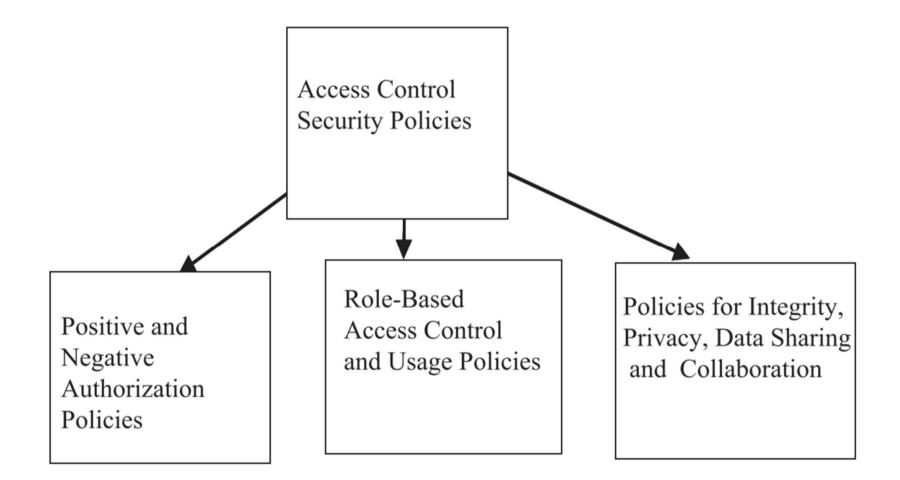
Chapter 2: Security Policies

DATABASE SECURITY

Overview

- what security policy is to be enforced by the system?
 - First question before designing a secure system
 - a set of rules that enforce security
 - mandatory security policies
 - policies that are "mandatory" in nature and are application independent
 - Bell and LaPadula
 - discretionary security policies
 - policies that are specified by who is responsible for the environment in which the system will operate
 - This chapter focuses on discretionary security policies


Overview

- Access control
 - most popular discretionary security policy
 - First studied for operating systems
 - Two first database systems that investigate it
 - System R and INGRES
- Other discretionary policies
 - administration policies
 - identification and authentication policies

Access-Control Policies

- first examined for operating systems
 - essential point: whether a process can be granted access to a file.
 - Access could be read access or write access
 - Write access could include access to modify, append, or delete.
- were transferred to database systems
 - various forms have been studied
 - Notable: role-based access-control policies
 - now implemented in several commercial systems

Access-Control Policies

- Users are granted access to data based on authorization rules
 - Positive Authorizations
 - John has read access to attribute Salary and write access to attribute Name in relation EMP.
 - Write access could include
 - Append

- Modify
- delete

- Users are granted access to data based on authorization rules
 - Negative Authorization
 - What if access to an object is not specified?
 - Implicit: authorization rule that is not specified is taken to be a negative authorization
 - Explicit: negative authorizations are explicitly specified.
 - Example: John does not have access to relation EMP or Jane does not have access to relation DEPT

- Users are granted access to data based on authorization rules
 - Conflict Resolutions
 - how do we resolve the conflicting rules?
 - a rule grants John read access to relation EMP
 - another rule does not grant John read access to the salary attribute in EMP.
 - Usually a system enforces the least privilege rule
 - John has access to EMP except for the salary values

- Users are granted access to data based on authorization rules
 - Strong and Weak Authorization
 - strong authorization: the rule holds regardless of conflicts.
 - weak authorizations: the rule does not hold in case of conflict
 - Example
 - John is granted access to EMP with a strong authorization rule
 - the rule where John is not granted access to salary attribute is a weak authorization
 - The strong authorization will hold

- Users are granted access to data based on authorization rules
 - Propagation of Authorization Rules
 - how do the rules get propagated?
 - John has read access to relation EMP
 - does it automatically mean that John has read access to every element in EMP?
 - Usually this is the case
 - unless we have a rule that prohibits automatic propagation of an authorization rule.

- Users are granted access to data based on authorization rules
 - Special Rules

- Content-based rules
 - access is granted depending on the content of the data
 - John has read access to tuples only in DEPT D100.
- Context-based rules
 - access is granted depending on the context in which the data is displayed
 - John does not have read access to names and salaries taken together, however, he can have access to individual names and salaries.
- Event-based rules
 - after the election, John has access to all elements in relation EMP

- Users are granted access to data based on authorization rules
 - Consistency of Rules
 - do we have conflict resolution rules that will resolve the conflicts?
 - Completeness of Rules
 - Are all of the entities specified in access-control rules for a user?
 - what assumptions do we make about entities that do not have either positive or negative authorizations for a particular user or a class of users?

- Role-Based Access Control
 - Idea:
 - grant access to users depending on their roles and functions
 - Issues:
 - does access propagate upwards in the hierarchy ?
 - What about the downward propagation?
 - What about the multiple parents?

Administration Policies

- Specify who is to administer the data
 - keeping the data current
 - making sure the metadata is updated whenever the data is updated
 - ensuring recovery from failures

Administration Policies

- Typically
 - DBA is responsible for updating
 - the metadata
 - the index
 - access methods
 - also ensuring that the access-control rules are properly enforced.
 - SSO may also have a role.
 - DBA and SSO may share the duties
 - security-related issues might be the responsibility of the SSO
 - data-related issues might be the responsibility of the DBA.

Administration Policies

- Other administration policies
 - assigning caretakers

- Usually owners have control of the data that they create
- owners may not be available to manage the data
 - Assign caretakers

Identification and Authentication

- By identification we mean
 - users must identify themselves with their user ID and password.
- Authentication means
 - the system must then match the user ID with the password to ensure that this is indeed the person
- We discuss identity management later

Auditing a Database System

- Databases are audited for multiple purposes
 - to keep track of
 - the number of queries posed
 - the number of updates made
 - the number of transactions executed
 - the number of times the secondary storage is accessed
 - Also for security purposes
 - have any of the access-control rules been bypassed by releasing information to the users?
 - Has the inference problem occurred?
 - Has privacy been violated?
 - Have there been unauthorized intrusions?

Views for Security

- DBA could form views and grant access to the views
 - views could be assigned security levels
 - have problems associated with them
 - view update problem

Views for Security

EMP

SS#	Ename	Salary	D#
1	John	20K	10
2	Paul	30K	20
3	Mary	40K	20
4	Jane	20K	20
5	Bill	20K	10
6	Larry	20K	10
1	Michelle	30K	20
			I

V1: VIEW EMP (D# = 20)

SS#	Ename	Salary
2	Paul	30K
3	Mary	40K
4	Jane	20K
1	Michelle	30K

V2: VIEW EMP (D# = 10)

SS#	Ename	Salary
1	John	20K
5	Bill	20K
6	Larry	20K

Rules:

John has Read access to V1 John has Write access to V2

SQL Extensions for Security

SQL has GRANT and REVOKE

GRANT JOHN EMP READ

REVOKE JOHN EMP READ

also extended with more complex constraints

GRANT JOHN READ EMP.SALARY GRANT JOHN READ GRANT JOHN READ EMP.NAME NOT GRANT JOHN READ Where EMP.SALARY < 30K Together (EMP.NAME, EMP.SALARY)

These are not standards

Query Modification

- was first proposed in the INGRES
- The idea is to modify the query based on the constraints
 - John only has read access to tuples with
 - salary < 30K

employee is not in the Security department

```
Select * from EMP 

Select * from EMP 

And EMP.D# = DEPT.D#

And DEPT.Name is not Security
```