
DATA SCIENCE IN SECURITY
Chapter 4: Shared Code Analysis



Introduction

 Shared code analysis
 also called similarity analysis
 the process by which we compare two malware 

samples by estimating the percentage of pre-
compilation source code they share

 differs from shared attribute analysis
 helps identify samples that can be analyzed together 

 they 
 were generated from the same malware toolkit 
 or are different versions of the same malware family

 can determine whether the same developers could 
have been responsible for a group of malware samples



Introduction

 Shared code analysis



preparing Samples for comparison by 
extracting Features

 we group malware samples into “bags of 
features” before comparing
 Feature: any malware attribute we might possibly 

want to consider
 E.g. the printable strings we can extract

 we think of malware as a bag of independent 
features for mathematical convenience



preparing Samples for comparison by 
extracting Features



preparing Samples for comparison by 
extracting Features

 What are N-Grams?
 a subsequence of events that has a certain length, 

N, of some larger sequence of events
 Can be extracted by sliding a window over the 

sequential data



preparing Samples for comparison by 
extracting Features

 What are N-Grams?
 In malware analysis

 we would extract N-grams of sequential malware API 
calls 

 Then we would represent the malware as a bag of N-
grans

 incorporates sequence information into features 
comparison
 Good, when order matters in the comparison

 malware calls A before B, which was observed before calling C
 Bad, when order is superfluous

 malware randomizing the order of API calls A, B, and C on 
every run



using the Jaccard index to 
Quantify Similarity
 We need a similarity function that should 

have the following properties
 It yields a normalized value
 help us make accurate estimates of code sharing 

between two samples
 should be easily understandable why the function 

models code similarity well



using the Jaccard index to 
Quantify Similarity
 The Jaccard index 

 has all these properties
 emerged as the most widely adopted



using Similarity Matrices to evaluate 
Malware Shared code estimation Methods

 Consider four similarity feature:
 instruction sequence-based similarity
 Strings based similarity
 Import Address Table–based similarity
 Dynamic API call–based similarity

 To compare above features
 we’ll use a similarity matrix visualization 

technique



using Similarity Matrices to evaluate 
Malware Shared code estimation Methods



using Similarity Matrices to evaluate 
Malware Shared code estimation Methods



Instruction Sequence-Based 
Similarity
 most intuitive way to compare two malware binaries
 requires disassembling malware samples using

 E.g. the linear disassembly

 we can use the N-gram approach
 Value of N depends on our analysis goals. 

 The larger N 
 harder it will be for malware samples’ sequences to match. 
 helps identify only samples that are highly likely to share code 

 The smaller N 
 looks for subtle similarities between samples
 Can be used if you suspect that the samples employ instruction 

reordering



Instruction Sequence-Based 
Similarity



Instruction Sequence-Based 
Similarity
 Advantage: few false positives
 Disadvantage: can miss many code-sharing 

relationships
 because malware samples may be packed
 Even when we unpack our malware samples:

 many malwares are authored in languages like C#
 contain standard assembly code that interprets the higher-

level languages’ bytecode
 share very similar x86 instructions
 their actual bytecode come from very different source code



Strings-Based Similarity

 can be computed by 
 extracting all contiguous printable sequences of 

characters in the samples 
 computing the Jaccard index between all pairs of 

malware samples based on their shared string 
relationships

 Can gets around the compiler problem 
 compilers do not transform strings in a binary



Strings-Based Similarity



Import Address Table–Based 
Similarity



Dynamic API Call–Based 
Similarity
 To implement this approach, you’ll need to

 run malware samples in a sandbox 
 record the API calls they make
 extract N-grams of API calls from the dynamic 

logs
 finally compare the samples by taking the Jaccard

index between their bags of N-grams.



Dynamic API Call–Based 
Similarity



Dynamic API Call–Based 
Similarity
 The imperfect results here show 

 Simply running malware in a sandbox is not 
sufficient to trigger many of its behaviors. 

 some samples detect that they’re running in a 
sandbox and then promptly exit execution

 In summary
 dynamic API call sequence similarity isn’t perfect
 but it can provide impressive insight into 

similarities between samples.



Building a Similarity Graph



Building a Similarity Graph



Building a Similarity Graph



Building a Similarity Graph



Building a Similarity Graph



Building a Similarity Graph



Building a Similarity Graph



Scaling Similarity 
comparisons
 Previous codes doesn’t work well for a large 

number of malware samples
 number of necessary Jaccard index computations

 A dataset that has 50,000 samples would require 
1,249,975,000 Jaccard index computations!



Scaling Similarity 
comparisons
 we need to use randomized comparison 

approximation algorithms
 allow for some error in our computation of 

comparisons in exchange for a reduction in 
computation time. 

 minhash serves this purpose for us beautifully. 
 allows us to compute the Jaccard index using 

approximation 
 avoid computing similarities between nonsimilar malware 

samples below some predefined similarity threshold 
 so that we can analyze shared code relationships 

between millions of samples



Minhash in a Nutshell

 Minhash takes a malware sample’s features 
 hashes them with k hash functions.
 For each hash function

 we retain only the minimum value of the hashes 
computed over all the features

 the set of malware features is reduced to a fixed 
size array of k integers

 which we call the minhashes.



Minhash in a Nutshell

 To compute the approximate Jaccard index 
 you now just need to check how many of the k 

minhashes match, and divide that by k
 Magically, the obtained number is a close 

approximation of the true Jaccard index between any 
two samples. 

 The benefit of using minhash
 it’s much faster to compute. 
 we can even use minhash to index malware in a 

database
 we only need to compute comparisons between malware 

samples that at least one of their hashes matched



Minhash in a Nutshell



Minhash in a Nutshell

 using minhashes to speed up the search
 The standard approach: 

 use sketching combined with database indexing
 we compare only samples that we already know are 

highly likely to be similar. 
 a sketch is made by hashing multiple minhashes

together. 
 When we get a new sample

 we find any sketches that match the new sample’s sketches. 
 the new sample is compared with the matching samples 

using their minhash arrays to approximate the Jaccard index



Building a persistent Malware 
Similarity Search System



Building a persistent Malware 
Similarity Search System



Building a persistent Malware 
Similarity Search System



Building a persistent Malware 
Similarity Search System



Building a persistent Malware 
Similarity Search System



Building a persistent Malware 
Similarity Search System



Building a persistent Malware 
Similarity Search System



Building a persistent Malware 
Similarity Search System


