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PREFACE

This textbook is intended for upper-divi-
sion undergraduate and first-year graduate
survey courses in seismology. It assumes
that the student is familiar with basic cal-
culus, complex numbers, and differential
equations and has some general knowl-
edge of geology. The focus is on the fun-
damental theory and physics of seismic
waves and the application of this theory to
extract the rich information about internal
structure and dynamical processes in the
Earth that is contained in seismograms,
instrumental recordings of mechanical vi-
brations of the planet. Most of the text is
developed in the context of global seismol-
ogy topics, meaning large-scale Earth
structure and earthquake sources. How-
ever, the principles underlying elastic-wave
propagation, seismic instrumentation, and
techniques for extracting Earth structure
and source information from seismograms
are common to applications in exploration
seismology, a discipline that uses seismic
waves to develop high-resolution images of
crustal structure for oil and mineral re-
source exploration. The basic principles
are in no way restricted to the Earth, and
in the future they will, we hope, be applied
to many other celestial bodies (preliminary
work has been performed on the Moon
and Mars, and a specialized field called
helioseismology has revealed the internal
structure of the Sun).

The material in this text is derived from
class notes for introductory seismology
courses taught over the past 10 years by
the coauthors at the University of Michi-
gan (T.L.), the University of California at
Santa Cruz (T.L.), and the University of
Arizona (T.C.W.). Those class notes, in

turn, have a complex legacy, in part trac-
ing back to lecture notes of Professor
Hiroo Kanamori at the Seismological
Laboratory of the California Institute of
Technology, who taught an inspirational
introductory seismology course to the
coauthors. Other material is drawn from
numerous introductory geophysics text-
books and current research publications.
This effort to distill a thorough, yet ac-
cessible, introductory survey of the disci-
pline of global seismology has clearly in-
volved many compromises, particularly in
abbreviated treatment of such topics as
transient wave solutions, synthetic seismo-
gram calculation, sociological aspects of
earthquake phenomena, and rock mechan-
ics. Fortunately, the discipline is fully
spanned by several advanced theoretical
seismology texts: Quantitative Seismology
(1980) by Aki and Richards, Seismic Waves
and Sources (1981) by Ben Menahem and
Singh, Imaging the Earth’s Interior (1985)
by Claerbout, Seismic Wave Propagation in
Stratified Media (1983) by Kennett; ele-
mentary ecarthquake overviews: Earth-
quakes (1988) by Bolt, Inside the Earth
(1982) by Bolt, Elementary Seismology
(1958) by Richter, Nuclear Explosions and
Earthquakes (1976) by Bolt; and fracture
mechanics textbooks: Earthquake Mechan-
ics (1981) by Kasahara, The Mechanics of
Earthquakes and Faulting (1990) by
Scholtz, Principles of Earthquake Source
Mechanics (1990) by Kostrov and Das.
Seismology survey texts that offer alternate
presentations of some material in this text,
and may further enlighten the reader are:
Introduction to Seismology (1979) by Bath,
Seismology and Plate Tectonics (1990) by



Gubbins, An Introduction to the Theory of
Seismology (1985) by Bullen and Bolt, and
Introduction to Seismology, Earthquakes
and Earth Structure (1994) by Stein. Many
additional texts reviewing the various fields
of solid Earth geophysics provide addi-
tional resources.

The field of global seismology is in a
continual, rapid state of flux, and any text
can at best give an instantaneous and lim-
ited version of our knowledge of Earth
structure and earthquake sources. It is,
therefore, up to the reader to strive inde-
pendently to stay current as new discover-
jes are announced, which occurs as fre-
quently as each annual meeting of the
seismological research community.

We are indebted to the students who
have endured preliminary, often hand-
written, versions of this material and invite
them to discard their early versions and
replace them with this updated and im-
proved presentation of the course mate-
rial. Norm Meader typed the text
and consistently improved our grammar,
both being mammoth undertakings. Susie
Barber greatly assisted with the prepara-
tion of figure permissions and typed ear-
lier drafts of several chapters. Chuck Am-
mon, John Ebel, Paul Richards, and Susan
Schwartz provided helpful comments and
corrections on various chapters. Yu-Shen
Zhang generated several tomography fig-
ures for us, and Rhett Butler provided
up-to-date maps of global seismic net-
works. We also thank the many colleagues
who contributed figures or gave their per-
mission for reproduction of published fig-
ures. Finally, we thank Susan and Michelle
for putting up with us while we did this.
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CHAPTER

INTRODUCTION

The Earth is composed of silicate and
iron-alloy materials with the remarkable
property that, over the wide range of pres-
sure and temperature conditions existing
within the planet, the materials respond
nearly elastically under the application of
small-magnitude transient forces but vis-
cously under the application of long-dura-
tion forces. This time dependence of the
material properties means that Earth
“rings like a bell” when short-term forces,
such as sudden slip of rock across a fault
surface or detonation of a buried explo-
sion, are applied, even while the fluid-like
flow of global convection continually re-
shapes the surface and interior of the
planet over geological time scales. The
mechanical vibrations result from the
quasi-elastic behavior, which involves exci-
tation and propagation of elastic waves in
the interior. These waves are physical mo-
tions that ground-motion recording instru-
ments called seismometers can preserve for
scientific analysis. This text describes the
nature of these elastic waves and the anal-
ysis of their recordings. It demonstrates
how the elastic properties of the Earth
reveal many characteristics of the present
state of the Earth as well as of the long-
term processes occurring in the global dy-
namic system. We hope that it will also
provide insight into the processes produc-

ing destructive earthquakes, such as the
January 17, 1994, Northridge, California
event, which caused more than $20 billion
in damage to Los Angeles.

Seismology is the study of the genera-
tion, propagation, and recording of elastic
waves in the Earth (and other celestial
bodies) and of the sources that produce
them. Both natural and human-made
sources of deformational energy can pro-
duce seismic waves, elastic disturbances
that expand spherically outward from the
source as a result of transient stress imbal-
ances in the rock. The properties of seis-
mic waves are governed by the physics of
elastic solids, which is fully described by
the theory of elastodynamics. Basic elasto-
dynamics is presented in Chapters 2, 3, 4,
and 8. This body of theory, rooted in con-
tinnum mechanics, linear elasticity, and
applied mathematics dating back to the
early 1800s, provides a quantitative frame-
work for analysis of elastic waves in the
Earth.

Seismological procedures provide the
highest resolution of internal Earth struc-
ture of any geophysical method. This is
because elastic waves have the shortest
wavelengths of any “geophysical wave,”
and the physics that governs them localizes
their sensitivity spatially and temporally to
the precise path traveled by the energy.

1



2 1. INTRODUCTION

These localization properties provide far
higher resolution than obtainable with
electrical, gravitational, magnetic, or ther-
mal fields, which average large regions and
times.

Recordings of ground motion as a func-
tion of time, or seismograms, provide the
basic data that seismologists use to study
elastic waves as they spread throughout
the planet. An example of a modern seis-
mic recording is shown in Figure 1.1. Three
orthogonal components of ground motions
(up—down, north—south, and east-west)
are shown, as are needed to record the
total (vector) ground displacement history,
at station HRV (Harvard, Massachusetts).
The source that produced these motions
was a distant large earthquake that struck
central Chile in 1985. The ground motions
at HRV commenced about 10 min after
the fault rupturing began, the length of
time it took for the fastest seismic waves to
travel through the Earth from the Chilean

source region to the station. A complex
sequence of slower wave arrivals caused
ground motions at the station to continue
for several hours. These recorded motions
are quite tiny, with ground displacements
of less than 0.7 mm and ground velocities
of less than 60 um/s. Such motions were
imperceptible at HRV other than by sensi-
tive instrumentation, but the waves were
much stronger near the source and caused
extensive damage and building collapse in
Chile. Every wiggle on the seismogram has
significance and contains information
about the source and the Earth structure
through which the waves have traveled.
Seismologists strive to extract all possible
information from the seismogram by un-
derstanding each wiggle.

A tremendous range in scales is consid-
ered in seismology, for both the many types
of sources and the diverse seismic waves
that result. The smallest detectable mi-
croearthquake has a seismic moment (an

Ra)‘/leigh

":318
R

[

Displacement, microns

w

FIGURE 1.1 Recordings of the ground displacement history at station HRV (Harvard,
Massachusetts) produced by seismic waves from the March 3, 1985, Chilean earthquake,
which had the location shown in the inset. The three seismic traces correspond to vertical
(U-D), north-south (N-8), and east-west (E-W) displacements. The direction to the
source is almost due south, so all horizontal displacements transverse to the raypath
appear on the east-west component. The first arrival is a P wave that produces ground
motion along the direction of wave propagation. The S motion is large on the horizontal
components. The Love wave occurs only on the transverse motions of the E-W component,
and the Rayleigh wave occurs only on the vertical and north-south components. These
motions are consistent with the predictions of Figure 1.2. (Modified from Steim, 1886.)



1. Introduction

important physical quantity equal to the
product of the fault surface area, the rigid-
ity of the rock, and the average displace-
ment on the fault) on the order of 10° N
m, and great earthquakes have moments
as large as 102 N m. The amplitudes of
seismic-wave motions are directly propor-
tional to the seismic moments; thus seis-
mic-wave displacements span an enormous
range. Seismic waves commonly used in
exploration seismology have frequencies as
high as 200 Hz, while the longest-period
standing waves excited by great earth-
quakes have frequencies around 3 X 1074
Hz and solid Earth tide frequencies are
around 2.0 x 107> Hz. Thus, transient
ground motions spanning a frequency
range of 107 Hz are of interest. In fact, the
study of seismic sources further extends
the range of interest to zero frequency, or
static deformations, near faults and explo-
sions, even while new, very high resolution
shallow-imaging techniques are utilizing
kilohertz frequencies. A local crustal sur-
vey may use waves that are traveling only
tens of meters, while analysis of global
structure may involve waves such as R-,
which travel more than 10® m along the
Earth’s surface.

One of the major challenges posed by
the huge frequency range (bandwidth) and
amplitude range (dynamic range) of inter-
est for seismic observations has been to
build seismometers capable of registering
all useful signals against a background of
ambient noise. No single instrument can
record the full spectrum of motions with a
linear response, so a suite of different seis-
mic instruments that record limited por-
tions of the seismic spectrum has been
developed. However, great advances have
been made in the last 10 years in develop-
ing seismic recording systems that provide
remarkable bandwidth and dynamic range
for the applications of global seismology to
be emphasized in this text. The recording
in Figure 1.1 was produced by such a sys-
tem, and Chapter 5 describes the remark-
able instrument technology involved in the

3

field of seismometry,
ground motion.

The global distribution of earthquake
sources, along with the requirement of ex-
tensive surface coverage with seismome-
ters for the unraveling and interpretation
of complex seismic signals, has made global
seismology a truly international discipline,
with unprecedented international collabo-
ration, seismometer development, and data
exchange over its 119+-year instrumental
history. Over 3000 seismological observa-
tories are in operation around the world
today, with nearly every nation participat-
ing in the effort to record seismic waves
continuously. The most recent efforts to
upgrade the global network instrumenta-
tion by incorporating technological ad-
vances have involved countries such as
Australia, Canada, China, England,
France, Germany, Holland, Italy, Japan,
Norway, Russia, Switzerland, and the
United States, in keeping with the historic
tradition of broad international collabora-
tion. Chapter 5 provides an overview of
these efforts.

The fault that generated the 1985 Chile
earthquake ruptured for about 100 km,
with sliding motions on the fault lasting
for only about 50 s. Thus, much of the
prolonged nature of the vibrations in Fig-
ure 1.1 is due to wave interactions with the
transmitting medium, which are mani-
fested as a sequence of impulsive arrivals
and longer-period oscillatory motions, in-
cluding waves that repeatedly circle the
globe. Most of these ground motions can
now be interpreted quantitatively in the
light of current knowledge of Earth struc-
ture, as shown in Chapter 6. It is the
fundamental simplicity of elastic waves,
which transmit disturbances over great dis-
tances through the Earth with little, or
mostly predictable distortion, that allows
useful information to be gleaned from the
seismograms, despite the overall complex-
ity arising from structural interactions.

Seismology is an observation-based dis-
cipline that addresses internal Earth

or recording of



4 1. INTRODUCTION

structure and characteristics of seismic-
wave sources by applying elastodynamic
theory to interpret seismograms. Because
of the physical constraint of being able to
record seismic-wave motions only at, or
very near, the surface of the Earth, seis-
mology draws heavily upon mathematical
methodologies for solving systems of equa-
tions that are collectively described as geo-
Dhysical inverse theory (Chapter 6). Many
seismological applications and results of
inverse theory are described in this text.
The essence of all seismic inverse prob-
lems is that inferences about the wave
source or the transmitting medium are
made by applying mathematical operations
derived from elastodynamic theory to the
observed surface ground motions. The
recorded motions can be viewed as the
output response of a sequence of linear
filters with properties we wish to deter-
mine. We can treat instrumental, propaga-
tion, and source effects as separate filters,
and we have structured this text to concen-
trate sequentially on each factor that
shapes the observed seismogram. Inver-
sions for filter characteristics contain many
nonuniqueness problems, and strong
trade-offs exist between source and propa-
gation effects that are difficult to resolve.
The history of seismological advances is
one of alternating progress in describing
source properties or in improving models
of Earth structure, and clever strategies
have been advanced to overcome the in-
trinsic trade-offs in the signal analysis. Re-
markable resolution of deep Earth struc-
ture is now being achieved using modern
inversion methods. Seismic inversion and
Earth structure determination are de-
scribed in Chapter 7.

In parallel with the rapid advances in
our knowledge of Earth structure has come
a comparable expansion of our under-
standing of earthquake faulting and its role
in global plate tectonics. From the basic
foundation of quantitative representations
of shear faulting sources (described in
Chapter 8) we have developed an under-

standing of most faulting phenomena.
Chapter 9 describes the kinematic and dy-
namic characteristics of shear faulting
sources, their scales of variation, and mea-
sures of energy release such as seismic
magnitudes and earthquake moment.

With independently derived knowledge
of Earth structure, it has become possible
to construct predicted ground motions to
compare with observations. This serves as
a basis for seismic inversion for faulting
parameters. This capability has led to an
appreciation that faulting is a very hetero-
gencous process with nonuniform stress
release over the fault surface. Chapter 10
reviews the contemporary source analysis
procedures used in earthquake seismology.

Seismology intrinsically provides infor-
mation about active, present-day processes
in the Earth. Quantification of earthquake
faulting characteristics such as fault orien-
tation, sense of slip, and cumulative dis-
placement has played a major role in the
evolution of the theory of plate tectonics.
Seismotectonics, the study of active faulting
and its relationship to plate motions and
lithospheric properties, is described in
Chapter 11. Seismology is the solid Earth
geophysical discipline with the highest so-
cietal impact, both in assessing and reduc-
ing the danger from natural hazards and in
revealing present Earth structure and
buried resources. Yet the relative sluggish-
ness of mantle convective flow, or thermal
inertia of the system, ensures that knowl-
edge of the present-day internal structure
reflects processes that have been occurring
in the Earth over the past several hundred
million years and, to a certain extent, over
the entire evolution of the planet.

1.1 Historical Development
of Glohal Seismology

Seismology is a relatively young science,
having awaited both the evolution of the
theory of elasticity and the development of
an instrumental data base. Although the
Chinese had the first operational seismic-
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wave detector around 132 Ap, the theoreti-
cal side of the science was considerably
ahead of the observational side until the
late 1800s. From the introduction in 1660
of Hooke’s law, indicating a proportional-
ity between stress and strain, to the devel-
opment of equations for elasticity theory
by Navier and Cauchy in 1821-1822, our
understanding of the behavior of solid ma-
terials evolved rapidly. In the early 1800s
the laws of conservation of energy and
mass were combined to develop the equa-
tions of motion for solids. In 1830 Poisson
used the equations of motion and elastic
constitutive laws to show that two (and
only two!) fundamental types of waves
propagate through the interior of homoge-
neous solids: P waves (compressional
waves involving volumetric disturbances,
and directly analogous to sound waves in
fluids) and S waves (shear waves with only
shearing deformation and no volume
change, which can therefore not propagate
in fluids). The sense of particle motions
relative to the direction of propagation for
P- and S-wave disturbances is shown in
Figure 1.2. These two types of motion are
called body waves, because they traverse
the interior of the medium. P (primary)
waves travel faster than § (secondary)
waves and are thus the first motion to be
detected from any source in an elastic
solid.

In 1887 Lord Rayleigh demonstrated the
existence of additional solutions of elastic
equations of motion for bodies with free
surfaces. These are Rayleigh waves, involv-
ing wave motions confined to and propa-
gating along the surface of the body. By
1911 a second type of surface-wave mo-
tion, produced in a bounded body with
layered material properties, was character-
ized by Love and is hence called a Love
wave. Rayleigh and Love waves are sur-
face waves and result from the interaction
of P and S waves with the boundary con-
ditions on the body (i.c., vanishing shear
stresses on the surface). The sense of par-
ticle motions for these surface waves is

indicated in Figure 1.2. Body and surface
waves are influenced by changes in mate-
rial properties with depth, such as the
existence of internal boundaries in the
Earth that can reflect energy. These inter-
actions can be quantitatively analyzed by
solving boundary-value problems, and they
are expressed in terms of reflection and
transmission coefficients.

These basic elasticity solutions for a
general solid medium were partial motiva-
tion for the development of instruments
capable of recording time histories of the
ground motion of the Earth at a fixed
location. International efforts led to the
invention of the first scismometer by
Filippo Cecchi in Italy in 1875. The sensi-
tivity of early seismometers improved
rapidly, and by 1889 the first accurate
recording of waves from a distant earth-
quake was obtained by an instrument in
Potsdam, 15 min after the earthquake
faulting occurred in Japan. The 119+ years
of quantitative ground motion observa-
tions have confirmed the existence of P, S,
Rayleigh, and Love waves in the Earth, as
well as other, now (mostly) understood
arrivals, demonstrating that the Earth be-
haves as a (nearly) elastic body in the
frequency band of most seismic observa-
tions. The recordings in Figure 1.1 clearly
exhibit distinct arrivals of P, S, Love, and
Rayleigh waves, with particle motions as
predicted in Figure 1.2, along with other
arrivals that are explained later.

In 1892, while working in Tokyo, John
Milne developed a seismometer that was
sufficiently compact that it could be in-
stalled in about 40 observatories around
the world. This began the systematic col-
lection of global seismic data. Around the
turn of the century, seismometer technol-
ogy increased significantly, and body-wave
data sets accumulated rapidly, revealing
systematic behavior of body-wave arrivals
as a function of distance from the sources.
This began an interval of first-order dis-
coveries about the Earth’s interior and
earthquake sources. Oldham discovered
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FIGURE 1.2 Schematic of the sense of particle motions during passage of the two funda-
mental elastic body waves, (a) P and (b) S waves, as well as the two surface waves in the
Earth, (c) Love, and (d) Rayleigh waves. The waves are all propagating from left to right, with
the surface of initial particle motion corresponding to the wavefront. The relative velocity of
each wave type decreases from top to bottom. The passage of all four wavetypes past a
single sensor is shown in Figure 1.1. (From Bolt, 1976.]
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the Earth’s core in 1906, and in 1913
Gutenberg determined an accurate depth
to the core of about 2900 km (the current
preferred value is 2889 km). In 1909 Mo-
horovi¢i¢ discovered a sharp velocity
contrast that we now refer to as the
“Moho” and interpret as the base of the
crust. In 1936 Inge Lehmann (an early
woman seismologist) discovered the
Earth’s inner core. Sir Harold Jeffreys
compiled the travel times of thousands of
seismic arrivals and developed the first
detailed cross section of the Earth from
surface to center by 1939. These travel-
time tables are still used routinely today to
locate global earthquakes and are referred
to as the Jeffreys—Bullen (J-B) tables. The
J-B tables predict the arrival times of P
waves to any point on the Earth’s surface
to within a remarkable 0.2% accuracy, lim-
ited primarily by the existence of three-
dimensional variations in structure not al-
lowed for in the tables.

In parallel with the advances in Earth
structure, seismology and field observa-
tions were revealing the nature of earth-
quakes. In 1910, Reid enunciated the
“elastic rebound theory” of earthquake
faulting. The year 1928 brought the recog-
nition of the existence of deep-focus earth-
quakes by Wadati. In the mid-1930s
Richter developed the first quantitative
measure of relative earthquake size, the
local magnitude scale (M), referred to as
the “Richter magnitude.” By 1940 the
global distribution of earthquakes was ac-
curately mapped out, clearly defining ma-
jor belts of activity that we now associate
with boundaries between surface litho-
spheric plates.

Although the first half of the twentieth
century revolutionized our knowledge of
the Earth, seismology was still a rather
obscure science, with only a small number
of active seismologists. The biggest prob-
lem was that only a limited number of
worldwide seismic stations existed. Fur-
thermore, the instrument response charac-
teristics of these stations were not stan-

dardized, making it difficult to analyze the
details of the ground motion. It took the
advent of underground nuclear testing for
seismology to become a truly modern sci-
ence.

Seismology provides a remote-sensing
technique for monitoring nuclear testing,
because underground explosions produce
seismic waves that can be detected at great
distances. In fact, a seismic station at
Tucson was used by Gutenberg to deter-
mine accurately the detonation time of the
first nuclear explosion (Trinity) on July 16,
1945, when timing equipment at the test
site failed. (The Trinity device was sus-
pended aboveground, but sufficient energy
coupled into the ground from the blast to
excite seismic waves.) The first under-
ground nuclear explosion (designated
Rainier) was detonated in 1957 by the
United States, and the 1963 Limited Test
Ban Treaty banned atmospheric, oceanic,
and deep space testing of nuclear devices
by all of its 116 signatory nations. The U.S.
government recognized the need to de-
velop a research effort to understand
seismic-wave propagation in complex
structures in order to monitor foreign un-
derground tests, and so it started the
VELA UNIFORM program. One of the
first accomplishments of this program was
the deployment of the World Wide Stan-
dard Seismograph Network in the late
1950s and early 1960s. This 120-station
global network of high-quality, well-
calibrated, well-timed stations caused ob-
servational seismology to leap ahead of
theoretical developments, bringing about
major investments in university research
programs. At the same time, rapid ad-
vances in computer technology enabled so-
phisticated analysis of increasing volumes
of seismic data. Although many first-order
discoveries about the Earth had been made
in the pioneering days prior to 1960, the
field of global seismology truly came into
its own thereafter, and we will concentrate
primarily on developments of the past few
decades in this text,
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1.2 The Topics
of Global Seismology

Having given a brief introduction to the
basic nature of seismology, we will now
undertake an overview of the topics and
contributions of global seismology. This
text will then provide the information re-
quired for understanding how we obtain
such quantitative results from seismic
recordings. It is useful to state at the out-
set that the nature of elasticity allows us to
treat mathematically the process of excita-
tion, propagation, and recording of seismic
waves as a sequence of linear filters that
combine to produce observed seismo-
grams. In other words, an observed ground
displacement history, u(¢), can be ex-
pressed as the result of a source function,
s(¢), operating on a propagation function,
g(¢), combined with an instrument record-
ing function, i(¢). The filter operations will
later be shown to be time-domain convolu-
tions of a transfer function z(¢), mapping
one function, y(¢), into another, x(t), by
an integral operation:

()= [ y()z(e=m)dr (1)

If we denote this integral operation as

TABLE 1.1 Major Topics of Global Seismolagy

x(¢)=y(t)* z(t), we can express ground
motion as

u(t) =s(e)*g()~i(1) (1.2)
Modern seismology strives to describe
mathematically each of the filters con-
tributing to the observed displacements,
and seismological research efforts classi-
cally bifurcate into two major categories:
(1) studying the source terms and their
associated phenomena, and (2) studying
the propagation terms and the associated
Earth structure. The instrument transfer
function is always the best-known filter but
involves an interesting body of theory in its
own right. Much of the organization of this
textbook (as well as almost every other
seismology book) tends to focus sequen-
tially on these filters. However, the convo-
lutional nature of the preceding equation
should make it clear that any analysis of
ground motion must consider the com-
bined source and propagation characteris-
tics. Table 1.1 lists some of the many top-
ics of classical and current interest in the
two major categories. We will now survey
some basic results of seismological analysis
in each category before developing the
theory and procedures used in global seis-
mology.

Source topics

Earth structure topics

Classical objectives

. Source location (latitude, longitude, depth, time)
. Energy release (magnitude, seismic moment)

. Source type (earthquake, explosion, other)

. Faulting geometry, area, displacement

. Earthquake distribution

monNw»

A. Basic layering (crust, mantle, core)
B. Continent-ocean differences

C. Subduction zone geometry

D. Crustal layering, structure

E. Physical state of layers (fluid, solid)

Current research objectives

. Slip distribution on faults

. Stresses on faults and in Earth

. Faulting initiation/termination

. Earthquake prediction

. Analysis of landslides, volcanic eruptions, etc.

mY 0w >

A. Lateral variations in crust, mantle, core
B. Topography of internal boundaries

C. Anelastic properties of the interior

D. Compositional/thermal interpretations
E. Anisotropic properties
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1.2.1 Seismic Sources

FElastic waves are generated whenever a
transient stress imbalance is produced
within or on the surface of an elastic
medium. Almost any sudden deformation
or movement of a portion of the medium
results in such a source. A great variety of
physical phenomena in the Earth involve
rapid motions that excite detectable seis-
mic waves. These sources can be grouped
into those that are external to the solid
Earth and those that are internal. Table
1.2 lists some common seismic sources, all
of which involve processes of interest to
Earth scientists.

Mathematical descriptions and physical
theories for all of these source types have
been developed, although most are kine-
matic descriptions rather than first-prin-
ciple theories. In order to represent these
complex physical phenomena mathemati-
cally, we must usually determine dynami-
cally equivalent, idealized force systems
that can be visualized as replacing the
actual process. By “dynamically equiva-
lent” we mean that the elastic motions
produced by the idealized force system are
the same as those of the actual process.
We can then place these force representa-
tions into Newtonian equations of motion
(essentially F = ma, where F is the force
system, m is the mass of the body, and a is
the acceleration of the body) to predict the
resulting waves accurately.

External sources are usually easier to
represent mathematically than internal
sources. In most cases, external sources

TABLE 1.2 Primary Sources of Seismic Waves

can be treated as time-varying tractions
applied to the Earth’s surface (a traction is
the stress vector resuiting from a force
applied to an element of surface area). As
the traction varies with time, a stress im-
balance near the source is created. This
imbalance is equilibrated by motions of
the medium, which in turn propagate out-
ward as seismic waves. The mathematics
of this are given in Chapter 2. Internal
force systems may be relatively simple, as
in the three-dipole force system needed to
represent an isotropic explosion, or quite
complex, as in the spatial distribution of
double-couple forces needed to represent
a large earthquake (to be described in
Chapter 8). All sources produce body and
surface waves, but the relative excitation
and the frequency and amplitude charac-
teristics of these waves depend strongly on
the source type and force-time history.
For example, the seismic recordings of nu-
clear explosions can usually be discrimi-
nated from patural earthquakes by their
very strong excitation of high-frequency P
waves relative to lower-frequency surface
waves.

Although the sources of primary interest
for this text on global seismology are
shear-faulting earthquakes, many of the
sources listed in Table 1.2 can produce
globally observable seismic signals. Figure
1.3 shows surface ground motions pro-
duced by overhead passage of the space
shuttle Columbia. As the shuttle de-
scended for landing, it produced a sonic
boom, which vibrated the ground in the
Los Angeles basin. The ground motions
were recorded by seismometers deployed

Internal External Mixed
Earthquake faulting Wind, atmospheric pressure Volcanic eruptions
Buried explosions Waves and tides Landslides

Hydrological circulation
Magma movements

Abrupt phase changes
Mine bursts, rock spallation

Cultural noise (traffic, railways)
Meteorite impacts
Rocket launches, jet planes
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FIGURE 1.3 Ground motions produced by the sonic boom accompanying the space shuttle
Columbia as it descended over the Los Angeles basin on its way to landing. The relative time
of vibrations at regional seismic stations is shown on the left, with the arcuate pattern

resulting from intersection of the sonic boom '‘mach cone’

with the ground. The inset

shows the trajectory of the shuttle across the basin. The actual ground-motion velocities at
several stations are shown on the right. (Reprinted with permission from Kanamori et al.
Nature, vol. 349, pp. 781-782; copyright©1991 Macmillan Magazines Limited.)

in the region to monitor regional earth-
quake activity. The time of arrival of
ground vibrations at the stations allows us
to determine the descending trajectory of
the shuttle as the “mach cone” intersec-
tion with the ground swept across the basin
(shown on the left). Actual recordings of
ground-motion velocities at different sta-
tions are shown on the right and can be
interpreted as the result of rapidly chang-
ing air pressure on the ground as the sonic
boom front sweeps across. As exotic as this
moving source may be, the resulting seis-
mic motions behave predictably according
to the theory of elastic waves. Chapter 10
describes the recovery of seismic source
parameters for more conventional faulting
earthquakes, and Chapter 11 discusses how
we can use these parameters to learn about
active tectonics.

1.2.2 Earthquake Sources
Invalving Shear Faulting

The development of equivalent force
systems for natural earthquakes required a

basic understanding of the associated pro-
cess, which was not available before this
century. Historically, ground breakage and
surface faulting associated with Earth vi-
brations have often been observed, but in
many instances no surface break could be
associated with a tremor, confusing ob-
servers as to which was cause and which
effect. It was difficult to apply any scien-
tific method to study earthquakes because
of the limited observational data base. It
was not until the 1906 San Francisco
earthquake that a causative theory relating
the two phenomena was clearly enunci-
ated. Reid carefully studied the well-
exposed permanent ground motions that
occurred at the time of the 1906 earth-
quake. The horizontal deformations in the
vicinity of the San Andreas fault (Figure
1.4a) exhibited a simple symmetry that led
him to formulate the elastic rebound theory
of earthquakes. This partly empirical, partly
intuitive theory states that crustal stresses,
generally resulting from large-scale re-
gional crustal shearing motions, cause
strain to accumulate in the immediate
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vicinity of faults, which are quasiplanar
breaks in the rock across which some pre-
vious displacement has occurred and which
are hence relatively weak. When the strain
accumulation reaches a threshold imposed
by the material properties of the rock and
the fault surface, abrupt frictional sliding
occurs (Figure 1.4b), releasing the accumu-
lated strain energy. Much of the strain
energy is consumed in heating and fractur-
ing of the rocks, but a portion is converted
into seismic waves that propagate outward
from the fault zone, communicating the
disturbance to distant regions. The re-
gional deformations continue, leading to
many cycles of strain accumulation and
release during the active lifetime of the
fault.
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The elastic rebound theory predicts per-
manent coseismic shear displacements
(Figure 1.4) similar to the 1906 observa-
tions. We expect this particular symmetric
pattern of surface displacement only for a
vertical fault that slips horizontally, but
shallow faults with other orientations pro-
duce easily predictable patterns of hori-
zontal and vertical motion due to the
shearing offset (the governing equations
for these static deformations are derived
in Chapter 8). Examples of the historical
geodetic (measured permanent ground
deformation) observations favoring this
model, collected largely in Japan, where
there are numerous shallow crustal faults,
frequent earthquakes, and many seismolo-
gists who study faulting, are listed in

Tomales

displacement near the fault

FIGURE 1.4 (a) Observed permanent ground displacements that occurred simultaneously
with the 1806 San Francisco earthquake. The symmetric distribution of horizantal displace-
ments on either side of the San Andreas fault suggests that strain energy accumulated in
the vicinity of the fault and released when the fault slipped, producing the seismic vibrations
that were felt as an earthquake. (b) Sketch of the process of strain accumulation in the
vicinity of a fault resulting from regional shearing motions, followed by the sudden sliding of
the rock on the fault surface. This is the essence of the elastic rebound theory of faulting.
The coseismic distribution of actual permanent ground displacement is shown on the right.
Compare this with the observations for the 1906 earthguake in Figure 1.4a.



12

TABLE 1.3 Classic Observations of Faulting Strain

1. INTRODUCTION

Fault Average Decay
length offset distance
Event (km) (m) (km) Strain
1906 San Francisco, CA 200 5 20 25x 1074
Mg=18
(see Figure 1.4)
1927 Tango, Japan 30 3 30 1.0x 1074
M;=178
1943 Tottori, Japan 40 2 15 13x107*
Mg=174
1946 Nankaido, Japan 80 0.7 100 1.0x 1073
Mg=182
1971 San Fernando, CA 30 2 20 1.0x107*
Mg=6.6

Table 1.3. These examples indicate that
the crust cannot accumulate strains much
larger than about 10~% without failure,
where strain is calculated as slip on the
fault divided by the distance perpendicular
to the fault over which there are signifi-
cant coseismic displacements. Most events
involve strains from 1073 to 10™%, at least
in typical continental situations, a funda-
mental result that we return to in Chapter
9. A large number of such observations of
faulting and ground displacement have
given rise to the hypothesis that most shal-
low (less than 70 km deep) earthquakes
result from shear dislocations on faults,

even though most such events occur below
the depth of direct observation. Systematic
analysis of seismic waves from thousands
of earthquakes over the past decade sup-
ports this hypothesis.

The 1906 San Francisco earthquake was
also scientifically important because it was
widely recorded on the early generation of
seismometers available near the turn of
the century. Figure 1.5 shows a horizontal
component of ground motion on an Omori
seismometer that was located in Tokyo.
This recording shows an initial P-wave
arrival followed by a much larger S-wave
arrival and then a complex sequence of

FIGURE 1.5 A classic seismic recording of the 1806 earthguake made by an Omori seis-
mometer located in Tokyo, Japan. The ground motion is horizontal, east-west. The station is
at a distance of 75.05° from the source (1°=111 km). Time increases toward the right on

the recordings, and the first arrival

is a P wave.

The S wave arrives about

10 min later {the tick marks indicate B0-s intervals). The record wraps around from one line
to the next, as it was recorded on a rotating, translating drum.
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TABLE 1.4 Characteristic Seismic Wave

Periods

Wave type Period (s)
Body waves 0.01-50
Surface waves 10-350
Free oscillations 350-3600

surface waves. The shearing nature of mo-
tions at the source is partly responsible for
the greater amplitude of the S wave rela-
tive to the P wave. The combination of a
conceptual model for the faulting source
and the constraints on source force sys-
tems provided by observed amplitudes and
polarities of P and § waves enabled the
development of the double couple and,
more recently, the moment tensor as gen-
eral force models for shear faulting sources
that are now routinely used in global seis-
mology. This is fully described in Chap-
ter 8.

1.2.3 Quantification
of Earthquakes

In general, earthquake body waves (P
and S waves) have shorter characteristic
periods of vibration than surface waves
(Rayleigh and Love waves), which in turn
have shorter periods than free oscillations
of the Earth (standing modes of vibration
of the entire planet, which are detectable
only for the largest earthquakes) (Table
1.4). Furthermore, the ground displace-
ments for body waves generated during a
large earthquake may be only 107° cm
after traveling 1000 km, but long-period
surface waves may have amplitudes of sev-
eral meters after traveling the same dis-
tance. These differences result from source
excitation and propagation interference
effects that depend on the type of wave
and the Earth structure.

It is important to realize that each type
of seismic wave involves a spectrum of
frequencies, and the ground motion from
the same wave will have a different ap-
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FIGURE 1.6 Broadband vertical-component
recording of the 1989 Loma Prieta earthquake
at station ANMO (Albuguerque, New Mexicol.
The top panel is 20 h in duration (the earthquake
is the rider on the long-period signal); tidal
effects dominate. The middle panel is for a
30-min interval, and the bottom pane! is for a
100-s interval.

pearance depending on the filtering trans-
fer function of the recording system. A
very broadband seismometer records many
frequencies of ground motion, as shown in
Figure 1.6. The recordings are for the Oc-
tober 1989 Loma Prieta earthquake that
ruptured a fault in the Santa Cruz Moun-
tains. The top panel shows a time window
of 20 h. The Loma Prieta earthquake shak-
ing is a large rider on the long-period
sinusoidal signal with a period of 12 h. The
long-period signal is the solid Earth tide;
the Earth rises and falls about 40 c¢cm at
station ANMO every day in response to
tides caused by the gravitational attraction
of the Sun and Moon. The middle panel
shows a time window of 30 min containing
the main signal from the Loma Pricta
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earthquake. The largest signal is the
Rayleigh wave, which has an amplitude of
about 2 cm. The bottom panel shows the
first 60 s of the P arrival, which has many
high-frequency oscillations. The higher-
frequency energy is very complex, indicat-
ing that propagation and source effects
have a strong frequency dependence. This
illustrates how characterization of a seis-
mic signal in any one frequency band may
not represent the behavior in other fre-
quency bands.

At the long-period end of the seismic
spectrum, other important phenomena are
observed in the seismic waves. One of the
most important is caused by the spherical
nature of the planet. Figure 1.7 shows
long-period Rayleigh waves produced by
the Loma Prieta earthquake recorded at
globally distributed digital seismometers.

180
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R, waves travel along the short arc of the
great circle from the source to the receiver
and then continue to circle the Earth,
reappearing as R, at the same station 3 h
later. R, travels along the long arc of the
great circle and arrives at the station again
as R, and then as R¢ etc. in 3-h shifts.
These surface waves slowly decrease in
amplitude as they circle the Earth because
of energy losses due to attenuation
(anelastic losses) and increasing dispersion
(frequency dependence of velocity) of the
energy. Longer-period oscillations are in-
creasingly dominant later in the traces be-
cause both attenuation and dispersion have
a strong frequency dependence. We must
account for these effects when studying
the source, but they reveal information
about Earth structure when directly stud-
ied.
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FIGURE 1.7 Long-period Rayleigh waves produced by the 1989 Loma Prieta earthquake as
recorded at globally distributed digital seismometers of three global networks (GEOSCOPE,
International Deployment of Accelerometers, Global Seismic Network). The vertical-compo-
nent traces are filtered to include only periods longer than 125 s. The vertical axis is the
angular distance along the surface from the California source, and time is from the earth-
guake origin time. A, and R, are Rayleigh waves traveling along the minor and major arcs of
the great circle from source to station, respectively; A3 is the next passage of the R, wave
after circling the entire globe. [(From Velasco et al., 1993.)
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Prior to instrumental recording, compar-
isons of earthquakes were based mainly on
shaking damage and seismic intensity scales
were developed based on varying damage.
Intensity scales can be contoured, defining
isoseismals, or regions of common shaking
damage, typically having the highest inten-
sities close to the fault. Although such
earthquake measures are strongly influ-
enced by proximity of the event to popula-
tion centers, construction practices, and
local site effects, seismic intensities are
often all that we know about preinstru-
mental events, and they play a major role
in regions such as the eastern United
States, where most known large events oc-
curred over 100 years ago. Earthquake
measures based on recorded ground mo-
tions are more useful for recent events.

Until recently it has been necessary to
use different seismometers, sensitive to
different frequency ranges and with vary-
ing ground-motion amplification, to record
the different wave types. Therefore, the
various types of instruments intrinsically
tend to record only those types of waves
with corresponding periods, which may
represent only a small part of the total
ground motion. The diversity of instru-
ments recording different wave types has
led to the development of many different
scales for comparing the relative size of
earthquakes based on seismic waves, typi-
cally called seismic magnitudes. We use
seismic waves to compare earthquake size
because it can be done systematically and
quantitatively and because it does not rely
on damage or other macroscopic phenom-
ena that are strongly influenced by factors
other than the source (such as variable
construction standards and surface topog-
raphy). Almost all magnitude scales are
based on the logarithmic amplitude of a
particular seismicwave on a particular seis-
mometer, with corrections for the distance
to the source. Examples of the primary
magnitude scales are given in Table 1.5
and compared with the period response of
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TABLE 1.5 Examples of Seismic
Magnitude Scales

Period
Symbol Name of measurement (s)
M, Richter magnitude 0.1-1.0
my Body-wave magnitude 1.0-5.0
Mg Surface-wave magnitude 20
My Moment magnitude > 200

common seismic instruments in Figure 1.8.
These show that any one earthquake can
have many different seismic magnitudes, if
measurements are made for different
waves at different frequencies. This has
often confused the news media, who (per-
haps reasonably) tend to expect a given
earthquake to have only a single magni-
tude (Richter magnitude).

A graphical presentation of the calcula-
tion of Richter magnitude is shown in Fig-
ure 1.9. The essential measurements are
the peak amplitude of ground motion on a
Wood-Anderson seismic recording and
the difference between § and P arrival
times, which is proportional to the dis-
tance to the source. Wave amplitudes de-
crease systematically with distance, so
correction to a reference distance allows
direct comparison of logarithmic ampli-
tudes, or magnitude. Note that for a given
distance, a factor of 10 difference in seis-
mic amplitude yields a unit difference in
magnitude. This relationship is empirical,
with only a limited theoretical basis (de-
scribed in Chapter 9), and in a strict sense
this magnitude scale is restricted to events
in Southern California, where it was devel-
oped, because the amplitude—distance re-
lation varies in regions with different
crustal structure. Nonetheless, seismic
magnitudes have many uses in comparing
earthquake properties.

Earthquakes can be quantified by deter-
mining several physical parameters, such
as the fault length, rupture area, average
displacement, particle velocity or accelera-
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FIGURE 1.8 The range in period of seismic phenomena in the Earth is shown on the left,
along with the characteristic periods of body waves, surface waves, and different seismic
magnitude scales. On the right, the amplitude responses of some major seismometer
systems are shown. Each magnitude scale tends to be associated with a particular instru-
ment type; for example, the Richter magnitude, M,, is measured on the short period
Wood-Anderson instrument. (Courtesy of H. Kanamori.)

tion at the fault, duration of faulting, radi-
ated energy, heterogeneity of slip distribu-
tion, or combinations of such quantities.
Although we can determine many of these
characteristics by detailed seismic-wave
analysis, any given magnitude scale can
only qualitatively describe the complex
process at the source. We shall see that
the best-defined physical quantity with
which to represent the source is the seis-
mic moment, which is controlled by static
parameters of the total fault motion, with
a unique value for each event. The mo-
ment magnitude scale, M,,, is based on
logarithmic scaling of seismic moments to
give numerical magnitudes that are roughly
comparable with older magnitude scales.
However, structural damage from earth-
quakes is often controlled by high-
frequency waves, so short-period magni-
tudes are still very useful.

Large earthquakes have values of My, >
7.0, which roughly corresponds to events
having more than 1 m of displacement on
faults that are more than 30 km long.
Great earthquakes have My, values > 8.0
and involve larger faults and greater slip.
The largest instrumentally recorded event
is the great 1960 Chilean earthquake
(My, =9.5), which involved 20 m of dis-
placement during a few-minute-long rup-
ture that extended over a 1000-km-long
fault. The annual average number of
My, > 7.0 events is about 15 (Figure 1.10).
One or no great events may occur each
year, but more frequent smaller events can
also be catastrophic in terms of loss of life
and damage. An example of the awesome
destructive potential of earthquakes is the
1976 (M, = 7.7) Tangshan, China earth-
quake, which took approximately 250,000
lives (some estimates put the toll as high
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FIGURE 1.9 A graphical form of the Richter magnitude scale procedure. A recording from a
local earthquake made on a Wood-Anderson seismometer must be used. The peak deflection
on the record is measured, and the distance from the source is determined (it is roughly

proportional to the time interval between the

S and P arrivals). A line connecting these

values intersects the magnitude scale at the appropriate value. The scale is logarithmic, so
a factor of 10 variation in the amplitude of the seismic wave gives a unit variation in the

magnitude.

as 700,000). Figure 1.10 shows that the
average annual number of earthquake fa-
talities is about 15,000, with many areas of
the world being stricken. Earthquake haz-
ard varies dramatically with location
around the world, with inferior construc-
tion practices of developing nations often
accentuating earthquake damage. Circum-
Pacific countries tend to have more fre-
quent large events, resulting in greater
damage potential. The 1985 Mexico City
earthquake is an example of an event in a
city with moderate construction standards
that is located near a frequent earthquake
zone. Although Mexico City was 250 km
from the fault zone, at least 7000 people
lost their lives, mainly due to building col-

lapse. Soil conditions under the building
foundations, construction practices in the
city, and unusually long rupture duration
have been blamed for the catastrophe.

1.2.4 Earthquake Distributions

One of the classical problems in global
seismology has been the systematic map-
ping of earthquake distributions on a vari-
ety of scales. This mapping has played a
key role in the evolution of the theory of
plate tectonics, which describes the large-
scale relative motions of a mosaic of litho-
spheric plates on the Earth’s surface. It is
the properties of seismic waves that allow
the source location to be determined, since
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FIGURE 1.10 (Top) The annual number of large (Mg = 7.0) shallow earthquakes around the
waorld. There are about 17 events of this size annually. (Bottom) The history of earthquake-
induced fatalities in this century, with the locations of major events being indicated. Naote
the poor correlation with the top trace. Even small earthquakes can cause extensive loss of
life in regions with poor building construction, or if secondary hazards such as fires or
landslides enhance the damage. (Modified from Kanamori, 1977, 1978.}

the waves propagate through the Earth
with velocities controlled by the material
properties. Observations of arrival times of
seismic waves and a model of the velocity
structure in the Earth are needed for seis-
mic location methods. Historically, the de-
velopment of velocity models and im-
proved source locations has evolved in a
seesaw fashion, with occasional, indepen-
dently known source locations and origin
times providing first-order models of the
structure, which could be statistically im-

proved over time. The procedures for
earthquake location are described in detail
in Chapter 6.

By 1941, through work by Beno Guten-
berg and Charles Richter, the global distri-
bution of major earthquake belts was quite
well determined, and the enhanced loca-
tion capabilities of the modern global net-
work now allow routine location of all
events greater than magnitude 4.5 or so
(Figure 1.11). The distribution of seismic
events, or seismicity, is very nonuniform.
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Most events occur around the Pacific mar-
gin, but midocean ridge and fracture zone
structures are also quite active. Continen-
tal seismicity tends to be diffuse and is
concentrated in seismic belts only along
the Pacific margins. Studies by Turner and
Wadati in the early 1920s revealed the
occurrence of seismicity at depths greater
than 70 km. The spatial distribution of
such events, termed intermediate-depth
events if they occur between 70 and 300
km depth and deep events if they occur
between 300 and 700 km depth, is very
limited. Such events are found primarily in
linear belts around the Pacific, under Eu-
rope, and under Tibet. These presumably
occur within downwelling portions of

1. INTRODUCTION

oceanic plate that is sinking into the man-
tle. Deep events occur much less fre-
quently and release much less energy than
shallow earthquakes. The nature of their
sources is also somewhat puzzling because
frictional sliding supposedly cannot occur
at such great depths because of the high
pressures, yet the seismic radiation is simi-
lar to that for shallow shear-faulting events.
These issues are discussed in Chapter 11.

The distribution of smaller-magnitude
seismicity is also studied by seismologists,
particularly in densely inhabited areas
where the earthquake hazard is being as-
sessed. Earthquake locations for a 10-year
interval in Southern California are shown
in Figure 1.12. The seismic distribution is
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FIGURE 1.12 A map of earthquake locations in Southern California for the years 1978-
1988. Mast of the events are very small, and a dense network of seismometers is deployed
in the region to locate all of the earthquakes accurately. The traces of known active faults
observed at the surface are superimposed for comparison (as well as the borders of
Californial, with the San Andreas fault labeled SAF. (Courtesy of Tom Heaton.)
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exceedingly complex and does not strictly
adhere to the mapped faults that break
the surface. Dense arrays of seismometers
are installed in areas of intense seismicity,
or seismogenic zones, in order to obtain
precise earthquake locations and to study
the faulting motions that must be taking
place in the region. Note that if we use
just the short-term seismicity pattern to
locate faults in this region, we may fail to
identify the major fault that produces the
largest earthquakes, the San Andreas fault,
because it has few small events.

The need to assess large-earthquake
hazard leads global seismologists to look
at the historic record of large earthquakes
around the world over longer periods of
time. The global distribution of great
earthquakes during most of this century is
shown in Figure 1.13, where the seismolog-
ical surface-wave magnitude scale, M, as
well as the moment magnitude scale, M,

21

values are given for each event (when
known). The availability of relatively quan-
titative seismic magnitudes allows us to
study this historical pattern. Table 1.6 list
the major events of the century. The My
values for some events near the turn of the
century have been revised downward, with
new values given in parentheses. The dis-
tribution mirrors the overall seismicity pat-
tern, with the largest events occurring
around the Pacific margins, but with nu-
merous events, many of them devastating,
occurring in the Middle East as well as in
China. Still, one would not identify the
southern San Andreas fault as capable of
producing major earthquakes, and seis-
mologists push the historical record back
to times preceding instrumental recording
by using descriptive reports of historical
events and by digging into near-surface
faults to examine the history of motions
preserved in the soil and rock disrup-
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FIGURE 1.13 The global distribution of great earthquakes this century. The location and
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ruptures. (From Kanamori, 1988.)
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TABLE 1.6 Large Earthquakes with Mg > 8.0 for the Period 1804 to 1992

1. INTRODUCTION

Lat. Long.
Date Time Region °N) (°E) Mg My
1904 06 25 2100.5 Kamchatka 52 159 8.0(7.4)
1905 04 04 0050.0 E. Kashmir 33 76 8.1(7.5)
1905 07 09 09404 Mongolia 49 99 8.4(7.6) 84
1905 07 23 0246.2 Mongolia 49 98 8.4(7.7) 8.4
1906 01 31 1536.0 Ecuador 1 —81.5 8.7(8.2) 8.8
1906 04 18 1312.0 California 38 —123 8.3(7.8) 7.9
1906 08 17 0010.7 Aleutian Is. 51 179 8.2(7.8)
1906 08 17 0040.0 Chile -33 -7 8.4(8.1) 8.2
1906 09 14 1604.3 New Britain -7 149 8.1(7.5)
1907 04 15 0608.1 Mexico 17 —100 8.0(7.7)
1911 01 03 2325.8 Turkestan 435 715 8.4(7.8)
1912 05 23 02241 Burma 21 97 8.007.D
1914 05 26 14227 W. New Guinea -2 137 8.0
1915 05 01 0500.0 Kurile Is. 47 155 8.0
1917 06 26 0549.7 Samoa Is. —-15.5 -173 84
1918 08 15 12182 Mindanao Is. 55 123 8.0
1918 09 07 1716.2 Kaurile Is. 45.5 151.5 8.2
1919 04 30 0717.1 Tonga Is. -19 —-172.5 8.2
1920 06 05 0421.5 Taiwan 23.5 122 8.0
1920 12 16 1205.8 Kansu, China 36 105 8.6
192211 11 0432.6 Chile —28.5 -70 8.3 8
1923 02 03 1601 41 Kamchatka 54 161 8.3 8.5
1923 09 01 0258 36 Kanto 35.25 139.5 8.2 7.9
1924 04 14 162023 Mindanao 6.5 126.5 8.3
1928 12 01 0406 10 Chile -35 -T2 8.0
193205 14 131100 Molucca Passage 0.5 126 8.0
1932 06 03 1036 50 Mexico 19.5 —104.25 8.2
1933 03 02 1730 54 Sanriku 39.25 144.5 8.5 8.4
1934 01 15 084318 Nepal/India 26.5 86.5 8.3
1934 07 18 1940 15 Santa Cruz Is. -11.75 166.5 8.1
1938 02 01 1904 18 Banda Sea -5.25 130.5 8.2 85
1938 11 10 201843 Alaska 55.5 ~158.0 8.3 8.2
1939 04 30 0255 30 Solomon Is. -105 158.5 8.0
1941 11 25 1803 55 N. Atlantic 375 —185 82
1942 08 24 225027 Peru —15.0 —76.0 8.2
1944 12 07 043542 Tonanki 33.75 136.0 8.0 8.1
1945 11 27 2156 50 W. Pakistan 24.5 63.0 8.0
1946 08 04 175105 Dominican Rep. 19.25 —-69.0 8.0
1946 12 20 1919 05 Nankaido 325 134.5 8.2 8.1
1949 08 22 040111 Queen Char. Is. 53.75 —133.25 8.1 8.1
1950 08 15 1409 30 Assam 28.5 96.5 8.6 8.6
1951 11 18 093547 Tibet 305 91.0 8.0 75
1952 03 04 012243 Tokachi-OKki 42.5 143.0 8.3 8.1
1952 11 04 1658 26 Kamchatka 52.75 159.5 8.2 9.0
1957 03 09 142228 Aleutian Is. 51.3 —175.8 8.1 9.1
1957 12 04 0337 48 Mongolia 452 99.2 8.0 8.1
1958 11 06 2258 06 Kurile Is. 444 148.6 8.1 83
1960 05 22 1911 14 Chile -38.2 —-72.6 85 9.5
1963 10 13 0517 51 Kaurile 1s. 449 149.6 8.1 8.5
1964 03 28 0336 14 Alaska 61.1 — 1475 8.4 9.2
1965 02 04 050122 Aleutian Is. 51.3 178.6 8.2 8.7
1968 05 16 0048 57 Tokachi-Oki 40.9 143.4 8.1 8.2
1977 08 19 0608 55 Sumbawa -11.2 118.4 8.1 8.3
198509 19 1317 38 Mexico 18.2 -102.6 8.1 8.0
1989 05 23 1054 46 Macquarie Is. —-523 160.6 8.2 8.2
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tions. This reveals that the southern San
Andreas fault has indeed had great earth-
quakes, the most recent in 1857, with many
previous events recurring about every 130
years. Other great events revealed by his-
torical accounts occurred in regions such
as southeastern Missouri, where a se-
quence struck in 1811-1812, and South
Carolina in 1886. In some places, such as
Missouri, current small-magnitude seismic-
ity alerts us to the local earthquake poten-
tial, whereas in others, like South Car-
olina, little present activity is occurring.
Chapter 11 discusses the earthquake haz-
ard issue further.

1.2.5 Global Faulting Patterns and
Rupture Models

In order to understand the distribution
and fundamental causes of earthquakes,
we must determine the nature of the fault-
ing motions that are involved, but only a
few faults rupture the surface to give di-
rect observation of permanent deforma-
tions that reveal the fault geometry. Again,
the basic properties of seismic waves assist
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us greatly. The wavefronts that expand
outward from the earthquake source re-
gion retain the initial sense of deformation
at the source (Figure 1.14), so that, after
accounting for propagation effects, we can
relate seismogram motions to near-source
motions, even though the seismometer may
be thousands of kilometers from the
source. The near-source motions then de-
fine the source geometry, which for earth-
quakes involves the fault orientation and
direction of slip.

Seismological analysis exploits this di-
rectional information in the wavefield to
find the fault orientations for large earth-
quakes all over the world, even at inacces-
sible depths. Figure 1.15 shows the global
distribution of shallow (depth less than 70
km) events with My, >6.5 for the year
1989. The circular plots are stereographic
projections that show fault-plane orienta-
tions and major strain axes, which reveal
the sense of motion at the source (de-
scribed fully in Chapter 8). Most of the
large events in this year occurred around
the Pacific margin and involved under-
thrusting of oceanic plate in convergent

FIGURE 1.14 Elastic waves propagate away from a source with the sense of ground
motions being preserved over the wavefront. The directions of P- and S-wave particle
motions on the expanding wavefront are shown above, with (a) P-wave motions being
perpendicular to the wavefront and reflecting initial motion either toward or away from the
source. (b) S-wave motions are parallel to the wavefront, with the shearing direction being
controlled by the orientation of the shearing at the source. It thus becomes possible to
relate distant motions to near-source motions and determine the source geometry. {(From
Kasahara, 1981. Reprinted with the permission of Cambridge University Press.}
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FIGURE 1.15 Top: The source mechanism for all earthquakes with M, > 6.5 in 1888. The
date and stereographic projection of the P-wave radiation pattern for each event are shown,
with the size of the projections scaling with relative moment of the source. The dark areas
represent compression (away from the source) motions; the white areas indicate dilata-
tional (toward the source) motions. These source mechanisms are fully described in Chapter
8, but here they can be taken to indicate the direction of faulting associated with each
source. Bottom: The annual cumulative seismic moment release from all significant seismic
events, which is about 800 events per year. The darker portion of each bar indicates the
contribution from just the My, > 6.5 events, demonstrating that the small number of large
events (about 20/ yr) dominates. (From Dziewonski et al., 1980, 1991.)

zones. The event in California is the Octo-
ber 18, 1989, Loma Prieta event, located in
the Santa Cruz Mountains between San
Jose and Santa Cruz. This event had a
moderate magnitude of My =69 but
caused more than $7 billion in damage
and killed 68 people. The relative impor-
tance of these large events is suggested by

the bar graph, which shows the annual
cumulative seismic moment release around
the world. The darkened portions of these
bars indicate the moment release con-
tributed by the events with My, > 6.5,
which clearly dominate.

The routine determination of earth-
quake faulting orientation around the
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world by seismic-wave analysis is one of
the remarkable accomplishments of global
seismology. Over 10,000 earthquakes have
been quantified from 1977 to 1992 by the
analysis procedure used in Figure 1.15. As
mentioned earlier, this is too short a time
span to assess all earthquake phenomena,
but it has revolutionized the fundamental
data base for studying surface motions.
Characterizing the average fault orienta-
tion and seismic moment of the events is
only the first step. More detailed seismic
analysis can be used to determine the full
rupture sequence for large events, from
onset to termination of faulting. Some re-
cent results are shown in Figure 1.16 for a
large earthquake in 1976 in Guatemala
that resulted from the rupture of a nearly
vertical fault called the Motagua fault. The
rupture started at point 1 and spread in
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both directions down the fault, with hori-
zontal shearing of the two sides. Detailed
analysis of very complicated P waveforms
recorded around the world for this event
shows that the radiation of energy was not
uniform during the rupture and that the
orientation of the strain release rotated
slightly at different locations on the fault.
The complex time history of energy re-
lease is a common attribute of large earth-
quake failures, as is the presence of
nonuniform surface displacement along the
outcrop of surface-breaking faults. Chap-
ter 10 describes the procedures that are
used in such studies.

For earthquakes more recent than 1980,
the quality of global seismic data is greatly
improved over earlier decades because
digital recording systems became wide-
spread, and even great earthquakes pro-

FIGURE 1.16 A map of the Motagua fault, which ruptured in the 1976 Guatemala earth-
quake. The seismologically determined history of energy release is shown in the upper left.
Each pulse corresponds to radiation from different sections of the fault as the rupture
spread away from the initiation point (star). Each subevent has a source orientation
determined in the analysis, with the projections of the P-wave nodal radiation planes being
shown in stereographic projections. Darkened areas represent compressional P-wdve mo-
tions. The fault orientation changed during rupture, and the strength of radiation was nat
uniform along the fault. (From Kikuchi and Kanamori, 1991.)
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FIGURE 1.17 A mode! of variable slip on the
fault that ruptured in the 1989 Loma Prieta,
California, earthquake. This model involves some
variation in the amount and direction of slip an
the fault. The rupture spread outward from the
initiation point at the star in the center of the
fault at a depth of 18 km. Slip of the fault took
place over a total of about B s. Two patches of
primary slip are highlighted. This model was
obtained by analysis of very nearby (strong
motion) and distant (teleseismic) P and S
waves. (From Wald et al., 1991.)

duced on-scale seismograms, with greater
bandwidth than previously possible. This
has enabled even more detailed analysis of
seismic ruptures, involving actual contour-
ing of the variable displacement on the
fault surface. An example is shown in Fig-
ure 1.17, in which seismic recordings at
distant and nearby locations have been
used to determine a model for the hetero-
geneous slip distribution on the fault caus-
ing the 1989 Loma Prieta earthquake. The
data reveal two major patches of dominant
slip on the fauit, which ruptured in about
8 s. Studies such as these are greatly im-
proving our understanding of earthquake
rupture mechanics and are beginning to
place earthquake prediction efforts on
sounder physical grounds. The broad range
of seismic source investigations is de-
scribed further in the last four chapters of
this book.

1.2.6 Radial Earth Layering

The second major branch of global seis-
mology involves studying the structure of
the Earth’s interior. In order to extract the

1. INTRODUCTION

types of information about seismic sources
described above, it is critical to account for
propagation effects, which requires a
knowledge of the structure. In addition,
most of what we know about the deep
interior of the Earth regarding its compo-
sition, layering, dynamics, physical state,
and temperature has been based on seis-
mic observations of the otherwise inacces-
sible interior regions. Just as for seismic
sources, the remarkable contributions of
pioneers early in this century, such as Jef-
freys, Bullen, Gutenberg, and Lehmann,
solved many of the first-order Earth struc-
ture problems, such as demonstrating that
the core exists and must be fluid because it
does not transmit S-wave energy. But, as is
the case for understanding earthquakes,
resolving the second-order details is
critical to understanding the dynamical
processes occurring in the Earth. For ex-
ample, the presence of several-hundred-
degree lateral temperature differences
deep in the mantle may produce only a 1%
change in seismic velocity but is sufficient
to drive convective flow of the interior on
long time scales. Similarly, grossly differ-
ent models of the chemistry of the interior
differ in their elasticity parameters by a
few percentages or less. Thus, there is an
intense effort to determine the internal
structure with very high precision, so that
the composition and dynamic processes of
the interior can be understood.

The key to revealing the internal struc-
ture using seismograms is the collection of
large numbers of recordings at different
distances from a source. A display of seis-
mograms as a function of distance, or seis-
mic profile, enables identification of coher-
ent wave arrivals between stations. An
example for a global data collection is
shown in Figure 1.18. The records show
good stability of the travel-time variation
of a given wave type as a function of
distance in the Earth. For example, at
epicentral distances (measured in angular
degrees along the Earth’s circumference
between source and receiver) of less than
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FIGURE 1.18 A collection of vertical-component seismograms for a single event that
occurred near Sumatra, plotted at the angular distance to each station. The records are
from the Worid Wide Standardized and Canadian Seismic Networks. Upward motion on each
trace is toward the left. Note that coherent arrivals can be tracked from trace to trace.
These define the travel-time behavior for different paths through the Earth. The start time
of each trace has been reduced by a value of BA s, where A is the angular distance. Thus,
traces on the right begin much later than traces on the left. (Modified from Muller and Kind,
18976. Reprinted with permission of the Royal Astronomical Society.)

100°, a clear P-wave arrival occurs at the
onset of ground motions. The disruption
of the P arrival branch near 100° is due to
the low-velocity core of the planet. The
systematic timing as a function of distance,
or travel-time curve, for each seismic phase
can be analyzed using inverse theory to
determine the internal structure of the
Earth. Any radial layering will give rise to
reflections and conversions of P and §
waves, and fitting the travel times of later
arrivals determines the depths and velocity
changes of internal discontinuities.

The observed wavefield is complicated
by the existence of both body and surface
waves, by conversions and reflections of
body waves off the core and other internal
discontinuities, by the spherical geometry
of the Earth and multiple reflections of
body waves off the surface, as well as by

relatively small lateral variations in struc-
ture. Over the past three decades immense
data bases of travel-time observations have
accumulated in the routine process of lo-
cating earthquakes around the world. The
United States National Earthquake Infor-
mation Center (NEIC) and the Interna-
tional Seismological Center (ISC) in Eng-
land compile earthquake bulletins with all
travel-time reports from stations around
the world. Simply displaying the composite
travel times (Figure 1.19a) reveals a global
travel-time curve. Each continuous branch
of arrivals defines a particular seismic-wave
path in the Earth that can be analyzed to
reveal layering in the Earth. The travel-
time branches are readily identified, and
master travel-time curves such as those in
Figure 1.19b can be determined for dif-
ferent source depths. Many of the complex
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interactions are low amplitude and can be
observed only after stacking many observa-
tions at a given distance, which reduces
background noise. This is now possible
with the large data sets of digital seismo-
grams that are accumulating (Chapter 6).
Once observed travel-time curves for
seismic phases are determined, it is possi-
ble to invert for P- and S-wave velocities
as a function of depth using the methods
described in Chapter 7. Through analysis
of body waves, long-period surface waves,
and free oscillations, global seismologists
have developed one-dimensional models
of the elastic velocities and density of the
entire Earth. One of the most frequently
used models is shown in Figure 1.20. This
model, different from the first generation
of global models developed in the 1930s in
subtle but important ways, indicates the
major subdivisions of the interior: the solid
inner core, the fluid outer core, the lower

29

mantle, and the upper mantle. The crust is
a very thin veneer on the surface. Chapter
7 discusses the seismological constraints
on each region. Radial models of the
Earth’s elastic structure are used in many
applications (including earthquake rupture
modeling) and are critical for efforts to
determine the composition and state of
the interior. However, radial models fail to
express the complexity of what we know to
be a dynamic, evolving system, so seismol-
ogy is now striving to develop fully three-
dimensional models for the interior at all
scale lengths.

1.2.7 Heterogeneous Earth
Models

It has long been recognized that simple
layered models are a poor approximation
of the Earth’s crust. The obvious differ-

12
o
£
L
) 10
z
®
€ 9
©
n
]
L 6
E
=
o
5 4
k]
@
>

2

| 1
0 2000 4000 6000
Depth (km)

FIGURE 1.20 The Preliminary Reference Earth Model of P velocity (Vp), S velocity (Vg), and
density (p) as a function of depth in the Earth. (After Dziewonski and Anderson, 1981.)
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ence between oceanic and continental re-
gions is one indication, but the exposed
surface geology provides even clearer evi-
dence of complexity. The geological pro-
cesses that produce layering, such as sedi-
ment deposition, lava flows, and chemical
precipitation, all do so on limited spatial
scales, and subsequent crustal motions de-
form even the locally stratified rocks. Ef-
forts to study crustal structure, driven on
the one hand by resource exploration and
on the other by Earth science efforts to
understand how the crust evolved, have
led to many attempts to develop two- and
three-dimensional models for crustal re-
gions. This requires collection of closely
spaced seismic data so that coherent seis-
mic arrivals can be detected over small
horizontal ranges. An example of a dense
seismic reflection profile (which shows en-
ergy from surface explosions reflected back
from the interior) collected in the rift zone
of eastern Africa is shown in Figure 1.21.
A dense distribution of seismometers and
very high frequency recordings are re-
quired to see the complex, laterally discon-
tinuous arrivals reflected from deep struc-
ture, which shows tilted layering offset by
faults. In many crustal locations a two-
dimensional model is inadequate to inter-
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pret the subsurface, particularly for com-
plex formations that may trap oil; thus
three-dimensional images are currently be-
ing developed in numerous crustal studies.
Development of three-dimensional imag-
ing has awaited and, in part, has driven
the development of faster computers with
massive data storage capabilities. Such
high-resolution seismology efforts are still
constrained by computer limitations.
During the 1950s and 1960s, the first
computer-assisted analyses of long-period
surface waves began to reveal systematic
lateral variations in deeper Earth structure
below the crust. By the 1980s many global
seismologists were actively analyzing dif-
ferent types of seismic data to determine
three-dimensional structure at depth by
methods collectively identified as seismic
tomography (based on mathematical simi-
larities to medical imaging tomography,
which is used to image internal structure
of the human body without surgery), find-
ing that every region of the interior, with
the possible exception of the outer core,
appears to have detectable aspherical het-
erogeneity. The ability to resolve this vari-
ation about the one-dimensional radial
Earth models, and the recognition of its
importance for internal dynamics, has

FIGURE 1.21 A seismic reflection profile from the Lake Tanganyika Rift zone. At each
distance along the east-west (E-W) line, a stack of seismic traces is plotted vertically
downward, with increasing time. The arrivals on the adjacent traces indicate layered struc-
tures that are cut and offset by subsurface faults, most of which are not seen at the
surface. Exploration seismology develops even more detailed images of shallower structure.

(Maodified from Rosendahl, 1989.)
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FIGURE 1.22 Vertical cross sections through a three-dimensional model of P-velocity
variations in the Earth's mantle, showing seismic velocity heterogeneity in regions of
downwelling oceanic lithosphere. The darker regions correspond to material that has a
faster than average P velocity, resulting from low temperatures in subducting oceanic
plate. Relatively low velocities are found in the wedge above subducting plates, below island
arc volcanic areas. The base of the mantle in these regions is also higher velocity than
average. (Modified from Fukao et al., 1992.)
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FIGURE 1.23 A model of global shear velacity variations relative to the average shear
velocity at a depth of 150 km in the mantle. Darker regions correspond to higher-velocity
regions. This model was obtained by analysis of body waves and surface waves, using a
truncated spherical harmonic function expansion of the heterogeneity. The model can only
resolve fluctuations with scale lengths of 5000 km, so small features like the slabs in Figure
1.22 are not resolved. (From Dziewonski, 1989.}
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prompted a revolution in geophysical in-
vestigations of the deep interior. Three-
dimensional velocity variations are now be-
ing determined for localized regions, such
as the circum-Pacific downwellings where
deep earthquakes occur (Figure 1.22), as
well as for global models of shear-velocity
structure at all depths in the interior (Fig-
ure 1.23). In addition to making determin-
istic maps of the large-scale structural het-
erogeneity, seismologists are using wave
scattering theory (mostly adapted from
guantum mechanics) to describe statisti-
cally small-scale heterogeneities that are
detectable, but not completely resolvable,
by high-frequency seismic waves.

The likelihood that the variations in ve-
locity are at least in part due to thermal
variations (higher-velocity material being
colder and lower-velocity material being
hotter at a given pressure), combined with
the fact that any thermal variations cause
density variations, suggests that the three-
dimensional seismic models reveal density
heterogeneity. Density heterogeneity re-
sults in long-term stresses (due to gravita-
tional pull) that cause Earth materials to
flow, with upwellings and downwellings be-
ing driven by gravity as the Earth system
transports heat to the surface. Thus, re-
markably, imaging the Earth with elastic
waves provides a means for determining
the ongoing dynamic convection of the
mantle. Chapter 7 surveys these Earth
structure investigations.

1.2.8 Maodern Global Seismology

This introduction should make it clear
that modern global seismology is a rapidly
advancing, quantitative discipline that ad-
dresses a vast array of important physical
phenomena in the Earth. There is beauty
and elegance in the mathematical proce-
dures used in the discipline and in the
richness and complexity of seismological
data. The challenge of extracting informa-

1. INTRODUCTION

tion from seismic signals continues to draw
increasing numbers of researchers into the
field, with both applied and basic science
emphases. This text develops much of the
basic theory and touches upon many of the
major observations and results of modern
global seismology.
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CHAPTER

ELASTICITY AND SEISMIC WAVES

Seismology involves analysis of ground
motions produced by energy sources within
the Earth, such as earthquake faulting or
explosions. Except in the immediate vicin-
ity of the source, most of the ground mo-
tion is ephemeral; the ground returns to
its initial position after the transient mo-
tions have subsided. Vibrations of this type
involve small elastic deformations, or
strains, in response to internal forces in
the rock, or stresses. The theory of elastic-
ity provides mathematical relationships
between the stresses and strains in the
medium, and it has spawned a vast litera-
ture filled with theory and empirical docu-
mentation of elastic behavior. Here we
develop only the basics of the theory of
elasticity required for seismological appli-
cations, including the concepts of strain
and stress, the equations of equilibrium
and motion, and the fundamental nature
of solutions to the equations of motion:
seismic waves. Chapters 3 and 4 character-
ize wave interactions relevant to seismic
waves in the Earth, and subsequent chap-
ters apply these basic ideas to describe
how seismologists study the Earth’s inte-
rior and the sources of seismic waves.

Our development of elasticity follows
that typical of texts on solid mechanics,
and many more detailed discussions are
available, some being listed in the Refer-
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ences. In the study of solids, a useful,
idealized concept for dealing with macro-
scopic phenomena is that of a continuum,
in which matter is viewed as being contin-
uously distributed in space. Within this
continuous material we can define mathe-
matical functions for displacement, strain,
or stress fields, which have well-defined
continuous spatial derivatives. We will see
that applying simple laws of physics to a
continuum (continuum mechanics) allows
seismologists to explain nearly every ar-
rival on a seismogram. We must introduce
atomic-scale processes to explain some im-
portant aspects of seismology, such as the
nature of anelastic-wave attenuation, but
even for seismic-wave attenuation, phe-
nomenological adaptations of continuum
mechanics usually circumvent the need for
detailed characterizations of microscopic
phenomena. For seismology, this is criti-
cal, for we are, of course, ignorant of most
of the detailed crystallographic and
atomic-level structure inside the planet.
Seismology, for the most part, is con-
cerned with very small deformations (rela-
tive length changes of ~ 107%) over short
periods of time (<3600 s). This greatly
simplifies the mathematical framework of
our elasticity theory, which is based on
infinitesimal strain theory. In the immedi-
ate vicinity of seismic sources, or when we
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consider long-term, large-scale deforma-
tions of faults (as in structural geology), a
more complete finite strain theory must be
followed. The relationship between forces
and deformations in infinitesimal strain
theory is largely empirically based and
given by a constitutive law called Hooke’s
law. The deformation is a function of ma-
terial properties of the body such as den-
sity, rigidity (resistance to shear), and in-
compressibility (resistance to change in
volume). The material properties are
known as elastic moduli. When stress varies
with time, strain varies similarly, and the
balance between stress and strain results
in seismic waves. These waves travel at
velocities that depend on the elastic mod-
uli and are governed by equations of mo-
tion. Seismic waves are loci of particle
displacements, which become increasingly
complex as the wave expands through the
solid body. We will now proceed to show
how these waves arise and how they are
represented mathematically.

2.1 Strain

Because seismology is so directly associ-
ated with measurement of motions of a
medium, we begin by considering how mo-
tions within a solid are described. We em-
ploy a Lagrangian description, in which
the motion of a particular particle is fol-
lowed as a function of time and space.
This is a natural system for seismology,
because seismograms are essentially
records of particle motions at near-surface
sensors as seismic waves pass by. A contin-
uum is a continuous distribution of parti-
cles; thus a vector field, u(x, t), is required
to describe the motions of every point in
the medium, where we are free to choose
a convenient reference system.

A medium can undergo two fundamen-
tal types of motion: (1) whole-body trans-
lation and/or rotation, and (2) straining,
or internal deformation. Translation and
rotation can be described with a single
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vector common to all points in the medium,
and we are not concerned with such
whole-body motions here. Instead, we want
to describe internal deformations within
the solid, which intrinsically involve spatial
and temporal variations of the displace-
ment field, u(x, ¢).

Deformations within a medium are com-
posed of components that involve length
changes and angular distortions. Consider
a body that is initially undeformed and
unloaded with two internal points O and
P (Figure 2.1a) connected by a straight
line of length As. When forces are applied
to the body, deformation moves O and P
to O' and P’, respectively, which are con-
nected by a line with length As’. To de-
scribe the deformation of the medium,
we must characterize both the change in
distance between the two points and any
rotation of the line As’ relative to the
surrounding material. To do this we intro-
duce terms for spatial gradients of the dis-
placement field, or strains. Normal strains
are measures of elongation, defined as

As' — As

T)' (2.1)

Normal strains involve a fractional change
in distance between points. Line segment
O'P' might not have changed length but
might have rotated with respect to the
surrounding material. If we consider a per-
pendicular line segment OQ (Figure 2.1b)
in the undistorted medium that moves to
O'(), we can define the shear strain, a
measure of internal angular distortion, as

Cm (Zoe), 22
Eshear = 2 Asl,rgﬂ( 2 )’ ( . )
As, >0

€ normal = hm (
As—0

where #' is the angle 2 Q'O'P’.

To be useful, the normal and shear
strains must be defined with respect to a
coordinate system. Since space is three-
dimensional and we must describe all
elongations and angular changes at every
point in the medium with respect to all
three dimensions, the full description of
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FIGURE 2.1 When a medium is deformed, we must describe both relative length changes
and shearing rotations between portions of the medium. Normal strains, involving relative
changes in length between points, are considered in (8). Shear strains, involving angular
changes within the medium, are considered in (b).

strain involves nine terms: three normal
strains, €,;, €45, €33, giving relative length
changes of line segments oriented in the
coordinate directions, and six angular
changes of each coordinate direction with
respect to the other two directions, &,,
€13, €31> €23, €31, E3. These nine terms
have a continuous distribution throughout
the medium and are functions of time. We
will now define these terms for a general
three-dimensional case.

2.1.1 Strain-Displacement
Relationships

We seek to establish general three-
dimensional relationships between nine
Cartesian strain components and three
Cartesian displacement components
(u,, u,,u,). Consider the cubic volume of
material with a corner at point P in Fig-
ure 2.2, which has sides oriented perpen-
dicular to the coordinate axes x;, Xx,,Xs.
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FIGURE 2.2 Displacements of a small cubic volume with a corner at point P to a new
position with a corner at point P’. The displacement of P is given by (2.3), and the
displacement of Q to Q' is given by {2.4). The length of P'Q’ is given to first order by (2.B6).

The volume is infinitesimally small, so that
when it is deformed, planes remain planar
and lines remain straight; this is, by defi-
nition, infinitesimal strain. Point P is dis-
placed by the displacement vector

u(Xp,t) =u X, +u,X, +u %,

= (uy,uy,u3), (2.3)

moving it to point P’ at time ¢'. Point Q is
displaced to Q' by slightly different dis-
placements, u(xQ,t), which we can relate
to u(x,, t) using a first-order Taylor series
expansion (omitting terms of order d%u,/
dx? and higher):

ou, o
ll(XQ,t) = lu, +a—x1dxl X,

du, R
u,+ g dxl X,

1

+

+

du, s
us+ Ex_l dxl)x3. (24)

From now on, the spatial and temporal
dependence of u(x, ¢) and its vector com-
ponents will be implicitly assumed rather
than given as arguments of the functions.
If we use the definition of normal strain
(2.1) for PQ and P'Q’, we have

PQ'-PQ dx'—dx,

PQ dx,

€normal =

(dx')? = [(1 + epormar) dx;]%. (2.5)



38

2. ELASTICITY AND SEISMIC WAVES

X3

FIGURE 2.3 Angular distortion of the x,x, face of the cube at point P in Figure 2.2. The

right angle £ RPQ is distorted to LR'P'Q’.

Since ldx'| = |dx;, + u(xy, t) — u(xp, 1)),
from (2.4) and (2.3) we have

" u, 2 ofou, \?
(ax') =14+ —|dx,| +|—dx,
dx, dx,
du, 2
+ Bx—dxl . (26)
1

Equating (2.5) and (2.6) and expanding
gives

5 du,
(1 + 2‘Enormal + gnormal) =1+2 dx
1

du, ? du, ? du, g
dx, dx, dx,

for small strains and small displacement
derivatives; neglecting the squared terms
leaves

+

2.7)

du,

normal 3

£ .
Xy

(2.8)

This is the same as the result we would
find for the one-dimensional case in which
PQ would simply change length along the
x, direction (see Figure 2.1a). We denote
this normal strain as

du,
Enw=457-
9x,

(2.9a)
The first subscript indicates the orienta-
tion of the line segment, and the second
indicates the direction of length change.
Similarly, two other normal strains can be
defined by

du,

Ju,
8222 ax N E33= ax 9 (2.9b)
2

3

corresponding to the other line segments,
dx, and dx,, intersecting point P in Fig-
ure 2.2. Note that these strain terms im-
plicitly assume the spatial and temporal
dependence of the displacement compo-
nents.

The shear strains are slightly more com-
plex to determine. Referring to Figure 2.3,
we see that angle 6’ between P'Q’ and P'R’
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is given by a general law of cosines

o ) du, \ dx, |{du, dx,
st =Nt ox ) [\ ox, @
du, \ dx, |{du, dx,
1+ — | —||— —
ax, | dxy |\ ax, dx)

duy dx, \(du; dx,
dx, dxy )\ dx, dxy )|

(2.10)

+

+

From (2.2), we have

(2.11)

where the approximation is made for small
angular changes (i.e., # = w/2). Thus

aul) du,

Ix, ax,

1
€shear dx’Z dx’l = 5[(1 +

dx,

1+ —
dx,

+

du, \ du,
dx,

duy Ou,

7%, o,

]dx1 dx,. (2.12)

From (2.5) and (2.9) we have
dxi=(1+egy)dx,

(2.13)
dey = (1 +&y,) dx,.
Thus,
Eghear(1 + &1y + 600+ 6118)
1{du;, du, OJu, du,
) dx, dx; Odx, dx,
du, du du, du
—2 24 2 2 (214)

dx, dx, 8_x1 9x,
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Ignoring products of small terms

1{0u; du,
P>

=—|—+=]. (215
shear 2 axz axl) ( )

We identify this angular distortion be-
tween segments in the x, and x, direc-
tions using indicial notation

£ = D)

1(0u, du,
+—1. (2.16a)

dx, dx,

Similarly, we can consider distortions of
other faces of the reference cube in Figure
2.2 to find

1{ou, du,
en==|—+—1,
2 21ax,  ox,

1{0u, du,
en=<|—+—1,
Bo2lox,  ax

1{ou du
£31= 35 —+—,

2\dx;  dx,

1{0du ou
En=73 24—,

2\0xy dx,

1{du; OJu, 2 166
ep=7l—+— .
272 0x,  ax, ( )

Note that ¢;; =¢.

We can represent all nine strain terms
of (2.16) with compact indicial notation
(see Box 2.1):

1

(ui,j tu; )= 2

g;; =

N |

du, 6uj
—+—.
axj dx;

(2.17)
These nine terms constitute the infinites-

imal strain tensor, a symmetric tensor with
six independent quantities that can be
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Box 2.1 Indicial Notation

The large number (nine) of components of the stress and strain tensors and the
proliferation of terms involving their spatial derivatives make it useful to adopt a
simplifying notation. We follow a conventional indicial notation. In general, the
stress and strain components are prescribed with respect to some convenient
reference system (e.g., the Cartesian system, x,, x,, x;), and we use subscripts to
indicate surfaces and directions in the reference system. A surface (e.g., the x,x;
plane) can be indicated by the direction of the normal to the surface (+x,).
Direction, such as components of a vector, can be indicated by subscripts as
follows:

u=uX, +uX,+usx, (2.1.1)
where X; are unit vectors in the coordinate directions. The term u; is understood
to take on values { = 1,2,3, as appropriate in a given equation. For example, the
nine terms of the displacement gradient can be represented by a single indicial
term:

du, du, du,
ox; oxy ox
ou, {j= du, Ou, du,
5}7(;2113:3) ax, :?x—z ox, (2.1.2)
du; Jdu;  duy
ax, dxy  dxy

where the indicial representation denotes the appropriate component for given
values of { and j. This can be written even more compactly as

o, 2.13
=5 (2.1.3)
continues
ordered as
[ du, 1{du, du, 1({0u, OJu, ]
— —_— —— + —_— —_ — —_
dax, 2\dx, dx, 2\dx; dx,
1{du, du du 1{0u, odu
R I e Bl =2 | 2+=2 (2.18)
Y 2\dx, 9x, ax, 2\dx; Ox,
1{0u, du, 1({du, Ju, du,
21dxy; dx, 2109xy  dx, dx;
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Special functions such as the Kronecker delta function also benefit from indicial
notation:

i,j=1,2,3 (2.1.4)

5 = 0 fori#j
9711 fori=j

Throughout this text we assume the Einstein summation notation, in which repeti-
tion of indices within a term explicitly requires summation on that term. Thus, for
a term such as

A=¢g, te,y tey=¢,, (2.1.5)
the repeated index n implies summation. This holds for repeated indices within
any single term:

X;yi=X1¥y X3y, +x3y;3

dy, dy, 0y,
+ —+—

= 2.1.6
dx, dx, dx, ( )

Yii

When a single equation is written with indicial notation, generally a set of
equations is implied, as the indices assume all of their permutations. For example,
the generalized, linear, isotropic, elastic Hooke’s law relating stress (o;;) and strain
(g;;) terms is given by nine equations:

o =AMy + ey +eEy) +2uey,

o =2pne )y
013 =283
0y = 2pey,
0y =A(g), + €5+ E33) + 208, (2.1.7)
O3 =2uey
O3 = 21Ey
03 = 21Es,

Ty =A(e) tEpten)+2ues;,

which can be written as
0;;= A(&44)0;; + 2uey), (2.1.8)

where it is assumed that all terms i, j = 1,2,3 are explicitly considered.
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Tensors are quantities that obey certain
relations upon transformation of coordi-
nate systems, as will be discussed later.
Note that’ the strain components depend
linearly on derivatives of the displacement
components, a result of permitting only
very small strains and small spatial deriva-
tives in the displacement field. The strains
do not depend on the absolute value of
the displacements and are unitless. The
normal strain terms involve volumetric
changes, being compressional when nega-
tive and extensional when positive. The
trace of the strain tensor is called the
cubic dilatation, 0,

du,
g.=—+4+ — 4+ —=V-u.

B=¢,=
ax,

This corresponds to a fractional change
in volume from V,=dx,dx,dx; to V,=
[(1 + &) dxe (1 + &,5) dx,(1 + £53) dx,],
given by

AV V-V,
Vo W,

=g, teypyten=20.

(2.20)

For reference we note that rigid-body ro-
tations of the medium are expressed as

1 1| duy du, )\
“VXu=—)l—-—I|%
2 21\9x, du,
dx;  dus\
+|— - —%,
dxy  dx,
du,
+ —_—
dx,

which includes combinations of displace-
ment gradients not in the strain tensor.

ol P 2.21
ax, %3], (2.21)
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2.2 Stress

When a continuum is acted upon by a
force, either internal or external, that force
influences every point in the body. This
requires a distribution of forces through-
out the body. Two types of forces occur
within a continuum, body forces and con-
tact forces. Body forces are proportional to
the volume of the material. The most com-
mon body force results from the accelera-
tion due to gravity, F =mg, where the
mass m depends on the volume and den-
sity of material. Contact forces are forces
that depend on surface area. For example,
the wind resistance a bicyclist experiences
is a contact force because it depends on
the cross-sectional area of the rider. Body
forces have dimensions of force per unit
volume; contact forces have units of force
per unit area.

For a continuum that is acted on by
external forces, internal contact forces
must act within the medium. We visualize
the medium as having an internally dis-
tributed force system, as illustrated in Fig-
ure 2.4. Imagine a plane that passes
through the medium, intersecting an inter-
nal point P. If we remove one side of the
medium, it is clear that maintaining the
other side in equilibrium requires a distri-
bution of forces on the plane that corre-
spond to actual internal forces within the
body. The precise force geometry depends
on the direction of the fictitious plane, but
some geometric consistency must exist
among the various representations of all
possible internal force distributions.

We subdivide the area of our fictitious
plane through the medium into area ele-
ments with surface area AA and vector
normal n. A small force AF acts on each
element, one of which contains the point
P. We define the stress vector or traction
vector, T(n), to be

T(n) = Alim — =T,X, + T,%, + T5X,,

A—-0
(2.22)
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FIGURE 2.4 (Left) A continuum acted upon by external forces. (Right) Imaginary plane with
normal, n, passing through an internal point P. A portion of the medium has been removed
and replaced by a distribution of forces acting on the surface, keeping the remainder of the
continuum in equilibrium. This leads to definition of internal forces and stresses on arbitrary

surfaces in the medium.

which acts on the surface element at P
with normal n. The limit is defined for the
continuum model, which visualizes a con-
tinuous distribution of internal forces.
Stress has physical dimensions of force per
unit area and corresponds to action of part
of the medium upon the other. Since our
imaginary plane is arbitrary, we can choose
it so that it is parallel to the x,x; plane
for any choice of x,. We define the stress
components acting on this plane (x, =
constant), which is called the x, face (it
has a normal in the x, direction), by

i AF
U“_AAllnl()AAl
5
= i 2.2
712 AAlln—l»oAA1 (223)
. AF,
o3= lim

ad,-0AA,’
where
AF = AF,&, + AF,%, + AF,%,. (2.24)

The first index of o;; in (2.23) corresponds
to the direction of the normal to the plane

being acted on by the force, and the sec-
ond index indicates the direction of the
force. Thus o, is a stress acting normal to
the plane, and o, and o,; are stresses
acting in the plane.

By passing two other planes through
point P parallel to the x;x, and xx,
planes, we define six additional stress com-
ponents

05,05, 0,; acting on the x, face

033,03,,03, acting on the x, face.

All of these are implicitly functions of
space and time. Do we need all nine terms?
The answer is yes, because we want to be
able to represent the complete internal
force distribution at point P in sufficient
generality for any possible surface that in-
tersects P. We demonstrate this by balanc-
ing forces on a tetrahedron with three
faces parallel to the coordinate planes and
a fourth face with an arbitrary orientation
with normal n (Figure 2.5). For the body
to be in equilibrium, the sum of the forces
on it, and the sum of the moments, must
be zero. Note that we adopt a positive sign
convention for stress components that are
positively directed forces acting on positive
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X3

FIGURE 2.5 Balance of forces on a tetrahedron with three faces parallel to coordinate
planes and an arbitrarily oriented fourth face with narmal n. The direction of n is specified by
direction cosines of the angles shown on the right.

faces (faces with normals in the +x; direc-
tions) and for negatively directed forces on
negative faces.

In terms of the direction cosines defined
in Figure 2.5, AA,=AAcos§;, and n=
nX, +n,%, + n;x; =cos 9, X, + cos 6, X,
+ cos 0,%;. Balancing forces (stress X
area) in the x, direction gives

Y F, =0=T,AA~0),AAcos0,
— 0y AAcos 0, — o5, AAcos b,

(2.25)

T, =o0oyn, +oyn, +oyn,.

(2.26a)
Similarly, letting L F, =L F, =0 gives
T,=0xn, to,n, + 05,05 (2.26b)
Ty=o0y3n;+ 030, +opun,. (2.26¢)
or generally

T,=oyn (2.27)

i
Thus, we can linearly combine our nine
components of stress defined in the coor-
dinate planes to represent the stress on
any arbitrarily oriented surface through the
medium, and in general the state of stress
of P depends on all nine terms.

This result leads us to define the stress
tensor o;

(2.28)

The diagonal terms are called normal
stresses, and the off-diagonal terms are
called shear stresses. Normal stresses with
positive values (directed outward from
positive or negative faces as defined above)
are called tensional stresses, and negative
values correspond to compressional
stresses. The common geophysical units
for stress are bars (10° dyn/cm?), where
atmospheric pressure at sea level is ap-
proximately 1 bar. At a depth of 3-4 km in
the crust the confining stress is on the
order of 1 kbar. In SI units, stress is given
in pascals (Pa), where 10° Pa=1MPa = 10
bars. The state of stress at depth in the
Earth is nearly always compressional, and
therefore all three normal stresses in (2.28)
are negative. The maximum compressive
stress is the stress with the largest absolute
value, and the minimum compressive stress
is the stress with the smallest absolute
value.

Consider a cubic element in the contin-
uum bounded by faces paralleling the co-
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Xy

FIGURE 2.6 A cubic element in the continuum
bounded by faces paralleling the coordinate
planes. Balancing the stresses on each face
acting in a given direction leads to the equatian
of equilibrium. Only the stresses acting on the
+x, face are shown. Similar stress terms act
on the other four faces.

ordinate planes (Figure 2.6). Let us as-
sume that the cube is in static equilibrium.
Then summing all of the forces that act in
the x, direction gives

YF

do
(‘711 + a—xli Ax, —cr”) AxyAx,g
1

doy,
2
do
+(a'3] + F“Axr%) Axle?_] =0
3

or

a(fu 60'2‘ 6031
dx, dx,  0dx,

) =0. (2.29a)

Similarly, letting ZF, =
do

2
dax,

oo
13,
dx,

LF, =0 gives

8022

) 0 (2.29b)

6023 i ”3) 0 (2.29c)
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or compactly,

do;;
-y i,j=

1,2,3.
ax;

(2.30)

These are the equilibrium equations. These
equations require a balance of spatial gra-
dients of the stresses in a medium for that
medium to be in stable equilibrium.

A second condition of equilibrium is
that the moments sum to zero. Consider
oy, on either side of the elemental cube.
The stresses are oppositely directed (no
net force), thus introducing a rotational
moment. Moments are given by the prod-
uct of a force times the perpendicular dis-
tance from the force to a reference point.
If we sum the moments about lines passing
through the center of the cube in Figure
2.6 paralleling the coordinate axes, we ob-
tain equations such as

doyy

Ti2 ¥ dx
1

Ax,

2M13=[

Ax,

to, | Axy Axy ——

doy,
oy + —5;— sz
2

Ax,
+ 0y TAX3 Ax,]|=0

or

20+ 72 A, g 2% px,=0.
o 4 212 i -
27 o 0y ax, Xy =

(2.31)

As Ax,, Ax,— 0, we have o, =0,. Si-
milarly, letting ZM, =X M, =0 gives
03 =0y, and 0 = 03,, or generally

(2.32)
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This states that the stress tensor is sym-
metric, which reduces the number of inde-
pendent components to six.

We have seen that both stress and strain
are second-order tensors. A scalar is a
zeroth-order tensor (magnitude, no direc-
tional property), and a vector is a first-
order tensor (magnitude and directional-
ity). Second-order tensors define interac-
tions between vectors and directional op-
erators, such as the orientation of the ref-
erence plane for definition of stress com-
ponents. We can show that at each point

2. ELASTICITY AND SEISMIC WAVES

in a body, three mutually perpendicular
planes occur on which no shear-stress
components act. This is called the princi-
pal coordinate system and is found by di-
agonalizing the stress tensor, as described
in Box 2.2. The normals to the three planes
are called principal stress axes. Similarly,
three mutually perpendicular axes remain
perpendicular for infinitesimal strains and
are called the principal axes of strain. The
trace of the stress temsor is invariant to
choice of coordinate system and is related
to the total stress state. The hydrostatic

Box 2.2 Tensor Invariants

Ty
g, =10y

03

which gives

special physical significance.

Stress and strain are symmetric tensors (i.e., o, = g;;) and thus can be diagonal-
ized, or rotated into a principal coordinate system. Consider the stress tensor:

Ty 0Op3
Opn O3 (2.28)
O3 O33

This matrix can be diagonalized by subtracting A from the elements of the trace,
setting the determinant of the resulting matrix equal to 0, and solving for A:

op—A g2
021 A
T34 T3

A — tr(o;;) A’ + minor(o;;) A — det(g;;) =0,

where tr(o;;) = 0y, + 03, + 033, the trace of the original tensor matrix, minor(a;;) is
the sum of the minors of the matrix (0,,0y + 05,033 + 0,033 — 05 — 05 — 03),
and det(q;;) is the determinant of the matrix (0,,0,,05; + 205,05,03, — 0,03, —
0,04 — 03303). The parameter A is called the eigenvalue and represents the
values of o;; in a principal coordinate system. The symmetry of the matrix o;
ensures that the roots of (2.2.2) are real. Because the eigenvalues of a matrix are
unchanged by a coordinate transformation, the coefficients of the cubic equation
(2.2.2) are invariant. This means that the trace, minor, and determinant of the
tensor are also independent of the coordinate system and, in general, have some

T3
O3 =0, (221)
o33 —A
(2.2.2)

continues
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equation:
o —A 72
o2 Ty~ A
T3y T3

where A is one of the three roots.

Each eigenvalue has a corresponding eigenvector. The eigenvectors give the
principal coordinate axis “directions.” We can find the eigenvectors by solving the

a3 Xy

(2.2.3)

stress is defined as the average of the
normal stresses:

_ Oy T op oy

; (2.33)

The deviatoric stress is that part of the
stress tensor minus the hydrostatic term

D, =0, P3,. (2.34)

A final property of the stress and strain
tensors is that they obey specific rules when
a coordinate system is rotated, clearly a
desirable property for our generally de-
fined terms. If we let /;; = cos,; be defined
as the direction cosines between the new
x; axes and the old x; axes, then stress
components obey a general transformation
law given by

Lo (2.35)

-
o =1 ia“pa-

1] ip
And the strain transformation law is

4 == . .
Eij lrpl}a €pq-

(2.36)

Physical fields that transform in this spe-
cific manner upon rotation of coordinate
axes are second-order tensors.

2.3 Equation of Motion

We now consider a force balance on a
cubic element in a continuum that is un-
dergoing internal motions. Referring to
Figure 2.6, the equilibrium equations (2.29)
must now include inertial terms as well as
any contributions from body forces. We
allow the cube in Figure 2.6 to be acted on
by a body force per unit volume f = f,%, +
f>2%, + f3%5. The density of the material is
given by p. Applying Newton’s law to the
medium gives

0%u, do;

j
— =f,+—.
at? Ji ox;

J

P (2.37)

This set of three equations is called the
equation of motion for a continuum. The
inertial terms on the left relate the den-
sity-weighted accelerations to body forces
and stress gradients in the medium. This is
the most fundamental equation underlying
the theory of seismology, as it relates forces
in the medium to measurable displace-
ments. We will see in Chapter 8 that many
seismic sources can be represented by body
forces that are introduced into (2.37) to
fully describe resulting motions. Later in
this text we will often denote derivatives
with respect to time by overdots, du /9t = 1,
8%u/3t* = ii, so the equation of motion is
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often found in the form

pi;=f;+a,,; (2.38)
or in the case in which sources or body
forces such as gravity are not being consid-
ered, the homogeneous equation of motion:

pu; =0y ;-

(2.39)
In order to proceed, we need relation-
ships between stress and displacement.
There are provided by constitutive laws
that relate stress to strain and hence stress
to displacement gradients. In any given
material, a complex relationship exists be-
tween stress and deformation, depending
on parameters such as pressure, tempera-
ture, stress rate, strain history, and stress
magnitude. Nearly all Earth materials flow
ductilely if small, steady stresses are ap-
plied for millions of years, or they fracture
or fail plastically if high stresses are ap-
plied. However, for the small-magnitude,
short-duration stresses of interest in seis-
mology, almost all Earth materials display
a linear proportionality between stress and
strain. This has been demonstrated empir-
ically by applying controlled forces to rock
samples and observing resulting stress—
strain behavior, as shown in Figure 2.7.
Note that there is a substantial, nearly
linear interval prior to failure of the rock
and that for the small strains (107°-107%)
being considered here, this rock sample
could well be represented by a linear elas-
tic relationship (elastic meaning that re-
ducing the small stress restores the
medium to its original state).
The most general form of a constitutive
law for linear elasticity is Hooke’s law
0;; = Cijri®as- (2.40)
The constants of proportionality, C;;,, are
known as elastic moduli and define the
material properties of the medium. In its
general form, C,;,, is a third-order tensor
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FIGURE 2.7 Stress-strain curve for a typical
uniaxial compression test. Stage | involves
closure of cracks; stage il is a linear elastic
regime; stages lil and IV involve dilatancy of the
rock due to lateral expansion of the rock and
microcracking; stage V involves loss of
load-bearing capacity, strain localization, and
development of a macroscopic shear faiture; and
stage VI has stress determined by residual
friction on the shear zone. (Modified from
Scholz, 1990.)

with 81 terms relating the nine elements of
the strain tensor to the nine elements of
the stress tensor by a linear sum. Note the
double repeated indices in (2.40), for which
we write out just the first term

o = Cingn + Crinen + Crséns
+ Ci121821 + Crinnén

+ Ciinéps + ChiziEn

+ Cyp€3 + Cya3€as-

(2.41)

There are nine such equations, but the
symmetry of the stress and strain tensors
(&;;=¢€;; 0;; = 0;;) reduces the number of
independent equations to six and the
number of independent coefficients to 36
(0, = 05 = Cijiu = Ciipss €11 = € ™
Ciixi = Ciju)- A further symmetry relation
(Cijxs = Cyyy;) follows from consideration
of a strain energy density function (see
Malvern, 1969), leaving 21 elastic moduli
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in the most general elastic material, which
has general anisotropy, meaning the
stress—strain behavior depends on the ori-
entation of the sample.

Fortunately, the elastic properties for
many materials and material composites in
the Earth are independent of direction or
orientation of the sample. It is possible to
show (see Malvern, 1969) that an isotropic
elastic substance has only two independent
elastic moduli, called the Lamé constants,
A and u. These are related to C;;, by

Cijur = A8;;8, + (8,8, +8,8,), (2.42)

where the Kronecker delta function is
used. For example, C,;;;=A+2u, Cj1»
=A, Cpy;=n, etc. Inserting this into
(2.40) gives

9= [)15”-5“ + #(6,'/(5]1 + 6i16jk)] Exls
(2.43)

which reduces (e.g., 8;,6,; = &4,) tO
0, = Aey 8, +2pe;; = A08,; + 2uc,;.
(2.44)

This form of Hooke’s law for an isotropic
linear elastic material was actually formu-
lated by Navier in 1821 and Cauchy in
1823, 160 years after Hooke’s work. The
significance of the shear modulus, or rigid-
ity, u, is readily apparent as a measure of
resistance to shear stress (o, =2ue;;
0,3 = 2uE 3, etc.). For a fluid, u =0, and
for increasing values of u, the body de-
forms less under stress. The second Lamé
parameter, A, is most significant in combi-
nation with other terms. Table 2.1 defines
five elastic moduli that have simple physi-
cal attributes in terms of A and w. These
include E (Young’s modulus), k (bulk
modulus or incompressibility), and v
(Poisson’s ratio). For most seismological
applications, A or £ and p are used, with
k and u being tabulated functions for
Earth parameters (see Chapter 7). For
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many Earth materials, u =A, and when
they are exactly equal the material is called
a Poisson solid, for which v =025 and
k=5/3u. Table 2.2 gives algebraic rela-
tionships between the various moduli, and
Table 2.3 indicates near-surface values of
elastic moduli for common Earth materi-
als. Hooke’s law can be written in terms of
strain components as well:

A% : 2.45
8[} 2#(3/\ + 2#) Ukk 2“ 0‘1] ( )

Introduction of Hooke’s law into the
equation of motion allows us to derive
basic equations for displacement fields in
an isotropic linear elastic material. These
are extremely useful equations, but before
we proceed, it is important to note that
many Earth materials are in fact not
isotropic, and even average upper-mantle
properties require anisotropic representa-
tions. This occurs mainly because olivine, a
major mineral in the upper mantle, is in-
trinsically very anisotropic, with elastic
moduli varying by 10%, depending on ori-
entation of the crystal. Some sedimentary
rocks have fabrics that give rise to 25%
anisotropy of elastic moduli. Although
anisotropy can be fully analyzed, we pro-
ceed to develop our theory of seismic waves
in the context of isotropic materials be-
cause it is simpler algebraically. We will
return to a discussion of anisotropy later
in the text, recognizing that it does give
rise to observable phenomena that cannot
be explained by isotropic structure.

We now combine the homogeneous
equation of motion (2.39), Hooke’s law
(2.44), and the strain-displacement rela-
tionship (2.17) to develop an equation of
motion for an isotropic linear elastic
medium with no body forces. First, con-
sider only the i =1 term of (2.39):

’u, oy N doy, .
P o ax,

29 (246
dx, x5 (2.46)
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TABLE 2.1 Elastic Moduli

u Shear modulus, or rigidity. This is a measure of a material’s resistance to shear.

-2 =
Ojj = ;= p = e
&j

Note that g is nonnegative and has units of stress. Typical values are 2 X 10!! dyn/cm? or 200 kbar.

k Bulk modulus or incompressibility. & is the material resistance to a change in volume when subject to a
load, and it is defined by the ratio of an applied hydrostatic pressure to the induced fractional change
in volume:

AV P y 2
= —— = —Peke ;> —=A+-p=k

-P3;, 2 e 3

i =

k must be nonnegative, and as a material becomes more rigid, k increases.

A Lamé’s second constant. A has no simple physical meaning, but it greatly simplifies Hooke’s law.

E Young’s modulus. E is a measure of the ratio of uniaxial stress to strain in the same direction.

""“_L l’—‘_’”n

AL w(3A +2p)
oy =E{ — ) =Fe;; byHooke’sLaw, E=——"—"
L (A +u)
v Poisson’s ratio. v is the ratio of radial to axial strain when a uniaxial stress is applied (o # 0,
02 =03=0).
—€5 A
T - en 2(A+u)

Poisson’s ratio is dimensionless and has a maximum value of 0.5. This is true for a fluid, when p = 0 (no
shear resistance). The smallest value is O—infinite shear resistance. Most Earth materials have a
Poisson ratio between 0.22 and 0.35.

TABLE 2.2 Relationships between Elastic Moduli

I k A E v
3(k-2) 2u 2p 9%k p A
A A+ = k- —

2 3 3 3k+u 2(A + 1)
1-2» 21+v) 2uv A
—_— 2u(l +v) —

A( 2 ) "[3(1—2;0] (1-2v) s (3k—A)
1-2v 1+v - v ‘) (3A+2u.) 3k —2u
A
3k(2+2v) ( 3v ) (1+V “ At+p 2(3k + p)
E E E 3k—-FE
s 3k(1 - 2v)

2(1 +v) 3(1-2v) (1 +v)(1-2v) 6k
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TABLE 2.3 Elastic Moduli for Some Common

Materials

Material  k(GPa) u(GPa) A(GPa) » p(g/cm?)
Water 2.1 0 2.1 0.50 1.0
Sandstone 17 6 13 0.34 1.9
Olivine 129 82 74 024 32

Perovskite 266 153 164 0.26 4.1

The constitutive law and strain—displace-
ment relations give

o =A0+2pue,

du;, du, du, 5 du,y
=AM —+—+—|+2u—
dx, dx, Ox, # dx,
2 i 2.47)
= £ = _— + —_— .
O = ci€p =M ax,  ox (
Ju; du,
o3 =2pE3=1 E 51— .

Combining these equations and assuming
A and p are constant throughout the
medium (9A /dx; = du/dx, = 0) gives

u, a0
ar " ax,
d (du; Oou, OJu,
”6x1 dx; dx, dx,
u, u, u,
+ + :
# ax? = dx?  ox?

(2.48)

Recognizing that the first term in brackets
is 6 and the second is the Laplacian, V?u,,
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we have

02u1 A % v? 2.49,
— =(A+p) —+ 49a
92 ( ®) ax, rVou, ( )

and similarly from the u, and u; equa-
tions

e A O uVPu, (2.4%
P =( +#)5x—2+# u, (2.49)

2
0°u,

30
— =(A+u) — +uViu, (2.49
poz =(Atp) ax, TRV (2.49¢)

We can write these three equations in the
equivalent vector form

pit = (A +p)V(V-u) + nV2u, (2.50)

which is the three-dimensional homoge-
neous vector equation of motion for a uni-
form, isotropic, linear elastic medium. A
common alternate form of this equation
employs the vector identity (see Box 2.3)

Viu=V(V-u) - (VX VXxu), (2.51)
allowing (2.50) to be written as

pi=(A+2u)V(V-u) - (uVXVXu).
(2.52)

Equations (2.50) and (2.52) are compli-
cated, three-dimensional, partial differen-
tial equations for displacements in a con-
tinuum, which we assume were initiated by
an unspecified source. Although we can
sometimes obtain solutions by numerical
evaluation of these equations, we can pro-
ceed to gain insight into the solutions by
using some standard mathematical proce-
dures.
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Box 2.3 Useful Vector Relationships

Because ground displacement has a direction and magnitude, its description is
given by a vector, u(x, t) = u(x, 1)X, + u,(x, )X, + us(x, 1)X,, with the vector equa-
tions of motion (2.50) and (2.52) giving physically realizable displacements in a
linear, elastic continuum. It is thus helpful to review a few basic vector operations
that occur frequently in analysis of the vector equations of motion.

(a) The scalar product (dot product or inner product) of two vectors
a=axX, +a,X, +ak,

b=b%, +b,%k,+ bk,

is given by
a-b=ab, +a,b,+a;b,=a;b,=lallblcos 8,
where 0 is the angle between the two vectors. The dot product gives the length of
each vector projected on the direction of the other vector. a - b = 0 for perpendicu-
lar vectors (d =w/2);a'b=b"-a.
(b) The vector product (cross product or curl) of a and b is
aXb=(a,by—azb,)x, + (asb, —a\b;)X, + (a\b, —a,b)},

R X, Ry
=14, a, 4aj|.
b, b, b,
In indicial notation we can introduce the permutation symbol
0 any two indices equal
Eijk = 1 i,j,k inorder
-1 i,Jj,k notin order
(a X b), = eijka,-b,‘..
The cross product defines a new vector that is perpendicular to the two vectors.
Properties of the dot and cross product include the following:
aXb=—-bXa

a‘(axXb)=b-(axb)=0
aX(b+c)=aXxXb+aXc
a-(bXc)=b-(cXa)=c-(aXbh).
(¢) The gradient of a scalar field uses the “del” operator
d a d

V=—2%+—%,+ —X;
ax, Ax dx,

continues
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applied to a scalar field ¢(x)

—%, + +

vé ax,x' ax,x2 8x1x3
dd

(V$)i=-— =6,

The gradient vector points in the direction of steepest slope, or rate of change, of
the ficld ¢.

(d) The divergence of a vector field ¥ is

a d a
V.\l}=_ﬂ+£+_d_}2=¢i,“
dx, dx, dx, )

This is a scalar field that measures the flux of the vector field through a unit
volume. The integral over a volume V with surface area § is

[V(V-‘lf)dV=fs(n-‘I')dS,

where n is the outward-facing unit normal everywhere on S. This is Gauss’
theorem. This states that the accumulation of the field ¥ in the volume is equal to
the flux through the surface.

(e) The Laplacian of a scalar field is the divergence of the gradient:

’ip b ¢
Vip=V -Vp=— +— +— =4,ii,
¢ = Tt o

which is a scalar. The Laplacian of a vector field is a vector with components that
are Laplacians of the original components (if Cartesian coordinates are used). Or,
for any coordinate system,

VIW=V(V-¥)-VXVXW.

(f) Helmholtz’s theorem states that any vector field u can be represented in
terms of a vector potential ¥ and a scalar potential ¢ by

u=Vep +VXW¥
! VX¢d=10 (¢ is curl free)
V-=90 (W is divergence free).
(g) Some useful vector identities are
V(VXW)=0
VX (Vé) = 0.
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2.4 Wave Equations: Pand S
Waves

We can use Helmholtz’s theorem (Box
2.3) to represent the displacement field as
u=Vep +VXxXW¥, (2.53)
where ¢ is a curl-free scalar potential field
(VX ¢ =0)and ¥ is a divergenceless vec-
tor potential field (V - ¥ = 0). Physically, a
curl-free field involves no shearing mo-
tion, and a divergence-free field involves
no change in volume. Substituting (2.53)
into (2.52) and using the vector identity
(VXVXW¥=~-V2¥since V-¥=0), we
find

V(A +2u1)V% - pd|
+VX [uv2W - p¥| =0. (2.54)

We can clearly satisfy this equation if each
term in brackets goes to zero indepen-
dently. We let

A+2u
a=
V p

(2.55)
m
B —_— —
V p
and (2.54) will be solved if
5 1 .
Vip — ;34) =0
(2.56)
1 .
V2w '—B—Z‘lf =0,

where (2.56) gives a scalar wave equation
for ¢ and a vector wave equation for V. a
is the velocity of wave solutions, ¢, and is
called the P-wave velocity, and B is the
S-wave velocity corresponding to solutions
V. We will find that solving the equation
of motion (2.52) in seismology generally
involves solving wave equations such as
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(2.56), satisfied by wave potentials from
which we can determine the displacement
field using (2.53). In every case the dis-
placement field comprises two fundamen-
tal wave types, P and S waves, that propa-
gate with distinct velocities determined by
the material properties of the medium. P
waves involve compressional motions and
volumetric changes as the wave distur-
bance passes by, whereas S waves involve
shearing motions without volume change.
From (2.55) it is clear that a«> g (for
A =pu, a=V3B); thus P waves arrive be-
fore S waves. The existence of solutions of
the P and § wave type for motions in a
solid was first recognized by Poisson in
1829. An important additional result that
will not be demonstrated here is that P
and § waves are in fact the only transient
solutions for the homogeneous elastic
whole space; thus together they provide a
complete solution to the displacement
equation of motion. We will now build up
our insight into these wave solutions by
considering one-dimensional and then
three-dimensional cases.

2.4.1 One-Dimensional Wave
Solutions

We can demonstrate the essence of wave
behavior in a simple one-dimensional case.
Let us consider longitudinal oscillations of
a long, thin, elastic rod extending in the
+x, direction (Figure 2.8). Longitudinal
oscillations involve displacements only in
the x, direction (u, # 0; u, =u,=0). As

L
LY

I, +ao" Ax
ax 1

"

—x

X Ax'

1

1

FIGURE 2.8 A very thin elastic rod extending
infinitely along the x, axis. A stress imbalance
produced by an unspecified source is assumed
to exist in the rod at an instant of time.
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in our general derivation, the equation of
motion is derived by a balance between
inertial terms and stress gradients, where
we assume that an unspecified source has
created a stress imbalance in the rod.

LF, =mi=pAAAx, i
( aU“A )AA AA
=loy+ —Ax - )
i1 axl 1 11 .
(2.57)

where p is the density of the rod. This
gives

. day,
puy = —.

2.58
S (2.58)

As our constitutive law we use o, = Eg,,
where E is Young’s modulus (Table 2.1),
which gives

2 2
°u, u,

E—t=p—.
ax? P o

(2.59)
Defining ¢ =(E/p)/?, we have a one-
dimensional wave equation

2
°u,

axi  c¢* A’

!
l

(2.60)

This derivation is, of course, approximate
because in reality lateral strains occur in
any finite rod, giving nonuniform stress
across the cross section, but this is not
important for wavelengths much greater
than the lateral dimension of the bar. As a
result of this approximation, the displace-
ments themselves satisfy the wave equa-
tion, unlike the case of our general elastic
solutions.
The general solution of (2.60) is

u(xy,t) =f(x,—ct) +g(x, +ct),
(2.61)

which is called D’ Alembert’s solution. The
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functions f and g are arbitrary functions
that will satisfy the initial conditions asso-
ciated with a particular source that excites
the initial stress imbalance, giving rise to
the propagating disturbances. These dis-
turbances propagate along the +x, (f)
and —x, (g) directions with velocity ¢ =
(E/p)2. This is made clear by considering
Figure 2.9, which considers function f(x
—ct) at time ¢, and at some later time ¢’
as a function of x,, as well as a function of
t for fixed x; =x, The arguments of f
and g maintain constant functional shapes
for constant values of (x, + ct), with the
shape translating through space with ve-
locity c. The arguments (x; + ct) are called
the phase of the wave solution. For a given
value of phase, the translating functional
shape is called a wavefront. The velocity of
the wavefront is controlled by the material
properties, in this case E and p. A stiff
rod, with a high Young’s modulus, pro-
duces faster-traveling waves. Increasing
density alone would tend to reduce the
velocity, but in general E increases with
increasing p, causing a compensating ef-
fect that usually gives a net increase in
velocity. A seismogram would correspond
to a recording of u,(x,,¢) at a fixed posi-
tion x; =x, This will have the form
u(xg,t)=f(xy—ct) +glxy+ct), a func-
tion of time at x, (a seismogram) that
records the passage of the two wave groups
past position x,.

A general procedure that we can follow
to solve partial differential equations such
as (2.60) is to assume the solution has a
form that separates the spatial and tempo-
ral dependence. This is called the method
of separation of variables. We assume

u(x,t) =X(x,)T(t) (2.62)
and insert this trial solution into (2.60),
giving
, 1 dx(x) 1

d*T(1)
“X(x) @ B

T(t) dr?
(2.63)
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t=t'

f(X1— Ct’)
| S
! 5.
l\./

]
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'
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FIGURE 2.9 The one-dimensional propagating disturbance f(x —ct) plotted above as a func-
tion of position for two times (ty and ') and below as a function of time at position x, =xg.

Because the term on the left is a function
only of x, and must equal the term on the
right, which is a function only of ¢, each
term must equal a constant, which we set
to —w?.

We now have two coupled ordinary dif-
ferential equations

d*X(x,) ?
-7%— + ?X(xl) =0
(2.64)
d*T(t) X
- +iT(1) =0

These equations can be solved by standard
methods such as Fourier transforms, or in
this simple case by recognizing that they
have the form satisfied by simple harmonic
functions. If we let

X(Xl) =Alei(w/c)xl +A2e—i(w/c)x|
T(t) = B,e“" + B,e™ ', (2.65)

we will clearly satisfy Eq. (2.64). The solu-
tion for u,(x,, ?) given by (2.62) becomes

ul(xl’ t) = Cleim(r+x/c) + Czeiw(t —x/c)
+ C3e—iw(t+x/c) + C4e—iw(t—x/c).

(2.66)

This general solution has four arbitrary
constants that will be determined by initial
and boundary conditions. This solution in-
volves general harmonic terms that have
the form of D’Alembert’s solution (2.61).

Harmonic wave solutions such as (2.66)
are of fundamental importance in seismol-
ogy. These solutions have the form

u(x,t) = Ae't 5 = A cos[ w(t + x/c)]

+ idsinfw(t £x/0)],

(2.67)

comprising monochromatic harmonic sine
and cosine terms. For a specified value of
w, the angular frequency, these harmonic
terms have a period, T = 2m/w, which is
the time between passage of successive
peaks of the harmonic wave at a given
point (Figure 2.10). If the wave is consid-
ered as a function of x alone, the wave-
length, A, is the distance between peaks
on the harmonic function, with A =cT.
The term k = (w/c) = 2w/A) is the
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X=X,
A

7N
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FIGURE 2.10 Definition of period, T, and wavelength, A, for a harmonic term coslw{t + x/c)l.

wavenumber of the harmonic wave. Table
2.4 summarizes the various variables used
to describe a harmonic component. In
general, seismic waves have frequencies
between about 0.0003 and 100 Hz. For a
typical seismic-wave velocity of 5 km/s,
this involves signal wavelengths between
15,000 and 0.05 km. These waves intrinsi-
cally sample very different characteristics
of the Earth.

The complex number representation of
harmonic waves (2.67) does not imply the
existence of “imaginary” waves. Ground
displacements are real functions, and
whenever actual initial and boundary con-
ditions are applied to general solutions
such as (2.66), the complex terms appear
in parts of complex conjugates that elimi-
nate the imaginary components (Box 2.4).

We conclude our discussion of one-
dimensional wave solutions by considering
a case in which the thin rod in Figure 2.8

TABLE 2.4 Relationships between Wave

Variables

Period T T=1f=2m/w
Frequency f f=w2m=c/A
Wavelength A A=cT=2w/k
Wavenumber k k=2mw/A=w/c
Velocity c c=w/k=fA

does not have uniform material properties
but the spatial variations in the moduli are
gradual. In this case our force balance
becomes

.. 2 E du,
p(x,)i, = 5‘; (x1) a:
u, IE(x,) du,
=E(x1) F + —
X dx, dx,
(2.68)

If dE(x,)/dx,, the spatial gradient of
Young’s modulus, is sufficiently small, the
rightmost term can be ignored (the precise
criteria for this approximation are dis-
cussed in the next chapter). We are left
with

2
U

dx?

%u,
at?

=c%(x,) (2.69)

’

which is similar to (2.60), except that

c(x,) = [E(x;) /o(x,)]

varies with position. Applying the separa-
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Box 2.4 Complex Numbers
Solutions of differential equations such as (2.64) often involve complex numbers
of the form ¢ =a + ib, where i = v — 1. In this case, a is the real part and b is the

imaginary part of the complex number c. In the imaginary plane shown in Figure
2.B4.1, a complex number, c,

imaginary
bl —

real

FIGURE 2.B4.1 The compiex plane.

is a point, and it can be represented in a polar coordinate form as
c=a+ib=re®=rcosf+irsiné, (2.4.1)

where the magnitude of |c|=r=(a%?+5%)"/2, and the phase is angle 6=
tan~'(b/a).

Addition of two complex numbers involves summation of the real and imaginary
parts:

ctd=(a +ib))+ (a,+ib,)=(a,+a,)+i(b,+b,). (2.4.2)
While multiplication (note: i-i = —1) is given by
c-d=(a, +ib)(a,+iby)=(a,a,—b,b,) +i(a,b,+ba,) (2.4.3)
or in polar form
c-d=re%rye=rr,et®*?, (2.4.9)
The complex conjugate of a number is denoted by c¢* and is given by
c*r=re "’ (2.4.5)
The product ¢ - c* = re'?re ™" = r? gives the square of the magnitude of c.
For a unit circle in the complex plane, r=1, e =cos8 +isinf, and e =
cos 8 — i sin 8. This representation is used in (2.67) to express a complex exponen-

tial in terms of harmonic terms. As 0 assumes angles greater than 7 or less than
—1r, the value of the function repeats periodically with phase 27, just as for a

continues
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cosine or sine function. By adding and subtracting the exponentials, we obtain

i@ + e—iO

e .

2

—ei®

5 (2.4.6)

useful definitions:
el
cos § =
sin @ =
tion of variables (2.62) gives
d*T(t
(2 ) +w?’T=0
dt

(2.70)

d*X(x,) N w? X o

&l Ay T

Although the temporal dependence of
(2.70) is still satisfied by (2.65), we cannot
simply set X(x,)=ce***! with a being a
constant because we then obtain —a®+
[w?/Ac(x,))?]=0, which cannot be satis-
fied for all x, using constant values of «
and . We instead assume X(x;)=
ce =) which leads to the equation

d*a da \’ w? 0. (271
— -1 + =0. (2.
ldxf dx, c*(xy) ( )

This is a nonlinear differential equation
that is very difficult to solve in general. To
proceed, we assume

w2

d’a 7
—_—— & — .
dx? c?’ ( )

allowing us to drop the first term and solve

da w
— =%
dx, c(xy)

x  dx
iw/;c(_x)_’

i

a(x;)
giving

x,  dx
X(x)) =cexp(j:iwf_m m) (2.73)

The condition (2.72) becomes d2a/dx? =
(w/cH)(dc/dx,) < w?/c?, or dc/dx, < w.
This requires that spatial derivatives of
velocity be much smaller than the frequen-
cies of interest, which must be correspond-
ingly high, and that the velocities vary
smoothly. The high-frequency approximate
solution for the inhomogeneous rod is then
given by

u(x,,t) =Aexp| tiw

X,y dx
e )]

(2.74)

Solutions of this type lead to ray theory as
described in the next chapter. It is impor-
tant to note that (2.74) still has a D’Alem-
bert-type solution (2.61), where the phase
function

x, dx
S e

gives the travel time of the wave through
the medium from the source (at x, = 0).

2.4.2 Three-Dimensional Wave
Solutions

We return our attention to (2.52), the
three-dimensional equation of motion, and
(2.53), the decomposition of the displace-
ment field into P-wave and S-wave com-
ponents. The displacements associated
with the P wave are given in Cartesian
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geometry by

d¢ d¢ I
U =Vd=—3& +—3%,+— &
p= Vo ox, 1 0x2x2 8x3x3

(2.75)
and ¢ satisfies (2.56)
% _ 2(62¢ %y %

+ — + —2) (2.76)

— =a?|—
ot axi  ox;  ox?

Based on our experience with one-dimen-
sional solutions of the wave equation, we
seek a solutton in Cartesian coordinates by
separation of variables

d(xy, x5, x3,8) =X(x)Y(x,) Z(x5)T (1),
(2.77)

which leads to a set of four coupled equa-
tions

T+w?T=0
X+kiX=0
Y+k3Y=0
Z+k3Z=0, (2.78)

where k2 + k2 + k2 = w*/a®. Assuming
harmonic solutions of (2.78) and multiply-
ing terms together as required by (2.77)
gives a general wave potential for P waves

d(x,1) =Aexp[ ti(wt +k x, T kyx,
thsyxs)], (2.79)

which is the three-dimensional counter-
part of (2.66). The solution (2.79) again
assumes a D’Alembert-type functional de-
pendence of space and time, with the ex-
ponential argument being the phase. This
solution corresponds to a set of plane
waves, free to propagate in any direction
in the continuum. The requirement for a
given frequency, w, and P-wave velocity,
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a, that k7 + k2 + k2 is constant, defines a
planar surface in Cartesian space with a
normal vector k, = Ik |k = (w/a)k called
the wavenumber vector. This vector de-
fines the direction of propagation of the
wave (i.e., the normal to the plane wave),
and in the next chapter we use it to define
seismic rays. We can write a particular
choice of the solutions in (2.79) as

d(x,t) =Aexpli(wt —k,-x)]. (2.80)

Corresponding solutions to the vector wave
equation in (2.56)

R ) ?*v  Pv v ) 81
= + + )
52 P ax?  ox}  oax? (2.81)

are similarly given by vector solutions
W(x,1) = Bexp|i(wt — kg - x)], (2.82)

where IkBI = w/B. Equation (2.82) gives
plane-wave solutions associated with shear
waves.

Let us consider a plane wave propagat-
ing with wavenumber vector k_, contained
completely in the x,x; plane (we can al-
ways orient our Cartesian coordinate sys-
tem so that this is the case). In this case,
dp/dx, =0 and k, = 0. If we let the phase
in (2.80) be a constant, C, we have

wt —kx,—kiyx;=C. (2.83)
For ¢=0, assume C =0, giving x,=
~(ky/k,)x;, which defines a line in the
x,x; plane along which the phase is con-
stant (zero). This corresponds to the inter-
section of the plane-wave surface with the
x,x5 plane (see Figure 2.11). We have the
additional requirement that k7 + k2=
w?/a®. The wavenumber vector is perpen-
dicular to the plane wave, with compo-
nents k, and k5 occurring along the x;
and x, axes, respectively. Defining the an-
gle between k, and the x; axis as i, we
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see that

w . .
k,=—sini=wp
[44

(2.84)

w .
ky=—cosi=wn,.
a

The term (sin i)/a = p is called the seismic
ray parameter, or horizontal slowness, and
1 = (cos i)/ is called the vertical slowness.
We will explore these parameters at great
length in the next chapter.

Keeping C = 0 in (2.83) and increasing ¢
in unit steps defines a sequence of parallel
lines (Figure 2.11), all with the same phase,
that correspond to movement of the wave-
front in the x,x; plane in a direction
defined by k. Similarly, if we keep t =0
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in (2.83), a set of parallel lines, C =k, x, +
kyx, will exist, each line with a different
phase value. Because the angle { can take
on any value from 0 to 360°, our solution
(2.80) actually corresponds to an infinite
set of plane waves, with all possible orien-
tations and spatial shifts filling the entire
three-dimensional space.

The particular solution A exp[i(wt—
k,x, — k,x;)] corresponds to a wave prop-
agating in the +x, and +x, directions,
while Aexpli(wt — kx| + k;x;)] propa-
gates in the +x; and —x; directions,
Aexplilwt + k,x; — kyx;)] propagates in
the —x, and +x; directions, and
Aexplilwt + k,x, + k;x3)] propagates in
the —x, and —x, directions. When the
coeflicient of wt is negative, all of these
sense of directions reverse.

a

ki

T > X4

]

3

k3 [ !

. L A
t=0, C=0 Y

b

C=0 X3

AX =9_t.= =ﬁ-
3 ka3 *'Tx Cosi

R=t O

FIGURE 2.11 (a) The projection of the wavefront defined by t =0, C =0 in the x,x5 plane and
the associated wavenumber vector k,. (b} Variation of the position of a wavefront of
constant phase {C =0) for increasing time, t. The distance that the wavefront moves after

time t is R =at.
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Box 2.5 Spherical Waves

Most of this text considers plane-wave solutions for the equations of motion, but
transient wave solutions with a concentrated source location are often more readily
solved using spherical waves. The three-dimensional scalar wave equation

X 1 .
Ve = ;—fb (25.1)

can be solved by expressing the Laplacian operator in spherical coordinates (as
defined in Figure 2.B5.1):

V2 19/ 00 1 9. 00(1) 1 P 252
== —|rP—|+ 5= —|sin0— | + 5—5=—. (25.
2 (r ar | 7sin6 0 (Sm ae) Tsinte ag2 (252

For spherically symmetric solutions, ® = ®(r, ), the homogeneous wave equation

becomes
1 9 26(1)) 1 o*d 553
rzar(r ar | o (2.3.3)
This has solutions of the form

f(ttr/a)

r

b(r,t) = (25.4)
where f is an arbitrary function, with the (+ — r/a) phase indicating outward-prop-
agating waves spreading spherically from the origin, and the (¢t + r/a) phase
indicating inward-propagating spherical waves. The 1/r dependence is different
from the Cartesian D’Alembert solution.

The solution for the inhomogeneous wave equation with a source at r=20
{localized by the delta function defined by 6(r) =0, r+0; f v 8(r)dv =1]

Vzd)(r,t):%éf)—hrﬁ(r)f(t) (2.5.5)

is ®(r,t)= —f(t —r/v)/r. The displacements are given by u,=V® = (3¢ /dr)F.
We will use this solution in Chapter 8.

H
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o
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/

X

FIGURE 2.8B5.1 Standard spherical-geometry coordinate system.
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The potential o(x,¢) is a system of
waves, or a wavefield. If we want to deter-
mine the P-wave displacements, we must
compute the gradient of ¢,

v a d a
Up=Vp =X, — +%, — + %3 —
P=Vo laxl 26x2 3ax3

X Aexp[ ti(wt +k, x)].
(2.85)

For the particular choice of ¢ given by
¢ =Aexpli(wt —kyx; —k3x3)], (2.86)

we have as a solution

Up(x,t) = (—ik, A)
xexpli(wt — k xy — kyx3)]%,
+ 0%, + (—ik;A)
xexp[i(wt —k x; —k3x3)]%;.

(2.87)

Thus, the P-wave displacements are all in
the x,x; plane, and the P-wave displace-
ment field has the same functional depen-
dence as the P-wave potential field but
different multiplicative constants that al-
low it to satisfy the equation of motion
rather than the wave equation. Taking the
ratio

(2.88)

defines the perpendicular direction to the
wavefront in Figure 2.11. This indicates
that the P-wave particle motion is perpen-
dicular to the wavefront, and it parallels the
direction in which the wave is propagating.
This characteristic of P-wave motion also
holds for cylindrical and spherical waves.
Because of the harmonic form of the mo-
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tions, particles oscillate back and forth as
the wave passes, alternately compressing
and dilating the medium.

Let us finally consider S-wave particle
displacements associated with vector
plane-wave solutions of the form (2.82).
The displacements are found from (2.53)

d J
Ug=Vx W= (—"'3 - —‘/’E)ﬁl

dx, Ox;
Wi _ s
dx;  dx, 2
a, 8

(—2 - —ill—l)ﬁ3 (2.89)

ox, dx,

We simplify the algebra by again restrict-
ing our attention to plane waves with
wavenumber vectors in the x,x; plane, so
all 8y, /dx, — 0. Thus

Us = Uslﬁl + Usziz + US3ﬁ3

(awz)A (3% atlfs)A
=|-—Il5+|—-—|%

x4 dxy  dx,

]
+(£)i3.

. (2.90)

If we associate the x,x, plane with the
Earth’s surface and the x, axis with depth
(a common convention), the Us, and Ug,
components comprise S-wave motions in
the x,x; plane and are called the SV
component because they entail a compo-
nent of vertical (x,) motion. The x, com-
ponent, involving purely horizontal (x,)
motions, is called the SH component. Re-
member that for a comparable choice of
coordinate system, the P waves had no x,
component. The total displacement field is
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the sum of the P, SV, and SH waves:

dp Iy,
1 3

a d
NN

dx;  dx,
Iy Y
dx;  dx,
(2.91)

with both P and § waves propagating in
the same medium. The linear wave approx-
imation is made in assuming the P and §
waves do not interfere with one another,
which is valid for infinitesimal strains. This
equation emphasizes the complete separa-
tion of the SH components from the P-SV
components. As long as internal bound-
aries or free surfaces parallel the x,x,
plane, this separation persists, as shown in
later chapters.

For the SH component of motion, we
let

Wy, @
eyt s

2.92
dx;  dx; ( )

where ¢, and ¢, are both solutions of the
wave equation

%y
6[21 = ﬁz Vz‘f,’l
(2.93)
Y
5‘[“23‘ = 32 Vz%-

V itself exactly satisfies the wave equation
3’V /at? =BrV?V, as is easily shown by
substituting in (2.92). Thus, we have solu-
tions for the SH wave equation of the
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same form as for the P potential, ¢:
V(xy,x3,1)

=A exp[i( twttkgx, + kB_‘xs)] ,

(2.94)

where (k] +k})=(0?/B%), (ks /0)=p
= (sin y)/B, and (k, /w) = ng = (cos y)/B-
Here 7y is the angle that the wavenumber
vector makes with the x; axis. The wave-
fronts move in the x,x, plane as discussed
before, but now with velocity 8. All of the
SH particle displacements are in the x,
direction, and thus they lie in the plane of
the wavefront, perpendicular to the direc-
tion of propagation. For the Earth refer-
ence system the SH motions are all paral-
lel to the surface.

For the SV displacements we use a gen-
eral plane-wave solution for ¢,:

U, =B expli( ot + kyx, + ksxs)].
(2.95)

Thus

W, .
- —%,
dx3

W,
—X
dx, }

Us, =
= FkyBiexp[i( twt +kx,
tkiyx;)]%,
+k Bliexp[i( twt +k x,

+hyx;)]%5. (2.96)

For a particular case, y, = B expli{wt —
k,x, — k3x;)], the wavefront is given by
(wt — k,x, — k3x3) = C, which has a slope
of —k,/k, in the x,x; plane. The ratio of
the corresponding SV displacement terms
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Box 2.6 Seismic Waves in Anisotropic Media

The P- and S-wave behavior in isotropic homogeneous media is remarkably
simple, but greater complexity arises for anisotropic media. In an anisotropic,
homogeneous medium, three independent body waves are generated that have
orthogonal planes of particle motions. These are usually called quasi-compres-
sional waves (gP) and quasi-shear waves (gSV and ¢qSH ), with names suggestive of
the isotropic counterparts. In general, the propagation direction of these waves is
not perpendicular to their wavefronts, so the particle motions differ from isotropic
behavior. The velocities of these waves vary with the trajectory of the wave through
the medium with respect to any axes of symmetry in the structure. For a wave
propagating from an isotropic medium into an anisotropic medium, one of the
primary effects is the separation of the isotropic § wave into two quasi-shear
waves, which is called shear-wave splitting.

These properties arise from the general stress—strain relationship expressed by
Hooke’s law, for which the most general anisotropic medium has 21 independent
elastic moduli. Increasing symmetry in the structure reduces the number of moduli.
If the medium has symmetry about three orthogonal planes, the medium is
orthotropic, and only nine independent constants exist. If it has axial symmetry,
yielding a hexagonal medium, five independent constants exist. A common case
relevant to some Earth structures occurs when the symmetry axis is vertical, which
is called transverse isotropy. If the medium exhibits direction dependence of
velocity in the horizontal surface, the behavior is called azimuthal anisotropy.
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FIGURE 2.B6.1 Variations of gP. gSH, and qSV wave velocities within planes of symmery of
single-crystal olivine. The labels A-B, B-C, and A-C denote symmetry planes that include
the a and b axes, b and ¢ axes, and a and ¢ axes, respectively. (From Kawasaki, 1989.}

continues
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One of the major components of the Earth’s mantle is olivine. A single olivine
crystal has orthotropic symmetry; thus the anisotropic seismic velocities have a
complex behavior, as shown in Figure 2.B6.1. Since processes in the mantle may
tend to partially align crystal orientations on a macroscopic scale, net seismic wave
anisotropy with reduced directional dependence is often observed, as is the
presence of shear-wave splitting. Figure 2.B6.1 shows the variations of « and B in
a single crystal of olivine.

Anisotropic behavior may also result from structural complexities rather than
intrinsic crystallographic anisotropy. The presence of networks of flattened, possi-
bly fluid- or magma-filled cracks causes directional wave-speed dependence, with
the quasi-P and -S waves being relatively slower in propagation directions perpen-
dicular to the long axis of ellipsoidal cracks and relatively faster when propagating
along the cracks’ long axes, as shown in Figure 2.B6.2. Finely layered structures
with alternating high- and low-velocity isotropic material can also give rise to
effective anisotropic wave speeds. In later chapters, examples will be given of
anisotropic body- and surface-wave observations in the Earth.

V (km/s)

4
V (km/s)

FIGURE 2.B6.2. Velocities as a function of angle and fluid properties in granite containing
aligned ellipsoidal cracks (orientation shown at origin) with porosity =0.01 and aspect
ratio =0.05. The short dashed lines are for the isotropic uncracked solid, the long dashes
for liquid-filled cracks (K, =100 kbar), and the solid curves for gas-filled cracks (K, =0.1
kbar). (After Anderson et al., 1874.)

is the same
Uk

=—-—, 2.97
R (2.97)
So the SV displacement is within the
wavefront in the x,x; plane. Our choice
of discussing different components of the
S vector in terms of SH and SV clearly
has little significance for whole-space solu-
tions; it merely sets the stage for subse-
quent discussions in the Earth coordinate
system. Clearly, the total S-wave motion is

a vector displacement in the plane of the
wavefront, with SH and SV components
being components projected into a conve-
nient reference system.

The overall sense of particle motions
associated with the P and S waves is
shown in Figure 2.12 and in the block
diagram in Figure 1.2. The characteristic
particle displacements associated with P
and S waves result in predictable polariza-
tions of the displacements. Most seismic
stations record three components of
ground motion: up-down (vertical), north—
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FIGURE 2.12 Sense of particle motions as a plane wave sweeps from left to right for P
waves (top) and S waves (bottom). The wavelength is given by A. (From Sheriff and Geldart,
"‘Exploration Seismalogy: Vol. 1, History, theory, and data acquisition.’* Copyright © 1982,
Reprinted with the permission of Cambridge University Press.)
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FIGURE 2.13 Three-component observation of the 18971 San Fernando sarthquake recorded
at ALQ (Albuguerque, New Mexico). P and SV motions are on the Z and E components, while

SH motion is on the N component. The direction to the source is due west. (From
Helmberger and Engen, 1980.}
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TABLE 2.5 Compressional and Shear Velocities in Rocks

Material and source P-wave velocity (m/s) S-wave velocity (m/s)
Loose sand 1800 500
Clay 1100-2500

Sandstone 1400-4300

Anhydrite, Gulf Coast 4100

Conglomerate, Australia 2400

Limestone, Texas 6030 3030
Granite, Barriefield, Ontario 5640 2870
Granodiorite, Weston, Massachusetts 4780 3100
Diorite, Salem, Massachusetts 5780 3060
Basalt, Germany 6400 3200
Gabbro, Minnesota 6450 3420
Dunite, Twin Sisters, Washington 8000 4370

Source: Clark (1966).
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7

FIGURE 2.14 Vertical-component ground-motion recordings arranged from top to bottom
with increasing distance from an earthquake. The first arrival on each trace is the P wave
and the largest later arrival is the S wave. (Courtesy of Jim Mori.}



Additional Reading

south, and east-west. Seismic waves arrive
at the station propagating at some angle to
the vertical in a direction along the great-
circle path connecting the source and re-
ceiver, called the longitudinal or radial
direction. A P-wave arrival, producing
motions only in the direction of wave
propagation, vibrates the ground only in
the vertical and longitudinal directions,
with relative strengths depending on the
angle of incidence. On the other hand, the
SH motion is entirely horizontal and per-
pendicular to the great-circle path direc-
tion in what is called the transverse or
tangential direction. The SV motion is in
the longitudinal and vertical plane but
parallel to the wavefront. This polarization
can be directly observed in seismograms
when the direction to the source is either
north—south or east-west from that sta-
tion, as shown in Figure 2.13. These seis-
mograms, from station ALQ (Albuquer-
que, New Mexico), are for the 1971 San
Fernando, California, earthquake. The
event was located due west of the station,
so the LPN (north-south) seismogram
records tangential motion only, while the
LPE (east-west) component is purely lon-
gitudinal. The P and SV waves arrive on
the vertical and longitudinal components,
while the SH part of the § wave arrives
only on the transverse component.

As mentioned earlier, P waves travel
faster than S waves, and for a fluid, in
which the rigidity vanishes, § waves can-
not propagate at all. P waves can exist in
a fluid, with acoustic waves or sound waves
in the air being a form of P wave. Thus
far, P- and S-wave velocities are indepen-
dent of frequency or wavelength and de-
pend only on the material properties of
the continuum. Anelastic effects can lead
to frequency dependence of velocities, as
discussed in the next chapter. Table 2.5
gives examples of seismic velocities for
near-surface conditions for a variety of
rock types. Because a = 1.738, the time
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separation between P and § arrivals in-
creases with distance traveled. The ratio of
travel time to distance traveled is called
moveout. Figure 2.14 shows a sequence of
seismograms at increasing distances from
an earthquake. The moveout of the §
waves is nearly twice that of the P waves.
We will next consider how these waves
have traveled through an inhomogeneous
structure like the Earth.
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CHAPTER

BODY WAVES AND RAY THEORY

In the last chapter we derived the exis-
tence of P and S waves, the only transient
solutions to a stress imbalance suddenly
introduced to a homogeneous elastic space.
P and § waves are known as body waves
because they travel along paths through-
out the continuum. The solutions for P
and S waves, like those given in Egs. (2.85)
and (2.90), give the locations of wave-
fronts, which are loci of points that un-
dergo the same motion at a given instant
in time. Rays are defined as the normals
to the wavefront and thus point in the
direction of propagation. In the case of a
plane wave, the rays are a family of paral-
lel straight lines; in the case of a spherical
wave, the rays are spokes radiating out
from the seismic source. Rays provide a
convenient means of tracking an expand-
ing wavefront, and they provide an intu-
itive framework for extending elastic-wave
solutions from homogeneous to inhomoge-
neous materials. If the inhomogeneities in
velocity are not excessively chaotic, then
the rays corresponding to P or § waves
behave very much as light does in traveling
through materials of varying indices of re-
fraction. This leads to many parallels with
optics: rays bend, focus, and defocus de-
pending on the velocity distribution.
Strictly speaking, we will have to approxi-
mate our displacement solutions to extract
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the ray behavior, for it cannot describe all
wave phenomena. These approximations
are collectively known as geometric ray
theory and are the standard basis for seis-
mic body-wave interpretation.

In classical optics, the geometry of a
wave surface is governed by Huygens’
principle, which states that every point on
a wavefront can be considered the source
of a small secondary wavelet that travels
outward in every forward direction with
the velocity of the medium at that point.
The wavefront at a later instant in time is
found by drawing a tangent to the sec-
ondary wavelets, as shown in Figure 3.1.
Thus, given the location of a wavefront at
a certain instant in time, we can predict
future positions of the wavefront. Portions
of the wavefront which are located in rela-
tively high-velocity material produce
wavelets that travel farther in a given time
interval than those produced by points in
relatively low-velocity material. This causes
a temporal dependence in the shape of the
wavefront. Because rays are the normals
to the wavefront, the rays will also change
with time. Fermat’s principle governs the
geometry of raypaths. This usually means
that the ray will follow a minimum-time
path, which is the path that will allow the
wavefront to move from point A to point
B in the shortest amount of time.
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Surface

FIGURE 3.1 An expanding wavefront. Huygens’
principle states that each point on the
wavefront serves as a secondary source. The
tangent surface of the expanding waves from
the secondary sources gives the position of the
wavefront at a later time.

Let us consider the approximations that
must be made to the elastic-wave solutions
such that ray theory is valid. Recall the
equation for a plane wave:

— i +k-
(b _Aet(iwl+ x)’

(3.1)

where k is a vector that points in the
direction of propagation and thus, by def-
inition, is a ray. For homogeneous mate-
rial, k does not change as the wave propa-
gates (it is a straight line). Now if the
seismic velocity varies smoothly in space
(i.e., p, A, and u have small gradients), we
must solve an equation analogous to (2.69):

P’ ¢ % 1 9%
catsat = oy e 32)
dx;  dx3 x5 c*(x) d¢

This wave equation is an approximation of
the equation of motion for heterogeneous
media. As we did in the last chapter [see
Egs. (2.70) and (2.71)], we will attempt to
solve this partial differential equation by
assuming a functional form
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where W(x) - w/c,, which replaces k - x, is
a function of position, and ¢, is a refer-
ence velocity. Substitution of (3.3) into (3.2)
yields

VZ[A(x)eiw(W(x)/co-t)]

1 9 [
T c2(x) ar?

A(x)eiw(W(x)/co—l)] )

(34)

The required spatial derivatives are com-
plex; for example, 3*¢p/dx} is

82
¢ 9 {HA(x) eiw(W(x)/co—t)

%7 " ax | ox,

+A(x) lﬂ _6W(x)

eim(W(x)/c(,—l)
¢y 9x,

PA(R)  wA(x) (aW(x) )2

2 2
dx; (oh dax,

+,-(3_“i dA(x) aW(x)

¢y dx, dx,

X .
) eu.)(W(xyco—t). (35)

For #’¢/0x2 and 8%¢/dx2, we obtain simi-
lar equations with real and imaginary parts.
Equating the real and imaginary parts in

b(x, 1) = A(x)e!*PO¥Vo=0 (3 3) Eq. (3.4) gives two sets of equations:
VAR A W {awx) )2 (aw(x)) (w(x) )] -w?
(x) (")c_g o] + o +( o ) = cz(x)A(x) (3.6)

5 W (x) dA(x) . oW (x) dA(x) . W (x) dA(x)

dx, dx, dx,  Ox, dx,

) + A(x)V2W(x) = 0. (3.7)

x4
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We can rearrange the terms from Eq. (3.6)
as

(6W(x) )2+ (6W(x) )2 N (aW(x) )2

dx, x, 0x 4

& o

- c(x)2 - A(x)w

S (VA®M). (38)

The right-hand side of this equation is a
ratio of the spatial Laplacian of the ampli-
tude to the amplitude divided by w?. For
high frequencies (small wavelengths) this
term is small; in fact, let it be approxi-
mately zero, and Eq. (3.6) reduces to

(aW(x) )2 N (BW(x) )2 N (aW(x) )2

dx, ax, dxs

<

- c(x)2 .

(3.9)

This is called the eikonal equation. Solu-
tions to the eikonal equation are not exact
solutions to the wave equation, but for
many regions inside the real Earth, the
necessary restrictions on spatial variations
of the elastic parameters are satisfied, so
solutions of the eikonal equation are use-
ful.

Recall W(x) - w/c, was just k- x, where
k is a vector normal to the wavefront, or a
ray. The eikonal equation is therefore a
partial differential equation that relates
rays to the seismic velocity distribution.
The condition required for geometric ray
theory to be a useful approximation of the
wave equation is that the change in gradi-
ent of A(x) over one wavelength must be
much smaller than A(x). We define a ref-
erence wavelength:

m
A0=Coj. (310)

For (3.9) to hold, we required that
A5(V24A(x)/A(x)) < VW(x) - VW(x). This
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gives

, VA(x) - cl
0 A(X) c(x)z )

(3.11)

For weak inhomogeneity c¢3/c(x)> must be
~ 1. Therefore

, VA(x)
° A®x)

< 1. (3.12)

It is possible to use a scale analysis to add
physical insight into this equation. From
(3.9), we see that VW(x) - VW(x) =
c3/c(x)?, which implies VW(x) = c,/c(x).
From Eq. (3.7), we can write

VAW (x) = VI (x) ) (313
x) = VIW(x) i) (3.13)
or
VA(x)  V*W(x)
A(x)  VW(x)
~ V(co/c(x)) _ Ve(x)
T ek e O

If we further compute the gradient over a
wavelength and multiply by A, we can use
(3.12) to find

AV2A(x) _ Aod[Ac(x)]
Ax)  c(x)

which states that the eikonal equation will
approximate the wave equation well if the
fractional change in velocity gradient over
one seismic wavelength is small compared to
the velocity.

It appears that the eikonal equations in
(3.9) are complex, and they do not seem
any easier to deal with than the wave
equation! However, we will see that very
simple equations are obtained for rays
from the eikonal. The concept of rays is
extremely important and is the basis of

<1, (3.15)
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almost all body-wave interpretation. Rays
allow us to track a displacement pulse
from a source to a receiver, accounting for
localized properties on the specific path.
The conditions of validity require wave-
lengths smaller than a few hundred kilo-
meters and slowly varying seismic veloci-
ties, criteria that apply to most body waves
in the Earth’s deep interior. An obvious
question is, Are rays an adequate solution
to the wave equation at boundaries be-
tween materials with different elastic mod-
uli? Clearly condition (3.15) is violated in
the presence of strong velocity gradients,
but we can cast the problem as a series of
discrete regions where ray representations
are sufficient. The ray solutions in these
regions are combined by matching bound-
ary conditions. We discuss this in detail in
later sections.

Representing a portion of a seismic
wavefield as a ray gives rise to the concept
of seismic phases or arrivals. These corre-
spond to transient disturbances at a re-
ceiver that are P or § waves that have
traveled a defined path between the seis-
mic source and receiver. These arrivals
have two primary characteristics: travel
time and amplitude. The eikonal equation
and its extensions can be used to quantify
these two parameters. In this chapter we
first develop equations for travel times and
then discuss how seismic-pulse amplitude
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3.1 The Eikonal Equation
and Ray Geometry

Consider the three-dimensional wave
surface shown in Figure 3.2. The ray, which
is the normal to the wavefront, W(x), is
characterized by traveling an arc length, s,
in a time, ¢. The direction cosines associ-
ated with the ray are given by dx,/ds,
dx,/ds, and dx,/ds, and must satisfy

(dx‘)2+(dx2 () 1. (3.16
— — | +|—] =1. (3.

ds ds ( ds ( )
Now consider the physical connection be-
tween s and W(x): VW(x) a s, which is just
the statement that the gradient of a func-
tion (surface) is oriented normal to that
function (surface). Thus we can see that

dx;/ds must be proportional to dW(x)/dx,.
This implies that we can rewrite (3.16) as

dx, 0x,

(aaW(x) )2+ (aaW(x) )2

W) 2 1 3.17
+|a = :
dx, - (17)
where a is a constant of proportionality. A
comparison of (3.17) and (3.9) shows that
(3.17) is just the eikonal equation if a =

varies as it propagates. c(x)/c,. The reciprocal, a~'=n=cy/c(x)
> X4
X2
l ~
Wavefront ds
Y
X3

FIGURE 3.2 Three-dimensional wavefront with a ray or normal with tength ds.
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is commonly called the index of refraction.
Equations (3.16) and (3.17) can be com-
bined to give the normal equations:

dx, JW(x)
n— =
ds dx,
dx, dW(x)
n— =
ds 9x,
dxy  IW(x)
s T ox, (3.18)

Now let us consider how the normal equa-
tions change along the path of the ray. We
can do this by taking the derivative of the
normal equations with respect to ds

d( ﬁ) d(aW(x))

as\"ds | T as ax,
d [oW(x) dx,
“ax, | ax, ds
oW(x) dx, OW(x) dx,
+ — + —
dx, ds dx, ds

sl
(%)

The generalized form of this equation is
called the raypath equation:

d({ dx; on
al'a) s

d 1 dx _v 1
Ei(c(x) E) - (c(x) ) (3.20)

This is a second-order differential equa-
tion for x, which is just the raypath; note
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that the raypath is proportional to the
spatial change in the velocity distribution.
Two initial conditions control the behavior
of (3.20): (1) the direction in which the ray
leaves some arbitrary reference point
(@x/9s)|s, and (2) the position of the refer-
ence point s,

We can obtain some insight into the
physics of (3.20) by considering a simple
example. If we follow a ray through a
material that has a change in velocity in
only one direction, say depth, then ¢ =
c(x3), and thus n = n(x,). Thus dn/ox, =
an/dx, = 0. Then (3.20) reduces to

dx,

n— =c¢, = constant
ds
dx,

n—— = ¢, = constant
ds 2

d | dx, dn
E(" ds )_ dxy |’

The ratio of ¢, to ¢, confines the raypath
to a plane that is normal to the x,x,
plane. (In other words, the projection of
the ray into the x,x, plane is a straight
line.) Figure 3.3 shows the geometry. For
convenience, and without loss of general-
ity, we can choose this plane to coincide
with the x,x; plane, reducing (3.21) to

(3.21)

dx,
n— = constant
ds

%(n%)z(jx_i)' (3.22)

At a given point the direction cosine of the
ray is given by

dx

l, = l—sini
Vods

dxy .
ly=——=cosi

ds ‘ (3.23)
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FIGURE 3.3 Raypath for a medium in which the velacity is independent of the x, and x,

directions.

Thus

dex, ¢y , |
n—— = — sin { = constant
ds c

(3.24)
sin {
= ——— = constant =p.
c

The constant p is called the ray parame-
ter, or horizontal slowness. p varies from 0
(vertical travel path) to 1/c (horizontal
travel path). The angle i is called the angle

of incidence, and it gives the inclination of
a ray measured from the vertical (x, direc-
tion) at any given depth. For a prescribed
reference point and takeoff angle, a ray
will have a constant ray parameter, p, for
the entire path. Equation (3.24) is also
known as Snell’s law, which can also be
derived from Fermat’s principle (see Box
3.1). Fermat’s principle states that a ray-
path is a path of stationary time. Thus
travel time along a raypath is a minimum
(or maximum) time.

Box 3.1 Geometric Interpretation of Snell’'s Law

It is possible to use simple ray geometry and Fermat’s principle of least time to
derive Snell’s law and the definition of seismic ray parameter. Consider a ray
leaving point P in a medium of velocity a,; what is the path the ray will take to
arrive at point P’ in a medium of velocity «,? Figure 3.B1.1 shows the geometry.

P

A 4

a o

X

) - o
b

2 —

c P'
0q < 0p

FIGURE 3.B1.1 Raypath connecting two points on either side of a boundary.

continues
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The travel time on the path between P and P’ is

d e Va’+x? \/b2+(c—)c)2
TP—P'=——+—= + « (3.1.1)
a;  a a;
The minimum-time path must satisfy d7/dx = 0, which implies
daT 0 x c—x (3.12)
dx a,Va® +x? az\/b2+(c—x)2 , -
note that x/Va®+x? =sini, and (c —x)/ \/b2 + (¢ —x)* =sin . Thus
sini  sinTt
—_— (3.1.3)
@ @,

This is the familiar expression from optics called Snell’s law after Willebrod Snell
(1591-1626). The generalization of Snell’s law is sin i /v = p, where p is called the
seismic parameter, ray parameter, or horizontal slowness. The ray parameter is
constant for the entire travel path of a ray. The consequence of a ray traversing
material of changing velocity, v, is a change in inclination angle, i, with respect to a
reference plane. As a ray enters material of increasing velocity, the ray is deflected
toward the horizontal. Conversely, as a ray enters material of decreasing velocity, it
is deflected toward the vertical. If the ray is traveling vertically, then p = 0, and the
ray will experience no deflection as velocity changes.

Now let us consider the second equation
in (3.22)
d (| dx, d . an
?d—s— nz = —d;(HCOSl) = ;3

Rewriting this using the chain rule

dn oo di _dn dx,

_ s — _+ PR

i, nsini— cos:dx3 T
di dn

- . 2.
= —nsini— +cos”i—.
ds dx

Collecting terms,

n : 5. _di
dx3( cos’i) = nsini—
di sini dn 325
= — = - —— — .
ds n dx, (3.25)

di sini dc dc
=>—=———=p—

ds c dxy; dxy

Equation (3.25) states that the curvature
of a ray is directly proportional to the
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FIGURE 3.4 Ray curvature due to increasing and decreasing velocity with depth.

velocity gradient (dc/dx,). If velocity in-
creases with depth, then the ray curves
upward. If velocity decreases with depth,
then the ray curves downward. Figure 3.4
shows this by plotting the evolution of a
wavefront in media with different velocity
distributions.

Equation (3.22) has several interesting
aspects. For each angle i, a specific ray
leaves the source and follows a specific
raypath. The initial angle and the velocity
structure determine the distance at which
the ray will emerge at the surface. For a
given source-receiver geometry several
possible connecting raypaths may exist,
which means that a multiplicity of arrivals
will occur, all with different initial angles
and travel times. We will discuss this more

fully in later sections, as it is the basis for
seismic interpretation. We can use (3.22)
with initial conditions to predict where
and when a ray will arrive. Consider Fig-
ure 3.5. At any point along the travel path
we have

. dxy
sini = — =
as P
dx
cosi=‘1—3=\/1—sin2i=\/1—czp2
A)

(3.26)
.. dxg
=dx,=dssini = —¢cp
cos i

4
= _‘_*'dx:;.

\
X3

FIGURE 3.5 Geometry of the ray segment ds, along a path from a surface source to a
surface receiver. The velocity of the medium varies only along the x5 direction, so there will
be symmetry of downgoing and upgoing legs of the raypath.
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For a surface source and receiver, Eq.
(3.26) can be integrated over the depth
range traversed by the ray to give the
distance X(p), at which a ray with ray
parameter p will emerge:

(3.27)

z cp
X(p)=2f iy

where z is the maximum depth of penetra-
tion. The factor of 2 arises from the sym-
metry of the downgoing and upgoing por-
tions of the raypath (see Figure 3.5). This
is the where of ray equations; given the
angle at which a ray leaves the source, we
can calculate where it will arrive. If we
generalize this to a three-dimensional case,
we also require the azimuth of the raypath
relative to the source. The time it takes for
the ray to arrive is obtained similarly:

ds
dT=—=T
c
ds
=2
/pathc(s)
2 dx
=2f St
0 ¢(x3)cosi

or

(3.28)

T—» z dx
= /;czmy

where T is the travel time along the ray-
path to the distance defined by Eq. (3.27).
We can introduce some shorthand and
rewrite Egs. (3.27) and (3.28). Let y = 1/c;
then

z dx3
and
reaf =g, (330
=2 e A (330)
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Note that the ray parameter, p, can be
pulled outside the integral in (3.29) be-
cause it is constant along the path. Noting
the similarity between X and T, we can
relate the two:

T-—-2 zy—zdx
- LV72~p2
VY _P dxs

(3.31)

o
=pX+2j:\/'y2—p2 dx,.

Equation (3.31), the travel-time equation,
is a truly remarkable representation. Note
that it has two terms: one depends on X
and the other on z. This implies that the
travel-time equation is separable, and the
vertical travel time depends only on (y? —

p?)V? (usually written as 1) and the hori-

zontal travel time only on p, hence the
name “horizontal slowness” for p. Simi-
larly, n is known as the vertical slowness.
Also note that d7/dX =p, or that the
change in travel time with distance is equal
to the ray parameter. We will use this fact
extensively when we interpret the struc-
ture of the Earth.

We can also use Eq. (3.22) to give in-
sight into the amplitude of a seismic ar-
rival. Consider a spherical wave a small
distance from the seismic source at the
surface in a region of uniform velocity. Let
the energy of the disturbance be dis-
tributed uniformly on the spherical wave-
front. As the wavefront expands with time,
the total energy on the surface will remain
constant, but the energy per unit surface
area will decrease. Define the total energy
on the initially hemispherical wavefront
(Figure 3.6) as K, and the energy per unit
area = K/2mr?. Now consider a bundle of
rays that leave the source between the
angle i, and iy +di,. The fraction of en-
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Wavefront
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ray paths

FIGURE 3.6 The area, which is inversely proportional to energy, for an expanding spherical

wavefront.

ergy in a circular ring on the wavefront
defined by these two takeoff angles is given
by

Ey= (2mrsiniy)(digr), (3.32)

20r?

where rsini, is the radius of the strip,
and di, r is the width of the strip. Or

Ey =K sin i di,. (3.33)

As seen in Figure 3.7, the ray bundle ex-
pands or contracts depending on the veloc-
ity profile. Upon arrival at the surface, the
corresponding energy will be spread out
over area 2w XdX cos i, (Figure 3.6). The
wave energy is now spread over this larger
area, so the energy density, E(X), is ob-

tained by dividing (3.33) by the new area
to obtain

(3.34)

This can be simplified by recalling

sini, dT
P= Cy dX

T
, i0=sin“(coa).

(3.35)
Therefore
di, B Co d*T
X 1= (ar/ix)” 4X*

¢, d’T 33
" cosiy dX?° (3.36)

: Surface

-

FIGURE 3.7 A bundle of rays with takeoff angles between i and i +di. The amplitude of the
seismic signal is inversely proportional to the surface area of the wavefront subtended by
the rays (dA); as the ray bundle expands or contracts due to the velocity structure, the
amplitude will change. One can see how there will be a relationship between changes in
takeoff angles as a function of distance and the corresponding amplitude variations with

distance.
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Thus Eq. (3.34) can be rewritten as

K tani, \[d*T
E(X)= (E;)CO(Xcosio)(F)'
(3.37)

If the source is not at the surface, then the
takeoff angle at the source, iy, will differ
from the incident angle at the receiver, i.
Amplitude is proportional to VE ; thus the
amplitude of a seismic arrival is propor-
tional to the change in ray parameter with
distance. Velocity structures for which p
changes rapidly yield large amplitude vari-
ations. Conversely, constant p implies very
small amplitudes.

These simple extensions of the ray equa-
tions show their utility. We will now con-
sider some practical cases of a layered
velocity structure and a continuous veloc-
ity distribution.

3.2 Travel Times in a Layered
Earth

The standard method of inferring the
velocity structure of the Earth is to fit the
travel times of various seismic phases as a
function of distance with a layered Earth

3. BODY WAVES AND RAY THEORY

model. The equations for travel time in a
layered Earth are a discretization of
Eq. (3.31). We also can derive these equa-
tions by first principles. When a ray strikes
a boundary marking a change in seismic
velocity (see Figure 3.8), the energy in the
wave is partitioned between a reflected
and a refracted ray. These two new, or
derivative, rays will have the same ray pa-
rameter as the incident ray. The angle
(i or 7) that the reflected and refracted
rays make with a vertical plane is governed
by Snell’s law:

sini sinTt
——— =p.
a, a;

(3.38)

Consider the wavefront associated with the
reflected ray in Figure 3.8. The wavefront
will advance a distance d in a time §¢;
8t =d/a,. The surface intersection of the
wavefront will travel along the surface at a
higher velocity than the actual seismic ve-
locity of the layer

P d 1 a, 1 3.39
T 5t sini ot _p’(' )

where a, is the apparent velocity. From
this equation it is obvious where the name
horizontal slowness for p comes from. If

P
a\ 3 p1
T \) a2, BZ :p2
P refracted

FIGURE 3.8 A P wave incident on a boundary between contrasting materials, in this case

between a fluid layer and an underlying solid.
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the ray were vertically incident on the free
surface, p would be zero and the apparent
velocity would be infinite.

If the velocity in layer 2 is greater than
the velocity in layer 1, angle 7>1i. As
7 90° Snell’s law predicts a critical re-
fraction

sini, sin90° 1
= =—. (3.40)

a; @ a,

This critical refraction is associated with a
wave that is traveling horizontally (parallel
to the interface between layers 1 and 2)
immediately below the interface. This wave
is usually referred to as a head wave, and
it has the unique property that it transmits
energy back into layer 1 continually as it
travels along the interface. This energy
leaves the interface with the same angle of
incidence, i, called the critical angle:

) feo

i.=sin"'(a,/a,). (3.41)
Note that if i >i_, no seismic energy can
penetrate layer 2, and all the energy is
reflected back into layer 1. If @, < «/, there
is no critical angle, and the refracted ray is
deflected toward the vertical.

Head waves in a layered structure and
their analog in a continuous velocity struc-
ture, turning rays (discussed in the next
section), are extremely important in deter-
mining the velocity structure of the Earth.
The travel time of these seismic waves as a

81

function of distance provides a direct mea-
sure of velocity at depth. Consider the
three rays in the layer over a half-space
structure shown in Figure 3.9. If a, > «,,
three primary travel paths exist between
the source and the receiver: (1) the direct
arrival, which travels in a straight line con-
necting source and receiver, (2) a reflected
arrival, and (3) a head wave. Additional
rays involving multiple reflections in the
layer will also exist. The travel time for the
direct arrival is given by

T=X/a,=Xp, p=1/a,. (3.42)
The travel time for the reflected arrival is
given by

2th 1
T=—— (3.43)

cosi a;’

where th is the layer thickness. Finally, the
travel time of the head wave is given by

1
——. (344)

These equations are all for a surface
source; slight modifications are needed for
sources within the layer. The second term
in (3.44) is the same as (3.43) for the
reflected arrival when i=i_.. Therefore,
the refracted arrival first appears at r =0,
with a travel time equal to that of the
reflected arrival. At closer distances only

th

a! »BI

| headwave r

az-Bz

FIGURE 3.9 The three principal rays in a velocity structure that is a layer over a half-space.
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the direct and reflected waves will exist.
As X increases, only the r/a, term of
(3.44) is affected; thus, the wavefront trav-
els along the surface with apparent veloc-
ity a,. This can be used to simplify (3.44),
because r=(X—2thtani) and sini =
a,/a,. Thus

2th 1 1 2tha,
= _ 4 — —_— —
cosi.a; a, a,CoS i,
2th [ 1« X
>T=—+|———|+—.
cosi.\a@, a3 a, (3.45)

Recalling that 1/a,=p and cosi =(1—
sin?i )2 = (1 —a?p?)"?, we can rewrite
this as

T=Xp + 2thn,, (3.46)

where 7, =(1 —p%a?)*/a,. This is the
layered structure equivalent to Eq. (3.31).
Equation (3.46) is an extremely useful form
of the travel-time equation because it sep-
arates the travel path into a horizontal
term and a vertical term. No matter how
complex a raypath in a layered structure

time T

reflected__--~ -

d—’
=

-

. -

8 =21

-

-
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becomes, it is possible to write the corre-
sponding travel-time equation with a form
similar to (3.46).

Equations (3.42), (3.43), and (3.46) de-
termine a travel-time curve, giving the ex-
pected travel times for a given structure.
Figure 3.10 shows the travel-time curve for
the principal rays for the structure in
Figure 3.9. At short distances only the
reflected and direct arrivals exist. The di-
rect arrival is described by a straight line,
with a slope d7/dX =p=1/«a,. The re-
flected-arrival travel time is described by a
hyperbola. The intercept, at X =0, has a
travel time of 2th/a, . At large distances
the branch of the travel-time curve that
corresponds to the reflection becomes
asymptotic to the direct arrival. The
travel-time branch associated with the
head wave first appears as a reflection at
X =2thtani_,. The head-wave arrival
branch is a straight line with a slope
dT/dX =p = 1/a,. Since the head wave
travels with a faster apparent velocity, it
eventually becomes the first arrival. The
direct arrival is the first arrival until the
crossover distance, X, after which the head
wave is the first arrival. We can find this
distance by realizing that at X_ the travel
times of the direct arrival and head wave

P
-,

_--direct

slope = 1 .

headwave slope = 1
2

Y

] I

Xcritical

distance X

FIGURE 3.10 Travel-time curve for the primary waves in the velocity structure in Figure

3.8.
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are equal:
Tdirecl = Thead

C c

a, a,
aa;
X.=2th————n,
a; —a,

or

Q; T
X, =2thy/ ——— . (3.47)
a; —a,

Figure 3.11 shows a seismogram from an
earthquake 314 km away. Three promi-
nent arrivals are noted: P,, P,, and §.
Arrivals P, and P, correspond to the head
wave and direct arrival, respectively, in
Figure 3.9. In 1909 a Croatian scientist
named MohoroviCi¢ first observed these
two P-wave arrivals with different appar-
ent velocities over a several-hundred-
kilometer distance. One was observed to
have a velocity of 5.6 km/s, and the other
a velocity of 7.9 km/s. The arrivals arise
because, in a gross sense, the crust—-mantle
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system behaves like a layer over a half-
space. The head wave, P,, is caused by the
large velocity increase at the crust-mantle
boundary (known as the Moho discontinu-
ity). The reflection off the Moho is known
as PmP and is not readily identifiable in
Figure 3.11.

Is the travel-time curve in Figure 3.10
complete? No, because we have only con-
sidered three rays. Clearly, §,, §,, and
SmS arrivals will also occur, with travel
times controlled by § velocities. Further,
muitiple reflections will occur in which a
ray bounces between the surface and the
Moho, with some arrivals having various
path segments which are a mixture of P
and § waves. The many possible arrivals
cause the oscillations in Figure 3.11. The
importance of a travel-time curve is its
interpretative power. If we consider a seis-
mic station at a given distance from a
seismic source, we expect a sequence of
arrivals, all with predictable travel times.
Suppose we have many seismic stations
that record a seismic event. If we deter-
mine the arrival times of various phases
and plot them on a time-distance curve,
we can infer the structure. We can deter-

500F
‘fe r
S or
o |
o |
—500r 1yc
| 314 km
. | [ t n | ! 1
40 80 120
Time, s

FIGURE 3.11 Vertical component of ground motion for an earthquake (M, =2.7) on the
Colorado Plateau in Arizona recorded at TUC (Tucson). The head wave and direct arrival are

marked P, and P, respectively.
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mine the layer velocity from the slope of
the direct arrival and the half-space veloc-
ity from the slope of the head-wave branch.
The crossover distance or the zero offset
(X =0) reflection time gives the layer
thickness. Of course, the Earth is more
complex than a layer over a half-space, so
this procedure must be generalized to more
than one layer. If the source is not human
induced, it is also necessary to estimate
the location and origin time of the source.

The travel-time equations can be gener-
alized to the case of n layers. Consider the
two-layered example shown in Figure 3.12.
The crust is often approximated as a two-
layer structure like this. For a surface
source, the travel times for the primary
waves in the top layer are just those given
above for a layer over a half-space. As rays
penetrate deeper into the structure, the
expressions become more complicated, but
they are easily built up using the single-
layer equations. First, consider the portion
of the head-wave travel time from point A
to point B (a horizontal distance y =X —
2AX):

t'=yp + 2th,m,, (3.48)

where

1 sin i

(3.49)

surface

3. BODY WAVES AND RAY THEORY

Now consider the travel time in layer 1:

D D(sin®j + cos? j)

At = — =
a; a;
. sin j €OS j
=Dsmj(—) +Dcosj(—~)
a, a,
=(AX)p+thnm,, (3.50)

where AX =Dsinj, p=(sinj)/a,, th;=

Dcos j, and 7, =(cos j)/a,=1/a)(1 -
a?p?)2. Thus we can write
2

T=t+2At=pX+2) thm;, (3.51)

i=1

which can be generalized to n layers

n
T=pX+2Y thm,.

i=1

(3.52)

If a in a many-layered structure increases
monotonically with depth, the travel-time
curve will have many branches due to head
waves at each interface (see Figure 3.13).
These will define a first-arrival “branch”
that asymptotically corresponds to an in-
homogeneous structure with a smooth ve-
locity increase instead of layers.

We need to mention two special cases
that complicate the interpretation of
travel-time curves. The first of these is the
case of a low-velocity zone. Consider the
structure shown in Figure 3.14, where the
velocity of layer 2 is less than that of layer

o <a <Q
1 2 3

FIGURE 3.12 Head-wave raypath in a two-layered model.
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FIGURE 3.13 Travel-time curve for a finely
tayered Earth. The first arrival is comprised of
short segments of the head-wave curves for
each layer, over the limited distance range
between crossover points.

1 and the half-space. No head wave occurs
along the interface between layers 1 and 2.
Therefore, we observe only a direct arrival
and a head wave from the interface be-
tween layers 2 and 3 (as well as reflected
arrivals from both interfaces). The corre-
sponding travel-time equations for the di-
rect wave and the head wave are

T=pX, where p=1/a; (3.53)
T=pX+2thm, + 2th,n,,

where p = 1/a;. (3.54)

Since the travel-time curve has only two
branches (given no information from the
reflected branches), one would interpret
the curve as a single layer of pseudothick-
ness th with velocity «,; over a half-space

\¢ ﬂu_htht

[¢.) / oz th,

o3
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A [

v o— -t
@, <e <o, i =sin (“1/“:)

FIGURE 3.14 Raypath for a structure with a
low-velocity layer. No head wave will exist on the
interface between velocities a, and as.

of velocity a;. The pseudothickness esti-
mated from the crossover distance is th, +
thy(n,/m,), which results in an overesti-
mate of the actual depth to the half-space.

A second special case is called a blind
zone, which arises when a layer is so thin
that the head wave from it is never a first
arrival. Consider the structure shown in
Figure 3.15. The travel times for the two
rays shown are

T,=(pX) + 2thmy, (3.55)
where p=1/a,
T, =(pX) + 2thim + 2thym,,
(3.56)

where p = 1/a;.

/- R|~

Rl=

X

FIGURE 3.15 Travel path and corresponding travel-time curve for a blind zone. The observ-
ability of a first arrival with the slowness 1/a, depends on the layer thickness and velocity

contrasts involved.
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Time, s
FIGURE 3.16 P" is a prominent '‘blind-zone"

arrival generated at a midcrustal boundary.

Although it travels with a faster apparent velocity than P,, it is never a first arrival.

Note that 7, for ray 1 does not equal 7,
for the second ray because p is different.
For particular combinations of «,, a5, and
th,, the travel-time curve will look like
that shown in Figure 3.15b, where the
head wave with slope 1/a, is not observed
as a first arrival. This happens if a,/a, is
not much larger than 1 or if th, is very
small. Note that as th, increases, the
travel-time branch associated with the
half-space is delayed, and eventually the
1/a, branch will be a first arrival over a
limited range. One of the most important
blind zones in earthquake seismology is in
the crust, due to the Conrad discontinuity.
The Conrad was originally thought to rep-
resent a boundary between mafic and
granitic rocks at midcrustal depths, but
now it is thought to be a thermodynami-
cally controlled interface or a rheological
boundary (more on the Conrad in Chapter
7). The Conrad head wave is often de-
noted as P*. Figure 3.16 shows an ob-
served seismogram with P,, P*, and P,.

3.3 Travel-Time Curves
in a Continuous Medium

If we take Eq. (3.52) and let the number
of layers go to infinity as each layer thick-

ness goes to zero, the summation is re-
placed by integration, which vyields
Eq. (3.31). In other words, fine layering is
an approximation to a continuous velocity
distribution. Subtle differences occur in the
character of the travel-time curves.
Figure 3.17 shows the travel-time curve for
a continuous, increasing velocity distribu-
tion. The slowness observed at a distance
X can be found by taking the slope
(dT/dX) or tangent of the travel-
time curve. It is convenient to introduce
the concept of intercept, or delay time,

slope = p = 1/c

p)

Y

X

FIGURE 3.17 Travel-time curve in a continuous
velocity structure. 7 is defined as the intercept
of the tangent to the travel-time curve at any
given X, which has slope p.
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Box 3.2 Travel Times for Dipping Layers

The most common complication to the travel-time equation for a plane-layered
Earth is the presence of a dipping layer. Consider the structure shown in
Figure 3.B2.1. The travel-time curve depends on whether the rays are traveling
updip or downdip. The direct arrivals have the same slowness (1/v,), but the head
waves have different apparent velocities. This can be seen by the area swept out by
the wavefronts in a time At as they are incident on the surface at different angles:

1 sin(i,—9)
v, - U,
(3.2.1)
1 sin(i +8)
Vg - U .
The resulting travel-time equation can be written as
2h,cosi_cos®  xsin(i,—8)
t,= +
U, Ly
(3.2.2)
2h,cosi cos@  xsin(i.+80)
td = + 3
l/‘] L‘l

where u and d represent updip and downdip observations, respectively,
Figure 3.B2.2 shows the corresponding travel-time curves. Note that the crossover
distance is larger for updip travel paths. The total travel time for the source-re-
ceiver geometry must be the same because of reciprocity for interchanged source
and receiver locations.

The dipping-layer problem is very common in refraction surveys, so we will give
some of the equations required for their interpretation. The true velocity of the
half-space is, of course, given by v, /(sini_ ). We can solve for i, and the angle of
dip, 0, if we have reversed profiles on which we measure the apparent velocities, ¢,
and vy,

@
It

Ssin ™ () /0g) = sin (v /)]

(3.2.3)
A %[sin*'(r,/z'd) + sin"(z‘,/z'u)].

]

Projecting the head-wave travel-time branches back to x = 0 gives intercept times,
t,, that differ for the updip and downdip directions. From these intercepts the
layer thickness at each end of the profile can be determined.

Lol s

h] or hZ = —
2¢cos 0\/0% -]

: (3.2.4)

continues
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where ¢, is the appropriate intercept time for either updip or downdip, and v, is
the half-space velocity.

The dip, 8, found from Eq. (3.2.3) must be interpreted carefully. This dip is the
true dip only if the profile is perpendicular to the strike of the dipping layer. If the
profile is oblique to the strike, the dip determined is actually an apparent dip. If
the profile were parallel to the strike, the apparent dip would be zero. Without
reversing the profile, one cannot be confident that layers do not dip, and incorrect
structure may be inferred, so reverse profiling is a very common seismological
procedure. Two-dimensional profiling can map the complete geometry.

FIGURE 3.B2.1 Raypath geometry for head waves along a dipping interface.

A
~
<!
Q
—

7’
X, X,

FIGURE 3.B2.2 Travel-time curves for a dipping structure. The curve with time increasing
to the right is for the downdip direction. The curve with time increasing to the left is for the
updip direction.
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from (3.31)

(D) =T—pX=2/:\/72—p2 dx,.

(3.57)

where 7(p) is simply the intercept (X = 0)
of the tangent to the travel-time curve for
a given X or p. As p increases, X de-
creases and 7 will decrease; hence 7 is a
decreasing function of p:

2 fmdx)

0

dr d (
dp dp

= 2]2———:—?——dx
0 /72 —p? 3
(3.58)

The tau function, v(p), is a single-valued
function of p and can simplify analysis of
travel-time curves.

We will now characterize the travel-time
curves for three major classes of continu-
ous Earth structure. Figure 3.18 shows
examples of three velocity models, the ray-
paths, the travel-time curves, p as a func-
tion of distance, and 7(p). In structure 1
(Figure 3.18a) the seismic velocity in-
creases smoothly with depth, and the
travel-time curve is a smooth, concave-
downward curve. The ray parameter de-
creases monotonically with distance. Simi-
larly, 7(p) is a smooth curve. In structure
2 (Figure 3.18b), the velocity gradient
changes with depth; the velocity increases
abruptly over a short depth interval. Seis-
mic rays that turn above the gradient
change are unaffected by it; hence the
branch of the travel-time curve from A to
B is identical to that for structure 1. Rays
that enter the region of increased velocity
gradient will be turned, or deflected, to-
ward the horizontal. If the gradient is
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strong enough, the rays will be turned such
that they appear at some distance C that
is smaller than B. Rays that bottom well
below the gradient zone will have a normal
concave shape. Note the similarity be-
tween the travel-time curve for structure 2
and that shown in Figure 3.10. The AB
branch is analogous to the direct arrival,
the CD branch is analogous to the re-
fracted arrival, and the BC branch takes
on the character of the reflected arrival. If
the velocity gradient change increases to
become a velocity discontinuity, the
travel-time curve will approach the dis-
crete layered case: branch AB will
lengthen (point B will increase in distance
X).

The distinctive “bow tie”’ shape of the
travel-time curve shown in Figure 3.18b is
called a triplication. The name comes from
the fact that three distinct travel-time
branches exist at certain distances. Seis-
mograms at distances where the rays have
passed through a structure such as that in
Figure 3.18b can be quite complicated.
The three different arrivals will interfere,
and the character of interference will
change very rapidly with distance. On the
other hand, seismograms that are recorded
across a triplication can be used to deter-
mine the character of the velocity change.
The ray parameter is similarly multivalued
in the region of the triplication, corre-
sponding to the different branches of the
travel-time curve. However, r(p) is a sin-
gle-valued function, which is one of the
advantages of using it to “unfold” a tripli-
cation curve,

Structure 3 (Figure 3.18c) has a low-
velocity zone beginning at a depth z,. For
rays that bottom above z,, the travel-time
curve is analogous to structure 1. As a ray
penetrates below z, it is deflected toward
the vertical, or bent down, and a shadow
is produced at distances where no arrivals
occur (distance B to D). At a depth z,,
where the velocity is equal to that at depth
z,, the shadow is terminated. Below this
depth, two arrivals result from an effect
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similar to the triplication. Theoretically
this will result in a strong cusp at a dis-
tance D. The behavior of the slowness
versus distance reflects the multivalued-
ness associated with two arrivals. Again,
7(p) is smooth and decreases monotoni-
cally, although it will be discontinuous at
the ray parameter corresponding to
1/c(zg).

These three travel-time curves will be
important references when we begin to
interpret actual data profiles in Chapter 7.
It is also important to note that the three
representations of the evolving wavefield
[T(X), p(X), and 7(p)] are all equivalent.
As we will see in Chapter 7, depending on
the circumstances, we can use any of the
three representations to infer structure.

3.4 Travel Times
in a Spherical Earth

The travel-time equations derived in
Section 3.2 are correct for a flat-layered
Earth, that is, for problems in which the
curvature of the Earth can be neglected.
When curvature becomes important (at
distances greater than about 12°), we must
modify Snell’s law. Figure 3.19 shows a
model of the Earth that is composed of
thin, concentric shells. Across each of the
shell boundaries is a discrete velocity jump.
On the local scale, the surface curvature is
negligible, so at position P Snell’'s law
must be satisfied:

sin@; sin 6

59
o o (3:59)

Now consider the geometry shown in Fig-
ure 3.19. Two right triangles share length
d. It is clear that d =r,sin 8| =r, sin9,.
Thus we can write

rysinf, r,sin@,

= . (3.60)

v, Uy
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FIGURE 3.19 Ray geometry in a layered,
spherical Earth.

This is a general equation along the entire
raypath, since r, and r, can be any value
along the raypath; thus these ratios are
constant. We use (3.60) to define the ray
parameter in a spherical Earth:

rsini

— =». (3.61)

Although the units of ray parameter in a
spherical Earth differ from those we ob-
tained for flat layers, the meaning is the
same, with p being the slope of the
travel-time curve. Consider Figure 3.20,
which traces the path of two adjacent rays.
The parameters of the two rays are p, A,
and T (ray parameter, angular distance,
and travel time, respectively), and p + dp,
A +dA, and T+ dT. From the geometry
of the problem we can see that

.. vy dT  rysiniy dT
sinigy=——=———=—=p,

ro dA Ug dA
(3.62)

The ray parameter p is precisely the slope
of the travel-time curve, as it was for the
flat-Earth case except that distance is now
measured in angular degrees. The ray pa-
rameter can still be identified with the
inverse apparent velocity along the surface,
or slowness. At the turning point, p =
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FIGURE 3.20 Raypaths for two adjacent rays
in a spherical Earth.

(sin90°)(r,/v,) =r,/v,=§,. Thus, unlike
the flat-layered case, the slowness is a ra-
tio between a velocity and a depth. This is
because in a spherical Earth, every ray will
return to the surface—even if the velocity
decreases with depth. The units of p in a
spherical Earth are s/rad or s/deg. (The
“natural” units are s/rad, and care must
be taken to use these units when applying
inversion formulas such as the Herglotz—
Wiechert technique. See Chapter 7.)

The travel-time equations in a sphere
must also reflect geometric constraints.
Consider a homogeneous sphere with a
ray that travels from source to receiver
(see Figure 3.21). The travel path is, of
course, a straight line, and the travel time
is given by OA/v. This can be written as

T(A) = 2rosin(4/2). (3.63)

0

Thus, even though the velocity is constant,
the travel-time curve is not a straight line
but has decreasing ray parameter with dis-
tance, p = (rycos(A/2))/v,.

We can derive a general equation for
travel time in a sphere by considering the
ray segment shown in Figure 3.22. The
length of a small segment of the ray (ds) is
given by

(ds)? = (dr)’ +r*(dA)®. (3.64)

3. BODY WAVES AND RAY THEORY

FIGURE 3.21 Travel paths in a homogeneous
sphere.

Note that sin i = r(dA/ds). Thus

r? dA

- (3.65)

Equation (3.65) can be used to eliminate
ds from Eq. (3.64) to yield

aay - AP
= r2pp?
or
/] dr
dA = — ==, (3.66)
R S

where £ =r/v. We can integrate (3.66) to

ds

rdA L

FIGURE 3.22 Geometry of ray segment ds in
terms of radius r and angle dA.

dr
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obtain

(3.67)

ro dr
)

where r, is the radius of the Earth and r,
is the deepest point of penetration. This
equation is analogous to Eq. (3.29) for a
flat inhomogeneous model.

We can also eliminate dA from (3.64)
using (3.65) to obtain

(dsy? = (ary? + 20

or
dr Edr
ds: = .
Vi-(p?vr?) Ve -p?
(3.68)

The travel time along any path is the path
length divided by the velocity (v):

ro §2
T_/path v _2/;, r‘/gz—pz

Equation (3.69) is analogous to Eq. (3.30)
for a flat, inhomogeneous model. Follow-
ing the same logic as we used in the flat
geometry, we can write (3.69) as separable
travel-time equations:

dr. (3.69)

2 2,2
T=2f" LA el S PP
n\r/e-p*  r/er-p?
2 _ .2
=pA+2f'°—”§rp dr. (3.70)

For a given ray parameter, the first term
on the right-hand side of Eq. (3.70) de-
pends only on A, or surface horizontal
distance, and the second term depends only
on r, the vertical dimension. This is analo-
gous to (3.31), with the integral corre-
sponding to the tau function, 7(p), as in
(3.57) for a spherical geometry.

The travel-time curves for a spherical
geometry are very similar to those for a
flat geometry, with the caveats that angu-
lar distance is used and ray parameter is
scaled by the normalized radius. This im-
plies that the qualitative behavior of the
travel-time curves characterizing different
velocity profiles in Figure 3.18 can be used
to infer the gross character of velocity
structure in a spherical Earth. In the real
Earth prominent triplications result from
velocity increases at the Moho and near
400 and 660 km depth, while the low-
velocity core produces a major shadow
zone (more on these in Chapter 7).

3.5 Wave Amplitude, Energy,
and Geometric Spreading

Now that we have fully developed the
concept of travel time for a ray, we can
return to energy associated with an arrival.
Equation (3.37) gave energy per unit sur-
face area in a flat geometry. The variation
of wave energy depends on velocity struc-
ture (d2T/dX?) and distance traveled (X).
In general, the wave amplitude decays with
distance; this is known as geometric
spreading. We can gain some insight into
geometric spreading by considering a ho-
mogeneous, spherical Earth. This requires
a simple modification of (3.37); instead of
a bundle of rays illuminating a ring on a
flat surface, they illuminate a spherical
ring. The wavefront area incident on this
ring is given by

2mwrdsin AldAlcosiy,  (3.71)

where r; is the radius of the Earth (see

geometry in Figure 3.21). This changes Eq.
3.3 to

Uo \ [ tani, 1 \|d’T

E(a) =Eo(—3)( . )( | ) :

ro J\cosigj\sinA )| dA

(3.72)

b
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where E,=K/27. For a homogeneous Thus we can rewrite (3.72) as
Earth, T =[2r,sin(A/2)}/v,, which im-

plies N
dT [, AV T E(A)n(Z)(};)
EA':(;;)COS(E):EF (
_ [ .. A 2sin( A/2) cos(A/2) )
R
Further £,

4r0 sin?(A/2) (3.75)

siniy = cos(4/2)
The denominator is simply the square of

cos i, = sin(A/2) the length of the cord connecting the
source and receiver. This implies that en-
tani, cos(A/2) ergy decays as 1/R?, where R is the dis-

=

(3.74)  tance traveled. Qualitatively, this will also

. = . 2 .
cosiy sin“(A/2) hold for an inhomogeneous sphere.

Box 3.3 Caustics and the Antipode

In Figure 3.18b near the ends of the triplication, points B and C, a special
amplitude behavior is predicted. In Eq. (3.37) we see that the amplitude is
proportional to dp/dx, and at B and C this derivative is infinite. This represents a
type of focusing called a caustic. The simplest way to interpret the caustic at point
B is to think of rays from the AB and BC branches—the energy turning above
and reflecting off the discontinuity, respectively—constructively interfering. The
amplitude may be large, but it is not infinite. This is an example of how ray theory
can break down; the rays are turning in a region of the Earth where the velocity
gradient is rapidly changing, and our assumptions for the eikonal equation are
inappropriate. Another caustic is the cusp associated with the termination of a
shadow zone (see point D in Figure 3.18c).

In a spherical Earth, strong focusing occurs at the anfipode. In the sphere,
seismic waves spread in all directions. Geometric consideration shows that
these spreading wavefields converge at a point exactly opposite the epicenter (see
Figure 3.B3.1). If the Earth is homogeneous, then all common portions of the
wavefront should arrive simultaneously at the receiver and produce strong ampli-
fication. Multiple arrivals will be observed because the wavefront has folded over
on itself. Figure 3.B3.1 shows a recording of the Inangahua, New Zealand,
earthquake at two stations on the Iberian Peninsula. Note how dramatic the
focusing effects are for various phases within a few degrees of the antipode.

continues
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ified from Rial and Cormier, 1980.)

ANTIPODAL FOCUSING

NEW ZEALAND
Moy 23, 1968

PTO i
A=17925° NW

PKIKP
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PPP
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AI75° ” n ’MNM ”N‘WN\

FIGURE 3.B3.1 Example of how raypaths converge at the antipode. The seismograms show
the constructive interference effect on amplitudes very near the antipode (A =180°). {(Mod-

How does our expression for the decay
of energy relate to the ground shaking of a
seismic wave? Basically, amplitude will be
proportional to VE, so (3.75) tells us that
the amplitudes will decrease inversely with
length of the ray, ~ 1/R. Let us consider
this in more detail. Seismic waves propa-
gate as loci of particle motions, so a wave-
front transports energy in the form of
particle momentum and/or potential en-
ergy. We can calculate this energy using a
simple analog, namely the restoring force
of a mass suspended from a spring. This is
given by f= —kx, where k is the spring
constant. The increment of work done in
moving the mass a small distance, dx, is
dW = —kxdx. If the mass is initially at
equilibrium, the total work is given by

A similar argument can be applied to po-
tential energy. The potential energy is the
strain associated with the transient stress
pulse. Thus the stored strain in a small
volume is given by

W=f%aue~dV.

LY Y]

(3.77)

Now let us evaluate Eq. (3.77) for a partic-
ular case without loss of generality. Con-
sider an SH plane wave propagating in the
x; direction, with all motion in the x,
direction:

u, = Ae@r—kx, (3.78)
The only nonzero strains are
1 édu, 1 A @i —kx)
£, =6y == — = — —jkAe'®' kN
12 21 2 axl 2

(3.79)
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and the stress is given by
Oy =0y = —ikp Ae"@ k¥ (3.80)

Thus the average strain energy during a
complete wavelength is given by

1 41
— _ (1242
w Afo SkAudx,  (381)

where A is the wavelength. Recall that A
equals the velocity times the period of
oscillation. Further, u =pp% and k=
(2m/A), which can be used to obtain

2

12w\ ,
W=§ ﬁ Apﬁ =2 pF. (382)

Thus the energy in a plane wave is propor-
tional to the square of the pulse amplitude
and inversely proportional to the square of
the period. Thus, if the amplitude of two
seismic signals is the same, the higher-
frequency signal transports more energy.

The amplitude of a seismic signal is
modified during propagation by several
phenomena. We have already seen that
geometric spreading decreases the ampli-
tude. The remainder of this chapter deals
with two other phenomena that affect am-
plitudes: reflection/refraction at a bound-
ary and anelastic attenuation.

3.6 Partitioning of Seismic
Energy at a Boundary

We have seen in the previous sections of
this chapter that when a body wave en-
counters a boundary or discontinuity at
which the seismic velocity changes, the
wave will reflect or refract. As we will
show, when a P or SV wave impinges on a
boundary, four derivative waves result, as
shown in Figure 3.23: (1) P’, the refracted
or transmitted P wave (note that P head
waves are a subset of P’), (2) SV’, the
refracted SV (it is possible to have P waves
generate a SV head wave if 8, > «a,), (3)
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P wave

a B.p
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a,, By, P,

Y ’
Xa Sv

FIGURE 3.23 Ray for a P wave incident on a
solid—solid boundary and the rays for waves
generated at the interface.

P, the reflected P wave, and (4) SV, the
reflected SV wave. The ray geometry of
these derived waves is governed by Snell’s
law. By Snell’s law, all of the rays must
have the same ray parameter, p, since all
the waves must move along the boundary
with the same apparent velocity:

(sini) /e, = (siny) /B, = (siny') /B,

= (sin ") /a,. (3.83)

When an SH wave encounters a disconti-
nuity surface parallel to the SH motion,
only two waves are generated: (1) SH,
reflected, and (2) SH', refracted. (SH' can
be a head wave.) The existence of multiple
waves derived from a single incident wave
implies that the energy of the incident
wave must be partitioned. Although Snell’s
law and ray theory can predict the geome-
try of the wave interaction, we must return
to a wavefield representation to determine
the amplitude partitioning.

In Figure 3.23, the interface separates
two materials of distinct elastic properties.
Within either half-space the equations of
motion for homogeneous media are valid.
The physics that govern the wave propaga-
tion require that stresses and displace-
ments be “transmitted” across the inter-
face. Thus a stress imbalance propagating
in layer 1 will result in a stress imbalance
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in layer 2, giving rise to a wavefield. There
are several types of interface. If the inter-
face is between two solids, all components
of stress at the interface and all compo-
nents of displacement are continuous. This
is called a welded interface. If the interface
is between a solid and a perfect fluid, the
fluid may slip along the interface, since it
has no rigidity. Thus, the tangential dis-
placements are not continuous, and the
tangential tractions must vanish. In addi-
tion, the normal traction and normal dis-
placements at the fluid-solid contact are
continuous. At a free surface, all the trac-
tions must be zero, and no explicit restric-
tion is placed on the displacements. Note
that these conditions are on tractions, not
stresses. For example, if the x,x, plane is
a free surface, then oy, = 03, = 04, =0, but
the other components of stress are not
constrained.

These conditions on continuity of dis-
placement and stress are the basis for pre-
dicting the partitioning of energy. Now
return to Figure 3.23. Why does the P
wave produce both a reflected and re-
fracted P wave and a reflected and re-
fracted SV wave? It makes sense that no
SH wave will be produced because the
particle motion of the incident P wave is
confined to the x,x, plane, and no “re-
fraction” of the P wave at a horizontal
boundary will produce motion in the x,
plane. Refraction of the P wave will cause
particle displacements that are not parallel
on opposite sides of the interface (see
Figure 3.24). Thus, the P-wave displace-
ments alone do not combine to give con-
tinuous displacements or tractions across
the welded interface. The additional parti-
cle motion required to make the fields
continuous results in SV-wave-type mo-
tion, which is also confined to the x,x,
plane. Remember, only P- and S-wave
motions exist as propagating disturbances.
In a fluid, where no § waves exist, the P
waves reflect and transmit purely as P
waves because only normal displacements
and normal tractions need to remain con-
tinuous at the boundary.

Reflected P

T A

7()‘2;81 ransmitted P wave

FIGURE 3.24 P-wave particle motions for the
incident, reflected, and refracted P waves. Note
that if this is a solid—solid boundary. the shear
stress in the two layers will not match at the
boundary, requiring the generation of SV motion
in both media.

We can quantify the energy partitioning
by using the potentials introduced in Sec-
tion 2.4 for plane waves. The P-wave and
SV-wave potentials for the various wave
components are represented by

d)(layer 1) = ¢incidenl ray + (breﬂected ray

Blayer =
(layer 2) refracted

d’ o= (I’reflected

+__
d’ = d/refracted ’

where ¢ and ¢ are the P and SV poten-
tials, respectively. The plane-wave poten-
tials are of the form

(3.84)

d)incident =A1 eXp[iw(pxl + nale - t)] .
(3.85)
Recall that (kx,)/w = (sini)/a =p. Simi-
larly, k, /w=mn,. We can write similar
equations for the other potentials in (3.84):
¢reﬂected =AZ exD[iw(pxl - nu1x3 - t)]
¢refracted =A3 eXp[iw(pxl + na2x3 - t)]

‘!’reﬂec(ed = BZ exD[iw(pxl - nﬁlei - t)]

ll’refrax:u:d = B3 exP[iw(le + Np, X3~ t)] .
(3.86)
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The various vertical slownesses are for the
associated velocities. Note that the sign of
the x; term changes, depending on
whether the ray is refracted or reflected.
This indicates the direction (down or up)
in which the ray is traveling.

The ratios of the postinteraction ampli-
tudes (A4,, 45, B,, B;) over the incident
amplitude (A,) are called the reflection
and transmission coeflicients. These coef-
ficients control the partitioning of ampli-
tude among the potentials. The tractions
and displacements can be calculated from
the potentials by taking the derivatives with
respect to x,; and x,, which preserves the
exponential character of the potentials.

3. BODY WAVES AND RAY THEORY

In general, the boundary conditions in a
welded interface require significant alge-
braic manipulation (see Table 3.1), so we
will consider a simplified example. A P
wave incident on a fluid-fluid interface
generates no § waves, so we need only
consider reflected and refracted P waves.
From (3.85) and (3.86) we can write down
equations for the P-wave potential:

medium 1: ¢, =A,explio(px, + 7,x;—1)]
+ A, explio(px; —nyx3—t)]
medium 2: ¢, =Asexplio(px; +n,x3—0)].

(3.87)

TABLE 3.1 Displacement Reflection and Transmission Coefficients

Coefficient Formula

Solid—-free surface (P-SV')
Rpp (=1/8%) = 2p*F + 4p’n mgl /A
Rps {4(a/ B, [(1/B?) — 2p°]) /4
Rsp {48/ a)pngl(1/8*) - 2p° R /4
Rgs {-11/B») ~ 2?1 + 4p*n g} /A
Rss(SH) 1

Solid-solid (P-SV)
Rpp
RPS

Rgs(SH)

Tes(SH)

a=p,(1-282pY)—p(l —28%p%)
b=p,(1—2B2p?) —2p,Bip®
¢ =p(1-282p?) +2p,83p°

d= Z(Pzﬂ% “Plﬁlz)

[(bn,, — cn,)F — (a +dn,mg,)Hp?) /D

~[27,(ab + cdn, g, play/ B /D
[ZPlﬂa,F(al/“z)]/D
[mea,Hp(al/Bz)l /D

_[(b"h;, = C”lpz)E —(a+ b"?az"h;,)sz]/D

—[ZnBI(ab + Cdnaz'r],;z)p(ﬁl/al)] /D

KiMg, ™ M2Mg,

Hmg, + KoM,

2“’177131

Mg, + Ko7,

E=bmn,, +cn,,

F= anl + Mg,
G=a—dn.mg,
H=a—dn,np

D = EF + GHp?

A=[1/8" ~2p*F + 4p*n,mp,
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The P displacements are related to the
potentials by Eq. (2.91):

dd b
u=—x,;+0x,+—
dx, 0x4

x;. (3.88)
The appropriate boundary conditions for
the fluid—fluid boundary are continuity of
normal stress and displacement (o3; and
u;). Mathematically, the displacement
condition is given by

0, _ i, 59)
dx,  0x, x3=0' )

Substituting (3.87) into this equation yields
ion (A, —A,)e i
=iwn,A;eP*170  (3.90)

or
n(A4,—A,) =m,A4,. (3.91)

The condition of stress continuity is given
by :

o53=AVu+2ue;; =03, (3.92)
but u =0 in a fluid. Thus
AV, =A,V,. (3.93)

We can simplify (3.93) by using the fact
that ¢ satisfies the wave equation:

% —w?
P e

Vip =
Therefore, for x, =0,

Ay A,
—(A,+4,) =—4;.  (3.95)
@) az

Now, for a fluid, A; = p,a} and A, =p,a?,
so we can rewrite (3.91) and (3.95) as a

system of equations:

n

Al ""Az = —2A3
M

A +4,=224,  (3.9)
P

Thus we can solve for ratios of the ampli-
tudes

A3 = 2P1"71
A, P12+ Py

A, g P2 P

. 3.97
A4, PN TPy ( )

I and # are referred to as the transmis-
sion and reflection coeflicients, respec-
tively. Note that .9 and % depend on 7,
which is (cos i)/a. Thus the partitioning of
potential amplitudes depends on the angle
at which the ray strikes the boundary.
Consider the case of vertical incidence

(p=0,71,=1a, n,=1/ay)

_ P2/ — pr/a; P2l T Py

o= =
0 pi/aytpy /ey piagtpra;
(3.98)
_ 2py /2, _ 2p,a;
= pi/aytpy/ay pra +P2“2'
(3.99)

Now at this point, the reflection and trans-
mission coefficients are for potential, not
displacement. We can obtain displacement
terms by recalling u; =9d¢/dx,4:

Ureflected _ _iw'r'I é _ Py — P&,
Ujncident ion; A, pa;+pa,
—R=-%_, (3.100)

U tefracted lwn, A3 1/“2 2[)1(12

Uincident iwn; A4, 1/a; pya; +pra,

a,
=T=—35_,. (3.101)
a;
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The R and T derived here, which are the
vector displacement transmission and re-
flection coeflicients, have extensive use in
geophysics despite being derived for fluids
and vertical incidence. One must be care-
ful to keep track of the vector displace-
ment with respect to the direction the
wave is propagating in defining the sign of
the motion. These reflection and transmis-
sion coefficients also hold for solid—solid
interfaces at near-vertical incidence. The
energy is partitioned quite simply: 7 — R
= 1. The quantity pa is known as acoustic
impedance, and depending on how acous-
tic impedance changes across the bound-
ary, the reflection coefficient can have val-
ues of —1 to + 1. Similarly, the range of
the transmission coefficient is 0 to 2. A
free-surface boundary will have a vertical-
incidence reflection coefficient of —1 (the
displacement reverses direction with re-
spect to the direction of progpagation).
The amplitude of transmitted displace-
ment is zero.

If we return to the general form of 9
and % (nonvertical incidence), we can in-
vestigate the behavior of the system as the
angle of incidence varies. If a, <a, and
p,a,>p,ay, then # will be a positive
value for normal incidence. As i increases,
Z will decrease, reaching zero at an angle
of incidence called the intramission angle:

P2 _ \/(0‘1/0‘2)2‘ sin’ i (3.102)

Py V1 —sin?i
Beyond the intramission angle, the reflec-
tion coeflicient decreases to a value of —1
at grazing incidence (i =90°). If a,<a,
and p,a, <p,a,, the reflection coeflicient
is always negative and equals —1 for graz-
ing incidence.

If a,> a,, a head wave is produced at
the critical angle, i, = sin~ '(a,/a,). At in-
cident angles greater than the critical an-
gle, no P waves will propagate in the
lower medium. This is because p =
(sini)/a, = 1/c (where c¢ is the apparent
velocity) becomes greater than 1/a,. Thus
1, =[(1/a?) ~ p?1? become imaginary.
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Incident Reflected

7¥ > x‘
Re Head Wave

AN

X3

FIGURE 3.25 Exponential decay of the particle
motion of a head wave propagating along the
boundary.

We can write 7, =if, = +i[p® -
(1/a3)]"2, where we choose the positive
sign such that the amplitude of the re-
fracted potential (3.87) decreases expo-
nentially away from the boundary. This
keeps the wave energy bounded. Figure
3.25 illustrates the head wave with expo-
nentially decaying displacements in the
half-space. The transmission coefficient is
complex, and to keep the ray parameter
constant, angle i, becomes complex.

We can rewrite the postcritical reflec-
tion coefficient in (3.97) as

P2 _P1iﬁ2

A —,
P PN,

(3.103)

Now £ is a complex number divided by its
conjugate. This implies that the magnitude
of Z# is 1, but there is a phase shift of 8

R = e (3.104)

t')=2tar1’1(pm2
p

). (3.105)

Since the modulus of the reflection coef-
ficient is 1, the postcritical reflection is
referred to as total reflection, but it will
behave differently than precritical reflec-
tions. Figure 3.26 shows a synthetic seis-
mogram profile generated for increasing
angles of incidence (increasing distance).
Beyond 60 km, the reflected arrival has an
angle of incidence that is greater than i_.
This is the distance at which a head wave
first occurs and begins to move out from
the reflected arrival. At 450 km the re-
fiected wave is incident on the boundary at
near-grazing incidence; the refiected wave-
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FIGURE 3.26 The change in reflected pulse shape (phase} as the incidence angle exceeds
the critical angle. For the model shown, the head wave first appears at ~B60 km. A
comparison of seismograms at 50 and 450 km shows that the polarity has been reversed.

form is very similar to that at 50 km,
except the polarity is completely reversed.

It is clear from Figure 3.26 that the
reflected wave changes shape as the
source-receiver distance increases. Al-
though the phase shift in Eq. (3.105) ex-
plains this shape change, it is instructive to
return to the equation for the reflection
potential. Noting that 4,=A,% =A,e",
we can write the potential for the postcriti-
cal reflected arrival as

¢ =A, exp[if)exp[iw( px, —nx; —1)].

(3.106)

Now consider the behavior of 9:

=0 ifi=i,
0<0 fori>i,
0=—-7m i=mw/2.

We first rewrite (3.106) as

¢ =A, expio(px; —nx;—t + (6/w))].
(3.107)
Now /e is explicitly a new or additional

phase term. If we apply the constant-phase
argument to track the behavior of a partic-
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ular wavefront, we have
px;—m;x3—t+ (8/w) = constant.
(3.108)

The term —r+(8/w)= ~(t ~8/w) =17 is
an apparent time that now depends on
frequency. Thus, the position of the wave-
front is frequency dependent; lower fre-
quencies (smaller w) will have earlier ar-
rival times than high frequencies (recall
6 <0). As w — o, f=¢t. This implies that
the wavefront is “spread out” for a post-
critical reflection, each harmonic term hav-
ing a separate plane wave. This behavior is
called dispersion, a phenomenon we will
become very familiar with in the next
chapter. A consequence of the dispersion
is that the strongest reflection coefficient
occurs exactly at ii (R=1, =0, and
wavefronts do not degrade).

Reflection and transmission at a welded
interface are much more complicated than
at a fluid-fluid interface. However, the SH
system remains fairly simple because inter-
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action with the boundary does not produce
any P or SV energy, so we will briefly
consider this case. As with the fluid—fluid
case, there are two boundary conditions:
(1) continuity of tangential displacement
(Vf=V5), and (2) continuity of shear
stress (o5;=05;). Applying these condi-
tions yields SH-displacement reflection
and transmission coeflicients:

_ 2umg,
HqMg, + KHaNg,

_ Mg, T K2,
HyMg, '*’/-"'2"7,32

R (3.109)

These equations are nearly identical to
Eqgs. (3.97), and if we consider the case of
vertical incidence, then (3.109) reduces to

_ 201431
p1B1 028,

_ P1B1 — p2B>

. 3.110
P1B1+p2B; ( )

Box 3.4 Seismic Diffraction

The analogy between seismic ray theory and optics extends to the concept of
diffraction. Diffraction is defined as the transmission of energy by nongeometric
ray paths. In optics, the classic example of diffraction is light “leaking” around the
edge of an opaque screen. In seismology, diffraction occurs whenever the radius of
curvature of a reflecting interface is less than a few wavelengths of the propagating
wave. Figure 3.B4.1a shows a plane wave incident upon an opaque (acoustic
impedance is infinite) boundary. Ray theory requires that waves arriving at
seismometers at points F and G have identical amplitudes; no energy is transmit-
ted to the right of point G. In fact, the edge of the boundary acts like a secondary
source (Huygens’ principle) and radiates energy forward in all directions. These
diffractions can be understood from the standpoint of Fresnel zones, a concept that
states that waves reflect from a large region rather than just a point. Thus, the
Fresnel zone causes the ray traveling to F to “see” the edge of the reflector,
although the geometric raypath clearly misses the boundary. The first.Fresnel zone
may be thought of as a cone with the edge of the reflector as its apex. For a
receiver that is a distance d beyond the reflector, the cone’s radius is given by
r=d + 1A, where A is the wavelength of the seismic wave. Figure 3.B4.1b shows
the amplitude variation predicted for the experiment given in 3.B4.1a.

continues
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AMPLITUDE (dB)

DISTANCE

FIGURE 3.B4.1 (a) Rays incident on a grating. Energy is diffracted around the edge. (b}
Amplitude of energy as a function of distance into the diffraction zone. (From Doornbos,
1989).

Diffraction is present at many scales within the Earth and has occasionally led to
erroneous interpretations of structure. Figure 3.B4.2 shows an example from
reflection seismology. Here, a high-velocity layer is sandwiched between half-spaces,
and the layer is offset by a normal fault. The seismograms shown are for a source
and receiver placed at each successive distance point. At x = 2000, the seismogram
is made up of two pulses, of opposite polarity, representing reflections off the top
and bottom of the layer. As x increases, later arrivals begin to appear, forming a
parabola known as a “diffraction frown.”
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FIGURE 3.B4.2 A synthetic reflection seismic section for the structure at the top of the
figure. A fauit offsets a high-velocity bed. B1, B2, and B3 are diffracted arrivals. (From

Waters, K. H. ‘'Reflection Seismotogy: A Tool for Energy Resource Exploration.”’ Copyright
©1981 John Wiley & Sons.)
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The quantity pB is called the shear
impedance. The SH critical-angle behavior
for B, > B, is very analogous to that de-
scribed for the acoustic (fluid) case.

The P-SV system requires using every
potential term in Eq. (3.84). In general,
four derivative waves exist for each inci-
dent P or SV wave. The velocities may
permit both P and SV head waves for
incident P or § waves. For the welded
interface, o3, u;, and u; must be continu-
ous (used for boundary conditions). For
the case of an incident P wave, the dis-
placement boundary conditions [using
(3.86)), give (u, continuous)

p(A;+A4y) +mg B, =pA;—my,B,
(3.111)
and (u, continuous)
N A1 —A4;) +pB, =1,,A45+pB,.
(3.112)

The continuity of stress (o5; continuous)
gives

A pP(A +A4)+ Aipng B+ (A +2uy)
S [ni,(Al +A,) - np,PBll
=)‘202A3“P7732A232+ (Ay+2p,)

x (2,45 +ng,pB,) (3.113)

and (o5, continuous)
wi[2pm. (A4, A;) +p°B, —m} B]

= 12[2pn.,As +0*B, — 3, By].
(3.114)

Thus we have four equations with five
unknowns. It is sufficient to determine the
ratios with respect to A,, thus obtaining
Rpp, Rpg, Tpp, and Tpg. The algebra re-
quired to obtain these coeflicients is exten-
sive, and we leave it to the reader as an
exercise to obtain the final values given in
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Table 3.1. Table 3.1 lists the standard re-
flection and transmission coefficients for
solid-solid and solid-air (free-surface re-
flections) interfaces.

Figures 3.27 and 3.28 show the reflec-
tion and transmission coefficients for P
waves incident from below and above a
welded interface. In the first case, the wave
is going from a fast- to a slow-velocity
material, and there are no critical angles.
The energy partitioning is dominated by
Rpp and T,p from 0° to approximately
20°. Over this range, Rpp and Tpp are
nearly identical to what would be obtained
from the acoustic impedance mismatch
[Egs. (3.100) and (3.101]. When the P wave
is incident from the low-velocity medium,
the critical angle is 38.5°. The P transmis-
sion coefficient is 0 beyond this angle. As
the angle of incidence approaches 38.5°,
the coefficients vary rapidly. In particular,
Tpp gets very large before going to zero.
This can be explained by a simple geomet-
ric argument, as shown in Figure 3.29.
Because the amplitude of the pulse is pro-
portional tothe square root of energy per
surface area, as surface area goes to zero,
the amplitude becomes large.

The partitioning of a wave into four
new waves at each boundary in the Earth
results in seismograms that are rich in
arrivals. We refer to the partitioning of P
waves into SV waves or SV waves into P
waves as mode conversions. Mode conver-
sions provide important information about
Earth structure. Figure 3.30 shows a seis-
mogram from a deep crustal earthquake in
the Mississippi embayment. A converted
phase Sp is generated at a sediment-
bedrock interface. This arrives ahead of §
by a time proportional to the depth of the
interface and the vp/vg ratio in the crust.
Other examples of reflected and converted
phases are described in Chapter 7.

3.7 Attenuation and Scattering

Thus far we have been concerned with
the elastic properties of the Earth in our



FIGURE 3.27 Reflection and refraction coefficients for a P wave incident on a boundary
from a high-velocity region. For near-vertical incidence (angle =0°), the refiected and re-
fracted P-wave amplitudes approximately equal those predicted by acoustic-impedance
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mismatches [Eqs. (3.100) and (3. 101)). There are no critical angles in this case.

FIGURE 3.28 Reflection and refraction coefficients for 8 P wave incident on a boundary
from a low-velocity region. i, for the P wave occurs at 38.5°. Since the S velocity in the
lower medium is lower than the upper P velocity, the refracted S wave never reaches a

critical angle.
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FIGURE 3.29 Schematic of ray bundles striking a boundary between low- and high-velocity
material. The amplitude of the pulse is inversely proportional to the surface area dA. As J
approaches the critical angle i;, dA, goes to zero, and the amplitude of the refracted wave

becomes very large.

discussion of wave propagation. In an ide-
alized, purely elastic Earth, geometric
spreading and the reflection and transmis-
sion of energy at boundaries control the
amplitude of a seismic pulse. Once ex-
cited, these waves would persist indefi-
nitely. The real Earth is not perfectly
elastic, and propagating waves attenuate
with time due to various energy-loss mech-
anisms. The successive conversion of po-
tential energy (particle position) to kinetic
energy (particle velocity) as a wave propa-

gates is not perfectly reversible, and other
work is done, such as movements along
mineral dislocations or shear heating at
grain boundaries, that taps the wave en-
ergy. We usually describe these processes
collectively as internal friction, and we
“model” the internal-friction effects with
phenomenological descriptions because
the microscopic processes are complex.
The simplest descriptions of attenuation
can be developed for an oscillating mass
on a spring. Consider Figure 3.31, where a
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FIGURE 3.30 Example of mode conversion at a boundary. The SV wave is converted to a P
wave at a sediment-bedrock interface, giving rise to the S, precursor to § on the vertical
(x) seismogram, while P - S conversians (P,) are seen on the horizontals. (Courtesy of W.

Mooney.)
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Box 3.5 Scattering

The example seismograms in Figures 3.11 and 3.16 show a multiplicity of
arrivals. Some of these arrivals can be explained in terms of reflections and mode
conversions at boundaries within a simple layered model of the crust, but a
one-dimensional structure cannot explain a significant amount of energy. These
arrivals are produced by scattering caused by the wavefield’s interaction with
small-scale heterogeneities. Heterogeneities in material properties pervade the
Earth and span many different length scales (see Chapter 7). Small-scale hetero-
geneity causes scattering that partitions the high-frequency wavefield into a se-
quence of arrivals that are often called coda waves.

Figure 3.B5.1 shows seismograms produced by the impact of a Saturn booster on
the Moon’s surface. These were recorded by a lunar seismometer installed during
the Apollo 14 mission. The short-period three-component records ring on for more
than 1 h, with waves being scattered from the highly heterogeneous region near the
Moon’s surface. The coda is spindle shaped, and analysis of the particle motions
indicates that the energy is arriving from all directions. These differ from typical
Earth recordings, for which the coda is weaker than the direct arrivals. This is
because the seismic-wave attenuation on the Moon is much smaller, allowing
strongly scattered waves to propagate for some time. The wave interactions with
boundary irregularities and with volumetric gradients in rock properties all involve
the conventional effects of refraction, conversion, reflection, and diffraction that
we describe in this chapter, but the resulting overall wavefield is so complex that
individual arrivals cannot be associated with a particular path through the medium
given a limited number of surface recordings. Generally, seismologists attempt to
characterize the statistical properties of the scattering medium in terms of the
spectrum of spatial heterogeneities superimposed on any simple layered structure.
Many techniques have been developed to relate the coda to the heterogeneity
spectrum.

A-14 SIVB impact
Alsep 12

0 30 60
(minutes)

FIGURE 3.B5.1 Three-component seismograms recording the impact of an Apollio lander on
the Moon. Seismograms ring for more than 1 h. (From Dainty et al., 1974.)

continues
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Scattering can also decrease the amplitude of a seismic phase by shifting energy
from the direct arrival back into the coda. This apparent attenuation is called
scattering attenuation, and is often characterized by an exponential attenuation
quality factor, Q... Unlike Q defined for anelastic processes, Q. is not a measure
of energy loss per cycle but, rather, a measure of energy redistribution. Q..
depends very strongly on frequency and is very path dependent, since it depends
on the particular heterogeneity spectrum encountered by a wavefield propagating
through the Earth. Q is usually modeled with stochastic operators, or randomiza-
tion coefficients. Figure 3.B5.2 show snapshots of a wavefield at different times as
it propagates though material that has a random 10% distribution of velocity
heterogeneity. Note the direct P wave remains fairly coherent, but a complex suite
of later arrivals is generated by the heterogeneity. These will appear at a single
station as coda scattered from all directions.

P-Wave (Divergence) SV-Wave (Curl)

.064 sec

.192 sec

320 sec

512 sec

FIGURE 3.B5.2 Synthetic P waves in a heterogeneous material. After 0.512 s, the
spherical wavefront is broken up and coda has been developed. {(From Frankel and Clayton,
1986.)
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FIGURE 3.31 Phenomenological maodel for
seismic attenuation. The spring represents
elastic processes in the Earth. Force f
represents friction opposing the motion of the
mass.

mass m attached to a spring with spring
constant k (k is a measure of the spring’s
stiffness) slides across a surface. Let us
first consider a frictionless case. The equa-
tion of motion for this system relates the
restoring force of the spring to the inertial
force imparted by the moving mass:

mi + kx = 0. (3.115)

The general solution to this equation is a
harmonic oscillation:

x = Ae'“o’ + Be~iwu
wy = vk/m .

Once the motion starts, it will continue
forever, oscillating at the natural fre-
quency of the system w,. We can intro-
duce attenuation by adding a damping
force, such as friction between the moving
mass and the underlying surface. In this
case, there is an added force, proportional
to the velocity of the mass

(3.116)

mi+yi+kx=0 (3.117)
or rewriting,
i+ewgk+olix=0, (3.118)

where € = (y/mw,), and w,=(k/m)"2. vy
and ¢ are called coefficients of friction.
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The solution of (3.118) is of the form

x(t) =Age ! sin(thVI —g? ),

(3.119)

where Age ““?' = A(g). This is a harmonic
oscillation that decays exponentially with
time. If £ = 0 (no attenuation), (3.119) re-
verts to Eq. (3.116). We can express ¢ in
the form of a quality factor, Q:

e=1/20. (3.120)

Using (3.120), we can write the amplitude
as a function of time as

A(t) =Age 022 (3.121)
where @ is defined in terms of the frac-
tional loss of energy per cycle of oscilla-
tion. In other words

1 —AE

G-I (3.122)

This is most easily understood in terms of
the logarithmic decrement, 8, which is the
logarithm of the ratio of amplitudes of
successive cycles of oscillation

8=In(A4,/A4,). (3.123)

Since energy is proportional to the square
of amplitude, then

2lnA=IE. (3.124)

Combining (3.121) with (3.123), where the
amplitudes are one period (T, = 2m/w,)
apart gives

Q=m/e. (3.125)

We can also write an equation for ampli-
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FIGURE 3.32 The effects of attenuation on a seismic pulse. Comparing the pulse width at
350 ft with that at 750 ft shows a significant pulse broadening. This is due to preferential
removal of higher frequencies by attenuation. This is accompanied by a decrease in amplitude
at a rate greater than expected just for geometric spreading. {After McDonal et al., 1958.)

tude as a function of distance traveled:

A(x) =Age U™ (3.126)
It is obvious from (3.126) that for a con-
stant value of Q a high-frequency wave
will attenuate more rapidly than a low-
frequency wave. This is because for a given
distance the high-frequency wave will go
through more oscillations than a low-
frequency wave will. Figure 3.32 shows the
development of a wave as it travels away
from its source. Notice that the pulse
broadens at successive distances. The
high-frequency component of the pulse has
been removed through attenuation.
Energy loss through nonelastic pro-
cesses is usually measured by intrinsic at-
tenuation and parameterized with Q. Large
values of Q imply small attenuation. As Q
approaches zero, attenuation is very strong.
Q for P waves in the Earth is systemati-
cally larger than Q for § waves, and we
thus refer to the corresponding quantities
as O, and Qg, respectively. It is believed
that intrinsic attenuation occurs almost en-
tirely in shear, associated with lateral
movements of lattice effects and grain

boundaries. Table 3.2 gives values of Q for
several rock types. In general, Q increases
with material density and velocity. For a
material with all losses due to only shear-
ing mechanisms, 0, = 70,

Q for seismic waves is observed to be
largely independent of frequency in the
range from 0.001 to 1.0 Hz (Figure 3.33).
At higher frequencies, Q depends on fre-
quency and, in general, increases with
frequency. To explain this frequency de-
pendence, we must modify our phe-
nomenological model, the oscillating
spring, as shown in Figure 3.34. This model
is called a standard linear solid. The springs

TABLE 3.2 Q for Various Rock Types

Rock type Q. Qﬁ
Shale 30 10
Sandstone 58 - 31
Granite 250 70-150
Peridotite 650 280
Midmantle 360 200
Lower mantle 1200 520
Quter core 8000 0
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FIGURE 3.33 The frequency dependence of Q, for observed seismic waves in the Earth. The
hachured bands give the range of observations. Between 1000 s and 1 s, Q is nearly

constant. (From Sipkin and Jordan, 1879.)

represent elastic behavior, and the dash-
pot represents nonelastic, or viscous,
losses. Hooke’s law, as written in Eq. (2.44),
does not describe the constitutive relation-
ship of a standard linear solid. Rather, the
constitutive law is written

o+r,0=M(e+7¢), (3.127)

1

Mass

FIGURE 3.34 Phenomenological model for a
standard linear solid.

where M| is called the relaxed elastic mod-
ulus (appropriate for low frequencies over
long times), and 7, and 7, are called the
stress and strain relaxation times, respec-
tively. 7, implies constant strain, and T,
implies constant stress. It is simple to un-
derstand the physics of Eq. (3.127) by re-
turning to Figure 3.34. If you deflect the
mass, it reaches a point X where it is
acted on by a restoring force F. If you
hold the mass at X, the force F will
diminish with time as the dashpot relaxes.
This reduction in restoring force is not
recoverable. Hence the system behaves
anelastically.

The dynamics of (3.127) can be investi-
gated by looking at the ratio of stress to
strain:

o(t)/e(t) =M*.  (3.128)

M* is called the complex elastic modulus
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and is given by

M* = M.+ M w?r? iMwT,
=M, + + ,
' 1+0’r?  1+w?r?
(3.129)

where M =M, - M,. M, =1.M_ /7, is the
unrelaxed elastic modulus (the elastic re-
sponse expected for high-frequency dis-
placement applied over a short time—sort
of like the initial deflection of the mass
described above). This complex elastic
modulus has several significant differences
from simple elastic moduli; most impor-
tant, the behavior of a standard linear
solid depends on frequency (w). This im-
plies that waves that travel through such a
solid will be dispersed. In other words, the
different frequencies in a seismic wavelet
will travel with different velocities. We can
write the phase velocity as

/M,(
vp(w)=1y/ — |1+
P

This equation is valid only for small §M.
Note that if 6M =0, then v, is indepen-
dent of frequency and is, of course, just
the velocity in the elastic case. For small
8M we can also write an equation for Q:

16M w7
2 X/I—: (1 + wzrﬁ) )

(3.130)

1 M  oT, 3131
Q(w)“M, 1+w?r?’ (3.131)

o
The foregoing expressions for phase veloc-
ity and Q can be understood by plotting
them as a function of wr,. Figure 3.35
shows the behavior: attenuation is high
when Q! is large; thus enhanced attenu-
ation occurs over a limited range of fre-
quencies. The peak of attenuation is called
a Debye peak. In general, each relaxation
mechanism in the Earth has a distinct De-
bye peak. These relaxation processes
include grain boundary sliding, the forma-
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FIGURE 3.35 Q' as a function of frequency
for a standard linear solid. The peak in Q" is
known as a Debye peak.

tion and movement of crystal lattice de-
fects, and thermal currents.

In the Earth we noted that measure-
ments of seismic-wave Q indicate that Q
is frequency independent over a large range
in the seismic frequency band. How is this
reconciled with the Debye peak model?
Because of the great variety and scale of
attenuation processes in the Earth, no sin-
gle mechanism dominates. The sum or su-
perposition of numerous Debye peaks for
the various relaxation processes, each with
a different frequency range, produces a
broad, flattened absorption band. Figure
3.36 shows this superposition effect; note
that Q! is basically constant for frequen-
cies of 1.0 Hz (1.0 cycle/s) to 2.8 X
107* Hz (1.0 cycle/h). Phenomenologi-
cally, this corresponds to a coupled system
of many standard linear solid elements.
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FIGURE 3.36 Superposition of numerous Debye
peaks results in an absorption band —nearly
constant Q over a range of frequencies.
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Let us return to the single Debye peak
model in Figure 3.35. For the period range
shown, the change in velocity is on the
order of 5%, with higher frequencies trav-
eling faster. This result has a profound
implication, namely that the velocity struc-
ture of the Earth, as determined from free
oscillations or long-period surface waves,
will differ from that determined by body
waves. Although @ is constant in the fre-
quency range of the absorption band, the
phase velocity will still be dispersive with
the following functional form:

c(w) =cgll+

w;m 1n(w10)] (3.132)

where w, is some reference frequency. In
general, this dispersion is minor for body
waves of interest to earthquake seismol-
ogy. On the other hand, it can be impor-
tant for very high frequencies, and it is
very important for seismic surface waves,
which we discuss in the next chapter.

The most common way to determine Q
is to compare the amplitude and frequency
content of seismic rays that have traveled
similar paths. This eliminates unknown
source effects. An example of such a com-
parison is shown in Figure 3.37. For §
waves that travel down to the core, re-
flected S (ScS) and reflected P (ScP)
arrivals can be observed at the same dis-
tance. Examples are shown for short-
period phases from a deep earthquake.
Both ScS and ScP have about the same
source radiation (S-wave energy) and simi-
lar attenuation on the path down to the
core—mantle boundary. However, on the
return leg through the mantle, the ScP
phase is attenuated by the relatively high
O, values in the mantle, whereas Sc§ is
attenuated by Q. This causes Sc§ to be
both lower in amplitude and depleted in
high-frequency content relative to ScP, as
seen at station JCT. If we account for the
reflection coefficients, we can estimate Q,
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FIGURE 3.37 Short-period records from
WWSSN station JCT {Junction City, Texas} for
a deep South American event of March 27,
1867, showing ScP and ScS arrivals. (From
Burdick, 1985. Reprinted with permission from
the Royal Astronomical Society.)

and Q) averaged over the entire mantle
path by matching the amplitude and fre-
quency content of the two signals.

Actual measurements of Q vary later-
ally by an order of magnitude within the
Earth, much larger variation than is ob-
served for seismic velocity (10% vari-
ations). The mechanisms of intrinsic atten-
uation (grain-boundary and crystal-defect
sliding) are very sensitive to pressure and
temperature conditions. This means that
Q will vary within the Earth as a function
of temperature heterogeneity. Tectonically
active regions typically have relatively high
heat flow and are more attenuating than
“colder” regions. It has also been ob-
served that @ variations correlate with
travel-time variations. Fast travel-time
paths are typically high Q, slow paths typi-
cally low Q. This is a manifestation of the
thermal activation of the attenuation
mechanisms. Thus, mapping Q can reveal
thermal processes at depth. In Chapter 7
we will discuss the lateral variation of Q
and its consequences for tectonic pro-
cesses.
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In body-wave studies we commonly ac-
count for the effects of attenuation by
convolving the elastic pulse shape with an
attenuation operator parameterized by the
value t*. Although we will discuss convo-
lution later (see Chapter 10), it is instruc-
tive to introduce ¢*, the travel time
divided by the quality factor in a region of
uniform attenuation:

L travel time 3135
= — = —— (3.
Q  quality factor ( )

In the Earth, Q is a function of depth (and
frequency), with the lowest @ values
(highest attenuation) occurring in the up-
per mantle. Since Q = Q(r), t* is usually
written as a path integral value

o f dt
path Q i

t.

i

£ (3.136)
1 x4

M=

il

Short-period WWSSN

Amp =665
t*= .1
174
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where ¢, and Q, are the travel time and
quality factor for the ith layer in a layered
Earth. Clearly, ¢* is thus the total travel
time divided by the path-averaged value of
Q. Observationally, we find that * is ap-
proximately constant for body waves with
periods longer than 1 s in the distance
range 30° < A <95°. In this range, t* = 1.0
and (g = 4.0. Thus, we can account for the
effects of ¢* by replacing ¢/Q in Eq. (3.125)
to give

A=Age ™", (3.137)

Note that t* is much larger for § waves
than for P waves; thus S waves attenuate
much more rapidly with distance. Figure
3.38 shows the effects of different values of
t* on long- and short-period seismograms.
Note that changing ¢* by a factor of 20
changes the short-period P-wave ampli-

Long-period WWSSN

{ T
0.00 5.00

Time (sec)

J\/\/g
1
10.00

FIGURE 3.38 The effect of different t* on observed P waves recorded on WWSSN

short-period and long-period instruments.



Additional Reading

tude by a factor of 100, but it changes the
long-period amplitude by only a factor of
6. The change in amplitude of the high-
frequency energy is vastly greater, but the
narrowband instrument response obscures
this. Attenuation of body waves is compli-
cated by both frequency dependence for
periods of less than 1 s and strong lateral
variations at all periods (see Chapter 7).
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CHAPTER

SURFACE WAVES AND FREE

OSCILLATIONS

The last two chapters have demon-
strated the remarkably simple basic char-
acter of solutions of the equations of
motion for linear-elastic, isotropic, homo-
geneous (or weakly inhomogeneous) un-
bounded media. The displacement field
created by a stress imbalance is completely
accounted for by propagating P and §
waves, no matter what type of seismic
source is involved (Chapter 8). These
wavefields become increasingly complex
when discontinuous material properties
and localized inhomogeneities are present.
Wave phenomena such as refraction, wave
type conversion, frequency-dependent
scattering, and diffraction take place in an
inhomogeneous medium like the Earth,
leading to a very complicated body wave
field. The fact that the Earth’s inhomo-
geneity is primarily one-dimensional (i.e.,
varies with depth) allows us to interpret
most of the body-wave complexity. The
Earth has two additional fundamental at-
tributes, shared with all finite structures,
that profoundly affect the seismic wave-
field. These are the presence of the free
surface and the finite (quasi-ellipsoidal)
shape of the planet.

The free surface of an elastic medium
has the special stress environment defined
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by the vanishing of surface tractions. For
the Earth, all seismic-wave measurements
are made at or near the free surface; thus
it is critical to understand free-surface ef-
fects in order to interpret seismograms. At
the surface both incident and reflected
waves instantaneously coexist, and the to-
tal motion involves the sum of their re-
spective amplitudes. For example, from
Table 3.1 we know that a reflected SH
wave has the same amplitude as the inci-
dent wave. Thus, at the free surface the
amplitude of SH motion is doubled. We
call this multiplicative factor the SH re-
ceiver function. Free-surface receiver func-
tions for P and SV waves involve compa-
rable displacement amplifications. Even
more important is the interaction of inci-
dent P and SV waves with the free-surface
boundary condition, which gives rise to an
interference wave that effectively travels
along the surface as a Rayleigh wave. Total
reflection of SH waves at the free surface
combines with internal layering of the
Earth to trap SH reverberations near the
surface, which interfere to produce hori-
zontally propagating Love waves. Gravita-
tionally controlled waves in water on the
Earth’s surface give rise to sea waves, or
tsunamis, which often cause greater dam-
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age from earthquake faulting than any
elastic waves in solid rock. We will con-
sider the basic properties of these free-
surface waves in this chapter.

The finiteness of the Earth, like its in-
ternal layering, provides scale lengths and
boundary conditions on the seismic wave-
field. We can view the planet as a finite
elastic system with unique boundary condi-
tions that govern the solutions of the equa-
tions of motion in the medium. This per-
spective leads to the definition of normal
modes of the system, involving discrete
frequencies at which the system can oscil-
late, in a manner analogous to the har-
monic tones of an organ pipe or a vibrat-
ing guitar string. For internal sources, these
normal modes are called free oscillations,
and we will discuss these modes of whole-
Earth oscillation in this chapter. Clearly,
all body waves propagating in the Earth
(remember, P and § waves provide com-
plete solutions to the equations of motion,

a Free Surface

although they may involve very complex
wavefields) must have counterparts in both
propagating surface waves or standing-
wave free oscillations. Nonetheless, each
representation has distinct advantages for
studying Earth structure and seismic
sources.

4.1 Free-Surface Interactions

Rayleigh waves involve interaction be-
tween P and § waves at a free surface;
thus we must further explore the nature of
body-wave reflection coefficients at the free
surface. We consider the two cases shown
in Figure 4.1, for incident P and incident
SV plane waves impinging on a free sur-
face. A free surface requires the tractions
to vanish at x; = 0; 033 = 0y3 = 0,3 = 0. For
our choice of coordinate system, with the
wavenumber vectors for the plane waves
being confined to the x,x; plane (u, =0,

> X,
aiﬁlp
=1
o= m_pz
=[1_ 2
= Sin |,=sin'2=_K£=_}Sl
b Free Surface > x P = _B-l 0o o
- 1
b
) . P
¥ b R aBp
Sv, Sv,
v

Xy

FIGURE 4.1 Geometry for free-surface interactions of (a) an incident P wave and (b) an

incident SV wave.
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du,/dx, = 0), Hooke’s law (2.44) becomes

du;  du, du,
Oy=Al—+—]+2u~—=0
dx, Odx, dx,
o3 = iui + ﬁﬁ =0 (4.1)
BTH dx,. 9x, ) '

The displacement components are ob-
tained from potentials by using (2.91). For
the case of an incident P wave, propagat-
ing in the —x; and +x, directions (Figure
4.1a), we assume plane-wave potentials of
the form

é=¢,+dg=Aexplio(px;—n,x;—1)]
+ Bexplio(px, +n,x;—1)]

¥ =yp = Cexplio(pr, +mgx;—1)].

(4.2)
At the free surface (x;=0), the stress
conditions [Eq. (4.1)] lead to equations re-
lating the incident amplitude (A) to the
reflected P (B) and reflected SV (C) am-

plitudes. Using (2.91) and (4.1), oy, =0
gives

(A+B)[(A+2p)n2 +p*A]
+C(2upng) =0 (4.3)
and o, = 0 gives

(A-B)2pn,—C(p*~n3)=0. (44)

Combining these equations yields the
plane-wave potential reflection coefficients
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These are equivalent to the expressions in
Table 3.1, except that (4.5) and (4.6) are
for potentials, not displacements. The
value of Rpg vanishes when p = 0 (normal
incidence) and when 7,=0=[(1/a%) -
p?1V? = [(1/a?) - Gsin? i/a®)]? (ie., at
i, = 90°, grazing incidence). In general, two
incident angles, i, exist at which R,, =0,
yielding total P to SV conversion. These
depend on particular values of a and B.
Figure 4.2 shows calculations of the energy
partitioning as a function of incidence an-
gle for P waves for various half-space ve-
locity parameters. The actual particle
displacements at the surface consist of
combined displacements due to coexisting
incident and reflected P and SV motion
and are obtained by computing the deriva-
tives indicated in (2.91). This gives the
incident P-wave surface response, or re-
ceiver function.

For the case of an incident SV wave
(Figure 4.1b), we assume plane-wave po-
tentials of the form

¢ =Fexplio( px, + n,x;— )]

¥ =Dexp[iw(px, —ngx3—1)]

+ Eexp[iw(pxl +Mpx3— t)] . (4.7)

The stress boundary conditions provide

B (A +2u)nZ +pA + 4up®nn,y/(P? —nj)

Rpp=—= 4.5)
oA —[(A+2u)n2 +p2A] + 4upnme/( P - n}) (
C 4pm, (A+2u)nZ+p?A
Rps=—= ( 3 2 2, 2 ) 2 2_ .2 (4.6)
A \pP=mp || (A +2u)n2 +p°A — 4up’nmp/(P* —n})
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potential reflection coefficients

E  [(A+2m)n2+p +4up*nme/(p? - 13)]

4. SURFACE WAVES AND FREE OSCILLATIONS

Roo= — = 48
BUD o —[(a+2u)n? +p2A] +4upinmg/ (PP - 13) (48)
F 4upmng
Rs = —_= . (4.9)
"D [(A+2p)n2+p2A] - dupPnmg/ (P2 - m3)

Note that Rpp= Rgs. The corresponding
energy functions are also plotted in Figure
4.2. Since a > B, an angle of incidence,
j, = sin”'(B/a), exists such that the P-wave
“reflection” travels along the free surface
(i, =90°). For angles j, greater than this
“critical” angle, we follow the procedure
introduced in Chapter 3 and allow i, to
become complex and 7, to become purely
imaginary. Thus, the ¢ potential acquires
a phase shift, and the amplitude decays
exponentially away from the interface, sim-
ilar to the head-wave behavior discussed
previously. Thus, a P wave can be
“trapped” propagating along the free sur-
face. This type of wave is known as an
evanescent wave because it decays expo-
nentially with depth. The postcritical SV
reflection has unity magnitude and also
has a phase shift, but it otherwise propa-
gates as a plane wave. Figure 4.3a illus-
trates the resulting situation. The critically
refracted P wave exists simultaneously
with the incident SV wave, but no energy
is transmitted back into the medium by the
P-wave motion. This suggests that an
evanescent P wave alone cannot propa-
gate along the boundary.

The inability to trap purely P-wave en-
ergy near the boundary is demonstrated by
considering the P potential

¢ =Aexplio(px; —n,x;—1)]

+ Bexpliw(px, + n,x5-1)],
(4.10)

for the case p>1/a, n,=in,=i(p*—
1/a*)'/?, which gives

¢ =Aexplio( px, — )] exp[f,wx;]

+ Bexp|iw(px, —t)] exp| —wA,x5],
(4.11)

which diverges as x; — o unless 4=0.
Satisfying the boundary condition ;=0
assuming that no SV wave is present leads
to B = 0. In other words, although a plane
P wave may propagate along the bound-
ary, an evanescent P wave alone cannot.
A similar result is found for a horizontally
propagating SV wave; the surface stress
condition precludes the existence of purely
P or SV evanescent waves on the bound-
ary. However, we will now demonstrate
that simultaneous, coupled evanescent P
and SV waves do satisfy the surface
boundary condition, yielding a new form
of wave solution.

4.2 Rayleigh Waves

We now consider the situation in Figure
4.3b, where evanescent P and SV waves
are assumed to simultaneously propagate
along the free surface. Assume that the
potentials have the form

¢ =Aexplio( px, +n,x;—1)]
= Aexp| —wf,x;] exp|iw( px; — )]
y=B exp[iw(pxl +1Mgx; — t)]
= Bexp| —wfyx;| explio(px, - 1)],
(4.12)
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FIGURE 4.3 (a) Postcritical SV wave incident on a free surface gives rise to an evanescent
P wave propagating along the boundary as well as to a phase-shifted SV reflection. (b)
Simultaneous existence of evanescent P- and SV-wave energy traveling horizontally along a
free surface produces the interference surface wave called a Rayleigh wave.

where the horizontal apparent velocity
c¢=(1/p) <B <a. This confines the en-
ergy to propagate along the surface with
exponential decay of the potentials away
from the x, = 0 surface:

1
N, =1 = —p* =if,
a
\/2 1 _\/1 ]
=] —_— = J—
P2 ¢z a?
1 , .
Mg = B‘z“p =g

], 1 1 1
=1 ——E—z—=l ?—'P, (413)
where 1/p=c<B<a. If B<c<a, the
SV energy will propagate away from the
free surface as a body wave, and the only

way to satisfy the surface boundary condi-
tion is simultaneously to have incident SV

energy as shown in the last section. Lord
Rayleigh (the former J. W, Stutt) explored
the system in Eq. (4.12) in 1887 and found
that the surface boundary condition can in
fact be satisfied, leading to the existence of
a coupled P-SV wave traveling along the
surface with a velocity lower than the shear
velocity and with amplitudes decaying ex-
ponentially away from the surface. These
waves spread cylindrically on the surface
and thus have a two-dimensional geomet-
ric decrease in amplitude with radius r
from the source proportional to 1/ Vr s
compared to the three-dimensional (1/r)
decay for body waves. The resulting waves,
Rayleigh waves, tend to be the largest ar-
rivals on long-period or broadband seismo-
grams.

Using (2.91) and (4.12), the condition
O33lx,—0 = 0 gives

A[(A +2p)n2 +Ap?| + B(2upmy) =0
(4.14)
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and o03l,,-0 = 0 yields
A(2pn,) +B(p*—n3)=0. (4.15)

The coupled Eqgs. (4.14) and (4.15) can be
written in matrix form
0
0

(4.16)

(A+2u)n2+ap? A

B

2upng
p*—n}

2pm,

The only solutions other than the trivial
solution A = B =0 are given by vanishing
of the determinant of the matrix

[(A+2u)n2+Ap?](p? - n3)

—4up*n,mg =0. (4.17)

The term on the left in Eq. (4.17) appears
in the denominators of the free-surface
reflection coefficients in Egs. (4.5) and (4.6)
and again in Egs. (4.8) and (4.9) and is
hence calied the Rayleigh denominator. If
Eq. (4.17) is satisfied with a real 7z, and
Mg, then Rpg and Rpp will be infinite. The
only possible solution to Eq. (4.17) that
satisfies all conditions are imaginary 7,
and ng, which results in an evanescent
wave. It is convenient to rewrite (4.17) in
terms of velocities, using pa?=(A +2u),
pB? = u to obtain

2 2
(1) -an] - )
D p

__(fffﬂzﬁe)==0

. (4.18)

p

Since we need to satisfy (4.13), we insert
corresponding expressions for n, and ng

4. SURFACE WAVES AND FREE OSCILLATIONS

into (4.18), giving

BZ

2 2
VAR Ay
a2 BZ :

(4.19)

(c?*~ 232)(2 - c—z)

This equation can be rationalized to give a
final form suitable for solution:

¢t ¢t ? , 24 16
7 ‘56‘8?4”(52“?)

2
—16(1 - %” =0. (4.20)

For prescribed values of a and B, one
solution of (4.20) for 0 < ¢ < B can always
be found. As an example, we consider the
case of a Poisson solid for which A =,
a’ = 382, Equation (4.20) becomes

c® c* 56 ¢ 3 .

55 8B4+ W 0, (4.21)
which is cubic in (c?/B?) and has roots
(c¥/BY)=4,(2+2/V3),2-2/V3). Only
the last root satisfies (c/8) <1 and gives
¢ =0.91948 as the velocity of a Rayleigh-
wave disturbance in a Poisson solid half-
space. Figure 4.4 shows solutions of (4.20)
for different values of Poisson’s ratio. For
typical values of Poisson’s ratio (0.2 <
v < 0.4), the Rayleigh-wave velocity is 0.98
to 0.958.

We now consider the nature of the par-
ticle motions associated with a Rayleigh
wave. The surface-wave motion involves a
mix of P and SV motion, with relative
amplitudes 4 and B. We can rewrite (4.14)
as

g ~Alle8?) -2

422
Ty (4.22)
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FIGURE 4.4 Half-space Rayleigh-wave velocity
¢ as a function of Poisson's ratio, v, where
v=[(a®/B?) ~2]/2[l«?/B%) - 1]. For a fluid, B
=0 and »=0.5, in which case ¢=0. For a
Paisson solid, a =y3B8, »=0.25, and ¢ =
0.81948. (From Sheriff and Geldart,
"‘Exploration Seismology,’’ Vol. 1, History,
theory, and data acquisition. Copyright©1882.
Reprinted with the permission of Cambridge
University Press.)

and then compute the Rayleigh-wave dis-
placements using (4.12), (4.22), and

ap Y o 4 i
el R R
(4.23)
to find

Uy = —AelPri—y

[ " 1 (c2 2)
X | Tl MR 4 = =5 =
2c217ﬁ B

Xe_”ﬁﬁx3]. (4.24)

Since the Rayleigh-wave ground motion
must be real, we use expliw(px, —1)]=
coslw(px, — )] + i sinfw(px, — t)] and

retain only real terms

u, = —Awpsinf[o( px, —1)]
c? )
—B—Z- —2|e M8
u,= —Awp cos[w( px, —t)]
A . 1 (¢ 5
X —-w aX3+ —_—
€Mat zcﬁﬁ Bz

xe—wﬁe*s}. (4.25)

e~ “fa¥s 4

X
2

For the Poisson solid, ¢ = 0.9198 = 0.531¢,
and letting k = wp = w/c be the Rayleigh
wavenumber, Eq. (4.25) becomes

u, = —Aksin(kx, - wt)
X (€~ 085kx3 — ( 58~ 03%x3)
uy= —Ak cos(kx, — wt)

X (0.85¢~085kxs — | 477 03%x3)
(4.26)

At the surface of the Poisson solid, x; =0
and

u, = —042 Ak sin( kx, — ot)
uy=0.62A4k cos(kx, —wt). (4.27)

The Rayleigh-wave displacements given by
(4.26) depend harmonically on x, and ex-
ponentially on x, (depth). The displace-
ments «, and u, are out of phase by 90°
and therefore combine to give ellipsoidal
particles motion, as illustrated in Figure
4.5. The surface vertical motion is larger
than the horizontal motion by a factor of
1.5. At the top of the cycle (in the —x,
direction) the surface horizontal motion is
opposite the direction of propagation, and
the elliptical motion is retrograde. Figure
4.6 illustrates the motion of adjacent parti-
cles on the surface and at depth as a
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Rayleigh wave passes by. The horizontal
distance between surface particle motions
at the same point in their elliptical cycle
defines the Rayleigh-wave wavelength A.
At a depth of about A/5 the horizontal
motion goes to zero, and at greater depth,
the elliptical motion has a prograde sense.
By a depth of A/2, the horizontal particle
motion is about 10% of the horizontal
motion at the surface, and the vertical
motion is about 30% of the surface verti-

4. SURFACE WAVES AND FREE OSCILLATIONS

cal motion. All of the Rayleigh-wave mo-
tion is contained in the vertical plane
(x,x,) with no tangential (u,) component.

Since the Rayleigh-wave amplitudes
have exponential dependence in the
form e %*3=¢(~27Mx3  ong-wavelength
Rayleigh waves have larger displacements
at greater depth than shorter-wavelength
waves. In the end-member case of a homo-
geneous half-space, the velocity of
Rayleigh waves does not depend on fre-

u.Y,
A
0.62 Ak
< U,
0.42 Ak
E \o ¢ A s
—-o% - B (3 on -
\ (Kx,"o)t)
U‘
-
t Increases for fixed X,
C Kx,~ @ot=~F
D/ | |
3n > Y
Kx,—mt=——2— Kx,'mt——é-
t Increases
E|A
Kx,~ @t= 2% (Kx,~ ot = 0)
Wua

—————————> Wave Direction

FIGURE 4.5 (Top) Plot of Eq. (4.271 as a function of the phase argument (kx, —wt). (Bottom}
Behavior of an individual particle as a function of time. The surface motion is retrograde

elliptical.



4.2 Rayleigh Waves

125

Direction of Wave Propagation

z

FIGURE 4.6 (Top) Rayleigh-wave particle motions over one wavelength along the surface and
as a function of depth. (Bottom) Horizontal (u) and vertical (w) displacements of Rayleigh
waves in a8 homogeneous half-space. The particle motion is retrograde elliptical above depth
h and prograde elliptical at greater depth. (From Sheriff and Geidart, ''Exploration Seismol-
ogy.”’ Val. 1, History, theory, and acquisition. Copyright©1982. Reprinted with the permis-

sion of Cambridge University Press.)

quency, but for a layered or vertically in-
homogeneous structure, the Rayleigh wave
is dispersive. Because in general the veloc-
ity in the Earth increases with depth, the
longer wavelengths tend to sample faster
material, giving rise to higher Rayleigh-
wave velocities for large-wavelength, low-
frequency wave components, which pro-
duces dispersion. Rayleigh waves only re-
quire a free surface to be a viable solution
of the equations of motion, but only a
half-space produces an undispersed
Rayleigh pulse (see Box 4.1). A much more

characteristic Rayleigh waveform is shown
in Figure 4.7, where the Rayleigh phase
labeled LR is spread out over more than
10 min, with lower-frequency energy arriv-
ing earlier in the waveform. We will dis-
cuss such dispersion later in this chapter.
Note that the Rayleigh-wave motions are
the largest of any arrivals on this seismo-
gram, which results from the two-dimen-
sional geometric spreading of the surface
wave relative to the three-dimensional
spreading that affects the body waves.
Sources near the surface tend to excite
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Box 4.1 Lamb’s Problem

A complete theory for Rayleigh waves, even for a half-space, must include their
excitation by a specific source. Chapter 8 will demonstrate how seismic sources are
represented in the equations of motion and will discuss Rayleigh wave radiation
from faults. At this point we show a classic result, first obtained by H. Lamb
(1904), which is the transient solution to an impulsive vertical point force applied
to the surface of a half-space. Part (a) of Figure 4.B1.1 shows Lamb’s (1904)
calculations, which are believed to be the first theoretical seismograms. The
motions begin with the P arrival. The smali arrival prior to the large-amplitude
pulse is the S wave, and the large pulse itself is a Rayleigh-wave pulse. The
Rayleigh wave shows a clear phase shift between the radial (g,) and vertical (w,)
components and is much larger than the body-wave arrivals. The experimental
result shown in part (b) is a recording of a breaking pencil lead point-force source
on a piece of brass, which has a vertical motion very similar to Lamb’s prediction.
Recordings of natural sources approximating Lamb’s solution are shown in
Box 8.2, but normally Rayleigh waves in the Earth are dispersed and resemble
Figure 4.7. Rayleigh-wave excitation varies substantially with source force system
and depth.

a
o % ~ N
W
v
b
Source 4.9 cm. Receiver

J77777777/777777777777777777/7

FIGURE 4.B1.1 (a) Radial (qg) and vertical (wg) surface ground motions calculated by Lamb
(1904} for an impulsive vertical force on the surface. (b} An experimentally recorded vertical
ground motion for a vertical paint source. The largest motion in each case corresponds to
the undispersed Rayleigh pulse. (From Ewing et al., 1957).
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FIGURE 4.7 A characteristic vertical-com-
ponent seismic recording showing body-wave
arrivals (p, pP. PP, pPP, sS) followed by a
dispersed Rayleigh wave, the onset of which is
labeled LA. Tick marks on the record are 60 s
apart, with time increasing to the right. Note
that lower-frequency components of LA arrive
earlier because of dispersion. Rayleigh-wave
motions persist for over 10 min and produce
the largest ground motions on the seismogram.
(From Simon, '‘Earthquake Interpretations: A
Manual for Reading Seismograms,’’ Copy-
right©13881 William Kaufmann, inc.)

strong Rayleigh waves, whereas sources
deep in the Earth excite only weak
Rayleigh waves. Solution of Rayleigh-wave
propagation in a layered or inhomoge-
neous elastic medium is beyond the scope
of this text (a simple case is considered in
Box 4.3) but is treated fully in advanced
texts by Aki and Richards (1980), Kennett
(1983), and Ben-Menahem and Singh
(1981). We will consider Rayleigh-wave
motion in the Earth in the context of
equivalent spheroidal free oscillations later
in this chapter.

4.3 Love Waves

The presence of a free surface is suffi-
cient to enable coupled P-SV generation
of a Rayleigh-wave surface disturbance.
However, the SH component of the S
wave, having displacements parallel to the
surface, can only have total reflections
from the free surface. In order to trap any
SH energy near the surface, the velocity
structure at depth must keep turning en-
ergy toward the surface. If the § velocity
increases with depth, a waveguide can be
formed, in which rays are multiply re-
flected between the surface and deeper
turning or reflection points. If the ray
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strikes the reflecting horizon at postcritical
angles, all the energy is trapped within the
waveguide. The properties of an SH dis-
turbance trapped in a near-surface wave-
guide were first explored by A. E. H. Love
in 1911, and these waves are hence named
Love waves.

We consider the nature of SH waves
trapped in a low-velocity layer overlying a
half-space, as shown in Figure 4.8. The
layer has thickness H, which introduces a
spatial dimension to the problem that was
not present in the Rayleigh-wave solution
for a half-space. This dimensionality leads
to frequency dependence of velocity for
the propagating interference patterns that
we call a Love wave, even though the
intrinsic shear-wave velocity, 8,, has no
frequency dependence.

We are considering SH-type displace-
ments, so we use the result found in Chap-
ter 2, that we do not need to use potentials
because the SH displacements satisfy the
wave equation. Thus we can write plane-
wave solutions of the form

V,=A exp[iw(p)c1 + Mg X3 — t)]
+Bexp[iw(px1 — Mg X3~ t)]
Vy=Cexplio(px, +mg,x;,—1t)], (4.28)

where V, is the SH displacement in the
layer, composed of upward- and down-
ward-propagating plane waves, and V, is
the SH displacement in the half-space,
composed of transmitted SH waves gener-
ated at each reflection point at the base of
the layer. If B,>p,, then j,<j, and
transmitted energy will always propagate
away from the high-velocity layer, with
layer reverberations progressively dimin-
ishing. For B, <B,, j3;>j, =i, and the
transmitted wave is refracted closer to the
boundary but still propagates away, leak-
ing energy out of the low-velocity layer,
until j, =j_=sin"'(B,/B,), the critical an-
gle at which the transmitted wave refracts
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X3

FIGURE 4.8 Geometry of SH waves that repeatedly reflect in a layer over a half-space.
x3=0 is a free surface, and the layer thickness is H. Interactions with the boundary of
X5 =H involve incident (SH,), reflected (SHg). and transmitted (SHy) SH waves. For 8, <B5,
a critical angle j, =sin ~(8,/8,) will exist beyond which SH reverberations will be totally

trapped in the layer (j, > j.).

along the boundary as a head wave. For j,
angles equal to, and larger than, the criti-
cal angle, the shear-wave reflection coef-
ficient B/A has unit magnitude and ac-
quires a phase shift, as discussed in Chap-
ter 3. Since the SH energy is then totally
reflected at both the boundary and the
free surface, the postcritical SH wave in
the layer will be “trapped” in the layer.

The boundary conditions for this prob-
lem are

v,
Oplico=H; —
321x5=0 T M)

x4 s

=0
(free surface)
0'32|x3=H*= U32|x3=H+
(continuity of stress on boundary)
Valxyeti-=Volay=n+
(continuity of displacement on boundary).

(4.29)

Applying (4.29) to (4.28) yields three re-
sulting equations:

A=B (4.30)

Ay.mB][exp(iwnB.H) — exp( —iwnBlH)]

= Cu,ng, exp(iong,H) (4.31)

A[exp(iwnﬂlH) + exp( —inIng)]

= Cexp(iwng,H). (4.32)
The horizontal apparent velocity of all of
the SH motions is ¢=1/p=k,/w. We
can rewrite the complex exponentials in
terms of trigometric functions (Box 2.4),
and taking the ratio of Egs. (4.31) and
(4.32) yields

K2Tg, #2ﬁpz

tan(wng H) = -
( P ) Mg, HqMg,

, (4.33)

where we assume the postcritical situation
for which ¢ = 1/p <B,, yielding ng, = ifg,
with 15, being purely real. Equation (4.33)
is a condition relating w and c that must
be satisfied to give a stable horizontally
propagating disturbance. Because the wave
velocity ¢ explicitly depends on frequency,



4.3 Love Waves

w, Eq. (4.33) is called a dispersion equa-
tion. Rewriting (4.33) in terms of the mate-
rial parameters u,, 1,, 8,, and B, and the
variables w and ¢, we have

tan(Hw\/ 1/B: — 1/c? )

_ w1/~ 1/}
wy1/B2 - 1/c?

Equation (4.34) indicates that for the solu-
tions to be real numbers, 8; <c < B,.
Solutions to the Love-wave dispersion
equation (4.34) are conventionally illus-
trated using a graphical technique. We let

(4.34)

w{1-c2/m )
per
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y =H[Q1/8%) — (1/c)]?, where y is de-
fined for the interval 0 <y < H[(1/8%) —
(1/89)172. Figure 4.9a shows a plot of
tan wy versus the right-hand side of Eq.
(4.34) over the defined interval of y. The
tan(wy) function is periodic, resulting in
discrete intersections of the two functions,
corresponding to combinations of w and ¢
that solve Eq. (4.34). For a given value of
w, a finite number of solutions exist, which
we number from left to right using n,
beginning with n = 0. The n = 0 solution is
called the fundamental mode for that fre-
quency, and larger values of n define the
higher modes or overtones of the system.
The different modes have a simple physi-

1]
=l
)

tan (wy) c

e, (V]

FIGURE 4.9 (a) Graphical solution of {4.34), where intersections of the dashed and solid
lines yield discrete modes. (b) The phase velocity dispersion curve for fundamental and higher

modes for the layer-over-a-half-space case.
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cal significance that can be inferred from
Figure 4.8. If we imagine harmonic dis-
placements V(x,) distributed over the ray-
paths of the reverberating SH path, the
fundamental mode corresponds to one-half
a harmonic cycle distributed from the sur-
face to the intersection with the boundary.
Thus, over the entire depth range of the
layer along that path, the sense of motion
is uniformly in the +x, direction. Over-

4. SURFACE WAVES AND FREE OSCILLATIONS

tones correspond to solutions in which the
harmonic reverberations in the layer have
n nodes (zero crossings) along the path
from x; =0 to x, = H, essentially dividing
the layer into n + 1 layers oscillating in the
+x, direction in alternating sequences
separated by nodal surfaces. Box 4.2 shows
that the geometry of “fitting” the oscilla-
tions into the layer gives rise to the disper-
sion equation.

Box 4.2 Love-Wave Optics

We can gain further insight into the Love-wave dispersion relation by explicitly
considering the interference effects that underlie it. Consider (Figure 4.B2.1) a
postcritical SH wavefront (PQ) at point A at time ¢ and the wavefront at point B
(P',Q"), which has just reflected from the surface. In order for the plane-wave
motions of PQ and P'Q' not to destructively interfere, the difference in phase
must be a whole number of cycles, 2mar. The difference in phase is

¢p—d,=2mmw=A0B27w/Ay) + ¢, + ;. (4.2.1)
AOBQ2m/A,) is the differential length traveled times the wavenumber, 2w /A,
where A, is the wavelength, ¢, is the phase change that the wave at P'Q’
underwent upon reflection at point O, and ¢, is the free-surface-reflection phase
change; ¢, = 0. Using the double-angle formula cos28 = 2cos? 8 — 1, we find that

AOB=2H cos j,. The postcritical-reflection phase change is the SH equivalent of
(3.104) and (3.105)

pay/1/¢2— 1/}

#lvl/Blz—l/CZ

If we define the horizontal wavenumber to be k, =(w/c)=Qnm/A)=
(2m/A)sin j,, the constructive phase requirement becomes

¢,= —2tan"! (4.2.2)

2Hcos j2m uy/1/¢2—1/832
2mr= " _2tan" AV (4.2.3)
Assin j, iy 1/Bi - 1/¢?
Since sin j, = 8,/c and cos j; = (1 — B{/c?)"/?, this can be written as
S 1/c2-1/B3
tan( Hoy/1/87 — 1/¢% ) = kaV'1/ 2 (4.2.4)

pw/1/B = 1/¢?

continues



4.3 Love Waves

which is the same as (4.34). A similar analysis can be done for large angles j,, for
which PQ and P'Q’ do not overlap, by accounting for constructive interference
between spatially offset wavefronts.

’

Q

FIGURE 4.B2.1 Overlapping wavefront PQ at point A and P'Q' at point 5.

As w increases in (4.34), the number of
tangent functions (with zeros wy =mr)
that fall in the defined interval of y in-
creases. This means that the number of
solutions increases (more higher modes) as
w increases. The nth overtone can only
exist as a horizontally propagating wave
for frequencies equal to or greater than

nw

(1780 - (1/82)

, (4.35)

wc"

where . is the cutoff frequency for the
nth mode. The phase velocity of the nth
overtone is ¢ =g, at w., and approaches
¢ =B, as o increases (Figure 4.9b). This
makes it clear that very high frequency
waves have displacements concentrated
near the surface, whereas lower-frequency
components for the same mode have dis-
placements concentrated near x, = H, giv-
ing velocities controlled by the half-space.
The Love-wave displacements do extend
into the half-space, but remember that
their amplitudes decay exponentially be-
low x;=H. It is not easy to visualize how
this dispersion arises from plane waves

because it involves lateral interference of
many upgoing and downgoing plane waves.
Basically, waves with angles close to the
critical angle propagate with the velocity
near that of the head wave, ,, and more
horizontally propagating waves travel at
velocities approaching that of the layer,
B,.

Love waves are always dispersive be-
cause they require at least a low-velocity
layer over a half-space to exist. Because
Love-wave particle motion is paraliel to
the surface, a complete separation of Love-
and Rayleigh-wave surface motions occurs,
with Love waves traveling faster and thus
arriving on the transverse component
ahead of the Rayleigh wave, which arrives
on the vertical and radial components.
Figure 1.2 shows block diagrams compar-
ing the sense of motion of body and
surface waves, while Figure 1.1 shows an
example of a naturally rotated set of seis-
mograms with clear body and surface-wave
arrivals. The Love wave is “naturally” po-
larized on the transverse (E-W) compo-
nent in this particular case.

The physics of Love-wave propagation
in a multilayered structure like the Earth
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8 <sin™(B, /B,)

FIGURE 4.10 Love waves in a muitilayered medium involve SH-wave reverberations trapped

within the layers.

can be analyzed in much the same fashion
as the simple case of a single layer over a
half-space discussed earlier. Critical angles
at various depths in the structure (Figure
4.10) can trap Love-wave energy in a se-
quence of surface waveguides. Longer-
wavelength, lower-frequency waves tend to
have higher velocities, because velocity
usually increases with depth; however, the
actual velocity gradients in the mantle
cause long-period Love waves to be less
dispersive than Rayleigh waves of corre-
sponding period.

4.3.1 Surface Waves on a
Spherical Earth

The particular geometry of the Earth
has an important effect on surface-wave
propagation-—the waves spread over the
spherical surface and hence converge at a
point on the diametrically opposite side of
the globe from the source, called the an-
tipode. The waves converge from all direc-
tions at the antipode, with Rayleigh waves
constructively interfering to give strong
vertical amplifications, while Love waves
destructively interfere to give no net
Love-wave motion at the antipode. The
waves ‘“‘pass through” one another and
diverge from the antipode, spreading over
the surface again, eventually converging
on the source and repeating the process.
We can treat the motions of the repeated
passage of Rayleigh and Love waves on
the Earth’s surface as traveling waves, as
we have been discussing, or as patterns of
standing waves or normal modes, which

are discussed later, In the perspective of a
wave traveling from source to receiver,
surface-wave energy obeys Fermat’s prin-
ciple (Chapter 3) by following the shortest
travel-time path on the two-dimensional
surface. If the velocity structure in ques-
tion is a laterally homogencous, flat-
layered structure, the surface-wave path is
a straight line on the surface from source
to receiver. Lateral variations in the
medium would cause the path to follow a
curved trajectory, giving the least-travel-
time path.

On a sphere, the surface-wave path in a
laterally homogeneous, radially stratified
structure is along a great-circle path (Box
4.4) connecting the source and receiver.
Surface waves can travel in two directions
along the great-circle path to the station,
with the shorter path being called the mi-
nor arc and the longer path the major arc.
Because waves traveling along both arcs
pass the station and continue to follow the
great circle, they eventually circuit the
globe and pass by the station again, re-
peatedly. We denote long-period Rayleigh
and Love waves by R and G (for Beno
Gutenberg, who studied Love waves), re-
spectively. Minor-arc arrivals are indicated
with odd-number subscripts that increase
with the number of passages of the station
(e.g., R,,R;, R), and major-arc arrivals
are indicated by even-number subscripts
(R,, R,, R, etc.). Figure 4.11a shows an
example of minor-arc and major-arc sur-
face-wave arrivals on a long-period digital
seismometer of the GEOSCOPE network
(see Chapter 5). The horizontal ground
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Box 4.3 Rayleigh Waves in a Fluid Layer over a Half-Space

The simplest case for which we can derive dispersion for Rayleigh waves is for a
fluid layer (B =0) over a half-space, which is very pertinent to the Earth. We
consider the following geometry:

e X,=—H
Fiuid Layer ni P a n =1 -p
Wy W W —2
pap X "

¥

3

No S waves exist in the water, so we can assume that all motions are P waves
traveling up and down in the water. We let the P potential in the water layer be

¢, =Cexpliw( px, —my,x;—t)] + Cyexpliow( px, +n,x;—t)], (43.1)
while in the solid we have potentials of the form (4.12)
¢ =Aexpliw( px, +n x5 —1)]
1//=Bexp[iw(px| +nﬁx3—1)]. (4.12)

No shear stress exists in the ideal fluid, so the boundary conditions are o5, =0 at
x3= —H; o4, and u; continuous, and o3 =0 at x;=0.

In this example we do not require continuity of u, at the interface x; = 0, as this
condition can be satisfied only by allowing the water to have a small finite viscosity.
In a real medium, the fluid will have a finite viscosity, leading to a thin boundary
layer right above the interface in which u; will vary rapidly, but our solution will
not include this effect. The free-surface condition (o3, = 0 at x; = —H) yields

C,=-C,exp[—2iwn,H]. (43.2)

This result is used in the expressions derived from the interface conditions:
uy=0¢/0x,+d/dx, continuity to give

2Cm, expliown, H]cos(wn, H) =An, + Bp. (4.3.3)
Continuity of o,; modifies (4.14) to give

—2ip,, exp[iwn, H]sin(wn,H) = A(pan2 + Ap?) + 2Bupn,, (4.3.4)
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while o5 = 0 is satisfied by (4.15)
2A4pm, +B(p* —n}) =0. (4.3.5)

The latter three equations relate the amplitudes of the potentials and frequency,
w, to the velocity of Rayleigh waves, ¢ = 1/p. The only nontrivial solution is given
by choices of w and ¢ that make the determinant of the coefficients of C,, 4, and
B vanish. With some algebra the vanishing of the determinant gives an equation

1 1

tan| Hw a—2 - _67
pB* \/Cz/a‘z‘,——l
pwc4\[l —c%/a?

c2 c2 2 2
X 4\/1—?\/1—55 - 2—'-‘55) . (4.3.6)

First Mode V =11g,
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FIGURE 4.B3.1 (Left) Dispersion curves for the fundamental and first-overtone Rayleigh
waves for a water layer over a half-space with parameters p =2.5pw,a=\/§[3,and B=2ay,,.
(Right) Distribution of maximum particle motion with depth (eigenfunctions) for Rayleigh
modes and the Stoneley mode. Horizontal displacements are u, and vertical motions are u,.
{Modified from Ewing et al., 1857.]

continues
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If H =0, the half-space surface-wave solution (4.19) is recovered, and we have the
undispersed half-space Rayleigh wave. For very large wavelengths, A =27 /k,
where k = w(1/a2 — 1/c?)"/?, the Rayleigh wave is insensitive to the water layer.
However, for shorter wavelengths, the wave energy is partitioned between motions
in the solid and motions in the water layer. As in the case of the Love-wave
solution (4.34) for each frequency, discrete velocities will satisfy the dispersion
equation, and higher modes with cutoff frequencies will exist as well. (Below the
cutoff frequency, the higher-mode waves have velocities greater than B8 and leak
energy into the half-space, which is called a leaky mode.) The horizontally
propagating Rayleigh waves have velocities a,, <c¢ <8 <@, which ensures that
they are evanescent in the half-space, with the number of nodal vertical-displace-
ment positions (u; = 0) in the water layer corresponding to the mode number.
Figure 4.B3.1 shows dispersion curves for phase velocity ¢ and group velocity U
(see Section 4.4) as a function of dimensionless frequency ()= Hw/a for the
fundamental mode and the first overtone for a specific choice of velocities. The
distribution of maximum particle motions as a function of depth for three Rayleigh
modes is also shown. For very large ), one other type of solution exists, with
¢ <a,, which involves displacements that decay exponentially away from the
interface in both directions. This type of interface wave is called a Stoneley wave.
As () — «, the phase velocity of this wave approaches 0.998a,.

Box 4.4 Great-Circle Paths, Azimuth, and Back Azimuth

Parameters of great-circle paths can be determined using spherical trigonome-
try. Consider the spherical triangle shown below. E is the source (or epicenter), S
is the seismic station, and N is the north pole. A4, B, and C are the three internal
angles of the spherical triangle. In general, A + B + C + 180°. a, b, and ¢ are the
sides of the triangle in degrees measured between radii from an origin in the
center of the sphere. If A, b, and ¢ are given, then

a = cos~'(cos b cos ¢ + sin b sin ¢ cos 4) (44.1)

c _,[cosc—cosacosb 442
- sinasin b ’ (4.4.2)

The angular distance a is often called A, the epicentral distance. For most
applications, A4 is the difference in longitude between E and S, and b and ¢ are
the source and station colatitudes, respectively (colatitude is 90° — latitude). When
measured clockwise from north, angle C is called the azimuth and gives the
direction in which a ray must leave the source to arrive at a given station. Source

continues
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radiation patterns are usually given in terms of azimuth from the source. If the
station were located to the left of the epicenter in Figure 4.B4.1, the azimuth
would ‘be 360° — C (remember, always measure clockwise). The back azimuth,
which is the angle measured from north to the direction from which energy arrives
at the station, is given either by

. cos b — cos acosc
B=cos™ (4.4.3)

sinasinc¢

or by 360° — B (as in the case shown). Note that B is not simply related to C and
must be calculated separately. Back azimuth is used to determine the longitudinal
and transverse directions for an incoming ray at a prescribed station. The longitu-
dinal component lies along the great circle, and the transverse component is

4. SURFACE WAVES AND FREE OSCILLATIONS

perpendicular to the great circle.

FIGURE 4.B4.1 Spherical geometry for great-circie paths.

/)

motions are rotated to correspond to mo-
tion transverse to the great circle or along
the great circle (longitudinal). Note that
the G, and G, arrivals at these periods
(> 100 s) are relatively impulsive, whereas
the Rayleigh waves are very dispersed. The
Love-wave motion is concentrated on the
component transverse to the great-circle
path, but some G, energy is visible on the
longitudinal component as a result of de-
flection of the Love wave from the great-
circle path. The Rayleigh-wave energy in
R, and R, is stronger on the vertical com-
ponent than on the longitudinal compo-
nent by about a factor of 1.5, as found for
Rayleigh waves in a Poisson half-space.
The arrival labeled X, is a Rayleigh-wave

overtone that has traveled on the major-arc
path with a higher velocity than the funda-
mental mode. The packet of overtones on
the minor arc, X,, is weak because it
mainly involves periods shorter than 100 s
which have been filtered out. R, is more
dispersed than R, and has lower ampli-
tude because it has traveled farther. In
general, one expects to see the amplitudes
[R,|>|R,|> --+ >]|R,], but both propaga-
tion effects (Box 4.5) and source effects
(Chapter 9) can produce anomalous ampli-
tude behavior. The long-period Rayleigh
waves travel with velocities (group veloci-
ties, as defined in Section 4.4 on disper-
sion) of 3.5-3.9 km/s, while long-period
Love waves travel about 4.4 km/s. The
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FIGURE 4.11 (a) Long-period recordings of surface waves from the May 26, 1983 Akita-Cki
(Honshu) earthquake recorded by GEOSCOPE station PAF. (1} is the transverse component,
(2) is the longitudinal component, and (3) is the vertical component. All traces have been
filtered to remove oscillations that have periods of less than 100 s. (b) Travel
time of surface waves with different group velocities for different distances. Long-period
Rayleigh waves travel at a velocity of about 3.5-3.9 km /s, while Love waves travel at a
velocity of about 4.4 km /s. {{b) is Courtesy of H. Kanamoari.)
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Box 4.5 Surface-Wave Amplitude Anomalies

Surface-wave amplitudes in a flat-layered structure decrease with increasing
propagation distance because of geometric spreading, anelastic attenuation, and
(generally) dispersion. On a spherical surface, surface-wave amplitudes decrease
progressively with propagation distance because of anelasticity and dispersion, but
geometric spreading has a more complex form. It can be shown (e.g., Aki and
Richards, 1980) that away from the source or its antipode, geometric spreading is
given approximately by (sin A)"?, where A is the angular distance between source
and receiver. This spreading gives the lowest amplitudes near A = 90°, i.e., when
the surface wavefront is spread over the entire circumference of the planet.
Curiously, R;, R,, and R;, for example, all have the same geometric spreading at
a given station (A = A,). Generally, however, we expect |R,| > |R,| > |R,l, etc.
due to the dominating effects of attenuation and dispersion, as seen in
Figure 4.B5.1. The seismograms in Figure 4.B5.2 show several stations with the
normal behavior (HAL, RAR), but other stations (PFQ, CMO, KIP) for which

10000
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FIGURE 4.B5.1 200-s-period Rayleigh-wave amplitude on the vertical component as a
function of distance. Observations at two different distances, 30° and 80°, are marked faor
great-circle orbits. The source is 33 km deep and has a moment of 1 X 1029 N m and a fault
mechanism of strike =0°, dip =45°, rake =90°. (Courtesy of H. Kanamaori.)
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231-234, 1985; copyright by the American Geophysical Union.)
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FIGURE 4.B5.2 (a) Great-circle Rayleigh-wave arrivals at IDA stations (Chapter 5) for the
September 1977 Tabas, Iran earthquake. (From Masters and Ritzwolier, 1388.) (b) Projec-
tion of phase-velocity heterogeneity for 200-s-period Rayleigh waves on the hemisphere
centered on Japan, along with surface-wave raypaths for A, arrivals at each point and Ry
arrivals at each point on the same hemisphere. (c) Calculated amplitude anomalies at
different distances from two source regions for two models of surface-wave phase-velocity
heterogeneity (boxes and triangles). (From Schwartz and Lay, Geophys. Res. Lett. 12,
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strong amplitude anomalies (e.g., [Rs| > |R,| at PFO, KIP; |[R,| > |R;| at CMO)
are observed. Since this earthquake did not have any source complexity that could
account for these anomalies, propagation effects are probably responsible. It is
now recognized that surface waves propagating on the surface of a laterally
heterogeneous sphere (like the Earth) are deflected from the great-circle path, and
focusing and defocusing can result. Part (b) of the figure shows raypaths on the’
surface of the Earth for 200-s-period surface waves traveling through a model
having a laterally varying phase velocity. Instead of being straight, radial spokes,
the rays bundle up, enhancing the amplitude. Part (c) shows predicted Rayleigh-
wave amplitude anomalies at different distances from sources in Japan and North
America plotted asfunctions of azimuth from the sources. Amplitude ratios are
predicted to vary by a factor of 3, comparable with actual observations. Deflection
of Love-wave energy (G,) from the great-circle path can be observed in Figure
4.11a. While the deflections are usually minor, large-amplitude anomalies can
result, and one must be cautious in assuming the surface-wave energy has propa-

gated on the great circle.

curves in Figure 4.11b indicate approxi-
mate arrival times for sequential great-
circle surface-wave groups. It takes about
2.5 h for long-period Love waves to circle
the Earth and about 3 h for Rayleigh
waves to do so. Additional examples of
great-circle surface-wave phases are shown
in profiles for the 1989 Loma Prieta earth-
quake in Figures 1.7 and 6.11.

4.4 Dispersion

All surface waves, except Rayleigh waves
in an isotropic half-space, exhibit disper-
sion, with the apparent velocity along the
surface depending on frequency. Almost
any seismic source excites waves that com-
prise a continuous spectrum of frequen-
cies, each harmonic component having a
velocity, c(w), that is called the phase ve-
locity. If a monochromatic wave were
somehow excited, only the phase velocity
for that frequency would be needed to
characterize the disturbance fully. How-

ever, when a spectrum of frequencies ex-
ists, the wave disturbances interfere,
producing constructive and destructive
patterns that influence the total ground
motion. Constructive interference patterns
behave as wave packets, which themselves
propagate as disturbances along the sur-
face with well-defined group velocities,
U(w). Thus, the phase velocity is directly
controlled by the medium parameters
(scale lengths of layering, intrinsic P
and/or S velocities, rigidity, etc.) and the
geometric “fit” of a particular harmonic
component into the associated boundary
conditions, as seen in the last section. The
group velocity depends on the medium
parameters through their influence on the
phase velocity, but it also depends on the
variation of phase velocity with frequency,
which controls the interference between
different harmonics.

To understand this, we begin by consid-
ering two harmonic waves with the same
amplitude but slightly different frequen-
cies (o', ®"), wavenumbers, and phase ve-
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locities (k' = o'/c’, k" = w"/c"). These
combine to give a total displacement of
=cos(w't ~ k'x) + cos(w"t —k"x).
(4.36)

We define w as the average of o” and o'
such that @' + éw =w =" — 6w, and k =
w/c such that k'+ 8k =k =k" - 8k,
where 8w < w, 8k < k. By inserting these
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into (4.36) and using the cosine law,
2cos x cos y = cos(x +y) + cos(x —y), we
obtain

u=2cos(wt — kx) cos(Swt — 8kx).
(4.37)

This is the product of two cosines, the
second of which varies much more slowly
than the first. Figure 4.12 shows a specific
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FIGURE 4.12 Example of the interference of two waves of the form (4.38) at two positions
x =0 and x=1.5. The envelope of the interference pattern moves with group velocity U =3

km/s. (Courtesy of H. Kanamori.)
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example. The envelope of the modulated
signal propagates with a velocity different
from the phase velocity of the average
harmonic term ¢, which is defined as the
group velocity:

U bw 4.38
=3k (4.38)

In the limit as dw and 8k — 0
de d(kc) kdc Adc
Tak T Tak Tt m T AR
(4.39)

From (4.39) we see that the group velocity
depends on both the phase velocity and
the variation of phase velocity with
wavenumber. If dc/dk =0, the phase and
group velocities are equal. In general, in
the Earth the phase velocity decreases
monotonically with frequency, so dc/dk <
0and U<ec.

4. SURFACE WAVES AND FREE OSCILLATIONS

4.4.1 Measurement of Group
and Phase Velocity

Dispersion changes the overall appear-
ance of a surface wave as it propagates.
One can visualize the surface wave as hav-
ing started from the source essentially as
an undispersed pulse, with each frequency
component having an amplitude A(w) and
initial phase, ¢, (w), determined by the
excitation of the source and medium. As
the wave spreads outward, dispersion
modifies it, spreading the energy out over
a wavetrain, as shown in Figure 4.13.

The group velocity is very important in
that energy propagates mainly in the con-
structively interfering wave packets, which
move with the group velocity rather than
the individual phase velocities. Box 4.6
shows that narrowband filtering of a seis-
mogram isolates the wave packet that cor-
responds to the central frequency of the
filter, and the group velocity for that fre-
quency can then be determined by dividing
the path length by the travel time of the
wave packet. This requires knowledge of
the source location and origin time. Alter-

——————> Time

dueisl ] -——————

FIGURE 4.13 Example of increasing waveform dispersion with increasing distance. Solid
lines indicate different group velocities that control the travel time of particular frequency
motions from the origin. Dashed lines indicate phase velocities of individual harmonic compo-

nents. (From Officer, 1974.)



4.4 Dispersion 143

Box 4.6 Wave Packets

An earthquake source excites surface waves with a continuum of frequencies
rather than just two discrete frequencies like the example in the text. As these
waves propagate away from the source, they disperse. The total surface-wave
displacement involves a summation of all the propagating harmonic components.
Consider the sum of a continuum of harmonic terms with uniform amplitude over
a finite frequency band Aw centered on average frequency w, given by

U= ["""" cos[wt - k(w)x] do. (4.6.1)
wy—Aw/2

For small Aw, we expand k(w) in a Taylor series:

K(w) =k(wp) + (%)

w

(w—wy) + -+ (4.6.2)

and we can evaluate the integral of the first sum to order w:

’ 1 (Ae (dk
T (dkjdayex M 2 | dw),,,ux

| ~Aw dk
—sin 5 t_(E)w(,x

Using 2sin a cos B = sin(a + B8) — sin(B8 — a)

+ wyt — k(wo)x}

+ wgt — k(wo)x}). (4.6.3)

2 [ Aw dk
U Tk /da) ox S‘“{T[’ } (E)x]} cos(wot =~ k(wo)x). (46.4)

If we let Y= (Aw/2)[t - (dk /dw), x], the summation becomes

sinY
U=Aw

cos[wot — k(wy)x]. (4.6.5)

Thus, we find a cosine harmonic term with the reference parameters modulated by
a sinc function, which is peaked at Y =0 and has rapidly diminishing side lobes.
Thus the periodic modulations seen in Figure 4.12 are modified to a single,

isolated wave packet when a continuum of frequencies is considered (Figure
4.B6.1):

VAVAVAVAVAVAVAVAVAVAVAVAW Cos[coot—k(wo)x]
/\/\/\/\/W SinYy
o I —_—
e = I - Y
~J VY- Product

FIGURE 4.B6.1

continues
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The envelope propagates with group velocity U = (dw /dk )wu. Thus, surface-wave
ground motions filtered in a narrow frequency band have isolated group wave-
packet. arrivals, as shown in Figure 4.B6.2.

Mongolia Jan. 20, 1967. 01 57 23.1
DDR (A =3249.5KM)

A"‘ Transverse n MNN W I U:‘“ Amp
|Unfih9fq [ ] » [} 1 [ §

2:10 2415 'y

T=14.5 sec

19.0
1

28.0

b/

51.0 :

[
109; A L ;) 4
45 40 35 3.0

Group Velocity, Km/sec

FIGURE 4.B6.2 Wave packets in narrow frequency bands obtained by filtering a Love-wave
recording. The unfiltered record is shown at the top. Narrowband records with central
periods shown on the left are plotted below the original seismogram, with varying amplitude
scale. Note that each narrowband-filtered trace has the appearance of a wave packet.
(From Kanamori and Abe, 1968.]

natively, given a single very well dispersed  called the two-station method. A special
waveform like that in Figure 4.14, one can  application is the use of a single station to
basically measure the arrival time of each measure times between successive passes
frequency, because each oscillation corre- of surface waves traveling on the great
sponds to a narrow-frequency wave packet  circle (e.g., R;, R3). This yields an average
with an average period given by the period  group velocity over the entire great-circle
of that cycle. Knowing the origin time al- path. Another way to estimate either sin-
lows us to estimate the group-velocity dis-  gle-station or two-station group velocities
persion curve. This procedure is not as is first to determine the phase-velocity dis-
stable as successively narrowband filtering  persion curve over the corresponding path
the signal because interference over the and then use (4.39) to calculate U(w).
continuous distribution of frequency com- Several single- and two-station methods
ponents distorts each arrival. exist for measuring phase-velocity disper-
If two stations are located on the same  sion curves. We can obtain a crude mea-
great-circle path, the group-velocity dis- sure using well-dispersed seismograms
persion between the stations can be deter- from two nearby stations, like those in
mined by measuring the difference in ar- Figure 4.14b. Each harmonic term at a
rival times of filtered wave packets. This is  given point in its cycle is associated with a
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FIGURE 4.14 Examples of very well dispersed wave trains. (a) A Rayleigh wave for which
individual group-arrival velocities can be made for each cycle of the waveform knowing the
distance to the source and the origin time. (b) Measurement of phase velocity between two
nearby stations for which common cycles of a given phase can be reliably identified and

differential travel time measured.

peak or trough of a particular period of
oscillation, and the differential time and
propagation distance between correspond-
ing cycles are used to estimate the phase
velocity for each frequency. This proce-
dure gives poor results unless the disper-
sion is so pronounced that the peaks are
not actually envelopes of interfering fre-
quencies. Typically, phase velocity is mea-
sured by taking the Fourier transform of a
seismogram and obtaining the phase spec-
trum. A surface wave can be represented
in the form

1 o
u(x,t)=;f0 i(w, x)

w

c(w)

Xcos(wt—— x+dp(w)]dw,

(4.40)

where the phase is ¢(w) = ¢ylw) —
lwx/c(w)] + 27N + wt. The term ¢y(w) is
the initial phase at the source, and the
term 27N represents the periodicity of
the harmonic function. The amplitude
spectrum #(x, w) describes the amplitude
of each harmonic term that contributes to
the actual time-domain waveform. If one
has a single instrument-corrected seismo-
gram that starts at time ¢, after the origin
time at a distance x, from the source, a
Fourier transform of the signal yields the
phase of each frequency at the corre-
sponding start time

wx,
U(w) =wt; + dy(w) — m +2wN.

(4.41)

If the initial phase at the source, the origin
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time (¢ = 0), and the distance traveled (x,)
are known, then c(w) can be determined
to within the uncertainty due to 27 N. The
value of N is usually selected by ensuring
that the phase velocities for the longest-
period signals converge onto globally aver-
aged values of c(w); long-period phase
velocities vary by only a few percent, which
is sufficient to constrain the choice of N.
One must know the faulting mechanism
and depth of the source to calculate the
initial phase ¢y(w). In detail, additional
corrections to the phase must be made
because of the effects of anelasticity and
polar passages (which add /2 to the phase
each time the wave passes the source loca-
tion or antipode). The most accurate pro-
cedure for estimating phase velocity is to
take the difference in the phase spectra at
two points on a great-circle path (again,
one can use a single station and look at
successive great-circle orbits). In this case
the initial phase cancels out, leaving

(@) — (o)
=w(t1 — t2) - C(_w;(xl —-x2) +2mM

(4.42)

or

c(w)

_ X1~ %2

T (4~ 1) +TIM = 127 (0) — §y(0))]’
(2.43)

where M, the difference in number of 27
cycles, is again chosen to give consistency
with globally averaged values at long peri-
ods. Corrections for attenuation and polar
passages between the stations are needed
for precise measurements. Once the dis-
persion relation f(w, k) = 0 is determined,
the group-velocity curve can be estimated

4. SURFACE WAVES AND FREE OSCILLATIONS

from the Taylor series expansion

flo+dw, k+dk)

af of
=f(w,k) +:3;de+ﬁ

dk

giving

U= f;—k“i= —(%)w/(%)k (4.45)

There are two main applications of dis-
persion-curve measurements. The most
critical is the determination of velocity
structure, and the second is correcting the
observed phase back to the source so that
the source radiation can be determined.
Dispersion reflects the nature of the veloc-
ity gradients at depth, as shown in Figure
4.15a. Stronger velocity gradients produce
more pronounced dispersion. Figure 4.15b
shows the characteristic shape of phase-
and group-velocity dispersion curves for
Rayleigh waves in an elastic layer over a
half-space (note the similarity to the fluid
layer results in Box 4.3). Phase-velocity
curves generally tend to be monotonic,
whereas group-velocity curves often have a
local minimum. The existence of a local
minimum implies that significant energy
will arrive at about the same time, produc-
ing an amplification and interference ef-
fect called an Airy phase. For continental
paths an Airy phase with about a 20-s
period often occurs, and long-period waves
in the Earth have an Airy phase with ap-
proximately a 200-s period. Figure 4.16
illustrates average observed group veloci-
ties for Rayleigh waves in continental and
oceanic regions. At periods longer than
80-100 s, regional near-surface differences
have little effect since the waves are “see-
ing” deep into the upper mantle, where
heterogeneity is less pronounced. The av-
erage oceanic crust is thinner than conti-
nental crust, resulting in a shift of the
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FIGURE 4.15 (a) Influence of vertical velocity
gradient on dispersion of surface waves. The
stronger gradient causes greater dispersion.
(b} Theoretical fundamental-mode Rayleigh-wave
dispersion curves for a layer over a half-space.
The parameters v, and vs are P-wave and
S-wave velocities, respectively. (Modified from
Béath, 1979.)

crustal Airy phase to periods of 10-15 s.
This sensitivity to crustal and upper-man-
tle velocity structure has led to extensive
use of Rayleigh and Love waves to analyze
three-dimensional Earth structure, which
we will describe in Chapter 7.

Rayleigh waves in a layered structure
have overtones similar to those described
for Love waves in the previous section (see
Box 4.3). Both Love- and Rayleigh-wave
overtones have their own dispersion curves.
Generally the overtone group velocities are
higher than velocities for the fundamental

Mantle

Crust

Continental
20} 1
Oceanic Dispersion of
10 - Rayleigh Waves 4
T sec
i 1 1 ] 1 1 1 1
10 20 30 40 50 100 200 300 400 500

FIGURE 4.16 Observed group-velocity curves
for Rayleigh waves. Averaged values for oceanic
and continental paths are shown for periods
less than 80 s. (Maodified from Bath, 1979.}

modes, causing overtones to arrive earlier.
Figure 4.17 shows the relative contribution
of the fundamental mode and the first 10
overtones to a radial-component synthetic
seismogram. The overtone wave packets
are identified by X,, where odd » corre-
spond to initial minor-arc paths and even
n to initial major-arc paths. The Rayleigh-
wave overtone amplitudes tend to be
stronger on the horizontal component than
on the vertical component, as seen in
Figure 4.11. Additional overtone observa-
tions are shown in Figures 1.7 and 6.11 for
the Loma Prieta earthquakes. These
Rayleigh-wave overtones are useful for
probing deeper structure than that sam-
pled by fundamental modes. Love-wave
overtones are not well isolated from the
fundamental modes in Figure 4.11 but
contribute to the long-period oscillations
before the main Love-wave pulses.

4.5 Tsunamis

In our development of surface waves,
we have assumed that the elastic medium
has a free surface with a vacuum above it.
However, 70% of the Earth’s surface is
covered by water of variable thickness, and
all regions are overlain by the gaseous
envelope of the atmosphere. Since SH
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FIGURE 4.17 Computation of the relative contribution of fundamental modes (n=0) and
overtone branch (n =1 to 10) Rayleigh waves. The total synthetic ground motion is shown at
the top. This is the radial component of ground motion, en which the overtone group arrivals
(X4, X2, Xg. X4) have the largest amplitude relative to the fundamental-mode Rayleigh waves
{R,,Ry). (From Tanimoto, 1987. Reprinted with permission from the Royal Astronomical

Saciety.)

waves cannot travel in the fluid media, the
presence of these surface layers scarcely
affects propagating Love waves, which in-
volve only horizontal surface motions.
However, the vertical surface motions
caused by propagating Rayleigh-wave dis-
turbances (as well as the vertical motions
produced by incident P and SV waves)
clearly must affect the water and atmo-
spheric layers. In turn, oceanic and atmo-
spheric disturbance, such as pressure vari-
ations, internal oscillations, winds, and
tides, must produce ground motions in the
solid Earth. In other words, a coupling of
motion occurs across the interface despite
the change in state of the medium, which
leads to a number of interesting phenom-
ena. Although some of the coupled inter-
actions can be evaluated by treating the
surface fluid layers as “elastic” layers in

which the rigidity and shear velocity go to
zero (see Box 4.3 for an example), the
primary restoring force for most fluid mo-
tions is gravity rather than interaction be-
tween adjacent particles. Finite-amplitude
displacements of particles in ocean and
atmospheric waves that are not readily de-
scribed by infinitesimal strain theory can
clearly occur.

Generally, we do not treat fluid motions
using the Lagrangian formulation in which
we have been developing elastic-wave the-
ory for solids. Instead, the Eulerian formu-
lation is used, in which we monitor the
behavior of a material element according
to its position at a particular time rather
than keep track of particle motion. Indi-
vidual particles may flux into or out of the
material element. We use this formulation,
developed in many texts on fluid mechan-
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ics, to describe gravitationally controlled
wave behavior in media that may have
large particle motions.

One of the most important gravity waves
that occurs on the Earth’s surface is a
tsunami, a long-period wave in the ocean.
The basic physics of these waves is like
that of ordinary wind-driven ocean waves,
but tsunamis are distinguished by particu-
larly long periods (200-2000 s) and wave-
lengths of tens of kilometers. Tsunamis
are excited by large-scale displacements
of water due to submarine landslides,
volcanic eruptions, or most commonly,
sea-bottom displacements caused by sub-
marine fault motions. Tsunami wave am-
plitudes in the deep ocean range from
centimeters to 5-10 m in height, but run-
up of these long-period waves on shore-
lines can cause enormous destruction,
overwhelming the standard storm-wave
coastal defenses designed for much
shorter-period waves. Fortunately, truly
large, damaging tsunamis are relatively
rare, with about one major event occurring
per decade.

Gravity waves behave differently than
the elastic waves that we have been con-
sidering in that gravity is the main restor-
ing force in the system, with gravitational
energy making up more than 95% of the
energy in tsunami waves (the rest is com-
pressional energy in the slightly compress-
ible water and compressional and shear
energy in the underlying rock). A fluid-
mechanics derivation provides a wave
equation for tsunami wave height A as

3%h

— =gV -(dVh),

" (4.46)

where d is the depth of the water and g is
the acceleration due to gravity. Note that
gravity has not appeared in our previous
elastic wave equations other than as a
possible inhomogeneous body-force term.

Equation (4.46) behaves distinctively de-
pending upon the wavelength of the
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tsunami wave. For wavelengths of A > d,
long-wave (or shallow-water) theory holds,
and the wave obeys

a*h -
PY®: =c“V<eh, (447)
where the velocity ¢ = \/ﬁ is nondisper-
sive and depends solely on water depth.
The displacements in the vertical and ra-
dial directions vary linearly with depth.
The tsunami velocities for periods of
200-2000 s are on the order of 700—900
km/h in the open ocean, or about the
speed of a jet airliner. At short wave-
lengths (A} << d), the tsunami velocity is
given by c =(Arg/2m)"?, giving disper-
sive behavior with motions that decay ex-
ponentially with depth from the surface.
Theoretical tsunami group and phase-
velocity curves for a homogeneous self-
gravitating Earth model covered by oceans
that are 2, 4, and 6 km deep are shown in
Figure 4.18. The dispersive nature of
tsunamis leads to calculations quite analo-
gous to those used to produce surface-wave
synthetic seismograms. Examples of syn-
thetic tsunami waveforms at distances of
2°-20° from a 10-km-deep vertical fault
with vertical shearing displacement are
shown in Figure 4.19. Note the increasing
spread of the tsunami wave with increasing
distance due to decreasing group velocities
for the shorter-period waves.
Water-pressure sensors in the deep
ocean can record the passage of tsunamis
larger than a few millimeters, but most
tsunami records are from tide gauges in
harbors. The shallowing of the water in
the harbor, along with geometric effects,
influences the peak amplitude of the
tsunami wave. This run-up effect is due to
the decrease in velocity as the depth shoals;
the kinetic energy of the wave is trans-
formed into gravitational energy by in-
creasing the wave height. Table 4.1 lists
some of the catastrophic consequences that
have occurred as tsunamis came onshore.
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FIGURE 4.18 Tsunami dispersion curves for oceans 2, 4, and 6 km deep on a spherical
planet. (From Ward, 1889.)
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FIGURE 4.19 Synthetic vertical motions of a tsunami at distances of 2°, 5°, 10°, and 20°
away from a point dip-slip source with moment My =102% N m and depth of 10 km. The
maximum amplitude is shown on the right. The azimuthal variation in amplitude will vary with
sin¢, where ¢ is the azimuth to the station measured from the strike of the fault. (From
Ward, 1989.)
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TABLE 4.1 Famous Tsunami Events
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14th Century B.c. Mediterranean

Thera volcanic eruption. Tsunami destroys Minoan

civilization,

Underwater earthquake. 16-m tsunami run-up in

Lisbon harbor.

Krakatau volcanic eruption. 40-m tsunami run-up.

36,000 killed.

Sanriku earthquake. 30-m tsunami run-up.

27,000 killed.

Magnitude 7.4 earthquake. 30-m tsunami locally;

16 m in Hawaii. 159 killed.

1755 Lisbon, Portugal
1883 Indonesia

1896 Japan

1946 Aleutian Islands
1958 Alaska Peninsula

Earthquake-triggered landslide. 550-m run-up in

Lituya Bay.

An observed tide gauge recording with a
tsunami signal superimposed on the 12-h
tidal oscillation is shown in Figure 4.20.
This recording is from the Azores Islands
about 18° from an earthquake in the east-
ern Atlantic, located 400 km offshore from
the African coast. Note that the tsunami
waveform resembles the dispersed signals
in Figure 4.19. About 2 h after the tsunami
begins, a second arrival with a similar wave
shape is seen. This corresponds to the
tsunami that reflected off the coast of
Africa, traveling about 800 km farther to
the tide gauge. This illustrates one of the
complications of tsunamis—ocean basin
geometry strongly influences them.
Because the depth of ocean basins is
well known, it is straightforward to deter-
mine the velocity variations that control
tsunami propagation. This allows us to de-
termine the source area that produced a

tsunami (meaning the region where the
seafloor was moved up or down by volca-
noes, faulting, or landslides) by using the
arrival times of tsunamis on tide gauges
that are azimuthally distributed around the
source. The seafloor motion in the source
region can be estimated by correcting the
observed tsunami amplitudes for any local
nonlinear bathymetric effects at the tide
gauge and for geometric spreading from
the source region. Decay of tsunami am-
plitude with distance depends on source
depth (see Figure 4.21), but it is approxi-
mately given by 1/ vr, corresponding to
two-dimensional spreading. Numerical cal-
culation of the full propagation effects al-
lows complete modeling of tsunami wave-
forms to determine fault slip on submarine
earthquakes (see Box 10.5). In detail,
tsunami excitation depends on the geome-
try of faulting, the depth of faulting, and

Box 4.7 Tsunami Wavefronts

The lateral variation in ocean depth produces a laterally varying velocity struc-
ture for tsunami waves. This causes wave refraction, similar to that for surface
waves (Box 4.5). Focusing and defocusing occur, resulting in nonuniform tsunami
amplitudes. Modern methods account for this by either computing tsunami waves
with numerical methods for a laterally varying ocean model or tracing rays along
the surface through the velocity field to determine where focusing occurs.
Figure 4.B7.1 illustrates the effects of actual ocean depth variations on the tsunami

continues
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wavefronts relative to what they would be if the ocean depth were uniform. For a
tsunami produced by an earthquake in Chile, rays converge on Japan because it is
150° away (i.e., approaching the antipode). The tsunami takes 15 h to reach Hawaii
and 22 h to reach Japan. A great earthquake in Chile in 1960 produced a
disastrous tsunami in Japan 1 day later.

Japan (39°N,143°E)

FIGURE 4.B7.1 Tsunami raypaths traced through a realistically varying ocean depth model
(left) for three different source regions, compared to the simple ray patterns for a hypothet-
ical uniform-thickness madel on the right. The cross marks in the rays define the tsunami
wavefront at instants in time 1 h apart. (From Satake, 1988.)
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FIGURE 4.20 Record of the tsunami of the February 28, 1969 east Atlantic earthquake at
the Horta (Azores Islands, Portugal) tide gauge.

the time history of faulting. Earthquakes almost always have a large seismic mo-
that excite particularly strong tsunamis are ment associated with shallow underwater
called tsunamigenic earthquakes, and they faulting.
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FIGURE 4.21 Computed tsunami amplitude decrease as a function of distance for earth-
quake sources at depths of 10 and 40 km below the ocean hottom. For distances greater
than about 2000 km, the amplitude is not sensitive to source depth. (From Ward, 1989.)
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4.6 Free Oscillations

We have seen how vertical scale lengths
in a layered medium provide physical con-
straints on the types of motions than can
occur for waves propagating along the sur-
face. The finite spherical shape of the
Earth intrinsically provides both radial and
circumferential constraints on solutions to
the equations of motion in the planet. In
this perspective, only surface waves that
constructively interfere after propagating
around the Earth’s surface will persist as
long-term motions. The circumference
provides a scale length into which an inte-
gral number of wavelengths can fit to pro-
duce persistent standing motions. Because
only discrete wavelengths and frequencies
fit the Earth’s boundary conditions, the
corresponding standing waves are called
the free oscillations or normal modes of
the system.

We build some insight into normal
modes by considering the one-dimensional
case for a string held fixed at either end
(Figure 4.22). We assume that a source
excites small-amplitude motions of the
string that propagate as waves away from
the source in the +x, directions, involving
particle motions u in the +x; direction.
These motions must obey the one-dimen-
sional wave Eq. (2.60)

(4.48)

In Chapter 2 we derived general solutions
of this equation in the form of (2.66)

u(x’ I) = Cleiw(t+x/c)
+ Czeiw(t—x/c) + C3e—iw(t+x/c)
+ C ettt —v0), (4.49)
The boundary conditions for the string are
given by the fixed end points, with u(0, 1)

=u(L,t)=0. The first gives C, = —C,
and C;= —C,. The condition at x=L
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< L >
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n=0

( n=1

n=2

FIGURE 4.22 Geometry of a string under
tension with fixed end points separated by
distance L. Motions of the string excited by any
source (f} comprise a weighted sum of the
eigenfunctions, which are solutions that satisfy
the boundary conditions with discrete
eigenfrequencies. The first three eigenfunctions
are shown below.

then gives

(Cye™* + Cye ™" N2isin(wL/c) = 0.
(4.50)

The nontrivial solutions are given by zeros
of the sine function, wl/c=(a + D,
n=0,1,2,...,. Thus, discrete frequen-
cies of motion, @, =(n+ Dwc/L, called
eigenfrequencies, exist that satisfy the
boundary conditions. These eigenfrequen-
cies have corresponding displacement pat-
terns, e'“~'sin(w,x/c), called eigenfunc-
tions or normal modes of the system. The
n =0 mode is the fundamental mode and
has no internal nodes (places where mo-
tion is zero) within the system; n > 0 cor-
responds to higher modes or overtones
that each have n internal nodes. Figure
4.22 shows the first three eigenfunctions
that are allowed by the boundary condi-
tions. Oscillatory motion of each eigen-
function occurs without horizontal motion
of the nodes, so that horizontal propaga-
tion of each mode alone does not appear.
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Thus, these are called standing-wave pat-
terns, when viewed in isolation. Any gen-
eral propagating disturbance on the string
can be represented by an infinite weighted
sum of the eigenfunctions, because they
constitute all permissible components of
any solution in the medium:
u(x,t)= Y (A" +B,e ")
n=0

. wnx
Xsnn(— .
c

Thus, the standing-wave representation in
terms of normal modes can equivalently
represent traveling waves in the system.
The Fourier transform power spectrum of
(4.51) will have discrete spikes at the
eigenfrequencies w,, with relative ampli-
tudes given by the weighting functions.

If we take a continuous-displacement
recording that extends many hours or days
after a large earthquake, like that in Fig-
ure 4.23a, we can view the time-domain
signal as a sequential passage of surface
waves traveling along great circles. When
the power spectrum is computed for this
signal (Figure 4.23b), we observe discrete
peaks at different frequencies with vari-
able relative amplitudes. These corre-
spond to eigenfrequencies of the Earth
system, involving standing waves that fit
into the layered spherical geometry of the
planet. The system is much more complex
than the string, but the basic ideas are the
same; the Earth can be set into global
motions that make it ring like a bell. Con-
structive interference of the coexisting vi-
brations corresponds to disturbances that
move along the surface as a function of
time, which we view in the traveling-wave
perspective as Love and Rayleigh waves.
In fact, we can equivalently represent all
internal body-wave motions by summing a
sufficient number of normal modes, for the
infinite set of modes must represent all
motions in the medium.

The modes of a spherical body involve
both radial and surface patterns that must

(4.51)
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fit into the geometry of the system. The
viable oscillations are of two basic types:
(1) spheroidal oscillations, analogous to the
P, SV, and Rayleigh waves, which have a
component of motion parallel to the ra-
dius (radial motion in spherical geometry)
from the Earth’s center, and (2) toroidal
or torsional oscillations, involving shear
motions parallel to the sphere’s surface,
analogous to SH- or Love-wave motions.
Gravity does not influence toroidal mo-
tions at all, but long-period (¢ > 500 s)
spheroidal motions do involve significant
work against gravity, thereby sensing the
Earth’s gross density structure as no other
seismic wave type can.

Figure 4.24 summarizes some of the
characteristics of normal-mode motions for
a spherical, elastic, nonrotating medium.
The easiest modes to visualize are the
toroidal modes, which involve twisting mo-
tions of portions of the sphere. A nomen-
clature from spherical harmonics (Box 4.8)
is used to identify patterns of motions.
The toroidal modes are labeled ,T;, where
n indicates the number of zero crossing for
the eigenfunction along the radius of the
Earth and [ indicates the number of nodal
motion lines on the surface, the angular
order number or degree of the spherical
harmonic term. For toroidal motions the
poles have no motion, counting as the

=1 term. Thus T, corresponds to alter-
nating twisting of the entire upper and
lower hemispheres of the body. The mode
I, corresponds to similar twisting of a
central sphere overlain by twisting in the
reverse direction of the outer hemispheri-
cal shells. The mode (T, is undefined, and
ol cannot exist because it would corre-
spond to oscillation in the rate of rotation
of the whole Earth, which violates conser-
vation of angular momentum. Both #» and
I can take on integer values up to infinity,
but in practice, for the Earth it is impor-
tant to identify only the first few hundred
values.

The nomenclature for spheroidal modes
is ,S,, where, in general, n and / have
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Box 4.8 Spherical Harmonics

Analysis of the Earth’s normal modes is most naturally performed in a spherical
coordinate system. Here we consider basic mathematical solutions of the wave
equation V2§ = (1/c?Xd%S/dt?) in the spherical polar coordinate system (r, 8, ¢)
defined in Box 2.5. The wave equation for a homogeneous, nonrotating spherical
fluid becomes (see Box 2.5)

1.9 9S8 1 3. 6'as 1 #S 1% 481
=[]+ Zsin0= |+ e s = =5 (48.
r2 6r(r ar) e "0 | T e g - 2o 8D

As usual, to solve this we use separation of variables, letting S(r,8,¢,1) =
R(r)0(0)®(¢)T (). We find a standard solution for the time-dependent term as a’
harmonic function and take T(¢) = e =, leaving

d*®e R
d( ,dR w?r? i
dr(r dr)+ 5~ I+ D|R=0 (4.8.3)
d ( 0d® m? " )
7o \5in %)— Gig (I+1){(sing)® =0, (4.8.4)

where we have introduced constants m? and I{(I + 1). Equation (4.8.2) has solutions
e'™® = cos m¢ + i sin m¢, where m must be an integer for the solutions to satisfy
the spherical geometry. Equation (4.8.3) for R(r) involves the frequency, w, but
not m; thus in the homogeneous, nonrotating system, w will be independent of m
but will depend on the constant /. This is a well-studied differential equation that
has solutions of the class called spherical Bessel functions. These solutions have
the form

~-1d )’sinx

Ji(x) =x’(75 , (4.85)

X

where here x = wr/c. For [ =0 and rR(r) asin(wr/c), spherical Bessel functions
have the form of decaying sinusoids, as shown in Figure 4.B8.1. Equation (4.8.4)
for ©(9) is also in the form of a classic equation called the associated Legendre
equation, which is usually given in terms of x = cos 6 with cases m =0

O(8) = P,(cos 8) = P,(x), (4.8.6)

continues
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where P,(x) are Legendre polynomials. These are expressed by
!

1 d ,
P(x)= (—ﬁa—,)(ﬂ—l), (4.8.7)

which gives Py(x) =1, P(x)=x, P,(x) = 3(3x? — 1). Examples of Legendre poly-
nomial functional dependence for / = 2 to 5 are shown in Figure 4.B8.1. For m # 0
the solutions are given by the associated Legendre functions P;”(x), where

d™P(x) ) _ ( (1 —xz)"‘ﬂ)( d'+m

!
i 2101 g (77D )

Pr(x)=(1 —xZ)'"”(

(—l<m<l). (4.8.8)

Many mathematical texts describe the multitude of properties of these functions in
detail. For m =0, ® is a constant and § will have axial symmetry.

j (x
o.;"( i P (X)
0.4
0.3
0.2

0.1

-0.5

FIGURE 4.88.1 Functional behavior of spherical Bessel functions left} and Legendre polyno-
mials (right).

The product ©(6)P($) = P/"(cos 8)e'™® is called a surface spherical harmonic
of degree ! and order m. The most common form in seismology is the fully
normalized spherical harmonic

Tr204 1) (1= m)!
Y/"(o,¢)=(~1)’( ! )( ™)

1/2
m img
- (1+m)!} P/"(cos 8)e'™?, (4.8.9)

continues
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with / and m being integers. The function ¢'™* has zeros along 2m meridians of
longitude (m great circles), while P"(cos 8) has zeros along [ —m parallels of
latitude. Examples of the surface patterns produced by spherical harmonics are
shown in Figure 4.B8.2. The angular order number | gives the total number of
nodal lines on the surface with zero displacement. The parameter m gives the
number of great circles through the pole with zero displacement. Thus, there are
always / — m nodal lines along latitude. Rotation of the coordinate system cannot
change the order number / but can change m.

Application of boundary conditions on the medium prescribes the values of the
eigenfrequencies in terms of the sphere geometry and constants n and [, ,w,,
where n =0 will correspond to the fundamental modes and n > 0 will give the
overtones of the system. Since ,w, does not depend on m for the case considered,
all modes with angular order ! (for a given n) will have the same frequency but
different displacement patterns (eigenfunctions). Thus, a normal-mode power-
spectrum peak for the system is actually a multiplet, composed of overlapping
peaks of 2/ + 1 singlets with different displacement patterns. This overlap of all
values of m is called normal-mode degeneracy. Any departure of the medium from
spherical symmetry, such as that produced by rotation, aspherical shape, or
aspherical distribution of material properties, breaks down this degeneracy, giving
each of the singlets its own frequency. This is called splitting of the multiplet. An
actual Earth free-oscillation peak is thus composed of the overlapping peaks
produced by the split multiplet, with the spread of the pulses being obscured by
attenuation and limited frequency resolution, which are intrinsic in any finite time
series. Mode splitting varies with path and from mode to mode.

Finally, for the elastic Earth we must use vector surface harmonics:

R7(0,¢) =Y,"F (4.8.10)
sm(o b avm, anmé 4.8.11
" = + 8.
r'(6,4) sinf d¢ ¢ a6 ( )

1 ey, Yy,
(0, d) = 6— é (4.8.12)

sinf ¢ 0

to represent the total ground motion. The first two terms, R]" and /", are needed
to describe spheroidal motion, while 7" describes toroidal motion.

Zonal Harmonics Tesseral Harmonic

P1°(Cos 0) PZ(Cos 0) P:(cos 6) cos 3¢

FIGURE 4.BB.2 Fxamples of surface spherical harmonics. m =0 yields zonal harmonics of
degree /. For /=m, the nodal surfaces are longitudinal lines giving sectoral harmonics. For
0 < |m| </. the combined latitudinal and longitudinal nodal patterns are called tesseral
harmanics.




4.6 Free Oscillations

159

a 800 P WU ST AN S SEE T NN SN NS YT UUY S SN S SN N (U WA S U (R S |
600 3
- 400 3 3
O 3 3
£ 2003 E
@ 3 3
> 03 3
O 200 -
= E 3
O 400 3 3
3 b
-600 3
-800 “F—r—r—r—r— T T
0 200 400 800 800 1000 1200
Time (Minutes)
500 kot a s d 2 2 2 o Loa 4 aa 10000 Py L a s a1 2 4 3.2 14 AAA;A
2 < o>wh
[ oS [
2000 4 0S, °Sn_- 8000 2 s
] 0S,,
sooo? -
4 0S¢ [
4000 .
]
]
2000 -
j [
0 ——r—r e .
0.0 05 1.0 15 2.0 20 25 30 35 40
CMO/MD IDA CMO/MD IDA
mHz mHz

Power Spectrum

FIGURE 4.23 (a) A 20-h-long record of an IDA gravimeter, CMO (see Chapter 5). at College,
Alaska recording the 1985 Mexico earthquake. Long-period Earth tides have been removed.
The bursts of energy correspond to Rayleigh-wave great-circle arrivals. (b) The power
spectrum for CMO showing spikes at discrete freguencies corresponding to eigenfrequen-
cies of the Earth. (Maodified from Gubbins, 1990.)

similar significance, although the poles are
not positions of zero motion. Modes with
/=0 have no surface nodes and corre-
spond to the subset called radial modes,
with all motions in the radial direction.
Mode S, involves expansion and contrac-
tion of the sphere as a whole. Mode 5,
has one internal surface of zero motion
separating alternating layers moving in-
ward or outward. For /> 0, nodal lines

occur on the surface along small circles
parallel to the equatorial plane or along
longitudinal great circles through the poles,
which subdivide the surface into portions
with alternating motion. Mode S, is un-
defined, as this would correspond to a
horizontal shift of the center of gravity,
which can happen only if the sphere is
acted on by an external force. Mode S, is
the longest-period normal mode of the



4. SURFACE WAVES AND FREE OSCILLATIONS

Surface Patterns

i 0S2 : 0Ss3 A

Radial Patterns

n=0 n=1 ;; n=2 j ; n=3
Center

Fundamental  First Overtone Second Overtone  Third Overtone

Radial Modes Toroidal Motions

FIGURE 4.24 (Top) Surface and radial patterns of motions of spheroidal modes. (Bottom)
Purely radial modes involve no nodal patterns on the surface, but overtones have nodal
surfaces at depth. Toroidal modes involve purely horizontal twisting of the Earth. Toroidal
overtones (4T,) have nodal surfaces at constant radii across which the sense of twisting

reverses. (After Bolt, 1982.)

sphere and is sometimes called the “foot-
ball” mode. It involves alternating motion
from a prolate to an oblate spheroid, as
shown in Figure 4.24. Mode (S, has only
two equatorial bands of zero motion, while
oS3 and S, have three and four nodal
lines, respectively.

The normal modes in the real Earth
behave basically in this manner, except
that complications are introduced by the
variation of material properties with depth
and by departures from spherical symme-
try caused by rotation, aspherical shape,
and material-property heterogeneity. For

example, the Earth has a fluid outer core
(see Chapter 7) in which the shear velocity
is very small or zero. Torsional modes
depend only on the shear-velocity struc-
ture and thus are confined to motions of
the solid shell of the mantle. The inner
core appears to be solid and may have
inner-core toroidal motions, but some in-
ner-core source must excite these and they
cannot be observed at the surface.
Spheroidal modes are sensitive to both P
and § velocity and density structure, and
the partitioning of compressional and shear
energy with depth is complex. In general,
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FIGURE 4.25 Compressional (solid line) and shear (dashed line) energy density for funda-
mental spheroidal modes (top row) and some spheroidal overtones that are sensitive to core

structure. (Modified from Davis, 1988.)

fundamental modes (n =0) have energy
concentrated in the mantle (Figure 4.25),
with the shear energy being distributed
deeper into the mantle than compressional
energy. Note that ,§, is sensitive to the
entire mantle and hence to gravity varia-
tions over the depth extent of motions
caused by the mode. Including effects of
self-gravitation changes the period of this
mode by almost 10 min. As [ increases, the
energy in both shear and compression is
concentrated toward the surface. For [ >
20, the fundamental spheroidal modes in-
terfere to produce traveling Rayleigh-wave
fundamental modes. The overtones (n > 0)
of spheroidal motion generally involve en-
ergy sampling deeper in the Earth, includ-

ing in the inner and outer core. Examples
are shown in Figure 4.25 for overtones
that are sensitive to core structure. In the
real Earth, radial-motion eigenfunctions of
the spheroidal modes (#,/ > 0) do not nec-
essarily have n zero crossings along the
radius, although toroidal modes do.

The normal modes of the Earth are
identified primarily by computing ground-
motion power spectra, as seen in Figure
4.23, and by associating the corresponding
eigenfrequencies with those calculated for
a model of the planet. This is clearly an
iterative process, in which changes in the
model can lead to reidentification of a
particular mode peak. This process began
in 1882 when Horace Lamb first calculated
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the normal modes of a homogeneous, elas-
tic, solid sphere, finding that S, must
have the longest period. The search for
this mode ' of the Earth required develop-
ment of very sensitive ground-motion in-
struments, with Hugo Benioff being a pio-
neer in development of ultra-long-period
instrumentation. Following the great 1952
earthquake in Kamchatka, Benioff and
others (1954) reported the first observation
of a mode with a period of ~ 57 min, close
to the ~ 1-h period expected for ,S,. This
observation was refined when the 1960
Chile earthquake (M, =9.5, the largest
earthquake this century) occurred. About
40 normal modes were observed, and S,
was found to have a period of 53.83 min.
Because good starting Earth models ex-
isted, many modes could be confidently
identified, as in Figure 4.23. Subsequently,
several thousand modes have been identi-
fied and their degenerate eigenfrequencies
determined. Table 4.2 lists the degenerate
frequencies (see Box 4.8) of various ob-
served modes of the Earth.

The process of identifying particular
mode frequencies and finding an Earth
model that is consistent with them flour-
ished in the 1970s and continues today.
Figure 4.26 shows a set of spheroidal and
toroidal modes ordered by angular order
number ! and associated eigenfrequency;
this set was obtained by data analysis by

TABLE 4.2 Some Observed Normal-Mode

Periods
Spheroidal Toroidal
modes T(s) modes T(s)

050 1227.52 o2 2636.38
035 3233.25 oo 618.97
o315 426.15 ol 360.03
oS30 262.09 o0 257.76
0345 193.91 oTa0 200.95
o560 153.24 oTso 164.70
0S150 66.90 oTso 139.46
'S, 1470.85 T, 756.57
1510 465.46 T 381.65
2810 415.92 2Tao 123.56
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Gilbert and Dziewonski (1975). Note that
the modes sort into distinct branches for
different values of n, but some branches
come close together and have very similar
eigenfrequencies. Groups of overtone
modes along trajectories in these w-{ sets
correspond to particular body-wave equiv-
alent energy, a few of which are identified.
This association is based on the modes
that have appropriate phase velocities and
particle motions. Given an Earth model
that adequately predicts the observed
eigenfrequencies, one can, of course, pre-
dict the eigenfrequencies of all modes.
This elegant procedure, of considering
the entire Earth system in a boundary-
value problem, is complicated by the non-
spherical asymmetry of the system. The
most important factor is the spinning of
the Earth, which produces the Coriolis
force, which is spherically asymmetric. This
leads to a breakdown of the degeneracy of
the eigenfrequencies for 2/ + 1 values of
m for each spherical harmonic (Box 4.8).
The result is called splitting, with the split
eigenfrequencies being close together and
the relative eigenvalue patterns of motions
interfering with one another. The singlets
are identified by the superscript m, so the
multiplet ,S, is composed of singlets ;S5 2,
055 %, 083, 483, and (83, each with a singlet
eigenfrequency, ,w;", and eigenfunction.
Splitting of modes S, and S, was first
observed for the 1960 Chile earthquake.
Rotation splits the singlet eigenfrequen-
cies according to the amount of angular
momentum they possess about the Earth’s
rotation axis. The effect of rotational split-
ting on normal-mode peaks for stations at
different latitudes is shown in Figure 4.27.
The same mode has discrete multiplets at
nonpolar stations (actually the 2/ + 1 mul-
tiplets are smeared together to give broad-
ened, multiple peaks that do not resolve
the individual eigenfrequencies for each
I, m eigenvalue) but a single degenerate
multiplet spike at high latitudes where the
Coriolis force does not perturb the sym-
metry of the mode patterns. The strong
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FIGURE 4.26 Spheroidal (top) and toroidal (bottom) mode eigenfrequencies as a function of
angular order number, /. Note that maodes align on fundamental (n =0) and overtone (n > 0}
branches. Body-wave equivalent modes, which cross branches, are indicated for a few main
body-wave phases. (From Gilbert and Dziewanski, 1875.)

splitting of the modes ,,S, and ;§, is
greater than expected due to rotation, and
these modes are sensitive to the core (see
Figure 4.25); this is now attributed to
anisotropy of the inner core aligned along
the spin axis (Chapter 7).

In the time domain, the beating be-
tween the split singlets can strongly affect
the temporal behavior of a single mode, as
shown in Figure 4.28. The rotational split-

ting of modes manifests itself differently
for each source~receiver combination. This
is true also of the effects of asphericity in
the material properties, including ellip-
ticity of the Earth. If we think of the
standing-wave energy distributed over the
great circle, lateral variations in velocity
structure will distort the standing-wave
pattern, locally perturbing the eigenfre-
quencies of the multiplet, as shown in
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FIGURE 4.27 High-resolution spectra of four low-harmonic-degree multiplets recorded at
nonpolar latitudes (top row) and polar latitudes (bottom row). The polar spectra are not
cbviously split, indicating effective cylindrical symmetry as produced by rotation. The low-lati-
tude spectra are split, with rotation explaining the splitting of the 3S, and S, modes well
but not accounting for the extent of splitting of ,4S, and ,,8,. (From Masters and

Ritzwoller, 1988.)

Figure 4.29. The mode will effectively av-
erage the great-circle velocity structure,
with different average great-circle veloci-
ties leading to different multiplet frequen-
cies for different paths. The local shift of
phase at a particular distance affects the
amplitude of the multiplet, leading to vari-
ations of the spectral peaks that effectively
correspond to focusing and defocusing in
the traveling wave-equivalent surface
waves (see Box 4.5), although one must
account for lateral averaging of the modes
as well. The splitting and amplitude-varia-
tion properties of normal modes are used
extensively in the study of Earth structure
and seismic sources, as described in later
chapters.

The final property of normal modes that
we briefly discuss arises from the close
proximity of some mode eigenfrequencies,
as apparent in Figure 4.26. This can in-
clude the interactions between singlets of
a given multiplet, interactions between ad-

jacent modes on the same branch, interac-
tions between modes on different branches,
and interactions between toroidal and
spheroidal modes, induced by Coriolis
asymmetry. We describe such interactions
as mode coupling. Rotation, aspherical
structure, and possible anisotropy of the
medium must all be included in rather
complex calculations of coupling effects,
but one must often do so to estimate accu-
rately eigenfrequencies and attenuation of
each mode. Figure 4.30 presents observed
and synthetic seismograms, showing that
coupling between spheroidal and toroidal
modes can sometimes be observed (most
favorably in great-circle paths traveling
near the poles, with tangential motion that
is very strong and spheroidal motion that
is very weak on the path). The complex,
ringy waveforms reflect mixing of toroidal
and spheroidal energy onto this vertical
(i.e., radial motion) seismogram, leading to
precursory energy ahead of R,. Such
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FIGURE 4.28 Behavior of the mode S, as a function of time for an observed path,
compared to synthetics with and without rotational splitting. (From Stein and Geller, 1878.)
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FIGURE 4.29 A cartoon illustrating the distortion of the standing-wave multiplet caused by
lateral heterogeneity in velocity structure. Although the number of wavelengths around any
great circle remains constant, the local wavenumber, k, varies with local frequency pertur-
bation 8w ,.,. The spatial shift of the phase at distance A perturbs the observed multiplet
amplitude. (Modified from Park, 1888.)
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FIGURE 4.30 Data and synthetics for the September 12, 1979 New Guinea earthquake on
a vertical-component recording at IDA station TWO. Coriclis coupling is high on this path,
which goes within 5° of the rotation axis and leads to mixed spheroidal and toroidal motions
on the seismogram. This is not included in the synthetics for first-order splitting, which
account only for interactions within each muitiplet, as in Figure 4.28, but is better ac-
counted for when coupling between nearby fundamental-mode toroidal and spheroidal modes
is calculated. (From Park, 1988).
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complexity of free-oscillation theory is an
active area of research and is revealing
new aspects of Earth heterogeneity.

4.7 Attenuation of Surface
Waves and Free Oscillations

Anelastic losses cause surface-wave and
free-oscillation motions to attenuate with
time. For body waves we characterize
anelastic properties of the Earth in terms
of radial and lateral variations of the
P-wave attenuation quality factor O, and
the S-wave attenuation quality factor Qp-
Since, in general, both P- and S-wave mo-
tions contribute to surface waves and
standing waves, there are separate
Rayleigh (Qg), Love (Q,), spheroidal
(Qs), and toroidal (Q) quality factors, all
depending on frequency as well as varying
from path to path. We know from Chapter
3 that the existence of anelasticity pro-
duces velocity dispersion, given by

1
=co|1+
c(w) =¢g

)
In ——], (3.132)
@y

m

where subscripts indicate a reference fre-
quency, w,, and reference phase velocity,
¢y, and Q,, is the wave quality factor.
Since surface-wave Q values are relatively
low, on the order of 100 for short-period
waves and a few hundred for long-period
waves, the effects of physical dispersion
become important. Thus, Q is studied for
long-period waves both to understand at-
tenuation processes in the Earth and to
allow models of Earth structure consistent
with both body waves and surface waves or
normal modes to be derived.
Measurement of surface-wave attenua-
tion is conceptually straightforward but
difficult in practice. Some of the first mea-
surements were made for sequential
great-circle passages of R; and R,,, or G;
and G, , waves. One can measure the
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decay coefficient y at a given period T

1 A;
y(T)=Eln(A' ) (4.52)

i+1

where C is the circumference of the path,
and the spectral amplitudes at that period
are A; (for R;) and A, ., (for R, ). This
relates amplitude reduction to the attenu-
ation factor. The corresponding inverse
quality factor is given by

07/(T) = STUT)¥(T), (453)

where U(T) is the group velocity on the
great-circle path. This approach has been
used extensively to measure surface-wave
attenuation values for periods less than
500 s.

Free-oscillation attenuation measure-
ments can be made by a variety of proce-
dures. For an isolated split multiplet, with
mean eigenfrequency w,, the contribution
to the displacements at the surface will
have the form

20+1
Usx,t) = ¥ a,(x)exp[i(wg+80,,)!]
m=0
—wyt
X exp 20 ], (4.54)

where dw,, is the difference between the
singlet eigenfrequency and the mean mul-
tiplet eigenfrequency and a,,(x) is the am-
plitude of the singlet at the receiver. The
amplitude a,,(x) is a function of the source
and receiver location, the Earth model,
and the earthquake mechanism. The qual-
ity factor Q,, may or may not vary for each
singlet.

If the multiplet is not split, then Q can
be readily measured by narrowband filter-
ing to isolate the mode and by using the
temporal decay of the natural logarithm of
the envelope of the time-domain trace.
Figure 4.31 shows examples of this proce-
dure. Smoothly decaying motions yield sta-
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FIGURE 4.31 Q as determined by narrowband filtering of given modes (3Sg and S,q). Each
box shows the natural logarithm of the unsmoothed envelope for a given mode as a function
of time. The slope of the decay of amplitude is proportional to Q. (From Stein et al., in
"'Anelasticity in the Earth,” pp. 39-53, 1981; copyright by the American Geophysical

Union.)

ble attenuation estimates. In the frequency
domain, Q is estimated by the spread of
the corresponding spectral peak Aw, with
0 =wy/Aw.

Clearly, if splitting exists, both the fre-
quency-domain (Figure 4.27) and time-
domain (Figure 4.28) signals are complex,
and simple Q measurements cannot be
made. The analysis used to estimate Q
then depends on the relative amount of
pulse broadening due to attenuation ver-
sus multiplet splitting. If one can ac-
curately predict the individual singlet
eigenfrequencies, one can estimate @ by
modeling the time-domain signal or the
split spectral peaks. This procedure is cur-

rently yielding attenuation values for many
modes that have strong splitting, but it
does have high attendant uncertainties. As
high-quality digital data have increased in
abundance, seismologists have even mea-
sured separate singlet attenuation values
for a few strongly split modes.

The 1960 Chile earthquake commenced
the analysis of free-oscillation attenuation,
and it was quickly recognized that Q is
higher for longer-period fundamental
modes. This indicates that @ increases
with depth. It is desirable to relate the
particular Q value for a surface wave or
normal mode to the depth-dependent val-
ues of O, and Q. For a given model, with
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N layers, the toroidal-mode attenuation is
given by

N B, (9C;
-1
T “ZCT(aﬁ,

=1

) Qg (4.55)
k.,p,B

and the spheroidal-mode attenuation is
given by

N
)
=1

aCq
A b
Cg\ dq, k.p.B

B, (
.F
B,

where C(T, ) is the mode phase velocity, k
is the compressibility, p is the density, and

] (4.56)
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a,, B, are the P and § velocities in each
layer. Note that these expressions give a
weighted contribution of P- and S-wave
attenuation in each layer corresponding to
how much that layer influences the mode.
These weighting factors are the kernels of
the mode, indicating the partitioning of
corresponding wave energy into each layer,
where it is then attenuated according to
the corresponding quality factor. The total
dispersive effect on the mode due to the
layered attenuation structure has a corre-
sponding kernel. Examples of attenuation
kernels for a specific Earth model for
spheroidal modes are shown in Figure 4.32.
The smooth shape of these kernels yields
limited resolution of @ variations with
depth. A model that is compatible with

0 S 32 1= 250 g= 199 1/q= .00502
¥ T T T
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FIGURE 4.32 The attenuation kernels for different spheroidal free oscillations. For a given
mode the kernel indicates the depths that are controlling the attenuation. For example, for
05191, 8ll the attenuation is caused by Q in the upper 100 km of the Earth. (From Stein
etal., in "'Anelasticity in the Earth,” pp. 39-53, 1981; copyright by the American Geophysi-

cal Union.)
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(although not uniquely required by) com-
bined surface-wave, normal-mode, and
body-wave attenuation measurements is
shown in ‘Figure 4.33. This model, SL8,
shows shear attenuation, Q,, and bulk at-
tenuation, Q, (the quality factor in pure
compression). These are related to O, and
Qg by

0,=0, (4.57)

Q.'=LQ; ' +(1-L)Q;"
Q,=[(1-L)0,0,]/(Qs - LQ,)

(4.58)

4. SURFACE WAVES AND FREE OSCILLATIONS

where L = 3(B/a)?. Table 8.1 also lists
another attenuation model with a simpler
structure that is still generally consistent
with free-oscillation observations. Note the
low Q in the upper mantle and the very
high Q in the core. The dispersive effect
on surface waves for such a Q model is
illustrated in Figure 4.34, which shows the
relative correction of either phase velocity
(for surface waves) or period (for normal
modes) as a function of period. Shorter-
period waves that sample the low-Q upper
mantle have strong dispersive effects.
Chapter 7 will discuss ongoing efforts to
map the aspherical structure of anelastic-
ity in the Earth.
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FIGURE 4.33 The SLB8 model for whole-Earth Q. For the upper mantie the bulk attenuation
is infinite; Q,, is the shear Q. (From Anderson and Hart, J. Geophys. fles. 83, 5869-5882,
1878; copyright by the American Geophysical Union.)
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FIGURE 4.34 Fractional change in Love wave
{toroidal mode} and Rayleigh wave (spheroidal
mode) phase velocities (periods) as functions of
period, computed for observed Q observations.
(From Kanamori and Anderson, Rev. Geophys.
Space Phys. 18, 105-112, 1877; copyright by
the American Geophysical Union.)
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SEISMOMETRY

The theory of elastic waves described in
the previous chapters explains how the
Earth vibrates as seismic waves pass
through it and along its surface. Quantita-
tive analysis of these seismic disturbances
requires that the vibrations be instrumen-
tally recorded. The instrumentation must
(1) be able to detect the transient vibra-
tions within a moving reference frame (the
instrument moves with the Earth as it
shakes); (2) operate continuously with a
very sensitive detection capability with ab-
solute timing so that the ground motion
can be recorded as a function of time,
producing a seismogram; and (3) have a
fully known linear response to ground mo-
tion, or instrument calibration, which al-
lows the seismic recording to be accurately
related to the amplitude and frequency
content of the causal ground motion. Such
a recording system is called a seismograph,
and the actual ground-motion sensor that
converts ground motions into some form
of signal is called a seismometer, or a
geophone in exploration seismology. The
design and development of seismic record-
ing systems is called seismometry, and
many successful instruments have been de-
veloped over the past 120 years, almost all
based on the concept of an inertial pendu-
lum. Different concepts are applied to
study other Earth motions such as rota-
tion, tilting, and straining.

The first known attempts to simply reg-
ister the occurrence of ground motion were
conducted by the Chinese as early as
132 Ap. At that time, a Chinese philoso-
pher, Chang Heng, developed the first
seismoscope, an instrument that documents
the occurrence of motion but does not
produce a recording as a function of time.
His instrument presumably involved a pen-
dulum system inside a 6-ft-diameter jar,
from which eight dragon heads protruded
at principal compass directions. Balls were
placed in the mouths of the dragons, and
the internal pendulum was designed so
that ground shaking would dislodge the
ball from the dragon mouth in the direc-
tion of the azimuth to the source. The
underlying technology for this seismoscope
appears to have been lost, and significant
further development of ground-motion
sensors was not pursued until the 1700s.

The Italians developed numerous seis-
moscopes in the early eighteenth century,
motivated mainly by the frequent occur-
rence of earthquakes in the Mediter-
ranean. In 1751 Andrea Bina described a
pendulum system with a pointer etching in
sand, and increasingly sophisticated pen-
dulum systems were incorporated in seis-
moscopes over the next 100 years. The first
attempt to record the time of shaking was
probably made in 1784, when A. Cavalli
placed seismoscopes (involving bowls filled

173



174

to the brim with mercury) above rotating
platforms perforated with cavities, keyed
to the time of day, which would collect any
mercury slopped out of the bowls. In 1851
Robert Mallet applied a ground-motion
sensor that used optical reflection from a
basin of mercury to measure the speed of
elastic waves in surface rocks, initiating
the field of explosion seismology.

The first true seismograph, which
recorded the relative motion of a pendu-
lum and the Earth as a function of time,
was built by Filippo Cecchi in Italy in
1875. A seismoscope was designed to start
a clock and a recording device at the first
onset of shaking. The oldest known seis-
mic record produced by this system is dated
February 23, 1887. A period of rapid in-
strument development and improvement
occurred after 1875. A group of British
seismologists teaching in Japan, the best
known being John Milne, James Ewing,
and Thomas Gray, led to the first rela-
tively long-period systems (mainly sensitive
to ground displacements for nearby events)
and the first vertical-component seismo-
graphs. In these early systems, mechanical
or optical systems amplified the mass mo-
tion, and friction provided the only damp-

Vertical Seismomaeter
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ing of the pendulum oscillators. Euro-
peans pursued the developments in Japan,
and in 1889 the first known seismogram of
a distant earthquake was made on a pho-
tographically recording, horizontal mo-
tion-sensing instrument designed by Ernst
von Rebeur-Paschwitz and located in Pots-
dam. By 1900 the first global array of 40
photographically recording horizontal-
component seismographs built by John
Milne, along with other observatory instru-
ments built in Europe and Japan, provided
the initial seismogram data base for apply-
ing elastic-wave theory to begin to under-
stand Earth vibrations.

5.1 Inertial Pendulum Systems

Almost aill seismometers are based on
damped inertial-pendulum systems of one
form or another. Simple vertical and hori-
zontal seismometer designs are illustrated
in Figure 5.1. The frame of the seismome-
ter is rigidly attached to the ground, and
the pendulum is designed so that move-
ment of the internal proof mass, m, is
delayed relative to the ground motion by
the inertia of the mass. Each pendulum

Horizontal Seismometer

X

X *

FIGURE 5.1 Schematics of inertial-pendulum vertical and horizontal seismographs. Actual
ground motions displace the pendulums from their equilibrium positions, inducing relative
motions of the pendulum masses. The dashpots represent a variety of possible damping
mechanisms. Mechanical or optical recording systems with accurate clocks are used to

produce the seismograms.
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system has an equilibrium position in which
the mass is at rest and to which it will
return following small transitory distur-
bances. The orientation of the pendulum
further determines which component of
ground motion will induce relative pendu-
lum motion.

Ground displacements, U(t), are com-
municated to the proof mass via the at-
tached springs or lever arms, with favor-
ably oriented motions perturbing the sys-
tem from its equilibrium position, leading
to periodic oscillation of the mass. Friction
or viscous damping, represented by the
dashpots, is generally proportional to the
velocity of the mass and acts to restore the
system to its equilibrium position. Small-
scale fluctuations in the springs and damp-
ing elements determine the intrinsic in-
strument noise level, below which actual
ground motions cannot be detected. Al-
though many early seismometers were de-
signed empirically without mathematical
analysis, the equation of motion for sim-
ple, damped harmonic oscillators provides
insight into instrument characteristics.

The motion of the pendulum mass in an
inertial reference frame is given by the
sum of the ground motion plus the devia-
tion of the mass from its equilibrium state,
y(t). For the vertical seismometer in Fig-
ure 5.1, the forces on the mass must act
through the spring and dashpot, with
recording-system friction effects included
in the dashpot. The force from the spring
is —Ky(t), which is directly proportional
to movement of the mass from its equilib-
rium position and which must involve
stretching or contraction of the spring,
which has a spring constant K. The damp-
ing force, —Dy(t), is directly proportional
to the velocity of the mass, with D being a
damping coefficient. Newton’s law
(F = ma) is then

—Ky(t) = Dy(r) =m[ (1) + U(1)].
(5.1)
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This is rearranged to give

¥(t) + 2ywey(t) + wdy(t) = = U(1),
(5.2)

where w,=yK/m, and y= D/2VKm s
the damping factor. The significance of w,
is shown by considering the undamped
(y = 0) system with U(r) = 0.

J(t) + wdy(t) =0, (5.3)
which has purely harmonic solutions of the
form cos wt, sin wyt, or e*“v', where w,
is the natural or resonant frequency of the
undamped system.

All recording systems that translate the
pendulum motion into an actual seismo-
gram, x(¢), involve at least a magnification
coefficient, G, that gives rise to the indica-
tor equation for x(t):

£(t) + 2ywox(t) + wdx(t) = - GU(1).
(5.4)

Solutions of (5.4) for prescribed functional
forms of U(¢) can characterize the seismo-
graph response. This type of linear differ-
ential equation is readily solved using
Laplace transforms (for transient motions)
or Fourier transforms (for stationary
ground oscillations). It is straightforward
to consider simple harmonic forms of U(t)
such as

U(t)=e ™ =coswt —isinwt. (5.5)

Of course, actual ground motion must be a
real function, but it is easiest to analyze
the general form of U(t) and then con-
sider the real part of x(¢). Inspection of
(5.4) indicates that x(z) will have the form
x(t) = x(w)e ", giving

2

x(w) = (5.6)

0’ -0} +2ivyw,



Box 5.1 Time and Frequency Domain Equivalence

In seismometry and many other aspects of seismology, it is often useful to
represent transient time functions by equivalent functions in the frequency do-
main. This is possible using Fourier transforms, which are integral relationships
that state that for an arbitrary function, f(¢), a set of harmonic terms exists such
that

1 L .
f(r) = E;f_wF(w)e“‘”dw, (5.1.1)

where
F(w) =| A(w)le®® = [~ f(r)edr. (5.12)

These transform pairs correspond to a mapping from the time domain to the
frequency domain, where o is angular frequency, A(w) is the amplitude of each
harmonic component, and ¢(w) is the corresponding phase shift (see Figure
5.B1.1). The integral in (5.1.1) is simply a sum, so this theorem states that an

Time Domain Frequency Domain
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‘ frequency, Hz 260 p— frequency, Hz
time Fourier Amplitude lgourci?r Phase
Spectrum pectrum

FIGURE 5.B1.1 A signal that is a function of time, as shown on the left, may be equivalently
represented by its Fourier spectrum, as shown on the right. The amplitude and phase
spectra are both needed to provide the complete time series.

arbitrary ground-motion time series, even an impulsive one, can be expressed as a
sum of monochromatic periodic functions (Figure 5.B1.2). This is possible if the
amplitude and phase alignment of the harmonic terms are chosen appropriately
and the sum is over a continuous distribution of harmonic functions. Destructive
and constructive interference between the harmonics is balanced so that they add
up exactly to the original time series. The functions are called the signal spectrum
and define the frequency-domain representation of the time-domain trace. Fourier
spectra are determined using computers and digital, discretized versions of Fourier
transforms. This text will often represent seismological observations by their
spectra, which contain all of the information of the original seismogram, as long as
both amplitude and phase are considered.
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continues
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| :
ﬁzlA(co)lellwt+t1>(m)lAu)

f(t)

phase spectrum.

FIGURE 5.B1.2 A discretized version of Eq. (5.1.1), showing how a sum of harmonic terms
can equal an arbitrary function. The amplitudes of each harmanic term vary, being prescribed
by the amplitude spectrum. The shift of the phase of each harmonic term is given by the

The complex function x(w) can be repre-
sented in the form x(w)= |x(w)|e’®™
with

Gw?

\/(au2 — a)(z])2 + 4(4)2(1)3')12

|x(w)]=

2wwyy

b= —tan“l(wz__a_)_g) +m, (5.7)

where x(w) is called the frequency re-
sponse of the instrument, and |x(w)| is the
amplitude response and ¢(w) the phase
delay. The actual physical seismogram
would correspond to the real part of this
solution in the time domain,

1l = ) )
x(t) = 5_7;-/_ |x(w)le* e’ dw. (5.8)

As y—0 (undamped), the solutions
have increasing amplitude as o — w,,

which is called resonance. Typically, the
natural period of the seismometer (T =
27/w,) has the maximum amplitude re-
sponse. If y < 1 (underdamped), the mass
responds primarily to periods near the
pendulum period, and the signal tends to
“ring” at that period. For y = 1 the signal
is critically damped and oscillation is mini-
mized, with the mass quickly returning to
rest as ground motion ceases. For y > 1
(overdamped), no oscillations occur, but
the mass returns to rest more slowly. Most
instruments are designed to operate with
near-critical damping so that the seismic
record is not excessively ringy.

If the ground-motion frequency is much
lower than the seismometer frequency
(0 < w,), the amplitude response is pro-
portional to w?/w?, and the seismogram
records ground acceleration. Thus, design
of accelerometers, intended to record
strong acceleration at frequencies near
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130 em

FIGURE 5.2 Early mechanical horizontal-motion seismographs: (a) The 1905 Omori 60-s
horizontal-pendulum seismograph and {b) the 1904 1000-kg Wiechert inverted-pendulum
seismograph. Both instruments etched a record on smoked-paper recorders. Friction on the
stylus provided the only damping in the Omori system, while air pistons (D and D') damped
the Wiechert instrument. Restoring springs, connected to the top of the mass, W, kept the
inverted pendulum in equilibrium, with a special joint at the base of the mass permitting

horizontal mation in any direction.

5-10 Hz, involves seismometers with very
high resonant frequencies. If the driving
frequency is much higher than the natural
frequency (w > w,), displacement on the
seismogram is directly proportional to
ground displacement. Much of the early
developmental work in seismometry sought
to reduce w to yield displacement record-
ings for regional-distance seismometers.
Most modern seismometers are actually
primarily sensitive to ground velocity be-
cause motions of the pendulum mass are
converted to an output voltage signal pro-
portional to the mass velocity. A variety of
instruments with varying response charac-
teristics will be discussed later in this
chapter.

We conclude this discussion of simple
harmonic oscillators by considering two
classic seismic instruments developed
around the turn of the century, shown in
Figure 5.2. The first is the Omori horizon-
tal pendulum seismograph, developed by a
student of John Milne in Japan from 1899
to 1905. The instrument had direct re-

sponse to ground displacement for periods
less than 60 s, with the long pendulum
period achieved by having a nearly vertical
swinging-gate pendulum (increasing the
angle of the pivot arm to the vertical de-
creases the pendulum period). A stylus
attached to the mass etched a record di-
rectly onto a rotating drum covered with
smoked paper. The only damping in the
system was due to the stylus friction and
mechanical friction in the hinges, and, of
course, the restoring force acting on the
mass was simply gravity. Figure 1.5 shows
a recording from an Omori instrument for
the 1906 San Francisco earthquake. In
1898 E. Wiechert in Germany introduced
viscous damping in a horizontal-pendulum
instrument and extended this to an in-
verted-pendulum seismograph in 1900. A
1000-kg mass was used in the 1904 variety,
shown in Figure 5.2b, with mechanical
levers magnifying the signal 200 times and
etching a record on smoked paper. Air-
filled pistons provided the damping.
Wiechert inverted-pendulum secismome-
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ters are still operated today, having pro-
vided more than 90 years of relatively uni-
form instrumental records.

5.2 Earth Nqise

Before continuing a discussion of seis-
mometry developments in this century we
must consider an additional important as-
pect of ground-motion recording: the
ground is never truly at rest. Because all
sources of rapid deformational energy ex-
cite seismic waves and because sources
such as tides, atmospheric pressure, diur-
nal heating of the surface, and human-
induced vibrations are continuous, a con-
tinuous background noise level exists
composed of small signals or microseisms.
Any detection of transient wave arrivals
must be made in the presence of this noise.
Not surprisingly, the background noise
level is temporally and spatially variable
and is not uniform at all frequencies. This
has strongly influenced the design of seis-
mic recording systems in this century.

Wave surf and standing waves in the
ocean are some of the primary sources of
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seismic noise, with water movements con-
tinually generating surface waves in the
solid Earth. Figure 5.3 shows the variation
of background noise ground acceleration
for stations at varying distances from
coastlines. These ground-acceleration
spectra typically have noise peaks at fre-
quencies from 0.15-0.2 Hz. The units are
decibels, given by 10log,,(signal power).
Because signal power is proportional to
the square of the signal amplitude, 20 dB
corresponds to a factor of 10 variation of
the signal amplitude, in this case ground
acceleration. Thus, ground-acceleration
noise varies by a factor of about 10* over
the frequency range shown, and the high-
frequency noise peak will tend to swamp
any seismometer with uniform sensitivity
unless it has a dynamic range that can
resolve very large variations in signal am-
plitudes. This figure also suggests that is-
land sites (RPN is on Easter Istand) will
be much noisier than land sites well re-
moved from the coast. The factor of 10
variation in noise levels in the 0.1-1.0 Hz
passband also indicates that seismic-event
detection will be nonuniform and mea-
surement error will vary from station to
station.

-80
. RPN
-100 Vertical Distance From Coast
:'f:‘ 120 RPN 1 km
o~ ESK 40 km

P it

1 1 g
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[ E 1 1 {11t |
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2 1
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FIGURE 5.3 Power spectra of average background-noise ground acceleration recorded on
vertical-motion accelerometers. Note the peak in noise near 0.2 Hz at all stations and the
systematic decrease in noise with distance from the coast. Figure 5.14 shows the 'station
locations. The units of dB (decibels) are in terms of 10log,g {acceleration power). Thus, 20
dB corresponds to a factor of 10 variation in ground acceleration. (From Hedlin et al., 1888.)
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FIGURE 5.4 Differences in ground-acceleration power spectra at four stations located in
the former Soviet Union between day and night (left) and winter versus summer (right). The
vertical units are decibels, with 20 dB corresponding to a factor of 10 variation in ground
acceleration noise level. (From Given, 1990.)
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Ground noise also exhibits daily and
seasonal variations at sites well removed
from coastlines. Figure 5.4 shows differen-
tial noise spectra from seismic stations in
the former Soviet Union, all of which dis-
play enhanced high-frequency noise during
the daytime and variable seasonal noise
character. Human-induced and atmo-
spheric variations are partly responsible
for the diurnal behavior. Seasonal varia-
tions can reflect ground-water freezing,
changes in atmospheric patterns, and tem-
perature variations of the recording sen-
SOTS.

In the 1960s many studies of ground-
motion noise characteristics were con-
ducted to improve seismograph design. It
was found that placing instruments in deep
mines below the surface or in deep bore-
holes could significantly reduce the back-
ground noise levels, enabling better tran-
sient event detection. Figure 5.5 illustrates

the factor of 10 signal-to-noise enhance-
ment achievable by placing the sensor in a
borehole. This is particularly important for
noisy island sites (although horizontal tilt-
ing cannot be so easily eluded) and is
driving new development of ocean-bottom
borehole instrumentation.

In this text we treat seismic noise as a
nuisance, limiting our ability to observe
transient seismic signals, but we should
note that seismologists have conducted
many interesting studies of microseism
sources. For example, the locations of large
storm centers have been inferred from
noise characteristics of sets of stations.
Ground motions of microseisms vary from
1078 to 1073 cm, and no seismogram can
ever be totally free of some background
noise. Most seismological analyses must
explicitly allow for noise-contaminating
effects on any estimate of a given signal
amplitude and phase spectrum.
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FIGURE 5.5 lllustration of the background noise reduction that can be achieved by using
deep-borehole seismometers in place of vault seismometers. A value 20 dB on the vertical
axis corresponds to a factor of 10 variation in ground acceleration. {(From Incorporated
Research Institutes for Seismology, 1991-1985.)

5.3 Electromagnetic
Instruments and Early Global
Networks

In 1914 a Russian, B. Galitzin, intro-
duced an electromagnetic moving-coil
transducer to convert pendulum mass mo-
tion into an electric current. Motion of a
wire coil in the presence of a magnetic
field generates a signal voltage that is pro-
portional to the mass velocity, which
Galitzin used to rotate a galvanometer coil.
Light reflected from a mirror on the gal-
vanometer coil was recorded on photo-
graphic paper, and a long optical lever
arm was used to produce large magnifica-
tions. This type of electromagnetic system
has dominated instrumentation this cen-
tury, with the optical recording eliminating
friction. The coupling of a seismometer
pendulum, electromagnetic transducer,
and galvanometer also allowed shaping the
instrument response to emphasize a par-
ticular frequency passband. The elec-
tromechanical response of the galvanome-
ter can be approximated by a solution of
the form of (5.7), but with different damp-

ing and resonant frequency corresponding
to the galvanometer characteristics. The
product of the pendulum, transducer, and
galvanometer frequency responses controls
the overall instrument response, leading to
responses that are peaked at the pendu-
lum period.

Instrumental response curves for some
classical mechanical and electromagnetic
seismographs are shown in Figure 5.6. Note
that the Galitzin responses achieve higher
gains due to the optical recording, but they
are more narrowband (i.e., record a nar-
rower frequency range) than early me-
chanical instruments like the Wiechert,
Bosch—-Omori, and Milne-Shaw instru-
ments. These instrument responses clearly
show the strong falloff in response at long
periods, proportional to 7~ % (w?), where
the response is proportional to ground ac-
celeration. The noise spectra in Figure 5.3
show that one of the clear advantages of
the Galitzin electromagnetic systems is that
response at short periods, where the in-
struments respond directly to ground ve-
locity (slope a T'), is reduced near the large
noise peaks near 5 to 6 s.
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FIGURE 5.6 instrument-response curves for a suite of classic seismometers, indicating
their magnification as a function of period. For very long periods all of these instruments are
sensitive ta ground acceleration, with the response falliing off in proportion to 1/ T2, where T

is the period. (Modified from Kanamori, 1888.)

This response tuning was critical for the
1940s development of the short-period
Benioff and long-period Sprengnether
electromagnetic instruments based on the
Galitzin design. These were deployed in
the World Wide Standardized Seismic
Network (WWSSN) in the 1960s. These
instruments were designed to straddle the
strong Earth noise peak, with short-period
instruments having 1-s pendulum periods

and 0.7-s galvanometers, while the long-
period instruments had either 15- or 30-s-
period pendulums with 100-s-period gal-
vanometers.

In the early 1960s, as part of the
VELA-Uniform project sponsored by the
Department of Defense following the move
to underground nuclear testing, a global
array of these instruments was installed.
Each station had three short-period and
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three long-period instruments to record
horizontal and vertical ground motion. Ini-
tially, 30-s-period pendulums in the long-
period Sprengnethers were used, but they
proved to be excessively sensitive to baro-
metric pressure variations, so more stable
15-s-period configurations were adopted by
1965. The distribution of the WWSSN sta-
tions (Figure 5.7) was extensive, reflecting
the global collaboration typical of seismol-
ogy, although clear gaps exist due to both
political situations and ocean basins. This
global network was more extensive than
any preceding instrument deployment and
was equipped with very accurate timing by
crystal clocks and standardized instrumen-
tation.

The instrument responses of the short-
period and long-period WWSSN seismo-
graphs are shown in Figure 5.8, along with
responses for other instruments that domi-

nated seismic data collection from 1922,
when the Wood-Anderson torsion seismo-
graph was developed, to 1976. All of these
except the Wood-Anderson instruments
are electromagnetic systems with gal-
vanometers. The torsion seismographs
simply involve a copper cylinder attached
to a vertical suspension wire. Shaking
causes the cylinder to rotate slightly, mov-
ing a mirror that reflects a light signal to a
photographic recorder. Two designs were
made, one with a 0.8-s period with a mag-
nification of 2800 and the other with a
6.0-s period and a magnification of up to
800. The short-period sensor was critical
for providing regional earthquake record-
ings used to develop the Richter magni-
tude scale.

The WWSSN recordings have been very
extensively utilized because the original
photographic records were filmed on 35-

STATIONS INSTALLED
IN THE
WORLD—WIDE STANDARDIZED
SEISMOGRAPH NETWORK
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FIGURE 5.7 Giobal map indicating the locations of stations of the World Wide Standardized
Seismograph Network [WWSSN). (Courtesy of the U.S. Geologica! Survey.)
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FIGURE 5.8 Instrument response curves for short- and long-period seismometers of the
WWSSN, Benioff, Wood-Anderson, and Press-Ewing varieties, which dominated local and
global data collection from 1950 to 1977. The instrument pairs were designed to minimize
the effects of ground-noise maxima between 5 and 10 s. (Courtesy of H. Kanamaori.)

or 70-mm microfiche, and copies were pro-
vided to major seismic data centers, where
magnified paper copies could be made.
The impact of the WWSSN was tremen-
dous, coming at the time of the plate tec-
tonics revolution, when accurate seismic
recordings were critical for determining
faulting patterns. The accurate timing and
response standardization allowed many
basic studies of Earth structure and earth-
quake sources to be conducted throughout
the 1960s to 1980s.

5.4 Force-Feedback Instruments
and Digital Global Networks

Beginning in the early 1970s seismic
recording systems began to forgo low-
dynamic-range analog recording by ink,

photographic systems, or analog tape
recording in favor of digital recording on
magnetic tape. In essence, these systems
sample the output current from the seis-
mometer and amplification electronics, and
they write the voltage at each time step to
tape rather than use it to drive a mechani-
cal or optical recording system. The first
digital observatory stations were the High
Gain Long Period (HGLP) stations de-
ployed by Columbia University from 1969
to 1971 at sites in Alaska, Australia, Israel,
Spain, and Thailand. The HGLP stations
used sensors similar to those of the
WWSSN, but they included both digital
and optical recordings and bhad better
thermal isolation. HGLP stations were the
first to resolve minimum Earth noise in the
20- to 100-s-period range. Beginning
around 1975, these were superceded by
the Seismic Research Observatories
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(SRO), with the HGLP stations being
modified to become Abbreviated Seismic
Research Observatories (ASRQO). ASRO,
SRO, and digitally upgraded WWSSN
(DWWSN) made up the Global Digital
Seismic Network (GDSN), with additional
digital stations deployed in the Regional
Seismic Test Network (RSTN).

The distribution of the GDSN is shown
in Figure 5.9. Note that the total number
of stations is less than that of the WWSSN.
The SRO stations of the GDSN employ
the KS36000 seismometer, which has three
components and is deployed about 100 m
deep in a borehole. The SRO and ASRO
recording systems write directly to mag-
netic tape, and the response is still sepa-
rated into short- and long-period record-
ings for the SRO sensors, despite the fact

that only one type of seismometer was
used, unlike the separate short- and long-
period sensors of the WWSSN and
HGLP/ASRO. The long-period SRO re-
sponse peaks at a period of 25 s, with a
narrowband amplitude response. This was
motivated by a desire to record 20-s-period
surface waves from earthquakes and from
nuclear explosions for treaty-monitoring
purposes. Figure 5.10 shows examples of
ground impulse responses of GDSN sys-
tems. The filtering effect of the instrument
causes a spike impulse ground motion to
produce a 20-s-period seismogram, which
clearly limits the potential resolution of
rapid ground vibration. These systems were
mainly for recording global surface waves,
and the convenience of digital recording
prompted the first aspherical Earth model
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FIGURE 5.9 Global map indicating the locations of stations of the Global Digital Seismic
Network (GDSN) composed of SRO, ASRO, and DWWSSN stations. These instruments
dominated global data collection from 1977 to 1886. (Courtesy of the U.S. Geological

Survey.)
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FIGURE 5.10 Examples of the impulse
ground-motion response of long-period digital
instruments in the GDSN. Digital seismograms
are processed to account for the instrument-
response distortions when analyzing seismo-
grams. (From Shearer, 1881.)

inversions (see Chapter 7). The major fail-
ing of the SRO system is that the sensors
and electronics exhibit nonlinear re-
sponses for rapid accelerations such as
those associated with large, impulsive
body-wave arrivals. Also, the only high-
frequency recordings were for triggered,
short-period vertical components.

One of the critical aspects of the
KS36000 and most other recent seismic
sensors is that they employ force-feedback
systems. This involves a negative feedback
loop in which a force proportional to the
inertial mass displacement is applied to
the mass to cancel its relative motion. An
electrical transducer converts the mass
motion into an electrical signal to assess
how much feedback force to apply. The
amount of force required to hold the pen-
dulum at rest corresponds to the ground
acceleration. The force-feedback strategy
greatly extends the bandwidth and linear-
ity of a seismometer, because the mass
cannot make large excursions that bend
the springs or levers. Since 1973 all broad-
band seismic sensors have incorporated
force feedback, particularly borehole sen-
sors like the KS36000 or the newer
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KS54000, which intrinsically cannot ac-
commodate large pendulum motions due
to the compact size of the sensors.

Force-feedback systems of various types
have actually existed at least since 1926,
when de Quervain and Piccard used one in
a 21-ton seismograph in Zurich. Much of
the challenge in designing broadband seis-
mometers has been in the development of
stable force-generating systems that can
respond accurately over the whole range
of motions that a seismometer will un-
dergo. It has also been necessary to de-
velop recording equipment with sufficient
dynamic range to exploit the capabilities
of the most recent generation of sensors.

Figure 5.11 shows a schematic of the
Wielandt-Streckeisen STS-1 leaf spring
seismometer and a sample broadband
recording system. The seismometer is a
standard, remarkably compact pendulum-
type design, but its capabilities are mainly
due to the feedback electronics that pre-
vent the mass from moving significantly.
Digitizing the feedback-generated signal
with 16- to 24-bit resolution, careful tim-
ing, filtering, and tape recording are all
critical to retrieving a useful signal.

Figure 5.12 illustrates the merits of the
STS-1 broadband seismograph relative to
WWSSN and GDSN stations. The broad-
band system avoids the artificial separation
of signal energy into separate short- and
long-period channels as was done in the
WWSSN instrumentation. The dynamic
range of the system is so great that using
separate channels that straddle Earth noise
peaks is no longer necessary. Also, the
digital filtering is far less severe than in
the SRO system, allowing retrieval of much
more waveform information.

The magnitude of the progress in seis-
mograph development is dramatically il-
lustrated in Figure 5.13, which compares
the dynamic range and bandwidth of the
latest generation of instrumentation with
those of the WWSSN systems. The new
systems being deployed by the Incorpo-
rated Research Institutions for Seismology
(IRIS) jointly with the U.S. Geological
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Survey (USGS) as the new Global Seismic
Network (GSN) have astounding capabili-
ties. These instruments can record both
Earth tides and high-frequency body waves
ranging from minimum Earth noise levels
up to the strong accelerations expected for

leat spring
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a magnitude 9.5 earthquake 3300 km away.
This new instrumentation, first developed
in 1986 but built on 10 years’ experience
with STS-1-type sensors at the Grifen-
berg seismic array in Germany, is now
being widely deployed around the world.
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FIGURE 5.11 Schematic of the leaf-spring seismometer and system configuration involved
in modern broadband digital seismographs. The Streckeisen STS5-1 leaf-spring seismometers
are attached to feedback electronics that adjust to minimize actual motions of the mass.
The electric currents produced by the feedback are digitized, synchronized with time signals,
and electronically filtered and recorded. These systems can reduce instrument noise by
factars of 20-40 dB relative to GDSN-generation equipment.
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FIGURE 5.12 Comparison of seismograms with varying instrument responses for the same
ground motion. The records on the left compare a teleseismic P wave from the March 4,
1977 Bucharest event, as it would appear on WWSSN short- and long-period seismograms,
with the broadband signal (proportional to ground velacity) actually recorded at station A1 of
the Gréfenberg seismic array in Germany. The broadband recording contains much more
information than either WWSSN recordings alone or combined. The example on the right
compares GOSN (SRO-LP), WWSSN-LP, and broadband ground-displacement recordings for
a P wave from the April 23, 1979 Fiji earthquake that has traversed the Earth's core. The
broadband recording contains much more information that can reveal details of the core
structure. (Madified fram Harges et al., 1980.)
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FIGURE 5.13 The range of ground acceleration (in dB) and period of ground motions spanned
by the very broadband seismic system of IRIS Global Seismic Network (GSN) compared with
capabilities of the WWSSN instrumentation and expected ground accelerations from magni-
tude 5.0 and 8.5 earthquakes at a distance of 30° (angular distance) and from Earth tide
motions. GSN-type instruments have become dominant for global seismic recording since
1986. (From Incorporated Research Institutes for Seismology, 1991-1895.)
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FIGURE 5.14 Giobal distribution of IRIS-GSN and IRIS-IDA seismic stations by the end of
1993. Broadband instrumentation with recorders of different dynamic range are differenti-

ated in the figure. (Courtesy of R. Butler.)

Figure 5.14 shows the current distribu-
tion of the fully configured, latest-genera-
tion seismic stations operated by the
United States by IRIS/USGS. The net-
work is growing continuously, with an ulti-
mate goal of 128 stations with relatively
uniform coverage of the surface. These
systems are also being deployed at another
important global network (open stars in
Figure 5.14) operated by the University of
California at San Diego (now affiliated with
IRIS), called the International Deploy-
ment of Accelerometers (IDA).

The IDA instruments were the best
available from 1977 to 1987 for recording
free oscillations of the Earth. The instru-
ment used in these is a force-feedback
LaCoste—Romberg vertical gravimeter,
which senses vertical motion by the result-

ing change in gravity. The gravimeter mass
is connected to the center plate of a
three-plate capacitor, whose outer two
plates are fixed. As the mass moves, the
voltage generated between the center plate
and the outer plates is proportional to the
displacement. A 5-kHz alternating voltage
is applied to the outer plates, so that the
lower-frequency seismic signal modulates
the amplitude of the 5-kHz signal. The
modulated signal is fed to an amplifier,
which generates a voltage that is propor-
tional to the 5-kHz component of the sig-
nal and thus to the displacement of the
mass. The signal then goes to an integrator
circuit whose output is proportional to the
acceleration of the mass. This is the seis-
mic systems output. This voltage is also
then fed back to the outer capacitor plates
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A Future sites planned

FIGURE 5.15 Giobal distribution of Project GEOSCOPE stations by the end of 1990. STS-1
seismometers are located at all stations, but slightly different recording characteristics
are used at different sites. {Modified from Romanowicz et al., 1981.)
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FIGURE 5.16 Global network of very broadband seismometers planned for the end of the
twentieth century, composed of various international network deployments. (Courtesy of R.
Butler.)



5.4 Force-Feedback Instruments and Digital Global Networks

THRUSTER PACKAGE
DATA RECORDING PACKAGE

SATELLITE 1

SAT. 2
SAT. 3
SAT. 4

LEADER
REENTRY GUIDE

ACOUSTIC
TRANSPONDERS

—‘1'_'-’ arma
DEPTH=5400m
SITE =68°W-25°N

BOREHOLE

Lo

HIP_ DEPLOYIN ISMIC ARRAY

RECORDING
PACKAGE
iN CONE

THRUSTER
PACKAGE

SATELLITES
CKED TO
OREHOLE

BOREHOLE REENTRY GUIDE

2. SEISMIC ARRAY DEPLOYED AND

CONNECTED ' TQ SHIP

FIGURE 5.17 Schematic of ocean-bottom borehole-seismometer deployment and recording
operations. Broadband instrumentation for such submarine boreholes is being designed and

tested in the early 1990s. (From Stephen et al.,

to stabilize the system and increase linear-
ity.

Instrumentation comparable to that of
the GSN (STS-1 seismometers with dual
16-bit digitizing system) have been de-
ployed by France beginning in 1982 under
project GEOSCOPE (Figure 5.15), and to-
gether with instruments deployed by seis-
mologists in Europe, Australia, Canada,
and Japan, a new global network (Figure
5.16) of the highest quality is evolving to
finally replace the WWSSN with a com-
plete global coverage. It will require up to

1988.)

10 years to upgrade the global network
fully with the new, rather expensive instru-
mentation. It is clear that even then, ocean
basins will cause substantial gaps in cover-
age. To overcome this, scientists are cur-
rently developing a broadband borehole
sensor for deployment in ocean basins.
Both the extreme environmental condi-
tions and the difficulty of deploying and
retrieving data from the system provide
major technological challenges. Figure 5.17
illustrates one concept for an ocean-
bottom borehole system.
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5.5 Seismic Arrays
and Regional Networks

Although the first priority for seismic
instrument development was global de-
ployment of observatory instrumentation
to increase knowledge of Earth’s structure,
the underlying principles were quickly
adapted to other instrument capabilities.
Small seismometers, with many hundreds
of sensor channels, were developed for
explosion seismology. These involve easily
deployable geophones that can be laid out
at regular intervals to record high-
frequency seismic waves over short dis-
tances. Portable seismograph systems were
designed as isolated units that could be
deployed near large earthquake ruptures
to record aftershocks or to study the crust
locally. Ocean-bottom seismometers were
designed for similar studies. Yet another
seismological instrumentation develop-
ment came with the VELA-Uniform pro-
ject. This involved dense arrays of seis-
mometers with either fixed locations or
portable systems that were laid out in a
regular pattern. In every case, these in-
volve pendulum-based seismometers, with
the most current ones having force-feed-
back systems to provide great bandwidth.

Major U.S.-deployed seismic arrays have
included the Long Range Seismic Mea-
surements (LRSM) program of the 1960s,
the Geneva arrays of the 1960s to 1970s,
the Large Aperture Seismic Array (LASA),
and the Norwegian Seismic Array
(NORSAR), a large array in Norway that
is still operational. The LRSM involved
mobile seismological observatories that
used film and FM magnetic tape to record
short- and long-period three-component
data. Linear arrays straddling the United
States were deployed primarily to record
underground nuclear tests. The Geneva
Arrays included five arrays around the
United States installed between 1960 and
1963 that ran until 1970 or 1975. These
included arrays in Oklahoma (WMO),
Tennessee (CPO), Oregon (BMO), Utah
(UBO), and the Tonto Forest Observatory
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(TFO) in Arizona. TFO was the primary
research system, but all of these were de-
signed to study multiple-element seismic-
recording procedures to assess potential
advantages for seismological studies. All of
them except TFO had apertures of 4 km,
with 10 to 19 sensors laid out in different
patterns. TFO was larger and denser and
operated until 1975.

LASA was built on the experience with
small arrays and involved an array of ar-
rays with 525 seismometers over an aper-
ture of 200 km. Twenty-one clusters, each
with 25 sensors over 7-km? regions, were
deployed, all recording vertical high-
frequency (> 3 Hz) ground motion. LASA
operated from the mid-1960s to 1978. This
array enabled significant new analyses of
high-frequency seismic waves traversing
the Earth’s deep interior.

NORSAR began operation in 1971 and
involved the subarray cluster design devel-
oped at LASA. Twenty-two subarrays dis-
tributed over 100 km? were included in

FIGURE 5.18 Geometry of small, dense arrays
of high-frequency seismometers deployed at
NORESS and ARCESS. The aperture of these
arrays is only a few kilometers. NORESS is
located in a portion of the much larger array
NORSAR, which has a total aperture of about
100 km.
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the original NORSAR configuration, with
the array being reduced to seven subarrays
with an aperture of 50 km in 1976. The
primary focus of NORSAR has been mon-
itoring underground nuclear testing in
Eurasia, but many other important appli-
cations of its data have been made.

A new form of dense array is currently
deployed in four locations in Europe. This
involves up to 24-element arrays over a
3-km aperture with high-frequency verti-
cal-component sensors and up to four sets
of horizontal components. The first was
deployed within NORSAR and is called
NORESS. Figure 5.18 shows the sensor
arrangement at NORESS and a similar
array in northern Norway called ARCESS.
A third array like this is now deployed in
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Finland (FINESSA), and another is lo-
cated in Germany (GERESS).

Figure 5.19 shows an example of record-
ings of a nearby quarry explosion at
NORESS. The motions are similar across
the array, which allows determination of
the actual wavefront sweeping across the
surface. The array signals are digitally
recorded, and computers can automati-
cally determine the direction from which
the wave came, estimate the distance to
the source, and identify secondary arrivals.
This automation is a key advantage of
small-array geometries and helps to cope
with the vast number of seismic detections
provided by these high-quality arrays. For
deep Earth structure interpretations, ar-
rays have been of major importance be-

50 100

Time, s

FIGURE 5.19 Example seismograms from the NORESS array for a nearby quarry blast.
Individual arrivals, such as the P-wave or S-wave refracted along the top of the mantle (Pn
and Sn, respectively), can be timed across the array, enabling direct measurement of
apparent velocity {dT/dA) ~". The length of time shown is 100 s. (From Mykkelttveit, 1985.)
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Box 5.2 Complete Ground Motion Recording

This chapter has focused on seismic instruments designed to record transient
ground motions, but we must analyze other important ground motions to under-
stand dynamic processes in the Earth. To address displacements caused by
longer-term processes, specialized instruments like LaCoste accelerometers have
been used to observe directly gravitational changes associated with mass redistribu-

tion, and strain and tilt meters

ments along faults and on or near volcanoes. Figure 5.B2.1 shows the types of
ground motion and corresponding phenomena of interest that can be measured at

different frequencies.

have been developed to detect gradual displace-

LaCoste Terrascope S
Acceleration \____
Displacement Continuous GPS @ v e ee ..
Gravity Abs. grav. LaCoste
EDM )
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Leveling Long - base tit
Tit gl =2
L 1 L A 1 L | 1 1 i 1 i
10°® 10°® 10™ 107 10° 10?
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FIGURE 5.B2.1 Various ground-motion measurements and corresponding phenomena that
can be studied using a variety of instrumentation. (Courtesy of D. Agnew.)
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Because noise processes in mechanical systems make measurement of strain and
tilt difficult, strain and tilt meters have a long and interesting historical develop-
ment. Agnew (1986) summarizes such systems well. The most important recent
advances in permanent ground-displacement measurement have involved satellite-
based systems using the Global Positioning Satellite (GPS) system or very long
baseline interferometry (VLBI), which uses phase shifts between galactic radio
signals to measure extremely small lateral displacements. These new instruments,
which were extensively developed in the 1980s, allow us to measure directly plate
tectonic motions rather than having to infer them from transient earthquake

shaking. This will be discussed further in Chapter 11.

cause signals can be summed across the
array with correct delay times (stacked) to
enhance very small arrivals, and the slope
of the travel-time curve of the individual
arrivals can be measured directly.
Regional seismic networks designed to
monitor small-earthquake activity across
the United States began to be extensively
deployed in the 1970s and continue to
operate today. Figure 5.20 shows the loca-

130" 128* 120° 115 110 105 100°
; n — n -

tions of primarily short-period seismome-
ters whose signals are digitally recorded at
various research centers across the coun-
try. The networks are densest in regions of
active seismicity such as California, Wash-
ington, Utah, Missouri, and New England.
These also monitor areas of historically
significant earthquakes with low current-
day activity. The density of stations influ-
ences the lower size threshold for events
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FIGURE 5.20 Regional seismic network stations in the United States, deployed to monitor
local earthquake occurrence. The concentrations of stations reflect historical seismicity
patterns across the country and the locations of oil fields, nuclear plants, and volcanoes.
(From Heaton et al., 19883.)
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FIGURE 5.21 Locations of strong-motion accelerometers in California as of 1990, including
distributions of sensors in major cities. These instruments record ground motions for
nearby large events and are distributed near major seismic zones in the state. (From

Heaton et al., 19893.)

that can be studied. These regional seismic
networks are being upgraded to increas-
ingly sophisticated systems with automated
event-location processing, broader-band
and three-component recording, and accu-
rate calibration to ground motion.
Instruments with very short natural peri-
ods, or accelerometers, are designed to
record very strong ground shaking from
large earthquakes, which saturates the re-
sponses of more standard seismometers
like those in the regional networks. Figure
5.21 also shows the distribution of ac-

celerometer locations in California. The
distribution closely follows the locations
of major faults in the shallow crust,
since these instruments are intended to
record earthquake strong ground motions.
Ground accelerations slightly exceeding 1
g have occasionally been recorded for
earthquakes, and the acceleration records
have played a major role in developing
construction codes for buildings in regions
of high earthquake risk. Accelerometers
have also been deployed to study strong
motions above buried explosions, some-
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FIGURE 5.22 Comparison of accelerometer and regional-network recording capabilities
relative to average noise levels and ground accelerations caused by earthquakes of various

sizes at three distances. {From Heaton et al.,

times recording ground accelerations of
10-30 g, which, of course, sends the in-
strument airborne!

The response characteristics of acceler-
ometers and standard regional-network in-
struments are compared with expected
earthquake accelerations and ground noise
in Figure 5.22. Until the development of
the very broadband systems currently de-
ployed in the GSN, a spectrum of instru-
ments was required to record the full vast
range of ground motions. Several efforts
are currently under way to deploy very
broadband systems in conjunction with re-
gional networks and accelerometer sys-
tems to enable on-scale recording of all
local events, including magnitude 8 rup-

1989.)

tures. The TERRASCOPE network, being
deployed in Southern California, will have
about 20 GSN-compatible stations com-
plementing the other stations in the re-
gion. These provide the most complete
recording of ground motions from local
earthquakes, and several data examples
from TERRASCOPE stations are shown
in this text.

Broadband seismic sensors are also be-
ing deployed in a new United States Na-
tional Seismograph Network (USNSN),
whose planned distribution is shown in
Figure 5.23, along with stations in Alaska,
Hawaii, Central America, and the Carib-
bean. These stations include modern
broadband force-feedback seismometers
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FIGURE 5.23 The broadband United States National Seismic Network (USNSN) in the
process of being deployed. The network will augment regional network recording capabilities
around the country, providing on-scale recordings of large, regional events. Satellite teleme-
try is used to transmit the signals to a central data center at the National Earthquake
Information Center (NEIC) in Galden, Colorado. (Courtesy of the U.S. Geological Survey.)

with high-dynamic-range recording sys-
tems, but they also feature satellite
telemetry to a central collection antenna
located at the National Earthquake Infor-
mation Center (NEIC) in Golden, Col-
orado. The network is designed to locate
and analyze earthquakes larger than mag-
nitude 2.5 anywhere in the country, with
the broadband, high-dynamic-range sys-
tems providing on-scale ground motions
even for the largest events.

Finally, perhaps the most flexible form
of array involves portable seismographs,
which are used in earthquake aftershock
studies, refraction surveying, and deep-
Earth investigations. From early deploy-
able instruments which produced analog
recordings (often with a stylus etching on a
kerosene-smoked paper drum) a new com-
puterized generation of portable seismo-

graphs has evolved. The IRIS organization
has coordinated development of one field
system, called PASSCAL instrumentation,
which has superb programming flexibility
and 24-bit recording capability. Together
with new compact broadband sensors,
these lightweight systems represent a ma-
jor new tool for seismology.
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CHAPTER

SEISMOGRAM INTERPRETATION

In the preceding chapters we have dis-
cussed the theory of wave propagation and
how ground vibrations are recorded as
seismograms. Much of the material in the
remaining chapters of this book will deal
with inferences extracted from seismo-
grams. Our knowledge of the velocity
structure of the Earth and of the various
types of seismic sources is the result of
interpreting seismograms. The more fully
we quantify all of the ground motions in a
seismogram, the more fully we understand
the Earth’s structure and its dynamic pro-
cesses. Seismograms are a complicated
mixture of source radiation effects such as
the spectral content and relative ampli-
tude of the P- and S-wave energy that is
generated at the source, propagation phe-
nomena such as multiple arrivals produced
by reflection and transmission at seismic
impedance boundaries or at the surface,
and frequency band-limiting effects of the
recording instrument. Only experience,
and sound foundations in elastic-wave the-
ory, can guide a seismologist to sort out
coherent vibrations produced by refiec-
tions off deep layers from background
noise or from other arrivals scattered by
the Earth’s three-dimensional heterogene-
ity. This chapter describes the essence of
this procedure, with examples of how sim-
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ple measurements lead to important re-
sults such as the location of the source. In
modern practice many of these procedures
are implemented on computers to assist
with processing vast quantities of data.
Figure 6.1 shows broadband seismic
recordings from a deep earthquake be-
neath Peru recorded at HRV (the
Harvard, Massachusetts, seismic station).
Vertical and horizontal ground motions
are shown, with the horizontal component
oriented transverse to the back azimuth to
the source. The P,S, Love (L), and
Rayleigh (R) waves are marked, but addi-
tional large-amplitude arrivals or phases
clearly exist. The keys to identifying these
arrivals involve assessing their behavior as
a function of distance, measuring the type
of ground motion they produce, and estab-
lishing their consistency from event to
event. These additional arrivals are pri-
marily reflections from velocity discontinu-
ities at depth or from the free surface of
the Earth. The timing of the various ar-
rivals is a predictable function of the depth
of the source and the distance between the
seismic source and receiver. These signals
are more complex than those in Figure 1.1
because the source is deep, which allows
the surface reflections to be observed. The
identification of seismic phases is by no
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FIGURE 6.1 Broadband seismic recordings of a deep earthquake (May 24, 1991) beneath
Peru recorded at HRV (Harvard, Massachusetts). The top and bottom traces are the
tangential and vertical components, respectively. P, S, R and L are labeled, as are several
other phases (A, B, C, D, and E]. A is a P wave that reflected off the surface above the
source {pP), B is an S wave that reflected off the surface halfway between the source and
receiver (§S), C is an S wave that reflected off the surface above the source (sS), Disan $
wave that reflected off the Earth's core (ScS). and E is an S wave that first reflected off the
surface above the source and then off the Earth's core (sScS). Additional arrivals include

surface and core multiple reflections and scattered surface waves.

means a trivial exercise, and in fact many
modern-day seismologists have little direct
experience in the routine ‘“reading” or
“picking” of seismic-phase travel times and
amplitudes. Systematic cataloging of the
absolute and differential travel times of all
phases on seismograms provides informa-
tion that we can use to determine the
structure of the Earth and to generate
travel-time tables that can be used to lo-
cate other earthquakes.

Nearly 3000 seismic stations distributed
worldwide have been systematically report-
ing major seismic phase arrival times to
the International Seismological Centre
(ISC) since 1964. Once direct P arrivals at

different stations have been associated with
a particular event and that event is lo-
cated, one can seek to interpret the addi-
tional arrivals. The ISC data base has more
than 7 million arrival times that have been
attributed to more than 25 seismic phases,
each with a specific structural interaction,
or path, through the Earth. Figure 1.19a
shows a large sample of the ISC travel-time
picks as a function of epicentral distance.
A smaller data set, for particularly well-
located events, is shown in Figure 6.2.
Clear lineaments exist that represent the
travel-time branches of various phases such
as direct P and S, as well as phases that
have more complicated travel paths. One
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FIGURE 6.2 Six thousand travel times picked from phases of select shallow earthquakes
and explosions with known or particularly well-determined locations. Superimposed on the
travel times are the interpretation of the phases and the curves showing predicted arrival
times based on the iasp91 Earth model. The phases are named using a convention that
describes the wave's path through the Earth. For example, PcP is the P wave reflected from
the Earth's core. Same of the arrivals continue to be observed beyond 180°, and they
“‘wrap’’ around onto this plot. (From Kennett and Engdahl, 1881.)

can view this as the Earth’s “fingerprint,”
uniquely characterizing the complexity im-
parted into seismic wavefields by the struc-
ture. A seismogram at any particular dis-
tance will record the corresponding time
sequence of arrivals, although source radi-
ation and depth differences may make
seismograms at the same distance appear
dissimilar. In this chapter we will develop
a nomenclature for the various arrivals
and some simple rules for identifying seis-
mic phases. The fact that coherent travel-
time branches are so pronounced in
Figures 1.19 and 6.2 demonstrates the gross
radial symmetry of the Earth’s layered ve-
locity structure. On the other hand, some
of the unidentified arrivals as well as some
of the scatter about the mean for any

given branch are manifestations of three-
dimensional velocity heterogeneity. As-
suming a radially symmetric, layered veloc-
ity structure enables us to predict the
arrival times of most seismic phases to
within a few percent, which provides the
basis for most earthquake location proce-
dures. Later, we will discuss several tech-
niques for locating earthquakes, including
some that can be adapted to three-dimen-
sional structures.

For many seismic sources, the P and §
waves are radiated from a concentrated
volume, which can be approximated as a
point source. The coordinates of an earth-
quake point source are known as the
hypocenter. The hypocenter is usually given
in terms of latitude, longitude, and depth
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below the surface. The epicenter is the
surface projection of the hypocenter (the
latitude and the longitude), and the focal
depth is the depth below the surface. Epi-
central distance is the distance separating
the epicenter and the recording seismic
station. For large earthquakes, the finite-
ness of the source volume is not negligible,
and then these terms usually refer to the
point at which the rupture initiates. Other
terms such as the earthquake centroid will
be introduced later to define the effective
point of stress release of the source.

The basic character of seismograms de-
pends strongly on the epicentral distance.
At short epicentral distances the character
of seismograms is dominated by the details
of the highly heterogeneous crustal struc-
ture. At large distances, seismograms are
dominated by the relatively simple velocity
structure of the deep mantle and core.
There are four general classifications of
seismograms based on epicentral distance:
(1) Local distances are defined as travel
paths of less than 100 km. Seismic record-
ings at local distances are strongly affected
by shallow crustal structure, and relatively
simple direct P and S phases are followed
by complex reverberations. (2) Regional
distances are defined as 100 < X < 1400 km
(1°< A <13°, where X and A are the
epicentral distance in kilometers and an-
gular degrees, respectively. Regional-dis-
tance seismograms are dominated by seis-
mic energy refracted along or reflected
several times from the crust-mantle
boundary. The corresponding waveforms
tend to be complex because many phases
arrive close in time. (3) Upper-mantle dis-
tances are defined as 13° < A <30° and
seismograms recorded at these distances
are dominated by seismic energy that turns
in the depth range of 70 to 700 km below
the surface. This region of the Earth has a
very complex velocity distribution, with a
low-velocity zone in the upper mantle and
at least two major velocity discontinuities
(400 and 660 km depths) within what is
called the transition zone. (We will discuss
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the details of these velocity structures in
the next chapter) The direct P and §
phases at upper-mantle distances have
complex interactions with the discontinu-
ities. (4) Teleseismic distances are defined
as A > 30° The direct P- and S-wave ar-
rivals recorded at teleseismic distances out
to A = 95° are relatively simple, indicating
a smooth velocity distribution below the
transition zone, between 700 and 2886 km
depth. The simplicity of teleseismic direct
phases between 30° and 95° makes them
invaluable for studying earthquake sources
because few closely spaced arrivals occur
that would obscure the source information
(Chapter 10). The overall seismogram at
these distances is still complex because of
the multiplicity of arrivals that traverse the
mantle, mainly involving surface and core
reflections (Figures 6.1, 1.19). Beyond 95°,
the direct phases become complicated once
again due to interactions with the Earth’s
core. Since the character of seismograms
depends on the epicentral distance, the
nomenclature for phases is also distance
dependent.

6.1 Nomenclature

6.1.1 Body-Wave Nomenclature

Seismic-wave energy can travel multiple
paths from a source to a receiver at a
given distance. For example, as we saw in
Chapter 3, energy traveling through a sin-
gle, flat layer over a high-velocity half-
space will result in P and S head waves,
direct P and S arrivals, and many re-
flected arrivals. The reflected arrivals and
head waves include energy that initially
took off upward from the source before
traversing the shallow layer to interact with
the half-space. To help sort out the vari-
ous phases, seismologists have developed a
nomenclature to describe each phase in
terms of its general raypath.

The simplest and most frequently stud-
ied body-wave phases are the direct ar-
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rivals. They travel the minimum-time path
between source and receiver and are usu-
ally just labeled P or S. At epicentral
distances greater than a few tens of kilo-
meters in the Earth, direct arrivals usually
leave the source downward, or away from
the surface, and the increasing velocities
at depth eventually refract the wave back
to the surface. Figure 6.3a shows two rays
leaving a seismic source. The angle, i, that
the ray makes with a downward vertical
axis through the source is known as the
takeoff angle. If the takeoff angle of a ray
is less than 90°, the phase, or that segment
of the raypath, is labeled with a capital
letter: P or S. If the seismic ray has a
takeoff angle greater than 90° the ray is
upgoing, and if it reflects from the surface
or is a short upgoing segment of a compos-
ite raypath, it is signified by a lowercase
letter: p or s. Upgoing rays that travel
from the source up to the free surface,
reflect, and travel on to the receiver are
known as depth phases.

The various portions of the path a ray
takes, for example, between the source
and the free surface, are known as legs.
FEach leg of a ray is designated with a
letter indicating the mode of propagation
as a P or S wave, and the phase is desig-
nated by stringing together the names of
legs. Thus, there are four possible depth
phases that have a single leg from the
surface reflection point to the receiver:
pP, sS, pS, and sP (see Figure 6.3b). The

P
FIGURE 6.3 {a) Geometry of upgoing and downgoing rays. (b) Geometry of depth phases.

relative timing between the direct arrivals
and the depth phases is very sensitive to
the depth of the seismic source (hence the
name depth phases). Figure 6.4 shows ex-
amples of the pP depth phase for two
events. The pP arrivals must arrive later
than direct P because they traverse a
longer path through the Earth, but their
relative amplitudes can vary due to the
source radiation pattern. The sP phase,
which always arrives after pP, is present
but not impulsive in these examples.

At local and regional distances a special
nomenclature is used to describe the travel
paths. Figure 6.5a shows a very simplified
crustal cross section with primary ray-
paths, and Figure 6.5b shows an actual
regional-distance seismogram as it appears
for two instrument responses. Note how
different the ground motion appears for
the different frequency bands. The
higher-frequency signal allows ready iden-
tification of discrete arrivals, but there is a
continuous flux of short-period energy,
much of which is scattered in the crust.
The direct arrivals at these short distances
are usually referred to as P, and S,. De-
pending on the source depth, the velocity
gradient within the shallow crust, and the
distance between the source and the sta-
tion, these arrivals may be either upgoing
or downgoing phases. The g subscript is
from early petrological models that di-
vided the crust into two layers: an upper
granitic layer over a basaltic layer. Arrivals
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FIGURE 6.4 Examples of depth phases. (a)
Broadband recording of a deep earthquake (June
23, 1991, depth =530 km) beneath Sakhalin
Island recorded at PAS (Pasadena, Californial.
(b} and (c) Recordings of the Peruvian
earthquake shown in Figure 6.1. The middie
trace is a broadband recording at HRV (Harvard,
Massachusetts); the bottom panel is a
simulated short-period recording at COR
(Corvallis, Oregon).

that travel as head waves along, or just
below, the Moho are known as P, and S,,.
The frequency dependence of these head
waves (Chapter 3) tends to make them
longer period. Moho reflections are la-
beled PmP, PmS, SmP, or SmS. (Note
that each leg of the ray is named, and m
denotes a reflection at the Moho.) At dis-
tances less than about 100 km, P, is the
first arrival. Beyond 100 km (depending on
the crustal thickness), P, becomes the first
arrival, as in Figure 6.5. The phase labeled
R, in Figure 6.5 is a short-period Rayleigh
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wave, which will be described later. In
many regions of the Earth additional re-
gional arrivals are observed that have clas-
sically been interpreted as head waves
traveling along a midcrustal velocity dis-
continuity, usually known as the Conrad
discontinuity. In the next chapter we dis-
cuss the Conrad discontinuity further, but
here it is sufficient to state that the arrivals
associated with the Conrad, called P* and
S*, respectively, are observed only in cer-
tain regions. For example, P* is very
strong in the western United States (see
Figure 3.16) but nearly absent in the east-
ern United States. In older literature P*
is written as Pb (b denotes the basaltic
layer).

At distances beyond 13°, P, amplitudes
typically become too small to identify the
phase, and the first arrival is a ray that has
bottomed in the upper mantle. The stan-
dard nomenclature for this arrival is now
just P or S, although subscripts are used
to identify different triplication branches
for the transition zone arrivals. Seismic
phases that reflect at a boundary within
the Earth are subscripted with a symbol
representing the boundary. For example,
P-wave energy that travels to the core and
reflects is called PcP, the ¢ indicating
reflection at the core. In a spherical Earth
it is possible for a ray to travel down
through the mantle, return to the surface,
reflect, and then repeat the process (Figure
6.6). Because the original ray initially trav-
eled downward, the phase is denoted by a
capital letter. The free-surface reflection is
not denoted by a symbol; rather, the next
leg is just written P or S. This type of
phase is known as a surface reflection.
Some common surface reflections are PP,
PS, and PPP, where PP and PS each have
one surface reflection (involving conver-
sion for PS), and PPP has two surface
reflections. Multiple reflections from both
the core and surface occur as well, such as
PcPPcP, ScSScS (ScS,), and ScSScSScS
(8cS;) (see Figure 6.7). Both reflected
phases and surface reflections can be gen-
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FIGURE 6.5 (a) A simplified cross section of a two-layer crust and corresponding raypaths
for various phases observed at regional distances. (b) Broadband and short-period seismo-
grams for an event located 300 km from PAS. The crustal phases are much more apparent
at high frequencies. The phases are complex due to muitiple travel paths within the crust.

erated by depth phases. In this case the
phase notation is preceded by a lowercase
s or p, for example, pPcP and sPP (Figure
6.7). All of these phases are a natural
consequence of the Earth’s free surface
and its internal layering, combined with
the behavior of elastic waves.

The amplitude of body-wave phases
varies significantly with epicentral dis-
tance. This occurs both because reflection
coefficients depend on the angle of inci-
dence on a boundary and because the ve-
locity distribution within the Earth causes
focusing or defocusing of energy, depend-
ing on the behavior of geometric spreading

along different raypaths. Thus, the fact
that a raypath can exist geometrically does
not necessarily mean it will produce a
measurable arrival. For example, the
P-wave reflection coefficient for a verti-
cally incident wave on the core is nearly
zero (the impedance contrast is small), but
at wider angles of incidence the reflection
coefficient becomes larger. Thus, PcP can
have a large amplitude in the distance
range 30° < A <40°. The surface reflec-
tions PS and SP do not appear at dis-
tances of less than 40°, but they may be
the largest-amplitude body waves beyond
100°. Progressive energy losses due to at-
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Box 6.1 Seismic Waves in the Ocean

In the early 1940s D. Lineham reported a class of seismic waves that were
observed only on coastal and island seismic stations. These seismic waves, denoted
T waves (tertiary waves, compared to primary and secondary waves), travel at
very low phase velocities and correspond to sound waves trapped in the oceanic
water layer. The normal salinity and temperature profile of the ocean conspires to
decrease the compressional velocity of seawater from 1.7 km/s at the surface to
about 1.5 km/s at a depth of 800-1300 m. Below this depth the velocity increases.
This low-velocity channel is known as the SOFAR (sound fixing and ranging
channel), and it traps sound waves very efficiently. Sound waves that enter the
SOFAR channel can bounce back and forth between the top and the bottom of the
channel (beyond critical angle), and since the attenuation of seawater is very low,
the energy can travel very long distances, eventually coupling back into solid rock
at ocean coastlines. For some shallow volcanic events the observed T waves may
be larger than the P and S arrivals by a factor of 5 or more.

The multiply reflected nature of T waves results in a complex wave packet. The
T phase does not have a sharp onset and may produce ringing arrivals that last
longer than 2 min. They are high-frequency waves (never observed at periods
larger than 2 s) and are usually monochromatic. T waves are best observed on
ocean-bottom seismometers (OBS), although they are occasionally observed as
converted phases at island seismic stations. These converted phases are referred as
TPg, TSg, or TRg. Figure 6.B1.1 shows an example T phase. Considerable
research has been done on T phases for two reasons: (/) submarine noise can
generate T phases that have been observed up to 1000 km away, and (2) they are a
powerful tool for discriminating between underwater nuclear explosions and
natural earthquakes. In the case of nuclear explosions, the sound is injected
directly into the SOFAR channel and can be 30 times larger than the P or §
waves.

FIGURE 6.B1.1 Short-period recording showing a typical T phase recorded at an island
station. (From Kulhanek, 18390).
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FIGURE 6.6 Raypaths for various surface
reflections observed in the Earth. (Modified from
Bullen and Bolt, 1985.)
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tenuation cause multiple reverberations to
become smaller (Figure 6.7). Amplitudes
are further complicated by variability of
excitation, which depends on the orienta-
tion of the seismic source. Figure 6.7 shows
a three-component recording with various
phases identified, showing how the polar-
ization of ground motion also critically in-
fluences the amplitude of individual ar-
rivals.

Direct P waves that travel beyond 95°
show rapidly fluctuating, regionally vari-
able amplitudes. Beyond 100° the ampli-
tudes decay rapidly, and short-period en-
ergy nearly disappears beyond 103°.
Short-period P waves reappear beyond
140° but with a discontinuous travel-time

542km HIA del=18.1
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FIGURE 6.7 Examples of seismograms recorded at upper-mantle and teleseismic dis-
tances. Multiple S-wave (S¢S, reflections off the core and free surface (s5¢S,,) are shown
at the top, on a long-period transverse-component signal. Note that it takes about 15 min
for an S wave to travel down to the core and back. A three-component recording is shown
below, with the E-W component being naturally rotated as the transverse component. Note
the different observability of phases on each component. (Lower figure from Simon, 1981).
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branch (see Figure 6.2). The distance range
103° < A < 140° is called the core shadow
zone and is caused by a dramatic drop in
seismic velocities that occurs going from
the base of the mantle into the core. Body
waves that pass through the core have
their own nomenclature. The legs of P
waves traversing the outer core are de-
noted by a K (from Kernwellen, the Ger-
man word for core). As discussed in the
next chapter, the outer core is a fluid, so
only P waves can propagate through it.
Thus a P wave that travels to the core,
traverses it, and reemerges as a P wave is
denoted as PKP (or abbreviated P’). Simi-
larly, it is possible to have phases PKS,
SKS, and SKP. The leg of a P wave that
traverses the inner core (which is solid) is
denoted with an I (e.g., PKIKP); an §
wave that traverses the inner core is writ-
ten as J (e.g., PKIKP). A reflection from
the inner core-outer core boundary is de-
noted with an i (e.g., PKiKP). Figure 6.8
shows the raypaths for several different
core phases. There is a great proliferation

PKP

Mantle

PKKP

FIGURE 6.8 Raypaths for various core phases.
The core-mantle boundary is at a depth of 2886
km, and the inner core-outer core boundary is
at a depth of approximately 5150 km. (Modified
from Bullen and Bolt, 1985.)
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of phase combinations, not all of which
will have significant energy.

Since the core-mantle boundary is such
a strong reflector, it produces both topside
(e.g., PcP) and bottomside (e.g., PKKP)
reflections. P waves reflected once off the
underside of the boundary are denoted
PKKP, and other phases include SKKS,
SKKP, and PKKS. Paths with multiple un-
derside reflections are identified as PmKP,
SmKS, etc., where m gives the number of
K legs and m — 1 gives the number of
underside reflections. Seismic arrays have
provided observations of P7KP (see Fig-
ure 7.54). Figure 6.9 shows some examples
of core phases. The outer core has little
P-wave attenuation, so short-period P sig-
nals can be observed even for phases with
long path lengths in the core. Multiple
PKP branches can be observed at a given
distance due to the spherical structure of
the core and velocity gradients within it.
Chapter 7 will elaborate on this. Note the
decrease in amplitude of the P, PcP, and
PKiKP phases in Figure 6.9. This results
mainly from geometric spreading in the
Earth and from weak reflection coeffi-
cients at different boundaries for the latter
phases.

The reader should be careful not to
confuse the multiplicity of seismic arrivals
with complexity of the source process or
with the existence of more than one initial
P and one initial S spherical wavefront
released from the source. First, remember
that seismic rays are an artifice for track-
ing a three-dimensional wavefront and that
wave interactions with any boundary or
turning point in the Earth have
frequency-dependent effects. Interactions
with the Earth strongly distort the initial
outgoing P wavefront, folding it back over
on itself and begetting secondary wave-
fronts as energy partitions at boundaries.
The body-wave nomenclature simply keeps
track of the geometric complexity involved.
The energy that arrives at one station as P
may arrive at another station as PP with
additional propagation effects. It is thus
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FIGURE 6.9 Examples of core phases, on short-period recordings. PKP can have multiple
arrivals at a given station because of the geometry of the core. Note the strong amplitude
variation between P, PcP, and PKiKP. This is caused by geometric spreading and attenuation
along each path. (Left portion courtesy of X. Song; right portion from Engdanhl et al., 1974.
Reprinted with permission of the Royal Astronomical Society.)

constructive to think of this as a wavefield
that has been selectively sampled at dif-
ferent locations as a function of time rather
than as discrete energy packets traveling
from source to receiver. If we knew the
Earth’s structure exactly, we could reverse
the propagation of the entire wavefield
back to the source, successfully recon-
structing the initial outgoing wavefront. Of
course, sources can also have significant
temporal and spatial finiteness, often visu-
alized as subevents, each giving rise to its
own full set of wave arrivals that super-
pose to produce very complex total ground
motions. Because of our imperfect knowl-
edge of planetary structure, as described
in the next chapter, there are limits to how
well we can separate source and propaga-
tion effects.

6.1.2 Surface-Wave
Nomenclature

The nomenclature for surface waves is
far simpler than that for body waves. This,
of course, results from the fact that ali
surface waves travel along the surface, and
the complex interference of P and § waves
that yields the surface wave is treated col-
lectively rather than as discrete arrivals.
Most of the nomenclature for surface
waves is related to the frequency band of
the observation. At local and regional dis-
tances, short-period (<3 s) fundamental
mode Rayleigh waves are labeled R,. R,
excitation is very dependent on the focal
depth; if the source depth is greater than
3 km, R, is usually absent. R, propaga-
tion depends only on the seismic proper-
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FIGURE 6.10 Examples of A, and L. (a) A,

wave at 39 km produced by a shallow 2000-1b

explosion in Maine. The upper trace is the raw seismogram, while the lower trace is low-pass
filtered with a cutoff of 4 Hz. (b) Vertical component of a seismogram from an underground
nuclear explosion at Lop Nor, China. Epicentral distance is 24°. The L, phase is a ringy
sequence of arrivals with group velocities of 3.6-3.4 km/s. (Part a is from Kafka and Ebel,

1988.)

ties of the upper crust, for which most
paths have an average group velocity of
about 3 km/s. In most regions, R, Is
rapidly attenuated, and it is rare to iden-
tify it beyond a few hundred kilometers.
High-frequency overtones, or higher-mode
Rayleigh waves, as well as some high-
frequency Love-wave overtone energy
combine to produce a phase called L,. L,
waves have a typical group velocity of about
3.5 km/s and can be large-amplitude ar-
rivals on all three components of motion
(vertical, radial, and transverse) out to 1000

km. L, phases are the main high-frequency
arrival at regional distances in regions of
thick continental crust. Figure 6.10 shows
examples of R, and L.

In general, Rayleigh waves with periods
of 3 to 60 s are denoted R or LR, and
Love waves are denoted L or LQ (the Q
is for Querwellen, a German word used to
describe Love waves). Very long-period
surface waves are often called mantle
waves. The periods of mantle waves ex-
ceed 60 s, with corresponding wavelengths
of several hundred to about 1200 kilome-
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FIGURE 6.11 Profiles of transverse-component (top) and longitudinal-component (bottom)
long-period seismograms for the 1989 Loma Prieta garthquake. The corresponding vertical
components are shown in Figure 1.7. Great-circle arrivals of Love waves (G;), Rayleigh waves

(R;), and Rayleigh-wave overtones (X)) are la

ters. Mantle waves from large earthquakes
can reappear at a seismic station as they
make a complete circuit around the globe
on a great-circle path (this was discussed
in Section 4.3). Figure 1.7 and Figure 6.11
show profiles of long-period ground mo-
tions recorded globally for the 1989 Loma
Prieta earthquake. Love waves are polar-
ized such that they are seen on only the

beled. (From Velasco et al., 1984.)

horizontal transverse component, whereas
Rayleigh waves are seen on both the verti-
cal and horizontal longitudinal compo-
nents. The Rayleigh waves are labeled
R,, R,, R, etc., indicating wave packets
traveling along the minor arc (odd num-
bers) or major arc (even numbers) of the
great circle. R, is the same packet of
energy as R,, except it has traveled an
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additional circuit around the Earth, and
R, is the next passage of the R, wave.
Long-period Love waves are labeled
G,,G,, etc. after Gutenberg. On the ra-
dial components of motion additional ar-
rivals between R, arrivals correspond to
higher-mode Rayleigh waves, which have
group velocities that differ significantly
from those of the fundamental modes.
These are labeled variously as O,,0, or
X,, X,, etc. The overtone wave groups are
more sensitive to deeper mantle structure
than are fundamental modes of compara-
ble period.

6.2 Travel-Time Curves

Numerous seismologists have compiled
large arrival-time data sets like that shown
in Figure 6.2. Average fits to the various
families of arrivals are known as travel-time
curves or charts. The first widely adopted
empirical travel-time curves were pub-
lished by Sir Harold Jeffreys and Keith
Bullen in 1940; the tabular form of these
travel-time curves, called travel-time ta-
bles, is referred to as the J-B tables
(Jeffreys and Bullen, 1958). These repre-
sented painstaking data-collection efforts
over the first four decades of the century,
using a global array of diverse seismic sta-
tions. Careful statistical treatments were
used to smooth the data so that meaning-
ful average travel times are given by the
tables. One can also use travel-time tables
to calculate the ray parameter (the deriva-
tive of the travel-time curve) for a particu-
lar phase at a given distance and to calcu-
late source depth. The J-B tables are re-
markably accurate, and for teleseismic dis-
tances they can predict the travel times of
principal seismic phases to within a few
seconds. For a typical teleseismic P-wave
travel time of 500 s, the tables are accurate
to within a fraction of a percent of the
total travel time. The J-B times are less
useful at regional and upper-mantle dis-
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tances, where strong heterogeneity affects
times. Much of the inaccuracy in the
travel-time tables comes from uncertainty
in the origin time of the earthquake
sources that generated the waves. In 1968
Eugene Herrin and colleagues attempted
to improve the accuracy by using only
well-located earthquakes and underground
nuclear explosions. The resulting travel-
time curves, known as the 1968 tables
(Herrin et al., 1968), improved the J-B
tables slightly at teleseismic distances and
more at upper-mantle distances. Kennett
and Engdahl (1991) used the complete ISC
catalogue of arrival picks to construct the
most accurate, radially symmetric travel-
time curves yet available, known as iasp91
(Kennett, 1991). Figure 6.12 shows the
iasp91 curve for a 600-km-deep seismic
source. The shape of the direct P-wave
branch in Figure 6.12 is generally consis-
tent with a gradual increase in velocity
with depth in the mantle (see Chapter 3).
On the scale of the figure, complexity of
the P-wave branch in the distance range
15°-24° is not clear, but triplications from
the transition zone are included; this com-
plexity will be discussed in detail in the
next chapter. The later branches are iden-
tified by finding paths through the Earth
that are consistent with the observed times.

The details of a travel-time curve de-
pend strongly on the depth of the source;
seismic sources not at the surface have
separate curves for all depth-phase
branches (compare Figures 1.19b and 6.12).
The depth phases are most dramatically
affected, but all the travel times will
change. For example, the core shadow on-
set is at 103° for a surface focus, but it
starts at 95° for a 600-km-deep earth-
quake.

Travel-time curves are a primary tool
for interpreting a seismogram and identify-
ing phases. If the location of the source is
not independently known, the usual proce-
dure is first to determine an approximate
epicentral distance. This usually amounts
to picking the P-wave arrival time and the



214 6. SEISMOGRAM iINTERPRETATION

40‘1["1"‘ ll‘lllrl!]lli‘]l]lf[lll

PP

unu aurry

- -

- -

lllllllIlellllllllllllllllljlllJlJ

20. 40. 60. 80. 100. 120. 140. 160. 180.
Delta deg

FIGURE 6.12 Travel-time curves for the empirical model iasp31 for a 600-km-deep source.
This model prediction indicates the arrival times of the major depth phases. The additional
depth phase travel time curves add complexity relative to the surface-focus travel time
curve, one of which is shown in Figure 1.18b. Phases that extend beyond 180° have
travel-time curves whose times increase to the left. (From Kennett, 1991.)
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Box 6.2 Travel-Time Curves Obtained by Stacking
Digital Seismograms

The availability of large data sets of digitally recorded seismograms makes it
possible to construct “travel-time curves” without actually picking individual phase
arrivals. If seismograms of many earthquakes are ordered in distance and plotted
as a function of travel time, the corresponding figure is known as a record section.
The moveout of the various phases in the record section produces coherent
lineaments that correspond to travel-time branches. The coherence arises because
the high-amplitude phases arrive in a systematic fashion, and therefore seismo-
grams of similar epicentral distance will have a similar character. It is possible to
sum together the seismograms of several events or event-station pairs over a small
window of epicentral distances (e.g., 1° + 0.5°), thus enhancing coherent signals
and diminishing the amount of random noise. This is known as stacking a record
section. Stacking seismograms directly has several problems; for example, the size
of individual phases depends on the size of the event. This means that the stacked
section will mostly depend on the largest events. Second, the polarity of various
phases depends not only on propagation phenomena such as reflections but also
on the orientation of the seismic source. In an attempt to correct for these factors,
most stacked record sections actually sum seismograms that have been normalized
to a reference phase amplitude, and only the relative amplitude of the signal is
kept. When these corrected seismograms are stacked, coherent information gives a
large-amplitude arrival. The stacked record section provides a travel-time curve
that should be devoid of arrival-picking errors or systematic bias in picking
procedures. Perhaps the biggest advantage of stacking is that some relative-ampli-
tude information is preserved. Various phases will be strong at certain distances
but very small at other distances, and this provides important information about
the elastic properties of the Earth.

Peter Shearer (1991) developed stacking procedures for global data sets and
investigated the details of the upper-mantle velocity structure. Figure 6.B2.1 shows
a stacked record section of 32,376 long-period digital seismograms representing
1474 earthquakes. Comparing Figure 6.B2.1 with Figure 1.19 allows identification
of the major travel-time branches (the arrival of the Rayleigh wave is marked by
the strongest arri