
1

FILE SYSTEMS
Chapter 4

Files 
Directories 
File system implementation 
Example file systems 



Introduction

 Three problems for accessing information
 Must store large amounts of data
 Information stored must survive the termination 

of the process using it
 Multiple processes must be able to access the 

information concurrently

 Solution:
 Make the information independent of any process
 Using magnetic disks or solid-state drives

2



Introduction

 Think of a disk as 
 a linear sequence of fixed-size blocks 
 supporting two operations:

 Read block k
 Write block k

 These are very inconvenient operations
 How do you find information? 
 How do you keep one user from reading another 

user’s data?
 How do you know which blocks are free?

3



Introduction

 File: a new abstraction to solve this problem
 logical units of information created by processes
 a kind of address space

 used to model the disk instead of modeling the RAM

 Processes can read existing files and create new 
ones

 They are Persistent
 should disappear only when its owner explicitly 

removes it

4



Introduction

 File: a new abstraction to solve this problem
 managed by the file system

 part of the operating system dealing with files
 Important aspects from user’s standpoint

 what constitutes a file
 how files are named and protected
 what operations are allowed on files
 and so on

 Important details for designers:
 whether linked lists or bitmaps are used to manage free 

storage 
 how many sectors there are in a logical disk block
 and so on

5



Files

 File naming
 Many operating systems support two-part names

6



Files

 File Structure
 byte sequence
 record sequence
 tree

7



Files
 File Types

 Regular files
 contain user information

 Directories
 system files for maintaining the structure of the file 

system
 Character special files 

 related to input/output 
 used to model serial I/O devices, such as terminals, 

printers, and networks
 Block special files 

 used to model disks

8



Files

 File Types
 We are interested in Regular files

 ASCII files 
 consist of lines of text

 binary files
 they are not ASCII files

9



Files

 File Access
 Sequential access

 read all bytes/records from the beginning
 cannot jump around, could rewind or back up
 convenient when medium was mag tape

 Random access
 bytes/records read in any order
 essential for data base systems
 read can be …

 every read operation gives the position in the file to start 
reading at

 A seek to set the current position; read sequentially from 
the now-current position

10



File Attributes

 Possible file attributes

11



File Operations

 Create
 Delete
 Open
 Close
 Read
 Write

 Append
 Seek
 Get attributes
 Set Attributes
 Rename

12



Directories

 single level directory systems
 Was common on early personal computers
 Advantage: simplicity
 still used on simple embedded devices 

 digital cameras 
 some portable music players

13



Directories 

 hierarchical directory system

14



Directories

 Path Names
 Absolute path names
 Relative path names

15



Directory Operations

 Create
 Delete
 Opendir
 Closedir

 Readdir
 Rename
 Link
 Unlink

16



File System Implementation

 File system layout

17



Implementing Files

 Contiguous allocation
 Two significant Advantages

 Simple to implement
 Excellent read performance

18



Implementing Files
 Contiguous allocation

 Serious drawback
 Disk becomes fragmented

 Was used on magnetic-disk file systems years ago

19



Implementing Files

 Contiguous allocation
 Still used on CD-ROMs
 DVD is a bit more complicated

 File system: UDF (Universal Disk Format)
 30-bit number to represent file length
 limits files to 1 GB
 three or four 1-GB contiguous files

20



Implementing Files

 Linked-List Allocation

21



Implementing Files

 Linked list allocation using a file allocation 
table in RAM (FAT)

22



Implementing Files

 I-node

23



Implementing Directories

 (a) A simple directory
 fixed size entries
 disk addresses and attributes in directory entry

 (b) Directory in which each entry just refers to 
an i-node

24



Implementing Directories

 Handling long file names in directory

25



Implementing Directories

 Searching in directory
 Linear search

 can be slow for extremely long directories

 use a hash table in each directory
 much faster lookup
 more complex administration

26



Shared Files

 File system containing a shared file
 Hard link
 Symbolic link

27



Shared Files

 (a) Situation prior to linking
 (b) After the link is created
 (c)After the original owner removes the file

28



Log-Structured File Systems

 With CPUs faster, memory larger
 disk caches can also be larger
 increasing number of read requests can come 

from cache
 thus, most disk accesses will be writes
 Most writes are done in very small chunks.

 highly inefficient, 
 50-μsec disk write need 10ms seek and 4ms 

rotational delay. 
 Disk efficiency drops to a fraction of 1%

29



Log-Structured File Systems

 LFS Strategy structures entire disk as a log
 have all writes initially buffered in memory
 periodically 

 collect buffered data into a single segment 
 write as a contiguous segment at the end of the log

 At the start of each segment 
 is a segment summary
 telling what can be found in the segment

30



Log-Structured File Systems

 LFS Strategy structures entire disk as a log
 i-nodes still exist and scattered all over the log

 An i-node map is required to find i-nodes
 Entry i in this map points to i-node i on the disk
 The map is kept on disk
 it is also cached in memory

 Opening a file now consists of 
 using the map to locate the i-node for the file. 
 the addresses of the blocks can be found from i-

node

31



Log-Structured File Systems

 LFS Strategy structures entire disk as a log
 Eventually the log will occupy the entire disk

 no new segments can be written to the log
 many existing segments may have un-needed 

blocks 
 For example

 if a file is overwritten
 its i-node will now point to the new blocks
 but the old ones will still be occupying space in 

previously written segments

32



Log-Structured File Systems

 LFS Strategy structures entire disk as a log
 Eventually the log will occupy the entire disk

 a cleaner thread scans the log circularly 
 reads the summary to see which i-nodes and files are 

there. 
 then checks with the current i-node map 
 old i-nodes and file blocks are discarded. 
 The i-nodes and blocks that are still in use go into 

memory to be written out in the next segment. 
 The original segment is then marked as free

33



Virtual File Systems

 To integrate multiple file systems together
 abstract common part of all file systems 
 put that code in a separate layer



Virtual File Systems



Disk Space Management

 Block size
 too large: we waste space
 too small: we waste time

36



Disk Space Management

 Keeping track of free blocks

37



Disk Space Management
 (a) Almost-full block of pointers to free disk 

blocks in RAM
 - three blocks of pointers on disk

 (b) Result of freeing a 3-block file
 (c) Alternative strategy for handling 3 free 

blocks
 - shaded entries are pointers to free disk blocks

38



Disk Space Management

 Quotas for keeping track of each user’s disk 
use

39



File System Backups

 Making a backup 
 takes a long time 
 occupies a large amount of space
 doing it efficiently and conveniently is important

 Issues
 should the entire file system be backed up or only part of it?
 wasteful to back up files that have not changed

 idea of incremental dumps
 Desire to compress
 Difficult to perform a backup on an active file system

 rapid snapshots
 introduces many nontechnical problems into an organization

 Security

40



File System Backups

 Two strategies for dumping a disk
 Physical dump 

 Advantage
 Simplicity and great speed

 issues
 unused blocks
 bad blocks
 paging, hibernation and other internal files

 Disadvantages
 inability to 

 skip selected directories
 make incremental dumps
 restore individual files upon request

41



File System Backups

 Two strategies for dumping a disk
 Logical dump

 starts at specified directories 
 recursively dumps all changed files and directories 
 most common form
 easy to restore a specific file or directory

42



File System Backups

 Logical dump algorithm
 Dumps all directories (even unmodified ones) on 

the path to a modified file or directory
 to make it possible to restore to a fresh file system
 to make it possible to incrementally restore a single 

file

43



File System Backups

 Logical dump algorithm
 Sample file system to be dumped

44



File System Backups

 Logical dump algorithm
 maintains a bitmap indexed by i-node number
 operates in four phases

45



File System Backups

 Logical dump algorithm
 Phases 1

 Marks I-nodes for
 Modified files
 All directories

46



File System Backups

 Logical dump algorithm
 Phases 2

 Recursively walks the tree 
 unmarking any directories that have no modified files 

or directories

47



File System Backups

 Logical dump algorithm
 Phases 3

 Scanning the i-nodes in numerical order 
 Dumping all marked directories
 Each directory is prefixed by the directory’s attributes

48



File System Backups

 Logical dump algorithm
 Phases 4

 Dumping marked files
 Prefixed by their attributes

49



File System Backups

 Logical dump algorithm
 Restoring is straightforward

 An empty file system is created on the disk
 The most recent full dump is restored

 Directories are all restored first
 Then the files themselves are restored. 

 This process is then repeated with the first 
incremental dump 

 then the next one, and so on

50



File System Backups

 Logical dumping issues
 free block list must be reconstructed after 

restoring all dumps
 Links
 UNIX files may contain holes
 special files, named pipes, and anything that is not 

a real file should never be dumped

51



File System Consistency

 UNIX utility: fsck
 Block check

52



File System Consistency

 UNIX utility: fsck
 File check

 Inspect each directory in the file system recursively
 Count the references for each i-node
 Compare the counts with link counts in i-nodes

 link count too high 
 Waste space
 Should be fixed by setting the link count to the correct value

 link count too low
 potentially catastrophic
 solution is just to force the link count to the actual number of 

directory entries

53



File System Performance (1)

 The block cache data structures

54



File System Performance (2)

 I-nodes placed at the start of the disk
 Disk divided into cylinder groups

 each with its own blocks and i-nodes

55



Example File Systems
CD-ROM File Systems

 The ISO 9660 directory entry

56



The CP/M File System (1)

 Memory layout of CP/M

57



The CP/M File System (2)

 The CP/M directory entry format

58



The MS-DOS File System (1)

 The MS-DOS directory entry

59



The MS-DOS File System (2)

 Maximum partition for different block sizes
 The empty boxes represent forbidden 

combinations

60



The Windows 98 File System 
(1)
 The extended MOS-DOS directory entry 

used in Windows 98

61

Bytes



The Windows 98 File System 
(2)
 An entry for (part of) a long file name in 

Windows 98

62

Bytes

Checksum



The Windows 98 File System 
(3)
 An example of how a long name is stored in 

Windows 98

63



The UNIX V7 File System (1)

 A UNIX V7 directory entry

64



The UNIX V7 File System (2)

 A UNIX i-node

65



The UNIX V7 File System (3)

 The steps in looking up /usr/ast/mbox

66


