
1

FILE SYSTEMS
Chapter 4

Files 
Directories 
File system implementation 
Example file systems 



Introduction

 Three problems for accessing information
 Must store large amounts of data
 Information stored must survive the termination 

of the process using it
 Multiple processes must be able to access the 

information concurrently

 Solution:
 Make the information independent of any process
 Using magnetic disks or solid-state drives

2



Introduction

 Think of a disk as 
 a linear sequence of fixed-size blocks 
 supporting two operations:

 Read block k
 Write block k

 These are very inconvenient operations
 How do you find information? 
 How do you keep one user from reading another 

user’s data?
 How do you know which blocks are free?

3



Introduction

 File: a new abstraction to solve this problem
 logical units of information created by processes
 a kind of address space

 used to model the disk instead of modeling the RAM

 Processes can read existing files and create new 
ones

 They are Persistent
 should disappear only when its owner explicitly 

removes it

4



Introduction

 File: a new abstraction to solve this problem
 managed by the file system

 part of the operating system dealing with files
 Important aspects from user’s standpoint

 what constitutes a file
 how files are named and protected
 what operations are allowed on files
 and so on

 Important details for designers:
 whether linked lists or bitmaps are used to manage free 

storage 
 how many sectors there are in a logical disk block
 and so on

5



Files

 File naming
 Many operating systems support two-part names

6



Files

 File Structure
 byte sequence
 record sequence
 tree

7



Files
 File Types

 Regular files
 contain user information

 Directories
 system files for maintaining the structure of the file 

system
 Character special files 

 related to input/output 
 used to model serial I/O devices, such as terminals, 

printers, and networks
 Block special files 

 used to model disks

8



Files

 File Types
 We are interested in Regular files

 ASCII files 
 consist of lines of text

 binary files
 they are not ASCII files

9



Files

 File Access
 Sequential access

 read all bytes/records from the beginning
 cannot jump around, could rewind or back up
 convenient when medium was mag tape

 Random access
 bytes/records read in any order
 essential for data base systems
 read can be …

 every read operation gives the position in the file to start 
reading at

 A seek to set the current position; read sequentially from 
the now-current position

10



File Attributes

 Possible file attributes

11



File Operations

 Create
 Delete
 Open
 Close
 Read
 Write

 Append
 Seek
 Get attributes
 Set Attributes
 Rename

12



Directories

 single level directory systems
 Was common on early personal computers
 Advantage: simplicity
 still used on simple embedded devices 

 digital cameras 
 some portable music players

13



Directories 

 hierarchical directory system

14



Directories

 Path Names
 Absolute path names
 Relative path names

15



Directory Operations

 Create
 Delete
 Opendir
 Closedir

 Readdir
 Rename
 Link
 Unlink

16



File System Implementation

 File system layout

17



Implementing Files

 Contiguous allocation
 Two significant Advantages

 Simple to implement
 Excellent read performance

18



Implementing Files
 Contiguous allocation

 Serious drawback
 Disk becomes fragmented

 Was used on magnetic-disk file systems years ago

19



Implementing Files

 Contiguous allocation
 Still used on CD-ROMs
 DVD is a bit more complicated

 File system: UDF (Universal Disk Format)
 30-bit number to represent file length
 limits files to 1 GB
 three or four 1-GB contiguous files

20



Implementing Files

 Linked-List Allocation

21



Implementing Files

 Linked list allocation using a file allocation 
table in RAM (FAT)

22



Implementing Files

 I-node

23



Implementing Directories

 (a) A simple directory
 fixed size entries
 disk addresses and attributes in directory entry

 (b) Directory in which each entry just refers to 
an i-node

24



Implementing Directories

 Handling long file names in directory

25



Implementing Directories

 Searching in directory
 Linear search

 can be slow for extremely long directories

 use a hash table in each directory
 much faster lookup
 more complex administration

26



Shared Files

 File system containing a shared file
 Hard link
 Symbolic link

27



Shared Files

 (a) Situation prior to linking
 (b) After the link is created
 (c)After the original owner removes the file

28



Log-Structured File Systems

 With CPUs faster, memory larger
 disk caches can also be larger
 increasing number of read requests can come 

from cache
 thus, most disk accesses will be writes
 Most writes are done in very small chunks.

 highly inefficient, 
 50-μsec disk write need 10ms seek and 4ms 

rotational delay. 
 Disk efficiency drops to a fraction of 1%

29



Log-Structured File Systems

 LFS Strategy structures entire disk as a log
 have all writes initially buffered in memory
 periodically 

 collect buffered data into a single segment 
 write as a contiguous segment at the end of the log

 At the start of each segment 
 is a segment summary
 telling what can be found in the segment

30



Log-Structured File Systems

 LFS Strategy structures entire disk as a log
 i-nodes still exist and scattered all over the log

 An i-node map is required to find i-nodes
 Entry i in this map points to i-node i on the disk
 The map is kept on disk
 it is also cached in memory

 Opening a file now consists of 
 using the map to locate the i-node for the file. 
 the addresses of the blocks can be found from i-

node

31



Log-Structured File Systems

 LFS Strategy structures entire disk as a log
 Eventually the log will occupy the entire disk

 no new segments can be written to the log
 many existing segments may have un-needed 

blocks 
 For example

 if a file is overwritten
 its i-node will now point to the new blocks
 but the old ones will still be occupying space in 

previously written segments

32



Log-Structured File Systems

 LFS Strategy structures entire disk as a log
 Eventually the log will occupy the entire disk

 a cleaner thread scans the log circularly 
 reads the summary to see which i-nodes and files are 

there. 
 then checks with the current i-node map 
 old i-nodes and file blocks are discarded. 
 The i-nodes and blocks that are still in use go into 

memory to be written out in the next segment. 
 The original segment is then marked as free

33



Virtual File Systems

 To integrate multiple file systems together
 abstract common part of all file systems 
 put that code in a separate layer



Virtual File Systems



Disk Space Management

 Block size
 too large: we waste space
 too small: we waste time

36



Disk Space Management

 Keeping track of free blocks

37



Disk Space Management
 (a) Almost-full block of pointers to free disk 

blocks in RAM
 - three blocks of pointers on disk

 (b) Result of freeing a 3-block file
 (c) Alternative strategy for handling 3 free 

blocks
 - shaded entries are pointers to free disk blocks

38



Disk Space Management

 Quotas for keeping track of each user’s disk 
use

39



File System Backups

 Making a backup 
 takes a long time 
 occupies a large amount of space
 doing it efficiently and conveniently is important

 Issues
 should the entire file system be backed up or only part of it?
 wasteful to back up files that have not changed

 idea of incremental dumps
 Desire to compress
 Difficult to perform a backup on an active file system

 rapid snapshots
 introduces many nontechnical problems into an organization

 Security

40



File System Backups

 Two strategies for dumping a disk
 Physical dump 

 Advantage
 Simplicity and great speed

 issues
 unused blocks
 bad blocks
 paging, hibernation and other internal files

 Disadvantages
 inability to 

 skip selected directories
 make incremental dumps
 restore individual files upon request

41



File System Backups

 Two strategies for dumping a disk
 Logical dump

 starts at specified directories 
 recursively dumps all changed files and directories 
 most common form
 easy to restore a specific file or directory

42



File System Backups

 Logical dump algorithm
 Dumps all directories (even unmodified ones) on 

the path to a modified file or directory
 to make it possible to restore to a fresh file system
 to make it possible to incrementally restore a single 

file

43



File System Backups

 Logical dump algorithm
 Sample file system to be dumped

44



File System Backups

 Logical dump algorithm
 maintains a bitmap indexed by i-node number
 operates in four phases

45



File System Backups

 Logical dump algorithm
 Phases 1

 Marks I-nodes for
 Modified files
 All directories

46



File System Backups

 Logical dump algorithm
 Phases 2

 Recursively walks the tree 
 unmarking any directories that have no modified files 

or directories

47



File System Backups

 Logical dump algorithm
 Phases 3

 Scanning the i-nodes in numerical order 
 Dumping all marked directories
 Each directory is prefixed by the directory’s attributes

48



File System Backups

 Logical dump algorithm
 Phases 4

 Dumping marked files
 Prefixed by their attributes

49



File System Backups

 Logical dump algorithm
 Restoring is straightforward

 An empty file system is created on the disk
 The most recent full dump is restored

 Directories are all restored first
 Then the files themselves are restored. 

 This process is then repeated with the first 
incremental dump 

 then the next one, and so on

50



File System Backups

 Logical dumping issues
 free block list must be reconstructed after 

restoring all dumps
 Links
 UNIX files may contain holes
 special files, named pipes, and anything that is not 

a real file should never be dumped

51



File System Consistency

 UNIX utility: fsck
 Block check

52



File System Consistency

 UNIX utility: fsck
 File check

 Inspect each directory in the file system recursively
 Count the references for each i-node
 Compare the counts with link counts in i-nodes

 link count too high 
 Waste space
 Should be fixed by setting the link count to the correct value

 link count too low
 potentially catastrophic
 solution is just to force the link count to the actual number of 

directory entries

53



File System Performance (1)

 The block cache data structures

54



File System Performance (2)

 I-nodes placed at the start of the disk
 Disk divided into cylinder groups

 each with its own blocks and i-nodes

55



Example File Systems
CD-ROM File Systems

 The ISO 9660 directory entry

56



The CP/M File System (1)

 Memory layout of CP/M

57



The CP/M File System (2)

 The CP/M directory entry format

58



The MS-DOS File System (1)

 The MS-DOS directory entry

59



The MS-DOS File System (2)

 Maximum partition for different block sizes
 The empty boxes represent forbidden 

combinations

60



The Windows 98 File System 
(1)
 The extended MOS-DOS directory entry 

used in Windows 98

61

Bytes



The Windows 98 File System 
(2)
 An entry for (part of) a long file name in 

Windows 98

62

Bytes

Checksum



The Windows 98 File System 
(3)
 An example of how a long name is stored in 

Windows 98

63



The UNIX V7 File System (1)

 A UNIX V7 directory entry

64



The UNIX V7 File System (2)

 A UNIX i-node

65



The UNIX V7 File System (3)

 The steps in looking up /usr/ast/mbox

66


