Chapter 4: Shared Code Analysis

i DATA SCIENCE IN SECURITY

Introduction

» Shared code analysis

O

O

also called similarity analysis

the process by which we compare two malware
samples by estimating the percentage of pre-
compilation source code they share

differs from shared attribute analysis

helps identify samples that can be analyzed together
* they

= were generated from the same malware toolkit

= or are different versions of the same malware family

can determine whether the same developers could
have been responsible for a group of malware samples

Introduction

» Shared code analysis

Showing samples similar to WEBC2-GREENCAT sample E54CES5F0112C9FDFE86DB17E85A5E2C5

Sample name Shared code
[*] WEBC2-GREENCAT sample 55FB1409170C91740359D1D96364F17B 0.9921875
[*] GREENCAT_sample_55FB1409170C91740359D1D96364F17B 0.9921875
[*] WEBC2-GREENCAT_sample E83F60FBOE0396EA309FAFOAED64ES3F 0.984375

[comment] This sample was determined to definitely have come from the advanced persistent
threat group observed last July on our West Coast network
[*] GREENCAT sample E83F60FBOE0396EA309FAFOAED64ES3F 0.984375

preparing Samples for comparison by
extracting Features

= we group malware samples into “"bags of
features” before comparing

o Feature: any malware attribute we might possibly
want to consider
= E.g. the printable strings we can extract

= we think of malware as a bag of independent
features for mathematical convenience

I preparing Samples for comparison by
extracting Features

I preparing Samples for comparison by
extracting Features

= What are N-Grams?

o a subsequence of events that has a certain length,
N, of some larger sequence of events

o Can be extracted by sliding a window over the
sequential data

N-gram 2 N-gram 4

1. N-grams
extracted

e | L1 &

alware
execution

threads

N-gram 1 N-gram 3 N-gram 5

N-gram 2
2. Malware
sample N-gram 4
represented N-gram 1
as "bag of N-gram 5
N-grams”
N-gram 3

] |
3
3

preparing Samples for comparison by
extracting Features

= What are N-Grams?

@ |In malware analysis

= we would extract N-grams of sequential malware API
calls

* Then we would represent the malware as a bag of N-
grans

* incorporates sequence information into features
comparison
= Good, when order matters in the comparison
- malware calls A before B, which was observed before calling C
= Bad, when order is superfluous

- malware randomizing the order of APl calls A, B, and Con
every run

I using the Jaccard index to

Quantify Similarity

» We need a similarity function that should
have the following properties

o |t yields a normalized value

= help us make accurate estimates of code sharing
between two samples

= should be easily understandable why the function
models code similarity well

using the Jaccard index to
Quantify Similarity
» The Jaccard index

= has all these properties
o emerged as the most widely adopted

Jaccard index = O Jaccard index = 1
= Shared attributes (0) / Total attributes (10) = Shared attributes (5) / Total attributes (5)

@, O Q
OOOO OOQO | 6@

Malware sample A Malware sample A

Jaccard index = 0.11 Jaccard index = 0.4

= Shared attributes (1) / Total attributes (9) = Shared attributes (4) / Total attributes (10)
Malware sample A ; Malware sample A .

I using Similarity Matrices to evaluate
Malware Shared code estimation Methods

= Consider four similarity feature:
o jnstruction sequence-based similarity
o Strings based similarity
o Import Address Table—based similarity
o Dynamic API call-based similarity

* To compare above features

| o we'll use a similarity matrix visualization

technique

I using Similarity Matrices to evaluate
Malware Shared code estimation Methods

Sample 1 Sample 2 Sample 3 Sample 4

; Similarity Similarity Similarity Similarity

g between between between between

S 1 and 1 1 and 2 1 and 3 1 and 4

|| Similarity Similarity Similarity Similarity

g— between between between between

S 2 and 1 2 and 2 2 and 3 2 and 4

. E Similarity Similarity Similarity Similarity
i g- between between between between
3 3 and 1 3and 2 3and 3 3 and 4

Sl Similarity Similarity Similarity Similarity

_g- between between between between

3 4 and 1 4 and 2 4 and 3 4 and 4

using Similarity Matrices to evaluate
Malware Shared code estimation Methods

depato & :

pasta ﬁ -a— Possible false positives

skor

False negatives
vbna (too much —»

dark space)

webprefix Almost all true positives —b-
xtoober o
Dark spaces in the squares o

indicate missed similarity
rdelilelel relationships (false negatives).

depato pasta skor vbna webprefix ~ xtoober zango

1.0

0.9

0.8

0.7

10.6

0.5

I Instruction Sequence-Based
Similarity
= most intuitive way to compare two malware binaries

» requires disassembling malware samples using
o E.g.the linear disassembly

» we can use the N-gram approach

= Value of N depends on our analysis goals.
= ThelargerN
= harder it will be for malware samples’ sequences to match.
* helpsidentify only samples that are highly likely to share code
= The smaller N
| " looks for subtle similarities between samples

= Can be used if you suspect that the samples employ instruction
reordering

Instruction Sequence-Based

Similarity

depato

pasta

skor

vbna

webprefix

xtoober

zango

depato pasta skor vbna webprefix xtoober zango

Figure 5-7: The similarity matrix generated using instruction N-gram features. Using
N = 5, we completely miss many families’ similarity relationships but do well on web-
prefix and pasta.

1.0

0.9

0.8

0.7

{ 0.6

0.5

Instruction Sequence-Based

Similarity

» Advantage: few false positives
» Disadvantage: can miss many code-sharing

relationships

 because malware samples may be packed
= Even when we unpack our malware samples:

int f(void) {
int a = 1;
int b = 2;
O return (a*b)+3;
}

mov1l $1, -4(%rbp)
mov1 $2, -8(%rbp)
movl -4(%rbp), %eax movl
imull -8(%rbp), %eax
addl $3, %eax

$5, %eax

= many malwares are authored in languages like C#

» contain standard assembly code that interprets the higher-
level languages’ bytecode

* share very similar x86 instructions
* their actual bytecode come from very different source code

Strings-Based Similarity

* can be computed by

= extracting all contiguous printable sequences of
characters in the samples

= computing the Jaccard index between all pairs of
malware samples based on their shared string
relationships

= Can gets around the compiler problem

= compilers do not transform strings in a binary

Strings-Based Similarity

pasta

skor

vbna

webprefix

xtoober

zango

depato pasta skor vbna webprefix ~ xtoober zango

1.0

0.9

0.8

0.7

0.6

0.5

I Import Address Table-Based
Similarity

1.0

depato HetEAE
epao - . " ’ 13 . 0.9
pasta 0.8
skor 0.7
410.6

vbna

40.5

webprefix

0.0

xtoober
zango
depato pasta skor vbna webprefix xtoober zango

Dynamic API Call-Based
Similarity
» To implement this approach, you'll need to
o run malware samplesin a sandbox
= record the API calls they make
= extract N-grams of API calls from the dynamic
logs

o finally compare the samples by taking the Jaccard
index between their bags of N-grams.

Dynamic API Call-Based
Similarity

1.0
depato 09
pasta 0.8
skor 0.7
10.6

vbna
4 0.5

webprefix

xtoober

zango

depato pasta skor vbna webprefix xtoober zango

Dynamic API Call-Based
Similarity
» The imperfect results here show

o Simply running malware in a sandbox is not
sufficient to trigger many of its behaviors.

o some samples detect that they're running in a
sandbox and then promptly exit execution

* |n summary
= dynamic API call sequence similarity isn't perfect

o but it can provide impressive insight into
similarities between samples.

Building a Similarity Graph

#!/usr/bin/python

import argparse

import os

import networkx

from networkx.drawing.nx_pydot import write dot
import itertools

def jaccard(set1, set2):
Compute the Jaccard distance between two sets by taking
their intersection, union and then dividing the number
of elements in the intersection by the number of elements
in their union.
intersection = setil.intersection(set2)
intersection length = float(len(intersection))
union = setil.union(set2)
union_length = float(len(union))
return intersection_length / union_length

I Building a Similarity Graph

def getstrings(fullpath):
Extract strings from the binary indicated by the 'fullpath’
parameter, and then return the set of unique strings in
the binary.
strings = os.popen("strings '{0}"'".format(fullpath)).read()
strings = set(strings.split("\n"))
return strings

I

def pecheck(fullpath):

a Windows PE executable (PE executables start with the
two bytes 'MZ')

return open(fullpath).read(2) == "MZ"

| Do a cursory sanity check to make sure 'fullpath' is

Building a Similarity Graph

If _name__ == " main_":
parser = argparse.ArgumentParser (
description="Identify similarities between malware samples and build similarity graph"
)

parser.add_argument(
"target_directory",
help="Directory containing malware"

)

parser.add argument(

"output_dot file",

help="Where to save the output graph DOT file"
)

parser.add argument(
"--jaccard_index_threshold", "-j", dest="threshold", type=float,
default=0.8, help="Threshold above which to create an 'edge' between samples"”

)

args = parser.parse args()

Building a Similarity Graph

If _name__ == " main_":
parser = argparse.ArgumentParser (
description="Identify similarities between malware samples and build similarity graph"
)

parser.add_argument(
"target_directory",
help="Directory containing malware"

)

parser.add argument(

"output_dot file",

help="Where to save the output graph DOT file"
)

parser.add argument(
"--jaccard_index_threshold", "-j", dest="threshold", type=float,
default=0.8, help="Threshold above which to create an 'edge' between samples"”

)

args = parser.parse args()

Building a Similarity Graph

malware paths = [] # where we'll store the malware file paths
malware features = dict() # where we'll store the malware strings
graph = networkx.Graph() # the similarity graph

for root, dirs, paths in os.walk(args.target directory):
walk the target directory tree and store all of the file paths
for path in paths:
full path = os.path.join(root, path)
malware paths.append(full path)

filter out any paths that aren't PE files
malware paths = filter(pecheck, malware paths)

get and store the strings for all of the malware PE files

for path in malware paths:
features = getstrings(path)
print "Extracted {0} features from {1} ...".format(len(features), path)
malware features[path] = features

add each malware file to the graph
graph.add _node(path, label=os.path.split(path)[-1][:10])

Building a Similarity Graph

iterate through all pairs of malware
for malware1l, malware2 in itertools.combinations(malware paths, 2):

compute the jaccard distance for the current pair
jaccard index = jaccard(malware features[malwarel], malware features[malware2])

if the jaccard distance is above the threshold, add an edge
if jaccard_index > args.threshold:
print malwarel, malware2, jaccard index
graph.add edge(malware1, malware2, penwidth=1+(jaccard index-args.threshold)*10)

write the graph to disk so we can visualize it
write dot(graph, args.output dot file)

I Building a Similarity Graph

AT INARL -
Sonwe BT NS
heb "."Q‘-'\'v

W LA]

Nl
S

o’ (L
AT
X

4

3 B2
=,

-
-

X
\J

I Scaling Similarity

comparisons
* Previous codes doesn’t work well for a large
number of malware samples
o number of necessary Jaccard index computations
n —n

2

o A dataset that has 50,000 samples would require
1,249,975,000 Jaccard index computations!

I Scaling Similarity
comparisons

» we need to use randomized comparison
approximation algorithms

o allow for some error in our computation of
comparisons in exchange for a reduction in
computation time.

@ minhash serves this purpose for us beautifully.

» allows us to compute the Jaccard index using
approximation

= avoid computing similarities between nonsimilar malware
| samples below some predefined similarity threshold

* so that we can analyze shared code relationships
between millions of samples

Minhash in a Nutshell

* Minhash takes a malware sample’s features
o hashes them with k hash functions.
o For each hash function

= we retain only the minimum value of the hashes
computed over all the features

o the set of malware features is reduced to a fixed
size array of k integers

= which we call the minhashes.

Minhash in a Nutshell

» To compute the approximate Jaccard index

@ you now just need to check how many of the k
minhashes match, and divide that by k

o Magically, the obtained numberis a close

approximation of the true Jaccard index between any
two samples.

* The benefit of using minhash
o jt's much faster to compute.

o we can even use minhash to index malware in a
database

= we only need to compute comparisons between malware
samples that at least one of their hashes matched

Minhash 1n a Nutshell

Set of features from Set of features from
malware sample A malware sample B

ltems hashed and sorted
based on hash value.
This is repeated multiple

‘ times with multiple hash

A\ functions to increase

. ‘ accuracy of estimate.
= N\

Magic: > —~

probability that f.

minimum (leftmost)
values match is
equal to the
Jaccard index
between
sample A and
sample B

Minhash in a Nutshell

= using minhashes to speed up the search

= The standard approach:

» use sketching combined with database indexing

= we compare only samples that we already know are
highly likely to be similar.

* a sketch is made by hashing multiple minhashes
together.

* When we get a new sample
= we find any sketches that match the new sample’s sketches.

= the new sample is compared with the matching samples
using their minhash arrays to approximate the Jaccard index

Building a persistent Malware
Similarity Search System

#!/usr/bin/python

import argparse

import os

import murmur

import shelve

import numpy as np

from listings 5 2 to 5 6 import *
NUM_MINHASHES = 256

SKETCH RATIO = 8

Building a persistent Malware
Similarity Search System

def

def

wipe database():

This problem uses the python standard library 'shelve' database to persist
information, storing the database in the file 'samples.db' in the same
directory as the actual Python script. 'wipe database' deletes this file
effectively reseting the system.

dbpath = "/".join(__file .split('/')[:-1] + ['samples.db'])
os.system("rm -f {0}".format(dbpath))

get database():

Helper function to retrieve the 'shelve' database, which is a simple
key value store.

dbpath = "/".join(__file .split('/')[:-1] + ['samples.db'])
return shelve.open(dbpath,protocol=2,writeback=True)

Building a persistent Malware
Similarity Search System

def minhash(features):
This is where the minhash magic happens, computing both the minhashes of
a sample's features and the sketches of those minhashes. The number of
minhashes and sketches computed is controlled by the NUM MINHASHES and
NUM SKETCHES global variables declared at the top of the script.
minhashes = []
sketches = []
® for i in range(NUM_MINHASHES):
minhashes.append(
® min([murmur.string hash(feature ,i) for feature in features])
)
® for i in xrange(0,NUM_MINHASHES,SKETCH RATIO):
@ sketch = murmur.string hash(minhashes[i:i+SKETCH RATIO])
sketches.append(sketch)
return np.array(minhashes),sketches

Building a persistent Malware
Similarity Search System

def store sample(path):

e oo

Function that stores a sample and its minhashes and sketches in the
"shelve' database

db = get database()

features = getstrings(path)

minhashes,sketches = minhash(features)

for sketch in sketches:
sketch = str(sketch)
® if not sketch in db:

db[sketch] = set([path])

else:
obj = db[sketch]

® obj.add(path)

db[sketch] = obj

db[path] = {'minhashes':minhashes, 'comments':[]}

db.sync()

print "Extracted {0} features from {1} ...".format(len(features),path)

Building a persistent Malware
Similarity Search System

def comment sample(path):

Function that allows a user to comment on a sample. The comment the
user provides shows up whenever this sample is seen in a list of similar
samples to some new samples, allowing the user to reuse their
knowledge about their malware database.
db = get database()
comment = raw input("Enter your comment:")
if not path in db:
store sample(path)
comments = db[path]['comments’]
db[path]['comments'] = comments
db.sync()
print "Stored comment:", comment

Building a persistent Malware
Similaritv Search Svstem

def search_sample(path):
Function searches for samples similar to the sample provided by the
'path' argument, listing their comments, filenames, and similarity values
db = get_database()
features = getstrings(path)
minhashes, sketches = minhash(features)
neighbors = []

® for sketch in sketches:
sketch = str(sketch)

if not sketch in db:
continue

© for neighbor_path in db[sketch]:
neighbor_minhashes = db[neighbor_path]['minhashes']
similarity = (neighbor_minhashes == minhashes).sum()
/ float(NUM_MINHASHES)
neighbors.append((neighbor_path, similarity))

neighbors = list(set(neighbors))
©® neighbors.sort(key=lambda entry:entry[1], reverse=True)
print ""
print "Sample name".ljust(64), "Shared code estimate"
for neighbor, similarity in neighbors:
short_neighbor = neighbor.split("/")[-1]
comments = db[neighbor]['comments"']
print str("[*] "+short_neighbor).ljust(64), similarity
for comment in comments:
print "\t[comment]",comment

| Building a persistent Malware
Similarity Search System

if _name__ == "'_main__"':
parser = argparse.ArgumentParser(
description="""

Simple code-sharing search system which allows you to build up
a database of malware samples (indexed by file paths) and
then search for similar samples given some new sample

)

parser.add_argument(
"-1", "--load", dest="load", default=None,
help="Path to malware directory or file to store in database"

)
parser.add_argument(
"-s", "--search", dest="search", default=None,
- help="Individual malware file to perform similarity search on"
])

parser.add_argument(
"-c¢", "--comment", dest="comment", default=None,
help="Comment on a malware sample path"
)

parser.add_argument(
"-w", "--wipe", action="store true", default=False,
help="Wipe sample database"

Building a persistent Malware
Similarity Search System

args = parser.parse_args()
if args.load:
malware paths = [] # where we'll store the malware file paths
malware_features = dict() # where we'll store the malware strings
for root, dirs, paths in os.walk(args.load):
walk the target directory tree and store all of the file paths

for path in paths:
full path = os.path.join(root,path)
malware_paths.append(full path)

filter out any paths that aren't PE files
malware paths = filter(pecheck, malware paths)

get and store the strings for all of the malware PE files
for path in malware_paths:
store_sample(path)

if args.search:
search_sample(args.search)

if args.comment:
comment_sample(args.comment)

if args.wipe:
wipe database()

