] such that

(i) ¢,(t) > ¢(t) ae.on[a,b],
(ii) sup|e,(¢)| < sup|p(t)| on[a,b],
(i) fl¢p—dllo— 0 withlfp.

PROOF

By Theorem 9.14, with the E of that theorem as the interval [a,b],
there exists a closed subset F, such that wu([a,b] —F,) < 1/2” and the
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restriction of ¢ to F, is continuous on F,. This means thatif {¢;: 1 € N}is
any sequence in F, having a limit ¢, necessarily in the closed set F,, then
&(t;) = ¢(t,). Define ¢, as follows:

'd)(t) if t=aorb,
$(t) if tEF,

(937) 6.0 =10(a) + 5= (6B~ d@] i LE @)

any interval of the decomposition of the
open set (a,b) — F, given by Theorem 8.5.

\

Because of the simple form of ¢, on the intervals (,g) it requires only
a careful but routine check to verify that ¢,(7) — ¢,(t) as 7 — ¢, hence
that ¢, is continuous as required in the theorem. Property (ii) of ¢, is
immediate from definition (9.37). It remains to prove (i) and (iii).
Define
H, = {t € [a,b]: $,(t) # &(1) }.

It is clear from the second statement on the right in (9.37) and our
choice of the set F, that u(H,) < (3)”, therefore, using the subadditivity
(8.24) of a measure that

(9.38) w(UH) < S uH,) <2-m
v=m v=m
Define
(9.39) H= N U H,
m=1 v=m

If ¢t € [a,b] —H, there exists an integer M depending on ¢ such that
t &€ UgH,, which by the definition of H, implies that

S()=d(1)  ifv=M.

The proof of conclusion (i) will be complete if u(H) = 0. To show this
verify, from (9.38), (9.39), and the monotonicity (8.2;) of a measure, that
the inequality w(H) < 2'™™ must hold for every positive integer m.

To prove the convergence property (iii), let K denote a bound for
|#(£)| on [a,b]. As a consequence of conclusion (ii),

hence
|$— |7 < 2°K?,

and the desired conclusion follows from the Dominated Convergence
Theorem.
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The next and final theorem of the section merely gathers together
the conclusions provided by the Weierstrass Approximation Theorem,
Theorem 9.12, and Theorem 9.15. The reader is asked to supply the
details with appropriate use of €/3.

Theorem 9.16

If x € L, and € > 0, there exists a polynomial q with rational coefficients
such that ||g— x|, < €. Alternatively stated, L,([a,b]) is separable and the
countable set of polynomicals q on [a,b] serves as one set X of the type described
at the beginning of this section.

It is a further routine step to observe that a polynomial ¢ can be
uniformly approximated on an interval by means of step-functions with
suitably short steps having only rational values and having discontinuities
at rational values. The totality of such step-functions is another count-
able set X that is dense in L,.

9.9 LINEAR FUNCTIONALS AND WEAK
CONVERGENCE

Given a real linear space X, a function f: X = R is called a linear func-
tional if

(9.40) f(ax+By) =af(x)+Bf(y), VYxy € XandVa,B € R.

In the present book we are primarily interested in the case where X is
aspace L,([a,b]).

A sequence {y, € L,: v € N} is said to converge weakly to y, € L, and
we shall write y, = yo (wky) if

©41) [ (3=50) ¢ = Owith 1y, ¥ € Ly, 1/p+1jg=1.

Since the integral is required to converge to 0 with ¢ chosen arbitrarily
in L,, this must occur in particular if ¢ is the characteristic function of
any measurable subset E of [a,b], ¢(t) =1 or 0 according as ¢ is or is
not anelementof E. Thus if y, = y, (wky), then [, (3,—3%) —> O0asy —> =
for every choice of E and, although y,(¢) may differ widely from y,(¢) on
sets of measure zero, it appears that as v increases y,(t) —y,(f) must
become close to zero on sets E of positive measure.

One’s initial reaction to definition (9.41) may be to doubt the appropri-
ateness of the term weak. However, weak convergence is always implied
by convergence (9.25) in terms of the norm but not conversely, and
convergence (9.25) is now called strong convergence. That strong con-
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vergence implies weak convergence follows from the Hélder inequality,

[ 5v=30)8| < =0l -

To deny the converse consider the example with p = ¢=2 and y,(t) =
sinvt, v=1,.... Clearly y, € L,([0,7]). Let ¢ be an arbitrary but fixed
function in L,([0,7]). The sequence of Fourier coefficients

=@m [} sinmé@), v=142,..,

is known to coverage to 0 as » —> . It follows that y, = 6 (wky) where 6
is the identically zero function. However,

ly,—6l>= f :sin2 vt = 7[2,

and hence y, does not converge strongly to 6.
The gap between strong and weak convergence is partially filled by
such theorems as the following.

Theorem 9.17. (F. Riesz)

If a sequence {y, € L,(E):v € N} converges weakly to y, € L,(E) and
if vl converges to ||yol|, then v, converges strongly to y,.

PROOF

Consider the identity for real numbers,
a?2=b*>+2b(a—b) + (a—b)2

If the last term is replaced by ¢(a—b4)%, 0 < ¢ < 1, then=s replaced in
the identity by >. Substitute y, and y, for a and b, respectively, and
integrate over E to obtain the inequality

[32=[5?> 2 [ 0(3.=0) +¢ [ (3.—30)*

Under the stated hypotheses, the left member and the first term on the
right both converge to zero. Since ¢ > 0, it follows that ||y, — || = 0.

Theorem 9.18 (Banach-Saks)

If a sequence {y, € L,(E):v € N} converges weakly to y, € L,(E), there
exists a subsequence {z,} of {y,} such that the sequence {(1/k) 2 2,k € N}
of arithmetic means converges strongly to y,.
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PROOF

That y, = y, (wky) is equivalent to the condition that (y,—7y,) —> 6

(wky); hence we can take the given limit y, to be 6 with no real loss in
generality.

The desired subsequence can be constructed as follows. Take z, = y,.
Let z; be a new label for the first y, beyond y, in the natural order y,,y,, . . .
such that the inner product z;-y, < 1. That there is such a y, follows
from the fact that z;'y, = [ 3,5, = 0 with 1/». Proceeding inductively,
suppose that z, ..., 2, are terms appearing in that order in the given
sequence {y,} with the property that

2z, < l(m—1),.. ,2pr2m < l(m—1), m=2,...,n

Then select as 2,4, the first term y, in the given sequence beyond the one
that has been denoted by z, and which satisfies the inequalities

2921 < 1n, . zpz0 < 1/n.

We need the following lemma, a proof of which is given after the
remaining steps in the proof of the theorem.

(@) Thereexists M € Rsuchthat|y,| <M, v=12,....
One verifies using the expansion of (2:: 2,)? that
(k) By 2l < (R (-M2+2(1) +4(1/2) +- - - +2(k—1)/(k—1)]

= (/&) [kM?+2(k—1)],
and the last expression clearly tends to zero with 1/k.

The original Banach-Saks Theorem (Studia Math., Vol. 2 (1930),
pp- 51-57) proves the stated conclusion for a given weakly convergent
sequence in L, (E).

PROOF OF (a)

We shall prove this by showing that there is a real number M such that
(9.42) lyyex| < M|, Vx € Ly,(E) andVYv € N.
The hypothesis is that of Theorem 9.18, namely, that the sequence
{y,} converges weakly toy, € L(E).

We know by the CBS inequality that

|y, x| < [yl [l Vx € L,(E).
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Moreover, with y, fixed, the smallest M for which the inequality of
statement (9.42) holds is ||y,|l. This is clearly so if y,=6. If y, # 6, if
€ > 0,and

lyxl < (lpl—ellxl,  Vx € L, (E),

then this inequality must hold with x =4, and we find that |ly,|> < |ly,|?
—é€lly,)l, in contradiction with the choice of € as positive. It follows that
statement (9.42) implies statement (c).

A subset {x € L,(E):||x—ad| < r} is called a closed ball in L,(E) of
radius r and center a € L,(E). Let B(r,a) denote an arbitrary closed
ball in L,(E). We show next that, if there is no number M for which
(9.42) holds, then the set of real numbers

(9.43) {ly,"x| € R:v € N,x € B(r,a)}

is unbounded. Proceeding contrapositively, suppose that for some real
number K,

|y, x| <K, Vx € B(r,a) andVYv € N.
If x # @butis an otherwise arbitrary element of L,(E), then

(r/lx)x+a € B(r,a).
It follows that

[/l Owx) + (ra)| <K, Vv EN
and by the triangle inequality for absolute values that
(D bys%l = lys-al < K,
whence by elementary algebra that
(9.44) yxl < (1r) [K+ |y, al 1|kl

Under our hypothesis that y, converges weakly, the sequence {|y,-a|}
of real numbers is bounded. Therefore, the coefficient of |jx] in (9.44)
is dominated by a real number M. Although x =  was excluded in the
preceding steps, (9.44) clearly holds for x =6 and hence for all x in
L,(E).

The proof of (@) is completed by supposing that there is no number
M for which (9.42) holds and obtaining a contradiction. Under this
hypothesis every set (9.43) is unbounded.

Let B(7o,xo) be an arbitrary closed ball of positive radius. There then
exists v; € N and x, € B(7,,%,) such that |y,,-x;| > 1. It follows from the
CBS inequality that, if [x—x,| is sufficiently small, then [y, x| > 1.
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Let r, be a positive real number with r; < 1 and also so small that
vax'xl > 19 Vx e B(rbxl)~

The reader may find it suggestive to use a sketch in which circular discs
stand for the two balls already introduced and for others with appro-
priate radii that follow.

Apply the same procedure to the ball B(r,x,), starting with the
subsequence {y,: v > v,} of {y,}. There exists ¥, > v; and x, € B(r,%,)
such that |y,,"x;| > 2; consequently, by the continuity of the left member
in terms of the L,-norm, there is a ball B(7,,x;) such that

[90e0x| > 2, Vx € B(75,%,).

The positive radius r, is chosen so that this inequality holds, with r, < 4,
and also so small that B(73,x,) C B(ry,x;).

Continuing thus we obtain inductively a sequence of balls {B (ry,xx)}
each contained in its predecessor with 0 < 7, < 1/k together with a sub-
sequence {z} of {y,}, zx = y,,, such that

(9.45) |zgox| > k, Vx € B(7i,xx).
Since B (7x+msXie+m) C B(re,xe), k=1,2, ..., 1t follows that
lcksm — il < 1/E, k=1,2,...andm=1,2,...,

hence that the sequence of centers of the balls is a Cauchy sequence
(9.26) in L,(E). This space is known to be complete; that is, every Cauchy
sequence (9.26) converges to some element of the space. Proofs are given
in many books on real analysis or integration (for example, R. G. Bartle,
The Elements of Integration, Wiley, New York, 1966, pp. 59-60). Therefore,
there exists X € L,(E) such that [jx,—x|| = 0 with 1/k. It follows that

X € 6 B(rk,xk).

Since the given sequence {y,} converges weakly to y,, so also does the
subsequence {z} satisfying (9.45); consequently, zX converges to the
real number yy%X. But X € B(ry,x;.) for every k; hence we contradict
(9.45) and must infer the truth of Lemma ().

9.10 THE WEAK COMPACTNESS THEOREM

We consider next an é.daptatjon to the space L;([a,b]) of the selection
process already used in the sequential compactness theorems of Sections
7.7, 7.8, and 7.9. Be reminded that, under the definition adopted in



SEC. 9.10 VARIATIONAL THEORY IN TERMS OF LEBESGUE INTEGRALS 275

Section 7.1, to say that aset K is sequentially compact means that every
sequence in K has a subsequence converging to an element of K. Some
writers would say that such a set K is sequentially compact in itself.

The result we need is to be found in books on functional analysis,
but to extract a complete proof one may have to refer to a succession of
earlier results, including concepts related to but not essential to the
present objectives. The author is indebted to M. Q, Jacobs for extracting
and organizing the proof of the next theorem. The same conclusion for
a general L,, p > 1, was proved by F. Riesz in Math. Annalen, vol. 69
(1910), pp. 466-468, but we shall only use the case p = 2.

The subscript 2 on the symbol for the norm in L, will be omitted. The
proof is slightly simplified by taking [a,b] = [0,1] and hence under-
standing that L, means L,([0,1]). There is really no loss in generality,
since we can go from [0,1] to [a,b] by a linear transformation and this
could be done at appropriate places in the proof. Any integral that
appears without statement of the range of integration is to be under-
stood as an integral over [0,1].

Theorem 9.19

Given N > 0, a closed ball B of radius \ in L, is sequentially compact in
terms of weak convergence. Alternatively stated, given a sequence {y, € B:

v € N}, there exists a subsequence {z,: v € N} of that sequence together with
2o € B such that

(9.46) im [ 2= [ 20, Vo € L,.

PROOF

As a consequence of Theorem 9.16 there exists a sequence {r,} in L,
that is dense in L,. By the CBS inequality,

TR VA AR

The left member is the general term in a sequence of real numbers in
the compact interval [0,A]lr||]; hence there is a convergent subsequence

(9'47) fylvrl’ v= 1’2’----

With 7, in place of 7, in (9.47), we have a sequence that may not con-
verge, but again there must exist a convergent subsequence,

fyzﬂ’z, V=1,2,.-..

Moreover, since {y,,} is a subsequence of {y;,}, we can replace r, by r,
and have a sequence with the same limit as that of (9.47).
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Continuing thus we are led to a double sequence with the general term
(9.48) I Ymims v=1,2,..., m=1,2,....

Given ¢ € L, and € > 0, there exists r,, in the sequence dense in L,
such that

(949) "rm—(b” < €/3)\

If y € L,, we have by the CBS inequality that

(9.50) | Syrm— ¥l =| S (ra—o)| < ¥l lrm— ol

Setz, = y,,, the general diagonal term in the double sequence {yn, € L,:
m,v € N}. Since |ly,,]| < A by hypothesis, it follows from (9.49) and (9.50)
with ¢ = z, that

(9.51) | [ 2rm— [ 20| < €/3.

With m fixed and p and v as positive integers, neither below m,
diagonal terms z, and z, are new symbols for terms in the mth row of
our double sequence {yn,}. With m fixed in (9.48), we have a convergent
simple sequence; therefore,

(9.52) l J. Zurm— f z,,rml < €/3 ifu,varesufficiently large.

By the triangle inequality,

Uz,,d)-fz,,d>| < U z,,d)—f z,,rm|+|f znrm—fz,,rm +U z,,rm—fz,,tb

It follows from (9.51) and (9.52) that [ z,¢, v=1, 2,..., is a Cauchy
sequence of real numbers and therefore that the limit on the left in
(9.46) exists. To complete the proof of the theorem we must show that
there exists zo € L, such that (9.46) holds.

Define a functionI:L, = R,

(9.53) 1(¢) =lim [ z,6.

One verifies that I satishes definition (9.40) of a linear functional. It
follows from (9.53), the CBS inequality, and the fact that ||z,|| is bounded
that

(9.59) ifldn— @l = O with 1/n, then |I($,) —1($)| = O.

We need two lemmas, designated by (a) and (8), proofs of which are
deferred to the end of the main proof.
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(a) There exists M > 0 such that |I($)| < M||¢|, V¢ € L,.

Define for each ¢ € [0,1] a function u(¢,-): [0,1] — R,

_ 1 ifr € [0,t),
ult,r) = {0 ifr € [11],

and a function g: [0,1] — R,
¢(t) = ITu(,)] =lim [, 2,u(;) = lim [, 2,.
B) gisACon[0,1].

From (), the Fundamental Theorem 8.38 of the Integral Calculus,
and the fact that g(0) = IT«(0,-)] =0,

9.55 =g(0)+[ &= [ult,)?
(9.55) g0 =g(0) + [ &= [u(t)
The remainder of the proof consists of showing that g will serve as the

zo appearing in the theorem.
To show that g is in L, we first define

(9.56) =3 colulbn,]—ultk—1D/ns1}, n=1,2,....
k=1

With any choice of the real coefficients c,, the function x,: [0,1] — R is
bounded and measurable, hence in L,. Since [ is a linear functional,

I(x,) = z (H{ulkin, 1} — H{ul (k= 1)/n,1}).
By (9.55), (9.56), and the definition of g,
1) = 3 ciof [ ulhin,1g=[ul (k=Din, 18} = [ 2

Now any bounded measurable function x is the almost-everywhere
limit of a sequence (9.56) in view of Theorem 9.15 and the fact that a
continuous function can be approximated by step-functions; hence by
the Dominated Convergence Theorem

(9.57) lim I (x,) = lim [ x,&= [ =
It is easy to verify, for such an x and such a sequence {x,}, that [jx,—x]|
— 0, consequently from (9.54) that I(x,) — I(x), which with (9.57)

implies that

(9.58) I(x) = f xg  ifx is bounded and measurable.
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Next define a sequence {g,:n € N} of functions bounded and
measurable on the subset E of [0,1] consisting of those ¢in [0,1] at