
DATA SCIENCE IN SECURITY
Chapter 6: Understanding Machine Learning-Based Malware Detectors



Introduction

 With the open source machine learning tools 
available today
 you can build custom malware detection tools 

 whether as your primary detection tool 
 or to supplement commercial solutions.



Introduction

 why build your own machine learning tools?
 can allow you to catch new examples of threats

 commercial antivirus engines might miss them 

 Commercial tools are “closed books”
 we don’t necessarily know how they work 
 we have limited ability to tune them

 we know how our own detection tools work 
 can tune them to our liking to reduce 

 false positives 
 or false negatives



Steps for Building a Machine 
learning–Based Detector
 fundamental difference between machine 

learning and other kinds of computer algorithms.
 traditional algorithms tell the computer what to do
 machine-learning systems learn how to solve a 

problem by example
 they automate the work of creating security signatures
 they have the potential to perform more accurately than 

signature-based approaches 
 especially on new, previously unseen malware.



Steps for Building a Machine 
learning–Based Detector
 workflow to build machine learning-based 

detector
1. Collect examples of malware and benignware. 

• called training examples to train the machine learning 
system to recognize malware.

2. Extract features from each training example 
• to represent the example as an array of numbers
• also includes research to design good features

3. Train the machine learning system 
• using the features we have extracted.

4. Test the approach on some data 
• not included in our training examples



Gathering Training Examples

 ability to recognize suspicious binaries 
depends heavily on the 
 quantity of training examples

 the more examples you feed your system, the more 
accurate it’s likely to be

 quality of training examples you provide.
 samples you collect should mirror the kind of 

malware and benignware you expect your detector 
to see



Extracting Features

 we train machine learning systems by 
showing them features of software binaries
 file attributes that will help the system distinguish 

between good and bad files e.g.
 Whether it’s digitally signed 
 The presence of malformed headers 
 The presence of encrypted data
 Whether it has been seen on more than 100 network 

workstations



Designing Good Features

 choose features that represent your best guess 
to distinguish bad files from good files. 
 E.g. “contains encrypted data” 

 benignware will contain encrypted data more rarely. 
 don’t use set of features too large relative to the 

number of training examples 
 not enough training examples to teach your system 

what each feature actually says (probably)
 Statistics tells us that it’s better to 

 give your system a few features relative to the training 
examples 

 Let it form well-founded beliefs about which features 
truly indicate malware.



Designing Good Features

 make sure features represent a range of 
hypotheses
 E.g. 

 you may choose features related to encryption
 but make sure to also use features unrelated to 

encryption 
 if system fails to detect malware based on one type of 

feature, it might still detect it using other features.



Training Machine Learning 
Systems
 depends on the machine learning approach you’re 

using
 E.g.

 training a decision tree approach involves a different learning 
algorithm than training a logistic regression approach

 Fortunately
 all machine learning detectors provide the same basic 

interface
 You provide them with training data that contains 

 features from sample binaries
 corresponding labels

 the algorithms learn to determine 
 a new unseen binaries are malicious or benign. 



Testing Machine Learning 
Systems
 you need to check how accurate it is. 

 running the trained system on data that you didn’t 
train it on and seeing
 how well our systems will detect new malware
 how well our systems will avoid producing false 

positives on new benignware. 



understanding Feature Spaces 
and Decision Boundaries
 Two simple geometric ideas can help you 

understand all machine learning-based 
detection algorithms: 
 the idea of a geometrical feature space 

 geometrical space defined by the features you’ve 
selected

 the idea of a decision boundary. 
 geometrical structure running through feature space 

such that 
 binaries on one side are defined as malware
 binaries on the other side are defined as benignwareSS
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understanding Feature Spaces 
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what Makes Models Good or Bad: 
overfitting and underfitting
 Good, accurate detection models 

 capture the general trend in what the training data says 
 without getting distracted by the outliers or the exceptions

 Underfit models 
 ignore outliers 
 but fail to capture the general trend
 resulting in poor accuracy on unseen binaries

 Overfit models 
 get distracted by outliers 
 don’t reflect the general trend
 yield poor accuracy on unseen binaries.
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what Makes Models Good or Bad: 
overfitting and underfitting



Major types of Machine 
learning algorithms
 Logistic Regression

 Linear machine learning algorithm
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Major types of Machine 
learning algorithms
 Logistic Regression

 how exactly does learn based on the training 
data?
 It uses an iterative, calculus-based approach called 

gradient descent. 
 We won’t get into the details



Major types of Machine 
learning algorithms
 When to Use Logistic Regression

 has distinct advantages and disadvantages 
 advantage is that one can easily interpret it

 Features that have high weight are those the model 
interprets as malicious

 Features with negative weight are those the model 
believes are benignware

 is a fairly simple approach

 Disadvantage 
 when the data is complex, logistic regression often 

fails.



Major types of Machine 
learning algorithms
 K-Nearest Neighbors

 the file is malicious
 if the majority of the k closest binaries to an 

unknown binary are malicious



Major types of Machine 
learning algorithms
 K-Nearest Neighbors

 most common distance function



Major types of Machine 
learning algorithms
 K-Nearest Neighbors

 Choosing the Number of Neighbors That Vote
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Major types of Machine 
learning algorithms
 When to Use K-Nearest Neighbors

 good algorithm when 
 you have data where features don’t map cleanly onto the 

concept of suspiciousness
 but closeness to malicious samples is a strong indicator 

of maliciousness. 

 E.g. when classifying malware families that share code
 KNN might be a good algorithm to try

 Another advantage 
 it provides clear explanations of why it has made a given 

classification decision



Major types of Machine 
learning algorithms
 Decision Trees

 automatically generate a series of questions to 
decide whether or not a given binary is malware

 similar to the game Twenty Questions



Major types of Machine 
learning algorithms
 Decision Trees

 Choosing a Good Root Node
 best root node is the one for which we get 

 a “yes” answer for most if not all samples of one type
 a “no” answer for most if not all samples of the other 

type

 Picking Follow-Up Questions
 similar to the root node



Major types of Machine 
learning algorithms
 Decision Trees

 When to Stop Asking Questions
 limit the number of questions
 limit tree depth
 allow tree to keep growing until it is certain about 

every example in training set



Major types of Machine 
learning algorithms
 Decision Trees

 When to Stop Asking Questions
 constraining the size of the tree prevents overfitting
 allowing the tree to grow increases the complexity 

of the decision boundary
 Practitioners usually try multiple depths



Major types of Machine 
learning algorithms
 Decision Trees

No maximum depth



Major types of Machine 
learning algorithms
 Decision Trees

Depth limited to 5



Major types of Machine 
learning algorithms
 When to Use Decision Trees

 they often do not result in very accurate models. 
 The reason is related to their jagged decision 

boundaries

 don’t usually learn accurate probabilities around 
their decision boundaries



Major types of Machine 
learning algorithms
 Random Forest

 Use hundreds or thousands of decision trees in 
concert
 decision trees to vote to decide for a new binary
 decision trees should be diverse

 have different perspectives



Major types of Machine 
learning algorithms
 Random Forest

 Training for each tree:
 Randomly choose some examples from training set. 
 Build a decision tree from the random sample. 

 each time ask a question of only a handful of features
 and disregard the other features.

 Detection on a previously unseen binary
 Run detection for each individual tree on the binary. 
 Decide based on the number of trees that voted 

“yes.”



Major types of Machine 
learning algorithms
 Random Forest

Using 100 decision trees


