Chapter 4

FILE SYSTEMS

[|

0
Files
Directories

File system implementation
Example file systems

Introduction

* Three problems for accessing information
= Must store large amounts of data

o Information stored must survive the termination
of the process using it

= Multiple processes must be able to access the
information concurrently

= Solution:
o Make the information independent of any process
o Using magnetic disks or solid-state drives

Introduction

» Think of a disk as

= alinear sequence of fixed-size blocks
o sypporting two operations:
= Read block k
= Write block k
» These are very inconvenient operations
= How do you find information?

= How do you keep one user from reading another
user’s data?

= How do you know which blocks are free?

Introduction

» File: a new abstraction to solve this problem
= |ogical units of information created by processes

o a kind of address space
» used to model the disk instead of modeling the RAM
= Processes can read existing files and create new
ones
o They are Persistent

= should disappear only when its owner explicitly
removes it

Introduction

» File: a new abstraction to solve this problem
= managed by the file system
» part of the operating system dealing with files
o |Important aspects from user’s standpoint
* what constitutes a file
* how files are named and protected
* what operations are allowed on files
= andsoon
o |mportant details for designers:

* whether linked lists or bitmaps are used to manage free
storage

= how many sectors there are in a logical disk block
= andsoon

Files

* File naming

= Many operating systems support two-part names

Extension Meaning

file.bak Backup file

file.c C source program

file.gif Compuserve Graphical Interchange Format image
file.hlp Help file

file.html World Wide Web HyperText Markup Language document
file.jpg Still picture encoded with the JPEG standard
file.mp3 Music encoded in MPEG layer 3 audio format
file.mpg Movie encoded with the MPEG standard

file.o Obiject file (compiler output, not yet linked)

file.pdf Portable Document Format file

file.ps PostScript file

file.tex Input for the TEX formatting program

file.txt General text file

file.zip Compressed archive

Files

= File Structure

= byte sequence
= record sequence

o {ree
1 Byte 1 Record
vd "4
Ant Fox Pig
Cat || Cow || Dog Goat || Lion || Owl Pony || Rat ||Worm
Hen || Ibis || Lamb

(a) (b)

(c)

Files
» File Types

= Reqgular files
= contain user information
o Directories

= system files for maintaining the structure of the file
system

o Character special files
- related to input/output

= used to model serial I/O devices, such as terminals,
printers, and networks

= Block special files
» ysed to model disks

Files

» File Types

= We are interested in Regular files

= ASClI files
= consist of lines of text

Header

* binary files
= they are not ASClI files

Magic number

Text size

Header

Data size

BSS size

Symbol table size

Entry point

Object
module

Flags

Text

Header

Data

Object
module

Header

Relocation
bits

Symbol
table

(a)

Object
module

~N

(b)

Module
name

Date

Owner

Protection

Size

Files

= File Access

= Sequential access
* read all bytes/records from the beginning
* cannot jump around, could rewind or back up
* convenient when medium was mag tape

= Random access
" bytes/records read in any order
* essential for data base systems

" read can be ...

* every read operation gives the position in the file to start
reading at

= Aseekto set the current position; read sequentially from
the now-current position

10

File Attributes

s Possible file attributes

Attribute Meaning
Protection Who can access the file and in what way
Password Password needed to access the file
Creator ID of the person who created the file
Owner Current owner
Read-only flag 0 for read/write; 1 for read only
Hidden flag 0 for normal; 1 for do not display in listings
System flag 0 for normal files; 1 for system file
Archive flag 0 for has been backed up; 1 for needs to be backed up

ASCll/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags 0 for unlocked; nonzero for locked
Record length Number of bytes in a record

Key position Offset of the key within each record
Key length Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file has last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

11

File Operations

= Create
= Delete
= Open
* Close
= Read
= Write

Append

Seek

Get attributes
Set Attributes

Rename

Directories

» single level directory systems
= Was common on early personal computers
o Advantage: simplicity
o still used on simple embedded devices

- digital cameras
= some portable music players

-<—Root directory

0101010

13

I Directories

» hierarchical directory system

<—F{oot directory

User
directory_,_

®

I Directories

= Path Names
= Absolute path names :

bin |=— Root directory

o Relative path names /<

bin etc lib usr tmp

jim
lib)
i

dict.

~—— Jusr/jim

15

I 1 [
S

Directory Operations

Create
Delete
Opendir
Closedir

Readdir
Rename
|ink
Unlink

File System Implementation

» File system layout

- Entire disk >
Partition table Disk partition \
MBR
Boot block | Super block | Free space mgmt |-nodes Root dir Files and directories

I Implementing Files

= Contiguous allocation

= Two significant Advantages
= Simple to implement
= Excellent read performance

Implementing Files

= Contiguous allocation

o Serious drawback
* Disk becomes fragmented

= Was used on magnetic-disk file systems years ago

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)
— r 2 r) —
HEEEEENEEEEEENENNNEEEEEEEEEEEEEEEEEEEEEES

| S SP. - L < J
File B File D File F
(3 blocks) (5 blocks) (6 blocks)
(a)
(File A) (File C) (File E) (File G)
N r A \ r 2 N ——
.. S . e
File B 5 Free blocks 6 Free blocks

(b) 9

Implementing Files

= Contiguous allocation
o Still used on CD-ROMs

= DVD is a bit more complicated
* File system: UDF (Universal Disk Format)
* 30-bit number to represent file length
* limits files to 1 GB
= three or four 1-GB contiguous files

20

Implementing Files

= Linked-List Allocation

File A
— — — —+—>| 0
File File File File File
block block block block block
0 1 2 3 4
Physical 4 7 2 10 12
block
File B
4 —+— —+— 0
File File File File
block block block block
0 1 2 3
Physical 6 3 11 14
block

Implementing Files

» Linked list allocation using a file allocation
table in RAM (FAT)

Physical
block
0
1
2 10
3 11
4 7 —-—— File A starts here
5
6 —~— File B starts here
7
8
9
10 12
11 14
12 1
13
14 1
15 ~— Unused block

22

Implementing Files

= |-node

File Attributes

Address of disk block 0

Address of disk block 1

Address of disk block 2

Address of disk block 3

Address of disk block 4

Address of disk block 5

Address of disk block 6

Address of disk block 7

Address of block of pointers

Y

Disk block

containing

additional
disk addresses

23

I Implementing Directories

* (@) Asimple directory
o fixed size entries

o disk addresses and attributes in directory entry

= (b) Directory in which each entry just refers to

an i-node
games E attributes games =
. I
i mail ! attributes mail s

I
I
I
!
i ; I
news | attributes news i |
work | attributes work :

| \
(a) (b) Data structure

containing the
attributes

Implementing Directories

* Handling long file names in directory

File 1 entry length

L. Pointer to file 1's name

File 1 attributes

File 1 attributes

Pointer to file 2's name

Entry - -
for one P
file e c t
b u d
i e t X

File 2 attributes

File 2 entry length

. Pointer to file 3's name

File 2 attributes

File 3 aftributes

p e r
o n n
' X

File 3 entry length

File 3 attributes

(a)

P r o j
e c t -
b u d 9
e t X p
e r s o

n e I

f o] o
X

Entry
for one
file

Heap

25

Implementing Directories

= Searchingin directory
o Linear search
= can be slow for extremely long directories
o yse a hash table in each directory

= much faster lookup
= more complex administration

26

Shared Files

* File system containing a shared file

= Hard link
= Symbolic link

Root directory

Shared file

27

Shared Files

= (a) Situation prior to linking
= (b) After the link is created

= (c)Afterthe original owner removes the file

C's directory B's directory C's directory B's directory

\ \
/ \ / \
Owner =C Owner =C Owner = C
Count = 1 Count=2 Count = 1

l
O

(a)

!
O

(b)

¢
O

(c)

Log-Structured File Systems

= With CPUs faster, memory larger
o disk caches can also be larger

o increasing number of read requests can come
from cache

o thus, most disk accesses will be writes
o Most writes are done in very small chunks.
* highly inefficient,
= 5o-psec disk write need 1oms seek and 4ms
rotational delay.

= Disk efficiency drops to a fraction of 1%

29

Log-Structured File Systems

= LFS Strategy structures entire disk as a log
o have all writes initially buffered in memory
o periodically
» collect buffered data into a single segment

= write as a contiguous segment at the end of the log
o At the start of each segment

" Is a segment summary

* telling what can be found in the segment

30

Log-Structured File Systems

= LFS Strategy structures entire disk as a log

o j-nodes still exist and scattered all over the log
* Ani-node map is required to find i-nodes
= Entry iin this map points to i-node i on the disk
= The map is kept on disk
" itis also cached in memory

= Opening a file now consists of
* using the map to locate the i-node for the file.

* the addresses of the blocks can be found from i-
node

31

Log-Structured File Systems

= LFS Strategy structures entire disk as a log

o Eventually the log will occupy the entire disk
* no new segments can be written to the log

" many existing segments may have un-needed
blocks

= For example
= if a file is overwritten
* itsi-node will now point to the new blocks

* but the old ones will still be occupying space in
previously written segments

32

Log-Structured File Systems

= LFS Strategy structures entire disk as a log

o Eventually the log will occupy the entire disk

= a cleaner thread scans the log circularly

* reads the summary to see which i-nodes and files are
there.

= then checks with the current i-node map
= old i-nodes and file blocks are discarded.

= The i-nodes and blocks that are still in use go into
memory to be written out in the next segment.

= The original segment is then marked as free

33

Virtual File Systems

* Tointegrate multiple file systems together
o abstract common part of all file systems

o put that code in a separate layer

User —
process

O

File

POSIX
Virtual file system>

@ @

system

:

¢

! VFS interface

Buffer cache

Virtual File Systems

File
Process descriptors
table

V-nodes

Function
pointers

Call from
VFS into
FS 1

Read
function

FS1

Disk Space Management

= Blocksize

° too large: we waste space

o too small: we waste time

Data rate (MB/sec)

60

()]
o

N
o

w
o

N
o

—_
o

o

D S P YT L £

1 KB 4KB 16 KB

64 KB 256 KB

1MB

100%

80%

60%

40%

20%

0%

Disk space utilization

36

I Disk Space Management

= Keeping track of free blocks

Free disk blocks: 16, 17, 18

42 /fb— 230 (zh— 86 1001101101101100
136 162 234 0110110111110111
210 612 897 1010110110110110
97 342 422 0110110110111011
41 214 140 1110111011101111
63 160 223 1101101010001111
21 664 223 0000111011010111
n 48 216 160 1011101101101111
: 262 320 126 1100100011101111
516 —’/ 482 —’) 141 1101111101110111

A 1-KB disk block can hold 256 A bitmap
32-bit disk block numbers

(a) (b)

| 310 180 142 0111011101110111

¢

Disk Space Management

* (a) Almost-full block of pointers to free disk
blocks in RAM

o - three blocks of pointers on disk
» (b) Result of freeing a 3-block file

= (c)Alternative strategy for handling 3 free
blocks

Disk
Main 3

memory l

(> > >

11 .

(a (b (c)

38

Disk Space Management

» Quotas for keeping track of each user’s disk

yse
Open file table Quota table
=

Attributes Soft block limit

disk addresses Hard block limit

U =8

w5l Current # of blocks
Quota pointer — # Block warnings left Cliots
> record

Soft file limit for user 8
Hard file limit

Current # of files

))
|9
))
1$Y

File warnings left

))
[$Y

)L
|$9

39

File System Backups

* Making a backup
o takes alongtime
o occupies a large amount of space
= doing it efficiently and conveniently is important
" [ssues
o should the entire file system be backed up or only part of it?
o wasteful to back up files that have not changed
* idea of incremental dumps
o Desire to compress

o Difficult to perform a backup on an active file system
* rapid snapshots

o introduces many nontechnical problems into an organization
= Security

40

File System Backups

= Two strategies for dumping a disk

@ Physical dump

= Advantage
= Simplicity and great speed
" issues
= unused blocks
= bad blocks
* paging, hibernation and other internal files
- Disadvantages
= inability to
- skip selected directories
- make incremental dumps
- restore individual files upon request

41

File System Backups

= Two strategies for dumping a disk
o Logical dump
= starts at specified directories

* recursively dumps all changed files and directories
* most common form

= easy to restore a specific file or directory

42

File System Backups

* Logical dump algorithm
= Dumps all directories (even unmodified ones) on
the path to a modified file or directory
* to make it possible to restore to a fresh file system

= to make it possible to incrementally restore a single
file

43

I File System Backups

* Logical dump algorithm
o Sample file system to be dumped

1 |<—— Root directory

[16] 18 27
®) 19 28) |29

Directory
that has not
changed

20 22 30

21 23 31 32

/ /

File that File that has
has changed 24) (25 not changed

cles are files. The shaded items have been modified since the last dump. Each di-
rectory and file is labeled by its i-node number. Lt

| Figure 4-25. A file system to be dumped. The squares are directories and the cir-

File System Backups

* Logical dump algorithm

a

a

maintains a bitmap indexed by i-node number

operates in four phases

112(3|4|5|6|7]|8]|9|10]11|12]13|14|15(16|17|18|19|20|21|22|23|24|25]|26|27|28]|29]|30|31|32
112(3|4|5|6]|7]|8]|9|10]11]12]13|14|15[16|17|18|19|20|21|22|23|24|25]|26]|27]|28]|29]|30|31|32
112(3|4|5]|6|7|8|9|10]11|12|13|14|15|16|17]|18|19]|20|21]|22{23|24|25|26]27|28]|29(30|31|32
112(3|4|5|6]|7]|8]|9|10]111]12|13|14|15(16|17|18|19|20|21|22|23|24|25]|26]|27|28]|29]|30|31|32

45

File System Backups

* Logical dump algorithm

o Phases1

« Marks [-nodes for
 Modified files
= All directories

112|3|4|5]|6|7|8]|9|10|11|12]13|14[15]|16|17|18]|19]|20|21|22|23|24|25]|26|27|28]|29|30|31|32
112(3|4|5]|6|7|8|9|10]11|12]13|14|15|16|17]|18|19]|20|21]|22|23|24|25|26|27|28]|29|30|31|32
112(3|4|5|6]|7]|8]|9]|10]11]12|13|14|15[16|17|18|19|20|21|22|23|24|25]|26]|27|28]|29]30|31|32
112(3|4|5|6]|7]|8]|9]|10]11]12|13|14|15[16|17|18|19|20|21|22|23|24|25]|26]|27]|28]|29]30|31|32

File System Backups

* Logical dump algorithm

o Phases 2

= Recursively walks the tree

= unmarking any directories that have no modified files

or directories

112|3|4|5]|6|7|8]|9|10|11|12]13|14[15]|16|17|18]|19]|20|21|22|23|24|25]|26|27|28]|29|30|31|32
112(3|4|5]|6|7|8|9|10]11|12]13|14|15|16|17]|18|19]|20|21]|22|23|24|25|26|27|28]|29|30|31|32
112(3|4|5|6]|7]|8]|9]|10]11]12|13|14|15[16|17|18|19|20|21|22|23|24|25]|26]|27|28]|29]30|31|32
112(3|4|5|6]|7]|8]|9]|10]11]12|13|14|15[16|17|18|19|20|21|22|23|24|25]|26]|27]|28]|29]30|31|32

File System Backups

* Logical dump algorithm
o Phases 3

= Scanning the i-nodes in numerical order

= Dumping all marked directories

= Each directory is prefixed by the directory’s attributes

112|3|4|5]|6|7|8]|9|10|11|12]13|14[15]|16|17|18]|19]|20|21|22|23|24|25]|26|27|28]|29|30|31|32
112(3|4|5]|6|7|8|9|10]11|12]13|14|15|16|17]|18|19]|20|21]|22|23|24|25|26|27|28]|29|30|31|32
112(3|4|5|6]|7]|8]|9]|10]11]12|13|14|15[16|17|18|19|20|21|22|23|24|25]|26]|27|28]|29]30|31|32
112(3|4|5|6]|7]|8]|9]|10]11]12|13|14|15[16|17|18|19|20|21|22|23|24|25]|26]|27]|28]|29]30|31|32

File System Backups

* Logical dump algorithm

o Phases 4

* Dumping marked files
* Prefixed by their attributes

112|3|4|5]|6|7|8]|9|10|11|12]13|14[15]|16|17|18]|19]|20|21|22|23|24|25]|26|27|28]|29|30|31|32
112(3|4|5]|6|7|8|9|10]11|12]13|14|15|16|17]|18|19]|20|21]|22|23|24|25|26|27|28]|29|30|31|32
112(3|4|5|6]|7]|8]|9]|10]11]12|13|14|15[16|17|18|19|20|21|22|23|24|25]|26]|27|28]|29]30|31|32
112(3|4|5|6]|7]|8]|9]|10]11]12|13|14|15[16|17|18|19|20|21|22|23|24|25]|26]|27]|28]|29]30|31|32

File System Backups

* Logical dump algorithm
= Restoring is straightforward

= An empty file system is created on the disk

* The most recent full dump is restored
= Directories are all restored first
 Then the files themselves are restored.

* This process is then repeated with the first
incremental dump

* then the next one, and so on

50

File System Backups

= Logical dumping issues

o free block list must be reconstructed after
restoring all dumps

o Links
= UNIX files may contain holes

o special files, named pipes, and anything that is not
a real file should never be dumped

File System Consistency

= UNIX utility: fsck

012345678 9101112131415

o Block check

Block number

1)1

0

1

0

1

1

1

0

1

1

1

0

0

00

0

0

0

01234567 8 9101112131415

Block number

111

0

1

0

1

1

.1

0

1

1

1

0

0

00

0

2

0

0

Blocks in use

Free blocks

Blocks in use

Free blocks

012345678 9101112131415

Block number

1

]

0

1

0

1

1

0

0

1

1

1

0

0

0

0

0

0

Block number
01234567 8 9101112131415

1

1

0

1

0

2

1

.1

1

0

0

1

1

-1

0

0

0

0

0

1

0

0

0

(d)

Blocks in use

Free blocks

Blocks in use

Free blocks

Figure 4-27. File-system states. (a) Consistent. (b) Missing block. (c¢) Dupli-

cate block in free list. (d) Duplicate data block.

52

File System Consistency

= UNIX utility: fsck

o File check

* Inspect each directory in the file system recursively
= Count the references for each i-node

= Compare the counts with link counts in i-nodes

* link count too high

* Waste space

* Should be fixed by setting the link count to the correct value
* link count too low

- potentially catastrophic

« solution is just to force the link count to the actual number of
directory entries

53

I File System Performance (1)

Hash table Front (LRU) Rear (MRU)

/

A \>L_/
— /

54

File System

I-nodes are
located near
the start

of the disk

Performance (2)

Disk is divided into
cylinder groups, each
with its own i-nodes

Cylinder group

(b)

55

es 1

Example File Systems
CD-ROM File Systems

— -~ 1/~ A\ ~— r | I Y R . »
Padding
e : 12 4 1 e}
Location of file File Size Date and time CD# |L| Filename Sys
Flags =~ f --------------- "
L Extended attribute record length =S B
, itatiEvs ase name Ext |.|Ver
Directory entry length . ;

56

The CP/M File System

Address
OxFFFF

0x100

BIOS

CP/M

User program

Zero page

(1)

57

The CP/M File System (2)

Bytes 1 8 g | 2 - 16 -
7
File name %
.
. / / ‘[Disk bloclz numbers
User code File type Extent Block count

(extension)

58

Bytes

The MS-DOS File System (1)

8

3

2

2

4

File na

me

Size

Xien

sion Attributes

|

\

N

Reserved Time Date First

block
number

The MS-DOS File System (2)

Block size | FAT-12 | FAT-16 | FAT-32
0.5 KB 2 MB
1 KB 4 MB
2 KB 8 MB 128 MB
4 KB 16 MB 256 MB 1 1B
8 KB 512 MB 2 1B
16 KB 1024 MB 2 1B
32 KB 2048 MB 2 1B

I The Windows 98 File System
(1)

—_ =r1l_ _ _ b _ AR AN N7\ B L T T
8 3 T i 9 4 2 2 4 2 4
N Creation Last Last write "
EASE RIS Ext jl i date/time |access date/time Flleisize
el | T f
S sec Upper 16 bits Lower 16 bits
of starting of starting
block block

| 61

1

The Windows 98 File System

(2)

* An entry for (part of) a long file name in

Windows g8

10

1 1 1

12

4

5 characters

0

6 characters

2 characters

b

Sequence

Attributes i

Bytes

The Windows 98 File System
(3)

C
68| d (¢ g A K 0
C
3| o v e A K| t h e 0 Z y
C
21 w n A K| X j u m 0 s
C
A T h e A K| u i C Kk 0 r o)
Creation | Last Last _
TIHEQU I ~ 1 A S fime s | PP wilts Low Size
T I T 1 | | | | T 1

63

The UNIX V7 File System (1)

" Bytes 2

14

File name

|-node
number

64

Disk addresses

The UNIX V7 File

[-node
Attributes ;
| Single
1 » indirect
1 block
:; Double
indirect
block

—

S

System (2)

Addresses of

v
\ Triple

indirect

I 4

/

block

data blocks
=0
T
i +4 >
4>
T
- S a
T

65

The UNIX V7

Root directory

File

1
1
4 | bin
7 | dev
14 | lib
9 | efc
6 | usr
8 | tmp
Looking up
usr yields
i-node 6

Block 132
I-node 6 is /usr
is for /usr directory
6| o
Mode
size 1 | oo
times)
19 | dick
132 30 | erik
51 | jim
26 | ast
45 | bal
|-node 6
says that /usr/ast
/usr is in is i-node
block 132 26

System

(3)

|-node 26 Block 406
is for is /usr/ast
/usr/ast directory
26 | -
Mode
size B | o
times
64 | grants
406 92 | books
60 | mbox
81 | minix
17 | src
|-node 26
says that /usr/ast/mbox
/usr/ast is in is i-node
block 406 60

66

