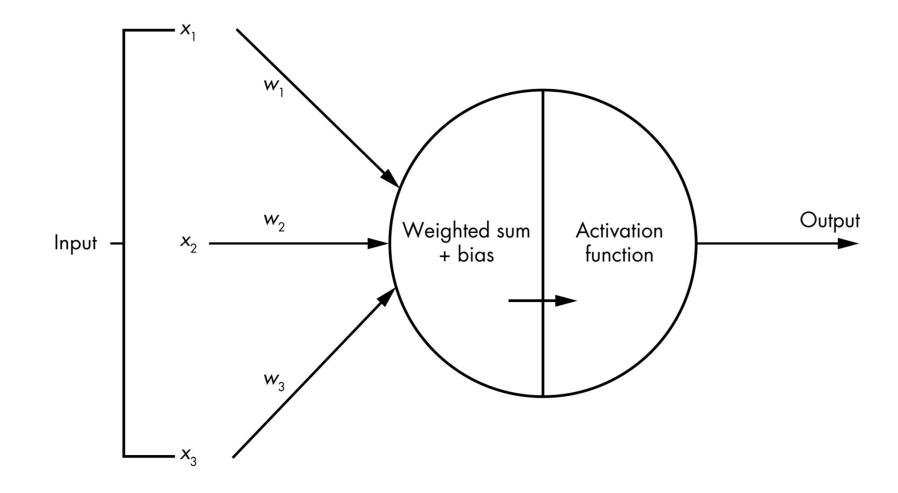
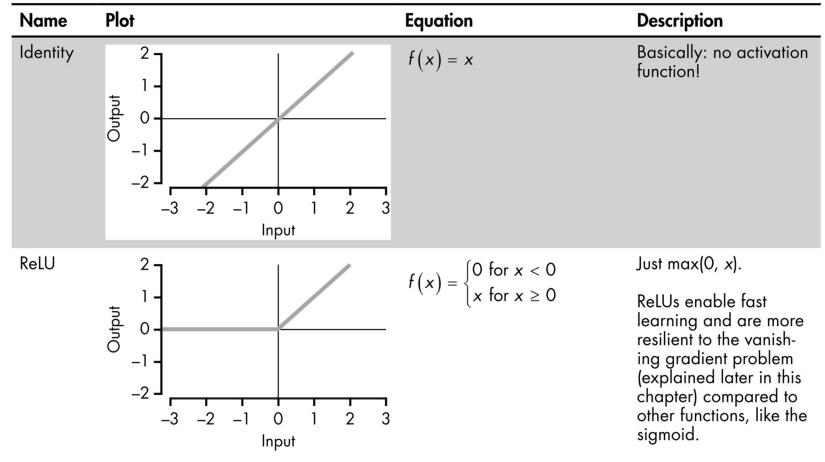
Chapter 10: Deep Learning Basics

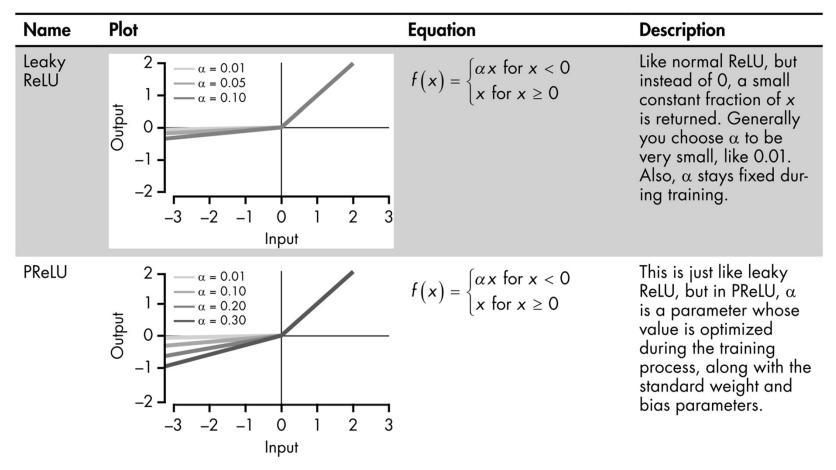
DATA SCIENCE IN SECURITY

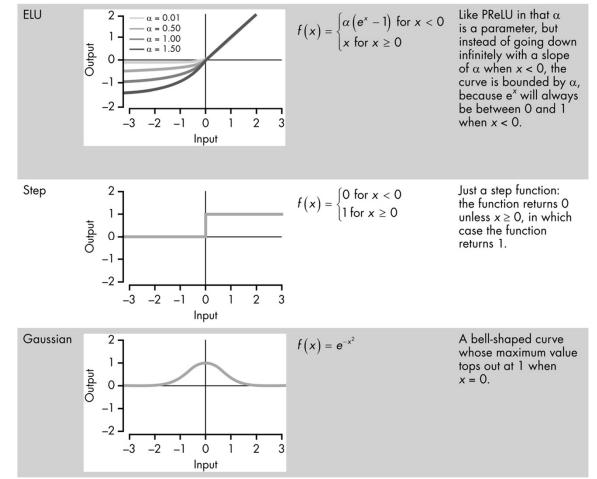

Introduction

- what is Deep learning?
 - just a type of machine learning
 - But it often leads to models that achieve better accuracy
 - Deep learning models learn to view their training data as a nested hierarchy of concepts
 - automatically combine input features to form new, optimized meta-features
 - which they then combine to form even more features, and so on.
 - allows them to represent incredibly complex patterns

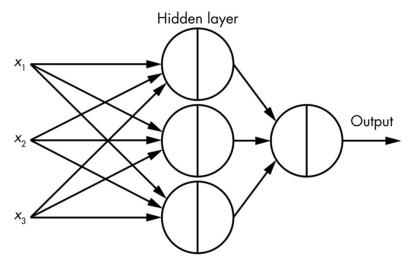

Introduction

- what is Deep learning?
 - Deep" also refers to the architecture
 - usually consists of multiple layers of processing units
 - each using the previous layer's outputs as its inputs.
 - Each of these processing units is called a neuron
 - the model architecture as a whole is called
 - a neural network
 - or a deep neural network when there are many layers.

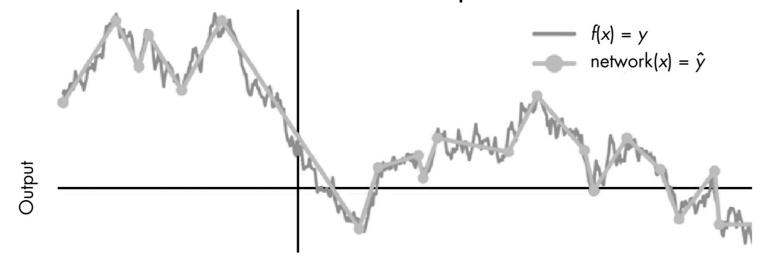

Anatomy of a Neuron


Common activation functions

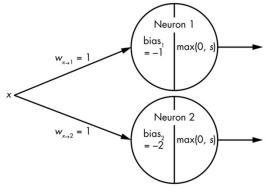
Common activation functions


Common activation functions

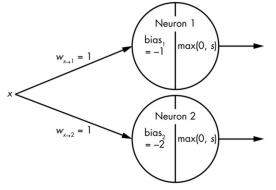
Common activation functions


Name	Plot	Equation	Description
Sigmoid	$ \begin{array}{c} 2 \\ 1 \\ 0 \\ -1 \\ -2 \\ -3 \\ -2 \\ -3 \\ -2 \\ -1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 2 \\ -3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$f(x) = \frac{e^x}{e^x + 1}$	Because of the vanishing gradient problem (explained later in this chapter), sigmoid activa- tion functions are often only used in the final layer of a neural network. Because the output is continuous and bounded between O and 1, sigmoid neurons are a good proxy for output probabilities.
Softmax	(multi-output)	$f(x) = \frac{e^{x_i}}{\sum_{k=1}^{k=K} e^{x_k}}$ for $j = 1, 2,, K$	Outputs multiple values that sum to 1. Softmax activation functions are often used in the final layer of a network to represent classifi- cation probabilities, because Softmax forces all outputs from a neuron to sum to 1.

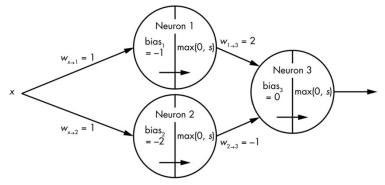
A Network of Neurons


- the total number of optimizable parameters is
 - number of edges connecting an input to a neuron, plus the number of neurons.

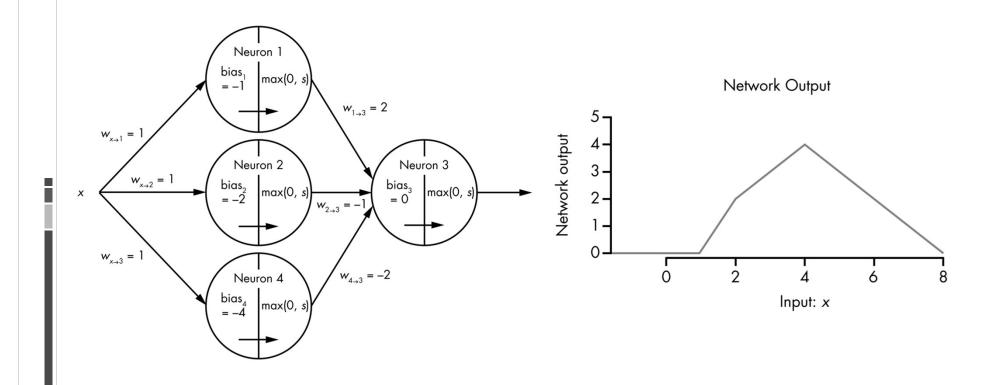
- Universal Approximation Theorem
 - a feed-forward network with a single hidden layer of neurons with nonlinear activation functions can approximate (with an arbitrarily small error) any continuous function on a compact subset of Rⁿ



Starting with two ReLU neurons


Input	Weighted sum	Weighted sum + bias	Output					
x	$x * w_{x \rightarrow 1}$	$x * w_{x \rightarrow 1} + bias_1$	$\max(0, x * w_{x \rightarrow 1} + bias_1)$			Neuron 1		
0	0 * 1 = 0	0 + -1 = -1	max(0, -1) = 0	and the second s		T		/
1	1 * 1 = 1	1 + -1 = 0	max(0, 0) = 0	fno u				
2	2 * 1 = 2	2 + -1 = 1	max(0, 1) = 1					
3	3 * 1 = 3	3 + -1 = 2	max(0, 2) = 2	1 _	-1	0 1	$\frac{1}{2}$ 3	
4	4 * 1 = 4	4 + -1 = 3	max(0, 3) = 3	-		Input: x	2 0	
5	5 * 1 = 5	5 + -1 = 4	max(0, 4) = 4					

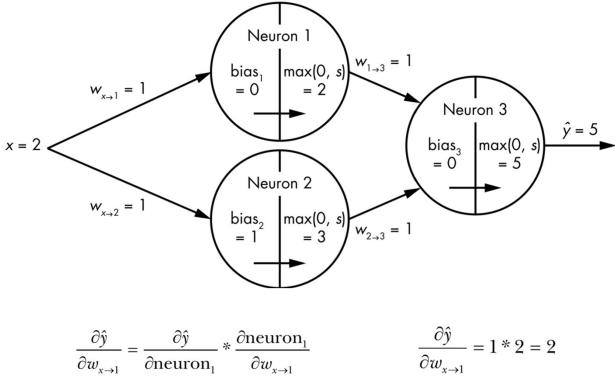
Starting with two ReLU neurons


	Input	Weighted sum	Weighted sum + bias	Output	
1	x	$x * w_{x \rightarrow 2}$	$(x * w_{x \rightarrow 2}) + bias_2$	$\max(0, (x * w_{x \rightarrow 2}) + bias_2)$	Neuron 2
Ē.	0	0 * 1 = 0	0 + -2 = -2	max(0, -2) = 0	
	1	1 * 1 = 1	1 + -2 = -1	max(0, -1) = 0	2 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
	2	2 * 1 = 2	2 + -2 = 0	max(0, 0) = 0	
	3	3 * 1 = 3	3 + -2 = 1	max(0, 1) = 1	
	4	4 * 1 = 4	4 + -2 = 2	max(0, 2) = 2	Input: x
	5	5 * 1 = 5	5 + -2 = 3	max(0, 3) = 3	_

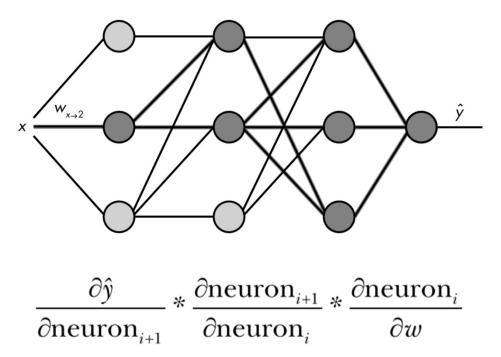
Adding another ReLU neurons

i	Original network input	Inputs to	neuron ₃	Weighted sum	Weighted sum + bias	Final network output		5 4-		٢	Network Out	put	/	/
l	x	neuron ₁	neuron ₂	(neuron ₁ * $w_{1\rightarrow 3}$) + (neuron ₂ * $w_{2\rightarrow 3}$)	(neuron ₁ * $w_{1\rightarrow3}$) + (neuron ₂ * $w_{2\rightarrow3}$) + bias ₃	$max(0, (neuron_1 * w_{1\rightarrow 3}) + (neuron_2 * w_{2\rightarrow 3}) + bias_3)$	k output	3-				/		
	0	0	0	(0 * 2) + (0 * -1) = 0	0 + 0 + 0 = 0	max(0, 0) = 0	Vetwork	2-			/			
	1	0	0	(0 * 2) + (0 * -1) = 0	0 + 0 + 0 = 0	max(0, 0) = 0	Ne				/			
	2	1	0	(1 * 2) + (0 * -1) = 2	2 + 0 + 0 = 2	max(0, 2) = 2		1-			/			
	3	2	1	(2 * 2) + (1 * -1) = 3	4 + -1 + 0 = 3	max(0, 3) = 3					/			
	4	3	2	(3 * 2) + (2 * -1) = 4	6 + -2 + 0 = 4	max(0, 4) = 4		0	- <u> </u>	1		ļ		
	5	4	3	(4 * 2) + (3 * -1) = 5	8 + -3 + 0 = 5	max(0, 5) = 5		-2	-1	0	Input: x	3	4	5

Adding Another Neuron to the Network


Automatic Feature Generation

- what happens when we have multiple hidden layers of neurons?
 - you give raw features to neural network
 - each layer represent those raw features in ways that work well as inputs to later layers.


- we start with a training dataset and a network with randomly initialized parameters.
 - feed a network an observation, x, from your training dataset
 - receive some output, 'y (forward propagation)
 - figure out how changing your parameters will shift 'y closer to your goal, y.
 - Parameters all throughout the network are then nudged just a tiny bit in a direction that causes ^y to shift a little closer to y
 - If $\partial \hat{y} / \partial w$ is positive

- you should increase w by a small amount
- The process of iteratively calculating partial derivatives, updating parameters, and then repeating is called gradient descent

 Using Backpropagation to Optimize a Neural Network

- Using Backpropagation to Optimize a Neural Network
 - Path explosion

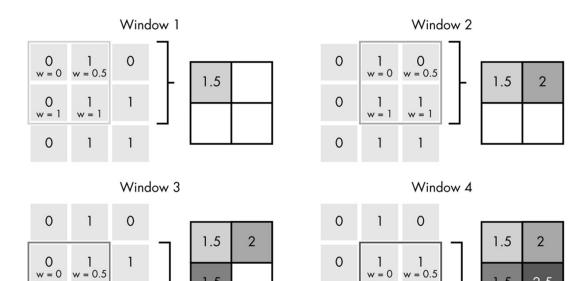
- Using Backpropagation to Optimize a Neural Network
 - Vanishing Gradient
 - Consider a weight parameter in the first layer of a neural network that has ten layers
 - Its parameters are updated based on
 - the summation of a massive very tiny numbers
 - many of which end up canceling one another out
 - it can be difficult for a network to coordinate sending a strong signal down to parameters in lower layers
 - certain network designs try to get around this problem

- Feed-Forward Neural Network
 - simplest kind of neural network
 - consists of stacks of layers of neurons
 - Each layer of neurons is connected to some or all neurons in the next layer
 - Each neuron doesn't necessarily have to connect to every neuron in the next layer
 - connections never go backward or form cycles

Convolutional Neural Network

contains convolutional layers where

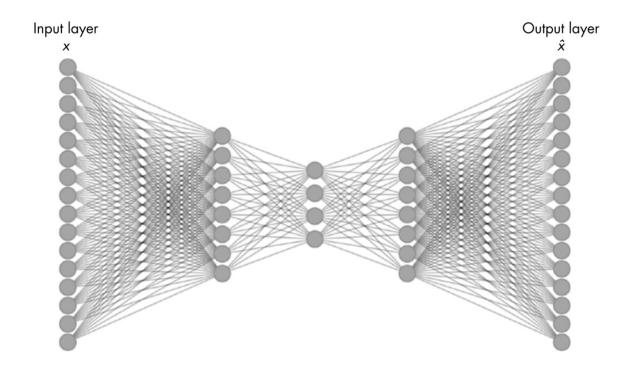
1.5


0

the input that feeds into each neuron is defined by a window that slides over the input space

0

1.5


2.5

- Convolutional Neural Network
 - Also contain pooling layer

- "zoom out" on the data
 - reducing the size of the features for faster computation
 - while retaining the most important information
- The structure of these networks encourages localized feature learning
 - extremely effective at image recognition and classification

Autoencoder Neural Network

- Generative Adversarial Network
 - a system of two neural networks
 - competing with each other to improve themselves at their respective tasks.
 - the generative network tries to create fake samples from random noise
 - the discriminator network attempts differentiate between real and fake samples

- Generative Adversarial Network
 - Both neural networks in a GAN are optimized with backpropagation
 - their loss functions are direct opposites of one another
 - generator network optimizes its parameters based on how well it fooled the discriminator network in a given round
 - discriminator network optimizes its parameters based on how accurately it could discriminate between generated and real samples.
 - GANs can be been used to generate real-looking data or enhance low-quality or corrupted data

- Recurrent Neural Network
 - connections between neurons form directed cycles
 - activation functions are dependent on time-steps
 - allows the network to develop a memory
 - helps it learn patterns in sequences of data
 - the inputs, the outputs, or both are some sort of time series

- Recurrent Neural Network
 - are great for tasks where data order matters
 - connected handwriting recognition
 - speech recognition
 - language translation
 - and time series analysis
 - In the context of cybersecurity
 - network traffic analysis
 - behavioral detection
 - static file analysis
 - Because program code is similar to natural language
 - order matters
 - it can be treated as a time series

- Recurrent Neural Network
 - vanishing gradient is an issue
 - each time-step in an RNN is similar to an entire extra layer
 - Backpropagation causes signals in earlier time-steps to become incredibly faint
 - Iong short-term memory (LSTM) network
 - a special type of RNN
 - designed to address vanishing gradient problem.
 - contain memory cells and special neurons that try to decide
 - what information to remember
 - and what information to forget.

- ResNet (residual network)
 - creates skip connections between neurons in early layers of the network to deeper layers
 - pass numerical information directly between layers
 - without to pass through the kinds of activation functions
 - helps greatly reduce the vanishing gradient
 - enables ResNets to be incredibly deep