Chapter 3: A brief introduction to dynamic analysis

DATA SCIENCE IN SECURITY

Introduction

- Static analysis
 - focuses on what malware looks like in file form
 - it doesn't allow us to observe malware behavior
- dynamic analysis
 - running malware in a safe, contained environment to see how it behaves
 - we can
 - get around common static analysis hurdles, such as packing and obfuscation
 - gain more direct insight into the purpose of a given malware sample

why use Dynamic analysis?

- consider the problem of packed malware
 - We could try to disassemble it using the static analysis tools
 - This is a laborious process
 - we have to find the location of the obfuscated code in the malware file.
 - we have to find the location of the deobfuscation subroutines.
 - we have to figure out how this deobfuscation procedure works
 - Only then could we begin the actual process of reverse engineering the malicious code

why use Dynamic analysis?

- consider the problem of packed malware
 - A simple yet clever alternative to this process
 - execute the malware in a sandbox: a safe, contained environment.
 - allows it to unpack itself as it would when infecting a real target.
 - we can find out
 - what servers a particular malware binary connects to
 - what system configuration parameters it changes
 - what device I/O (input/output) it attempts to perform

Dynamic analysis for Malware Data Science

- reveals what a malware sample does
 - we can compare it to other malware samples.
 - For example
 - It shows what files malware samples write to disk
 - Can connect malware samples that write similar filenames
 - help us categorize malware samples based on common traits.
 - even identifies malware samples that were authored by the same groups or are part of the same campaigns

Dynamic analysis for Malware Data Science

- is useful for building machine learning—based malware detectors
 - For example
 - observing thousands of dynamic analysis logs
 - a machine can learn that
 - msword.exe launching powershell.exe is malicious
 - msword.exe launching Internet Explorer is harmless

Typical Malware Behaviors

- Modifying the file system
 - writing a device driver to disk
 - changing system configuration files
 - adding new programs to the file system
 - modifying registry keys to ensure the program auto-starts
- Modifying the Windows registry to change the system configuration
 - changing firewall settings
- Loading device drivers
 - loading a device driver that records user keystrokes
- Network actions
 - resolving domain names
 - making HTTP requests

Basic tools for Dynamic analysis

- CuckooBox
- Malwr.ee
- Hybrid-analysis

limitations of Basic Dynamic analysis

- malware authors are aware of CuckooBox and other frameworks
- attempt to circumvent them by
 - detecting execution under CuckooBox
 - making malware fail to execute.
- CuckooBox maintainers are aware of this
 - they try to get around attempts by malware to circumvent CuckooBox

limitations of Basic Dynamic analysis

- might not reveal important malware behaviors
 - even without any circumvention attempts
 - Consider a malware that
 - connects back to a remote server upon execution
 - waits for commands to be issued.
 - look for certain kinds of files on the victim host
 - log keystrokes
 - or turn on the webcam.
 - none of these malicious behaviors will be revealed if remote server
 - sends no commands
 - or is no longer up