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Abstract

Hammerstein–Wiener (H–W) identification problem is investigated under practical con-
siderations for industrial plants. The main consideration in these cases is inability to apply
arbitrary input signals. An algorithm is proposed to identify H–W model for industrial sys-
tems, in the presence of noise and disturbance. The identification problem is changed into
a constrained optimisation problem and is solved by minimising the non-linear functions
modelling error. To improve the efficiency of the proposed method, the known infor-
mation about non-linear functions are used. To make the proposed method applicable
for general systems with hard non-linearities, non-linear functions are described by some
ordered pairs. A pressure control valve that is used for anti-surge protection of an air com-
pressor in the second refinery of South Pars Gas Complex is considered as the case study
to demonstrate the effectiveness of the proposed algorithm. Seventy-five percent of the
gathered data during the time is used for identification and the remaining 25% is used for
verification of the resulted model. Verification of the obtained H–W model showed that
accuracy of the identified model is more than 95%.

1 INTRODUCTION

Accurate modelling and identification of industrial processes is
essential for optimising the performance control. System identi-
fication of such cases could not be done just by conventional lin-
ear identification methods and neglecting the non-linear effects.
Non-linearities are inevitable in most practical engineering sys-
tems which mostly arise from dead-zone and/or saturation of
sensors or actuators. For example, in a Programmable Logic
Controller (PLC), analog Input/Output (I/O) modules limit the
passing signals between their minimum and maximum values.
Control valve actuator is another industrial example with non-
linearities including saturation, dead-zone, or hysteresis.

A famous category of non-linear mathematical models is the
class of block oriented models, which are constructed by inter-
connections of linear dynamic models with static (or memory-
less) non-linearities. ’Hammerstein’ and ’Wiener’ models are two
well known subsets of this category that are formed by series
interconnection of a linear dynamic block and a static non-linear
one [1]. By serialising a Hammerstein and a Wiener model, the
new subset ’Hammerstein–Wiener (H–W)’ is emerged, which
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is the focus of this study. H–W modelling is appropriate for
describing the behaviour of many practical applications such as
continuous stirred tank reactors [2], Quality of Service (QoS)
performance and resource management of software systems [3],
PH neutralisation processes [4], Brushless DC (BLDC) motors
[5], wideband RF transmitters [6], and lead-zinc flotation plant
[7]. Moreover, sensors and actuators with saturation, dead-zone,
and quantisation are modelled by static non-linearities. So each
linear plant combined with these non-linear sensors and actua-
tors can be represented as an H–W model [8]. Control valve is
also an industrial equipment which can be described by block
oriented models [9, 10].

So far, various methods have been used in previous research
articles to identify Hammerstein, Wiener, or H–W models.
Examples of wide ranging methods for the identification of
Hammerstein and Wiener systems are [11–14]. Regarding the
identification of H–W models, the two stage identification algo-
rithm of [15] is one of the earliest methods. The stages included
using the recursive least sum of squares method and calcula-
tion of singular value decomposition of two matrices whose
dimensions are fixed and do not depend on the number of data
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points. The non-linear blocks were assumed to be approximated
by a series of orthogonal functions. Four years later, a blind
approach was presented in [16] to solve the problem, consider-
ing the non-linear blocks as a polynomial. Some researchers also
proposed iterative methods for identification of H–W models.
For example in [17, 18], non-linear functions are approximated
by cubic splines and also the least-squares-based iterative tech-
nique for special case with two-segment polynomial input block
and backlash output block characteristics. Furthermore, there
are frequency based methods which consider a combination of
sinusoids with a random phase as the system input [19], while
some methods use pseudorandom binary sequence (PRBS) sig-
nals [20]. Apart from these methods, the identification prob-
lem is also solved by using refined instrumental variable method
[21], particle swarm optimisation [22], the data filtering-based
recursive generalised extended least squares algorithm [23] and
maximum likelihood method [24].

The objective of this paper is to propose a novel method
to identify H–W model for real word industrial plants. First,
by considering the observable canonical state space realisation
of the linear block, the relationship between the sampled data
and unknown variables are presented in the form of a non-
linear system of equations. Then, the problem of estimating the
parameters of H–W model is reformulated as an optimisation
problem. To investigate the existence and uniqueness of the
solution, number of equations and unknown variables are dis-
cussed about. Moreover, known information about non-linear
functions is taken into account to obtain a unique solution.
Therefore, some equality and inequality constraints are derived
based on the known behaviours of non-linear functions by for-
mulating the non-linear functions and non-equalities related to
used parameters or hyper-parameters. In this regard, different
formulating methods, such as parametric and quantised meth-
ods and non-parametric methods (like Gaussian Process (GP))
were discussed. The constrained optimisation problem should
be solved in the next step to obtain a unique solution for the
identification problem. For this purpose, an iterative Newton
approach is employed to solve the optimisation problem by
minimising a constrained quadratic function that is conducted
at each iteration of the algorithm. Furthermore, the influence
of noise and disturbances on the accuracy of the identified
H–W model is discussed. The proposed identification method
is applied on a case study to verify the effectiveness of the
results.

A pressure control valve (PCV) that is used for anti-surge
protection of an air compressor in the second refinery of South
Pars Gas Complex is considered as the case study. The com-
pressor compresses the dehydrated atmospheric pressure air to
be used as utility and instrument air or source of nitrogen gen-
eration package in refinery. The anti-surge valve is an important
element of the system because it protects the compressor from
working in the surge area. The actuating element of the PCV
applies the control command received from the analog output
module of control system. The actual position of valve is also
sent to the control system through the analog input module. An
appropriate identification method should be used to model the
relation of these signals and verify if the anti-surge valve is prop-

erly protecting the compressor from working in the surge area
[25]. A set of input-output data, measured from an industrial
PCV, is investigated to model its closing behaviour and approve
the proposed identification methods.

The main contributions of this paper are summarised as fol-
lows.

– The identification method is proposed for the general case
with all types of noise and disturbances applied to linear and
non-linear blocks.

– In real-world applications, the known information about the
non-linear functions is used to improve the accuracy of the
identified model.

– Invertibility of non-linear functions is relaxed and any mem-
oryless function, even hard non-linearity, can be considered
for non-linear blocks.

– The proposed method can be generalised to multi-variable
plants.

– The gathered input-output signals may belong to different
time intervals with various initial conditions. Therefore, the
proposed method can be used in applications with different
modes.

This paper was organised as follows. Section 2 illustrates the
structure of the H–W model and the procedure of formulat-
ing the identification problem. In this section, preliminaries and
assumptions for identifiability and uniqueness of the result are
presented. Moreover, H–W identification problem is first for-
mulated for SISO systems, which is also generalised to MIMO
systems. In Section 3, a method is proposed to identify the H–W
model for real-world applications. The proposed method is an
iterative algorithm which utilises the Newton method in combi-
nation with Karush-Kuhn-Tucker (KKT) conditions for solv-
ing the emerged optimisation problem from the H–W model
equations. In Section 4, a PCV is considered as the case study.
Valve actuation system is explained and possible sources of non-
linearities in the H–W model are explained. Moreover, required
steps of the proposed method for identifying the H–W model
for PCV are discussed and the identification results are pre-
sented. Finally, the paper is concluded in Section 5.

Notations. Superscript T stands for matrix transposition.
For each matrix A with independent columns, superscript †

denotes the left pseudo-inverse of matrix A; so that A† is equal
to (AT A)−1AT . Kronecker product of matrices A and B is
shown by A ⊗ B. Moreover, vec (A) indicates the vectorisation
function of matrix A, which converts matrix Am×n to a col-
umn vector x by stacking the columns of matrix A below one
another. In contrast, for vector x with mn entries, [x]m shows
a matrix with m rows, which satisfies vec ([x]m ) = x. An m × n

Matrix where every entry is equal to one is also called ”all-ones
matrix” and is shown by 𝟙m×n; while 𝟘m×n is used to represent
an m × n null matrix (i.e. A matrix, whose all entries are zero).
In also denotes the ”Identity Matrix” of size n. For the MIMO
function f , notation ▽x f (x ) denotes the gradient of function
f with respect to its input, which is the extension of partial

derivation in SISO functions f , showing by
𝜕 f

𝜕u
.
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FIGURE 1 Block diagram of H–W model

Definition ([26]). “Extended Identity Matrix”  (m,n)(x, y, z )
is an m × n sparse matrix with z non-zero elements (equal to
1), where 0 ≤ x ≤ m, 0 ≤ y ≤ n, and 0 ≤ z ≤ min{(m − x ), (n −
y)}. The structure of  which simplifies the formulation of iden-
tification problem is shown in (1).


(m,n)(x, y, z

)
=

⎡⎢⎢⎢⎣
𝟘x×y 𝟘x×z 𝟘x×n−z−y

𝟘z×y Iz 𝟘z×n−z−y

𝟘(m−z−x )×y 𝟘(m−z−x )×z 𝟘(m−z−x )×(n−z−y)

⎤⎥⎥⎥⎦. (1)

2 PROBLEM FORMULATION

In this section, a method is proposed to formulate the H–W
identification problem for the system shown in Figure 1. The
model shown in Figure 1 is the most general form of H–W
model in which all types of noise and disturbances are consid-
ered [26]. As shown in Figure 1, u, y, and x represent the input,
output and state vectors respectively. 𝜂 and e represent the noise
and/or disturbance signals added to the intermediate signals f

and g. Moreover, 𝜇 indicates the external disturbance applied to
the linear dynamic block. The input (u) and output (y) signals can
be measured through the time, while the intermediate signals f

and g can not be measured. The shown signals in Figure 1 during
the time {1, 2,… , N } are the vectors given in (2) and assumed to
be independent and limited.

u :=

⎡⎢⎢⎢⎣
u1

⋮

uN

⎤⎥⎥⎥⎦, y :=

⎡⎢⎢⎢⎣
y1

⋮

yN

⎤⎥⎥⎥⎦, x :=

⎡⎢⎢⎢⎣
x1

⋮

xN

⎤⎥⎥⎥⎦, (2a)

f :=

⎡⎢⎢⎢⎣
f1

⋮

fN

⎤⎥⎥⎥⎦, g :=

⎡⎢⎢⎢⎣
g1

⋮

gN

⎤⎥⎥⎥⎦.

eu :=

⎡⎢⎢⎢⎣
eu1

⋮

euN

⎤⎥⎥⎥⎦, ey :=

⎡⎢⎢⎢⎣
ey1

⋮

eyN

⎤⎥⎥⎥⎦, 𝜇 :=

⎡⎢⎢⎢⎣
𝜇1

⋮

𝜇N

⎤⎥⎥⎥⎦, (2b)

𝜂 :=

⎡⎢⎢⎢⎣
𝜂1

⋮

𝜂N

⎤⎥⎥⎥⎦, e :=

⎡⎢⎢⎢⎣
e1

⋮

eN

⎤⎥⎥⎥⎦.

At sampling time t , the state-space equations of the linear
dynamic block in Figure 1 are expressed as (3).[

xt+1

g−1
(
yt − ey

t

)] =

[
A B

C D

][
xt

f (ut + eut ) + 𝜂t

]
+

[
𝜇t

et

]
.

(3)
It should be noted that the considered system may be either

SISO or MIMO. At sampling time t , dimension of xt is n and
dimensions of ft and gt are respectively n f and ng, which are
known constants. If the investigated system is SISO, n f and ng

are equal to 1 (i.e. f and g are N × 1 vectors.).
For a real-world application, lots of equivalent H–W mod-

els with identical input-output behaviour exist. For instance, if
the input non-linear function is multiplied to a constant num-
ber and the state space matrices B and D of linear dynamic
block are divided to the same number, the models are equiva-
lent. Hence, identifiability of real-world applications to distin-
guish static non-linearities f and g from the linear function is
an important issue in the identification of H–W models. The
identifiability conditions depend on both input-output signals (u
and y) and characteristics of linear dynamic block and non-linear
static blocks. Therefore, every identification method for H–W
model should contain some uniqueness techniques and iden-
tifiability assumptions. In some research articles such as [16],
minimality assumption is considered to avoid pole–zero cancel-
lations which makes the parametrisation non-unique and guar-
antee the identifiability.

In this work, to avoid equivalent models with different
parameters, observable canonical state space realisation is con-
sidered for the linear block (A, B,C, D) as well as the minimality
assumption. Therefore, as it is shown in (4), the linear block
could be uniquely identified by parameter vectors a, b and d .

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 … 0 −an

1 0 … 0 −an−1

0 1 … 0 −an−2

⋮ ⋮ ⋱ ⋮ ⋮

0 0 … 1 −a1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
→ a =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

an

an−1

an−2

⋮

a1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (4a)

b = vec (B), (4b)

d = vec (D). (4c)

The relation between matrix A and vector a of (4a) is given in
(5), considering the definition of extended identity matrix.

A = 
(n,n)(1, 0, n − 1) − 

(1,n)(0, n − 1, 1) ⊗ a. (5)

Matrix C can also be rewritten as

C =

⎡⎢⎢⎢⎣
0 … 0 1

⋮ ⋱ ⋮ ⋮

0 … 0 1

⎤⎥⎥⎥⎦ =  (1,n)(0, n − 1, 1) ⊗ 𝟙ng×1. (6)
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Remark 1. For SISO systems, B is a single-column vector and
D is a scalar. Therefore, b = B and d = D. Moreover, C =
[0 … 0 1] =  (1,n)(0, n − 1, 1).

In the formulation of this paper, some pre-known informa-
tion about the practical aspects of the investigated plant should
be available to guarantee the uniqueness of the result. The fol-
lowing assumptions are also considered for the identifiability of
the proposed method.

Assumption 1. The input and output noise signals (eu and ey)
are considered to be bounded with sufficiently small amplitude.

A non-linear function can be represented either by a para-
metric function, or by a set of ordered pairs of the function.
Due to the ability of ordered pairs in representing complicated
non-linear functions, even functions with hard non-linearities,
this paper considers sets of ordered pairs for representation of
non-linear functions f and g. It should be noted that using more
ordered pairs, represents the function in more details.

Assumption 2. The values or range of variations of some
ordered pairs of non-linear functions are assumed to be
known.

Assumption 3. Some information about the range of non-
linear function or the maximum and minimum slopes of the
non-linear functions in the whole domain (or an interval) is
assumed to be known.

It is worth noting that the information mentioned in
Assumption 2 and Assumption 3 are used to avoid unaccept-
able solutions in the presence of noise and disturbance. The
more information about non-linear functions is used, the more
efficient model is identified. In fact, the system of equations
describing the H–W identification is under-determined since
number of equations is less than unknowns. Number of equa-
tions is equal to the number of samples (N ), while number of
unknowns in a SISO system is 2N + 2n + 1. If the input signal
(u) is rich in harmonics, the values of u will be repeated in many
order pairs. Therefore, if the input noise signal (eu) is sufficiently
small, non-linear function f corresponding to these values of
u will be almost similar and the number of unknowns will be
decreased. But in industrial plants that input signal u is not usu-
ally rich of harmonics, identifiability is much more complicated.
A novel method is presented herein to solve the identification
problem of H–W models for industrial plants.

In this method, an auxiliary vector u′ is considered. u′ is a
known vector with the elements distributed in the domain of
u. For instance, if the distribution is uniform, u′ will be evenly
spaced values within the domain of u. f ′ is also defined as the
function output that is related to u′ (i.e. f ′ = fH (u′ )). Using the
defined vectors f ′ and g′ as unknowns, a system of non-linear
equations is determined which will be solved by the method pre-
sented in the next section. When the auxiliary unknowns f ′ and
g′ are determined, unknown values f can be estimated using

interpolation methods. Interpolation is a method of construct-
ing new data points within the range of a discrete set of known
data points [27]. In this work, ordered pairs of the non-linear
functions are written and interpolated in the following form.

f = Ω f f ′ + 𝜖 f , (7a)

g = Ωgg
′ + 𝜖g. (7b)

To consider the input range and also interpolation or mod-
elling errors, 𝜖 f and 𝜖g are added to the results. For instance, if
the function f (u) is represented by GP, f and f ′ are functions
output related to u and u′, respectively. Therefore, 𝜖 f has Gaus-

sian distribution (i.e. 𝜖 f ∼ N (0, K ′′
f
− K ′

f
K−1

f
K ′

f

T
)) and matrix

Ω f = K ′
f
K−1

f
, where K f , K ′

f
and K ′′

f
represents kernel matrices

k(u′, u′ ), k(u′, u) and k(u, u), respectively [28]. The flexibility of
this method is that f ′ should not be only fH (u′ ) and can also
be considered as Gaussian Process (GP) non-parametric func-
tions or even it can be coefficients of a limited order polynomial
which models the function. Moreover, the input space of the
functions may be quantised and the outputs are considered to
be piecewise constant signals (i.e. outputs in each quantisation
level is assumed to be equal).

Remark 2. Choosing the length of vector u′, there is a trade
off between number of solutions and accuracy of H–W identi-
fication. In fact, for smaller number of elements, identification
results will be converged to a unique solution; but the accuracy
will be degraded. So, length of vector u′ will be selected large
enough (fewer than N ) to maintain the sufficient accuracy of the
H–W model and additional information about the behaviour of
the plant will be applied in order to guarantee the uniqueness of
the solution as well.

The effect of the input and output measurement noise sig-
nals are also considered in the terms 𝜖 f and 𝜖g, respectively.
If the measurement noise has sufficiently small amplitude, first
order Taylor approximation will be acceptable and distributions
of 𝜖 f and 𝜖g are multiples of the distribution of the measurement
noise plus interpolation error.

As it is described in [26], the function derivatives could also
be approximated as a constant matrix multiplied by f ′ or g′.
For each input sample, the derivative can be approximated
according to its distances to the nearest element of u′ in each
side as

𝜕 f

𝜕u
(u) ≈

f (u +△u1) − f (u −△u2)

△u1 +△u2
.

In the rest of this section, the problem formulation is divided
in two parts. First, equations that describe the relationship
between signals and parameters of the H–W model will be
given for SISO systems. Then the problem formulation will be
extended to MIMO systems.
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2.1 Problem formulation of SISO systems

If the vector of unknown variables is defined as 𝛼[1] =⎡⎢⎢⎢⎢⎢⎣

x

f ′

g′

𝜂 + 𝜖 f

⎤⎥⎥⎥⎥⎥⎦
, the following formulation given in Theorem 1 will

be obtained.

Theorem 1. For the SISO H–W model shown in Figure 1, system of

linear equations Γ[1]𝛼[1] − 𝛽[1] = 𝜗 with

𝛽[1] =

⎡⎢⎢⎢⎢⎣
m𝜇

me + m𝜖g

m𝜂 + m𝜖 f

⎤⎥⎥⎥⎥⎦
, (8a)

𝜗 =

⎡⎢⎢⎢⎢⎣
𝜇 − m𝜇

e − me + 𝜖g − m𝜖g

𝜂 − m𝜂 + 𝜖 f − m𝜖 f

⎤⎥⎥⎥⎥⎦
, (8b)

Γ[1] =

⎡⎢⎢⎢⎢⎢⎣

Γ
[1]
A

Γ
[1]
B
Ω f 𝟘n(N−1)×N Γ

[1]
B

Γ
[1]
C

Γ
[1]
D
Ω f Ωg Γ

[1]
D

𝟘N×nN 𝟘N×N 𝟘N×N IN

⎤⎥⎥⎥⎥⎥⎦
, (8c)

describes the relationship between the signals and parameters, where m𝜂 ,

me, m𝜇, m𝜖 f
, and m𝜖g

correspondingly denote the mean values of Gaussian

signals 𝜂, e, 𝜇, 𝜖 f , and 𝜖g, and block matrices Γ
[1]
A

, Γ
[1]
B

, Γ
[1]
C

, and Γ
[1]
D

are expressed as

Γ
[1]
A

= 
(N−1,N )(0, 1, N − 1) ⊗ In (9a)

− 
(N−1,N )(0, 0, N − 1) ⊗ A,

Γ
[1]
B

= − (N−1,N )(0, 0, N − 1) ⊗ b, (9b)

Γ
[1]
C

= −IN ⊗  (1,n)(0, n − 1, 1), (9c)

Γ
[1]
D

= −d IN . (9d)

Proof. Considering vector definitions (2), one can rewrite Equa-
tion (3) at time t as

xt+1 − Axt − B ft − B𝜂t = 𝜇t , (10a)

gt −Cxt − D ft − D𝜂t = et . (10b)

Using the definition ”extended identity matrix”, it can be veri-
fied that considering the block matrices Γ

[1]
A

, Γ
[1]
B

, Γ
[1]
C

, and Γ
[1]
D

in (9), Equations (10) will be rewritten as

⎡⎢⎢⎣
Γ

[1]
A

Γ
[1]
B

𝟘(N−1)n×N Γ
[1]
B

Γ
[1]
C

Γ
[1]
D

IN Γ
[1]
D

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

x

f

g

𝜂

⎤⎥⎥⎥⎥⎥⎦
=

[
𝜇

e

]
. (11)

By replacing f and g by the right hand side of Equations (7)
and also adding 𝜂 + 𝜖 f to both sides of (11) to consider the
noise and disturbance signals in 𝜗, system of linear equations
Γ[1]𝛼[1] − 𝛽[1] = 𝜗 with the parameters given in (8) and (9) will
be determined. □

Remark 3. In the system of linear equations given in Theorem 1,
the block matrices (9) and hence the matrix Γ[1] is independent
from 𝛼[1]. Moreover, the values of measured inputs and outputs
are used in calculating the elements of Ω f and Ωg.

One may consider a different representations and define

unknown variables as
[
aT bT d

]T
to drive another formulation,

given in Theorem 2. It is important to mention that both sys-
tems of equations in Theorem 1 and Theorem 2 are the same
(since 𝜗 is identical in both theorems), but with different repre-
sentations and unknown variables definition.

Theorem 2. For the SISO H–W model shown in Figure 1, system

of linear equations Γ[2]𝛼[2] − 𝛽[2] = 𝜗 describes the relationship between

the H–W model signals and parameters, considering 𝜗 defined by (8b) and

𝛼[2] =
[
aT bT d

]T
, where 𝛽[2] is defined as (13) and Γ[2] is

Γ[2] =

⎡⎢⎢⎢⎢⎢⎣

Γ
[2]
a Γ

[2]
b

𝟘n(N−1)×1

𝟘N×n 𝟘N×n −
[
Ω f f ′ + 𝜖 f + 𝜂

]
𝟘N×n 𝟘N×n 𝟘N×1

⎤⎥⎥⎥⎥⎥⎦
, (12a)

where

Γ
[2]
a =

(


(N−1,N )(0, 0, N − 1) ⊗ 
(1,n)(0, n − 1, 1)

)
x ⊗ In,

(12b)

Γ
[2]
b

= −
(


(N−1,N )(0, 0, N − 1)
(
Ω f f ′ + 𝜖 f + 𝜂

))
⊗ In.

(12c)

𝛽[2] =

⎡⎢⎢⎢⎢⎢⎢⎣

(


(N−1,N ) (0, 1, N − 1) ⊗ In −
(N−1,N ) (0, 0, N − 1)

⊗
(n,n) (1, 0, n − 1)

)
x + m𝜇

−�gg
′ +

(
IN ⊗ 

(1,n) (0, n − 1, 1)
)

x + me + m𝜀g

m𝜂 + m𝜀 f
− 𝜂 − 𝜀 f

⎤⎥⎥⎥⎥⎥⎥⎦
(13)



6 ESMAEILANI ET AL.

Proof. Let us rewrite the first equation of Theorem 1 as Γ
[1]
A

x +

Γ
[1]
B
Ω f f ′ + Γ

[1]
B

(𝜂 + 𝜖 f ) − 𝜇 = 0. This equation can be rewrit-
ten as

Γ
[1]
A

x + Γ
[1]
B
Ω f f ′ + Γ

[1]
B

(𝜂 + 𝜖 f ) − 𝜇

= Γ
[1]
A

x + Γ
[1]
B

(Ω f f ′ + 𝜖 f + 𝜂) − 𝜇

= Γ
[1]
A

x + Γ
[1]
B

( f + 𝜂) − 𝜇 = 0.

Substituting (5) in (9a), the following equation will be resulted
for Γ

[1]
A

x.

Γ
[1]
A

x =

[


(N−1,N )(0, 1, N − 1) ⊗ In

−
(N−1,N )(0, 0, N − 1) ⊗ 

(n,n)(1, 0, n − 1)
]

x

+
(


(N−1,N )(0, 0, N − 1) ⊗ 
(1,n)(0, n − 1, 1) ⊗ a

)
x.

The right hand side of this equation contains two parts. The

first part is not related to 𝛼[2] =
[
aT bT d

]T
and can be con-

sidered in 𝛽[2]; while vector a is seen in the second part.
Using the properties of Kronecker product and vectorisation
operator (vec (.)), it can be verified that for any three matri-
ces P , Q, and R with compatible dimensions that matrix mul-
tiplication PQR is defined, vec (PQR) = (RT ⊗ P )vec (Q) is sat-
isfied [29]. Therefore, defining matrices P := a, Q := xT , and
R := ( (N−1,N )(0, 0, N − 1) ⊗  (1,n)(n − 1, 0, 1))T , the follow-
ing equations are satisfied.(


(N−1,N )(0, 0, N − 1) ⊗ 
(1,n)(n − 1, 0, 1) ⊗ a

)
x

= vec
(
a xT

(


(N,N−1)(0, 0, N − 1) ⊗ 
(n,1)(0, n − 1, 1)

))
=

((


(N−1,N )(0, 0, N − 1) ⊗ 
(1,n)(0, n − 1, 1)

)
x ⊗ In

)
a.

Moreover, for Γ
[1]
B

( f + 𝜂), the following equations hold.

Γ
[1]
B

( f + 𝜂) = −
(


(N−1,N )(0, 0, N − 1) ⊗ b
)

( f + 𝜂)

= − vec
(
b ( f + 𝜂)T 

(N,N−1)(0, 0, N − 1)
)

= −
(


(N−1,N )(0, 0, N − 1)( f + 𝜂) ⊗ In

)
b.

Similarly, other coefficients from the second equation of The-
orem 1 can be calculated as Γ

[1]
D

( f + 𝜂) = −d ( f + 𝜂). Other
remaining parts of the equations could be seen in 𝛽[2]. □

2.2 Problem formulation of MIMO systems

One of the main contributions of this paper is the ability of the
proposed method to formulate multi-variable plants in which

number of signals passing between linear and non-linear blocks
are not necessarily equal. Here, the problem formulation is
adapted for MIMO systems.

Proposition 1. System of linear equations Γ[1]𝛼[1] − 𝛽[1] = 𝜗
describes the relationship between signals and parameters of the H–W

model shown in Figure 1, with

𝛼[1] =

⎡⎢⎢⎢⎢⎢⎣

x

f ′

g′

𝜂 + 𝜖 f

⎤⎥⎥⎥⎥⎥⎦
, 𝛽[1] =

⎡⎢⎢⎢⎢⎣
m𝜇

me + m𝜖g

m𝜂 + m𝜖 f

⎤⎥⎥⎥⎥⎦
, (15a)

𝜗 =

⎡⎢⎢⎢⎢⎣
𝜇 − m𝜇

e − me + 𝜖g − m𝜖g

𝜂 − m𝜂 + 𝜖 f − m𝜖 f

⎤⎥⎥⎥⎥⎦
, (15b)

Γ[1] =

⎡⎢⎢⎢⎢⎢⎣

Γ
[1]
A

Γ
[1]
B
Ω f 𝟘n(N−1)×ng′N Γ

[1]
B

Γ
[1]
C

Γ
[1]
D
Ω f Ωg Γ

[1]
D

𝟘n f N×nN 𝟘n f N×n f ′N 𝟘n f N×ng′N In f N

⎤⎥⎥⎥⎥⎥⎦
, (15c)

where m𝜂 , me, m𝜇, m𝜖 f
, and m𝜖g

correspondingly denote the mean values

of Gaussian signals 𝜂, e, 𝜇, 𝜖 f , and 𝜖g, and block matrices Γ
[1]
A

, Γ
[1]
B

,

Γ
[1]
C

, and Γ
[1]
D

are expressed as

Γ
[1]
A

= 
(N−1,N )(0, 1, N − 1) ⊗ In (16a)

− 
(N−1,N )(0, 0, N − 1) ⊗ A,

Γ
[1]
B

= − (N−1,N )(0, 0, N − 1) ⊗ B, (16b)

Γ
[1]
C

= −IN ⊗C = −IN ⊗ 
(1,n)(0, n − 1, 1) ⊗ 𝟙ng×1, (16c)

Γ
[1]
D

= −IN ⊗ D. (16d)

Proof. Similar to the proof of Theorem 1 and using and proper-
ties of extended identity matrix given in Appendix 1 of [26]. □

Moreover, if one considers unknown variables as[
aT bT d T

]T
, the formulation given in Proposition 2 will

be obtained.

Proposition 2. Considering 𝛼[2] =
[
aT bT d T

]T
and 𝜗 defined

by (15b), system of linear equations Γ[2]𝛼[2] − 𝛽[2] = 𝜗 describes the

relationship between the H–W model signals and parameters shown in
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Figure 1, where Γ[2], an independent matrix from 𝛼[2], is defined as

Γ[2] =

⎡⎢⎢⎢⎢⎢⎣

Γ
[2]
a Γ

[2]
b

𝟘n(N−1)×ngn f

𝟘ngN×n 𝟘ngN×n f n Γ
[2]
d

𝟘n f N×n 𝟘n f N×n f n 𝟘n f N×n f ng

⎤⎥⎥⎥⎥⎥⎦
, (17a)

where

Γ
[2]
a =

(


(N−1,N )(0, 0, N − 1) ⊗ 
(1,n)(0, n − 1, 1)

)
x ⊗ In,

(17b)

Γ
[2]
b

= −

(


(N−1,N )(0, 0, N − 1)
[
Ω f f ′ + 𝜖 f + 𝜂

]T

n f

)
⊗ In,

(17c)

Γ
[2]
d

= −
[
Ω f f ′ + 𝜖 f + 𝜂

]T

n f
⊗ Ing

. (17d)

and 𝛽[2] is defined as (18).

𝛽[2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(


(N−1,N ) (0, 0, N − 1) ⊗ In − 
(N−1,T ) (0, 1, N − 1)

⊗
(n,n) (1, 0, n − 1)

)
x + m𝜇

−�gg
′ +

(
IN ⊗ 

(1,n) (0, n − 1, 1) ⊗ 𝟙ng×1

)
x + me + m𝜀g

m𝜂 + m𝜀 f
− 𝜂 − 𝜀 f

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(18)

Proof. Similar to the proof of Theorem 2. □

2.3 Pre-known information about
non-linear functions

As it was previously discussed, lots of equivalent H–W models
exist for a real-world application. Herein, the pre-known infor-
mation about the non-linear functions are used to limit the solu-
tion of H–W identification problem to the desired one. The fol-
lowing shows how this information can be used in the formula-
tion of non-linear functions.

One of the pre-known information about non-linear func-
tions f and g may be their output ranges in all or some of their
points. These points may be not involved in the measured set
but they also could be formulated by the linear transforma-
tion of function parameters ( f ′ and g′) similar to equations (7).
Therefore, these types of pre-known information may be writ-
ten in the form of inequality constraints (19).

Γ
[1]
ineq f

f ′ − 𝛽
[1]
ineq f

≤ 0 (19a)

Γ
[1]
ineqg

g′ − 𝛽
[1]
ineqg

≤ 0 (19b)

Limitation in the slope of non-linear functions, that may be
different in various ranges, may be another pre-known informa-
tion about non-linear functions. For SISO systems, the key note
in formulation of these information is to approximate the slope
in each point with

𝜕 f

𝜕u
(u) ≈

f (u +△u) − f (u −△u)

2 △ u
.

It should be noted that Δu in the above approximation refers
to the distance between elements of the auxiliary vector u′.
Obviously, the smaller Δu is (corresponded to larger number
of elements of u′), the more precise approximation of df ∕du

is resulted. However, the uniqueness of the result may be lost
if there is not enough information about the behaviour of
the plant.

By formulating the values of functions in some points with
parameters and approximating the slope, another set of con-
straints in the form of (20) will be obtained which assures the
non-linear functions perform the desired behaviour.

Γ
[2]
ineq f

f ′ − 𝛽
[2]
ineq f

≤ 0 (20a)

Γ
[2]
ineqg

g′ − 𝛽
[2]
ineqg

≤ 0 (20b)

It should be noted that matrices Γ
[.]
ineq f

and Γ
[.]
ineqg

and vec-

tors 𝛽
[.]
ineq f

and 𝛽
[.]
ineqg

in constraints (19) and (20) do not depend

on f ′ and g′. Moreover, the acceptable range of set of param-
eters in f ′ and g′ should satisfy the above linear inequalities.
It should also be noticed that the terms 𝜖 f and 𝜖g in (7) are
inserted to consider the effect of measurement noise (eu and
ey) on non-linear functions f and g. The range and distribu-
tion of these terms are related to both measurement noise sig-
nals distribution and also the behaviour of non-linear functions.
The relationship may be approximated as (21), using the first
order approximation of Taylor expansion, where the matrices
△ f ( f ′ ) and △g(g

′ ) contain the approximations of function
slope in all points.

𝜖 f ≈ △ f ( f ′ )e f ≈ Γ∗
f
(eu ) f ′ (21a)

𝜖g ≈ △g(g
′ )eg ≈ Γ∗g (ey )g′ (21b)

To ensure the noise and disturbance signal, absolute levels
may be limited according to assumptions and by considering
(21), following equations could be written.

△
[1]
𝜗

𝜗 − 𝛽
[3]
ineq𝜗 ≤ 0 (22a)

△
[2]
𝜗

𝜗 + Γ
[3]
ineq f

f ′ − 𝛽
[3]
ineq f

≤ 0 (22b)

△
[3]
𝜗

𝜗 + Γ
[3]
ineqg

g′ − 𝛽
[3]
ineqg

≤ 0 (22c)
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One can combine the constraints presented in (19), (20) and
(22) and rewrite them in the form of △𝜗𝜗 +△ f f ′ +△gg

′ −
𝛽ineq ≤ 0.

3 PROPOSED IDENTIFICATION
METHOD

In this section, a constrained optimisation method is proposed
for solving the identification problem. The goal of optimisation
methods may be minimising or maximising a real function, and
the optimisation problem may be solved subject to inequality
or equality constrains. One of the subcategories of optimisation
problem is finding the least square of residuals. The residuals
may be the difference between an observed value, and the fit-
ted value provided by a model and may be caused by entered
noise to the model. Least-squares approximate the solution of
overdetermined equations and is a standard approach in regres-
sion analysis and identification. If the optimum solution of opti-
misation problem is an optimum solution within a neighbour-
ing set of candidate solutions, it will be called a local optimum.
While if this is the optimal solution among all possible solutions,
not just those in a particular neighbourhood of values, it will be
called the global optimum.

In this section, we first propose a lemma which will be used
to solve the H–W identification problem. Then an optimisation
procedure for the identification problem will be offered in a the-
orem.

Lemma 1. Consider the vectors 𝛼 =
[
𝛼

[1]T
n 𝛼

[2]T
n

]T

, 𝛽 =[
𝛽

[1]T
n 𝛽

[2]T
n

]T

and 𝜗(𝛼) = Γ[1]𝛼[1] − 𝛽[1] = Γ[2]𝛼[2] − 𝛽[2],

where elements of Γ[1] and 𝛽[1] are functions of 𝛼[2] and elements of Γ[2]

and 𝛽[2] are functions of 𝛼[1]. The obtained 𝛼∗ by the following iterative

equation will be a local minimum of the scaler function 𝜗(𝛼)T 𝜗(𝛼) if[
Γ[1] Γ[2]

]
is a column independent matrix.

Γ
[1]
n

T
(

In𝜗
− Γ

[2]
n Γ

[2]
n

†
)(

Γ
[1]
n 𝛼

[1]
n+1 − 𝛽

[1]
n

)
= 𝟘n

𝛼[1]×1, (23a)

Γ
[2]
n

T
(

In𝜗
− Γ

[1]
n Γ

[1]
n

†
)(

Γ
[2]
n 𝛼

[2]
n+1 − 𝛽

[2]
n

)
= 𝟘n𝛼[2]×1. (23b)

Proof. First, it needs to be reminded that 𝜗T (𝛼)𝜗(𝛼) is a scaler
function and the size of vectors and matrices are

n𝜗(𝛼) = n𝛽[1] = n𝛽[2] = n𝛽 ,

n𝛼 ≤ n𝛽 ,

Γ[1] ∈ ℝn𝛽×n𝛼[1] ,

Γ[2] ∈ ℝn𝛽×n𝛼[2] .

To apply the multivariate Gauss-Newton method, Jacobian
of 𝜗(𝛼) should be first calculated as follows.

J𝜗 (𝛼) =
[
J𝜗 (𝛼[1] ) J𝜗 (𝛼[2] )

]
=

[
Γ[1] Γ[2]

]
. (24)

Then the local minimum of 𝜗T (𝛼)𝜗(𝛼) could be calculated by
the iterative equation

𝛼n+1 = 𝛼n −
(

J𝜗 (𝛼n )T
J𝜗 (𝛼n )

)−1
J𝜗 (𝛼n )T 𝜗(𝛼n ), (25)

where 𝜗(𝛼n ) is the left pseudo-inverse of the Jacobian matrix.
The left pseudo-inverse of a matrix can be defined if it is full
column rank, that is the matrix columns are linearly indepen-
dent. In this case, J𝜗 (𝛼n )T

J𝜗 (𝛼n ) is a full rank matrix and its
inverse is existed. The dimension of the Jacobian matrix is equal
to n𝛽 × n𝛼 , so n𝛼 ≤ n𝛽 and rank(J𝜗 (𝛼n )) = n𝛼 are the necessary
conditions to have the left pseudo-inverse. To avoid calculating

the matrix inversion (J𝜗 (𝛼n )T
J𝜗 (𝛼n ))

−1
in (25), both sides of the

equation are multiplied by (J𝜗 (𝛼n )T
J𝜗 (𝛼n )) to obtain the follow-

ing equation.

J𝜗 (𝛼n )T
J𝜗 (𝛼n )𝛼n+1 = J𝜗 (𝛼n )T

J𝜗 (𝛼n )𝛼n − J𝜗 (𝛼n )T 𝜗(𝛼n ).

By replacing the Jacobian matrix from (24), the equation will be
changed to

⎡⎢⎢⎢⎣
Γ

[1]T
n Γ

[1]
n Γ[1]T

nΓ
[2]
n

Γ
[2]T
n Γ

[1]
n Γ[2]T

nΓ
[2]
n

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
𝛼

[1]
n+1

𝛼
[2]
n+1

⎤⎥⎥⎦

=
⎡⎢⎢⎣
Γ

[1]T
n Γ

[1]
n Γ[1]T

nΓ
[2]
n

Γ[2]T
nΓ

[1]
n Γ[2]T

nΓ
[2]
n

⎤⎥⎥⎦
⎡⎢⎢⎣
𝛼

[1]
n

𝛼
[2]
n

⎤⎥⎥⎦
−
⎡⎢⎢⎣
Γ[1]T

n

Γ
[2]T
n

⎤⎥⎥⎦𝜗(𝛼n ).

Moreover, the following equation will be calculated, if 𝜗(𝛼n ) is
replaced by its equivalent value.

⎡⎢⎢⎢⎣
Γ[1]T

nΓ
[1]
n Γ[1]T

nΓ
[2]
n

Γ
[2]
n

T

Γ
[1]
n Γ

[2]T
n Γ

[2]
n

⎤⎥⎥⎥⎦𝛼n+1 =
⎡⎢⎢⎣
Γ[1]T

nΓ
[1]
n 0

0 Γ
[2]T
n Γ

[2]
n

⎤⎥⎥⎦𝛼n

+
⎡⎢⎢⎣

0 Γ[1]T
n

Γ
[2]T
n 0

⎤⎥⎥⎦𝛽n.

(26)
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Equation (26) will be rewritten in the following form, by mul-

tiplying both sides of (26) to
⎡⎢⎢⎣

(Γ
[1]
n

T

Γ
[1]
n )−1 𝟘n𝛼[1]×n𝛼[2]

𝟘n
𝛼[2]×n

𝛼[1] (Γ
[2]
n

T

Γ
[2]
n )−1

⎤⎥⎥⎦.

⎡⎢⎢⎢⎣
In

𝛼[1] Γ
[1]
n

†
Γ

[2]
n

Γ
[2]
n

†
Γ

[1]
n In𝛼[2]

⎤⎥⎥⎥⎦𝛼n+1 =
⎡⎢⎢⎣

In
𝛼[1] 𝟘n

𝛼[1]×n
𝛼[2]

𝟘n𝛼[2]×n𝛼[1] In𝛼[2]

⎤⎥⎥⎦𝛼n

+

⎡⎢⎢⎢⎣
𝟘n𝛼[1]×n𝜗

Γ
[1]
n

†

Γ
[2]
n

†
𝟘n𝛼[2]×n𝜗

⎤⎥⎥⎥⎦𝛽n.

It should be noted that
⎡⎢⎢⎣

In𝛼[1] 𝟘n𝛼[1]×n𝛼[2]

𝟘n𝛼[2]×n𝛼[1] In𝛼[2]

⎤⎥⎥⎦ in the above

equation is identical to I(n𝛼[1]+n𝛼[2] ).
Moreover, by multiplying both equation sides of previous

equation to

⎡⎢⎢⎢⎣
In𝛼[1] −Γ

[1]
n

†
Γ

[2]
n

−Γ
[2]
n

†
Γ

[1]
n In𝛼[2]

⎤⎥⎥⎥⎦ ,

the set of Equations (27) will be obtained which describes two
sets of equations for calculating each of 𝛼

[1]
n+1 and 𝛼

[2]
n+1.

⎡⎢⎢⎢⎣
In

𝛼[1] − Γ
[1]
n

†
Γ

[2]
n Γ

[2]
n

†
Γ

[1]
n 𝟘n

𝛼[1]×n
𝛼[2]

𝟘n
𝛼[2]×n

𝛼[1] In
𝛼[2] − Γ

[2]
n

†
Γ

[1]
n Γ

[1]
n

†
Γ

[2]
n

⎤⎥⎥⎥⎦𝛼n+1

=

⎡⎢⎢⎢⎣
In𝛼[1] −Γ

[1]
n

†
Γ

[2]
n

−Γ
[2]
n

†
Γ

[1]
n In𝛼[2]

⎤⎥⎥⎥⎦𝛼n

+

⎡⎢⎢⎢⎣
−Γ

[1]
n

†
Γ

[2]
n Γ

[2]
n

†
Γ

[1]
n

†

Γ
[2]
n

†
−Γ

[2]
n

†
Γ

[1]
n Γ

[1]
n

†

⎤⎥⎥⎥⎦𝛽n.

(27)

The first set of Equations in (27) is(
In𝛼[1] − Γ

[1]
n

†
Γ

[2]
n Γ

[2]
n

†
Γ

[1]
n

)
𝛼

[1]
n+1 =

[
In

𝛼[1] −Γ
[1]
n

†
Γ

[2]
n

]
𝛼n

+
[
−Γ

[1]
n

†
Γ

[2]
n Γ

[2]
n

†
Γ

[1]
n

†
]
𝛽n,

which can be rewritten as the following equation, by replacing

𝛼n and 𝛽n with
[
𝛼

[1]
n

T 𝛼
[2]
n

T
]T

and
[
𝛽

[1]
n

T 𝛽
[2]
n

T
]T

.

(
In𝛼[1] − Γ

[1]
n

†
Γ

[2]
n Γ

[2]
n

†
Γ

[1]
n

)
𝛼

[1]
n+1 = 𝛼

[1]
n − Γ

[1]
n

†
Γ

[2]
n Γ

[2]
n

†
𝛽

[1]
n

−Γ
[1]
n

†(
Γ

[2]
n 𝛼

[2]
n − 𝛽

[2]
n

)
.

By replacing the Γ
[2]
n 𝛼

[2]
n − 𝛽

[2]
n with Γ

[1]
n 𝛼

[1]
n − 𝛽

[1]
n , the fol-

lowing equation is calculated, since (In𝛼[1] − Γ
[1]
n

†
Γ

[2]
n Γ

[2]
n

†
Γ

[1]
n ) is

equal to Γ
[1]
n

†
(In𝜗

− Γ
[2]
n Γ

[2]
n

†
)Γ

[1]
n .(

In
𝛼[1]−Γ

[1]
n

†
Γ

[2]
n Γ

[2]
n

†
Γ

[1]
n

)
𝛼

[1]
n+1 =

(
Γ

[1]
n

†
−Γ

[1]
n

†
Γ

[2]
n Γ

[2]
n

†
)
𝛽

[1]
n .

So, the first set of equations in (27) can be simplified and
rewritten as (23a).

Similar steps can be applied to the second set of equations in
(27) and (23b) would be resulted. □

The Gauss-Newton algorithm is a modification of Newton’s
method for finding a minimum of a function which can be
used to minimise a sum of squared function values. The Gauss-
Newton algorithm will be derived from Newton’s method for
function optimisation via an approximation. In the Newton
method, the Hessian of the function should be calculated, while
the optimised value in the Gauss-Newton method is obtained
by ignoring the second-order derivative terms. Appendix A will
discuss about how to use the Newton method for the optimisa-
tion problem defined in Lemma 1.

By considering the constraints mentioned in (19) and (20),
Equation (23a) should be solved as a constrained quadratic
problem. Considering 𝜗T 𝜗 as the goal function in the minimisa-
tion problem, in many practical cases, the elements of vector 𝜗
become less than the constraints mentioned in (21). Elsewhere,
the constraint optimisation problem should be solved.

Remark 4. The necessary conditions to guarantee the existence
of an optimal solution for a non-linear programming with both
equality and inequality constraints are known as Karush-Kuhn-
Tucker (KKT) conditions.

KKT conditions [30]: KKT conditions are first derivative
necessary conditions for a solution of non-linear programming
to be optimal, provided that some regularity conditions are sat-
isfied. Suppose that the objective function f : ℝn → ℝ and the
constraint functions gi : ℝn → ℝ (i = 1,… , m) and h j : ℝn →
ℝ ( j = 1,… ,𝓁) are continuously differentiable at a point x∗.
If x∗ is a local minimum of f (x ) subject to primal feasibility
conditions

gi (x
∗ ) ≤ 0 (i = 1,… , m),

h j (x
∗ ) = 0 ( j = 1,… ,𝓁),
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then constants 𝜇i (i = 1,… , m) and 𝛽 j ( j = 1,… ,𝓁), exist such
that

▽ f (x∗ ) +
m∑

i=1

𝜇i ▽gi (x
∗ ) +

l∑
j=1

𝛽 j▽h j (x
∗ ) = 0, (28a)

𝜇i gi (x
∗ ) = 0 (i = 1,… , m), (28b)

𝜇i ≥ 0 (i = 1,… , m). (28c)

The constants 𝜇i (i = 1,… , m) and 𝛽 j ( j = 1,… ,𝓁) are called
the KKT multipliers.

Remark 5. In the particular case that no inequality con-
straints exist in the constrained non-linear programming (m =
0), the KKT conditions are identical to the Lagrange condi-
tions, and the KKT multipliers are also called the Lagrange
multipliers.

Combining the Newton method and KKT conditions, an
iterative method for solving constrained optimisation prob-
lems will be resulted which is called the Sequential Quadratic
Programming (SQP). In each iteration of SQP, a constrained
quadratic program should be solved. The solving proce-
dure for identification problem is described in the following
theorem.

Theorem 3. Consider the vectors 𝛼 =
[
𝛼

[1]
n

T 𝛼
[2]
n

T
]T

, 𝛽 =[
𝛽

[1]
n

T 𝛽
[2]
n

T
]T

and 𝜗(𝛼) = Γ[1]𝛼[1] − 𝛽[1] = Γ[2]𝛼[2] − 𝛽[2]

where elements of Γ[1] and 𝛽[1] are functions of 𝛼[2] and on the other

hand elements of Γ[2] and 𝛽[2] are functions of 𝛼[1]. The obtained 𝛼∗ by

solving the following iterative constrained quadratic programming problem

will be a local minimum of the scaler function 𝜗(𝛼)T 𝜗(𝛼) subject to

Γeq𝛼 − 𝛽eq = 0 and Γineq𝛼 − 𝛽ineq ≤ 0 if
[
Γ[1] Γ[2]

]
is a column

independent matrix.

min

⎧⎪⎨⎪⎩𝛼
T
k+1

⎡⎢⎢⎢⎣
�[1]

k
T
�

[1]
k

�[1]
k

T
�

[2]
k

�[2]
k

T
�

[1]
k

�[2]
k

T
�

[2]
k

⎤⎥⎥⎥⎦𝛼k+1

−

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
2�[1]

k
T
�

[1]
k

�[1]
k

T
�

[2]
k

�[2]
k

T
�

[1]
k

2�[2]
k

T
�

[2]
k

⎤⎥⎥⎥⎦𝛼k +

⎡⎢⎢⎢⎣
0 �[1]

k
T

�[2]
k

T
0

⎤⎥⎥⎥⎦ 𝛽k

⎞⎟⎟⎟⎠
T

𝛼k+1

⎫⎪⎪⎬⎪⎪⎭
,

subject to

{
�eq𝛼k+1 − 𝛽eq = 0

�neq𝛼k+1 − 𝛽neq ≤ 0
.

Proof. Using the results of [31], solution of the SQP itera-
tive problem for the constrained problem min

x
f (x ) subject to

h(x ) = 0 and g(x ) ≤ 0 will be

min

{
▽x f (xk )T (xk+1 − xk )

+
1
2

(xk+1 − xk )T x (xk,𝜇k, 𝜆k )(xk+1 − xk )

}
,

subject to

{
h(xk ) +▽xh(xk )(xk+1 − xk ) = 0

g(xk ) +▽xg(xk )(xk+1 − xk ) ≤ 0
,

where ▽x and x correspondingly denote the gradient and
Hessian functions.

In this theorem, the Lagrangian function is

(𝛼,𝜇, 𝜆) = 𝜗T (𝛼)𝜗(𝛼) + 𝜆T (Γeq𝛼 − 𝛽eq ) + 𝜇T (Γneq𝛼 − 𝛽neq ).

Therefore, gradient and Hessian functions of it will be

▽𝛼(𝛼,𝜇, 𝜆) = 2
[
Γ[1] Γ[2]

]T
𝜗 + ΓT

eq𝜆 + ΓT
neq𝜇, (29a)

𝛼 (𝛼,𝜇, 𝜆) = 2

⎡⎢⎢⎢⎣
Γ[1]T Γ[1] 𝜕Γ[1]T 𝜗

𝜕𝛼[2]

𝜕Γ[2]T 𝜗

𝜕𝛼[1]
Γ[2]T Γ[2]

⎤⎥⎥⎥⎦
≈ 2

⎡⎢⎢⎣
Γ[1]T Γ[1] Γ[1]T Γ[2]

Γ[2]T Γ[1] Γ[2]T Γ[2]

⎤⎥⎥⎦. (29b)

So, by substituting (29a) and (29b) in SQP algorithm, the theo-
rem will be proved. □

Applying this theorem on the system of linear equations given
in Theorem 1 and Theorem 2 (or Proposition 1 and Proposi-
tion 2 for MIMO systems) and also the constraints in (19) and
(20) will result the identified H–W model. In the following sec-
tion, the proposed algorithm for identification of H–W model
is applied on a PCV as a case study.

4 CASE STUDY: PRESSURE CONTROL
VALVE

4.1 Valve actuation system

Control valves in industrial processes possibly present various
non-linearities, which may degrade control performance or even
cause oscillations arisen in control loops. The control loops
oscillate due to valve non-linearities, such as stiction, hystere-
sis, and dead-band. Compressed air supply is an essential utility
in every pneumatic based company like Oil & Gas refineries.
Air compressor receives the atmospheric air as its input stream
and increases its pressure to a desired level. A PCV is installed
parallel to the compressor discharge line, in the exhaust line to
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FIGURE 2 Schematic view of main parts in the air compressor and loca-
tion of the PCV

protect the compressor against the surge phenomena. It is
opened to ensure minimum air flow through the compressor.
PCV controls the exhaust air flow rate by varying the size of
the flow passage as directed by a signal from a controller. The
location of PCV in a three-stage air compressor is shown in Fig-
ure 2.

The control command of PCV is calculated by a PLC, based
on the compressor discharge pressure. The logic has three
modes, called full open, auto, and manual. The full open mode
of PCV is the safe mode of the compressor in which surge prob-
ability is minimal. This mode is selected by logic when the com-
pressor is either in the stop mode or during the start-up phase.
It is also used in case of any emergency situation when the full
opening command is suddenly sent to the PCV. The logic sud-
denly switches to emergency situation mode in case of either
very low discharge flow, very high discharge pressure or very
high absolute slope of the discharge pressure. In other cases and
if the manual mode has not been selected by the operator, the
valve position is controlled by the maximum output of two PID
controllers that both use the discharge pressure as their manip-
ulated values. The logic also limits the output value between 0
and 100 percent.

PCV actuates by a diaphragm that is connected to its stem
which is moved by air pressure (pneumatic force). Nowadays,
The pneumatic diaphragm actuator is the most commonly used
type of PCVs in industrial processes due to its high strength,
its size and weight, and its simple and inexpensive construction.
Diaphragm actuators usually use pressured air between 3∼15
Psig to operate the valve. In addition to the air pressure, a return
spring is mounted under the diaphragm which applies a force
in the opposite direction of the air force. In compressors, the
safe mode following failure of the air signal would be when the
PCV is driven in full open mode. To deal with this eventual-
ity, the spring would drive the valve stem upward, when an air
failure arises.

The calculated control command by PLC is transferred to
the actuation system through an analog output module, in the
form of 4∼20 mA current signal. In case of any wire break or
signal failure the valve should switch to its safe mode. The ana-
log output module of PLC is calibrated to linearly convert the
logic output value to 4∼20mA current signal. In the ideal case,
it is assumed that the calibration is perfect; but in practice, non-
linearities affect the precise calibration. To consider this issue in
the modelling, Hammerstein block (the input static non-linear
function) is added to the input of the linear dynamic block rep-
resenting the ideal model of PCV.

The electrical signal 4∼20 mA is sent to an I2P module to
convert it to 3∼15 Psig pneumatic signal which makes the valve
stem move between 0 to 100 percent of its travelling range.
4 mA and 20 mA signals are corresponding to 3 Psig (fully
opens the valve) and 15 Psig (fully closes the valve) respec-
tively. Increasing the air pressure makes the diaphragm move the
valve stem downward and hence shutting the vent. For valves
where the accurate and rapid control without error or hystere-
sis is required, valve positioners are used. The stem position is
transferred to the positioner by a rod and is compared with the
input signal to increase or decrease the air load pressure driv-
ing the actuator and to ensure the accurate position. In modern
positioners, the I2P is also embedded in positioner and has an
input connection for the electrical signal. The I2P module is also
calibrated to linearly scale the mid-range values between these
extreme values and actuate the valve between 0 to 100 percent of
its travelling range. However, small calibration errors and non-
linearities may affect the performance of PCV. It should also
be noted that the position of PCV is measured using LVDTs
or potentiometers to be transmitted to analog input module of
PLC as a 4∼20mA electric signal. The measuring instruments
usually have saturation, dead-band or any other type of non-
linearities in its response. Therefore, Wiener block (the out-
put static non-linear function) is added to the output of linear
dynamic block to take into account the calibration errors and
non-linearities of I2P as well as non-linearities of the measur-
ing devices. So, a PCV is modelled as a linear block which rep-
resents the time evolution of the ideal system and the delays,
along with non-linear blocks which are used to model the dis-
cussed sources of non-linearities in the positioner, transmitter,
and valve structure. Due to having both non-linear and linear
blocks in the model describing a PCV, H–W model which is
illustrated in Figure 1 is an appropriate choice for modelling its
behaviour. Non-linear blocks may contain hard non-linearities
such as saturation or dead-zone.

In case of any emergency situation, the PCV should open the
vent rapidly to guarantee the safety of air compressor. There-
fore a quick-exhaust valve and a silencer is installed in the air
exhaust line from diaphragm. Existence of the quick-exhaust
valve and the effect of return spring cause the valve to have dif-
ferent models for opening and closing operations. This study
focused on the valve modelling during its closing operation,
because the opening operation is so quick that can not be sam-
pled. It is worth noting that the PLC variables are sent to a mon-
itoring system via a fast industrial network with an ignorable
delay. The trend of data during the time is saved in a database in
the monitoring system with an adjustable sampling time which
is imported to MATLAB software for verification of the pro-
posed method. The PCV actuation and monitoring system of
this study is shown in Figure 3 [32].

4.2 Identification of pressure control valve

Since the opening command is issued only in emergency situ-
ations, the trend of data during twelve opening conditions are
gathered. The acquired data during nine closing operations are
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FIGURE 3 Actuation and monitoring system of the PCV
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FIGURE 4 An instance of the valve opening-closing command and the
valve position responded to it

used for H–W identification and the data of the rest three oper-
ations are used for verification of the obtained model. The com-
mand signal sent to the valve and its response is shown in Fig-
ure 4 at one of the opening-closing operations.

The following steps are used to identify this system through
the proposed algorithm:

i) Data preparation: The trend of data during a three
month period is gathered from the compressor. But only
100 minute of it is useful for identification purpose and
the valve was fully closed in other times. The data was
Exported from compressor monitoring system to excel
and also imported in Matlab. To apply the proposed algo-
rithm on the investigated PCV, the time periods of data
which are rich of information should be separated from the
other parts.
As it is mentioned, because of using quick exhaust valve, the
model of PCV actuation system during opening and closing
are different and only measured data in the closing opera-
tion is used for identification. It is noteworthy that even if
a fixed sampling time is defined for the data acquisition sys-
tem, the time intervals between each two consecutive sam-
ples are not exactly the same.

ii) Interpolation of data: Since the sampling time of the gath-
ered data is considered to be fixed in the proposed algo-
rithm (and most of others), interpolation at equal intervals
is applied in order to uniform the time intervals of the data.
By this step, the time can be neglected in the proposed iden-
tification algorithm.

iii) Quantisation of non-linear functions: Partitioning of
measured input and output non-linear functions should
be done based on the known information about distinct
behaviours of non-linear functions in different regions. In
this method, hard non-linearities, such as dead-band and
saturation are allowed. The number of partitions in mea-
sured input and output range should be small enough to
make the system overdetermined. On the other hand, using
more partitions make it possible to specify the functions in
more details. In this case study, a limited slope is expected
in all regions of the Hammerstein non-linear function. So,
a same limitation on the slope is assumed for all regions of
the non-linear function.
Each region is partitioned to several sub-regions. The func-
tion value at the centre of each sub-region is considered as
the elements of f ′ and g′ vectors. After specifying partitions,
Ω f and Ωg can be calculated.

iv) Specifying the constraints: The constrains of this case
study are formulated in the form of equalities or inequalities
which are linear in parameters. The constraints include the
limitations of the slopes in the non-linear functions, in addi-
tion to the constraints shown in (19) and (20). For this pur-
pose, the noise and disturbance amplitude are limited first.
Then, the non-linear input function output range and slope
and also inverse of non-linear output function input range
and slope are limited. Moreover, the measurement noise
considered to have limited range; so its effect on the func-
tions outputs are limited according to their approximated
slopes. In this case study, the functions outputs are limited
between 0 to 100 and the absolute function slopes between
5% to 95% of output function range and whole input func-
tion range are limited between 0 to 5.

v) Determine initial functions and linear block param-

eters to specify 𝛼0: Using the known information, based
of the physical considerations, an initial guess for the non-
linear functions. However, a common choice for the starting
point can be a linear shape with slope of one and y-intercept
of zero. In this case study, a linear function with slope one
is considered for the starting point.

vi) Solving the constrained quadratic problem: The con-
strained quadratic problem should be solved, using the iter-
ative method given in Theorem 3. Solving the constrained
problem, parameters of the linear block and the ordered
pairs of non-linear functions will be determined. The iter-
ation of the algorithm in Theorem 3 continues while the
sum of squares of its decreasing rate is less than a threshold.

Figure 5 summarises the proposed identification method for
the PCV.

Applying proposed identification method on the gathered
data and considering the linear block as a third order SISO
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FIGURE 5 Flowchart of the proposed identification method

system with the observable canonical state space realisation, a =
[−0.0009 0.7650 − 1.7484]T , b = [0.7959 − 1.7600 0.9884]T ,
and d = [0] will be resulted. In other words, state space matri-
ces (A, B,C, D) of the linear block in (3) can be written as

A =
⎡⎢⎢⎣
0 0 0.0009
1 0 −0.7650
0 1 1.7484

⎤⎥⎥⎦ , B =
⎡⎢⎢⎣

0.7959
−1.7600
0.9884

⎤⎥⎥⎦ ,C =
[
0 0 1

]
, D = [0].

Non-linear functions f and g−1 are also shown in Figure 6.
It should be noted that in Figure 6(b), instead of the Wiener
function, its inverse is illustrated, due to the effect of hard
non-linearities (such as saturation) on it. Moreover, Figure 6(b)
illustrates hard non-linearities and non-linear function g−1(y)
is not one-to-one. Hard non-linearities are seen near y = 0%
and y = 100%; while the function is one-to-one and almost lin-
ear in the middle-range of y. Shape of the Wiener function in
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u)
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10 20 30 40 50 60 70 80 90 100
y
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50

100

g-1
(y

)

(b)

FIGURE 6 The identified non-linear function of PCV model: (a) Ham-
merstein function, (b) Wiener function

Figure 6(b) is due to the calibration of the PCV and/or I/O
cards. As it is illustrated in this figure, decreasing the control
command from 100% to 80%, no significant changes occur in
the operation of the PCV. Continuing decreasing the control
command less than 80%, the PCV starts to follow the control
signal linearly. This is mainly due to the dead-band in the PCV.
Since the PCV is a normally open pneumatic valve, there is an
inverse relationship between the percentage of the valve open-
ing and the air pressure applied to the valve stem (i.e. valve is
closed by the air pressure, and is opened by a return spring). The
non-linear behaviour of g−1(y) near y = 0% is also intentionally
set in the calibration process to guarantee the valve being closed
in the normal performance of system.

Verification of the obtained H–W model with the data during
three closing operations which are not used in the identification
process is illustrated in Figure 7. It can be seen that accuracy of
the identified model is more than 95%. It is worth noting that
the main reason of larger error (almost 5%) at the beginning
of the closing operations is that fewer number of ordered pairs
are sampled near y = 100%. For y < 80% with more sampled
data, the identification error is less that 0.5%. So, if a more accu-
rate model is required, data acquisition with higher sampling
rates should be used. Time evaluation of states for the identified
linear block is also shown in Figure 8 for a closing operation
used in the identification process.

5 CONCLUSION

This paper has considered the problem of identifying indus-
trial plants. An algorithm is proposed for identification of H–
W model, based on constrained optimisation. To convert the
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identification problem into an optimisation problem, noise and
disturbance terms are sent to one side of equalities and the
least square approach is used. Since the least square method is a
solution for overdetermined systems, one method to solve the
problem is reducing the number of unknown variables to have
an overdetermined systems. So, known behaviour of non-linear
functions are taken into account to describe them. To ensure
that the non-linear functions have desired behaviour and pre-
vent the out of range errors, or fast changing functions, some
constraints are defined. The constraints consist of limiting func-
tion outputs ranges, slopes and known values of functions. In
the proposed method which can be used for MIMO systems,
iterative multivariate SQP method is applied to address the non-
linear optimisation problem.

The main advantage of the proposed algorithm over the
existing ones is that the most general form of practical systems
with all types of noise and disturbances applied to linear and
non-linear blocks are considered. Moreover, some of the restric-

tive assumptions are relaxed. For example, invertibility of non-
linear functions is relaxed, and even hard non-linearities can be
considered as non-linear blocks. In addition, the known infor-
mation about the practical interpretation of non-linear func-
tions is used to improve the accuracy of the identified model.
It should also be noted that sampled data for this method may
belong to different time intervals with various initial conditions.
Therefore, the method can be used in applications with differ-
ent modes, such as the switched systems. For example in our
case study, the dynamics of PCV are different in opening and
closing operation modes.

To evaluate the effectiveness of the proposed method in iden-
tification of real-world applications, a valve actuation system
is investigated. A pressure control valve is identified using the
real data gathered from the industrial monitoring system of a
gas refinery. Verification of the identified H–W model by data
which is not used in the identification shows 95% accuracy of
the model.
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APPENDIX A

A.1 Newton method for optimisation

In an especial case of the least square problem defined in
Lemma 1, the matrices Γ[1] and Γ[2] and vectors 𝛽[1] and 𝛽[2]

could be written in the form of

Γ[1](𝛼[2] ) =
[
𝛽

[1]
Γ 𝛼[2] + 𝛾

[1]
Γ

]T

n𝜗

,

Γ[2](𝛼[1] ) =
[
𝛽

[2]
Γ 𝛼[1] + 𝛾

[2]
Γ

]T

n𝜗

,

𝛽[1](𝛼[2] ) = 𝛽
[1]
𝛽
𝛼[2] + 𝛾

[1]
𝛽

,

𝛽[2](𝛼[1] ) = 𝛽
[2]
𝛽
𝛼[1] + 𝛾

[2]
𝛽

,

where 𝛽
[1]
Γ , 𝛽

[2]
Γ , 𝛽

[1]
𝛽

, 𝛽
[2]
𝛽

, 𝛾
[1]
Γ , 𝛾

[2]
Γ , 𝛾

[1]
𝛽

and 𝛾
[2]
𝛽

do not depend
on 𝛼.

Moreover, Hessian matrix of the scaler number 𝜗T 𝜗 with
respect to 𝛼 is calculated as

H𝛼 (𝜗T 𝜗) =

⎡⎢⎢⎢⎢⎢⎣

𝜕2(𝜗T 𝜗)

𝜕𝛼[1]2

𝜕2(𝜗T 𝜗)

𝜕𝛼[1]𝜕𝛼[2]

𝜕2(𝜗T 𝜗)

𝜕𝛼[2]𝜕𝛼[1]

𝜕2(𝜗T 𝜗)

𝜕𝛼[2]2

⎤⎥⎥⎥⎥⎥⎦
,

where

𝜕2(𝜗T 𝜗)

𝜕𝛼[1]2
= Γ[1]T Γ[1],

𝜕2(𝜗T 𝜗)

𝜕𝛼[1]𝜕𝛼[2]
=

𝜕
(
Γ[2]T 𝜗

)
𝜕𝛼[1]

,

𝜕2(𝜗T 𝜗)

𝜕𝛼[2]𝜕𝛼[1]
=

𝜕
(
Γ[1]T 𝜗

)
𝜕𝛼[2]

,

𝜕2(𝜗T 𝜗)

𝜕𝛼[2]2
= Γ[2]T Γ[2].
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Moreover, the following equations hold for Γ[2]T 𝜗(𝛼).

Γ[2]T 𝜗(𝛼) = Γ[2]T
(
Γ[1]𝛼[1] + 𝛽[1]

)
= Γ[2]T Γ[1]𝛼[1] + Γ[2]T 𝛽[1]

= vec
(
Γ[2]T Γ[1]𝛼[1]

)
+ vec

(
Γ[2]T 𝛽[1]

)
= vec

(
In𝜗

Γ[2]T Γ[1]𝛼[1]
)
+ vec

(
In𝜗

Γ[2]T 𝛽[1]
)

= (𝛼[1]T Γ[1]T ⊗ In𝜗
) vec

(
Γ[2]T

)
+ (𝛽[1]T ⊗ In𝜗

) vec
(
Γ[2]T

)
= (𝛼[1]T Γ[1]T ⊗ In𝜗

)(𝛽
[2]
Γ 𝛼[1] + 𝛾

[2]
Γ )

+ (𝛽[1]T ⊗ In𝜗
)(𝛽

[2]
Γ 𝛼[1] + 𝛾

[2]
Γ )

Therefore, the partial derivative of Γ[2]T 𝜗(𝛼) with respect to
𝛼[1] will be written as

𝜕
(
Γ[2]T 𝜗(𝛼)

)
𝜕𝛼[1]

= Γ[2]T Γ[1] + (𝛼[1]T Γ[1]T ⊗ In𝜗
)𝛽

[2]
Γ

+ (𝛽[1]T ⊗ In𝜗
)𝛽

[2]
Γ

= Γ[2]T Γ[1] + (𝜗(𝛼)T
⊗ In𝜗

)𝛽
[2]
Γ .

And finally, the Hessian matrix will be as follows.

H𝛼 (𝜗T 𝜗) =
⎡⎢⎢⎣
Γ[1]T Γ[1] Γ[2]T Γ[1]

Γ[1]T Γ[2] Γ[2]T Γ[2]

⎤⎥⎥⎦
+

⎡⎢⎢⎢⎣
𝟘n𝛼[1]×n𝛼[1] (𝜗(𝛼)T

⊗ In𝜗
)𝛽

[2]
Γ

(𝜗(𝛼)T
⊗ In𝜗

)𝛽
[1]
Γ 𝟘n𝛼[2]×n𝛼[2]

⎤⎥⎥⎥⎦
The Newton method for optimisation uses the Hessian

matrix instead of 2J T J matrix in Gauss-Newton method.
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