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Preface to the Fourth Edition

Nearly 50 years after the realization of the first laser in 1960, laser spec-
troscopy is still a very intense field of research which has expanded with
remarkable progress into many areas of science, medicine and technology, and
has provided an ever-increasing number of applications. The importance of
laser spectroscopy and its appreciation by many people is, for instance, proved
by the fact that over the last ten years three Nobel Prizes have been awarded
to nine scientists in the field of laser spectroscopy and quantum optics.

This positive development is partly based on new experimental techniques,
such as improvements of existing lasers and the invention of new laser types,
the realization of optical parametric oscillators and amplifiers in the fem-
tosecond range, the generation of attosecond pulses, the revolution in the
measurements of absolute optical frequencies and phases of optical waves
using the optical frequency comb, or the different methods developed for
the generation of Bose–Einstein condensates of atoms and molecules and the
demonstration of atom lasers as a particle equivalent to photon lasers.

These technical developments have stimulated numerous applications in
chemistry, biology, medicine, atmospheric research, materials science, metrol-
ogy, optical communication networks, and many other industrial areas.

In order to cover at least some of these new developments, a single vol-
ume would need too many pages. Therefore the author has decided to split
the book into two parts. The first part contains the foundations of laser
spectroscopy, i.e., the basic physics of spectroscopy, optical instruments and
techniques. It furthermore provides a short introduction to the physics of
lasers, and discusses the role of optical resonators and techniques for realizing
tunable narrowband lasers, the working horses of laser spectroscopy. It gives
a survey on the different types of tunable lasers and represents essentially the
updated and enlarged edition of the first six chapters of the third edition. In
order to improve its value as a textbook for students, the number of prob-
lems has been increased and their solutions are given at the end of Vol. 1.
The second volume discusses the different techniques of laser spectroscopy.
Compared to the third edition, it adds many new developments and tries to
bring the reader up to speed on the present state of laser spectroscopy.

The author wishes to thank all of the people who have contributed to this
new edition. There is Dr. Th. Schneider at Springer-Verlag, who has always
supported the author and has shown patience when deadlines were not kept.
Claudia Rau from LE-TeX has taken care of the layout, and many colleagues
have given their permission to use figures from their research. Several read-
ers have sent me their comments on errors or possible improvements. I thank
them very much.
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The author hopes that this new edition will find a similar friendly approval
to the former editions and that it will enhance interest in the fascinating field
of laser spectroscopy. He would appreciate any suggestions for improvement
or hints about possible errors, and he will try to answer every question as soon
as possible.

Kaiserslautern, Wolfgang Demtröder
February 2008



Preface to the Third Edition

Laser Spectroscopy continues to develop and expand rapidly. Many new ideas
and recent realizations of new techniques based on old ideas have contributed
to the progress in this field since the last edition of this textbook appeared. In
order to keep up with these developments it was therefore necessary to include
at least some of these new techniques in the third edition.

There are, firstly, the improvement of frequency-doubling techniques in ex-
ternal cavities, the realization of more reliable cw-parametric oscillators with
large output power, and the development of tunable narrow-band UV sources,
which have expanded the possible applications of coherent light sources in
molecular spectroscopy. Furthermore, new sensitive detection techniques for
the analysis of small molecular concentrations or for the measurement of
weak transitions, such as overtone transitions in molecules, could be realized.
Examples are Cavity Ringdown Spectroscopy, which allows the measurement
of absolute absorption coefficients with great sensitivity or specific modula-
tion techniques that push the minimum detectable absorption coefficient down
to 10−14 cm−1!

The most impressive progress has been achieved in the development of
tunable femtosecond and subfemtosecond lasers, which can be amplified to
achieve sufficiently high output powers for the generation of high harmon-
ics with wavelengths down into the X-ray region and with pulsewidths in
the attosecond range. Controlled pulse shaping by liquid crystal arrays allows
coherent control of atomic and molecular excitations and in some favorable
cases chemical reactions can already be influenced and controlled using these
shaped pulses.

In the field of metrology a big step forward was the use of frequency
combs from cw mode-locked femtosecond lasers. It is now possible to directly
compare the microwave frequency of the cesium clock with optical frequen-
cies, and it turns out that the stability and the absolute accuracy of frequency
measurements in the optical range using frequency-stabilized lasers greatly
surpasses that of the cesium clock. Such frequency combs also allow the syn-
chronization of two independent femtosecond lasers.

The increasing research on laser cooling of atoms and molecules and many
experiments with Bose–Einstein condensates have brought about some re-
markable results and have considerably increased our knowledge about the
interaction of light with matter on a microscopic scale and the interatomic in-
teractions at very low temperatures. Also the realization of coherent matter
waves (atom lasers) and investigations of interference effects between matter
waves have proved fundamental aspects of quantum mechanics.
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The largest expansion of laser spectroscopy can be seen in its possible and
already realized applications to chemical and biological problems and its use
in medicine as a diagnostic tool and for therapy. Also, for the solution of
technical problems, such as surface inspections, purity checks of samples or
the analysis of the chemical composition of samples, laser spectroscopy has
offered new techniques.

In spite of these many new developments the representation of established
fundamental aspects of laser spectroscopy and the explanation of the basic
techniques are not changed in this new edition. The new developments men-
tioned above and also new references have been added. This, unfortunately,
increases the number of pages. Since this textbook addresses beginners in this
field as well as researchers who are familiar with special aspects of laser spec-
troscopy but want to have an overview on the whole field, the author did not
want to change the concept of the textbook.

Many readers have contributed to the elimination of errors in the former
edition or have made suggestions for improvements. I want to thank all of
them. The author would be grateful if he receives such suggestions also for
this new edition.

Many thanks go to all colleagues who gave their permission to use fig-
ures and results from their research. I thank Dr. H. Becker and T. Wilbourn
for critical reading of the manuscript, Dr. H.J. Koelsch and C.-D. Bachem of
Springer-Verlag for their valuable assistance during the editing process, and
LE-TeX Jelonek, Schmidt and Vöckler for the setting and layout. I appreci-
ate, that Dr. H. Lotsch, who has taken care for the foregoing editions, has
supplied his computer files for this new edition. Last, but not least, I would
like to thank my wife Harriet who made many efforts in order to give me the
necessary time for writing this new edition.

Kaiserslautern, Wolfgang Demtröder
April 2002





Preface to the Second Edition

During the past 14 years since the first edition of this book was published,
the field of laser spectroscopy has shown a remarkable expansion. Many
new spectroscopic techniques have been developed. The time resolution has
reached the femtosecond scale and the frequency stability of lasers is now in
the millihertz range.

In particular, the various applications of laser spectroscopy in physics,
chemistry, biology, and medicine, and its contributions to the solutions of
technical and environmental problems are remarkable. Therefore, a new edi-
tion of the book seemed necessary to account for at least part of these novel
developments. Although it adheres to the concept of the first edition, several
new spectroscopic techniques such as optothermal spectroscopy or velocity-
modulation spectroscopy are added.

A whole chapter is devoted to time-resolved spectroscopy including the
generation and detection of ultrashort light pulses. The principles of coherent
spectroscopy, which have found widespread applications, are covered in a sep-
arate chapter. The combination of laser spectroscopy and collision physics,
which has given new impetus to the study and control of chemical reactions,
has deserved an extra chapter. In addition, more space has been given to op-
tical cooling and trapping of atoms and ions.

I hope that the new edition will find a similar friendly acceptance as the
first one. Of course, a texbook never is perfect but can always be improved. I,
therefore, appreciate any hint to possible errors or comments concerning cor-
rections and improvements. I will be happy if this book helps to support teach-
ing courses on laser spectroscopy and to transfer some of the delight I have
experienced during my research in this fascinating field over the last 30 years.

Many people have helped to complete this new edition. I am grateful to
colleagues and friends, who have supplied figures and reprints of their work.
I thank the graduate students in my group, who provided many of the ex-
amples used to illustrate the different techniques. Mrs. Wollscheid who has
drawn many figures, and Mrs. Heider who typed part of the corrections. Par-
ticular thanks go to Helmut Lotsch of Springer-Verlag, who worked very hard
for this book and who showed much patience with me when I often did not
keep the deadlines.

Last but not least, I thank my wife Harriet who had much understand-
ing for the many weekends lost for the family and who helped me to have
sufficient time to write this extensive book.

Kaiserslautern, Wolfgang Demtröder
June 1995



Preface to the First Edition

The impact of lasers on spectroscopy can hardly be overestimated. Lasers rep-
resent intense light sources with spectral energy densities which may exceed
those of incoherent sources by several orders of magnitude. Furthermore, be-
cause of their extremely small bandwidth, single-mode lasers allow a spectral
resolution which far exceeds that of conventional spectrometers. Many exper-
iments which could not be done before the application of lasers, because of
lack of intensity or insufficient resolution, are readily performed with lasers.

Now several thousands of laser lines are known which span the whole
spectral range from the vacuum-ultraviolet to the far-infrared region. Of
particular interst are the continuously tunable lasers which may in many
cases replace wavelength-selecting elements, such as spectrometers or inter-
ferometers. In combination with optical frequency-mixing techniques such
continuously tunable monochromatic coherent light sources are available at
nearly any desired wavelength above 100 nm.

The high intensity and spectral monochromasy of lasers have opened
a new class of spectroscopic techniques which allow investigation of the struc-
ture of atoms and molecules in much more detail. Stimulated by the variety
of new experimental possibilities that lasers give to spectroscopists, very lively
research activities have developed in this field, as manifested by an avalanche
of publications. A good survey about recent progress in laser spectroscopy
is given by the proceedings of various conferences on laser spectroscopy
(see “Springer Series in Optical Sciences”), on picosecond phenomena (see
“Springer Series in Chemical Physics”), and by several quasi-mongraphs on
laser spectroscopy published in “Topics in Applied Physics”.

For nonspecialists, however, or for people who are just starting in this
field, it is often difficult to find from the many articles scattered over many
journals a coherent representation of the basic principles of laser spectroscopy.
This textbook intends to close this gap between the advanced research papers
and the representation of fundamental principles and experimental techniques.
It is addressed to physicists and chemists who want to study laser spec-
troscopy in more detail. Students who have some knowledge of atomic and
molecular physics, electrodynamics, and optics should be able to follow the
presentation.

The fundamental principles of lasers are covered only very briefly because
many excellent textbooks on lasers already exist.

On the other hand, those characteristics of the laser that are important for
its applications in spectroscopy are treated in more detail. Examples are the
frequency spectrum of different types of lasers, their linewidths, amplitude
and frequency stability, tunability, and tuning ranges. The optical compo-
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nents such as mirrors, prisms, and gratings, and the experimental equipment
of spectroscopy, for example, monochromators, interferometers, photon detec-
tors, etc., are discussed extensively because detailed knowledge of modern
spectroscopic equipment may be crucial for the successful performance of an
experiment.

Each chapter gives several examples to illustrate the subject discussed.
Problems at the end of each chapter may serve as a test of the reader’s un-
derstanding. The literature cited for each chapter is, of course, not complete
but should inspire further studies. Many subjects that could be covered only
briefly in this book can be found in the references in a more detailed and of-
ten more advanced treatment. The literature selection does not represent any
priority list but has didactical purposes and is intended to illustrate the subject
of each chapter more thoroughly.

The spectroscopic applications of lasers covered in this book are restricted
to the spectroscopy of free atoms, molecules, or ions. There exists, of course,
a wide range of applications in plasma physics, solid-state physics, or fluid
dynamics which are not discussed because they are beyond the scope of this
book. It is hoped that this book may be of help to students and researchers.
Although it is meant as an introduction to laser spectroscopy, it may also
facilitate the understanding of advanced papers on special subjects in laser
spectroscopy. Since laser spectroscopy is a very fascinating field of research,
I would be happy if this book can transfer to the reader some of my excite-
ment and pleasure experienced in the laboratory while looking for new lines
or unexpected results.

I want to thank many people who have helped to complete this book.
In particular the students in my research group who by their experimental
work have contributed to many of the examples given for illustration and who
have spent their time reading the galley proofs. I am grateful to colleages
from many laboratories who have supplied me with figures from their pub-
lications. Special thanks go to Mrs. Keck and Mrs. Ofiiara who typed the
manuscript and to Mrs. Wollscheid and Mrs. Ullmer who made the draw-
ings. Last but not least, I would like to thank Dr. U. Hebgen, Dr. H. Lotsch,
Mr. K.-H. Winter, and other coworkers of Springer-Verlag who showed much
patience with a dilatory author and who tried hard to complete the book in
a short time.

Kaiserslautern, Wolfgang Demtröder
March 1981
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1. Introduction

Most of our knowledge about the structure of atoms and molecules is based
on spectroscopic investigations. Thus spectroscopy has made an outstanding
contribution to the present state of atomic and molecular physics, to chem-
istry, and to molecular biology. Information on molecular structure and on the
interaction of molecules with their surroundings may be derived in various
ways from the absorption or emission spectra generated when electromagnetic
radiation interacts with matter.

Wavelength measurements of spectral lines allow the determination of
energy levels of the atomic or molecular system. The line intensity is pro-
portional to the transition probability, which measures how strongly the two
levels of a molecular transition are coupled. Since the transition probability
depends on the wave functions of both levels, intensity measurements are use-
ful to verify the spatial charge distribution of excited electrons, which can
only be roughly calculated from approximate solutions of the Schrödinger
equation. The natural linewidth of a spectral line may be resolved by spe-
cial techniques, allowing mean lifetimes of excited molecular states to be
determined. Measurements of the Doppler width yield the velocity distribu-
tion of the emitting or absorbing molecules and with it the temperature of
the sample. From pressure broadening and pressure shifts of spectral lines,
information about collision processes and interatomic potentials can be ex-
tracted. Zeemann and Stark splittings by external magnetic or electric fields
are important means of measuring magnetic or electric moments and eluci-
dating the coupling of the different angular momenta in atoms or molecules,
even with complex electron configurations. The hyperfine structure of spectral
lines yields information about the interaction between the nuclei and the elec-
tron cloud and allows nuclear magnetic dipole moments, electric quadrupole
moments or even higher moments, such as octupole moments to be deter-
mined. Time-resolved measurements allow the spectroscopist to follow up
dynamical processes in ground-state and excited-state molecules, to investi-
gate details of collision processes and various energy transfer mechanisms.
Laser spectroscopic studies of the interaction of single atoms with a radiation
field provide stringent tests of quantum electrodynamics and the realization of
high-precision frequency standards allows one to check whether fundamental
physical constants show small changes with time.

These examples represent only a small selection of the many possible ways
by which spectroscopy provides tools to explore the microworld of atoms and
molecules. However, the amount of information that can be extracted from
a spectrum depends essentially on the attainable spectral or time resolution
and on the detection sensitivity that can be achieved.
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The application of new technologies to optical instrumentation (for in-
stance, the production of larger and better ruled gratings in spectrographs,
the use of highly reflecting dielectric coatings in interferometers, and the
development of optical multichannel analyzers, CCD cameras, and image
intensifiers) has certainly significantly extended the sensitivity limits. Con-
siderable progress was furthermore achieved through the introduction of
new spectroscopic techniques, such as Fourier spectroscopy, optical pumping,
level-crossing techniques, and various kinds of double-resonance methods and
molecular beam spectroscopy.

Although these new techniques have proved to be very fruitful, the re-
ally stimulating impetus to the whole field of spectroscopy was given by the
introduction of lasers. In many cases these new spectroscopic light sources
may increase spectral resolution and sensitivity by several orders of magni-
tude. Combined with new spectroscopic techniques, lasers are able to surpass
basic limitations of classical spectroscopy. Many experiments that could not
be performed with incoherent light sources are now feasible or have already
been successfully completed recently. This book deals with such new tech-
niques of laser spectroscopy and explains the necessary instrumentation. It is
divided into two volumes.

The first volume contains the basic physical foundations of laser spec-
troscopy and the most important experimental equipment in a spectroscopic
laboratory. It begins with a discussion of the fundamental definitions and con-
cepts of classical spectroscopy, such as thermal radiation, induced and sponta-
neous emission, radiation power and intensity, transition probabilities, and the
interaction of weak and strong electromagnetic (EM) fields with atoms. Since
the coherence properties of lasers are important for several spectroscopic tech-
niques, the basic definitions of coherent radiation fields are outlined and the
description of coherently excited atomic levels is briefly discussed.

In order to understand the theoretical limitations of spectral resolution in
classical spectroscopy, Chap. 3 treats the different causes of the broadening
of spectral lines and the information drawn from measurements of line pro-
files. Numerical examples at the end of each section illustrate the order of
magnitude of the different effects.

The contents of Chap. 4, which covers spectroscopic instrumentation and
its application to wavelength and intensity measurements, are essential for
the experimental realization of laser spectroscopy. Although spectrographs
and monochromators, which played a major rule in classical spectroscopy,
may be abandoned for many experiments in laser spectroscopy, there are still
numerous applications where these instruments are indispensible. Of major
importance for laser spectroscopists are the different kinds of interferometers.
They are used not only in laser resonators to realize single-mode operation,
but also for line-profile measurements of spectral lines and for very precise
wavelength measurements. Since the determination of wavelength is a central
problem in spectroscopy, a whole section discusses some modern techniques
for precise wavelength measurements and their accuracy.

Lack of intensity is one of the major limitations in many spectroscopic in-
vestigations. It is therefore often vital for the experimentalist to choose the
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proper light detector. Section 4.5 surveys several light detectors and sensitive
techniques such as photon counting, which is becoming more commonly used.
While Chaps. 2–4 cover subjects that are not restricted to laser spectroscopy
(they are general spectroscopy concepts), Chap. 5 deals with the “working
horse” of laser spectroscopy: the different kinds of lasers and their design.
It treats the basic properties of lasers as spectroscopic radiation sources and
starts with a short recapitulation of the fundamentals of lasers, such as thresh-
old conditions, optical resonators, and laser modes. Only those laser character-
istics that are important in laser spectroscopy are discussed here. For a more
detailed treatment the reader is referred to the extensive laser literature cited in
Chap. 5. Those properties and experimental techniqes that make the laser such
an attractive spectroscopic light source are discussed more thoroughly. For
instance, the important questions of wavelength stabilization and continuous
wavelength tuning are treated, and experimental realizations of single-mode
tunable lasers and limitations of laser linewidths are presented. The last part of
this chapter gives a survey of the various types of tunable lasers that have been
developed for different spectral ranges. Advantages and limitations of these
lasers are discussed. The available spectral range could be greatly extended
by optical frequency doubling and mixing processes. This interesting field of
nonlinear optics is presented in Chap. 5 as far as it is relevant to spectroscopy.

The second volume presents various applications of lasers in spectroscopy
and discusses the different methods that have been developed recently. The
presentation relies on the general principles and the instrumentation of spec-
troscopy outlined in the first volume. It starts with different techniques of laser
spectroscopy and also covers recent developments and the various applications
of laser spectroscopy in science, technology, medicine and environmental
studies.

This book is intended as an introduction to the basic methods and in-
strumentation of spectroscopy, with special emphasis placed on laser spec-
troscopy. The examples in each chapter illustrate the text and may suggest
other possible applications. They are mainly concerned with the spectroscopy
of free atoms and molecules and are, of course, not complete, but have been
selected from the literature or from our own laboratory work for didactic pur-
poses and may not represent the priorities of publication dates. For a far more
extensive survey of the latest publications in the broad field of laser spec-
troscopy, the reader is referred to the proceedings of various conferences on
laser spectroscopy [1.1–1.10] and to textbooks or collections of articles on
modern aspects of laser spectroscopy [1.11–1.31]. Since scientific achieve-
ments in laser physics have been pushed forward by a few pioneers, it is
interesting to look back to the historical development and to the people who
influenced it. Such a personal view can be found in [1.32, 1.33]. The refer-
ence list at the end of the book might be helpful in finding more details of
a special experiment or to dig deeper into theoretical and experimental aspects
of each chapter. A useful “Encyclopedia of spectroscopy” [1.34, 1.35] gives
a good survey on different aspects of laser spectroscopy.





2. Absorption and Emission of Light

This chapter deals with basic considerations about absorption and emission
of electromagnetic waves interacting with matter. Especially emphasized are
those aspects that are important for the spectroscopy of gaseous media. The
discussion starts with thermal radiation fields and the concept of cavity modes
in order to elucidate differences and connections between spontaneous and in-
duced emission and absorption. This leads to the definition of the Einstein
coefficients and their mutual relations. The next section explains some defini-
tions used in photometry such as radiation power, intensity, and spectral power
density.

It is possible to understand many phenomena in optics and spectroscopy in
terms of classical models based on concepts of classical electrodynamics. For
example, the absorption and emission of electromagnetic waves in matter can
be described using the model of damped oscillators for the atomic electrons.
In most cases, it is not too difficult to give a quantum-mechanical formulation
of the classical results. The semiclassical approach will be outlined briefly in
Sect. 2.7.

Many experiments in laser spectroscopy depend on the coherence prop-
erties of the radiation and on the coherent excitation of atomic or molecular
levels. Some basic ideas about temporal and spatial coherence of optical fields
and the density-matrix formalism for the description of coherence in atoms are
therefore discussed at the end of this chapter.

Throughout this text the term “light” is frequently used for electromagnetic
radiation in all spectral regions. Likewise, the term “molecule” in general
statements includes atoms as well. We shall, however, restrict the discussion
and most of the examples to gaseous media, which means essentially free
atoms or molecules.

For more detailed or more advanced presentations of the subjects sum-
marized in this chapter, the reader is referred to the extensive literature on
spectroscopy [2.1–2.11]. Those interested in light scattering from solids are
directed to the sequence of Topics volumes edited by Cardona and coworkers
[2.12].

2.1 Cavity Modes

Consider a cubic cavity with the sides L at the temperature T . The walls of
the cavity absorb and emit electromagnetic radiation. At thermal equilibrium
the absorbed power Pa(ω) has to be equal to the emitted power Pe(ω) for all
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frequencies ω. Inside the cavity there is a stationary radiation field E, which
can be described at the point r by a superposition of plane waves with the
amplitudes Ap, the wave vectors kp, and the angular frequencies ωp as

E =
∑

p

Ap exp[i(ωpt −kp ·r)]+ compl. conj. (2.1)

The waves are reflected at the walls of the cavity. For each wave vector k =
(kx, ky, kz), this leads to eight possible combinations ki = (±kx,±ky,±kz)
that interfere with each other. A stationary-field configuration only occurs
if these superpositions result in standing waves (Fig. 2.1a,b). This imposes
boundary conditions for the wave vector, namely

kx = π

L
n1 ; ky = π

L
n2 ; kz = π

L
n3 , (2.2a)

which means that, for all three components, the side-length L of the cavity
must be an integer multiple of 1/2 of the wavelength λ = k/2π.

The wave vector of the electromagnetic wave is then:

k = π

L
(n1, n2, n3) , (2.2b)

where n1, n2, n3 are positive integers.
The magnitudes of the wave vectors allowed by the boundary conditions

are

|k| = π

L

√
n2

1 +n2
2 +n3

3 , (2.3)

which can be written in terms of the wavelength λ = 2π/|k| or the frequency
ω = c|k|.

λ = 2L/

√
n2

1 +n2
2 +n2

3 or ω = πc

L

√
n2

1 +n2
2 +n2

3 . (2.4)

These standing waves are called cavity modes (Fig. 2.1b).

Fig. 2.1a–c. Modes of a stationary EM field in a cavity: (a) Standing waves in a cu-
bic cavity; (b) superposition of possible k vectors to form standing waves, illustrated in
a two-dimensional coordinate system; (c) illustration of the polarization of cavity modes
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Since the amplitude vector A of a transverse wave E is always perpendic-
ular to the wave vector k, it can be composed of two components a1 and a2
with the unit vectors ê1 and ê2

A = a1ê1 +a2ê2 (ê1 · ê = δ12 ; ê1, ê2 ⊥ k) . (2.5)

The complex numbers a1 and a2 define the polarization of the standing wave.
Equation (2.5) states that any arbitrary polarization can always be expressed
by a linear combination of two mutually orthogonal linear polarizations. To
each cavity mode defined by the wave vector kp therefore belong two pos-
sible polarization states. This means that each triple of integers (n1, n2, n3)
represents two cavity modes. Any arbitrary stationary field configuration can
be expressed as a linear combination of cavity modes.

We shall now investigate how many modes with frequencies ω ≤ ωm are
possible. Because of the boundary condition (2.4), this number is equal to the
number of all integer triples (n1, n2, n3) that fulfil the condition

c2k2 = ω2 ≤ ω2
m .

In a system with the coordinates (π/L)(n1, n2, n3) (see Fig. 2.2), each
triple (n1, n2, n3) represents a point in a three-dimensional lattice with the
lattice constant π/L. In this system, (2.4) describes all possible frequencies
within a sphere of radius ω/c. If this radius is large compared to π/L, which
means that 2L � λm , the number of lattice points (n1, n2, n3) with ω2 ≤ ω2

m
is roughly given by the volume of the octant of the sphere shown in Fig. 2.4
with |k〉 = ω/c. This volume is

Vk = 1

8

4π

3

(
kmax

π/L

)3

. (2.6a)

With the two possible polarization states of each mode, one therefore obtains
for the number of allowed modes with frequencies between ω = 0 and ω = ωm
in a cubic cavity of volume L3 with L � λ

N(ωm) = 2
1

8

4π

3

(
Lωm

πc

)3

= 1

3

L3ω3
m

π2c3 . (2.6b)

Fig. 2.2. Illustration of the maximum number of
possible k vectors with |k| ≤ kmax in momentum
space (kx , ky, kz)
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The spatial mode density (the number of modes per unit volume) is then

n(ωm) = N(ωm)/L3 . (2.6c)

It is often interesting to know the number n(ω)dω of modes per unit vol-
ume within a certain frequency interval dω, for instance, within the width
of a spectral line. The spectral mode density n(ω) can be obtained directly
from (2.6) by differentiating N(ω)/L3 with respect to ω. N(ω) is assumed to
be a continuous function of ω, which is, strictly speaking, only the case for
L → ∞. We get

n(ω)dω = ω2

π2c3 dω . (2.7a)

In spectroscopy the frequency ν = ω/2π is often used instead of the angular
frequency ω. With dω = 2πdν, the number of modes per unit volume within
the frequency interval dν is then

n(ν)dν = 8πν2

c3 dν . (2.7b)

In Fig. 2.3 the spectral mode density is plotted against the frequency ν on
a double-logarithmic scale.

Fig. 2.3. Spectral mode density
n(ν) = N(ν)/L3 as a function
of the frequency ν
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Example 2.1.
(a) In the visible part of the spectrum (λ = 500 nm; ν = 6×1014 Hz), (2.7b)

yields for the number of modes per m3 within the Doppler width of
a spectral line (dν = 109 Hz)

n(ν)dν = 3×1014 m−3 .

(b) In the microwave region (λ = 1 cm; ν = 3 ×1010 Hz), the number of
modes per m3 within the typical Doppler width dν = 105 Hz is only
n(ν)dν = 102 m−3.

(c) In the X-ray region (λ = 1 nm; ν = 3×1017 Hz), one finds n(ν)dν =
8.4×1021 m−3 within the typical natural linewidth dν = 1011 Hz of an
X-ray transition.

2.2 Thermal Radiation and Planck’s Law

In classical thermodynamics each degree of freedom of a system in thermal
equilibrium at a temperature T has the mean energy kT/2, where k is the
Boltzmann constant. Since classical oscillators have kinetic as well as poten-
tial energies, their mean energy is kT . If this classical concept is applied to the
electromagnetic field discussed in Sect. 2.1, each mode would represent a clas-
sical oscillator with the mean energy kT . According to (2.7b), the spectral
energy density of the radiation field would therefore be

ρ(ν)dν = n(ν)kT dν = 8πν2k

c3 T dν . (2.8)

This Rayleigh–Jeans law matches the experimental results fairly well at low
frequencies (in the infrared region), but is in strong disagreement with experi-
ment at higher frequencies (in the ultraviolet region). The energy density ρ(ν)
actually diverges for ν → ∞.

In order to explain this discrepancy, Max Planck suggested in 1900 that
each mode of the radiation field can only emit or absorb energy in discrete
amounts qhν, which are integer multiples q of a minimum energy quan-
tum hν. These energy quanta hν are called photons. Planck’s constant h can
be determined from experiments. A mode with q photons therefore contains
the energy qhν.

In thermal equilibrium the partition of the total energy into the different
modes is governed by the Maxwell–Boltzmann distribution, so that the prob-
ability p(q) that a mode contains the energy qhν is

p(q) = (1/Z)e−qhν/kT , (2.9)
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where k is the Boltzmann constant and

Z =
∑

q

e−qhν/kT (2.10)

is the partition function summed over all modes containing q photons h · ν.
Z acts as a normalization factor which makes

∑
q p(q) = 1, as can be seen im-

mediately by inserting (2.10) into (2.9). This means that a mode has to contain
with certainty (p = 1) some number (q = 0, 1, 2, . . . ) of photons.

The mean energy per mode is therefore

W =
∞∑

q=0

p(q)qhν = 1

Z

∞∑

q=0

qhν e−qhν/kT =
∑

qhν e−qhν/kT
∑

e−qhν/kT
. (2.11)

The evaluation of the sum yields [2.6]

W = hν

ehν/kT −1
. (2.12)

The thermal radiation field has the energy density ρ(ν)dν within the frequency
interval ν to ν + dν , which is equal to the number n(ν)dν of modes in the
interval dν times the mean energy W per mode. Using (2.7b, 2.12) one obtains

ρ(ν)dν = 8πν2

c3

hν

ehν/kT −1
dν . (2.13)

This is Planck’s famous radiation law (Fig. 2.4), which predicts a spectral en-
ergy density of the thermal radiation that is fully consistent with experiments.
The expression “thermal radiation” comes from the fact that the spectral en-
ergy distribution (2.13) is characteristic of a radiation field that is in thermal
equilibrium with its surroundings (in Sect. 2.1 the surroundings are deter-
mined by the cavity walls).

The thermal radiation field described by its energy density ρ(ν) is
isotropic. This means that through any transparent surface element dA of

Fig. 2.4. Spectral distribution of the
energy density ρν(ν) for different
temperatures
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Fig. 2.5. Illustration of (2.14)

a sphere containing a thermal radiation field, the same power flux dP is emit-
ted into the solid angle dΩ at an angle θ to the surface normal n̂ (Fig. 2.5)

dP = c

4π
ρ(ν)dA dΩ dν cos θ . (2.14)

It is therefore possible to determine ρ(ν) experimentally by measuring the
spectral distribution of the radiation penetrating through a small hole in the
walls of the cavity. If the hole is sufficiently small, the energy loss through
this hole is negligibly small and does not disturb the thermal equilibrium in-
side the cavity.

Example 2.2.
(a) Examples of real radiation sources with spectral energy distributions

close to the Planck distribution (2.13) are the sun, the bright tungsten
wire of a light bulb, flash lamps, and high-pressure discharge lamps.

(b) Spectral lamps that emit discrete spectra are examples of nonther-
mal radiation sources. In these gas-discharge lamps, the light-emitting
atoms or molecules may be in thermal equilibrium with respect to
their translational energy, which means that their velocity distribution
is Maxwellian. However, the population of the different excited atomic
levels may not necessarily follow a Boltzmann distribution. There is
generally no thermal equilibrium between the atoms and the radiation
field. The radiation may nevertheless be isotropic.

(c) Lasers are examples of nonthermal and anisotropic radiation sources
(Chap. 5). The radiation field is concentrated in a few modes, and most
of the radiation energy is emitted into a small solid angle. This means
that the laser represents an extreme anisotropic nonthermal radiation
source.

2.3 Absorption, Induced, and Spontaneous Emission

Assume that molecules with the energy levels E1 and E2 have been brought
into the thermal radiation field of Sect. 2.2. If a molecule absorbs a photon
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Fig. 2.6. Schematic diagram of the interaction of
a two-level system with a radiation field

of energy hν = E2 − E1, it is excited from the lower energy level E1 into
the higher level E2 (Fig. 2.6). This process is called induced absorption. The
probability per second that a molecule will absorb a photon, dP12/dt, is pro-
portional to the number of photons of energy hν per unit volume and can be
expressed in terms of the spectral energy density ρν(ν) of the radiation field
as

d

dt
P12 = B12ρ(ν) . (2.15)

The constant factor B12 is the Einstein coefficient of induced absorption. It
depends on the electronic structure of the atom, i.e. on its electronic wave
functions in the two levels |1〉 and |2〉. Each absorbed photon of energy hν
decreases the number of photons in one mode of the radiation field by one.

The radiation field can also induce molecules in the excited state E2 to
make a transition to the lower state E1 with simultaneous emission of a pho-
ton of energy hν. This process is called induced (or stimulated) emission. The
induced photon of energy hν is emitted into the same mode that caused the
emission. This means that the number of photons in this mode is increased by
one. The probability dP21/dt that one molecule emits one induced photon per
second is in analogy to (2.15)

d

dt
P21 = B21ρ(ν) . (2.16)

The constant factor B21 is the Einstein coefficient of induced emission.
An excited molecule in the state E2 may also spontaneously convert its

excitation energy into an emitted photon hν. This spontaneous radiation can
be emitted in the arbitrary direction k and increases the number of photons in
the mode with frequency ν and wave vector k by one. In the case of isotropic
emission, the probability of gaining a spontaneous photon is equal for all
modes with the same frequency ν but different directions k.

The probability per second dP
spont
21 /dt that a photon hν = E2 − E1 is

spontaneously emitted by a molecule, depends on the structure of the
molecule and the selected transition |2〉 → |1〉, but it is independent of the
external radiation field,

d

dt
P

spont
21 = A21 . (2.17)
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A21 is the Einstein coefficient of spontaneous emission and is often called the
spontaneous transition probability.

Let us now look for relations between the three Einstein coefficients B12,
B21, and A21. The total number N of all molecules per unit volume is dis-
tributed among the various energy levels Ei of population density Ni such
that

∑
i Ni = N . At thermal equilibrium the population distribution Ni(Ei) is

given by the Boltzmann distribution

Ni = N
gi

Z
e−Ei/kT . (2.18)

The statistical weight gi = 2Ji +1 gives the number of degenerate sublevels
of the level |i〉 with total angular momentum Ji and the partition function

Z =
∑

i

gi e−Ei/kT ,

acts again as a normalization factor which ensures that
∑

i Ni = N .
In a stationary field the total absorption rate Ni B12ρ(ν), which gives the

number of photons absorbed per unit volume per second, has to equal the total
emission rate N2 B21ρ(ν)+ N2 A21 (otherwise the spectral energy density ρ(ν)
of the radiation field would change). This gives

[B21ρ(ν)+ A21]N2 = B12 N1ρ(ν) . (2.19)

Using the relation

N2/N1 = (g2/g1)e−(E2−E1)/kT = (g2/g1)e−hν/kT ,

deduced from (2.18), and solving (2.19) for ρ(ν) yields

ρ(ν) = A21/B21
g1
g2

B12
B21

ehν/kT −1
. (2.20)

In Sect. 2.2 we derived Planck’s law (2.13) for the spectral energy density
ρ(ν) of the thermal radiation field. Since both (2.13, 2.20) must be valid for
an arbitrary temperature T and all frequencies ν, comparison of the constant
coefficients yields the relations

B12 = g2

g1
B21 , (2.21)

A21 = 8πhν3

c3 B21 . (2.22)

Equation (2.21) states that for levels |1〉, |2〉 with equal statistical weights
g2 = g1, the probability of induced emission is equal to that of induced ab-
sorption.
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Fig. 2.7. Average number of photons per mode in a thermal radiation field as a function
of temperature T and frequency ν

From (2.22) the following illustrative result can be extracted: since n(ν) =
8πν2/c3 gives the number of modes per unit volume and frequency interval
dν = 1 Hz, (see (2.7b)), (2.22) can be written as

A21

n(ν)
= B21hν , (2.23a)

which means that the spontaneous emission per mode A∗
21 = A21/n(ν) equals

the induced emission that is triggered by one photon. This can be generalized
to: the ratio of the induced- to the spontaneous-emission rate in an arbitrary
mode is equal to the number q of photons in this mode.

B21ρ(ν)

A∗
21

= q with ρ(ν) = q h ν in 1 mode. (2.23b)

In Fig. 2.7 the mean number of photons per mode in a thermal radiation
field at different absolute temperatures is plotted as a function of frequency ν.
The graphs illustrate that in the visible spectrum this number is small com-
pared to unity at temperatures that can be realized in a laboratory. This implies
that in thermal radiation fields, the spontaneous emission per mode exceeds
by far the induced emission. If it is possible, however, to concentrate most of
the radiation energy into a few modes, the number of photons in these modes
may become exceedingly large and the induced emission in these modes dom-
inates, although the total spontaneous emission into all modes may still be
larger than the induced rate. Such a selection of a few modes is realized in
a laser (Chap. 5).

Comment
Note that the relations (2.21, 2.22) are valid for all kinds of radiation fields.
Although they have been derived for stationary fields at thermal equilibrium,
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the Einstein coefficients are constants that depend only on the molecular prop-
erties and not on external fields as far as these fields do not alter the molecular
properties. These equations therefore hold for arbitrary ρν(ν).

Using the angular frequency ω = 2πν instead of ν, the unit frequency in-
terval dω = 1 s−1 corresponds to dν = 1/2π s−1. The spectral energy density
ρω(ω) = n(ω)�ω is then, according to (2.7a),

ρω(ω) = ω2

π2c3

�ω

e�ω/kT −1
, (2.24)

where � is Planck’s constant h divided by 2π. The ratio of the Einstein coef-
ficients

A21/B21 = �ω
3

π2c3 , (2.25a)

now contains � instead of h, and is smaller by a factor of 2π. However, the
ratio A21/[B21ρω(ω)], which gives the ratio of the spontaneous to the induced
transition probabilities, remains the same:

A21/
[

B(ν)
21 ρν(ν)

]
= A21/

[
B(ω)

21 ρω(ω)
]

. (2.25b)

Example 2.3.

(a) In the thermal radiation field of a 100 W light bulb, 10 cm away from
the tungsten wire, the number of photons per mode at λ = 500 nm is
about 10−8. If a molecular probe is placed in this field, the induced
emission is therefore completely negligible.

(b) In the center spot of a high-current mercury discharge lamp with very
high pressure, the number of photons per mode is about 10−2 at the
center frequency of the strongest emission line at λ = 253.6 mm. This
shows that, even in this very bright light source, the induced emission
only plays a minor role.

(c) Inside the cavity of a HeNe laser (output power 1 mW with mirror
transmittance T = 1%) that oscillates in a single mode, the number of
photons in this mode is about 107. In this example the spontaneous
emission into this mode is completely negligible. Note, however, that
the total spontaneous emission power at λ = 632.2 nm, which is emit-
ted into all directions, is much larger than the induced emission. This
spontaneous emission is more or less uniformly distributed among all
modes. Assuming a volume of 1 cm3 for the gas discharge, the number
of modes within the Doppler width of the neon transition is about 108,
which means that the total spontaneous rate is about 10 times the in-
duced rate.
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2.4 Basic Photometric Quantities

In spectroscopic applications of light sources, it is very useful to define some
characteristic quantities of the emitted and absorbed radiation. This allows a
proper comparison of different light sources and detectors and enables one to
make an appropriate choice of apparatus for a particular experiment.

2.4.1 Definitions

The radiant energy W (measured in joules) refers to the total amount of en-
ergy emitted by a light source, transferred through a surface, or collected by
a detector. The radiant power P = dW/dt (often called radiant flux Φ [W])
is the radiant energy per second. The radiant energy density ρ [J/m3] is the
radiant energy per unit volume of space.

Consider a surface element dA of a light source (Fig. 2.8a). The radiant
power emitted from dA into the solid angle dΩ, around the angle θ against
the surface normal n̂ is

dP = L(θ)dA dΩ , (2.26a)

where the radiance L [W/m2 sr−1] is the power emitted per unit surface ele-
ment dA = 1 m2 into the unit solid angle dΩ = 1 sr.

The total power emitted by the source is

P =
∫

L(θ)dA dΩ . (2.26b)

Fig. 2.8. (a) Definition of solid angle dΩ; (b) definition of radiance L(θ)
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The above three quantities refer to the total radiation integrated over the
entire spectrum. Their spectral versions Wν(ν), Pν(ν), ρν(ν), and Lν(ν) are
called the spectral densities, and are defined as the amounts of W , P, ρ, and L
within the unit frequency interval dν = 1 s−1 around the frequency ν:

W =
∞∫

0

Wν(ν)dν ; P =
∞∫

0

Pν(ν)dν ; ρ =
∞∫

0

ρν(ν)dν ; L =
∞∫

0

Lν(ν)dν .

(2.27)

Example 2.4.
For a spherical isotropic radiation source of radius R (e.g., a star) with
a spectral energy density ρν, the spectral radiance Lν(ν) is independent of θ
and can be expressed by

Lν(ν) = ρν(ν)c/4π = 2hν3

c2

1

ehν/kT −1
→ Pν = 8πR2hν3

c2

1

ehν/kT −1
.

(2.28)

A surface element dA′ of a detector at distance r from the source element dA
covers a solid angle dΩ = dA′ cos θ ′/r2 as seen from the source (Fig. 2.9).
With r2 � dA and dA′, the radiant flux Φ received by dA′ is

dΦ = L(θ)dA cos θ dΩ = L(θ) cos θ dA cos θ ′ dA′/r2 , (2.29a)

The total flux Φ received by the surface A′ and emitted by A is then

Φ =
∫

A

∫

A′

1

r2 L(θ) cos θ cos θ ′ dA dA′ . (2.29b)

The same flux Φ is received by A if A′ is the emitter. For isotropic sources
(2.29) is symmetric with regard to θ and θ ′ or dA and dA′. The positions of
detector and source may be interchanged without altering (2.29). Because of
this reciprocity, L may be interpreted either as the radiance of the source at
the angle θ to the surface normal or, equally well, as the radiance incident
onto the detector at the angle θ ′.

For isotropic sources, where L is independent of θ, (2.29) demonstrates
that the radiant flux emitted into the unit solid angle is proportional to cos θ
(Lambert’s law). An example for such a source is a hole with the area dA in
a blackbody radiation cavity (Fig. 2.5).

Fig. 2.9. Radiance and irradiance of source
and detector
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The radiant flux incident on the unit detector area is called irradiance I ,
while in the spectroscopic literature it is often termed intensity. The flux den-
sity or intensity I [W/m2] of a plane wave E = E0 cos(ωt − kz) traveling in
vacuum in the z-direction is given by

I = c
∫

ρ(ω)dω = cε0 E2 = cε0 E2
0 cos2(ωt − kz) . (2.30a)

With the complex notation

E = A0 ei(ωt−kz) + A∗
0 e−i(ωt−kz) (|A0| = 1

2 E0) , (2.30b)

the intensity becomes

I = cε0 E2 = 4cε0 A2
0 cos2(ωt − kz) . (2.30c)

Most detectors cannot follow the rapid oscillations of light waves with the
angular frequencies ω ∼ 1013−1015 Hz in the visible and near-infrared region.
With a time constant T � 1/ω they measure, at a fixed position z, the time-
averaged intensity

〈I〉 = cε0 E2
0

T

T∫

0

cos2(ωt − kz)dt = 1
2 cε0 E2

0 = 2cε0 A2
0 . (2.31)

2.4.2 Illumination of Extended Areas

In the case of extended detector areas, the total power received by the de-
tector is obtained by integration over all detector elements dA′ (Fig. 2.10).
The detector receives all the radiation that is emitted from the source el-
ement dA within the angles −u ≤ θ ≤ +u. The same radiation passes an
imaginary spherical surface in front of the detector. We choose as elements of
this spherical surface circular rings with dA′ = 2πr dr = 2πR2 sin θ cos θ dθ.
From (2.29) one obtains for the total flux Φ impinging onto the detector with
cos θ ′ = 1

Φ = 2π

0∫

u

L dA cos θ sin θ dθ . (2.32)

Fig. 2.10. Flux densities of detectors
with extended area
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If the source radiation is isotropic, L does not depend on θ and (2.32) yields

Φ = πL sin2 u dA . (2.33)

Comment
Note that it is impossible to increase the radiance of a source by any sophisti-
cated imaging optics. This means that the image dA∗ of a radiation source dA
never has a larger radiance than the source itself. It is true that the flux den-
sity can be increased by focussing the radiation. The solid angle, however,
into which radiation from the image dA∗ is emitted is also increased by the
same factor. Therefore, the radiance does not increase. In fact, because of in-
evitable reflection, scattering, and absorption losses of the imaging optics, the
radiance of the image dA∗ is, in practice, always less than that of the source
(Fig. 2.11).

Fig. 2.11. The radiance of a source cannot
be increased by optical imaging

A strictly parallel light beam would be emitted into the solid angle
dΩ = 0. With a finite radiant power this would imply an infinite radiance L,
which is impossible. This illustrates that such a light beam cannot be real-
ized. The radiation source for a strictly parallel beam anyway has to be a point
source in the focal plane of a lens. Such a point source with zero surface
cannot emit any power.

For more extensive treatments of photometry see [2.13, 2.14].

Example 2.5.

(a) Radiance of the sun. An area equal to 1 m2 of the earth’s surface re-
ceives at normal incidence without reflection or absorption through the
atmosphere an incident radiant flux Ie of about 1.35 kW/m2 (solar con-
stant). Because of the symmetry of (2.32) we may regard dA′ as emitter
and dA as receiver. The sun is seen from the earth under an angle of
2u = 32 minutes of arc. This yields sin u = 4.7×10−3. Inserting this
number into (2.33), one obtains Ls = 2×107 W/(m2 sr) for the radiance
of the sun’s surface. The total radiant power Φ of the sun can be ob-
tained from (2.32) or from the relation Φ = 4πR2 Ie, where R = 1.5×
1011 m is the distance from the earth to the sun. These numbers give
Φ = 4×1026 W.
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(b) Radiance of a HeNe laser. We assume that the output power of 1 mW is
emitted from 1 mm2 of the mirror surface into an angle of 4 minutes of
arc, which is equivalent to a solid angle of 1×10−6 sr. The maximum
radiance in the direction of the laser beam is then L = 10−3/(10−6 ·
10−6) = 109 W/(m2 sr). This is about 50 times larger than the radi-
ance of the sun. For the spectral density of the radiance the comparison
is even more dramatic. Since the emission of a stabilized single-mode
laser is restricted to a spectral range of about 1 MHz, the laser has
a spectral radiance density Lν = 1 ×103 W · s/(m2 sr−1), whereas the
sun, which emits within a mean spectral range of ≈ 1015 Hz, only
reaches Lν = 2×10−8 W · s/(m2 sr−1).

(c) Looking directly into the sun, the retina receives a radiant flux of 1 mW
if the diameter of the iris is 1 mm. This is just the same flux the retina
receives staring into the laser beam of Example 2.5b. There is, however,
a big difference regarding the irradiance of the retina. The image of the
sun on the retina is about 100 times as large as the focal area of the
laser beam. This means that the power density incident on single retina
cells is about 100 times larger in the case of the laser radiation.

2.5 Polarization of Light

The complex amplitude vector A0 of the plane wave

E = A0 · ei(ωt−kz) (2.34)

can be written in its component representation

A0 =
{

A0x eiφx

A0y eiφy

}
. (2.35)

For unpolarized light the phases φx and φy are uncorrelated and their
difference fluctuates statistically. For linearly polarized light with its electric
vector in x-direction A0y = 0. When E points into a direction α against the
x axis, φx = φy and tan α = A0y/A0x . For circular polarization A0x = A0y and
φx = φy ±π/2.

The different states of polarization can be characterized by their Jones vec-
tors, which are defined as follows:

E =
{

Ex
Ey

}
= |E| ·

{
a
b

}
ei(ωt−kz) (2.36)

where the normalized vector {a, b} is the Jones vector. In Table 2.1 the Jones
vectors are listed for the different polarization states. For linearly polarized
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light with α = 45◦, for example, the amplitude A0 can be written as

A0 =
√

A2
0x + A2

0y
1√
2

{
1
1

}
= |A0| 1√

2

{
1
1

}
, (2.37)

while for circular polarization (σ+ or σ− light), we obtain

A(σ+)
0 = 1√

2
|A0|

{
1
i

}
; A(σ−)

0 = 1√
2

{
1
−i

}
(2.38)

because exp(−iπ/2) = −i.
The Jones representation shows its advantages when we consider the trans-

mission of light through optical elements such as polarizers, λ/4 plates, or
beamsplitters. These elements can be described by 2×2 matrices, which are

Table 2.1. Jones vectors for light traveling in the z-direction and Jones matrices for polarizers

Jones vectors Jones matrices

Linear polarization Linear polarizers

←→ � ↗↙ ↖↘

←→
x-direction

(
1
0

) (
1 0
0 0

) (
0 0
0 1

)
1

2

(
1 1
1 1

)
1

2

(
1 −1

−1 1

)

�
y-direction

(
0
1

)

(
cos α

sin α

)
λ/4 plates

with slow axis in the direction of
x y

α = 45◦ : 1√
2

(
1
1

)
eiπ/4

(
1 0
0 −i

)
e−iπ/4

(
1 0
0 i

)

α = −45◦ : 1√
2

(
1

−1

)
= 1√

2

(
1+ i 0

0 1− i

)
= 1√

2

(
1− i 0

0 1+ i

)

λ/2 plates
x y

eiπ/2
(

1 0
0 −1

)
=
(

i 0
0 −i

)
e−iπ/2

(
1 0
0 −1

)
=
(−i 0

0 +i

)

Circular polarization Circular polarizers = 90◦ rotators

σ+ : 1√
2

(
1
i

) � �
σ− : 1√

2

(
1
−i

)
1

2

(
1 +i
−i 1

)
1

2

(
1 −i
i 1

)
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compiled for some elements in Table 2.1. The polarization state of the trans-
mitted light is then obtained by multiplication of the Jones vector of the
incident wave by the Jones matrix of the optical element.

Et =
{

Ext
Eyt

}
=
(

a b
c d

)
·
{

Ex0
Ey0

}
, (2.39)

For example, incident light linearly polarized in the x-direction (α = 0◦) be-
comes, after transmission through a λ/4 polarizer with its slow axis in the
x-direction

Et = eiπ/4
(

1 0
0 −i

)
·
(

1
0

)
|E0| = eiπ/4

(
1
−i

)
|E0|

= e−iπ/4 (Ex0 · êx − iEy0êy
)

, (2.40)

a right circular polarized σ− wave. In a second example a σ+-wave passes
through a λ/2-wave plate with its slow axis in x-direction. The transmitted
light is then

Et = 1√
2

(
i 0
0 −i

)
|E0| = 1√

2

(
i
1

)
|E0| = 1√

2
eiπ/2

(
1
−i

)
|E0| .

The transmitted light is σ−-light, where the phase factor of π/2 does not
affect the state of polarization. More examples can be found in [2.15–2.17].

2.6 Absorption and Emission Spectra

The spectral distribution of the radiant flux from a source is called its emis-
sion spectrum. The thermal radiation discussed in Sect. 2.2 has a continuous
spectral distribution described by its spectral energy density (2.13). Discrete
emission spectra, where the radiant flux has distinct maxima at certain fre-
quencies νik, are generated by transitions of atoms or molecules between two
bound states, a higher energy state Ek and a lower state Ei , with the relation

hνik = Ek − Ei . (2.41)

In a spectrograph (see Sect. 4.1 for a detailed description) the entrance slit S
is imaged into the focal plane B of the camera lens. Because of dispersive
elements in the spectrograph, the position of this image depends on the wave-
length of the incident radiation. In a discrete spectrum each wavelength λik
produces a separate line in the imaging plane, provided the spectrograph has
a sufficiently high resolving power (Fig. 2.12). Discrete spectra are therefore
also called line spectra, as opposed to continuous spectra where the slit im-
ages form a continuous band in the focal plane, even for spectrographs with
infinite resolving power.

If radiation with a continuous spectrum passes through a gaseous molecu-
lar sample, molecules in the lower state Ei may absorb radiant power at the
eigenfrequencies νik = (Ek − Ei)/h, which is thus missing in the transmitted
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Fig. 2.12. Spectral lines in a discrete spectrum as images of the entrance slit of a spec-
trograph

power. The difference in the spectral distributions of incident minus transmit-
ted power is the absorption spectrum of the sample. The absorbed energy hνik
brings a molecule into the higher energy level Ek. If these levels are bound
levels, the resulting spectrum is a discrete absorption spectrum. If Ek is above
the dissociation limit or above the ionization energy, the absorption spectrum
becomes continuous. In Fig. 2.13 both cases are schematically illustrated for
atoms (a) and molecules (b).

Fig. 2.13a,b. Schematic diagram to illustrate the origin of discrete and continuous absorp-
tion and emission spectra for atoms (a) and molecules (b)
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Fig. 2.14. Prominent Fraunhofer absorption
lines within the visible and near-UV spectral
range

Examples of discrete absorption lines are the Fraunhofer lines in the spec-
trum of the sun, which appear as dark lines in the bright continuous spectrum
(Fig. 2.14). They are produced by atoms in the sun’s atmosphere that absorb
at their specific eigenfrequencies the continuous blackbody radiation from the
sun’s photosphere. A measure of the absorption strength is the absorption
cross section σik. Each photon passing through the circular area σik = πr2

ik
around the atom is absorbed on the transition |i〉 → |k〉.

The power

dPik(ω)dω = P0

(
Ni − gi

gk
Nk

)
σik(ω)AΔz dω = P0αik(ω)ΔV dω , (2.42)

absorbed within the spectral interval dω at the angular frequency ω on the
transition |i〉 → |k〉 within the volume ΔV = AΔz is proportional to the
product of incident power P0, absorption cross section σik, the difference
(Ni − Nk) of the population densities of absorbing molecules in the upper and
lower levels, weighted with their statistical weights gi , gk, and the absorption
path length Δz. A comparison with (2.15) and (2.21) yields the total power
absorbed per cm3 on the transition |i〉 → |k〉:

Pik = P0

∫
αik(ω)dω = �ω

c
P0 Bik

(
Ni − gi

gk
Nk

)
, (2.43)

where the integration extends over the absorption profile. This gives the rela-
tion

Bik = c

�ω

∫
σik(ω)dω , (2.44)

between the Einstein coefficient Bik and the absorption cross section σik.
At thermal equilibrium the population follows a Boltzmann distribution.

Inserting (2.18) yields the power absorbed within the volume ΔV = AΔz by
a sample with molecular density N and temperature T out of an incident beam
with the cross section A

Pik = (N/Z)gi(e−Ei/kT − e−Ek/kT )AΔz
∫

P0σik dω ,

= P0σik(ω0)(N/Z)gi(e−Ei/kT − e−Ek/kT )ΔV , (2.45)

for a monochromatic laser with P0(ω) = P0δ(ω−ω0).
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Fig. 2.15. Discrete and continuous emission spectrum and the corresponding level dia-
gram, which also shows radiationless transitions induced by inelastic collisions (wavy
lines)

The absorption lines are only measurable if the absorbed power is suffi-
ciently high, which means that the density N or the absorption path length Δz
must be large enough. Furthermore, the difference in the two Boltzmann fac-
tors in (2.45) should be sufficiently large, which means Ei should be not much
larger than kT , but Ek � kT . Absorption lines in gases at thermal equilib-
rium are therefore only intense for transitions from low-lying levels Ei that
are thermally populated.

It is, however, possible to pump molecules into higher energy states by var-
ious excitation mechanisms such as optical pumping or electron excitation.
This allows the measurement of absorption spectra for transition from these
states to even higher molecular levels (Vol. 2, Sect. 5.3).

The excited molecules release their energy either by spontaneous or in-
duced emission or by collisional deactivation (Fig. 2.15). The spatial distri-
bution of spontaneous emission depends on the orientation of the excited
molecules and on the symmetry properties of the excited state Ek. If the
molecules are randomly oriented, the spontaneous emission (often called flu-
orescence) is isotropic.

The fluorescence spectrum (emission spectrum) emitted from a discrete
upper level Ek consists of discrete lines if the terminating lower levels Ei
are bound states. A continuum is emitted if Ei belongs to a repulsive state of
a molecule that dissociates. As an example, the fluorescence spectrum of the
3Π → 3Σ transition of the NaK molecule is shown in Fig. 2.16. It is emitted
from a selectively excited level in a bound 3Π state that has been populated
by optical pumping with an argon laser. The fluorescence terminates into a re-
pulsive 3Σ state, which has a shallow van der Waals minimum. Transitions
terminating to energies Ek above the dissociation energy form the continu-
ous part of the spectrum, whereas transitions to lower bound levels in the van
der Waals potential well produce discrete lines. The modulation of the contin-
uum reflects the modulation of the transmission probability due to the maxima
and nodes of the vibrational wave function ψvib(R) in the upper bound level
[2.18].
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Fig. 2.16a–c. Continuous “bound–free” and discrete “bound–bound” fluorescence transi-
tions of the NaK molecule observed upon laser excitation at λ = 488 nm: (a) part of the
spectrum; (b) enlargement of three discrete vibrational bands; (c) level scheme [2.18]

2.7 Transition Probabilities
The intensities of spectral lines depend not only on the population density
of the molecules in the absorbing or emitting level but also on the transition
probabilities of the corresponding molecular transitions. If these probabilities
are known, the population density can be obtained from measurements of line
intensities. This is very important, for example, in astrophysics, where spec-
tral lines represent the main source of information from the extraterrestrial
world. Intensity measurements of absorption and emission lines allow the con-
centration of the elements in stellar atmospheres or in interstellar space to be
determined. Comparing the intensities of different lines of the same element
(e.g., on the transitions Ei → Ek and Ee → Ek from different upper levels
Ei , Ee to the same lower level Ek) furthermore enables us to derive the tem-
perature of the radiation source from the relative population densities Ni , Ne
in the levels Ei and Ee at thermal equilibrium according to (2.18). All these
experiments, however, demand a knowledge of the corresponding transition
probabilities.

There is another aspect that makes measurements of transition probabil-
ities very attractive with regard to a more detailed knowledge of molecular
structure. Transition probabilities derived from computed wave functions of
upper and lower states are much more sensitive to approximation errors in
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these functions than are the energies of these states. Experimentally deter-
mined transition probabilities are therefore well suited to test the validity of
calculated approximate wave functions. A comparison with computed proba-
bilities allows theoretical models of electronic charge distributions in excited
molecular states to be improved [2.19, 2.20].

2.7.1 Lifetimes, Spontaneous and Radiationless Transitions

The probability Pik that an excited molecule in the level Ei makes a transi-
tion to a lower level Ek by spontaneous emission of a fluorescence quantum
hνik = Ei − Ek is, according to (2.17), related to the Einstein coefficient Aik
by

dPik/dt = Aik .

Fig. 2.17a,b. Radiative decay of the level |i〉: (a) Level scheme; (b) decay curve Ni(t)

When several transition paths from Ei to different lower levels Ek are pos-
sible (Fig. 2.17), the total transition probability is given by

Ai =
∑

k

Aik . (2.46)

The decrease dNi of the population density Ni during the time interval dt due
to radiative decay is then

dNi = −Ai Ni dt . (2.47)

Integration of (2.47) yields

Ni(t) = Ni0 e−Ai t , (2.48)

where Ni0 is the population density at t = 0.
After the time τi = 1/Ai the population density Ni has decreased to 1/e of

its initial value at t = 0. The time τi represents the mean spontaneous lifetime
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of the level Ei as can be seen immediately from the definition of the mean
time

ti =
∞∫

0

tPi(t)dt =
∞∫

0

tAi e−Ai t dt = 1

Ai
= τi , (2.49)

where Pi(t)dt is the probability that one atom in the level Ei makes a spon-
taneous transition within the time interval between t and t + dt.

The radiant power emitted from Ni molecules on the transition Ei → Ek
is

Pik = Nihνik Aik . (2.50)

If several transitions Ei → Ek from the same upper level Ei to different lower
levels Ek are possible, the radiant powers of the corresponding spectral lines
are proportional to the product of the Einstein coefficient Aik and the photon
energy hνik. The relative radiation intensities in a certain direction may also
depend on the spatial distribution of the fluorescence, which can be different
for the different transitions.

The level Ei of the molecule A can be depopulated not only by
spontaneous emission but also by collison-induced radiationless transitions
(Fig. 2.18). The probability dP coll

ik /dt of such a transition depends on the den-
sity NB of the collision partner B, on the mean relative velocity v between A
and B, and on the collision cross section σcoll

ik for an inelastic collision that
induces the transition Ei → Ek in the molecule A

dP coll
ik /dt = vNBσcoll

ik . (2.51)

When the excited molecule A(Ei) is exposed to an intense radiation field, the
induced emission may become noticeable. It contributes to the depopulation

Fig. 2.18. Fluorescence- and collision-induced
decay channels of an excited level |i〉
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of level Ei in a transition |i〉 → |k〉 with the probability

dP ind
ik /dt = ρ(νik)Bik . (2.52)

The total transition probability that determines the effective lifetime of a level
Ei is then the sum of spontaneous, induced, and collisional contributions, and
the mean lifetime τeff

i becomes

1

τeff
i

=
∑

k

[
Aik +ρ(νik)Bik + NBσikv

]
. (2.53)

Measuring the effective lifetime τeff
i as a function of the exciting radiation

intensity and also its dependence on the density NB of collision partners
(Stern–Vollmer plot) allows one to determine the three transition probabilities
separately (Vol. 2, Sect. 8.3).

2.7.2 Semiclassical Description: Basic Equations

In the semiclassical description, the radiation incident upon an atom is de-
scribed by a classical electromagnetic (EM) plane wave

E = E0 cos(ωt − kz) . (2.54a)

The atom, on the other hand, is treated quantum-mechanically. In order to
simplify the equations, we restrict ourselves to a two-level system with the
eigenstates Ea and Eb (Fig. 2.19).

Until now laser spectroscopy was performed in spectral regions where the
wavelength λ was large compared to the diameter d of an atom (e.g., in the
visible spectrum λ is 500 nm, but d is only about 0.5 nm). For λ � d, the
phase of the EM wave does not change much within the volume of an atom
because kz = (2π/λ)z � 1 for z ≤ d. We can therefore neglect the spatial
derivatives of the field amplitude (dipole approximation). In a coordinate sys-
tem with its origin in the center of the atom, we can assume kz � 0 within the

Fig. 2.19. Two-level system with open decay channels into other
levels interacting with an EM field
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atomic volume, and write (2.54a) in the form

E = E0 cos ωt = A0(eiωt + e−iωt) with |A0| = 1
2 E0 . (2.54b)

The Hamiltonian operator

H = H0 +V , (2.55)

of the atom interacting with the light field can be written as a sum of the un-
perturbed Hamiltonian H0 of the free atom without the light field plus the
perturbation operator V, which describes the interaction of the atom with the
field and which reduces in the dipole approximation to

V = p · E = p · E0 cos ωt , (2.56)

where V is the scalar product of the dipole operator p = −e ·r and the electric
field E.

The radiation field causes transitions in the atom. This means that the
eigenfunctions of the atom become time-dependent. The general solution
ψ(r, t) of the time-dependent Schrödinger equation

Hψ = i�
∂ψ

∂t
(2.57)

can be expressed as a linear superposition

ψ(r, t) =
∞∑

n=1

cn(t)un(r)e−iEnt/� , (2.58)

of the eigenfunctions of the unperturbed atom

φn(r, t) = un(r)e−iEnt/� . (2.59)

The spatial parts un(r) of these eigenfunctions are solutions of the time-
independent Schrödinger equation

H0un(r) = Enun(r) , (2.60)

and satisfy the orthogonality relations1

∫
u∗

i uk dτ = δik . (2.61)

For our two-level system with the eigenstates |a〉 and |b〉 and the energies
Ea and Eb, (2.58) reduces to a sum of two terms

ψ(r, t) = a(t)ua e−iEat/�+b(t)ub e−iEbt/� . (2.62)

1 Note that in (2.58–2.60) a nondegenerate system has been assumed.
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The coefficients a(b) and b(t) are the time-dependent probability amplitudes
of the atomic states |a〉 and |b〉. This means that the value |a(t)|2 gives the
probability of finding the system in level |a〉 at time t. Obviously, the rela-
tion |a(t)|2 +|b(t)|2 = 1 must hold at all times t, if decay into other levels is
neglected.

Substituting (2.62) and (2.55) into (2.57) gives

i�ȧ(t)ua e−iEat/�+ i�ḃ(t)ub e−iEbt/� = aVua e−iEat/�+bVub e−iEbt/� ,
(2.63)

where the relation H0un = Enun has been used to cancel equal terms on both
sides. Multiplication with u∗

n(n = a, b) and spatial integration results in the
following two equations

ȧ(t) = −(i/�)
[
a(t)Vaa +b(t)Vab eiωabt] , (2.64a)

ḃ(t) = −(i/�)
[
b(t)Vbb +a(t)Vba e−iωabt] , (2.64b)

with ωab = (Ea − Eb)/�= −ωba and with the spatial integral

Vab =
∫

u∗
aVub dτ = −eE

∫
u∗

arub dτ . (2.65a)

Since r has odd parity, the integrals Vaa and Vbb vanish when integrating over
all coordinates from −∞ to +∞. The quantity

Dab = Dba = −e
∫

u∗
arub dτ , (2.65b)

is called the atomic dipole matrix element. It depends on the stationary wave
functions ua and ub of the two states |a〉 and |b〉 and is determined by the
charge distribution in these states.

The expectation value Dab of the dipole matrix element for our two-level
system should be distinguished from the expectation value of the dipole mo-
ment in a specific state |ψ〉

D = −e
∫

ψ∗rψ dτ = 0 (2.66a)

which is zero because the integrand is an odd function of the coordinates.
Using (2.62) and the abbreviation ωba = (Eb − Ea)/�= −ωab, this can be ex-
pressed by the coefficients a(t) and b(t), and by the matrix element Dab as

D = −Dab(a
∗be−iωbat +ab∗ e+iωbat) = D0 cos(ωbat +ϕ) , (2.66b)

with

D0 = Dab
∣∣a∗b

∣∣ and tan ϕ = − Im{a∗b}
Re{a∗b} .

Even without the external field, the expectation value of the atomic dipole mo-
ment oscillates with the eigenfrequency ωba and the amplitude |a∗ ·b| if the
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wavefunction of the atomic system can be represented by the superposition
(2.65). The time average of this oscillation’s dipole moment is zero!

Using (2.54b) for the EM field and the abbreviation

Ωab = Dab E0/�= 2Dab A0/�= Ωba (2.67)

which depends on the field amplitude E0 and the dipole matrix element Dab,
(2.64) reduces to

ȧ(t) = −(i/2)Ωab
(

ei(ω−ωba)t + e−i(ω+ωba)t
)
b(t) , (2.68a)

ḃ(t) = −(i/2)Ωab
(

e−i(ω−ωba)t + ei(ω+ωba)t
)
a(t) . (2.68b)

where ωba = −ωba > 0.
These are the basic equations that must be solved to obtain the probability

amplitudes a(t) and b(t). The frequency Ωab is called the Rabi frequency. Its
physical interpretation will be discussed in Sect. 2.7.6.

2.7.3 Weak-Field Approximation

Suppose that at time t = 0, the atoms are in the lower state Ea, which im-
plies that a(0) = 1 and b(0) = 0. We assume the field amplitude A0 to be
sufficiently small so that for times t < T the population of Eb remains small
compared with that of Ea, i.e., |b(t < T)|2 � 1. Under this weak-field condi-
tion we can solve (2.68) with an iterative procedure starting with a = 1 and
b = 0. Using thermal radiation sources, the field amplitude A0 is generally
small enough to make the first iteration step already sufficiently accurate.

With these assumptions the first approximation of (2.68) gives

ȧ(t) = 0 , (2.69a)

ḃ(t) = −(i/2)Ωba
(

ei(ωba−ω)t + ei(ωba+ω)t) . (2.69b)

With the initial conditions a(0) = 1 and b(0) = 0, integration of (2.69) from
0 to t yields

a(t) = a(0) = 1 , (2.70a)

b(t) =
(

Ωab

2

)(
ei(ω−ωba)t −1

ω−ωba
− ei(ω+ωba)t −1

ω+ωba

)
. (2.70b)

For Eb > Ea the term ωba = (Eb − Ea)/� is positive. In the transition
Ea → Eb, the atomic system absorbs energy from the radiation field. No-
ticeable absorption occurs, however, only if the field frequency ω is close
to the eigenfrequency ωba. In the optical frequency range this implies that
|ωba −ω| � ωba. The second term in (2.70b) is then small compared to the
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first one and may be neglected. This is called the rotating-wave approxima-
tion for only that term is kept in which the atomic wave functions and the
field waves with the phasors exp(−iωabt) and exp(−iωt) rotate together.

In the rotating-wave approximation we obtain from (2.70b) for the proba-
bility |b(t)|2 that the system is at time t in the upper level Eb

|b(t)| 2 =
(

Ωab

2

)2 (sin(ω−ωba)t/2

(ω−ωba)/2

)2

. (2.71)

Since we had assumed that the atom was at t = 0 in the lower level Ea, (2.71)
gives the transition probability for the atom to go from Ea to Eb during the
time t. Figure 2.20a illustrates this transition probability as a function of the
detuning Δω = ω−ωba. Equation (2.71) shows that |b(t)|2 depends on the ab-
solute value of the detuning Δω = |ω−ωba| of the field frequency ω from
the eigenfrequency ωba. When tuning the frequency ω into resonance with the
atomic system (ω → ωba), the second factor in (2.71) approaches the value t2

because limx→0[(sin2 xt)/x2] = t2. The transition probability at resonance,

|b(t)| 2
ω=ωba

=
(

Ωab

2

)2

t2 , (2.72)

increases proportionally to t2. The approximation used in deriving (2.71) has,
however, anticipated that |b(t)|2 � 1. According to (2.72) and (2.67), this as-
sumption for the resonance case is equivalent to

(
Ωab

2

)2

t2 � 1 or t � T = 2

Ωab
= �

Dab E0
. (2.73)

Our small-signal approximation only holds if the interaction time t of the
field (amplitude E0) with the atom (matrix element Dab) is restricted to
t � T = �/(Dab E0). Because the spectral analysis of a wave with the finite
detection time T gives the spectral width Δω � 1/T (see also Sect. 3.2), we

Fig. 2.20. (a) Normalized transition probability for monochromatic excitation as a function
of the detuning (ω−ωba) in the rotating-wave approximation; (b) probability of a tran-
sition to the upper level as a function of time for different detuning; (c) |b(t)|2 under
broadband excitation and weak fields
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cannot assume monochromaticity, but have to take into account the frequency
distribution of the interaction term.

2.7.4 Transition Probabilities with Broad-Band Excitation

In general, thermal radiation sources have a bandwidth δω, which is much
larger than the Fourier limit Δω = 1/T . Therefore, the finite interaction time
imposes no extra limitation. This may change, however, when lasers are con-
sidered (Sects. 2.7.5 and 3.4).

Instead of the field amplitude E0 (which refers to a unit frequency inter-
val), we introduce the spectral energy density ρ(ω) within the frequency range
of the absorption line by the relation, see (2.30),
∫

ρ(ω)dω = ε0 E2
0/2 = 2ε0 A2

0 .

We can now generalize (2.71) to include the interaction of broadband radia-
tion with our two-level system by integrating (2.71) over all frequencies ω of
the radiation field. This yields the total transition probability Pab(t) within the
time T . If Dab ‖ E0, we obtain with Ωab = Dab E0/�

Pab(t) =
∫

|b(t)| 2 dω = (Dab)
2

2ε0�
2

∫
ρ(ω)

(
sin(ωba −ω)t/2

(ωba −ω)/2

)2

dω . (2.74)

For thermal light sources or broadband lasers, ρ(ω) is slowly varying over
the absorption line profile. It is essentially constant over the frequency range
where the factor [sin2(ωba −ω)t/2]/[(ωba −ω)/2]2 is large (Fig. 2.20a). We
can therefore replace ρ(ω) by its resonance value ρ(ωba). The integration can
then be performed, which gives the value ρ(ωba)2πt for the integral because

∞∫

−∞

sin2(xt)

x2 dx = 2πt .

For broadband excitation, the transition probability for the time interval be-
tween 0 and t

Pab(t) = π

ε0�
2 D2

abρ(ωba)t , (2.75)

is linearly dependent on t (Fig. 2.20c).

For broadband excitation the transition probability per second

d

dt
Pab = π

ε0�
2 D2

abρ(ωba) , (2.76)

becomes independent of time!
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To compare this result with the Einstein coefficient Bab derived in
Sect. 2.3, we must take into account that the blackbody radiation was
isotropic, whereas the EM wave (2.54) used in the derivation of (2.76)
propagates into one direction. For randomly oriented atoms with the di-
pole moment p, the averaged component of p2 in the z-direction is 〈p2

z 〉 =
p2〈cos2 θ〉 = p2/3.

In the case of isotropic radiation, the interaction term D2
abρ(ωba) therefore

has to be divided by a factor of 3. A comparison of (2.16) with the modified
equation (2.76) yields

d

dt
Pab = π

3ε0�
2 ρ(ωba)D2

ab = ρ(ωba)Bab . (2.77)

With the definition (2.65) for the dipole matrix element Dik, the Einstein co-
efficient Bik of induced absorption Ei → Ek finally becomes

Bω
ik = πe2

3ε0�
2

∣∣∣∣
∫

u∗
i ruk dτ

∣∣∣∣
2

and Bν
ik = Bω

ik/2π . (2.78)

Equation (2.78) gives the Einstein coefficient for a one-electron sys-
tem where r = (x, y, z) is the vector from the nucleus to the electron, and
un(x, y, z) denotes the one-electron wave functions.2 From (2.78) we learn
that the Einstein coefficient Bik is proportional to the squared transition
dipole moment.

So far we have assumed that the energy levels Ei and Ek are not degen-
erate, and therefore have the statistical weight factor g = 1. In the case of
a degenerate level |k〉, the total transition probability ρBik of the transition
Ei → Ek is the sum

ρBik = ρ
∑

n

Bikn ,

over all transitions to the sublevels |kn〉 of |k〉. If level |i〉 is also degener-
ate, an additional summation over all sublevels |im〉 is necessary, taking into
account that the population of each sublevel |im〉 is only the fraction Ni/gi .

The Einstein coefficient Bik for the transition Ei → Ek between the two
degenerate levels |i〉 and |k〉 is therefore

Bik = π

3ε0�
2

1

gi

gi∑

m=1

gk∑

n=1

∣∣Dimkn

∣∣ 2 = π

3ε0�
2gi

Sik . (2.79)

The double sum is called the line strength Sik of the atomic transition
|i〉 ← |k〉.

2 Note that when using the frequency ν = ω/2π instead of ω, the spectral energy den-
sity ρ(ν) per unit frequency interval is larger by a factor of 2π than ρ(ω) because a unit
frequency interval dν = 1 Hz corresponds to dω = 2π [Hz]. The right-hand side of (2.78)
must then be divided by a factor of 2π, since Bν

ikρ(ν) = Bω
ikρ(ω).
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2.7.5 Phenomenological Inclusion of Decay Phenomena

So far we have neglected the fact that the levels |a〉 and |b〉 are not only
coupled by transitions induced by the external field but may also decay
by spontaneous emission or by other relaxation processes such as collision-
induced transitions. We can include these decay phenomena in our formulas
by adding phenomenological decay terms to (2.68), which can be expressed
by the decay constant γa and γb (Fig. 2.19). A rigorous treatment requires
quantum electrodynamics [2.23].

In the rotating-wave approximation, for which the term with the frequency
(ωba +ω) is neglected, (2.68) then becomes

ȧ(t) = −1

2
γaa − i

2
Ωab e−i(ωba−ω)tb(t) , (2.80a)

ḃ(t) = −1

2
γbb− i

2
Ωab e+i(ωba−ω)ta(t) . (2.80b)

When the field amplitude E0 is sufficiently small, see (2.73), we can use
the weak-signal approximation of Sect. 2.7.3. This means that |a(t)|2 = 1,
|b(t)|2 � 1, and also aa∗ −bb∗ � 1. With this approximation, one obtains in
a similar way as in the derivation of (2.71) the transition probability

Pab(ω) = |b(t, ω)| 2 =
∫

γab e−γabt |b(t)| 2 dt = 1

2

Ω2
ab

(ωba −ω)2 + (1
2γab)2

.

(2.80c)

This is a Lorentzian line profile (Fig. 2.21) with a full halfwidth γab = γa +γb.
After taking the second-time derivative of (2.66b) and using (2.80), the

equation of motion for the dipole moment D of the atom under the influence
of a radiation field, becomes

D̈ +γab Ḋ + (ω2
ba +γ 2

ab/4)D

= (Ωab)
[
(ωba +ω) cos ωt + (γab/2) sin ωt

]
. (2.81a)

Fig. 2.21. Transition probability of a damped system under weak broadband excitation
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The homogeneous equation

D̈ +γab Ḋ + (ω2
ba +γ 2

ab/4)D = 0 , (2.81b)

which describes the atomic dipoles without the driving field (Ωab = 0), has
the solution for weak damping (γab � ωba)

D(t) = D0 e(−γab/2)t cos ωbat . (2.82)

The inhomogeneous equation (2.81a) shows that the induced dipole moment
of the atom interacting with a monochromatic radiation field behaves like
a driven damped harmonic oscillator with ωba = (Eb − Ea)/� for the eigenfre-
quency and γab = (γa +γb) for the damping constant oscillating at the driving
field frequency ω.

Using the approximation (ωba +ω) � 2ω and γab � ωba, which means
weak damping and a close-to-resonance situation, we obtain solutions of the
form

D = D1 cos ωt + D2 sin ωt , (2.83)

where the factors D1 and D2 include the frequency dependence,

D1 = Ωab(ωba −ω)

(ωba −ω)2 + (γab/2)2 , (2.84a)

D2 =
1
2Ωabγab

(ωab −ω)2 + (γab/2)2 . (2.84b)

These two equations for D1 and D2 describe dispersion and absorption of the
EM wave. The former is caused by the phase lag between the radiation field
and the induced dipole oscillation, and the latter by the atomic transition from
the lower level Ea to the upper level Eb and the resultant conversion of the
field energy into the potential energy (Eb − Ea).

The macroscopic polarization P of a sample with N atoms/cm3 is related
to the induced dipole moment D by P = N D.

2.7.6 Interaction with Strong Fields

In the previous sections we assumed weak-field conditions where the proba-
bility of finding the atom in the initial state was not essentially changed by
the interaction with the field. This means that the population in the initial
state remains approximately constant during the interaction time. In the case
of broadband radiation, this approximation results in a time-independent tran-
sition probability. Also the inclusion of weak-damping terms with γab � ωba
did not affect the assumption of a constant population in the initial state.

When intense laser beams are used for the excitation of atomic transitions,
the weak-field approximation is no longer valid. In this section, we there-
fore consider the “strong-field case.” The corresponding theory, developed by
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Rabi, leads to a time-dependent probability of the atom being in either the
upper or lower level. The representation outlined below follows that of [2.21].

We consider a monochromatic field of frequency ω and start from the basic
equations (2.68) for the probability amplitudes in the rotating wave approxi-
mation with ωba = −ωab

ȧ(t) = i

2
Ωab e−i(ωba−ω)tb(t) , (2.85a)

ḃ(t) = i

2
Ωab e+i(ωba−ω)ta(t) . (2.85b)

Inserting the trial solution

a(t) = eiμt ⇒ ȧ(t) = iμeiμt ,

into (2.85a) yields

b(t) = 2μ

Ωab
ei(ωba−ω+μ)t ⇒ ḃ(t) = 2iμ(ωba −ω+μ)

Ωab
e(ωbu−ω+μ)t .

Substituting this back into (2.85b) gives the relation

2μ(ωba −ω+μ) = Ω2
ab/2 .

This is a quadratic equation for the unknown quantity μ with the two solu-
tions

μ1,2 = −1

2
(ωba −ω)± 1

2

√
(ωba −ω)2 +Ω2

ab . (2.86)

The general solutions for the amplitudes a and b are then

a(t) = C1 eiμ1t +C2 eiμ2t , (2.87a)

b(t) = (2/Ωab)ei(ωba−ω)t(C1μ1 eiμ1t +C2μ2 eiμ2t) . (2.87b)

With the initial conditions a(0) = 1 and b(0) = 0, we find for the coefficients

C1 +C2 = 1 and C1μ1 = −C2μ2 ,

⇒ C1 = − μ2

μ1 −μ2
C2 = + μ1

μ1 −μ2
.

From (2.86) we obtain μ1μ2 = −Ω2
ab/4. With the shorthand

Ω = μ1 −μ2 =
√

(ωba −ω)2 +Ω2
ab ,

we get the probability amplitude

b(t) = i(Ωab/Ω)ei(ωba−ω)t/2 sin(Ωt/2) . (2.88)

The probability |b(t)|2 = b(t)b∗(t) of finding the system in level Eb is then

|b(t)| 2 = (Ωab/Ω)2 sin2(Ωt/2) , (2.89)
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where

Ω =
√

(ωba −ω)2 + (Dab · E0/�)2 (2.90)

is called the general “Rabi flopping frequency” for the nonresonant case
ω �= ωba. Equation (2.89) reveals that the transition probability is a periodic
function of time. Since

|a(t)| 2 = 1−|b(t)| 2 = 1− (Ωab/Ω)2 sin2(Ωt/2) , (2.91)

the system oscillates with the frequency Ω between the levels Ea and Eb,
where the level-flopping frequency Ω depends on the detuning (ωba −ω), on
the field amplitude E0, and the matrix element Dab (Fig. 2.20b).

The general Rabi flopping frequency Ω gives the frequency of population
oscillation in a two-level system in an electromagnetic field with ampli-
tude E0.

Note: In the literature often the term “Rabi frequency” is restricted to the
resonant case ω = ωba.

At resonance ωba = ω, and (2.89) and (2.91) reduce to

|a(t)| 2 = cos2(Dab · E0t/2�) , (2.92a)

|b(t)| 2 = sin2(Dab · E0t/2�) . (2.92b)

After a time

T = π�/(Dab · E0) = π/Ωab , (2.93)

the probability |b(t)|2 of finding the system in level Eb becomes unity. This
means that the population probability |a(0)|2 = 1 and |b(0)|2 = 0 of the initial
system has been inverted to |a(T)|2 = 0 and |b(T)|2 = 1 (Fig. 2.22).

Radiation with the amplitude A0, which resonantly interacts with the
atomic system for exactly the time interval T = π�/(Dab · E0), is called a π-
pulse because it changes the phases of the probability amplitudes a(t), b(t)
by π, see (2.87, 2.88).

Fig. 2.22. Population probability |b(t)|2 of the
levels Eb altering with the Rabi flopping fre-
quency due to the interaction with a strong
field. The resonant case is shown without
damping and with damping due to decay chan-
nels into other levels. The decaying curve rep-
resents the factor exp[−(γab/2)t]
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We now include the damping terms γa and γb, and again insert the trial
solution

a(t) = eiμt ,

into (2.80a, 2.80b). Similar to the procedure used for the undamped case, this
gives a quadratic equation for the parameter μ with the two complex solutions

μ1,2 = −1

2

(
ωba −ω− i

2
γab

)
± 1

2

√(
ωba −ω− i

2
γ
)2 +Ω2

ab ,

where

γab = γa +γb and γ = γa −γb . (2.94)

From the general solution

a(t) = C1 eiμ2t +C2 eiμ2t ,

we obtain from (2.80a) with the initial conditions |a(0)|2 = 1 and |b(0)|2 = 0
the transition probability

|b(t)| 2 = Ω2
ab e(−γab/2)t[sin(Ω/2)t]2

(ωba −ω)2 + (γ/2)2 +Ω2
ab

. (2.95)

This is a damped oscillation (Fig. 2.22) with the damping constant 1
2γab =

(γa +γb)/2, the Rabi flopping frequency

Ω = μ1 −μ2 =
√(

ωba −ω+ i
2γ
)2 +Ω2

ab , (2.96)

and the envelope Ω2
ab e−(γab/2)t/[(ωba −ω)2 + (γ/2)2 +Ω2

ab]. The spectral
profile of the transition probability is Lorentzian (Sect. 3.1), with a half-
width depending on γ = γa −γb and on the strength of the interaction. Since
Ω2

ab = (Dab · E0/�)
2 is proportional to the intensity of the electromagnetic

wave, the linewidth increases with increasing intensity (saturation broadening,
Sect. 3.5). Note, that |a(t)|2 +|b(t)|2 < 1 for t > 0, because the levels a and b
can decay into other levels.

In some cases the two-level system may be regarded as isolated from its
environment. The relaxation processes then occur only between the levels |a〉
and |b〉, but do not connect the system with other levels. This implies |a(t)|2 +
|b(t)|2 = 1. Equation (2.80) then must be modified as

ȧ(t) = −1

2
γaa(t)+ 1

2
γbb(t)+ i

2
Ωab e−i(ωba−ω)tb(t) , (2.97a)

ḃ(t) = −1

2
γbb(t)+ 1

2
γaa(t)+ i

2
Ωab e+i(ωba−ω)ta(t) . (2.97b)
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Fig. 2.23. Population of level |b〉 for a closed
two-level system where the relaxation chan-
nels are open only for transitions between
|a〉 and |b〉

The trial solution a = exp(iμt) yields, for the resonance case ω = ωba, the two
solutions

μ1 = 1

2
Ωab + i

2
γab , μ2 = −1

2
Ωab ,

and for the transition probability |b(t)|2, one obtains with |a(0)|2 = 1,
|b(0)|2 = 0 a damped oscillation that approaches the steady-state value

|b(t = ∞)| 2 = 1

2

Ω2
ab +γaγb

Ω2
ab + (1

2γab)2
. (2.98)

This is illustrated in Fig. 2.23 for the special case γa = γb where |b(∞)|2 =
1/2, which means that the two levels become equally populated.

For a more detailed treatment see [2.21–2.24].

2.7.7 Relations Between Transition Probabilities, Absorption Coefficient,
and Line Strength

In this section we will summarize important relations between the different
quantities discussed so far.

The absorption coefficient α(ω) for a transition between levels |i〉 and |k〉
with population densities Ni and Nk and statistical weights gi , gk is related to
the absorption cross section σik(ω) by

α(ω) = [Ni − (gi/gk)Nk]σik(ω) . (2.99)

The Einstein coefficient for absorption Bik is given by

Bik = c

�ω

∞∫

0

σik(ω) dω = c σ ik

�ω

∞∫

0

g(ω−ω0) dω (2.100)

where g(ω−ω0) is the line profile of the absorbing transition at center fre-
quency ω0. The transition probability per second according to (2.15) is then

Pik = Bik ·� = c

�ω ·Δω

∫
�(ω) ·σik(ω) dω , (2.101)

where Δω is the spectral linewidth of the transition.
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The line strength Sik of a transition is defined as the sum

Sik =
∑

mi ,mk

∣∣Dmi ,mk

∣∣ 2 = |Dik| 2 , (2.102)

over all dipole-allowed transitions between all subcomponents mi , mk of
levels |i〉, |k〉. The oscillator strength fik gives the ratio of the power absorbed
by a molecule on the transition |i〉 → |k〉 to the power absorbed by a classical
oscillator on its eigenfrequency ωik = (Ek − Ei)/h.

Some of these relations are compiled in Table 2.2.

Table 2.2. Relations between the transition matrix element Dik and the Einstein coeffi-
cients Aik, Bik , the oscillator strength fik, the absorption cross section σik, and the line
strength Sik . The numerical values are obtained, when λ [m], Bik [m3s−2J−1], Dik [As m],
mc [kg]

Aki = 1

gk

16π3ν3

3ε0hc3
|Dik| 2 B(ν)

ik = 1

gi

2π2

3ε0h2
|Dik| 2 B(ω)

ik = 1

gi

π

3ε0�
2

|Dik| 2

= 2.82×1045

gk ·λ3
|Dik| 2 s−1 = 6×1031 λ3 gi

gk
Aki = gk

gi
Bki

fik = 1

gi

8π2meν

e2h
|Dik| 2 Sik = |Dik| 2 σik = 1

Δν

2π2ν

3ε0chgi
· Sik

= gk

gi
·4.5×104λ2 Aki = (7.8×10−21giλ) fik Bik = c

hν

∞∫

0

σik(ν) dν

2.8 Coherence Properties of Radiation Fields

The radiation emitted by an extended source S generates a total field ampli-
tude A at the point P that is a superposition of an infinite number of partial
waves with the amplitudes An and the phases φn emitted from the different
surface elements dS (Fig. 2.24), i.e.,

A(P) =
∑

n

An(P)eiφn(P) =
∑

n

[
An(0)/r2

n

]
ei(φn0+2πrn/λ) , (2.103)

where φn0(t) = ωt +φn(0) is the phase of the nth partial wave at the surface
element dS of the source. The phases φn(rn, t) = φn,0(t)+2πrn/λ depend on
the distances rn from the source and on the angular frequency ω.

If the phase differences Δφn = φn(P, t1)−φn(P, t2) at a given point P be-
tween two different times t1, t2 are nearly the same for all partial waves,
the radiation field at P is temporally coherent. The maximum time interval
Δt = t2 − t1 for which Δφn for all partial waves differ by less than π is termed
the coherence time of the radiation source. The path length Δsc = cΔt trav-
eled by the wave during the coherence time Δt is the coherence length.
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Fig. 2.24. The field amplitudes An at a point P in
a radiation field as superposition of an infinite num-
ber of waves from different surface elements dSi of
an extended source

If a constant time-independent phase difference Δφ = φ(P1)−φ(P2) exists
for the total amplitudes A = A0 eiφ at two different points P1, P2, the radi-
ation field is spatially coherent. All points Pm , Pn that fulfill the condition
that for all times t, |φ(Pm, t)−φ(Pn, t)| < π have nearly the same optical path
difference from the source. They form the coherence volume.

The superposition of coherent waves results in interference phenomena
that, however, can be observed directly only within the coherence volume.
The dimensions of this coherence volume depend on the size of the radiation
source, on the spectral width of the radiation, and on the distance between the
source and observation point P.

The following examples illustrate these different expressions for the coher-
ence properties of radiation fields.

2.8.1 Temporal Coherence

Consider a point source PS in the focal plane of a lens forming a parallel light
beam that is divided by a beam splitter S into two partial beams (Fig. 2.25).
They are superimposed in the plane of observation B after reflection from
the mirrors M1, M2. This arrangement is called a Michelson interferometer
(Sect. 4.2). The two beams with wavelength λ travel different optical path
lengths SM1SB and SM2SB, and their path difference in the plane B is

Δs = 2(SM1 −SM2) .

Fig. 2.25. Michelson interferometer for measure-
ment of the temporal coherence of radiation from
the source S
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Fig. 2.26. Visibility V as a func-
tion of path difference Δs for
a Michelson interferometer with
a light source with spectral band-
width Δω

The mirror M2 is mounted on a carriage and can be moved, resulting in
a continuous change of Δs. In the plane B, one obtains maximum inten-
sity when both amplitudes have the same phase, which means Δs = mλ, and
minimum intensity if Δs = (2m + 1)λ/2. With increasing Δs, the contrast
V = (Imax − Imin)/(Imax + Imin) decreases (Fig. 2.26) and vanishes if Δs be-
comes larger than the coherence length Δsc (Sect. 2.8.4). Experiments show
that Δsc is related to the spectral width Δω of the incident wave by

Δsc � c/Δω = c/(2πΔν) . (2.104)

This observation may be explained as follows. A wave emitted from a point
source with the spectral width Δω can be regarded as a superposition of
many quasi-monochromatic components with frequencies ωn within the inter-
val Δω. The superposition results in wave trains of finite length Δsc = cΔt =
c/Δω because the different components with slightly different frequencies ωn
come out of phase during the time interval Δt and interfere destructively,
causing the total amplitude to decrease (Sect. 3.1). If the path difference Δs
in the Michelson interferometer becomes larger than Δsc, the split wave trains
no longer overlap in the plane B. The coherence length Δsc of a light source
therefore becomes larger with decreasing spectral width Δω.

Example 2.6.

(a) A low-pressure mercury spectral lamp with a spectral filter that only
transmits the green line λ = 546 nm has, because of the Doppler width
ΔωD = 4×109 Hz, a coherence length of Δsc � 8 cm.

(b) A single-mode HeNe laser with a bandwidth of Δω = 2π ·1 MHz has
a coherence length of about 50 m.

2.8.2 Spatial Coherence

The radiation from an extended source LS of size b illuminates two slits S1
and S2 in the plane A at a distance d apart (Young’s double-slit interference
experiment, Fig. 2.27a). The total amplitude and phase at each of the two slits
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Fig. 2.27. (a) Young’s double-slit arrangement for measurements of spatial coherence;
(b) path difference between a slit S1 and different points of an extended source

are obtained by superposition of all partial waves emitted from the differ-
ent surface elements d f of the source, taking into account the different paths
d f –S1 and d f –S2.

The intensity at the point of observation P in the plane B depends on the
path difference S1P−S2P and on the phase difference Δφ = φ(S1)−φ(S2) of
the total field amplitudes in S1 and S2. If the different surface elements d f of
the source emit independently with random phases (thermal radiation source),
the phases of the total amplitudes in S1 and S2 will also fluctuate randomly.
However, this would not influence the intensity in P as long as these fluctua-
tions occur in S1 and S2 synchronously, because then the phase difference Δφ
would remain constant. In this case, the two slits form two coherent sources
that generate an interference pattern in the plane B.

For radiation emitted from the central part 0 of the light source, this proves
to be true since the paths 0S1 and 0S2 are equal and all phase fluctuations
in 0 arrive simultaneously in S1 and S2. For all other points Q of the source,
however, path differences ΔsQ = QS1 −QS2 exist, which are largest for the
edges R1, R2 of the source. From Fig. 2.27 one can infer for b � r the relation

ΔsR = Δsmax = R2S1 −R1S1 � b sin θ = R1S2 −R1S1 .

For Δsmax > λ/2, the phase difference Δφ of the partial amplitudes in S1 and
S2 exceeds π. With random emission from the different surface elements d f
of the source, the time-averaged interference pattern in the plane B will be
washed out. The condition for coherent illumination of S1 and S2 from a light
source with the dimension b is therefore

Δs = b sin(θ/2) < λ/2 .

because R2S1 = R1S2.
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With 2 sin θ = d/D, this condition can be written as

bd/D < λ . (2.105a)

Extension of this coherence condition to two dimensions yields, for
a source area As = b2, the following condition for the maximum surface
Ac = d2 that can be illuminated coherently:

b2d2/D2 ≤ λ2 . (2.105b)

Since dΩ = d2/D2 is the solid angle accepted by the illuminated surface
Ac = d2, this can be formulated as

As dΩ ≤ λ2 . (2.105c)

The source surface As = b2 determines the maximum solid angle dΩ ≤ λ2/As
inside which the radiation field shows spatial coherence. Equation (2.105c) re-
veals that radiation from a point source (spherical waves) is spatially coherent
within the whole solid angle dΩ = 4π. The coherence surfaces are spheres
with the source at the center. Likewise, a plane wave produced by a point
source in the focus of a lens shows spatial coherence over the whole aperture
confining the light beam. For given source dimensions, the coherence surface
Ac = d2 increases with the square of the distance from the source. Because
of the vast distances to stars, the starlight received by telescopes is spatially
coherent across the telescope aperture, in spite of the large diameter of the
radiation source.

The arguments above may be summarized as follows: the coherence sur-
face Sc (i.e., that maximum area Ac that can be coherently illuminated at
a distance r from an extended quasi-monochromatic light source with area As
emitting at a wavelength λ) is determined by

Sc = λ2r2/As . (2.106)

2.8.3 Coherence Volume

With the coherence length Δsc = c/Δω in the propagation direction of the ra-
diation with the spectral width Δω and the coherence surface Sc = λ2r2/As,
the coherence volume Vc = ScΔsc becomes

Vc = λ2r2c

ΔωAs
. (2.107)

A unit surface element of a source with the spectral radiance Lω

[W/(m2 sr)] emits Lω/�ω photons per second within the frequency interval
dω = 1 Hz into the unit solid angle 1 sr.
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The mean number n of photons in the spectral range Δω within the co-
herence volume defined by the solid angle ΔΩ = λ2/As and the coherence
length Δsc = cΔtc generated by a source with area As is therefore

n = (Lω/�ω)AsΔΩΔωΔtc .

With ΔΩ = λ2/As and Δtc � 1/Δω, this gives

n = (Lω/�ω)λ2 . (2.108)

Example 2.7.
For a thermal radiation source, the spectral radiance for linearly polarized
light (given by (2.28) divided by a factor 2) is for cos φ = 1 and Lν dν =
Lω dω

Lν = hν3/c2

ehν/kT −1
.

The mean number of photons within the coherence volume is then with λ =
c/ν

n = 1

ehν/kT −1
.

This is identical to the mean number of photons per mode of the thermal ra-
diation field, as derived in Sect. 2.2. Figure 2.7 and Example 2.3 give values
of n for different conditions.

The mean number n of photons per mode is often called the degeneracy
parameter of the radiation field. This example shows that the coherence vol-
ume is related to the modes of the radiation field. This relation can be also
illustrated in the following way:

If we allow the radiation from all modes with the same direction of k to es-
cape through a hole in the cavity wall with the area As = b2, the wave emitted
from As will not be strictly parallel, but will have a diffraction-limited diver-
gence angle θ � λ/b around the direction of k. This means that the radiation is
emitted into a solid angle dΩ = λ2/b2. This is the same solid angle (2.105c)
that limits the spatial coherence.

The modes with the same direction of k (which we assume to be the z di-
rection) may still differ in |k|, i.e., they may have different frequencies ω.
The coherence length is determined by the spectral width Δω of the radia-
tion emitted from As. Since |k| = ω/c the spectral width Δω corresponds to
an interval Δk = Δω/c of the k values. This radiation illuminates a minimum
“diffraction surface”

AD = r2 dΩ = r2λ2/As .



48 2. Absorption and Emission of Light

Fig. 2.28. The uncertainty principle applied
to the diffraction of light by a slit

Multiplication with the coherence length Δsc = c/Δω yields again the co-
herence volume Vc = ADc/Δω = r2λ2c/(ΔωAs) of (2.107). We shall now
demonstrate that the coherence volume is identical with the spatial part of the
elementary cell in the general phase space.

As is well known from atomic physics, the diffraction of light can be ex-
plained by Heisenberg’s uncertainty relation. Photons passing through a slit of
width Δx have the uncertainty Δpx of the x-component px of their momen-
tum p, given by ΔpxΔx ≥ � (Fig. 2.28).

Generalized to three dimensions, the uncertainty principle postulates that
the simultaneous measurements of momentum and location of a photon have
the minimum uncertainty

ΔpxΔpyΔpzΔxΔyΔz ≥ �3 = Vph , (2.109)

where Vph = �3 is the volume of the elementary cell in phase space. Pho-
tons within the same cell of the phase space are indistinguishable and can
be therefore regarded as identical.

Photons that are emitted from the hole As = b2 within the diffraction angle
θ = λ/b against the surface normal (Fig. 2.29), which may point into the
z-direction, have the minimum uncertainty

Δpx = Δpy = |p| λ/(2πb) = (�ω/c)λ/(2πb) = (�ω/c)d/(2πr) , (2.110)

Fig. 2.29. Coherence volume and
phase space cell
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of the momentum components px and py, where the last equality follows
from (2.105b).

The uncertainty Δpz is mainly caused by the spectral width Δω. Since
p = �ω/c, we find

Δpz = (�/c)Δω . (2.111)

Substituting (2.110, 2.111) into (2.109), we obtain for the spatial part of the
elementary phase space cell

ΔxΔyΔz = λ2r2c

ΔωAs
= Vc ,

which turns out to be identical with the coherence volume defined by (2.107).

2.8.4 The Coherence Function and the Degree of Coherence

In the previous subsections we have described the coherence properties of
radiation fields in a more illustrative way. We now briefly discuss a more
quantitative description which allows us to define partial coherence and to
measure the degree of coherence.

In the cases of both temporal and spatial coherence, we are concerned with
the correlation between optical fields either at the same point P0 but at differ-
ent times [E(P0, t1) and E(P0, t2)], or at the same time t but at two different
points [E(P1, t) and E(P2, t)]. The subsequent description follows the repre-
sentation in [2.3, 2.25, 2.26].

Suppose we have an extended source that generates a radiation field with
a narrow spectral bandwidth Δω, which we shall represent by the complex
notation of a plane wave, i.e.,

E(r, t) = A0 ei(ωt−k·r) + c.c.

The field at two points in space S1 and S2 (e.g., the two apertures in Young’s
experiment) is then E(S1, t) and E(S2, t). The two apertures serve as sec-
ondary sources (Fig. 2.27), and the resultant field at the point of observation P
at time t is

E(P, t) = k1 E1(S1, t −r1/c)+ k2 E2(S2, t −r2/c) , (2.112)

where the imaginary numbers k1 and k2 depend on the size of the apertures
and on the distances r1 = S1 P and r2 = S2 P.

The resulting time averaged irradiance at P measured over a time interval
which is long compared to the coherence time is

Ip = ε0c
〈
E(P, t)E∗(P, t)

〉
, (2.113)
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where the brackets 〈 . . . 〉 indicate the time average. Using (2.112), this be-
comes

Ip =cε0
[
k1k∗

1

〈
E1(t − t1)E∗

1(t − t1)
〉+ k2k∗

2

〈
E2(t − t2)E∗

2(t − t2)
〉

+ k1k∗
2

〈
E1(t − t1)E∗

2(t − t2)
〉+ k∗

1k2
〈
E∗

1(t − t1)E2(t − t2)
〉 ]

. (2.114)

If the field is stationary, the time-averaged values do not depend on time. We
can therefore shift the time origin without changing the irradiances (2.113).
Accordingly, the first two time averages in (2.114) can be transformed to
〈E1(t)E∗

1(t)〉 and 〈E2(t)E∗
2(t)〉. In the last two terms we shift the time origin

by an amount t2 and write them with τ = t2 − t1

k1k∗
2

〈
E1(t + τ)E∗

2(t)
〉+ k∗

1k2
〈
E∗

1(t + τ)E2(t)
〉

= 2 Re
{
k1k∗

2

〈
E1(t + τ)E∗

2(t)
〉 }

. (2.115)

The term

Γ12(τ) = 〈E1(t + τ)E∗
2(t)
〉
, (2.116)

is called the mutual coherence function and describes the cross correlation of
the field amplitudes at S1 and S2. When the amplitudes and phases of E1 and
E2 fluctuate within a time interval Δt < τ , the time average Γ12(τ) will be
zero if these fluctuations of the two fields at two different points and at two
different times are completely uncorrelated. If the field at S1 at time t +τ were
perfectly correlated with the field at S2 at time t, the relative phase would be
unaltered despite individual fluctuations, and Γ12 would become independent
of τ .

Inserting (2.116) into (2.114) gives for the irradiance at P (note that k1
and k2 are pure imaginary numbers for which 2 Re{k1 · k2} = 2|k1| · |k2|)

Ip = ε0c
[
|k1| 2 IS1 +|k2| 2 IS2 +2 |k1| |k2| Re{Γ12(τ)}

]
. (2.117)

The first term I1 = ε0c|k1|2 IS1 yields the irradiance at P when only the aper-
ture S1 is open (k2 = 0); the second term I2 = ε0c|k2|2 IS2 is that for k1 = 0.

Let us introduce the first-order correlation functions

Γ11(τ) = 〈E1(t + τ)E∗
1(t)
〉
,

Γ22(τ) = 〈E2(t + τ)E∗
2(t)
〉
, (2.118)

which correlate the field amplitude at the same point but at different times.
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For τ = 0 the self-coherence functions

Γ11(0) = 〈E1(t)E∗
1(t)
〉= I1/(ε0c) ,

Γ22(0) =I2/(ε0c) ,

are proportional to the irradiance I at S1 and S2, respectively.
With the definition of the normalized form of the mutual coherence func-

tion,

γ12(τ) = Γ12(τ)√
Γ11(0)Γ22(0)

= 〈E1(t + τ)E∗
2(t)〉√

〈|E1(t)|2 |E2(t)|2〉
, (2.119)

(2.117) can be written as

Ip = I1 + I2 +2
√

I1 I2 Re{γ12(τ)} . (2.120)

This is the general interference law for partially coherent light; γ12(τ) is called
the complex degree of coherence. Its meaning will be illustrated by the follow-
ing: we express the complex quantity γ12(τ) as

γ12(τ) = |γ12(τ)| eiφ12(τ) ,

where the phase angle φ12(τ) = φ1(τ)−φ2(τ) is related to the phases of the
fields E1 and E2 in (2.116).

For |γ12(τ)| = 1, (2.122) describes the interference of two completely co-
herent waves out of phase at S1 or S2 by the amount φ12(τ). For |γ12(τ)| = 0,
the interference term vanishes. The two waves are said to be completely in-
coherent. For 0 < |γ12(τ)| < 1 we have partial coherence. γ12(τ) is therefore
a measure of the degree of coherence. We illustrate the mutual coherence
function γ12(τ) by applying it to the situations outlined in Sects. 2.8.1, 2.8.2.

Example 2.8.
In the Michelson interferometer, the incoming nearly parallel light beam is
split by S (Fig. 2.25) and recombined in the plane B. If both partial beams
have the same amplitude E = E0 eiφ(t), the degree of coherence becomes

γ11(τ) = 〈E(t + τ)E∗(t)〉
|E(t)|2 =

〈
eiφ(t+τ) e−iφ(t)

〉
.

For long averaging times T we obtain with Δφ = φ(t + τ)−φ(t),

γ11(τ) = lim
T→∞

1

T

T∫

0

(cos Δφ+ i sin Δφ)dt . (2.121)
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For a strictly monochromatic wave with infinite coherence length Δsc, the
phase function is φ(t) = ωt − k · r and Δφ = +ωτ with τ = Δs/c. This
yields

γ11(τ) = cos ωτ + i sin ωτ = eiωτ , |γ11(τ)| = 1 .

For a wave with spectral width Δω so large that τ > Δsc/c = 1/Δω,
the phase differences Δφ vary randomly between 0 and 2π and the
integral averages to zero, giving γ11(τ) = 0. In Fig. 2.30 the interfer-
ence pattern I(Δφ) ∝ |E1(t) · E2(t + τ)|2 in the observation plane behind
a Michelson interferometer is illustrated as a function of the phase dif-
ference Δφ = (2π/λ)Δs for equal intensities I1 = I2 but different values
of |γ12(τ)|. For completely coherent light (|γ12(τ)| = 1) the intensity I(τ)
changes between 4I1 and zero, whereas for |γ(t)| = 0 the interference term
vanishes and the total intensity I = 2I1 does not depend on τ .

Fig. 2.30. Interference pattern I(Δφ) of two-beam interference for different degrees of
coherence

Example 2.9.
For the special case of a quasi-monochromatic plane wave E = E0
×exp(iωt − ik ·r), an optical path difference (r2 −r1) causes a correspond-
ing phase difference

φ12(τ) = k · (r2 −r1) ,

and (2.120) can be expressed with Re{γ12(τ)} = |γ12(τ)| cos φ12 by

Ip = I1 + I2 +2
√

I1 I2 |γ12(τ)| cos φ12(τ) . (2.122)

For |γ12(τ)| = 1, the interference term causes a full modulation of the
irradiance Ip(τ). For γ12(τ) = 0, the interference vanishes and the total in-
tensity becomes independent of the time delay τ between the two beams.
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Example 2.10.
Referring to Young’s experiment (Fig. 2.27) with a narrow bandwidth but
extended source, spatial coherence effects will predominate. The fringe pat-
tern in the plane B will depend on Γ(S1, S2, τ) = Γ12(τ). In the region
around the central fringe (r2 − r1) = 0, τ = 0, the values of Γ12(0) and
γ12(0) can be determined from the visibility of the interference pattern.

To find the value γ12(τ) for any point P on the screen B in Fig. 2.27, the
time-averaged intensity I(P) is measured when both slits are open, and also
I1(P) and I2(P) when one of the slits is blocked. In terms of these observed
quantities, the degree of coherence can be determined from (2.120) to be

Re{γ12(P)} = I(P)− I1(P)− I2(P)

2
√

I1(P)I2(P)
.

This yields the desired information about the spatial coherence of the
source, which depends on the size of the source and its distance from the
pinholes.

The visibility of the fringes at P is defined as

V(P) = Imax − Imin

Imax + Imin
= 2

√
I1(P)

√
I2(P)

I1(P)+ I2(P)
|γ12(τ)| , (2.123)

where the last equality follows from (2.122). If I1 = I2 (equal size pinholes),
we see that

V(P) = |γ12(τ)| .

The visibility is then equal to the degree of coherence. Figure 2.31a depicts
the visibility V of the fringe pattern in P as a function of the slit separation d,
indicated in Fig. 2.27, when these slits are illuminated by monochromatic light
from an extended uniform source with quadratic size b×b that appears from

Fig. 2.31. (a) Visibility of the interference pattern behind the two slits of Fig. 2.27 if they
are illuminated by a monochromatic extended source. The abscissa gives the slit separa-
tion d in units of λ/θ. (b) Visibility of a Doppler-broadened line behind a Michelson
interferometer as a function of the path difference Δs
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S1 under the angle θ. Figure 2.31b illustrates the visibility as a function of
path difference Δs in a Michelson interferometer which is illuminated with
the Doppler-broadened line λ = 632.8 nm from a neon discharge lamp.

For more detailed presentations of coherence see the textbooks [2.5,
2.26–2.28].

2.9 Coherence of Atomic Systems

Two levels of an atom are said to be coherently excited if their corresponding
wave functions are in phase at the excitation time. With a short laser pulse of
duration Δt, which has a Fourier-limited spectral bandwidth Δω � 1/Δt, two
atomic levels a and b can be excited simultaneously if their energy separation
ΔE is smaller than �Δω (Fig. 2.32). The wave function of the excited atom
is then a linear combination of the wave functions ψa and ψb, and the atom
is said to be in a coherent superposition of the two states |a〉 and |b〉.

An ensemble of atoms is coherently excited if the wave functions of the
excited atoms, at a certain time t, have the same phase for all atoms. This
phase relation may change with time due to differing frequencies ω in the
time-dependent part exp(iωt) of the excited-state wave functions or because
of relaxation processes, which may differ for the different atoms. This will
result in a “phase diffusion” and a time-dependent decrease of the degree of
coherence.

The realization of such coherent systems requires special experimental
preparations that, however, can be achieved with several techniques of co-
herent laser spectroscopy (Vol. 2, Chap. 7). An elegant theoretical way of
describing observable quantities of a coherently or incoherently excited sys-
tem of atoms and molecules is based on the density-matrix formalism.

2.9.1 Density Matrix

Let us assume, for simplicity, that each atom of the ensemble can be repre-
sented by a two-level system (Sect. 2.7), described by the wave function

ψ(r, t) = ψa +ψb = a(t)ua e−iEat/�+b(t)ub e−i[(Eb/�)t−φ] , (2.124a)

Fig. 2.32. Coherent excitation of
two atomic levels |a〉 and |b〉
from the same lower level |g〉
with a broadband laser pulse with
�Δω ≥ (Eb − Ea)
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where the phase φ might be different for each of the atoms. We can write ψ
as the state vector
(

ψa
ψb

)
or (ψa, ψb) (2.124b)

The density matrix ρ̃ is defined by the product of the two state vectors

ρ̃ = |ψ〉 〈ψ| =
(

ψa
ψb

)
(ψa, ψb)

=
( |a(t)|2 abe−i[(Ea−Eb)t/�+φ]

abe+i[(Ea−Eb)t/�+φ] |b(t)|2
)

=
(

ρaa ρab
ρba ρbb

)
, (2.125)

since the normalized atomic wave functions in vector notation are

ua =
(

1
0

)
and ub =

(
0
1

)
.

The diagonal elements ρaa and ρbb represent the probabilities of finding the
atoms of the ensemble in the level |a〉 and |b〉, respectively.

If the phases φ of the atomic wave function (2.124) are randomly dis-
tributed for the different atoms of the ensemble, the nondiagonal elements of
the density matrix (2.125) average to zero and the incoherently excited system
is therefore described by the diagonal matrix

ρ̃incoh =
( [a(t)]2 0

0 [b(t)]2

)
. (2.126)

If definite phase relations exist between the wave functions of the atoms, the
system is in a coherent state. The nondiagonal elements of (2.125) describe
the degree of coherence of the system and are therefore often called “coher-
ences.”

Such a coherent state can, for example, be generated by the interaction of
the atomic ensemble with a sufficiently strong EM field that induces atomic
dipole moments, which add up to a macroscopic oscillating dipole moment
if all atomic dipoles oscillate in phase. The expectation value D of such an
atomic dipole moment is

D = −e
∫

ψ∗rψ dτ . (2.127)

With (2.66b) this becomes

D = −Dab(a
∗be−iωbat +ab∗ eiωbat) = Dab(ρab +ρba). (2.128)

The nondiagonal elements of the density matrix are therefore proportional to
the expectation value of the dipole moment.
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2.9.2 Coherent Excitation

We saw in Sect. 2.9.1 that in a coherently excited system of atoms, well-
defined phase relations exist between the time-dependent wavefunctions of the
atomic levels. In this section we will illustrate such coherent excitations by
several examples.

• If identical paramagnetic atoms with magnetic moments μ and total
angular momentum J are brought into a homogeneous magnetic field
B0 = {0, 0, Bz}, the angular momentum vectors Ji of the atoms will pre-
cess with the Lamor frequency ωL = γB0 around the z-direction, where
γ = μ/|J | is the gyromagnetic ratio (Fig. 2.33a). The phases ϕi of this
precession will be different for the different atoms and, in general, are
randomly distributed. The precession occurs incoherently (Fig. 2.33b). The
dipole moments μ of the N atoms add up to a macroscopic “longitudinal”
magnetization

Mz =
N∑

i=1

μ cos θi = Nμ cos θ ,

but the average “transversal” magnetization is zero.
When an additional radio frequency field B1 = B10 cos ωt is added

with B1 ⊥ B0, the dipoles are forced to precess synchroneously with the
RF field B1 in the x–y-plane if ω = ωL. This results in a macroscopic
magnetic moment M = Nμ, which rotates with ωL in the x–y-plane and
has a phase angle π/2 against B1 (Fig. 2.33c). The precession of the
atoms becomes coherent through their coupling to the RF field. In the
quantum-mechanical description, the RF field induces transitions between
the Zeeman sublevels (Fig. 2.33d). If the RF field B1 is sufficiently intense,
the atoms are in a coherent superposition of the wave functions of both
Zeeman levels.

Fig. 2.33a–d. Precession of a magnetic dipole in a homogeneous magnetic field B0 (a);
Incoherent precession of the different dipoles (b); Synchronization of dipoles by a radio
frequency (RF) field (c); Coherent superposition of two Zeeman sublevels (d) as the
quantum-mechanical equivalent to the classical picture (c)
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Fig. 2.34a–c. Coherent excitation of Zeeman sublevels with m = ±1 (a) by linear polar-
ized light with E ⊥ B (b). The fluorescence is a superposition of σ+ and σ− light (c)

• Excitation by visible or UV light may also create a coherent superpo-
sition of Zeeman sublevels. As an example, we consider the transition
6 1S0 → 6 3P1 of the Hg atom at λ = 253.7 nm (Fig. 2.34). In a magnetic
field B = {0, 0, Bz}, the upper level 6 3P1 splits into three Zeeman sub-
levels with magnetic quantum numbers mz = 0,±1. Excitation with linear
polarized light (E ‖ B) only populates the level m J = 0. The fluorescence
emitted from this Zeeman level is also linearly polarized.

However, if the exciting light is polarized perpendicularly to the mag-
netic field (E ⊥ B), it may be regarded as superposition of σ+ and σ−
light traveling into the z-direction, which is chosen as the quantization
axis.
In this case, the levels with m = ±1 are populated. As long as the Zeeman
splitting is smaller than the homogeneous width of the Zeeman levels (e.g.,
the natural linewidth Δω = 1/τ), both components are excited coherently
(even with monochromatic light!). The wave function of the excited state is
represented by a linear combination ψ = aψa +bψb of the two wavefunc-
tions of the Zeeman sublevels m = ±1. The fluorescence is nonisotropic,
but shows an angular distribution that depends on the coefficients a, b
(Vol. 2, Sect. 7.1).

• A molecule with two closely lying levels |a〉 and |b〉 that can both be
reached by optical transitions from a common groundstate |g〉 can be co-
herently excited by a light pulse with duration ΔT , if ΔT < �/(Ea − Eb),
even if the levels |a〉 and |b〉 are different vibrational levels of differ-
ent electronic states and their separation is larger than their homogeneous
width.

The time-dependent fluorescence from these coherently excited states
shows, besides the exponential decay exp(−t/τ), a beat period τQB =
�/(Ea − Eb) due to the different frequencies ωa and ωb of the two fluo-
rescence components (quantum beats, Vol. 2, Sect. 7.2).
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2.9.3 Relaxation of Coherently Excited Systems

The time-dependent Schrödinger equation (2.57) is written in the density-ma-
trix formalism as

i� ˙̃ρ = [H, ρ̃] . (2.129)

In order to separate the different contributions of induced absorption or emis-
sion and of relaxation processes, we write the Hamiltonian H as the sum

H = H0 +H1(t)+HR , (2.130)

of the “internal” Hamiltonian of the isolated two-level system

H0 =
(

Ea 0
0 Eb

)
,

the interaction Hamiltonian of the system with an EM field E = E0 · cos ωt

H1(t) = −μE(t) =
(

0 −Dab E0(t)
−Dba E0(t) 0

)
cos ωt , (2.131)

and a relaxation part

HR = �
(

γa γ a
ϕ

γ b
ϕ γb

)
, (2.132)

which describes all relaxation processes, such as spontaneous emission or
collision-induced transitions. The population relaxation of level |b〉 with a de-
cay constant γb causing an effective lifetime Tb = 1/γb is, for example,
described by

i�ρbbγb = [HR, ρ̃]bb ⇒ Tb = 1

γb
= i�ρbb

[HR, ρ̃]bb
. (2.133)

The decay of the off-diagonal elements ρab, ρba describes the decay of the
coherence, i.e., of the phase relations between the atomic dipoles.

The dephasing rate is represented by the phase-relaxation constants γ a
ϕ , γ b

ϕ
and the decay of the nondiagonal elements is governed by

i�ρab

T2
= −[HR, ρ]ab , (2.134)

where the “transverse” relaxation time T2 (dephasing time) is defined by

1

T2
= 1

2

(
1

Ta
+ 1

Tb

)
+γφ . (2.135)

In general, the phase relaxation is faster than the population relaxation defined
by the relaxation time T1, which means that the nondiagonal elements decay
faster than the diagonal elements (Vol. 2, Chap. 7).
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For more information on coherent excitation of atomic and molecular sys-
tems see [2.29–2.31] and Vol. 2, Chap. 7.

Problems

2.1 The angular divergence of the output from a 1-W argon laser is assumed
to be 4×10−3 rad. Calculate the radiance L and the radiant intensity I∗ of
the laser beam and the irradiance I (intensity) at a surface 1 m away from the
output mirror, when the laser beam diameter at the mirror is 2 mm. What is
the spectral power density ρ(ν) if the laser bandwidth is 1 MHz?

2.2 Unpolarized light of intensity I0 is transmitted through a dichroic polarizer
with thickness 1 mm. Calculate the transmitted intensity when the absorption
coefficients for the two polarizations are α‖ = 100 cm−1 and α⊥ = 5 cm−1.

2.3 Assume the isotropic emission of a pulsed flashlamp with spectral band-
width Δλ = 100 nm around λ = 400 nm amounts to 100-W peak power out of
a volume of 1 cm3. Calculate the spectral power density ρ(ν) and the spectral
intensity I(ν) through a spherical surface 2 cm away from the center of the
emitting sphere. How many photons per mode are contained in the radiation
field?

2.4 The beam of a monochromatic laser passes through an absorbing atomic
vapor with path length L = 5 cm. If the laser frequency is tuned to the
center of an absorbing transition |i〉 → |k〉 with absorption cross section
σ0 = 10−14 cm2, the attenuation of the transmitted intensity is 10%. Calculate
the atomic density Ni in the absorbing level |i〉.
2.5 An excited molecular level |Ei〉 is connected with three lower levels |n〉
and the groundstate |0〉 by radiative transitions with spontaneous probabilities
Ai0 = 4×107 s−1, Ai1 = 3×107 s−1, Ai2 = 1×107 s−1, Ai3 = 5×107 s−1.

(a) Calculate the spontaneous lifetime τi and the relative population densi-
ties Nn/Ni under cw excitation of |i〉 when τ1 = 500 ns, τ2 = 6 ns, and
τ3 = 10 ns.

(b) Determine the Einstein coefficient B0i for the excitation of |i〉 from the
groundstate with τ0 = ∞ and with the statistical weights g0 = 1 and
g1 = 3. At which spectral energy density ρν is the induced absorption rate
equal to the spontaneous decay rate of level |i〉? What is the intensity of
a laser with a bandwidth of 10 MHz at this radiation density?

(c) How large is the absorption cross-section σ0i if the absorption linewidth is
solely determinated by the lifetime of the upper level?

2.6 Under the conditions of Problem 2.5 there is an inversion between levels
|i〉 and |2〉 which allows laser action on this transition. What is the minimum
field amplitude E0 and energy density ρ of this transition that cause a Rabi
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oscillation between levels |2〉 and |i〉 with a period T = 1/Ω which is shorter
than the lifetime of |2〉?
2.7 Expansion of a laser beam is accomplished by two lenses with different
focal lengths (Fig. 2.35). Why does an aperture in the focal plane improve the
quality of the wave fronts in the expanded beam by eliminating perturbations
due to diffraction effects by dust and other imperfections on the lens surfaces?

Fig. 2.35. Beam-expanding
telescope with an aperture
in the focal plane

2.8 Calculate the maximum slit separation in Young’s interference experi-
ments that still gives distinct interference fringes, if the two slits are illumi-
nated

(a) by incoherent light of λ = 500 nm from a hole with 1-mm diameter, 1 m
away from the slits;

(b) by a star with 106-km diameter, at a distance of 4 light-years;
(c) by two partial beams of a He-Ne laser with a spectral width of 1 MHz

(Fig. 2.36).

Fig. 2.36. Schematic diagram of Michelson’s
star interferometer

2.9 A sodium atom is placed in a cavity V = 1 cm3 with walls at the temper-
ature T , producing a thermal radiation field with spectral energy density ρ(ν).
At what temperature T are the spontaneous and induced transition probabili-
ties equal

(a) for the transition 3P → 3S (λ = 589 nm) with τ(3P) = 16 ns;
(b) for the hyperfine transition 3S (F = 3 → F = 2) with τ(3F) � 1 s and ν =

1772 MHz?

2.10 An optically excited sodium atom Na(3P) with a spontaneous lifetime
τ(3P) = 16 ns is placed in a cell filled with 10 mbar nitrogen gas at a temper-
ature of T = 400 K. Calculate the effective lifetime τeff (3P) if the quenching
cross section for Na(3P)–N2 collisions is σq = 4×10−15 cm2.



3. Widths and Profiles of Spectral Lines

Spectral lines in discrete absorption or emission spectra are never strictly
monochromatic. Even with the very high resolution of interferometers, one
observes a spectral distribution I(ν) of the absorbed or emitted intensity
around the central frequency ν0 = (Ei − Ek)/h corresponding to a molecu-
lar transition with the energy difference ΔE = Ei − Ek between upper and
lower levels. The function I(ν) in the vicinity of ν0 is called the line profile
(Fig. 3.1). The frequency interval δν = |ν2 −ν1| between the two frequencies
ν1 and ν2 for which I(ν1) = I(ν2) = I(ν0)/2 is the full-width at half-maximum
of the line (FWHM), often shortened to the linewidth or halfwidth of the spec-
tral line.

The halfwidth is sometimes written in terms of the angular frequency ω =
2πν with δω = 2πδν, or in terms of the wavelength λ (in units of nm or Å)
with δλ = |λ1 −λ2|. From λ = c/ν, it follows that

δλ = −(c/ν2)δν . (3.1)

The relative halfwidths, however, are the same in all three schemes:
∣∣∣∣
δν

ν

∣∣∣∣=
∣∣∣∣
δω

ω

∣∣∣∣=
∣∣∣∣
δλ

λ

∣∣∣∣ . (3.2)

The spectral region within the halfwidth is called the kernel of the line, the
regions outside (ν < ν1 and ν > ν2) are the line wings.

In the following sections we discuss various origins of the finite linewidth.
Several examples illustrate the order of magnitude of different line-broadening
effects in different spectral regions and their importance for high-resolution

Fig. 3.1. Line profile, halfwidth, kernel, and wings of a spectral line
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spectroscopy [3.1–3.4]. Following the usual convention we shall often use the
angular frequency ω = 2πν to avoid factors of 2π in the equations.

3.1 Natural Linewidth

An excited atom can emit its excitation energy as spontaneous radiation
(Sect. 2.7). In order to investigate the spectral distribution of this spontaneous
emission on a transition Ei → Ek, we shall describe the excited atomic elec-
tron by the classical model of a damped harmonic oscillator with frequency ω,
mass m, and restoring force constant k. The radiative energy loss results in
a damping of the oscillation described by the damping constant γ . We shall
see, however, that for real atoms the damping is extremely small, which means
that γ � ω .

The amplitude x(t) of the oscillation can be obtained by solving the dif-
ferential equation of motion

ẍ +γ ẋ +ω2
0x = 0 , (3.3)

where ω2
0 = k/m.

The real solution of (3.3) with the initial values x(0) = x0 and ẋ(0) = 0 is

x(t) = x0 e−(γ/2)t[cos ωt + (γ/2ω) sin ωt] . (3.4)

The frequency ω = (ω2
0 −γ 2/4)1/2 of the damped oscillation is slightly lower

than the frequency ω0 of the undamped case. However, for small damping
(γ � ω0) we can set ω � ω0 and also may neglect the second term in (3.4).
With this approximation, which is still very accurate for real atoms, we obtain
the solution of (3.3) as

x(t) = x0 e−(γ/2)t cos ω0t . (3.5)

The frequency ω0 = 2πν0 of the oscillator corresponds to the central fre-
quency ωik = (Ei − Ek)/� of an atomic transition Ei → Ek.

3.1.1 Lorentzian Line Profile of the Emitted Radiation

Because the amplitude x(t) of the oscillation decreases gradually, the fre-
quency of the emitted radiation is no longer monochromatic as it would be for
an oscillation with constant amplitude. Instead, it shows a frequency distribu-
tion related to the function x(t) in (3.5) by a Fourier transformation (Fig. 3.2).

The damped oscillation x(t) can be described as a superposition of
monochromatic oscillations exp(iωt) with slightly different frequencies ω and
amplitudes A(ω)

x(t) = 1

2
√

2π

∞∫

0

A(ω)eiωt dω . (3.6)
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Fig. 3.2. (a) Damped oscillation: (b) the frequency distribution A(ω) of the amplitudes
obtained by the Fourier transform of x(t) yields the intensity profile I(ω−ω0) ∝ |A(ω)|2

The amplitudes A(ω) are calculated from (3.5) and (3.6) as the Fourier trans-
form

A(ω) = 1√
2π

+∞∫

−∞
x(t)e−iωt dt = 1√

2π

∞∫

0

x0 e−(γ/2)t cos(ω0t)e−iωt dt .

(3.7)

The lower integration limit is taken to be zero because x(t) = 0 for t < 0.
Equation (3.7) can readily be integrated to give the complex amplitudes

A(ω) = x0√
8π

(
1

i(ω−ω0)+γ/2
+ 1

i(ω+ω0)+γ/2

)
. (3.8)

The real intensity I(ω) ∝ A(ω)A∗(ω) contains terms with (ω−ω0) and (ω+
ω0) in the denominator. In the vicinity of the central frequency ω0 of an
atomic transition where (ω−ω0)

2 � ω2
0, the terms with (ω+ω0) can be ne-

glected and the intensity profile of the spectral line becomes

I(ω−ω0) = C

(ω−ω0)2 + (γ/2)2 . (3.9)

The constant C can be defined in two different ways:
For comparison of different line profiles it is useful to define a normalized
intensity profile L(ω−ω0) = I(ω−ω0)/I0 with I0 = ∫ I(ω)dω such that

∞∫

0

L(ω−ω0)dω =
+∞∫

−∞
L(ω−ω0)d(ω−ω0) = 1 .
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With this normalization, the integration of (3.9) yields C = I0γ/2π.

L(ω−ω0) = γ/2π

(ω−ω0)2 + (γ/2)2 , (3.10)

is called the normalized Lorentzian profile. Its full halfwidth at half-maximum
(FWHM) is

δωn = γ or δνn = γ/2π . (3.11)

Any intensity distribution with a Lorentzian profile is then

I(ω−ω0) = I0
γ/2π

(ω−ω0)2 + (γ/2)2 = I0L(ω−ω0) , (3.10a)

with a peak intensity I(ω0) = 2I0/(πγ).

Note: Often in the literature the normalization of (3.9) is chosen in such a way
that I(ω0) = I0; furthermore, the full halfwidth is denoted by 2Γ . In this no-
tation the line profile of a transition |k〉 ← |i〉 is

I(ω) = I0g(ω−ωik) with I0 = I(ω0) ,

and

g(ω−ωik) = Γ 2

(ωik −ω)2 +Γ 2 with Γ = γ/2 . (3.10b)

With x = (ωik −ω)/Γ this can be abbreviated as

g(ω−ωik) = 1

1+ x2 with g(ωik) = 1 . (3.10c)

In this notation the area under the line profile becomes

∞∫

0

I(ω)dω = Γ

+∞∫

−∞
I(x)dx = πI0Γ . (3.10d)

3.1.2 Relation Between Linewidth and Lifetime

The radiant power of the damped oscillator can be obtained from (3.3) if both
sides of the equation are multiplied by mẋ, which yields after rearranging

mẍẋ +mω2
0xẋ = −γmẋ2 . (3.12)
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The left-hand side of (3.12) is the time derivative of the total energy W (sum
of kinetic energy 1

2 mẋ2 and potential energy Dx2/2 = mω2
0x2/2), and can

therefore be written as

d

dt

(m

2
ẋ2 + m

2
ω2

0x2
)

= dW

dt
= −γmẋ2 . (3.13)

Inserting x(t) from (3.5) and neglecting terms with γ 2 yields

dW

dt
= −γmx2

0ω
2
0 e−γt sin2 ω0t . (3.14)

Because the time average sin2 ωt = 1/2, the time-averaged radiant power P =
dW/dt is

dW

dt
= −γ

2
mx2

0ω
2
0 e−γt . (3.15)

Equation (3.15) shows that P and with it the intensity I(t) of the spectral line
decreases to 1/e of its initial value I(t = 0) after the decay time τ = 1/γ .

In Sect. 2.8 we saw that the mean lifetime τi of a molecular level Ei , which
decays exponentially by spontaneous emission, is related to the Einstein co-
efficient Ai by τi = 1/Ai . Replacing the classical damping constant γ by
the spontaneous transition probability Ai , we can use the classical formulas
(3.9–3.11) as a correct description of the frequency distribution of sponta-
neous emission and its linewidth. The natural halfwidth of a spectral line
spontaneously emitted from the level Ei is, according to (3.11),

δνn = Ai/2π = (2πτi)
−1 or δωn = Ai = 1/τi . (3.16)

The radiant power emitted from Ni excited atoms on a transition Ei → Ek is
given by

dWik/dt = Ni Aik�ωik . (3.17)

If the emission of a source with volume ΔV is isotropic, the radiation
power received by a detector of area A at a distance r through the solid angle
dΩ = A/r2 is

Pik =
(

dWik

dt

)
dΩ

4π
= Ni Aik�ωikΔV

A

4πr2 . (3.18)

This means that the density Ni of emitters can be inferred from the measured
power, if Aik is known (Vol. 2, Sect. 6.3).

Note: Equation (3.16) can also be derived from the uncertainty principle
(Fig. 3.3). With the mean lifetime τi of the excited level Ei , its energy Ei
can be determined only with an uncertainty ΔEi � �/τi [3.5]. The frequency
ωik = (Ei − Ek)/� of a transition terminating in the stable ground state Ek has
therefore the uncertainty

δω = ΔEi/�= 1/τi . (3.19)
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Fig. 3.3. Illustration of the uncertainty principle, which relates the natural linewidth to the
energy uncertainties of the upper and lower levels

If the lower level Ek is not the ground state but also an excited state with the
lifetime τk, the uncertainties ΔEi and ΔEk of the two levels both contribute
to the linewidth. This yields for the total uncertainty

ΔE =
√

ΔE2
i +ΔE2

k → δωn =
√

(1/τ2
i +1/τ2

k ) . (3.20)

3.1.3 Natural Linewidth of Absorbing Transitions

In a similar way, the spectral profile of an absorption line can be derived
for atoms at rest: the intensity I of a plane wave passing in the z-direction
through an absorbing sample decreases along the distance dz by

dI = −αI dz . (3.21)

The absorption coefficient αik [cm−1] for a transition |i〉 → |k〉 depends on the
population densities Ni , Nk of the lower and upper levels, and on the optical
absorption cross section σik [cm2] of each absorbing atom, see (2.42):

αik(ω) = σik(ω)[Ni − (gi/gk)Nk] , (3.22)

Fig. 3.4. Absorption of a parallel light beam passing through an optically thin absorbing
layer
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which reduces to αik = σNi for Nk � Ni (Fig. 3.4). For sufficiently small in-
tensities I , the induced absorption rate is small compared to the refilling rate
of level |i〉 and the population density Ni does not depend on the intensity I
(linear absorption). Integration of (3.21) then yields Beer’s law

I = I0 e−α(ω)z = I0 e−σik Ni z . (3.23)

The absorption profile α(ω) can be obtained from our classical model of
a damped oscillator with charge q under the influence of a driving force qE
caused by the incident wave with amplitude E = E0 eiωt . If the electric field
amplitude is E = {Ex, 0, 0} the corresponding differential equation

mẍ +bẋ + kx = qE0 eiωt , (3.24)

has the solution

x = qE0 eiωt

m(ω2
0 −ω2 + iγω)

, (3.25)

with the abbreviations γ = b/m, and ω2
0 = k/m. The forced oscillation of the

charge q generates an induced dipole moment

p = qx = q2 E0 eiωt

m(ω2
0 −ω2 + iγω)

. (3.26)

In a sample with N oscillators per unit volume, the macroscopic polariza-
tion P, which is the sum of all dipole moments per unit volume, is therefore

P = Nqx . (3.27)

On the other hand, the polarization can be derived in classical electrodynamics
from Maxwell’s equations using the dielectric constant ε0 or the susceptibil-
ity χ, i.e.,

P = ε0(ε−1)E = ε0χE . (3.28)

The relative dielectric constant ε is related to the refractive index n by

n = ε1/2 . (3.29)

This can be easily verified from the relations

v = (εε0μμ0)
−1/2 = c/n and c = (ε0μ0)

−1/2 ⇒ n = √
εμ ,

for the velocity of light, which follows from Maxwell’s equations in media
with the dielectric constant ε0ε and the magnetic permeability μ0μ. Except
for ferromagnetic materials, the relative permeability is μ � 1 → n = ε1/2.

Combining (3.25–3.29), the refractive index n can be written as

n2 = 1+ Nq2

ε0m(ω2
0 −ω2 + iγω)

. (3.30)
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In gaseous media at sufficiently low pressures, the index of refraction is
close to unity (for example, in air at atmospheric pressure, n = 1.00028 for
λ = 500 nm). In this case, the approximation

n2 −1 = (n +1)(n −1) � 2(n −1) ,

is sufficiently accurate for most purposes. Therefore (3.30) can be reduced to

n = 1+ Nq2

2ε0m(ω2
0 −ω2 + iγω)

. (3.31)

In order to make clear the physical implication of this complex index of re-
fraction, we separate the real and the imaginary parts and write

n = n′ − iκ . (3.32)

An EM wave E = E0 exp[i(ωt − kz)] passing in the z-direction through
a medium with the refractive index n has the same frequency ωn = ω0 as in
vacuum, but a different wave vector kn = k0n. Inserting (3.32) with |k| = 2π/λ
yields

E = E0 e−k0κz ei(ωt−k0n′z) = E0 e−2πκz/λ0 eik0(ct−n′z) . (3.33)

Equation (3.33) shows that the imaginary part κ(ω) of the complex refractive
index n describes the absorption of the EM wave. At a penetration depth of
z = λ0/(2πκ), the amplitude E0 exp(−k0κz) has decreased to 1/e of its value
at z = 0. The real part n′(ω) represents the dispersion of the wave, i.e., the de-
pendence of the phase velocity v(ω) = c/n′(ω) on the frequency. The intensity
I ∝ EE∗ then decreases as

I = I0 e−2κk0z . (3.34)

Comparison with (3.23) yields the relation

α = 2κk0 = 4πκ/λ0 . (3.35)

The absorption coefficient α is proportional to the imaginary part κ of the
complex refractive index n = n′ − iκ.

The frequency dependence of α and n′ can be obtained by inserting
(3.32, 3.35) into (3.31). Separating the real and imaginary parts, we get

α = Nq2ω0

cε0m

γω

(ω2
0 −ω2)2 +γ 2ω2

, (3.36a)

n′ = 1+ Nq2

2ε0m

ω2
0 −ω2

(ω2
0 −ω2)2 +γ 2ω2

. (3.37a)
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Fig. 3.5. Absorption coefficient α = 2kκ(ω)

and dispersion n′(ω) in the vicinity of an
atomic transition with center frequency ω0

The equations (3.36a) and (3.37) are the Kramers–Kronig dispersion relations.
They relate absorption and dispersion through the complex refractive index
n = n′ − iκ = n′ − iα/(2k0).

In the neighborhood of a molecular transition frequency ω0 where
|ω0 −ω| � ω0, the dispersion relations reduce with q = e and ω2

0 −ω2 =
(ω0 +ω)(ω0 −ω) ≈ 2ω0(ω0 −ω) to

α(ω) = N e2

4ε0mc

γ

(ω0 −ω)2 + (γ/2)2 , (3.36b)

n′ = 1+ N e2

4ε0mω0

ω0 −ω

(ω0 −ω)2 + (γ/2)2 . (3.37b)

The absorption profile α(ω) is Lorentzian with a FWHM of Δωn = γ , which
equals the natural linewidth. The difference n′ −n0 = n′ −1 between the re-
fractive indices in a gas and in vacuum yields a dispersion profile.

Figure 3.5 shows the frequency dependence of α(ω) and n′(ω) in the vicin-
ity of the eigenfrequency ω0 of an atomic transition.
Note: The relations derived in this section are only valid for oscillators at
rest in the observer’s coordinate system. The thermal motion of real atoms
in a gas introduces an additional broadening of the line profile, the Doppler
broadening, which will be discussed in Sect. 3.2. The profiles (3.36, 3.37) can
therefore be observed only with Doppler-free techniques (Vol. 2, Chaps. 2
and 4).

Example 3.1.

(a) The natural linewidth of the sodium D1 line at λ = 589.1 nm, which
corresponds to a transition between the 3P3/2 level (τ = 16 ns) and the
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3S1/2 ground state, is

δνn = 109

16×2π
= 107 s−1 = 10 MHz .

Note that with a central frequency ν0 = 5×1014 Hz and a lifetime of
16 ns, the damping of the corresponding classical oscillator is extremely
small. Only after 8×106 periods of oscillation has the amplitude de-
creased to 1/e of its initial value.

(b) The natural linewidth of a molecular transition between two vibrational
levels of the electronic ground state with a wavelength in the infrared
region is very small because of the long spontaneous lifetimes of vibra-
tional levels. For a typical lifetime of τ = 10−3 s, the natural linewidth
becomes δνn = 160 Hz.

(c) Even in the visible or ultraviolet range, atomic or molecular electronic
transitions with very small transition probabilities exist. In a dipole
approximation these are “forbidden” transitions. One example is the
2s ↔ 1s transition for the hydrogen atom. The upper level 2s cannot
decay by electric dipole transition, but a two-photon transition to the
1s ground state is possible. The natural lifetime is τ = 0.12 s and the
natural linewidth of such a two-photon line is therefore δνn = 1.3 Hz.

3.2 Doppler Width

Generally, the Lorentzian line profile with the natural linewidth δνn , as dis-
cussed in Sect. 3.1, cannot be observed without special techniques, because it
is completely concealed by other broadening effects. One of the major con-
tributions to the spectral linewidth in gases at low pressures is the Doppler
width, which is due to the thermal motion of the absorbing or emitting
molecules.

Consider an excited molecule with a velocity v = {vx, vy, vz} relative to
the rest frame of the observer. The central frequency of a molecular emission
line that is ω0 in the coordinate system of the molecule is Doppler shifted to

ωe = ω0 +k ·v , (3.38)

for an observer looking toward the emitting molecule (that is, against the
direction of the wave vector k of the emitted radiation; Fig. 3.6a). For the ob-
server, the apparent emission frequency ωe is increased if the molecule moves
toward the observer (k ·v > 0), and decreased if the molecule moves away
(k ·v < 0).

Similarly, one can see that the absorption frequency ω0 of a molecule mov-
ing with the velocity v across a plane EM wave E = E0 exp(iωt −k · r) is
shifted. The wave frequency ω in the rest frame appears in the frame of the
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Fig. 3.6. (a) Doppler shift of a monochromatic emission line and (b) absorption line

moving molecule as

ω′ = ω−k ·v .

The molecule can only absorb if ω′ coincides with its eigenfrequency ω0. The
absorption frequency ω = ωa is then

ωa = ω0 +k ·v . (3.39a)

As in the emission case, the absorption frequency ωa is increased for k ·v > 0
(Fig. 3.6b). This happens, for example, if the molecule moves parallel to the
wave propagation. It is decreased if k ·v < 0, e.g., when the molecule moves
against the light propagation. If we choose the +z-direction to coincide with
the light propagation, with k = {0, 0, kz} and |k| = 2π/λ, (3.39a) becomes

ωa = ω0(1+vz/c) . (3.39b)

Note: Equations (3.38) and (3.39) describe the linear Doppler shift. For
higher accuracies, the quadratic Doppler effect must also be considered
(Vol. 2, Sect. 9.1).

At thermal equilibrium, the molecules of a gas follow a Maxwellian ve-
locity distribution. At the temperature T , the number of molecules ni(vz)dvz
in the level Ei per unit volume with a velocity component between vz and
vz + dvz is

ni(vz)dvz = Ni

vp
√

π
e−(vz/vp)

2
dvz , (3.40)

where Ni = ∫ ni(vz)dvz is the density of all molecules in level Ei , vp =
(2kT/m)1/2 is the most probable velocity, m is the mass of a molecule, and
k is Boltzmann’s constant. Inserting the relation (3.39b) between the veloc-
ity component and the frequency shift with dvz = (c/ω0)dω into (3.40) gives
the number of molecules with absorption frequencies shifted from ω0 into the
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interval from ω to ω+ dω

ni(ω)dω = Ni
c

ω0vp
√

π
exp

[
−
(

c(ω−ω0)

ω0vp

)2
]

dω . (3.41)

Since the emitted or absorbed radiant power P(ω)dω is proportional to the
density ni(ω)dω of molecules emitting or absorbing in the interval dω, the
intensity profile of a Doppler-broadened spectral line becomes

I(ω) = I0 exp

[
−
(

c(ω−ω0)

ω0vp

)2
]

. (3.42)

This is a Gaussian profile with a full halfwidth

δωD = 2
√

ln 2ω0vp/c =
(ω0

c

)√
8kT ln 2/m , (3.43a)

which is called the Doppler width. Inserting (3.43) into (3.42) with 1/(4 ln 2) =
0.36 yields

I(ω) = I0 exp

(
−(ω−ω0)

2

0.36δω2
D

)
. (3.44)

Note that δωD increases linearly with the frequency ω0 and is proportional to
(T/m)1/2. The largest Doppler width is thus expected for hydrogen (M = 1)
at high temperatures and a large frequency ω for the Lyman α line.

Equation (3.43) can be written more conveniently in terms of the Avogadro
number NA (the number of molecules per mole), the mass of a mole, M =
NAm, and the gas constant R = NAk. Inserting these relations into (3.43) for
the Doppler width gives

δωD = (2ω0/c)
√

2RT ln 2/M . (3.43b)

or, in frequency units, using the values for c and R,

δνD = 7.16×10−7ν0
√

T/M [Hz] . (3.43c)

Example 3.2.

(a) Vacuum ultraviolet: for the Lyman α line (2p → 1s transition in
the H atom) in a discharge with temperature T = 1000 K, M =
1, λ = 121.6 nm, ν0 = 2.47 ×1015 s−1 → δνD = 5.6 ×1010 Hz, δλD =
2.8×10−3 nm.

(b) Visible spectral region: for the sodium D line (3p → 3s transition of
the Na atom) in a sodium-vapor cell at T = 500 K, λ = 589.1 nm,
ν0 = 5.1×1014 s−1 → δνD = 1.7×109 Hz, δλD = 1×10−3 nm.
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(c) Infrared region: for a vibrational transition (Ji, vi) ↔ (Jk, vk) between
two rovibronic levels with the quantum numbers J, v of the CO2
molecule in a CO2 cell at room temperature (T = 300 K), λ = 10 μm,
ν = 3×1013 s−1, M = 44 → δνD = 5.6×107 Hz, δλD = 1.9×10−2 nm.

These examples illustrate that in the visible and UV regions, the Doppler
width exceeds the natural linewidth by about two orders of magnitude. Note,
however, that the intensity I approaches zero for large arguments (ν − ν0)
much faster for a Gaussian line profile than for a Lorentzian profile (Fig. 3.7).
It is therefore possible to obtain information about the Lorentzian profile from
the extreme line wings, even if the Doppler width is much larger than the
natural linewidth (see below).

More detailed consideration shows that a Doppler-broadened spectral line
cannot be strictly represented by a pure Gaussian profile as has been as-
sumed in the foregoing discussion, since not all molecules with a definite
velocity component vz emit or absorb radiation at the same frequency ω′ =
ω0(1+vz/c). Because of the finite lifetimes of the molecular energy levels,
the frequency response of these molecules is represented by a Lorentzian pro-
file, see (3.10)

L(ω−ω′) = γ/2π

(ω−ω′)2 + (γ/2)2 ,

with a central frequency ω′ (Fig. 3.8). Let n(ω′)dω′ = n(vz)dvz be the number
of molecules per unit volume with velocity components within the interval vz
to vz + dvz . The spectral intensity distribution I(ω) of the total absorption or
emission of all molecules at the transition Ei → Ek is then

I(ω) = I0

∫
n(ω′)L(ω−ω′)dω′ . (3.45)

Fig. 3.7. Comparison between Lorentzian
(L) and Gaussian (G) line profiles of
equal halfwidths
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Fig. 3.8. Lorentzian profile cen-
tered at ω′ = ω0 +k ·v = ω0(1+
vz/c) for molecules with a def-
inite velocity component vz

Inserting (3.10) for L(ω−ω′)dω′ and (3.41) for n(ω′), we obtain

I(ω) = C

∞∫

0

exp{−[(c/vp)(ω0 −ω′)/ω0]2}
(ω−ω′)2 + (γ/2)2 dω′ (3.46)

with

C = γNic

2vpπ3/2ω0
.

This intensity profile, which is a convolution of Lorentzian and Gaussian pro-
files (Fig. 3.9), is called a Voigt profile. Voigt profiles play an important role in
the spectroscopy of stellar atmospheres, where accurate measurements of line
wings allow the contributions of Doppler broadening and natural linewidth
or collisional line broadening to be separated (see [3.6] and Sect. 3.3). From
such measurements the temperature and pressure of the emitting or absorbing
layers in the stellar atmospheres may be deduced [3.7].

Fig. 3.9. Voigt profile as a convolution of Lorentzian line shapes L(ω0 −ωi) of molecules
with different velocity components vzi and central absorption frequencies ωi = ω0(1+
vzi/c)
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3.3 Collisional Broadening of Spectral Lines

When an atom A with the energy levels Ei and Ek approaches another atom
or molecule B, the energy levels of A are shifted because of the interaction be-
tween A and B. This shift depends on the electron configurations of A and B
and on the distance R(A, B) between both collision partners, which we define
as the distance between the centers of mass of A and B.

The energy shifts ΔE are, in general, different for the levels Ei and Ek
and may be positive as well as negative. The energy shift ΔE is positive if
the interaction between A and B is repulsive, and negative if it is attractive.
When plotting the energy E(R) for the different energy levels as a function of
the interatomic distance R typical potential curves of Fig. 3.10 are obtained.

This mutual interaction of both partners at distances R ≤ Rc is called a col-
lision and radius Rc is the collision radius. If no internal energy of the colli-
sion partners is transferred during the collision by nonradiative transitions, the
collision is termed elastic. Without additional stabilizing mechanisms (recom-
bination), the partners will separate again after the collision time τc � Rc/v,
which depends on the relative velocity v.

Example 3.3.
At thermal velocities of v = 5×102 m/s and a typical collision radius of
Rc = 1 nm, we obtain the collision time τc = 2×10−12 s. During this time
the electronic charge distribution generally follows the perturbation “adia-
batically”, which justifies the potential curve model of Fig. 3.10.

Fig. 3.10. Illustration of collisional line broadening explained with the potential curves of
the collision pair AB
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3.3.1 Phenomenological Description

If atom A undergoes a radiative transition between levels Ei and Ek during
the collision time, the frequency

ωik = |Ei(R)− Ek(R)| /� (3.47)

of absorbed or emitted radiation depends on the distance R(t) at the time of
the transition. We assume that the radiative transition takes place in a time
interval that is short compared to the collision time, so that the distance R
does not change during the transition. In Fig. 3.10 this assumption leads to
vertical radiative transitions.

In a gas mixture of atoms A and B, the mutual distance R(A, B) shows
random fluctuations with a distribution around a mean value R that depends
on pressure and temperature. According to (3.47), the fluorescence yields
a corresponding frequency distribution around a most probable value ωik(Rm),
which may be shifted against the frequency ω0 of the unperturbed atom A.
The shift Δω = ω0 −ωik depends on how differently the two energy levels Ei
and Ek are shifted at a distance Rm(A, B) where the emission probability has
a maximum. The intensity profile I(ω) of the collision-broadened and shifted
emission line can be obtained from

I(ω) ∝
∫

Aik(R)Pcol(R)[Ei(R)− Ek(R)]dR , (3.48)

where Aik(R) is the spontaneous transition probability, which depends on R
because the electronic wave functions of the collision pair (AB) depend on R,
and Pcol(R) is the probability per unit time that the distance between A and B
lies in the range from R to R + dR.

From (3.48) it can be seen that the intensity profile of the collision-
broadened line reflects the difference of the potential curves

Ei(R)− Ek(R) = V [A(Ei), B]− V [A(Ek), B] .

Let V(R) be the interaction potential between the ground-state atom A and
its collision partner B. The probability that B has a distance between R and
R + dR is proportional to 4πR2 dR and (in thermal equilibrium) to the Boltz-
mann factor exp[−V(R)/kT ]. The number N(R) of collision partners B with
distance R from A is therefore

N(R)dR = N04πR2 e−V(R)/kT dR , (3.49)

where N0 is the average density of atoms B. Because the intensity of an ab-
sorption line is proportional to the density of absorbing atoms while they are
forming collision pairs, the intensity profile of the absorption line can be writ-
ten as

I(ω)dω = C∗
{

R2 exp

(
−Vi(R)

kT

)
d

dR
[Vi(R)− Vk(R)]

}
dR , (3.50)
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where �ω(R) = [Vi(R)−Vk(R)] → �dω/dR = d[Vi(R)−Vk(R)]/dR has been
used. Measuring the line profile as a function of temperature yields

dI(ω, T )

dT
= Vi(R)

kT 2 I(ω, T ) ,

and therefore the ground-state potential Vi(R) separately.
Frequently, different spherical model potentials V(R) are substituted in

(3.50), such as the Lennard–Jones potential

V(R) = a/R12 −b/R6 , (3.51)

The coefficients a, b are adjusted for optimum agreement between theory and
experiment [3.8–3.16].

The line shift caused by elastic collisions corresponds to an energy shift
ΔE = �Δω between the excitation energy �ω0 of the free atom A∗ and the
photon energy �ω. It is supplied from the kinetic energy of the collision part-
ners. This means that in case of positive shifts (Δω > 0), the kinetic energy
is smaller after the collision than before.

Besides elastic collisions, inelastic collisions may also occur in which the
excitation energy Ei of atom A is either partly or completely transferred into
internal energy of the collision partner B, or into translational energy of both
partners. Such inelastic collisions are often called quenching collisions be-
cause they decrease the number of excited atoms in level Ei and therefore
quench the fluorescence intensity. The total transition probabiltiy Ai for the
depopulation of level Ei is a sum of radiative and collision-induced probabil-
ities (Fig. 2.15)

Ai = Arad
i + Acoll

i with Acoll
i = NBσiv . (3.52)

Inserting the relations

v =
√

8kT

πμ
, μ = MA · MB

MA + MB
, pB = NBkT ,

between the mean relative velocity v, the responsible pressure pB, and the gas
temperature T into (3.52) gives the total transition probability

Ai = 1

τsp
+apB with a = 2σik

√
2

πμkT
. (3.53)

It is evident from (3.16) that this pressure-dependent transition probability
causes a corresponding pressure-dependent linewidth δω, which can be de-
scribed by a sum of two damping terms

δω = δωn + δωcol = γn +γcol = γn +apB . (3.54)

The collision-induced additional line broadening apB is therefore often called
pressure broadening.
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Fig. 3.11a–c. Phase perturbation of an oscillator by collisions: (a) classical path approxi-
mation of colliding particles; (b) frequency change of the oscillator A(t) during the
collision; (c) resulting phase shift

From the derivation in Sect. 3.1, one obtains a Lorentzian profile (3.9) with
a halfwidth γ = γn +γcol for the line broadened by inelastic collisions:

I(ω) = C

(ω−ω0)2 +[(γn +γcol)/2]2 . (3.55)

The elastic collisions do not change the amplitude, but the phase of the
damped oscillator is changed due to the frequency shift Δω(R) during the
collisions. They are often termed phase-perturbing collisions (Fig. 3.11).

When taking into account line shifts Δω caused by elastic collisions, the
line profile for cases where it still can be described by a Lorentzian becomes

I(ω) = C∗

(ω−ω0 −Δω)2 + (γ/2)2 , (3.56)

where the line shift

Δω = NB ·v ·σs

and the line broadening

γ = γn + NB ·v ·σb

are determined by the number density NB of collision parameters B and by
the collision cross sections σs for line shifts and σb for broadening (Fig. 3.12).

Fig. 3.12. Shift and broadening of
a Lorentzian line profile by colli-
sions
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Fig. 3.13. Pressure broadening
(left scale) and shifts (right scale)
of the lithium resonance line by
different noble gases [3.17]

The constant C∗ = (I0/2π)(γ + NBvσb) becomes I0γ/2π for NB = 0, when
(3.56) becomes identical to (3.10).

Note: The real collision-induced line profile depends on the interaction po-
tential between A and B. In most cases it is no longer Lorentzian, but has an
asymmetric profile because the transition probability depends on the internu-
clear distance and because the energy difference ΔE(R) = Ei(R)− Ek(R) is
generally not a uniformly rising or falling function but may have extrema.

Figure 3.13 depicts as examples pressure broadening and shifts in [cm−1]
of the lithium resonance line perturbed by different noble gas atoms. Table 3.1
compiles pressure-broadening and line shift data for different alkali resonance
lines.

3.3.2 Relations Between Interaction Potential,
Line Broadening, and Shifts

In order to gain more insight into the physical meaning of the cross sections
σs and σb, we have to discover the relation between the phase shift η(R) and
the potential V(R). Assume potentials of the form

Vi(R) = Ci/Rn , Vk(R) = Ck/Rn , (3.57)

between the atom in level Ei or Ek and the perturbing atom B. The frequency
shift Δω for the transition Ei → Ek is then

�Δω(R) = Ci −Ck

Rn
. (3.58)
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Fig. 3.14. Linear path approximation of a collision be-
tween A and B

The line broadening comes from two contributions:

(a) The phase shift, due to the frequency shift of the oscillator during the col-
lision

(b) the quenching collisions which shorten the effective lifetime of the upper
level of A.

The corresponding phase shift of the oscillator A due to a collision with im-
pact parameter R0, where we neglect the scattering of B and assume that the
path of B is not deflected but follows a straight line (Fig. 3.14), is

Δφ(R0) =
+∞∫

−∞
Δωdt = 1

�

+∞∫

−∞

(Ci −Ck)dt

[R2
0 +v2(t − t0)2]n/2

= αn(Ci −Ck)

vRn−1
0

.

(3.59)

Fig. 3.15. Phase shift of the Na∗(3p) oscillation for Na∗–H collisions versus impact par-
ameter. The various adiabatic molecular states for Na∗H are indicated [3.12]
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Fig. 3.16. Broadening and shift of the Cs resonance line at λ = 894.3 nm by argon

Equation (3.59) provides the relation between the phase shift Δφ(R0) and the
difference (3.58) of the interaction potentials, where αn is a numerical con-
stant depending on the exponent n in (3.58).

The phase shifts may be positive (Ci > Ck) or negative depending on
the relative orientation of spin and angular momenta. This is illustrated by
Fig. 3.15, which shows the phase shifts of the Na atom, oscillating on the
3s–3p transition for Na–H collisions at large impact parameters [3.12].

It turns out that the main contribution to the line broadening cross sec-
tion σb comes from collisions with small impact parameters, whereas the
lineshift cross section σs still has large values for large impact parameters.
This means that elastic collisions at large distances do not cause noticeable
broadening of the line, but can still very effectively shift the line center [3.18].
Figure 3.16 exhibits broadening and shift of the Cs resonance line by argon
atoms.

Nonmonotonic interaction potentials V(R), such as the Lennard–Jones po-
tential (3.51), cause satellites in the wings of the broadened profiles (Fig. 3.17)
From the satellite structure the interaction potential may be deduced [3.19].

Because of the long-range Coulomb interactions between charged par-
ticles (electrons and ions) described by the potential (3.57) with n = 1,
pressure broadening and shift is particularly large in plasmas and gas dis-
charges [3.20, 3.21]. This is of interest for gas discharge lasers, such as
the HeNe laser or the argon-ion laser [3.22, 3.23]. The interaction between
charged particles can be described by the linear and quadratic Stark effects. It
can be shown that the linear Stark effect causes only line broadening, while
the quadratic effect also leads to line shifts. From measurements of line pro-
files in plasmas, very detailed plasma characteristics, such as electron or ion
densities and temperatures, can be determined. Plasma spectroscopy has there-
fore become an extensive field of research [3.24], of interest not only for
astrophysics, but also for fusion research in high-temperature plasmas [3.25].
Lasers play an important role in accurate measurements of line profiles in
plasmas [3.26–3.29].

The classical models used to explain collisional broadening and line
shifts can be improved by using quantum mechanical calculations. These are,
however, beyond the scope of this book, and the reader is referred to the lit-
erature [3.1, 3.14, 3.22–3.34].
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Fig. 3.17. Satellites in the pressure-
broadened line profile of the cesium
transition 6s → 9p3/2 for Cs–Xe col-
lisions at different xenon densities
[atoms/cm3] [3.14]

Example 3.4.

(a) The pressure broadening of the sodium D line λ = 589 nm by argon
is 2.3×10−5 nm/mbar, equivalent to 0.228 MHz/Pa. The shift is about
−1 MHz/torr. The self-broadening of 150 MHz/torr due to collisions
between Na atoms is much larger. However, at pressures of several torr,
the pressure broadening is still smaller than the Doppler width.

(b) The pressure broadening of molecular vibration–rotation transitions
with wavelengths λ � 5 μm is a few MHz/torr. At atmospheric pres-
sure, the collisional broadening therefore exceeds the Doppler width.
For example, the rotational lines of the ν2 band of H2O in air at normal
pressure (760 torr) have a Doppler width of 150 MHz, but a pressure-
broadened linewidth of 930 MHz.

(c) The collisional broadening of the red neon line at λ = 633 nm in the
low-pressure discharge of a HeNe laser is about δν = 150 MHz/torr; the
pressure shift Δν = 20 MHz/torr. In high-current discharges, such as the
argon laser discharge, the degree of ionization is much higher than in
the HeNe laser and the Coulomb interaction between ions and electrons
plays a major role. The pressure broadening is therefore much larger:
δν = 1500 MHz/torr. Because of the high temperature in the plasma, the
Doppler width δνD � 5000 MHz is even larger [3.23].
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3.3.3 Collisional Narrowing of Lines

In the infrared and microwave ranges, collisions may sometimes cause a nar-
rowing of the linewidth instead of a broadening (Dicke narrowing) [3.35].
This can be explained as follows: if the lifetime of the upper molecular level
(e.g., an excited vibrational level in the electronic ground state) is long com-
pared to the mean time between successive collisions, the velocity of the
oscillator is often altered by elastic collisions and the mean velocity compo-
nent is smaller than without these collisions, resulting in a smaller Doppler
shift. When the Doppler width is larger than the pressure-broadened width,
this effect causes a narrowing of the Doppler-broadened lines, if the mean-
free path is smaller than the wavelength of the molecular transition [3.36].
Figure 3.18 illustrates this Dicke narrowing for a rotational transition of
the H2O molecule at λ = 5.34 μm. The linewidth decreases with increasing
pressure up to pressures of about 100−150 torr, depending on the collision
partner, which determines the mean-free path Λ. For higher pressures, the
pressure broadening overcompensates the Dicke narrowing, and the linewidth
increases again.

There is a second effect that causes a collisional narrowing of spectral
lines. In the case of very long lifetimes of levels connected by an EM transi-
tion, the linewidth is not determined by the lifetimes but by the diffusion time
of the atoms out of the laser beam (Sect. 3.4). Inserting a noble gas into the
sample cell decreases the diffusion rate and therefore increases the interaction
time of the sample atoms with the laser field, which results in a decrease of
the linewidth with pressure [3.37] until the pressure broadening overcompen-
sates the narrowing effect.

Fig. 3.18. Dicke narrowing and pressure broadening of a rotational transition in H2O at
1871 cm−1 (λ = 5.3 μm) as a function of Ar and Xe pressure [3.36]
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3.4 Transit-Time Broadening

In many experiments in laser spectroscopy, the interaction time of molecules
with the radiation field is small compared with the spontaneous lifetimes of
excited levels. Particularly for transitions between rotational–vibrational levels
of molecules with spontaneous lifetimes in the millisecond range, the transit
time T = d/|v| of molecules with a mean thermal velocity v passing through
a laser beam of diameter d may be smaller than the spontaneous lifetime by
several orders of magnitude.

Example 3.5.

(a) Molecules in a molecular beam with thermal velocities |v| = 5 ×104

cm/s passing through a laser beam of 0.1-cm diameter have the mean
transit time T = 2 μs.

(b) For a beam of fast ions with velocities v = 3×108 cm/s, the time re-
quired to traverse a laser beam with d = 0.1 cm is already below 10−9 s,
which is shorter than the spontaneous lifetimes of most atomic levels.

In such cases, the linewidth of a Doppler-free molecular transition is no
longer limited by the spontaneous transition probabilities (Sect. 3.1), but by
the time of flight through the laser beam, which determines the interaction
time of the molecule with the radiation field. This can be seen as follows:
consider an undamped oscillator x = x0 cos ω0t that oscillates with constant
amplitude during the time interval T and then suddenly stops oscillating. Its
frequency spectrum is obtained from the Fourier transform

A(ω) = 1√
2π

T∫

0

x0 cos(ω0t)e−iωt dt . (3.60)

The spectral intensity profile I(ω) = A∗ A is, for (ω−ω0) � ω0,

I(ω) = C
sin2[(ω−ω0)T/2]

(ω−ω0)2 , (3.61)

according to the discussion in Sect. 3.1. This is a function with a full
halfwidth δωT = 5.6/T of its central maximum (Fig. 3.19a) and a full width
δωb = 4π/T � 12.6/T between the zero points on both sides of the central
maximum.

This example can be applied to an atom that traverses a laser beam with
a rectangular intensity profile (Fig. 3.19a). The oscillator amplitude x(t) is
proportional to the field amplitude E = E0(r) cos ωt. If the interaction time
T = d/v is small compared to the damping time T = 1/γ , the oscillation am-
plitude can be regarded as constant during the time T . The full halfwidth of
the absorption line is then δω = 5.6v/d → δν � v/d.
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Fig. 3.19a,b. Transition probability P (ω) of an atom traversing a laser beam (a) with
a rectangular intensity profile I(x); and (b) with a Gaussian intensity profile for the case
γ < 1/T = v/d. The intensity profile I(ω) of an absorption line is proportional to P (ω)

In reality, the field distribution across a laser beam that oscillates in the
fundamental mode is given by (Sect. 5.3)

E = E0 e−r2/w2
cos ωt ,

in which 2w gives the diameter of the Gaussian beam profile across the points
where E = E0/e. Substituting the forced oscillator amplitude x = αE into
(3.60), one obtains instead of (3.61) a Gaussian line profile (Fig. 3.19b)

I(ω) = I0 exp

(
−(ω−ω0)

2 w2

2v2

)
, (3.62)

with a transit-time limited halfwidth (FWHM)

δωtt = 2(v/w)
√

2 ln(2) � 2.4v/w → δν � 0.4v/w . (3.63)

The quantity w = (λR/2π)1/2 (see Sect. 5.2.3) is called the beam waist of the
Gaussian beam profile.

There are two possible ways of reducing the transit-time broadening: one
may either enlarge the laser beam diameter 2w, or one may decrease the
molecular velocity v. Both methods have been verified experimentally and
will be discussed in Vol. 2, Sects. 2.3 and 9.2. The most efficient way is to
directly reduce the atomic velocity by optical cooling (Vol. 2, Chap. 9).
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Example 3.6.

(a) A beam of NO2 molecules with v = 600 m/s passes through a fo-
cused laser beam with w = 0.1 mm. Their transit time broadening
δν � 1.2 MHz is large compared to their natural linewidth δνn � 10 kHz
of optical transitions.

(b) For frequency standards the rotational–vibrational transition of CH4 at
λ = 3.39 μm is used (Vol. 2, Sect. 2.3). In order to reduce the transit-
time broadening for CH4 molecules with v = 7×104 cm/s below their
natural linewidth of δν = 10 kHz, the laser-beam diameter must be en-
larged to 2w ≥ 6 cm.

So far, we have assumed that the wave fronts of the laser radiation field
are planes and that the molecules move parallel to these planes. However, the
phase surfaces of a focused Gaussian beam are curved except at the focus.
As Fig. 3.20 illustrates, an atom moving along the r-direction perpendicular
to the laser beam z-axis experiences a maximum phase shift Δφ = x2π/λ,
between the points r = 0 and r = r1. With r2 = R2 − (R − x)2 we obtain the
approximation x � r2/2R for x � R. This gives for the phase shifts

Δφ = kr2/2R = ωr2/(2cR) , (3.64)

where k = ω/c is the magnitude of the wave vector, and R is the radius of
curvature of the wave front. This phase shift depends on the location of an
atom and is therefore different for the different atoms, and causes additional
line broadening (Sect. 3.3.1). The calculation [3.38] yields for the transit-time
broadened halfwidth, including the wave-front curvature,

δω = 2v

w

√
2 ln 2

[
1+
(

πw2

Rλ

)2]1/2

= δωtt

[
1+
(

πw2

Rλ

)2]1/2

≈ δωtt(1+Δφ2)1/2 . (3.65)

Fig. 3.20. Line broadening caused by the curvature of
wave fronts
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In order to minimize this additional broadening, the radius of curvature has to
be made as large as possible. If Δφ � π for a distance r = w, the broadening
by the wave-front curvature is small compared to the transit-time broadening.
This imposes the condition R � w2/λ on the radius of curvature.

Example 3.7.
For a wave with λ = 1 μm → ω = 2×1015 Hz. With w = 1 cm, this gives,
according to (3.64), a maximum phase shift Δφ = 2 ×1015 / (6 ×1010 R
[cm]). In order to keep Δφ � 2π, the radius of curvature should be
R � 5×103 cm. For R = 5×103 cm → Δφ = 2π and the phase-front cur-
vature causes an additional broadening by a factor of about 6.5.

3.5 Homogeneous and Inhomogeneous Line Broadening

If the probability Pik(ω) of absorption or emission of radiation with fre-
quency ω causing a transition Ei → Ek is equal for all the molecules of
a sample that are in the same level Ei , we call the spectral line profile of this
transition homogeneously broadened. Natural line broadening is an example
that yields a homogeneous line profile. In this case, the probability for emis-
sion of light with frequency ω on a transition Ei → Ek with the normalized
Lorentzian profile L(ω−ω0) and central frequency ω0 is given by

Pik(ω) = Aik L(ω−ω0) .

It is equal for all atoms in level Ei .
The standard example of inhomogeneous line broadening is Doppler

broadening. In this case, the probability of absorption or emission of
monochromatic radiation E(ω) is not equal for all molecules, but depends on
their velocity v (Sect. 3.2). We divide the molecules in level Ei into subgroups
such that all molecules with a velocity component within the interval vz to
vz +Δvz belong to one subgroup. If we choose Δvz to be δωn/k where δωn is
the natural linewidth, we may consider the frequency interval δωn to be homo-
geneously broadened inside the much larger inhomogeneous Doppler width.
That is to say, all molecules in the subgroup can absorb or emit radiation with
wave vector k and frequency ω = ω0 +vz|k| (Fig. 3.8), because in the coor-
dinate system of the moving molecules, this frequency is within the natural
width δωn around ω0 (Sect. 3.2).

In Sect. 3.3 we saw that the spectral line profile is altered by two kinds of
collisions: Inelastic and elastic collisions. Inelastic collisions cause additional
damping, resulting in pure broadening of the Lorentzian line profile. This
broadening by inelastic collisions brings about a homogeneous Lorentzian line
profile. The elastic collisions could be described as phase-perturbing colli-
sions. The Fourier transform of the oscillation trains with random phase jumps
again yields a Lorentzian line profile, as derived in Sect. 3.3. Summarizing,
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Fig. 3.21. Effect of velocity-changing collisions on the frequency shift of homogeneous
subgroups within a Doppler-broadened line profile

we can state that elastic and inelastic collisions that only perturb the phase or
amplitude of an oscillating atom without changing its velocity cause homoge-
neous line broadening.

So far, we have neglected the fact that collisions also change the veloc-
ity of both collision partners. If the velocity component vz of a molecule
is altered by an amount uz during the collision, the molecule is transferred
from one subgroup (vz ±Δvz) within the Doppler profile to another subgroup
(vz +uz ±Δvz). This causes a shift of its absorption or emission frequency
from ω to ω+kuz (Fig. 3.21). This shift should not be confused with the line
shift caused by phase-perturbing elastic collisions that also occurs when the
velocity of the oscillator does not noticeably change.

At thermal equilibrium, the changes uz of vz by velocity-changing col-
lisions are randomly distributed. Therefore, the whole Doppler profile will,
in general, not be affected and the effect of these collisions is canceled out
in Doppler-limited spectroscopy. In Doppler-free laser spectroscopy, however,
the velocity-changing collisions may play a non-negligible role. They cause
effects that depend on the ratio of the mean time T = Λ/v between collisions
to the interaction time τc with the radiation field. For T > τc, the redistribu-
tion of molecules by velocity-changing collisions causes only a small change
of the population densities ni(vz)dvz within the different subgroups, without
noticeably changing the homogeneous width of this subgroup. If T � τc, the
different subgroups are uniformly mixed. This results in a broadening of the
homogeneous linewidth associated with each subgroup. The effective inter-
action time of the molecules with a monochromatic laser field is shortened
because the velocity-changing collisions move a molecule out of resonance
with the field. The resultant change of the line shape can be monitored using
saturation spectroscopy (Vol. 2, Sect. 2.3).

Under certain conditions, if the mean free path Λ of the molecules is
smaller than the wavelength of the radiation field, velocity-changing collisions
may also result in a narrowing of a Doppler-broadening line profile (Dicke
narrowing, Sect. 3.3.3).
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3.6 Saturation and Power Broadening

At sufficiently large laser intensities, the optical pumping rate on an absorbing
transition becomes larger than the relaxation rates. This results in a notice-
able decrease of the population in the absorbing levels. This saturation of the
population densities also causes additional line broadening. The spectral line
profiles of such partially saturated transitions are different for homogeneously
and for inhomogeneously broadened lines [3.39]. Here we treat the homoge-
neous case, while the saturation of inhomogeneous line profiles is discussed
in Vol. 2, Chap. 2.

3.6.1 Saturation of Level Population by Optical Pumping

The effect of optical pumping on the saturation of population densities is il-
lustrated by a two-level system with population densities N1 and N2. The two
levels are coupled to each other by absorption or emission and by relaxation
processes, but have no transitions to other levels (Fig. 3.22). Such a “true”
two-level system is realized by many atomic resonance transitions without hy-
perfine structure.

With the probability P12 = B12ρ(ω) for a transition |1〉 → |2〉 by absorp-
tion of photons �ω and the relaxation probability Ri for level |i〉, the rate
equation for the level population is

dN1

dt
= − dN2

dt
= −P12 N1 − R1 N1 +P12 N2 + R2 N2 , (3.66)

where we have assumed nondegenerate levels with statistical weight fac-
tors g1 = g2 = 1. Under stationary conditions (dNi/dt = 0) we obtain with
N1 + N2 = N from (3.66) with the abbreviation P12 = P

(P + R1)N1 = (P + R2)(N − N1) ⇒ N1 = N
P + R2

2P + R1 + R2
(3.67a)

(P + R2)N2 = (P + R1)(N − N2) ⇒ N2 = N
P + R1

2P + R1 + R2
. (3.67b)

When the pump rate P becomes much larger than the relaxation rates Ri , the
population N1 approaches N/2, i.e., N1 = N2. This means that the absorp-
tion coefficient α = σ(N1 − N2) goes to zero (Fig. 3.23). The medium becomes
completely transparent.

Fig. 3.22. Two-level system with no relaxation into other
levels
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Fig. 3.23. Saturation of population
density N1 and absorption coeffi-
cient α = σ(N1 − N2) as functions
of the saturation parameter S (see
text)

Without a radiation field (P = 0), the population densities at thermal equi-
librium according to (3.67) are

N10 = R2

R1 + R2
N ; N20 = R1

R1 + R2
N . (3.67c)

With the abbreviations

ΔN = N1 − N2 and ΔN0 = N10 − N20

we obtain from (3.67) and (3.67c)

ΔN = N
R2 − R1

2P + R1 + R2

ΔN0 = N
R2 − R1

R2 + R1

which gives:

ΔN = ΔN0

1+2P/(R1 + R2)
= ΔN0

1+ S
. (3.67d)

The saturation parameter

S = 2P/(R1 + R2) = P/R = B12ρ(ω)/R (3.67e)

represents the ratio of pumping rate P to the average relaxation rate R =
(R1 + R2)/2. If the spontaneous emission of the upper level |2〉 is the only
relaxation mechanism, we have R1 = 0 and R2 = A21. Since the pump rate
due to a monochromatic wave with intensity I(ω) is P = σ12(ω)I(ω)/�ω, we
obtain for the saturation parameter

S = 2σ12 I(ω)

�ωA12
. (3.67f)

The saturated absorption coefficient α(ω) = σ12ΔN is, according to (3.67d),

α = α0

1+ S
, (3.68)

where α0 is the unsaturated absorption coefficient without pumping.
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3.6.2 Saturation Broadening of Homogeneous Line Profiles

According to (2.15) and (3.67d), the power absorbed per unit volume on the
transition |1〉 → |2〉 by atoms with the population densities N1, N2 in a radi-
ation field with a broad spectral profile and spectral energy density ρ is

dW12

dt
= �ωB12ρ(ω)ΔN = �ωB12ρ(ω)

ΔN0

1+ S
. (3.69)

With S = B12ρ(ω)/R, see (3.67e), this can be written as

dW12

dt
= �ωR

ΔN0

1+ S−1 . (3.70)

Since the absorption profile α(ω) of a homogeneously broadened line is
Lorentzian, see (3.36b), the induced absorption probability of a monochro-
matic wave with frequency ω follows a Lorentzian line profile B12ρ(ω)
· L(ω−ω0). We can therefore introduce a frequency-dependent spectral sat-
uration parameter Sω for the transition E1 → E2,

Sω = B12ρ(ω)

R
L(ω−ω0) . (3.71)

We can assume that the mean relaxation rate R is independent of ω within
the frequency range of the line profile. With the definition (3.36b) of the
Lorentzian profile L(ω−ω0), we obtain for the spectral saturation parame-
ter Sω

Sω = S0
(γ/2)2

(ω−ω0)2 + (γ/2)2 with S0 = Sω(ω0) . (3.72)

Substituting (3.72) into (3.70) yields the frequency dependence of the ab-
sorbed radiation power per unit frequency interval dω = 1 s−1

d

dt
W12(ω) = �ωRΔN0S0(γ/2)2

(ω−ω0)2 + (γ/2)2(1+ S0)
= C

(ω−ω0)2 + (γs/2)2 . (3.73)

This a Lorentzian profile with the increased halfwidth

γs = γ
√

1+ S0 . (3.74)

The halfwidth γs = δωs of the saturation-broadened line increases with the sat-
uration parameter S0 at the line center ω0. If the induced transition rate at ω0
equals the total relaxation rate R, the saturation parameter S0 = [B12ρ(ω0)]/R
becomes S0 = 1, which increases the linewidth by a factor

√
2, compared to

the unsaturated linewidth δω0 for weak radiation fields (ρ → 0).
Since the power dW12/dt absorbed per unit volume equals the intensity

decrease per centimeter, dI = −αs I , of an incident wave with intensity I , we
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Fig. 3.24. Saturation broadening
of a homogeneous line profile

can derive the absorption coefficient α from (3.73). With I = cρ and Sω from
(3.72) we obtain

αs(ω) = α0(ω0)
(γ/2)2

(ω−ω0)2 + (γs/2)2 = α0(ω)

1+ Sω

, (3.75)

where the unsaturated absorption profile is

α0(ω) = α0(ω0)(γ/2)2

(ω−ω0)2 + (γ/2)2 (3.76)

with α0(ω0) = 2�ωB12ΔN0/πcγ .
This shows that the saturation decreases the absorption coefficient α(ω) by

the factor (1+ Sω). At the line center, this factor has its maximum value (1+
S0), while it decreases for increasing (ω−ω0) to 1, see (3.72). The saturation
is therefore strongest at the line center, and approaches zero for (ω−ω0) →
∞ (Fig. 3.24). This is the reason why the line broadens. For a more detailed
discussion of saturation broadening, see Vol. 2, Chap. 2 and [3.38–3.40].

3.6.3 Power Broadening

The broadening of homogeneous line profiles by intense laser fields can also
be regarded from another viewpoint compared to Sect. 3.6.2. When a two-
level system is exposed to a radiation field E = E0 cos ωt, the population
probability of the upper level |b〉 is, according to (2.67) and (2.89),

|b(ω, t)| 2 = D2
ab E2

0

�2(ωab −ω)2 + D2
ab E2

0

× sin2
[

1

2

√
(ωab −ω)2 + (Dab E0/�)2 · t

]
, (3.77)

an oscillatory function of time, which oscillates at exact resonance ω = ωab
with the Rabi flopping frequency ΩR = Ωab = Dab E0/�.
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If the upper level |b〉 can decay by spontaneous processes with a relaxation
constant γ , its mean population probability is

Pb(ω) = |b(ω, t)|2 =
∞∫

0

γ e−γt |b(ω1, t)| 2 dt . (3.78)

Inserting (3.77) and integrating yields

Pb(ω) = 1

2

D2
ab E2

0/�
2

(ωab −ω)2 +γ 2(1+ S)
, (3.79)

with S = D2
ab E2

0/(�
2γ 2). Since Pb(ω) is proportional to the absorption line

profile, we obtain as in (3.73) a power-broadened Lorentzian line profile with
the linewidth

γS = γ
√

1+ S .

Since the induced absorption rate within the spectral interval γ is, according
to (2.41) and (2.77)

B12ργ = B12 Iγ/c � D2
12 E2

0/�
2 , (3.80)

the quantity S in (3.79) turns out to be identical with the saturation parame-
ter S in (3.67e).

If both levels |a〉 and |b〉 decay with the relaxation constants γa and γb,
respectively, the line profile of the homogeneously broadened transition |a〉 →
|b〉 is again described by (3.79), where now (Vol. 2, Sect. 2.1 and [3.40])

γ = 1
2 (γa +γb) and S = D2

ab E2
0/(�

2γaγb) . (3.81)

Fig. 3.25. Absorption profile of a homogeneous transition pumped by a strong pump wave
kept at ω0 and probed by a weak tunable probe wave for different values of the ratio
Ω/γS of the Rabi frequency Ω to the linewidth γS



3.7 Spectral Line Profiles in Liquids and Solids 95

If a strong pump wave is tuned to the center ω0 = ωab of the transition
and the absorption profile is probed by a tunable weak probe wave, the ab-
sorption profile looks different: due to the population modulation with the
Rabi flopping frequency Ω, sidebands are generated at ω0 ±Ω that have the
homogeneous linewidth γS. The superposition of these sidebands (Fig. 3.25)
gives a line profile that depends on the ratio Ω/γS of the Rabi flopping fre-
quency Ω and the saturated linewidth γS. For a sufficiently strong pump wave
(Ω > γS), the separation of the sidebands becomes larger than their width and
a dip appears at the center ω0.

3.7 Spectral Line Profiles in Liquids and Solids

Many different types of lasers use liquids or solids as amplifying media. Since
the spectral characteristics of such lasers play a significant role in applica-
tions of laser spectroscopy, we briefly outline the spectral linewidths of optical
transitions in liquids and solids. Because of the large densities compared with
the gaseous state, the mean relative distances R(A, B j) between an atom or
molecule A and its surrounding partners B j are very small (typically a few
tenths of a nanometer), and the interaction between A and the adjacent part-
ners B j is accordingly large.

In general, the atoms or molecules used for laser action are diluted to
small concentrations in liquids or solids. Examples are the dye laser, where
dye molecules are dissolved in organic solutions at concentrations of 10−4

to 10−3 moles/liter, or the ruby laser, where the relative concentration of the
active Cr3+ ions in Al3O3 is on the order of 10−3. The optically pumped
laser molecules A∗ interact with their surrounding host molecules B. The re-
sulting broadening of the excited levels of A∗ depends on the total electric
field produced at the location of A by all adjacent molecules B j , and on the
dipole moment or the polarizability of A∗. The linewidth Δωik of a tran-
sition A∗(Ei) → A∗(Ek) is determined by the difference in the level shifts
(ΔEi −ΔEk).

In liquids, the distances R j(A∗, B j) show random fluctuations analogous
to the situation in a high-pressure gas. The linewidth Δωik is therefore deter-
mined by the probability distribution P(R j) of the mutal distances R j(A∗, B j)
and the correlation between the phase perturbations at A∗ caused by elastic
collisions during the lifetime of the levels Ei , Ek (see the analogous discus-
sion in Sect. 3.3).

Inelastic collisions of A∗ with molecules B of the liquid host may cause
radiationless transitions from the level Ei populated by optical pumping to
lower levels En . These radiationless transitions shorten the lifetime of Ei and
cause collisional line broadening. In liquids the mean time between successive
inelastic collisions is of the order of 10−11 to 10−13 s. Therefore the spectral
line Ei → Ek is greatly broadened with a homogeneously broadened profile.
When the line broadening becomes larger than the separation of the differ-
ent spectral lines, a broad continuum arises. In the case of molecular spectra
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with their many closely spaced rotational–vibrational lines within an elec-
tronic transition, such a continuum inevitably appears since the broadening at
liquid densities is always much larger than the line separation.

Examples of such continuous absorption and emission line profiles are
the optical dye spectra in organic solvents, such as the spectrum of Rho-
damine 6G shown in Fig. 3.26, together with a schematic level diagram [3.41].
The optically pumped level Ei is collisionally deactivated by radiationless
transitions to the lowest vibrational level Em of the excited electronic state.
The fluorescence starts therefore from Em instead of Ei and ends on vari-
ous vibrational levels of the electronic ground state (Fig. 3.26a). The emission
spectrum is therefore shifted to larger wavelengths compared with the absorp-
tion spectrum (Fig. 3.26b).

In crystalline solids the electric field E(R) at the location R of the excited
molecule A∗ has a symmetry depending on that of the host lattice. Because
the lattice atoms perform vibrations with amplitudes depending on the tem-
peratur T , the electric field will vary in time and the time average 〈E(T, t, R)〉
will depend on temperature and crystal structure [3.42–3.44]. Since the os-
cillation period is short compared with the mean lifetime of A∗(Ei), these
vibrations cause homogeneous line broadening for the emission or absorption
of the atom A. If all atoms are placed at completely equivalent lattice points
of an ideal lattice, the total emission or absorption of all atoms on a transition
Ei → Ek would be homogeneously broadened.

However, in reality it often happens that the different atoms A are placed at
nonequivalent lattice points with nonequal electric fields. This is particularly
true in amorphous solids or in supercooled liquids such as glass, which have
no regular lattice structure. For such cases, the line centers ω0 j of the homo-
geneously broadened lines for the different atoms A j are placed at different
frequencies. The total emission or absorption forms an inhomogeneously
broadened line profile, which is composed of homogeneous subgroups. This

Fig. 3.26. (a) Schematic level diagram illustrating radiative and radiationless transitions.
(b) Absorption and emission cross section of rhodamine 6G dissolved in ethanol
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is completely analogous to the gaseous case of Doppler broadening, although
the resultant linewidth in solids may be larger by several orders of magni-
tude. An example of such inhomogeneous line broadening is the emission
of excited neodymium ions in glass, which is used in the Nd-glass laser.
At sufficiently low temperatures, the vibrational amplitudes decrease and the
linewidth becomes narrower. For T < 4 K it is possible to obtain, even in
solids under favorable conditions, linewidths below 10 MHz for optical tran-
sitions [3.45, 3.46].

Problems

3.1 Determine the natural linewidth, the Doppler width, pressure broad-
ening and shifts for the neon transition 3s2 → 2p4 at λ = 632.8 nm in
a HeNe discharge at pHe = 2 mbar, pNe = 0.2 mbar at a gas temperature of
400 K. The relevant data are: τ(3s2) = 58 ns, τ(2p4) = 18 ns, σB(Ne−He) =̂
6 ×10−14 cm2, σS(Ne − He) � 1 ×10−14 cm2, σB(Ne − Ne) = 1 ×10−13 cm2,
σS(Ne−Ne) = 1×10−14 cm2.

3.2 What is the dominant broadening mechanism for absorption lines in the
following examples:

(a) The output from a CO2 laser with 50 W at λ = 10 μm is focussed into
a sample of SF6 molecules at the pressure p. The laser beam waist w
in the focal plane is 0.25 mm. Use the numerical parameters T = 300 K,
p = 1 mbar, the broadening cross section σb = 5×10−14 cm2 and the ab-
sorption cross section σa = 10−14 cm2.

(b) Radiation from a star passes through an absorbing interstellar cloud of
H-atoms, which absorb on the hfs-transition at λ = 21 cm and on the
Lyman-α transition 1S → 2P at λ = 121.6 nm. The Einstein coefficient for
the λ = 21 cm line is Aik = 4×10−15 s−1, that for the Lyman-α transition is
Aik = 1×109 s−1. The atomic density of H atoms is n = 10 cm−3 and the
temperature T = 10 K. At which path lengths has the radiation decreased
to 10% of I0 for the two transitions?

(c) The expanded beam from a HeNe laser at λ = 3.39 μm with 10 mW power
is sent through a methane cell (T = 300 K, p = 0.1 mbar, beam diameter:
1 cm). The absorbing CH4 transition is from the vibrational ground state
(τ � ∞) to an excited vibrational level with τ � 20 μs. Give the ratios of
Doppler width to transit-time width to natural width to pressure-broadened
linewidth for a collision cross section σb = 10−16 cm2.

(d) Calculate the minimum beam diameter that is necessary to bring about
the transit-time broadening in Exercise 3.2c below the natural linewidth.
Is saturation broadening important, if the absorption cross section is
σ = 10−10 cm2?
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3.3 The sodium D-line at λ = 589 nm has a natural linewidth of 10 MHz.

(a) How far away from the line center do the wings of the Lorentzian line pro-
file exceed the Doppler profile at T = 500 K if both profiles are normalized
to I(ω0) = I0?

(b) Calculate the intensity I(ω−ω0) of the Lorentzian which equals that of
the Gaussian profile at this frequency ωc relative to the line center ω0.

(c) Compare the intensities of both profiles normalized to 1 at ω = ω0 at a dis-
tance 0.1(ω0 −ωc) from the line center.

(d) At what laser intensity is the power broadening equal to half of the
Doppler width at T = 500 K, when the laser frequency is tuned to the line
center ω0 and pressure broadening can be neglected?

3.4 Estimate the collision broadened width of the Li D line at λ = 670.8 nm
due to

(a) Li–Ar collisions at p(Ar) = 1 bar (Fig. 3.13);
(b) Li–Li collisions at p(Li) = 1 mbar. This resonance broadening is due

to the interaction potential V(r) ∼ 1/r3 and can be calculated as γres =
N e2 fik/(4πε0mωik), where the oscillator strength fik is 0.65. Compare
with numbers in Table 3.1.

3.5 An excited atom with spontaneous lifetime τ suffers quenching collisions.
Show that the line profile stays Lorentzian and doubles its linewidth if the
mean time between two collisions is tc = τ . Calculate the pressure of N2
molecules at T = 400 K for which tc = τ for collisions Na∗ +N2 with the
quenching cross section σa = 4×10−15 cm2.

3.6 A cw laser with 100 MHz output power excites K atoms at low potas-
sium pressures in a cell with 10 mbar neon as a buffer gas at a temperature
T = 350 K. Estimate the different contributions to the total linewidth. At
which laser intensities does the power broadening at low pressures exceeds the
pressure broadening at 10 mbar (the lifetime of the upper level is τsp = 25 ns)
and how strong has the laser beam to be focused that power broadening at
10 mbar exceeds the Doppler width?



4. Spectroscopic Instrumentation

This chapter is devoted to a discussion of instruments and techniques that
are of fundamental importance for the measurements of wavelengths and line
profiles, or for the sensitive detection of radiation. The optimum selection
of proper equipment or the application of a new technique is often decisive
for the success of an experimental investigation. Since the development of
spectroscopic instrumentation has shown great progress in recent years, it is
most important for any spectroscopist to be informed about the state-of-the-
art regarding sensitivity, spectral resolving power, and signal-to-noise ratios
attainable with modern equipment.

At first we discuss the basic properties of spectrographs and monochro-
mators. Although for many experiments in laser spectroscopy these instru-
ments can be replaced by monochromatic tunable lasers (Chap. 5 and Vol. 2,
Chap. 1), they are still indispensible for the solution of quite a number of
problems in spectroscopy.

Probably the most important instruments in laser spectroscopy are interfer-
ometers, which are applicable in various modifications to numerous problems.
We therefore treat these devices in somewhat more detail. Recently, new
techniques of measuring laser wavelengths with high accuracy have been de-
veloped; they are mainly based on interferometric devices. Because of their
relevance in laser spectroscopy they will be discussed in a separate section.

Great progress has also been achieved in the field of low-level signal de-
tection. Apart from new photomultipliers with an extended spectral sensivity
range and large quantum efficiencies, new detection instruments have been de-
veloped such as image intensifiers, infrared detectors, charge-coupled devices
(CCDs) or optical multichannel analyzers, which could move from classified
military research into the open market. For many spectroscopic applications
they prove to be extremely useful.

4.1 Spectrographs and Monochromators

Spectrographs, the first instruments for measuring wavelengths, still hold
their position in spectroscopic laboratories, particularly when equipped with
modern accessories such as computerized microdensitometers or optical
multichannel analyzers. Spectrographs are optical instruments that form im-
ages S2(λ) of the entrance slit S1; the images are laterally separated for
different wavelengths λ of the incident radiation (Fig. 2.12). This lateral dis-
persion is due to either spectral dispersion in prisms or diffraction on plane
or concave reflection gratings.
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Fig. 4.1. Prism spectrograph

Figure 4.1 depicts the schematic arrangement of optical components in
a prism spectrograph. The light source L illuminates the entrance slit S1,
which is placed in the focal plane of the collimator lens L1. Behind L1 the
parallel light beam passes through the prism P, where it is diffracted by an
angle θ(λ) depending on the wavelength λ. The camera lens L2 forms an
image S2(λ) of the entrance slit S1. The position x(λ) of this image in the
focal plane of L2 is a function of the wavelength λ. The linear dispersion
dx/dλ of the spectrograph depends on the spectral dispersion dn/dλ of the
prism material and on the focal length of L2.

When a reflecting diffraction grating is used to separate the spectral lines
S2(λ), the two lenses L1 and L2 are commonly replaced by two spherical mir-
rors M1 and M2, which image the entrance slit either onto the exit slit S2, or
via the mirror M onto a CCD array in the plane of observation (Fig. 4.2). Both
systems can use either photographic or photoelectric recording. According to
the kind of detection, we distinguish between spectrographs and monochro-
mators.

In spectrographs a charge-coupled device (CCD) diode array is placed in
the focal plane of L2 or M2. The whole spectral range Δλ = λ1(x1)−λ2(x2)
covered by the lateral extension Δx = x1 − x2 of the diode array can be si-
multaneously recorded. The cooled CCD array can accumulate the incident
radiant power over long periods (up to 20 h). CCD detection can be employed

Fig. 4.2.
Grating monochromator
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for both pulsed and cw light sources. The spectral range is limited by the
spectral sensitivity of available CCD materials and covers the region between
about 200−1000 nm.

Monochromators, on the other hand, use photoelectric recording of a se-
lected small spectral interval. An exit slit S2, selecting an interval Δx2 in
the focal plane B, lets only the limited range Δλ through to the photoelec-
tric detector. Different spectral ranges can be detected by shifting S2 in the
x-direction. A more convenient solution (which is also easier to construct)
turns the prism or grating by a gear-box drive, which allows the different spec-
tral regions to be tuned across the fixed exit slit S2. Modern devices uses
a direct drive of the grating axis by step motors and measure the turning angle
by electronic angle decoders. This avoids backlash of the driving gear. Unlike
the spectrograph, different spectral regions are not detected simultaneously
but successively. The signal received by the detector is proportional to the
product of the area hΔx2 of the exit slit with height h with the spectral inten-
sity

∫
I(λ)dλ, where the integration extends over the spectral range dispersed

within the width Δx2 of S2.
Whereas the spectrograph allows the simultaneous measurement of a large

region with moderate time resolution, photoelectric detection allows high time
resolution but permits, for a given spectral resolution, only a small wavelength
interval Δλ to be measured at a time. With integration times below some min-
utes, photoelectric recording shows a higher sensitivity, while for very long
detection times of several hours, photoplates may still be more convenient,
although cooled CCD arrays currently allow integration times up to several
hours.

In spectroscopic literature the name spectrometer is often used for both
types of instruments. We now discuss the basic properties of spectrometers,
relevant for laser spectroscopy. For a more detailed treatment see for in-
stance [4.1–4.10].

4.1.1 Basic Properties

The selection of the optimum type of spectrometer for a particular experiment
is guided by some basic characteristics of spectrometers and their relevance
to the particular application. The basic properties that are important for all
dispersive optical instruments may be listed as follows:

a) Speed of a Spectrometer

When the spectral intensity I∗
λ within the solid angle dΩ = 1 sr is incident

on the entrance slit of area A, a spectrometer with an acceptance angle Ω
transmits the radiant flux within the spectral interval dλ

φλ dλ = I∗
λ(A/As)T(λ)Ω dλ , (4.1)

where As ≥ A is the area of the source image at the entrance slit (Fig. 4.3),
and T(λ) the transmission of the spectrometer.
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Fig. 4.3. Light-gathering power of a spectrometer

The product U = AΩ is often named étendue. For the prism spectrograph
the maximum solid angle of acceptance, Ω = F/ f 2

1 , is limited by the effective
area F = h D of the parallel light beam transmitted through the prism, which
represents the limiting aperture with height h and width D for the light beam
(Fig. 4.1). For the grating spectrometer the sizes of the grating and mirrors
limit the acceptance solid angle Ω.

Example 4.1.
For a prism with height h = 6 cm, D = 6 cm, f1 = 30 cm → D/ f = 1 : 5
and Ω = 0.04 sr. With an entrance slit of 5×0.1 mm2, the étendue is U =
5×10−3 ×4×10−2 = 2×10−4 cm2 sr.

In order to utilize the optimum speed, it is advantageous to image the light
source onto the entrance slit in such a way that the acceptance angle Ω is
fully used (Fig. 4.4). Although more radiant power from an extended source
can pass the entrance slit by using a converging lens to reduce the source
image on the entrance slit, the divergence is increased. The radiation outside
the acceptance angle Ω cannot be detected, but may increase the background
by scattering from lens holders and spectrometer walls.

Often the wavelength of lasers is measured with a spectrometer. In this
case, it is not recommended to direct the laser beam directly onto the en-

Fig. 4.4. Optimized imaging of a light source onto the entrance slit of a spectrometer is
achieved when the solid angle Ω′ of the incoming light matches the acceptance angle
Ω = (a/d)2 of the spectrometer
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Fig. 4.5. (a) Imaging of an extended light source onto the entrance slit of a spectrometer
with Ω∗ = Ω. (b) Correct imaging optics for laser wavelength measurements with a spec-
trometer. The laser light, scattered by the ground glass, forms the source that is imaged
onto the entrance slit

trance slit, because the prism or grating would be not uniformely illuminated.
This decreases the spectral resolution. Furthermore, the symmetry of the op-
tical path with respect to the spectrometer axis is not guaranteed with such
an arrangement, resulting in systematic errors of wavelengths measurements
if the laser beam does not exactly coincide with the spectrometer axis. It is
better to illuminate a ground-glass plate with the laser and to use the incoher-
ently scattered laser light as a secondary source, which is imaged in the usual
way (Fig. 4.5).

b) Spectral Transmission

For prism spectrometers, the spectral transmission depends on the material of
the prism and the lenses. Using fused quartz, the accessible spectral range
spans from about 180 to 3000 nm. Below 180 nm (vacuum-ultraviolet region),
the whole spectrograph must be evacuated, and lithium fluoride or calcium
fluoride must be used for the prism and the lenses, although most VUV spec-
trometers are equipped with reflection gratings and mirrors.

In the infrared region, several materials (for example, CaF2, NaCl, and
KBr crystals) are transparent up to 30 μm, while CsI and diamond are trans-
parent up to as high as 80 μm. (Fig. 4.6). However, because of the high
reflectivity of metallic coated mirrors and gratings in the infrared region, grat-
ing spectrometers with mirrors are preferred over prism spectrographs.

Many vibrational–rotational transitions of molecules such as H2O or CO2
fall within the range 3−10 μm, causing selective absorption of the transmit-
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Fig. 4.6. (a) Useful spectral ranges of different optical materials; and (b) transmittance of
different materials with 1-cm thicknesses [4.5b]

ted radiation. Infrared spectrometers therefore have to be either evacuated or
filled with dry nitrogen. Because dispersion and absorption are closely related,
prism materials with low absorption losses also show low dispersion, resulting
in a limited resolving power (see below).

Since the ruling or holographic production of high-quality gratings has
reached a high technological standard, most spectrometers used today are
equipped with diffraction gratings rather than prisms. The spectral trans-
mission of grating spectrometers reaches from the VUV region into the far
infrared. The design and the coatings of the optical components as well as the
geometry of the optical arrangement are optimized according to the specified
wavelength region.

c) Spectral Resolving Power

The spectral resolving power of any dispersing instrument is defined by the
expression

R = |λ/Δλ| = |ν/Δν| , (4.2)

where Δλ = λ1 −λ2 stands for the minimum separation of the central wave-
lengths λ1 and λ2 of two closely spaced lines that are considered to be just
resolved. It is possible to recognize that an intensity distribution is composed
of two lines with the intensity profiles I1(λ−λ1) and I2(λ−λ2) if the total
intensity I(λ) = I1(λ−λ1)+ I2(λ−λ2) shows a pronounced dip between two
maxima (Fig. 4.7). The intensity distribution I(λ) depends, of course, on the
ratio I1/I2 and on the profiles of both components. Therefore, the minimum
resolvable interval Δλ will differ for different profiles.
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Fig. 4.7. Rayleigh’s criterion for the
resolution of two nearly overlapping
lines

Lord Rayleigh introduced a criterion of resolution for diffraction-limited
line profiles, where two lines are considered to be just resolved if the central
diffraction maximum of the profile I1(λ−λ1) coincides with the first mini-
mum of I2(λ−λ2) [4.3].

Let us consider the attainable spectral resolving power of a spectrometer.
When passing the dispersing element (prism or grating), a parallel beam com-
posed of two monochromatic waves with wavelengths λ and λ+Δλ is split
into two partial beams with the angular deviations θ and θ +Δθ from their
initial direction (Fig. 4.8). The angular separation is

Δθ = (dθ/dλ)Δλ , (4.3)

where dθ/dλ is called the angular dispersion [rad/nm]. Since the camera lens
with focal length f2 images the entrance slit S1 into the plane B (Fig. 4.1), the
distance Δx2 between the two images S2(λ) and S2(λ+Δλ) is, according to
Fig. 4.8,

Δx2 = f2Δθ = f2
dθ

dλ
Δλ = dx

dλ
Δλ . (4.4)

The factor dx/dλ is called the linear dispersion of the instrument. It is gen-
erally measured in mm/nm. In order to resolve two lines at λ and λ+Δλ, the
separation Δx2 in (4.4) has to be at least the sum δx2(λ)+δx2(λ+Δλ) of the
widths of the two slit images. Since the width δx2 is related to the width δx1
of the entrance slit according to geometrical optics by

δx2 = ( f2/ f1)δx1 , (4.5)

Fig. 4.8. Angular dispersion of a parallel
beam
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Fig. 4.9. (a) Diffraction in a spectrometer by the limiting aperture with diameter a.
(b) Limitation of spectral resolution by diffraction

the resolving power λ/Δλ can be increased by decreasing δx1. Unfortunately,
there is a theoretical limitation set by diffraction. Because of the fundamental
importance of this resolution limit, we discuss this point in more detail.

When a parallel light beam passes a limiting aperture with diameter a,
a Fraunhofer diffraction pattern is produced in the plane of the focusing
lens L2 (Fig. 4.9). The intensity distribution I(φ) as a function of the angle φ
with the optical axis of the system is given by the well-known formula [4.3]

I(φ) = I0

(
sin(aπ sin φ/λ)

(aπ sin φ)/λ

)2

� I0

(
sin(aπφ/λ)

aπφ/λ

)2

. (4.6)

The first two diffraction minima at φ = ±λ/a � π are symmetrical to the cen-
tral maximum (zeroth diffraction order) at φ = 0. The intensity of the central
diffraction maximum

I (0) =
+λ/a∫

−λ/a

I(Φ) dΦ

contains about 90% of the total intensity.
Even an infinitesimally small entrance slit therefore produces a slit image

of width

δxdiffr
s = f2(λ/a) , (4.7)

defined as the distance between the central diffraction maximum and the first
minimum, which is approximately equal to the FWHM of the central maxi-
mum.

According to the Rayleigh criterion, two equally intense spectral lines with
wavelengths λ and λ+Δλ are just resolved if the central diffraction maxi-
mum of S2(λ) coincides with the first minimum of S2(λ+Δλ) (see above).
This means that their maxima are just separated by δxdiffr

S = f2(λ/a). From
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Fig. 4.10. Intensity profiles of
two monochromatic lines meas-
ured in the focal plane of L2
with an entrance slit width b �
f1 ·λ/a and a magnification fac-
tor f2/ f1 of the spectrograph.
Solid line: without diffraction;
dashed line: with diffraction.
The minimum resolvable dis-
tance between the line centers is
Δx2 = f2(b/ f1 +λ/a)

(4.6) one can compute that, in this case, both lines partly overlap with a dip
of (8/π2)Imax ≈ 0.8Imax between the two maxima. The distance between the
centers of the two slit images is then obtained from (4.7) (see Fig. 4.9b) as

Δx2 = f2(λ/a) . (4.8a)

The separation of the two lines by dispersion (4.4) Δx2 = f2(dθ/dλ)Δλ has
to be larger than this limit. This gives the fundamental limit on the resolving
power

|λ/Δλ| ≤ a(dθ/dλ) , (4.9)

which clearly depends only on the size a of the limiting aperture and on the
angular dispersion of the instrument.

For a finite entrance slit with width b the separation Δx2 between the
central peaks of the two images I(λ−λ1) and I(λ−λ2) must be larger than
(4.8a). We now obtain

Δx2 ≥ f2
λ

a
+b

f2

f1
, (4.8b)

in order to meet the Rayleigh criterion (Fig. 4.10). With Δx2 = f2(dθ/dλ)Δλ,
the smallest resolvable wavelength interval Δλ is then

Δλ ≥
(

λ

a
+ b

f1

)(
dθ

dλ

)−1

. (4.10)

Note: The spectral resolution is limited, not by the diffraction due to the
entrance slit, but by the diffraction caused by the much larger aperture a,
determined by the size of the prism or grating.

Although it does not influence the spectral resolution, the much larger
diffraction by the entrance slit imposes a limitation on the transmitted inten-
sity at small slit widths. This can be seen as follows: when illuminated with
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Fig. 4.11. Diffraction by the entrance slit

parallel light, the entrance slit with width b produces a Fraunhofer diffraction
pattern analogous to (4.6) with a replaced by b. The central diffraction max-
imum extends between the angles δφ = ±λ/b (Fig. 4.11) and can completely
pass the limiting aperture a only if 2δφ is smaller than the acceptance angle
a/ f1 of the spectrometer. This imposes a lower limit to the useful width bmin
of the entrance slit,

bmin ≥ 2λ f1/a . (4.11)

In all practical cases, the incident light is divergent, which demands that the
sum of the divergence angle and the diffraction angle has to be smaller than
a/ f and the minimum slit width b correspondingly larger.

Figure 4.12a illustrates the intensity distribution I(x) in the plane B for dif-
ferent slit widths b. Figure 4.12b shows the dependence of the width Δx2(b)

Fig. 4.12. (a) Diffraction limited intensity distribution I(x2) in the plane B for different
widths b of the entrance slit. (b) The width δx2(b) of the entrance slit image S2(x2) with
and without diffraction by the aperture a. (c) Intensity I(x2) in the observation plane as
a function of entrance slit width b for a spectral continuum c and for a monochromatic
spectral line (m) with diffraction (solid curves 2c and 2m) and without diffraction (dashed
curves 1c and 1m)
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of the slit image S2 on the entrance slit width b, taking into account the
diffraction caused by the aperture a. This demonstrates that the resolution can-
not be increased much by decreasing b below bmin. The peak intensity I(b)
in the plane B is plotted in Fig. 4.12c as a function of the slit width b. Ac-
cording to (4.1), the transmitted radiation flux φ(λ) depends on the product
U = AΩ of the entrance slit area A and the acceptance angle Ω = (a/ f1)

2.
The flux in B would therefore depend linearly on the slit width b if diffrac-
tion were not present. This means that for monochromatic radiation the peak
intensity [W /m2] in the plane B should then be constant (curve 1m) although
the transmitted power would increase linearly with b. For a spectral contin-
uum it should decrease linearly with decreasing slit width (curve 1c). Because
of the diffraction by S1, the intensity decreases with the slit width b both for
monochromatic radiation (2m) and for a spectral continuum (2c). Note the
steep decrease for b < bmin.

Substituting b = bmin = 2 fλ/a into (4.10) yields the practical limit for Δλ
imposed by diffraction by S1 and by the limiting aperture with width a

Δλ = 3 f(λ/a)dλ/dx . (4.12)

Instead of the theoretical limit (4.9) given by the diffraction through the aper-
ture a, a smaller practically attainable resolving power is obtained from (4.12),
which takes into account a finite minimum entrance slit width bmin imposed
by intensity considerations and which yields:

R = λ/Δλ = (a/3)dθ/dλ . (4.13)

Example 4.2.
For a = 10 cm, λ = 5 ×10−5 cm, f = 100 cm, dλ/dx = 1 nm/mm, with
b = 10 μm,→ Δλ = 0.015 nm; with b = 5 μm,→ Δλ = 0.01 nm. However,
from Fig. 4.12 one can see that the transmitted intensity with b = 5 μm is
only 25% of that with b = 10 μm.

Fig. 4.13. Curvature of the image of a straight
entrance slit caused by astigmatic imaging
errors
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Fig. 4.14. Signal profile P(t) ∝
P(x2(t)) at the exit slit of a mono-
chromator with b � bmin and b2 <

( f2/ f1)b1 for monochromatic in-
cident light with uniform turning
of the grating

Note: For photographic detection of line spectra, it is actually better to really
use the lower limit bmin for the width of the entrance slit, because the den-
sity of the developed photographic layer depends only on the time-integrated
spectral irradiance [W/m2] rather than on the radiation power [W]. Increasing
the slit width beyond the diffraction limit bmin, in fact, does not significantly
increase the density contrast on the plate, but does decrease the spectral res-
olution.

Using photoelectric recording, the detected signal depends on the radiation
power φλ dλ transmitted through the spectrometer and therefore increases with
increasing slit width. In the case of completely resolved line spectra, this in-
crease is proportional to the slit width b since φλ ∝ b. For continuous spectra
it is even proportional to b2 because the transmitted spectral interval dλ also
increases proportional to b and therefore φλ dλ ∝ b2. Using diode arrays as de-
tectors, the image Δx2 = ( f2/ f1)b should have the same width as one diode
in order to obtain the optimum signal at maximum resolution.

The obvious idea of increasing the product of ΩA without loss of spectral
resolution by keeping the width b constant but increasing the height h of the
entrance slit is of limited value because imaging defects of the spectrometer
cause a curvature of the slit image, which again decreases the resolution. Rays
from the rim of the entrance slit pass the prism at a small inclination to the
principal axis. This causes a larger angle of incidence α2, which exceeds that
of miniumum deviation. These rays are therefore refracted by a larger angle θ,
and the image of a straight slit becomes curved toward shorter wavelengths
(Fig. 4.13). Since the deviation in the plane B is equal to f2θ, the radius of
curvature is of the same order of magnitude as the focal length of the camera
lens and increases with increasing wavelength because of the decreasing spec-
tral dispersion. In grating spectrometers, curved images of straight slits are
caused by astigmatism of the spherical mirrors. The astigmatism can be partly
compensated by using curved entrance slits [4.9]. Another solution is based
on astigmatism-corrected imaging by using an asymmetric optical setup where
the first mirror M1 in Fig. 4.2 is placed at a distance d1 < f1 from the entrance
slit and the exit slit at a distance d2 > f2 from M2. In this arrangement [4.11]
the grating is illuminated with slightly divergent light.

When the spectrometer is used as a monochromator with an entrance slit
width b1 and an exit slit width b2, the power P(t) recorded as a function
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of time while the grating is uniformly turned has a trapezoidal shape for
b1 � bmin (Fig. 4.14a) with a baseline ( f2/ f1)b1 +b2. Optimum resolution at
maximum transmitted power is achieved for b2 = ( f2/ f1)b1. The line profile
P(t) = P(x2) then becomes a triangle.

d) Free Spectral Range

The free spectral range of a spectrometer is the wavelength interval δλ of the
incident radiation for which a one-valued relation exists between λ and the
position x(λ) of the entrance slit image. Two spectral lines with wavelengths
λ1 and λ2 = λ1 ±δλ cannot be distinguished without further information. This
means that the wavelength λ measured by the instrument must be known be-
forehand with an uncertainty Δλ < δλ. While for prism spectrometers the free
spectral range covers the whole region of normal dispersion of the prism ma-
terial, for grating spectrometers δλ is determined by the diffraction order m
and decreases with increasing m (Sect. 4.1.3).

Interferometers, which are generally used in very high orders (m =
104−108), have a high spectral resolution but a small free spectral range δλ.
For unambiguous wavelength determination they need a preselector, which al-
lows one to measure the wavelength within the free spectral range δλ of the
high-resolution instrument (Sect. 4.2.4).

4.1.2 Prism Spectrometer

When passing through a prism, a light ray is refracted by an angle θ that
depends on the prism angle ε, the angle of incidence α1, and the refractive
index n of the prism material (Fig. 4.15). We obtain from Fig. 4.15:

θ = α1 −β1 +α2 −β2 . (4.14a)

Using the relation

θ = α1 +α2 − ε (4.14b)

between the total deviation θ and the prism angle ε, we find the minimum
refraction by differentiating:

dθ

dα1
= 1+ dα2

dα1
= 0 ⇒ dα1 = −dα2 . (4.14c)

Fig. 4.15. Refraction of light by
a prism at minimum deviation where
α1 = α2 = α and θ = 2α− ε



112 4. Spectroscopic Instrumentation

Fig. 4.16. Limiting aperture in a prism spec-
trometer

From Snellius’ law sin α = n sin β we obtain the derivatives:

cos α1 dα1 = n cos β1 dβ1 (4.14d)
cos α2 dα2 = n cos β2 dβ2 . (4.14e)

Because β1 +β2 = ε ⇒ dβ1 = −dβ2, the division of (4.14d) by (4.14e) yields

cos α1 dα1

cos α2 dα2
= cos β1

cos β2
.

For the minimum deviation θ with dα1 = −dα2 we get the result:

cos α1

cos α2
= cos β1

cos β2
⇒
(

1− sin2 β1

1− sin2 β2

)1/2

. (4.14f)

Squaring the equation yields

1− sin2 α1

1− sin2 α2
= n2 − sin2 α1

n2 − sin2 α2
(4.14g)

which can only be fulfilled for n �= 1 if α1 = α2. The minimum deviation θ
is obtained for symmetrical rays with α1 = α2 = α. The minimum deviation

θmin = 2α− ε (4.14h)

is obtained when the ray passes the prism parallel to the base g. In this case,
we derive from Snellius’ law:

sin

(
θmin + ε

2

)
= sin α = n sin β ⇒ n sin(ε/2) (4.14i)

sin(θ + ε)

2
= n sin(ε/2) . (4.14j)

From (4.14j) the derivation dθ/dn = (dn/dθ)−1 is

dθ

dn
= 2 sin(ε/2)

cos[(θ + ε)/2] = 2 sin(ε/2)√
1−n2 sin2(ε/2)

. (4.15)
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Fig. 4.17. Refractive index n(λ) for some prism materials

The angular dispersion dθ/dλ = (dθ/dn)(dn/dλ) is therefore

dθ

dλ
= 2 sin(ε/2)√

1−n2 sin2(ε/2)

dn

dλ
. (4.16)

This shows that the angular dispersion increases with the prism angle ε,
but does not depend on the size of the prism.

For the deviation of laser beams with small beam diameters, small prisms
can therefore be used without losing angular dispersion. In a prism spectrom-
eter, however, the size of the prism determines the limiting aperture a and
therefore the diffraction; it has to be large in order to achieve a large spec-
tral resolving power (see previous section). For a given angular dispersion, an
equilateral prism with ε = 60◦ uses the smallest quantity of possibly expensive
prism material. Because sin 30◦ = 1/2, (4.16) then reduces to

dθ

dλ
= dn/dλ√

1− (n/2)2
. (4.17)

The diffraction limit for the resolving power λ/Δλ according to (4.9) is

λ/Δλ ≤ a(dθ/dλ) .

The diameter a of the limiting aperture in a prism spectrometer is (Fig. 4.16)

a = d cos α1 = g cos α

2 sin(ε/2)
. (4.18)

Substituting dθ/dλ from (4.16) gives

λ/Δλ = g cos α1√
1−n2 sin2(ε/2)

dn

dλ
. (4.19)
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At minimum deviation, (4.14) gives n sin(ε/2) = sin(θ + ε)/2 = sin α1 and
therefore (4.19) reduces to

λ/Δλ = g(dn/dλ) . (4.20a)

According to (4.20a), the theoretical maximum resolving power depends
solely on the base length g and on the spectral dispersion of the prism mate-
rial. Because of the finite slit width b ≥ bmin, the resolution reached in practice
is somewhat lower. The corresponding resolving power can be derived from
(4.11) to be at most

R = λ

Δλ
≤ 1

3
g

(
dn

dλ

)
. (4.20b)

The spectral dispersion dn/dλ is a function of prism material and wave-
length λ. Figure 4.17 shows dispersion curves n(λ) for some materials com-
monly used for prisms. Since the refractive index increases rapidly in the
vicinity of absorption lines, glass has a larger disperison in the visible and
near-ultraviolet regions than quartz, which, on the other hand, can be used ad-
vantageously in the UV down to 180 nm. In the vacuum-ultraviolet range CaF,
MgF, or LiF prisms are sufficiently transparent. Table 4.1 gives a summary of
the optical characteristics and useful spectral ranges of some prism materials.

If achromatic lenses (which are expensive in the infrared and ultraviolet re-
gion) are not employed, the focal length of the two lenses decreases with the
wavelength. This can be partly compensated by inclining the plane B against
the principal axis in order to bring it at least approximately into the focal
plane of L2 for a large wavelength range (Fig. 4.1).

In Summary: The advantage of a prism spectrometer is the unambiguous
assignment of wavelengths, since the position S2(λ) is a monotonic function

Table 4.1. Refractive index and dispersion of some materials used in prism spectrometers

Material Useful spectral Refractive Dispersion
range [μm] index n −dn/dλ[nm−1]

Glass (BK7) 0.35−3.5 1.516 4.6×10−5 at 589 nm
1.53 1.1×10−4 at 400 nm

Heavy flint 0.4−2 1.755 1.4×10−4 at 589 nm
1.81 4.4×10−4 at 400 nm

Fused quartz 0.15−4.5 1.458 3.4×10−5 at 589 nm
1.470 1.1×10−4 at 400 nm

NaCl 0.2−26 1.79 6.3×10−3 at 200 nm
1.38 1.7×10−5 at 20 μm

LiF 0.12−9 1.44 6.6×10−4 at 200 nm
1.09 8.6×10−5 at 10 μm
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of λ. Its drawback is the moderate spectral resolution. It is mostly used for
survey scans of extended spectral regions.

Example 4.3.

(a) Suprasil (fused quartz) has a refractive index n = 1.47 at λ = 400 nm
and dn/dλ = 1100 cm−1. This gives dθ/dλ = 1.6×10−4 rad/nm. With
a slitwidth bmin = 2 fλ/a and g = 5 cm we obtain from (4.20b) λ/Δλ ≤
1830. At λ = 500 nm ⇒ Δλ ≥ 0.27 nm.

(b) For heavy flint glass at 400 nm n = 1.81 and dn/dλ = 4400 cm−1, giv-
ing dθ/dλ = 1.0×10−3 rad/nm. This is about six times larger than that
for quartz. With a focal length f = 100 cm for the camera lens, one
achieves a linear dispersion dx/dλ = 1 mm/nm with a flint prism, but
only 0.15 mm/nm with a quartz prism.

4.1.3 Grating Spectrometer

In a grating spectrometer (Fig. 4.2) the collimating lens L1 is replaced by
a spherical mirror M1 with the entrance slit S1 in the focal plane of M1. The
collimated parallel light is reflected by M1 onto a reflection grating consisting
of many straight grooves (about 105) parallel to the entrance slit. The grooves
have been ruled onto an optically smooth glass substrate or have been pro-
duced by holographic techniques [4.12–4.18]. The whole grating surface is
coated with a highly reflecting layer (metal or dielectric film). The light re-
flected from the grating is focused by the spherical mirror M2 onto the exit
slit S2 or onto a photographic plate in the focal plane of M2.

a) Basic considerations

The many grooves, which are illuminated coherently, can be regarded as small
radiation sources, each of them diffracting the light incident onto this small
groove with a width d ≈ λ into a large range Δr ≈ λ/d of angles r around the
direction of geometrical reflection (Fig. 4.18a). The total reflected light con-
sists of a coherent superposition of these many partial contributions. Only in
those directions where all partial waves emitted from the different grooves are
in phase will constructive interference result in a large total intensity, while
in all other directions the different contributions cancel by destructive inter-
ference.

Figure 4.18b depicts a parallel light beam incident onto two adjacent
grooves. At an angle of incidence α to the grating normal (which is normal to
the grating surface, but not necessarily to the grooves) one obtains construc-
tive interference for those directions β of the reflected light for which the path
difference Δs = Δs1 −Δs2 is an integer multiple m of the wavelength λ. With
Δs1 = d sin α and Δs2 = d sin β this yields the grating equation

d(sin α± sin β) = mλ , (4.21)
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Fig. 4.18. (a) Reflection of incident light from a single groove into the diffraction angle
λ/d around the specular reflection angle r = i. (b) Illustration of the grating equation
(4.21)

the plus sign has to be taken if β and α are on the same side of the grating
normal; otherwise the minus sign, which is the case shown in Fig. 4.18b.

The reflectivity R(β, θ) of a ruled grating depends on the diffraction
angle β and on the blaze angle θ of the grating, which is the angle between
the groove normal and the grating normal (Fig. 4.19). If the diffraction angle β
coincides with the angle r of specular reflection from the groove surfaces,
R(β, θ) reaches its optimum value R0, which depends on the reflectivity of
the groove coating. From Fig. 4.19 one infers for the case where α and β are
on opposite sides of the grating normal, i = α−θ and r = θ +β, which yields,
for specular reflection i = r, the condition for the optimum blaze angle θ

θ = (α−β)/2 . (4.22)

Because of the diffraction of each partial wave into a large angular range,
the reflectivity R(β) will not have a sharp maximum at β = α−2θ, but will
rather show a broad distribution around this optimum angle. The angle of in-
cidence α is determined by the particular construction of the spectrometer,

Fig. 4.19. Illustration of the blaze angle θ
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Fig. 4.20. (a) Littrow mount of a grating with β = α. (b) Illustration of blaze angle for
a Littrow grating

while the angle β for which constructive interference occurs depends on the
wavelength λ. Therefore the blaze angle θ has to be specified for the desired
spectral range and the spectrometer type.

In laser-spectroscopic applications the case α = β often occurs, which
means that the light is reflected back into the direction of the incident light.
For such an arrangement, called a Littrow-grating mount (shown in Fig. 4.20),
the grating equation (4.21) for constructive interference reduces to

2d sin α = mλ . (4.21a)

Maximum reflectivity of the Littrow grating is achieved for i = r = 0 → θ = α
(Fig. 4.20b). The Littrow grating acts as a wavelength-selective reflector be-
cause light is only reflected if the incident wavelength satisfies the condition
(4.21a).

b) Intensity Distribution of Reflected Light

We now examine the intensity distribution I(β) of the reflected light when
a monochromatic plane wave is incident onto an arbitrary grating.

According to (4.21) the path difference between partial waves reflected by
adjacent grooves is Δs = d(sin α± sin β) and the corresponding phase differ-
ence is

φ = 2π

λ
Δs = 2π

λ
d(sin α± sin β) . (4.23)

The superposition of the amplitudes reflected from all N grooves in the
direction β gives the total reflected amplitude

AR = √
R

N−1∑

m=0

Ag eimφ = √
RAg

1− eiNφ

1− e−iφ , (4.24)
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where R(β) is the reflectivity of the grating, which depends on the reflec-
tion angle β, and Ag is the amplitude of the partial wave incident onto each
groove. Because the intensity of the reflected wave is related to its amplitude
by IR = ε0cAR A∗

R, see (2.30c), we find, with eix = cos x + i sin x, from (4.24),

IR = RI0
sin2(Nφ/2)

sin2(φ/2)
with I0 = cε0 Ag A∗

g . (4.25)

This intensity distribution is plotted in Fig. 4.21 for two different values of
the total groove number N . Note that for real optical gratings N ≈ 105! The
principal maxima occur for φ = 2mπ, which is, according to (4.23), equivalent
to the grating equation (4.21) and means that at a fixed angle α the path dif-
ference between partial beams from adjacent grooves is for certain angles βm
an integer multiple of the wavelength, where the integer m is called the order
of the interference. The function (4.25) has (N −1) minima with IR = 0 be-
tween two successive principal maxima. These minima occur at values of φ
for which Nφ/2 = �π, � = 1, 2, . . . , N −1, and mean that for each groove of
the grating, another one can be found that emits light into the direction β with
a phase shift π, such that all pairs of partial waves just cancel.

The line profile I(β) of the principal maximum of order m around the
diffraction angle βm can be derived from (4.25) by substituting β = βm + ε.
Because for large N , I(β) is very sharply centered around βm , we can assume
ε � βm . With the relation

sin(βm + ε) = sin βm cos ε+ cos βm sin ε ∼ sin βm + ε cos βm ,

and because (2πd/λ)(sin α+ sin βm) = 2mπ, we obtain from (4.23)

φ(β) = 2mπ+2π(d/λ)ε cos βm = 2mπ+ δ1 (4.26)

with

δ1 = 2π(d/λ)ε cos βm � 1 .

Furthermore, (4.25) can be written as

IR = RI0
[sin(Nmπ+ Nδ1/2)]2

[sin(mπ+ δ1/2)]2 = RI0
sin2(Nδ1/2)

sin2(δ1/2)
� RI0 N2 sin2(Nδ1/2)

(Nδ1/2)2 .

(4.27)

The first two minima with IR = 0 on both sides of the central maximum
at βm are at

Nδ1 = ±2π . (4.28a)

From (4.26) we can now calculate the angular width of the central maximum
around βm :

2πd

λ
ε cos βm = δ1 = 2π

N
⇒ (4.28b)

ε1,2 = ±λ

Nd cos βm
⇒ Δβ = 2λ

N d cos βm
. (4.28c)
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The central maximum of mth order therefore has a line profile (4.27) with
a base full width Δβ = λ/(Nd cos βm). This corresponds to a diffraction pat-
tern produced by an aperture with width b = Nd cos βm , which is just the size
of the whole grating projected onto a plane, normal to the direction normal of
βm (Fig. 4.18).

Example 4.4.
For N ·d = 10 cm, λ = 5×10−5 cm, cos βm = 1

2

√
2 ⇒ ε1/2 = 7×10−6 rad.

Note: According to (4.28) the full angular halfwidth Δβ = 2ε of the interfer-
ence maxima decreases as 1/N , while according to (4.27) the peak intensity
increases with the number of illuminated grooves proportional to N2 I0, where
I0 is the power incident onto a single groove. The area under the main
maxima is therefore proportional to NI0, which is due to the increasing con-
centration of light into the directions βm . Of course, the incident power per
groove decreases as 1/N . The total reflected power is therefore independent
of N .

The intensity of the N −2 small side maxima, which are caused by incom-
plete destructive interference, decreases proportional to 1/N with increasing
groove number N . Figure 4.21 illustrates this point for N = 5 and N = 11.
For gratings used in practical spectroscopy with groove numbers of about 105,
the reflected intensity IR(λ) at a given wavelength λ has very sharply de-
fined maxima only in those directions βm , as defined by (4.21). The small
side maxima are completely negligible at such large values of N , provided

Fig. 4.21. Intensity distribution I(β)

for two different numbers N of
illuminated grooves. Note the dif-
ferent scales of the ordinates!



120 4. Spectroscopic Instrumentation

the distance d between the grooves is exactly constant over the whole grating
area.

c) Spectral Resolving Power

Differentiating the grating equation (4.21) with respect to λ, we obtain at
a given angle α the angular dispersion

dβ

dλ
= m

d cos β
. (4.29a)

Substituting m/d = (sin α± sin β)/λ from (4.21), we find

dβ

dλ
= sin α± sin β

λ cos β
. (4.29b)

This illustrates that the angular dispersion is determined solely by the angles
α and β and not by the number of grooves! For the Littrow mount with α = β
and the + sign in (4.29b), we obtain

dβ

dλ
= 2 tan α

λ
. (4.29c)

The resolving power can be immediately derived from (4.29a) and the
base halfwidth Δβ = ε = λ/(Nd cos β) of the principal diffraction maximum
(4.28), if we apply the Rayleigh criterion (see above) that two lines λ and
λ+Δλ are just resolved when the maximum of I(λ) falls into the adjacent
minimum for I(λ+Δλ). This is equivalent to the condition

dβ

dλ
Δλ = λ

Nd cos β
,

or, inserting (4.29b):

λ

Δλ
= Nd(sin α± sin β)

λ
, (4.30)

which reduces with (4.21) to

R = λ

Δλ
= mN . (4.31)

The theoretical spectral resolving power is the product of the diffraction
order m with the total number N of illuminated grooves. If the finite slit
width b1 and the diffraction at limiting aperatures are taken into account, the
practically achievable resolving power according to (4.13) is about 2−3 times
lower.

Often it is advantageous to use the spectrometer in second order (m = 2),
which increases the spectral resolution by a factor of 2 without losing much
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intensity, if the blaze angle θ is correctly choosen to satisfy (4.21) and (4.22)
with m = 2.

Example 4.5.
A grating with a ruled area of 10 × 10 cm2 and 103 grooves/mm al-
lows in second order (m = 2) a theoretical spectral resolution of R = 2×
105. This means that at λ = 500 nm two lines that are separated by
Δλ = 2.5×10−3 nm should be resolvable. Because of diffraction, the prac-
tical limit is Δλ ≈ 5×10−3 nm. The dispersion for α = β = 30◦ and a fo-
cal length f = 1 m is dx/dλ = f dβ/dλ = 2 mm/nm. With a slit width
b1 = b2 = 50 μm a spectral resolution of Δλ = 0.025 nm can be achieved.
In order to decrease the slit image width to 5×10−3 mm, the entrance slit
width b has to be narrowed to 10 μm. Lines around λ = 1 μm in the spec-
trum would appear in 1st order at the same angles β. They have to be
suppressed by filters.

A special design is the so-called echelle grating, which has very widely
spaced grooves forming right-angled steps (Fig. 4.22). The light is incident
normal to the small side of the grooves. The path difference between two
reflected partial beams incident on two adjacent grooves with an angle of in-
cidence α = 90◦ − θ is Δs = 2d cos θ. The grating equation (4.21) gives for
the angle β of the mth diffraction order

d(cos θ + sin β) ≈ 2d cos θ = mλ , (4.32)

where β is close to α = 90◦ − θ.
With d � λ the grating is used in a very high order (m � 10−100) and the

resolving power is very high according to (4.31). Because of the larger dis-
tance d between the grooves, the relative ruling accuracy is higher and large
gratings (up to 30 cm) can be ruled. The disadvantage of the echelle is the
small free spectral range δλ = λ/m between successive diffraction orders.

Example 4.6.
N = 3×104, d = 10 μm, θ = 30◦, λ = 500 nm, m = 34. The spectral resolv-
ing power is R = 106, but the free spectral range is only δλ = 15 nm. This
means that the wavelengths λ and λ+ δλ overlap in the same direction β.

Fig. 4.22. Echelle grating
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d) Grating Ghosts

Minute deviations of the distance d between adjacent grooves, caused by in-
accuracies during the ruling process, may result in constructive interference
from parts of the grating for “wrong” wavelengths. Such unwanted maxima,
which occur for a given angle of incidence α into “wrong” directions β, are
called grating ghosts. Although the intensity of these ghosts is generally very
small, intense incident radiation at a wavelength λi may cause ghosts with
intensities comparable to those of other weak lines in the spectrum. This prob-
lem is particularly serious in laser spectroscopy when the intense light at the
laser wavelength, which is scattered by cell walls or windows, reaches the
entrance slit of the monochromator.

In order to illustrate the problematic nature of achieving the ruling accu-
racy that is required to avoid these ghosts, let us assume that the carriage of
the ruling engine expands by only 1 μm during the ruling of a 10×10 cm2

grating, e.g., due to temperature drifts. The groove distance d in the second
half of the grating differs therefore from that of the first half by 5×10−6d.
With N = 105 grooves, the waves from the second half are then completely
out of phase with those from the first half. The condition (4.21) is then ful-
filled for different wavelengths in both parts of the grating, giving rise to
unwanted wavelengths at the wrong positions β. Such ghosts are particularly
troublesome in laser Raman spectroscopy (Vol. 2, Chap. 3) or low-level flu-
orescence spectroscopy, where very weak lines have to be detected in the
presence of extremely strong excitation lines. The ghosts from these excita-
tion lines may overlap with the fluorescence or Raman lines and complicate
the assignment of the spectrum.

e) Holographic Gratings

Although modern ruling techniques with interferometric length control have
greatly improved the quality of ruled gratings [4.12–4.15] the most satisfac-
tory way of producing completely ghost-free gratings is with holography. The
production of holographic gratings proceeds as follows: a photosensitive layer
on the grating’s blank surface in the (x, y) plane is illuminated by two coher-
ent plane waves with the wave vectors k1 and k2 (|k1| = |k2|, k = {kx, 0, kz}),
which form the angles α and β against the surface normal (Fig. 4.23). The in-
tensity distribution of the superposition in the plane z = 0 of the photolayer
consists of parallel dark and bright fringes imprinting an ideal grating into the
layer, which becomes visible after developing the photoemulsion. The grating
constant

d = λ/2

sin α+ sin β

depends on the wavelength λ = 2π/|k| and on the angles α and β. Such holo-
graphic gratings are essentially free of ghosts. Their reflectivity R, however,
is lower than that of ruled gratings and is furthermore strongly dependent on
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Fig. 4.23. (a) Photographic production of a holographic grating; (b) surface of a holo-
graphic grating

the polarization of the incident wave. This is due to the fact that holographi-
cally produced grooves are no longer planar, but have a sinusoidal surface and
the “blaze angle” θ varies across each groove [4.17].

For Littrow gratings used as wavelength-selective reflectors, it is desir-
able to have a high reflectivity in a selected order m and low reflections
for all other orders. This can be achieved by selecting the width of the
grooves and the blaze angle correctly. Because of diffraction by each groove
with a width d, light can only reach angles β within the interval β0 ±λ/d
(Fig. 4.18a).

Example 4.7.
With a blaze angle θ = α = β = 30◦ and a step height h = λ, the grating can
be used in second order, while the third order appears at β = β0 +37◦. With
d = λ/ tan θ = 2λ, the central diffraction lobe extends only to β0 ±30◦, the
intensity in the third order is very small.

Summarizing the considerations above, we find that the grating acts as
a wavelength-selective mirror, reflecting light of a given wavelength only into
definite directions βm , called the mth diffraction orders, which are defined by
(4.21). The intensity profile of a diffraction order corresponds to the diffrac-
tion profile of a slit with width b = Nd cos βm representing the size of the
whole grating projection as seen in the direction βm . The spectral resolution
λ/Δλ = mN = Nd(sin α+ sin β)/λ is therefore limited by the effective size of
the grating measured in units of the wavelength.

For a more detailed discussion of special designs of grating monochroma-
tors, such as the concave gratings used in VUV spectroscopy, the reader is
referred to the literature on this subject [4.12–4.18]. An excellent account of
the production and design of ruled gratings can be found in [4.12].
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4.2 Interferometers

For the investigation of the various line profiles discussed in Chap. 3, interfer-
ometers are preferentially used because, with respect to the spectral resolving
power, they are superior even to large spectrometers. In laser spectroscopy the
different types of interferometers not only serve to measure emission – or ab-
sorption – line profiles, but they are also essential devices for narrowing the
spectral width of lasers, monitoring the laser linewidth, and controlling and
stabilizing the wavelength of single-mode lasers (Chap. 5).

In this section we discuss some basic properties of interferometers with the
aid of some illustrating examples. The characteristics of the different types of
interferometers that are essential for spectroscopic applications are discussed
in more detail. Since laser technology is inconceivable without dielectric coat-
ings for mirrors, interferometers, and filters, an extra section deals with such
dielectric multilayers. The extensive literature on interferometers [4.20–4.23]
informs about special designs and applications.

4.2.1 Basic Concepts

The basic principle of all interferometers may be summarized as follows
(Fig. 4.24). The indicent lightwave with intensity I0 is divided into two or
more partial beams with amplitudes Ak, which pass different optical path
lengths sk = nxk (where n is the refractive index) before they are again super-
imposed at the exit of the interferometer. Since all partial beams come from
the same source, they are coherent as long as the maximum path difference
does not exceed the coherence length (Sect. 2.8). The total amplitude of the
transmitted wave, which is the superposition of all partial waves, depends on
the amplitudes Ak and on the phases φk = φ0 +2πsk/λ of the partial waves.
It is therefore sensitively dependent on the wavelength λ.

The maximum transmitted intensity is obtained when all partial waves in-
terfere constructively. This gives the condition for the optical path difference
Δsik = si − sk, namely

Δsik = mλ , m = 1, 2, 3, . . . . (4.33)

Fig. 4.24. Schematic illustration of the basic principle for all interferometers
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The condition (4.33) for maximum transmission of the interferometer ap-
plies not only to a single wavelength λ but to all λm for which

λm = Δs/m , m = 1, 2, 3, . . . .

The wavelength interval

δλ = λm −λm+1 = Δs

m
− Δs

m +1
= Δs

m2 +m
(4.34a)

is called the free spectral range of the interferometer. With the mean wave-
length λ̄ = 1

2 (λm +λm+1) = 1
2Δs( 1

m + 1
m+1), we can write the free spectral

range as:

δλ = 2λ

2m +1
. (4.34b)

It is more conveniently expressed in terms of frequency. With ν = c/λ, (4.33)
yields Δs = mc/νm and the free spectral frequency range

δν = νm+1 −νm = c/Δs , (4.34c)

becomes independent of the order m.
It is important to realize that from one interferometric measurement alone

one can only determine λ modulo m · δλ because all wavelengths λ = λ0 +
mδλ are equivalent with respect to the transmission of the interferometer. One
therefore has at first to measure λ within one free spectral range using other
techniques before the absolute wavelength can be obtained with an interfer-
ometer.

Examples of devices in which only two partial beams interfere are the
Michelson interferometer and the Mach–Zehnder interferometer. Multiple-
beam interference is used, for instance, in the grating spectrometer, the
Fabry–Perot interferometer, and in multilayer dielectric coatings of highly re-
flecting mirrors.

Some interferometers utilize the optical birefringence of specific crystals to
produce two partial waves with mutually orthogonal polarization. The phase
difference between the two waves is generated by the different refractive index
for the two polarizations. An example of such a “polarization interferometer”
is the Lyot filter [4.24] used in dye lasers to narrow the spectral linewidth
(Sect. 4.2.11).

4.2.2 Michelson Interferometer

The basic principle of the Michelson interferometer (MI) is illustrated in
Fig. 4.25. The incident plane wave

E = A0 ei(ωt−kx)
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Fig. 4.25. Two-beam interference in a Michelson
interferometer

is split by the beam splitter S (with reflectivity R and transmittance T ) into
two waves

E1 = A1 exp [i(ωt − kx +φ1)] and E2 = A2 exp [i(ωt − ky +φ2)] .

If the beam splitter has negligible absorption (R + T = 1), the amplitudes
A1 and A2 are determined by A1 = √

T A0 and A2 = √
RA0 with A2

0 =
A2

1 + A2
2.

After being reflected at the plane mirrors M1 and M2, the two waves are
superimposed in the plane of observation B. In order to compensate for the
dispersion that beam 1 suffers by passing twice through the glass plate of
beam splitter S, often an appropriate compensation plate P is placed in one
side arm of the interferometer. The amplitudes of the two waves in the plane B
are

√
TRA0, because each wave has been transmitted and reflected once at the

beam splitter surface S. The phase difference φ between the two waves is

φ = 2π

λ
2(SM1 −SM2)+Δφ , (4.35)

where Δφ accounts for additional phase shifts that may be caused by reflec-
tion. The total complex field amplitude in the plane B is then

E = √
RT A0 ei(ωt+φ0)(1+ eiφ) . (4.36)

The detector in B cannot follow the rapid oscillations with frequency ω but
measures the time-averaged intensity Ī , which is, according to (2.30c),

Ī = 1
2 cε0 A2

0 RT(1+ eiφ)(1+ e−iφ) = cε0 A2
0 RT(1+ cos φ)

= 1
2 I0(1+ cos φ) for R = T = 1

2 and I0 = 1
2 cε0 A2

0 . (4.37)

If mirror M2 (which is mounted on a carriage) moves along a distance Δy, the
optical path difference changes by Δs = 2nΔy (n is the refractive index be-
tween S and M2) and the phase difference φ changes by 2πΔs/λ. Figure 4.26
shows the intensity IT(φ) in the plane B as a function of φ for a monochro-
matic incident plane wave. For the maxima at φ = 2mπ (m = 0, 1, 2, . . . ),
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Fig. 4.26. Intensity transmitted through the Michelson interferometer as a function of the
phase difference φ between the two interfering beams for R = T = 0.5

the transmitted intensity IT becomes equal to the incident intensity I0, which
means that the transmission of the interferometer is TI = 1 for φ = 2mπ. In
the minima for φ = (2m +1)π the transmitted intensity IT is zero! The inci-
dent plane wave is being reflected back into the source.

This illustrates that the MI can be regarded either as a wavelength-
dependent filter for the transmitted light, or as a wavelength-selective reflector.
In the latter function it is often used for mode selection in lasers (Fox–Smith
selector, Sect. 5.4.3).

For divergent incident light the path difference between the two waves
depends on the inclination angle (Fig. 4.27). In the plane B an interference
pattern of circular fringes, concentric to the symmetry axis of the system, is
produced. Moving the mirror M2 causes the ring diameters to change. The in-
tensity behind a small aperture still follows approximately the function I(φ) in
Fig. 4.26. With parallel incident light but slightly tilted mirrors M1 or M2, the
interference pattern consists of parallel fringes, which move into a direction
perpendicular to the fringes when Δs is changed.

The MI can be used for absolute wavelength measurements by counting
the number N of maxima in B when the mirror M2 is moved along a known
distance Δy. The wavelength λ is then obtained from

λ = 2nΔy/N .

This technique has been applied to very precise determinations of laser wave-
lengths (Sect. 4.4).

Fig. 4.27. Circular fringe pattern produced by
the MI with divergent incident light
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The MI may be described in another equivalent way, which is quite in-
structive. Assume that the mirror M2 in Fig. 4.25 moves with a constant
velocity v = Δy/Δt. A wave with frequency ω and wave vector k incident
perpendicularly on the moving mirror suffers a Doppler shift

Δω = ω−ω′ = 2k ·v = (4π/λ)v , (4.38)

on reflection.
Inserting the path difference Δs = Δs0 +2vt and the corresponding phase

difference φ = (2π/λ)Δs into (4.37) gives, with (4.38) and Δs0 = 0,

Ī = 1
2 Ī0(1+ cos Δωt) with Δω = 2ωv/c . (4.39)

We recognize (4.39) as the time-averaged beat signal, obtained from the su-
perposition of two waves with frequencies ω and ω′ = ω−Δω, giving the
averaged intensity of

Ī = I0(1+ cos Δωt)cos2[(ω′ +ω)t/2]x = 1
2 Ī0(1+ cos Δωt) .

Note that the frequency ω = (c/v)Δω/2 of the incoming wave can be
measured from the beat frequency Δω, provided the velocity v of the moving
mirror is known. The MI with uniformly moving mirror M2 can be therefore
regarded as a device that transforms the high frequency ω (1014−1015 s−1) of
an optical wave into an easily accessible rf-range (v/c)ω.

Example 4.8.
v = 3 cm/s → (v/c) = 10−10. The frequency ω = 3×1015 Hz (λ = 0.6 μm)
is transformed to Δω = 6×105 Hz � Δν ∼ 100 kHz.

The maximum path difference Δs that still gives interference fringes
in the plane B is limited by the coherence length of the incident radia-
tion (Sect. 2.8). Using spectral lamps, the coherence length is limited by the
Doppler width of the spectral lines and is typically a few centimeters. With
stabilized single-mode lasers, however, coherence lengths of several kilome-
ters can be achieved. In this case, the maximum path difference in the MI
is, in general, not restricted by the source but by technical limits imposed by
laboratory facilities.

The attainable path difference Δs can be considerably increased by an op-
tical delay line, placed in one arm of the interferometer (Fig. 4.28). It consists
of a pair of mirrors, M3, M4, which reflect the light back and forth many
times. In order to keep diffraction losses small, spherical mirrors, which com-
pensate by collimation the divergence of the beam caused by diffraction, are
preferable. With a stable mounting of the whole interferometer, optical path
differences up to 350 m could be realized [4.25], allowing a spectral resolu-
tion of ν/Δν � 1011. This was demonstrated by measuring the linewidth of
a HeNe laser oscillating at ν = 5×1014 Hz as a function of discharge current.
The accuracy obtained was better than 5 kHz.
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Fig. 4.28a,b. Michelson interferometer with optical delay line allowing a large path dif-
ference between the two interfering beams: (a) schematic arrangement; (b) spot positions
of the reflected beams on mirror M3

For gravitational-wave detection [4.26], a MI with side arms of about 1-km
length has been built where the optical path difference can be increased to
Δs > 100 km by using highly reflective spherical mirrors and an ultrastable
solid-state laser with a coherence length of Δsc � Δs (see Vol. 2, Sect. 9.8)
[4.27].

4.2.3 Fourier Spectroscopy

When the incoming radiation is composed of several components with fre-
quencies ωk, the total amplitude in the plane B of the detector is the sum of
all interference amplitudes (4.36),

E =
∑

k

Ak ei(ωkt+φ0k)(1+ eiφk) . (4.40)

A detector with a large time constant compared with the maximum period
1/(ωi −ωk) does not follow the rapid oscillations of the amplitude at fre-
quencies ωk or at the difference frequencies (ωi −ωk), but gives a signal
proportional to the sum of the intensities Ik in (4.37). We therefore obtain for
the time-dependent total intensity

Ī(t) =
∑

k

1
2 Īk0(1+ cos φk) =

∑

k

1
2 Īk0(1+ cos Δωkt) , (4.41a)

where the audio frequencies Δωk = 2ωkv/c are determined by the frequen-
cies ωk of the components and by the velocity v of the moving mirror.
Measurements of these frequencies Δωk allows one to reconstruct the spec-
tral components of the incoming wave with frequencies ωk (Fourier transform
spectroscopy [4.28, 4.29]).

For example, when the incoming wave consists of two components with
frequencies ω1 and ω2, the interference pattern varies with time according to

Ī(t) = 1
2 Ī10[1+ cos 2ω1(v/c)t]+ 1

2 I20[1+ cos 2ω2(v/c)t]
= Ī0{1+ cos[(ω1 −ω2)vt/c] cos[(ω1 +ω2)vt/c]} , (4.41b)
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Fig. 4.29. Interference signal be-
hind the MI with uniformly mov-
ing mirror M2 when the incident
wave consists of two components
with frequencies ω1 and ω2 and
equal amplitudes

where we have assumed I10 = I20 = I0. This is a beat signal, where the ampli-
tude of the interference signal at (ω1 +ω2)(v/c) is modulated at the difference
frequency (ω1 −ω2)v/c (Fig. 4.29). From the sum

(ω1 +ω2)+ (ω1 −ω2) = 2ω1

we obtain the frequency ω1, and from the difference

(ω1 +ω2)− (ω1 −ω2) = 2ω2

the frequency ω2.
The spectral resolution can roughly be estimated as follows: if Δy is the

path difference traveled by the moving mirror in Fig. 4.25, the number of in-
terference maxima that are counted by the detector is N1 = 2Δy/λ1 for an
incident wave with the wavelength λ1, and N2 = 2Δy/λ2 for λ2 < λ1. The two
wavelengths can be clearly distinguished when N2 ≥ N1 +1. This yields with
λ1 = λ2 +Δλ and Δλ � λ for the spectral resolving power

λ

Δλ
= 2Δy

λ
= N = Δs

λ
with λ = (λ1 +λ2)/2 and N = 1

2 (N1 + N2) .

(4.42a)

The equivalent consideration in the frequency domain follows. In order to de-
termine the two frequencies ω1 and ω2, one has to measure at least over one
modulation period

T = c

v

2π

ω1 −ω2
= c

v

1

ν1 −ν2
.

The frequency difference that can be resolved is then

Δν = c

vT
= c

Δs
= c

Nλ
⇒ Δν

c/λ
= 1

N
or

ν

Δν
= N = Δs

λ
. (4.42b)

The spectral resolving power λ/Δλ of the Michelson interferometer
equals the maximum path difference Δs/λ measured in units of the wave-
length λ.
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Example 4.9.

(a) Δy = 5 cm, λ = 10 μm → N = 104,
(b) Δy = 100 cm, λ = 0.5 μm → N = 4×106

where the latter example can be realized only with lasers that have
a sufficiently large coherence length (Sect. 4.4).

(c) λ1 = 10 μm, λ2 = 9.8 μm → (ν2 −ν1) = 6×1011 Hz; with v = 1 cm/s →
T = 50 ms. The minimum measuring time for the resolution of the two
spectral lines is 50 ms, and the minimum path difference Δs = vT = 5×
10−2 cm = 500 μm.

4.2.4 Mach–Zehnder Interferometer

Analogous to the Michelson interferometer, the Mach–Zehnder interferometer
is based on the two-beam interference by amplitude splitting of the incom-
ing wave. The two waves travel along different paths with a path difference
Δs = 2a cos α (Fig. 4.30b). Inserting a transparent object into one arm of the
interferometer alters the optical path difference between the two beams. This
results in a change of the interference pattern, which allows a very accurate
determination of the refractive index of the sample and its local variation. The
Mach–Zehnder interferometer may be regarded therefore as a sensitive refrac-
tometer.

If the beam splitters B1, B2 and the mirrors M1, M2 are all strictly par-
allel, the path difference between the two split beams does not depend on
the angle of incidence α because the path difference between the beams 1
and 3 is exactly compensated by the same path length of beam 4 between
M2 and B2 (Fig. 4.30a). This means that the interfering waves in the symmet-
ric interferometer (without sample) experience the same path difference on the
solid path as on the dashed path in Fig. 4.30a. Without the sample, the total
path difference is therefore zero; it is Δs = (n −1)L with the sample having
the refractive index n in one arm of the interferometer.

Fig. 4.30a,b. Mach–Zehnder interferometer: (a) schematic arrangement, (b) path differ-
ence between the two parallel beams
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Fig. 4.31. Laser interferometer for sensitive measurements of local variations of the index
of refraction in extended samples, for example, in air above a candle flame

Expanding the beam on path 3 gives an extended interference-fringe pat-
tern, which reflects the local variation of the refractive index. Using a laser
as a light source with a large coherence length, the path lengths in the two
interferometer arms can be made different without losing the contrast of the
interference pattern (Fig. 4.31). With a beam expander (lenses L1 and L2), the
laser beam can be expanded up to 10−20 cm and large objects can be tested.
The interference pattern can either be photographed or may be viewed directly
with the naked eye or with a television camera [4.30]. Such a laser inter-
ferometer has the advantage that the laser beam diameter can be kept small
everywhere in the interferometer, except between the two expanding lenses.
Since the illuminated part of the mirror surfaces should not deviate from an
ideal plane by more than λ/10 in order to obtain good interferograms, smaller
beam diameters are advantageous.

The Mach–Zehnder interferometer has found a wide range of applications.
Density variations in laminar or turbulent gas flows can be seen with this tech-
nique and the optical quality of mirror substrates or interferometer plates can
be tested with high sensitivity [4.30, 4.31].

In order to get quantitative information of the local variation of the optical
path through the sample, it is useful to generate a fringe pattern for calibra-
tion purposes by slightly tilting the plates B1, M1 and B2, M2 in Fig. 4.31,
which makes the interferometer slightly asymmetric. Assume that B1 and M1
are tilted clockwise around the z-direction by a small angle β and the pair B2,
M2 is tilted counterclockwise by the same angle β. The optical path between
B1 and M1 is then Δ1 = 2a cos(α+β), whereas B2M2 = Δ2 = 2a cos(α−β).
After being recombined, the two beams therefore have the path difference

Δ = Δ2 −Δ1 = 2a[cos(α−β)− cos(α+β)] = 4a sin α sin β , (4.43)

which depends on the angle of incidence α. In the plane of observation, an
interference pattern of parallel fringes with path differences Δ = m ·λ is ob-
served with an angular separation Δε between the fringes m and m +1 given
by Δε = αm −αm+1 = λ/(4a sin β cos α).
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Fig. 4.32. Interferogram of the den-
sity profile in the convection zone
above a candle flame [4.30]

A sample in path 3 introduces an additional path difference

Δs(β) = (n −1)L/ cos β

depending on the local refractive index n and the path length L through the
sample. The resulting phase difference shifts the interference pattern by an
angle γ = (n −1)(L/λ)Δε. Using a lens with a focal length f , which images
the interference pattern onto the plane O, gives the spatial distance Δy = f Δε
between neighboring fringes. The additional path difference caused by the
sample shifts the interference pattern by N = (n −1)(L/λ) fringes.

Figure 4.32 shows for illustration the interferogram of the convection zone
of hot air above a candle flame, placed below one arm of the laser interferom-
eter in Fig. 4.31. It can be seen that the optical path through this zone changes
by many wavelengths.

Fig. 4.33. Combination of Mach–Zehnder interferometer and spectrograph used for the
hook method
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Fig. 4.34. Position of fringes as a function of wavelength around the absorption line doub-
let of aluminium atoms, as observed behind the spectrograph [4.32]

The Mach–Zehnder interferometer has been used in spectroscopy to meas-
ure the refractive index of atomic vapors in the vicinity of spectral lines
(Sect. 3.1). The experimental arrangement (Fig. 4.33) consists of a combina-
tion of a spectrograph and an interferometer, where the plates B1, M1 and
B2, M2 are tilted in such a direction that without the sample the parallel in-
terference fringes with the separation Δy(λ) = f Δε are perpendicular to the
entrance slit, which is parallel to the y-direction. The spectrograph disperses
the fringes with different wavelengths λi in the z-direction. Because of the
wavelength-dependent refractive index n(λ) of the atomic vapor (Sect. 3.1.3),
the fringe shift follows a dispersion curve in the vicinity of the spectral line
(Fig. 4.34). The dispersed fringes look like hooks around an absorption line,
which gave this technique the name hook method. To compensate for back-
ground shifts caused by the windows of the absorption cell, a compensating
plate is inserted into the second arm. This technique was developed in 1912
by Rozhdestvenski [4.33] in St. Petersburg. For more details of the Hook
method, see [4.31–4.33].

4.2.5 Sagnac Interferometer

In the Sagnac interferometer (Fig. 4.35), the beam splitter BS splits the in-
coming beam into a transmitted beam and a reflected beam. The two beams
circulate in opposite directions in the x, y-plane through the ring interfer-
ometer. If the whole interferometer rotates clockwise around an axis in the
z-direction through the center of the x–y area around which the beams circu-
late, the optical path for the clockwise-circulating beam becomes longer than
that for the counterclockwise running beam (the Sagnac effect) and the inten-
sity of the interfering beams as measured in the observation plane changes
with the angular speed of rotation Ω. The phase shift between the two partial
waves is

Δφ = 8πA ·n ·Ω/(λ · c) (4.44)
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Fig. 4.35. Sagnac interferometer

where A is the area inside the circulating beams, n is the unit vector per-
pendicular to the area A, λ the wavelength of the optical waves, and c the
velocity of light. Using such a device angular velocities of less than 0.1◦/h
(5×10−7 rad/s) can be detected. Using optical fibers the optical beams can
circulate N times (N = 100−10,000) around the area A, and the effective area
in (4.44) becomes N × A, which increases the sensitivity considerably.

Such a device with three orthogonal Sagnac interferometers can be used as
a navigation system, because the Earth’s rotation causes a Sagnac effect that
depends on the angle between the surface normal n and the Earth’s axis of
rotation ω; i.e., on the geographical latitude.

The Sagnac effect can be also explained by the Doppler effect: upon reflec-
tion at a mirror moving at a velocity v, the frequency ν of the reflected beam
is shifted by Δν = 2ν ×v/c. The frequencies of the two waves circulating in
opposite directions are therefore shifted away from each other by

Δν = 4A/(L ·λ)n ·Ω (4.45)

where L is the path length for one round trip in the ring interferometer. Since
Δφ = (2πL/c)Δν, both equations are equivalent, although the detection tech-
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nique is different. The determination of the phase shift is based on measuring
the intensity change at the detector, while the beat frequency Δν can be di-
rectly counted with high precision [4.34].

4.2.6 Multiple-Beam Interference

In a grating spectrometer, the interfering partial waves emitted from the dif-
ferent grooves of the grating all have the same amplitude. In contrast, in
multiple-beam interferometers these partial waves are produced by multiple
reflection at plane or curved surfaces and their amplitude decreases with in-
creasing number of reflections. The resultant total intensity therefore differs
from (4.25).

a) Transmitted and Reflected Intensity

Assume that a plane wave E = A0 exp[i(ωt − kx)] is incident at the angle α
on a plane transparent plate with two parallel, partially reflecting surfaces
(Fig. 4.36). At each surface the amplitude Ai is split into a reflected com-
ponent AR = Ai

√
R and a refracted component AT = Ai

√
1− R, neglecting

absorption. The reflectivity R = IR/Ii depends on the angle of incidence α
and on the polarization of the incident wave. Provided the refractive index n
is known, R can be calculated from Fresnel’s formulas [4.3]. From Fig. 4.36,
the following relations are obtained for the amplitudes Ai of waves reflected
at the upper surface, Bi of refracted waves, Ci of waves reflected at the lower
surface, and Di of transmitted waves

|A1| = √
R |A0| , |B1| = √

1− R |A0| ,

|C1| =√R(1− R) |A0| , |D1| = (1− R) |A0| ,

|A2| = √
1− R |C1| = (1− R)

√
R |A0| , |B2| = R

√
1− R |A0| ,

|C2| = R
√

R(1− R) |A0| , |D2| = R(1− R) |A0| ,

|A3| = √
1− R |C2| = R3/2(1− R) |A0| , . . . . (4.46)

Fig. 4.36. Multiple-beam interference at two
plane-parallel partially reflecting surfaces
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Fig. 4.37. Optical path difference be-
tween two beams being reflected from
the two surfaces of a plane-parallel
plate

This scheme can be generalized to the equations

|Ai+1| = R|Ai | , i ≥ 2 , (4.47a)
|Di+1| = R|Di | , i ≥ 1 . (4.47b)

Two successively reflected partial waves Ei and Ei+1 have the optical path
difference (Fig. 4.37)

Δs = (2nd/ cos β)−2d tan β sin α .

Because sin α = n sin β, this can be reduced to

Δs = 2nd cos β = 2dn
√

1− sin2 β , (4.48a)

if the refractive index within the plane-parallel plate is n > 1 and outside the
plate n = 1. This path difference causes a corresponding phase difference

φ = 2πΔs/λ+Δφ , (4.48b)

where Δφ takes into account possible phase changes caused by the reflec-
tions. For instance, the incident wave with amplitude A1 suffers the phase
jump Δφ = π while being reflected at the medium with n > 1. Including this
phase jump, we can write

A1 = √
RA0 exp(iπ) = −√

RA0 .

The total amplitude A of the reflected wave is obtained by summation over
all partial amplitudes Ai , taking into account the different phase shifts,

A =
p∑

m=1

Am ei(m−1)φ = −√
RA0 +√

RA0(1− R)eiφ +
p∑

m=3

Am ei(m−1)φ

= −√
RA0

⎡

⎣1− (1− R)eiφ
p−2∑

m=0

Rm eimφ

⎤

⎦ . (4.49)

For vertical incidence (α = 0), or for an infinitely extended plate, we have an
infinite number of reflections. The geometrical series in (4.49) has the limit
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(1− R eiφ)−1 for p → ∞. We obtain for the total amplitude

A = −√
RA0

1− eiφ

1− R eiφ . (4.50)

The intensity I = 2cε0 AA∗ of the reflected wave is then, with I0 = 2cε0 A0 A∗
0,

IR = I0 R
4 sin2(φ/2)

(1− R)2 +4R sin2(φ/2)
. (4.51a)

In an analogous way, we find for the total transmitted amplitude

D =
∞∑

m=1

Dm ei(m−1)φ = (1− R)A0

∞∑

0

Rm eimφ ,

which gives the total transmitted intensity

IT = I0
(1− R)2

(1− R)2 +4R sin2(φ/2)
. (4.52a)

Equations (4.51, 4.52) are called the Airy formulas. Since we have neglected
absorption, we should have IR + IT = I0, as can easily be verified from
(4.51, 4.52).

The abbreviation F = 4R/(1− R)2 is often used, which allows the Airy
equations to be written in the form

IR = I0
F sin2(φ/2)

1+ F sin2(φ/2)
, (4.51b)

IT = I0
1

1+ F sin2(φ/2)
. (4.52b)

Figure 4.38 illustrates (4.52) for different values of the reflectivity R. The
maximum transmittance is T = 1 for φ = 2mπ. At these maxima IT = I0,
therefore the reflected intensity IR is zero. The minimum transmittance is

T min = 1

1+ F
=
(

1− R

1+ R

)2

.

Example: For R = 0.98 ⇒ T min = 10−4.
For R = 0.90 ⇒ T min = 2.8×10−3.
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Fig. 4.38. Transmittance of an absorption-free multiple-beam interferometer as a function
of the phase difference φ for different values of the finesse F∗

b) Free Spectral Range and Finesse

The frequency range δν between two maxima is the free spectral range of the
interferometer. With φ = 2πΔs/λ and λ = c/ν, we obtain from (4.48a)

δν = c

Δs
= c

2d
√

n2 − sin2 α
. (4.53a)

For vertical incidence (α = 0), the free spectral range becomes

|δν|α=0 = c

2nd
. (4.53b)

The full halfwidth ε = |φ1 −φ2| with I(φ1) = I(φ2) = I0/2 of the transmission
maxima in Fig. 4.38 expressed in phase differences is calculated from (4.52)
as

ε = 4 arcsin

(
1− R

2
√

R

)
, (4.54a)

which reduces for R ≈ 1 ⇒ (1− R) � R to

ε = 2(1− R)√
R

= 4√
F

. (4.54b)

In frequency units, the free spectral range δν corresponds to a phase difference
δφ = 2π. Therefore the halfwidth Δν becomes

Δν = ε

2π
δν � 2δν

π
√

F

which yields for vertical incidence with (4.53b)

Δν = c

2nd

1− R

π
√

R
. (4.54c)
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The ratio δν/Δν of free spectral range δν to the halfwidth Δν of the trans-
mission maxima is called the finesse F∗ of the interferometer. From (4.53b)
and (4.54c) we obtain for the “reflectivity finesse” F∗

R

F∗
R = δν

Δν
= π

√
R

1− R
= π

2

√
F . (4.55a)

The full halfwidth of the transmission peaks is then

Δν = δν

F∗
R

. (4.55b)

The finesse is a measure for the effective number of interfering partial waves
in the interferometer. This means that for vertical incidence the maximum path
difference between interfering waves is ΔSmax = F∗2nd. Figure 4.39 shows
the finesse F∗

R as a function of the mirror reflectivity.
Since we have assumed an ideal plane-parallel plate with a perfect sur-

face quality, the finesse (4.55a) is determined only by the reflectivity R of the
surfaces. In practice, however, deviations of the surfaces from an ideal plane
and slight inclinations of the two surfaces cause imperfect superposition of the
interfering waves. This results in a decrease and a broadening of the transmis-
sion maxima, which decreases the total finesse. If, for instance, a reflecting
surface deviates by the amount λ/q from an ideal plane, the finesse cannot

Fig. 4.39. Finesse F∗
R of a Fabry–Perot interferometer as a function of the mirror reflec-

tivity R
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be larger than q. One can define the total finesse F∗ of an interferometer by

1

F∗2 =
∑

i

1

F∗2
i

, (4.55c)

where the different terms F∗
i give the contributions to the decrease of the fi-

nesse caused by the different imperfections of the interferometer.
If, for instance, the surface of the mirror shows a parabolic deviation from

a plane surface, i.e.,

S(r, ϕ) = S0 +αr2

the finesse becomes (with k = 2π/λ [4.35])

F∗ = π

[(1− R)2/R + k2α2]1/2 (4.56)

which yields

1

F∗2 = (1− R)2

π2 R
+ 4α2

λ2 = 1

F∗2
R

+ 1

F∗2
f

(4.57)

where Fp is the finesse determined by the curvature of the mirror surface.

Example 4.10.
A plane, nearly parallel plate has a diameter D = 5 cm, a thickness
d = 1 cm, and a wedge angle of 0.2′′. The two reflecting surfaces have the
reflectivity R = 95%. The surfaces are flat to within λ/50, which means
that no point of the surface deviates from an ideal plane by more than λ/50.
The different contributions to the finesse are:

• Reflectivity finesse: F∗
R = π

√
R/(1− R) � 60;

• Surface finesse: FS � 50;
• Wedge finesse: with a wedge angle of 0.2′′ the optical path between the

two reflecting surfaces changes by about 0.1λ(λ = 0.5 μm) across the
diameter of the plate. For a monochromatic incident wave this causes
imperfect interference and broadens the maxima corresponding to a fi-
nesse of about 20.

The total finesse is then F∗2 = 1/(1/602 +1/502 +1/202) → F∗ � 17.7.
This illustrates that high-quality optical surfaces are necessary to obtain

a high total finesse [4.35]. It makes no sense to increase the reflectivity
without a corresponding increase of the surface finesse. In our example the
imperfect parallelism was the main cause for the low finesse. Decreasing
the wedge angle to 0.1′′ increases the wedge finesse to 40 and the total
finesse to 27.7.

A much larger finesse can be achieved using spherical mirrors, because
the demand for parallelism is dropped. With sufficiently accurate alignment
and high reflectivities, values of F∗ > 50,000 are possible (Sect. 4.2.10).
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c) Spectral Resolution

The spectral resolution, ν/Δν or λ/Δλ, of an interferometer is determined by
the free spectral range δν and by the finesse F∗. Two incident waves with
frequencies ν1 and ν2 = ν1 +Δν can still be resolved if their frequency sepa-
ration Δν is larger than δν/F∗, which means that their peak separation should
be larger than their full halfwidth.

Quantitatively this can be seen as follows: assume the incident radia-
tion consists of two components with the intensity profiles I1(ν − ν1) and
I2(ν−ν2) and equal peak intensities I1(ν1) = I2(ν2) = I0. For a peak sep-
aration ν2 − ν1 = δν/F∗ = 2δν/π

√
F, the total transmitted intensity I(ν) =

I1(ν)+ I2(ν) is obtained from (4.52a) as

I(ν) = I0

(
1

1+ F sin2(πν/δν)
+ 1

1+ F sin2[π(ν + δν/F∗)/δν]
)

, (4.58)

where the phase shift φ = 2πΔs/λ = 2πΔs(ν/c) = 2πν/δν in (4.52b) has
been expressed by the free spectral range δν = c/2nd = c/Δs, where Δs
is the optical path difference between two successive partial waves in
Fig. 4.36 for α = 0. The function I(ν) is plotted in Fig. 4.40 around the
frequency ν = (ν1 +ν2)/2. For ν = ν1 = mc/2nd, the first term in (4.58) be-
comes 1 and the second term can be derived with sin[π(ν1 + δν/F∗)/δν)
= sin π/F∗ � π/F∗ and F(π/F∗)2 = 4 to become 0.2. Inserting this into
(4.58) yields I(ν = ν1) = 1.2I0, I(ν = (ν1 + ν2)/2) � I0, and I(ν = ν2)
= 1.2I0. This just corresponds to the Rayleigh criterion for the resolution of
two spectral lines. The spectral resolving power of the interferometer is there-
fore

ν/Δν = (ν/δν)F∗ → Δν = δν/F∗ . (4.59)

Fig. 4.40. Transmitted intensity IT(ν) for two
closely spaced spectral lines at the limit
of spectral resolution where the linespacing
equals the halfwidth of the lines
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This can be also expressed by the optical path differences Δs between two
successive partial waves

ν

Δν
= λ

Δλ
= F∗ Δs

λ
. (4.60)

The resolving power of an interferometer is the product of finesse F∗ and
optical path difference Δs/λ in units of the wavelength λ.

A comparison with the resolving power ν/Δν = mN = NΔs/λ of a grat-
ing spectrometer with N grooves shows that the finesse F∗ can indeed be
regarded as the effective number of interfering partial waves and F∗Δs can
be regarded as the maximum path difference between these waves.

Example 4.11.
d = 1 cm, n = 1.5, R = 0.98, λ = 500 nm. An interferometer with negligible
wedge and high-quality surfaces, where the finesse is mainly determined by
the reflectivity, achieves with F∗ = π

√
R/(1− R) = 155 a resolving power

of λ/Δλ = 107. This means that the instrument’s linewidth is about Δλ ∼
5×10−5 nm or, in frequency units, Δν = 60 MHz.

d) Influence of Absorption Losses

Taking into account the absorption A = (1− R−T ) of each reflective surface,
(4.52) must be modified to

IT = I0
T 2

(A + T )2

1

[1+ F sin2(δ/2)] = I0
T 2

1+ R2 −2R cos δ
, (4.61a)

where T 2 = T1T2 is the product of the transmittance of the two reflecting sur-
faces. The absorption causes three effects:

(a) The maximum transmittance is decreased by the factor

IT

I0
= T 2

(A + T )2 = T 2

(1− R)2 < 1 . (4.61b)

Note that even a small absorption of each reflecting surface results in
a drastic reduction of the total transmittance. For A = 0.05, R = 0.9 →
T = 0.05 and T 2/(1− R)2 = 0.25.

(b) For a given transmission factor T , the reflectivity R = 1− A− T decreases
with increasing absorption. The quantity

F = 4R

(1− R)2 = 4(1− T − A)

(T + A)2 (4.61c)



144 4. Spectroscopic Instrumentation

decreases with increasing A. For the example above we obtain F = 360.
This makes the transmission peaks broader because of the decreasing num-
ber of interfering partial waves. The contrast

Imax
T

Imin
T

= 1+ F (4.61d)

of the transmitted intensity also decreases.
(c) The absorption causes a phase shift Δφ at each reflection, which depends

on the wavelength λ, the polarization, and the angle of incidence α [4.3].
This effect causes a wavelength-dependent shift of the maxima.

4.2.7 Plane Fabry–Perot Interferometer

A practical realization of the multiple beam-interference discussed in this sec-
tion may use either a solid plane-parallel glass or fused quartz plate with
two coated reflecting surfaces (Fabry–Perot etalon, Fig. 4.41a) or two sepa-
rate plates, where one surface of each plate is coated with a reflection layer.
The two reflecting surfaces are opposed and are aligned to be as parallel as
achievable (Fabry–Perot interferometer (FPI), Fig. 4.41b). The outer surfaces
are coated with antireflection layers in order to avoid reflections from these
surfaces that might overlap the interference pattern. Furthermore, they have
a slight angle against the inner surfaces (wedge).

Fig. 4.41a,b. Two realizations of
a Fabry–Perot interferometer: (a) so-
lid etalon; (b) air-spaced plane-paral-
lel reflecting surfaces

Both devices can be used for parallel as well as for divergent incident light.
We now discuss them in more detail, first considering their illumination with
parallel light.

a) The Plane FPI as a Transmission Filter

In laser spectroscopy, etalons are mainly used as wavelength-selective trans-
mission filters within the laser resonator to narrow the laser bandwidth
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(Sect. 5.4). The wavelength λm or frequency νm for the transmission max-
imum of mth order, where the optical path between successive beams is
Δs = mλ, can be deduced from (4.48a) and Fig. 4.37 to be

λm = 2d

m

√
n2 − sin2 α = 2nd

m
cos β , (4.62a)

νm = mc

2nd cos β
. (4.62b)

For all wavelengths λ = λm (m = 0, 1, 2, . . . ) in the incident light, the phase
difference between the transmitted partial waves becomes δ = 2mπ and the
transmitted intensity is, according to (4.61),

IT = T 2

(1− R)2 I0 = T 2

(A + T )2 I0 , (4.63)

where A = 1−T − R is the absorption of the etalon (substrate absorption plus
absorption of one reflecting surface). The reflected waves interfere destruc-
tively for λ = λm and the reflected intensity becomes zero.

Note, however, that this is only true for A � 1 and infinitely extended
plane waves, where the different reflected partial waves completely overlap.
If the incident wave is a laser beam with the finite diameter D, the different
reflected partial beams do not completely overlap because they are laterally
shifted by Δ = b cos α with b = 2d tan β (Fig. 4.42). For a rectangular intensity
profile of the laser beam, the fraction Δ/D of the reflected partial amplitudes
does not overlap and cannot interfere destructively. This means that, even for
maximum transmission, the reflected intensity is not zero but a background
reflection remains, which is missing in the transmitted light. For small an-
gles α, one obtains for the intensity loss per transit due to reflection [4.36]
for a rectangular beam profile

IR

I0
= 4R

(1− R)2

(
2αd

nD

)2

. (4.64a)

For a Gaussian beam profile the calculation is more difficult, and the solution
can only be obtained numerically. The result for a Gaussian beam with the

Fig. 4.42. Incomplete interference of two re-
flected beams with finite diameter D, causing
a decrease of the maximum transmitted inten-
sity
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radius w (Sect. 5.3) is [4.37]

IR

I0
� 8R

(1− R)2

(
2dα

nw

)2

. (4.64b)

A parallel light beam with the diameter D passing a plane-parallel plate with
the angle of incidence α therefore suffers reflection losses in addition to the
eventual absorption losses. The reflection losses increase with α2 and are
proportional to the ratio (d/D)2 of the etalon thickness d and the beam dia-
meter D (walk-off losses).

Example 4.12.

d = 1 cm, D = 0.2 cm, n = 1.5, R = 0.3, α = 1◦ ∧= 0.017 rad → IR/I0
= 0.05, which means 5% walk-off losses.

The transmission peak λm of the etalon can be shifted by tilting the etalon.
According to (4.62) the wavelength λm decreases with increasing angle of
incidence α. The walk-off losses, however, limit the tuning range of tilted
etalons within a laser resonator. With increasing angle α, the losses may be-
come intolerably large.

b) Illumination with Divergent Light

Illuminating the FPI with divergent monochromatic light (e.g., from an ex-
tended source or from a laser beam behind a diverging lens), a continuous
range of incident angles α is offered to the FPI, which transmits, for a wave-
length λm , those directions αm that obey (4.62a). We then observe an inter-
ference pattern of bright rings in the transmitted light (Fig. 4.43). Since the
reflected intensity IR = I0 − IT is complementary to the transmitted one, a cor-
responding system of dark rings appears in the reflected light at the same
angles of incidence αm .

When β is the angle of inclination to the interferometer axis inside the FPI,
the transmitted intensity is maximum, according to (4.62), for

mλ = 2nd cos β , (4.65)

Fig. 4.43. The interference ring system of the transmitted intensity may be regarded as
wavelength-selective imaging of corresponding ring areas of an extended light source
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Fig. 4.44. Illustration
of (4.67)

where n is the refractive index between the reflecting planes. Let us number
the rings by the integer p, beginning with p = 0 for the central ring. With
m = m0 − p, we can rewrite (4.65) for small angles βp as

(m0 − p)λ = 2nd cos βp ∼ 2nd(1−β2
p/2) = 2nd

[
1− 1

2

(n0αp

n

)2
]

,

(4.66)

where n0 is the refractive index of air, and Snell’s law sin α � α = (n/n0)β
has been used (Fig. 4.44).

When the interference pattern is imaged by a lens with the focal length f
into the plane of the photoplate, we obtain for the ring diameters Dp = 2 fαp
the relations

(m0 − p)λ = 2nd
[
1− (n0/n)2 D2

p/
(
8 f 2)] , (4.67a)

(m0 − p−1)λ = 2nd
[
1− (n0/n)2 D2

p+1/
(
8 f 2)] . (4.67b)

Subtracting the second equation from the first one yields

D2
p+1 − D2

p = 4n f 2

n2
0d

λ . (4.68)

For the smallest ring with p = 0, (4.66) becomes

m0λ = 2nd
(

1−β2
0/2
)

⇒ m0λ+ndβ2
0 = 2nd , (4.69)

which can be written as

(m0 + ε)λ = 2nd . (4.70)

The “excess” ε < 1, also called fractional interference order, can be obtained
from a comparison of (4.69) and (4.70) as

ε = ndβ2
0/λ = (n0/n)dα2

0/λ . (4.71)

Inserting ε from (4.70) into (4.67a) yields the relation

D2
p = 8n2 f 2

n2
0(m0 + ε)

(p+ ε) . (4.72)
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Fig. 4.45. Determination of the
access ε from the plot of D2

p
versus p

A linear fit of the squares D2
p of the measured ring diameters versus the

ring number p yields the excess ε and therefore from (4.70) the wave-
length λ, provided the refractive index n and the value of d of the plate
separation are known from a previous calibration of the interferometer. How-
ever, the wavelength is determined by (4.70) only modulo a free spectral
range δλ = λ2/(2nd). This means that all wavelengths λm differing by m free
spectral ranges produce the same ring systems. For an absolute determination
of λ, the integer order m0 must be known.

The experimental scheme for the absolute determination of λ utilizes
a combination of FPI and spectrograph in a so-called crossed arrangement
(Fig. 4.46), where the ring system of the FPI is imaged onto the entrance
slit of a spectrograph. The spectrograph disperses the slit images S(λ) with
a medium dispersion in the x-direction (Sect. 4.1), the FPI provides high dis-
persion in the y-direction. The resolution of the spectrograph must only be
sufficiently high to separate the images of two wavelengths differing by one
free spectral range of the FPI. Figure 4.47 shows, for illustration, a section
of the Na2 fluorescence spectrum excited by an argon laser line. The ordi-
nate corresponds to the FPI dispersion and the abscissa to the spectrograph
dispersion [4.38].

The angular dispersion dβ/dλ of the FPI can be deduced from (4.66)

dβ

dλ
=
(

dλ

dβ

)−1

= m/(2nd sin β) = 1

λm sin β
with λm = 2nd/m .

(4.73)

Equation (4.73) shows that the angular dispersion becomes infinite for β → 0.
The linear dispersion of the ring system on the photoplate is

dD

dλ
= f

dβ

dλ
= f

λm sin β
. (4.74)
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Fig. 4.46. Combination of FPI and spectrograph for the unambiguous determination of the
integral order m0

Fig. 4.47. Section of the argon laser-excited fluorescence spectrum of Na2 obtained with
the arrangement of crossed FPI and spectrograph shown in Fig. 4.46 [4.38]

Example 4.13.
f = 50 cm, λ = 0.5 μm. At a distance of 1 mm from the ring center is
β = 0.1/50 and we obtain a linear dispersion of dD/dλ = 500 mm/nm.
This is at least one order of magnitude larger than the dispersion of a large
spectrograph.



150 4. Spectroscopic Instrumentation

c) The Air-Spaced FPI

Different from the solid etalon, which is a plane-parallel plate coated on both
sides with reflecting layers, the plane FPI consists of two wedged plates,
each having one high-reflection and one antireflection coating (Fig. 4.41b).
The finesse of the FPI critically depends, apart from the reflectivity R and the
optical surface quality, on the parallel alignment of the two reflecting surfaces.
The advantage of the air-spaced FPI, that any desired free spectral range can
be realized by choosing the corresponding plate separation d, must be paid for
by the inconvenience of careful alignment. Instead of changing the angle of
incidence α, wavelength tuning can be also achieved for α = 0 by variation of
the optical path difference Δs = 2nd, either by changing d with piezoelectric
tuning of the plate separation, or by altering the refractive index by a pressure
change in the container enclosing the FPI.

The tunable FPI is used for high-resolution spectroscopy of line profiles.
The transmitted intensity IT(p) as a function of the optical path difference nd
is given by the convolution

IT(ν) = I0(ν)T(nd, λ) ,

where the transmission of the FPI T(nd, λ) = T(φ) can be obtained from
(4.52).

With photoelectric recording (Fig. 4.48), the large dispersion at the ring
center can be utilized. The light source LS is imaged onto a small pinhole
P1, which serves as a point source in the focal plane of L1. The parallel
light beam passes the FPI, and the transmitted intensity is imaged by L2 onto
another pinhole P2 in front of the detector. All light rays within the cone
cos β0 ≤ m0λ/(nd), where β is the angle against the interferometer axis, con-
tribute according to (4.66) to the central fringe. If the optical path length nd
is tuned, the different transmission orders with m = m0, m0 +1, m0 +2, . . .
are successively transmitted for a wavelength λ according to mλ = 2nd. Light
sources that come close to being a point source, can be realized when a fo-
cused laser beam crosses a sample cell and the laser-induced fluorescence

Fig. 4.48. Use of a plane FPI for photoelectric recording of the spectrally resolved trans-
mitted intensity IT(n ·d, λ) emitted from a point source
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Fig. 4.49. Photoelectric recording of a Doppler-broadened laser-excited fluorescence line
of Na2 molecules in a vapor cell and the Doppler-free scattered laser line. The pressure
scan Δp = a corresponds to one free spectral range of the FPI

emitted from a small section of the beam length is imaged through the FPI
onto the entrance slit of a monochromator, which is tuned to the desired wave-
length interval Δλ around λm (Fig. 4.46). If the spectral interval Δλ resolved
by the monochromator is smaller then the free spectral range δλ of the FPI, an
unambigious determination of λ is possible. For illustration, Fig. 4.49 shows
a Doppler-broadened fluorescence line of Na2 molecules excited by a single-
mode argon laser at λ = 488 nm, together with the narrow line profile of the
scattered laser light. The pressure change Δp

∧= 2dΔnL = a corresponds to
one free spectral range of the FPI, i.e., 2dΔnL = λ.

For Doppler-free resolution of fluorescence lines (Vol. 2, Chap. 4), the
laser-induced fluorescence of molecules in a collimated molecular beam
can be imaged through a FPI onto the entrance slit of the monochromator

Fig. 4.50. Experimental arrangement for photoelectric recording of high-resolution fluores-
cence lines excited by a single-mode laser in a collimated molecular beam and observed
through FPI plus monochromator
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(Fig. 4.50). In this case, the crossing point of laser and molecular beam, in-
deed, represents nearly a point source.

4.2.8 Confocal Fabry–Perot Interferometer

A confocal interferometer, sometimes called incorrectly a spherical FPI, con-
sists of two spherical mirrors M1, M2 with equal curvatures (radius r) that
are opposed at a distance d = r (Fig. 4.51a) [4.39–4.43]. These interferometers
have gained great importance in laser physics as high-resolution spectrum ana-
lyzers for detecting the mode structure and the linewidth of lasers [4.41–4.43],
and, in the nearly confocal form, as laser resonators (Sect. 5.2).

Neglecting spherical aberration, all light rays entering the interferometer
parallel to its axis would pass through the focal point F and would reach the
entrance point P1 again after having passed the confocal FPI four times. Fig-
ure 4.51 illustrates the general case of a ray which enters the confocal FPI at
a small inclination θ and passes the successive points P1, A, B, C, P1, shown
in Fig. 4.51d in a projection. Angle θ is the skew angle of the entering ray.

Because of spherical aberration, rays with different distances ρ1 from the
axis will not all go through F but will intersect the axis at different posi-
tions F′ depending on ρ1 and θ. Also, each ray will not exactly reach the
entrance point P1 after four passages through the confocal FPI since it is
slightly shifted at successive passages. However, it can be shown [4.39, 4.42]
that for sufficiently small angles θ, all rays intersect at a distance ρ(ρ1, θ)
from the axis in the vicinity of the two points P and P′ located in the central
plane of the confocal FPI (Fig. 4.51b).

The optical path difference Δs between two successive rays passing
through P can be calculated from geometrical optics. For ρ1 � r and θ � 1,
one obtains for the near confocal case d ≈ r [4.42]

Δs = 4d +ρ2
1ρ

2
2 cos 2θ/r3 +higher-order terms . (4.75)

An incident light beam with diameter D = 2ρ1 therefore produces, in the
central plane of a confocal FPI, an interference pattern of concentric rings.
Analogous of the treatment in Sect. 4.2.7, the intensity I(ρ, λ) is obtained by
adding all amplitudes with their correct phases δ = δ0 + (2π/λ)Δs. According
to (4.52) we get

I(ρ, λ) = I0T 2

(1− R)2 +4R sin2[(π/λ)Δs] , (4.76)

where T = 1− R − A is the transmission of each of the two mirrors. The in-
tensity has maxima for δ = 2mπ, which is equivalent to

4d +ρ4/r3 = mλ , (4.77)

when we neglect the higher-order terms in (4.75) and set θ = 0 and ρ2 = ρ1ρ2.
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Fig. 4.51a–d. Trajectories of rays in a confocal FPI: (a) incident beam parallel to the
FPI axis; (b) inclined incident beam; (c) perspective view for illustrating the skew angle;
(d) projection of the skewed rays onto the mirror surfaces

The free spectral range δν, i.e., the frequency separation between succes-
sive interference maxima, is for the near-confocal FPI with ρ � d

δν = c

4d +ρ4/r3 , (4.78)

which is different from the expression δν = c/2d for the plane FPI.
The radius ρm of the mth-order interference ring is obtained from (4.77),

ρm = [(mλ−4d)r3]1/4 , (4.79)

which reveals that ρm depends critically on the separation d of the spherical
mirrors. Changing d by a small amount ε from d = r to d = r +ε changes the
path difference to

Δs = 4(r + ε)+ρ4/(r + ε)3 ∼ 4(r + ε)+ρ4/r3 . (4.80)

For a given wavelength λ, the value of ε can be chosen such that 4(r + ε) =
m0λ. In this case, the radius of the central ring becomes zero. We can number
the outer rings by the integer p and obtain with m = m0 + p for the radius of
the pth ring the expression

ρp = (pλr3)1/4 . (4.81)
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Fig. 4.52. Photoelectric recording of the spectral light power transmitted of a scanning
confocal FPI

The radial dispersion deduced from (4.79),

dρ

dλ
= mr3/4

[(mλ−4d)r3]3/4 , (4.82)

becomes infinite for mλ = 4d, which occurs according to (4.79) at the center
with ρ = 0.

This large dispersion can be used for high-resolution spectroscopy of nar-
row line profiles with a scanning confocal FPI and photoelectric recording
(Fig. 4.52).

If the central plane of the near-confocal FPI is imaged by a lens onto
a circular aperture with sufficiently small radius b < (λr3)1/4 only the cen-
tral interference order is transmitted to the detector while all other orders are
stopped. Because of the large radial dispersion for small ρ one obtains a high
spectral resolving power. With this arrangement not only spectral line pro-
files but also the instrumental bandwidth can be measured, when an incident
monochromatic wave (from a stabilized single-mode laser) is used. The mirror
separation d = r + ε is varied by the small amount ε and the power

P(λ, b, ε) = 2π

b∫

ρ=0

ρI(ρ, λ, ε)dρ , (4.83)

transmitted through the aperture is measured as a function of ε at fixed values
of λ and b.

The integrand I(ρ, λ, ε) can be obtained from (4.76), where the phase dif-
ference δ(ε) = 2πΔs/λ is deduced from (4.80).

The optimum choice for the radius b of the aperture is based on a com-
promise between spectral resolution and transmitted intensity. When the inter-
ferometer has the finesse F∗, the spectral halfwidth of the transmission peak
is δν/F∗, see (4.55b), and the maximum spectral resolving power becomes
F∗Δs/λ (4.60). For the radius b = (r3λ/F∗)1/4 of the aperture, which is just
(F∗)1/4 times the radius ρ1 of a fringe with p = 1 in (4.81), the spectral re-
solving power is reduced to about 70% of its maximum value. This can be
verified by inserting this value of b into (4.83) and calculating the halfwidth
of the transmission peak P(λ1, F∗, ε).
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Fig. 4.53. Illustration of the larger sensitivity against misalignment for the plane FPI com-
pared with the spherical FPI

The total finesse of the confocal FPI is, in general, higher than that of
a plane FPI for the following reasons:

• The alignment of spherical mirrors is far less critical than that of plane
mirrors, because tilting of the spherical mirrors does not change (to a first
approximation) the optical path length 4r through the confocal FPI, which
remains approximately the same for all incident rays (Fig. 4.53). For the
plane FPI, however, the path length increases for rays below the interfer-
ometer axis, but decreases for rays above the axis.

• Spherical mirrors can be polished to a higher precision than plane mirrors.
This means that the deviations from an ideal sphere are less for spheri-
cal mirrors than those from an ideal plane for plane mirrors. Furthermore,
such deviations do not wash out the interference structure but cause only
a distortion of the ring system because a change of d allows the same path
difference Δs for another value of ρ according to (4.75).

The total finesse of a confocal FPI is therefore mainly determined by the
reflectivity R of the mirrors. For R = 0.99, a finesse F∗ = π

√
R/(1− R) ≈

300 can be achieved, which is much higher than that obtainable with
a plane FPI, where other factors decrease F∗. With the mirror separation
r = d = 3 cm, the free spectral range is δ = 2.5 GHz and the spectral resolu-
tion is Δν = 7.5 MHz at the finesse F∗ = 300. This is sufficient to measure
the natural linewidth of many optical transitions. With modern high-reflection
coatings, values of R = 0.9995 can be obtained and confocal FPI with a fi-
nesse F∗ ≥ 104 have been realized [4.44].

From Fig. 4.52 we see that the solid angle accepted by the detector behind
the aperture with radius b is Ω = πb2/r2. The light power transmitted to the
detector is proportional to the product of the solid angle Ω and area A in the
central plane, which is imaged by the lens onto the aperture (often called the
étendue U). With the aperture radius b = (r3λ/F∗)1/4 (see above) the étendue
becomes

U = AΩ = π2b4/r2 = π2rλ/F∗ . (4.84)

For a given finesse F∗, the étendue of the confocal FPI increases with the
mirror separation d = r. The spectral resolving power

ν

Δν
= 4F∗ r

λ
, (4.85)
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of the confocal FPI is proportional to the product of finesse F∗ and the ratio
of mirror separation r = d to the wavelength λ. With a given étendue U =
π2rλ/F∗, we can insert r = UF∗/(π2λ) into (4.84) and obtain for the spectral
resolving power

ν

Δν
=
(

2F∗

πλ

)2

U , (confocal FPI) . (4.86)

Let us compare this with the case of a plane FPI with the plate dia-
meter D and the separation d, which is illuminated with nearly parallel light
(Fig. 4.48). According to (4.66), the path difference between a ray parallel
to the axis and a ray with a small inclination β is, given by Δs = 2nd(1−
cos β) ≈ ndβ2.

To achieve a finesse F∗ with photoelectric recording, this variation of the
path length for the different rays through the interferometer should not exceed
λ/F∗, which restricts the solid angle Ω = β2 acceptable by the detector to
Ω ≤ λ/(d · F∗). The étendue is therefore

U = AΩ = π
D2

4

λ

d · F∗ . (4.87)

Inserting the value of d given by this equation into the spectral resolving
power ν/Δν = 2dF∗/λ, we obtain

ν

Δν
= πD2

2U
, (plane FPI) . (4.88)

While the spectral resolving power is proportional to U for the confocal FPI,
it is inversely proportional to U for the plane FPI. This is because the éten-
due increases with the mirror separation d for the confocal FPI but decreases
proportional to 1/d for the plane FPI. For a mirror radius r > D2/4d, the éten-
due of the confocal FPI is larger than that of a plane FPI with equal spectral
resolution. This means that the transmitted power is larger for the confocal
FPI for r > D2/4d.

Example 4.14.
A confocal FPI with r = d = 5 cm has for λ = 500 nm the étendue U =
(2.47×10−3/F∗) cm2/sr. This is the same étendue as that of a plane FPI
with d = 5 cm and D = 10 cm. However, the diameter of the spherical mir-
rors can be much smaller (less than 5 mm). With a finesse F∗ = 100, the
étendue is U = 2.5 ×10−5 [cm2 sr] and the spectral resolving power is
ν/Δν = 4×107. With this étendue the resolving power of the plane FPI is
6×106, provided the whole plane mirror surface has a surface quality to al-
low a surface finesse of F∗ ≥ 100. In practice, this is difficult to achieve for
a flat plane with D = 10 cm diameter, while for the small spherical mirrors
even F∗ > 104 is feasible.

This example shows that for a given light-gathering power, the confocal
FPI can have a much higher spectral resolving power than the plane FPI.
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More detailed information on the history, theory, practice, and applica-
tion of plane and spherical Fabry–Perot interferometers may be found in
[4.45–4.47].

4.2.9 Multilayer Dielectric Coatings

The constructive interference found for the reflection of light from plane-
parallel interfaces between two regions with different refractive indices can
be utilized to produce highly reflecting, essentially absorption-free mirrors.
The improved technology of such dielectric mirrors has greatly supported the
development of visible and ultraviolet laser systems.

The reflectivity R of a plane interface between two regions with com-
plex refractive indices n1 = n′

1 − iκ1 and n2 = n′
2 − iκ2 can be calculated from

Fresnel’s formulas [4.16]. It depends on the angle of incidence α and on the
direction of polarization. For the polarization component with the electric field
vector E parallel to the plane of incidence (defined by the incident and the
reflected beam), the reflectivity is

Rp =
(

n2 cos α−n1 cos β

n2 cos α+n1 cos β

)2

=
[

tan(α−β)

tan(α+β)

]2

(4.89a)

where β is the refraction angle (sin β = (n1/n2) sin α). For the vertical com-
ponent (E perpendicular to the plane of incidence), one obtains:

Rs =
(

n1 cos α−n2 cos β

n1 cos α+n2 cos β

)2

=
[

sin(α−β)

sin(α+β)

]2

(4.89b)

The reflectivities Rp and Rs are illustrated in Fig. 4.54 for three different ma-
terials for incident light polarized parallel (Rp) and perpendicular (Rs) to the
plane of incidence.

For vertical incidence (α = 0, β = 0), one obtains from Fresnel’s formulas
for both polarizations

R|α=0 =
(

n1 −n2

n1 +n2

)2

. (4.89c)

Since this case represents the most common situation for laser mirrors, we
shall restrict the following discussion to vertical incidence.

To achieve maximum reflectivities, the numerator (n1 − n2)
2 should be

maximized and the denominator minimized. Since n1 is always larger than
one, this implies that n2 should be as large as possible. Unfortunately, the dis-
persion relations (3.36), (3.37) imply that a large value of n also causes large
absorption. For instance, highly polished metal surfaces have a maximum re-
flectivity of R = 0.95 in the visible spectral range. The residual 5% of the
incident intensity are absorbed and therefore lost.

The situation can be improved by selecting reflecting materials with low
absorption (which then necessarily also have low reflectivity), but using
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Fig. 4.54a,b. Reflectivities Rp and Rs for the two polarization components parallel and
perpendicular to the plane of incidence as a function of the angle of incidence α: (a) air–
glass boundary (n1 = 1, n2 = 1, 5); (b) air–metal boundary for Cu(n′ = 0.76, κ = 3.32)
and Ag(n′ = 0.055, κ = 3.32)

many layers with alternating high and low refractive index n. Choosing the
proper optical thickness nd of each layer allows constructive interference be-
tween the different reflected amplitudes to be achieved. Reflectivities of up to
R = 0.9999 have been reached [4.48–4.51].

Figure 4.55 illustrates such constructive interference for the example of
a two-layer coating. The layers with refractive indices n1, n2 and thicknesses
d1, d2 are evaporated onto an optically smooth substrate with the refractive
index n3. The phase differences between all reflected components have to be
δm = 2mπ (m = 1, 2, 3, . . . ) for constructive interference. Taking into account
the phase shift δ = π at reflection from an interface with a larger refractive
index than that of the foregoing layer, we obtain the conditions

n1d1 = λ/4 and n2d2 = λ/2 for n1 > n2 > n3 , (4.90a)

Fig. 4.55a,b. Maximum reflection of light with
wavelength λ by a two-layer dielectric coat-
ing: (a) n1 > n2 > n3; (b) n1 > n2 < n3
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and

n1d1 = n2d2 = λ/4 for n1 > n2, n3 > n2 . (4.90b)

The reflected amplitudes can be calculated from Fresnel’s formulas. The to-
tal reflected intensity is obtained by summation over all reflected amplitudes
taking into account the correct phase. The refractive indices are now selected
such that

∑
Ai becomes a maximum. The calculation is still feasible for our

example of a two-layer coating and yields for the three reflected amplitudes
(double reflections are neglected)

A1 =√R1 A0; A2 =√R2(1−√R1)A0 ,

A3 =√R3(1−√R2)(1−√R1)A0 ,

where the reflectivities Ri are given by (4.89).

Example 4.15.
|n1| = 1.6, |n2| = 1.2, |n3| = 1.45; A1 = 0.231A0, A2 = 0.143A0, A3 =
0.094A0. AR =∑ Ai = 0.468A0 → IR = 0.22I0 → R = 0.22, provided the
path differences have been choosen correctly.

This example illustrates that for materials with low absorption, many
layers are necessary to achieve a high reflectivity. Figure 4.56a depicts
schematically the composition of a dielectric multilayer mirror. The calcula-
tion and optimization of multilayer coatings with up to 20 layers becomes
very tedious and time consuming, and is therefore performed using computer
programs [4.49, 4.51]. Figure 4.56b illustrates the reflectivity R(λ) of a high-
reflectance mirror with 17 layers.

Fig. 4.56a,b. The dielectric multilayer mirror: (a) Composition of multilayers; (b) Reflec-
tivity of a high-reflectance multilayer mirror with 17 layers as a function of the incident
wavelength λ
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Fig. 4.57. Bragg mirror with eight alternating layers of TiO2 and SiO2

By proper selection of different layers with slightly different optical path
lengths, one can achieve a high reflectivity over an extended spectral range.
Currently, “broad-band” reflectors are available with reflectivity of R ≥ 0.99
within the spectral range (λ0 ±0.2λ0), while the absorption losses are less
than 0.2% [4.48, 4.50]. At such low absorption losses, the scattering of light
from imperfect mirror surfaces may become the major loss contribution.
When total losses of less than 0.5% are demanded, the mirror substrate must
be of high optical quality (better than λ/20), the dielectric layers have to be
evaporated very uniformly, and the mirror surface must be clean and free of
dust or dirty films [4.51]. The best mirrors are produced by ion implantation
techniques. Such dielectric mirrors with alternating λ/4-layers of materials
with high and low refractive indices are often called “Bragg mirrors” because
they work in a similar way to the Bragg reflection of X-rays at perfect crystal
planes. With very pure materials of extremely low absorption, they reach re-
flectivities of R > 0.99999 [4.52]. The reflectivity R(λ) of a Bragg mirror for
vertical incidence around λ = 1000 nm is shown in Fig. 4.57.

Instead of maximizing the reflectivity of a dielectric multilayer coating
through constructive interference, it is, of course, also possible to minimize it
by destructive interference. Such antireflection coatings are commonly used
to minimize unwanted reflections from the many surfaces of multiple-lens
camera objectives, which would otherwise produce an annoying background
illumination of the photomaterial. In laser spectroscopy such coatings are im-
portant for minimizing reflection losses of optical components inside the laser
resonator and for avoiding reflections from the back surface of output mir-
rors, which would introduce undesirable couplings, thereby causing frequency
instabilities of single-mode lasers.

Using a single layer (Fig. 4.58a), the reflectivity reaches a minimum only
for a selected wavelength λ (Fig. 4.59). We obtain IR = 0 for δ = (2m +1)π,
if the two amplitudes A1 and A2 reflected by the interfaces (n1, n2) and (n2,
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Fig. 4.58. Antireflection coating: (a) single layer; (b) multilayer coating

Fig. 4.59a–d. Antireflection coatings. (a) Single layer MgF2 on substrates with differ-
ent refractive index n; (b)–(d) broadband multilayer AR-coatings, optimized for different
spectral ranges

n3) are equal. For vertical incidence this gives the condition

R1 =
(

n1 −n2

n1 +n2

)2

= R2 =
(

n2 −n3

n2 +n3

)2

, (4.91)

which can be reduced to

n2 = √
n1n3 . (4.92)
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For a single layer on a glass substrate the values are n1 = 1 and n3 = 1.5. Ac-
cording to (4.92), n2 should be n2 = √

1.5 = 1.23. Durable coatings with such
low refractive indices are not available. One often uses MgF2 with n2 = 1.38,
giving a reduction of reflection from 4% to 1.2% (Fig. 4.59).

With multilayer antireflection coatings the reflectivity can be decreased be-
low 0.2% for an extended spectral range [4.51]. For instance, with three λ/4
layers (MgF2, SiO, and CeF3) the reflection drops to below 1% for the whole
range between 420 nm and 840 nm [4.48, 4.53, 4.54].

4.2.10 Interference Filters

Interference filters are used for selective transmission in a narrow spectral
range. Incident radiation of wavelengths outside this transmission range is ei-
ther reflected or absorbed. One distinguishes between line filters and bandpass
filters.

A line filter is essentially a Fabry–Perot etalon with a very small optical
path nd between the two reflecting surfaces. The technical realization uses
two highly reflecting coatings (either silver coatings or dielectric multilayer
coatings) that are separated by a nonabsorbing layer with a low refractive
index (Fig. 4.60). For instance, for nd = 0.5 μm the transmission maxima
for vertical incidence are obtained from (4.62a) at λ1 = 1 μm, λ2 = 0.5 μm,
λ3 = 0.33 μm, etc. In the visible range this filter has therefore only one trans-
mission peak at λ = 500 nm, with a halfwidth that depends on the finesse
F∗ = π

√
R/(1− R) (Fig. 4.38).

The interference filter is characterized by the following quantities:

• The wavelength λm at peak transmission;
• The maximum transmission;
• The contrast factor, which gives the ratio of maximum to minimum trans-

mission;
• The bandwidth Δν = ν1 −ν2 with T(ν1) = T(ν2) = 1

2 Tmax.

Fig. 4.60a,b. Interference filters of the Fabry–Perot type: (a) with two single layers of
silver; (b) with dielectric multilayer coatings
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Fig. 4.61. Spectral transmission of interference
filters. Solid curve: line filter. Dashed curve:
bandpass filter. Note the logarithmic scale

The maximum transmission according to (4.61) is Tmax = T 2/(1 − R)2.
Using thin silver or aluminum coatings with R = 0.8, T = 0.1, and A = 0.1,
the transmission of the filter is only Tmax = 0.25 and the finesse F∗ = 15. For
our example this means a halfwidth of 660 cm−1 at a free spectral range of
104 cm−1. At λ = 500 nm this corresponds to a free spectral range of 250 nm
and a halfwidth of about 16 nm. For many applications in laser spectroscopy,
the low peak transmission of interference filters with absorbing metal coatings
is not tolerable. One has to use absorption-free dielectric multilayer coatings
(Fig. 4.60b) with high reflectivity, which allows a large finesse and therefore
a smaller bandwidth and a larger peak transmission (Fig. 4.61).

Example 4.16.
With R = 0.95, A = 0.01 and T = 0.04, according to (4.61) we obtain
a peak transmission of 64%, which increases with A = 0.005, T = 0.045
to 81%. The contrast becomes γ = Imax

T /Imin
T = (1+ F) = 1+4F∗2/π2 =

1520. With a thickness nd = 5 μm of the separating layer, the free spectral
range is δν = 3×1013 Hz

∧= 25 nm at λ = 500 nm.
A higher finesse F∗ due to larger reflectivities of the reflecting films not

only decreases the bandwidth but also increases the contrast factor. With
R = 0.98 → F = 4R/(1− R)2 = 9.8×103, which means that the intensity
at the transmission minimum is only about 10−4 of the peak transmission.
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The bandwidth can be further decreased by using two interference filters
in series. However, it is preferable to construct a double filter that consists of
three highly-reflecting surfaces, separated by two nonabsorbing layers of the
same optical thickness. If the thickness of these two layers is made slightly
different, a bandpass filter results that has a flat transmission curve but steep
slopes to both sides. Commercial interference filters are currently available
with a peak transmission of at least 90% and a bandwidth of less than 2 nm
[4.49, 4.55]. Special narrow-band filters even reach 0.3 nm, however, with re-
duced peak transmission.

The wavelength λm of the transmission peak can be shifted to lower values
by tilting the interference filter, which increases the angle of incidence α, see
(4.62a). The tuning range is, however, restricted, because the reflectivity of the
multilayer coatings also depends on the angle α and is, in general, optimized
for α = 0. For divergent incident light, the transmission bandwidth increases
with the divergence angle. From (4.62a), we obtain for the wavelength λ(α)
of a tilted filter

λ = 2nd

m
cos β = λ0 cos β ≈ λ0

(
1− β2

2

)
≈ λ0

(
1− α2

2n2

)
. (4.93)

Example 4.17.

λ0 = 1500 nm, n = 1.5, α = 150◦ ∧= 0.25 rad ⇒ λ(α) = 1389 nm ⇒ Δλ =
λ0 −λ(α) = 111 nm

In the ultraviolet region, where the absorption of most materials used for
interference filters becomes large, the selective reflectance of interference fil-
ters can be utilized to achieve narrow-band filters with low losses (Fig. 4.62).
For more detailed treatment, see [4.48–4.55].

In low-level fluorescence spectroscopy or Raman spectroscopy, the scat-
tered light of the intense exciting laser often overlaps the fluorescence lines.
Here special interference filters are available which have a narrow minimum
transmission at the laser wavelength (line-blocking filter) but a high transmis-
sion in the other spectral ranges.

Fig. 4.62. Reflection interference filter
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4.2.11 Birefringent Interferometer

The basic principle of the birefringent interferometer or Lyot filter [4.24, 4.56]
is founded on the interference of polarized light that has passed through
a birefringent crystal. Assume that a linearly polarized plane wave

E = A · cos(ωt − kx) ,

with

A = {0, Ay, Az} , Ay = |A| sin α , Az = |A| cos α ,

is incident on the birefringent crystal (Fig. 4.63). The electric vector E makes
an angle α with the optical axis, which points into the z-direction. Within
the crystal, the wave is split into an ordinary beam with the wave number
ko = nok and the phase velocity vo = c/no, and an extraordinary beam with
ke = nek and ve = c/ne. The partial waves have mutually orthogonal polar-
ization in directions parallel to the z- and y-axis, respectively. Let the crystal
with length L be placed between x = 0 and x = L. Because of the different
refractive indices no and ne for the ordinary and the extraordinary beams, the
two partial waves at x = L

Ey(L) = Ay cos(ωt − keL) and Ez(L) = Az cos(ωt − k0L) ,

show a phase difference of

Δφ = k(n0 −ne)L = (2π/λ)ΔnL with Δn = n0 −ne . (4.94)

The superposition of these two waves results, in general, in elliptically polar-
ized light, where the principal axis of the ellipse is turned by an angle β = φ/2
against the direction of A0.

For phase differences Δφ = 2mπ, linearly polarized light with E(L) ‖
E(0) is obtained. However, for Δφ = (2m +1)π and α = 45◦, the transmitted
wave is also linearly polarized, but now E(L) ⊥ E(0).

Fig. 4.63a,b. Lyot filter: (a) schematic arrangement; (b) index ellipsoid of the birefringent
crystal
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The elementary Lyot filter consists of a birefringent crystal placed between
two linear polarizers (Fig. 4.63a). Assume that the two polarizers are both par-
allel to the electric vector E(0) of the incoming wave. The second polarizer
parallel to E(0) transmits only the projection

E = Ey sin α+ Ez cos α

= A[sin2 α cos(ωt − keL)+ cos2 α cos(ωt − k0L)] ,

of the amplitudes, which yields with (4.91) the transmitted time averaged in-
tensity

ĪT = 1
2 cε0 E

2 = Ī0(sin4 α+ cos4 α+2 sin2 α cos2 α cos Δφ) . (4.95)

Using the relations cos φ = 1−2 sin2 1
2φ, and 2 sin α cos α = sin 2α, this re-

duces to

ĪT = I0[1− sin2 1
2Δφ sin2(2α)] , (4.96)

which gives for α = 45◦

IT = I0

[
1− sin2 Δφ

2

]
= I0 cos2 Δφ

2
. (4.96a)

The transmission of the Lyot filter is therefore a function of the phase retar-
dation, i.e.,

T(λ) = IT

I0
= T0 cos2

(
πΔnL

λ

)
(4.97)

which depends on the wavelength λ.

Note: According to (4.96) the maximum modulation of the transmittance with
Tmax = T0 and Tmin = 0 is only achieved for α = 45◦!

Taking into account absorption and reflection losses, the maximum trans-
mission IT/I0 = T0 < 1 becomes less than 100%. Within a small wavelength
interval, the difference Δn = n0 −ne can be regarded as constant. Therefore
(4.97) gives the wavelength-dependent transmission function, cos2 φ, typical
of a two-beam interferometer (Fig. 4.26). For extended spectral ranges the
different dispersion of no(λ) and ne(λ) has to be considered, which causes
a wavelength dependence, Δn(λ).

The free spectral range δν is obtained from (4.97) as

Δn · L

λ1
− Δn · L

λ2
= 1 .

With ν = c/λ, this becomes

δν = c

(no −ne)L
. (4.98)
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Example 4.18.
For a crystal of potassium dihydrogen phosphate (KDP), ne = 1.51, n0 =
1.47 → Δn = 0.04 at λ = 600 nm. A crystal with L = 2 cm then has a free
spectral range δν = 3.75 ×1011 Hz

∧= δν̄ = 12.5 cm−1 → Δλ = 0.45 nm at
λ = 600 nm.

If N elementary Lyot filters with different lengths Lm are placed in series,
the total transmission T is the product of the different transmissions Tm , i.e.,

T(λ) =
N∏

m=1

T0m cos2
(

πΔnLm

λ

)
. (4.99)

Figure 4.64 illustrates a possible experimental arrangement and the corre-
sponding transmission for a Lyot filter composed of three components with
the lengths L1 = L, L2 = 2L, and L3 = 4L. The free spectral range δν of this
filter equals that of the shortest component; the halfwidth Δν of the transmis-
sion peaks is, however, mainly determined by the longest component. When
we define, analogous to the Fabry–Perot interferometer, the finesse F∗ of the

Fig. 4.64. (a) Transmitted intensity IT(λ) of a Lyot filter composed of three birefringent
crystals with lengths L, 2L, and 4L between polarizers. (b) Arrangement of the crystals
and the state of polarization of the transmitted wave
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Lyot filter as the ratio of the free spectral range δν to the halfwidth Δν, we
obtain, for a composite Lyot filter with N elements of lengths Lm = 2m−1L1,
a finesse that is approximately F∗ = 2N .

The wavelength of the transmission peak can be tuned by changing the
difference Δn = no −ne. This can be realized in two different ways:

• By changing the angle θ between the optical axis and the wave vector k,
which alters the index ne. This can be illustrated with the index ellipsoid
(Fig. 4.63b), which gives both refractive indices for a given wavelength as
a function of θ. The difference Δn = no −ne therefore depends on θ. The
two axes of the ellipsoid with minimum ne (θ = 90◦ for a negative bire-
fringent crystal) and maximum no (θ = 0◦) are often called the fast and
the slow axes. Turning the crystal around the x-axis in Fig. 4.63a, which is
perpendicular to the y–z-plane of Fig. 4.63b, results in a continuous change
of Δn and a corresponding tuning of the peak transmission wavelength λ
(Sect. 5.7.4).

• By using the different dependence of the refractive indices no and ne on an
applied electric field [4.58]. This “induced birefringence” depends on the
orientation of the crystal axis in the electric field. A common arrangement
employs a potassium dihydrogen phosphate (KDP) crystal with an orien-
tation where the electric field is parallel to the optical axis (z-axis) and
the wave vector k of the incident wave is perpendicular to the z-direction
(transverse electro-optic effect, Fig. 4.65). Two opposite sides of the rect-
angular crystal with the side length d are coated with gold electrodes and
the electric field E = U/d is controlled by the applied voltage.

In the external electric field the uniaxial crystal becomes biaxial. In ad-
dition to the natural birefringence of the uniaxial crystal, a field-induced
birefringence is generated, which is approximately proportional to the field
strength E [4.59]. The changes of no or ne by the electric field depend on
the symmetry of the crystal, the direction of the applied field, and on the
magnitude of the electro-optic coefficients. For the KDP crystal only one
electro-optic coefficient d36 = −10.7×10−12 [m/V] (see Sect. 5.8.1) is effec-
tive if the field is applied parallel to the optical axis.

The difference Δn = no −ne then becomes

Δn(Ez) = Δn(E = 0)+ 1
2 n3

1d36 Ez . (4.100)

Maximum transmittance is obtained for

ΔnL = mλ (m = 0, 1, 2 . . . ) ,

which gives the wavelength λ at the maximum transmittance

λ = (Δn(E = 0)+0.5 n1
3d36 Ez)L/m , (4.101)

as a function of the applied field.
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Fig. 4.65. Electro-optic tuning of a Lyot filter [4.57]

While this electro-optic tuning of the Lyot filter allows rapid switching of
the peak transmission, for many applications, where a high tuning speed is not
demanded, mechanical tuning is more convenient and easier to realize.

4.2.12 Tunable Interferometers

For many applications in laser spectroscopy it is advantageous to have a high-
resolution interferometer that is able to scan, in a given time interval Δt,
through a limited spectral range Δν. The scanning speed Δν/Δt depends on
the method used for tuning, while the spectral range Δν is limited by the free
spectral range δν of the instrument. All techniques for tuning the wavelength
λm = 2nd/m at the transmission peak of an interferometer are based on a con-
tinuous change of the optical path difference between successive interfering
beams. This can be achieved in different ways:

(a) Change the refractive index n by altering the pressure between the reflect-
ing plates of a FPI (pressure-scanned FPI);

(b) Change the distance d between the plates with piezoelectric or magne-
tostrictive elements;

(c) Tilt the solid etalons with a given thickness d against the direction of the
incoming plane wave;

(d) Change the optical path difference Δs = ΔnL in birefringent crystals by
electro-optic tuning or by turning the optical axis of the crystal (Lyot fil-
ter).

While method (a) is often used for high-resolution fluorescence spectroscopy
with slow scan rates or for tuning pulsed dye lasers, method (b) is realized in
a scanning confocal FPI (used as an optical spectrum analyzer) for monitoring
the mode structure of lasers.

With a commercial spectrum analyzer, the transmitted wavelength λ can be
repetitively scanned over more than one free spectral range with a saw-tooth
voltage (Fig. 4.66) applied to the piezoelectric distance holder [4.41, 4.60].
Scanning rates up to several kilohertz are possible. Although the finesse of
such devices may exceed 103, the hysteresis of piezoelectric crystals limits the
accuracy of absolute wavelength calibration. Here a pressure-tuned FPI may
be advantageous. The pressure change has to be sufficiently slow to avoid tur-
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Fig. 4.66. Scanning confocal FPI
with transmission peaks of a fun-
damental laser mode and saw-
tooth voltage at the piezo on one
mirror

bulence and temperature drifts. With a digitally pressure-scanned FPI, where
the pressure of the gas in the interferometer chamber is changed by small,
discrete steps, repetitive scans are reproduced within about 10−3 of the free
spectral range [4.61].

For fast wavelength tuning of dye lasers, Lyot filters with electro-optic
tuning are employed within the laser resonator. A tuning range of a few nano-
meters can be repetitively scanned with rates up to 105 per second [4.62].

4.3 Comparison Between Spectrometers
and Interferometers

When comparing the advantages and disadvantages of different dispersing
devices for spectroscopic analysis, the characteristic properties of the instru-
ments discussed in the foregoing sections, such as spectral resolving power,
étendue, spectral transmission, and free spectral range, are important for the
optimum choice. Of equal significance is the question of how accurately
the wavelengths of spectral lines can be measured. To answer this question,
further specifications are necessary, such as the backlash of monochromator
drives, imaging errors in spectrographs, and hysteresis in piezo-tuned inter-
ferometers. In this section we shall treat these points in a comparison for
different devices in order to give the reader an impression of the capabilities
and limitations of these instruments.

4.3.1 Spectral Resolving Power

The spectral resolving power discussed for the different instruments in the
previous sections can be expressed in a more general way, which applies to all
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Fig. 4.67a,b. Maximum optical path difference and spectral resolving power: (a) in a grat-
ing spectrometer; (b) in a Fabry–Perot interferometer

devices with spectral dispersion based on interference effects. Let Δsm be the
maximum path difference between interfering waves in the instrument, e.g.,
between the rays from the first and the last groove of a grating (Fig. 4.67a) or
between the direct beam and a beam reflected m times in a Fabry–Perot in-
terferometer (Fig. 4.67b). Two wavelengths λ1 and λ2 = λ1 +Δλ can still be
resolved if the number of wavelengths over this maximum path difference

Δsm = 2mλ2 = (2m +1)λ1 , m = integer ,

differs for the two wavelengths by at least one unit. In this case, an inter-
ference maximum for λ1 coincides with the first minimum for λ2. From the
above equation we obtain the theoretical upper limit for the resolving power

λ

Δλ
= Δsm

λ
, (4.102)

which is equal to the maximum path difference measured in units of the wave-
length λ.

With the maximum time difference ΔTm = Δsm/c for traversing the two
paths with the path difference Δsm, we obtain with ν = c/λ from (4.102) for
the minimum resolvable interval Δν = −(c/λ2)Δλ,

Δν = 1/ΔTm ⇒ Δν ·ΔTm = 1 . (4.103)

The product of the minimum resolvable frequency interval Δν and the maxi-
mum difference in transit times through the spectral apparatus is equal to 1.
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Example 4.19.

(a) Grating Spectrometer: The maximum path difference is, according to
(4.30) and Fig. 4.67,

Δsm = Nd(sin α− sin β) = mNλ .

The upper limit for the resolving power is therefore, according to
(4.102),

R = λ/Δλ = mN (m : diffraction order,
N : number of illuminated grooves) .

For m = 2 and N = 105 this gives R = 2 ×105, or Δλ = 5 ×10−6λ.
Because of diffraction, which depends on the size of the grating
(Sect. 4.1.3), the realizable resolving power is 2−3 times lower. This
means that at λ = 500 nm, two lines with Δλ ≥ 10−2 nm can still be
resolved.

(b) Michelson Interferometer: The path difference Δs between the two
interfering beams is changed from Δs = 0 to Δs = Δsm. The numbers
of interference maxima are counted for the two components λ1 and λ2
(Sect. 4.2.4). A distinction between λ1 and λ2 is possible if the number
m1 = Δs/λ1 differs by at least 1 from m2 = Δs/λ2; this immediately
gives (4.102). With a modern design, maximum path differences Δs up
to several meters have been realized for wavelength measurements of
stabilized lasers (Sect. 4.5.3). For λ = 500 nm and Δs = 1 m, we obtain
λ/Δλ = 2×106, which is one order of magnitude better than for the
grating spectrometer.

(c) Fabry–Perot Interferometer: The path difference is determined by the
optical path difference 2nd between successive partial beams times the
effective number of reflections, which can be expressed by the reflectiv-
ity finesse F∗ = π

√
R/(1− R). With ideal reflecting planes and perfect

alignment, the maximum path difference would be Δsm = 2ndF∗ and
the spectral resolving power, according to (4.102), would be

λ/Δλ = F∗2nd/λ .

Because of imperfections of the alignment and deviations from ideal
planes, the effective finesse is lower than the reflectivity finesse. With
a value of F∗

eff = 50, which can be achieved, we obtain for nd = 1 cm

λ/Δλ = 2×106 ,

which is comparable with the Michelson interferometer having Δsm =
100 cm. However, with a confocal FPI, a finesse of F∗

eff = 1000 can be
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achieved. With r = d = 4 cm we then obtain

λ/Δλ = F∗4d/λ ≈ 5×108 ,

which means that for λ = 500 nm, two lines with Δλ = 1 ×10−6 nm
(Δν = 1 MHz at ν = 5×1014 s−1) are still resolvable, provided that their
linewidth is sufficiently small. With high-reflection mirror coatings a fi-
nesse of F∗

eff = 105 has been realized. With r = d = 1 m this yields
λ/Δλ = 8×1011 [4.47].

4.3.2 Light-Gathering Power

The light-gathering power, or étendue, has been defined in Sect. 4.1.1 as the
product U = AΩ of entrance area A and solid angle of acceptance Ω of the
spectral apparatus. For most spectroscopic applications it is desirable to have
an étendue U as large as possible to gain intensity. An equally important
goal is to reach a maximum resolving power R. However, the two quantitites
U and R are not independent of each other but are related, as can be seen
from the following examples.

Example 4.20.

(a) Spectrometer: The area of the entrance slit with width b and height h
is A = b ·h. The acceptance angle Ω = (a/ f )2 is determined by the fo-
cal length f of the collimating lens or mirror and the diameter a of
the limiting aperture in the spectrometer (Fig. 4.68a). We can write the
étendue,

U = bha2/ f 2 ,

as the product of the area A = bh and the solid angle Ω = (a/ f )2.

Fig. 4.68a,b. Acceptance angle of a spectrometer (a); and a Fabry–Perot interferometer (b)
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Using typical figures for a medium-sized spectrometer (b = 10 μm, h =
0.5 cm, a = 10 cm, f = 100 cm) we obtain Ω = 0.01, A = 5×10−4 cm2

→ U = 5×10−6 cm2 sr. With the resolving power R = mN , the product

RU = mNAΩ ≈ mN
bha2

f 2 , (4.104a)

increases with the diffraction order m, the size a of the grating, the
number of illuminated grooves N , and the slit area bh (as long as imag-
ing errors can be neglected). For m = 1, N = 105, and the above figures
for h, b, a, and f , we obtain RU = 0.5 cm2 sr.

(b) Interferometer: For the Michelson and Fabry–Perot interferometers,
the allowable acceptance angle for photoelectric recording is limited
by the aperture in front of the detector, which selects the central
circular fringe. From Figs. 4.52 and 4.68b we see that the fringe
images at the center and at the edge of the limiting aperture with
diameter a are produced by incoming beams that are inclined by an
angle ϑ against each other. With a/2 = fϑ, the solid angle accepted
by the FPI is Ω = a2/(4 f 2). For a plate diameter D the étendue
is then U = π(D2/4)Ω. According to (4.88) the spectral resolving
power R = ν/Δν of a plane FPI is correlated with the étendue U by
R = πD2(2U)−1. The product

RU = πD2/2 , (4.104b)

is, for a plane FPI, therefore solely determined by the plate diameter.
For D = 5 cm, RU is about 40 cm2 sr, and therefore two orders of mag-
nitude larger than for a grating spectrometer.

In Sect. 4.2.12 we saw that for a given resolving power the spherical FPI
has a larger étendue for mirror separations r > D2/4d. For Example 4.20 with
D = 5 cm, d = 1 cm, the confocal FPI therefore gives the largest product RU
of all interferometers for r > 6 cm. Because of the higher total finesse, how-
ever, the confocal FPI may be superior to all other instruments even for
smaller mirror separations.

In summary, we can say that at comparable resolving power interferome-
ters have a larger light-gathering power than spectrometers.

4.4 Accurate Wavelength Measurements

One of the major tasks for spectroscopists is the measurement of wavelengths
of spectral lines. This allows the determination of molecular energy levels and
of molecular structure. The attainable accuracy of wavelength measurements
depends not only on the spectral resolution of the measuring device but also
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on the achievable signal-to-noise ratio and on the reproducibility of measured
absolute wavelength values.

With the ultrahigh resolution, which can, in principle, be achieved with
single-mode tunable lasers (Vol. 2, Chaps. 1–5), the accuracy of absolute
wavelength measurements attainable with conventional techniques may not
be satisfactory. New methods have been developed that are mainly based
on interferometric measurements of laser wavelengths. For applications in
molecular spectroscopy, the laser can be stabilized on the center of a molec-
ular transition. Measuring the wavelength of such a stabilized laser yields
simultaneously the wavelength of the molecular transition with a compara-
ble accuracy. We shall briefly discuss some of these devices, often called
wavemeters, that measure the unknown laser wavelength by comparison with
a reference wavelength λR of a stabilized reference laser. Most proposals use
for reference a HeNe laser, stabilized on a hyperfine component of a molec-
ular iodine line, which has been measured by direct comparison with the
primary wavelength standard to an accuracy of better than 10−10 [4.63].

Another method measures the absolute frequency νL of a stabilized laser
and deduces the wavelength λL from the relation λL = c/νL using the best
average of experimental values for the speed of light [4.64–4.66], which has
been chosen to define the meter and thus the wavelength λ by the definition:
1 m is the distance traveled by light in vacuum during the time Δt =
1/299,792,458 s−1. This defines the speed of light as

c = 299,792,458 m/s . (4.105)

Such a scheme reduces the determination of lengths to the measurements
of times or frequencies, which can be measured much more accurately than
lengths [4.67]. Recently, the direct comparison of optical frequencies with the
Cs standard in the microwave region has become possible with broadband
frequency combs generated by visible femtosecond lasers. These frequency
combs represent equidistant frequencies, separated by about 100 MHz, which
span a wide frequency range, typically over 1014 Hz. They allow absolute fre-
quency measurements. This method will be discussed in Vol. 2, Sect. 9.7.

4.4.1 Precision and Accuracy of Wavelength Measurements

Resolving power and light-gathering power are not the only criteria by
which a wavelength-dispersing instrument should be judged. A very import-
ant question is the attainable precision and accuracy of absolute wavelength
measurements.

To measure a physical quantity means to compare it with a reference stan-
dard. This comparison involves statistical and systematic errors. Measuring
the same quantity n times will yield values Xi that scatter around the mean
value

X = 1

n

n∑

i=1

Xi .
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The attainable precision for such a set of measurements is determined by
statistical errors and is mainly limited by the signal-to-noise ratio for a single
measurement and by the number n of measurements (i.e., by the total mea-
suring time). The precision can be characterized by the standard deviation
[4.68–4.69],

σ =
(

n∑

i=1

(X − Xi)
2

n

)1/2

. (4.106)

The adopted mean value X, averaged over many measured values Xi , is
claimed to have a certain accuracy, which is a measure of the reliability of
this value, expressed by its probable deviation ΔX from the unknown “true”
value X. A stated accuracy of X/ΔX means a certain confidence that the
true value X is within X ±ΔX. Since the accuracy is determined not only
by statistical errors but, particularly, by systematic errors of the apparatus and
measuring procedure, it is always lower than the precision. It is also influ-
enced by the precision with which the reference standard can be measured
and by the accuracy of its comparison with the value X. Although the at-
tainable accuracy depends on the experimental efforts and expenditures, the
skill, imagination, and critical judgement of the experimentalist always have
a major influence on the ultimate achieved and stated accuracy.

We shall characterize precision and accuracy by the relative uncertainties
of the measured quantity X, expressed by the ratios

σ

X
or

ΔX

X
,

respectively. A series of measurements with a standard deviation σ = 10−8 X
has a relative uncertainty of 10−8 or a precision of 108. Often one says that
the precision is 10−8, although this statement has the disadvantage that a high
precision is expressed by a small number.

Let us now briefly examine the attainable precision and accuracy of
wavelength measurements with the different instruments discussed above.
Although both quantities are correlated with the resolving power and the at-
tainable signal-to-noise ratio, they are furthermore influenced by many other
instrumental conditions, such as backlash of the monochromator drive, or
asymmetric line profiles caused by imaging errors, or shrinking of the pho-
tographic film during the developing process. Without such additional error
sources, the precision could be much higher than the resolving power, because
the center of a symmetric line profile can be measured to a small fraction ε of
the halfwidth. The value of ε depends on the attainable signal-to-noise ratio,
which is determined, apart from other factors, by the étendue of the spectrom-
eter. We see that for the precision of wavelength measurements, the product
of resolving power R and étendue U , RU , discussed in the previous section,
plays an important role.

For scanning monochromators with photoelectric recording, the main lim-
itation for the attainable accuracy is the backlash of the grating-drive and
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nonuniformities of the gears, which limits the reliability of linear extrapola-
tion between two calibration lines. Carefully designed monochromators have
errors due to the drive that are less than 0.1 cm−1, allowing a relative uncer-
tainty of 10−5 or an accuracy of about 105 in the visible range.

In absorption spectroscopy with a tunable laser, the accuracy of line po-
sitions is also limited by the nonuniform scan speed dλ/dt of the laser
(Sect. 5.6). One has to record reference wavelength marks simultaneously with
the spectrum in order to correct for the nonuniformities of dλ/dt.

A serious source of error with scanning spectrometers or scanning lasers
is the distortion of the line profile and the shift of the line center caused by
the time constant of the recording device. If the time constant τ is compara-
ble with the time Δt = Δλ/vsc needed to scan through the halfwidth Δλ of
the line profile (which depends on the spectral resolution), the line becomes
broadened, the maximum decreases, and the center wavelength is shifted. The
line shift δλ depends on the scanning speed vsc [nm/min] and is approxi-
mately δλ = vscτ = (dλ/dt)τ [4.9].

Example 4.21.
With a scanning speed vsc = 10 nm/min and a time constant of the recorder
τ = 1 s the line shift is already δλ = 0.15 nm!

Because of the additional line broadening, the resolving power is re-
duced. If this reduction is to be less than 10%, the scanning speed must be
below vsc < 0.24Δλ/τ . With Δλ = 0.02 nm, τ = 1 s → vsc < 0.3 nm/min.

Photographic recording avoids these problems and therefore allows a more
accurate wavelength determination at the expense of an inconvenient devel-
oping process of the photoplate and the subsequent measuring procedure
to determine the line positions. A typical figure for the standard deviation
for a 3-m spectrograph is 0.01 cm−1. Imaging errors causing curved lines,
asymmetric line profiles due to misalignment, and backlash of the microden-
sitometer used for measuring the line positions on the photoplate are the main
sources of errors.

Modern devices use photodiodes or CCD arrays (Sect. 4.5.2) instead of
photoplates. With a diode width of 25 μm, the peak of a symmetric line pro-
file extending over 3−5 diodes can be determined by a least-squares fit to
a model profile within 1−5 μm, depending on the S/N ratio. When the ar-
ray is placed behind a spectrometer with a dispersion of 1 mm/nm, the center
of the line can be determined within 10−3 nm. Since the signals are read elec-
tronically, there are no moving parts in the device and any mechanical error
source (backlash) is eliminated.

The highest accuray (i.e., the lowest uncertainty) can be achieved with
modern wavemeters, which we shall discuss in Sect. 4.4.2.
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4.4.2 Today’s Wavemeters

The different types of wavemeters for very accurate measurements of laser
wavelengths are based on modifications of the Michelson interferome-
ter [4.70], the Fizeau interferometer [4.71], or on a combination of several
Fabry–Perot interferometers with different free spectral ranges [4.72–4.74].
The wavelength is measured either by monitoring the spatial distribution of
the interference pattern with photodiode arrays, or by using traveling devices
with electronic counting of the interference fringes. Nowadays several ver-
sions of wavemeters are commercially available which reach uncertainties of
±0.2 pm (accuracies ν/δν of about 10+7). They can operate over a wide spec-
tral range from 300 nm to 5 μm.

a) The Michelson Wavemeter

Figure 4.69 illustrates the principle of a traveling-wave Michelson-type inter-
ferometer as used in our laboratory. Such a wavemeter was first demonstrated
in a slightly different version by Hall and Lee [4.70] and by Kowalski et
al. [4.75]. The beams BR of a reference laser and Bx of a laser with un-
known wavelength λx traverse the interferometer on identical paths, but in
opposite directions. Both incoming beams are split into two partial beams by
the beam splitters BS1 and BS2, respectively. One of the partial beams trav-
els the constant path BS1–P–T3–P–BS2 for the reference beam, and in the
opposite direction for the beam BX . The second partial beam travels the vari-
able path BS1–T1–M3–M4–T2–BS2 for BR, and in the opposite direction for
BX . The moving corner-cube reflectors T1 and T2 are mounted on a carriage,
which either travels with wheels on rods or slides on an airtrack.

The corner-cube reflectors guarantee that the incoming light beam is al-
ways reflected exactly parallel to its indicent direction, irrespective of slight

Fig. 4.69. Traveling Michelson interferometer for accurate measurements of wavelengths
of single-mode cw lasers
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misalignments or movements of the traveling reflector. The two partial beams
(BS1–T1–M3–M4–T2–BS2 and BS1–P–T3–P–BS2) for the reference laser
interfere at the detector PD1, and the two beams BS2–T2–M4–M3–T1–BS1
and BS2–P–T3–P–BS1 from the unknown laser interfere at the detector PD2.
When the carriage is moving at a speed v = dx/dt the phase difference δ(t)
between the two interfering beams changes as

δ(t) = 2π
Δs

λ
= 2π ·4

dx

dt

t

λ
= 8π

vt

λ
, (4.107)

where the factor 4 stems from the fact that the optical path difference Δs has
been doubled by introducing two corner-cube reflectors. The rates of interfer-
ence maxima, which occur for δ = m2π, are counted by PD2 for the unknown
wavelength λX and by PD1 for the reference wavelength λR. The unknown
wavelength λX can be obtained from the ratio of both counting rates if proper
corrections are made for the dispersion n(λR)−n(λX) of air. An electronic
device produces a short voltage pulse each time the line-varying interference
intensity passes through zero. These pulses are counted.

The signal lines to both counters are simultaneously opened at the time t0
when the detector PD2 just delivers a trigger signal. Both counters are simul-
taneously stopped at the time t1 when PD2 has reached the preset number N0.
From

Δt = t1 − t0 = N0λX/4v = (NR + ε)λR/4v ,

we obtain for the vacuum wavelength λ0
X

λ0
X = NR + ε

N0
λ0

R
n(λX , P, T )

n(λR, P, T )
. (4.108a)

The unknown fractional number ε < 2 takes into account that the trigger sig-
nals from PD1, which define the start and stop times t0 and t1 (Fig. 4.69), may
not exactly coincide with the pulse rise times in channel 2. The two worst
cases are shown in Fig. 4.70. For case a, the trigger pulse at t0 just misses
the rise of the signal pulse, but the trigger at t1 just coincides with the rise of
a signal pulse. This means that the signal channel counts one pulse less than
it should. In case b, the start pulse at t0 coincides with the rise time of a sig-
nal pulse, but the stop pulse just misses a signal pulse. In this case, the signal
channel counts one pulse more than it should.

For a maximum optical path difference Δs = 4 m, the number of counts
for λ = 500 nm is 8×106, which allows a precision of about 107, if the count-
ing error is not larger than 1. Provided the signal-to-noise ratio is sufficiently
high, the attainable precision can, however, be enhanced by interpolations be-
tween two successive counts using a phase-locked loop [4.76–4.77]. This is
an electronic device that multiplies the frequency of the incoming signal by
a factor M while always being locked to the phase of the incoming signal. As-
sume that the counting rate fR = 4v/λR in the reference channel is multiplied
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Fig. 4.70. Signal sequences in the two detection channels of the traveling Michelson
wavemeter. The grey signal pulses are not counted

by M. Then the unknown wavelength λX is determined by

λ0
X = MNR + ε

MN0
λ0

R
nX

nR
= NR +ε/M

N0
λ0

R
nx

nR
. (4.108b)

For M = 100 the limitation of the accuracy by the counting error due to the
unknown fractional number ε is reduced by a factor of 100.

Instead of the phase-locked loop a coincidence curcuit may be employed.
Here the signal paths to both counters are opened and closed at selected
times t0 and t1, when both trigger signals from PD2 and PD1 coincide within
a small time interval, say 10−8 s. Both techniques reduce the counting uncer-
tainty to a value below 2×10−9.

In general, the attainable accuracy, however, is lower because it is in-
fluenced by several sources of systematic errors. One is a misalignment of
the interferometer, which causes both beams to travel slightly different path
lengths. Another point that has to be considered is the curvature of the wave-
fronts in the diffraction-limited Gaussian beams (Sect. 5.3). This curvature can
be reduced by expanding the beams through telescopes (Fig. 4.69). The un-
certainty of the reference wavelength λR and the accuracy of measuring the
refractive index n(λ) of air are further error sources.

The maximum relative uncertainty of the absolute vacuum wavelength λX
can be written as a sum of five terms:
∣∣∣∣
ΔλX

λX

∣∣∣∣≤
∣∣∣∣
ΔλR

λR

∣∣∣∣+
∣∣∣∣

ε

MNR

∣∣∣∣+
∣∣∣∣
Δr

r

∣∣∣∣+
∣∣∣∣
δs

Δs

∣∣∣∣+
∣∣∣∣

δφ

2πN0

∣∣∣∣ , (4.109)
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where r = n(λX)/n(λR) is the ratio of the refractive indices, δs is the differ-
ence of the travel paths for reference and signal beams, and δφ is the phase
front variation in the detector plane. Let us briefly estimate the magnitude of
the different terms in (4.109):

• The wavelength λR of the I2-stabilized HeNe laser is known within
an uncertainty |ΔλR/λR| < 10−10 [4.67]. Its frequency stability is better
than 100 kHz, i.e., |Δν/ν| < 2 ×10−10. This means that the first term
in (4.109) contributes at most 3×10−10 to the uncertainty of λX .

• With ε = 1.5, M = 100, and NR = 8×106, the second term is about 2×
10−9.

• The index of refraction, n(λ, p, T ), depends on the wavelength λ, on
the total air pressure, on the partial pressures of H2O and CO2, and on
the temperature. If the total pressure is measured within 0.5 mbar, the
temperature T within 0.1 K, and the relative humidity within 5%, the re-
fractive index can be calculated from formulas given by Edlen [4.78] and
Owens [4.79].
With the stated accuracies, the third term in (4.109) becomes

|Δr/r| ≈ 1×10−3 |n0(λX)−n0(λR)| , (4.110)

where n0 is the refractive index for dry air under standard conditions
(T0 = 15◦C, p0 = 1013 hPa). The contribution of the third term depends
on the wavelength difference Δλ = λR −λX . For Δλ = 1 nm one ob-
tains |Δr/r| < 10−11, while for Δλ = 200 nm this term becomes, with
|Δr/r| ≈ 5×10−9, a serious limitation of the accuracy of |ΔλX/λX |.

• The magnitude of the fourth term |δs/Δs| depends on the effort put into
the alignment of the two laser beams within the interferometer. If the two
beams are tilted against each other by a small angle α, the two path lengths
for λX and λR differ by

δs = Δs(λR)−Δs(λX) = ΔsR(1− cos α) ≈ (α2/2)ΔsR .

With α = 10−4 rad, the systematic relative error becomes

|δs/Δs| ≈ 5×10−9 .

It is therefore necessary to align both beams very carefully.
• With a surface quality of λ/10 for all mirrors and beam splitters, the dis-

tortions of the wavefront are already visible in the interference pattern.
However, plane waves are focused onto the detector area and the phase
of the detector signal is due to an average over the cross section of the
enlarged beam (≈ 1 cm2). This averaging minimizes the effect of wave-
front distortion on the accuracy of λX . If the modulation of the interference
intensity (4.37) exceeds 90%, this term may be neglected.

With careful alignment, good optical quality of all optical surfaces and ac-
curate recording of p, T , and PH2O, the total uncertainty of λX can be pushed
below 10−8. This gives an absolute uncertainty Δνx ≈ 3 MHz of the optical
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frequency νx = 5×1014 s−1 for a wavelength separation between λR and λx of
Δλ ≈ 120 nm. This has been proved by a comparison of independently meas-
ured wavelengths λx = 514.5 nm (I2-stabilized argon laser) and λR = 632.9 nm
(I2-stabilized HeNe laser) [4.80].

When cw dye laser wavelengths are measured, another source of error
arises. Due to air bubbles in the dye jet or dust particles within the resonator
beam waist, the dye laser emission may be interrupted for a few microsec-
onds. If this happens while counting the wavelength a few counts are missing.
This can be avoided by using an additional phase-locked loop with a multi-
plication factor Mx = 1 in the counting channel of PDx . If the time constant
of the phase-locked loop is larger than 10 μs, it continues to oscillate at the
counting frequency during the few microseconds of dye laser beam interrup-
tions.

There are several different designs of Michelson wavemeters that are com-
mercially available and are described in [4.81–4.83].

b) Sigmameter

While the traveling Michelson is restricted to cw lasers, a motionless
Michelson interferometer was designed by Jacquinot, et al. [4.84], which in-
cludes no moving parts and can be used for cw as well as for pulsed lasers.
Figure 4.71 illustrates its operation. The basic element is a Michelson interfer-
ometer with a fixed path difference δ. The laser beam enters the interferometer
polarized at 45◦ with respect to the plane of Fig. 4.71. When inserting a prism
into one arm of the interferometer, where the beam is totally reflected at the
prism base, a phase difference Δϕ is introduced between the two components
polarized parallel and perpendicular to the totally reflecting surface. The value
of Δϕ depends, according to Fresnel’s formulas [4.16], on the incidence angle
α and can be made π/2 for α = 55◦19′ and n = 1.52. The interference signal
at the exit of the interferometer is recorded separately for the two polariza-
tions and one obtains, because of the phase shifts π/2, I|| = I0(1+cos 2πδ/λ)
and I⊥ = I0(1+ sin 2πδ/λ). From these signals it is possible to deduce the
wave number σ = 1/λ modulo 1/δ, since all wave numbers σm = σ0 +m/δ
(m = 1, 2, 3, . . . ) give the same interference signals. Using several interfer-
ometers of the same type with a common mirror M1 but different positions
of M2, which have path differences in geometric ratios, such as 50 cm, 5 cm,
0.5 cm, and 0.05 cm, the wave number σ can be deduced unambiguously with
an accuracy determined by the interferometer with the highest path differ-
ence. The actual path differences δi are calibrated with a reference line and
are servo-locked to this line. The precision obtained with this instrument is
about 5 MHz, which is comparable with that of the traveling Michelson inter-
ferometer. The measuring time, however, is much less since the different δi
can be determined simultaneously. This instrument is more difficult to build
but easier to handle. Since it measures wave numbers σ = 1/λ, the inventors
called it a sigmameter.
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Fig. 4.71. Sigmameter [4.84]

c) Computer-Controlled Fabry–Perot Wavemeter

Another approach to accurate wavelength measurements of pulsed and
cw lasers, which can be also applied to incoherent sources, relies on
a combination of a small grating monochromator and three Fabry–Perot
etalons [4.72–4.74]. The incoming laser beam is sent simultaneously through
the monochromator and three temperature-stabilized Fabry–Perot interferom-
eters with different free spectral ranges δνi (Fig. 4.72). In order to match the
laser beam profile to the sensitive area of the linear diode arrays (25 mm
×50 μm), focusing with cylindrical lenses Zi is utilized. The divergence of
the beams in the plane of Fig. 4.72 is optimized by the spherical lenses Li in
such a way that the diode arrays detect 4−6 FPI fringes (Fig. 4.73). The lin-
ear arrays have to be properly aligned so that they coincide with a diameter
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Fig. 4.72. Wavemeter for pulsed and cw lasers, based on a combination of a small poly-
chromator and three FPI with widely differing free spectral ranges [4.80]

Fig. 4.73a,b. Measuring interference ring diameters with a linear diode array: (a) correct
alignment; (b) misaligned diode array

through the center of the ring system. According to (4.72), the wavelength λ
can be determined from the ring diameters Dp and the excess ε, provided the
integer order m0 is known, which means that λ must already be known at least
within one-half of a free spectral range (Sect. 4.3).

The device is calibrated with different lines from a cw dye laser that are
simultaneously measured with the traveling Michelson wavemeter (see above).
This calibration allows:

• The unambiguous correlation between wavelength λ and the position of
the illuminated diode of array 1 behind the monochromator with an accu-
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racy of ±0.1 nm, which is sufficient to determine λ within 0.5 of the free
spectral range of etalon 1;

• The accurate determination of nd for all three FPI.

If the free spectral range δν1 of the thin FPI is at least twice as large as
the uncertainty Δν of the monochromator measurement, the integer order m0
of FPI1 can be unambiguously determined. The measurement of the ring di-
ameters improves the accuracy by a factor of about 20. This is sufficient to
determine the larger integer order m0 of FPI2; from its ring diameters, λ can
be measured with an accuracy 20 times higher than that from FPI1. The fi-
nal wavelength determination uses the ring diameters of the large FPI3. Its
accuracy reaches about 1% of the free spectral range of FPI3.

Fig. 4.74a–e. Output signals at the poly-
chromator and the three diode arrays of
the FPI wavemeter, which had been illu-
minated by a cw HeNe laser oscillating
on two axial modes (a–d). The lowest
figure shows the ring intensity pattern of
an excimer-pumped single-mode dye laser
measured behind a FPI with 3.3 GHz free
spectral range [4.73]
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The whole measuring cycle is controlled by a computer. For pulsed lasers,
one pulse (with an energy of ≥ 5 μJ) is sufficient to initiate the device, while
for cw lasers, a few microwatts input power are sufficient. The arrays are read
out by the computer and the signals can be displayed on a screen. Such signals
for the arrays D1–D4 are shown in Fig. 4.74 for a HeNe laser oscillating on
two longitudinal modes and for a pulsed dye laser.

Since the optical distances nidi of the FPI depend critically on temperature
and pressure, all FPI must be kept in a temperature-stabilized pressure-tight
box. Furthermore, a stabilized HeNe laser can be used to control long-term
drift of the FPI [4.80].

Example 4.22.
With a free spectral range of δν = 1 GHz, the uncertainty of calibration and
of the determination of an unknown wavelength are both about 10 MHz.
This gives an absolute uncertainty of less than 20 MHz. For the optical fre-
quency ν = 6×1014 Hz, the relative accuracy is then Δν/ν ≤ 3×10−8.

d) Fizeau Wavemeter

The Fizeau wavemeter constructed by Snyder [4.85] can be used for pulsed
and cw lasers. While its optical design is simpler than that of the sigmame-
ter and the FPI wavemeter, its accuracy is slightly lower. Its basic principle
is shown in Fig. 4.75b. The incident laser beam is focused by an achromatic

Fig. 4.75a,b. Fizeau wavemeter: (a) interference at a wedge (the wedge angle φ is greatly
exagerated); (b) schematic design; A, aperture as spatial filter; P, parabolic mirror; C,
distance holder of cerodur; D, diode array



4.4 Accurate Wavelength Measurements 187

microscope lens system onto a small pinhole, which represents a nearly point-
like light source. The divergent light is transformed by a parabolic mirror into
an enlarged parallel beam, which hits the Fizeau interferometer (FI) under an
incident angle α (Fig. 4.75a). The FI consists of two fused quartz plates with
a slightly wedged air gap (φ ≈ 1/20◦). For small wedge angles φ, the opti-
cal path difference Δs between the constructively interfering beams 1 and 1′
is approximately equal to that of a plane-parallel plate according to (4.48a),
namely

Δs1 = 2nd(z1) cos β = mλ .

The path difference between the beams 2 and 2′, which belong to the next
interference order, is Δs2 = (m +1)λ. The interference of the reflected light
produces a pattern of parallel fringes (Fig. 4.76) with the separation

Δ = z2 − z1 = d(z2)−d(z1)

tan φ
= λ

2n tan φ cos β
, (4.111)

which depends on the wavelength λ, the wedge angle φ, the angle of inci-
dence α, and the refractive index n of air.

Changing the wavelength λ causes a shift Δz of the fringe pattern and
a slight change of the fringe separation Δ. For a change of λ by one free
spectral range

δλ = λ2

2nd cos β
. (4.112)

and Δz is equal to the fringe separation Δ. Therefore the two fringe pat-
terns for λ and λ+ δλ look identical, apart from the slight change of Δ. It
is therefore essential to know λ at least within ±δλ/2. This is possible from
a measurement of Δ. With a diode array of 1024 diodes, the fringe sepa-
ration Δ can be obtained from a least-squares fit to the measured intensity

Fig. 4.76. Densitometer trace of
the fringe pattern in a Fizeau
wavemeter [4.71]



188 4. Spectroscopic Instrumentation

Fig. 4.77. Compact design of a Fizeau waveme-
ter [4.87]

distribution I(z) with a relative accuracy of 10−4, which yields an absolute
value of λ within ±10−4λ [4.86].

With a value d = 1 mm of the air gap, the order of interference m is about
3000 at λ = 500 nm. An accuracy of 10−4 is therefore sufficient for the un-
ambiguous determination of m. Since the position of the interference fringes
can be measured within 0.3% of the fringe separation, the wavelength λ
can be obtained within 0.3% of a free spectral range, which gives the ac-
curacy λ/Δλ ≈ 107. The preliminary value of λ, deduced from the fringe
separation Δ, and the final value, determined from the fringe position, are
both obtained from the same FI after having calibrated the system with lines
of known wavelengths.

The advantage of the Fizeau wavemeter is its compact design and its
low price. A very elegant construction by Gardner [4.87, 4.88] is sketched in
Fig. 4.77. The wedge air gap is fixed by a Zerodur spacer between the two
interferometer plates and forms a pressure tight volume. Variations of air pres-
sure in the surroundings therefore do not cause changes of n within the air
gap. The reflected light is sent to the diode array by a totally reflecting prism.
The data are processed by a small computer.

4.5 Detection of Light

For many applications in spectroscopy the sensitive detection of light and the
accurate measurement of its intensity are of crucial importance for the suc-
cessful performance of an experiment. The selection of the proper detector
for optimum sensitivity and accuracy for the detection of radiation must take
into account the following characteristic properties, which may differ for the
various detector types:

• The spectral relative response R(λ) of the detector, which determines
the wavelength range in which the detector can be used. The knowledge
of R(λ) is essential for the comparison of the true relative intensities
I(λ1) and I(λ2) at different wavelengths.
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• The absolute sensitivity S(λ) = Vs/P, which is defined as the ratio of out-
put signal Vs to incident radiation power P. If the output is a voltage, as
in photovoltaic devices or in thermocouples, the sensitivity is expressed in
units of volts per watt. In the case of photocurrent devices, such as pho-
tomultipliers, S(λ) is given in amperes per watt. With the detector area A
the sensitivity S can be expressed in terms of the irradiance I :

S(λ) = Vs/(AI ) . (4.113)

• The achievable signal-to-noise ratio Vs/Vn, which is, in principle, lim-
ited by the noise of the incident radiation. It may, in practice, be further
reduced by inherent noise of the detector. The detector noise is often
expressed by the noise equivalent input power (NEP), which means an
incident radiation power that generates the same output signal as the detec-
tor noise itself, thus yielding the signal-to-noise ratio S/N = 1. In infrared
physics a figure of merit for the infrared detector is the detectivity

D∗ =
√

AΔ f

P

Vs

Vn
=

√
AΔ f

NEP
. (4.114)

The detectivity D∗ [cm s−1/2 W−1] gives the obtainable signal-to-noise
ratio Vs/Vn of a detector with the sensitive area A = 1 cm2 and the detector
bandwidth Δ f = 1 Hz, at an incident radiation power of P = 1 W. Be-
cause the noise equivalent input power is NEP = P · Vn/Vs, the detectivity
of a detector with the area 1 cm2 and a bandwidth of 1 Hz is D∗ = 1/NEP.

• The maximum intensity range in which the detector response is linear. It
means that the output signal Vs is proportional to the incident radiation
power P. This point is particularly important for applications where a wide
range of intensities is covered. Examples are output-power measurements
of pulsed lasers, Raman spectroscopy, and spectroscopic investigations of
line broadening, when the intensities in the line wings may be many orders
of magnitude smaller than at the center.

• The time or frequency response of the detector, characterized by its time
constant τ . Many detectors show a frequency response that can be de-
scribed by the model of a capacitor, which is charged through a resistor R1
and discharged through R2 (Fig. 4.78b). When a very short light pulse falls
onto the detector, its output pulse is smeared out. If the output is a cur-
rent i(t) that is proportional to the incident radiation power P(t) (as, for
example, in photomultipliers), the output capacitance C is charged by this
current and shows a voltage rise and fall, determined by

dV

dt
= 1

C

[
i(t)− V

R2

]
. (4.115)

If the current pulse i(t) lasts for the time T , the voltage V(t) at the capac-
itor increases up to t = T and for R2C � T reaches the peak voltage

Vmax = 1

C

T∫

0

i(t)dt ,
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Fig. 4.78a–c. Typical detector: (a) schematic setup; (b) equivalent electrical circuit;
(c) frequency response Vs( f )

which is determined by C and not by R2! After the time T the voltage de-
cays exponentially with the time constant τ = CR2. Therefore, the value of
R2 limits the repetition frequency f of pulses to f < (R2C)−1.
The time constant τ of the detector causes the output signal to rise slower
than the incident input pulse. It can be determined by modulating the
continuous input radiation at the frequency f . The output signal of such
a device is characterized by (see Exercise 4.12)

Vs( f) = Vs(0)√
1+ (2π fτ)2

, (4.116)

where τ = CR1 R2/(R1 + R2). At the modulation frequency f = 1/(2πτ),
the output signal has decreased to 1/

√
2 of its dc value. The knowledge

of the detector time constant τ is essential for all applications where fast
transient phenomena are to be monitored, such as atomic lifetimes or the
time dependence of fast laser pulses (Vol. 2, Chap. 6).

• The price of a detector is another factor that cannot be ignored, since un-
fortunately it often restricts the optimum choice.

In this section we briefly discuss some detectors that are commonly used
in laser spectroscopy. The different types can be divided into two categories,
thermal detectors and direct photodetectors. In thermal detectors, the en-
ergy absorbed from the incident radiation raises the temperature and causes
changes in the temperature-dependent properties of the detector, which can
be monitored. Direct photodetectors are based either on the emission of
photoelectrons from photocathodes, or on changes of the conductivity of
semiconductors due to incident radiation, or on photovoltaic devices where
a voltage is generated by the internal photoeffect. Whereas thermal detectors
have a wavelength-independent sensitivity, photodetectors show a spectral re-
sponse that depends on the work function of the emitting surface or on the
band gap in semiconductors.

During recent years the development of image intensifiers, image con-
verters, CCD cameras, and vidicon detectors has made impressive progress.
At first pushed by military demands, these devices are now coming into use
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for light detection at low levels, e.g., in Raman spectroscopy, or for moni-
toring the faint fluorescence of spurious molecular constituents. Because of
their increasing importance we give a short survey of the principles of these
devices and their application in laser spectroscopy. In time-resolved spec-
troscopy, subnanosecond detection can now be performed with fast phototubes
in connection with transient digitizers, which resolve time intervals of less
than 100 ps. Since such time-resolved experiments in laser spectroscopy with
streak cameras and correlation techniques are discussed in Vol. 2, Chap. 6, we
confine ourselves here to discussing only some of these modern devices from
the point of view of spectroscopic instrumentation. A more extensive treat-
ment of the characteristics and the performance of various detectors can be
found in special monographs on detectors [4.89–4.98]. For reviews on pho-
todetection techniques relevant in laser physics, see also [4.99–4.101].

4.5.1 Thermal Detectors

Because of their wavelength-independent sensitivity, thermal detectors are
useful for calibration purposes, e.g., for an absolute measurement of the ra-
diation power of cw lasers, or of the output energy of pulsed lasers. In the
rugged form of medium-sensitivity calibrated calorimeters, they are conve-
nient devices for any laser laboratory. With more sophisticated and delicate
design, they have been developed as sensitive detectors for the whole spectral
range, particularly for the infrared region, where other sensitive detectors are
less abundant than in the visible range.

For a simple estimate of the sensitivity and its dependence on the detector
parameters, such as the heat capacitance and thermal losses, we shall consider
the following model [4.102]. Assume that the fraction β of the incident radi-
ation power P is absorbed by a thermal detector with heat capacity H, which
is connected to a heat sink at constant temperature Ts (Fig. 4.79a). When G
is the thermal conductivity of the link between the detector and the heat sink,
the temperature T of the detector under illumination can be obtained from

βP = H
dT

dt
+ G(T − Ts) . (4.117)

Fig. 4.79a–c. Model of a thermal detector: (a) schematic diagram; (b) equivalent electrical
circuit; (c) frequency response ΔT(Ω)
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If the time-independent radiation power P0 is switched on at t = 0, the
time-dependent solution of (4.117) is

T = Ts + βP0

G
(1− e−(G/H)t) . (4.118)

The temperature T rises from the initial value Ts at t = 0 to the temperature
T = Ts +ΔT for t = ∞. The temperature rise

ΔT = βP0

G
(4.119)

is inversely proportional to the thermal losses G and does not depend on the
heat capacity H, while the time constant of the rise τ = H/G depends on the
ratio of both quantities. Small values of G make a thermal detector sensitive,
but slow! It is therefore essential to realize small values of both quantities
(H and G).

In general, P will be time dependent. When we assume the periodic func-
tion

P = P0(1+a cos Ωt) , |a| ≤ 1 , (4.120)

we obtain, inserting (4.120) into (4.117), a detector temperature of

T(Ω) = Ts +ΔT(1+ cos(Ωt +ϕ)) , (4.121)

which depends on the modulation frequency Ω, and which shows a phase lag
φ determined by

tan φ = ΩH/G = Ωτ , (4.122a)

and a modulation amplitude

ΔT = aβP0√
G2 +Ω2 H2

= aβP0

G
√

1+Ω2τ2
. (4.122b)

At the frequency Ωg = G/H = 1/τ , the amplitude ΔT decreases by a factor
of

√
2 compared to its DC value.

Note: The problem is equivalent to the analogous case of charging a capac-
itor (C ↔ H) through a resistor R1 that discharges through R2 (R2 ↔ 1/G)
(the charging current i corresponds to the radiation power P). The ratio τ =
H/G (H/G ↔ R2C) determines the time constant of the device (Fig. 4.79b).

We learn from (4.122b) that the sensitivity S = ΔT/P0 becomes large
if G and H are made as small as possible. For modulation frequencies
Ω > G/H, the amplitude ΔT will decrease approximately inversely to Ω.
Since the time constant τ = H/G limits the frequency response of the detec-
tor, a fast and sensitive detector should have a minimum heat capacity H .
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Fig. 4.80a–c. Calorimeter for measuring the output power of cw lasers or the output
energy of pulsed lasers: (a) experimental design; (b) calorimeter with active irradiated
thermistor and nonirradiated reference thermistor; (c) balanced bridge circuit

For the calibration of the output power from cw lasers, the demand for
high sensitivity is not as relevant since, in general, sufficiently large radia-
tion power is available. Figure 4.80 depicts a simple home-made calorimeter
and its circuit diagram. The radiation falls through a hole into a metal cone
with a black inner surface. Because of the many reflections, the light has
only a small chance of leaving the cone, ensuring that all light is absorbed.
The absorbed power heats a thermocouple or a temperature-dependent resis-
tor (thermistor) embedded in the cone. For calibration purposes, the cone can
be heated by an electric wire. If the detector represents one part of a bridge
(Fig. 4.80c) that is balanced for the electric input W = UI , but without inci-
dent radiation, the heating power has to be reduced by ΔW = P to maintain
the balance with the incident radiation power P.

A system with higher accuracy uses the difference in output signals of two
identical cones, where only one is irradiated (Fig. 4.80b).

For the measurement of output energies from pulsed lasers, the calorime-
ter should integrate the absorbed power at least over the pulse duration. From
(4.117) we obtain

t0∫

0

βP dt = HΔT +
t0∫

0

G(T − Ts)dt . (4.123)

When the detector is thermally isolated, the heat conductivity G is small,
therefore the second term may be completely neglected for sufficiently short
pulse durations t0. The temperature rise

ΔT = 1

H

t0∫

0

βP dt , (4.124)

is then directly proportional to the input energy. Instead of the cw electric
input for calibration (Fig. 4.80a), now a charged capacitor C is discharged
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Fig. 4.81a–c. Schematic circuit diagram of a bolometer: (a) thermopile; (b) thermistor;
and (c) bridge circuit with difference amplifier

through the heating coil. If the discharge time is matched to the laser pulse
time, the heat conduction is the same for both cases and does not enter into
calibration. If the temperature rise caused by the discharge of the capacitor
equals that caused by the laser pulse, the pulse energy is 1

2CU2.
For more sensitive detection of low incident powers, bolometers and Golay

cells are used. A special design for a bolometer consists of N thermocouples
in series, where one junction touches the backside of a thin electrically in-
sulating foil that is exposed to the incident radiation (Fig. 4.81a). The other
junction is in contact with a heat sink. The output voltage is

U = N
dU

dT
ΔT ,

where dU/dT is the sensitivity of a single thermocouple.
Another version utilizes a thermistor that consists of a material with a large

temperature coefficient α = (dR/dT )/R of the electrical resistance R. If
a constant current i is fed through R (Fig. 4.81b), the incident power P that
causes a temperature increase ΔT produces the voltage output signal

ΔU = iΔR = iRαΔT = V0 R

R + R1
αΔT , (4.125)

where ΔT is determined from (4.121) as ΔT = βP(G2 +Ω2 H2)−1/2. The re-
sponse ΔU/P of the detector is therefore proportional to i, R, and α, and
decreases with increasing H and G. At a constant supply voltage V0, the cur-
rent change Δi caused by the irradiation is, for ΔR � R + R1,

Δi = V0

(
1

R1 + R
− 1

R1 + R +ΔR

)
≈ V0

ΔR

(R1 + R)2 , (4.126)

and can be generally neglected.
Since the input impedance of the following amplifier has to be larger

than R, this puts an upper limit on R. Because any fluctuation of i causes
a noise signal, the current i through the bolometer has to be extremely con-
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stant. This and the fact that the temperature rise due to Joule’s heating should
be small, limits the maximum current through the bolometer.

Equations (4.125 and 4.121) demonstrate again that small values of
G and H are desirable. Even with perfect thermal isolation, heat radiation is
still present and limits the lower value of G. At the temperature difference ΔT
between a bolometer and its surroundings, the Stefan–Boltzmann law gives
for the net radiation flux ΔP to the surroundings from the detector with the
emitting area A∗ and the emissivity ε ≤ 1

ΔP = 4AεσT 3ΔT , (4.127)

where σ = 5.77 ×10−8 W/m2 K−4 is the Stefan–Boltzmann constant. The
minimum thermal conductivity is therefore

Gm = 4AσεT 3 , (4.128)

even for the ideal case where no other heat links to the surroundings exist.
This limits the detection sensitivity to a minimum input radiation of about
10−10 W for detectors operating at room temperatures and with a bandwidth
of 1 Hz. It is therefore advantageous to cool the bolometer, which furthermore
decreases the heat capacity.

This cooling has the additional advantage that the slope of the function
dR/dT becomes larger at low temperatures T . Two different materials can be
utilized, as discussed below.

In semiconductors the electrical conductivity is proportional to the electron
density ne in the conduction band. With the band gap ΔEG this density is,
according to the Boltzmann relation

ne(T )

ne(T +ΔT )
= exp

(
−ΔEGΔT

2kT 2

)
, (4.129)

and is very sensitively dependent on temperature.
The quantity dR/dT becomes exceedingly large at the critical tempera-

ture Tc of superconducting materials. If the bolometer is always kept at this
temperature Tc by a temperature control, the incident radiation power P can
be very sensitively measured by the magnitude of the feedback control signal
used to compensate for the absorbed radiation power [4.103–4.105].

Example 4.23.
With

∫
P dt = 10−12 Ws, β = 1, H = 10−11 Ws/K we obtain from (4.124):

ΔT = 0.1 K. With α = 10−4/K and R = 10 Ω, R1 = 10 Ω, V0 = 1 V, the
current change is Δi = 2.5 ×10−6 A and the voltage change is ΔV =
RΔi = 2.5×10−5 V, which is readily detected.

Another material used for sensitive bolometers is a thin small disc of
doped silicon, where the dopants are donor atoms with energy levels slightly
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Fig. 4.82. Bolometer with helium cryostat

below the conduction band. A small temperature rise ΔT increases the frac-
tion of ionized donors exponentially, thus producing free electrons in the
conduction band. Such bolometers have to be operated at low temperatures in
order to increase their sensitivity. In Fig. 4.82 the whole setup for a bolometer
operated at liquid helium temperatures is shown, including the liquid nitro-
gen and helium containers. Pumping the evaporating helium gas away drops
the temperature below 1.5 K. The cold apertures in front of the bolometer disc
stop thermal radiation from the walls of the vacuum vessel from reaching the
detector. Using such a device radiation powers of less than 10−13 W can still
be measured.

The Golay cell uses another method of thermal detection of radiation,
namely the absorption of radiation in a closed gas capsule. According
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Fig. 4.83a,b. Golay cell: (a) using deflection of light by a flexible mirror; (b) monitoring
the capacitance change ΔC of a capacitor C with a flexible membrane (spectraphone)

to the ideal gas law, the temperature rise ΔT causes the pressure rise
Δp = N(R/V )ΔT (where N is the number of moles and R the gas con-
stant), which expands a flexible membrane on which a mirror is mounted
(Fig. 4.83a). The movement of the mirror is monitored by observing the de-
flection of a light beam from a light-emitting diode [4.106].

In modern devices the flexible membrane is part of a capacitor with the
other plate fixed. The pressure rise causes a corresponding change of the
capacitance, which can be converted to an AC voltage (Fig. 4.83b). This sensi-
tive detector, which is essentially a capacitor microphone, is now widely used
in photoacoustic spectroscopy (Vol. 2, Sect. 1.3) to detect the absorption spec-
trum of molecular gases by the pressure rise proportional to the absorption
coefficient.

A recently developed thermal detector for infrared radiation is based on
the pyroelectric effect [4.107–4.109]. Pyroelectric materials are good electri-
cal insulators that possess an internal macroscopic electric-dipole moment,
depending on the temperature. The crystal neutralizes the electric field of
this dielectric polarization by a corresponding surface-charge distribution.
A change of the internal polarization caused by a temperature rise will pro-
duce a measurable change in surface charge, which can be monitored by a pair
of electrodes applied to the sample (Fig. 4.84). Because of the capacitive
transfer of the change of the electric dipole moments, pyroelectric detectors
monitor only changes of input power. Any incident cw radiation therefore has
to be chopped.

Fig. 4.84. Pyroelectric detector
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While the sensitivity of good pyroelectric detectors is comparable to that
of Golay cells or high-sensitivity bolometers, they are more robust and there-
fore less delicate to handle. They also have a much better time resolution
down into the nanosecond range [4.108].

4.5.2 Photodiodes

Photodiodes are doped semiconductors that can be used as photovoltaic or
photoconductive devices. When the p–n junction of the diode is irradiated,
the photovoltage Vph is generated at the open output of the diode (Fig. 4.85a);
within a restricted range it is proportional to the absorbed radiation power.
Diodes used as photoconductive elements change their internal resistance
upon irradiation and can therefore be used as photoresistors in combination
with an external voltage source (Fig. 4.85b).

For their use as radiation detectors the spectral dependence of their absorp-
tion coefficient is of fundamental importance. In an undoped semiconductor
the absorption of one photon hν causes an excitation of an electron from
the valence band into the conduction band (Fig. 4.86a). With the energy gap

Fig. 4.85a,b. Use of a photodiode: (a) as a photovoltaic device; and (b) as a photocon-
ductive resistor

Fig. 4.86. (a) Direct band–band absorption in an undoped semiconductor; and (b) indirect
transitions, illustrated in a E(k) band diagram



4.5 Detection of Light 199

Fig. 4.87. Absorption coefficient α(ν)

(a) for direct band–band transitions
in GaAs, (b) for indirect transi-
tions in crystalline silicon, and (c) in
amorphous silicon

ΔEg = Ec − Ev between the valence and conduction band, only photons with
hν ≥ ΔEg are absorbed. The intrinsic absorption coefficient

αintr(ν) =
⎧
⎨

⎩
α0(hν−ΔEg)

1/2 , for hν > ΔEg ,

0 , for hν < ΔEg ,
(4.130)

is shown in Fig. 4.87 for different undoped materials. The quantity α0 depends
on the material and is generally larger for semiconductors with direct transi-
tions (Δk = 0) than for indirect transitions with Δk �= 0. The steep rise of α(ν)
for hν > Eg has only been observed for direct transitions, while it is much
flatter for indirect transitions.

In doped semiconductors photon-induced electron transitions can occur
between the donor levels and the conduction band, or between the va-
lence band and the acceptor levels (Fig. 4.88). Since the energy gaps ΔEd =
Ec − Ed or ΔEa = Ev − Ea are much smaller than the gap Ec − Ev, doped
semiconductors absorb even at smaller photon energies hν and can therefore
be employed for the detection of longer wavelengths in the mid-infrared. In

Fig. 4.88a–c. Photoabsorption in undoped semiconductors (a) and by donors (b) and ac-
ceptors (c) in n- or p-doped semiconductors
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Fig. 4.89. Detectivity D∗(λ) of some photodetectors [4.99]

Fig. 4.90. Energy gaps and useful spectral ranges of some semiconducting materials

order to minimize thermal excitation of electrons, these detectors must be op-
erated at low temperatures. For λ ≤ 10 μm generally liquid-nitrogen cooling
is sufficient, while for λ > 10 μm liquid-helium temperatures around 4−10 K
are required.

Figure 4.89 plots the detectivity of commonly used photodetector materials
with their spectral dependence, while Fig. 4.90 illustrates their useful spectral
ranges and their dependence on the energy gap ΔEg.

a) Photoconductive Diodes

When a photodiode is illuminated, its electrical resistance decreases from
a “dark value” RD to a value RI under illumination. In the circuit shown in
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Fig. 4.91. Electronic diagram of
a photoconductive detector with
amplifier; CD is the capaci-
tance of the photodiode and Ca
is the capacitance of the ampli-
fier

Fig. 4.85b, the change of the output voltage is given by

ΔU =
(

RD

RD + R
− RI

RI + R

)
U0 = R(RD − RI)

(R + RD)(R + RI)
U0 , (4.131)

which becomes, at a given illumination, maximum for

R ≈√RD RI .

The time constant of the photoconductive diode is determined by τ ≥ RC,
where C = CPD +Ca is the capacitance of the diode plus the input capacitance
of the circuit. Its lower limit is set by the diffusion time of the electrons on
their way from the p–n junction where they are generated to the electrodes.
Detectors from PbS, for example, have typical time constants of 0.1−1 ms,
while InSb detectors are much faster (τ � 10−7−10−6 s). Although photo-
conductive detectors are generally more sensitive, photovoltaic detectors are
better suited for the detection of fast signals.

b) Photovoltaic Detector

While photoconductors are passive elements that need an external power
supply, photovoltaic diodes are active elements that generate their own photo-
voltage upon illumination, although they are often used with an external bias
voltage. The principle of the photogenerated voltage is shown in Fig. 4.92.

In the nonilluminated diode, the diffusion of electrons from the n-region
into the p-region (and the opposite diffusion of the holes) generates a space
charge, with opposite signs on both sides of the p–n junction, which re-
sults in the diffusion voltage VD and a corresponding electric field across the
p–n junction (Fig. 4.92b). Note that this diffusion voltage cannot be detected
across the electrodes of the diode, because it is just compensated by the dif-
ferent contact potentials between the two ends of the diode and the connecting
leads.

When the detector is illuminated, electron–hole pairs are created by photon
absorption within the p–n junction. The electrons are driven by the diffusion
voltage into the n-region, the holes into the p-region. This leads to a decrease
ΔVD of the diffusion voltage, which appears as the photovoltage Vph = ΔVD
across the open electrodes of the photodiode. If these electrodes are connected
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Fig. 4.92a–c. Photovoltaic diode: (a) schematic structure and (b) diffusion voltage and
generation of an electron–hole pair by photon absorption within the p–n junction. (c) Re-
duction of the diffusion voltage VD under illumination for an open circuit

through an Ampére-meter, the photoinduced current

iph = −ηeφA , (4.132)

is measured, which equals the product of quantum efficiency η, the illumi-
nated active area A of the photoiode, and the incident photon flux density
φ = I/hν.

The illuminated p–n photodetector can therefore be used either as a cur-
rent generator or a voltage source, depending on the external resistor between
the electrodes.

Note: The photon-induced voltage Uph < ΔEg/e is always limited by the en-
ergy gap ΔEg. The voltage Uph across the open ends of the photodiode is
reached even at relatively small photon fluxes, while the photocurrent is linear
over a large range (Fig. 4.93b). When using photovoltaic detectors for mea-
suring radiation power, the load resistor RL must be sufficiently low to keep
the output voltage Uph = iph RL < Us = ΔEg/e always below its saturation
value Us. Otherwise, the output signal is no longer proportional to the input
power.

If an external voltage U is applied to the diode, the diode current without
illumination

iD(U) = CT 2 e−eVD/kT (eeU/kT −1) , (4.133a)

shows the typical diode characteristics (Fig. 4.93a). For large negative volt-
ages U (exp(Ue/kT) � 1), a negative reverse dark current

is = −CT 2 e−eVD/kT (4.133b)
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Fig. 4.93. (a) Current–voltage characteristics of a dark and an illuminated diode; (b) dif-
fusion voltage and photovoltage at the open ends and photocurrent in a shortened diode
as a function of incident radiation power

is flowing through the diode. During illumination the dark current iD is super-
imposed by the opposite photocurrent

iill(U) = iD(U)− iph . (4.134)

With open ends of the diode we obtain i = 0, and therefore from (4.133a,b)
the photovoltage becomes

Uph(i = 0) = kT

e

[
ln

(
iph

is

)
+1

]
. (4.135)

Fast photodiodes are always operated at a reverse bias voltage U < 0,
where the saturated reverse current is of the dark diode is small (Fig. 4.93a).
From (4.133) we obtain, with [exp(eU/kT ) � 1] for the total diode current,

i = −is − iph = −CT 2 e−eVD/kT − iph , (4.136)

which becomes independent of the external voltage U .
Materials used for photovoltaic detectors are, e.g., silicon, cadmium sulfide

(CdS), and gallium arsenide (GaAs). Silicon detectors deliver photovoltages
up to 550 mV and photocurrents up to 40 mA/cm2 [4.89]. The efficiency
η = Pel/Pph of energy conversion reaches 10−14%. New devices with a min-
imum number of crystal defects can even reach 20−30%. Gallium arsenide
(GaAs) detectors show larger photovoltages up to 1 V, but slightly lower pho-
tocurrents of about 20 mA/cm2.

c) Fast Photodiodes

The photocurrent generates a signal voltage Vs = Uph = RLiph across the load
resistor RL that is proportional to the absorbed radiation power over a large
intensity range of several decades, as long as Vs < ΔEg/e (Fig. 4.93b). From
the circuit diagram in Fig. 4.94 with the capacitance Cs of the semiconductor
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Fig. 4.94. Equivalent circuit of a photodiode with in-
ternal capacity CS, series internal resistor RS, parallel
internal resistor RP, and external load resistor RL

and its series and parallel resistances Rs and Rp, one obtains for the upper
frequency limit [4.110]

fmax = 1

2πCs(Rs + RL)(1+ Rs/Rp)
, (4.137)

which reduces, for diodes with large Rp and small Rs, to

fmax = 1

2πCs RL
. (4.138)

With small values of the resistor RL, a high-frequency response can be
achieved, which is limited only by the drift time of the carriers through the
boundary layer of the p–n junction. This drift time can be reduced by an ex-
ternal bias voltage. Using diodes with large bias voltages and a 50-Ω load
resistor matched to the connecting cable, rise times in the subnanosecond
range can be obtained.

Example 4.24.

Cs = 10−11 F, RL = 50 Ω ⇒ fmax = 300 MHz, τ = 1

2π fmax
� 0.6 ns.

For photon energies hν close to the band gap, the absorption coefficient
decreases, see (4.130). The penetration depth of the radiation, and with it
the volume from which carriers have to be collected, becomes large. This in-
creases the collection time and makes the diode slow.

Definite collection volumes can be achieved in PIN diodes, where an un-
doped zone I of an intrinsic semiconductor separates the p- and n-regions
(Fig. 4.95). Since no space charges exist in the intrinsic zone, the bias volt-
age applied to the diode causes a constant electric field, which accelerates
the carriers. The intrinsic region may be made quite wide, which results in
a low capacitance of the p–n junction and provides the basis for a very fast
and sensitive detector. The limit for the response time is, however, also set
by the transit time τ = w/vth of the carriers in the intrinsic region, which is
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Fig. 4.95a,b. PIN photodiode with head-on (a) and side-on (b) illumination

determined by the width w and the thermal velocity vth of the carriers. Sil-
icon PIN diodes with a 700-μm wide zone I have response times of about
10 ns and a sensitivity maximum at λ = 1.06 μm, while diodes with a 10-μm
wide zone I reach 100 ps with a sensitivity maximum at a shorter wavelength–
around λ = 0.6 μm [4.111]. Fast response combined with high sensitivity can
be achieved when the incident radiation is focused from the side into the
zone I (Fig. 4.95b). The only experimental disadvantage is the critical align-
ment necessary to hit the small active area.

Very fast response times can be reached by using the photoeffect at
the metal–semiconductor boundary known as the Schottky barrier [4.112].
Because of the different work functions φm and φs of the metal and the semi-
conductor, electrons can tunnel from the material with low φ to that with
high φ (Fig. 4.96). This causes a space-charge layer and a potential barrier

VB = φB/e , with φB = φm −χ , (4.139)

between metal and semiconductor. The electron affinity is given by χ =
φs − (Ec − EF). If the metal absorbs photons with hν > φB, the metal electrons

Fig. 4.96. (a) Work functions φm of metal and φs of semiconductor and electron affin-
ity χ. Ec is the energy at the bottom of the conduction band and EF is the Fermi
energy. (b) Schottky barrier at the contact layer between metal and n-type semiconductor.
(c) Generation of a photocurrent
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Fig. 4.97. Arrangement of a metal–
insulator–metal (MIM) diode used
for optical frequency mixing of laser
frequencies

Fig. 4.98. Point-contact diode: (a) electron miocroscope picture (b) current-voltage char-
acteristics [4.115]
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gain sufficient energy to overcome the barrier and “fall” into the semicon-
ductor, which thus acquires a negative photovoltage. The majority carriers are
responsible for the photocurrent, which ensures fast response times.

For measurements of optical frequencies, ultrafast metal–insulator–metal
(MIM) diodes have been developed [4.113], which can be operated up to
88 THz (λ = 3.39 μm). In these diodes, a 25-μm diameter tungsten wire with
its end electrochemically etched to a point less than 200 nm in radius serves
as the point contact element, while the optically polished surface of a nickel
plate with a thin oxide layer forms the base element of the diode (Fig. 4.97).

These MIM diodes can be used as mixing elements at optical frequencies.
When illuminating the contact point with a focused CO2 laser, a response time
of 10−14 s or better has been demonstrated by the measurement of the 88-THz
emission from the third harmonic of the CO2 laser. If the beams of two lasers
with the frequencies f1 and f2 are focused onto the junction between the
nickel oxide layer and the sharp tip of the tungsten wire, the MIM diode acts
as a rectifier and the wire as an antenna, and a signal with the difference
frequency f1 − f2 is generated. Difference frequencies up into the terahertz
range can be monitored [4.114] (see Sect. 5.8.7). The basic processes in these
MIM diodes represent very interesting phenomena of solid-state physics. They
could be clarified only recently [4.114].

Difference frequencies up to 900 GHz between two visible dye lasers have
been measured with Schottky diodes (Fig. 4.98) by mixing the difference
frequency with harmonics of 90-GHz microwave radiation which was also fo-
cused onto the diode [4.115]. Meanwhile, Schottky-barrier mixer diodes have
been developed that cover the frequency range 1−10 THz [4.115].

d) Avalanche Diodes

Internal amplification of the photocurrent can be achieved with avalanche
diodes, which are reverse-biased semiconductor diodes, where the free car-
riers acquire sufficient energy in the accelerating field to produce additional
carriers on collisions with the lattice (Fig. 4.99). The multiplication factor M,
defined as the average number of electron–hole pairs after avalanche multipli-
cation initiated by a single photoproduced electron–hole pair, increases with
the reverse-bias voltage. The multiplication factor

M = 1/
[
1− (V/Vbr)

n] (4.140)

depends on the external bias voltage V and the breakdown voltage Vbr. The
value of n (2–6) depends on the material of the avalanche diode. M can
be also expressed by the multiplication coefficient α for electrons and the
length L of the space charge boundary:

M = 1

1−∫ L
0 α(x) dx

. (4.141)

Values of M up to 106 have been reported in silicon, which allows sensi-
tivities comparable with those of a photomultiplier. The advantage of these
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Fig. 4.99a–d. Avalanche diode: (a) schematic illustration of avalanche formation (n+, p+
are heavily doped layers); (b) amplification factor M(V) as a function of the bias volt-
age V for a Si-avalanche diode; (c) spatial variation of band edges and bandgap without
external field; and (d) within an external electric field

avalanche diodes is their fast response time, which decreases with increasing
bias voltage. In this device the product of gain times bandwidth may exceed
1012 Hz if the breakdown voltage is sufficiently high [4.90]. The value of M
also depends upon the temperature (Fig. 4.99b).

In order to avoid electron avalanches induced by holes accelerated into
the opposite direction, which would result in additional background noise, the
amplification factor for holes must be kept considerably smaller than for elec-
trons. This is achieved by a specially tailored layer structure, which yields
a sawtooth-like graded band-gap dependence ΔEg(x) in the field x-direction
(Fig. 4.99c,d). In an external field this structure results in an amplification fac-
tor M that is 50−100 times larger for electrons than for holes [4.116].

Such modern avalanche diodes may be regarded as the solid-state analog to
photomultipliers (Sect. 4.5.5). Their advantages are a high quantum efficiency
(up to 40%) and a low supply voltage (10−100 V). Their disadvantage for
fluorescence detection is the small active area compared to the much larger
cathode area of photomultipliers [4.117–4.118].

Detailed data on avalanche photodiodes can be found on the homepage of
Hamamatsu.

4.5.3 Photodiode Arrays

Many small photodiodes can be integrated on a single chip, forming a pho-
todiode array. If all diodes are arranged in a line we have a one-dimensional
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Fig. 4.100a,b. Schematic structure of a single diode within the array (a) and electronic
circuit diagram of a one-dimensional diode array (b)

diode array, consisting of up to 2048 diodes. With a diode width b = 15 μm
and a spacing of d = 10 μm between two diodes, the length L of an array of
1024 diodes becomes 25 mm with a height of about 40 μm [4.119].

The basic principle and the electronic readout diagram is shown in
Fig. 4.100. An external bias voltage U0 is applied to p–n diodes with the
sensitive area A and the internal capacitance Cs. Under illumination with
an intensity I the photocurrent iph = ηAI , which is superimposed on the
dark current iD, discharges the diode capacitance Cs during the illumination
time ΔT by

ΔQ =
∫ t+ΔT

t
(iD +ηAI )dt = CsΔU . (4.142)

Every photodiode is connected by a multiplexing MOS switch to a voltage
line and is recharged to its original bias voltage U0. The recharging pulse
ΔU = ΔQ/Cs is sent to a video line connected with all diodes. These pulses
are, according to (4.142), a measure for the incident radiation energy

∫
AI dt,

if the dark current iD is subtracted and the quantum efficiency η is known.
The maximum integration time ΔT is limited by the dark current iD,

which therefore also limits the attainable signal-to-noise ratio. At room tem-
perature typical integration times are in the millisecond range. Cooling of the
diode array by Peltier cooling down to −40◦C drastically reduces the dark
current and allows integration times of 1−100 s. The minimum detectable
incident radiation power is determined by the minimum voltage pulse ΔU
that can be safely distinguished from noise pulses. The detection sensitivity
therefore increases with decreasing temperature because of the possible in-
creasing integration time. At room temperature typical sensitivity limits are
about 500 photons per second and diode.

If such a linear diode array with N diodes and a length L = N(b+d) is
placed in the observation plane of a spectrograph (Fig. 4.1), the spectral inter-
val

δλ = dλ

dx
L ,
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which can be detected simultaneously, depends on the linear dispersion dx/dλ
of the spectrograph. The smallest resolvable spectral interval

Δλ = dλ

dx
b ,

is limited by the width b of the diode. Such a system of spectrograph plus
diode array is called an optical multichannel analyzer (OMA) or an optical
spectrum analyzer (OSA) [4.119, 4.120].

Example 4.25.
b+d = 25 μm, L = 25 mm, dλ/dx = 5 nm/mm
⇒ δλ = 125 nm, Δλ = 0.125 nm.

The diodes can be also arranged in a two-dimensional array, which allows
the detection of two-dimensional intensity distributions. This is, for instance,
important for the observation of spatial distributions of light-emitting atoms
in gas discharges or flames (Vol. 2, Sect. 10.4) or of the ring pattern behind
a Fabry–Perot interferometer.

4.5.4 Charge-Coupled Devices (CCDs)

Photodiode arrays are now increasingly replaced by charge-coupled device
(CCD) arrays, which consist of an array of small MOS junctions on a doped
silicon substrate (Fig. 4.101) [4.121–4.124]. The incident photons generate

Fig. 4.101a–c. Principle of a CCD array: (a) alternately, a positive (solid line) and a neg-
ative (dashed line) voltage are applied to the electrodes. (b) This causes the charged
carriers generated by photons to be shifted to the next diode. This shift occurs with the
pulse frequency of the applied voltage. (c) Spectral sensitivity of CCD diodes
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Fig. 4.102. Spectral dependence of the quantum efficiency η(λ) of front-illuminated (a)
and backward-illuminated CCD arrays with visible-AR coatings (b) and UV–AR coat-
ings (c)

electrons and holes in the n- or p-type silicon. The electrons or holes are col-
lected and change the charge of the MOS capacitances. These changes of the
charge can be shifted to the next MOS capacitance by applying a sequence
of suitable voltage steps according to Fig. 4.101b. The charges are thus shifted
from one diode to the next until they reach the last diode of a row, where they
cause the voltage change ΔU , which is sent to a video line.

The quantum efficiency η of CCD arrays depends on the material used
for the substrate, it reaches peak values over 90%. The efficiency η(λ) is
generally larger than 20% over the whole spectral range, which covers the re-
gion from 350−900 nm. Using fused quartz windows, even the UV and the
IR from 200−1000 nm can be covered (Fig. 4.101c), and the efficiencies of
most photocathodes are exceeded (Sect. 4.5.5). The spectral range of special
CCDs ranges from 0.1−1000 nm. They can therefore be used in the VUV and
X-ray regions, too. The highest sensitivity up to 90% efficiency is achieved
with backward-illuminated devices (Fig. 4.102). Table 4.2 compiles some rel-
evant data for commercial CCD devices and Fig. 4.103 compares the spectral
quantum efficiency of CCD detectors with those of the photographic plate and
photomultiplier cathodes.

Table 4.2. Characteristic data of CCD arrays

Active area [mm2] 24.6×24.6
Pixel size [μm] 7.5×15 up to 24×24
Number of pixels 1024×1024 up to 2048×2048
Dynamic range [bits] 16
Readout noise at 50 kHz [electron charges] 4−6
Dark charge [electrons/(h pixel)] < 1
Hold time at −120 ◦C [h] > 10
Quantum efficiency peak

Front illuminated 45%
Backward illuminated > 80%
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Fig. 4.103. Comparison of the quantum efficiencies of CCD detectors, photoplates and
photomultipliers

The dark current of cooled CCD arrays may be below 10−2 electrons per
second and diode. The readout dark pulses are smaller than those of photo-
diode arrays. Therefore, the sensitivity is high and may exceed that of good
photomultipliers. Particular advantages are their large dynamic range, which
covers about five orders of magnitude, and their linearity.

The disadvantage is their small size compared to photographic plates. This
restricts the spectral range that can be detected simultaneously. More infor-
mation about CCD detectors, which are becoming increasingly important in
spectroscopy, can be found in [4.124, 4.125].

4.5.5 Photoemissive Detectors

Photoemissive detectors, such as the photocell or the photomuliplier, are based
on the external photoeffect. The photocathode of such a detector is covered
with one or several layers of materials with a low work function φ (e.g., al-
kali metal compounds or semiconductor compounds). Under illumination with
monochromatic light of wavelength λ = c/ν, the emitted photoelectrons leave
the photocathode with a kinetic energy given by the Einstein relation

Ekin = hν−φ . (4.143)

They are further accelerated by the voltage V0 between the anode and cathode
and are collected at the anode. The resultant photocurrent is measured either
directly or by the voltage drop across a resistor (Fig. 4.104a).
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Fig. 4.104a–c. Photoemissivedetector: (a) principlearrangementofaphotocell; (b) opaque
photocathode; and (c) semitransparent photocathode

a) Photocathodes

The most commonly used photocathodes are metallic or alkaline (alkali
halides, alkali antimonide or alkali telluride) cathodes. The quantum efficiency
η = ne/nph is defined as the ratio of the rate of photoelectrons ne to the
rate of incident photons nph. It depends on the cathode material, on the form
and thickness of the photoemissive layer, and on the wavelength λ of the in-
cident radiation. The quantum efficiency η = nanbnc can be represented by
the product of three factors. The first factor na gives the probability that an
incident photon is actually absorbed. For materials with a large absorption
coefficient, such as pure metals, the reflectivity R is high (e.g., for metallic
surfaces R ≥ 0.8−0.9 in the visible region), and the factor na cannot be larger
than (1− R). For semitransparent photocathodes of thickness d, on the other
hand, the absorption must be large enough to ensure that αd > 1. The sec-
ond factor nb gives the probability that the absorbed photon really produces
a photoelectron instead of heating the cathode material. Finally, the third fac-
tor nc stands for the probability that this photoelectron reaches the surface and
is emitted instead of being backscattered into the interior of the cathode.

Two types of photoelectron emitters are manufactured: opaque layers,
where light is incident on the same side of the photocathode from which
the photoelectrons are emitted (Fig. 4.104b); and semitransparent layers
(Fig. 4.104c), where light enters at the opposite side to the photoelectron emis-
sion and is absorbed throughout the thickness d of the layer. Because of the
two factors na and nc, the quantum efficiency of semitransparent cathodes and
its spectral change are critically dependent on the thickness d, and reach that
of the reflection-mode cathode only if the value of d is optimized.

Figure 4.105 shows the spectral sensitivity S(λ) of some typical photocath-
odes, scaled in milliamperes of photocurrent per watt incident radiation. For
comparison, the quantum efficiency curves for η = 0.001, 0.01 and 0.1 are
also drawn (dashed curves). Both quantities are related by

S = i

Pin
= ne e

nphhν
⇒ S = ηeλ

hc
. (4.144)
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Fig. 4.105. Spectral sensitivity curves of some commercial cathode types. The solid lines
give S(λ) [mA/W], whereas the dashed curves given quantum efficiencies η = ne/nph

For most emitters the threshold wavelength for photoemission is below
0.85 μm, corresponding to a work function φ ≥ 1.4 eV. An example for such
a material with φ ∼ 1.4 eV is a surface layer of NaKSb [4.126]. Only some
complex cathodes consisting of two or more separate layers have an extended
sensitivity up to about λ ≤ 1.2 μm. For instance, an InGaAs photocathode has
an extended sensitivity in the infrared, reaching up to 1700 nm. The spec-
tral response of the most commonly fabricated photocathodes is designated
by a standard nomenclature, using the symbols S1 to S20. Some newly de-
veloped types are labeled by special numbers, which differ for the different
manufacturers [4.127]. Examples are S1 = Ag − O − Cs (300−1200 nm) or
S4 = Sb−Cs (300−650 nm).

Recently, a new type of photocathode has been developed that is based
on photoconductive semiconductors whose surfaces have been treated to ob-
tain a state of negative electron affinity (NEA) (Fig. 4.106). In this state an
electron at the bottom of the conduction band inside the semiconductor has
a higher energy than the zero energy of a free electron in vacuum [4.128].
When an electron is excited by absorption of a photon into such an energy
level within the bulk, it may travel to the surface and leave the photocathode.
These NEA cathodes have the advantage of a high sensitivity, which is fairly
constant over an extended spectral range and even reaches into the infrared
up to about 1.2 μm. Since these cathodes represent cold-electron emission de-
vices, the dark current is very low. Until now, their main disadvantage has
been the complicated fabrication procedure and the resulting high price.
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Fig. 4.106. Level scheme for negative electron affinity photocathodes

Different devices of photoemissive detectors are of major importance in
modern spectroscopy. These are the the photomultiplier, the image intensifier,
and the streak camera.

b) Photomultipliers

Photomultipliers are a good choice for the detection of low light levels. They
overcome some of the noise limitations by internal amplification of the pho-
tocurrent using secondary-electron emission from internal dynodes to mulitply
the number of photoelectrons (Fig. 4.107). The photoelectrons emitted from
the cathode are accelerated by a voltage of a few hundred volts and are fo-
cused onto the metal surface (e.g., Cu–Be) of the first “dynode” where each
impinging electron releases, on the average, q secondary electrons. These
electrons are further accelerated to a second dynode where each secondary
electron again produces about q tertiary electrons, and so on. The amplifica-
tion factor q depends on the accelerating voltage U , on the incidence angle α,
and on the dynode material. Typical figures for U = 200 V are q = 3−5.
A photomulitplier with ten dynodes therefore has a total current amplifica-
tion of G = q10 ∼ 105−107. Each photoelectron in a photomultiplier with N

Fig. 4.107. Photomultiplier with time-dependent output voltage pulse induced by an elec-
tron avalanche that was triggered by a delta-function light pulse
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dynodes produces a charge avalanche at the anode of Q = qN e and a corre-
sponding voltage pulse of

V = Q

Ca
= qN e

Ca
= G e

Ca
, (4.145)

where Ca is the capacitance of the anode (including connections).

Example 4.26.
G = 2×106, Ca = 30 pf ⇒ V = 10.7 mV.

For cw operation the DC output voltage is given by V = ia · R, independent
of the capacitance Ca.

For experiments demanding high time resolution, the rise time of this an-
ode pulse should be as small as possible. Let us consider which effects may
contribute to the anode pulse rise time, caused by the spread of transit times
for the different electrons [4.129, 4.130]. Assume that a single photoelectron
is emitted from the photocathode, and is accelerated to the first dynode. The
initial velocities of the secondary electrons vary because these electrons are
released at different depths of the dynode material and their initial energies,
when leaving the dynode surface, are between 0 and 5 eV. The transit time
between two parallel electrodes with distance d and potential difference V is
obtained from d = 1

2at2 with a = eV/(md), which gives

t = d

√
2m

eV
, (4.146)

for electrons with mass m starting with zero initial energy. Electrons with the
initial energy Ekin reach the next electrode earlier by the time difference

Δt1 = d

eV

√
2mEkin . (4.147)

Example 4.27.
Ekin = 0.5 eV, d = 1 cm, V = 250 V ⇒ Δt1 = 0.1 ns.

The electrons travel slightly different path lengths through the tube, which
causes an additional time spread of

Δt2 = Δd

√
2m

eV
, (4.148)

which is of the same magnitude as Δt1. The rise time of an anode pulse
started by a single photoelectron therefore decreases with increasing voltage
proportional to V−1/2. It depends on the geometry and form of the dynode
structures.
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When a short intense light pulse produces many photoelectrons simultane-
ously, the time spread is further increased by two phenomena:

• The initial velocities of the emitted photoelectrons differ, e.g., for a cesium
antimonide S5 cathode between 0 and 2 eV. This spread depends on the
wavelength of the incoming light [4.131a].

• The time of flight between the cathode and the first dynode strongly de-
pends on the locations of the spot on the cathode where the photoelectron
is emitted. The resulting time spread may be larger than that from the other
effects, but may be reduced by a focusing electrode between the cath-
ode and the first dynode with careful optimization of its potential. Typical
anode rise times of photomultipliers range from 0.5−20 ns. For specially
designed tubes with optimized side-on geometry, where the curved opaque
cathode is illuminated from the side of the tube, rise times of 0.4 ns have
been achieved [4.131b]. Shorter rise times can be reached with channel
plates and channeltrons [4.131c].

Example 4.28.
Photomultiplier type 1P28: N = 9, q = 5.1 at V = 1250 V ⇒ G = 2.5×
106; anode capacitance and input capacitance of the amplifier Ca = 15 pF.
A single photoelectron produces an anode pulse of 27 mV with a rise time
of 2 ns. With a resistor R = 105 Ω at the PM exit, the trailing edge of the
output pulse is Ca = 1.5×10−6 s.

For low-level light detection, the question of noise mechanisms in pho-
tomultipliers is of fundamental importance [4.133]. There are three main
sources of noise:

• Photomultiplier dark current;
• Noise of the incoming radiation;
• Shot noise and Johnson noise caused by fluctuations of the amplification

and by noise of the load resistor.

We shall discuss these contributions separately:

• When a photomultiplier is operated in complete darkness, electrons are
still emitted from the cathode. This dark current is mainly due to
thermionic emission and is only partly caused by cosmic rays or by ra-
dioactive decay of spurious radioactive isotopes in the multiplier material.
According to Richardson’s law, the thermionic emission current

i = C1T 2 e−C2φ/T , (4.149)

strongly depends on the cathode temperature T and on its work function φ.
If the spectral sensitvity extends into the infrared, the work function φ
must be small, which increases the dark current. In order to decrease the
dark current, the temperature T of the cathode must be reduced. For in-
stance, cooling a cesium–antimony cathode from 20◦C to 0◦C reduces the



218 4. Spectroscopic Instrumentation

dark current by a factor of about ten. The optimum operation tempera-
ture depends on the cathode type (because of φ). For S1 cathodes, e.g.,
those with a high infrared sensitivity and therefore a low work function φ,
it is advantageous to cool the cathode down to liquid nitrogen temper-
atures. For other types with maximum sensitivity in the green, cooling
below −40◦C gives no significant improvement because the thermionic
part of the dark current has already dropped below other contributions,
e.g., caused by high-energy β-particles from disintegration of 40K nuclei
in the window material. Excessive cooling can even cause undesirable ef-
fects, such as a reduction of the signal photocurrent or voltage drops across
the cathode, because the electrical resistance of the cathode film increases
with decreasing temperature [4.134].
For many spectroscopic applications only a small fraction of the cath-
ode area is illuminated, e.g., for photomultipliers behind the exit slit of
a monochromator. In such cases, the dark current can be futher reduced
either by using photomulitpliers with a small effective cathode area or by
placing small magnets around an extended cathode. The magnetic field de-
focuses electrons from the outer parts of the cathode area. These electrons
cannot reach the first dynode and do not contribute to the dark current.

• The shot noise

〈in〉s =√2e · i ·Δ f (4.150a)

of the photocurrent [4.133] is amplified in a photomultiplier by the gain
factor G. The root-mean-square (rms) noise voltage across the anode load
resistor R is therefore

〈V 〉s = G R
√

2e icΔ f , ic : cathode current ,

= R
√

2e GiaΔ f , ia = Gic : anode current , (4.150b)

if the gain factor G is assumed to be constant. However, generally G is not
constant, but shows fluctuations due to random variations of the secondary-
emission coefficient q, which is a small integer. This contributes to the
total noise and multiplies the rms shot noise voltage by a factor a > 1,
which depends on the mean value of q [4.135]. The shot noise at the anode
is then:

〈VS〉 = aR
√

2eG iaΔ f . (4.150c)

• The Johnson noise of the load resistor R at the temperature T gives an
rms-noise current

〈in〉J =√4kTΔ f/R (4.151a)

and a noise voltage

〈Vn〉J = R〈in〉J .
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• From (4.150) we obtain with (4.151a) for the superposition 〈V 〉St+J =√
〈V 〉2

S +〈Vn〉2
J of shot noise and Johnson noise across the anode load re-

sistor R at room temperature, where 4kT/e ≈ 0.1 V

〈V 〉J+s =
√

eRΔ f(2RGa2ia +0.1) [Volt] . (4.151)

For G R iaa2 � 0.05 V, the Johnson noise can be neglected. With the gain
factor G = 106 and the load resistor of R = 105 Ω, this implies that the
anode current ia should be larger than 5×10−13 A. Since the anode dark
current is already much larger than this limit, we see that the Johnson
noise does not contribute to the total noise of photomultipliers.
The channel photomultiplier is a new photomultiplier design for low-level
light detection. Here the photoelectrons released from the photocathode are
not multiplied by a series of dynodes, but instead move from the cathode
to the anode through a curved narrow semiconductive channel (Fig. 4.108).
Each time a photoelectron hits the inner surface of the channel, it re-
leases q secondary electrons, where the integer q depends on the voltage
applied between the anode and the cathode. The curved geometry causes

Fig. 4.108a,b. Channel photomultiplier. (a) Schematic design; (b) gain factor G as a func-
tion of the applied voltage between cathode and anode. [From Olympics Fluo View
Resource Center]
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a grazing incidence of the electrons onto the surface, which enhances the
secondary emission factor q. The total gain of these channel photomulti-
pliers (CPM) can exceed M = 108 and is therefore generally higher than
for PM with dynodes.
The main advantages of the CPM are its compact design, its greater dy-
namic range and its lower dark current (caused mainly by thermionic
emission from the photocathode) which is smaller due to its reduced
area. The noise caused by fluctuations in the multiplication factor is also
smaller, due to the larger value of the secondary emission factor q.
A significant improvement of the signal-to-noise ratio in detection of low
levels of radiation can be achieved with single-photon counting tech-
niques, which enable spectroscopic investigations to be performed at in-
cident radiation fluxes down to 10−17 W. These techniques are discussed
in Sect. 4.5.6. More details about photomultipliers and optimum condi-
tions of performance can be found in excellent introductions issued by
Hamamatsu, EMI or RCA [4.135, 4.136]. An extensive review of pho-
toemissive detectors has been given by Zwicker [4.126]; see also the
monographs [4.137, 4.138].

c) Microchannel plates

Photomultipliers are now often replaced by microchannel plates. They consist
of a photocathode layer on a thin semiconductive glass plate (0.5−1.5 mm)
that is perforated by millions of small holes with diameters in the range
10−25 μm (Fig. 4.109). The total area of the holes covers about 60% of the
glass plate area. The inner surface of the holes (channels) has a high sec-
ondary emission coefficient for electrons that enter the channels from the
photocathode and are accelerated by a voltage applied between the two sides
of the glass plate. The amplification factor is about 103 at an electric field of
500 V/mm. Placing two microchannel plates in series allows an amplification
of 106, which is comparable to that of photomultipliers.

Fig. 4.109a–c. Microchannel plate (MCP): (a) schematic construction; (b) electron ava-
lanche in one channel; (c) schematic arrangement of MCP detector with spatial resolution
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The advantage of the microchannel plates is the short rise time (< 1 ns) of
the electron avalanches generated by a single photon, the small size, and the
possibility of spatial resolution [4.139].

d) Photoelectric Image Intensifiers

Image intensifiers consist of a photocathode, an electro-optical imaging de-
vice, and a fluorescence screen, where an intensified image of the irradiation
pattern at the photocathode is reproduced by the accelerated photoelectrons.
Either magnetic or electric fields can be used for imaging the cathode pattern
onto the fluorescent screen. Instead of the intensified image being viewed on
a phosphor screen, the electron image can be used in a camera tube to gener-
ate picture signals, which can be reproduced on the television screen and can
be stored either photographically or on a recording medium [4.139–4.141].

For applications in spectroscopy, the following characteristic properties of
image intensifiers are important:

• The intensity magnification factor M, which gives the ratio of output in-
tensity to input intensity;

• The dark current of the system, which limits the minimum detectable input
power;

• The spatial resolution of the device, which is generally given as the max-
imum number of parallel lines per millimeter of a pattern at the cathode
which can still be resolved in the intensified output pattern;

• The time resolution of the system, which is essential for recording of fast
transient input signals.

Figure 4.110 illustrates a simple, single-stage image intensifier with a mag-
netic field parallel to the accelerating electric field. All photoelectrons starting
from the point P at the cathode follow helical paths around the magnetic field
lines and are focused into P′ at the phosphor screen after a few revolutions.
The location of P′ is, to a first approximation, independent of the direction β
of the initial photoelectron velocities. To get a rough idea about the possible
magnification factor M, let us assume a quantum efficiency of 20% for the
photocathode and an accelerating potential of 10 kV. With an efficiency of

Fig. 4.110. Single-stage image intensifier with magnetic focusing
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Fig. 4.111a,b. Cascade image intensifier: (a) schematic diagram with cathodes Ci , fluo-
rescence screens Pi , and ring electrodes providing the acceleration voltage; (b) detail of
phosphor–cathode sandwich structure

20% for the conversion of electron energy to light energy in the phosphor
screen, each electron produces about 1000 photons with hν = 2 eV. The am-
plification factor M giving the number of output photons per incoming photon
is then M = 200. However, light from the phosphor is emitted into all direc-
tions and only a small fraction of it can be collected by an optical system.
This reduces the total gain factor.

The collection efficiency can be enhanced when a thin mica window is
used to support the phosphor screen and photographic contact prints of the
image are made. Another way is the use of fiber-optic windows.

Larger gain factors can be achieved with cascade intensifier tubes
(Fig. 4.111), where two or more stages of simple image intensifiers are
coupled in series [4.142]. The critical components of this design are the
phosphor–photocathode sandwich screens, which influence the sensitivity and
the spatial resolution. Since light emitted from a spot around P on the phos-
phor should release photelectrons from the opposite spot around P′ of the
photocathode, the distance between P and P′ should be as small as possible in
order to preserve the spatial resolution. Therefore, a thin layer of phosphor (a
few microns) of very fine grain-size is deposited by electrophoresis on a mica
sheet with a few microns thickness. An aluminum foil reflects the light from
the phosphor back onto the photocathode (Fig. 4.111b) and prevents optical
feedback to the preceding cathode.

The spatial resolution depends on the imaging quality, which is influenced
by the thickness of the phosphor-screen–photocathode sandwiches, by the ho-
mogeneity of the magnetic field, and by the lateral velocity spread of the
photoelectrons. Red-sensitive photocathodes generally have a lower spatial
resolution since the initial velocities of the photoelectrons are larger. The res-
olution is highest at the center of the screen and decreases toward the edges.
Table 4.3 compiles some typical data of commercial three-stage image intensi-
fiers [4.143]. In Fig. 4.112 a modern version of an image intensifier is shown.
It consists of a photocathode, two short proximity-focused image intensifiers,
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Table 4.3. Characteristic data of image intensifiers

Type Useful diameter Resolution Gain Spectral
[mm] [linepairs/mm] range

[nm]

RCA 4550 18 32 3×104

RCA C33085DP 38 40 6×105

EMI 9794 48 50 2×105 depending on
Hamamatsu cathode type
V4435U 25 64 4×106 between 160
I.I. with and 1000 nm
Multichannel plate 40 80 1×107

Fig. 4.112. Modern version of a compact
image intensifier

and a fiber-optic coupler, which guides the intensified light generated at the
exit of the second stage onto a CCD array.

Image intensifiers can be advantageously employed behind a spectrograph
for the sensitive detection of extended spectral ranges [4.144]. Let us assume
a linear dispersion of 1 mm/nm of a medium-sized spectrograph. An image
intensifier with a useful cathode size of 30 mm and a spatial resolution of
30 lines/mm allows simultaneous detection of a spectral range of 30 nm with
a spectral resolution of 3×10−2 nm. This sensitivity exceeds that of a photo-
graphic plate by many orders of magnitude. With cooled photocathodes, the
thermal noise can be reduced to a level comparable with that of a photomul-
tiplier, therefore incident radiation powers of a few photons can be detected.
A combination of image intensifiers and vidicons or special diode arrays has
been developed (optical multichannel analyzers, OMA) that has proved to be
very useful for fast and sensitive measurements of extended spectral ranges,
in particular for low-level incident radiation (Sect. 4.5.3).
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Such intensified OMA systems are commercially available. Their advan-
tages may be summarized as follows [4.145, 4.146]:

• The vidicon targets store optical signals and allow integration over an ex-
tended period, whereas photomultipliers respond only while the radiation
falls on the cathode.

• All channels of the vidicon acquire optical signals simultaneously. Mounted
behind a spectrometer, the OMA can measure an extended spectral range
simultaneously, while the photomultiplier accepts only the radiation pass-
ing through the exit slit, which defines the resolution. With a spatial
resolution of 30 lines per mm and a linear dispersion of 0.5 nm/mm
of the spectrometer, the spectral resolution is 1.7 ×10−2 nm. A vidi-
con target with a length of 16 mm can detect a spectral range of 8 nm
simultaneously.

• The signal readout is performed electronically in digital form. This allows
computers to be used for signal processing and data analyzing. The dark
current of the OMA, for instance, can be automatically substracted, or the
program can correct for background radiation superimposed on the signal
radiation.

• Photomultipliers have an extended photocathode where the dark current
from all points of the cathode area is summed up and adds to the signal. In
the image intensifier in front of the vidicon, only a small spot of the pho-
tocathode is imaged onto a single diode. Thus the whole dark current from
the cathode is distributed over the spectral range covered by the OMA.
The image intensifier can be gated and allows detection of signals with
high time resolution [4.147]. If the time dependence of a spectral dis-
tribution is to be measured, the gate pulse can be applied with variable
delay and the whole system acts like a boxcar integrator with additional
spectral display. The two-dimensional diode arrays also allow the time de-
pendence of single pulses and their spectral distribution to be displayed,
if the light entering the entrance slit of the spectrometer is swept (e.g., by
a rotating mirror) parallel to the slit. The OMA or OSA systems therefore
combine the advantages of high sensitivity, simultaneous detection of ex-
tended spectral ranges, and the capability of time resolution. These merits
have led to their increased popularity in spectroscopy [4.145, 4.146].

4.5.6 Detection Techniques and Electronic Equipment

In addition to the radiation detectors, the detection technique and the opti-
mum choice of electronic equipment are also essential factors for the success
and the accuracy of spectroscopic measurements. This subsection is devoted
to some modern detection techniques and electronic devices.

a) Photon Counting

At very low incident radiation powers it is advantageous to use the photo-
multiplier for counting single photoelectrons emitted at a rate n per second
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Fig. 4.113. Schematic block-diagram of photon-counting electronics

rather than to measure the photocurrent i = n ·Δt · e · G/Δt averaged over
a period Δt [4.148]. The electron avalanches arriving at the anode with the
charge Q = G e generated by a single photoelectron produce voltage pulses
U = eG/C at the anode with the capacitance C. With C = 1.5 ×10−11 F,
G = 106 → U = 10 mV. These pulses with rise times of about 1 ns trigger
a fast discriminator, which delivers a TTL-norm pulse of 5 V to a counter or
to a digital–analog converter (DAC) driving a rate meter with variable time
constant (Fig. 4.113) [4.149].

Compared with the conventional analog measurement of the anode current,
the photon-counting technique has the following advantages:

• Fluctuations of the photomultiplier gain G, which contribute to the noise
in analog measurements, see (4.151), are not significant here, since each
photoelectron induces the same normalized pulse from the discriminator
as long as the anode pulse exceeds the discriminator threshold.

• Dark curent generated by thermal electrons from the various dynodes
can be suppressed by setting the discriminator threshold correctly. This
discrimination is particularly effective in photomultipliers with a large con-
version efficiency q at the first dynode, covered with a GaAsP layer.

• Leakage currents between the leads in the photomulitplier socket con-
tribute to the noise in current measurements, but are not counted by the
discriminator if it is correctly biased.

• High-energy β-particles from the disintegration of radioactive isotopes in
the window material and cosmic ray particles cause a small, but nonnegli-
gible, rate of electron bursts from the cathode with a charge n · e of each
burst (n � 1). The resulting large anode pulses cause additional noise of
the anode current. They can, however, be completely suppressed by a win-
dow discriminator used in photon counting.

• The digital form of the signal facilitates its further processing. The dis-
criminator pulses can be directly fed into a computer that analyzes the data
and may control the experiment [4.150].

The upper limit of the counting rate depends on the time resolution of the
discriminator, which may be below 10 ns. This allows counting of randomly
distributed pulse rates up to about 10 MHz without essential counting errors.

The lower limit is set by the dark pulse rate [4.148]. With selected low-
noise photomultipliers and cooled cathodes, the dark pulse rate may be below
1 per second. Assuming a quantum efficiency of η = 0.2, it should therefore
be possible to achieve, within a measuring time of 1 s, a signal-to-noise ratio
of unity even at a photon flux of 5 photons/s. At these low photon fluxes, the
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probability p(N) of N photoelectrons being detected within the time interval
Δt follows a Poisson distribution

p(N) = N
N

e−N

N! , (4.152)

where N is the average number of photoelectrons detected within a given time
interval Δt [4.151]. If the probability that at least one photoelectron will be
detected within Δt is 0.99, then 1− p(0) = 0.99 and

p(0) = e−N̄ = 0.01 , (4.153)

which yields N ≥ 4.6. This means that we can expect a pulse during the
observation time with 99% certainty only if at least 20 photons fall onto
the photocathode with a quantum efficiency of η = 0.2. For longer detection
times, however, the detectable photoelectron rate may be even lower than the
dark current rate if, for instance, lock-in detection is used. It is not the dark
pulse rate ND itself that limits the signal-to-noise ratio, but rather its fluctua-
tions, which are proportional to N1/2

D .
Because of their low noise, channel photomultipliers or avalanche diodes

are well suited to low-level photon counting.

b) Measurements of Fast Transient Events

Many spectroscopic investigations require the observation of fast transient
events. Examples are lifetime measurements of excited atomic or molecular
states, investigations of collisional relaxation, and studies of fast laser pulses
(Vol. 2, Chap. 6). Another example is the transient response of molecules
when the incident light frequency is switched into resonance with molecular
eigenfrequencies (Vol. 2, Chap. 7). Several techniques are used to observe and
to analyze such events and recently developed instruments help to optimize
the measuring procedure. The combination of a CCD detector and a gated
microchannel plate, which acts as an image intensifier with nanosecond reso-
lution, allows the time-resolved sensitive detection of fast events. In addition,
there are several devices that are particularly suited for the electronic han-
dling of short pulses. We briefly present three examples of such equipment:
the boxcar integrator with signal averaging, the transient recorder, and the
fast transient digitizer with subnanosecond resolution.

The boxcar integrator measures the amplitudes and shapes of signals with
a constant repetition rate integrated over a specific sampling interval Δt. It
records these signals repetitively over a selected number of pulses and com-
putes the average value of those measurements. With a synchronized trigger
signal it can be assured that one looks each time at the identical time interval
of each sampled waveform. A delay circuit permits the sampled time interval
Δt (called aperture) to be shifted to any portion of the waveform under in-
vestigation. Figure 4.114 illustrates a possible way to perform this sampling
and averaging. The aperture delay is controlled by a ramp generator, which
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Fig. 4.114. Principle of boxcar operation with synchronization of the repetitive signals.
The time base determines the opening times of the gate with width Δt. The slow scan-
time ramp shifts the delay times τi continuously over the signal–pulse time profile

is synchronized to the signal repetition rate and which provides a sawtooth
voltage at the signal repetition frequency. A slow aperture-scan ramp shifts
the gating time interval Δt, where the signal is sampled at the time delay τi
after the trigger pulse for a time interval Δt. Between two successive signals
the gate time is shifted by an amount Δτ , which depends on the slope of the
ramp. This slope has to be sufficiently slow in order to permit a sufficient
number of samples to be taken in each segment of the waveform. The out-
put signal is then averaged over several scans of the time ramp by a signal
averager [4.152]. This increases the signal-to-noise ratio and smooths the dc
output, which follows the shape of the waveform under study.

The slow ramp is generally not a linearly increasing ramp as shown in
Fig. 4.114, but rather a step function where the time duration of each step de-
termines the number of samples taken at a given delay time τ . If the slow
ramp is replaced by a constant selectable voltage, the system works as a gated
integrator.

The integration of the input signal Us(t) over the sampling time inter-
val Δt can be performed by charging a capacitance C through a resistor R
(Fig. 4.115), which gives a current i(t) = Us(t)/R. The output is then

U(τ) = 1

C

τ+Δt∫

τ

i(t)dt = 1

RC

τ+Δt∫

τ

Us(t)dt . (4.154)

For repetitive scans, the voltages U(τ) can be summed. Because of inevitable
leakage currents, however, unwanted discharge of the capacitance occurs if
the signal under study has a low duty factor and the time between successive
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Fig. 4.115. Simplified diagram of boxcar realization

samplings becomes large. This difficulty may be overcome by a digital out-
put, consisting of a two-channel analog-to-digital-to-analog converter. After
a sampling switch opens, the acquired charge is digitized and loaded into
a digital storage register. The digital register is then read by a digital-to-analog
converter producing a dc voltage equal to the voltage U(τ) = Q(τ)/C on the
capacitor. This dc voltage is fed back to the integrator to maintain its output
potential until the next sample is taken.

The boxcar integrator needs repetitive waveforms because it samples each
time only a small time interval Δt of the input pulse and composes the whole
period of the repetitive waveform by adding many sampling points with dif-
ferent delays. For many spectroscopic applications, however, only single-shot
signals are available. Examples are shock-tube experiments or spectroscopic
studies in laser-induced fusion. In such cases, the boxcar integrator is not use-
ful and a transient recorder is a better choice. This instrument uses digital
techniques to sample N preselected time intervals Δti which cover the total
time T = NΔt of an analog signal as it varies with time. The wave shape
during the selected period of time is recorded and held in the instrument’s

Fig. 4.116. Block diagram of a transient recorder
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Fig. 4.117a,b. Fast transient digitizer: (a) silicon diode-array target; and (b) writing and
reading gun [4.155]

memory until the operator instructs the instrument to make a new recording.
The operation of a transient recorder is illustrated in Fig. 4.116 [4.153, 4.154].
A trigger, derived from the input signal or provided externally, initiates the
sweep. The amplified input signal is converted at equidistant time intervals to
its digital equivalent by an analog-to-digital converter and stored in a semi-
conductor memory in different channels. With 100 channels, for instance,
a single-shot signal is recorded by 100 equidistant sampling intervals. The
time resolution depends on the sweep time and is limited by the frequency re-
sponse of the transient recorder. Sample intervals between 10 ns up to 20 s can
be selected. This allows sweep times of 20 μs to 5 h for 2000 sampling points.
With modern devices, sampling rates of up to 500 MHz are achievable.

Acquisition and analysis beyond 500 MHz has become possible by com-
bining the features of a transient recorder with the fast response time of an
electron beam that writes and stores information on a diode matrix target in
a scan converter tube. Figure 4.117 illustrates the basic principle of the tran-
sient digitizer [4.155]. The diode array of about 640,000 diodes is scanned by
the reading electron beam, which charges all reverse-biased p–n junctions un-
til the diodes reach a saturation voltage. The writing electron beam impinges
on the other side of the 10 μm thick target and creates electron–hole pairs,
which diffuse to the anode and partially discharge it. When the reading beam
hits a discharged diode, it becomes recharged, subsequently a current signal
is generated at the target lead, which can be digitally processed.
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The instrument can be used in a nonstoring mode where the operation is
similar to that of a conventional television camera with a video signal, which
can be monitored on a TV monitor. In the digital mode the target is scanned
by the reading beam in discrete steps. The addresses of points on the target
are transferred and stored in memory only when a trace has been written at
those points on the target. This transient digitizer allows one to monitor fast
transient signals with a time resolution of 100 ps and to process the data in
digital form in a computer. It is, for instance, possible to obtain the frequency
distribution of the studied signal from its time distribution by a Fourier trans-
formation performed by the computer.

c) Optical Oscilloscope

The optical oscilloscope represents a combination of a streak camera and
a sampling oscilloscope. Its principle of operation is illustrated by Fig. 4.118
[4.156]: The incident light I(t) is focused onto the photocathode of the streak
camera. The electrons released from the cathode pass between two deflect-
ing electrodes toward the sampling slit. Only those electrons that traverse the
deflecting electric field at a given selectable time can pass through the slit.
They impinge on a phosphor screen and produce light that is detected by
a photomultiplier (PM). The PM output is amplified and fed into a sampling
oscilloscope, where it is stored and processed. The sampling operation can
be repeated many times with different delay times t between the trigger and
the sampling, similar to the principle of a boxcar operation (Fig. 4.114). Each
sampling interval yields the signal

S(t,Δt) =
t+Δt∫

t

I(t)dt . (4.155)

Fig. 4.118. Optical oscilloscope [4.156]
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The summation over all sampled time intervals Δt gives the total signal

S(t) =
N∑

n=1

t=n·Δt∫

t=(n−1)Δt

I(t)dt , (4.156)

which reflects the input time profile I(t) of the incident light.
The spectral response of the system depends on that of the first photocath-

ode and reaches from 350 to 850 μm for the visible version and from 400 to
1550 μm for the extended infrared version. The time resolution is better than
10 ps and the sampling rate can be selected up to 2 MHz. The limitation is
given by the time jitter, which was stated to be less than 20 ps.

4.6 Conclusions

The aim of this chapter was to provide a general background in spectro-
scopic instrumentation, to summarize some basic ideas of spectroscopy, and to
present some important relations between spectroscopic quantities. This back-
ground should be helpful in understanding the following chapters that deal
with the main subject of this textbook: the applications of lasers to the solu-
tion of spectroscopic problems. Although until now we have only dealt with
general spectroscopy, the examples given were selected with special emphasis
on laser spectroscopy. This is especially true in Chap. 4, which is, of course,
not a complete account of spectroscopic equipment, but is intended to give
a survey on modern instrumentation used in laser spectroscopy.

There are several excellent and more detailed presentations of special in-
struments and spectroscopic techniques, such as spectrometers, interferometry,
and Fourier spectroscopy. Besides the references given in the various sections,
several series on optics [4.2], optical engineering [4.1], advanced optical tech-
niques [4.158], and the monographs [4.4, 4.6, 4.157–4.162 may help to give
more extensive information about special problems. Useful practical hints can
be found in the handbooks [4.163, 4.164].

Problems

4.1 Calculate the spectral resolution of a grating spectrometer with an
entrance slit width of 10 μm, focal lengths f1 = f2 = 2 m of the mir-
rors M1 and M2, a grating with 1800 grooves/mm and an angle of incidence
α = 45◦. What is the useful minimum slit width if the size of grating is 100×
100 mm2?

4.2 The spectrometer in Problem 4.1 shall be used in first order for a
wavelength range around 500 nm. What is the optimum blaze angle, if the
geometry of the spectrometer allows an angle of incidence α about 20◦?
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4.3 Calculate the number of grooves/mm for a Littrow grating for a 25◦ in-
cidence at λ = 488 nm (i.e., the first diffraction order is being reflected back
into the incident beam at an angle α = 25◦ to the grating normal).

4.4 A prism can be used for expansion of a laser beam if the incident beam
is nearly parallel to the prism surface. Calculate the angle of incidence α for
which a HeNe laser beam (λ = 632.8 nm) transmitted through a rectangular
flint glass prism with ε = 60◦ is expanded tenfold.

4.5 Assume that a signal-to-noise ratio of 50 has been achieved in measur-
ing the fringe pattern of a Michelson interferometer with one continuously
moving mirror. Estimate the minimum path length ΔL that the mirror has to
travel in order to reach an accuracy of 10−4 nm in the measurement of a laser
wavelength at λ = 600 nm.

4.6 The dielectric coatings of each plate of a Fabry–Perot interferometer have
the following specifications: R = 0.98, A = 0.3%. The flatness of the surfaces
is λ/100 at λ = 500 nm. Estimate the finesse, the maximum transmission, and
the spectral resolution of the FPI for a plate separation of 5 mm.

4.7 A fluorescence spectrum shall be measured with a spectral resolution of
10−2 nm. The experimentor decides to use a crossed arrangement of grating
spectrometer (linear dispersion: 0.5 nm/mm) and FPI of Problem 4.6. Estimate
the optimum combination of spectrometer slit width and FPI plate separation.

4.8 An interference filter shall be designed with peak transmission at λ =
550 nm and a bandwidth of 5 nm. Estimate the reflectivity R of the dielectric
coatings and the thickness of the etalon, if no further transmission maximum
is allowed between 350 and 750 nm.

4.9 A confocal FPI shall be used as optical spectrum analyzer, with a free
spectral range of 3 GHz. Calculate the mirror separation d and the finesse that
is necessary to resolve spectral features in the laser output within 10 MHz.
What is the minimum reflectivity R of the mirrors, if the surface finesse is
500?

4.10 Calculate the transmission peaks of a Lyot filter with two plates (d1 =
1 mm, d2 = 4 mm) with n = 1.40 in the fast axis and n = 1.45 in the slow axis
(a) as a function of λ for α = 45◦ in (4.97); and (b) as a function of α for
a fixed wavelength λ. What is the contrast of the transmitted intensity I(α)
for arbitrary values of λ if the absorption losses are 2%?

4.11 Derive (4.116) for the equivalent electrical circuit of Fig. 4.79b.

4.12 A thermal detector has a heat capacity H = 10−8 J/K and a thermal con-
ductivity to a heat sink of G = 10−9 W/K. What is the temperature increase



Problems 233

ΔT for 10−9 W incident cw radiation if the efficiency β = 0.8? If the radia-
tion is switched on at a time t = 0, how long does it take before the detector
reaches a temperature increase ΔT(t) = 0.9ΔT∞? What is the time constant
of the detector and at which modulation frequency Ω of the incident radiation
has the response decreased to 0.5 of its dc value?

4.13 A bolometer is operated at the temperature T = 8 K between supercon-
ducting and normal conducting states, where R = 10−3 Ω. The heat capacity
is H = 10−8 J/K and the dc electrical current 1 mA. What is the change Δi
of the heating current in order to keep the temperature constant when the
bolometer is irradiated with 10−10 W?

4.14 The anode of a photomultiplier tube is connected by a resistor of
R = 1 kΩ to ground. The stray capacitance is 10 pf, the current amplifica-
tion 106, and the anode rise time 1.5 ns. What is the peak amplitude and the
halfwidth of the anode output pulse produced by a single photoelectron? What
is the dc output current produced by 10−12 W cw radiation at λ = 500 nm,
if the quantum efficiency of the cathode is η = 0.2 and the anode resistor
R = 106 Ω? Estimate the necessary voltage amplification of a preamplifier (a)
to produce 1 V pulses for single-photon counting; and (b) to read 1 V on a dc
meter of the cw radiation?

4.15 A manufacturer of a two-stage optical image intensifier states that inci-
dent intensities of 10−17 W at λ = 500 nm can still be “seen” on the phosphor
screen of the output state. Estimate the minimum intensity amplification, if the
quantum efficiency of the cathodes and the conversion efficiency of the phos-
phor screens are both 0.2 and the collection efficiency of light emitted by the
phosphor screens is 0.1. The human eye needs at least 20 photons/s to observe
a signal.

4.16 Estimate the maximum output voltage of an open photovoltaic detector
at room temperature under 10 μW irradiation when the photocurrent of the
shortened output is 50 μA and the dark current is 50 nA.
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In this chapter we summarize basic laser concepts with regard to their ap-
plications in spectroscopy. A sound knowledge of laser physics with regard
to passive and active optical cavities and their mode spectra, the realization
of single-mode lasers, or techniques for frequency stabilization will help the
reader to gain a deeper understanding of many subjects in laser spectroscopy
and to achieve optimum performance of an experimental setup. Of particu-
lar interest for spectroscopists are the various types of tunable lasers, which
are discussed in Sect. 5.7. Even in spectral ranges where no tunable lasers
exist, optical frequency-doubling and mixing techniques may provide tunable
coherent radiation sources, as outlined in Sect. 5.8.

5.1 Fundamentals of Lasers

This section gives a short introduction to the basic physics of lasers in a more
intuitive than mathematical way. A more detailed treatment of laser physics
and an extensive discussion of various types of lasers can be found in text-
books (see, for instance, [5.1–5.10]). For more advanced presentations based
on the quantum-mechanical description of lasers, the reader is referred to
[5.11–5.15].

5.1.1 Basic Elements of a Laser

A laser consists of essentially three components (Fig. 5.1a):

• The active medium, which amplifies an incident electromagnetic (EM)
wave;

• The energy pump, which selectively pumps energy into the active medium
to populate selected levels and to achieve population inversion;

• The optical resonator composed, for example, of two opposite mirrors,
which stores part of the induced emission that is concentrated within a few
resonator modes.

The energy pump (e.g., flashlamps, gas discharges, or even other lasers)
generates a population distribution N(E) in the laser medium, which strongly
deviates from the Boltzmann distribution (2.18) that exists for thermal equi-
librium. At sufficiently large pump powers the population density N(Ek) of
the specific level Ek may exceed that of the lower level Ei (Fig. 5.1b).

For such a population inversion, the induced emission rate Nk Bkiρ(ν) for
the transition Ek → Ei exeeds the absorption rate Ni Bikρ(ν). An EM wave
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Fig. 5.1. (a) Schematic setup of a laser and (b) population inversion (dashed curve), com-
pared with a Boltzmann distribution at thermal equilibrium (solid curve)

passing through this active medium is amplified instead of being attenuated
according to (3.22).

The function of the optical resonator is the selective feedback of radiation
emitted from the excited molecules of the active medium. Above a certain
pump threshold this feedback converts the laser amplifier into a laser oscil-
lator. When the resonator is able to store the EM energy of induced emission
within a few resonator modes, the spectral energy density ρ(ν) may become
very large. This enhances the induced emission into these modes since, ac-
cording to (2.22), the induced emission rate already exceeds the spontaneous
rate for ρ(ν) > hν. In Sect. 5.1.3 we shall see that this concentration of in-
duced emission into a small number of modes can be achieved with open
resonators, which act as spatially selective and frequency-selective optical fil-
ters.

5.1.2 Threshold Condition

When a monochromatic EM wave with the frequency ν travels in the z-di-
rection through a medium of molecules with energy levels Ei and Ek and
(Ek − Ei)/h = ν, the intensity I(ν, z) is, according to (3.23), given by

I(ν, z) = I(ν, 0)e−α(ν)z , (5.1)

where the frequency-dependent absorption coefficient

α(ν) = [Ni − (gi/gk)Nk]σ(ν) , (5.2)

is determined by the absorption cross section σ(ν) for the transition (Ei → Ek)
and by the population densities Ni , Nk in the energy levels Ei , Ek with
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Fig. 5.2. Gain and losses of an EM wave traveling back and forth along the resonator
axis

the statistical weights gi , gk, see (2.44). We infer from (5.2) that for
Nk > (gk/gi)Ni , the absorption coefficient α(ν) becomes negative and the in-
cident wave is amplified instead of attenuated.

If the active medium is placed between two mirrors (Fig. 5.2), the wave is
reflected back and forth, and traverses the amplifying medium many times,
which increases the total amplification. With the length L of the active
medium the total gain factor per single round-trip without losses is

G(ν) = I(ν, 2L)

I(ν, 0)
= e−2α(ν)L . (5.3)

A mirror with reflectivity R reflects only the fraction R of the incident inten-
sity. The wave therefore suffers at each reflection a fractional reflection loss
of (1− R). Furthermore, absorption in the windows of the cell containing the
active medium, diffraction by apertures, and scattering due to dust particles in
the beam path or due to imperfect surfaces introduce additional losses. When
we summarize all these losses by a loss coefficient γ , which gives the frac-
tional energy loss ΔW/W per round-trip time T , the intensity I decreases
without an active medium per round-trip (if we assume the loss to be equally
distributed along the resonator length d) as

I = I0 e−γ . (5.4)

Including the amplification by the active medium with length L, we obtain
for the intensity after a single round-trip through the resonator with length d,
which may be larger than L:

I(ν, 2d) = I(ν, 0) exp[−2α(ν)L −γ ] . (5.5)

The wave is amplified if the gain overcomes the losses per round-trip. This
implies that

−2Lα(ν) > γ . (5.6)

With the absorption cross section σ(ν) from (5.2), this can be written as

2L ΔN σ(ν) > γ
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which yields the threshold condition for the population difference

ΔN = Nk(gi/gk)− Ni > ΔNthr = γ

2σ(ν)L
. (5.7)

Example 5.1.
L = 10 cm, γ = 10%, σ = 10−12 cm2 → ΔN = 5 ×109/cm3. At a neon
pressure of 0.2 mbar, ΔN corresponds to about 10−6 of the total density
of neon atoms in a HeNe laser.

If the inverted population difference ΔN of the active medium is larger
than ΔNthr, a wave that is reflected back and forth between the mirrors will
be amplified in spite of losses, therefore its intensity will increase.

The wave is initiated by spontaneous emission from the excited atoms
in the active medium. Those spontaneously emitted photons that travel into
the right direction (namely, parallel to the resonator axis) have the longest
path through the active medium and therefore the greater chance of creating
new photons by induced emission. Above the threshold they induce a pho-
ton avalanche, which grows until the depletion of the population inversion by
stimulated emission just compensates the repopulation by the pump. Under
steady-state conditions the inversion decreases to the threshold value ΔNthr,
the saturated net gain is zero, and the laser intensity limits itself to a finite
value IL. This laser intensity is determined by the pump power, the losses γ ,
and the gain coefficient α(ν) (Sects. 5.7,5.9).

The frequency dependence of the gain coefficient α(ν) is related to the line
profile g(ν−ν0) of the amplifying transition. Without saturation effects (i.e.,
for small intensities), α(ν) directly reflects this line shape, for homogeneous
as well as for inhomogeneous profiles. According to (2.44) and (2.100) we
obtain with the Einstein coefficienct Bik

α(ν) = ΔNσik(ν) = ΔN(hν/c)Bikg(ν−ν0) , (5.8)

which shows that the amplification is largest at the line center ν0. For high
intensities, saturation of the inversion occurs, which is different for homoge-
neous and for inhomogeneous line profiles (Vol. 2, Sects. 2.1, 2.2).

The loss factor γ also depends on the frequency ν because the resonator
losses are strongly dependent on ν. The frequency spectrum of the laser there-
fore depends on a number of parameters, which we discuss in more detail in
Sect. 5.2.

5.1.3 Rate Equations

The photon number inside the laser cavity and the population densities of
atomic or molecular levels under stationary conditions of a laser can read-
ily be obtained from simple rate equations. Note, however, that this approach
does not take into account coherence effects (Vol. 2, Chap. 7).
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Fig. 5.3. Level diagram for pumping process P, relax-
ation rates Ni Ri , spontaneous and induced transitions
in a four-level system

With the pump rate P (which equals the number of atoms that are pumped
per second and per cm3 into the upper laser level |2〉), the relaxation rates
Ri Ni (which equal the number of atoms that are removed per second and cm3

from the level |i〉 by collision or spontaneous emission), and the spontaneous
emission probability A21 per second, we obtain from (2.21) for equal statisti-
cal weights g1 = g2 the rate equations for the population densities Ni and the
photon densities n (Fig. 5.3):

dN1

dt
= (N2 − N1)B21nhν + N2 A21 − N1 R1 , (5.9a)

dN2

dt
= P − (N2 − N1)B21nhν − N2 A21 − N2 R2 , (5.9b)

dn

dt
= −βn + (N2 − N1)B21nhν . (5.9c)

The loss coefficient β [s−1] determines the loss rate of the photon density n(t)
stored inside the optical resonator. Without an active medium (N1 = N2 = 0),
we obtain from (5.9c)

n(t) = n(0)e−βt . (5.10)

A comparison with the definition (5.4) of the dimensionless loss coefficient γ
per round-trip yields for a resonator with length d and round-trip time T =
2d/c

γ = βT = β(2d/c) . (5.11)

Under stationary conditions we have dN1/dt = dN2/dt = dn/dt = 0. Adding
(5.9a and 5.9b) then yields

P = N1 R1 + N2 R2 , (5.12)

which means that the pump rate P just compensates the loss rates N1 R1 +
N2 R2 of the atoms in the two laser levels caused by relaxation processes into
other levels. Further insight can be gained by adding (5.9b and 5.9c), which
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gives for stationary conditions

P = βn + N2(A21 + R2) . (5.13)

In a continuous-wave (cw) laser the pump rate equals the sum of photon loss
rate βn plus the total relaxation rate N2(A21 + R2) of the upper laser level.
A comparison of (5.12 and 5.13) shows that for a cw laser the relation holds

N1 R1 = βn + N2 A21 . (5.14)

Under stationary laser operation the relaxation rate N1 R1 of the lower laser
level must always be larger than its feeding rate from the upper laser level!

The stationary inversion ΔNstat can be obtained from the rate equation
when multiplying (5.9a) by R2, (5.9b) by R1, and adding both equations. We
find

ΔNstat = (R1 − A21)P

B12nhν(R1 + R2)+ A21 R1 + R1 R2
. (5.15)

This shows that a stationary inversion ΔNstat > 0 can only be maintained for
R1 > A21. The relaxation probability R1 of the lower laser level |1〉 must be
larger than its refilling probability A21 by spontaneous transitions from the
upper laser level |2〉. In fact, during the laser operation the induced emis-
sion mainly contributes to the population N1 and therefore the more stringent
condition R1 > A21 + B21ρ must be satisfied. Continuous-wave lasers can
therefore be realized on the transitions |2〉 → |1〉 only if the effective lifetime
τeff = 1/R1 of level |1〉 is smaller than (A2 + B21ρ)−1.

When starting a laser, the photon density n increases until the inversion
density ΔN has decreased to the threshold density ΔNthr. This can immedi-
ately be concluded from (5.9c), which gives for dn/dt = 0 and d = L

ΔN = β

B21hν
= γ

2L B21hν/c
= γ

2Lσ
= ΔNthr , (5.16)

where the relation (5.8) with
∫

α(ν)dν = ΔNσ12 = ΔN(hν/c)B12 ,

has been used.

Example 5.2.
With N2 = 1010/cm3 and (A21 + R2) = 2×107 s−1, the total incoherent loss
rate is 2×1017/cm3 · s. In a HeNe laser discharge tube with L = 10 cm and
1 mm diameter, the active volume is about 0.075 cm3. The total loss rate of
the last two terms in (5.9c) then becomes 1.5×1016 s−1.

For a laser output power of 3 mW at λ = 633 nm, the rate of emitted
photons is βn = 1016 s−1. In this example the total pump rate has to be P =
(1.5+1)×1016s−1 = 2.5×1016 s−1, where the fluorescence emitted in all
directions represents a larger loss than the mirror transmission.
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5.2 Laser Resonators

In Sect. 2.1 it was shown that in a closed cavity a radiation field exists with
a spectral energy density ρ(ν) that is determined by the temperature T of the
cavity walls and by the eigenfrequencies of the cavity modes. In the optical
region, where the wavelength λ is small compared with the dimension L of
the cavity, we obtained the Planck distribution (2.13) at thermal equilibrium
for ρ(ν). The number of modes per unit volume,

n(ν)dν = 8π(ν2/c3)dν ,

within the spectral interval dν of a molecular transition turns out to be very
large (Example 2.1a). When a radiation source is placed inside the cavity, its
radiation energy will be distributed among all modes; the system will, after
a short time, again reach thermal equilibrium at a correspondingly higher tem-
perature. Because of the large number of modes in such a closed cavity, the
mean number of photons per mode (which gives the ratio of induced to spon-
taneous emission rate in a mode) is very small in the optical region (Fig. 2.7).
Closed cavities with L � λ are therefore not suitable as laser resonators.

In order to achieve a concentration of the radiation energy into a small
number of modes, the resonator should exhibit a strong feedback for these
modes but large losses for all other modes. This would allow an intense radi-
ation field to be built up in the modes with low losses but would prevent the
system from reaching the oscillation threshold in the modes with high losses.

Assume that the kth resonator mode with the loss factor βk contains the
radiation energy Wk. The energy loss per second in this mode is then

dWk

dt
= −βkWk . (5.17)

Under stationary conditions the energy in this mode will build up to a sta-
tionary value where the losses equal the energy input. If the energy input is
switched off at t = 0, the energy Wk will decrease exponentially since inte-
gration of (5.17) yields

Wk(t) = Wk(0)e−βkt . (5.18)

When we define the quality factor Qk of the kth cavity mode as 2π times the
ratio of energy stored in the mode to the energy loss per oscillation period
T = 1/ν

Qk = − 2πνWk

dWk/dt
, (5.19)

we can relate the loss factor βk and the qualtiy factor Qk by

Qk = −2πν/βk . (5.20)

After the time τ = 1/βk, the energy stored in the mode has decreased to 1/e
of its value at t = 0. This time can be regarded as the mean lifetime of a pho-
ton in this mode. If the cavity has large loss factors for most modes but
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a small βk for a selected mode, the number of photons in this mode will be
larger than in the other modes, even if at t = 0 the radiation energy in all
modes was the same. If the unsaturated gain coefficient α(ν)L of the active
medium is larger than the loss factor γk = βk(2d/c) per round-trip but smaller
than the losses of all other modes, the laser will oscillate only in this selected
mode.

5.2.1 Open Optical Resonators

A resonator that concentrates the radiation energy of the active medium into
a few modes can be realized with open cavities, which consist of two plane or
curved mirrors aligned in such a way that light traveling along the resonator
axis may be reflected back and forth between the mirrors. Such a ray tra-
verses the active medium many times, resulting in a larger total gain. Other
rays inclined against the resonator axis may leave the resonator after a few
reflections before the intensity has reached a noticeable level (Fig. 5.4).

Besides these walk-off losses, reflection losses also cause a decrease of the
energy stored in the resonator modes. With the reflectivities R1 and R2 of the
resonator mirrors M1 and M2, the intensity of a wave in the passive resonator
has decreased after a single round-trip to

I = R1 R2 I0 = I0 e−γR , (5.21)

with γR = − ln(R1 R2). Since the round-trip time is T = 2d/c, the decay con-
stant β in (5.18) due to reflection losses is βR = γRc/2d. Therefore the mean
lifetime of a photon in the resonator becomes without any additional losses

τ = 1

βR
= 2d

γRc
= − 2d

c ln(R1 R2)
. (5.22)

These open resonators are, in principle, the same as the Fabry–Perot inter-
ferometers discussed in Chap. 4; we shall see that several relations derived
in Sect. 4.2 apply here. However, there is an essential difference with regard
to the geometrical dimensions. While in a common FPI the distance between
both mirrors is small compared with their diameter, the relation is generally
reversed for laser resonators. The mirror diameter 2a is small compared with
the mirror separation d. This implies that diffraction losses of the wave, which

Fig. 5.4. Walk-off losses of inclined rays
and reflection losses in an open resonator
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Fig. 5.5a,b. Equivalence of diffraction at an aperture (a) and at a mirror of equal size (b).
The diffraction pattern of the transmitted light in (a) equals that of the reflected light
in (b). The case θ1d = a → N = 0.5 is shown

is reflected back and forth between the mirrrors, play a major role in laser
resonators, while they can be completely neglected in the conventional FPI.

In order to estimate the magnitude of diffraction losses let us make use of
a simple example. A plane wave incident onto a mirror with diameter 2a ex-
hibits, after being reflected, a spatial intensity distribution that is determined
by diffraction and that is completely equivalent to the intensity distribution
of a plane wave passing through an aperture with diameter 2a (Fig. 5.5). The
central diffraction maximum at θ = 0 lies between the two first minima at
θ1 = ±λ/2a (for circular apertures a factor 1.2 has to be included, see, e.g.,
[5.16]). About 16% of the total intensity transmitted through the aperture is
diffracted into higher orders with |θ| > λ/2a. Because of diffraction the outer
part of the reflected wave misses the second mirror M2 and is therefore lost.
This example demonstrates that the diffraction losses depend on the values
of a, d, λ, and on the amplitude distribution A(x, y) of the incident wave
across the mirror surface. The influence of diffraction losses can be charac-
terized by the dimensionless Fresnel number

NF = a2

λd
. (5.23)

The meaning of this is as follows (Fig. 5.6a). If cones around the resonator
axis are constructed with the side length rm = (q + m)λ/2 and the apex
point A on a resonator mirror they intersect the other resonator mirror at a dis-
tance d = qλ/2 in circles. The annular zone between two circles is called
Fresnel zone. The quantity NF gives the number of Fresnel zones [5.16, 5.17]
across a resonator mirror, as seen from the center A of the opposite mirror.
For the mirror separation d these zones have radii ρm = √

mλd and the dis-
tances rm = 1

2(m +q)λ (m = 0, 1, 2, ... � q) from A (Fig. 5.6).
If a photon makes n transits through the resonator, the maximum diffrac-

tion angle 2θ should be smaller than a/(nd). With 2θ = λ/a we obtain the
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Fig. 5.6. (a) Fresnel zones on mirror M1, as seen from the center A of the other mirror
M2; (b) the three regions of d/a with the Fresnel number N > 1, N = 1, and N < 1

condition

NF > n , (5.24)

which states that the diffraction losses of a plane mirror resonator can be
neglected if the Fresnel number NF is larger than the number n of transits
through the resonator.

Example 5.3.

(a) A plane Fabry–Perot interferometer with d = 1 cm, a = 3 cm, λ =
500 nm has a Fresnel number N = 1.8×105.

(b) The resonator of a gas laser with plane mirrors at a distance d = 50 cm,
a = 0.1 cm, λ = 500 nm has a Fresnel number N = 4. Since n should be
about n = 50, the diffraction losses are essential.

The fractional energy loss per transit due to diffraction of a plane wave
reflected back and forth between the two plane mirrors is approximately given
by

γD ∼ 1

N
. (5.25)

For our first example the diffraction losses of the plane FPI are about 5×10−6

and therefore completely negligible, whereas for the second example they
reach 25% and may already exceed the gain for many laser transitions. This
means that a plane wave would not reach threshold in such a resonator. How-
ever, these high diffraction losses cause nonnegligible distortions of a plane
wave and the amplitude A(x, y) is no longer constant across the mirror sur-
face (Sect. 5.2.2), but decreases towards the mirror edges. This decreases the
diffraction losses, which become, for example, γDiffr ≤ 0.01 for N ≥ 20.

It can be shown [5.18] that all resonators with plane mirrors that have the
same Fresnel number also have the same diffraction losses, independent of the
special choice of a, d, or λ.
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Resonators with curved mirrors may exhibit much lower diffraction losses
than the plane mirror resonator because they can refocus the divergent
diffracted waves of Fig. 5.5 (Sect. 5.2.5).

5.2.2 Spatial Field Distributions in Open Resonators

In Sect. 2.1 we have seen that any stationary field configuration in a closed
cavity (called a mode) can be composed of plane waves. Because of diffrac-
tion, plane waves cannot give stationary fields in open resonators, since the
diffraction losses depend on the coordinates (x, y) and increase from the
z-axis of the resonator towards its edges. This implies that the distribu-
tion A(x, y), which is independent of x and y for a plane wave, will be altered
with each round-trip for a wave traveling back and forth between the mirrors
of an open resonator until it approaches a stationary distribution. Such a sta-
tionary field configuration, called a mode of the open resonator, is reached
when A(x, y) no longer changes its form, although, of course, the losses re-
sult in a decrease of the total amplitude if they are not compensated by the
gain of the active medium.

The mode configurations of open resonators can be obtained by an iterative
procedure using the Kirchhoff–Fresnel diffraction theory [5.17]. Concern-
ing the diffraction losses, the resonator with two plane square mirrors can
be replaced by the equivalent arrangement of apertures with size (2a)2 and
a distance d between successive apertures (Fig. 5.7). When an incident plane
wave is traveling into the z-direction, its amplitude distribution is successively
altered by diffraction, from a constant amplitude to the final stationary dis-
tribution An(x, y). The spatial distribution An(x, y) in the plane of the nth
aperture is determined by the distribution An−1(x, y) across the previous aper-
ture.

From Kirchhoff’s diffraction theory we obtain (Fig. 5.8)

An(x, y) = − i

λ

∫∫
An−1(x′, y′) 1

ρ
e−ikρ cos ϑ dx′ dy′ . (5.26)

Fig. 5.7. The diffraction of an incident plane wave at successive apertures separated by d
is equivalent to the diffraction by successive reflections in a plane-mirror resonator with
mirror separation d
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Fig. 5.8. Illustration of (5.26),
showing the relations ρ2 = d2 +
(x − x′)2 + (y− y′)2 and cos ϑ =
d/ρ

A stationary field distribution is reached if

An(x, y) = CAn−1(x, y) with C =√1−γD eiφ , (5.27)

After the stationary state has been reached, the amplitude attenuation fac-
tor |C| does not depend on x and y. The quantity γD represents the diffraction
losses and φ the corresponding phase shift caused by diffraction.

Inserting (5.27) into (5.26) gives the following integral equation for the
stationary field configuration

A(x, y) = − i

λ
(1−γD)−1/2 e−iφ

∫∫
A(x′, y′) 1

ρ
e−ikρ cos ϑ dx′ dy′ . (5.28)

Because the arrangement of successive apertures is equivalent to the plane-mir-
ror resonator, the solutions of this integral equation also represent the station-
ary modes of the open resonator. The diffraction-dependent phase shifts φ for
the modes are determined by the condition of resonance, which requires that
the mirror separation d equals an integer multiple of λ/2.

The general integral equation (5.28) cannot be solved analytically, there-
fore one has to look for approximate methods. For two identical plane mirrors
of quadratic shape (2a)2, (5.28) can be solved numerically by splitting it
into two one-dimensional equations, one for each coordinate x and y, if the
Fresnel number N = a2/(dλ) is small compared with (d/a)2, which means if
a � (d3λ)1/4. The integral equation (5.28) can then be solved. The approxi-
mation implies ρ ≈ d in the denominator and cos ϑ ≈ 1. In the phase term
exp(−ikρ), the distance ρ cannot be replaced by d, since the phase is sensitive
even to small changes in the exponent. One can, however, for x′, x, y′, y � d,
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expand ρ into a power series

ρ =
√

d2 + (x′ − x)2 + (y′ − y)2 ≈ d

[
1+ 1

2

(
x′ − x

d

)2

+ 1

2

(
y′ − y

d

)2
]

.

(5.29)

Inserting (5.29) into (5.28) allows the two-dimensional equation to be sepa-
rated into two one-dimensional equations. Such numerical iterations for the
“infinite strip” resonator have been performed by Fox and Li [5.19]. They
showed that stationary field configurations do exist and computed the field
distributions of these modes, their phase shifts, and their diffraction losses.

5.2.3 Confocal Resonators

The analysis has been extended by Boyd, Gordon, and Kogelnik to resonators
with confocally-spaced spherical mirrors [5.20, 5.21] and later by others to
general laser resonators [5.22–5.30]. For the symmetric confocal case (the two
foci of the two mirrors with equal radii R1 = R2 = R coincide, i.e., the mir-
rorseparation d is equal to the radius of curvature R).

For this case (5.28) can be separated into two one-dimensional homoge-
neous Fredholm equations that can be solved analytically [5.20, 5.24]. The
solutions show that the stationary amplitude distributions for the confo-
cal resonator can be represented by the product of Hermitian polynomials,
a Gaussian function, and a phase factor:

Amn(x, y, z) = C∗Hm(x∗)Hn(y∗) exp(−r2/w2) exp[−iφ(z, r, R)] . (5.30)

Here, C∗ is a normalization factor. The function Hm is the Hermitian polyno-
mial of mth order. The last factor gives the phase φ(z0, r) in the plane z = z0
at a distance r = (x2 + y2)1/2 from the resonator axis. The arguments x∗ and
y∗ depend on the mirror separation d and are related to the coordinates x, y
by x∗ = √

2x/w and y∗ = √
2y/w, where

w2(z) = λd

2π

[
1+ (2z/d)2

]
, (5.31)

is a measure of the radial intensity distribution. The coordinate z is measured
from the center z = 0 of the confocal resonator.

From the definition of the Hermitian polynomials [5.31], one can see that
the indices m and n give the number of nodes for the amplitude A(x, y) in
the x- (or the y-) direction. Figures 5.9, 5.11 illustrate some of these “trans-
verse electromagnetic standing waves,” which are called TEMm,n modes.
The diffraction effects do not essentially influence the transverse character
of the waves. While Fig. 5.9a shows the one-dimensional amplitude distri-
bution A(x) for some modes, Fig. 5.9b depicts the two-dimensional field
amplitude A(x, y) in Cartesian coordinates and A(r, ϑ) in polar coordinates.
Modes with m = n = 0 are called fundamental modes or axial modes (of-
ten zero-order transverse modes as well), while configurations with m > 0 or
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Fig. 5.9. (a) Stationary one-dimensional amplitude distributions Am(x) in a confo-
cal resonator; (b) two-dimensional presentation of linearly polarized resonator modes
TEMm,n(x, y) for square and TEMm,n(r, ϑ) for circular apertures

n > 0 are transverse modes of higher order. The intensity distribution of the
fundamental mode I00 ∝ A00 A∗

00 (Fig. 5.10) can be derived from (5.30). With
H0(x∗) = H0(y∗) = 1 we obtain

I00(x, y, z) = I0 e−2r2/w2
. (5.32)

Fig. 5.10. Radial intensity distri-
bution of the fundamental TEM00
mode
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The fundamental modes have a Gaussian profile. For r = w(z) the intensity
decreases to 1/e2 of its maximum value I0 = C∗2 on the axis (r = 0). The
value r = w(z) is called the beam radius or mode radius. The smallest beam
radius w0 within the confocal resonator is the beam waist, which is located at
the center z = 0. From (5.31) we obtain with d = R

w0 = (λR/2π)1/2 . (5.33)

At the mirrors (z = d/2) the beam radius ws = w(d/2) = √
2w0 is increased

by a factor
√

2.

Example 5.4.

(a) For a HeNe laser with λ = 633 nm, R = d = 30 cm, (5.33) gives w0 =
0.17 mm for the beam waist.

(b) For a CO2 laser with λ = 10 μm, R = d = 2 m is w0 = 1.8 mm.

Note that w0 and w do not depend on the mirror size. Increasing the mirror
width 2a reduces, however, the diffraction losses as long as no other limiting
aperture exists inside the resonator.

For the phase φ(r, z) in the plane z = z0, one obtains with the abbreviation
ξ0 = 2z0/R [5.20]

φ(r, z) = 2π

λ

[
R

2
(1+ ξ0)+ x2 + y2

R

ξ0

1+ ξ2
0

]

− (1+m +n)

[
π

2
− arctan

(
1− ξ0

1+ ξ0

)]
. (5.34)

Inside the resonator 0 < |ξ0| < 1, outside |ξ0| > 1.
The equations (5.30) and (5.34) show that the field distributions Amn(x, y)

and the form of the phase fronts depend on the location z0 within the res-
onator.

From (5.34) we can deduce the phase fronts inside the confocal resonator,
i.e., all points (x, y, z) for which φ(x, y, z) is constant. For the fundamental
mode with m = n = 0 the amplitude distribution is axially symmetric and the
phase φ(r, z) depends only on r = (x2 + y2)1/2 and z. For points close to the
resonator axis, i.e., for r � R, the variation of the arctan term along the phase
front, where z − z0 shows only a small change with increasing r, can be ne-
glected. We obtain as a condition for the curved phase front, intersecting the
resonator axis at z = z0, that the first bracket in (5.34) must be constant, i.e.,
independent of x and y, which means: [. . . ]x,y �=0 −[. . . ]x=y=0 = 0, or

R

2
(1+ ξ)+ x2 + y2

R

ξ

1+ ξ2 = R

2
(1+ ξ0) , (5.35)
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Fig. 5.11. Phase fronts and intensity profiles of the fundamental TEM00 mode at several
locations z in a confocal resonator with the mirrors at z = ±d/2

with the shorthand ξ = 2z/R. This yields the equation

z0 − z = x2 + y2

R

ξ

1+ ξ2 , (5.36a)

which can be rearranged into the equation

x2 + y2 + (z − z0)
2 = R′2 (5.36b)

of a spherical surface with the radius of curvature

R′ ≈
∣∣∣∣∣
1+ ξ2

0

2ξ0

∣∣∣∣∣ R =
[

1

4z0
+
( z0

R

)2
]

R . (5.37)

The phase fronts of the fundamental modes inside a confocal resonator
close to the resonator axis can be described as spherical surfaces with
a z0-dependent radius of curvature. For z0 = R/2 → ξ0 = 1 ⇒ R′ = R. This
means that at the mirror surfaces of the confocal resonator close to the res-
onator axis the wavefronts are identical with the mirror surfaces. Due to
diffraction this is not quite true at the mirror edges, (i.e., at larger distances r
from the axis), where the approximation (5.35) is not correct.

At the center of the resonator z = 0 → ξ0 = 0 → R′ = ∞. The radius R′
becomes infinite. At the beam waist the constant phase surface becomes
a plane z = 0. This is illustrated by Fig. 5.11, which depicts the phase fronts
and intensity profiles of the fundamental mode at different locations inside
a confocal resonator.
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5.2.4 General Spherical Resonators

It can be shown [5.1, 5.24] that in nonconfocal resonators with large Fresnel
numbers NF the field distribution of the fundamental mode can also be de-
scribed by the Gaussian profile (5.32). The confocal resonator with d = R can
be replaced by other mirror configurations without changing the field config-
urations if the radius Ri of each mirror at the position z0 equals the radius R′
of the wavefront in (5.37) at this position. This means that any two surfaces
of constant phase can be replaced by reflectors, which have the same radius
of curvature as the wave front – in the approximation outlined above.

For symmetrical resonators with R1 = R2 = R∗ and the mirror separa-
tion d∗, we find from (5.37) with z0 = d∗/2 → ξ0 = d∗/R

R∗ = 1+ (d∗/R)2

2d∗/R
R

and solving this equation for d∗ we obtain for the possible mirror separations

d∗ = R∗ ±
√

R∗2 − R2 = R∗
[

1±
√

1− (R/R∗)2

]
. (5.38)

These resonators with mirror separation d∗ and mirror radii R∗ are equivalent,
with respect to the field distribution, to the confocal resonator with the mirror
radii R and mirror separation d = R.

The beam radii w(z) on the spot size w2(z) can be obtained from (5.31)
and (5.38). For the symmetric resonator with R1 = R2 = R we get at the cen-
ter (z = 0) and at the mirrors (z = ±d/2)

w2
0(z) =

(
dλ

π

)∗ [2R −d

4d

]1/2

; w2
1 = w2

2 =
(

dλ

π

)[
R2

2dR −d2

]1/2

.

(5.39a)

With the parameters

g = 1−d/R

this can be written as

w2
0(z = 0) = dλ

π

√
1+ g

4(1− g)
; w2

1 = w2
2 = dλ

π

√
1

1− g2 . (5.39b)

The mode waist w2
0(z = 0) is minimum for g = 0, i.e., d = R. The confo-

cal resonator has the smallest beam waist. Also, the spot sizes w2
1 = w2

2 are
minimum for g = 0. We therefore obtain the following result:

Of all symmetric resonators with a given mirror separation d the con-
focal resonator with d = R has the smallest spot sizes at the mirrors and
the smallest beam waist w2

0.
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5.2.5 Diffraction Losses of Open Resonators

The diffraction losses of a resonator depend on its Fresnel number NF =
a2/dλ (Sect. 5.2.1) and also on the field distribution A(x, y, z = ±d/2) at the
mirror. The fundamental mode, where the field energy is concentrated near the
resonator axis, has the lowest diffraction losses, while the higher transverse
modes, where the field amplitude has larger values toward the mirror edges,
exhibit large diffraction losses. Using (5.31) with z = d/2 the Fresnel number
NF = a2/(dλ) can be expressed as

NF = 1

π

πa2

πw2
s

= 1

π

effective resonator-mirror surface area

confocal TEM00 mode area on the mirror
, (5.40)

which illustrates that the diffraction losses decrease with increasing NF. Fig-
ure 5.12 presents the diffraction losses of a confocal resonator as a function
of the Fresnel number NF for the fundamental mode and some higher-order
transverse modes. For comparison, the much higher diffraction losses of
a plane-mirror resonator are also shown in order to illustrate the advantages of
curved mirrors, which refocus the waves otherwise diverging by diffraction.
From Fig. 5.12 it is obvious that higher-order transverse modes can be sup-
pressed by choosing a resonator with a suitable Fresnel number, which may
be realized, for instance, by a limiting aperture with the diameter D < 2a in-
side the laser resonator. If the losses exceed the gain for these modes they do
not reach threshold, and the laser oscillates only in the fundamental mode.

The confocal resonator with the smallest spot sizes at a given mirror
separation d according to (5.39) also has the lowest diffraction losses per
round-trip, which can be approximated for circular mirrors and Fresnel num-
bers NF > 1 by [5.1]

γD ∼ 16π2 NF e−4πNF . (5.41)

Fig. 5.12. Diffraction losses of some modes in a confocal and in a plane-mirror resonator,
plotted as a function of the Fresnel number NF



5.2 Laser Resonators 253

5.2.6 Stable and Unstable Resonators

In a stable resonator the field amplitude A(x, y) reproduces itself after each
round-trip apart from a constant factor C, which represents the total diffrac-
tion losses but does not depend on x or y, see (5.27).

The question is now how the field distribution A(x, y) and the diffraction
losses change with varying mirror radii R1, R2 and mirror separation d for
a general resonator with R1 �= R2. We will investigate this problem for the
fundamental TEM00 mode, described by the Gaussian beam intensity profile.
For a stationary field distribution, where the Gaussian beam profile repro-
duces itself after each round-trip, one obtains for a resonator consisting of two
spherical mirrors with the radii R1, R2, separated by the distance d, the spot
sizes πw2

1 and πw2
2 on the mirror surfaces [5.1, 5.24]

πw2
1 = λd

[
g2

g1(1− g1g2)

]1/2

, πw2
2 = λd

[
g1

g2(1− g1g2)

]1/2

, (5.42)

with the parameters gi (i = 1, 2)

gi = 1−d/Ri . (5.43)

For g1 = g2 (confocal symmetric resonator), (5.42) simplifies to (5.39b).
Equation (5.42) reveals that for g1 = 0 the spot size πw2

1 becomes ∞ at M1
and πw2

2 = 0 at M2, while for g2 = 0 the situation is reversed. For g1g2 = 1
both spot sizes become infinite. This implies that the Gaussian beam diverges:
the resonator becomes unstable. An exception is the confocal resonator with
g1 = g2 = 0, which is “metastable”, because it is only stable if both param-
eters gi are exactly zero. For g1g2 > 1 or g1g2 < 0, the right-hand sides of
(5.42) become imaginary, which means that the resonator is unstable. The
condition for a stable resonator is therefore

0 < g1g2 < 1. (5.44)

The beam waist w2
0 of a confocal nonsymmetric resonator with R1 �= R2

is no longer at the center of the resonator (as for symmetric resonators). Its
distance from M1 is

z1(w0) = d

1+ (λd/πw2
1)

2
; z2 = d − z1 .

With the general stability parameter G = 2g1g2 − 1 we can distinguish
stable resonators: 0 < |G| < 1, unstable resonators: |G| > 1, metastable res-
onators: |G| = 1.
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Example 5.5.

(a) R1 = 0.5 m, d = 0.5 m. If the active medium close to M1 with a dia-
meter of 0.6 cm needs to be completely filled with the TEM00 mode, the
beam waist at M1 should be w1 = 0.3 cm. With a Fresnel number NF =
3 the diffraction losses are sufficiently small. The stability parameter for
λ = 1 μm

g2 = w2
1

NF 2dλ

is then g2 = 3. This gives for R2: g2 = 1−d/R2 ⇒ R2 = d/(1− g2) =
−25 cm.

(b) Confocal resonator with d = 1 m, λ = 500 nm, R1 = R2 = 1 m ⇒ w1 =
w2 = 0.4 mm at both mirrors.

Table 5.1. Some commonly used optical resonators with their stability parameters gi =
1−d/Ri , and the resonator parameters G = 2g1g2 −1

Type of resonator Mirror radii Stability parameter

Confocal R1 + R2 = 2d g1 + g2 = 2g1g2 |G| ≥ 1
Concentric R1 + R2 = d g1g2 = 1 G = 1
Symmetric R1 = R2 g1 = g2 = g |G| < 1
Symmetric confocal R1 = R2 = d g1 = g2 = 0 G = −1
Symmetric concentric R1 = R2 = 1/2d g1 = g2 = −1 G = 1
Semiconfocal R1 = 2d, R2 = ∞ g1 = 1, g2 = 1/2 G = 0
Plane R1 = R2 = ∞ g1 = g2 = +1 G = 1

Fig. 5.13. Stability diagram of optical
resonators. The shaded areas represent
stable resonators
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Fig. 5.14. Semi-confocal
resonator

If in a symmetric confocal resonator a plane mirror is placed at the
beam waist (where the phase front is a plane), a semiconfocal resonator
results (Fig. 5.14), with R1 = ∞, d = R2/2, g1 = 1, g2 = 1/2, w2

1 = λ d/π,
w2

2 = 2λ d/π.
In Table 5.1 some resonators are compiled with their corresponding pa-

rameters gi . Figure 5.13 displays the stability diagram in the g1–g2-plane.
According to (5.44) the plane resonator (R1 = R2 = ∞ ⇒ g1 = g2 = 1) is not
stable, because the spot size of a Gaussian beam would increase after each
round-trip. As was shown above, there are, however, other non-Gaussian field
distributions, which form stable eigenmodes of a plane resonator, although
their diffraction losses are much higher than those of resonators within the

Fig. 5.15a–e. Some examples of commonly used open resonators
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stability region. The symmetric confocal resonator with g1 = g2 = 0 might
be called “metastable,” since it is located between unstable regions in the
stability diagram and even a slight deviation of g1, g2 into the direction
g1g2 < 0 makes the resonator unstable. For illustration, some commonly used
resonators are depicted in Fig. 5.15.

For some laser media, in particular those with large gain, unstable res-
onators with g1g2 < 0 may be more advantageous than stable ones for the
following reason: in stable resonators the beam waist w0(z) of the fundamen-
tal mode is given by the mirror radii R1, R2 and the mirror separation d, see
(5.33), and is generally small (Example 5.4). If the cross section of the active
volume is larger than πw2, only a fraction of all inverted atoms can contribute
to the laser emission into the TEM00 mode, while in unstable resonators the
beam fills the whole active medium. This allows extraction of the maximum
output power. One has, however, to pay for this advantage by a large beam
divergence.

Let us consider the simple example of a symmetric unstable resonator
depicted in Fig. 5.16 formed by two mirrors with radii Ri separated by the dis-
tance d. Assume that a spherical wave with its center at F1 is emerging from
mirror M1. The spherical wave geometrically reflected by M2 has its center
in F2. If this wave after ideal reflection at M1 is again a spherical wave with
its center at F1, the field configuration is stationary and the mirrors image the
local point F1 into F2, and vice versa.

For the magnification of the beam diameter on the way from mirror M1
to M2 or from M2 to M1, we obtain from Fig. 5.16 the relations

M12 = d + R1

R1
, M21 = d + R2

R2
. (5.45)

We define the magnification factor M = M12M21 per round-trip as the ratio of
the beam diameter after one round-trip to the initial one:

M = M12M21 =
(

d + R1

R1

)(
d + R2

R2

)
. (5.46)

Fig. 5.16. (a) Spherical waves in a symmetric unstable resonator emerging from the vir-
tual focal points F1 and F2; (b) asymmetric unstable resonator with a real focal point
between the two mirrors
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Fig. 5.17a,b. Two examples of unstable confocal resonators: (a) g1 ·g2 > 1; (b) g1 ·g2 < 0,
with a definition of the magnification factor

For Ri > 0 (i = 1, 2) the virtual focal points are outside the resonator and the
magnification factor becomes M > 1 (Fig. 5.16a).

In the resonator of Fig. 5.16a the waves are coupled out of both sides
of the resonator. The resultant high resonator losses are generally not toler-
able and for practical applications the resonator configurations of Fig. 5.16b
and Fig. 5.17 consisting of one large and one small mirror are better suited.
Two types of nonsymmetric spherical unstable resonators are possible with
g1g2 > 1 ⇒ G > 1 (Fig. 5.17a) with the virtual beam waist outside the res-
onator and with g1g2 < 0 ⇒ G < −1 (Fig. 5.17b) where the focus lies inside
the resonator.

For these spherical resonators the magnification factor M can be expressed
by the resonator parameter G [5.25]:

M± = |G|±
√

G2 −1 , (5.47a)

where the + sign holds for g1g2 > 1 and the − sign for g1g2 < 0.
If the intensity profile I(x1, y1, z0) in the plane z = z0 of the outcoupling

mirror does not change much over the mirror size, the fraction P2/P0 of the
power P0 incident on M2 that is reflected back to M1 equals the ratio of the
areas

P2

P0
= πw2

2

πw2
1

= 1

M2 . (5.47b)

The loss factor per round-trip is therefore

V = P0 − P2

P0
= 1− 1

M2 = M2 −1

M2 . (5.48)

Example 5.6.
R1 = −0.5 m, R2 = +2 m, d = 0.6 m ⇒ g1 = 1 − d/R1 = 2.4; g2 = 1 −
d/R2 = 0.7; G = 2g1g2 − 1 = 2.36; Mt = G +√

G2 −1 = 4.49; V = 1 −
1/M2 = 0.95. In these unstable resonators the losses per round trip are
95%.
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Fig. 5.18a,b. Diffraction pattern of the output intensity of a laser with an unstable res-
onator: (a) near field just at the output coupler and (b) far-field distribution for a resonator
with a = 0.66 cm, g1 = 1.21, g2 = 0.85. The patterns obtained with a circular output mir-
ror (solid curve) are compared with those of a circular aperture (dashed curves)

For the two unstable resonators of Fig. 5.17 the near-field pattern of the
outcoupled wave is an annular ring (Fig. 5.18). The spatial far-field inten-
sity distribution can be obtained as a numerical solution of the corresponding
Kirchhoff–Fresnel integro-differential equation analog to (5.26). For illustra-
tion, the near-field and far-field patterns of an unstable resonator of the type
shown in Fig. 5.17a is compared with the diffraction pattern of a circular aper-
ture.

Note that the angular divergence of the central diffraction order in the far
field is smaller for the annular-ring near-field distribution than that of a circu-
lar aperture with the same size as the small mirror of the unstable resonator.
However, the higher diffraction orders are more intense, which means that the
angular intensity distribution has broader wings.

In unstable resonators the laser beam is divergent and only a fraction of
the divergent beam area may be reflected by the mirrors. The losses are there-
fore high and the effective number of round-trips is small. Unstable resonators
are therefore suited only for lasers with a sufficiently large gain per round-trip
[5.26–5.29].

In recent years, specially designed optics with slabs of cylindrical lenses
have been used to make the divergent output beam more parallel, which al-
lows one to focus the beam into a smaller spot size [5.30].

5.2.7 Ring Resonators

A ring resonator consists of at least three reflecting surfaces, which may be
provided by mirrors or prisms. Four possible arrangements are illustrated in
Fig. 5.19. Instead of the standing waves in a Fabry–Perot-type resonator, the
ring resonator allows traveling waves, which may run clockwise or counter-
clockwise through the resonator. With an “optical diode” inside the ring
resonator unidirectional traveling waves can be enforced. Such an “optical
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Fig. 5.19a–d. Four examples of possible ring resonators, using (a) three mirrors, (b) two
mirrors and a Brewster prism, (c) total reflection: with corner-cube prism reflectors and
frustrated total reflection for output coupling; (d) three-mirror arrangement with beam-
combining prism

diode” is a device that has low losses for light passing into one direction
but sufficiently high losses to prevent laser oscillation for light traveling into
the opposite direction. It consists of a Faraday rotator, which turns the plane
of polarization by the angle ±α (Fig. 5.20), a birefringent crystal, which
also turns the plane of polarization by α, and elements with a polarization-
dependent transmission, such as Brewster windows [5.32]. For the wanted
direction the turning angles −α+α = 0 just cancel, and for the other direction

Fig. 5.20a,b. Optical diode consisting
of a Faraday rotator, a birefringent
crystal, and Brewster windows. Tilting
of the polarization vector for the for-
ward (a) and backward (b) directions
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they add to 2α, causing reflection losses at the Brewster windows. If these are
larger than the gain this direction cannot reach the threshold.

The unidirectional ring laser has the advantage that spatial hole burning,
which impedes single-mode oscillation of lasers (Sect. 5.3.3), can be avoided.
In the case of homogeneous gain profiles, the ring laser can utilize the total
population inversion within the active mode volume contrary to a standing-
wave laser, where the inversion at the nodes of the standing wave cannot be
utilized. One therefore expects larger output powers in single-mode operation
than from standing-wave cavities at comparable pump powers.

5.2.8 Frequency Spectrum of Passive Resonators

The stationary field configurations of open resonators, discussed in the pre-
vious sections, have an eigenfrequency spectrum that can be directly derived
from the condition that the phase fronts at the reflectors have to be identi-
cal with the mirror surfaces. Because these stationary fields represent standing
waves in the resonators, the mirror separation d must be an integer multiple
of λ/2 and the phase factor in (5.30) becomes unity at the mirror surfaces.
This implies that the phase φ has to be an integer multiple of π. Inserting
the condition φ = qπ into (5.34) gives the eigenfrequencies νr = c/λr of the
confocal resonator with R = d, ξ0 = 1, x = y = 0

νr = c

2d

[
q + 1

2
(m +n +1)

]
. (5.49)

The fundamental axial modes TEM00q (m = n = 0) have the frequencies ν =
(q + 1

2)c/2d and the frequency separation of adjacent axial modes is

δν = c

2d
. (5.50)

Equation (5.49) reveals that the frequency spectrum of the confocal resonator
is degenerate because the transverse modes with q = q1 and m +n = 2p have
the same frequency as the axial mode with m = n = 0 and q = q1 + p. Be-
tween two axial modes there is always another transverse mode with m +n
+1 = odd. The free spectral range of a confocal resonator is therefore

δνconfocal = c

4d
. (5.51)

If the mirror separation d deviates slightly from the radius of the mirror
curvature R, the degeneracy is removed. We obtain from (5.34) with φ = qπ
and ξ0 = d/R �= 1 for a symmetric nonconfocal resonator with two equal mir-
ror radii R1 = R2 = R

νr = c

2d

{
q + 1

2
(m +n +1)

[
1+ 4

π
arctan

(
d − R

d + R

)]}
. (5.52)
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Fig. 5.21a–c. Degenerate mode frequency
spectrum of a confocal resonator (d = R)
(a), degeneracy lifting in a near-confocal
resonator (d = 1.1R) (b), and the spectrum
of fundamental modes in a plane-mirror
resonator (c)

Now the higher-order transverse modes are no longer degenerate with axial
modes. The frequency separation depends on the ratio (d − R)/(d + R). Fig-
ure 5.21 illustrates the frequency spectrum of the plane-mirror resonator, the
confocal resonator (R = d), and of a nonconfocal resonator where d is slightly
larger than R. Due to higher diffraction losses the amplitudes of the higher
transverse modes decrease.

As has been shown in [5.21] the frequency spectrum of a general resonator
with unequal mirror curvatures R1 and R2 can be represented by

νr = c

2d

[
q + 1

π
(m +n +1) arccos

√
g1g2

]
, (5.53)

where gi = 1−d/Ri (i = 1, 2) are the resonator parameters. The eigenfrequen-
cies of the axial modes (m = n = 0) are no longer at (c/2d)(q + 1

2), but are
slightly shifted. The free spectral range, however, is again δν = c/2d.

Example 5.7.

(a) Consider a nonconfocal symmetric resonator: R1 = R2 = 75 cm, d =
100 cm. The free spectral range δν, which is the frequency separation of
the adjacent axial modes q and q +1, is δν = (c/2d) = 150 MHz. The
frequency separation Δν between the (q, 0, 0) mode and the (q, 1, 0)
mode is Δν = 87 MHz from (5.52).

(b) Consider a confocal resonator: R = d = 100 cm. The frequency spec-
trum consists of equidistant frequencies with δν = 75 MHz. If, however,
the higher-order transverse modes are suppressed, only axial modes os-
cillate with a frequency separation δν = 150 MHz.

Now we briefly discuss the spectral width Δν of the resonator resonances.
The problem will be approached in two different ways.
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Since the laser resonator is a Fabry–Perot interferometer, the spectral
distribution of the transmitted intensity follows the Airy formula (4.61). Ac-
cording to (4.55b), the halfwidth Δνr of the resonances, expressed in terms
of the free spectral range δν, is Δνr = δν/F∗. If diffraction losses can be
neglected, the finesse F∗ is mainly determined by the reflectivity R of the
mirrors, therefore the halfwidth of the resonance becomes

Δν = δν

F∗ = c

2d

1− R

π
√

R
. (5.54)

Example 5.8.
With the reflectivity R = 0.98 ⇒ F∗ = 150. A resonator with d = 1 m has
the free spectral range δν = 150 MHz. The halfwidth of the resonator
modes then becomes Δνr = 1 MHz if the mirrors are perfectly aligned and
have nonabsorptive ideal surfaces.

Generally speaking, other losses such as diffraction, absorption, and scat-
tering losses decrease the total finesse. Realistic values are F∗ = 50−100,
giving for Example 5.8 a resonance halfwidth of the passive resonator of about
2 MHz.

The second approach for the estimate of the resonance width starts from
the quality factor Q of the resonator. With total losses β per second, the
energy W stored in a mode of a passive resonator decays exponentially
according to (5.18). The Fourier transform of (5.18) yields the frequency spec-
trum of this mode, which gives a Lorentzian (Sect. 3.1) with the halfwidth
Δνr = β/2π. With the mean lifetime T = 1/β of a photon in the resonator
mode, the frequency width can be written as

Δνr = 1

2πT
. (5.55)

If reflection losses give the main contribution to the loss factor, the photon
lifetime is, with R = √

R1 R2, see (5.22), T = −d/(c ln R). The width Δν of
the resonator mode becomes

Δνr = c| ln R|
2πd

= δν(| ln R|)
π

, (5.56)

which yields with | ln R| ≈ 1− R the same result as (5.54), apart from the fac-
tor

√
R ≈ 1. The slight difference of the two results stems from the fact that in

the second estimation we distributed the reflection losses uniformly over the
resonator length.

5.3 Spectral Characteristics of Laser Emission

The frequency spectrum of a laser is determined by the spectral range of the
active laser medium, i.e., its gain profile, and by the resonator modes falling
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Fig. 5.22. Gain profile of a laser transition with resonator eigenfrequencies of axial modes

within this spectral gain profile (Fig. 5.22). All resonator modes for which
the gain exceeds the losses can participate in the laser oscillation. The active
medium has two effects on the frequency distribution of the laser emission:

• Because of its index of refraction n(ν), it shifts the eigenfrequencies of the
passive resonator (mode-pulling).

• Due to spectral gain saturation competition effects between different oscil-
lating laser modes occur; they may influence the amplitudes and frequen-
cies of the laser modes.

In this section we shall briefly discuss spectral characteristics of multimode
laser emission and the effects that influence it.

5.3.1 Active Resonators and Laser Modes

Introducing the amplifying medium into the resonator changes the refractive
index between the mirrors and with it the eigenfrequencies of the resonator.
We obtain the frequencies of the active resonator by replacing the mirror sep-
aration d in (5.52) by

d∗ = (d − L)+n(ν)L = d + (n −1)L , (5.57)

where n(ν) is the refractive index in the active medium with length L. The re-
fractive index n(ν) depends on the frequency ν of the oscillating modes within
the gain profile of a laser transition where anomalous dispersion is found. Let
us at first consider how laser oscillation builds up in an active resonator.

If the pump power is increased continuously, the threshold is reached first
at those frequencies that have a maximum net gain. According to (5.5) the net
gain factor per round-trip

G(ν, 2d) = exp[−2α(ν)L −γ(ν)] , (5.58)

is determined by the amplification factor exp[−2α(ν)L], which has the fre-
quency dependence of the gain profile (5.8) and also by the loss factor
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Fig. 5.23. Transmission of an incident wave through an active resonator

exp(−2βd/c) = exp[−γ(ν)] per round-trip. While absorption or diffraction
losses of the resonator do not strongly depend on the frequency within the
gain profiles of a laser transition, the transmission losses exhibit a strong
frequency dependence, which is closely connected to the eigenfrequency spec-
trum of the resonator. This can be illustrated as follows:

Assume that a wave with the spectral intensity distribution I0(ν) tra-
verses an interferometer with two mirrors, each having the reflectivity R and
transmission factor T (Fig. 5.23). For the passive interferometer we obtain
a frequency spectrum of the transmitted intensity according to (4.52). With
an amplifying medium inside the resonator, the incident wave experiences the
amplification factor (5.58) per round-trip and we obtain, analogous to (4.65)
by summation over all interfering amplitudes, the total transmitted intensity

IT = I0
T 2G(ν)

[1− G(ν)]2 +4G(ν) sin2(φ/2)
. (5.59)

Fig. 5.24. Reflection losses of a resonator (lower curve), gain curve α(ν) (upper curve),
and net gain Δα(ν) = −2Lα(ν)−γ(ν) as difference between gain (α < 0) and losses (mid-
dle curve). Only frequencies with Δα(ν) > 0 reach the oscillation threshold
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The total amplification IT/I0 has maxima for φ = 2qπ, which corresponds to
the condition (5.53) for the eigenfrequencies of the resonator with the mod-
ification (5.57). For G(ν) → 1, the total amplification IT/I0 becomes infinite
for φ = 2qπ. This means that even an infinitesimally small input signal re-
sults in a finite output signal. Such an input is always provided, for instance,
by the spontaneous emission of the excited atoms in the active medium.
For G(ν) = 1 the laser amplifier converts to a laser oscillator. This condi-
tion is equivalent to the threshold condition (5.7). Because of gain saturation
(Sect. 5.3), the amplification remains finite and the total output power is de-
termined by the pump power rather than by the gain.

According to (5.8) the gain factor G0(ν) = exp[−2α(ν)L] depends on the
line profile g(ν−ν0) of the molecular transition Ei → Ek. The threshold con-
dition can be illustrated graphically by subtracting the frequency-dependent
losses from the gain profile. Laser oscillation is possible at all frequencies νL
where this subtraction gives a positive net gain (Fig. 5.24).

Example 5.9.

(a) In gas lasers, the gain profile is the Doppler-broadened profile of
a molecular transition (Sect. 3.2) and therefore shows a Gaussian distri-
bution with the Doppler width δωD (see Sect. 3.2),

α(ω) = α(ω0) exp

(
− ω−ω0

0.6δωD

)2

.

With α(ω0) = −0.01 cm−1, L = 10 cm, δωD = 1.3 ×109 Hz · 2π, and
γ = 0.03, the gain profile extends over a frequency range of δω =
2π ·3 GHz where −2α(ω)L > 0.03. In a resonator with d = 50 cm, the
mode spacing is 300 MHz and ten axial modes can oscillate.

(b) Solid-state or liquid lasers generally exhibit broader gain profiles be-
cause of additional broadening mechanisms (Sect. 3.7). A dye laser has,
for example, a gain profile with a width of about 1013 Hz. Therefore,
in a resonator with d = 50 cm about 3×104 resonator modes fall within
the gain profile.

The preceding example illustrates that the passive resonance halfwidth of
typical resonators for gas lasers is very small compared with the linewidth
of a laser transition, which is generally determined by the Doppler width.
The active medium inside a resonator compensates the losses of the passive
resonator resonances resulting in an exceedingly high quality factor Q. The
linewidth of an oscillating laser mode should therefore be much smaller than
the passive resonance width.
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From (5.59) we obtain for the halfwidth Δν of the resonances for an active
resonator with a free spectral range δν the expression

Δνa = δν
1− G(ν)

2π
√

G(ν)
= δν/F∗

a . (5.60a)

The finesse

F∗
a = 2π

√
G(ν)

1− G(ν)
(5.60b)

of the active resonator approaches infinity for G(ν) → 1. Although the laser
linewidth ΔνL may become much smaller than the halfwidth of the passive
resonator, it does not approach zero. This will be discussed in Sect. 5.6.

For frequencies between the resonator resonances, the losses are high and
the threshold will not be reached. In the case of a Lorentzian resonance pro-
file, for instance, the loss factor has increased to about ten times β(ν0) at
frequencies that are 3Δνr away from the resonance center ν0.

5.3.2 Gain Saturation

When the pump power of a laser is increased beyond its threshold value, laser
oscillation will start at first at a frequency where the net gain, that is, the dif-
ference between total gain minus total losses, has a maximum. During the
buildup time of the laser oscillation, the gain is larger than the losses and
the stimulated wave inside the resonator is amplified during each round-trip
until the radiation energy is sufficiently large to deplete the population inver-
sion ΔN by stimulated emission down to the threshold value ΔNthr. Under
stationary conditions the increase of ΔN due to pumping is just compen-
sated by its decrease due to stimulated emission. The gain factor of the active
medium saturates from the unsaturated value G0(I = 0) at small intensities to
the threshold value

Gthr = e−2Lαsat(ν)−γ = 1 , (5.61)

with −2αL −γ = 0 where the gain just equals the total losses per round-trip.
This gain saturation is different for homogeneous and for inhomogeneous line
profiles of laser transitions (Sect. 3.6).

In the case of a homogeneous profile g(ν −ν0), all molecules in the up-
per level can contribute to stimulated emission at the laser frequency νa
with the probability Bikρg(νa − ν0), see (5.8). Although the laser may os-
cillate only with a single frequency ν, the whole homogeneous gain profile
α(ν) = ΔNσ(ν) saturates until the inverted population difference ΔN has de-
creased to the threshold value ΔNthr (Fig. 5.25a). The saturated amplification
coefficient αsat(ν) at the intracavity laser intensity I is, according to Sect. 3.6,

αhom
s (ν) = α0(ν)

1+ S
= α0(ν)

1+ I/Is
, (5.62)
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Fig. 5.25a,b. Saturation of gain
profiles: (a) for a homogeneous
profile; (b) for an inhomogeneous
profile

where I = Is is the intensity for which the saturation parameter S = 1, which
means that the induced transition rate equals the relaxation rate. For homoge-
neous gain profiles, the saturation caused by one laser mode also diminishes
the gain for adjacent modes (mode competition).

In the case of inhomogeneous laser transitions, the whole line profile
can be divided into homogeneously broadened subsections with the spec-
tral width Δνhom (for example, the natural linewidth or the pressure- or
power-broadened linewidth). Only those molecules in the upper laser level
that belong to the subgroup in the spectral interval νL ± 1

2Δνhom, centered at
the laser frequency νL, can contribute to the amplification of the laser wave.
A monochromatic wave therefore causes selective saturation of this subgroup
and burns a hole into the inhomogeneous distribution ΔN(ν) (Fig. 5.25b). At
the bottom of the hole, the inversion ΔN(νL) has decreased to the threshold
value ΔNthr, but several homogeneous widths Δνhom away from νL, ΔN re-
mains unsaturated. According to (3.74), the homogeneous width Δνhom of this
hole increases with increasing saturating intensity as

Δνs = Δν0
√

1+ S = Δν0
√

1+ I/Is . (5.63)

This implies that with increasing saturation more molecules from a larger
spectral interval Δνs can contribute to the amplification. The gain factor de-
creases by the factor 1/(1 + S) because of a decrease of ΔN caused by
saturation. It increases by the factor (1+ S)1/2 because of the increased homo-
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geneous width. The combination of both phenomena gives (Vol. 2, Sect. 2.2)

αinh
s (ν) = α0(ν)

√
1+ S

1+ S
= α0(ν)√

1+ I/Is
. (5.64)

5.3.3 Spatial Hole Burning

A resonator mode represents a standing wave in the laser resonator with
a z-dependent field amplitude E(z), as illustrated in Fig. 5.26a. Since the sat-
uration of the inversion ΔN , discussed in the previous section, depends on
the intensity I ∝ |E|2, the inversion saturated by a single laser mode exhibits
a spatial modulation ΔN(z), as sketched in Fig. 5.26c. Even for a completely
homogeneous gain profile, there are always spatial regions of unsaturated in-
version at the nodes of the standing wave E1(z). This may give sufficient
gain for another laser mode E2(z) that is spatially shifted by λ/4 against
E1(z), or even for a third mode with a shift of λ/3 of its amplitude maximum
(Fig. 5.26b).

If the mirror separation d changes by only one wavelength (e.g., caused by
acoustical vibrations of the mirrors), the maxima and nodes of the standing
waves are shifted and the gain competition, governed by spatial hole burn-
ing, is altered. Therefore, every fluctuation of the laser wavelength caused by
changes of the refractive index or the cavity length d results in a correspond-

Fig. 5.26a–d. Spatial intensity distribution for two standing waves with slightly different
wavelengths λ1 and λ2 (a), (b), and their corresponding saturation of the inversion ΔN(z)
(c). Explanation of spatial hole-burning modes in the active medium (d) with a small
length L, close to a resonator mirror M1 (a � b)
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ing fluctuation of the coupling strength between the modes and changes the
gain relations and the intensities of the simultaneously oscillating modes.

If the length L of the active medium is small compared to the resonator
length (e.g., in cw dye lasers), it is possible to minimize the spatial hole-
burning phenomenon by placing the active medium close to one cavity mirror
(Fig. 5.26d). Consider two standing waves with the wavelengths λ1 and λ2.
At a distance a from the end mirror, their maxima in the active medium are
shifted by λ/p (p = 2, 3, ...). Since all standing waves must have nodes at the
mirror surface, we obtain for two waves with the minimum possible wave-
length difference Δλ = λ1 −λ2 the relation

mλ1 = a = (m +1/p)λ2 , (5.65)

or for their frequencies

ν1 = m
c

a
, ν2 = c

a
(m +1/p) ⇒ δνsp = c

ap
. (5.66)

In terms of the spacing δν = c/2d of the longitudinal resonator modes, the
spacing of the spatial hole-burning modes is

δνsp = 2d

ap
δν . (5.67)

Even when the net gain is sufficiently large to allow oscillation of, e.g., up
to three spatially separated standing waves (p = 1, 2, 3), only one mode can
oscillate if the spectral width of the homogeneous gain profile is smaller than
(2/3)(d/a)δν [5.33].

Example 5.10.
d = 100 cm, L = 0.1 cm, a = 5 cm, p = 3, δν = 150 MHz, δνsp = 2000 MHz.
Single-mode operation could be achieved if the spectral gain profile is
smaller than 2000 MHz.

In gas lasers the effect of spatial hole burning is partly averaged out by
diffusion of the excited molecules from nodes to maxima of a standing wave.
It is, however, important in solid-state and in liquid lasers such as the ruby
laser or the dye laser. Spatial hole burning can be completely avoided in
unidirectional ring lasers (Sect. 5.2.7) where no standing waves exist. Waves
propagating in one direction can saturate the entire spatially distributed inver-
sion. This is the reason why ring lasers with sufficiently high pump powers
have higher output powers than standing-wave lasers.

5.3.4 Multimode Lasers and Gain Competition

The different gain saturation of homogeneous and inhomogeneous transitions
strongly affects the frequency spectrum of multimode lasers, as can be under-
stood from the following arguments:
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Let us first consider a laser transition with a purely homogeneous line pro-
file. The resonator mode that is next to the center of the gain profile starts
oscillating when the pump power exceeds the threshold. Since this mode
experiences the largest net gain, its intensity grows faster than that of the
other laser modes. This causes partial saturation of the whole gain profile
(Fig. 5.25a), mainly by this strongest mode. This saturation, however, de-
creases the gain for the other weaker modes and their amplification will be
slowed down, which further increases the differences in amplification and fa-
vors the strongest mode even more. This mode competition of different laser
modes within a homogeneous gain profile will finally lead to a complete sup-
pression of all but the strongest mode. Provided that no other mechanism
disturbs the predominance of the strongest mode, this saturation coupling re-
sults in single-frequency oscillation of the laser, even if the homogeneous gain
profile is broad enough to allow, in principle, simultaneous oscillation of sev-
eral resonator modes [5.34].

In fact, such single-mode operation without further frequency-selecting el-
ements in the laser resonator can be observed only in a few exceptional cases
because there are several phenomena, such as spatial hole burning, frequency
jitter, or time-dependent gain fluctuations, that interfere with the pure case
of mode competition discussed above. These effects, which will be discussed
below, prevent the unperturbed growth of one definite mode, introduce time-
dependent coupling phenomena between the different modes, and cause in
many cases a frequency spectrum of the laser which consists of a random
superposition of many modes that fluctuate in time.

In the case of a purely inhomogeneous gain profile, the different laser
modes do not share the same molecules for their amplification, and no mode
competition occurs if the frequency spacing of the modes is larger than the
saturation-broadened line profiles of the oscillating modes. Therefore all laser
modes within that part of the gain profile, which is above the threshold, can
oscillate simultaneously. The laser output consists of all axial and transverse
modes for which the total losses are less than the gain (Fig. 5.27a).

Real lasers do not represent these pure cases, but exhibit a gain profile
that is a convolution of inhomogeneous and homogeneous broadening. It is

Fig. 5.27. (a) Stable multimode operation of a HeNe laser (exposure time: 1 s); (b) two
short-time exposures of the multimode spectrum of an argon laser superimposed on the
same film to demonstrate the randomly fluctuating mode distribution
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the ratio of mode spacing δν to the homogeneous width Δνhom that gov-
erns the strength of mode competition and that is crucial for the resulting
single- or multi-mode operation. There is another reason why many lasers
oscillate on many modes: if the gain exceeds the losses for higher trans-
verse modes, mode competition between the modes TEMm1,n1 and TEMm2,n2
with (m1, n1) �= (m2, n2) is restricted because of their different spatial am-
plitude distributions. They gain their amplification from different regions of
the active medium. This applies to laser types such as solid-state lasers
(ruby or Nd:YAG lasers), flash-lamp-pumped dye lasers, or excimer lasers. In
a nonconfocal resonator the frequencies of the transverse modes fill the gap
between the TEM00 frequencies νa = (q + 1

2)c/(2nd) (Fig. 5.21). These trans-
verse modes lead to a larger divergence of the laser beam, which is no longer
a Gaussian-shaped beam.

The suppression of higher-order TEMm,n modes can be achieved by
a proper choice of the resonator geometry, which has to be adapted to the
cross section and the length L of the active medium (Sect. 5.4.2).

If only the axial modes TEM00 participate in the laser oscillation, the laser
beam transmitted through the output mirrors has a Gaussian intensity profile
(5.32), (5.42). It may still consist of many frequencies νa = qc/(2nd) within
the spectral gain profile. The spectral bandwidth of a multimode laser os-
cillating on an atomic or molecular transition is comparable to that of an
incoherent source emitting on this transition!

We illustrate this discussion by some examples:

Example 5.11.
HeNe Laser at λ = 632.8 nm: The Doppler width of the Ne transition is
about 1500 MHz, and the width of the gain profile above the threshold, which
depends on the pump power, may be 1200 MHz. With a resonator length of
d = 100 cm, the spacing of the longitudinal modes is δν = c/2d = 150 MHz.
If the higher transverse modes are suppressed by an aperture inside the
resonator, seven to eight longitudinal modes reach the threshold. The homo-
geneous width Δνhom is determined by several factors: the natural linewidth
Δνn = 20 MHz; a pressure broadening of about the same magnitude; and
a power broadening, which depends on the laser intensity in the differ-
ent modes. With I/Is = 10, for example, we obtain with Δν0 = 30 MHz
a power-broadened linewidth of about 100 MHz, which is still smaller than
the longitudinal modes spacing. The modes will therefore not compete
strongly, and simultaneous oscillation of all longitudinal modes above thresh-
old is possible. This is illustrated by Fig. 5.27a, which exhibits the spectrum
of a HeNe laser with d = 1 m, monitored with a spectrum analyzer and
integrated over a time interval of 1 s.
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Example 5.12.
Argon Laser: Because of the high temperature in the high-current dis-
charge (about 103 A/cm2), the Doppler width of the Ar+ transitions is very
large (about 8 to 10 GHz). The homogeneous width Δνhom is also much
larger than for the HeNe laser for two reasons: the long-range Coulomb
interaction causes a large pressure broadening from electron–ion collisions
and the high laser intensity (10−100 W) in a mode results in apprecia-
ble power broadening. Both effects generate a homogeneous linewidth that
is large compared to the mode spacing δν = 125 MHz for a commonly
used resonator length of d = 120 cm. The resulting mode competition in
combination with the perturbations mentioned above cause the observed
randomly fluctuating mode spectrum of the multimode argon laser. Fig-
ure 5.27b illustrates this by the superposition of two short-time exposures
of the oscilloscope display of a spectrum analyzer taken at two different
times.

Example 5.13.
Dye Laser: The broad spectral gain profile of dye molecules in a liquid
is predominantly homogeneously broadened (Sect. 3.7). About 105 modes
of a laser resonator with L = 75 cm fall within a typical spectral width of
20 nm (=̂ 2×1013 Hz at λ = 600 nm). Without spectral hole burning and
fluctuations of the optical length nd of the resonator, the laser would os-
cillate in a single mode at the center of the gain profile, despite the large
number of possible modes. However, fluctuations of the refractive index n
in the dye liquid cause corresponding perturbations of the frequencies and
the coupling of the laser modes, which results in a time-dependent mul-
timode spectrum; the emission jumps in a random way between different
mode frequencies. In the case of pulsed lasers, the time-averaged spectrum
of the dye laser emission fills more or less uniformly a broader spec-
tral interval (about 1 nm) around the maximum of the gain profile. The
spatial hole burning may result in oscillation of several groups of lines cen-
tered around the spatial hole-burning modes. In this case, the time-averaged
frequency distribution generally does not result in a uniformly smoothed in-
tensity profile I(λ). In order to achieve tunable single-mode operation, extra
wavelength-selective elements have to be inserted into the laser resonator
(Sect. 5.4).

For spectroscopic applications of multimode lasers one has to keep in mind
that the spectral interval Δν within the bandwidth of the laser is, in general,
not uniformly filled. This means that, contrary to an incoherent source, the
intensity I(ν) is not a smooth function within the laser bandwidth but exhibits
holes. This is particularly true for multimode dye lasers with Fabry–Perot-type
resonators where standing waves are present and spatial hole burning occurs
(Sect. 5.3.4).
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The spectral intensity distribution of the laser output is the superposition

IL(ω, t) =
∣∣∣∣∣
∑

k

Ak(t) cos[ωkt +φk(t)]
∣∣∣∣∣

2

, (5.68)

of the oscillating modes, where the phases φk(t) and the amplitudes Ak(t) may
randomly fluctuate in time because of mode competition and mode-pulling
effects.

The time average of the spectral distribution of the output intensity

〈I(ω)〉 = 1

T

T∫

0

∣∣∣∣∣
∑

k

Ak(t) cos[ωkt +φk(t)]
∣∣∣∣∣

2

dt , (5.69)

reflects the gain profile of the laser transition. The necessary averaging time T
depends on the buildup time of the laser modes. It is determined by the un-
saturated gain and the strength of the mode competition. In the case of gas
lasers, the average spectral width 〈Δν〉 corresponds to the Doppler width of
the laser transition. The coherence length of such a multimode laser is com-
parable to that of a conventional spectral lamp where a single line has been
filtered out.

If such a multimode laser is used for spectroscopy and is scanned, for in-
stance, with a grating or prism inside the laser resonator (Sect. 5.5), through
the spectral range of interest, this nonuniform spectral structure IL(0) may
cause artificial structures in the measured spectrum. In order to avoid this
problem and to obtain a smooth intensity profile IL(ν), the length d of the
laser resonator can be wobbled at the frequency f > 1/τ , which should be
larger than the inverse scanning time τ over a line in the investigated spec-
trum. This wobbling modulates all oscillating frequencies of the laser and
results in a smoother time average, particularly, if τ > T .

5.3.5 Mode Pulling

We now briefly discuss the frequency shift (called mode pulling) of the pas-
sive resonator frequencies by the presence of an active medium [5.35]. The
phase shift for a stationary standing wave with frequency νp and round-
trip time Tp through a resonator with mirror separation d without an active
medium is

φp = 2πνpTp = 2πνp2d/c = mπ , (5.70)

where the integer m characterizes the oscillating resonator mode. On insertion
of an active medium with refractive index n(ν), the frequency νp changes to
νa in such a way that the phase shift per round-trip remains

φa = 2πνaTa = 2πνan(νa)2d/c = mπ . (5.71)
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Fig. 5.28. Dispersion curves for absorbing tran-
sitions (ΔN < 0) and amplifying transitions
(ΔN > 0) and phase shifts Δφ per round-trip
in the passive and active cavity

This gives the condition

∂φ

∂ν
(νa −νp)+[φa(νa)−φp(νa)] = 0 . (5.72)

The index of refraction n(ν) is related to the absorption coefficient α(ν) of
a homogeneous absorption profile by the dispersion relation (3.36, 3.37)

n(ν) = 1+ ν0 −ν

Δνm

c

2πν
α(ν) , (5.73)

where Δνm = γ/2π is the linewidth of the amplifying transition in the active
medium. In case of inversion (ΔN < 0), α(ν) becomes negative and n(ν) < 1
for ν < ν0, while n(ν) > 1 for ν > ν0 (Fig. 5.28). Under stationary conditions,
the total gain per pass α(ν)L saturates to the threshold value, which equals the
total losses γ . These losses determine the resonance width Δνr = cγ/(4πd)
of the cavity, see (5.54). We obtain from (5.70, 5.73) the final result for the
frequency νa of a laser mode for laser transitions with homogeneous line
broadening Δνm and center frequency ν0 in a resonator with mode-width Δνr

νa = νrΔνm +ν0Δνr

Δνm +Δνr
. (5.74)

The resonance width Δνr of gas laser resonators is of the order of 1 MHz,
while the homogeneous width of the amplifying medium is about 100 MHz.
Therefore, when Δνr � Δνm, (5.74) reduces to

νa = νr + Δνr

Δνm
(ν0 −νr) . (5.75)

This demonstrates that the mode-pulling effect increases proportionally to the
difference of cavity resonance frequency νr and central frequency ν0 of the
amplifying medium. At the slopes of the gain profile, the laser frequency is
pulled towards the center.
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5.4 Experimental Realization of Single-Mode Lasers

In the previous sections we have seen that without specific manipulation
a laser generally oscillates in many modes, for which the gain exceeds the to-
tal losses. In order to select a single wanted mode, one has to suppress all
others by increasing their losses to such an amount that they do not reach
the oscillation threshold. The suppression of higher-order transverse TEMmn
modes demands actions other than the selection of a single longitudinal mode
out of many other TEM00 modes.

Many types of lasers, in particular, gaseous lasers, may reach oscilla-
tion threshold for several atomic or molecular transitions. The laser can then
simultaneously oscillate on these transitions [5.36]. In order to reach single-
mode operation, one has to first select a single transition.

5.4.1 Line Selection

In order to achieve single-line oscillation in laser media that exhibit gain
for several transitions, wavelength-selecting elements inside or outside the
laser resonator can be used. If the different lines are widely separated in the
spectrum, the selective reflectivity of the dielectric mirrors may already be
sufficient to select a single transition.

Example 5.14.
The He-Ne laser can oscillate at λ = 3.39 μm, λ = 0.633 μm and several
lines around λ = 1.15 μm.

The line at λ = 3.39 μm or at λ = 0.633 μm can be selected using spe-
cial mirrors. The different lines around 1.15 μm cannot be separated solely
via the spectral reflectivity of the mirrors; other measures are required, as
outlined below.

In the case of broadband reflectors or closely spaced lines, prisms, grat-
ings, or Lyot filters are commonly utilized for wavelength selection. Fig-
ure 5.29 illustrates line selection by a prism in an argon laser. The different
lines are refracted by the prism, and only the line that is vertically incident
upon the end mirror is reflected back into itself and can reach the oscillation
threshold, while all other lines are reflected out of the resonator. Turning the
end reflector M2 allows the desired line to be selected. To avoid reflection
losses at the prism surfaces, a Brewster prism with tan φ = 1/n is used, with
the angle of incidence for both prism surfaces being Brewster’s angle. The
prism and the end mirror can be combined by coating the end face of a Brew-
ster prism reflector (Fig. 5.29b). Such a device is called a Littrow prism.

Because most prism materials such as glass or quartz absorb in the in-
frared region, it is more convenient to use for infrared lasers a Littrow grating
(Sect. 4.1) as wavelength selector in this wavelength range. Figure 5.30 illus-
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Fig. 5.29a–c. Line selection in an argon laser with a Brewster prism (a) or a Littrow
prism reflector (b). Term diagram of laser transition in Ar+ (c)

Fig. 5.30. Selection of CO2
laser lines corresponding to
different rotational transitions
by a Littrow grating

trates the line selection in a CO2 laser, which can oscillate on many rotational
lines of a vibrational transition. Often the laser beam is expanded by a proper
mirror configuration in order to cover a larger number of grating grooves, thus
increasing the spectral resolution (Sect. 4.1). This has the further advantage
that the power density is lower and damage of the grating is less likely.

If some of the simultaneously oscillating laser transitions share a common
upper or lower level, such as the lines 1, 2, and 3 in Fig. 5.29c and Fig. 5.31a,
gain competition diminishes the output of each line. In this case, it is advan-
tageous to use intracavity line selection in order to suppress all but one of the
competing transitions. Sometimes, however, the laser may oscillate on cascade

Fig. 5.31a,b. Schematic level diagram for
a laser simultaneously oscillating on several
lines. While in (a) the transitions compete
with each other for gain, those in (b) en-
hance the gain for the other line
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transitions (Fig. 5.31b). In such a case, the laser transition 1 → 2 increases the
population of level 2 and therefore enhances the gain for the transition 2 → 3
[5.37]. Obviously, it is then more favorable to allow multiline oscillation and
to select a single line by an external prism or grating. Using a special mount-
ing design, it can be arranged so that no deflection of the output beam occurs
when the multiline output is tuned from one line to the other [5.38].

For lasers with a broad continuous spectral gain profile, the preselecting el-
ements inside the laser resonator restrict laser oscillation to a spectral interval,
which is a fraction of the gain profile.

Some examples illustrate the situation (see also Sect. 5.7):

Example 5.15.
HeNe Laser: The HeNe laser is probably the most thoroughly investigated
gas laser [5.39]. From the level scheme (Fig. 5.32), which uses the Paschen
notation [5.40], we see that two transitions around λ = 3.39 μm and the vis-
ible transitions at λ = 0.6328 μm share a common upper level. Suppression
of the 3.39 μm lines therefore enhances the output power at 0.6328 μm.
The 1.15 μm and the 0.6328 μm lines, on the other hand, share a com-
mon lower level and also compete for gain, since both laser transitions
increase the lower-level population and therefore decrease the inversion. If
the 3.3903-μm transition is suppressed, e.g., by placing an absorbing CH4
cell inside the resonator, the population of the upper 3s2 level increases,
and a new line at λ = 3.3913 μm reaches the threshold.

This laser transition populates the 3p4 level and produces gain for an-
other line at λ = 2.3951 μm. This last line only oscillates together with the
3.3913-μm one, which acts as pumping source. This is an example of cas-
cade transitions in laser media [5.37], as depicted in Fig. 5.31b.

Fig. 5.32. Level diagram of the HeNe laser
system in Paschen notation showing the most
intense laser transitions
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The homogeneous width of the laser transitions is mainly determined
by pressure and power broadening. At total pressures of above 5 mb and
an intracavity power of 200 mW, the homogeneous linewidth for the transi-
tion λ = 632.8 nm is about 200 MHz, which is still small compared with the
Doppler width ΔνD = 1500 MHz. In single-mode operation, one can ob-
tain about 20% of the multimode power [5.41]. This roughly corresponds to
the ratio Δνh/ΔνD of homogeneous to inhomogeneous linewidth above the
threshold. The mode spacing δν = 1

2 c/d equals the homogeneous linewidth
for d = d∗ = 1

2 c/Δνh. For d < d∗, stable multimode oscillation is possible;
for d > d∗, mode competition occurs.

Example 5.16.
Argon Laser: The discharge of a cw argon laser exhibits gain for more
than 15 different transitions. Figure 5.29c shows part of the energy level
diagram, illustrating the coupling of different laser transitions. Since the
lines at 514.5 nm, 488.0 nm, and 465.8 nm share the same lower level,
suppression of the competing lines enhances the inversion and the out-
put power of the selected line. The mutual interaction of the various laser
transitions has therefore been studied extensively [5.42, 5.43] in order to
optimize the ouput power. Line selection is generally achieved with an in-
ternal Brewster prism (Fig. 5.29 and Fig. 5.41b). The homogeneous width
Δνh is mainly caused by collision broadening due to electron–ion colli-
sions and saturation broadening. Additional broadening and shifts of the
ion lines result from ion drifts in the field of the discharge. At intracav-
ity intensities of 350 W/cm2, which correspond to about 1 W output power,
appreciable saturation broadening increases the homogeneous width, which
may exceed 1000 MHz. This explains why the output at single-mode oper-
ation may reach 30% of the multimode output on a single line [5.44].

Example 5.17.
CO2 Laser: A section of the level diagram is illustrated in Fig. 5.33.
The vibrational levels (v1, v

l
2, v3) are characterized by the number of

quanta in the three normal vibrational modes. The upper index of the
degenerate vibration v2 gives the quantum number of the correspond-
ing vibrational angular momentum l which occurs when two degenerate
bending vibrations ν2 where the nuclei vibrate in orthogonal planes are
superimposed [5.45]. Laser oscillation is achieved on many rotational
lines within two vibrational transitions (v1, v

l
2, v3) = 0001 → 1000 and

0001 → 0200 [5.46–5.48]. Without line selection, generally only the band
around 961 cm−1 (10.6 μm) appears because these transitions exhibit larger
gain. The laser oscillation depletes the population of the 0001 vibrational
level and suppresses laser oscillation on the second transition, because
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Fig. 5.33a,b. Level diagram and laser transitions in the CO2 molecule (a) and normal
vibrations (ν1, ν2, ν3) (b)

of gain competition. With internal line selection (Fig. 5.30), many more
lines can successively be optimized by turning the wavelength-selecting
grating. The output power of each line is then higher than that of the same
line in multiline operation. Because of the small Doppler width (66 MHz),
the free spectral range δν = 1

2 c/d∗ is already larger than the width of
the gain profile for d∗ < 200 cm. For such resonators, the mirror separa-
tion d has to be adjusted to tune the resonator eigenfrequency νR = 1

2qc/d∗
(where q is an integer) to the center of the gain profile. If the resonator pa-
rameters are properly chosen to suppress higher transverse modes, the CO2
laser then oscillates on a single longitudinal mode.

5.4.2 Suppression of Transverse Modes

Let us first consider the selection of transverse modes. In Sect. 5.2.3 it was
shown that the higher transverse TEMmnq modes have radial field distributions
that are less and less concentrated along the resonator axis with increasing
transverse order n or m. This means that their diffraction losses are much
higher than those of the fundamental modes TEM00q (Fig. 5.12). The field
distribution of the modes and therefore their diffraction losses depend on the
resonator parameters such as the radii of curvature of the mirrors Ri , the mir-
ror separation d, and, of course, the Fresnel number NF (Sect. 5.2.1). Only
those resonators that fulfill the stability condition [5.1, 5.24]

0 < g1g2 < 1 or g1g2 = 0 with gi = (1−d/Ri)

have finite spot sizes of the TEM00 field distributions inside the resonator
(Sect. 5.2.6). The choice of proper resonator parameters therefore establishes
the beam waist w of the fundamental TEM00q mode and the radial extension
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Fig. 5.34. Ratio γ10/γ00 of diffraction losses for
the TEM10 and TEM00 modes in symmetric res-
onators as a function of the Fresnel number NF
for different resonator parameters g = 1−d/R

of the higher-order TEMmn modes. This, in turn, determines the diffraction
losses of the modes.

In Fig. 5.34, the ratio γ10/γ00 of the diffraction losses for the TEM10 and
the TEM00 modes in a symmetric resonator with g1 = g2 = g is plotted for
different values of g as a function of the Fresnel number NF. From this dia-
gram one can obtain, for any given resonator, the diameter 2a of an aperture
that suppresses the TEM10 mode but still has sufficiently small losses for the
fundamental TEM00 mode with beam radius w. In gas lasers, the diameter 2a
of the discharge tube generally forms the limiting aperture. One has to choose
the resonator parameters in such a way that a � 3w/2 because this assures that
the fundamental mode nearly fills the whole active medium, but still suffers
less than 1% diffraction losses (Sect. 5.2.6).

Because the frequency separation of the transverse modes is small and
the TEM10q mode frequency is separated from the TEM00q frequency by
less than the homogeneous width of the gain profile, the fundamental mode
can partly saturate the inversion at the distance rm from the axis, where the
TEM10q mode has its field maximum. The resulting transverse mode compe-
tition (Fig. 5.35) reduces the gain for the higher transverse modes and may
suppress their oscillation even if the unsaturated gain exceeds the losses. The
restriction for the maximum-allowed aperture diameter is therefore less strin-
gent. The resonator geometry of many commercial lasers has already been
designed in such a way that “single-transverse-mode” operation is obtained.

Fig. 5.35. Transverse gain competition between the TEM00 and TEM10 modes
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The laser can, however, still oscillate on several longitudinal modes, and for
true single-mode operation, the next step is to suppress all but one of the
longitudinal modes.

5.4.3 Selection of Single Longitudinal Modes

From the discussion in Sect. 5.3 it should have become clear that simultaneous
oscillation on several longitudinal modes is possible when the inhomogeneous
width Δνg of the gain profile exceeds the mode spacing 1

2 c/d (Fig. 5.22).
A simple way to achieve single-mode operation is therefore the reduction of
the resonator length 2d such that the width Δνg of the gain profile above
threshold becomes smaller than the free spectral range δν = 1

2 c/d [5.49].
If the resonator frequency can be tuned to the center of the gain pro-

file, single-mode operation can be achieved even with the double length 2d,
because then the two neighboring modes just fail to reach the threshold
(Fig. 5.36). However, this solution for the achievement of single-mode oper-
ation has several drawbacks. Since the length L of the active medium cannot
be larger than d (L ≤ d), the threshold can only be reached for transitions
with a high gain. The output power, which is proportional to the active mode
volume, is also small in most cases. For single-mode lasers with higher out-
put powers, other methods are therefore preferable. We distinguish between
external and internal mode selection.

When the output of a multimode laser passes through an external spec-
tral filter, such as an interferometer or a spectrometer, a single mode can be
selected. For perfect selection, however, high suppression of the unwanted
modes and high transmission of the wanted mode by the filter are required.
This technique of external selection has the further disadvantage that only
part of the total laser output power can be used. Internal mode selection
with spectral filters inside the laser resonator completely suppresses the un-
wanted modes even when without the selecting element their gain exceeds
their losses. Furthermore, the output power of a single-mode laser is gener-
ally higher than the power in this mode at multimode oscillation because the

Fig. 5.36. Single longitudinal mode operation by reducing the cavity length d to a value
where the mode spacing exceeds half of the gain profile width above threshold
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total inversion V ·ΔN in the active volume V is no longer shared by many
modes, as is the case for multimode operation with gain competition.

In single-mode operation with internal mode selection, we can expect out-
put powers that reach the fraction Δνhom/Δνg of the multimode power, where
Δνhom is the homogeneous width within the inhomogeneous gain profile. This
width Δνhom becomes even larger for single-mode operation because of power
broadening by the more intense mode. In an argon-ion laser, for example, one
can obtain up to 30% of the multimode power in a single mode with internal
mode selection.

This is the reason why virtually all single-mode lasers use internal mode
selection. We now discuss some experimental possibilities that allow stable
single-mode operation of lasers with internal mode selection. As pointed out
in the previous section, all methods for achieving single-mode operation are
based on mode suppression by increasing the losses beyond the gain for
all but the wanted mode. A possible realization of this idea is illustrated in
Fig. 5.37, which shows longitudinal mode selection by a tilted plane-parallel
etalon (thickness t and refractive index n) inside the laser resonator [5.50]. In
Sect. 4.2.7, it was shown that such an etalon has transmission maxima at those
wavelengths λm for which

mλm = 2nt cos θ , (5.76)

for all other wavelengths the reflection losses should dominate the gain.
If the free spectral range of the etalon,

δλ = 2nt cos θ

(
1

m
− 1

m +1

)
= λm

m +1
, (5.77)

is larger than the spectral width |λ1 −λ2| of the gain profile above the thresh-
old, only a single mode can oscillate (Fig. 5.38). Since the wavelength λ is
also determined by the resonator length d (2d = qλ), the tilting angle θ has
to be adjusted so that

2nt cos θ/m = 2d/q (where q is an integer)

⇒ cos θ = m

q
· d

n · t
, (5.78)

which means that the transmission peak of the etalon has to coincide with an
eigenresonance of the laser resonator.

Fig. 5.37. Single-mode operation by inserting a tilted etalon inside the laser resonator
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Fig. 5.38. Gain profile, resonator modes, and transmission peaks of the intracavity etalon
(dashed curve). Also shown are the threshold curves with and without etalon

Example 5.18.
In the argon-ion laser the width of the gain profile is about 8 GHz. With
a free spectral range of Δν = c/(2nt) = 10 GHz of the intracavity etalon,
single-mode operation can be achieved. This implies with n = 1.5 a thick-
ness t = 1 cm.

The finesse F∗ of the etalon has to be sufficiently high to ensure for
the modes adjacent to the selected mode losses that overcome their gain
(Fig. 5.38). Fortunately, in many cases their gain is already reduced by the os-
cillating mode due to gain competition. This allows the less stringent demand
that the losses of the etalon must only exceed the saturated gain at a distance
Δν ≥ Δνhom away from the transmission peak.

Often a Michelson interferometer coupled by a beam splitter BS to the
laser resonator is used for mode selection (Fig. 5.39). The free spectral range
δν = 1

2 c/(L2 + L3) of this Fox–Smith cavity [5.51] again has to be broader
than the width of the gain profile. With a piezoelement PE, the mirror M3 can
be translated by a few microns to achieve resonance between the two coupled
resonators. For the resonance condition

(L1 + L2)/q = (L2 + L3)/m = λ/2 (where m and q are integers) , (5.79)

the partial wave M1 → BS, reflected by BS, and the partial wave M3 → BS,
transmitted through BS, interfere destructively. This means that for the res-
onance condition (5.79) the reflection losses by BS have a minimum (in the
ideal case they are zero). For all other wavelengths, however, these losses are
larger than the gain, They do not reach threshold and single-mode oscillation
is achieved [5.52].

In a more detailed discussion the absorption losses A2
BS of the beam split-

ter BS cannot be neglected, since they cause the maximum reflectance R of
the Fox–Smith cavity to be less than 1. Similar to the derivation of (4.80), the
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Fig. 5.39a,b. Mode selection with a Fox–Smith selector: (a) experimental setup; (b) max-
imum reflectivity and inverted finesse 1/F∗ of the Michelson-type reflector as a function
of the reflectivity RBS of the beam splitter for R2 = R3 = 0.99 and ABS = 0.5%

reflectance of the Fox–Smith selector, which acts as a wavelength-selecting
laser reflector, can be calculated to be [5.53]

R = T 2
BS R2(1− ABS)2

1− RBS
√

R2 R3 +4RBS
√

R2 R3 sin2 φ/2
. (5.80)

Figure 5.39b exhibits the reflectance Rmax for φ = 2mπ and the additional
losses of the laser resonator introduced by the Fox–Smith cavity as a function
of the beam splitter reflectance RBS. The finesse F∗ of the selecting device is
also plotted for R2 = R3 = 0.99 and ABS = 0.5%. The spectral width Δν of
the reflectivity maxima is determined by

Δν = δν/F∗ = c/[2F∗(L2 + L3)] . (5.81)

Fig. 5.40. Some possible schemes of coupled resonators for longitudinal mode selection,
with their frequency-dependent losses. For comparison the eigenresonances of the long
laser cavity with a mode spacing Δν = c/2d are indicated
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There are several other resonator-coupling schemes that can be utilized for
mode selection. Figure 5.40 compares some of them, together with their
frequency-selective losses [5.54].

In case of multiline lasers (e.g., argon or krypton lasers), line selection and
mode selection can be simultaneously achieved by a combination of prism
and Michelson interferometers. Figure 5.41 illustrates two possible realiza-
tions. The first replaces mirror M2 in Fig. 5.39 by a Littrow prism reflector
(Fig. 5.41a). In Fig. 5.41b, the front surface of the prism acts as beam splitter,
and the two coated back surfaces replace the mirrors M2 and M3 in Fig. 5.39.
The incident wave is split into the partial beams 4 and 2. After being reflected
by M2, beam 2 is again split into 3 and 1. Destructive interference between
beams 4 and 3, after reflection from M3, occurs if the optical path differ-
ence Δs = 2n(S2 + S3) = mλ. If both beams have equal amplitudes, no light
is emitted in the direction of beam 4. This means that all the light is reflected
back into the incident direction and the device acts as a wavelength-selective
reflector, analogous to the Fox–Smith cavity [5.55]. Since the wavelength λ
depends on the optical path length n(L2 + L3), the prism has to be tem-
perature stabilized to achieve wavelength-stable, single-mode operation. The
whole prism is therefore embedded in a temperature-stabilized oven.

For lasers with a broad gain profile, one wavelength-selecting element
alone may not be sufficient to achieve single-mode operation, therefore one
has to use a proper combination of different dispersing elements. With pre-
selectors, such as prisms, gratings, or Lyot filters, the spectral range of the
effective gain profile is narrowed down to a width that is comparable to that
of the Doppler width of fixed-frequency gas lasers. Figure 5.42 represents
a possible scheme, that has been realized in practice. Two prisms are used as
preselector to narrow the spectral width of a cw dye laser [5.56]; two etalons
with different thicknesses t1 and t2 are used to achieve stable single-mode op-
eration. Figure 5.42b illustrates the mode selection, depicting schematically
the gain profile narrowed by the prisms and the spectral transmission curves
of the two etalons. In the case of the dye laser with its homogeneous gain
profile, not every resonator mode can oscillate, but only those that draw gain
from the spatial hole-burning effect (Sect. 5.3.3). The “suppressed modes” at
the bottom of Fig. 5.42 represent these spatial hole-burning modes that would
simultaneously oscillate without the etalons. The transmission maxima of the

Fig. 5.41. (a) Simultaneous line selection and mode selection by a combination of prism
selector and Michelson-type interferometer; (b) compact arrangement
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Fig. 5.42a,b. Mode selection in the case of broad gain profiles. The prisms narrow the net
gain profile and two etalons enforce single-mode operation: (a) experimental realization
for a jet stream cw dye laser; (b) schematic diagram of gain profile and transmission
curves of the two etalons

two etalons have, of course, to be at the same wavelength λL. This can be
achieved by choosing the correct tilting angles θ1 and θ2 such that

nt1 cos θ1 = m1λL , and nt2 cos θ2 = m2λL . (5.82)

Example 5.19.
The two prisms narrow the spectral width of the gain profile above thresh-
old to about 100 GHz. If the free spectral range of the thin etalon 1 is
100 GHz (=̂ Δλ ∼ 1 nm at λ = 600 nm) and that of the thick etalon 2 is
10 GHz, single-mode operation of the cw dye laser can be achieved. This
demands t1 = 0.1 cm and t2 = 1 cm for n = 1.5.

Commercial cw dye laser systems (Sect. 5.5) generally use a different re-
alization of single-mode operation (Fig. 5.43). The prisms are replaced by
a birefringent filter, which is based on the combination of three Lyot filters
(Sect. 4.2.11), and the thick etalon is substituted by a Fabry–Perot interfer-
ometer with the thickness t controllable by piezocylinders (Fig. 5.44). This
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Fig. 5.43. Mode selection in the cw dye laser with a folded cavity using a birefringent fil-
ter, a tilted etalon, and a prism FPI (Coherent model 599). The folding angle ϑ is chosen
for optimum compensation of astigmatism introduced by the dye jet

Fig. 5.44a,b. Fabry–Perot interferometer tuned by a piezocylinder: (a) two plane-parallel
plates with inner reflecting surfaces; (b) two Brewster prisms with the outer coated sur-
faces forming the FPI reflecting planes

is done because the walk-off losses of an etalon increase according to (4.64)
with the square of the tilting angle α and the etalon thickness t. They may be-
come intolerably high if a large, uninterrupted tuning range shall be achieved
by tilting of the etalon. Therefore the long intracavity FPI (Fig. 5.43) is kept
at a fixed, small tilting angle while its transmission peak is tuned by changing
the separation t between the reflecting surfaces.

In order to minimize the air gap between the reflecting surfaces of the FPI,
the prism construction of Fig. 5.44b is often used, in which the small air gap
is traversed by the laser beam at Brewster’s angle to avoid reflection losses
[5.57]. This design minimizes the influence of air pressure variations on the
transmission peak wavelength λL.

Figure 5.45 depicts the experimental arrangement for narrow-band opera-
tion of an excimer laser-pumped dye laser; the beam is expanded to fill the
whole grating. Because of the higher spectral resolution of the grating (com-
pared with a prism) and the wider mode spacing from the short cavity, a single
etalon inside or outside the laser resonator may be sufficient to select a single
mode [5.58].
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Fig. 5.45. Short Hänsch-type dye laser cavity with Littrow grating and mode selection
either with an internal etalon or an external FPI as “mode filter” [5.58]

There are many more experimental possibilities for achieving single-mode
operation. For details, the reader is referred to the extensive literature on this
subject, which can be found, for instance, in the excellent reviews on mode
selection and single-mode lasers by Smith [5.54] or Goldsborough [5.59] and
in [5.60, 5.61].

5.4.4 Intensity Stabilization

The intensity I(t) of a cw laser is not completely constant, but shows periodic
and random fluctuations and also, in general, long-term drifts. The reasons
for these fluctuations are manifold and may, for example, be due to an in-
sufficiently filtered power supply, which results in a ripple on the discharge
current of the gas laser and a corresponding intensity modulation. Other noise
sources are instabilities of the gas discharge, dust particles diffusing through
the laser beam inside the resonator, and vibrations of the resonator mirrors. In
multimode lasers, internal effects, such as mode competition, also contribute
to noise. In cw dye lasers, density fluctuations in the dye jet stream and air
bubbles are the main cause of intensity fluctuations.

Long-term drifts of the laser intensity may be caused by slow temper-
ature or pressure changes in the gas discharge, by thermal detuning of the
resonator, or by increasing degradation of the optical quality of mirrors, win-
dows, and other optical components in the resonator. All these effects give rise
to a noise level that is well above the theoretical lower limit set by the photon
noise. Since these intensity fluctuations lower the signal-to-noise ratio, they
may become very troublesome in many spectroscopic applications, therefore
one should consider steps that reduce these fluctuations by stabilizing the laser
intensity.

Of the various possible methods, we shall discuss two that are often used
for intensity stabilization. They are schematically depicted in Fig. 5.46. In the
first method, a small fraction of the output power is split by the beam splitter
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Fig. 5.46a,b. Intensity stabilization of lasers (a) by controlling the power supply, and
(b) by controlling the transmission of a Pockels cell

BS to a detector (Fig. 5.46a). The detector output VD is compared with a refer-
ence voltage VR and the difference ΔV = VD − VR is amplified and fed to the
power supply of the laser, where it controls the discharge current. The servo
loop is effective in a range where the laser intensity increases with increasing
current.

The upper frequency limit of this stabilization loop is determined by the
capacitances and inductances in the power supply and by the time lag between
the current increase and the resulting increase of the laser intensity. The lower
limit for this time delay is given by the time required by the gas discharge to
reach a new equilibrium after the current has been changed. It is therefore not
possible with this method to stabilize the system against fluctuations of the
gas discharge. For most applications, however, this stabilization technique is
sufficient; it provides an intensity stability where the fluctuations are less than
0.5%.

To compensate fast intensity fluctuations, another technique, illustrated
in Fig. 5.46b, is more suitable. The output from the laser is sent through
a Pockels cell, which consists of an optically anisotropic crystal placed be-
tween two linear polarizers. An external voltage applied to the electrodes of
the crystal causes optical birefringence, which rotates the polarization plane of
the transmitted light and therefore changes the transmittance through the sec-
ond polarizer. If part of the transmitted light is detected, the amplified detector
signal can be used to control the voltage U at the Pockels cell. Any change
of the transmitted intensity can be compensated by an opposite transmission
change of the Pockels cell. This stabilization control works up to frequencies
in the megahertz range if the feedback-control electronics are sufficiently fast.
Its disadvantage is an intensity loss of 20% to 50% because one has to bias
the Pockels cell to work on the slope of the transmission curve (Fig. 5.46b).

Figure 5.47 sketches how the electronic system of a feedback control can
be designed to optimize the response over the whole frequency spectrum of
the input signals. In principle, three operational amplifiers with different fre-
quency responses are put in parallel. The first is a common proportional
amplifier, with an upper frequency determined by the electronic time constant
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Fig. 5.47a–d. Schematic diagram of PID feedback control: (a) noninverting proportional
amplifier; (b) integrator; (c) differentiating amplifier; (d) complete PID circuit that com-
bines the functions (a–c)

of the amplifier. The second is an integral amplifier with the output

Uout = 1

RC

T∫

0

Uin(t)dt .

This amplifier is necessary to bring the signal, which is proportional to the
deviation of the intensity from its nominal value, really back to zero. This
cannot be performed with a proportional amplifier. The third amplifier is a dif-
ferentiating device that takes care of fast peaks in the perturbations. All three
functions can be combined in a system called PID control [5.62, 5.63], which
is widely used for intensity stabilization and wavelength stabilization of lasers.

Fig. 5.48a,b. Intensity stabilization of a cw dye laser by control of the argon laser power:
(a) experimental arrangement; (b) stabilized and unstabilized dye laser output P(λ) when
the dye laser is tuned across its spectral gain profile
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For spectroscopic applications of dye lasers, where the dye laser has to be
tuned through a large spectral range, the intensity change caused by the de-
creasing gain at both ends of the gain profile may be inconvenient. An elegant
way to avoid this change of IL(λ) with λ is to stabilize the dye laser output
by controlling the argon laser power (Fig. 5.48). Since the servo control must
not be too fast, the stabilization scheme of Fig. 5.48a can be employed. Fig-
ure 5.48b demonstrates how effectively this method works if one compares
the stabilized with the unstabilized intensity profile I(λ) of the dye laser.

5.4.5 Wavelength Stabilization

For many applications in high-resolution laser spectroscopy, it is essential that
the laser wavelength stays as stable as possible at a preselected value λ0. This
means that the fluctuations Δλ around λ0 should be smaller than the molecu-
lar linewidths that are to be resolved. For such experiments only single-mode
lasers can, in general, be used, because in most multimode lasers the momen-
tary wavelengths fluctuate and only the time-averaged envelope of the spectral
output profile is defined, as has been discussed in the previous sections.
This stability of the wavelength is important both for fixed-wavelength lasers,
where the laser wavelength has to be kept at a time-independent value λ0,
as well as for tunable lasers, where the fluctuations Δλ = |λL −λR(t)| around
a controlled tunable wavelength λR(t) have to be smaller than the resolvable
spectral interval.

In this section we discuss some methods of wavelength stabilization with
their advantages and drawbacks. Since the laser frequency ν = c/λ is directly
related to the wavelength, one often speaks about frequency stabilization, al-
though for most methods in the visible spectral region, it is not the frequency
but the wavelength that is directly measured and compared with a reference
standard. There are, however, new stabilization methods that rely directly on
absolute frequency measurements (Vol. 2, Sect. 9.7).

In Sect. 5.3 we saw that the wavelength λ or the frequency ν of a longitudi-
nal mode in the active resonator is determined by the mirror separation d and
the refractive indices n2 of the active medium with length L and n1 outside
the amplifying region. The resonance condition is

qλ = 2n1(d − L)+2n2L . (5.83)

For simplicity, we shall assume that the active medium fills the whole region
between the mirrors. Thus (5.83) reduces, with L = d and n2 = n1 = n, to

qλ = 2nd , or ν = qc/(2nd) . (5.84)

Any fluctuation of n or d causes a corresponding change of λ and ν. We ob-
tain from (5.84)

Δλ

λ
= Δd

d
+ Δn

n
, or − Δν

ν
= Δd

d
+ Δn

n
. (5.85)
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Example 5.20.
To illustrate the demands of frequency stabilization, let us assume that
we want to keep the frequency ν = 6×1014 Hz of an argon laser constant
within 1 MHz. This means a relative stability of Δν/ν = 1.6×10−9 and im-
plies that the mirror separation of d = 1 m has to be kept constant within
1.6 nm!

From this example it is evident that the requirements for such stabilization
are by no means trivial. Before we discuss possible experimental solutions,
let us consider the causes of fluctuations or drifts in the resonator length d
or the refractive index n. If we could reduce or even eliminate these causes,
we would already be well on the way to achieving a stable laser frequency.
We shall distinguish between long-term drifts of d and n, which are mainly
caused by temperature drifts or slow pressure changes, and short-term fluc-
tuations caused, for example, by acoustic vibrations of mirrors, by acoustic
pressure waves that modulate the refractive index, or by fluctuations of the
discharge in gas lasers or of the jet flow in dye lasers.

To illustrate the influence of long-term drifts, let us make the following es-
timate. If α is the thermal expansion coefficient of the material (e.g., quartz or
invar rods), which defines the mirror separation d, the relative change Δd/d
for a possible temperature change ΔT is, under the assumption of linear ther-
mal expansion,

Δd/d = αΔT . (5.86)

Table 5.2 compiles the thermal expansion coefficients for some commonly
used materials.

Table 5.2. Linear thermal expansion coefficient of some relevant materials at room tem-
perature T = 20◦C

Material α[10−6 K−1] Material α[10−6 K−1]

Aluminum 23 BeO 6
Brass 19 Invar 1.2
Steel 11−15 Soda-lime glass 5−8
Titanium 8.6 Pyrex glass 3
Tungsten 4.5 Fused quartz 0.4−0.5
Al2O3 5 Cerodur < 0.1

Example 5.21.
For invar, with α = 1×10−6 K−1, we obtain from (5.86) for ΔT = 0.1 K
a relative distance change of Δd/d = 10−7, which gives for Example 5.20
a frequency drift of 60 MHz.
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If the laser wave inside the cavity travels a path length d − L through air at
atmospheric pressure, any change Δp of the air pressure results in the change

Δs = (d − L)(n −1)Δp/p , with Δp/p = Δn/(n −1) , (5.87)

of the optical path length between the resonator mirrors.

Example 5.22.
With n = 1.00027 and d − L = 0.2d, which is typical for gas lasers, we ob-
tain from (5.85) and (5.87) for pressure changes of Δp = 3 mbar (which
can readily occur during one hour, particularly in air-conditioned rooms)

Δλ/λ = −Δν/ν ≈ (d − L)Δn/(nd) ≥ 1.5×10−7 .

For our example above, this means a frequency change of Δν ≥ 90 MHz.
In cw dye lasers, the length L of the active medium is negligible compared
with the resonator length d, therefore we can take d − L � d. This implies
for the same pressure change a frequency drift that is five times larger than
estimated above.

To keep these long-term drifts as small as possible, one has to choose dis-
tance holders for the resonator mirrors with a minimum thermal expansion
coefficient α. A good choice is, for example, the recently developed cerodur–
quartz composition with a temperature-dependent α(T) that can be made zero
at room temperature [5.64]. Often massive granite blocks are used as sup-
port for the optical components; these have a large heat capacity with a time
constant of several hours to smoothen temperature fluctuations. To minimize
pressure changes, the whole resonator must be enclosed by a pressure-tight
container, or the ratio (d − L)/d must be chosen as small as possible. How-
ever, we shall see that such long-term drifts can be mostly compensated by
electronic servo control if the laser wavelength is locked to a constant refer-
ence wavelength standard.

A more serious problem arises from the short-term fluctuations, since these
may have a broad frequency spectrum, depending on their causes, and the
frequency response of the electronic stabilization control must be adapted
to this spectrum. The main contribution comes from acoustical vibrations
of the resonator mirrors. The whole setup of a wavelength-stabilized laser
should therefore be vibrationally isolated as much as possible. There are
commercial optical tables with pneumatic damping, in their more sophis-
ticated form even electronically controlled, which guarantee a stable setup
for frequency-stabilized lasers. A homemade setup is considerably cheaper:
Fig. 5.49 illustrates a possible table mount for the laser system as employed in
our laboratory. The optical components are mounted on a heavy granite plate,
which rests in a flat container filled with sand to damp the eigenresonances of
the granite block. Styrofoam blocks and acoustic damping elements prevent
room vibrations from being transferred to the system. The optical system is
protected against direct sound waves through the air, air turbulence, and dust
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Fig. 5.49. Experimental realiza-
tion of an acoustically isolated
table for a wavelength-stabilized
laser system

by a dust-free solid cover resting on the granite plate. A filtered laminar air
flow from a flow box above the laser table avoids dust and air turbulence and
increases the passive stability of the laser system considerably.

The high-frequency part of the noise spectrum is mainly caused by fast
fluctuations of the refractive index in the discharge region of gas lasers or
in the liquid jet of cw dye lasers. These perturbations can only be reduced
partly by choosing optimum discharge conditions in gas lasers. In jet-stream
dye lasers, density fluctuations in the free jet, caused by small air bubbles
or by pressure fluctuations of the jet pump and by surface waves along the
jet surfaces, are the main causes of fast laser frequency fluctuations. Careful
fabrication of the jet nozzle and filtering of the dye solution are essential to
minimize these fluctuations.

All the perturbations discussed above cause fluctuations of the optical path
length inside the resonator that are typically in the nanometer range. In order
to keep the laser wavelength stable, these fluctuations must be compensated
by corresponding changes of the resonator length d. For such controlled and
fast length changes in the nanometer range, piezoceramic elements are mainly
used [5.65, 5.66]. They consist of a piezoelectric material whose length in an
external electric field changes proportionally to the field strength. Either cylin-
drical plates are used, where the end faces are covered by silver coatings that
provide the electrodes or a hollow cylinder is used, where the coatings cover
the inner and outer wall surfaces (Fig. 5.50a). Typical parameters of such
piezoelements are a few nanometers of length change per volt. With stacks of
many thin piezodisks, one reaches length changes of 100 nm/V. When a res-
onator mirror is mounted on such a piezoelement (Fig. 5.50b,c), the resonator
length can be controlled within a few microns by the voltage applied to the
electrodes of the piezoelement.

The frequency response of this length control is limited by the inertial
mass of the moving system consisting of the mirror and the piezoelement,
and by the eigenresonances of this system. Using small mirror sizes and
carefully selected piezos, one may reach the 100 kHz range [5.67]. For the
compensation of faster fluctuations, an optical anisotropic crystal, such as
potassium-dihydrogen-phosphate (KDP), can be utilized inside the laser res-
onator. The optical axis of this crystal must be oriented in such a way that
a voltage applied to the crystal electrodes changes its refractive index along
the resonator axis without turning the plane of polarization. This allows the
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Fig. 5.50. (a) Piezocylinders and their (exaggerated) change of length with applied
voltage; (b) laser mirror epoxide on a piezocylinder; (c) mirror plus piezomount on
a single-mode tunable argon laser

optical path length nd, and therefore the laser wavelength, to be controlled
with a frequency response up into the megahertz range.

The wavelength stabilization system consists essentially of three elements
(Fig. 5.51):

(a) The wavelength reference standard with which the laser wavelength is
compared. One may, for example, use the wavelength λR at the maximum
or at the slope of the transmission peak of a Fabry–Perot interferometer
that is maintained in a controlled environment (temperature and pressure
stabilization). Alternately, the wavelength of an atomic or molecular tran-
sition may serve as reference. Sometimes another stabilized laser is used as
a standard and the laser wavelength is locked to this standard wavelength.

(b) The controlled system, which is in this case the resonator length nd defin-
ing the laser wavelength λL.

(c) The electronic control system with the servo loop, which measures the
deviation Δλ = λL −λR of the laser wavelength λL from the reference
value λR and which tries to bring Δλ to zero as quickly as possible
(Fig. 5.47).

Fig. 5.51. Schematic of laser wave-
length stabilization
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A schematic diagram of a commonly used stabilization system is shown
in Fig. 5.52. A few percent of the laser output are sent from the two beam
splitters BS1 and BS2 into two interferometers. The first FPI1 is a scan-
ning confocal FPI and serves as spectrum analyzer for monitoring the mode
spectrum of the laser. The second interferometer FPI2 is the wavelength ref-
erence and is therefore placed in a pressure-tight and temperature-controlled
box to keep the optical path nd between the interferometer mirrors and with
it the wavelength λR = 2nd/m of the transmission peak as stable as pos-
sible (Sect. 4.2). One of the mirrors is mounted on a piezoelement. If a small
ac voltage with the frequency f is fed to the piezo, the transmission peak
of FPI2 is periodically shifted around the center wavelength λ0, which we
take as the required reference wavelength λR. If the laser wavelength λL is
within the transmission range λ1 to λ2 in Fig. 5.52, the photodiode PD2 be-
hind FPI2 delivers a dc signal that is modulated at the frequency f . The
modulation amplitude depends on the slope of the transmission curve dIT/dλ
of FPI2 and the phase is determined by the sign of λL −λ0. Whenever the
laser wavelength λL deviates from the reference wavelength λR, the pho-
todiode delivers an ac amplitude that increases as the difference λL −λR
increases, as long as λL stays within the transmision range between λ1 and λ2.
This signal is fed to a lock-in amplifier, where it is rectified, passes a PID
control (Fig. 5.47), and a high-voltage amplifier (HVA). The output of the
HVA is connected with the piezoelement of the laser mirror, which moves
the resonator mirror M1 until the laser wavelength λL is brought back to the
reference value λR.

Instead of using the maximum λ0 of the transmission peak of IT(λ) as
reference wavelength, one may also choose the wavelength λt at the turn-
ing point of IT(λ) where the slope dIT(λ)/dλ has its maximum (Fig. 5.53).
This has the advantage that a modulation of the FPI transmission curve is not
necessary and the lock-in amplifier can be dispensed with. The cw laser inten-
sity IT(λ) transmitted through FPI2 is compared with a reference intensity IR

Fig. 5.52. Laser wavelength stabilization onto the transmission peak of a stable Fabry–
Perot interferometer as reference
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Fig. 5.53. Wavelength stabi-
lization onto the slope of
the transmission T(λ) of
a stable reference FPI

split by BS2 from the same partial beam. The output signals S1 and S2 from
the two photodiodes D1 and D2 are fed into a difference amplifier, which is
adjusted so that its output voltage becomes zero for λL = λt. If the laser wave-
length λL deviates from λR = λt, S1 becomes smaller or larger, depending on
the sign of λL −λR; the output of the difference amplifier is, for small dif-
ferences λ−λR, proportional to the deviation. The output signal again passes
a PID control and a high-voltage amplifier, and is fed into the piezoelement of
the resonator mirror. The advantages of this difference method are the larger
bandwidth of the difference amplifier (compared with a lock-in amplifier),
and the simpler and less expensive composition of the whole electronic con-
trol system. Furthermore, the laser frequency does not need to be modulated
which represents a big advantage for many spectroscopic applications [5.68].
Its drawback lies in the fact that different dc voltage drifts in the two branches
of the difference amplifier result in a dc output, which shifts the zero ad-
justment and, with it, the reference wavelength λR. Such dc drifts are much
more critical in dc amplifiers than in the ac-coupled devices used in the first
method.

The stability of the laser wavelength can, of course, never exceed that of
the reference wavelength. Generally it is worse because the control system
is not ideal. Deviations Δλ(t) = λL(t)−λR cannot be compensated immedi-
ately because the system has a finite frequency response and the inherent time
constants always cause a phase lag between deviation and response.

Most methods for wavelength stabilization use a stable FPI as reference
standard [5.69]. This has the advantage that the reference wavelength λ0
or λt can be tuned by tuning the reference FPI. This means that the laser
can be stabilized onto any desired wavelength within its gain profile. Be-
cause the signals from the photodiodes D1 and D2 in Fig. 5.53 have a suf-
ficiently large amplitude, the signal-to-noise ratio is good, therefore the
method is suitable for correcting short-term fluctuations of the laser wave-
length.

For long-term stabilization, however, stabilization onto an external FPI has
its drawbacks. In spite of temperature stabilization of the reference FPI, small
drifts of the transmission peak cannot be eliminated completely. With a ther-
mal expansion coefficient α = 10−6 of the distance holder for the FPI mirrors,
even a temperature drift of 0.01◦C causes, according to (5.86), a relative fre-
quency drift of 10−8, which gives 6 MHz for a laser frequency of νL = 6×
1014 Hz. For this reason, an atomic or molecular laser transition is more suit-
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able as a long-term frequency standard. A good reference wavelength should
be reproducible and essentially independent of external perturbations, such as
electric or magnetic fields and temperature or pressure changes. Therefore,
transitions in atoms or molecules without permanent dipole moments, such
as CH4 or noble gas atoms, are best suited to serve as reference wavelength
standards (Vol. 2, Chap. 9).

The accuracy with which the laser wavelength can be stabilized onto the
center of such a transition depends on the linewidth of the transition and
on the attainable signal-to-noise ratio of the stabilization signal. Doppler-free
line profiles are therefore preferable. They can be obtained by some of the
methods discussed in Vol. 2, Chaps. 2 and 4. In the case of small line inten-
sities, however, the signal-to-noise ratio may be not good enough to achieve
satisfactory stabilization. It is therefore advantageous to continue to lock the
laser to the reference FPI, but to lock the FPI itself to the molecular line. In
this double servo control system, the short-term fluctuations of λL are com-
pensated by the fast servo loop with the FPI as reference, while the slow drifts
of the FPI are stabilized by being locked to the molecular line.

Figure 5.54 illustrates a possible arrangement. The laser beam is crossed
perpendicularly with a collimated molecular beam. The Doppler width of the
absorption line is reduced by a factor depending on the collimation ratio
(Vol. 2, Sect. 4.1). The intensity IF(λL) of the laser-excited fluorescence serves
as a monitor for the deviation λL −λc from the line center λc. The output sig-
nal of the fluorescence detector after amplification can be fed directly to the
piezoelement of the laser resonator or to the reference FPI.

To decide whether λt drifts to lower or to higher wavelengths, one must ei-
ther modulate the laser frequency or use a digital servo control, which shifts
the laser frequency in small steps. A comparator compares whether the in-
tensity has increased or decreased by the last step and activates accordingly
a switch determining the direction of the next step. Since the drift of the
reference FPI is slow, the second servo control can also be slow, and the fluo-
rescence intensity can be integrated. This allows the laser to be stabilized for
a whole day, even onto faint molecular lines where the detected fluorescence
intensity is less than 100 photons per second [5.70].

Fig. 5.54. Long-term stabilization of the laser wavelength locked to a reference FPI that
in turn is locked by a digital servo loop to a molecular transition
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Recently, cryogenic optical sapphire resonators with a very high finesse
operating at T = 4 K have proven to provide very stable reference standards
[5.71]. They reach a relative frequency stability of 3×10−15 at an integration
time of 20 s.

Since the accuracy of wavelength stabilization increases with decreasing
molecular linewidth, spectroscopists have looked for particularly narrow lines
that could be used for extremely well-stabilized lasers. It is very common to
stabilize onto a hyperfine component of a visible transition in the I2 molecule
using Doppler-free saturated absorption inside [5.72] or outside [5.73] the
laser resonator (Vol. 2, Sect. 2.3). The stabilization record was held for a long
time by a HeNe laser at λ = 3.39 μm that was stabilized onto a Doppler-free
infrared transition in CH4 [5.74, 5.75].

Using the dispersion profiles of Doppler-free molecular lines in polariza-
tion spectroscopy (Vol. 2, Sect. 2.4), it is possible to stabilize a laser to the line
center without frequency modulation. An interesting alternative for stabilizing
a dye laser on atomic or molecular transitions is based on Doppler-free two-
photon transitions (Vol. 2, Sect. 2.5) [5.78]. This method has the additional
advantage that the lifetime of the upper state can be very long, and the nat-
ural linewidth may become extremely small. The narrow 1s −2s two-photon
transition in the hydrogen atom with a natural linewidth of 1.3 Hz provides
the best known optical frequency reference to date [5.76].

Often the narrow Lamb dip at the center of the gain profile of a gas
laser transition is utilized (Vol. 2, Sect. 2.2) to stabilize the laser frequency
[5.79, 5.80]. However, due to collisional line shifts the frequency ν0 of the line
center slightly depends on the pressure in the laser tube and may therefore
change in time when the pressure is changing (for instance, by He diffusion
out of a HeNe laser tube).

By placing a thin Cs vapour cell inside the resonator of an external cavity
diode laser, the laser can be readily stabilized onto the Lamb dip of the Cs
resonance line [5.77].

Very high frequency stability can be achieved if the laser frequency is sta-
bilized to the transition frequency of a single ion that is held in an ion trap
under vacuum (see Vol. 2, Sect. 9.2) [5.92].

A simple technique for wavelength stabilization uses the orthogonal polar-
ization of two adjacent axial modes in a HeNe laser [5.81]. The two-mode
output is split by a polarization beam splitter BS1 in the two orthogonally
polarized modes, which are monitored by the photodetectors PD1 and PD2
(Fig. 5.55). The difference amplification delivers a signal that is used to heat
the laser tube, which expands until the two modes have equal intensities
(Fig. 5.55a). They are then kept at the frequencies ν± = ν0 ±Δν/2 = ν0 ±
c/(4nd). Only one of the modes is transmitted to the experiment.

So far we have only considered the stability of the laser resonator itself. In
the previous section we saw that wavelength-selecting elements inside the res-
onator are necessary for single-mode operation to be achieved, and that their
stability and the influence of their thermal drifts on the laser wavelength must
also be considered. We illustrate this with the example of single-mode selec-
tion by a tilted intracavity etalon. If the transmission peak of the etalon is
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Fig. 5.55a,b. Schematic diagram of a polarization-stabilized HeNe laser: (a) symmetric
cavity modes ν1 and ν2 within the gain profile; (b) experimental setup

shifted by more than one-half of the cavity mode spacing, the total gain be-
comes more favorable for the next cavity mode, and the laser wavelength will
jump to the next mode. This implies that the optical pathlength of the etalon
nt must be kept stable so that the peak transmission drifts by less than c/4d,
which is about 50 MHz for an argon laser. One can use either an air-spaced
etalon with distance holders with very small thermal expansion or a solid
etalon in a temperature-stabilized oven. The air-spaced etalon is simpler but
has the drawback that changes of the air pressure influence the transmission
peak wavelength.

The actual stability obtained for a single-mode laser depends on the laser
system, on the quality of the electronic servo loop, and on the design of the
resonator and mirror mounts. With moderate efforts, a frequency stability of
about 1 MHz can be achieved, while extreme precautions and sophisticated
equipment allow a stability of better than 1 Hz to be achieved for some laser
types [5.82].

A statement about the stability of the laser frequency depends on the av-
eraging time and on the kind of perturbations. For short time periods the

Fig. 5.56a–c. Frequency stability of a single-mode argon laser: (a) unstabilized; (b) sta-
bilized with the arrangement of Fig. 5.52; (c) additional long-term stabilization onto
a molecular transition. Note the different ordinate scales!
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frequency stability is mainly determined by random fluctuations. The best way
to describe short-term frequency fluctuations is the statistical root Allan vari-
ance. For longer time periods (Δt � 1 s), the frequency stability is limited
by predictable and measurable fluctuations, such as thermal drifts and aging
of materials. The stability against short-term fluctuations, of course, becomes
better if the averaging time is increased, while long-term drifts increase with
the sampling time. Figure 5.56 illustrates the stability of a single-mode ar-
gon laser, stabilized with the arrangement of Fig. 5.52. With more expenditure,
a stability of better than 3 kHz has been achieved for this laser [5.83], with
novel techniques even better than 1 Hz (Vol. 2, Sect. 9.7).

The residual frequency fluctuations of a stabilized laser can be represented
in an Allan plot. The Allan variance [5.82, 5.84, 5.86]

σ = 1

ν

(
N∑

i=1

〈
(Δνi −Δνi−1)

2
〉

2(N −1)

)1/2

(5.88)

is comparable to the relative standard deviation. It is determined by meas-
uring at N times ti = t0 + iΔt (i = 0, 1, 2, 3 . . . ) the relative frequency dif-
ference Δνi/νR between two lasers stabilized onto the same reference fre-
quency νR averaged over equal time intervals Δt. Figure 5.57 illustrates the
Allan variance for different frequency reference devices: the He-Ne laser at
λ = 3.39 μm, locked to a vibration–rotation transition of the CH4 molecule,
the hydrogen maser at λ = 21 cm, two cesium clocks operated at the PTB
(Physikalisch-Technische Bundesanstalt) in Braunschweig, Germany, the ru-

Fig. 5.57. Allan variance obtained for different frequency-reference devices [5.84]
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Fig. 5.58. Square-root Allan variance of the beat notes between two lasers Y2 −Y3 (�)
Y2 −Y4 (�) and Y2 −Y1 (•) [5.85]

bidium atomic clock, the clock based on the rf transition of the Hg+-ion in
a trap, and the pulsed hydrogen maser.

In Fig. 5.58 the Allan plot for the frequency stabilities of four Nd:YAG
lasers stabilized onto a transition of the I2 molecule are composed. The dif-
ferent lasers, called Y1 . . . Y4, use different laser powers and beam diameters,
which cause different saturations of the iodine transition.

The best frequency stability in the optical range can be achieved with
the optical frequency-comb technique, which will be discussed in Sect. 14.7
[5.87]. The relative frequency fluctuations go down to Δν/ν0 < 10−15, which
implies an absolute stability of about 0.5 Hz.

Such extremely stable lasers are of great importance in metrology since
they can provide high-quality wavelength or frequency standards with an ac-
curacy approaching or even surpassing that of present-day standards [5.88].
For most applications in high-resolution laser spectroscopy, a frequency stabil-
ity of 100 kHz to 1 MHz is sufficiently good because most spectral linewidths
exceed that value by several orders of magnitude.

For a more complete survey of wavelength stabilization, the reader is re-
ferred to the reviews by Baird and Hanes [5.89], Ikegami [5.90], Hall et al.
[5.91], Bergquist et al. [5.93] and Ohtsu [5.94] and the SPIE volume [5.95].

5.5 Controlled Wavelength Tuning of Single-Mode Lasers

Although fixed-wavelength lasers have proved their importance for many
spectroscopic applications (Vol. 2, Sect. 1.7 and Vol. 2, Chaps. 3, 5, and 8),
it was the development of continuously tunable lasers that really revolution-
ized the whole field of spectroscopy. This is demonstrated by the avalanche
of publications on tunable lasers and their applications (e.g., [5.96]). We shall
therefore treat in this section some basic techniques for controlled tuning of
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single-mode lasers, while Sect. 5.7 gives a survey on tunable coherent sources
developed in various spectral regions.

5.5.1 Continuous Tuning Techniques

Since the laser wavelength λL of a single-mode laser is determined by the
optical path length nd between the resonator mirrors,

qλ = 2nd ,

either the mirror separation d or the refractive index n can be continuously
varied to obtain a corresponding tuning of λL. This can be achieved, for ex-
ample, by a linear voltage ramp U = U0 +at applied to the piezoelement on
which the resonator mirror is mounted, or by a continuous pressure varia-
tion in a tank containing the resonator or parts of it. However, as has been
discussed in Sect. 5.4.3, most lasers need additional wavelength-selecting el-
ements inside the laser resonator to ensure single-mode operation. When the
resonator length is varied, the frequency ν of the oscillating mode is tuned
away from the transmission maximum of these elements (Fig. 5.38). During
this tuning the neighboring resonator mode (which is not yet oscillating) ap-
proaches this transmission maximum and its losses may now become smaller
than those of the oscillating mode. As soon as this mode reaches the thresh-
old, it will start to oscillate and will suppress the former mode because of
mode competition (Sect. 5.3). This means that the single-mode laser will jump
back from the selected resonator mode to that which is next to the trans-
mission peak of the wavelength-selecting element. Therefore the continuous
tuning range is restricted to about half of the free spectral range δν = 1

2 c/t
of the intracavity selecting interferometer with thickness t, if no additional
measures are taken. Similar but smaller mode hops Δν = c/2d occur when
the wavelength-selecting elements are continuously tuned but the resonator
length d is kept constant.

Such discontinuous tuning of the laser wavelength will be sufficient if
the mode hops δν = 1

2 c/d are small compared with the spectral linewidths
under investigation. As illustrated by Fig. 5.59a, which shows part of the
neon spectrum excited in a HeNe gas discharge with a discontinuously tuned
single-mode dye laser, the mode hops are barely seen and the spectral res-
olution is limited by the Doppler width of the neon lines. In sub-Doppler
spectroscopy, however, the mode jumps appear as steps in the line profiles, as
is depicted in Fig. 5.59b, where a single-mode argon laser is tuned with mode
hops through some absorption lines of Na2 molecules in a slightly collimated
molecular beam where the Doppler width is reduced to about 200 MHz.

In order to enlarge the tuning range and to achieve truly continuous tun-
ing, the transmission maxima of the wavelength selectors have to be tuned
synchronously with the tuning of the resonator length. When a tilted etalon
with the thickness t and refractive index n is employed, the transmission max-
imum λm that, according to (5.76), is given by

mλm = 2nt cos θ ,
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Fig. 5.59a,b. Discontinuous tuning of lasers: (a) part of the neon spectrum excited by
a single-mode dye laser in a gas discharge with Doppler-limited resolution, which con-
ceals the cavity mode hops of the laser; (b) excitation of Na2 lines in a weakly collimated
beam by a single-mode argon laser. In both cases the intracavity etalon was continuously
tilted but the cavity length was kept constant

can be continuously tuned by changing the tilting angle θ. In all practical
cases, θ is very small, therefore we can use the approximation cos θ ≈ 1− 1

2θ2.
The wavelength shift Δλ = λ0 −λ is

Δλ = 2nt

m
(1− cos θ) ≈ 1

2
λ0θ

2 , λ0 = λ(θ = 0) . (5.89)

Equation (5.89) reveals that the wavelength shift Δλ is proportional to θ2 but
is independent of the thickness t. Two etalons with different thicknesses t1
and t2 can be mounted on the same tilting device, which may simply be
a lever that is tilted by a micrometer screw driven by a small motor gearbox.
The motor simultaneously drives a potentiometer, which provides a voltage
proprotional to the tilting angle θ. This voltage is electronically squared,
amplified, and fed into the piezoelement of the resonator mirror. With prop-
erly adjusted amplification, one can achieve an exact sychronization of the
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resonator wavelength shift ΔλL = λLΔd/d with the shift Δλl of the etalon
transmission maximum. This can be readily realized with computer control.

Unfortunately, the reflection losses of an etalon increase with increasing
tilting angle θ (Sect. 4.2 and [5.50, 5.97]). This is due to the finite beam ra-
dius w of the laser beam, which prevents a complete overlap of the partial
beams reflected from the front and back surfaces of the etalon. These “walk-
off losses” increases with the square of the tilting angle θ, see (4.64) and
Fig. 4.42.

Example 5.23.
With w = 1 mm, t = 1 cm, n = 1.5, R = 0.4, we obtain for θ = 0.01
(≈ 0.6◦) transmission losses of 13%. The frequency shift is, see (5.89):
Δν = 1

2ν0θ
2 ≈ 30 GHz. For a dye laser with the gain factor G < 1.13 the

tuning range would therefore be smaller than 30 GHz.

For wider tuning ranges interferometers with a variable air gap can be used
at a fixed tilting angle θ (Fig. 5.44a). The thickness t of the interferometer
and with it the transmitted wavelength λm = 2nt cos θ/m can be tuned with
a piezocylinder. This keeps the walk-off losses small. However, the extra two
surfaces have to be antireflection-coated in order to minimize the reflection
losses.

An elegant solution is shown in Fig. 5.44b, where the interferometer is
formed by two prisms with coated backsides and inner Brewster surfaces. The
air gap between these surfaces is very small in order to minimize shifts of the
transmission peaks due to changes of air pressure.

The continuous change of the resonator length d is limited to about
5−10 μm if small piezocylinders are used (5−10 nm/V). A further drawback
of piezoelectric tuning is the hysteresis of the expansion of the piezocylinder
when tuning back and forth. Larger tuning ranges can be obtained by tilting
a plane-parallel glass plate around the Brewster angle inside the laser res-
onator (Fig. 5.60). The additional optical path length through the plate with
refractive index n at an incidence angle α is

s = (n AB − AC) = d

cos β
[n − cos(α−β)] = d

[√
n2 − sin2 α− cos α

]
.

(5.90)

If the plate is tilted by the angle Δα, the optical path length changes by

δs = ds

dα
Δα = d sin α

(
1− cos α√

n2 − sin2 α

)
Δα . (5.91)
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Fig. 5.60. (a) Changing of resonator length by tilting of the Brewster plates inside the
resonator; (b) temperature-compensated reference cavity with tiltable Brewster plates for
wavelength tuning

Example 5.24.
A tilting of the plate with d = 3 mm, n = 1.5 from α = 51◦ to α =
53◦ around the Brewster angle αB = 52◦ yields with Δα = 3 ×10−2 rad
a change δs = 35 μm of the optical pathlength.

The reflection losses per surface from the deviation from Brewster’s
angle are less than 0.01% and are therefore completely negligible.

If the free spectral range of the resonator is δν, the frequency-tuning
range is

Δν = 2(δs/λ)δν ≈ 116 δν at λ = 600 nm . (5.92)

With a piezocylinder with ds/dV = 3 nm/V only a change of Δν = 5δν
can be realized at V = 500 V.

The Brewster plate can be tilted in a controllable way by a galvo-drive
[5.98], where the tilting angle is determined by the strength of the magnetic
field. In order to avoid a translational shift of the laser beam when tilting the
plate, two plates with α = ±αβ can be used (Fig. 5.60b), which are tilted into
opposite directions. This gives twice the frequency shift of (5.91). The fre-
quency stability of the reference interferometer in Fig. 5.60b can be greatly
improved by compensating for the thermal expansion of the quartz distance
holder with the opposite expansion of the mirror holder. With the refractive
indices nQ of quartz and nE of the mirror holder, the condition for exact com-
pensation is:

d

dT
(anQ)− d

dT
(bnE) = 0 .

For illustration Fig. 5.61 shows a Doppler-free spectrum of naphthalene C10H8
recorded together with frequency markers from a stabilized etalon and an I2-
spectrum providing reference lines [5.102].
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Fig. 5.61. Frequency markers from an etalon with n · d = 50 cm, Doppler-limited and
Doppler-free lines of I2 as reference spectrum and a section of the Doppler-free spectrum
of the naphthalene molecule, taken in a cell with about 5 mbar [5.102]

For many applications in high-resolution spectroscopy where the wave-
length λ(t) should be a linear function of the time t, it is desirable that
the fluctuations of the laser wavelength λL around the programmed tunable
value λ(t) are kept as small as possible. This can be achieved by stabilizing λL
to the reference wavelength λR of a stable external FPI (Sect. 5.4), while
this reference wavelength λR is synchronously tuned with the wavelength-
selecting elements of the laser resonator. The synchronization utilizes an
electronic feedback system. A possible realization is shown in Fig. 5.62.
A digital voltage ramp provided by a computer through a digital–analog con-
verter (DAC) activates the galvo-drive and results in a controlled tilting of
the Brewster plates in a temperature-stabilized FPI. The laser wavelength is
locked via a PID feedback control (Sect. 5.4.4) to the slope of the transmis-
sion peak of the reference FPI (Fig. 5.52). The output of the PID control is
split into two parts: the low-frequency part of the feedback is applied to the
galvo-plate in the laser resonator, while the high-frequency part is given to
a piezoelement, which translates one of the resonator mirrors.
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5.5.2 Wavelength Calibration

An essential goal of laser spectroscopy is the accurate determination of en-
ergy levels in atoms or molecules and their splittings due to external fields or
internal couplings. This goal demands the precise knowledge of wavelengths
and distances between spectral lines while the laser is scanned through the
spectrum. There are several techniques for the solution of this problem: part
of the laser beam is sent through a long FPI with mirror separation d, which
is pressure-tight (or evacuated) and temperature stabilized. The equidistant
transmission peaks with distances δν = 1

2 c/(nd) serve as frequency markers
and are monitored simultaneously with the spectral lines (Fig. 5.62).

Most tunable lasers show an optical frequency ν(V ) that deviates to a vary-
ing degree from the linear relation ν = αV +b between laser frequency ν and
input voltage V to the scan electronics. For a visible dye laser the deviations
may reach 100 MHz over a 20-GHz scan. These deviations can be monitored
and corrected for by comparing the measured frequency markers with the lin-
ear expression

ν = ν0 +mc/(2nd) (m = 0, 1, 2, . . . ) .

For absolute wavelength measurements of spectral lines the laser is sta-
bilized onto the center of the line and its wavelength λ is measured with
one of the wavemeters described in Sect. 4.4. For Doppler-free lines (Vol. 2,
Chaps. 2–6), one may reach absolute wavelength determinations with an un-
certainty of smaller than 10−3 cm−1 (=̂ 20 pm at λ = 500 μm).

Fig. 5.62. Schematic diagram of computer-controlled laser spectrometer with frequency
marks provided by two FPI with slightly different free spectral ranges and a lambdameter
for absolute wavelength measurement
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Fig. 5.63. Scheme for wavelength determination according to (5.93c)

Often calibration spectra that are taken simultaneously with the unknown
spectra are used. Examples are the I2 spectrum, which has been published
in the iodine atlas by Gerstenkorn and Luc [5.99] in the range of 14,800
to 20,000 cm−1 or with Doppler-free resolution by H. Kato [5.101]. Fig-
ure 5.61 illustrates this using the example of absorption lines of naphthalene
molecules [5.102]. For wavelengths below 500 nm, thorium lines [5.100]
measured in a hollow cathode by optogalvanic spectroscopy (Vol. 2, Sect. 1.5)
or uranium lines [5.103] can be utilized.

If no wavemeter is available, two FPIs with slightly different mirror sep-
arations d1 and d2 can be used for wavelength determination (Fig. 5.62b).
Assume d1/d2 = p/q equals the ratio of two rather large integers p and q with
no common divisor and both interferometers have a transmission peak at λ1:

m1λ1 = 2d1

m2λ1 = 2d2

}
with

m1

m2
= p/q . (5.93a)

Let us assume that λ1 is known from calibration with a spectral line. When
the laser wavelength is tuned, the next coincidence appears at λ2 = λ1 +Δλ
where

(m1 − p)λ2 = 2d1 and (m2 −q)λ2 = 2d2 . (5.93b)

From (5.93a, 5.93b) we obtain

Δλ

λ1
= p

m1 − p
= q

m2 −q
⇒ λ2 = λ1

m1

m1 − p
= λ1

m2

m2 −q
,

where p and q are known integers that can be counted by the number of
transmission maxima when λ is tuned from λ1 to λ2.

Between these two wavelengths λ1 and λ2 the maximum of a spectral line
with the unknown wavelength λx may appear in a linear wavelength scan at
the distance δx from the position of λ1. Then we obtain from Fig. 5.63

λx = λ1 + δx

δ
Δλ = λ1

(
1+ δx

δ

p

m1 − p

)
. (5.93c)

With the inputs for λ1, p, q, d1, and d2 a computer can readily calculate λx
from the measured value δx .

For a very precise measurement of small spectral invervals between lines
a sideband technique is very useful. In this technique part of the laser beam is
sent through a Pockels cell (Fig. 5.64), which modulates the transmitted inten-
sity and generates sidebands at the frequencies νR = νL ± f . When ν+

R = νL +
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Fig. 5.64a,b. Optical sideband technique for precise tuning of the laser wavelength λ:
(a) experimental setup; (b) stabilization of the sideband νR onto the transmission peak
of the FPI

f is stabilized onto an external FPI, the laser frequency νL = ν+
R − f can be

continuously tuned by varying the modulation frequency f . This method does
not need a tunable interferometer and its accuracy is only limited by the ac-
curacy of measuring the modulation frequency f [5.104a].

5.5.3 Frequency Offset Locking

This controllable shift of a laser frequency νL against a reference fre-
quency νR can be also realized by electronic elements in the stabilization
feedback circuit. This omits the Pockels cell of the previous method. A tun-
able laser is “frequency-offset locked” to a stable reference laser in such
a way that the difference frequency f = νL −νR can be controlled electroni-
cally. This technique has been described by Hall [5.104b] and is used in many
laboratories. More details will be discussed in Vol. 2, Chap. 2.

5.6 Linewidths of Single-Mode Lasers

In the previous sections we have seen that the frequency fluctuations of single-
mode lasers caused by fluctuations of the product nd of the refractive index n
and the resonator length d can be greatly reduced by appropriate stabilization
techniques. The output beam of such a single-mode laser can be regarded for
most applications as a monochromatic wave with a radial Gaussian amplitude
profile, see (5.32).

For some tasks in ultrahigh-resolution spectroscopy, the residual finite
linewidth ΔνL, which may be small but nonzero, still plays an important role
and must therefore be known. Furthermore, the question why there is an ulti-
mate lower limit for the linewidth of a laser is of fundamental interest, since
this leads to basic problems of the nature of electromagnetic waves. Any
fluctuation of amplitude, phase, or frequency of our “monochromatic” wave
results in a finite linewidth, as can be seen from a Fourier analysis of such
a wave (see the analogous discussion in Sects. 3.1, 3.2). Besides the “techni-
cal noise” caused by fluctuations of the product nd, there are essentially three
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noise sources of a fundamental nature, which cannot be eliminated, even by
an ideal stabilization system. These noise sources are, to a different degree,
responsible for the residual linewidth of a single-mode laser.

The first contribution to the noise results from the spontaneous emission
of excited atoms in the upper laser level Ei . The total power Psp of the
fluorescence spontaneously emitted on the transition Ei → Ek is, according
to Sect. 2.3, proportional to the population density Ni , the active mode vol-
ume Vm, and the transition probability Aik, i.e.,

Psp = Ni Vm Aik . (5.94)

This fluorescence is emitted into all modes of the EM field within the spectral
width of the fluorescence line. According to Example 2.1 in Sect. 2.1, there
are about 3×108 modes/cm3 within the Doppler-broadened linewidth ΔνD =
109 Hz at λ = 500 nm. The mean number of fluorescence photons per mode is
therefore small.

Example 5.25.
In a HeNe laser the stationary population density of the upper laser level
is Ni � 1010 cm−3. With Aik = 108 s−1, the number of fluorescence pho-
tons per second is 1018 s−1 cm−3, which are emitted into 3×108 modes.
Into each mode a photon flux φ = 3×109 photons/s is emitted, which cor-
responds to a mean photon density of 〈nph〉 = φ/c ≤ 10−1 in one mode.
This has to be compared with 107 photons per mode due to induced emis-
sion inside the resonator at a laser output power of 1 mW through a mirror
with R = 0.99.

When the laser reaches threshold, the number of photons in the laser mode
increases rapidly by stimulated emission and the narrow laser line grows from
the weak but Doppler-broadened background radiation (Fig. 5.65). Far above
the threshold, the laser intensity is larger than this background by many orders
of magnitude and we may therefore neglect the contribution of spontaneous
emission to the laser linewidth.

Fig. 5.65. Linewidth of a single-
mode laser just above threshold
with Doppler-broadened back-
ground due to spontaneous emis-
sion. Note the logarithmic scale!
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The second contribution to the noise resulting in line broadening is due
to amplitude fluctuations caused by the statistical distribution of the number
of photons in the oscillating mode. At the laser output power P, the average
number of photons that are transmitted per second through the output mir-
ror is n = P/hν . With P = 1 mW and hν = 2 eV (=̂ λ = 600 nm), we obtain
n = 8×1015. If the laser operates far above threshold, the probability p(n)
that n photons are emitted per second is given by the Poisson distribution
[5.14, 5.15]

p(n) = e−n(nn)

n! . (5.95)

The average number n is mainly determined by the pump power Pp
(Sect. 5.1.3). If at a given value of Pp the number of photons increases be-
cause of an amplitude fluctuation of the induced emission, saturation of the
amplifying transition in the active medium reduces the gain and decreases the
field amplitude. Thus saturation provides a self-stabilizing mechanism for am-
plitude fluctuations and keeps the laser field amplitude at a value Es ∼ (n)1/2.

The main contribution to the residual laser linewidth comes from phase
fluctuations. Each photon that is spontaneously emitted into the laser mode
can be amplified by induced emission; this amplified contribution is super-
imposed on the oscillating wave. This does not essentially change the total
amplitude of the wave because these additional photons decrease the gain for
the other photons (by gain saturation) such that the average photon number n
remains constant. However, the phases of these spontaneously initiated pho-
ton avalanches show a random distribution, as does the phase of the total
wave. There is no such stabilizing mechanism for the total phase as there is
for the amplitude. In a polar diagram, the total field amplitude E = A eiϕ can
be described by a vector with the amplitude A, which is restricted to a nar-
row range δA, and a phase angle ϕ that can vary from 0 to 2π (Fig. 5.66).
In the course of time, a phase diffusion ϕ occurs that can be described in
a thermodynamic model by the diffusion coefficient D [5.105, 5.106].

For the spectral distribution of the laser emission in the ideal case in which
all technical fluctuations of nd are totally eliminated, this model yields from
a Fourier transform of the statistically varying phase the Lorentzian line pro-

Fig. 5.66. Polar diagram of the amplitude vec-
tor A of a single-mode laser, for illustration of
phase diffusion
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file

|E(ν)|2 = E2
0

(D/2)2

(ν −ν0)2 + (D/2)2 , with E0 = E(ν0) , (5.96)

with the center frequency ν0, which may be compared with the Lorentzian line
profile of a classical oscillator broadened by phase-perturbing collisions.

The full halfwidth Δν = D of this intensity profile I(ν) ∝ |E(ν)|2 de-
creases with increasing output power because the contributions of the sponta-
neously initiated photon avalanches to the total amplitude and phase become
less and less significant with increasing total amplitude.

Furthermore, the halfwidth Δνc of the resonator resonance must influence
the laser linewidth, because it determines the spectral interval where the gain
exceeds the losses. The smaller the value of Δνc, the smaller is the fraction
of spontaneously emitted photons (which are emitted within the full Doppler
width) with frequencies within the interval Δνc that find enough gain to build
up a photon avalanche. When all these factors are taken into account, one
obtains for the theoretical lower limit ΔνL = D for the laser linewidth the
relation [5.107]

ΔνL = πhνL(Δνc)
2(Nsp + Nth +1)

2PL
, (5.97)

where Nsp is the number of photons spontaneously emitted per second into the
oscillating laser mode, Nth is the number of photons in this mode due to the
thermal radiation field, and PL is the laser output power. At room temperature
in the visible region, Nth � 1 (Fig. 2.7). With Nsp = 1 (at least one sponta-
neous photon starts the induced photon avalanche), we obtain from (5.97) the
famous Schwalow–Townes relation [5.107]

ΔνL = πhνLΔν2
c

PL
. (5.98)

Example 5.26.

(a) For a HeNe laser with νL = 5×1014 Hz, Δνc = 1 MHz, P = 1 mW, we
obtain ΔνL = 1.0×10−3 Hz.

(b) For an argon laser with νL = 6×1014 Hz, Δνc = 3 MHz, P = 1 W, the
theoretical lower limit of the linewidth is ΔνL = 1.1×10−5 Hz.

However, even for lasers with a very sophisticated stabilization system,
the residual uncompensated fluctuations of nd cause frequency fluctuations
that are large compared with this theoretical lower limit. With moderate ef-
forts, laser linewidths of ΔνL = 104−106 Hz have been realized for gas and
dye lasers. With very great effort, laser linewidths of a few Hertz or even
below 1 Hz [5.82, 5.108] can be achieved. However, several proposals have
been made how the theoretical lower limit may be approached more closely
[5.109, 5.110].
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This linewidth should not be confused with the attainable frequency sta-
bility, which means the stability of the center frequency of the line profile.
For dye lasers, stabilities of better than 1 Hz have been achieved, which
means a relative stability Δν/ν ≤ 10−15 [5.82]. For gas lasers, such as the
stabilized HeNe laser or specially designed solid-state lasers, even values of
Δν/ν ≤ 10−16 are possible [5.111, 5.112].

5.7 Tunable Lasers

In this section we discuss experimental realizations of some tunable lasers,
which are of particular relevance for spectroscopic applications. A variety
of tuning methods have been developed for different spectral regions, which
will be illustrated by several examples. While semiconductor lasers, color-
center lasers, and vibronic solid-state lasers are the most widely used tunable
infrared lasers to date, the dye laser in its various modifications and the ti-
tanium:sapphire laser are still by far the most important tunable lasers in the
visible region. Great progress has recently been made in the development of
new types of ultraviolet lasers as well as in the generation of coherent UV
radiation by frequency-doubling or frequency-mixing techniques (Sect. 5.8).
In particular, great experimental progress in optical parametric oscillators has
been made; they are discussed in Sect. 5.8.8 in more detail. Meanwhile, the
whole spectral range from the far infrared to the vacuum ultraviolet can be
covered by a variety of tunable coherent sources. Of great importance for ba-
sic research on highly ionized atoms and for a variety of applications is the
development of X-ray lasers, which is briefly discussed in Sect. 5.7.7.

This section can give only a brief survey of those tunable devices that
have proved to be of particular importance for spectroscopic applications. For
a more detailed discussion of the different techniques, the reader is referred
to the literature cited in the corresponding subsections. A review of tunable
lasers that covers the development up to 1974 has been given in [5.114], while
more recent compilations can be found in [5.96, 5.115]. For a survey on in-
frared spectroscopy with tunable lasers see [5.116–5.118].

5.7.1 Basic Concepts

Tunable coherent light sources can be realized in different ways. One possibil-
ity, which has already been discussed in Sect. 5.5, relies on lasers with a broad
gain profile. Wavelength-selecting elements inside the laser resonator restrict
laser oscillation to a narrow spectral interval, and the laser wavelength may be
continuously tuned across the gain profile by varying the transmission max-
ima of these elements. Dye lasers, color-center lasers, and excimer lasers are
examples of this type of tunable device.

Another possibility of wavelength tuning is based on the shift of en-
ergy levels in the active medium by external perturbations, which cause
a corresponding spectral shift of the gain profile and therefore of the laser
wavelength. This level shift may be effected by an external magnetic field
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Fig. 5.67. Spectral ranges of different tunable coherent sources

(spin-flip Raman laser and Zeeman-tuned gas laser) or by temperature or pres-
sure changes (semiconductor laser).

A third possibility for generating coherent radiation with tunable wave-
length uses the principle of optical frequency mixing, which is discussed in
Sect. 5.8.

The experimental realization of these tunable coherent light sources is,
of course, determined by the spectral range for which they are to be used.
For the particular spectroscopic problem, one has to decide which of the
possibilities summarized above represents the optimum choice. The exper-
imental expenditure depends substantially on the desired tuning range, on
the achievable output power, and, last but not least, on the realized spec-
tral bandwidth Δν. Coherent light sources with bandwidths Δν � 1 MHz to
30 GHz (3×10−5−1 cm−1), which can be continuously tuned over a larger
range, are already commercially available. In the visible region, single-mode
dye lasers are offered with a bandwidth down to about 1 MHz. These lasers
are continuously tunable over a restricted tuning range of about 30 GHz
(1 cm−1). Computer control of the tuning elements allows a successive con-
tinuation of such ranges. In principle, “continuous” scanning of a single-mode
laser over the whole gain profile of the laser medium, using automatic
resetting of all tuning elements at definite points of a scan, is now pos-
sible. Examples are single-mode semiconductor lasers, dye lasers, or vibronic
solid-state lasers.

We briefly discuss the most important tunable coherent sources, arranged
according to their spectral region. Figure 5.67 illustrates the spectral ranges
covered by the different devices.

5.7.2 Semiconductor-Diode Lasers

Many of the most widely used tunable coherent infrared sources use various
semiconductor materials, either directly as the active laser medium (semi-
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Fig. 5.68a,b. Schematic level diagram of a semiconductor diode: (a) unbiased p–n junc-
tion and (b) inversion in the zone around the p–n junction and recombination radiation
when a forward voltage is applied

conductor lasers) or as the nonlinear mixing device (frequency-difference
generation).

The basic principle of semiconductor lasers [5.119–5.123] may be sum-
marized as follows. When an electric current is sent in the forward direction
through a p–n semiconductor diode, the electrons and holes can recombine
within the p–n junction and may emit the recombination energy in the form of
electromagnetic radiation (Fig. 5.68). The linewidth of this spontaneous emis-
sion amounts to several cm−1, and the wavelength is determined by the energy
difference between the energy levels of electrons and holes, which is essen-
tially determined by the band gap. The spectral range of spontaneous emission
can therefore be varied within wide limits (about 0.4−40 μm) by the proper
selection of the semiconductor material and its composition in binary com-
pounds (Fig. 5.69).

Fig. 5.69. (a) Spectral ranges of laser emission for different semiconductor materi-
als [5.121]; (b) dependence of the emission wave number on the composition x of
Pb1−xSnxTe, Se, or S–lead-salt lasers (courtesy of Spectra-Physics)
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Fig. 5.70a,b. Schematic diagram of a diode laser: (a) geometrical structure; (b) concen-
tration of the injection current in order to reach high current densities in the inversion
zone

Above a certain threshold current, determined by the particular semicon-
ductor diode, the radiation field in the junction becomes sufficiently intense
to make the induced-emission rate exceed the spontaneous or radiationless re-
combination processes. The radiation can be amplified by multiple reflections
from the plane end faces of the semiconducting medium and may become
strong enough that induced emission occurs in the p–n junction before other
relaxation processes deactivate the population inversion (Fig. 5.70a).

In order to increase the density of the electric current, one of the electrodes
is formed as a small stripe (Fig. 5.70b). Continuous laser operation at room
temperature has become possible with heterostructure lasers (Fig. 5.71), where
both the electric current and the radiation are spatially confined by utilising
a stack of thin layers with different refractive indices (Fig. 5.71a), which cause
an index-guided electromagnetic wave within a small volume. This enhances
the photon density and therefore the probability of induced emission.

The wavelengths of the laser radiation are determined by the spectral gain
profile and by the eigenresonances of the laser resonator (Sect. 5.3). If the pol-
ished end-faces (separated by d) of a semiconducting medium with refractive
index n are used as resonator mirrors, the free spectral range

δν = c

2nd (1+ (ν/n)dn/dν)
, or δλ = λ2

2nd (1− (λ/n)dn/dλ)
, (5.99)

is very large, because of the short resonator length d. Note that δν depends
not only on d but also on the dispersion dn/dν of the active medium.

Example 5.27.
With d = 0.5 mm, n = 2.5 and (ν/n)dn/dν = 1.5, the free spectral range is
δν = 48 GHz =̂ 1.6 cm−1, or δλ = 0.16 nm at λ = 1 μm.
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Fig. 5.71a–c. Heterostructure diode lasers. (a) Composition of p- and n-doped material
with metal contacts; (b) refractive index profile; (c) laser field amplitude in the different
layers

This illustrates that only a few axial resonator modes fit within the gain
profile, which has a spectral width of several cm−1 (Fig. 5.72a).

For wavelength tuning, all those parameters that determine the energy gap
between the upper and lower laser levels may be varied. A temperature change
produced by an external cooling system or by a current change is most fre-
quently utilized to generate a wavelength shift (Fig. 5.72b). Sometimes an
external magnetic field or a mechanical pressure applied to the semiconductor
is also employed for wavelength tuning. In general, however, no truly contin-
uous tuning over the whole gain profile is possible. After a continuous tuning
over about one wavenumber, mode hops occur because the resonator length is

Fig. 5.72. (a) Axial resonator modes within the spectral gain profile; (b) temperature tun-
ing of the gain maximum; and (c) mode hops of a quasi-continuously tunable cw PbSnTe
diode laser in a helium cryostat. The points correspond to the transmission maxima of
an external Ge etalon with a free spectral range of 1.955 GHz [5.118]
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not altered synchronously with the maximum of the gain profile (Fig. 5.72c).
In the case of temperature tuning this can be seen as follows:

The temperature difference ΔT changes the energy difference Eg = E1 −
E2 between upper and lower levels in the conduction and valence band, and
also the index of refraction by Δn = (dn/dT)ΔT , and the length L of the
cavity by ΔL = (dL/dT)ΔT .

The frequency νc = mc/(2nL) (m: integer) of a cavity mode is then shifted
by

Δνc = ∂νc

∂n

dn

dT
ΔT + ∂νc

∂L

dL

dT
ΔT = −ν

(
1

n

dn

dT
+ 1

L

dL

dT

)
ΔT , (5.100)

while the maximum of the gain profile is shifted by

Δνg = 1

h

∂Eg

∂T
ΔT . (5.101)

Although the first term in (5.100) is much larger than the second, the total
shift Δνc/ΔT amounts to only about 10−20% of the shift Δνg/ΔT .

As soon as the maximum of the gain profile reaches the next resonator
mode, the gain for this mode becomes larger than that of the oscillating one
and the laser frequency jumps to this mode (Fig. 5.72c).

For a realization of continuous tuning over a wider range, it is therefore
necessary to use external resonator mirrors with the distance d that can be
independently controlled. Because of technical reasons this implies, however,
a much larger distance d than the small length L of the diode and therefore
a much smaller free spectral range. To achieve single-mode oscillation, ad-
ditional wavelength-selecting elements, such as optical reflection gratings or
etalons, have to be inserted into the resonator. Furthermore, one end face of
the semiconducting medium must be antireflection coated because the large
reflection coefficient of the uncoated surfaces (with n = 3.5 the reflectivity
becomes 0.3) causes large reflection losses. Such single-mode semiconductor
lasers have been built [5.124–5.126].

An example is presented in Fig. 5.73. The etalon E enforces single-mode
operation (see Sect. 5.4.3). The resonator length is varied by tilting a Brewster
plate and the maximum of the gain profile is synchronously shifted through
a change of the diode current. The laser wavelength is stabilized onto an
external Fabry–Perot interferometer and can be controllably tuned by tilting
a galvo-plate in this external cavity. Tuning ranges up to 100 GHz without
mode hops have been achieved for a GaAlAs laser around 850 nm [5.126].

Another realization of tunable single-mode diode lasers uses a Littrow
grating, which couples part of the laser output back into the gain medium
(Fig. 5.74) [5.127]. When the grating with a groove spacing dg is tilted by an
angle Δα, the wavelength shift is according to (4.21a)

Δλ = (2dg) cos α ·Δα . (5.102)

Tilting of the grating is realized by mounting the grating on a lever of
length L . If the tilting axis A in Fig. 5.74 is chosen correctly, the change
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Fig. 5.73. Tunable single-mode diode laser with external cavity. The etalon allows single-
mode operation and the Brewster plate tunes the optical length of the cavity synchronized
with etalon tilt and gain profile shift [5.126]

Δdc = L · cos α ·Δα of the cavity length dc results in the same wavelength
change Δλ = (Δdc/dc)λ of the cavity modes, as given by (5.102). This gives
the condition dc/L = sin α, which shows that the tilting axis should be lo-
cated at the crossing of the plane through the grating surface and the plane
indicated by the dashed line that intersects the resonator axis at a distance
dc = d1 +n ·d2 from the grating, where n is the refractive index of the diode
(Fig. 5.74b).

Fig. 5.74a,b. Continuously tunable diode laser with Littrow grating: (a) experimental
setup, and (b) geometric condition for the location of the tilting axis for the grating.
The rotation around point R1 compensates only in first order, around R2 in second order
[5.128]
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Fig. 5.75. External-cavity widely tunable single-mode diode laser with Littman resonator

An improved version with a fixed Littman grating configuration and
a tiltable end mirror (Fig. 5.75) allows a wider tuning range up to 500 GHz,
which is only limited by the maximum expansion of the piezo used for tilting
the mirror lever [5.128a]. A novel compact external-cavity diode laser with
a transmission grating (Fig. 5.76 in Littrow configuration allows an extremely
compact mechanical design with a good passive frequency stability [5.128b].

Tilting of the etalon or grating tunes the laser wavelength across the spec-
tral gain profile G(λ), where the maximum G(λm) is determined by the
temperature. A change ΔT of the temperature shifts this maximum λm. Tem-
perature changes are used for coarse tuning, whereas the mechanical tilting
allows fine-tuning of the single-mode laser.

A complete commercial diode laser spectrometer for convenient use in in-
frared spectroscopy is depicted in Fig. 5.77.

Meanwhile tunable diode lasers in the visible region down to below 0.4 μm
are available [5.129].

Besides their applications as tunable light sources, diode lasers are more
and more used as pump lasers for tunable solid-state lasers and optical
parametric amplifiers. Monolithic diode laser arrays can now deliver up to
100 W cw pump powers [5.130].

Fig. 5.76. External-cavity diode laser with transmis-
sion grating
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Fig. 5.77. Schematic diagram of a diode laser spectrometer tunable from 3 to 200 μm with
different diodes (courtesy of Spectra-Physics)

5.7.3 Tunable Solid-State Lasers

The absorption and emission spectra of crystalline or amorphous solids can
be varied within wide spectral ranges by doping them with atomic or molec-
ular ions [5.131–5.133]. The strong interaction of these ions with the host
lattice causes broadenings and shifts of the ionic energy levels. The absorp-
tion spectrum shown in Fig. 5.78b for the example of alexandrite depends on
the polarization direction of the pump light. Optical pumping of excited states
generally leads to many overlapping fluorescence bands terminating on many

Fig. 5.78. (a) Level scheme of a tunable “four-level solid-state vibronic laser”; (b) ab-
sorption spectrum for two different polarization directions of the pump laser; (c) output
power Pout(λ) for the example of the alexandrite laser
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Fig. 5.79a,b. Spectral ranges of fluorescence for Cr3+ ions in different host materials (a)
and different metal ions in MgF2 (b)

higher “vibronic levels” in the electronic ground state, which rapidly relax by
ion–phonon interaction back into the original ground state (Fig. 5.78a). These
lasers are therefore often called vibronic lasers. If the fluorescence bands
overlap sufficiently, the laser wavelength can be continously tuned over the
corresponding spectral gain profile (Fig. 5.78c).

Vibronic solid-state laser materials are, e.g., alexandrite (BeAl2O4 with
Cr3+ ions) titanium–sapphire (Al2O3:Ti+) fluoride crystals doped with tran-
sition metal ions (e.g., MgF2:Co++ or CsCaF3:V2+) [5.115, 5.132–5.135].

The tuning range of vibronic solid-state lasers can be widely varied by
a proper choice of the implanted ions and by selecting different hosts. This
is illustrated in Fig. 5.79a, which shows the spectral ranges of laser-excited
fluorescence of the same Cr3+ ion in different host materials [5.134] while
Fig. 5.79b shows the tuning ranges of laser materials where different metal
ions are doped in a MgF2 crystal.

Table 5.3 compiles the operational modes and tuning ranges of different
tunable vibronic lasers. A particularly efficient cw vibronic laser is the emer-
ald laser (Be3Al2Si6O18:Cr3+). When pumped by a 3.6-W krypton laser at
λp = 641 nm, it reaches an output power of up to 1.6 W and can be tuned
between 720 and 842 nm [5.137]. The slope efficiency dPout/dPin reaches
64%! The erbium:YAG laser, tunable around λ = 2.8 μm, has found a wide
application range in medical physics.

A very important vibronic laser is the titanium:sapphire (Ti:sapphire) laser,
which has a large tuning range between 670 nm and 1100 nm when pumped
by an argon laser. The effective tuning range is limited by the reflectivity
curve of the resonator mirrors, and for an optimum output power over the
whole spectral range three different sets of mirrors are used. For spectral
ranges with λ > 700 nm, the Ti:sapphire laser is superior to the dye laser
(Sect. 5.7.4) because it has higher output power, better frequency stability and
a smaller linewidth. The experimental setup of a titanium-sapphire laser is
depicted in Fig. 5.80.
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Table 5.3. Characteristic data of some tunable solid-state lasers

Laser Composition Tuning Operation Pump
range temperature
[nm] [K]

Ti:sapphire Al2O3:Ti3+ 670−1100 300 Ar laser
Alexandrite BeAl2O4:Cr3+ 710−820 300−600 Flashlamp

720−842 300 Kr laser
Emerald Be3Al2(SiO3)6:Cr3+ 660−842 300 Kr+ laser
Olivine Mg2SiO4:Cr4+ 1160−1350 300 YAG laser
Flouride SrAlF5:Cr3+ 825−1010 300 Kr laser

laser KZnF3:Cr3+ 1650−2070 77 cw Nd:YAG laser
Magnesium Ni:MgF2 1600−1740 77 YAG laser

fluoride
F+

2 F-center NaCl/F+
2 1400−1750 77 cw Nd:YAG laser

Holmium laser Ho:YLF 2000−2100 300 Flashlamp
Erbium laser Er:YAG 2900−2950 300 Flashlamp
Erbium laser Er:YLF 2720−2840 300 diode laser
Thulium laser Tm:YAG 1870−2160 300 diode laser

Fig. 5.80. Experimental setup of a Ti:sapphire laser (courtesy of Schwartz Electro-Optics)

The different vibronic solid-state lasers cover the red and near-infrared
spectral range from 0.65 to 2.5 μm (Fig. 5.81). Most of them can run at room
temperature in a pulsed mode, some of them also in cw operation.

The future importance of these lasers is derived from the fact that many
of them may be pumped by diode laser arrays. This has already been demon-
strated for Nd:YAG and alexandrite lasers, where very high total energy
conversion efficiencies were achieved. For the diode laser-pumped Nd:YAG
laser, values of η = 0.3 for the ratio of laser output power to electrical input
power have been reported (30% plug-in efficiency) [5.138].
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Fig. 5.81. Tuning ranges of some vibronic solid-state lasers

Intracavity frequency doubling of these lasers (Sect. 5.8) covers the visible
and near-ultraviolet range [5.139]. Although dye lasers are still the most im-
portant tunable lasers in the visible range, these compact and handy solid-state
devices present attractive alternatives and have started to replace dye lasers for
many applications.

For more details about tunable solid-state lasers and their pumping by
high-power diode lasers, the reader is referred to [5.115, 5.140–5.143].

5.7.4 Color-Center Lasers

Color centers in alkali halide crystals are based on a halide ion vacancy in the
crystal lattice of rock-salt structure (Fig. 5.82). If a single electron is trapped
at such a vacancy, its energy levels result in new absorption lines in the visi-
ble spectrum, broadened to bands by the interaction with phonons. Since these
visible absorption bands, which are caused by the trapped electrons and which
are absent in the spectrum of the ideal crystal lattice, make the crystal ap-
pear colored, these imperfections in the lattice are called F-centers (from the
German word “Farbe” for color) [5.144]. These F-centers have very small
oscillator strengths for electronic transitions, therefore they are not suited as
active laser materials.

Fig. 5.82a–e. Color centers in alkali
halides: (a) F-center; (b) FA-center;
(c) FB-center; (d) F2-center; and (e) F+

2 -
center
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Fig. 5.83. Structural change and level dia-
gram of optical pumping, relaxation, and
lasing of a FA(II)-center

If one of the six positive metal ions that immediately surround the vacancy
is foreign (e.g., a Na+ ion in a KCl crystal, Fig. 5.82b), the F-center is speci-
fied as an FA-center [5.145], while FB-centers are surrounded by two foreign
ions (Fig. 5.82c). A pair of two adjacent F-centers along the (110) axis of the
crystal is called an F2-center (Fig. 5.82d). If one electron is taken away from
an F2-center, an F+

2 -center is created (Fig. 5.82e).
The FA- and FB-centers can be further classified into two categories ac-

cording to their relaxation behavior following optical excitation. While centers
of type I retain the single vacancy and behave in this respect like ordinary
F-centers, the type-II centers relax to a double-well configuration (Fig. 5.83)
with energy levels completely different from the unrelaxed counterpart. The
oscillator strength for an electric-dipole transition between upper level |k〉 and
lower level |i〉 in the relaxed double-well configuration is quite large. The re-
laxation times TR1 and TR2 for the transitions to the upper level |k〉 and from
the lower level |i〉 back to the initial configuration are below 10−12 s. The
lower level |i〉 is therefore nearly empty, which also allows sufficient inver-
sion for cw laser operation. All these facts make the FA- and FB-type-II color
centers – or, in shorthand, FA(II) and FB(II) – very suitable for tunable laser
action [5.146–5.148].

The quantum efficiency η of FA(II)-center luminescence decreases with in-
creasing temperature. For a KCl:Li crystal, for example, η amounts to 40%
at liquid nitrogen temperatures (77 K) and approaches zero at room temper-
ature (300 K). This implies that most color-center lasers must be operated at
low temperatures, generally at 77 K. However, recently cw-operation has been
observed at room temperature for diode-laser-pumped LiF:F2-colour center
lasers [5.148].

Two possible experimental arrangements of color-center lasers are shown
schematically in Fig. 5.84. The folded astigmatically compensated three-
mirror cavity design is identical to that of cw dye lasers of the Kogelnik type
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Fig. 5.84a,b. Two possible resonator designs for cw color-center lasers: (a) folded linear
resonator with astigmatic compensation; and (b) ring resonator with optical diode for en-
forcing only one direction of the traveling laser wave and tuning elements (birefringent
filter and etalon) [5.151]

[5.149] (Sect. 5.7.5). A collinear pump geometry allows optimum overlap be-
tween the pump beam and the waist of the fundamental resonator mode in
the crystal. The mode-matching parameter (i.e., the ratio of pump-beam waist
to resonator-mode waist) can be chosen by appropriate mirror curvatures. The
optical density of the active medium, which depends on the preparation of the
FA centers [5.146], has to be carefully adjusted to achieve optimum absorp-
tion of the pump wavelength. The crystal is mounted on a cold finger cooled
with liquid nitrogen in order to achieve a high quantum efficiency η.

Coarse wavelength tuning can be accomplished by turning mirror M3 of
the resonator with an intracavity dispersing sapphire Brewster prism. Because
of the homogeneous broadening of the gain profile, single-mode operation
would be expected without any further selecting element (Sect. 5.3). This is,
in fact, observed except that neighboring spatial hole-burning modes appear,
which are separated from the main mode by

Δν = c

4a
,

where a is the distance between the end mirror M1 and the crystal (Sect. 5.3).
With one Fabry–Perot etalon of 5-mm thickness and a reflectivity of 60−80%,
stable single-mode operation without other spatial hole-burning modes can be
achieved [5.150]. With a careful design of the low-loss optical components
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inside the cavity (made, e.g., of sapphire or of CaF2), single-mode powers
up to 75% of the multimode output can be reached, since the gain profile is
homogeneous.

Spatial hole burning can be avoided in the ring resonator (Fig. 5.84b). This
facilitates stable single-mode operation and yields higher output powers. For
example, a NaCl:OH color-center laser with a ring resonator yields 1.6 W
output power at λ = 1.55 μm when pumped by 6 W of a cw YAG laser at
λ = 1.065 μm [5.151].

When an FA(II)- or F+
2 -color-center laser is pumped by a linearly polar-

ized cw YAG laser, the output power degrades within a few minutes to a few
percent of its initial value. The reason for this is as follows: many of the laser-
active color centers possess a symmetry axis, for example, the (110) direction.
Two-photon absorption of pump photons brings the system into an excited
state of another configuration. Fluorescence releases the excited centers back
into a ground state that, however, differs in its orientation from the absorbing
state and therefore does not absorb the linearly polarized pump wave. This op-
tical pumping process with changing orientation leads to a gradual bleaching
of the original ground-state population, which could absorb the pump light.
This orientation bleaching can be avoided when the crystal is irradiated dur-
ing laser operation by the light of a mercury lamp or an argon laser, which
“repumps” the centers with “wrong” orientation back into the initial ground
state [5.147].

With different color-center crystals the total spectral range covered by ex-
isting color-center lasers extends from 0.65−3.4 μm. The luminescence bands
of some color-center alkali halide crystals are exhibited in Fig. 5.85. Typical
characteristics of some commonly used color-center lasers are compiled in
Table 5.3 and are compared with some vibronic solid-state lasers. Recently
room-temperature color-center lasers have been realized which are pumped by
diode lasers [5.148].

The linewidth Δν of a single-mode color-center laser is mainly determined
by fluctuations of the optical path length in the cavity (Sect. 5.4). Besides the
contribution Δνm caused by mechanical instabilities of the resonator, tem-
perature fluctuations in the crystal, caused by pump power variations or by
temperature variations of the cooling system, further increase the linewidth by
adding contributions Δνp and Δνt. Since all three contributions are indepen-

Fig. 5.85. Spectral ranges of
emission bands for different
color-center crystals
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dent, we obtain for the total frequency fluctuations

Δν =
√

Δν2
m +Δν2

p +Δν2
t . (5.103)

The linewidth of the unstabilized single-mode laser has been measured to be
smaller than 260 kHz, which was the resolution limit of the measuring system
[5.150]. An estimated value for the overall linewidth Δν is 25 kHz [5.152].
This extremely small linewidth is ideally suited to perform high-resolution
Doppler-free spectroscopy (Vol. 2, Chaps. 2–5).

More examples of color-center lasers in different spectral ranges are
given in [5.153–5.155]. Good surveys on color-center lasers can be found in
[5.147, 5.155] and, in particular, in [5.96], Vol. 2, Chap. 1. All these lasers,
which provide tunable sources with narrow bandwidths, have serious compe-
tition from cw optical parametric oscillators (see Sect. 5.8.8), which are now
available within the tuning range 0.4−4 μm.

5.7.5 Dye Lasers

Although tunable solid-state lasers and optical parametric oscillators are more
and more competitive, dye lasers in their various modifications in the visible
and UV range are still the most widely used types of tunable lasers. Dye lasers
were invented independently by P. Sorokin and F.P. Schäfer in 1966 [5.156].
Their active media are organic dye molecules solved in liquids. They display
strong broadband fluorescence spectra under excitation by visible or UV light.
With different dyes, the overall spectral range where cw or pulsed laser opera-
tion has been achieved extends from 300 nm to 1.2 μm (Fig. 5.86). Combined
with frequency-doubling or mixing techniques (Sect. 5.8), the range of tun-
able devices where dye lasers are involved ranges from the VUV at 100 nm
to the infrared at about 4 μm. In this section we briefly summarize the basic
physical background and the most important experimental realizations of dye
lasers used in high-resolution spectroscopy. For a more extensive treatment the
reader is referred to the laser literature [5.1, 5.8, 5.157, 5.158].

When dye molecules in a liquid solvent are irradiated with visible or ultra-
violet light, higher vibrational levels of the first excited singlet state S1 are
populated by optical pumping from thermally populated rovibronic levels in
the S0 ground state (Fig. 5.87). Induced by collisions with solvent molecules,
the excited dye molecules undergo very fast radiationless transitions into the
lowest vibrational level v0 of S1 with relaxation times of 10−11 to 10−12 s.
This level is depopulated either by spontaneous emission into the different
rovibronic levels of S0, or by radiationless transitions into a lower triplet
state T1 (intersystem crossing). Since the levels populated by optical pump-
ing are generally above v0 and since many fluorescence transitions terminate
at higher rovibronic levels of S0, the fluorescence spectrum of a dye molecule
is redshifted against its absorption spectrum. This is shown in Fig. 5.87b for
rhodamine 6G (Fig. 5.87c) the most widely used laser dye.

Because of the strong interaction of dye molecules with the solvent, the
closely spaced rovibronic levels are collision broadened to such an extent
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Fig. 5.86a,b. Spectral gain profiles of different laser dyes, illustrated by the output power
of pulsed lasers (a) and cw dye lasers (b) (Lambda Physik and Spectra-Physics informa-
tion sheets)

that the different fluorescence lines completely overlap. The absorption and
fluorescence spectra therefore consist of a broad continuum, which is homo-
geneously broadened (Sect. 3.3).

At sufficiently high pump intensity, population inversion may be achieved
between the level v0 in S1 and higher rovibronic levels vk in S0, which have
a negligible population at room temperature, due to the small Boltzmann fac-
tor exp[−E(vk)/kT ]. As soon as the gain on the transition v0(S1) → vk(S0)
exceeds the total losses, laser oscillation starts. The lower level vk(S0), which
now becomes populated by stimulated emission, is depleted very rapidly by
collisions with the solvent molecules. The whole pumping cycle can therefore
be described by a four-level system.
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Fig. 5.87. (a) Schematic energy level scheme and pumping cycle in dye molecules; (b) ab-
sorption and fluorescence spectrum of rhodamine 6G dissolved in ethanol; (c) structure
of rhodamone 6G; (d) triplet absorption

According to Sect. 5.2, the spectral gain profile G(ν) is determined by the
population difference N(v0)− N(vk), the absorption cross section σ0k(ν) at the
frequency ν = E(ν0)− E(νk)/h, and the length L of the active medium. The
net gain coefficient at the frequency ν is therefore

−2α(ν)L = +2L[N(v0)− N(vk)]
∫

σ0k(ν −ν′)dν′ −γ(ν) ,

where γ(ν) is the total losses per round-trip, which may depend on the fre-
quency ν.

The spectral profile of σ(ν) is essentially determined by the Franck–
Condon factors for the different transitions (v0 → vk). The total losses are
determined by resonator losses (mirror transmission and absorption in optical
components) and by absorption losses in the active dye medium. The latter
are mainly caused by two effects:
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(a) The intersystem crossing transitions S1 → T1 not only diminish the pop-
ulation N(v0) and therefore the attainable inversion, but they also lead
to an increased population N(T1) of the triplet state. The triplet absorp-
tion spectrum due to the transitions T1 → Tm into higher triplet states Tm
partly overlaps with the singlet fluorescence spectrum (Fig. 5.87d). This
results in additional absorption losses N(T1)αT(ν)L for the dye laser ra-
diation. Because of the long lifetimes of molecules in this lowest triplet
state, which can only relax into the S0 ground state by slow phospho-
rescence or by collisional deactivation, the population density N(T1) may
become undesirably large. One therefore has to take care that these triplet
molecules are removed from the active zone as quickly as possible. This
may be accomplished by mixing triplet-quenching additives to the dye
solution. These are molecules that quench the triplet population effec-
tively by spin-exchange collisions enhancing the intersystem crossing rate
T1 → S0. Examples are O2 or cyclo-octotetraene (COT). Another solution
of the triplet problem is mechanical quenching, used in cw dye lasers. This
means that the triplet molecules are transported very rapidly through the
active zone. The transit time should be much smaller than the triplet life-
time. This is achieved, e.g., by fast-flowing free jets, where the molecules
pass the active zone in the focus of the pump laser in about 10−6 s.

(b) For many dye molecules the absorption spectra S1 → Sm, corresponding
to transitions from the optically pumped singlet state S1 to still higher
states Sm, partly overlap with the gain profile of the laser transition
S1 → S0. These inevitable losses often restrict the spectral range where the
net gain is larger than the losses [5.157].

The essential characteristic of dye lasers is their broad homogeneous gain
profile. Under ideal experimental conditions, homogeneous broadening allows
all excited dye molecules to contribute to the gain at a single frequency.
This implies that under single-mode operation the output power should not be
much lower than the multimode power (Sect. 5.3), provided that the selecting
intracavity elements do not introduce large additional losses.

The experimental realizations of dye lasers employ either flashlamps,
pulsed lasers, or cw lasers as pumping sources. Recently, several experiments
on pumping of dye molecules in the gas phase by high-energy electrons have
been reported [5.159–5.161].

We now present the most important types of dye lasers in practical use for
high-resolution spectroscopy.

a) Flashlamp-Pumped Dye Lasers

Flashlamp-pumped dye lasers [5.162, 5.163] have the advantage that they do
not need expensive pump lasers. Figure 5.88 displays two commonly used
pumping arrangements. The linear flashlamp, which is filled with xenon, is
placed along one of the focal lines of a cylindric reflector with elliptical cross
section. The liquid dye solution flowing through a glass tube in the second
focal line is pumped by the focused light of the flashlamp. The useful max-
imum pumping time is again limited by the triplet conversion rate. By using
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Fig. 5.88a–c. Two possible pumping designs for flashlamp-pumped dye lasers: (a) el-
liptical reflector geometry for pumping of a flowing dye solution by one linear xenon
flashlamp; (b) side view showing the cylindrical mirror with elliptical cross-section with
flashlamp and dye cell in the focal lines; (c) arrangement of four flashlamps for higher
pump powers [5.165]

additives as triplet quenchers, the triplet absorption is greatly reduced and
long pulse emission has been obtained. Low-inductance pulsed power supplies
have been designed to achieve short flashlamp pulses below 1 μs. A pulse-
forming network of several capacitors is superior to the single energy storage
capacitor because it matches the circuit impedance to that of the lamps, there-
fore a constant flashlight intensity over a period of 60−70 μs can be achieved
[5.164]. With two linear flashlamps in a double-elliptical reflector, a reliable
rhodamine 6G dye laser with 60-μs pulse duration, and a repetition rate up
to 100 Hz, an average power of 4 W has been demonstrated. With the pump-
ing geometry of Fig. 5.88b, which takes advantage of four linear flashlamps,
a very high collection efficiency for the pump light is achieved. The light rays
parallel to the plane of the figure are collected into an angle of about 85◦
by the rear reflector, the aplanatic lens directly in front of the flashlamp, the
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condenser lens, and the cylindrical mirrors. An average laser output power of
100 W is possible with this design [5.165].

Similar to the laser-pumped dye lasers, reduction of the linewidth and
wavelength tuning can be accomplished by prisms, gratings, interference fil-
ters [5.166], Lyot filters [5.167], and interferometers [5.168, 5.169].

One drawback of flashlamp-pumped dye lasers is the bad optical quality
of the dye solution during the pumping process. Local variations of the re-
fractive index due to schlieren in the flowing liquid, and temperature gradients
due to the nonuniform absorption of the pump light deteriorate the optical ho-
mogeneity. The frequency jitter of narrow-band flashlamp-pumped dye lasers
is therefore generally larger than the linewidth obtained in a single shot and
they are mainly used in multimode operation. However, with three FPI inside
the laser cavity, single-mode operation of a flashlamp-pumped dye laser has
been reported [5.170]. The linewidth achieved was 4 MHz, stable to within
12 MHz. A better and more reliable solution for achieving single-mode op-
eration is injection seeding. If a few milliwatts of narrow-band radiation from
a single-mode cw dye laser is injected into the resonator of the flashlamp-
pumped dye laser, the threshold is reached earlier for the injected wavelength
than for the others. Due to the homogeneous gain profile, most of the induced
emission power will then be concentrated at the injected wavelength [5.171].

A convenient tuning method of flashlamp-pumped dye lasers is based
on intracavity electro-optically tunable Lyot filters (Sect. 4.2), which have
the advantage that the laser wavelength can be tuned in a short time over
a large spectral range [5.172, 5.173]. This is of particular importance for the
spectroscopy of fast transient species, such as radicals formed in intermedi-
ate stages of chemical reactions. A single-element electro-optical birefringent
filter can be used to tune a flashlamp-pumped dye laser across the entire
dye emission band. With an electro-optically tunable Lyot filter (Sect. 4.2.11)
in combination with a grating a spectral bandwidth of below 10−3 nm was
achieved even without injection seeding [5.167].

b) Pulsed Laser-Pumped Dye Lasers

The first dye laser, developed independently by Schäfer [5.174] and Sorokin
[5.175] in 1966, was pumped by a ruby laser. In the early days of dye
laser development, giant-pulse ruby lasers, frequency-doubled Nd:glass lasers,
and nitrogen lasers were the main pumping sources. All these lasers have
sufficiently short pulse durations Tp, which are shorter than the intersystem
crossing time constant TIC(S1 → T1).

The short wavelength λ = 337 nm of the nitrogen laser permits pumping
of dyes with fluorescence spectra from the near UV up to the near infrared.
The high pump power available from this laser source allows sufficient inver-
sion, even in dyes with lower quantum efficiency [5.176–5.180]. At present
the most important dye laser pumps are the excimer laser [5.181, 5.182],
the frequency-doubled or -tripled output of high-power Nd:YAG or Nd:glass
lasers [5.183, 5.184], or copper-vapor lasers [5.185].
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Fig. 5.89. Hansch-type dye laser with transverse pumping and beam expander [5.177].
The wavelength is tuned by turning the Littrow grating. Light with a different wavelength
λD +Δλ is diffracted out of the resonator

Various pumping geometries and resonator designs have been proposed or
demonstrated [5.157]. In transverse pumping (Fig. 5.89), the pump laser beam
is focused by a cylindrical lens into the dye cell. Since the absorption coeffi-
cient for the pump radiation is large, the pump beam is strongly attenuated
and the maximum inversion in the dye cell is reached in a thin layer di-
rectly behind the entrance window along the focal line of the cylindrical lens.
This geometrical restriction to a small gain zone gives rise to large diffraction
losses and beam divergence. This divergent beam is converted by a telescope
of two lenses into a parallel beam with enlarged diameter and is then reflected
by a Littrow grating, which acts as wavelength selector (Hänsch-type arrange-
ment) [5.177].

In longitudinal pumping schemes (Fig. 5.90), the pump beam enters the
dye laser resonator at a small angle with respect to the resonator axis or
collinear through one of the mirrors, which are transparent for the pump
wavelength. This arrangement avoids the drawback of nonuniform pumping,
present in the transverse pumping scheme. However, it needs a good beam
quality of the pump laser and is therefore not suitable for excimer lasers
as pump sources, but is used more and more frequently for pumping with
frequency-doubled Nd:YAG lasers [5.183].

If wavelength selection is performed with a grating, it is preferable to ex-
pand the dye laser beam for two reasons.

(a) The resolving power of a grating is proportional to the product Nm of the
number N of illuminated grooves times the diffraction order m (Sect. 4.1).
The more grooves that are hit by the laser beam, the better is the spectral
resolution and the smaller is the resulting laser linewidth.

(b) The power density without beam expansion might be high enough to dam-
age the grating surface.

The enlargement of the beam can be accomplished either with a beam-
expanding telescope (Hänsch-type laser [5.177, 5.178], Fig. 5.89) or by using
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Fig. 5.90. Possible resonator designs for longitudinal pumping of dye lasers [5.157]

Fig. 5.91. Short dye laser cavity with grazing incidence grating. Wavelength tuning is
accomplished by turning the end mirror, which may also be replaced by a Littrow grating

grazing incidence under an angle of α � 90◦ against the grating normal
(Littman-type laser, Fig. 5.91). The latter arrangement [5.186] allows very
short resonator lengths (below 10 cm). This has the advantage that even for
short pump pulses, the induced dye laser photons can make several transits
through the resonator during the pumping time. A further, very important
advantage is the large spacing δν = 1

2 c/d of the resonator modes, which
allows single-mode operation with only one etalon or even without any
etalon but with a fixed grating position and a turnable mirror M2 (Fig. 5.92)
[5.187, 5.188]. At the wavelength λ the first diffraction order is reflected from
the grazing incidence grating (α ≈ 88−89◦) into the direction β determined by
the grating equation (4.21)

λ = d(sin α+ sin β) � d(1+ sin β) .

For d = 4 ×10−5 cm (2500 lines/mm) and λ = 400 nm → β = 0◦, which
means that the first diffraction order is reflected normal to the grating surface
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Fig. 5.92. Littman laser with grazing incidence
grating and Littrow grating using longitudinal
pumping

Fig. 5.93. (a) Beam expansion by a Brewster prism; (b) Littman laser with beam-expand-
ing prisms and grazing incidence grating

onto mirror M2. With the arrangement in Fig. 5.92, a single-shot linewidth
of less than 300 MHz and a time-averaged linewidth of 750 MHz have been
achieved. Wavelength tuning is accomplished by tilting the mirror M2.

For reliable single-mode operation of the Littman laser longitudinal pump-
ing is better than transverse pumping, because the dye cell is shorter and
inhomogenities of the refractive index caused by the pump process are less
severe [5.189].

The reflectivity of the grating is very low at grazing incidence and the
round-trip losses are therefore high. Using Brewster prisms for preexpansion
of the laser beam (Fig. 5.93), the angle of incidence α at the grazing incidence
grating can be decreased from 89◦ to 85−80◦ achieving the same total expan-
sion factor. This reduces the reflection losses considerably [5.190, 5.191].

Example 5.28.
Assume a reflectivity of R(α = 89◦) = 0.05 into the wanted first order at
β = 0◦. The attenuation factor per round-trip is then (0.05)2 � 2.5×10−3!
The gain factor per round-trip must be larger than 4×102 in order to reach
threshold. With preexpanding prisms and an angle α = 85◦, the reflectivity
of the grating increases to R(α = 85◦) = 0.25, which yields the attenuation
factor 0.06. Threshold is now reached if the gain factor exceeds 16.
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Fig. 5.94. Oscillator and preamplifier of a laser-pumped dye laser with beam expander and
grating. The same dye cell serves as gain medium for oscillator and amplifier [courtesy
of Lambda Physik, Göttingen]

In order to increase the laser power the output beam of the dye laser os-
cillator is sent through one or more amplifying dye cells, which are pumped
by the same pump laser (Fig. 5.94).

A serious problem in all laser-pumped dye lasers is the spontaneous back-
ground, emitted from the pumped volume of the oscillator and the amplifier
cells. This spontaneous emission is amplified when passing through the gain
medium. It represents a perturbing, spectrally broad background of the nar-
row laser emission. This amplified spontaneous emission (ASE) can partly be
suppressed by prisms and apertures between the different amplifying cells. An
elegant solution is illustrated in Fig. 5.94. The end face of a prism expander
serves as beam splitter. Part of the laser beam is refracted, expanded, and
spectrally narrowed by the Littrow grating and an etalon [5.181] before it is
sent back into the oscillator traversing the path 3–4–5–4–3. The spectral band-
width of the oscillator is thus narrowed and only a small fraction of the ASE
is coupled back into the oscillator. The partial beam 6 reflected at the prism
end face is sent to the same grating before it passes through another part of
the first dye cell, where it is further amplified (path: 3–6–7–8). Again only
a small fraction of the ASE can reach the narrow gain region along the focal
lines of the cylindrical lenses used for pumping the amplifiers. The newly de-
veloped “super pure” design shown in Fig. 5.95 further decreases the ASE by
a factor of 10 compared to the former device [5.192].

For high-resolution spectroscopy the bandwidth of the dye laser should be
as small as possible. With two etalons having different free spectral ranges,
single-mode operation of the Hänsch-type laser (Fig. 5.89) can be achieved.
For continuous tuning both etalons and the optical length of the laser res-
onator must be tuned synchronously. This can be realized with computer
control (Sect. 5.4.5)

A simple mechanical solution for wavelength tuning of the dye laser in
Fig. 5.91 without mode hops has been realized by Littman [5.188] for a short
laser cavity (Fig. 5.96). If the turning axis of mirror M2 coincides with the
intersection of the two planes through mirror M2 and the grating surface, the
two conditions for the resonance wavelength (cavity length l1 + l2 = N ·λ/2
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Fig. 5.95. Excimer laser-pumped dye laser with oscillator and two amplifier stages. This
design suppresses effectively the ASE (Lambda Physik FL 3002) (see text)

and the diffracted light must always have vertical incidence on mirror M2) can
be simultaneously fulfilled. In this case we obtain from Fig. 5.96 the relations:

Nλ = 2(l1 + l2) = 2L(sin α+ sin β) , and

λ = d(sin α+ sin β) ⇒ L = Nd/2 . (5.104)

With such a system single-mode operation without etalons has been achieved.
The wave number ν = 1/λ could be tuned over a range of 100 cm−1 without
mode hops.

Fig. 5.96. Continuous mechanical tuning of the dye laser wavelength without mode hops
by tilting mirror M2 around an axis through the intersection of two planes through the
grating surface and the surface of mirror M2
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The spectral bandwidth of a single-mode pulsed laser with pulse dura-
tion ΔT is, in principle, limited by the Fourier limit, that is,

Δν = a/ΔT , (5.105)

where the constant a � 1 depends on the time profile I(t) of the laser pulse.
This limit is, however, generally not reached because the center frequency ν0
of the laser pulse shows a jitter from pulse to pulse, due to fluctuations
and thermal instabilities. This is demonstrated by Fig. 5.97 where the spec-
tral profile of a Littman-type single-mode pulsed laser was measured with
a Fabry–Perot wavemeter for a single shot and compared with the average
over 500 shots. A very stable resonator design and, in particular, tempera-
ture stabilization of the dye liquid, which is heated by absorption of the pump
laser, decreases both the jitter and the drift of the laser wavelength.

A more reliable technique for achieving really Fourier-limited pulses is
based on the amplification of a cw single-mode laser in several pulsed am-
plifier cells. The expenditure for this setup is, however, much larger because
one needs a cw dye laser with a cw pump laser and a pulsed pump laser for
the amplifier cells. Since the Fourier limit Δν = 1/ΔT decreases with increas-
ing pulse width ΔT , copper-vapor lasers with ΔT = 50 ns are optimum for
achieving spectrally narrow and frequency-stable pulses. A further advantage
of copper-vapor lasers is their high repetition frequency up to f = 20 kHz.

Fig. 5.97a–c. Linewidth of a single-mode pulsed laser measured with a Fabry–Perot
wavemeter: (a) experimental setup; (b) single shot; and (c) signal averaged over 500
pulses
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In order to maintain the good beam quality of the cw dye laser during its
amplification by transversely pumped amplifier cells, the spatial distribution
of the inversion density in these cells should be as uniform as possible. Spe-
cial designs (Fig. 5.98) of prismatic cells, where the pump beam traverses the
dye several times after being reflected from the prism end faces, considerably
improves the quality of the amplified laser beam profile.

Fig. 5.98. Transversely pumped pris-
matic amplifier cell (Berthune cell) for
more uniform isotropic pumping. The
laser beam should have a diameter
about four times larger than the bore
for the dye. The partial beam 1 tra-
verses the bore from above, beam 2
from behind, beam 4 from below, and
beam 3 from the front

Example 5.29.
When the output of a stable cw dye laser (Δν � 1 MHz) is amplified
in three amplifier cells, pumped by a copper-vapor laser with a Gaus-
sian time profile I(t) with the halfwidth Δt, Fourier-limited pulses with
Δν � 40 MHz and peak powers of 500 kW can be generated. These pulses
are wavelength tunable with the wavelength of the cw dye laser.

c) Continuous-Wave Dye Lasers

For sub-Doppler spectroscopy, single-mode cw dye lasers represent the most
important laser types besides cw tunable solid-state lasers. Great efforts have
therefore been undertaken in many laboratories to increase the output power,
tuning range, and frequency stability. Various resonator configurations, pump
geometries, and designs of the dye flow system have been successfully tried
to realize optimum dye-laser performance. In this section we can only present
some examples of the numerous arrangements used in high-resolution spec-
troscopy.

Figure 5.99 illustrates three possible resonator configurations. The pump
beam from an argon or krypton laser enters the resonator either collinearly
through the semitransparent mirror M1 and is focused by L1 into the dye
(Fig. 5.99a), or the pump beam and dye laser beam are separated by a prism
(Fig. 5.99b). In both arrangements the dye laser wavelength can be tuned
by tilting the flat end mirror M2. In another commonly used arrangement
(Fig. 5.99c), the pump beam is focused by the spherical mirror Mp into the
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Fig. 5.99a–c. Three possible standing-wave resonator configurations used for cw dye
lasers: (a) collinear pumping geometry; (b) folded astigmatically compensated resonator
of the Kogelnik type [5.149] with a Brewster prism for separation of pump beam and
dye-laser beam; and (c) the pump beam is focused by an extra pump mirror into the dye
jet and is tilted against the resonator axis

dye jet and crosses the dye medium under a small angle against the resonator
axis.

In all these configurations the active zone consists of the focal spot of the
pump laser within the dye solution streaming in a laminar free jet of about
0.5–1-mm thickness, which is formed through a carefully designed polished
nozzle. At flow velocities of 10 m/s the time of flight for the dye molecules
through the focus of the pump laser (about 10 μm) is about 10−6 s. During
this short period the intersystem crossing rate cannot build up a large triplet
concentration, and the triplet losses are therefore small.

For free-running dye jets the viscosity of the liquid solvent must be suf-
ficiently large to ensure the laminar flow necessary for high optical quality
of the gain zone. Most jet-stream dye lasers use ethylene glycol or propy-
lene glycol as solvents. Since these alcohols decrease the quantum efficiency
of several dyes and also do not have optimum thermal properties, the use
of water-based dye solutions with viscosity-raising additives can improve the
power efficiency and frequency stability of jet-stream cw dye lasers [5.193].
Output powers of more than 30 W have been reported for cw dye lasers
[5.194].

In order to achieve a symmetric beam waist profile of the dye laser mode
in the active medium, the astigmatism produced by the spherical folding mir-
ror M3 in the folded cavity design has to be compensated by the plane-parallel
liquid slab of the dye jet, which is tilted under the Brewster angle against the
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resonator axis [5.149]. The folding angle for optimum compensation depends
on the optical thickness of the jet and on the curvature of the folding mirror.

The threshold pump power depends on the size of the pump focus and on
the resonator losses, and varies between 1 mW and several watts. The size of
the pump focus should be adapted to the beam waist in the dye laser res-
onator (mode matching). If it is too small, less dye molecules are pumped
and the maximum output power is smaller. If it is too large, the inversion
for transverse modes exceeds threshold and the dye laser oscillates on several
transverse modes. Under optimum conditions, pump efficiencies (dye laser
output/pump power input) up to η = 35% have been achieved, yielding dye
output powers of 2.8 W for only 8 W pump power.

Coarse wavelength tuning can be accomplished with a birefringent filter
(Lyot filter, see Sect. 4.2.11) that consists of three birefringent plates with
thicknesses d, q1d, q2d (where q1, q2 are integers), placed under the Brewster
angle inside the dye laser resonator (Fig. 5.100). Contrary to the Lyot filter
discussed in Sect. 4.2.11, no polarizers are necessary here because the many
Brewster faces inside the resonator already define the direction of the polar-
ization vector, which lies in the plane of Fig. 5.100.

When the beam passes through the birefringent plate with thickness d un-
der the angle β against the plate-normal, a phase difference Δϕ = (2π/λ)
· (ne −no)Δs with Δs = d/ cos β develops between the ordinary and the ex-
traordinary waves. Only those wavelengths λm can reach oscillation threshold
for which this phase difference is 2mπ (m = 1, 2, 3, ...). In this case, the
plane of polarization of the incident wave has been turned by mπ and the
transmitted wave is again linearly polarized in the same direction as the in-
cident wave. For all other wavelengths the transmitted wave is elliptically
polarized and suffers reflection losses at the Brewster end faces. The trans-
mission curve T(λ) of a three-stage birefringent filter is depicted in Fig. 5.101
for a fixed angle ϑ. The laser will oscillate on the transmission maximum that
is closest to the gain maximum of the dye medium [5.195, 5.196]. Turning the
Lyot filter around the axis in Fig. 5.100 will shift all these maxima.

Fig. 5.100. Birefringent plane-parallel plate as wavelength selector inside the laser res-
onator. For wavelength tuning the plate is turned around an axis parallel to the surface
normal. This changes the angle ϑ against the optical axis and thus the difference ne(ϑ)−
no(ϑ)
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Fig. 5.101. Transmission T(λ) of a birefringent filter with three Brewster plates of KDP,
with plate thickness d1 = 0.34 mm, d2 = 4d1, d3 = 16d1 [5.195]

For single-mode operation additional wavelength-selecting elements have
to be inserted into the resonator (Sect. 5.4.3). In most designs two FPI etalons
with different free spectral ranges are employed [5.197, 5.198]. Continuous
tuning of the single-mode laser demands synchronous control of the cavity
length and the transmission maxima of all selecting elements (Sect. 5.5). Fig-
ure 5.102 shows a commercial version of a single-mode cw dye laser. The
optical path length of the cavity can be conveniently tuned by turning a tilted
plane-parallel glass plate inside the resonator (galvo-plate). If the tilting range
is restricted to a small interval around the Brewster angle, the reflection losses
remain negligible (see Sect. 5.5.1).

Fig. 5.102. Commercial version of a single-mode cw ring dye laser (Spectra-Physics)
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The scanning etalon can be realized by the piezo-tuned prism FPI etalon
in Fig. 5.44 with a free spectral range of about 10 GHz. It can be locked
to the oscillating cavity eigenfrequency by a servo loop: if the transmission
maximum νT of the FPI is slightly modulated by an ac voltage fed to the
piezoelement, the laser intensity will show this modulation with a phase de-
pending on the difference νc − νT between the cavity resonance νc and the
transmission peak νT. This phase-sensitive error signal can be used to keep the
difference νc −νT always zero. If only the prism FPI is tuned synchronously
with the cavity length, tuning ranges of about 30 GHz (=̂ 1 cm−1) can be cov-
ered without mode hops. For larger tuning ranges the second thin etalon and
the Lyot filter must also be tuned synchronously. This demands a more sophis-
ticated servo system, which can, however, be provided by computer control.

A disadvantage of cw dye lasers with standing-wave cavities is spatial hole
burning (Sect. 5.3.3), which impedes single-mode operation and prevents all
of the molecules within the pump region from contributing to laser emission.
This effect can be avoided in ring resonators, where the laser wave propagates
in only one direction (Sect. 5.2.7). Ring lasers therefore show, in principle,
higher output powers and more stable single-mode operation [5.199]. How-
ever, their design and their alignment are more critical than for standing-wave
resonators.

In order to avoid laser waves propagating in both directions through the
ring resonator, losses must be higher for one direction than for the other. This
can be achieved with an optical diode [5.32]. This diode essentially consists
of a birefringent crystal and a Faraday rotator (Fig. 5.20), which turns the
bifringent rotation back to the input polarization for the wave incident in one
direction but increases the rotation for the other direction.

The specific characteristics of a cw ring dye laser regarding output power
and linewidth have been studied in [5.199]. A theoretical treatment of mode
selection in Fabry–Perot-type and in ring resonators can be found in [5.200].
Because of the many optical elements in the ring resonator, the losses are gen-
erally slightly higher than in standing-wave resonators. This causes a higher
threshold. Since more molecules contribute to the gain, the slope efficiency
ηal = dPout/dPin is, however, higher. At higher input powers well above
threshold, the output power of ring lasers is therefore higher (Fig. 5.103).

Fig. 5.103. Comparison of
output powers of ring lasers
(full circles and squares)
and standing wave lasers
(open circles and crosses)
for two different laser dyes
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Table 5.4. Characteristic parameters of some dye lasers pumped by different sources

Pump Tuning Pulse Peak Pulse Repetition Average
range width power energy rate output
[nm] [ns] [W] [mJ] [s−1] [W]

Excimer laser 370−985 10−200 ≤ 107 ≤ 300 20−200 0.1−30
N2 laser 370−1020 1−10 < 105 < 1 < 103 0.01−0.1
Flashlamp 300−800 300−104 102−105 < 5000 1−100 0.1−200
Ar+ laser 350−900 CW CW – CW 0.1−10
Kr+ laser 400−1100 CW CW – 0.1−5
Nd:YAG laser 400−920 10−20 105−107 10−100 10−30 0.1−5
λ/2: 530 nm
λ/3: 355 nm
Copper-vapor 530−890 30−50 � 104−105 ≈ 1 � 104 ≤ 10

laser

The characteristic data of different dye laser types are compiled in
Table 5.4 for “typical” operation conditions in order to give a survey on typi-
cal orders of magnitude for these figures. The tuning ranges depend not only
on the dyes but also on the pump lasers. They are slightly different for pulsed
lasers pumped by excimer lasers from that of cw lasers pumped by argon or
krypton lasers. Meanwhile, frequency-doubled Nd:YAG lasers are used more
and more frequently as pump sources for dye lasers. Many data on dye laser
wavelengths, tuning ranges and possible pump lasers can be found in [5.6].

5.7.6 Excimer Lasers

Excimers (that is, excited dimers) are molecules that are bound in excited
states but are unstable in their electronic ground states. Examples are diatomic
molecules composed of closed-shell atoms with 1S0 ground states, such as the
rare gases, which form stable excited dimers He∗

2, Ar∗2, etc., but have a mainly
repulsive potential in the ground state with a very shallow van der Waals min-
imum (Fig. 5.104). The well depth ε of this minimum is small compared to
the thermal energy kT at room temperature, which prevents the stable for-
mation of ground-state molecules. Mixed excimers such as KF or XeNa can
be formed from combinations of closed-shell/open-shell atoms (for example,
combination of atomic states 1S + 2S, 1S + 2P, 1S + 3P, etc.), which lead to
repulsive ground-state potentials [5.201, 5.202].

These excimers are ideal candidates for forming the active medium of tun-
able lasers since inversion between the pumped upper bound state and the
dissociating lower state is automatically maintained because the lower state
dissociates very rapidly (� 10−12−10−13 s) and the frequently occurring bot-
tleneck caused by a small depletion rate of the lower laser level is prevented.
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Fig. 5.104. Schematic potential energy dia-
gram of an excimer molecule

The output power of excimer lasers mainly depends on the excitation rate of
the upper state.

The tunability range depends on the slope of the repulsive potential and
on the internuclear distances R1 and R2 of the classical turning points in
the excited vibrational levels. The spectral gain profile is determined by the
Franck–Condon factors for bound–free transitions. The corresponding inten-
sity distribution I(ω) of the fluorescence from the upper vibrational levels
shows a modulatory structure (see Fig. 2.16) reflecting the R dependence
|ψvib(R)|2 of the vibrational wave function in these levels [5.203].

The gain of the active medium at the frequency ω = (Ek − Ei)/� is, ac-
cording to (5.2), given by

α(ω) = [Ni − (gi/gk)Nk]σ(ω) , (5.106)

where the absorption cross section σ(ω) is related to the spontaneous transi-
tion probability Aki = 1/τk [5.201] by

ω2∫

ω1

σ(ω)dω = (λ/2)2 Aki = (λ/2)2

τk
. (5.107)

Because of the broad spectral range Δω = ω1 −ω2, the cross section σ(ω)
may be very small in spite of the large overall transition probability indicated
by the short upper-state lifetime τk. Consequently, a high population den-
sity Nk is necessary to achieve sufficient gain. Since the pumping rate Rp has
to compete with the spontaneous transition rate, which is proportional to the
third power of the transition frequency ω, the pumping power Rp�ω at laser
threshold scales at least as the fourth power of the lasing frequency. Short-
wavelength lasers therefore require high pumping powers [5.204, 5.205].
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Pumping sources are provided by high-voltage, high-current electron beam
sources, such as the FEBETRON [5.206] or by fast transverse discharges
[5.207]. The primary step is the excitation of atoms by electron impact. Since
the excitation of the upper excimer states needs collisions between these ex-
cited atoms and ground-state atoms (remember that there are no ground-state
excimer molecules), high atom densities are required to form a sufficient num-
ber N∗ of excimers in the upper state. A typical gas mixture of a XeCl
laser is: Xe: 40 mbar, HCl: 5 mbar, He: 2000−4000 mbar. These high pres-
sures impede a uniform discharge along the whole active zone in the channel.
Preionization by fast electrons or by ultraviolet radiation is required to achieve
a large and uniform density of excimers, and specially formed electrodes are
used [5.208]. Fast switches, such as magnetically confined thyratrons have
been developed, and the inductances of the discharge circuits must be matched
to the discharge time [5.209].

Up to now the rare-gas halide excimers, such as KrF, ArF, or XeCl, form
the active medium of the most advanced UV excimer lasers. Similar to the
nitrogen laser, these rare-gas halide lasers can be pumped by fast transverse
discharges, and lasers of this type are the most common commercial excimer
lasers (Table 5.5).

Inversion is reached by a sufficiently fast and large population increase of
the upper laser level. This is achieved through a chain of different collision
processes that are still not been completely understood for all excimer lasers.
As an example of the complexity of these processes, some possible paths to
inversion in XeCl excimer lasers, which use a mixture of Xe, HCl, and He or
Ne as gas filling, are given by

Xe+ e−
{→ Xe∗ + e− ,

→ Xe+ +2e− ,

Xe∗ +Cl2 → XeCl∗ +Cl ,

Xe∗ +HCl → XeCl∗ +H ,

Xe+ +Cl− +M → XeCl∗ +M . (5.108)

Table 5.5. Characteristic data of some excimer lasers. (Pulse width: 10−200 μs; repetition
frequency: 1−200 s−1, depending on the model; output beam divergence: 2×4 mrad; jitter
of the pulse energy: 3−10; time jitter: 1−10 μs, depending on the model)

Laser medium F2 ArF KrCl KrF XeCl XeF

Wavelength 157 193 222 248 308 357
[nm]
Pulse energy 15 ≤ 500 ≤ 60 ≤ 1000 ≤ 600 500
[mJ]
Pulse repetition 10 20 20 ≤ 300 ≤ 300 ≤ 300
rate [Hz]
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All these formation processes of XeCl∗ occur very rapidly on a time scale of
10−8−10−9 s and have to compete with quenching processes such as

XeCl∗ +He → Xe+Cl+He ,

which diminish the inversion.
The pulse width of most excimer lasers lies within 5−20 ns. Recently,

long-pulse XeCl lasers have been developed, which have pulse widths of T >
300 ns [5.210]. They allow amplification of single-mode cw dye lasers with
Fourier-limited bandwidths of Δν < 2 MHz at peak powers of P> 10 kW. Be-
cause of the large volume of the gain medium, unstable resonators are often
used to match the mode volume to the gain volume (see Sect. 5.2.6).

More details on experimental designs and on the physics of excimer lasers
can be found in [5.202, 5.210–5.212].

5.7.7 Free-Electron Lasers

In recent years a completely novel concept of a tunable laser has been devel-
oped that does not use atoms or molecules as an active medium, but rather
“free” electrons in a specially designed magnetic field. The first free-electron
laser (FEL) was realized by Madey and coworkers [5.213]. A schematic dia-
gram of the FEL is shown in Fig. 5.105. The high-energy relativistic electrons

Fig. 5.105. (a) Schematic arrangement of a free-electron laser; (b) radiation of a dipole
at rest (v = 0) and a moving dipole with v � c; (c) phase-matching condition
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Fig. 5.106. Principle of the free-electron laser [Institute of Nuclear Physics, Darmstadt]

from an accelerator pass along a static, spatially periodic magnetic field B,
which can be realized, for example, by a periodic arrangement of magnets
with alternating directions of the magnetic field perpendicular to the elec-
tron beam propagation or by a doubly-wound helical superconducting magnet
(wiggler) providing a circularly polarized B field (Fig. 5.106).

The basic physics of the FEL and the process in which FEL radiation orig-
inates can be understood in a classical model, following the representation
in [5.214]. Because of the Lorentz force, the electrons passing through the
wiggler undergo periodic oscillations, resulting in the emission of radiation.
For an electron oscillating in the x-direction around a point at rest, the an-
gular distribution of such a dipole radiation is I(θ) = I0 · sin2 θ (Fig. 5.105b).
In contrast, for the relativistic electron with the velocity v � c, it is sharply
peaked in the forward direction (Fig. 5.105b) within a cone of solid angle
θ � (1−v2/c2)1/2. For electrons of energy E = 100 MeV, for instance, θ is
about 2 mrad. This relativistic dipole radiation is the analog to the spontaneous
emission in conventional lasers and can be used to initiate induced emission
in the FEL.

The wavelength λ of the emitted light is determined by the wiggler
period Λw and the following phase-matching condition: assume the oscillating
electron at the position z0 in the wiggler emits radiation of all wavelengths.
However, the light moves faster than the electron (velocity vz) in the z-direc-
tion. After one wiggler period at z1 = z0 +Λw, there will be a time lag

Δt = Λw

(
1

vz
− 1

c

)
,

between the electron and the light emitted at z0. The light emitted by the elec-
tron in z1 will therefore not be in phase with the light emitted in z0 unless
the time difference Δt = m · T = m ·λ/c is an integer multiple of the light
period T . Phase matching can be therefore only be achieved for certain wave-
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lengths

λm = ΔL

m
= Λw

m

(
c

vz
−1

)
(m = 1, 2, 3, ...) . (5.109)

Only for these wavelengths λm are the contributions emitted by the electron at
different locations in phase and therefore interfere constructively. The lowest
harmonic λ1 (m = 1) of the emitted light has therefore the wavelength λ1 =
Λw(c/vz −1) and can be tuned with the velocity vz of the electron.

Example 5.30.
With Λw = 3 cm, Eel = 10 MeV → vz � 0.999c, we obtain λ = 40 μm for
m = 1 and λ = 13 μm for m = 3, which lies in the mid-infrared. For Eel =
100 MeV ⇒ vz = (1−1.25)×10−5c and the phase-matching wavelength has
decreased to λ1 = 1.25×10−5Λw = 375 nm, which is in the UV range.

When the field amplitude of the radiation emitted by a single electron is E j ,
the total intensity radiated by N independent electrons is

Itot =
∣∣∣∣∣∣

N∑

j=1

E j eiϕ j

∣∣∣∣∣∣

2

, (5.110a)

where the phases ϕ j of the different contributions may be randomly dis-
tributed.

If somehow all electrons emit with the same phase, the total intensity for
the case of equal amplitudes E j = E0 becomes

Icoherent
tot =

∣∣∣
∑

E j eiϕ j

∣∣∣
2 ∝ |NE0|2 ∝ N2 Iel , (5.110b)

when Iel ∝ E2
0 is the intensity emitted by a single electron. This coherent

emission with equal phases therefore yields N times the intensity of the in-
coherent emission with random phases. It is realized in the FEL.

In order to understand how this can be achieved, we first consider a laser
beam with the correct wavelength λm that passes along the axis of the wig-
gler. Electrons that move at the critical velocity vc = cΛw/(Λw +mλm) are in
phase with the laser wave and can be induced to emit a photon that amplifies
the laser wave (stimulated Compton scattering). The electron loses the emitted
radiation energy and becomes slower. All electrons that are a little bit faster
than vc can lose energy by adding radiation to the laser wave without coming
out of phase as long as they are not slower than vc. On the other hand, elec-
trons that are slower than vc can absorb photons, which makes them faster
until they reach the velocity vc.

This means that the faster electrons contribute to the amplification of the
incident laser wave, whereas the slower electrons attenuate it. This stimulated
emission of the faster electrons and the absorption of photons by the slower
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electrons leads to a velocity bunching of the electrons toward the critical ve-
locity vc and enhances the coherent superposition of their contributions to the
radiation field. The energy pumped by the electrons into the radiation field
comes from their kinetic energy and has to be replaced by acceleration in
RF cavities, if the same electrons in storage rings are to be used for multiple
traversions through the wiggler.

This free-electron radiation amplifier can be converted into a laser by
providing reflecting mirrors for optical feedback. Such FELs are now in op-
eration at several places in the world. Their advantages are their tunability
over a large spectral range from millimeter waves into the VUV region by
changing the electron energy. Their potential high output power represents
a further plus for FELs. Their definitive disadvantage is the large experimental
expenditure that demands, besides a delicate wiggler structure, a high-energy
accelerator or a storage ring.

At present FELs with output powers of several kilowatts in the infrared
and several watts in the visible have been realized. The Stanford FEL reaches,
for example, 130 kW at 3.4 μm, whereas from a cooperation between TRW
and Stanford University, peak powers of 1.2 MW at λ = 500 mm were re-
ported. There are plans to build FELs that cover all wavelengths in the UV
down to 10 nm. The spectral brilliance of these sources will be three to four
orders of magnitude higher than the advanced third-generation synchrotron
radiation sources. In Table 5.6 the characteristic features of the FEL in Darm-
stadt are compiled. More details can be found in the literature [5.214–5.217].

Table 5.6. Typical parameters of the FEL in Darmstadt

Electron energy 25−60 MeV Length of optical resonator 15 m
Average current 60 μm Mirror reflectivity 99%
Peak current 2.7 A Laser wavelength 3−10 μm
Pulse length 1.9 ps ≈ 2 ps
Repetition rate 10 MHz Pulse energy 300 nJ
Period length 3.2 cm Pulse peak power 150 kW
of undulator

Average power 3 W
Small signal gain 3−5%

5.8 Nonlinear Optical Mixing Techniques

Besides the various types of tunable lasers discussed in the foregoing sections,
sources of tunable coherent radiation have been developed that are based on
the nonlinear interaction of intense radiation with atoms or molecules in crys-
tals or in liquid and gaseous phases. Second-harmonic generation, sum- or
difference-frequency generation, parametric processes, or stimulated Raman
scattering are examples of such nonlinear optical mixing techniques. These
techniques cover the whole spectral range from the vacuum ultraviolet (VUV)
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up to the far infrared (FIR) with sufficiently intense tunable coherent sources.
After a brief summary of the basic physics of these devices, we exem-
plify their applications by presenting some experimentally realized systems
[5.218–5.225].

5.8.1 Physical Background

The dielectric polarization P of a medium with nonlinear susceptibility χ,
subject to an electric field E, can be written as an expansion in powers of
the applied field

P = ε0(χ̃
(1)E+ χ̃(2)E2 + χ̃(3)E3 + ...) , (5.111)

where χ̃(k) is the kth-order susceptibility tensor of rank k +1.

Example 5.31.
Consider, for example, the EM wave

E = E1 cos(ω1t − k1z)+ E2 cos(ω2t − k2z) , (5.112)

composed of two components incident on the nonlinear medium. The in-
duced polarization at a fixed position (say, z = 0) in the crystal is generated
by the combined action of both components. The linear term in (5.111)
describes the Rayleigh scattering. The quadratic term χ(2)E2 gives the con-
tributions

P(2) = ε0χ̃
(2)E2(z = 0)

= ε0χ̃
(2)
(

E2
1 cos2 ω1t + E2

2 cos2 ω2t +2E1 E2 cos ω1t · cos ω2t
)

= ε0χ̃
(2)

{
1

2
(E2

1 + E2
2)+ 1

2
E2

1 cos 2ω1t

+1

2
E2

2 cos 2ω2t + E1 · E2[cos(ω1 +ω2)t + cos(ω1 −ω2)t]
}

,

(5.113)

which represents dc polarization, ac components at the second harmonics
2ω1, 2ω2, and components at the sum or difference frequencies ω1 ±ω2.
Note that I(2ω) ∝ E2(2ω) ∝ I2(ω) and I(ω1 ±ω2) ∝ I(ω1) I(ω2).

Note: The direction of the polarization vector P may be different from
those of E1 and E2. The components χijk are generally complex and the
phase of the polarization differs from that of the driving fields.

Taking into account that the field amplitudes E1, E2 are vectors and that
the second-order susceptibility χ̃(2) is a tensor of rank 3 with components χijk
depending on the symmetry properties of the nonlinear crystal [5.222], we can
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write (5.111) in the explicit form

P(2)
i = ε0

⎛

⎝
3∑

k=1

χ
(1)
ik Ek +

3∑

j,k=1

χ
(2)
ijk E j Ek

⎞

⎠ (1 =̂ x, 2 =̂ y, 3 =̂ z) ,

(5.114)

where Pi (i = x, y, z) gives the ith component of the dielectric polarization
P = {Px, Py, Pz}.

The components Pi (i = x, y, z) of the induced polarization are determined
by the polarization characteristics of the incident wave (i.e., which of the com-
ponents Ex , Ey, Ez are nonzero), and by the components of the susceptibility
tensor, which in turn depend on the symmetries of the nonlinear medium.

Let us first discuss the linear part of (5.114), which can be written as
⎛
⎜⎝

P(1)
x

P(1)
y

P(1)
z

⎞
⎟⎠= ε0

⎛

⎝
χxx χxy χxz
χyx χyy χyz
χzx χzy χzz

⎞

⎠

⎛

⎝
Ex
Ey
Ez

⎞

⎠ . (5.115a)

One can always choose a coordinate system (ξ , η, ς) in which the tensor χ(1)

becomes diagonal (principal axis transformation). If we align the crystal in
such a way that the (ξ , η, ς)-axes coincide with the (x, y, z)-axes, (5.115a)
simplifies in the principal axes system to:
⎛
⎜⎝

P(1)
x

P(1)
y

P(1)
z

⎞
⎟⎠= ε0

⎛

⎝
χ1 0 0
0 χ2 0
0 0 χ3

⎞

⎠

⎛

⎝
Ex
Ey
Ez

⎞

⎠ . (5.115b)

This shows that generally P and E are no longer parallel because the χi may
be different. Using the relation εi = 1+χi we can replace the susceptibility χ
by the relative dielectric constant ε, which is related to the refractive index n
through ε = n2. Equation (5.115b) then shows that there are generally three
different refractive indices n1, n2 and n3 along the three principal axes. We
call the corresponding refractive indices the principal indices. This can be vi-
sualized by plotting vectors with length n = ε1/2 in all directions in a principal
coordinate system (n1, n2, n3) from its origin. The endpoints of these vectors
form an ellipsoid, called the index ellipsoid, which can be described by the
equation

n2
x

n2
1

+ n2
y

n2
2

+ n2
z

n2
3

= 1 . (5.116)

For uniaxial crystals, two of the n (n1 = n2) are equal and the index ellip-
soid has rotational symmetry around the principal axis, called the optical axis
of the uniaxial crystal, which we choose to be the z-axis of our laboratory
coordinate system (Fig. 5.107a).
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Fig. 5.107. (a) Index ellipsoid for uniaxial birefringent optical crystals. (b) Cutting
through the ellipsoid in a plane that contains the optical axis and the propagation di-
rection k

An incident wave E = E0 ei(ωt−kr) with a small amplitude E = {Ex, Ey, Ez}
generates a polarization P = {n1/2

1 Ex, n1/2
1 Ey, n1/2

3 Ez} in the optical material.
If the wave vector k forms an angle θ �= 0 or 90◦ with the optical axis, the

wave in the crystal splits into an ordinary beam (refractive index n1 = n2 =
n0) where the phase velocity is independent of θ, and an extraordinary wave
(refractive index ne) where ne and therefore the phase velocity does depend
on the direction θ (Fig. 5.107b).

In such birefringent crystals, the direction k of the wave propagation and
the direction of the Poynting vector S = c ε0(E× B), which is the direction of
energy flow, do not coincide (Fig. 5.108).

Now we turn to the second term in (5.114) with the nonlinear suscep-
tibility tensor χ(2). We assume that the incident wave contains only two
frequencies ω1 and ω2. With ω = (ω1 ±ω2) we have the detailed description

⎛
⎜⎝

P(2)
x (ω)

P(2)
y (ω)

P(2)
z (ω)

⎞
⎟⎠= ε0

⎛
⎜⎝

χ
(2)
xxx χ

(2)
xxyz . . . χ

(2)
xzz

χ
(2)
yxx χ

(2)
yxy . . . χ

(2)
yzz

χ
(2)
zxx χ

(2)
zxy . . . χ

(2)
zzz

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ex(ω1) · Ex(ω2)
Ex(ω1) · Ey(ω2)
Ex(ω1) · Ez(ω2)
Ey(ω1) · Ex(ω2)
Ey(ω1) · Ey(ω2)

...
...

Ez(ω1) · Ez(ω2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.117)

Equation (5.114) demonstrates that the components of the induced polar-
ization P are determined by the tensor components χijk and the components
of the incident fields. Since the sequence E j Ek produces the same polariza-
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Fig. 5.108. Directions of electric field E, po-
larization P, magnetic field B, wave propaga-
tion k, and energy flow S in a birefringent
crystal

tion as Ek E j , we obtain

χijk = χik j .

This reduces the 27 components of the susceptibility tensor χ̃(2) to 18 inde-
pendent components.

In isotropic media the reflection of all vectors at the origin should not
change the nonlinear susceptibility. This yields χijk = −χijk, which could be
only fulfilled by χijk ≡ 0. In all media with an inversion center the second-
order susceptibility tensor vanishes! This means, for instance, that optical
frequency doubling in gases is not possible.

In order to reduce the number of indices in the formulas, the com-
ponents χijk are often written in the reduced Voigt notation. For the first
index the convention x = 1, y = 2, z = 3 is used, whereas the second and
third indices are combined as follows: xx = 1, yy = 2, zz = 3, yz = zy = 4,
xz = zx = 5, xy = yx = 6. The coefficients in this Voigt notation are named
dim . Equation (5.114) can then be written as:

⎛
⎜⎝

P(2)
1

P(2)
2

P(2)
3

⎞
⎟⎠= ε0

⎛

⎝
d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎞

⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

E2
1

E2
2

E2
3

2E2 E3

2E1 E3

2E1 E2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.118)

Example 5.32.
In potassium dihydrogen phosphate (KDP) the only nonvanishing compo-
nents of the susceptibility tensor are

χ(2)
xyz = d14 = χ(2)

yxz = d25 and χ(2)
zxy = d36 .
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The components of the induced polarization are therefore with d25 = d14

Px = 2ε0d14 Ey Ez , Py = 2ε0d14 Ex Ez , Pz = 2ε0d36 Ex Ey .

Suppose there is only one incident wave traveling in a direction k with the
polarization vector E normal to the optical axis of a uniaxial birefringent
crystal, which we choose to be the z-axis (Fig. 5.109). In this case, Ez = 0
and the only nonvanishing component of P(2ω),

Pz(2ω) = 2ε0d36 Ex(ω)Ey(ω) ,

is perpendicular to the polarization plane of the incident wave.

Fig. 5.109. Coordinate system for the
description of nonlinear optics in a uni-
axial birefringent crystal. An incident
wave with wavevector kλ and k =
(kx , ky, 0) electric field vector E =
{Ex, Ey, 0} generates in a KDP crys-
tal the polarization P = {0, 0, Pz(2ω)}

Example 5.33.
We will consider another example, the GaAs crystal with Td symmetry,
where the dij tensor is

dij =
⎛

⎝
0 0 0 d14 0 0
0 0 0 0 d14 0
0 0 0 0 0 d14

⎞

⎠ .

According to (5.118), this gives the polarization components

Px = 2d14 Ey Ez

Py = 2d14 Ez Ex

Pz = 2d14 Ex Ey .

For a fundamental wave (Ex, Ey, 0) traveling in z-direction, the only
component �= 0 is Pz . Since the propagation of the second harmonic is per-
pendicular to P, this shows that the second harmonic signal will be always
perpendicular to the propagation of the fundamental wave (Fig. 5.110) and
an efficient generation of second harmonic waves is not possible. This ma-
terial is therefore not suited for second harmonic generation.
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Fig. 5.110. Second harmonic generation in a GaAs crystal, where the propagation of fun-
damental and SH waves are perpendicular to each other

5.8.2 Phase Matching

The nonlinear polarization induced in an atom or molecule acts as a source
of new waves at frequencies ω = ω1 ±ω2, which propagate through the non-
linear medium with the phase velocity vph = ω/k = c/n(ω). However, the
microscopic contributions generated by atoms at different positions (x, y, z)
in the nonlinear medium can only add up to a macroscopic wave with ap-
preciable intensity if the phase velocities of incident inducing waves and the
polarization waves are properly matched. This means that the phases of the
contributions Pi(ω1 ±ω2, r i) to the polarization wave generated by all atoms
at different locations ri within the pump beam must be equal at a given point
within the pump beam. In this case, the amplitudes Ei(ω1 ±ω2) add up in
phase in the direction of the pump beam and the intensity increases with the
length of the interaction zone. This phase-matching condition can be written
as

k(ω1 ±ω2) = k(ω1)±k(ω2) , (5.119)

which may be interpreted as momentum conservation for the three photons
participating in the mixing process.

The phase-matching condition (5.119) is illustrated by Fig. 5.111. If the
angles between the three wave vectors are too large, the overlap region be-
tween focused beams becomes too small and the efficiency of the sum- or
difference-frequency generation decreases. Maximum overlap is achieved for
collinear propagation of all three waves. In this case, k1||k2||k3 and we obtain
with c/n = ω/k and ω3 = ω1 ±ω2 the condition

n3ω3 = n1ω1 ±n2ω2 ⇒ n3 = n1 = n2 , (5.120)

for the refractive indices n1, n2, and n3.
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Fig. 5.111a,b. Phase-matching condition as momentum conservation for (a) noncollinear
and (b) collinear propagation of the three waves

This condition can be fulfilled in unaxial birefringent crystals that have
two different refractive indices no and ne for the ordinary and the extraordi-
nary waves. The ordinary wave is polarized in the x–y-plane perpendicular to
the optical axis, while the extraordinary wave has its E-vector in a plane de-
fined by the optical axis and the incident beam. While the ordinary index no
does not depend on the propagation direction, the extraordinary index ne de-
pends on the directions of both E and k. The refractive indices no, ne and
their dependence on the propagation direction in uniaxial birefringent crystals
can be illustrated by the index ellipsoid (5.116). If we specify a propagation
direction k, we can illustrate the refractive indices no and ne experienced by
the EM wave E = E0 cos(ωt −k ·r) in the following way (Fig. 5.112a): con-
sider a plane through the center of the index ellipsoid with its normal in the
direction of k. The intersection of this plane with the ellipsoid forms an el-
lipse. The principal axes of this ellipse give the ordinary and extraordinary
indices of refraction no and ne, respectively. These principal axes are plot-
ted in Fig. 5.112b as a function of the angle θ between the optical axis and
the wave vector k. If the angle θ between k and the optical axis (which is as-
sumed to coincide with the z-axis) is varied, no remains constant, while the

Fig. 5.112. (a) Index ellipsoid and re-
fractive indices no and ne for two di-
rections of the electric vector of the
wave in a plane perpendicular to the
wave propagation k. (b) Dependence
of no and ne on the angle θ between
the wave vector k and the optical
axis of a uniaxial positive birefringent
crystal
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Fig. 5.113a,b. Index ellipsoid for (a) positive (b) negative birefingent uniaxial optical
crystals

extraordinary index ne(θ) changes according to

1

n2
e(θ)

= cos2 θ

n2
o

+ sin2 θ

n2
e(θ = π/2)

. (5.121)

The uniaxial crystal is called positively birefringent if ne ≥ no and negatively
birefringent if ne ≤ no (Fig. 5.113). It is possible to find nonlinear birefrin-
gent crystals where the phase-matching condition (5.120) for collinear phase
matching can be fulfilled if one of the three waves at ω1, ω2, and ω1 ±ω2
propagates as an extraordinary wave and the others as ordinary waves through
the crystal in a direction θ specified by (5.121) [5.223].

One distinguishes between type-I and type-II phase-matching depending
on which of the three waves with ω1, ω2, ω3 = ω1 ±ω2 propagates as an or-
dinary or as an extraordinary wave. Type I corresponds to (1 → e, 2 → e,
3 → o) in positive uniaxial crystals and to (1 → o, 2 → o, 3 → e) in neg-
ative uniaxial crystals, whereas type II is characterized by (1 → o, 2 → e,
3 → o) for positive and (1 → e, 2 → o, 3 → e) for negative uniaxial crystals
[5.225]. Let us now illustrate these general considerations with some specific
examples.

5.8.3 Second-Harmonic Generation

For the case ω1 = ω2 = ω, the phase-matching condition (5.119) for second-
harmonic generation (SHG) becomes

k(2ω) = 2k(ω) ⇒ vph(2ω) = vph(ω) , (5.122)

which implies that the phase velocities of the incident and SH wave must
be equal. This can be achieved in a negative birefringent uniaxial crystal
(Fig. 5.114) in a certain direction θp against the optical axis if in this direction
the extraordinary refractive index ne(2ω) for the SH wave equals the ordinary
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Fig. 5.114. Index matching for SHG in a uniaxial
negatively birefringent crystal

index no(ω) for the fundamental wave. When the incident wave propagates as
an ordinary wave in this direction θp through the crystal, the local contribu-
tions of P(2ω, r) can all add up in phase and a macroscopic SH wave at the
frequency 2ω will develop as an extraordinary wave. The polarization direc-
tion of this SH wave is orthogonal to that of the fundamental wave. In uniaxial
positive birefringent crystals, the phase-matching condition can be fulfilled for
type-I phase matching when the fundamental wave at ω travels as an extraor-
dinary wave through the crystal and the second harmonic at 2ω travels as an
ordinary wave.

In favorable cases phase-matching is achieved for θ = 90◦. This has the ad-
vantage that both the fundamental and the SH beams travel collinearly through
the crystal, whereas for θ �= 90◦ the power flow direction of the extraordinary
wave differs from the propagation direction ke. This results in a decrease of
the overlap region between both beams.

Let us estimate how a possible slight phase mismatch Δn = n(ω)−n(2ω)
affects the intensity of the SH wave. The nonlinear polarization P(2ω) gener-
ated at the position r by the driving field E0 cos[ωt −k(ω) ·r] can be deduced
from (5.113) as

P(2ω) = 1
2 ε0χ

(2)
eff E2

0(ω)[1+ cos(2ωt)] . (5.123)

This nonlinear polarization generates a wave

P(2ω, r) = E0(2ω) · cos(2ωt −k(2ω) ·r) ,

with amplitude E(2ω), which travels with the phase velocity v(2ω) =
2ω/k(2ω) through the crystal. The effective nonlinear coefficient χ

(2)
eff depends

on the nonlinear crystal and on the propagation direction.
Assume that the pump wave propagates in the z-direction. Over the path

length z a phase difference

Δϕ = Δk · z = [2k(ω)− k(2ω)] · z ,

between the fundamental wave at ω and the second-harmonic wave at 2ω
has developed. If the field amplitude E(2ω) always remains small com-
pared to E(ω) (low conversion efficiency), we may neglect the decrease
of E(ω) with increasing z. Therefore we obtain the total amplitude of the
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SH wave summed over the path length z = 0 to z = L through the nonlinear
crystal by integration over the microscopic contribution dE(2ω, z) gener-
ated by P(2ω, z). From (5.123), one obtains with Δk = |2k(ω)−k(2ω)| and
dE(2ω)/dz = [2ω/ε0nc]P(2ω) [5.225]

E(2ω, L) =
L∫

z=0

χ
(2)
eff (ω/nc)E2

0(ω) cos(Δkz)dz

= χ
(2)
eff (ω/nc)E2

0(ω)
sin ΔkL

Δk
. (5.124a)

The intensity I = (ncε0/2n) |E(2ω)|2 of the SH wave is then

I(2ω, L) = I2(ω)
2ω2|χ(2)

eff |2L2

n3c3ε0

sin2(ΔkL)

(ΔkL)2 . (5.124b)

If the length L exceeds the coherence length

Lcoh = π

2Δk
= λ

4(n2ω −nω)
, (5.125)

the fundamental wave (λ) and the SH wave (λ/2) have a phase difference
Δϕ > π/2, and destructive interference begins, which diminishes the ampli-
tude of the SH wave. The difference n2ω −nω should therefore be sufficiently
small to provide a coherence length larger than the crystal length L.

According to the definition at the end of Sect. 5.8.1, type-I phase match-
ing is achieved in uniaxial negatively birefringent crystals when ne(2ω, θ) =
no(ω). The polarizations of the fundamental wave and the SH wave are then
orthogonal. From (5.121) and the condition ne(2ω, θ) = no(ω), we obtain the
phase-matching angle θ as

sin2 θ = v2
o(ω)−v2

o(2ω)

v2
e(2ω,π/2)−v2

o(2ω)
. (5.126a)

For type-II phase matching the polarization of the fundamental wave does not
fall into the plane defined by the optical axis and the k-vector. It therefore has
one component in the plane, which travels with v = c/no, and another compo-
nent with v = c/ne perpendicular to the plane. The phase-matching condition
now becomes

ne(2ω, θ) = 1
2 [ne(ω, θ)+no(ω)] . (5.126b)

The choice of the nonlinear medium depends on the wavelength of the
pump laser and on its tuning range (Table 5.7). For SHG of lasers around
λ = 1 μm, 90◦ phase matching can be achieved with LiNbO3 crystals, while
for SHG of dye lasers around λ = 0.5−0.6 μm, KDP crystals or ADA can
be used. Figure 5.115 illustrates the dispersion curves no(λ) and ne(λ) of or-
dinary and extraordinary waves in KDP and LiNbO3, which show that 90◦
phase matching can be achieved in LiNbO3 for λp = 1.06 μm and in KDP for
λp � 515 nm [5.223].
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Table 5.7. Characteristic data of nonlinear crystals used for frequency doubling or sum-
frequency generation

Material Transparency Spectral range Damage Relative Reference
range [nm] of phase matching threshold doubling

of type I or II [GW/cm2] efficiency

ADP 220−2000 500−1100 0.5 1.2 [5.5]
KD∗P 200−2500 517−1500 (I) 8.4 1.0 [5.245]

732−1500 (II) 8.4
Urea 210−1400 473−1400 (I) 1.5 6.1 [5.256]
BBO 197−3500 410−3500 (I) 9.9 26.0 [5.229–5.235]

750−1500 (II)
LiJO3 300−5500 570−5500 (I) 0.06 50.0 [5.257, 5.239]
KTP 350−4500 1000−2500 (II) 1.0 215.0 [5.255]
LiNbO3 400−5000 800−5000 (II) 0.05 105.0 [5.245]
LiB3O5 160−2600 550−2600 18.9 3 [5.246]
CdGeAs2 1−20 μm 2−15 μm 0.04 9 [5.260]
AgGaSe2 3−15 μm 3.1−12.8 μm 0.03 6
Te 3.8−32 μm 0.045 270 [5.245]

Table 5.8. Abbreviations for some commonly used nonlinear crystals

ADP = Ammonium dihydrogen phosphate NH4H2PO4
KDP = Potassium dihydrogen phosphate KH2PO4
KD∗P = Potassium dideuterium phosphate KD2PO4
KTP = Potassium titanyl phosphate KTiOPO4
KNbO3 = Potassium niobate KNbO3
LBO = Lithium triborate LiB3O5
LiIO3 = Lithium iodate LiIO3
LiNbO3= Lithium niobate LiNbO3
BBO = Beta-barium borate β-BaB2O4

Fig. 5.115a,b. Refractive indices no(λ) and ne(λ): (a) for θ = 90◦ in LiNbO3 [5.225]
and (b) for θ = 50◦ and 90◦ KDP [5.222]. Collinear phase matching can be achieved in
LiNbO3 for θ = 90◦ and λ = 1.06 μm (Nd+ laser) and in KDP for θ = 50◦ at λ = 694 nm
(ruby laser) or for θ = 90◦ at λ = 515 nm (argon laser)
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Fig. 5.116. Wavelength dependence for no and ne in ADP at θ = 90◦ and temperature
dependence of the phase-matching condition Δn(T, λ) = no(T, λ)−ne(T, λ/2) = 0

Since the intensity I(2ω) of the SH wave is proportional to the square of
the pump intensity I(ω), most of the work on SHG has been performed with
pulsed lasers, which offer high peak powers.

Focusing of the pump wave into the nonlinear medium increases the power
density and therefore enhances the SHG efficiency. However, the resulting
divergence of the focused beam decreases the coherence length because the
wave vectors kp are spread out over an interval Δkp, which depends on the di-
vergence angle. The partial compensation of both effects leads to an optimum
focal length of the focusing lens, which depends on the angular dispersion
dne/dθ of the refractive index ne and on the spectral bandwidth Δωp of the
pump radiation [5.228].

If the wavelength λp of the pump laser is tuned, phase matching can
be maintained either by turning the crystal orientation θ against the pump
beam propagation kp (angle tuning) or by temperature control (temperature
tuning), which relies on the temperature dependence Δn(T, λ) = no(T, λ)
−ne(T, λ/2). The tuning range 2ω±Δ2ω of the SH wave depends on that
of the pump wave (ω±Δ1ω) and on the range where phase matching can be
maintained. Generally, Δ2ω < 2Δ1ω because of the limited phase-matching
range. With frequency-doubled pulsed dye lasers and different dyes the whole
tuning range between λ = 195−500 nm can be completely covered. The strong
optical absorption of most nonlinear crystals below 220 nm causes a low dam-
age threshold, and the shortest wavelength achieved by SHG is, at present,
λ = 200 nm [5.226–5.232].

Example 5.34.
The refractive indices no(λ) and ne(λ) of ADP (ammonium dihydrogen
phosphate) for θ = 90◦ are plotted in Fig. 5.116, together with the phase–
matching curve: Δ(T, λ) = no(T, λ)−ne(T, λ/2) = 0. This plot shows that
at T = −11◦C, the phase-matching condition Δ(T, λ) = 0 is fulfilled for
λ = 514.5 mm, and thus 90◦ phase matching for SHG of the powerful green
argon laser line at λ = 514.5 nm is possible.
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Limitations of the SH output power generated by pulsed lasers are mainly
set by the damage threshold of available nonlinear crystals. Very promising
new crystals are the negative uniaxial BBO (beta-barium borate) β-BaB2O4
[5.230–5.234] and lithium borate LiBO, which have high damage thresholds
and which allow SHG from 205 nm to above 3000 nm.

Example 5.35.
The five nonvanishing nonlinear coefficients of BBO are d11, d22, d31, d13,
d14, where the largest coefficient d11 is about 6 times larger than d36 of
KDP. The transmission range of BBO is 195−3500 nm. It has a low tem-
perature dependence of its birefringence and a high optical homogeneity.
Its damage threshold is about 10 GW/cm2.

Type-I phase matching is possible in the range 410−3500 nm, type-II
phase-matching in the range 750−1500 nm.
The effective nonlinear coefficient for type-I phase-matching is

deff = d31 sin θ + (d11 cos 3φ−d22 sin 3φ) cos φ ,

where θ and φ are the polar angles between the k-vector of the incident
wave and the z(= c)-axis and the x(= a)-axis of the crystal, respectively.
For φ = 0 deff becomes maximum.

With cw dye lasers in the visible (output power ≤ 1 W), generally UV
powers of only a few milliwatts are achieved by frequency doubling. The dou-
bling efficiency η = I(2ω)/I(ω) can be greatly enhanced when the doubling
crystal is placed inside the laser cavity where the power of the fundamental
wave is much higher [5.237–5.241]. The auxiliary beam waist in a ring laser
resonator is the best location for placing the crystal (Fig. 5.102). With an intra-
cavity LiIO3 crystal, for example, UV output powers in the range 20−50 mW
have been achieved at λ/2 = 300 nm [5.239].

If the dye laser must be used for visible as well as for UV spectroscopy,
a daily change of the configuration is troublesome, therefore it is advan-
tageous to apply an extra external ring resonator for frequency doubling
[5.242–5.244]. This resonator must, of course, always be kept in resonance

Fig. 5.117. External ring resonator for effi-
cient optical frequency doubling. The mir-
rors M2 and M4 are highly reflective,
while mirror M1 transmits the fundamental
wave and mirror M3 transmits the second-
harmonic wave
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Fig. 5.118. Low-loss ring resonator with wide tuning range for optical frequency doubling
with astigmatic compensation [5.226]

with the dye laser wavelength λL and therefore must be stabilized by a feed-
back control to the wavelength λL when the dye laser is tuned.

One example is illustrated in Fig. 5.117. In order to avoid feedback into
the laser, ring resonators are used and the crystal is placed under the Brewster
angle in the beam waist of the resonator. Since the enhancement factor for
I(ω) depends on the resonator lasers, the mirrors should be highly reflec-
tive for the fundamental wave, but the output mirror should have a high
transmission for the second-harmonic wave. An elegant solution is shown in
Fig. 5.118, where only two mirrors and a Brewster prism form the ring res-
onator. The resonator length can be conveniently tuned by shifting the prism
with a piezo-translating device in the z-direction.

Many more examples of external and intracavity frequency doubling
with different nonlinear crystals [5.245] can be found in the literature
[5.247–5.249]. Table 5.7 compiles some optical properties of commonly uti-
lized nonlinear crystals.

5.8.4 Quasi Phase Matching

Recently, optical frequency doubling devices have been developed that con-
sist of many thin slices of a crystal with periodically varying directions of
their optical axes. This can be achieved by producing many thin electrodes
with lithographic techniques on the two side faces of the crystal and then
placing the crystal at higher temperatures in a spatially periodic electric field.
This results in a corresponding anisotropy of the charge distribution (induced
electric dipole moments), which determines the optical axis of the crystal
(Fig. 5.119a). If there is a phase mismatch

Δk = 2π

λ
[n(2ω−n(ω))] , (5.127a)

the phases of fundamental and second-harmonic waves differ by π after the
coherence length

Lc = π

k(2ω)−2k(ω)
= λ

2[n(2ω)−n(ω)] . (5.127b)
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Fig. 5.119a–c. Quasi phase matching: (a) periodic poling of crystal orientation; (b) array
of crystals with different period lengths for choosing the optimum doubling efficiency
for a given wavelength; (c) second-harmonic output power as a function of total length
L = n · Lc for one crystal with slight phase mismatch (curve a), for a periodically poled
crystal (curve b), and for a single crystal with ideal phase matching

A nonlinear crystal with a length L � Lc shows the output power P(2ω) of
the second-harmonic wave as a function of the propagation length z depicted
by curve a in Fig. 5.119c. After one coherence length the power decreases
again because of destructive interference between the second-harmonic and
the out-of-phase fundamental wave.

If, however, the crystal has length L = Lc followed by a second crystal
with L = 2Lc but opposite orientation of its optical axis, then the phase mis-
match is reversed and the phase difference decreases from π to −π. Now the
next layer follows with the orientation of the first one and the phase difference
again increases from −π to +π, and so on. This yields the output power of
the second harmonic as shown in Fig. 5.119c, curve b.

For comparison, the curve c of a perfectly phase-matched long crystal is
shown in Fig. 5.119c. This demonstrates that the quasi-phase-matching device
gives a lower output power than the perfectly matched crystal, but a much
larger power than for a single crystal in the case of slight phase mismatches.
The advantage of this quasi-phase-matching is the possible larger spectral
range of the fundamental wave, which can be frequency-doubled.

For frequency doubling of tunable lasers, it is difficult to maintain perfect
phase matching for all wavelengths; therefore phase mismatches cannot be
avoided. Furthermore, for angle tuning of the crystal, noncollinear propagation
of the fundamental and the second-harmonic wave occurs. This limits the ef-
fective interaction length and therefore the doubling efficiency. With correctly
designed quasi-phase-matched devices, collinear noncritical phase matching
can be realized, which allows long interaction lengths. Furthermore, funda-
mental and second-harmonic waves can have the same polarization; therefore
one can use the largest nonlinear coefficient for the doubling efficiency by
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choosing the correct electro-optic poling of the slices. The greatest advantage
is the large tuning range, where either temperature tuning can be utilized or
an array of periodic slices with different slice thicknesses L = Lc adapted to
the wavelength-dependent phase mismatch is used (Fig. 5.119b). In the latter
case the different devices, all on the same chip, can be shifted into the laser
beam by a translational stage.

For these reasons many modern nonlinear frequency-doubling or mixing
devices, in particular, optical parametric oscillators, use quasi phase match-
ing [5.251, 5.252]. Gallium arsenide has a very high nonlinear coefficient and
a wide transparency range of 0.7−17 μm. It is therefore very attractive for
widely tunable optical parametric oscillators in the mid-infrared. It is now
possible to fabricate orientation-patterned GaAs which can be used as quasi-
phase-matched material.

The advantages of quasi-phase-matching can be summarized as follows:

(a) Unlike birefringent crystals, where the propagation direction and polar-
ization of the fundamental wave are severely constrained, both of these
parameters can be chosen to maximize the effective nonlinear coeffi-
cient deff.

(b) The Poynting vector has the same direction for fundamental and harmonic
waves. There is no walk-off as in birefringent crystals for θ �= 90.

(c) Any wavelength within the transparency range of the material can be
phase-matched, whereas in birefringent crystals only a narrow wavelength
range can be phase-matched for a given direction with respect to the opti-
cal axis.

5.8.5 Sum-Frequency and Higher-Harmonic Generation

In the case of laser-pumped dye lasers, it is often more advantageous to gener-
ate tunable UV radiation by optical mixing of the pump laser and the tunable
dye laser outputs rather than by frequency doubling of the dye laser. Since
the intensity I(ω1 +ω2) is proportional to the product I(ω1)I · (ω2), the larger
intensity I(ω1) of the pump laser allows enhanced UV intensity I(ω1 +ω2).
Furthermore, it is often possible to choose the frequencies ω1 and ω2 in such
a way that 90◦ phase matching can be achieved. The range (ω1 +ω2) that can
be covered by sum-frequency generation is generally wider than that accessi-
ble to SHG. Radiation at wavelengths too short to be produced by frequency
doubling can be generated by the mixing of two different frequencies ω1
and ω2. This is illustrated by Fig. 5.120, which depicts possible wavelength
combinations λ1 and λ2 that allow 90◦ phase-matched sum-frequency mix-
ing in KDP and ADP at room temperature or along the b-axis of biaxial KB5
crystals [5.253].

Some examples are given to demonstrate experimental realizations of the
sum-frequency mixing technique [5.254–5.264].
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Fig. 5.120. Possible combinations of wavelength pairs (λ1, λ2) that allow 90◦ phase-
matched sum-frequency generation in ADP, KDP, and KB5 [5.254, 5.259]

Example 5.36.

(a) The output of a cw rhodamine 6G dye laser pumped with 15 W on all
lines of an argon laser is mixed with a selected line of the same argon
laser (Fig. 5.121). The superimposed beams are focused into the temper-
ature-stabilized KDP crystal. Tuning is accomplished by simultaneously
tuning the dye laser wavelength and the orientation of the KDP crys-
tal. The entire wavelength range from 257 to 320 nm can be covered
by using different argon lines with a single Rhodamine 6G dye laser
without changing dyes [5.254].

(b) The generation of intense tunable radiation in the range 240−250 nm
has been demonstrated by mixing in a temperature-tuned 90◦ phase-
matched ADP crystal the second harmonic of a ruby laser with the
output of an infrared dye laser pumped by the ruby laser’s fundamental
output [5.253].

(c) UV radiation tunable between 208 and 259 nm has been generated ef-
ficiently by mixing the fundamental output of a Nd:YAG laser and the
output of a frequency-doubled dye laser. Wavelengths down to 202 nm
can be obtained with a refrigerated ADP crystal because ADP is partic-
ularly sensitive to temperature tuning [5.260].
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(d) In lithium borate (LBO) noncritical phase-matched sum-frequency gen-
eration at θ = 90◦ can be achieved over a wide wavelength range.
Starting with λ1 < 220 nm and λ2 ≥ 1064 nm, sum-frequency radiation
down to wavelengths of λ3 = (1/λ1 +1/λ2)

−1 = 160 nm can be gener-
ated. The lower limit is set by the transmission cutoff of LBO [5.262].

(e) After frequency doubling of the Ti:sapphire wavelength 920−960 nm in
a LBO crystal, and sum-frequency mixing of the fundamental ω with
the second harmonic 2ω in another 90%-phase-matched LBO, the third
harmonic 3ω could be obtained with an overall efficiency of 35%, tun-
able between 307−320 nm [5.263].

Fig. 5.121. Experimental arrangement for sum-frequency generation of cw radiation in
a KDP crystal [5.254]

Fig. 5.122. Sum-frequency generation in an enhancement cavity down to λ = 202 nm
[5.264]
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A novel device for efficiently generating intense radiation at wavelengths
around 202 nm is shown in Fig. 5.122. A laser diode-pumped Nd:YVO4 laser
is frequency doubled and delivers intense radiation at λ = 532 nm, which is
again frequency doubled to λ = 266 nm in a BBO crystal inside a ring res-
onator. The output from this resonator is superimposed in a third enhancement
cavity with the output from a diode laser at λ = 850 nm to generate radiation
at λ = 202 nm by sum-frequency mixing. This 202-nm radiation is polarized
perpendicularly to that at the two other waves and can be therefore efficiently
coupled out of the cavity by a Brewster plate [5.264].

The lower-wavelength limit for nonlinear processes in crystals (SHG or
sum-frequency mixing) is generally given by the absorption (transmission cut-
off) of the crystals.

For shorter wavelengths sum-frequency mixing or higher-harmonic genera-
tion in homogeneous mixtures of rare gases and metal vapors can be achieved.
Because in centro-symmetric media the second-order susceptibility must van-
ish, SHG is not posssible, but all third-order processes can be utilized for
the generation of tunable ultraviolet radiation. Phase matching is achieved by
a proper density ratio of raregas atoms to metal atoms. Several examples il-
lustrate the method.

Example 5.37.

(a) Third-harmonic generation of Nd:YAG laser lines around λ = 1.05 μm
can be achieved in mixtures of xenon and rubidium vapor in a heat pipe.
Figure 5.123 is a schematic diagram for the refractive indices n(λ) for
Xe and rubidium vapor. Choosing the proper density ratio N(Xe)/N(Rb),
phase matching is obtained for n(ω) = n(3ω), where the refractive in-
dex n = n(Xe)+n(Rb) is determined by the rubidium and Xe densities.
Figure 5.123 illustrates that this method utilizes the compensation of
the normal dispersion in Xe by the anomalous dispersion for rubidium
[5.265].

(b) A second example is the generation of tunable VUV ratiation be-
tween 110 and 130 nm by phase-matched sum-frequency generation in
a xenon–krypton mixture [5.266]. This range covers the Lyman-α line
of hydrogen and is therefore particularly important for many experi-
ments in plasma diagnostics and in fundamental physics. A frequency-
doubled dye laser at ωUV = 2ω1 and a second tunable dye laser
at ω2 are focused into a cell that contains a proper mixture of
Kr/Xe. The sum frequency ω3 = 2ωUV +ω2 can be tuned by syn-
chronous tuning of ω2 and the variation of the Kr/Xe mixture.

Because of the lower densities of gases compared with solid crystals, the
efficiency I(3ω)/I(ω) is much smaller than in crystals. However, there is no
short-wavelength limit as in crystals, and the spectral range accessible by op-
tical mixing can be extended far into the VUV range [5.267].
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Fig. 5.123. Schematic diagram of
the refractive indices n(λ) for
rubidium vapor and xenon, illus-
trating phase matching for third-
harmonic generation

Fig. 5.124a,b. Generation of tunable VUV radiation by resonant sum-frequency mixing in
metal vapors: (a) level scheme; (b) experimental arrangement

The efficiency may be greatly increased by resonance enhancement if,
for example, a resonant two-photon transition 2�ω1 = E1 → Ek can be uti-
lized as a first step of the sum-frequency generation ω = 2ω1 +ω2. This is
demonstrated by an early experiment shown in Fig. 5.124. The orthogonally
polarized outputs from two N2 laser-pumped dye lasers are spatially over-
lapped in a Glan–Thompson prism. The collinear beams of frequencies ω1
and ω2 are then focused into a heat pipe containing the atomic metal vapor.
One laser is fixed at half the frequency of an appropriate two-photon transi-
tion and the other is tuned. For a tuning range of the dye laser between 700
and 400 nm achievable with different dyes, tunable VUV radiation at the fre-
quencies ω = 2ω1 +ω2 is generated, which can be tuned over a large range.
Third-harmonic generation can be eliminated in this experiment by using cir-
cularly polarized ω1 and ω2 radiation, since the angular momentum will not
be conserved for frequency tripling in an isotropic medium under these condi-
tions. The sum frequency ω = 2ω1 +ω2 corresponds to an energy level beyond
the ionization limit [5.268–5.272].

Windows cannot be used for wavelengths below 120 nm because all ma-
terials absorb the radiation, therefore apertures and differential pumping is
needed. An elegant solution is the VUV generation in pulsed laser jets
(Fig. 5.125), where the density of wanted molecules within the focus of the
incident lasers can be made large without having too much absorption for the
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Fig. 5.125. Generation of VUV radiation by resonant frequency mixing in a jet [5.273]

generated VUV radiation because the molecular density is restricted to the
small path length across the molecular jet close to the nozzle [5.273–5.278].
The output of a tunable dye laser is frequency doubled in a BBO crystal. Its
UV radiation is then focused into the gas jet where frequency tripling oc-
curs. The VUV radiation is now collimated by a parabolic mirror and imaged
into a second molecular beam within the same vacuum chamber, where the
experiment is performed.

An intense coherent tunable Fourier-transform-limited narrow-band all-
solid-state vacuum-ultraviolet (VUV) laser system has been developed by
Merkt and coworkers [5.261]. Its bandwidth is less than 100 MHz and the tun-
ing range covers a wide spectral interval around 120,000 cm−1 (15 eV). At
a repetition rate of 20 Hz the output reaches 108 photons per pulse, which
corresponds to an energy of 0.25 nJ per pulse, a peak power of 25 mW for
a pulse length of 10 ns, and an average power of 5 nW. For these short VUV
wavelengths of around λ = 80 nm this is remarkable and is sufficient for many
experiments in the VUV.

Its principle is illustrated in Fig. 5.126: The setup consists of two cw
Ti:sapphire near-infrared single-mode ring lasers with wavenumbers ν1 and
ν2. The output radiation of these lasers is amplified by nanosecond pump
laser pulses, resulting in amplified Fourier-limited pulses in the near IR.
Tunable VUV radiation with wavenumbers νVUV = 2(ν3)+ ν2 was pro-
duced by resonance-enhanced sum-frequency mixing in a supersonic jet of
xenon, using the two-photon resonance (5p)6S0 → (5p)56p(1/2) (J = 0) at
2ν3 = 80,119 cm−1. The tripled wavenumber ν3 = 3ν1 was produced by gen-
erating the third harmonics of ν1 in successive KDP and BBO crystals. While
the wavenumber ν3 was fixed, the infrared wavenumber ν2 could be tuned be-
tween 12,000−13,900 cm−1, and therefore the VUV wavenumber could be
tuned over 1900 cm−1.

More information on the generation of VUV radiation by nonlinear mixing
techniques can be found in [5.262–5.281].
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Fig. 5.126. Narrow-band VUV laser source. The upper part displays the generation of
amplified NIR pulses from two cw ring Ti:sapphire lasers with pulse amplification in
a multipass amplifier arrangement. The middle part shows the KDP and BBO crystals
for sum-frequency generation. The VUV radiation is generated in a Xe jet shown in the
lower part [5.280]

5.8.6 X-Ray Lasers

For many problems in atomic, molecular, and solid-state physics intense
sources of tunable X-rays are required. Examples are inner-shell excitation
of atoms and molecules or spectroscopy of multiply charged ions. Until now,
these demands could only partly be met by X-ray tubes or by synchrotron
radiation. The development of lasers in the spectral range below 100 nm is
therefore of great interest.

According to (2.22), the spontaneous transition probability Ai scales with
the third power ν3 of the emitted frequency. The losses of upper-state popula-
tion Ni by fluorescence are therefore proportional to Aihν ∝ ν4! This means
that high pumping powers are required to achieve inversion. Therefore only
pulsed operation has a chance to be realized where ultrashort laser pulses
with high peak powers are used as pumping sources. Possible candidates
that can serve as active media for X-ray lasers are highly excited multi-
ply charged ions. They can be produced in a laser-induced high-temperature
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Fig. 5.127a–c. Experimental setup for realizing X-ray lasers: (a) production of high-
temperature plasma; (b) X-ray resonator using Bragg reflection by crystals; (c) measure-
ment of single-pass gain and line narrowing

plasma (Fig. 5.127). If the pump laser beam is focused by a cylindrical lens
onto the target, a high-temperature plasma is produced along the focal line.
The q-fold ionized species with nuclear charge z · e in the plasma plume re-
combine with electrons to form Rydberg states of ions with electron charge
Qel = −(z −q +1). In favorable cases these high Rydberg levels are more
strongly populated than lower states of this ion and inversion is achieved
(Fig. 5.128). The conditions for achieving inversion and thus amplification of
X-ray radiation can only be maintained for very short times (on the order of
picoseconds).

An example of X-ray amplification in nickel-like palladium Pd18+ is
shown in Fig. 5.128, where a terawatt laser pulse created a hot plasma from
a palladium surface. By recombining electrons with highly charged palladium
ions, inversion between two Rydberg states of Pd18+ could be achieved, re-
sulting in an intense laser line at λ = 14.7 nm [5.274, 5.275].

An efficient way to generate inversion is to use double pulses [5.276],
where the first pulse heats and explodes a thin metal foil, producing a hot
plasma. The second pulse further ionizes the plasma, generating highly
charged ions, which can recombine with electrons creating inversion between
two Rydberg levels (Fig. 5.129).

In order to improve the efficiency of X-ray lasers below 20 nm, a grazing
incidence pumping scheme has been proposed that should allow inversion to
be achieved with pump pulse energies of below 150 mJ [5.276]. A preformed
plasma is first produced in a flat target by a laser pulse in order to generate the
optimum gain region. Then a second short pulse (1 ps, λ = 800 nm) is released
at a grazing angle to strongly heat this gain region, producing efficient on-axis
X-ray lasing.



376 5. Lasers as Spectroscopic Light Sources

Fig. 5.128. An emission
line from an X-ray laser
on a transition between
Rydberg states of nickel-
like Pd18+ [5.274]

Fig. 5.129. Level scheme for inversion by ion–electron recombi-
nation

Fig. 5.130. Double pulses for creating and further ionizing the plasma generated by the
first pulse [5.276]
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Such soft X-ray lasers have already been realized [5.277–5.284]. The
shortest wavelength reported to date is 6 nm [5.283]. Resonators for X-ray
lasers can be composed of Bragg reflectors, which consist of suitable crystals
that can be tilted to fulfill the Bragg condition 2d · sin ϑ = m ·λ for construc-
tive interference between the partial waves reflected by the crystal planes with
distance d (Fig. 5.127b).

Another way to realize coherent X-ray radiation is based on the genera-
tion of high harmonics of high-power femtosecond laser pulses (see Vol. 2,
Chap. 6). More detailed information on this interesting subject can be found
in [5.282–5.289].

5.8.7 Difference-Frequency Spectrometer

While generation of sum frequencies yields tunable ultraviolet radiation by
mixing the output from two lasers in the visible range, the phase-matched
generation of difference frequencies allows one to construct tunable coherent
infrared sources. One early example is the difference-frequency spectrome-
ter of Pine [5.290], which has proved to be very useful for high-resolution
infrared spectroscopy.

Two collinear cw beams from a stable single-mode argon laser and a tun-
able single-mode dye laser are mixed in a LiNbO3 crystal (Fig. 5.131). For
90◦ phase matching of collinear beams, the phase-matching condition

k(ω1 −ω2) = k(ω1)−k(ω2) ,

can be written as |k(ω1 −ω2)| = |k(ω1)|− |k(ω2)|, which gives for the refrac-
tive index n = c(k/ω) the relation

n(ω1 −ω2) = ω1n(ω1)−ω2n(ω2)

ω1 −ω2
. (5.128)

The whole spectral range from 2.2 to 4.2 μm can be continuously covered by
tuning the dye laser and the phase-matching temperature of the LiNbO3 crys-
tal (−0.12 ◦C/cm−1). The infrared power is, according to (5.114), (5.124b),
proportional to the product of the incident laser powers and to the square of
the coherence length. For typical operating powers of 100 mW (argon laser)
and 10 mW (dye laser), a few microwatts of infrared radiation is obtained.

Fig. 5.131. Difference-frequency spectrometer [5.291]
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This is 104 to 105 times higher than the noise equivalent input power of stan-
dard IR detectors.

The spectral linewidth of the infrared radiation is determined by that of the
two pump lasers. With frequency stabilization of the pump lasers, a linewidth
of a few megahertz has been reached for the difference-frequency spec-
trometer. In combination with a multiplexing scheme devised for calibration,
monitoring, drift compensation, and absolute stabilization of the difference
spectrometer, a continuous scan of 7.5 cm−1 has been achieved with a repro-
ducibility of better than 10 MHz [5.291].

A very large tuning range has been achieved with a cw laser spectrometer
based on difference-frequency generation in AgGaS2 crystals. By mixing the
output of two single-mode tunable dye lasers, infrared powers up to 250 μW
have been generated in the spectral range 4−9 μm (Fig. 5.132) [5.293]. Even
more promising is the difference-frequency generation of two tunable diode
lasers (Fig. 5.131), which allows the construction of a very compact and much
cheaper difference-frequency spectrometer [5.293–5.295].

A simple and portable DFG-spectrometer for in-field trace gas analysis
was constructed by P. Hering and his group [5.296].

Using quasi-phase matching in a periodically poled LiNbO3 waveguide
structure, a DFG-device with high output power tunable around 1.5 μm was
reported in [5.297], where a Ti:sapphire laser at λ = 748 nm and a tunable
erbium fiber laser were mixed in the nonlinear crystal.

Fig. 5.132. Difference-frequency spectrometer based on mixing a cw Ti:sapphire ring laser
with a single-frequency III–V diode laser in the nonlinear crystal AgGaS2 [5.292]
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Fig. 5.133. Difference-frequency spectrometer with diode lasers [5.258]

Of particular interest are tunable sources in the far infrared region where
no microwave generators are available and incoherent sources are very weak.
With selected crystals such as proustite (Ag3AsS3), LiNbO3, or GaAs, phase
matching for difference-frequency generation can be achieved for the mid-
dle infrared using CO2 lasers and spin-flip Raman lasers. The search for new
nonlinear materials will certainly enhance the spectroscopic capabilities in the
whole infrared region [5.298].

A very useful frequency-mixing device is the MIM diode (Sect. 4.5.2),
which allows the realization of continuously tunable FIR radiation cover-
ing the difference-frequency range from the microwave region (GHz) to the
submillimeter range (THz) [5.299–5.301]. It consists of a specially shaped
tungsten wire with a very sharp tip that is pressed against a nickel surface cov-
ered with a thin layer of nickel oxide (Fig. 4.97). If the beams of two lasers
with freqencies ν1 and ν2 are focused onto the contact point (Fig. 5.134),
frequency mixing due to the nonlinear response of the diode occurs. The tung-
sten wire acts as an antenna that radiates waves at the difference frequency
(ν1 −ν2) into a narrow solid angle corresponding to the antenna lobe. These
waves are collimated by a parabolic mirror with a focus at the position of the
diode.

Using CO2 lasers with different isotope mixtures, laser oscillation on sev-
eral hundred lines within the spectral range between 9 and 10 μm can be
achieved. This laser oscillation can be fine-tuned over the pressure-broadened
gain profiles. Therefore their difference frequencies cover the whole FIR re-
gion with only small gaps. These gaps can be closed when the radiation of
a tunable microwave generator is additionally focused onto the MIM mixing
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Fig. 5.134. Generation of tunable
FIR radiation by frequency mix-
ing of two CO2 laser beams with
a microwave in a MIM diode

diode. The waves at frequencies

ν = ν1 −ν2 ±νMW

represent continuous tunable collimated coherent radiation, which can be used
for absorption spectroscopy in the far infrared [5.301, 5.302].

5.8.8 Optical Parametric Oscillator

The optical parametric oscillator (OPO) [5.303–5.310] is based on the para-
metric interaction of a strong pump wave Ep cos(ωpt −kp ·r) with molecules
in a crystal that have a sufficiently large nonlinear susceptibility. This inter-
action can be described as an inelastic scattering of a pump photon �ωp by
a molecule where the pump photon is absorbed and two new photons �ωs and
�ωi are generated. Because of energy conservation, the frequencies ωi and ωs
are related to the pump frequency ωp by

ωp = ωi +ωs . (5.129)

Analogous to the sum-frequency generation, the parametrically generated pho-
tons ωi and ωs can add up to a macroscopic wave if the phase-matching
condition

kp = ki +ks (5.130)

is fulfilled, which may be regarded as the conservation of momentum for the
three photons involved in the parametric process. Simply stated, parametric
generation splits a pump photon into two photons that satisfy conservation
of energy and momentum at every point in the nonlinear crystal. For a given
wave vector kp of the pump wave, the phase-matching condition (5.130) se-
lects, out of the infinite number of possible combinations ω1 +ω2 allowed by
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(5.129), a single pair (ωi, ki) and (ωs, ks) that is determined by the orienta-
tion of the nonlinear crystal with respect to kp. The two resulting macroscopic
waves Es cos(ωst −ks · r) and Ei cos(ωit −ki · r) are called the signal wave
and idler wave. The most efficient generation is achieved for collinear phase
matching where kp||ki||ks. For this case, the relation (5.120) between the re-
fractive indices gives

npωp = nsωs +niωi . (5.131)

If the pump is an extraordinary wave, collinear phase matching can be
achieved for some angle θ against the optical axis, if np(θ), defined by
(5.121), lies between no(ωp) and ne(ωp).

The gain of the signal and idler waves depends on the pump intensity and
on the effective nonlinear suceptibility. Analogous to the sum- or difference-
frequency generation, one can define a parametric gain coefficient per unit
pathlength Γ = Is/Ip or Ii/Ip

Γ = ωiωs|d|2|Ep|2
ninsc2 = 2ωiωs|d|2 Ip

ninsnpε0c3 , (5.132)

which is proportional to the pump intensity Ip and the square of the effec-
tive nonlinear susceptibility |d| = χ

(2)
eff . For ωi = ωs, (5.132) becomes identical

with the gain coefficient for SHG in (5.124b).
If the nonlinear crystal that is pumped by the incident wave Ep is placed

inside a resonator, oscillation on the idler or signal frequencies can start when
the gain exceeds the total losses. The optical cavity may be resonant for both
the idler and signal waves (doubly-resonant oscillator) or for only one of the
waves (singly-resonant oscillator) [5.307]. Often, the cavity is also resonant
for the pump wave in order to increase Ip and thus the gain coefficient Γ .

Figure 5.135 shows schematically the experimental arrangement of a col-
linear optical parametric oscillator. Due to the much higher gain, pulsed
operation is generally preferred where the pump is a Q-switched laser source.
The threshold of a doubly-resonant oscillator occurs when the gain equals the
product of the signal and idler losses. If the resonator mirrors have high re-
flectivities for both the signal and idler waves, the losses are small, and even
cw parametric oscillators can reach threshold [5.311]. For singly-resonant cav-
ities, however, the losses for the nonresonant waves are high and the threshold
increases.

Example 5.38.
For a 5-cm long 90◦ phase-matched LiNbO3 crystal pumped at λp =
0.532 μm, threshold is at 38-mW pump power for the doubly-resonant cav-
ity with 2% losses at ωi and ωs. For the singly-resonant cavity, threshold
increases by a factor of 100 to 3.8 W [5.308].

Tuning of the OPO can be accomplished either by crystal rotation or
by controlling the crystal temperature. The tuning range of a LiNbO3 OPO,
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Fig. 5.135a,b. Optical parametric oscillator: (a) schematic diagram of experimental ar-
rangement; (b) pairs of wavelengths (λ1, λ2) for idler and signal wave for collinear phase
matching in LiNbO3 as a function of angle θ [5.305]

Fig. 5.136. Temperature tuning curves of signal and idler wavelengths for a LiNbO3 op-
tical parametric oscillator pumped by different pump wavelengths [5.307]
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pumped by various frequency-doubled wavelengths of a Q-switched Nd:YAG
laser, extends from 0.55 to about 4 μm. Turning the crystal orientation by only
4◦ covers a tuning range between 1.4 and 4.4 μm (Fig. 5.135b). Figure 5.136
shows temperature tuning curves for idler and signal waves generated in
LiNbO3 by different pump wavelengths. Angle tuning has the advantage of
faster tuning rates than in the case of temperature tuning.

Previously, one of the drawbacks of the OPO was the relatively low
damage threshold of available nonlinear crystals. The growth of advanced ma-
terials with high damage thresholds, large nonlinear coefficients, and broad
transparency spectral ranges has greatly aided the development of widely tun-
able and stable OPOs [5.309]. Examples are BBO (β-barium borate) and
lithium borate (LBO) [5.310]. For illustration of the wide tuning range,
Fig. 5.137 displays wavelength tuning of the BBO OPO for different pump
wavelengths.

The bandwidth of the OPO depends on the parameters of the resonator,
on the linewidth of the pump laser, on the pump power, and, because of the
different slopes of the tuning curves in Figs. 5.136, 5.137, also on the wave-
length. Typical bandwidths are 0.1−5 cm−1. Detailed spectral properties de-
pend on the longitudinal mode structure of the pump and on the resonator
mode spacing Δν = (c/2L) for the idler and signal standing waves. For the
singly-resonant oscillator the cavity has to be adjusted to only one frequency,
while the nonresonant frequency can be adjusted so that ωp = ωi +ωs is sat-
isfied. There are several ways to narrow the bandwidths of the OPO. With
a tilted etalon inside the resonator of a singly-resonant cavity, single-mode
operation can be achieved. Frequency stability of a few MHz has been demon-
strated [5.312]. Another possibility is injection seeding. Stable single-mode
operation was, for example, obtained by injecting the beam of a single-mode
Nd:YAG pump-laser into the OPO cavity [5.313]. Using a single mode cw
dye laser as the injection seeding source, tunable pulsed OPO-radiation with
linewidths below 500 MHz have been achieved. A seed power of 0.3 mW(!)

Fig. 5.137. Wavelengths of signal and idler waves in BBO as a function of the phase-
matching angle ϑ for different pump wavelengths λp [5.310]
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Fig. 5.138. Three-mirror resonator for tunable cw OPO, resonant for pump and idler
with polarization beam splitter and separately controlled cavity lengths M1 M2 and M3 M2
[5.315]

was sufficient for stable single-mode OPO operation. The pump threshold can
be lowered with a doubly-resonant resonator. However, the simple cavity of
Fig. 5.135 cannot be kept in resonance for two different wavelengths, if these
wavelengths are tuned. Here the three-mirror cavity of Fig. 5.138 solves this
problem. Since the polarizations of the pump wave and the idler wave are gen-
erally orthogonal, a polarization beam splitter PBS splits both waves, which
now experience resonant enhancement in the resonator M1M2 or M3M2.
When the pump wavelength λp (a dye laser is used as pump source) is tuned,
both cavities can be controlled by piezos to keep in resonance [5.315]. Fre-
quency stabilities of below the 1-kHz level can be achieved [5.316]. The
tuning range for collinear phase matching can be greatly extended by quasi
phase matching in periodically poled LiNbO3 (PPLN) (Fig. 5.139). Mean-
while, cw OPOs are commercially available [5.317].

Impressive progress has been achieved with femtosecond optical para-
metric amplifiers, which can be used as ultrashort pulse generators with
wavelengths tunable over a wide spectral range. They will be discussed in
Vol. 2, Chap. 6.

A good survey on different aspects of OPOs can be found in [5.314].

Fig. 5.139. High-power cw OPO with periodically poled LiNbO3 crystal with temperature
control in a ring cavity [5.317]
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5.8.9 Tunable Raman Lasers

The tunable “Raman laser” may be regarded as a parametric oscillator based
on stimulated Raman scattering. Since stimulated Raman scattering is dis-
cussed in more detail in Vol. 2, Sect. 3.3, we here summarize only very briefly
the basic concept of these devices.

The ordinary Raman effect can be described as an inelastic scattering of
pump photons �ωp by molecules in the energy level Ei . The energy loss
�(ωp −ωs) of the scattered Stokes photons �ωs is converted into excitation
energy (vibrational, rotational, or electronic energy) of the molecules

�ωp + M(Ei) → M∗(E f )+�ωs , (5.133)

where E f − Ei = �(ωp −ωs). For the vibrational Raman effect this process
can be interpreted as parametric splitting of the pump photon �ωp into
a Stokes photon �ωs and an optical phonon �ωv representing the molecular
vibrations (Fig. 5.140a). The contributions �ωs from all molecules in the in-
teraction region can add up to macroscopic waves when the phase-matching
condition

kp = ks +kv ,

is fulfilled for the pump wave, the Stokes wave, and the phonon wave. In this
case, a strong Stokes wave Es cos(ωst −ks · r) develops with a gain that de-
pends on the pump intensity and on the Raman scattering cross section. If
the active medium is placed in a resonator, oscillation arises on the Stokes
component as soon as the gain exceeds the total losses. Such a device is
called a Raman oscillator or Raman laser, although, strictly speaking, it is
not a laser but a parametric oscillator.

Those molecules that are initially in excited vibrational levels can give rise
to superelastic scattering of anti-Stokes radiation, which has gained energy
(�ωs −�ωp) = (Ei − E f ) from the deactivation of vibrational energy.

Fig. 5.140. (a) Term diagram of Raman processes with several Stokes and anti-Stokes
lines at frequencies ν = νp ±mνv; (b) spectral distribution of Raman lines and their over-
tones



386 5. Lasers as Spectroscopic Light Sources

The Stokes and the anti-Stokes radiation have a constant frequency shift
against the pump radiation, which depends on the vibrational eigenfrequen-
cies ωv of the molecules in the active medium.

ωs = ωp −ωv , ωas = ωp +ωn... .

If the Stokes or anti-Stokes wave becomes sufficiently strong, it can again
produce another Stokes or anti-Stokes wave at ω

(2)
s = ω

(1)
s −ωv = ωp −2ωv

and ω
(2)
as = ωp + 2ωv. Therefore, several Stokes and anti-Stokes waves are

generated at frequencies ω
(n)
s = ωp − nωv: ω

(n)
as = ωp + nωv (n = 1, 2, 3, ...)

(Fig. 5.140b). Tunable lasers as pumping sources therefore allow one to
transfer the tunability range (ωp ±Δω) into other spectral regions (ωp ±Δω
±nωv).

The experimental realization uses a high-pressure cell filled with a molec-
ular gas (H2, N2, CO, etc.) at pressures of up to 100 bar. The pump laser is
either focussed into the gas cell with a lens of long focal length or a wave-
guide structure is used (Fig. 5.141) where the pump laser beam is totally
reflected at the walls of the waveguide, thus increasing the pathlength in the
gain medium.

Stimulated Raman scattering (SRS) of dye laser radiation in hydrogen gas
can cover the whole spectrum between 185 and 880 nm without any gaps,
using three different laser dyes and frequency doubling the dye laser radia-
tion [5.318]. A broadly tunable IR waveguide Raman laser pumped by a dye
laser can cover the infrared region from 0.7 to 7 μm without gaps, using SRS

Fig. 5.141. Infrared Raman waveguide laser in compressed hydrogen gas H2, pumped by
a tunable dye laser. The frequency-doubled output beam of a Nd:YAG laser is split by BS
in order to pump a dye laser oscillator and amplifier. The dye laser oscillator is composed
of mirror M, grating G, and beam-expanding prism BEP. The different Stokes lines are
separated by the prism P (ODC: oscillator dye cell) [5.319]
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Fig. 5.142. Optical fiber as Raman gain medium

up to the third Stokes order (ωs = ωp −3ωv) in compressed hydrogen gas.
Energy conversion efficiencies of several percent are possible and output pow-
ers in excess of 80 kW for the third Stokes component (ωp −3ωv) have been
achieved [5.319].

Instead of a high-pressure gas cell, solid bulk crystals can also be used as
Raman gain medium. Because of their high density, the gain per cm is much
higher and shorter pathlengths can be sufficient to obtain a high conversion ef-
ficiency. This can be further enhanced if the crystal is placed inside the pump
laser resonator where the pump power is much higher.

If the gain medium is an optical fiber a long pathlength can be realized
and the threshold is therefore low, which means that a low-power pump laser
can be used. Since the most of the pump power is confined inside the core
of the fiber by total reflection at the boundary between cladding and core
(Fig. 5.142), the pump intensity inside the core is high. Even cw operation of
Raman lasers has been demonstrated with silicon as the gain medium [5.320].

The pump radiation can be also coupled into the cladding of the optical
fiber, from where it can enter the core. Such cladding-pumped fiber Raman
lasers can deliver higher output powers [5.321, 5.322].

Fiber Raman lasers play an important role in telecommunication networks,
where optical fibers are used as pump sources for the signal wave [5.323].

For infrared spectroscopy, Raman lasers pumped by the numerous intense
lines of CO2, CO, HF, or DF lasers may be advantageous. Besides the vibra-
tional Raman scattering, the rotational Raman effect can be utilized, although
the gain is much lower than for vibrational Raman scattering, due to the
smaller scattering cross section. For instance, H2 and D2 Raman lasers ex-
cited with a CO2 laser can produce many Raman lines in the spectral range
from 900 to 400 cm−1, while liquid N2 and O2 Raman lasers pumped with an
HF laser cover a quasi-continuous tuning range between 1000 and 2000 cm−1.
With high-pressure gas lasers as pumping sources, the small gaps between
the many rotational–vibrational lines can be closed by pressure broadening
(Sect. 3.3) and a true continuous tuning range of IR Raman lasers in the far
infrared region becomes possible. Recently, a cw tunable Raman oscillator has
been realized that utilizes as active medium a 650-m long single-mode silica
fiber pumped by a 5-W cw Nd:YAG laser. The first Stokes radiation is tunable
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from 1.08 to 1.13 μm, the second Stokes from 1.15 to 1.175 μm [5.324]. With
stimulated Raman scattering up to the seventh anti-Stokes order, efficient tun-
able radiation down to 193 nm was achieved when an excimer-laser pumped
dye laser tunable around 440 nm was used [5.325].

A more detailed presentation of IR Raman lasers may be found in the re-
view by Grasiuk et al. [5.326] and in [5.327–5.330].

5.9 Gaussian Beams

In Sect. 5.2 we saw that the radial intensity distribution of a laser oscillating in
the fundamental mode has a Gaussian profile. The laser beam emitted through
the output mirror therefore also exhibits this Gaussian intensity profile. Al-
though such a nearly parallel laser beam is in many respects similar to a plane
wave, it shows several features that are different but that are important when
the Gaussian beam is imaged by optical elements, such as lenses or mirrors.
Often the problem arises of how to match the laser output to the fundamental
mode of a passive resonator, such as a confocal spectrum analyzer or external
enhancement cavities (Sect. 4.3). We therefore briefly discuss some proper-
ties of Gaussian beams; our presentation follows that of the recommendable
review by Kogelnik and Li [5.24].

A laser beam traveling into the z-direction can be represented by the field
amplitude

E = A(x, y, z)e−i(ωt−kz) with k = ω

c
. (5.134)

While A(x, y, z) is constant for a plane wave, it is a slowly varying com-
plex function for a Gaussian beam. Since every wave obeys the general wave
equation

ΔE + k2 E = 0 , (5.135)

we can obtain the amplitude A(x, y, z) of our particular laser wave by insert-
ing (5.134) into (5.135). We assume the trial solution

A = e−i[ϕ(z)+(k/2q)r2] , (5.136)

where r2 = x2 + y2, and ϕ(z) represents a complex phase shift. In order to un-
derstand the physical meaning of the complex parameter q(z), we express it
in terms of two real parameters w(z) and R(z)

1

q
= 1

R
− i

λ

πw2 . (5.137)

With (5.137) we obtain from (5.136) the amplitude A(x, y, z) in terms of R,
w, and ϕ

A = exp

(
− r2

w2

)
exp

[
−i

kr2

2R(z)
− iϕ(z)

]
. (5.138)
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Fig. 5.143. (a) Gaussian beam with beam waist w0 and phase-front curvature R(z); (b) ra-
dial dependence of the amplitude A(r) with r = (x2 + y2)1/2 [5.24]

This illustrates that R(z) represents the radius of curvature of the wavefronts
intersecting the axis at z (Fig. 5.143), and w(z) gives the distance r = (x2 +
y2)1/2 from the axis where the amplitude has decreased to 1/e and thus
the intensity has decreased to 1/e2 of its value on the axis (Sect. 5.2.3 and
Fig. 5.11). Inserting (5.138) into (5.135) and comparing terms of equal power
in r yields the relations

dq

dz
= 1 , and

dϕ

dz
= −i/q , (5.139)

which can be integrated and gives, with R(z = 0) = ∞ from (5.137)

q(z) = q0 + z = i
πw2

0

λ
+ z , (5.140a)

where q0 = q(z = 0) and w0 = w(z = 0) (Fig. 5.143) and when we measure z
from the beam waist at z = 0.

From (5.140a) we obtain:

1

q(z)
= 1

q0 + z
= 1

z + iπw2
0/λ

. (5.140b)

Multiplying nominator and denominator with z − iπw2
0/λ yields

1

q(z)
= z

z2 + (πw2
0/λ
)2 − i

λ

πw2
0

(
1+ (λz/πw2

0

)2)

= 1

R
− i

λ

πw2 (5.140c)

where the last line equals (5.137).
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This gives for the beam waist w(z) and the radius of curvature R(z) the
relations:

w2(z) = w2
0

⎡

⎣1+
(

λz

πw2
0

)2
⎤

⎦ , (5.141)

R(z) = z

⎡

⎣1+
(

πw2
0

λz

)2
⎤

⎦ . (5.142)

Integration of the phase relation (5.139)

dϕ

dz
= −i/q = − i

z + iπw2
0/λ

,

yields the z-dependent phase factor

iϕ(z) = ln
√

1+ (λz/πw2
0)− i arctan(λz/πw2

0) . (5.143)

Having found the relations between ϕ, R, and w, we can finally express the
Gaussian beam (5.134) by the real beam parameters R and w. From (5.143)
and (5.138), we get

E = C1
w0

w
e(−r2/w2) e[ik(z−r2/2R)−iφ] e−iωt . (5.144)

The first exponential factor gives the radial Gaussian distribution, the second
the phase, which depends on z and r. We have used the abbreviation

φ = arctan(λz/πw2
0) .

The factor C1 is a normalization factor. When we compare (5.144) with the
field distribution (5.30) of the fundamental mode in a laser resonator, we see
that both formulas are identical for m = n = 0.

The radial intensity distribution (Fig. 5.144) is

I(r, z) = cε0

2
|E|2 = C2

w2
0

w2 exp

(
−2r2

w2

)
. (5.145)

Fig. 5.144. Radial intensity profile of a Gaussian
beam
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The normalization factor C2 allows

∞∫

r=0

2πrI(r)dr = P0 (5.146)

to be normalized, which yields C2 = (2/πw2
0)P0, where P0 is the total power

in the beam. This yields

I(r, z) = 2P0

πw2 exp

(
− 2r2

w(z)2

)
. (5.147)

When the Gaussian beam is sent through an aperture with diameter 2a, the
fraction

Pt

Pi
= 2

πw2

a∫

r=0

2rπe−2r2/w2
dr = 1− e−2a2/w2

, (5.148)

of the incident power is transmitted through the aperture. Figure 5.145 illus-
trates this fraction as a function of a/w. For a = (3/2)w 99% of the incident
power is transmitted, and for a = 2w more than 99.9% of the incident power
is transmitted. In this case diffraction losses are therefore negligible.

A Gaussian beam can be imaged by lenses or mirrors, and the imaging
equations are similar to those of spherical waves. When a Gaussian beam
passes through a focusing thin lens with focal length f , the spot size ws is
the same on both sides of the lens (Fig. 5.146). The radius of curvature R of
the phase fronts changes from R1 to R2 in the same way as for a spherical
wave, so that

1

R2
= 1

R1
− 1

f
. (5.149)

Fig. 5.145. Fraction Pt/Pi of
the incident power Pi of
a Gaussian beam transmitted
through an aperture with ra-
dius a
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Fig. 5.146. Imaging of a Gaussian beam by a thin lens

The beam parameter q therefore satisfies the imaging equation

1

q2
= 1

q1
− 1

f
. (5.150)

If q1 and q2 are measured at the distances d1 and d2 from the lens, we obtain
from (5.150) and (5.140) the relation

q2 = (1−d2/ f)q1 + (d1 +d2 −d1d2/ f)

(1−d1/ f)−q1/ f
, (5.151)

which allows the spot size w and radius of curvature R at any distance d2
behind the lens to be calculated.

If, for instance, the laser beam is focused into the interaction region with
absorbing molecules, the beam waist of the laser resonator has to be trans-
formed into a beam waist located in this region. The beam parameters in the
waists are purely imaginary, because in the focal plane is R = ∞; that is, from
(5.137) we obtain

q1 = iπw2
1/λ , q2 = iπw2

2/λ . (5.152)

The beam diameters in the waists are 2w1 and 2w2, and the radius of curva-
ture is infinite. Inserting (5.152) into (5.151) and equating the imaginary and
the real parts yields the two equations

d1 − f

d2 − f
= w2

1

w2
2

, (5.153)

(d1 − f)(d2 − f) = f 2 − f 2
0 , with f0 = πw1w2/λ . (5.154)

Since d1 > f and d2 > f , this shows that any lens with f > f0 can be used.
For a given f , the position of the lens is determined by solving the two equa-
tions for d1 and d2,

d1 = f ± w1

w2

√
f 2 − f 2

0 , (5.155)

d2 = f ± w2

w1

√
f 2 − f 2

0 . (5.156)
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From (5.153) we obtain the beam waist radius w2 in the collimated region

w2 = w1

(
d2 − f

d1 − f

)1/2

. (5.157)

When the Gaussian beam is mode-matched to another resonator, the beam pa-
rameter q2 at the mirrors of this resonator must match the curvature R of the
mirror and the spot size w in (5.39). From (5.151), the correct values of f ,
d1, and d2 can be calculated.

We define the collimated or waist region as the range |z| ≤ zR around the
beam waist at z = 0, where at z = ±zR the spot size w(z) has increased by
a factor of

√
2 compared with the value w0 at the waist. Using (5.141) we

obtain

w(z) = w0

⎡

⎣1+
(

λzR

πw2
0

)2
⎤

⎦
1/2

= √
2w0 , (5.158)

which yields for the waist length or Rayleigh length

zR = πw2
0/λ . (5.159)

The waist region extends about one Rayleigh distance on either side of the
waist (Fig. 5.147). The length of the Rayleigh distance depends on the spot
size and therefore on the focal length of the focusing lens. Figure 5.148 de-
picts the dependence on w0 of the full Rayleigh length 2zR for two different
wavelengths.

Fig. 5.147. Beam waist region and Rayleigh length
zR of a Gaussian beam

Fig. 5.148. Full Rayleigh lengths 2zR as a func-
tion of the beam waist w0 for two different
wavelengths λ1 = 632.8 nm (HeNe laser) and
λ2 = 10.6 μm (CO2 laser)
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Fig. 5.149. Focusing of a Gaussian beam by
a lens

At large distances z � zR from the waist, the Gaussian beam wavefront
is essentially a spherical wave emitted from a point source at the waist. This
region is called the far field. The divergence angle θ (far-field half angle) of
the beam can be obtained from (5.141) and Fig. 5.143 with z � zR as

θ = w(z)

z
= λ

πw0
. (5.160)

Note, however, that in the near-field region the center of curvature does not
coincide with the center of the beam waist (Fig. 5.143). When a Gaussian
beam is focused by a lens or a mirror with focal length f , the spot size in
the beam waist is for f � ws

w0 = fλ

πws
, (5.161)

where ws is the spot size at the lens (Fig. 5.149).
To avoid diffraction losses the diameter of the lens should be d ≥ 3ws.

Example 5.39.
A lens with f = 5 cm is imaging a Gaussian beam with a spot size of ws =
0.2 cm at the lens. For λ = 623 nm the focal spot has the waist radius w0 =
5 μm.

In order to achieve a smaller waist radius, one has to increase ws or
decrease f (Fig. 5.149).

Problems

5.1 Calculate the necessary threshold inversion of a gas laser transition at
λ = 500 nm with the transition probability Aik = 5×107 s−1 and a homoge-
neous linewidth Δνhom = 20 MHz. The active length is L = 20 cm and the
resonator losses per round-trip are 5%.

5.2 A laser medium has a Doppler-broadened gain profile of halfwidth 2 GHz
and central wavelength λ = 633 nm. The homogeneous width is 50 MHz, and
the transition probability Aik = 1×108 s−1. Assume that one of the resonator
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modes (L = 40 cm) coincides with the center frequency ν0 of the gain profile.
What is the threshold inversion for the central mode, and at which inversion
does oscillation start on the two adjacent longitudinal modes if the resonator
losses are 10%?

5.3 The frequency of a passive resonator mode (L = 15 cm) lies 0.5ΔνD away
from the center of the Gaussian gain profile of a gas laser at λ = 632.8 nm.
Estimate the mode pulling if the cavity resonance width is 2 MHz and ΔνD =
1 GHz.

5.4 Assume a laser transition with a homogeneous width of 100 MHz, while
the inhomogeneous width of the gain profile is 1 GHz. The resonator length
is d = 200 cm and the active medium with length L � d is placed 20 cm from
one end mirror. Estimate the spacing of the spatial hole-burning modes. How
many modes can oscillate simultaneously if the unsaturated gain at the line
center exceeds the losses by 10%?

5.5 Estimate the optimum transmission of the laser output mirror if the unsat-
urated gain per round trip is 2 and the internal resonator losses are 10%.

5.6 The output beam from an HeNe laser with a confocal resonator (R = L =
30 cm) is focused by a lens of f = 30 cm, 50 cm away from the output mirror.
Calculate the location of the focus, the Rayleigh length, and the beam waist
in the focal plane.

5.7 A nearly parallel Gaussian beam with λ = 500 nm is expanded by a tele-
scope with two lenses of focal lengths f1 = 1 cm and f2 = 10 cm. The spot
size at the entrance lens is w = 1 mm. An aperture in the common focal plane
of the two lenses acts as a spatial filter to improve the quality of the wave-
front in the expanded beam (why?). What is the diameter of this aperture, if
95% of the intensity is transmitted?

5.8 A HeNe laser with an unsaturated gain of G0(ν0) = 1.3 per round trip at
the center of the Gaussian gain profile with halfwidth 1.5 GHz has a resonator
length of d = 50 cm and total losses of 4%. Single-mode operation at ν0 is
achieved with a coated tilted etalon inside the resonator. Design the optimum
combination of etalon thickness and finesse.

5.9 An argon laser oscillating at λ = 488 nm with resonator length d = 100 cm
and two mirrors with radius R1 = ∞ and R2 = 400 cm has an intracavity cir-
cular aperture close to the spherical mirror to prevent oscillation on transversal
modes. Estimate the maximum diameter of the aperture that introduces losses
γdiffr < 1% for the TEM00 mode, but prevents oscillation of higher transverse
modes, which without the aperture have a net gain of 10%.

5.10 A single-mode HeNe laser with resonator length L = 15 cm is tuned by
moving a resonator mirror mounted on a piezo. Estimate the maximum tuning
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range before a mode hop will occur, assuming an unsaturated gain of 10% at
the line center and resonator losses of 3%. What voltage has to be applied to
the piezo (expansion 1 nm/V) for this tuning range?

5.11 Estimate the frequency drift of a laser oscillating at λ = 500 nm because
of thermal expansion of the resonator at a temperature drift of 1◦C/h, when
the resonator mirrors are mounted on distance-holder rods (a) made of invar
and (b) made of fused quartz.

5.12 Mode selection in an argon laser is often accomplished with an intra-
cavity etalon. What is the frequency drift of the transmission maximum

(a) for a solid fused quartz etalon with thickness d = 1 cm due to a tempera-
ture change of 2◦C?

(b) For an air-space etalon with d = 1 cm due to an air pressure change of
4 mb?

(c) Estimate the average time between two mode hopes (cavity length L =
100 cm) for a temperature drift of 1◦C/h or a pressure drift of 2 mbar/h.

5.13 Assume that the output power of a laser shows random fluctuations of
about 5%. Intensity stabilization is accomplished by a Pockels cell with a half-
wave voltage of 600 V. Estimate the ac output voltage of the amplifier driving
the Pockels cell that is necessary to stabilize the transmitted intensity if the
Pockels cell is operated around the maximum slope of the transmission curve.

5.14 A single-mode laser is frequency stabilized onto the slope of the trans-
mission maximum of an external reference Fabry–Perot interferometer made
of invar with a free spectral range of 8 GHz. Estimate the frequency stability
of the laser

(a) against temperature drifts, if the FPI is temperature stabilized within
0.01◦C,

(b) against acoustic vibrations of the mirror distance d in the FPI with ampli-
tudes of 1 nm.

(c) Assume that the intensity fluctuations are compensated to 1% by a dif-
ference amplifier. Which frequency fluctuations are still caused by the
residual intensity fluctuations, if a FPI with a free spectral range of 10 GHz
and a finesse of 50 is used for frequency stabilization at the slope of the
FPI transmission peak?
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Chapter 2

1. a) The spot size on the output mirror is

dA = πw2
s = π(0.1)2 cm2 = 3×10−2 cm2 .

The irradiance at the mirror is then

I1 = 1

π 10−2 W/cm2 ≈ 30 W/cm2 = 3×105 W/m2 .

The solid angle dΩ into which the laser beam is emitted is:

dΩ =
(

4×10−3
)2

/4π = 1.3×10−6 sr .

The radiance L of the laser is:

L = 1

dA dΩ
= 2×1011 W m−2 sr−1 .

At a surface at a distance z = 1 m from the mirror, the spot size is:

A2 = dA + z2 dΩ = 4.4×10−2 cm2 .

The intensity at the surface is:

I2 = 1

4.4×10−2

W

cm2
= 23 W/cm2 = 2.3×105 W/m2 .

b) For a spectral width δν = 1 MHz, the spectral power density at the mir-
ror is:

ρ1 = (I1/c)/δν = 10−9 Ws2/m3 .

This should be compared with the visible part of the solar radiation on
Earth, I ≈ 103 W/m2, δν = 3×1016 s−1 ⇒ ρSR = 10−22 Ws2/m3, which is
smaller by 13 orders of magnitude.

2. I = I0 e−αd

I‖ = I0 e−100·0.1 = I0 e−10 = 4.5×10−5 I0

I⊥ = I0 e−5·0.1 = I0 e−0.5 = 0.6I0 .
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3. I = P0

4πr2 = 100

4π(0.02)2

W

m2
= 2×104 W/m2

Iν = I

Δν
.

For
Δλ = 100 nm

λ = 400 nm

}
⇒ |Δν| = c

λ2 Δλ

= 1.8×1014 s−1

Iν = 2×104

1.8×1014

Ws

m2
= 1.1×10−10 Ws m−2

ρν = Iν/c = 3.6×10−19 Ws2 m−3 .

The spectral mode density is

n(ν) = 8πν2

c3 .

Within the volume of the sphere with r = 2 cm

V = 4

3
πr3 = 3.3×10−5 m3

are

N = n(ν) V Δν = 8πν2

c3 Δν V = 8π

c λ2 Δν V = 3×1015 modes .

The energy per mode is

Wm = ρν Δν V

N
= 7×10−25 Ws/mode .

The energy of a photon at λ = 400 nm is

E = hν = h
c

λ
= 4.95×10−19 Ws = 3.1 eV

⇒ The average number of photons per mode is

nph = Wm

hν
= 1.5×10−6 .

The average number of photons per mode is therefore very small.

4. I = I0 e−αx = 0.9I0

⇒ αx = − ln 0.9 ⇒ αx = 0.1 .

With x = 5 cm ⇒ α = 0.02 cm−1

α = Nσ ⇒ N = α

σ
= 0.02

10−14 cm−3 = 2×1012 cm−3 .
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5. a) τi = 1∑
Ain

= 1

13×107 s = 7.7 ns

dNn

dt
= Ni Ain − Nn An .

For stationary conditions dNn/dt = 0

⇒ Nn

Ni
= Ain

An
= Ainτn :

N1

Ni
= 3×107 ·5×10−7 = 15

N2

Ni
= 1×107 ·6×10−9 = 0.06

N3

Ni
= 5×107 ·10−8 = 0.5 .

b) With g0 = 1, gi = 3 we obtain:

B(0)
0i = gi

g0
Bi0 = 3Bi0 = 3c3

8πhν3 Ai0

= 4.6×1020 m3 W−1 s−3 .

If the absorption rate and total emission rate of level |i〉 should be equal,
we obtain:

B(ν)
0i ρν = Ai = 1.3×108 s−1

⇒ ρν = 1.3×108

4.6×1020 Ws2/m3 = 2.8×10−13 Ws2/m3 .

With a laser bandwidth of Δν2 = 10 MHz, the energy density is

ρ =
∫

ρν dν ≈ ρν Δν2 = 2.8×10−6 Ws/m3

⇒ I = cρ = 6.3×102 W/m2 = 63 mW/cm2 .

c) B(ν)
0i = c

hν

∫
σ0i dν ≈ c

hν
σ0i Δνa .

With Δνa = 1/τi ⇒ Δνa = 1/(2πτi) for the absorption linewidth, the ab-
sorption cross-section becomes:

σ0i = 4.3×10−14 m2 = 4.3×10−10 cm2 .

6. The Rabi flopping frequency for the resonance case ω = ωi2 is

Ω =
√

(Di2 E0/�)2 + (γ/2)2

where Di2 is the dipole matrix element and γ = (γi +γ2)/2.
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The relation between Di2 and the spontaneous transition probability Ai2
is

Ai2 = 16π2ν3

3ε0hc3
|Di2| 2 = 16π2

3ε0hλ3
|Di2| 2 .

This gives for Ω:

Ω2 = |Di2| 2 E2
0/�

2 + (γ/2)2 = 3ε0λ
3 Ai2

4h
+ (γ/2)2 .

With λ = 600 nm, Ai2 = 10−7 s−1 γ/2 = 1
4( 1

τi
+ 1

τ2
) = 7.7 ×107 s−1 we

obtain:

Ω2 =
(

2.17×109 E2
0 −5.5×1015

)
s−2 ≥ 1

τ2
2

= 2.8×1016 s−2

⇒ E2
0 ≥ 1.5×107 V2/m2 ⇒ E0 ≥ 3.9×103 V/m .

The intensity of the inducing field is then

I = cε0 E2
0 = 4×1014 W/m2

and the energy density

ρ = I/c = ε0 E2
0 = 1.33×106 Ws/m3 .

This can be compared with the intensity of the Sun’s radiation on Earth,
which is Isun ≈ 103 W/m2,

7. Dust particles on the lens L1 cause scattering of light in all directions.
This light is not focussed by L1, and therefore only a tiny fraction can
pass through the aperture. The same is true for imperfections of lenses or
mirror surfaces. Without the aperture the superposition of scattered light
or light with deformed wavefronts with the incident light causes interfer-
ence patterns. The aperture therefore “cleans” the Gaussian laser beam.

8. For coherent illumination of the slits, the following condition holds:

b2d2/r2 ≤ λ2 ⇒ d2 ≤ r2λ2/b2

where b = source diameter, d = slit separation, and r = distance between
source and slits.

a) b = 1 mm, r = 1 m, λ = 400 nm

⇒ d2 ≤ 1 ·16×10−14

10−6 = 16×10−8 m2

⇒ d ≤ 0.4 mm .
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b) b = 109 m, λ = 500 nm, r = 4 Ly = 3.78×1016 m

⇒ d2 ≤ 357 m2 ⇒ d ≤ 19 m .

c) Here the maximum slit separation d is limited by the coherence
length Lc of the laser beam, which depends on the spectral width ΔνL
of the laser radiation. With ΔνL = 1 MHz we obtain

Δsc = c

2πΔνL
= 47.7 m .

9. Induced and spontaneous transition probabilities are equal when the radi-
ation field contains one photon per mode. This means:

n = 1

ehν/kT −1
= 1 ⇒ ehν/kT = 2

⇒ T = hν

k ln 2
= hc

λk ln 2
.

a) For λ = 589 nm we obtain for a thermal radiation field:

T = 3.53×104 K .

If a laser beam is sent through a cavity with V = 1 cm3, the condition
Bikρ = Aik can be fulfilled at modest laser intensities. This can be esti-
mated as follows:
The number of modes in the cavity within the frequency interval ΔνL =
10 MHz (natural linewidth of the 3P–3S transition of Na) is

n dν = 8π

cλ2 dν = 2.4×106 /cm3 .

The energy of a photon at λ = 589 nm is hν = 3.36×10−19 Ws. With 1
photon per mode, the radiation density in the cavity with V = 1 cm3 is:

ρ = 8.06×10−13 Ws/cm3 .

The intensity of a laser beam with a spectral width of 10 MHz is then
inside the cavity

I = ρc = 24×10−3 W/cm2 = 24 mW/cm2 .

b) For ν = 1.77×109 s−1 we obtain

T = 0.12 K .

The energy density ρ of the thermal field within the natural linewidth
dν = 0.15 s−1 at T = 0.12 K is

ρ = ρν dν = n(ν) hν dν .
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With n(ν) = 8πν2

c3 = 2.9×10−12 /cm3

⇒ ρ = 5×10−37 Ws/cm3 .

This is 24 orders of magnitude smaller than the visible radiation in a).

10.
1

τeff
= 1

τsp
+nσv .

At p = 10 mb the atomic density is n = 3×1017 cm−3,
At T = 400 K the mean relative velocity is

v =
√

8kT

πμ
with μ = mN2 ×mNa

mN2 +mNa

= 12.6 AMU

1 AMU = 1.66×10−27 kg

⇒ v = 820 m/s = 8.2×104 cm/s

⇒ 1

τeff
= 109

16
+3×1017 ×4×10−15 ×8.2×104 s−1

= 1.62×108 s−1

⇒ τeff = 6.2 ns = 0.388τsp with τsp = 16 ns .

Chapter 3

1. The natural linewidth is

Δνn = 1

2π

(
1

τ(3s2)
+ 1

τ(2p4)

)

= 1

2π
(1.7×107 +5.6×107) s−1

= 11.6 MHz .

The Doppler width is

ΔνD = 7.16×10−7ν0
√

T/M

With ν0 = c/λ = 4.74×1014 s−1, T = 400 K, M = 20 AMU
⇒ ΔνD = 1.52×109 s−1 = 1.52 GHz .
The pressure broadening has two contributions:

a) by collisions with He atoms.

Δνp = 1

2π
(nHeσB(Ne−He)v .



Solutions 403

At p = 2 mb and T = 400 K
⇒ nHe = p/(kT) = 3.6×1016 cm−3

σB(Ne−He) = 6×10−14 cm2, v = 1.6×105 cm/s
⇒ Δνp = 5.5×107 s−1 = 55 MHz.

b) by collisions Ne−Ne (resonance broadening)

v(Ne−Ne) = 8.8×104 cm/s

σB(Ne−Ne) = 1×10−13 cm2

nNe = 3.6×1015 cm−3

⇒ Δνp(Ne−Ne) = 5 MHz .

The line shift is

Δνs(Ne−Ne) = 0.5 MHz .

The total pressure broadening is

Δνp = 55+5 = 60 MHz .

The total shift is

Δνs = 9+0.5 = 9.5 MHz .

2. n = p/kT
with p = 1 mb =̂ 102 Pa ⇒ n = 2.4×1022 m−3

v =
√

8kT

πμ
μ = 44×14z

191
AMU

⇒ v = 433 m/s .

a) The pressure-broadened linewidth is

Δνp = 1

2π
nσbv

with σb = 5×10−14 cm2 ⇒ Δνp = 8.3×106 s−1 = 8.3 MHz.
The saturation broadening of the homogeneous linewidth Δνp is

Δνs = Δνp
√

1+ S .

The saturation parameter S is defined as the ratio of induced emission rate
Bikρν dν within the spectral interval dν to the total relaxation rate γ =
1/τeff. Because Bikρν dν = Iσa/hν we can write:

S = Iσa

hνγ
= Iσa

hν 2πΔνp
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where

I = 50 W

π 1
4 10−2 cm2

= 6.4×103 W/cm2

is the laser intensity in the focal plane.
With σa = 10−14 cm2, γ = 2πΔνp = 2π ·8.3×106 s−1 = 5.2×107 s−1

hν = 1.9×10−20 Ws ⇒
S = 64 .

The saturation broadening is then:

Δνs = Δνp
√

65 = 8.06Δνp = 66.9 MHz .

The Doppler width is

ΔνD = 7.16×10−7 (c/λ)
√

T/M (T/K and M/AMU) .

With M = 32+6×19 = 146 AMU for SF6 and T = 300 K we obtain

ΔνD = 30 MHz .

Saturation broadening is dominant.

b) At the temperature T = 10 K, the Doppler width is, for λ = 21 cm and
M = 1 AMU,

ΔνD = 7.16×10−7(c/λ)
√

T/M

= 3.23×103 s−1 = 3.23 kHz .

The natural linewidth is

Δνn = Aik/2π+ (4/2π)10−15 s−1 = 6.4×10−16 s−1 .

For the Lyman-α transition at λ = 121.6 nm it is

ΔνD = 5.6×109 s−1 = 5.6 GHz ; Δνn = 1.5×108 s−1 .

The absorption coefficient is α = nσik. The absorption cross-section is re-
lated to the spontaneous transition probability by

σik = π

8
λ2 Aik/Δνn = π2

4
λ2 = 1.09×103 cm2 ≈ 1×103 cm2 .

We can assume the star radiation to consist of many spectral intervals
with width Δνn. Each of these spectral parts is absorbed only by H atoms
within the velocity group vz = (ν −ν0) ·λ±Δvz with Δvz = λ ·Δνn in-
side the Doppler-absorption profile with width ΔνD. This is the fraction
Δνn/ΔνD of all H atoms.
The absorption coefficient is therefore

α = nσikΔνn/ΔνD

= 10×103 ×6.4×10−16/3.23×103

= 2×10−16 cm−1 .
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The radiation has decreased to 10% I0 for

e−αL = 0.1 ⇒ αL = 2.3 ⇒ L = 2.3

2×10−16 cm = 1.15×1016 cm

L = 1.15×1011 km = 0.012 Ly .

For the Lyman-α radiation the absorption cross-section is

σik = π2

4
λ2 = 3.7×10−10 cm2

⇒ α = nσikΔνn/ΔνD = 1×10−10 cm−1

L = 2.3

α
= 2.3×1010 cm = 2.3×105 km .

c) With τ = 20 μs, the natural linewidth is:

Δνn = 1

2πτ
= 8 kHz .

With λ = 3.39×10−6 m, M = 16 AMU the Doppler width is

ΔνD = 7.16×10−7(c/λ)
√

T/M = 270 MHz .

The pressure broadened linewidth is

Δνp = nσbv = (p/kT)σbv = 17 MHz .

The transit time broadening is

Δνtr = 0.4v/w

with w = 0.5 cm, v = 700 m/s ⇒ Δνtr = 56 kHz.
d) In order to fulfill Δνtr < Δνn ⇒

0.4v/w <
1

2πτ
⇒ w > 0.8πτv = 3.51 cm

⇒ diameter 2w > 7 cm .

The saturation broadening is

ΔνS = Δνp
√

1+ S .

For σa = 10−10 cm2 and with I = 10−2

0.52π
W

cm2 = 1.27×10−2 W
cm2 we obtain

(see Problem 3.2a)

S = Iσa

hν 2πΔνp
= 2.2×10−1 = 0.22

⇒ ΔνS = 17 MHz×1.09 = 18.62 MHz .

Saturation broadening plays here a minor role.
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3. a) The Lorentzian and the Gaussian profiles intersect for IL(ω) = IG(ω).
The normalization IL(ω0) = IG(ω0) = I0 requires:

I0(γ/2)2

(ω−ω0)2 + (γ/2)2 = I0 e
−(ω−ω0)2

0.36δω2
0

⇒ ln
[
(ω−ω0)

2 + (γ/2)2
]
−2 ln(γ/2) = (ω−ω0)

2

0.36δω2
0

.

With: δω0 = 2πδνD = 1×1010 s−1

γ = 2π×107 s−1 = 6.3×107 s−1

we obtain

ln
[
(ω−ω0)

2 +9.9×1014
]
−34.5 = (ω−ω0)

2

0.36×1020

⇒ (ω−ω0) = 2.18×1010 s−1 ; ν −ν0 = 3.47 GHz .

This is 347 times the natural linewidth.
b) At the intersection point ωc the intensity has decreased to

I = I0 e
−2.182×1020

0.36×1020 = I0 ×1.85×10−6 .

c) At (ω−ω0) = 0.1(ω−ωc) the Lorentzian profile has decreased to

IL = I0
(γ/2)2

[0.1(ω−ωc)]2 + (γ/2)2 = I0
3.152 ×1014

2.182 ×1018 +3.152 ×1014

= 2×10−4 I0 .

The Doppler profile has only decreased to

ID = 0.876I0 .

d) ΔωS = Δωn
√

1+ S = 0.5δωD
with Δωn = 2π×107 s−1 and δωD = 1×1010 s−1

⇒ √
1+ S = 80 ⇒ S = 7.9 .

The saturation parameter is related to the absorption cross-section by

S = σa I/hν

γ
with σa = π2

4
λ2

⇒ I = γShν/σa

with λ = 589 nm ⇒ σa = 8.56×10−13 m2 = 8.56×10−9 cm2

⇒ I = 195 W/m2 = 19.5 mW/cm2 .

4. a) At 1 bar the atomic density is

n = p/kT = 1.4×1019 cm−3 .
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According to Fig. 3.13 the line broadening is

Δνp = 1

2π
×2 cm−1 =̂ 10 GHz .

Table 3.1 gives 9.1 GHz.

b) For resonant broadening (Li+Li collisions) the linewidth is

γres = 2πΔνp = n e2 fik

4π ε0m0ωik
.

For n(Li) = 1.4×1016 cm−3, fik = 0.65, ωik = 2πc/λ = 2.8×1015 s−1

⇒ Δνp = 1.3×108 s−1 = 130 MHz. At n = 1.4×1019 ⇒ Δνp = 130 GHz.
This is about 13 times larger then for Li+Ar collisions.

5. The mean flight time between two collisions is t̄c = Λ/v where Λ = 1
nσ

is
the mean free pathlength, and v = √

8kT/πμ is the mean relative velocity
between the collision partners.
The effective lifetime is

1

τeff
= 1

τsp
nσv ⇒ γeff = γsp +nσv .

The natural linewidth is doubled for

nσv = γsp = 1/τsp

⇒ t̄c = 1

nσv
= τsp .

For v = 820 m/s (see Problem 2.10); σ = 4×10−15 cm2

τsp = 16 ns ⇒ n = 1.9×1017 cm−3

⇒ p = nkT = 1×103 Pa = 10 mbar .

At a pressure p = 10 mbar of N2 the linewidth of the Na(3S–3P) tran-
sition is doubled; i.e., the homogeneous linewidth is then 20 MHz, com-
pared to the much larger inhomogeneous Doppler width of about 1 GHz.

6. The Doppler width is

ΔνD = 7.16×10−7(c/λ)
√

T/M = 1.6×109 s−1 .

The pressure broadening is, according to Table 3.1

Δνp/p = 8 MHz/torr .

At 10 mbar =̂ 7.6 torr ⇒
Δνp(10 mbar) = 60.8 MHz.
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On the other hand is Δνp = 1
2π

nσbv

⇒ σb = 2πΔνp/(nv).

At p = 10 mbar ⇒ n = 2.1×1018 cm−3.
The broadening cross-section is (due to elastic and inelastic collisions)

σb = 2.6×10−15 cm2 .

If the broadening of the upper level |k〉 is twice as large as that of the
lower level |i〉, we obtain with

Δνp = 1

2π
(γi +γk)

the relaxation parameters

γi = 2π

3
Δνp = 1.27×108 s−1 , γk = 4π

3
Δνp = 2.5×108 s−1 .

The saturation broadening is at low pressures

ΔνS = Δνn
√

1+ S .

In order to exceed the pressure broadening at a Ne pressure of 10 mb

ΔνS > Δνp ⇒ √
1+ S >

Δνp

Δνn
= 60.8×106

6.4×106 = 9.5

since the natural linewidth is Δνn = 1
2πτsp

= 6.4 MHz ⇒ S ≥ 8.5

S = σa I/hν

γ
= π2λ2 I/hν

4γ
⇒ I = 4γhν

π2λ2 S

I = 4×3.7×108 ×2×1.6×10−19

π2 ×7.692 ×10−14 ×8.5 ≈ 690 W/m2 = 69 mW/cm2 .

The saturation broadening exceeds the Doppler width for p = 10 mbar,
when

ΔνS = Δνp
√

1+ S > ΔνD

⇒ √
1+ S > ΔνD/Δνp = 1.6×109/6.08×107 = 26 ⇒ S ≥ 691

I = 588 mW/cm2 .

The laser beam has to be focussed to a cross-section

πw2
S = 100

588
cm2 = 0.17 cm2 .
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Chapter 4

1. From the equation

λ

Δλ
= mN

we obtain with N = 1800×100 = 1.8×105, m = 1
λ/Δλ = 1.8×105.
However, this does not take into account the finite width b of the entrance
slit s1. The two spectral lines at λ1 and λ2 can be resolved if the images
s2(λ1) and s2(λ2) can be resolved. The width of these slit images is

Δs2 = f2λ/a +b f2/ f1 .

For a = 10 cm, f2 = f1 = 2 m ⇒ Δs2 = 20λ+10 μm.
For λ = 500 nm ⇒ Δs2 = 20 μm.
The separation of s2(λ1) and s2(λ2) is:

δs2 = f2(dβ/dλ)Δλ with β = diffraction angle.

From the grating equation for m = 1:

d(sin α+ sin β) = λ

⇒ dβ

dλ
=
(

dλ

dβ

)−1

= 1

d cos β

cos β =
√

1− sin2 β =
√

1−
(

λ

d
− sin α

)2

⇒ δs2 = f2Δλ

d cos β
≥ Δs2 ⇒ Δλ ≥ Δs2 d cos β

f2
.

For α = 45◦, λ = 500 nm, d = (1/18,000) cm = 5.6×10−5 cm = 0.56 μm
cos β = 0.9825 ⇒ β = 11◦

Δλ ≥ 1.1×10−11 m ⇒ λ

Δλ
= 500×10−9

1.1×10−11 = 4.5×104 .

This is three times smaller than mN .
The useful minimum entrance slit width is given by

bmin = 2 f1

d
λ = 2

0.1
×5×10−7 m

= 10−5 m = 10 μm .
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2. The optimum blaze angle is

θ = (α−β)/2

with α = 20◦, λ = 500 nm, β can be obtained from the grating equation
with m = 1:

d(sin α+ sin β) = λ

⇒ sin β = + sin α−λ/d where d = 1

18,000
cm = 560 nm

= +0.34−0.89 = −0.55 ⇒ β = −33.5◦

⇒ θ = (20+33.5)/2 = 26.7◦

3. The condition for a Littrow grating to first order is:

2d sin α = λ

⇒ d = λ

2 sin α
= 488 nm

2×0.42
= 580.9 nm

⇒ number of grooves:1721 /mm .

4. d1/ cos α = d2/ cos ε

⇒ d2

d1
= cos ε

cos α
.

For ε = 60◦ ⇒ cos α = 0.1 cos ε = 0.05

⇒ α = 87◦ . Fig. A1. Beam expanding prism

The incident beam has an angle of 90◦ −α = 3◦ against the prism surface.

5. The spectral resolution is

λ

Δλ
= 600

10−4 = 50
Δs

λ
⇒ Δs = 6×106

50
λ = 7.2×10−2 m = 7.2 cm .

6. The maximum transmission is

IT/I0 = T 2

(T + A)2 = (1− R − A)2

(1− R)2 .

With R = 0.98, A = 0.003 ⇒

IT/I0 = 0.0172

0.022 = 0.72 .
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The reflectivity finesse is F∗
R = π

√
R

1−R = 155.5.
The flatness finesse is: F∗

f = 50. According to (4.57)

1

F∗2
total

= 1

F∗2
R

+ 1

F∗2
f

= 4.4×10−4 ⇒ F∗
tot = 47.6 .

The spectral resolution is

λ

Δλ
= F∗ Δs

λ
.

For d = 5 nm ⇒ Δs = 1 cm

⇒ λ

Δλ
= 47.6× 10−2

5×10−7 = 9.5×105 .

7. For Δλ = 10−2 nm and λ = 500 nm the spectral resolution has to be at
least:

λ

Δλ
≥ 500

10−2 = 5×104 .

The effective finesse of the FPI in Problem 4.6 is

F∗
total = 47.6 .

The plate separation then has to be

d = 1

2
Δs = 1

2

λ2

ΔλF∗ = 0.26 mm .

The free spectral range is

δν = c

2d
⇒ |δλ| = + c

ν2
|δν| = λ2

2d
= 3.8×10−10 m = 0.38 nm .

The spectral interval Δλ transmitted by the spectrograph should be
smaller than δν in order to avoid the overlap of different orders. This
means that the spectral resolution of the spectrograph

Δλ = dλ

dx
Δs ≤ 0.38 nm

with a linear dispersion of dλ/dx = 5×10−2 nm/mm

⇒ Δs ≤ 0.38

5×10−1 mm = 0.76 mm .
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8. The free spectral range must be

δλ > 200 nm

⇒ δλ = λ2

2d
≥ 200 nm ⇒ d ≤ 625 nm .

If the bandwidth is 5 nm, the finesse must be

F∗ = δν/Δν = |δλ/Δλ| = 625

5
= 125 .

If the finesse is solely determined by the reflectivity R

⇒ F∗ = π
√

R

1− R
⇒ R = 0.9753 .

9. For ρ � r the free spectral range is

δν = c

4d
⇒ d = c

4δν
= 3×108

4×3×109 m = 2.5×10−2 m = 2.5 cm

F∗ = δν

Δν
= 3×109

107 = 300

1

F∗2 = 1

F2
R

+ 1

F2
f

⇒ FR = F∗ · Ff√
F2

f − F∗2
= 375

⇒ R = 0.9916 = 99.16%.

10. T(λ) = T0 cos2
(

πΔnL1

λ

)
cos2

(
πΔnL2

λ

)

with 2% absorption losses T0 = 0.98.

a) T(λ) = 0.98 cos2
(

0.05π×10−3

λ [m]
)

cos2
(

0.05π×4×10−3

λ [m]
)

Transmission peaks appear for the condition

5×10−5π

λ
= m1π and

2×10−4π

λ
= m2π (m1, m2 ∈ N)

⇒ λ1 = 5×10−5

m1
and λ2 = 2×10−4

m2
.

For λ = 500 nm we obtain:

m1 = 100 and m2 = 400 .
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For m1 = 101 ⇒ λ = 495 nm .
The thin plate has a free spectral range Δλ = 5 nm.

For m2 = 401 ⇒ λ = 498.75 nm .

The thick plate has Δλ = 1.25 nm .

b) T(α, λ) = T0

[
1− sin2

(
2π

λ
Δn L

)
sin2 2α

]

Where λ = 2Δn L
m is the first factor 0 and T(α, λmax) has a maximum trans-

mission T0, independent of α. For λ = 2Δn L

m+ 1
2

this factor becomes 1 and the

transmission is

T(α) = T0(1− sin2 2α) .

The contrast is then:

Tmax

Tmin
= 1

1− sin2 2α
.

11. The output voltage VS is

VS = R

R + R1
V0 = 1

1+ R1/r
V0 .

R is the parallel circuit of R2 and C:

1

R
= 1

1/iωC
+ 1

R2
= 1

R2
− iωC ⇒ R = R2

1− iωR2C

⇒ VS = V0

1+ R1
R2

(1− iωCR2)
= 1(

1+ R1
R2

)
− iωCR1

V0

⇒ |VS| = R2/(R1 + R2)√
1+ω2C2 R2

1/R2
2

(R1+R2)
2

V0 .

For ω = 0 ⇒ |VS(0)| = R2

R1 + R2
V0

⇒ |VS(ω)| = VS(0)
√

1+
(
ωC R1 R2

R1+R2

)2
= VS(0)√

1+ (ωτ)2
.
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The phase shift between VS and V0 is

tan ϕ = Im(VS)

Re(VS)
= ωCR1

1+ R1/R2
= ωCR1 R2

R1 + R2
= ωτ .

12. ΔT = βP0

G
with β = 0.8; P0 = 10−9 W; G = 10−9 W/K

⇒ ΔT = 0.8 K .

T = T(0)+ βP0

G

(
1− e−(G/H)t

)
.

For ΔT = 0.9ΔT∞ = 0.9
βP0

G
⇒ 1− e−(G/H)t = 0.9 ⇒ e−(G/H)t = 0.1

⇒ G

H
t = − ln 0.1 ⇒ t = H

G
×2.3 = 10−8

10−9 ×2.3 s = 23 s .

The time constant is

τ = H/G = 10 s .

The frequency dependence of ΔT is

ΔT = aβP0G√
G2 +Ω2 H2

.

For G2 +Ω2 H2 = 4G2 is ΔT(Ω) = 0.5ΔT(Ω = 0)

⇒ Ω2 = 3G2

H2 = 3×10−18

10−16 s−2 = 3×10−2 s−2

⇒ Ω = 1.73×10−1 = 0.173 s−1 .

13. The heating current i = 1 mA produces at R = 10−3 Ω a power of
P = R × i × i = Ri2 = 10−3 × 10−6 W = 10−9 W. If the incident radia-
tion brings an additional power of 10−10 W to the bolometer, the heating
power must be reduced by this amount.

⇒ Δi = (di/dP)ΔP = ΔP

2Ri
= 10−10

2×10−3 ×10−3 A = 5×10−5 A

⇒ Δi = 50 μA
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14. The anode voltage pulse is

Ua(t) = Q(t)

C
=
⎛

⎝ 1

C

Δt∫

0

iph(t) dt

⎞

⎠×e−t/RC .

a) The time constant τ = RC = 103 ×10−11 s = 10−8 s, which governs the
decay of the voltage at C, is long compared with the rise time Δt = 1.5 ns.
Therefore we can neglect the decay during the rise time and obtain for the
pulse maximum

Ua = 1

C
×106e = 1

C
×1.6×10−13 Coulombs

with C = 10−11 Farads we obtain

Ua(t) = 1.6×10−2 ×e−t×108
V .

The peak amplitude is 16 mV = Umax.
The halfwidth of the pulse is obtained from

e−108t = 1
2 ⇒ Δt1 = 10−8 ln 2 = 6.9×10−9 s .

b) For 10−12 W cw radiation at λ = 500 nm, the number of photoelectrons
per second is

nPE = η
10−12 W

hν
s−1 = 0.2×2.2×106 s−1 = 4.5×105 s−1 .

With an amplification factor M, the anode current is:

ia = nPE ×e× M .

The voltage across the anode resistor R is

Ua = ia R = RnPEeM = 103 ×4.5×105 ×1.6×10−19 ×106

= 7.2×10−5 V = 72 μV .

Note: For cw measurements, a larger resistance of R ≈ 1 MΩ is used be-
cause the time resolution is not important here.

For R = 106 Ω ⇒ Ua = 72 mV.

In order to produce 1 V output pulses for single photoelectrons, an ampli-
fication of M2 ≈ 62 of the preamplifier is required.

15. For 10−17 W at λ = 500 nm, 25 photons/s fall onto the first cathode. The
human eye can see 20 photons/s =̂ 8 ×10−18 W; with a collection effi-
ciency of 0.1 the last phosphor screen has to emit at least 8×10−17 W.
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With a conversion efficiency of 0.2, the intensity amplification VI has to
be

VI = 8×10−17

1×10−17 ×0.23 = 1000 = 103 .

16. Uph(i = 0) = kT

e

[
ln

(
iph

id

)
+1

]

with iph = 50 μA and id = 50 nA

⇒ Uph(i = 0) = 0.2 V .

Chapter 5

1. The threshold inversion is

ΔNthr = γ

2σL

γ = 5%, round trip length = 2×20 cm = 40 cm.
The absorption cross-section is related to the Einstein coefficient Bik by

Bik = c

hν

∫
σ dν ≈ c

hν
σΔν

with Δν = 20 MHz.

With Bik = c3

8πhν3 Aik ⇒

σ = hν

cΔν
Bik = λ2

8πΔν
Aik

⇒ ΔNthr = 8πΔνγ

2λ2L Aik
= 8π×2×107 ×5×10−2

2×2.25×10−14 ×0.4×5×107 = 2.5×1012 m−3

= 2.5×106 cm−3 .

2. The spacing of the longitudinal modes is

Δν = c

2d
= 3×108

0.8
= 375 MHz .

The population density

N(vz) = N(vz = 0)e−(ν−ν0)
2/δν2
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with δν = 2×109 s−1, (ν−ν0) = 375 MHz the population density for the
adjacent modes has decreased to

N1 = N0 e−0.1875 = 0.83N0 .

If Nthr(vz = 0) = N0 ⇒ N1 = 0.83N0.
According to Problem 5.1 the threshold inversion is

ΔNthr = 8πΔνγ

2λ2L Aik
= 8π×5×107 ×0.1

2×6.332 ×10−14 ×0.8×108 = 1.96×1012 m−3

⇒ Oscillation begins at the adjacent modes if threshold is reached for
this mode. Then the inversion at the central mode is (without saturation)
ΔN0 = ΔN1/0.83.

3. νa = νr + Δνr

Δνm
(ν0 −νr)

with Δνr = 2 MHz, Δνm = ΔνD = 1 GHz; (ν0 −νr) = 0.5ΔνD

⇒ νa = νr +106 s−1 .

The mode is pulled by 1 MHz.

4. δνspa = 2d

ap
δν ; p = 2, 3, 4, . . .

δν = c

2d
= 150 MHz ; d = 2 m ; a = 0.2 m

⇒ δνspa = 1.5×109 s−1 = 1.5 GHz for p = 2 .

For p = 3 ⇒ δνspa = 1.0 GHz
For a Doppler width of ΔνD = 1 GHz the gain at the first adjacent spatial
hole burning mode is g = g0 e−1/0.36 = 0.06g0. This mode does not reach
the threshold.
The adjacent resonator mode is 150 MHz away from the line center. Its
unsaturated gain is

g = g0 e− 0.152

0.36×1 = 0.94g0 .

Here the net gain is 0.94×1.1 = 1.03 without mode competition. The two
adjacent resonator modes reach the threshold. Therefore three longitudinal
modes can oscillate.

5. The total output intensity of a laser with unsaturated gain g0, internal
cavity losses γ0, length L of the active medium, and mirror losses T +
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A = 1− R = γM is:

Iout = γM

[
2g0L

γ0 +γM
−1

]
Isat

2
.

Differentiating gives

dIout

dγM
=
[(

2g0L

γ0 +γM
−1

)
−γM

2g0L

(γ0 +γM)2

]
Isat

2
= 0

⇒ γ
opt
M =√2g0Lγ0 −γ0 .

With γ0 = 0.1 and 2g0L = 2 ⇒
γ

opt
M = 0.347 = 34.7% = 1− R .

The output mirror should have a reflectivity of R = 65.3%.

6. The spot size at the center of the resonator is

w0 =
√

λL

2π
=
√

6.33×10−7 ×0.3

2π
m = 1.7×10−4 m = 0.17 mm .

The spot size at the mirror is

w(L/2) = √
2×w0 = 0.24 mm .

The diameter of the beam (distance between 1/e points) is 2w0 and 2w
respectively.
The divergence angle of the laser beam is

θ = w(L/2)

L/2
= 1.6×10−3 rad .

The spot size on the lens is

ws = 30 cm×1.6×10−3 +w(L/2)

= 4.8×10−2 cm+2.4×10−2 cm = 7.2×10−2 cm = 0.72 mm

and the beam diameter 2ws = 1.44 mm.
The location of the focus can be calculated from the lens equation

1

a
+ 1

b
= 1

f
with a = 50+15 cm; b =?; f = 30 cm

⇒ b = 55.7 cm .

The focus is 55.7 cm away from the lens, 105.7 cm away from the output
mirror.
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The beam waist at the focus is

w0 = fλ/(πws) = 30×6.3×10−5

π×0.072
cm = 0.84×10−2 cm

= 0.084 mm = 84 μm .

The Rayleigh length is

zR = πw2
0

λ
= 3.5 cm .

7. The beam waist at the focus is

w0 = f1λ

πw
= 1×5×10−5

π×0.1
cm = 1.59 μm .

The power transmitted through the aperture with radius a is

Pt = Pi

(
1− e−2a2/w2

0

)
.

For Pt/Pi = 0.95 we obtain

0.05 = e−2a2/(1.592×10−6) with a in mm

⇒ a2 = −(ln 0.05)× 1
2 ×1.592 ×10−6 = 3.79×10−6 mm2

⇒ a = 1.95×10−3 mm ⇒ 2a = 39 μm = 2.45w0 .

8. The axial modes are separated by

Δν = c

2d
= 300 MHz for d = 50 cm .

The gain factor G follows the Doppler profile

G(ν) = G(ν0)e−(ν−ν0)
2/(0.36Δν2

D) .

with ΔνD = 1.5 GHz and ν1 −ν0 = 300 MHz ⇒
G(ν1) = G(ν0)e−0.11 = 0.896 .

with G(ν0) = 1.3 ⇒ G(ν1) = 1.16.
With 4% losses the net gain at ν1 is 1.12
⇒ the losses of the etalon at ν1 must be at least 12% in order to prevent
laser oscillation at ν1.
The transmission of the etalon with thickness t
and refractive index n = 1.4

T = 1

1+ F sin2 φ/2
with φ = 2πνΔs

c
= 2πν

c
2nt .
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For ν = ν0 ⇒ T = 1 ⇒ φ/2 = mπ = 2πν0
c nt.

For ν = ν1 ⇒ T ≤ 0.88 ⇒ F sin2 φ/2 ≥ 0.12

⇒ sin φ1/2 ≥√0.12/F .

Since ν1 = ν0 +300 MHz ⇒ φ1 = φ0 +Δφ

⇒ Δφ = 4π(ν1 −ν0)

c
nt

⇒ Δφ = 2π
3×108

3×1010 nt with t in cm

= 2π×10−2nt .

The thickness t of the etalon should be small in order to minimize walk-
off losses by the tilted etalon. If we assume as a reasonable number t =
0.5 cm, n = 1.4

⇒ Δφ = 2π×7×10−3 = 2.5◦

⇒ sin Δφ/2 = sin φ1/2 = 0.044

⇒ F ≥ 0.12

0.0442 = 63 .

With F∗ = π
2

√
F, we obtain for the necessary finesse F∗ the relation

F∗ ≥ 12.5 .

Since F∗ = π
√

R
1−R ⇒ RE ≥ 0.78, the etalon reflectivity should be larger

than 78%.

9. The resonator with R1 = ∞ and R2 = 400 cm and d = 100 cm is equiva-
lent to a spherically symmetric resonator with d = 200 cm and

R = R1 = R2 = 400 cm .

The spot sizes ws on the mirrors are

ws =
(

λd

π

)1/2
[

2d

R
−
(

d

R

)2
]−1/4

= 5.96×10−4 m = 0.596 mm .



Solutions 421

The transmission of the spherical aperture with radius a in the center of
the resonator is, for the fundamental modes,

T = 1− e−2a2/w2
s > 0.99

⇒ e−2a2/w2
s ≤ 0.01 ⇒ a2 ≥ w2

s

2
ln 100

⇒ a ≥ 0.904 mm .

According to Fig. 5.12 the Fresnel number NF should be smaller than 0.8,
in order to increase the losses of the TEM10 mode above 10%. The Fres-
nel number is defined as NF = 1

π
πa2

πw2
s
, where ws is the beam waist of the

fundamental mode ⇒

a2 < 0.8×πw2
s = 0.8π×0.5962 mm2 = 0.89 mm2

⇒ a ≤ 0.944 mm .

The radius a of the aperture therefore must lie between 0.904 ≤ a ≤
0.944 mm.

10. With L = 15 cm the free spectral range is

δν = c

2d
= 109 s−1

⇒ only one mode can oscillate if this mode is close to the center of the
gain profile.
The unsaturated gain at ν0 is 10%. With losses of 3% the net gain is 7%
⇒ G(ν0) = 1.07.
When tuning away from the gain center, the net gain factor should always
be >1.

⇒ G = 1.1× e−(ν−ν0)
2/(0.36Δν2

D) −0.03 ≥ 1

⇒ e−(ν−ν0)
2/0.3Δν2

D ≥ 1.03

1.1
= 0.936

⇒ (ν −ν0)
2 ≥ 0.3Δν2

D ln
1

0.936
.

With ΔνD = 1.5×109 s−1 ⇒

ν −ν0 ≤ 2.13×108ε−1 = 213 MHz .

The maximum tuning range is from ν0 −213 MHz up to ν0 +213 MHz.
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In order to tune over one free spectral range, the mirror separation must
change by λ/2 ⇒ δν = 109 s−1, requiring Δd = λ/2

⇒ ν−ν0 = 426 MHz requiring Δd = (λ/2)
(ν−ν0)

δν
= λ

2
×0.426

= 0.213λ = 0.135 μm at λ = 632 nm

⇒ ΔV = dV

dx
Δx =

(
10−9 m

V

)−1

×1.35×10−7 m = 135 V .

11.
Δν

ν
= Δd

d
= α ΔT .

A temperature drift of 1 ◦C/h gives, for invar rods (α = 1.2×10−6 K−1),
a frequency drift per hour of

Δν

ν
= 1.2×10−6 .

For ν = c/λ = 6×1014 s−1 ⇒ Δν = 7.2×108 s−1/h = 720 MHz/h.
For fused quartz (α = 0.4−0.5×10−6 K−1 the drift is three times smaller,
while for Cerodur it is more than 12 times smaller.

12. With L = 100 cm the mode spacing is δν = 150 MHz.
a) For a solid etalon with t = 1 cm, n = 1.4 ⇒
Δν

ν
= Δt

t
+ Δn

n
.

The second term is small and can be neglected

⇒ Δν

ν
= αΔT = 2×4×10−7 = 8×10−7

⇒ Δν = 4.9×107 s−1 .

b) For an air-spaced etalon we can neglect the first term if the spacers are
made of cerodur or the distance is temperature-compensated.
The optical path due to air at a pressure p is for a length d equal to s = nd
with n (air at p = 1 bar) = 1.00028.
The change Δs is

Δs = (n −1) d
Δp

p

⇒
∣∣∣∣
Δν

ν

∣∣∣∣=
Δs

s
= n −1

n
· Δp

p
= 0.00028× 4

1000
= 1.12×10−6 .

For ν = 6×1014 s−1 ⇒ Δν = 6.72×108 s−1 = 672 MHz.
This illustrates that an air-spaced etalon is less stable than a solid etalon.
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c) For a temperature drift of 1 ◦C/h the solid etalon has a frequency drift
of 336 MHz/h.

13. The transmission of the Pockels cell is

T = T0 cos2 aV

where V is the applied voltage and a is a constant which depends on the
electro-optic coefficient and the dimensions of the modulator.
For V = 0 ⇒ T = T0, for V = 600 ⇒ T = 0 ⇒ aV = π/2.
The system should operate at the maximum slope of dT/dV .

ΔT = dT

dV
ΔV = −2aT0 cos aV sin aV ΔV .

For a fluctuation in intensity of 5% the transmission must change by
ΔT = −0.05T0 in order to compensate for the fluctuations.

⇒ ΔV = 0.05

2a cos aV sin aV
with a = π

2×600
V−1 .

The maximum slope is realized for aV = 45◦

⇒ cos aV = sin aV = 1
2

√
2

⇒ ΔV = 2×0.05×600

π
V = 19 V .

14. The free spectral range of the etalon is

δνE = c

2d
= 8×109 s−1 ⇒ d = 1.8 cm .

a) The change of d with temperature is for invar (α = 1.2×10−6 K−1)

Δd = dαΔT

⇒ Δd

d
= 1.2×10−6 ×10−2 = 1.2×10−8

⇒
∣∣∣∣
Δν

ν

∣∣∣∣=
Δd

d
= 1.2×10−8 .

For ν = 5×1014 s−1 (λ = 600 nm) ⇒ Δν = 6×106 s−1 = 6 MHz.

b) If d changes by 1 mm due to acoustic vibrations

⇒ Δd

d
= 10−7

1.8
= 5.6×10−8 =

∣∣∣∣
Δν

ν

∣∣∣∣

⇒ Δν = 5.6×10−8 ×5×1014 = 28 MHz .
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c) With a free spectral range δνFPI = 10 GHz of the FPI and a finesse
F∗ = 50, the full halfwidth of the transmission peak is

ΔνFPI = δν/F∗ = 200 MHz .

The transmitted intensity is

It = I0T = I0
1

1+ F sin2(φ/2)
with F =

(
2

π
F∗
)2

= 1×103 .

The stabilization system interprets an intensity change of 1% as a trans-
mission change ΔT , i.e., a change Δφ of φ, and because

φ = 2π

λ
Δs = 2πν

c
Δs ⇒ Δφ = 2π

c
Δs Δν

also as a change of ν.
A rough estimation of Δν proceeds as follows.
A frequency change of 100 MHz changes (at a fixed plate separation
d = 0.5Δs) the transmission by 100% from 0 to 1. A transmission
change of 1% therefore corresponds to a frequency change of 0.01 ×
100 MHz = 1 MHz.
A more elaborate calculation uses the relation

ΔT = dT

dφ

dφ

dν
Δν ⇒ Δν = 0.01

dT
dφ

dφ
dν

because ΔT = 0.01

dT

dφ
= F sin(φ/2) cos(φ/2)

(1+ F sin2 φ/2)2

dφ

dν
= 2πΔs

c
.
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4.80 R. Castell, W. Demtröder, A. Fischer, R. Kullmer, K. Wickert: The accuracy of

laser wavelength meters. Appl. Phys. B 38, 1 (1985)
4.81 J. Cachenaut, C. Man, P. Cerez, A. Brillet, F. Stoeckel, A. Jourdan, F. Hartmann:

Description and accuracy tests of an improved lambdameter. Rev. Phys. Appl.
14, 685 (1979)
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5.34 D. Kühlke, W. Diehl: Mode selection in cw-laser with homogeneously broad-
ened gain. Opt. Quant. Electron. 9, 305 (1977)

5.35 W.R. Bennet Jr.: The Physics of Gas Lasers (Gordon and Breach, New York
1977)
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center laser with birefringent tuning. Appl. Phys. B 47, 127 (1988)
5.152 G. Litfin: Color center lasers. J. Phys. E 11, 984 (1978)
5.153 L.F. Mollenauer, D.M. Bloom, A.M. Del Gaudio: Broadly tunable CW lasers

using F+
2 -centers for the 1.26−1.48 μm and 0.82−1.07 μm bands. Opt. Lett. 3,

48 (1978)
5.154 L.F. Mollenauer: Room-temperature stable F+

2 -like center yields CW laser tun-
able over the 0.99−1.22 μm range. Opt. Lett. 5, 188 (1980)
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sis, F.B. Physik, University of Kaiserslautern (1988)



446 References

5.196 A. Bloom: Modes of a laser resonator, containing tilted birefringent plates.
J. Opt. Soc. Am. 64, 447 (1974)
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laser spectroscopy using second harmonic generation in β-BaB2O4. Appl. Phys.
B 50, 365 (1990)

5.249 H. Dewey: Second harmonic generation in KB4OH ·4H20 from 217 to 315 nm.
IEEE J. QE-12, 303 (1976)

5.250 E.U. Rafailov et al.: Second harmonic generation from a first-order quasi-phase-
matched GaAs–AlGaAs waveguide crystal. Opt. Lett. textbf26, 1984 (2001)

5.251 M. Feger, G.M. Magel, D.H. Hundt, R.L. Byer: Quasi-phase-matched second
harmonic generation: tuning and tolerances. IEEE J. Quant. Electr. 28, 2631
(1992)

5.252 M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, G. Huber: Gen-
eration of 740 mW of blue light by intracavity frequency doubling with a first
order quasi-phase-matched KTiOPO4 crystal. Opt. Lett. 24, 205 (1999)

5.253 F.B. Dunnings: Tunable ultraviolet generation by sum-frequency mixing. Laser
Focus 14, 72 (1978)

5.254 S. Blit, E.G. Weaver, F.B. Dunnings, F.K. Tittel: Generation of tunable contin-
uous wave ultraviolet radiation from 257 to 329 nm. Opt. Lett. 1, 58 (1977)

5.255 R.F. Belt, G. Gashunov, Y.S. Liu: KTP as an harmonic generator for Nd:YAG
lasers. Laser Focus 21, 110 (1985)

5.256 J. Halbout, S. Blit, W. Donaldson, Ch.L. Tang: Efficient phase-matched second
harmonic generation and sum-frequency mixing in urea. IEEE J. QE-15, 1176
(1979)
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Springer Ser. Opt. Sci., Vol. 49 (Springer, Berlin, Heidelberg 1985) p. 366

5.300 M. Inguscio: Coherent atomic and molecular spectroscopy in the far-infrared.
Physica Scripta 37, 699 (1988)

5.301 L.R. Zink, M. Prevedelti, K.M. Evenson, M. Inguscio: ‘High resolution far-
infrared spectroscopy’. In: Applied Laser Spectroscopy X, ed. by W. Demtröder,
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