
DATA SCIENCE IN SECURITY
Chapter 2: Beyond Basic Static Analysis-x86 Disassembly



Introduction

 To thoroughly understand a malicious 
program
 we often need to go beyond basic static analysis
 involves reverse engineering a program’s 

assembly code
 Indeed

 disassembly and reverse engineering lie at the heart 
of deep static analysis of malware samples

Goal here is to introduce you engineering to apply it 
to malware data science



Disassembly Methods

 Disassembly 
 the process of translating malware’s binary code 

into valid assembly language. 
 is no easy feat 

 malware authors employ tricks to thwart reverse 
engineers. 

 Perfect disassembly in the face of deliberate 
obfuscation is an unsolved problem
 E.G. self-modifying code



Disassembly Methods

 Disassembly 
 we must use imperfect methods 

 linear disassembly: 
 involves 

 identifying the contiguous sequence of bytes in the PE file 
 then decoding these bytes. 

 The key limitations :
 it ignores subtleties about how instructions are 

decoded by the CPU 
 it doesn’t account for the various obfuscations



Disassembly Methods

 Disassembly 
 There are other methods 

 we won’t cover here
 used by disassemblers such as IDA Pro. 
 simulate or reason about program execution 
 discover which instructions might reach as a result 

of a series of conditional branches
 can be more accurate than linear disassembly
 it’s far more CPU intensive than linear disassembly 
 less suitable for data science purposes 

 disassembling thousands or even millions of programs.



Basics of x86 assembly 
language
 lowest-level human-readable programming 

language 
 maps closely to the binary instruction format 

of CPU. 
 A line is almost always equivalent to a single 

CPU instruction
 reading disassembled malware x86 code is 

easier than you might think



Basics of x86 assembly 
language
 malwares spend most of time calling into the 

operating system 
 by way of the DLLs
 do most of the real work

 modifying the system registry
 moving and copying files
 communicating via network protocols, and so on. 

 following malware assembly code often involves 
 understanding the ways in which function calls are made 

from assembly 
 understanding what various DLL calls do



Basics of x86 assembly 
language
 CPU Registers

 General-purpose registers 
 are like scratch space for assembly programmers. 
 On a 32-bit system

 each register contains 32, 16, or 8 bits of space



Basics of x86 assembly 
language
 CPU Registers

 General-purpose registers 



Basics of x86 assembly 
language
 CPU Registers

 Stack and Control Flow Registers
 store critical information about the stack which is

 responsible for storing 
 local variables for functions
 arguments passed into functions
 and control information relating to the program control flow

 ESP register points to the top of the stack for the 
currently executing function

 EBP register points to the bottom of the stack for the 
currently executing function

 EIP register contains the memory address of the 
currently executing instruction

 EFLAGS is a status register that contains CPU flags



Basics of x86 assembly 
language
 Arithmetic Instructions



Basics of x86 assembly 
language
 Data Movement Instructions



Basics of x86 assembly 
language
 Stack Instructions

 push instruction
 points the ESP to a new memory address
 copies the value from the argument to that memory 

location

 pop instruction 
 pops the top value off the stack and move it into a 

specified register. 



Basics of x86 assembly 
language
 Stack Instructions

 It is important to understand that stack grows 
downward in memory
 the highest value on the stack is actually stored at 

the lowest address in stack memory
 push instruction decrements the ESP and then 

copies the value into that memory location
 pop instruction copies the top value off of the stack 

and then increments the value of ESP



Basics of x86 assembly 
language
 Control Flow Instructions

 define a program’s control flow
 often expressed through C-style function calls
 are closely related to stack
 the most important are call and ret



Basics of x86 assembly 
language
 Control Flow Instructions

 call instruction calls a function
 Think of it as a function in a higher-level language 

like C

 does two things
 First, it pushes the address of the next instruction onto 

the top of the stack so that 
 Second, it replaces the current value of EIP with the 

value specified by the address operand. 



Basics of x86 assembly 
language
 Control Flow Instructions

 the ret instruction completes a function call

 ret pops the top value off the stack
 places the popped value back into EIP and resumes 

execution

 The jmp is another important control flow 
instruction
 tells the CPU to move to the memory address 

specified as its parameter



Basics of x86 assembly 
language
 Control Flow Instructions

 x86 assembly doesn’t have high-level constructs 
like if, then, else, else if

 branching to an address typically requires two 
instructions: 
 a cmp instruction
 a conditional branch instruction



Basics of x86 assembly 
language
 Control Flow Instructions

 Most conditional branch instructions 
 start with a j
 post-fixed with letters that stand for the condition 

being tested

 E.g. jge tells the program to jump if greater than 
or equal to



Basics of x86 assembly 
language
 Basic Blocks and Control Flow Graphs

 A basic block is a sequence of instructions that we 
know will always execute contiguously
 always ends with either a branching instruction or an 

instruction that is the target of a branch
 always begins with either the first instruction of the 

program or a branch target



Basics of x86 assembly 
language
 Basic Blocks and Control Flow Graphs



Disassembling ircbot.exe

 capstone is an open source disassembly 
library that can disassemble 32-bit x86 binary 
code

Demo time



Factors that limit Static 
analysis
 static analysis has limitations 

 render it less useful in some circumstances
 malware authors can employ certain offensive 

tactics 
 are far easier to implement than to defend against



Factors that limit Static 
analysis
 Packing

 the process by which malware authors compress, 
encrypt, or mangle the bulk of their malicious 
program 
 it appears inscrutable to malware analysts
 When the malware is run, it unpacks itself and then 

begins execution. 
 The obvious way around packing is 

 To actually run the malware in a safe environment
 is also used by benign software installers for 

legitimate reasons



Factors that limit Static 
analysis
 Resource Obfuscation

 obfuscates the way program resources are stored on 
disk, and then deobfuscate them at runtime
 A simple obfuscation would be 

 to add a value of 1 to all bytes in images and strings stored in 
the PE resources section 

 subtract 1 from all of this data at runtime
 one way around resource obfuscation is 

 to run the malware in a safe environment. 
 Another mitigation is to 

 figure out the ways in which malware has obfuscated its 
resources 

 manually deobfuscate them



Factors that limit Static 
analysis
 Anti-disassembly Techniques

 are designed to exploit the inherent limitations of 
disassembly techniques to 
 hide code from malware analysts 
 or make malware analysts think that a block of code 

contains different instructions than it actually does
 there’s no perfect way to defend against them
 In practice, the two main defenses against are 

 to run malware samples in a dynamic environment 
 to manually figure out where anti-disassembly strategies 

manifest within a malware sample and how to bypass 
them



Factors that limit Static 
analysis
 Dynamically Downloaded Data

 involves externally sourcing data and code
 a malware may load code dynamically from an external 

server at malware startup time
 static analysis will be useless against such code

 A malware may source decryption keys from external 
servers at startup time 
 then use these keys to decrypt data or code

 Such techniques are quite powerful
 the only way around them is to acquire the code, data, or 

private keys on the external servers by some means


