
DATABASE SECURITY
Chapter 3: Design Principles



Mandatory Access-Control 
Policies
 Bell and LaPadula policy

 subjects 
 are assigned clearance levels 
 they can operate a level up to and including their 

clearance levels. 

 Objects are assigned sensitivity levels. 
 The clearance levels as well as the sensitivity 

levels are called security levels.
 The set of security levels: 

 Unclassified < Confidential < Secret < TopSecret



Mandatory Access-Control 
Policies
 Bell and LaPadula policy

 The following are the two rules of the policy:
1. Simple Security Property: A subject has read 

access to an object if its security level dominates 
the level of the object.

2. *-Property : A subject has write access to an object 
if the subject’s security level is dominated by that 
of an object.

 For database systems
 *-property: A subject has write access to an object if 

the subject’s level is that of the object



Mandatory Access-Control 
Policies
 Polyinstantiation

 the same object can have different interpretation 
and values at different levels
 Example

 at the Unclassified level an employee’s salary may be 
30,000 

 at the Secret level the salary may be 70,000



Security Architectures



Security Architectures

 Integrity Lock



Security Architectures

 Integrity Lock
 Multiple instantiations of the front end 

 one instantiation for each user level

 every tuple is associated with 
 a security label : encrypted
 a cryptographic checksum

 data is not encrypted. 
 The checksums are computed by the trusted filter 

on insertion and recomputed during retrieval. 



Security Architectures

 Integrity Lock
 For insertions

 the trusted filter computes the checksum 
 the untrusted back-end DBMS stores data and associated 

label and checksum in the database
 On retrieval

 the back end retrieves the data tuples and passes them 
to the trusted filter

 trusted filter recomputes the checksum based on the 
tuple and label 
 If data has not been tampered with, it passes the data to the 

user



Security Architectures

 Integrity Lock
 Advantage:

 small amount of additional trusted code 
 performance is independent of the number of security 

levels involved
 Disadvantage:

 subject to a threat
 untrusted back end is able to 

 view classified data
 encode it as a series of unclassified data tuples
 pass the encoded data tuples to the trusted front end

 Because the data tuples are unclassified
 the trusted filter will not be able to detect



Security Architectures

 Operating System Providing Access Control
 also known as the Hinke–Schaefer
 utilizes the underlying trusted operating system for 

access-control
 No access-control is performed by the DBMS. 
 The DBMS objects (e.g., tuples) are aligned with the 

underlying operating system objects (e.g., files). 
 Secret tuples are stored in Secret files 
 Top Secret tuples are stored in Top Secret files

 There is no single DBMS 
 an instantiation of the DBMS for each security level



Security Architectures

 Operating System Providing Access Control
 Also called the single kernel approach
 Advantage 

 it is simple and secure

 Disadvantage
 performance will decrease with the number of security 

levels



Security Architectures

 Kernel Extensions Architecture
 is an extension of the single kernel approach
 The underlying operating system is utilized to provide 

the basic MAC and DAC 
 DBMS will supplement this access mediation 

 For example
 DBMS might provide context-dependent DAC on views.

 has the same performance problems associated with 
the single kernel approach. 

 But it provides more sophisticated access-control 
mechanisms
 it could address some real-world access-control needs



Security Architectures

 Trusted Subject Architecture
 sometimes called dual kernel-based architecture
 does not rely on the underlying operating system to 

perform access-control
 DBMS performs its own access mediation
 Advantage 

 it can provide good security
 its performance is independent of the number of security 

levels 
 Disadvantage is that the DBMS code must be trusted

 large amount of trusted code may be needed for this 
approach



Security Architectures

 Distributed Architecture
 there are 

 multiple untrusted back-end DBMSs 
 single trusted front-end DBMS

 Communication between the back-end DBMSs 
occurs through the front-end DBMS

 two main approaches
 Partitioned
 Replicated 



Security Architectures

 Partitioned distributed architecture



Security Architectures

 Partitioned distributed architecture
 the trusted front end is responsible for 

 ensuring that the query is directed to the correct 
back-end DBMS 

 performing joins on the data sent from the back-end 
DBMSs. 

 query itself could contain information classified 
higher than the backend DBMSs 
 queries should not be sent to the DBMSs that are 

operating at levels lower than the user.



Security Architectures

 Replicated distributed architecture



Security Architectures

 Replicated distributed architecture
 trusted front end ensures that the query is 

directed to a single DBMS
 only the DBMSs operating at the same level as the 

user are queried
 this approach does not require front-end DBMSs 

to perform the join operations. 
 front end must ensure consistency of the data 

maintained by the different DBMSs


