
DATA SCIENCE IN SECURITY
Chapter 2: Beyond Basic Static Analysis-x86 Disassembly



Introduction

 To thoroughly understand a malicious 
program
 we often need to go beyond basic static analysis
 involves reverse engineering a program’s 

assembly code
 Indeed

 disassembly and reverse engineering lie at the heart 
of deep static analysis of malware samples

Goal here is to introduce you engineering to apply it 
to malware data science



Disassembly Methods

 Disassembly 
 the process of translating malware’s binary code 

into valid assembly language. 
 is no easy feat 

 malware authors employ tricks to thwart reverse 
engineers. 

 Perfect disassembly in the face of deliberate 
obfuscation is an unsolved problem
 E.G. self-modifying code



Disassembly Methods

 Disassembly 
 we must use imperfect methods 

 linear disassembly: 
 involves 

 identifying the contiguous sequence of bytes in the PE file 
 then decoding these bytes. 

 The key limitations :
 it ignores subtleties about how instructions are 

decoded by the CPU 
 it doesn’t account for the various obfuscations



Disassembly Methods

 Disassembly 
 There are other methods 

 we won’t cover here
 used by disassemblers such as IDA Pro. 
 simulate or reason about program execution 
 discover which instructions might reach as a result 

of a series of conditional branches
 can be more accurate than linear disassembly
 it’s far more CPU intensive than linear disassembly 
 less suitable for data science purposes 

 disassembling thousands or even millions of programs.



Basics of x86 assembly 
language
 lowest-level human-readable programming 

language 
 maps closely to the binary instruction format 

of CPU. 
 A line is almost always equivalent to a single 

CPU instruction
 reading disassembled malware x86 code is 

easier than you might think



Basics of x86 assembly 
language
 malwares spend most of time calling into the 

operating system 
 by way of the DLLs
 do most of the real work

 modifying the system registry
 moving and copying files
 communicating via network protocols, and so on. 

 following malware assembly code often involves 
 understanding the ways in which function calls are made 

from assembly 
 understanding what various DLL calls do



Basics of x86 assembly 
language
 CPU Registers

 General-purpose registers 
 are like scratch space for assembly programmers. 
 On a 32-bit system

 each register contains 32, 16, or 8 bits of space



Basics of x86 assembly 
language
 CPU Registers

 General-purpose registers 



Basics of x86 assembly 
language
 CPU Registers

 Stack and Control Flow Registers
 store critical information about the stack which is

 responsible for storing 
 local variables for functions
 arguments passed into functions
 and control information relating to the program control flow

 ESP register points to the top of the stack for the 
currently executing function

 EBP register points to the bottom of the stack for the 
currently executing function

 EIP register contains the memory address of the 
currently executing instruction

 EFLAGS is a status register that contains CPU flags



Basics of x86 assembly 
language
 Arithmetic Instructions



Basics of x86 assembly 
language
 Data Movement Instructions



Basics of x86 assembly 
language
 Stack Instructions

 push instruction
 points the ESP to a new memory address
 copies the value from the argument to that memory 

location

 pop instruction 
 pops the top value off the stack and move it into a 

specified register. 



Basics of x86 assembly 
language
 Stack Instructions

 It is important to understand that stack grows 
downward in memory
 the highest value on the stack is actually stored at 

the lowest address in stack memory
 push instruction decrements the ESP and then 

copies the value into that memory location
 pop instruction copies the top value off of the stack 

and then increments the value of ESP



Basics of x86 assembly 
language
 Control Flow Instructions

 define a program’s control flow
 often expressed through C-style function calls
 are closely related to stack
 the most important are call and ret



Basics of x86 assembly 
language
 Control Flow Instructions

 call instruction calls a function
 Think of it as a function in a higher-level language 

like C

 does two things
 First, it pushes the address of the next instruction onto 

the top of the stack so that 
 Second, it replaces the current value of EIP with the 

value specified by the address operand. 



Basics of x86 assembly 
language
 Control Flow Instructions

 the ret instruction completes a function call

 ret pops the top value off the stack
 places the popped value back into EIP and resumes 

execution

 The jmp is another important control flow 
instruction
 tells the CPU to move to the memory address 

specified as its parameter



Basics of x86 assembly 
language
 Control Flow Instructions

 x86 assembly doesn’t have high-level constructs 
like if, then, else, else if

 branching to an address typically requires two 
instructions: 
 a cmp instruction
 a conditional branch instruction



Basics of x86 assembly 
language
 Control Flow Instructions

 Most conditional branch instructions 
 start with a j
 post-fixed with letters that stand for the condition 

being tested

 E.g. jge tells the program to jump if greater than 
or equal to



Basics of x86 assembly 
language
 Basic Blocks and Control Flow Graphs

 A basic block is a sequence of instructions that we 
know will always execute contiguously
 always ends with either a branching instruction or an 

instruction that is the target of a branch
 always begins with either the first instruction of the 

program or a branch target



Basics of x86 assembly 
language
 Basic Blocks and Control Flow Graphs



Disassembling ircbot.exe

 capstone is an open source disassembly 
library that can disassemble 32-bit x86 binary 
code

Demo time



Factors that limit Static 
analysis
 static analysis has limitations 

 render it less useful in some circumstances
 malware authors can employ certain offensive 

tactics 
 are far easier to implement than to defend against



Factors that limit Static 
analysis
 Packing

 the process by which malware authors compress, 
encrypt, or mangle the bulk of their malicious 
program 
 it appears inscrutable to malware analysts
 When the malware is run, it unpacks itself and then 

begins execution. 
 The obvious way around packing is 

 To actually run the malware in a safe environment
 is also used by benign software installers for 

legitimate reasons



Factors that limit Static 
analysis
 Resource Obfuscation

 obfuscates the way program resources are stored on 
disk, and then deobfuscate them at runtime
 A simple obfuscation would be 

 to add a value of 1 to all bytes in images and strings stored in 
the PE resources section 

 subtract 1 from all of this data at runtime
 one way around resource obfuscation is 

 to run the malware in a safe environment. 
 Another mitigation is to 

 figure out the ways in which malware has obfuscated its 
resources 

 manually deobfuscate them



Factors that limit Static 
analysis
 Anti-disassembly Techniques

 are designed to exploit the inherent limitations of 
disassembly techniques to 
 hide code from malware analysts 
 or make malware analysts think that a block of code 

contains different instructions than it actually does
 there’s no perfect way to defend against them
 In practice, the two main defenses against are 

 to run malware samples in a dynamic environment 
 to manually figure out where anti-disassembly strategies 

manifest within a malware sample and how to bypass 
them



Factors that limit Static 
analysis
 Dynamically Downloaded Data

 involves externally sourcing data and code
 a malware may load code dynamically from an external 

server at malware startup time
 static analysis will be useless against such code

 A malware may source decryption keys from external 
servers at startup time 
 then use these keys to decrypt data or code

 Such techniques are quite powerful
 the only way around them is to acquire the code, data, or 

private keys on the external servers by some means


