Chapter 3: Design Principles

DATABASE SECURITY

Mandatory Access-Control Policies

- Bell and LaPadula policy
 - subjects

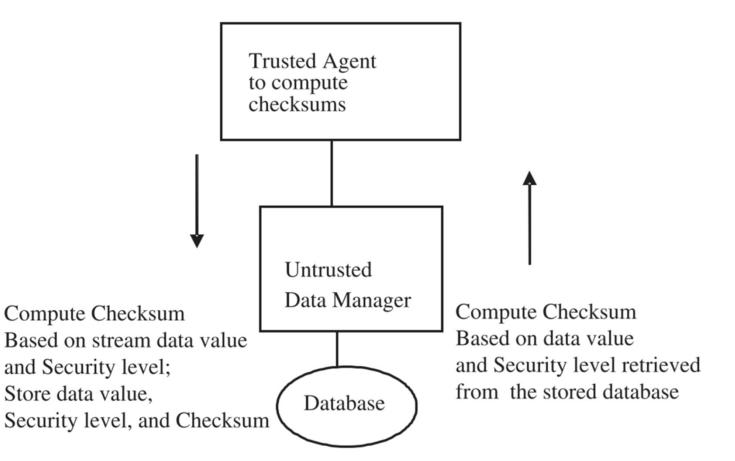
- are assigned clearance levels
- they can operate a level up to and including their clearance levels.
- Objects are assigned sensitivity levels.
- The clearance levels as well as the sensitivity levels are called security levels.
- The set of security levels:
 - Unclassified < Confidential < Secret < TopSecret

Mandatory Access-Control Policies

Bell and LaPadula policy

- The following are the two rules of the policy:
 - Simple Security Property: A subject has read access to an object if its security level dominates the level of the object.
 - *-Property : A subject has write access to an object if the subject's security level is dominated by that of an object.
- For database systems
 - *-property: A subject has write access to an object if the subject's level is that of the object

Mandatory Access-Control Policies


Polyinstantiation

- the same object can have different interpretation and values at different levels
 - Example
 - at the Unclassified level an employee's salary may be 30,000
 - at the Secret level the salary may be 70,000

Taxonomy/Security Architectures for MLS/DBMSs:

Integrity Lock Trusted Subject Operating System Providing Mandatory Access Control Distributed: Partitioned and Replicated Kernel Extensions

Integrity Lock

Integrity Lock

- Multiple instantiations of the front end
 - one instantiation for each user level
- every tuple is associated with
 - a security label : encrypted
 - a cryptographic checksum
- data is not encrypted.
- The checksums are computed by the trusted filter on insertion and recomputed during retrieval.

Integrity Lock

- For insertions
 - the trusted filter computes the checksum
 - the untrusted back-end DBMS stores data and associated label and checksum in the database
- On retrieval
 - the back end retrieves the data tuples and passes them to the trusted filter
 - trusted filter recomputes the checksum based on the tuple and label
 - If data has not been tampered with, it passes the data to the user

Integrity Lock

- Advantage:
 - small amount of additional trusted code
 - performance is independent of the number of security levels involved
- Disadvantage:
 - subject to a threat
 - untrusted back end is able to
 - view classified data
 - encode it as a series of unclassified data tuples
 - pass the encoded data tuples to the trusted front end
 - Because the data tuples are unclassified
 - the trusted filter will not be able to detect

- Operating System Providing Access Control
 - also known as the Hinke–Schaefer
 - utilizes the underlying trusted operating system for access-control
 - No access-control is performed by the DBMS.
 - The DBMS objects (e.g., tuples) are aligned with the underlying operating system objects (e.g., files).
 - Secret tuples are stored in Secret files
 - Top Secret tuples are stored in Top Secret files
 - There is no single DBMS
 - an instantiation of the DBMS for each security level

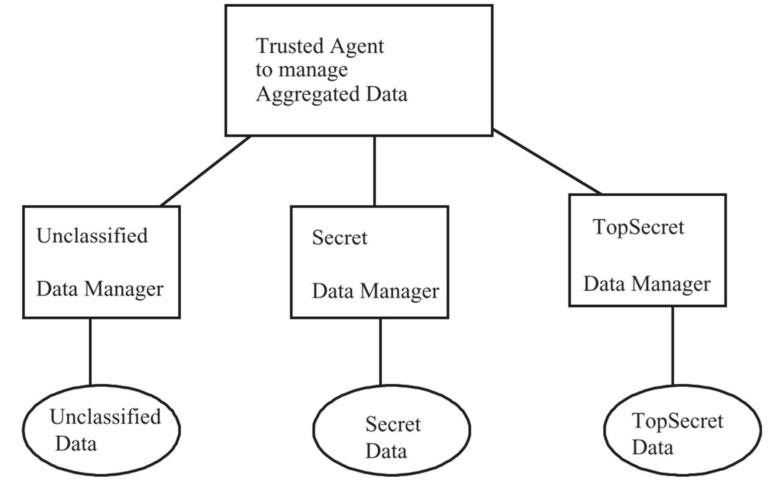
- Operating System Providing Access Control
 - Also called the single kernel approach
 - Advantage

- it is simple and secure
- Disadvantage
 - performance will decrease with the number of security levels

- Kernel Extensions Architecture
 - is an extension of the single kernel approach
 - The underlying operating system is utilized to provide the basic MAC and DAC
 - DBMS will supplement this access mediation
 - For example

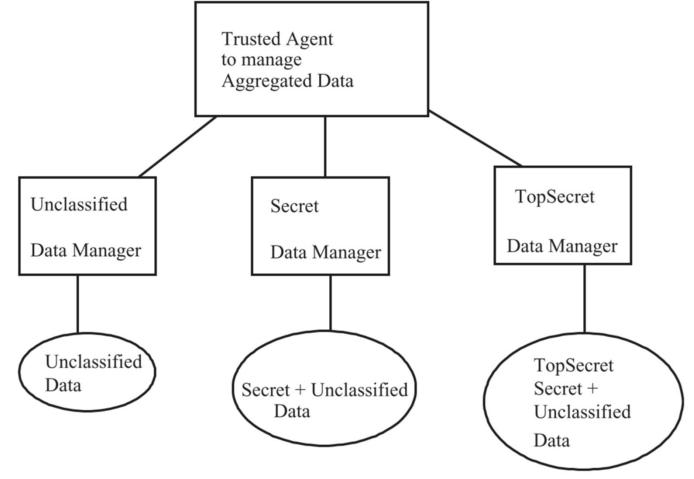
- DBMS might provide context-dependent DAC on views.
- has the same performance problems associated with the single kernel approach.
- But it provides more sophisticated access-control mechanisms
 - it could address some real-world access-control needs

- Trusted Subject Architecture
 - sometimes called dual kernel-based architecture
 - does not rely on the underlying operating system to perform access-control
 - DBMS performs its own access mediation
 - Advantage


- it can provide good security
- its performance is independent of the number of security levels
- Disadvantage is that the DBMS code must be trusted
 - large amount of trusted code may be needed for this approach

Distributed Architecture

there are


- multiple untrusted back-end DBMSs
- single trusted front-end DBMS
- Communication between the back-end DBMSs
 occurs through the front-end DBMS
- two main approaches
 - Partitioned
 - Replicated

Partitioned distributed architecture

- Partitioned distributed architecture
 - the trusted front end is responsible for
 - ensuring that the query is directed to the correct back-end DBMS
 - performing joins on the data sent from the back-end DBMSs.
 - query itself could contain information classified higher than the backend DBMSs
 - queries should not be sent to the DBMSs that are operating at levels lower than the user.

Replicated distributed architecture

- Replicated distributed architecture
 - trusted front end ensures that the query is directed to a single DBMS
 - only the DBMSs operating at the same level as the user are queried
 - this approach does not require front-end DBMSs to perform the join operations.
 - front end must ensure consistency of the data maintained by the different DBMSs