
DATA SCIENCE IN SECURITY
Chapter 4: Shared Code Analysis



Introduction

 Shared code analysis
 also called similarity analysis
 the process by which we compare two malware 

samples by estimating the percentage of pre-
compilation source code they share

 differs from shared attribute analysis
 helps identify samples that can be analyzed together 

 they 
 were generated from the same malware toolkit 
 or are different versions of the same malware family

 can determine whether the same developers could 
have been responsible for a group of malware samples



Introduction

 Shared code analysis



preparing Samples for comparison by 
extracting Features

 we group malware samples into “bags of 
features” before comparing
 Feature: any malware attribute we might possibly 

want to consider
 E.g. the printable strings we can extract

 we think of malware as a bag of independent 
features for mathematical convenience



preparing Samples for comparison by 
extracting Features



preparing Samples for comparison by 
extracting Features

 What are N-Grams?
 a subsequence of events that has a certain length, 

N, of some larger sequence of events
 Can be extracted by sliding a window over the 

sequential data



preparing Samples for comparison by 
extracting Features

 What are N-Grams?
 In malware analysis

 we would extract N-grams of sequential malware API 
calls 

 Then we would represent the malware as a bag of N-
grans

 incorporates sequence information into features 
comparison
 Good, when order matters in the comparison

 malware calls A before B, which was observed before calling C
 Bad, when order is superfluous

 malware randomizing the order of API calls A, B, and C on 
every run



using the Jaccard index to 
Quantify Similarity
 We need a similarity function that should 

have the following properties
 It yields a normalized value
 help us make accurate estimates of code sharing 

between two samples
 should be easily understandable why the function 

models code similarity well



using the Jaccard index to 
Quantify Similarity
 The Jaccard index 

 has all these properties
 emerged as the most widely adopted



using Similarity Matrices to evaluate 
Malware Shared code estimation Methods

 Consider four similarity feature:
 instruction sequence-based similarity
 Strings based similarity
 Import Address Table–based similarity
 Dynamic API call–based similarity

 To compare above features
 we’ll use a similarity matrix visualization 

technique



using Similarity Matrices to evaluate 
Malware Shared code estimation Methods



using Similarity Matrices to evaluate 
Malware Shared code estimation Methods



Instruction Sequence-Based 
Similarity
 most intuitive way to compare two malware binaries
 requires disassembling malware samples using

 E.g. the linear disassembly

 we can use the N-gram approach
 Value of N depends on our analysis goals. 

 The larger N 
 harder it will be for malware samples’ sequences to match. 
 helps identify only samples that are highly likely to share code 

 The smaller N 
 looks for subtle similarities between samples
 Can be used if you suspect that the samples employ instruction 

reordering



Instruction Sequence-Based 
Similarity



Instruction Sequence-Based 
Similarity
 Advantage: few false positives
 Disadvantage: can miss many code-sharing 

relationships
 because malware samples may be packed
 Even when we unpack our malware samples:

 many malwares are authored in languages like C#
 contain standard assembly code that interprets the higher-

level languages’ bytecode
 share very similar x86 instructions
 their actual bytecode come from very different source code



Strings-Based Similarity

 can be computed by 
 extracting all contiguous printable sequences of 

characters in the samples 
 computing the Jaccard index between all pairs of 

malware samples based on their shared string 
relationships

 Can gets around the compiler problem 
 compilers do not transform strings in a binary



Strings-Based Similarity



Import Address Table–Based 
Similarity



Dynamic API Call–Based 
Similarity
 To implement this approach, you’ll need to

 run malware samples in a sandbox 
 record the API calls they make
 extract N-grams of API calls from the dynamic 

logs
 finally compare the samples by taking the Jaccard

index between their bags of N-grams.



Dynamic API Call–Based 
Similarity



Dynamic API Call–Based 
Similarity
 The imperfect results here show 

 Simply running malware in a sandbox is not 
sufficient to trigger many of its behaviors. 

 some samples detect that they’re running in a 
sandbox and then promptly exit execution

 In summary
 dynamic API call sequence similarity isn’t perfect
 but it can provide impressive insight into 

similarities between samples.



Building a Similarity Graph



Building a Similarity Graph



Building a Similarity Graph



Building a Similarity Graph



Building a Similarity Graph



Building a Similarity Graph



Building a Similarity Graph



Scaling Similarity 
comparisons
 Previous codes doesn’t work well for a large 

number of malware samples
 number of necessary Jaccard index computations

 A dataset that has 50,000 samples would require 
1,249,975,000 Jaccard index computations!



Scaling Similarity 
comparisons
 we need to use randomized comparison 

approximation algorithms
 allow for some error in our computation of 

comparisons in exchange for a reduction in 
computation time. 

 minhash serves this purpose for us beautifully. 
 allows us to compute the Jaccard index using 

approximation 
 avoid computing similarities between nonsimilar malware 

samples below some predefined similarity threshold 
 so that we can analyze shared code relationships 

between millions of samples



Minhash in a Nutshell

 Minhash takes a malware sample’s features 
 hashes them with k hash functions.
 For each hash function

 we retain only the minimum value of the hashes 
computed over all the features

 the set of malware features is reduced to a fixed 
size array of k integers

 which we call the minhashes.



Minhash in a Nutshell

 To compute the approximate Jaccard index 
 you now just need to check how many of the k 

minhashes match, and divide that by k
 Magically, the obtained number is a close 

approximation of the true Jaccard index between any 
two samples. 

 The benefit of using minhash
 it’s much faster to compute. 
 we can even use minhash to index malware in a 

database
 we only need to compute comparisons between malware 

samples that at least one of their hashes matched



Minhash in a Nutshell



Minhash in a Nutshell

 using minhashes to speed up the search
 The standard approach: 

 use sketching combined with database indexing
 we compare only samples that we already know are 

highly likely to be similar. 
 a sketch is made by hashing multiple minhashes

together. 
 When we get a new sample

 we find any sketches that match the new sample’s sketches. 
 the new sample is compared with the matching samples 

using their minhash arrays to approximate the Jaccard index



Building a persistent Malware 
Similarity Search System



Building a persistent Malware 
Similarity Search System



Building a persistent Malware 
Similarity Search System



Building a persistent Malware 
Similarity Search System



Building a persistent Malware 
Similarity Search System



Building a persistent Malware 
Similarity Search System



Building a persistent Malware 
Similarity Search System



Building a persistent Malware 
Similarity Search System


