
Computational Physics
An Introduction

Second Edition

Computational Physics
An IntroductÎon

Second Edition

Franz J. Vesely
Institute of Experimental Physics
University of Vienna
Vienna, Austria

Springer Science+Business Media, LLC

Library of Congress Cataloging-in-Publication Data

Vesely, Franz.
Computational physics: an introductionIFranz J. Vesely.-2nd ed.

p. cm.
Includes bibliographical references and index.
ISBN 978-1-4613-5500-7 ISBN 978-1-4615-1329-2 (eBook)
DOI 10.1007/978-1-4615-1329-2

1. Physics-Methodology. 2. Differential equations-Numerical solutions. 3. Numerical
analysis. 4. Mathematical physics. 1. Title.

QC6 .V47 2001
530.15'94-dc21

2001041335

The First Edition of Computational Physics: An lntroduction published by Plenum Press, New York, in 1994,
was a translation (by the author) of Computational Physics: Einfiihrung in die Computative Physik,
originally published in 1993 by WUV-Universitătsverlag, Vienna, Austria.

Illustration of John von Neumann (p. 47) used with permission of Marina von Neumann Whitman (daughter
of John von Neumann), Ann Arbor, Michigan.

Illustration of Ludwig Boltzmann (p. 161) used with permission of Zentralbibliothek Physik, University of
Vienna, Vienna, Austria.

Illustration of Erwin SchrOdinger (p. 195) used with permission of Ruth Braunizer (daughter of Erwin
SchrOdinger), Alpbach, Tyrol, Austria.

ISBN 978-1-4613-5500-7

© 2001 Springer Science+Business Media New York

Origina11y published by Kluwer Academic IPlenum Publishers, New York in 2001

Softcover reprint of the hardcover 2nd edition 200 1

http://www.wkap.nV

10 9 8 7 6 5 4 3 2 1

A C.I.P. record for this book is available from the Library of Congress

Ali rights reserved

No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written
permission from the Publisher

To my wife

Preface 2nd Edition vii

Preface to the Second Edition

In a rapidly evolving field such as computational physics, six years is an eternity.
Even though many of the elementary techniques described here are of venerable age,
their assembly into sophisticated combined methods and their intensive application
to ever new problems is an ongoing and exciting process. After six years, a new
edition of this textbook must therefore take into account some of the new vistas
that have opened up recently.

Apart from these additions and some didactic improvements, the general struc
ture of the book holds good. The first three chapters are devoted to a thorough,
if concise, treatment of the main ingredients from numerical mathematics: finite
differences, linear algebra, and stochastics. This exercise will prove valuable when
we proceed, in chapters 4 and 5, to combine these elementary tools into powerful
instruments for the integration of differential equations. The final chapters are
devoted to a number of applications in selected fields: statistical physics, quantum
mechanics, and hydrodynamics.

I will gradually augment this text by web-resident sample programs. These will be
written in JAVA and will be accompanied by short explanations and references to
this text. Thus it may prove worthwhile to pay an occasional visit to my web-site

www.ap.univie.ac.at/users/Franz.Vesely/

to see if any new applets have sprung up.

Vienna, August 2000

viii Preface 2nd Edition

A subjective view on related texts:

In the stalls of university bookstores numerous texts may be found that have
"Computational Physics" in their title. Being a competitor I will not attempt at
an objective critique of them, but before you choose one I suggest you answer two
questions for yourself: 1) Is it really a book on computational physics, or rather
a treatise on the author's own branch of physics, with special consideration of nu
merical techniques? 2) Are the algorithms used in the book thoroughly explained
and derived in a compelling way, or are they simply introduced as "falling out of
the blue"? - If the book passes both tests, take it.

After this general caveat I feel free to recommend the following volumes, as
either similar in spirit or complementary to mine. Anything that is not mentioned
here need not be bad - I simply may not be aware of it.

POTTER, D.: COMPUTATIONAL PHYSICS. Wiley, New York 1980.
Very valuable text; in some places too demanding for the beginner.

HOCKNEY, R. W., AND EASTWOOD, J. W.: COMPUTER SIMULATION US
ING PARTICLES. McGraw-Hill, New York 1981.
Very good, particularly, but not exclusively, for plasma physicists; covers large ar
eas of computational physics, in spite of the seemingly restrictive title.

HOOVER, W. G.: COMPUTATIONAL STATISTICAL MECHANICS. Elsevier, Ams
terdam 1991.
Beautiful account of how to do profound physics by computing.

PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., AND VETTERLING,
W. T.: NUMERICAL RECIPES IN FORTRAN. Cambridge University Press, Cam
bridge 1992.
Excellent handbook of modern numerical mathematics; comes with sample programs
in various programming languages.

GIORDANO, N. J.: COMPUTATIONAL PHYSICS. Prentice-Hall, New Jersey 1997.
This is one of those texts in which little is said about the origin of the the algo
rithms used. However, it is redeemed by its large collection of charming physical
applications. Use it together with a more method-oriented text.

GOULD, H., AND TOBOCHNIK, J.: INTRODUCTION TO COMPUTER SIMULA
TION METHODS: ApPLICATION TO PHYSICAL SYSTEMS. Addison-Wesley, Read
ing 1996.
Nice "hands-on" introduction; starts out with elementary physics problems and
works up to such cutting-edge applications as dynamical quantum simulation and
renormalization.

Preface 2nd Edition

GARCIA, A. L.: NUMERICAL
Jersey, 1999.
Carefully organized introduction
code and graphics.

ix

METHODS FOR PHYSICS. Prentice Hall, New

to the field; presents many examples, including

GERSHENFELD, N.: THE NATURE OF MATHEMATICAL MODELING. Cambridge
University Press, Cambridge 1999.
Grand tour through applied mathematics, covering analytical, numerical and ob
servational models.

Preface to the First Edition

Computational physics is physics done by means of computational methods. Com
puters do not enter into this tentative definition. A number of fundamental tech
niques of our craft were introduced by Newton, Gauss, Jacobi, and other pioneers
who lived quite some time before the invention of workable calculating machines.
To be sure, nobody in his or her right state of mind would apply stochastic met
hods by throwing dice, and the iterative solution of differential equations is feasible
only in conjunction with the high computing speed of electronic calculators. Nev
ertheless, computational physics is much more than "Physics Using Computers."

The essential point in computational physics is not the use of machines, but
the systematic application of numerical techniques in place of, and in addition to,
analytical methods, in order to render accessible to computation as large a part of
physical reality as possible.

In all quantifying sciences the advent of computers rapidly extended the appli
cability of such numerical methods. In the case of physics, however, it triggered
the evolution of an entirely new field with its own goals, its own problems, and
its own heroes. Since the late forties, computational physicists have developed
new numerical techniques (Monte Carlo and molecular dynamics simulation, fast
Fourier transformation), discovered unexpected physical phenomena (Alder vor
tices, shear thinning), and posed new questions to theory and experiment (chaos,
strange attractors, cellular automata, neural nets, spin glasses, ...).

An introductory text on computational physics must first of all provide the
basic numerical/computational techniques. This will be done in Parts I and II.
These chapters differ from the respective treatments in textbooks on numerical
mathematics in that they are less comprehensive - only those methods that are of
importance in physics will be described - and in focusing more on "recipes" than
on stringent proofs.

Having laid out the tools, we may then go on to explain specific problems of
computational physics. Part III provides a - quite subjective - selection of modern
fields of research. A systematic classification of applied computational physics is
not possible, and probably not even necessary. In fact, all areas of physics have
been fertilized, and to some extent transformed, by the massive (and intelligent)
use of numerical methods. Any more advanced sequels to this introductory book
would therefore have to be either collections of contributions by several authors,
or else monographs on various subfields of computational physics.

xi

XlI Preface 1st edition

Appendix A is devoted to a short description of some properties of computing
machines. In addition to those inaccuracies and instabilities that are inherent in
the numerical methods themselves, we always have to keep in mind the sources of
error that stem from the finite accuracy of the internal representation of numbers
in a computer.

In Appendix B an outline of the technique of "Fast Fourier Transformation"
(FFT) is given. The basic properties and the general usefulness of the Fourier
transform need no explanation, and its discretized version is easy to understand.
But what about the practical implementation? By simply "coding along" we would
end up at an impasse. The expense in computing time would increase as the square
of the number N of tabulated values of the function to be transformed, and things
would get sticky above N = 500 or so. A trick that is usually ascribed to the au
thors Cooley and Tukey (see [PRESS 86]) leads to a substantial acceleration that
only renders the procedure practicable. In this fast method, the computing time
increases as N log2 N only, so that table lengths of the order N = 10.000 are no
problem at all.

When pregnant with a book, one should avoid people. If, however, one has
to seek them, be it to ask for advice, to request support or to beg for the
taking over of teaching loads, they should be such patient and helpful people
like Renato Lukac, Martin Neumann, Harald Posch, Georg Reischl or Kon
rad Singer.

What one is doing to one's family cannot be made good by words alone.

Vienna, March 1993 F. J. Vesely

Contents

I The Three Pillars of Computational Physics

1 Finite Differences
1.1 Interpolation Formulae

1.1.1 NGF Interpolation
1.1.2 NGB Interpolation
1.1.3 ST Interpolation

1.2 Difference Quotients ..
1.2.1 DNGF Formulae
1.2.2 DNGB Formulae
1.2.3 DST Formulae .

1.3 Finite Differences in Two Dimensions
1.4 Sample Applications

1.4.1 Classical Point Mechanics ..
1.4.2 Diffusion and Thermal Conduction

1

7
9
9

10
11
12
12
14
15
17
18
18
19

2 Linear Algebra 21
2.1 Exact Methods . 22

2.1.1 Gauss Elimination and Back Substitution 22
2.1.2 Simplifying Matrices: The Householder Transformation 25
2.1.3 LU Decomposition 26
2.1.4 Tridiagonal Matrices: Recursion Method 29

2.2 Iterative Methods 31
2.2.1 Jacobi Relaxation. 32
2.2.2 Gauss-Seidel Relaxation (GSR) . . 34
2.2.3 Successive Over-Relaxation (SOR) 34
2.2.4 Alternating Direction Implicit Method (AD!) 36
2.2.5 Conjugate Gradient Method (CG) 36

2.3 Eigenvalues and Eigenvectors 40
2.3.1 Largest Eigenvalue and Related Eigenvector . 40
2.3.2 Arbitrary Eigenvalue/-vector: Inverse Iteration 42

2.4 Sample Applications 43
2.4.1 Diffusion and Thermal Conduction 43
2.4.2
2.4.3

Potential Equation
Electronic Orbitals .

xiii

44
45

xiv

3 Stochastics
3.1 Equidistributed Random Variates

3.1.1 Linear Congruential Generators
3.1.2 Shift Register Generators.

3.2 Other Distributions
3.2.1 Fundamentals
3.2.2 Transformation Method
3.2.3 Generalized Transformation Method:
3.2.4 Rejection Method
3.2.5 Multivariate Gaussian Distribution
3.2.6 Equidistribution in Orientation Space .

3.3 Random Sequences . . .
3.3.1 Fundamentals
3.3.2 Markov Processes
3.3.3 Autoregressive Processes
3.3.4 Wiener-Levy Process . .
3.3.5 Markov Chains and the Monte Carlo method.

3.4 Stochastic Optimization . .
3.4.1 Simulated Annealing
3.4.2 Genetic Algorithms .

II Everything Flows

4 Ordinary Differential Equations
4.1 Initial Value Problems of First Order

4.1.1 Euler-Cauchy Algorithm
4.1.2 Stability and Accuracy of Difference Schemes
4.1.3 Explicit Methods
4.1.4 Implicit Methods
4.1.5 Predictor-Corrector Method
4.1.6 Runge-Kutta Method
4.1. 7 Extrapolation Method . . .

4.2 Initial Value Problems of Second Order
4.2.1 Verlet Method
4.2.2 Predictor-Corrector Method ..
4.2.3 Nordsieck Formulation of the PC Method.
4.2.4 Runge-Kutta Method.
4.2.5 Symplectic Algorithms
4.2.6 Numerov's Method

4.3 Boundary Value Problems
4.3.1 Shooting Method
4.3.2 Relaxation Method

Contents

47
49
49
50
53
53
56
57
59
62
66
68
68
71
74
77
78
80
81
82

85

89
90
90
91
94
96
98

101
104
105
105
108
110
112
112
117
119
120
121

Contents

5 Partial Differential Equations
5.1 Initial Value Problems I (Hyperbolic)

5.1.1 FTCS Scheme; Stability Analysis
5.1.2 Lax Scheme
5.1.3 Leapfrog Scheme (LF)
5.1.4 Lax-Wendroff Scheme (LW) .. .
5.1.5 Lax and Lax-Wendroff in Two Dimensions

5.2 Initial Value Problems II (Parabolic) .
5.2.1 FTCS Scheme
5.2.2 Implicit Scheme of First Order.
5.2.3 Crank-Nicholson Scheme (CN) .
5.2.4 Dufort-Frankel Scheme (DF) ..

5.3 Boundary Value Problems: Elliptic DE
5.3.1 Relaxation and Multigrid Techniques
5.3.2 ADI Method for the Potential Equation
5.3.3 Fourier Transform Method (FT) .
5.3.4 Cyclic Reduction (CR)

III Anchors A weigh

6 Simulation and Statistical Mechanics
6.1 Model Systems of Statistical Mechanics.

6.1.1 A Nutshellfull of Fluids and Solids
6.1.2 Tricks of the Trade ...

6.2 Monte Carlo Method
6.3 Molecular Dynamics Simulation

6.3.1 Hard Spheres
6.3.2 Continuous Potentials .
6.3.3 Beyond Basic Molecular Dynamics

6.4 Evaluation of Simulation Experiments
6.4.1 Pair Correlation Function
6.4.2 Autocorrelation Functions

6.5 Particles and Fields
6.5.1 Ewald summation
6.5.2 Particle-Mesh Methods (PM and P3M):

6.6 Stochastic Dynamics

7 Quantum Mechanical Simulation
7.1 Diffusion Monte Carlo (DMC) ..
7.2 Path Integral Monte Carlo (PIMC)
7.3 Wave Packet Dynamics (WPD) ..
7.4 Density Functional Molecular Dynamics

(DFMD)

xv

125
129
129
131
133
135
135
138
138
140
141
143
143
147
148
150
153

157

161
164
164
168
171
175
175
177
178
181
182
184
185
186
188
191

195
196
201
209

211

xvi

8 Hydrodynamics
8.1 Compressible Flow without Viscosity

8.1.1 Explicit Eulerian Methods ..
8.1.2 Particle-in-Cell Method (PIC)
8.1.3 Smoothed Particle Hydrodynamics (SPH)

8.2 Incompressible Flow with Viscosity
8.2.1 Vorticity Method
8.2.2 Pressure Method
8.2.3 Free Surfaces: Marker-and-Cell Method (MAC)

8.3 Lattice Gas Models for Hydrodynamics
8.3.1 Lattice Gas Cellular Automata
8.3.2 The Lattice Boltzmann Method

8.4 Direct Simulation Monte Carlo / Bird method

Appendixes

A Machine Errors

B Discrete Fourier Transformation
B.1 Fundamentals
B.2 Fast Fourier Transform (FFT)

Bibliography

Index

Contents

215
216
217
218
220
226
227
229
231
232
232
236
237

239

241

245
245

. 246

249

257

Computational Physics
An Introduction

Second Edition

Part I

The Three Pillars of
Computational Physics

3

Most of the methods used by computational physicists are drawn from three areas
of numerical mathematics, namely from the calculus of differences, from linear al
gebra, and from stochastics.

Difference calculus: Here we use finite differences, as opposed to infinitesimal dif
ferentials, as the elements of computation. Let f(x) be some function of a single
variable. In standard calculus, at least the independent variable x is assumed to
vary in a continuous manner. Whenever x is limited to a discrete set of values
Xk (k = 1,2, ...), we are entering the realm of finite differences.

History took the opposite route. "Divided differences" of the form (fk+l -
fk)/(xk+l - Xk) served as the base camp when Newton and Leibniz set out to
attack the summit of infinitesimal calculus. But as soon as the frontier towards
infinitely small quantities had been crossed, and the rules of the differential and
integral calculus had been established, physicists grew ever more enthralled by
these miraculous new tools. The calculus of infinitesimals became a "hit", much
like the computer did in our days. And much like the computer, it acted to focus
the attention of physicists on those problems that could most readily be tackled
with this apparatus. Other topics were shelved for a while, and in the course of
many generations were almost forgotten.

A striking example for this selectivity of scientific perception may be found in
Kepler's problem. By applying the methods of calculus to the equations of motion
of two gravitating celestial bodies we may eventually come up with analytical
expressions for the trajectories. For three or more interacting bodies this is in
general impossible. And so it comes that every student of physics very soon learns
how to solve the two-body problem by analytical means, whereas the study of three
and more-body problems became the task of an exclusive circle of specialists. Only
in recent years the re-encounter with chaos and incomputability in deterministic
mechanics helped physicists to become once more aware of the wealth of phenomena
dwelling beyond the "zoo of pure cases."

The methods of difference calculus, which are older and more clumsy than
those of differential calculus, yet remain applicable even in the case of three, four,
or hundreds of interacting bodies. And we are not even restricted to the 11 r -
interaction of gravitating masses. The price we have to pay for this greater freedom
in the selection of mechanical problems is the fact that we can no more obtain a
closed formula for the trajectories, but only a - albeit arbitrarily fine - table of
trajectory points.

It is quite understandable that in the three centuries since the publication of the
"Principia" this more practical aspect of Newton's work was somewhat neglected.
The repetitive application of iterative algorithms is time-consuming and tedious;
a renaissance of this branch of computational physics could take place only after
the development of efficient computing machinery. In its modern version it is
known as classical-mechanical simulation, or - in a specific context - as "molecular

4

dynamics" simulation.

Linear algebra is the second tributary to our methodological pool. Of course, any
attempt of a comprehensive coverage of this field would go far beyond the frame of
this text . However, the matrices that are of importance in computational physics
very often have a rather simple structure. For example, by employing the finite
difference formalism to convert a partial differential equation into a system of linear
equations, we end up with a matrix of coefficients that has its non-zero elements
concentrated near the main diagonal - i.e. a "diagonally dominated" matrix. And
in the framework of stochastic methods we encounter covariance matrices which
are always symmetric, real, and positive definite.

We will therefore concentrate on those techniques that have special importance
in computational physics. Just for completeness, a short survey of the standard
methods for the exact solution of linear systems of equations will be given. The
main part of Chapter 2, however, will be devoted to procedures that are particularly
suited for symmetric real matrices and to those iterative methods that converge
particularly fast when applied to diagonally dominated matrices. There are also
iterative techniques for determining eigenvalues and eigenvectors which may be
applied in addition to or in place of exact methods.

Stochastics is statistics turned upside down. Textbooks on statistics are in general
concerned with procedures that allow us to find and quantify certain regularities in
a given heap of numbers. Contrariwise, in stochastics these statistical properties
are given beforehand, and an important task then is the production of "random
numbers" with just those properties.

In contrast to the other two pillars of computational physics, stochastics is a
product of the computer age. In the forties, after the still rather failure-prone
ENIAC, the MANIAC was constructed as the second fully electronic computing
machine. (Incidentally, Nicholas Metropolis, who hated this kind of abbreviations,
had meant to bring the custom to an end once and for all by introducing a partic
ularly idiotic acronym [COOPER 89]; the further history of Computerspeak, from
UNIVAC to WYSIWYG, is proof of the grandiose failure of his brave attempt.)

The primary use of these early computers was numerical neutron physics. The
transport of neutrons through an inhomogeneous medium, be it an atomic bomb
or the core of a reactor, is described by complicated integro-differential equat
ions. Instead of solving these transport equations directly, Metropolis, Fermi,
Ulam and others [ULAM 47, METROPOLIS 49] used a stochastic procedure which
they dubbed "Monte Carlo method." They programmed their machine in such a
way that it sampled at random many individual neutron paths. A neutron would
be sent on its way with a typical velocity, could penetrate more or less deeply into
the material, was then absorbed or scattered into some new direction, and so on.
By taking the average over many such neutron trajectories one could determine
the mean flux at some given point.

A similar idea is the basis of the method of "Brownian dynamics." Here the

5

random motion of mesoscopic particles is simulated according to a simple rule.
Small, randomly sampled path increments are combined to a trajectory that closely
resembles the typical random walk of Brownian difi'usors. By adding external
conditions, such as absorbing walls or force fields, one may simulate non-trivial,
physically relevant situations.

For the evaluation of thermodynamic averages we may use the statistical
mechanical Monte Carlo method, which at first sight bears little resemblance to its
namesake in neutron physics. Here, the high-dimensional canonical phase space of
an N-particle system is perambulated by random steps. By a sophisticated trick
that is again due to Metropolis, we can achieve that phase space regions with a
large Boltzmann factor will be visited more frequently than regions with small
thermodynamic probability. Thus it is possible to determine canonical averages by
simply taking mean values over such random walks.

A surprise bounty was discovered in the Eighties. It turned out that the basic
principle of the Monte Carlo method can be of great value even outside of statistical
mechanics. If the temperature is slowly decreased during the random walk through
phase space, eventually only the regions with lowest energy will be visited. With a
bit of luck we will end up not in some local energy dip, but in the global minimum.
This means that we have here a stochastic method for locating the minimum of a
quantity (the energy) depending on a large number of variables (the 3N particle
coordinates.) Such notoriously difficult multidimensional minimization problems
are to be found in many branches of science. Applications of this "Simulated
annealing" technique range from the optimization of printed circuits on computer
chips to the analysis of complex neural nets.

Yet another group of stochastic optimization techniques is known as "Genetic
Algorithms". As the name implies, they roughly mimick biological adaptation to
locate the minimum of a multivariable function.

The three main methodological sources of computational physics will be treated
in detail in the three Chapters of Part I. It is not my ambition to prove each
and every formula in full mathematical rigor. More often than not we will content
ourselves with arguments of plausibility or with citations, if only we end up with
a concrete algorithm or procedure.

Chapter 1

Finite Differences

Isaac Newton handled differences and differentials
with equal prowess

Let f(x) be a continuous function of one variable. The values of this function are
given only for discrete, and equidistant, values of x:

(1.1)

The quantity
(1.2)

is called "forward difference" at the point Xk. By repeated application of this
definition we obtain the higher forward differences

6.fk+l - 6.fk = fk+2 - 2fk+l + fk ,

6. 2 fk+l - 6.2 fk = fk+3 - 3fk+2 + 3fk+l - fk

7

(1.3)
(1.4)

F. J. Vesely, Computational Physics
© Kluwer Academic / Plenum Publishers, New York 2001

8 Chapter 1 Finite Differences

The coefficients of the terms fl are just the binomial coefficients which may con
veniently be taken off Pascal's triangle. Quite generally, we have

(1.5)

For given ~x, the values of ~fk provide a more or less accurate measure of the
slope of f(x) in the region towards the right of Xk. Similarly, the higher forward
differences are related to the higher derivatives of f(x) in that region.

The "backward difference" at Xk is defined as

(1.6)

and the higher backward differences are

V'2 fk == V' fk - V' fk-I = A - 2fk-1 + fk-2 (1.7)

etc., or, in general

V'Tfk == ~(-l)iC)fk-i (1.8)

In the formulae given so far only table values to the right or to the left of Xk

were used. In contrast, the definition of the "central difference" is symmetric .with
respect to Xk:

(1.9)

At first sight this definition does not look all too useful, since by our assumption
only table values of fk with integer indices k are given. However, if we go on to
higher central differences, we find that at least the differences of even order contain
only terms with integer indices:

and in general

fk+1 - 2fk + A-I
fk+3/2 - 3fk+I/2 + 3fk-I/2 - fk-3/2

fk+2 - 4fk+1 + 6fk - 4A-I + fk-2

JTfk == i)-1)i(:)fk+T/2-i
.=0

(1.10)
(1.11)
(1.12)

(1.13)

One final definition, which will serve primarily to provide access to the odd
order central differences, pertains to the "central mean" ,

1
"2 [Jk+1/2 + fk-I/2] (1.14)

1
"2 [JLfk+I/2 + JLfk-I/2]

1
4[fk+1 + 2fk + A-d (1.15)

etc.

1.1 Interpolation Formulae 9

In place of a - not obtainable - central difference of odd order, such as r5Jk, we
may then use the central mean of this difference, namely

1
2[r5 fk+l /2 + r5fk-l /2]

1
2[Jk+l - fk-d (1.16)

which again contains only table values that are known.

1.1 Interpolation Formulae

Nota bene: this section is not concerned with "interpolation" - in that case we
would have to rehearse basic numerical skills like spline, Aitken or other interpo
lation techniques - but with the derivation of interpolation formulae which may
further on be used as formal expressions. We will later differentiate them (Section
1.2), integrate them (Chapter 4) and insert them in systems of linear equations
(Chapter 5).

So far we have not made use of the assumption that the points Xk are arranged
in regular intervals; the relations following now are valid only for equidistant table
points. This assumption of constant step width may seem restrictive. However, in
computational physics our aim is in general not to interpolate within some given -
and certainly not always conveniently spaced - tables. Rather, the following inter
polation formulae shall serve us as a basis for the derivation of iterative algorithms
to solve differential equations. In other words, we will develop methods to produce,
on the grounds of a given physical law, a sequence of "table values." This implies
that as a rule we have the freedom to assume some fixed step width.

Thus, let .6.x be constant, and let Xk be some particular point in the table
{xk,fk; k = 1, 2, .. }. As a measure for the distance between an arbitrary point on
the x-axis and the point Xk we will use the normalized quantity

x - Xk
u=--

.6.x

1.1.1 NGF Interpolation

(1.17)

We can obtain an interpolation approximation Fm(x) to the tabulated function
by threading a polynomial of order m through m + 1 table points. If we use only
points to the right of Xk (and Xk itself), the general polynomial approximation may
be written in terms of forward differences as follows:

10 Chapter 1 Finite Differences

NGF interpolation:

Fm(x) fk + (~)~fk + (~)~2fk + ...

= fk + ~ (~)~lfk + O[(~X)m+lJ (1.18)

where

(u) = u(u-l) ... (u-l+l)
l - l! (1.19)

The expression 1.18 is known as the Newton-Gregory /forward or NGF interpolation
formula.

The remainder term in 1.18 requires a grain of salt. Strictly speaking, this error
term has the form

R = 0 [f(m+l) (x') (x - xI)m+l]
(m + I)! (1.20)

where x = x' denotes the position of the maximum of If(m+l)(x)1 in the interval
[Xk, Xk+mJ. Putting

we have

x - x' == ~ ~x

R = 0 [f(m+l)(x l) ~m+l (~x)m+l]
(m + I)!

(1.21)

(1.22)

By the simpler notation O[(~x)m+lJ we only want to stress which power of ~x is
relevant for the variation of the remainder term. The other factors in the remainder
are assumed to be harmless. This is to say, the function to be approximated should
be continuous and differentiable, and x should be situated, in the case of extrapola
tion, not too far from the interval [Xk, Xk+mJ.

EXAMPLE: Taking m = 2 in the general NGF formula (1.18) we obtain the parabolic
approximation

1.1.2 NGB Interpolation
We obtain the Newton-Gregory/backward (or NGB) formula if we use, in setting
up the polynomial, only table values at Xb Xk-l, ... :

1.1 Interpolation Formulae 11

NGB interpolation:

u u(u+1) 2
Fm(x) = fk+ 1!Vfk+ 2! V h+ ···

= fk + t (U +: - 1) V1fk + O[(~x)m+ll (1.24)

EXAMPLE: With m = 2 we arrive at the parabolic NGB approximation

Vfk 1 V 2fk 3
F2(x) = fk + ~x (x - Xk) + 2" (~x)2 (x - Xk)(X - xk-d + O[(~x) 1 (1.25)

1.1.3 ST Interpolation

By "Stirling" (or ST) interpolation we denote the formula we obtain by employ
ing the central differences 6fk, 62 fk etc. Here we are faced with the difficulty
that central differences of odd order cannot be evaluated using a given table of
function values. Therefore we replace each term of the form 621+1 fk by its central
mean. In this manner we obtain a "symmetrical" formula in which the table points
Xb Xk±l,··· Xk±n are used to construct a polynomial of even order m = 2n:

ST interpolation:

u2 u3 - U u4 - u2
fk + uJ.L6fk + 2! 62 fk + -3-! -J.L63 fk + 4! 64 fk + .. .

fk + t (u; ~ ~ 1) [J.L621 - 1fk + ~621fk]
+ O[(~x)2n+ll (1.26)

EXAMPLE: Setting n = 1 (or m = 2) in 1.26 yields the parabolic Stirling formula

Il-oik 1 02 fk 2 3
F2(X) = fk + ~X (x - Xk) + 2" (~x)2 (x - Xk) + O[(~x) 1 (1.27)

Within a region symmetric about Xk the Stirling polynomial gives, for equal
orders of error, the "best" approximation to the tabulated function. (The "good
ness" of an approximation, which will not be explained any further, has to do with
the maximum value of the remainder term in the given interval.)

12 Chapter 1 Finite Differences

It is in keeping with the uncommunicative style of Isaac Newton that he per
mitted his "regula quae ad innumera aequalia intervalla recte se habet, quia tum
recte se habebit in locis intermediis" [NEWTON 1674] to be published only in the
year 1711 [JONES 1711], although he had found it, as is evident from various
manuscripts, letters and the "Principia ... ", no later than 1675-76. (Incidentally,
the immediate occasion for his early involvement with the interpolation problem
was the request of a private scholar by the name of John Smith, who had under
taken to publish an exact table of square, cubic and quartic roots of the numbers
1 to 10.000.) As a consequence of this reluctance, various special forms of New
ton's formulae are ascribed to Gregory, Cotes, Bessel and Stirling, although these
authors as a rule would respectfully point out Newton's priority.

1.2 Difference Quotients

Thanks to Newton, Gregory and Stirling we are now in possession of a continuous
and several times differentiable function which at least at the table points coincides
with the given function. Whether it does so in between these points we cannot
know - it is just our implicit hope. But now we go even further in our optimism.
The derivative of a function that is given only at discrete points is not known even
at these points. Nevertheless we will assume that the derivatives of our interpola
tion polynomial are tolerably good approximations to those unknown differential
quotients. The procedure of approximating derivatives by difference quotients has
recently come to be termed "differencing."

In order to be able to differentiate the various polynomials, 1.18, 1.24 and 1.26,
we have to consider first how to differentiate terms of the form 1.19 with respect
to u. The first two derivatives of such generalized binomial coefficients are

d (u) (u) 1-1 1
du I = I ~ u - i

(1.28)

and

d2 (u) {O() 1-1 1-1 for I = 1

du' I ~ ~ ~~(U-i)~U-j) fod202
(1.29)

1.2.1 DNGF Formulae

Using the above expressions in differentiating the NGF polynomial 1.18, we find for
the first two derivatives in a small region - preferably towards the right - around
Xk:

(1.30)

1.2 Difference Quotients

DNGF:

DDNGF:

1 [f:lfk _ f:l2 fk + f:l3 ik _ f:l4 fk + ... J
f:lx 2 3 4

_1 f)_1)1-1f:l1ik + O[(f:lx)m]
f:lx 1

1=1

13

(1.32)

(1.33)

Table 1.1: NGF approximations to the first and second derivatives at the point Xk

Fm"(x) = (f:l~)2 ~f:llik(~) ~~ (u _ i)l(u _ j) + O[(f:lx)m-1] (1.31)
;¥i

We can see that the quality of the approximation, as given by the order of the
remainder term, has suffered somewhat; the order of the error has decreased by 1
and 2, respectively.

In the numerical treatment of differential equations we will not need the diff
erentiated interpolation formulae in their full glory. It will be sufficient to know
F'(x) and F"(x) at the supporting points of the grid, in particular at the point
x = Xk, i.e. for u = O. The relevant expressions are listed in table 1.1.

EXAMPLE: Taking m = 2 we obtain as the DNGF approximation to the first derivative
at x = Xk:

1 [~2h] 2 ~X ~fk - -2- + O[(~x)]

- -- fk+2 + 2fk+1 - - h + O[(~x) 1 [1 3] 2]
~x 2 2

(1.34)

14 Chapter 1 Finite Differences

DNGB:

1 ['\7 Ik + '\72 fk + '\73 fk + '\74 Ik + ... J
.6.x 2 3 4

_1 :t '\711k +O[(.6.x)mJ
.6.x l

1=1

(1.37)

DDNGB:

(1.38)

Table 1.2: NCB approximations to the first and second derivatives at Xk

1.2.2 DNGB Formulae

Of course, we can play the same game using the NCB interpolation polynomial.
By twice differentiating equ. 1.24 we find the expressions

_1 :t '\7lfk (u + l- 1) ~ _1_. + O[(.6.x)mJ
.6.x 1=1 l i=O U + z

(1.35)

1 m I (u + l _ 1) 1-1 1-1 1
(.6.x)2 ~ '\7 fk l ~ ~ (u + i)(u + j)

j#i

+ O[(.6.x)m-1] (1.36)

which work best when applied to the left of Xk. In particular, at the position
x = Xk, which means taking u = 0, we find the expressions listed in table 1.2.

EXAMPLE: m = 2 yields

(1.39)

1.2 Difference Quotients 15

DST:

DDST:

Table 1.3: Stirling approximants to the first and second derivatives at the point Xk

1.2.3 DST Formulae

Lastly, we may choose to differentiate the Stirling formula 1.26 once and twice; it
is to be expected that the expressions obtained in this manner will function best
in an interval that is centered around Xk:

F2n'(x) =

_1 ~ (u + l - 1) {[82/ - 1 f ~821 f] ~ 1 ~821 f }
~x ~ 2l - 1 J.L J k + 2l J k ~ U _ l + i + 2l J k

1=1 i=l

+ O[(~x)2nl (1.40)

At x = Xk (Le. u = 0) we find the formulas given in table 1.3.

EXAMPLE: n = 1 yields for the first derivative the approximation

16 Chapter 1 Finite Differences

DNGF

DST

exact

DNGB

Figure 1.1: Comparison of various simple approximations to the first differential
quotient

1 2
= 2~x [jk+! - fk-d + O[(~x) 1 (1.44)

The particular efficiency of the Stirling formulae is illustrated by the fact that by
including just the first term on the right-hand side of 1.42 we already have an
approximation of first order - in the case of NGF and NGB, inclusion of the first
terms alone yields only zero-order approximations (see Figure 1.1):

DNGB: F'(xk)

DST: F'(Xk)

(1.45)

(1.46)

(1.47)

Furthermore it should be noted that the remainder in 1.43 is of order 2n. From
1.41 one would expect 2n - 1, but by a subtle cancellation of error terms only the
orders 2n and higher survive when we put u = O. This is one reason why symmetric
formulae such as those of the Stirling family are generally superior to asymmetric
ones. It will turn out that the Stirling approximation to the second differential
quotient serves particularly well in the numerical treatment of differential equations
of second order. Keeping in mind the very special role such second-order differential
equations play in physics, we regard the following formula with some respect and

1.3 Finite Differences in 2 Dimensions 17

great expectation:

62 fk [2]
(~x)2 + 0 (~X)

(~~)2 [Ik+1 - 2fk + fk-I] + O[(~X)2] (1.48)

The sample application given in 1.4.1 will show that our high hopes are justified.

1.3 Finite Differences in Two Dimensions

So far we have considered functions that depend on one variable only. However,
the above definitions and relations may easily be generalized to two or more inde
pendent variables. As an example, let f(x, y) be given for equidistant values of x
and y, respectively:

fi,j == f(xo + i ~x, Yo + j ~y). (1.49)

We will use the short notation

f = of (x, y)
x - ox (1.50)

et mut. mut. for the partial derivatives of the function f with respect to its
arguments.

For the numerical treatment of partial differential equations we again have to
"difference", i.e. to construct discrete approximations to the partial derivatives at
the base points (Xi, Yj). As before, there are several possible ways to go about it,
each of them related to one of the various approximations given above. Using the
DNGF-, the DNGB- or the DST-approximation of lowest order, we have

1 ~I'
[IX]i,j ~ ~x [Ii+I,j - fi,j] + O[~x] == ~;'J + O[~x] (1.51)

or
1 \II·

[Ix];,j ~ ~x [Ii,j - fi-l,j] + O[~x] == ~;'J + O[~x] (1.52)

or
[] 1 [] [2] _ jL6di,j [()2] fx i,j ~ 2~x fi+l,j - 1;-I,j + 0 (~x) = ~ + 0 ~x (1.53)

Again, the simple insertion of the central difference quotient in place of the deriva
tive results in an order of error that is higher by 1 than if we use either of the other
finite difference expressions.

The next step is the approximation of the second derivative of f(x, y) by dif
ference quotients. By again fixing one of the independent variables - y, say - and
considering only fxx, we obtain, in terms of the Stirling (centered) approximation,

[fxx]i,j ~ (~~)2 [fi+l,j - 2fi,j + fi-l,j] + O[(~x)21

6l!i,j + O[(~X)2]
(~X)2

(1.54)

18 Chapter 1 Finite Differences

Analogous (and less accurate) formulae are valid within the NGF- and NGB
approximations, respectively.

For a consistent representation of mixed derivatives such as !Zy one should use
the same kind of approximation with respect to both the x- and the y-direction.
(This may not hold if x and y have a different character, e.g. one space and one
time variable; see Section 1.4.2 and Chapter 5.) In this way we find, using the
Stirling expressions as an example,

1
~ 4~x~y [Ji+l,j+l - !i+l,j-l - !i-l,j+l + /i-l,j-l] + O[~x~y]

fJ.6i [fJ.6iAi] + O[~x~y] (1.55)
- ~x t:.y

The curvature of the function !(x, y) at some point may be calculated by ap
plying the nabla operator twice. There are two ways in which this operator V2 may
be approximated. (Note that the nabla operator V mentioned in this paragraph
should not be mixed up with the backward difference for which we use the same
symbol.) Let us assume, just for simplicity of notation, that ~y = ~x == ~l. Then
we may either "difference" along the grid axes, writing the local curvature at the
grid point (i, j) as

V2 !(x, y) ~ (;l)2 [Ji+l,j + AHl + !i-l,j + Ai-l - 4/i,j] (1.56)

or we may prefer to apply "diagonal differencing" , writing

(1.57)

1.4 Sample Applications

The wealth of applications of the finite difference formalism will become accessible
only after a detailed consideration of linear algebra (Chapter 2) and of the ordinary
and partial differential equations of physics (Chapters 4 and 5). Here we have to
be content with a few hints which hopefully will whet the reader's appetite.

1.4.1 Classical Point Mechanics

The equations of motion of mass points in classical mechanics are ordinary differ
ential equations of second order. Thus the physicist's favorite pet, the harmonic
oscillator, obeys the equation of motion

cPx 2
dt2 = -Wo X (1.58)

Sample Applications 19

Everybody knows how to solve this equation analytically. What, then, is the
procedure to follow in computational physics? We may, for once, replace the second
differential quotient by the second Stirling-type difference quotient {see equ. 1.48}:

(PXk 2 [2]
(~t)2 = -WoXk + 0 (~t) . {1.59}

Assume now that the table of trajectory points, {Xk; k = 1,2, ... }, be already
known up to time tn, and that we want to compute the next value Xn+1' From 1.59
we get

{1.60}

or, explicitly,
{1.61}

In the field of statistical-mechanical simulation this formula is known as the Verlet
algorithm [VESELY 78]. Of course, we may employ it also if 1.58 contains, instead
of the harmonic acceleration term -w3x, any other continuous function of x. Any
one who has ever attempted to tackle by analytical means even the most simple of
all anharmonic oscillators,

{1.62}

will certainly appreciate this.

EXERCISE: a) Write a program to tabulate and/or display graphically the analytical s0-

lution to equ. 1.58. (You may achieve a very concise visualization by displaying the
trajectory in phase space, i.e. in the coordinate system {XiX}; where for x the approx
imation x ~ (xn+1 - xn-d/2f:l.t may be used.) Choose specific values of w~, f:l.t and
Xo, xo, and use these to determine the exact value of Xl. Then, starting with Xo and
Xl! employ the algorithm 1.61 to compute the further path {xn; n = 2,3, ... }. Test the
performance of your program by varying f:l.t and w~.
b) Now apply your code to the anharmonic oscillator 1.62. To start the algorithm you
may either use the exact value of Xl (see, e.g., [LANDAU 62], Chap. V, §28), or the
approximate value given by

• A .. (f:l.t)2
Xl ~ Xo + XOL.l.t + XO-2- (1.63)

1.4.2 Diffusion and Thermal Conduction

The diffusion equation reads, in one dimension,

8u{x, t) = D82U{x, t}
8t 8X2

{1.64}

20 Chapter 1 Finite Differences

The variables x and t are again assumed to be discrete. Writing the desired density
function u at position Xi at time tn as

(1.65)

we may replace the time derivative au/at by the linear DNGF-approximation (see
equ. 1.32). For the second derivative by x on the right hand side of 1.64 we use the
Stirling approximation DDST (equ. 1.48) and obtain the so-called "FTCS scheme"
(meaning "forward-time, centered-space"),

(1.66)

which will be considered in more detail in Section 5.2.1. Introducing the abbrevi
ation a == D ~t/(~X)2 we may rewrite this as an explicit formula,

(1.67)

which is valid for i = 1, ... N - 1. If the values of the function u at the boundary
points Xo und XN are held fixed, and some initial values u? , i = 0, ... N are
assumed, the expression 1.67 determines the space-time evolution of u uniquely.

EXERCISE: If we interpret u{x, t) as an energy density, or simply as the temperature T,
along a rod of length L = 1, equ. 1.64 may be understood as describing the conduction
of heat, i.e. the spatio-temporal development of T{x, t):

&(x, t) = oX EPT{x, t)
at ax2

(1.68)

Let us now divide the rod into 10 pieces of equal length, and assume the boundary
conditions T{O, t) == TfJ = 1.0 and T{L, t) == Tl'o = 0.5. The values for the temperature
at time t = 0 (the initial values) are TP = T~ = ... TPo =0.5 and T8 = 1.0.

Employ equ. 1.67 to compute the distribution of temperatures at successive time
steps; choose various values of the quantity a {say, between 0.1 and 0.6. (See also the sta
bility considerations in Section 5.2.1.)

Chapter 2

Linear Algebra

Carl Friedrich Gauss eliminated unwanted matrix
elements

By . the introduction of finite differences a function f(x) depending on a single
variable is converted into a table of function values. Such a table may be interpreted
as a vector f == Uk; k = 1, . .. , M). Similarly, a function of two variables may be
tabulated in the format of a matrix:

F == [kj] == [J(Xi' Yj); i = 1, ... M; j = 1, .. . N]. (2.1)

In many physical applications position and time are the relevant independent vari
ables; in such cases the time variable t will take the place of y. In particular, this
holds whenever we have an equation of motion describing the temporal evolution of
the quantity f(x, t), i.e. a partial differential equation involving the derivatives of
f with respect to both independent variables. Initial value problems of this kind,
when treated by the finite difference formalism, lead to systems of linear equations
whose matrix has a specific, rather simple structure.

In contrast, in the case of stationary boundary value problems the variables x
and Y (and maybe a third independent variable z) are indeed spatial coordinates;

21

F. J. Vesely, Computational Physics
© Kluwer Academic / Plenum Publishers, New York 2001

22 Chapter 2 Linear algebra

but again we have to do with partial differential equations which, by "differencing",
may be transformed into systems of linear equations (see, e.g., equ. 5.84).

Further applications of linear algebra can be found in stochastics, where co
variance matrices have to be handled (see Chapter 3,) and in quantum mechanics
(eigenvalue problems.)

The fundamental manipulations we will have to perform on matrices are

• Inversion of a matrix:
A ¢::::} A-I (2.2)

• Finding the solution to the system of equations defined by a matrix A and
a vector b:

A·x = b (2.3)

(To achieve this it is not necessary to determine the inverse A-I.)

• Finding the eigenvalues Ai and the eigenvectors 8.i of a quadratic matrix:

IA - Ai II
(A - Ai I) . 8.i = ~ } i = 1, ... N

(Here, IMI denotes the determinant of a matrix.)

(2.4)

There are many excellent textbooks explaining the standard methods to employ
for these tasks. And every computer center offers various subroutine libraries that
contain well-proven tools for most problems one may encounter. In what follows
we will only

• explain the standard techniques of linear algebra to such an extent as to
render the above-mentioned black box subroutines at least semitransparent;

• explicate specific methods for the treatment of matrices which are either
diagonally dominated or symmetric (or both).

2.1 Exact Methods

2.1.1 Gauss Elimination and Back Substitution

This is the classic technique for finding the solution of a system of linear algebraic
equations A . x = b, with the special bonus of yielding the inverse A-I as well.
Let us write the given system of equations in the form

(2.5)

2.1 Exact Methods 23

If we could transform these equations in such a way that the matrix on the
left-hand side were triangular, i.e.

(

a~l a~2 .

o a~2

o 0 a/IVN

(b~

l b~
(2.6)

this would all but solve the problem. In order to obtain this triangular form we
use the following theorem:

The solution vector x remains unchanged if arbitrary pairs of rows in
the matrix A and in the vector b are interchanged simultaneously; more
generally, replacing a row by a linear combination of itself and other
rows leaves x unaltered.

This leads us to the following procedure:

Gauss elimination:

• Find the largest (by absolute value) element in the first column, and
let i be the row number of that element; exchange the first and the i-th
row in A and b.

• Subtract from the 2nd to N -th rows in A and b such multiples of the
first row that all ail = O.

• Repeat this procedure for the second column and row, etc., up to N-1.

This method is called Gauss(ian) elimination with simple (partial) pivoting. In
the more efficient method of complete pivoting not only rows but also columns are
interchanged; this, however, involves memorizing all previous interchanges and is
therefore more difficult to program.

Having transformed the matrix to the triangular form 2.6, we may now deter
mine the elements of the solution vector by back substitution as described in the
following box.

24

Back substitution:

Xi

_l_b'
a' N

NN

1

a' N-I,N-I

Chapter 2

a~ (b: - t a:j X j) i = N - 2, ... , 1
" j=i+1

Linear algebra

(2.7)

(2.8)

(2.9)

If we need, in addition to the solution of our system of equations, also the inverse
of the matrix A, we simply have to apply the foregoing recipe simultaneously to
N unit vectors b j = ej of the form

(2.10)

Following the triangulation of A we have N new vectors b j I. Each of these is
successively used in back substitution; each solution vector so obtained is then a co
lumn vector of the desired matrix A -I.

EXAMPLE: To determine the inverse of

A=(~ ~)
we write

(~ ~). (::: :::) (~~)
By (trivial) Gauss elimination we obtain the triangular system

Back substitution in

yields

(3 110) (all (12) (1 0)
o 3 . a21 a22 = - ~ 1

(~ ~). (:::) = (- ~)

) = (-!)

2.1 Exact Methods 25

and from

we find

so that

2.1.2 Simplifying Matrices: The Householder Transforma
tion

Gaussian elimination may be understood as a transformation of the given matrix
to triangular form. Without saying so we have successively applied the following
transformation to the given system of equations, A . x = b:

P n - l ... Pl· A· x = P n - l ... P l . b (2.11)

with the requirement that the transformed matrix P n - l ... P l . A be triangular.
The Gaussian recipe, resulting in a specific sequence of matrices Pi, is not unique in
achieving triangularity. Many other choices of transformation matrices are possible,
and the respective techniques are labeled by the names of their authors, such as
Givens, Schmidt, or Householder.

More generally, in applications of linear algebra the first step is often the trans
formation of a given matrix to some simple form. This may be the triangular form
as above, or a tri-diagonal structure as we will discuss later on. In all such cases
we wish to strip certain column and/or row vectors of some of their rear elements.

The basic operation in such repeated truncation procedures is known as the
Householder transformation.

Let a be a vector (such as a matrix column vector), and el a unit vector as
in equ. 2.10. We define an auxiliary vector b == a ± lal el and normalize it as
bo == b/lbl. (Either the plus or the minus sign may be used; one or the other may
be better in terms of numerical accuracy, depending on the elements of A.) The
Householder matrix P is then defined by

(2.12)

It is easy to see that in the transformed vector a' == P . a all elements but the first
are equal to zero.

This transformation may be applied successively to the first, second, etc. co
lumn/row vectors of a given matrix, thus eliminating sub- or off-diagonal elements

26 Chapter 2 Linear algebra

as desired. Technical details of these applications may be found in [PRESS 86,
WILKINSON 67).

EXAMPLE: The following method to triangularize a 3 x 3 matrix is pathetically inefficient.
It is discussed here only to demonstrate the principle of the Householder transformation
that is such an ubiquitous ingredient in linear algebra black box routines.

Starting out with

h(;: :) (2.13)

we pick the first column vector a == (1,4, 7)T to construct the auxiliary vector (using
the minus sign in the above definition) b = (-7.124,4, 7)T which is then normalized to
bo = (-0.662,0.372, 0.651)T. The resulting Householder matrix is

(
0.123 0.492 0.862)

PI = 0.492 0.724 -0.484

0.862 -0.484 0.153

(2.14)

And indeed, when we multiply A by PI the resulting matrix has a stripped first column
vector:

(
8.124

Pl· A = ~

2.708

4.602

-0.696

11.078)
1.464

1.062

(2.15)

Next we concentrate on the lower right 2 x 2 submatrix of Pl · A. From its first column
vector, a = (4.602, -0.696)T we construct a 2 x 2 Householder matrix which we then
promote to a 3 x 3 matrix by adding a trivial first line and column, respectively:

(1 0 0)
P 2 = 0 0 .989 -0.149

o -0.149 -0.989

Checking the total result, we find that the matrix

(
8.124

P 2 · Pl· A = ~

has the required triangular structure.

2.1.3 LU Decomposition

2.708

4.655

o

(2.16)

(2.17)

A more modern, and in some respects more efficient, device for the solution of a
linear system than Gauss elimination is due to the authors Banachiewicz, Cholesky

2.1 Exact Methods 27

and Crout. The name "LV decomposition" implies a "lower-upper" factorization
of the given matrix. In other words, we seek to represent the matrix A as a product
of two triangular matrices, such that

A=L·U (2.18)

with

L= (
~~~ 1~2' ~) (U~l ~~: . U~N) 

;U= 

l~l I~N 0 0 U~N 
(2.19) 

Writing A . x = b as 
L· (U· x) = b (2.20) 

we can split up the task according to 

L'y=b (2.21 ) 

and 
U·x=y (2.22) 

Owing to the triangular form of the matrices Land U these equations are easy to 
solve. First we compute an auxiliary vector y by forward substitution: 

Yl = (2.23) 

Yi = i =2, ... ,N (2.24) 

The solution vector x is then obtained by back substitution in the same manner as 
in the Gauss elimination technique: 

1 
XN = --YN uNN 
Xi = : .. (Yi - t Uij Xi); i = N -1, ... ,1 

It i=i+l 

(2.25) 

(2.26) 

How, then, are we to find the matrices Land U? The definition L . U = A is 
equivalent to the N2 equations 

N 

L lik Ukj = aij; i = 1, ... N; j = 1, ... N 
k=l 

(2.27) 

We are free to choose N out of the N 2 + N unknowns lij, Uij' For convenience, 
we put Iii = 1 (i = 1, ... N). Also, due to the triangular structure of Land U, 

User
Rectangle

User
Rectangle



28 Chapter 2 Linear algebra 

the summation index k will not run over the whole interval [1, ... , NJ. Rather, we 
have 

for i ~ j 
i 

L lik Ukj = aij 

k=l 
j 

(2.28) 

for i > j : L lik Ukj = aij (2.29) 
k=l 

This leads to the following procedure for the evaluation ofuij and lij, as given by 
Crout: 

LU decomposition: For j = 1,2, ... N compute 

i-I 

Uij = aij - L lik Ukj; i = 2, ... ,j 
k=l 

lij = '1.1.
1 .. (~j - I: lik Ukj ); i = j + 1, ... , N 
13 k=l 

(2.30) 

(2.31 ) 

(2.32) 

The determinant of the given matrix is obtained as a side result of LV decom
position: 

IAI = ILl· lUI = '1.1.11 '1.1.22··' 'I.I.NN (2.33) 

EXAMPLE: For the LU decomposition of 

A=(~ ~) 
we find, according to Crout: 

j = 1, i = 1 : '1.1.11 all = 1 
1 

j = 1, i = 2: l21 -a21 = 3 
'1.1.11 

j = 2, i = 1: 'U12 al2 = 2 

j = 2, i = 2: 'U22 a22 - hI 'U12 = -2 

so that (~ ~) = (~ ~). (~ ~2) 
... 'W' ", ... ~ , 

L U 



2.1 Exact Methods 29 

At each step (j, i) the required elements iik' Ukj are already available. Each of the 
elements aij of the original matrix A is used only once. In a computer code one 
may therefore save storage space by overwriting aij by Uij or iij, respectively. (The 
lii are equal to 1 and need not be stored at all.) 

Speaking of computer codes: the above procedure is only the basic principle 
of the LV decomposition technique. In order to write an efficient program one 
would have to include pivoting, which is more involved here than in the Gaussian 
elimination method (see [PRESS 86], p.34f.). 

An important advantage of LV decomposition as compared to Gauss' method 
is the fact that the vector b has so far not been manipulated at all. (In particular, 
there was no exchanging of rows etc.) Only for the calculation of a solution vector 
x by forward and backward substitution the elements of b come into play. In other 
words, we may use the factors Land U of a given matrix A again and again, with 
different vectors b. 

If required, the inverse of the matrix A may again be determined in the same 
manner as with Gaussian elimination: after solving the equations A· Xj = ej, with 
the N unit vectors ej, one combines the column vectors Xj to find A -1. 

2.1.4 Tridiagonal Matrices: Recursion Method 

In many applications the matrix A in the system of equations A·x = b has non-zero 
elements only along the main diagonal and in the immediately adjacent diagonals. 
Or we may have applied the Householder transformation to a given matrix such 
that a tridiagonal structure results. In all such cases a very fast method may be 
used to find the solution vector x. With the notation 

131 11 0 
0!2 132 12 

A= 
0 0!3 133 

the system of equations reads 

O!i Xi-l + f3i Xi + Ii Xi+l 

O!N XN-l + f3N XN 

0 

13 

O!N-l 

0 

0 
0 

0 

f3N-l IN-l 

O!N f3N 

bi ; i = 2, ... , N -1 

bN 

Introducing auxiliary variables 9i and hi by the recursive ansatz 

Xi+! = 9i Xi + hi; i = 1, ... , N -1 

(2.34) 

(2.35) 

(2.36) 



30 Chapter 2 Linear algebra 

we find from 2.35 the "downward recursion formulae" 

(2.37) 

(2.38) 

Having arrived at gl and hl we insert the known values of gi, hi in the "upward 
recursion formulae" 

Xl = (2.39) 

Xi+l = gi Xi + hi; i = 1, ... , N-1 (2.40) 

(Equation 2.39 for the starting value Xl follows from f31Xl + '/'lX2 = bl and X2 = 
glXl + hd 

EXAMPLE: In A . x = b, let 

Downward recursion (Equ. 2.37, 2.38): 

i = 3: 

i = 2: 

1 
g3 =-3 

3 
g2=-1O 

20 
91 = - 27 

Upward recursion (Equ. 2.39, 2.40): 

Xl 

i = 1 : X2 

i = 2: X3 

= 
8 

4 
h3 =-

3 
1 

h2 = 10 

19 
hl = 27 

34 
9 
17 

1 
17 



2.2 Iterative Methods 

23 
i = 3: X4 = 

17 

31 

A similar method which may be used in the case of a five-diagonal matrix is given 
in [ENGELN 91]. 

2.2 Iterative Methods 

The methods described so far for the solution of linear systems are - in principle -
exact. Any numerical errors are due to the finite machine accuracy (see Appendix 
A). If the given matrices are well-behaved, the process of pivoting explained earlier 
keeps those roundoff errors small. However, if the matrices are near singular, 
errors may be amplified in an inconvenient way in the course of determining the 
solution. In such cases one should "cleanse" the solution by a method called 
iterative improvement. 

Let x be the exact solution of A . x = b, and let x I be a still somewhat 
inaccurate (or simply estimated) solution vector, such that 

x::x / +6x (2.41) 

Inserting this into the given equation we find 

I A·6x=b-A·x' (2.42) 

Since the right-hand side of this equation contains known quantities only, we can 
use it to calculate 6x and therefore x. The numerical values in b-A· Xl are small, 
and double precision should be used here. If the LV decomposition of the matrix A 
is known, 6 x is most suitably found by forward and back substitution; only ~ N2 
operations are required in this case. In contrast, the "exact" methods we may have 
used to find x I take some N3 operations. 

EXAMPLE: The principle of iterative improvement may be demonstrated using a grossly 
inaccurate first approximation x I. Let 

From 

A = (~ ~), b = ( : ) and x I = ( -: ) 

A . d x = ( : ) - (~ ~). ( -: ) = ( =~ ) 
we find, using the decomposition 



32 

the correction vector 

so that the correct solution 

is obtained. 

8x = ( =! ) 
x = ( ~4 ) 

Chapter 2 Linear algebm 

The idea underlying the technique of iterative improvement may be extended 
in a very fruitful way. Let us interpret equ. 2.42 as an iterative formula, 

(2.43) 

forgoing the ambition to reach the correct answer in one single step. We may then 
replace A on the left hand side by a matrix B which should not be too different 
from A, but may be easier to invert: 

(2.44) 

or 
Xk+1 = B- 1 • b + B- 1 . [B - A] . xk (2.45) 

This procedure can be shown to converge to the solution of A · x = b if, and only 
if, IXk+1 - xkl < IXk - Xk-11 . This, however, is the case if all eigenvalues of the 
matrix 

B-1 . [B - A] 

are situated within the unit circle. 
It is the choice of the matrix B where the various iterative methods differ. 

The three most important methods are known as Jacobi relaxation, Gauss-Seidel 
relaxation (GSR) and successive over-relaxation (SOR). In each of these techniques 
only such matrix manipulations occur that need less than ~ N 3 operations per 
iteration; usually ~ N 2 operations are necessary. For large matrices iterative 
methods are therefore much faster than the exact techniques. 

2.2.1 Jacobi Relaxation 

We first divide the given matrix according to 

(2.46) 

where D contains only the diagonal elements of A, while Land R are the left 
and right parts of A, respectively. (The matrix L introduced here has, of course, 
nothing to do with the one defined earlier, in the framework of LV factorization). 



2.2 Iterative Methods 33 

The condition of being easy to invert is most readily met by the diagonal matrix 
D. We therefore choose B = D and write the iteration formula 2.45 as 

D . Xk+l = b + [D - A] . Xk (2.47) 

or 

i = 1, ... ,N (2.48) 

EXAMPLE: In A . x = b let 

Starting from the estimated solution 

Xo = ( 1.2 ) 
0.2 

and using the diagonal part of A, 

D=(~ ~) 
in the iteration we find the increasingly more accurate solutions 

( 0.933) ( 1.033 ) ( 1 ) Xl = ; X2 = etc. -+ Xoo = 
-0.100 0.033 0 

The Jacobi method converges best for diagonally dominated matrices A, but 
even there the rate of convergence is moderate at best. The convergence behavior 
is governed by the eigenvalues of the matrix - [L + R]. Writing the Jacobi scheme 
in the form 

Xk+l = D-I . b + J . Xk , 

with the Jacobi block matrix 

J == D- I . [D - A] = _D- I . [L + R] 

(2.49) 

(2.50) 

convergence requires that all eigenvalues of J be smaller than one (by absolute 
value). Denoting the largest eigenvalue (the spectral radius) of J by AJ, we have 
for the asymptotic rate of convergence 

rJ == I~k+l - ~kl ~ IAJ -11 (2.51) 
Xk -x 

In the above example AJ = 0.408 and r ~ 0.59. 



34 Chapter 2 Linear algebra 

2.2.2 Gauss-Seidel Relaxation (GSR) 

We obtain a somewhat faster convergence than in the Jacobi scheme if we choose 
B = 0 + L, writing the iteration as 

I [D + LJ . x'+' ~ b ~ R· '" (2.52) 

Solving the set of implicit equations 

aii X~k+1) + L aij x~k+1) = bi - L aij X;k); i = 1, ... , N (2.53) 
j<i j>i 

is not quite as simple as solving the explicit Jacobi equations 2.48. However, since 
the matrix 0 + L is triangular the additional effort is affordable. 

EXAMPLE: With the same data as in the previous example we find the first two improved 
solutions 

( 0.933 ) ( 0.989 ) x - . x -
1 - 0.033 ' 2 - 0.006 . 

The convergence rate of the GSR scheme is governed by the matrix 

G == - [0 + Lr1 . R 

It can be shown [STOER 89] that the spectral radius of G is given by 

AG = A} 

so that the rate of convergence is now 

TG ~ IA} - 11 

In our example AG = 0.17 and r ~ 0.83. 

2.2.3 Successive Over-Relaxation (SOR) 

(2.54) 

(2.55) 

(2.56) 

This method, which is also called simultaneous over-relax"tion, is based on the 
iteration ansatz 

SOR GSR (1 ) Xk+l = wXk+1 + - W Xk (2.57) 

The "relaxation parameter" W may be varied within the range 0 :::; W :::; 2 to 
optimize the method. 

At each iteration step, then, the "old" vector Xk is mixed with the new vector 
Xk+1 which has been calculated using GSR. Reshuffling equ. 2.57 we find 

[0 + Lj· Xk+1 = W b - [R - (1 - w) Aj· Xk (2.58) 



2.2 Iterative Methods 

A single row in this system of equations reads 

+(1- w) LaijXj(k) 
j9 

i = 1, ... ,N 

The rate of convergence of this procedure is governed by the matrix 

s == - [D + L]-l . [R - (1 - w) A] 

35 

(2.59) 

(2.60) 

Again we may find a relation between the eigenvalues of S and those of J: the 
optimal value of w is given by [STOER 89] 

2 
w=---=== 
1+~ 

(2.61) 

yielding 

A - [ AJ ]2 
S - 1 + Jl- A} 

(2.62) 

The asymptotic rate of convergence is 

TS ~ lAs -11 (2.63) 

EXAMPLE: With the same data as before we find from 2.61 an optimal relaxation pa
rameter w = 1.046, and from that T3 = 0.95. The first two iterations yield 

( 0.921 ) ( 0.994 ) 
Xl = 0.026 ; X2 = 0.003 . 

The parameter w as evaluated according to 2.61 is "optimal" only in the asymp
totic sense, that is, after a certain number of iterations. During the first few 
iterative steps the SOR procedure may give rise to overshooting corrections - par
ticularly if w is distinctly larger than 1. One can avoid this delay of convergence 
by starting out with a value of w = 1, letting w gradually approach the value given 
in 2.61. This procedure, which is known as "Chebysheff acceleration", consists of 
the following steps: 

• The solution vector x is split in 2 vectors Xe , Xo consisting of the elements Xi 
with even and odd indices, respectively; the vector b is split up in the same 
manner. 



36 Chapter 2 Linear algebra 

• The two subvectors Xe and Xo are iterated in alternating succession, with the 
relaxation parameter being adjusted according to 

w(O) 1 
1 

1 - >'}/2 
1 

2 (k)/ ' k = 1, ... 1 - >'Jw. 4 
(2.64) 

2.2.4 Alternating Direction Implicit Method (ADI) 

Chapter 5 will be devoted to the treatment of those partial differential equations 
which are of major importance in physics. In many cases the discretization of such 
PDEs yields systems of linear equations whose matrix is "almost" tridiagonal. 
More specifically, A has the following five-diagonal form: 

x x x 
x x x x 

x x x x 

A= x x x x 
(2.65) 

x x x x 
x x x x 

x 

In such cases it is feasible and advantageous to rewrite the system of equations 
in such a way that two coupled tridiagonal systems are obtained. This may be 
interpreted as treating the original system first row by row and then column by 
column. (There we have a partial explanation of the name alternating direction 
implicit method.) To achieve a consistent solution this procedure must be iterated, 
and once more a relaxation parameter is introduced and adjusted for optimum 
convergence. 

The ADI scheme is tailored to the numerical treatment of the potential equation 
\72u = -po We therefore postpone a more detailed description of this method to 
Section 5.3.2. For the time being, suffice it to say that the method converges even 
more rapidly than SOR accelerated ala Chebysheff. 

2.2.5 Conjugate Gradient Method (CG) 

The task of solving the equation A . x = h may be interpreted as a minimization 
problem. Defining the scalar function 

1 2 
f(x) == 2 IA· x - hi , (2.66) 

we only need to find that N-vector x which minimizes f(x) (with the minimum 
value f = 0.) 



2.2 Iterative Methods 37 

Figure 2.1: Conjugate gradients: go = - V f(Po) denotes the direction of steepest 
descent at point Po, gl is the same at point PI, etc.; hI points out the direction 
of the gradient conjugate to go. The steepest descent method follows the tedious 
zig-zag course Po -t PI -t P2 -t ... . The conjugate gradient hI gets us to the 
goal in just two steps. 

Various methods are available for the minimization of a scalar function of N 
variables. In our case f(x) is a quadratic function of x, and in such instances the 
method of conjugate gradients is particularly efficient. There will be no matrix 
inversion at all - in marked contrast to the other iterative methods. However, 
the multiplication A . x must be performed several times, so that the procedure is 
economical only for sparse matrices A. (For such matrices the multiplication will 
of course be done by specific subroutines involving less than N2 operations.) 

In order to explain the CG method we start out from the older and less efficient 
steepest descent method introduced by Cauchy. For simplicity of visualization, 
but without restriction of generality, we assume the function f to depend on two 
variables x = (Xl, X2) only. The lines of equal elevation of a quadratic function are 
ellipses that may, in adverse cases, have a very elongated shape, forming a long 
and narrow channel (see Fig. 2.1). Starting from some point Po with a position 
vector Xo and proceeding by steepest descent we would follow the local gradient 

(2.67) 

As the figure shows (and as every alpine hiker knows) this direction will by no 
means lead directly to the extremal point of f. The best we can do - and this is 
indeed the next step in the steepest descent technique - is to proceed to the lowest 
point PI along the path that cuts through the narrow channel in the direction of 
go. If we now determine once more the local gradient gl = -"V f(Pd, it must be 
perpendicular (by construction) to go. Iterating this procedure we arrive, after 
many mutually orthogonal bends, at the bottom of the channel. 

We would arrive at our goal much faster if from point PI we took a path along 
the direction hI instead of gl. But how are we to find hl? - Let us require that 



38 Chapter 2 Linear algebra 

in proceeding along hI the change of the gradient of f should have no component 
parallel to go. (In contrast, when we follow gl, the gradient of f has - initially 
at least - no go-component; this, however, changes very soon, and the lengthy 
zig-zag path ensues.) If we can achieve this, a gradient in the direction of go will 
not develop immediately - in fact, on quadratic surfaces it will never build up 
again. In our two-dimensional example this means that hI must already point to 
the desired minimum. 

If we apply these considerations to the particular quadratic function 2.66 we 
are led to the prescription given in Fig. 2.2. 

If the system of equations - and therefore the surface f{xl, X2) - is of dimension 
2 only, we have reached our goal after the two steps described in Fig. 2.2, and 
x = X2 is the solution vector. For systems of higher dimensionality one has to go 
on from X2 in the direction 

(2.75) 

until the next "low point" is reached at 

(2.76) 

with 
A - Ig2· h21 

3 - IA. h2 12 • 
(2.77) 

A system of N equations requires a total of N such steps to determine the solution 
vector x. 

EXAMPLE: As already mentioned, the CG method is most appropriate for large systems 
of equation with a sparsely inhabited matrix A. But the necessary manipUlations may 
be demonstrated using the 2-dimensional example we have used before. Let once more 

The gradient vector at Xo is 

T ( 4.8 ) go = -A . [A· Xo - bj = -
5.6 

and 

so that 



2.2 Iterative Methods 

Conjugate gradient technique: 

1. Let Po (with the position vector xo) be the starting point of the search; 
the local gradient at Po is 

go == -Vf(xo) = _AT. [A· Xo - b] 

The next "low point" Pl is then situated at 

with 

2. From Pl we proceed not along the local gradient 

gl = _AT. [A· Xl - b] 

but along the gradient conjugate to go, i.e. 

gl . A· go 
hl = gl - A go· 

go' . go 

The low point along this path is at 

with 

Figure 2.2: The CG method 

(2.68) 

(2.69) 

(2.70) 

(2.71) 

(2.72) 

(2.73) 

(2.74) 

39 



40 Chapter 2 Linear algebra 

Similarly we find from 2.71-2.73 

and thus 

x = ( 1.000). 
2 -0.004 

It took us just two steps to find the solution to the 2-dimensional system A . x = h. If A 
were a N x N matrix, N such steps would be necessary. 

2.3 Eigenvalues and Eigenvectors 

Given a matrix A, the physicist who needs the eigenvalues Ai defined by 

IA - Ai II = 0 (i = 1, ... N) (2.78) 

and the corresponding eigenvectors ai, 

[A - Ai I] . ai = 0, (2.79) 

will normally make use of one of the various standard subroutine packages. In 
the NAG library, for instance, these would be routines with names like F01xxx, 
F02xxx; the respective ESSL routine would be SGEEV. 

In some situations, however, it is sufficient to determine only a few - typically 
the largest - eigenvalues and the associated eigenvectors. Examples are Courant 
and Hilbert's stability analysis of numerical algorithms for the solution of differ
ential equations (Section 4.1, [GEAR 71]) and quantum mechanical perturbation 
theory ([KOONIN 85, McKEOWN 87].) In such cases it is obviously not a good 
idea to use the too comprehensive standard routines. Rather one will apply one of 
the following iterative procedures. 

2.3.1 Largest Eigenvalue and Related Eigenvector 

The N eigenvectors ai of a matrix A may be viewed as the base vectors of a 
coordinate system. An arbitrary N-vector Xo is then represented by 

N 

Xo = LCia; 
i=l 

(2.80) 

with suitable coefficients Ci. Let us assume that Xo contains a non-vanishing com
ponent em along that eigenvector am which corresponds to the largest (by absolute 
value) eigenvalue Am. Now multiply Xo several times by A, each time normalizing 



2.3 Eigenvalues and -vectors 41 

the result: 

==> (2.81) 

After a few iterations we have 
N 

Xk ()( L Ci A~ ai ~ Cm A~ am (2.82) 
i=l 

This is to say that the iterated vector will be dominated by the am-component. 
The result is therefore a unit vector with direction am. The eigenvalue Am may be 
obtained from either of the following formulae: 

(2.83) 

where xp (k) denotes any cartesian component of the - still unnormalized - vector 
Xk'. Of course, the equations 2.83 apply only when all components except am have 
become negligible. 

EXAMPLE: Once more, let 

A=(~ ~) 
and choose as the starting vector 

Xo = ( ~~~ ) 
The iterated and normalized vectors (see equs. 2.81) are 

Xl = ( ~::~~ ) ; X2 = ( ~::~~ ) ; X3 = ( ~:::: ) ; ... 

From X3 and the still unnormalized 

X ' = ( 2.279 ) 
4 4.471 

we find, using the first of equs. (2.83), Am = 4.907. The exact solution of the problem is 

8m = and Am = 5 . ( 0.45 ) 
0.90 



42 Chapter 2 Linear algebra 

2.3.2 Arbitrary Eigenvalue/-vector: Inverse Iteration 

The foregoing recipe may be modified so as to produce that eigenvalue An which 
is nearest to some given number A. Again we set out from an arbitrary vector Xo. 
The iterative procedure is now defined by 

==> (2.84) 

It is easy to see that after a few iterations the vector 

N 

Xk <X L £; [Ai - Ark ~ (2.85) 
i=l 

contains almost exclusively the component corresponding to An: 

(2.86) 

An itself may then be evaluated using either one of the obvious relations 

(2.87) 

EXAMPLE: With the same sample matrix as before and an estimated value >. = 1 the 
iteration matrix in 2.84 is given by 

Starting out from 

we find for the iterated, normalized vectors 

x =( 0.832).x =( 0.740).x =( 0.715)'X4=( 0.709) 
1 -0.555' 2 -0.673' 3 -0.699' -0.705 

The next vector is, before normalization, 

X ,= ( 0.708) 
5 -0.707 



Sample Applications 43 

so that Xs I • X4 = 1.0015. Using the first of equs. 2.87 we have An = 2.001. The exact 
eigenvalues of A are 5 and 2; the eigenvector corresponding to A = 2 is 

a = ( 0.707) 
-0.707 

In going through the above exercise we are reminded that - see equ. 2.84 - a 
matrix inversion is required. This is in contrast to the direct iteration 2.81. Inverse 
iteration is therefore appropriate only if no more than a few eigenvalues/-vectors 
of a large matrix are needed. In other cases it may be advisable after all to invoke 
the well-optimized standard routines. 

2.4 Sample Applications 

Within physics the most prominent areas of application of linear algebra are contin
uum theory and quantum mechanics. In the theory of continua, systems of linear 
equations occur whenever one of the partial differential equations that abound 
there is discretized. This will be discussed at length in Chapter 5 (Partial Differ
ential Equations) and 8 (Hydrodynamics); here we present just two examples (Sees. 
2.4.1 and 2.4.2). In quantum mechanics, linear systems are equally ubiquitous. We 
will provide an example (Sec. 2.4.3) and for further information refer the reader 
to the truly extensive literature which in this instance is to be found mostly in the 
neighboring realm of quantum chemistry. 

Further applications of linear algebra will be treated in Chapter 3 (Stochastics). 

2.4.1 Diffusion and Thermal Conduction 

In Section 1.4 we have shown how to discretize the diffusion equation (or equation 
of thermal conduction) by applying the DNGF and DDST formulae. Without 
giving arguments we simply used the DDST approximation at time tn, writing 

8u(x, t) 81uf 
8x2 ~ (~X)2 (2.88) 

In this manner we arrived at the "FTCS-"formula. However, with no less justifi
cation we may use the same spatial differencing at time tn+1 , 

(2.89) 

This leads us to the "implicit scheme of first order" 

~[U':t+l _ un] = ~[un+l _ 2un+1 + un+l] 
~t' • (~x)2 .+1 • .-1 

(2.90) 



44 Chapter 2 Linear algebra 

which may be written, using a ::::: D tl.t/(tl.x)2, 

_aun+l + (1 + 2a)u~+l - aun+l = u~ I-I I 1+1 I (2.91) 

for i = 1, ... N -1. Once more fixing the boundary values Uo and UN we may write 
this system of equations in matrix form, thus: 

A. un+1 = un (2.92) 

where 
1 0 0 0 

-a 1 +2a -a 0 0 
A::::: 0 0 (2.93) 

0 0 1 

It is now an easy matter to invert this tridiagonal system by the recursion scheme of 
Sec. 2.1.4. 

EXERCISE: Solve the problem of Sec. 1.4 (one-dimensional thermal conduction) by ap
plying the implicit scheme in place of the FTCS method. Use various values of !::1t (and 
therefore a.) Compare the efficiencies and stabilities of the two methods. 

2.4.2 Potential Equation 

In a later section we will concern ourselves in loving detail with partial differential 
equations of the form 

(2.94) 

According to general typology we are here dealing with an elliptic PDE. The elec
trostatic potential produced by a charge density p(x, y) obeys this equation, which 
was first formulated by Poisson. The equation can be solved uniquely only if 
the values of the solution u(x, y) are given along a boundary curve C(x, y) = 0 
(Dirichlet boundary conditions,) or if the derivatives (au/ax, au/ay) are known 
along such a curve (Neumann boundary conditions.) 

By introducing finite differences tl.x = tl.y we derive from 2.94 the difference 
equations 

1 
(tl.X)2 [UHl,j - 2Ui,j + Ui-l,j + Ui,j+l - 2Ui,j + Ui,j-l] = -Pi,j (2.95) 

i = I, ... N; j = I, ... M 

Combining the N row vectors {Ui,j; j = 1, .. . M} sequentially to a vector v of 
length N.M we may write these equations in the form 

A·v=b (2.96) 



Sample Applications 45 

where A is a sparse matrix, and where the vector b contains the charge density p 
and the given boundary values of the potential function u (see Section 5.3). 

Any of the methods of solution which we have discussed in this chapter may now 
be applied to equ. 2.96. Actually the relaxation methods and the AD! technique 
are the most popular procedures. In addition there are specialized methods that 
are tailored to the potential equation (see Sees. 5.3.3 and 5.3.4). 

2.4.3 Electronic Orbitals 

The wave function of the electrons in a molecular shell is frequently expressed as 
a linear combination of atomic orbitals (MO-LCAO approximation): 

(2.97) 

where 'l/Ji is the wave function of the shells contributing to the molecular bond. 
Applying the Schroedinger equation to this linear combination one finds 

and further 

with 

Hji == (jJHJi) = ! 'l/J;H'l/Jidr; Sji == (jJi) = ! 'l/J;'l/Jidr 

Equ. 2.99 is just a generalized eigenvalue problem of the form 

H·a= ES·a 

which may be solved using the procedures described above. 

(2.98) 

(2.99) 

(2.100) 

(2.101) 

A particularly transparent example for the application of the LCAO method is 
the Hueckel theory of planar molecules; see, e.g., [McKEOWN 87]. 



Part II 

Everything Flows 



87 

If it is true that mathematics is the language of physics, then differential equations 
surely are the verbs in it. It is therefore appropriate to devote part of this text to 
the numerical treatment of ordinary and partial differential equations. 

We cannot fully understand today what an upheaval the discovery of the "flux
ion", or differential, calculus must have been in its time. For us it is a matter of 
course to describe a certain model of growth by the equation 

iJ(t) = ay(t) 

and to write down immediately the solution y(t) ex: exp(at), i.e. the notorious for
mula of exponential growth. Equally familiar is the concise Newtonian formulation 
of the mechanical law of motion, 

x(t) = ~K(t) 
m 

Only when we happen to come across an ancient text on ballistics, and find quite 
abstruse conceptions of the trajectories of cannon balls, we can sense how difficult 
the discussion of even such a simple physical problem as projectile motion must 
have been when the tools of differential calculus were not yet available. 

Scientists were duly fascinated by the new methods. The French mathemati
cians and physicists of the eighteenth century brought "Ie calcul" to perfection 
and applied it to ever more problems. The sense of power they experienced found 
its expression in exaggerated announcements of an all-encompassing mechanical 
theory of all observable phenomena. No severe hindrance was seen in the fact that 
while for many phenomena one may well write down equations of motion, these 
may seldom be solved in explicit, "closed" form. "In principle" the solution was 
contained in the equations, everything else being a technical matter only. 

At times the high esteem of infinitesimal calculus - or rather, the relatively 
poor image of algebra - would lead to remarkable mistakes. Thus the powerful 
opponent of Christian Doppler, the Viennese mathematician Petzval4 , derided the 
Doppler principle mostly for the reason that it was formulated as a simple algebraic 
relation and not as a differential or integral law. 

Yet it is true: as every student of physics soon finds out, almost all relevant 
physical relations may be put in terms of differential equations. (This predom
inance of differential equations may in fact be due to our innate preference for 
linear-causal thinking; regrettably, this is not the place to discuss such matters.) 
And if we only decide to content ourselves with purely numerical solutions, we gain 
access to a whole world of phenomena by far transcending the class of simple cases 
analysable "in closed form" . 

The first step towards such a numerical solution is always a reformulation of the 
given differential equation in terms of a difference equation. A neologism describing 

4JOSEF PETZVAL, 1807-91, co-founder of the "Chemica-Physical Society at Vienna" still in 
existence today. He became renowned for his numerical calculations on photographic multi-lens 
objectives, a project that makes him one of the forefathers of computational physics. 



88 

this step is "to difference" the respective equation. For instance, by replacing in 

dx = f(x) 
dt 

the differential quotient by a difference quotient one obtains a linear equation, 
which in the most naive approximation reads 

Here Xn == x(tn), and the time increment 6.t == tn+l - tn is taken to be constant, 
i.e. independent of n. Obviously one may then, for given Xn and f(xn), compute 
the next value Xn+l according to 

Iterative algorithms of this kind - albeit somewhat more refined and accurate -
provide the basis for all classical and semi-classical simulation methods, as far as 
these presuppose deterministic equations of motion. 

While the difference calculus suffices for the numerical treatment of ordinary 
differential equations, in the case of partial differential equations one has to invoke 
linear algebra as well. Since the solution function u of such an equation depends on 
at least 2 variables, by discretizing those variables we obtain a table of functional 
values with 2 or more indices: {Ui,j, i, j = 1, ... }. The given differential equation 
transforms into a set of difference equations which may be written as a matrix 
equation (see also Section 2.4). 



Chapter 3 

Stochastics 

John von Neumann would later toss the dice using 
computers 

The idea to include chance in a model of reality may be traced back even to an
tiquity. The Epicuraeans held that the irregular motion of atoms arises because 
individual atoms stray "without cause" from their straight paths. Such views 
necessarily elicited angry opposition from those scholars who believed in predeter
mination. And even the "philosophy professor" Cicero, himself an eminent critic 
of the exaggerated causality doctrine of the Stoics, comments caustically: 

"So what new cause is there in nature to make the atoms swerve? Or 
do they draw lots among themselves which will swerve and which not? 
Or do they swerve by a minimum interval and not by a larger one, or 
why do they swerve by one minimum and not by two or three? This is 
wishful thinking, not argument." [CICERO -44] 

In fact, the same argument is still going on today - albeit with a slightly 
different vocabulary. Just remember the dispute between the mechanists and the 
champions of free will, the passionate discussion around Jaques Monod's book 
"Chance and Necessity", or the laborious struggle of philosophy with quantum 
mechanical uncertainty. 

47 

F. J. Vesely, Computational Physics
© Kluwer Academic / Plenum Publishers, New York 2001



48 Chapter 3 Stochastics 

With becoming epistemological humility we will refrain from trying to explain 
the whole world at once. Let us content ourselves with modelling a small subsection 
of physical reality. But then the boundary of our subsystem will be permeable to 
influences - fields, forces, collisions etc. - originating in the encompassing system. 
To avoid having to include the larger system in the description we will replace its 
influence on the subsystem by suitably chosen "accidental" fields, forces, collisions 
etc. Just this is the basis of stochastic methods in physics. 

Let us reflect for a moment on the interrelated concepts "statistical" and "sto
chastic." A statisticus was the administrator of a Roman country estate or a manu
facture. It was his task to extract the regularities - like the total amount of wheat 
brought in - hidden in the everyday turmoil. This is just what a statistician does: 
out of a heap of more or less irregular data he distills the essential parameters -
mean, standard deviation and such. 

In contrast, stochastic means simply irregular or arbitrary. While in statistics 
we aim to extract the regular from the irregular, in stochastics we put the irregular 
to work - for instance in "trying out" many possible states of a model system. 

There are various ways by which to account for the irregular influence of the 
environment upon the modelled subsystem. In Boltzmann's kinetic theory of gases 
and in Smoluchowski's description of diffusional motion random forces do not ap
pear explicitly. Rather, they are accounted for modo statistico by way of certain 
mathematical assumptions on the probability density in phase space - molecular 
chaos, detailed balance etc. 

Alternatively, the diffusive motion of a particle may be described in terms of a 
stochastic equation of motion in which the factor of chance is represented explicitly 
in the form of a stochastic force. In 1907 Paul Langevin postulated the following 
equation for the motion of a Brownian particle: 

cf2 
m dt2r(t) = -'Yv(t) + S(t), (3.1) 

Here -'Yv is the decelerating viscous force acting on the particle as it moves through 
the surrounding fluid, and S is the stochastic force which arises from the irregular 
impacts of the fluid's molecules. Incidentally, it took kinetic theorists more than 
sixty years to come up with a strict derivation of Langevin's equation [MAZUR 70]. 

To produce a solution to this equation of motion we must first of all draw the 
actual value of the random force S by some "gambling" procedure (0 Cicero!). 
The mean value of each Cartesian component of S must of course be zero, and the 
variance is closely related to the viscosity l' and the temperature of the fluid. In 
Chapter 6 we will take a closer look at this method of "Stochastic dynamics." For 
the moment let us note that the crucial step in this technique is the sampling of 
certain random variates. In fact, we may take it as an operational definition of 
stochastic methods in computational physics that in applying such methods one 
has to call a random number generator. 

In Gibbs' version of statistical mechanics one studies, in place of one single 
model system, a large number of inaccurate copies of that system. Each member 



3.1 Equidistribution 49 

of the so defined "ensemble" differs in detail from the others, with the variance 
of these deviations being known. Once more, chance appears only in an implicit 
manner, namely in the form of statistical assumptions. Nevertheless there exists a 
decidedly stochastic method for evaluating averages over an ensemble: the Monte 
Carlo method. Here the ensemble is constructed step by step, by producing a 
sequence of "erroneous copies" of a given model system. At each copying step the 
manner and extent of deviation from the preceding copy is sampled; this is called a 
random walk through phase space. In a later chapter (6) the statistical-mechanical 
Monte Carlo method will be explained in more detail. But we note here that what is 
obviously needed once more is a "loaded die" - that is, a random number generator 
that produces a sequence of numbers with certain desired statistical properties. 

Depending on the specific kind of application we will need random variates 
with different probability distributions. The most simple task is the production of 
equidistributed random numbers. But the access to all other distributions is pass
ing through the equidistribution as well. The following section is therefore devoted 
to the methods that enable us to construct sequences of equidistributed random 
variates. To proceed to other distributions one may then use the transformation 
method (see Section 3.2.2), invoke the rejection method (Section 3.2.4), or set out 
on a random walk (Section 3.3.5). 

3.1 Equidistributed Random Variates 

The correct name, of course, is "pseudorandom" numbers, since any numerical al
gorithm for producing a sequence of numbers is necessarily deterministic. However, 
we will be quite satisfied if the numbers thus produced, when submitted to certain 
statistical tests, are free of undesirable regularities [MARSAGLIA 90j. In that case 
we will overlook the fact that as a rule they do not come from a "truly random" 
process. 1 One requirement, however, must hold: the relevant algorithms should be 
very fast, since in the course of a Monte Carlo calculation or a diffusional random 
walk we need large amounts of random numbers. 

3.1.1 Linear Congruential Generators 

The classic method for producing a sequence of homogeneously distributed random 
numbers is defined by the recursive prescription 

I In+, = [aln+ b[ modm (3.2) 

1 In fact, there are increasingly successful attempts to construct "physical" random num
ber generators which may be based on thermal noise in resistors or on quantum phenomena 
[STAUFFER 89, JENNEWEIN aDJ. 



50 Chapter 3 Stochastics 

(see [ABRAMOWITZ 65], [PRESS 86], [KNUTH 69]). Here, a is some (odd) multi
plicative factor, m is the largest integer that may be represented by the particular 
computer (usually m = 232 or such), and b is relatively prime with respect to m 
(i.e. band m have no common factor). 

The numbers produced in this manner are homogeneously distributed over the 
whole range of representable integers. A sequence of random numbers Xn of type 
real, equidistributed over the interval (0,1), may be obtained by dividing In by m. 

Most high-level programming languages contain some internal routine based 
on this technique. These routines are usually called by names like RAND, RND, 
RAN etc. (The word random, incidentally, stems from ancient French, where 
randon meant impulsiveness or impetuosity.) The first number in the sequence, 
the - odd-numbered - "seed" 10, may often be chosen by the user. 

Statistical scrutiny shows that the random numbers produced in this way are 
not very "good." While a histogram of their relative frequencies looks quite incon
spicuous, there are undesirable serial correlations of the type 

(Xn XnH) i- 0; k = 1,2, ... (3.3) 

It depends on the particular application whether such auto correlations are accept
able or not. For instance, every 3 successive Xn might be used as cartesian coordi
nates of a point inside the unit cube. In that case one would find that the points 
would be confined to a discrete manifold of parallel planes ([COLDWELL 74]). 

There is a simple and economical trick to cleanse the internal random number 
generator from its serial correlations. The procedure to follow is described in Figure 
3.1 [PRESS 86]. 

3.1.2 Shift Register Generators 

There are several names for this group of techniques. One may encounter them as 
"Tausworthe" or "XOR" generators, or as the method of "primitive polynomials." 
Originally these methods were designed for the production of random bits, but one 
may always generate 16, 32, etc. bits at a time and combine them to a computer 
word. 

The procedure is very simple. Assuming that n random bits b1 , b2 , .. bn are 
already given, we apply a recursive rule of the form 

(3.4) 

to find another random bit. Here, k < m < .. < n, and EB denotes the logical 
operation "exclusive or" (XOR) which yields the result 1 only if anyone, but not 
both, of the two operands equals l. 

The properties of the generator 3.4 will obviously depend on the actual com
bination of indices (k, m, ... , n). This is not the place to reproduce the analysis 



3.1 Equidistribution 51 

"Erasing tracks:" 

1. Produce a list RLIST(i) of Z equidistributed random numbers Xi E 
(0,1); i = 1 ... Z. Z should be prime and no less than about 100, e.g. 
Z = 97. 

2. Sample an additional random number y in (0,1). 

3. Determine a pointer index j E [1, ZJ according to 

j = 1 + int(y . Z) 

(int(r) ... largest integer smaller than the real number r.) 

4. Use the element RLIST(j) corresponding to j as the output random 
number. 

5. Put y = RLIST(j) and replace RLIST(j) by a new random number 
E (0,1); return to (3). 

Figure 3.1: Removal of autocorrelations in simple congruential generators 

leading to a class of optimal index combinations. Suffice it to refer to the theory of 
"primitive polynomials modulo 2" [TAUSWORTHE 65, NIEDERREITER 82J. These 
are a subset of all polynomials whose coefficients and variables may take on the 
values 0 or 1 only: 

P(x; k, m, ... n) = 1 + Xk + xm + ... + xn; X = 0 or 1 (3.5) 

A table of primitive polynomials modulo 2 may be found in [PRESS 86], p. 212. 
We may use any such polynomial modulo 2, be it primitive or not, to define a 

recursion prescription ofthe form (3.4). The specific advantage of primitive polyno
mials is that the recursion procedures defined by them exhibit a certain kind of "ex
haustive" property. Starting such a recursion with an arbitrary combination of n 
bits (except 0 ... 0), all possible configurations of n bits will be realized just once be
fore a new cycle begins. 

EXAMPLE: The sequence (1,3) defines a primitive polynomial modulo 2. Starting with 
the arbitrary bit combination 101 we obtain by applying the prescription 

bs = bs - 1 ffi bs-3; s = 4,5, .. 

the sequence, reading from left to right, 

101001110100111 010 011101 ... 



52 Chapter 3 Stochastics 

: -----------t -------~ 

i'l 1'1 rj 
Figure 3.2: Kirkpatrick-Stoll prescription 

It is evident that indeed all possible 3-bit groups (except 000) occur before the sequence 
repeats. 

Primitive trinomials of the form 

P(x;m,n) = 1 +xm +xn (3.6) 

yield recursion formulae which require only one XOR operation per step: 

bs = bs - m EEl bs - n ; s = n + 1, • • . (3.7) 

A specific prescription of this type which has been developed and tested by Kirk
patrick and Stoll [KIRKPATRICK 81, KALOS 86] makes use of the indices m = 103 
and n = 250. 

In all high-level programming languages the XOR command may be applied to 
arguments of the type integer as well. The code line 

I Is = 1s- 103 EEl Is- 250 I (3.8) 

which corresponds to the "R250" algorithm of Kirkpatrick-Stoll, means that the 
two integers on the right-hand side are to be submitted bit by bit to the XOR 
operation. Again, random numbers of type real within the range (0,1) may be 
obtained by machine-specific normalization. 

To start a generator of this type one must first produce 250 random integers. 
For this purpose a linear congruential generator may be used. To keep the storage 
requirements within bounds while applying a recursion like 3.8 one will provide for 
some sort of cyclic replacement of register contents. 

Overviews on modern random number generators, in particular on Tausworthe 
algorithms and the related Fibonacci generators, are given in [JAMES 90] and 
[MARSAGLIA 90] . More recent developments are reviewed in [GuTBROD 99]. 



3.2 Other distributions 53 

3.2 Other Distributions 

3.2.1 Fundamentals 

Before describing the methods for producing random numbers with arbitrary sta
tistical distributions we have to clarify a few basic concepts: 

Distribution function: Let x be a real random variate with a range of values 
(a, b). By distribution function we denote the probability that x be less than 
some given value Xo: 

P(xo) == P{x < xo} (3.9) 

A common example in which a = -00 and b = 00 is the Gaussian, or normal, 
distribution 

1 jXO 2 P(xo) = /'iC dx e-x /2 
v 21f -00 

(3.10) 

The function P(x) is monotonous and non-decreasing, with P(a) = 0 and 
P(b) = 1. The distribution function is dimensionless: [P(x)] = 1. 

Probability density: The probability (or distribution) density p(x) is defined by 
the identity 

p(xo) dx == P{x E [xo, Xo + dx]} == dP(xo) (3.11) 

Thus p(x) is simply the differential quotient of the distribution function: 

dP(x) l xO 

p(x) = ~' i.e. P(xo) = a p(x) dx 

The dimension of p(x) equals the inverse of the dimension of x: 

1 
[P(x)] = [x] 

In the above example p(x) would be 

p(x) = _1_ e-x2 / 2 

V2K 

(3.12) 

(3.13) 

(3.14) 

If x may take on discrete values x" only, with ~x" == X,,+l - x"' we use the 
notation 

(3.15) 

for the probability of the event x = x". This quantity p" is by definition 
dimensionless, in spite of its being related to the probability density p(x) 
of a continuous random variate. The discrete variant of the (cumulative) 
distribution function is simply 

(3.16) 



54 Chapter 3 Stochastics 

,- ---
" ,," P(x) --

x 
a b 

Figure 3.3: Distribution function and density 

Statistical (in)dependence: Two random variates Xl, X2 are said to be statisti
cally independent or uncorrelated if the density of the compound probability 
- that is, the probability for Xl and X2 occuring simultaneously - equals the 
product of the individual probabilities: 

(3.17) 

In practical applications this means that one may sample each of the two 
variates from its own distribution, regardless of the actual value of the other 
variable. 

By conditional probability density we denote the quantity 

( I ) - P(XI' X2) 
P X2 Xl = () P Xl 

(3.18) 

(For uncorrelated XI,X2 we have p(x2Ixl) = P(X2»' 

The density of the marginal distribution gives the density of one of the two 
variables, irrespective of the actual value of the other one; in other words, it 
is an integral over the range of values of that other variate: 

(3.19) 

Moments of a probability density: These are the quantities 

(xn) == lb xnp(x) dx (3.20) 

In the case of two (or more) random variates the definition is to be suitably 
generalized, as in 

(3.21) 



9.2 Other distributions 55 

----o::;..Jv(_(X_) _---.,;::..........._. X 

a b 

Jti y 

Figure 3.4: Transformation of the probability density 

In particular the quantity (XIX2) is called the cross correlation or covariance 
of Xl and X2. If the two variates are statistically independent (uncorrelated), 
we have (XIX2) = (Xl)(X2). 

Transformation of probability densities: From equ. 3.11 we may easily de
rive a prescription for the transformation of a density p(x) upon substitution 
of variables X H y. Given a bijective mapping y = f(x)j X = rl(y), and 
given the density p(x), the conservation of probability requires 

IdP(y)1 = IdP(x)1 (3.22) 

(The absolute value occurs here since we have not required the function f(x) 
to be increasing.) It follows that 

Ip(y) dYI = Ip(x) dxl (3.23) 

or 

(3.24) 

Incidentally, the relation 3.24 holds for any kind of density, such as mass or 
spectral densities, not only for probability densities. 

EXAMPLE: The spectral density of black body radiation is usually written in terms 
of the angular frequency w: 

1iw3 1 
I(w) = 7rC3 etu..J/kT -1 (3.25) 

If we prefer to give the spectral density in terms of the wave length>' == 27rc/w, 
we have from 3.24 

Idwl Ii (27rc)3 1 (27rC) 
1(>') = I[w(>,)] d)" = 7r& T e(hc/>-)/kT - 1 );2 (3.26) 



56 Chapter 3 Stochastics 

Transformation method: 

Let p{x) be a desired density, with a corresponding distribution function 
y = P(x). The inverse of the latter, P-l(y), is assumed to be known . 

• Sample y from an equidistribution in the interval (O, 1) . 

• Compute x = P-l(y). 

The variable x then has the desired probability density p(x). 

Figure 3.5: Transformation method 

EXERCISE: A powder of approximately spherical metallic grains is used for sinter
ing. The diameters of the grains obey a normal distribution with (d) = 2/-Lm and 
(J = 0.25/-Lm. Determine the distribution of the grain volumes. 

3.2.2 Transformation Method 

Let us now return to our task of generating random numbers x with some given 
probability density (or relative frequency) p(x). We will first try to find a bijective 
mapping y = f(x) such that the distribution of y is homogeneous, i.e. p(y) = c. 
By the transformation law for densities (read backwards) we will then have 

p{x) = c I~~I = c Id~~) I (3.27) 

This means that in order to serve our purpose the mapping y = f(x) should obey 

I df(x) I = ~ p(x) 
dx c 

(3.28) 

It is easy to see that the mapping 

f{x) == P(x) (3.29) 

fulfills this condition, and that c = 1. This solves our problem: all we have to 
do now is sample y from an equidistribution E [0, 1J and compute the inverse x = 
P-l(y) (see Figs. 3.5,3.6). 

EXAMPLE: Let 
1 1 

p(x) = - -- (Lorentzian) 
7r 1 + x 2 

(3.30) 



3.2 Other distributions 

P(x) 

1 

Y 

a 

, 
-I , . 

1\ 

x 
- 1 

X=P (y) b 

Figure 3.6: Transformation method: geometrical interpretation 

57 

be the desired density in the interval (±oo). The integral function of p(x) is then y = 

P(x) = 1/2 + (l/rr) arctan x, and the inverse of that is p-l(y) = tan[rr(y - 1/2)J. The 
prescription for producing random variates x distributed according to 3.30 is therefore 

• Sample y equidistributed in (0,1) . 

• Compute x = tan[rr(y - ~)J. 

A geometrical interpretation of this procedure may be found from Fig. 3.6. If y is 
sampled from a homogeneous distribution E (0,1) and transformed into an x-value 
using x = P-l(y), then those regions of x in which P(x) is steeper are obviously 
hit more frequently. The slope of P(x), however, is just equal to p(x), so that 
x-values with large p(x) are indeed sampled more often than others. 

Sometimes the primitive function P(x) of the given density p(x) is not an 
analytical function, or if it is, it may not be analytically invertible. In such cases 
one may take recourse to approximation and interpolation formulae, or else use 
the "rejection method" to be described later on. 

3.2.3 Generalized Transformation Method: 

The foregoing considerations on the transformation of distribution densities are 
valid not only for a single random variate x, but also for vectors x = (Xl, ... , xn) 
made up of several variables. Let x be such a vector defined within an n-dimensional 
region D x , and let y = f(x) be a bijective mapping onto a corresponding region 
Dy (see Fig. 3.7). Again invoking conservation of probability we find 

p(y) = p(x) I: I ' (3.31) 



58 Chapter 3 Stochastics 

Figure 3.7: Transformation in higher dimensions 

where lox/oyl is now the Jacobi determinant of the transformation x = f-l(y). 

Normal Distribution (Box-Muller Method) 

An important application of the generalized transformation method is the follow
ing, widely used technique for generating normal random variates. 2 Let 

(3.32) 

be the common density of two uncorrelated normal variates. By introducing polar 
coordinates (r,¢) instead of (XI,X2) we find 

(3.33) 

Thus the variable Y2 == ¢/27r is already homogeneously distributed in (0,1) and 
statistically independent of r, and we are left with the problem of reproducing the 
density p(r). The quantity 

YI == P(r) = l r p(r') dr' = 1 _ e-r2 / 2 (3.34) 

is equidistributed in (0,1). Consequently, 1- YI is equidistributed as well, and the 
desired transformation x <===> y reads 

( Xl) <===> (e~(xi + X~~22 ) == ( YY21 ) 
X2 - arctan-

27r Xl 

(3.35) 

2 A "cardboard and glue" method for producing almost normal variates makes use of the 
central limit theorem: If y = Xl + ... + Xn is the sum of n = 10 - 15 equidistributed random 
numbers picked from the interval (-0.5,0.5), then the distribution of z == y J12/n is almost 
normal. 



3.2 Other distributions 

Box-Muller technique: 

• Construct 

Xl J -2 In YI cos 27rY2 

X2 J -2 In Yl sin 27rY2 

The variables Xl, X2 are then normal-distributed and statistically independent. 
Gaussian variates with given variances a~, a~ are obtained by multiplying Xl 

and X2 by their respective ai . 

Figure 3.8: Gaussian random variates by the Box-Muller technique 

59 

Thus we may write up the Box-Muller prescription [MULLER 58) for generating 
normal random variates as shown in Figure 3.8. If one prefers to avoid the time
consuming evaluation of trigonometric functions, the method given in Section 3.2.6 
may be used. 

3.2.4 Rejection Method 

The transformation method works fine only if the distribution function - i.e. the 
primitive function of the density - is known and invertible. What if p(x) is too 
complicated for formal integration, or if it is given in tabulated form only, for in
stance as a measured angle-dependent scattering cross section? It was just this 
kind of problems the pioneers of stochastics had in mind when they taught ENIAC 
and MANIAC to play at dice. Therefore the classical method for generating arbi
trarily distributed random numbers stems from those days. In a letter written by 
John von Neumann to Stanislaw Ulam in May 1947 we read: 

"An alternative, which works if ~ and all values of f(~) lie in 0, 1, is this: 
Scan pairs Xi, yi and use or reject Xi, yi according to whether yi ~ f(x i ) 

or not. In the first case, put ~j = Xi; in the second case form no ~j at 
that step." [COOPER 89) 

In Figure 3.9 this recipe is reproduced in modern notation. From Figure 3.10 it 
may be appreciated that by this prescription x-values with high p(x) will indeed 
be accepted more frequently than others. 

The method is simple and fast, but it becomes inefficient whenever the area 
of the rectangle [a, b) ® [0, Pm) is large compared to the area below the graph 
of p(x) (which by definition must be = 1). Therefore, if either the variation of 
p(x) is large ("8-like p(x)") or the interval [a, b) is extremely wide, a combination 
of transformation and rejection method is preferable. We first try to find a test 



60 Chapter 3 Stochastics 

Rejection method: 

Let [a, bj be the allowed range of values of the variate x, and Pm the maximum 
of the density p(x). 

1. Sample a pair of equidistributed random numbers, x E [a, bj and y E 

[O,Pmj. 

2. If y ~ p(x), accept x as the next random number, otherwise return to 
step 1. 

Figure 3.9: Rejection method 

y 

Pm.x 

x 
a b 

Figure 3.10: Rejection method 



3.2 Other distributions 

Improved rejection method: 

Let f(x) be a test function similar to p(x), with 

f(x) 2 p(x); x E [a, b] (3.37) 

The primitive function F(x) == J f(x) dx is assumed to be known and invert
ible 

1. Pick a random number x E [a, b] from a distribution with density 

_ f(x) 
p(x) = F(b) _ F(a) (3.38) 

by using the transformation method. Pick an additional random num
ber y equidistributed in the interval [0, f(x)]. 

2. If y ::; p(x) accept x as the next random number, else return to Step 1. 

Figure 3.11: Improved rejection method 

61 

function f(x) which should closely resemble the desired density, with the additional 
requirement that f(x) 2 p(x) everywhere. If f(x) is integrable, with an invertible 
primitive F(x), we may employ the transformation method to generate x-values 
that are already distributed according to f(x). More specifically, their distribution 
is given by the correctly normalized density 

_ _ f(x) 
p(x) = F(b) - F(a) (3.36) 

Now we pick a second random number y from an equidistribution in (0, f(x)) and 
subject it to the test y : p(x). By accepting x only if y ::; p(x) we generate x with 
the correct distribution, but with more "hits" per trial than in the simple rejection 
technique (see Fig. 3.11). 

The improvement with respect to the basic rejection method is related to the 
proximity of f(x) to the given density p(x). A test function that is particularly 
popular for use with single-peaked density functions is the Lorentzian introduced 
in equ. 3.30. The primitive of this function is known and invertible, which makes 
the first step in the improved rejection method very simple (see the example given 
in Section 3.2.2). Various applications of the improved method, all using this 
particular test function, may be found in the book by Press et al. [PRESS 86]. 

The rejection method will also be inefficient whenever x == (Xl, ... xn ) is a 
high-dimensional vector. The probability that a sampled vector x, in combination 
with y E (0, Pm), will be accepted according to the rule y ::; p(x) is an n-fold 
product of probabilities and is therefore small. Multidimensional problems are 



62 Chapter 9 Stochastics 

better treated using a random walk (see Section 3.3.5). However, one must then 
accept that successive random vectors will not be uncorrelated. 

There is one multidimensional distribution for which it is quite easy to generate 
random vectors. The following method for producing n-tuples of random numbers 
from a multivariate Gaussian distribution is formally elegant and works very fast. 

3.2.5 Multivariate Gaussian Distribution 

This is a - fortunately rather common - particular instance of a distribution of 
several random variates, x == (Xl'" Xn). Let us assume, for simplicity, that all 
individual averages are (Xi) = O. The density of the compound ("and") probability 
is given by 

(3.39) 

or more concisely 

(3.40) 

with the covariance matrix of the Xi 

(3.41) 

S == lSI is the determinant of this matrix. Sand G are evidently symmetric, and 
as a rule they are diagonally dominated. Incidentally, we will obey custom by 
denoting the eigenvalues of the covariance matrix S by at, while the eigenvalues 
of the inverse matrix G are simply called "ti' 

The quadratic form Q == x T ·G·x describes a manifold (Q = const) of concentric 
n-dimensional ellipsoids whose axes will in general not coincide with the coordinate 
axes. If they do, then the matrices Sand G are diagonal, and p(x) decomposes 
into a product of n independent probability densities: 

() rrn 1 _!g··x2 
px= e 2'" 

i=l .../21'( Sii 
(3.42) 

Here Sii == (xD and gii = 1/ Sii are the diagonal elements of Sand G, respec
tively. (Besides, in this case 8ii = at and gii = "ti, i.e. the diagonal elements 
are also the eigenvalues.) The n variables Xi are then uncorrelated and we may 
simply pick n individual Gaussian variates, combining them to the vector x. 



9.2 Other distributions 63 

EXAMPLE: Assume that two Gaussian variates have the variances 811 _ (Xn = 3, 
822 == (X~) = 4, and the covariance 812 == (Xl X2) = 2: 

The quadratic form Q in the exponent of the probability density is then 

1 2 1 3 2 
Q = 2" Xl - 2" Xl X2 + 8 X2 . 

The lines of equal density (that is, of equal Q) are ellipses which are inclined with respect 
to the Xl,2 coordinate axes (see Fig. 3.12). 

Incidentally, in this simple case one might generate the correlated random variates Xl, 

x2 in the following manner: 

• Draw Xl from the marginal (also Gaussian) distribution 

1 1 x2 1 1 2 
p(xd = e -fill 1 = -- e-iiXl 

~121l' 811 V67r 

• Since Xl is now fixed, X2 may be picked from the conditional density (see 3.18) 

(This is the density of X2 along the cut Xl = c in Fig. 3.12.) 

For more than two correlated random variates this procedure is much too complicated. In 
contrast, the following method of principal axis transformation remains applicable for any 
number of dimensions. 

If, in the foregoing example, the covariance had been S12 == (Xl X2) = 0, we would 
have 

1 1 2 1 2 
P(Xl,X2) =p(XdP(X2) = e-iiXl - SX2 

J12 (211')2 

All we would have to do is sample Xl from a Gaussian distribution with O'~ = 3 
and X2 with O'~ = 4, then combine them to the vector x = (Xl, X2). The ellipses 
Q = const in Fig. 3.12 would have their axes parallel to the coordinate axes. 

These considerations indicate a way to the production of correlated random 
numbers with the distribution density 3.39. If we could succeed in rotating the 
axes of the ellipsoids Q = canst by some linear transformation x = T . y in such 
a way that they coincide with the coordinate axes, then Q would be diagonal in 
terms of the new variables (Yl'" Yn). The transformed (y-) components of the 
vector x would be uncorrelated, and we could sample them independently. 



64 Chapter :1 Stochastics 

x, 

X,=C 

............ 

.. ' .. ' ----
Figure 3.12: Bivariate Gaussian distribution: lines of equal density 

What we have to find, then, is a transformation matrix T for which 

n 

Q = X T . G . x = Y T . [T T . G . T] . y = L gii ' y? (3.43) 
i=l 

where gii' are the elements of the diagonalized matrix. This is an underdetermined 
problem, and we may choose among various possible diagonalization matrices T. 
The generic method to construct a diagonalization matrix for a real, symmetric 
matrix G goes as follows: 

Principal axis transformation: 

• Determine the eigenvalues rj and the eigenvectors gj of G. (There are 
standard subroutines available to perform this task, like NAG-F02AMF 
or ESSL-SSYGV.) If need be, normalize the gj so that Igjl = 1. 

• Combine the n column vectors gj to form a matrix T. This matrix 
diagonalizes G (and consequently the quadratic form Q.) 

In this procedure, S may be used in place of G == S-l; the same diagonaliza
tion matrix T will result (see text). 

As a special bonus the diagonalization matrix constructed in this manner is or
thogonal, i.e. it has the property 

(3.44) 

It follows that T diagonalizes not only G == S -1 but also the covariance matrix S 
itself: 



3.2 Other distributions 65 

Multivariate Gaussian distribution: 

Assume that the covariance matrix S or its inverse G is given. The matrix 
elements of S are called Sij, the eigenvalues are ar 

• Determine by the above method (principal axis transformation) the 
diagonalization matrix T for S or G. (This step is performed only 
once.) 

• Generate n mutually independent Gaussian random variates Yi with the 
variances a1. 

• Transform the vector y == (Yl ... Yn)T according to 

x=T·y (3.47) 

The n elements of the vector x are then random numbers obeying the desired 
distribution 3.39. 

Figure 3.13: Production of n-tuples of random numbers from a multivariate Gaus
sian distribution 

This means that in in the above prescription for finding T we may use S instead 
of its inverse G, arriving at the same matrix T. For practical purposes, therefore, 
G need not be known at all. All that is required are the covariances and the 
assumption that we are dealing with a multivariate Gaussian distribution. 

Since T is orthogonal and - by construction - unitary, we have for the diagonal 
elements of the transformed matrix T T . G . T 

, __ 1 
gii = 'Yi = "2 ai 

(3.46) 

Thus we arrive at the prescription given in Figure 3.13 for the production of corre
lated Gaussian variables. 

EXAMPLE: Once more, let 

S = (~ ~), with the inverse G = ( ! i 
Principal axis transformation: The eigenvalues of S are a?,2 
5.56211.438, and the corresponding eigenvectors are 

s = ( 0.615 ) 
1 0.788 

s = ( 0.788) 
2 -0.615 

(7 ± VI7}/2 



66 Chapter 3 Stochastics 

(The eigenvectors of a real symmetric matrix are always mutually orthogonal.) The 
matrix constructed by combining Sl and 82, 

( 
0.615 0.788) 

T= 
0.788 -0.615 

should then diagonalize S. We check this: 

( 0.615 0.788). (3 2). (0.615 0.788 ) = ( 5.562 0 ) 
0.788 -0.615 2 4 0.788 -0.615 0 1.438 

As stated above, the same matrix T will diagonalize the inverse G as well, and the 
remaining diagonal elements are simply the reciprocal values of the ul. 

Generator: To produce a sequence of pairs (Xl, X2) of Gaussian random numbers with 
the given covariance matrix one has to repeatedly perform the following two steps: 

• Draw Yl and Y2 Gaussian, uncorrelated, with the variances 5.562 and 1.438, respec
tively. (For instance, one may sample two normal variates using the Box-Muller 
method and multiply them by ';5.562 and ';1.438, respectively.) 

• Compute Xl and X2 according to 

EXERCISE: Write a program that generates a sequence of bivariate Gaussian random 
numbers with the statistical properties as assumed in the foregoing example. Deter
mine (xn, (x~), and (XlX2) to see if they indeed approach the given values of 3, 4, and 2. 

3.2.6 Equidistribution in Orientation Space 

Very often the radius vectors of points homogeneously distributed on the circumfer
ence of a circle are needed. To generate the cartesian coordinates of such points one 
could, of course, first sample an angle ¢ E (0,211") and then compute Xl = r cos ¢ 
and X2 = r sin ¢. However, the evaluation of the two trigonometric functions is 
usually time-consuming and therefore undesirable. An alternative which need not 
be explained any further is given in Fig. 3.14. One has to discard a few random 
numbers (step 1) and evaluate a square root (step 2). However, the resulting ex
pense in computer time is for most machines smaller than the gain achieved by 
avoiding the trigonometric functions. 

It is worth mentioning that this technique may also be applied in the context of 
the Box-Muller method explained earlier, in order to avoid the evaluation of sine 



3.2 Other distributions 67 

Equidistribution on the unit circle: 

• Draw a pair of equidistributed random numbers (Yb Y2) E (-1,1)2; 
compute r2 = Y? + Y~; if necessary, repeat until r2 $ 1. 

• Xl == Ydr and X2 == Y2/r are the cartesian coordinates of points that 
are homogeneously distributed on the circumference of the unit cir
cle. (This means that we have generated cosine and sine of an angle <p 
equidistributed in (0,211').) 

Figure 3.14: Equidistribution on the circumference of a circle 

Marsaglia (3D): To generate points homogeneously distributed on the sur
face of a sphere, proceed as follows: 

• Draw pairs of random numbers (Yl, Y2) E (-1, 1)2 until r2 == Y? + y~ $ 1. 

• The quantities 

Xl = 2Yl v'f'=T2 
X2 = 2y2v'f'=T2 
X3 = 1 - 2r2 

are then the cartesian coordinates of points out of a homogeneous dis
tribution on the surface of the unit sphere. 

Figure 3.15: Equidistribution on the surface of a sphere 

and cosine. The first step is the same as in generating an equidistribution on the 
unit circle, while the second step in Fig. 3.14 is replaced by 

(Compare Fig. 3.8.) 

Xl = Yl J( -2 In r2 )/r2 

X2 = Y2 J( -2 In r2)/r2 

(3.48) 

(3.49) 

The scheme given in Figure 3.14 may be generalized for higher dimensions 
[MARSAGLIA 72]). Thus, in case one needs points equidistributed over the surface 
of a sphere, one should not succumb to the temptation to introduce spherical 
polar coordinates, but should rather use the recipe of Figure 3.15. Somewhat 
more abstract, but still useful at times [VESELY 82] is the generalization to the 
3-dimensional "surface" of a 4-dimensional unit sphere (see Figure 3.16). 



68 Chapter 3 Stochastics 

Marsaglia (4D): To generate points equidistributed on the three
dimensional surface of a hypersphere: 

• Draw pairs of random numbers (YI, Y2) E (-1, 1)2 until r? = Y? + y~ ~ l. 

• Draw pairs of random numbers (Y3, Y4) E (-1,1)2 until r~ = y~ + y~ ~ l. 

• The quantities 

Xl = YI 

X2 Y2 

X3 Y3J(1- rn/r~ 
X4 Y4J(1- rn/r~ 

are then the cartesian coordinates of points out of a homogeneous dis
tribution on the "surface" of a 4-dimensional unit sphere. 

Figure 3.16: Equidistribution on the surface of a hypersphere 

3.3 Random Sequences 

3.3.1 Fundamentals 

So far we have been concerned with the production of random numbers, which 
preferably should be free of serial correlations (xn Xn+k)' Next we will consider 
how to generate sequences of random numbers with given serial correlations. Once 
more we start out by reviewing a few basic concepts: 

Random process / random sequence: Let {x(t)} be an ensemble offunctions 
of the time variable t. (Think of the set of all possible temperature curves 
in the course of a day, or the x-coordinate of a molecule in the course of its 
thermally agitated motion.) Once more we ascribe a probability distribution 
to the function values x(t), which may vary within some given range (a, b): 

PI(x;t) = P {x(t) ~ x} (3.50) 

By the same token a probability density 

( . ) _ dPI{x;t) 
PI X, t = dx (3.51) 

is defined. Such an ensemble of time functions is called a random process. 
A particular function x{t) from the ensemble is called a realization of the 
random process. 



3.3 Random sequences 69 

A random process is called a random sequence if the variable t may assume 
only discrete values {tk; k = 0,1, ... }. In this case one often writes x(k) for 
X(tk)' 

EXAMPLE: Let Xo (t) be a deterministic function of time, and assume that the quan
tity x(t) at any time t be Gauss distributed about the value xo(t): 

(Of course the variance 0' might be a function of time as well.) 

Distribution functions of higher order: The foregoing definitions may be gen
eralized in the following manner: 

(3.52) 

(3.53) 

Thus P2(") is the compound probability for the events x(td ~ Xl and x(t2) ~ 
X2. These higher order distribution functions and the corresponding densities 

( ) dnPn(Xl"",Xn;tl, ... ,tn) 
Pn XI,,,,,Xn;tl, ... ,tn = d d 

Xl ... Xn 
(3.54) 

describe the random process in ever more - statistical - detail. 

Stationarity: A random process is stationary in the strong sense if for all higher 
distribution functions 

(3.55) 

This means that the origin of time is of no importance. The functions PI (X; t) 
and PI(X;t) are then not dependent upon time at all: PI(x;t) = PI (X), 

PI(X; t) = PI(X), Furthermore, P2("') and P2(" ' ) depend only on the time 
difference r == t2 - tl: 

(3.56) 

A random process is stationary of order k if the foregoing condition is fulfilled 
for the distribution functions up to k-th order only. In the following we will 
treat only random processes that are stationary of second order. 



70 Chapter 3 Stochastics 

Moments: The moments of the distribution density 3.51 are defined in the same 
way as for simple random variates: 

(3.57) 

(In the stationary case this is indeed identical to the definition 3.20.) In 
addition we may now define moments of the distribution density of second 
order (viz. 3.56): 

(Xm(tl) Xn(t2)} == lb lb X~X~ P2(Xl, X2; tl, t2) dXl dX2 (3.58) 

In the stationary case things depend on the temporal distance r == t2 - tl 
only: 

(xm(o) xn(r)} == lb lb x~x~ P2(Xl, X2; r) dXl dX2 (3.59) 

Autocorrelation: A particularly important moment of the second order density 
is the quantity 

which is called the autocorrelation function of x(t). For r -+ 0 it approaches 
the variance (X2). For finite r it tells us how rapidly a particular value of x(t) 
will be "forgotten". To see this we may make use of the conditional density 
(viz. equ. 3.18): 

(3.61) 

is the density of X2 at time t + r under the condition that at time t we had 
x(t) = Xl. The conditional moment 

(x(r)IX1) == ! X2P(x2I x l;r) dx2 (3.62) 

is then the average of x(t+r) under the same condition. The faster p(x2Ixl; r) 
decays with ;. the more rapidly the conditional average will approach the 
unconditional one: 

(3.63) 

For later reference we note that the definition 3.61 may be generalized as 

) Pn(Xl, ... Xn; tt, . .. tn) 
P(XnIXn-l, ... Xl;tn, ... t l = ( ·t t) 

Pn-l Xl> ••• Xn-l, 1,··· n-l 
(3.64) 



3.3 Random sequences 71 

Gaussian process: A random process is a (stationary) Gaussian process if the 
random variables x(td, ... ,x(tn ) obey a multivariate Gaussian distribution. 
The matrix elements of the covariance matrix - which, as we know, deter
mines the distribution uniquely (see Section 3.2.5) - are in this case simply 
the values of the autocorrelation function at the respective time displace
ments, (x(O) x(tj - ti). A Gauss process, then, is uniquely determined by its 
autocorrelation function; the distribution function is just 

(3.65) 

with a2 == (x2). Furthermore we have 

(3.66) 

with 
Q = (X2)X~ - 2(X(0)X(T)XI X2 + (X2)X~ 

- S2(T) 
(3.67) 

and 
(3.68) 

Similarly, 
( 1 _lXToS -loX 

Pn Xl ... xn ; tl 0 •• tn) = e 2 n 

yI(27r)nSn 
(3.69) 

where the elements of S are simply given by (x(ti ) x(tj ), which in the sta
tionary case is identical to (x(O)x(tj - t i ). 

3.3.2 Markov Processes 

For the sake of simplicity we will restrict the discussion to random sequences, i.e. 
random processes on a discretized time axis. A stationary random sequence is said 
to have the Markov property if 

(3.70) 

Thus it is assumed that the "memory" of the physical system we try to model 
by the random sequence goes back no farther than to the precedimi; step. All 
elements of the sequence (~ "states" of the model system) that are farther back do 
not influence the distribution density of the n-th element. An even shorter memory 
would mean that successive elements of the sequence were not correlated at all. 

Of particular practical importance are Gaussian Markov processes. To describe 
them uniquely not even P2(' 0') is needed. It is sufficient that the autocorrelation 
function (x(O) X{T)) be known; then P2{") and consequently all statistical proper
ties of the process follow. Incidentally, it is an important hallmark of stationary 



72 Chapter 3 Stochastics 

Gaussian Markov processes that their autocorrelation function is always an expo
nential: 

(3.71) 

For a proof see [PAPOULIS 81]. 
The most simple procedure for generating a stationary Gaussian Markov process 

is based on the stepwise solution of the stochastic differential equation 

x(t) = -(3 x(t) + s(t) (3.72) 

with a stochastic "driving" process s(t). For some given x(O) the general solution 
to this equation reads 

x(t) = x(O) e-/3t + It e-/3(t-t') s(t') dt' 

Inserting t = tn and t = tn+l == tn + flt one finds that 

x(tn+d = x(tn) e-/3At + lAt e-/3(At-t') s(tn + t') dt' 

(3.73) 

(3.74) 

The equation of motion 3.72 is complete only if the statistical properties of s(t) 
are given as well. We will assume that s(t) be Gauss distributed about (s) = 0, 
with 

(s(O) s(t)) = A8(t) (3.75) 

The driving random process is thus assumed to be uncorrelated noise. (This is 
often called "8-correlated noise" .) With these simple assumptions it may be shown 
that the values of the solution function x(t) (equ. 3.73) at any time t belong to 
a stationary Gaussian distribution with (x2 )= A/2(3 and that the process {x(tn)} 
has the Markov property. 

To obtain a prescription for producing the stepwise solution 3.74 we interpret 
the integrals 

rAt 
z(tn) == Jo e-/3(At-t') s(tn + t') dt' (3.76) 

as elements of a random sequence whose statistical properties may be derived from 
those of the quantity s(t). In particular, z is Gauss distributed with zero mean 
and (z(tn) z(tn+k)) = 0 for k =I- o. The variance is 

(Z2) = ~ (1 _ e-2/3 At) 
2(3 

(3.77) 

From all this there follows the recipe given in Figure 3.17 for generating a station
ary, Gaussian Markov sequence. 

EXAMPLE: Consider one cartesian component v{t} of the velocity of a massive molecule 



3.3 Random sequences 73 

"Langevin Shuffle": 

Let the desired stationary Gaussian Markov sequence {x{n); n = O, ... } be 
defined by the autocorrelation function 

A (x{n)x{n+k)) = _e-Pkf).t 
2/3 

(3.78) 

with given parameters A, /3 and tlt. A starting value x{O) is chosen, either by 
putting x{O) = 0 or by sampling x{O) from a Gauss distribution with (x) = 0 
and (x2 ) = A/2/3 . 

• Draw z{n) from a Gaussian distribution with (z) = 0 and 

(3.79) 

• Construct 
x{n + 1) = x{n) e-Pf).t + z{n) (3.80) 

The random sequence thus produced has the desired properties. 

If the product /3tlt is much smaller than 1, the exponential in the 
foregoing formulae may be replaced by the linear Taylor approximation. The 
iteration prescription then reads 

x{n + 1) = x{n) (1 - /3tlt) + z'{n) (3.81) 

where z'{n) is picked from a Gauss distribution with (Z'2) = A tlt (1- /3tlt). 

Figure 3.17: Generating a stationary Gaussian Markov sequence 



74 Chapter 3 Stochastics 

undergoing diffusive motion in a solvent. It is a fundamental truth of statistical mechan
ics that this quantity is Gauss distributed with variance kT/m: 

Furthermore, under certain simplifying assumptions one may show that the random 
process v(t) obeys the equation of motion postulated by Paul Langevin, 

v(t) = -(3v(t) + s(t) (3.82) 

Here (3 is a friction coefficient, and the stochastic acceleration s(t) is a 8-correlated 
Gaussian process with the autocorrelation function (s(O) s(t)) = (2{3 kT/m) 8(t). 

Again introducing a finite time step l::..t we can generate a realization of the ran
dom process v(t) by the method explained above. In this case we have A = 2{3 kT/m, 
which means that the uncorrelated random variate z(n) must be sampled from a Gauss 
distribution with (z2) = (kT /m)(l - exp( -2{3l::..t)). 

The process v{t) as described by 3.82 is stationary and Gaussian with the autocor
relation function 

kT 
(v{O)v(r)) = _e-/3T 

m 
(3.83) 

By some further analysis we could obtain the position x{t) as well, in addition to the 
velocity. This method of simulating the random motion of a dissolved particle is called 
"Stochastic dynamics" or "Brownian dynamics" . It will be reviewed at more length in 
Chapter 6. 

EXERCISE: Employ the procedure 3.80 to generate a Markov sequence {xn} and check if 
its autocorrelation function indeed has the form 3.78. 

3.3.3 Autoregressive Processes 

We have seen that an iterative procedure of the form 

x(n + 1) = ax(n) + z(n), (3.84) 

with Gaussian z(n) will automatically produce a Gaussian Markov process. The 
Markov property - the "forgetfulness" of the system - is expressed by the fact that 
the distribution of x(n + 1) depends on the value of x(n) only. 

A natural generalization of this prescription reads 

K 

x(n + 1) = Lakx(n + 1- k) + z(n) (3.85) 
k=l 

where z(n) is again a 8-correlated process that is not correlated with x(n) or any 
of the foregoing x(n - m): 

(x(n+l-k)z(n))=O; k=I,2, ... (3.86) 



9.9 Random sequences 75 

Equation 3.85 describes a process in which earlier members of the sequence exert 
some influence on the probability density of x(n + 1). Thus the coefficients ak are 
table values of a "memory function" describing the effect of past states on x( n+ 1).3 

In the case of the simple Markov sequence we have ak = a c)kl. 

Normally the table {ak; k = 1, ... , K} will not be given a priori. Rather, the 
random sequence will be known (or required) to have a certain autocorrelation 
function: 

Cm == (x(n) x(n + m)); m = 0,1, ... (3.87) 

How, then, can one determine the coefficients ak such that they produce, when 
inserted in 3.85, a random sequence with the desired autocorrelation? 

Let us assume that the autocorrelation function (ACF, from now on) be negli
gible after M steps: Cm ~ 0 for m > M. Now multiply each of the M equations 

K 

x(n + m) = L ak x(n + m - k) + z(n + m - 1); m = 1, ... , M 
k=l 

by x(n) and take the average to find 

K 

Cm = L ak Cm-k; m = 1, ... , M 
k=l 

In matrix notation this reads 
c= C·a 

with c == {CI,"" CM} , a == {al,"" aK} , and 

Co CI CK-I 

CI Co CI CK-2 

C= C2 

CM-I CM-K 

(3.88) 

(3.89) 

(3.90) 

(3.91) 

Here we have taken into account that the ACF of a stationary process is a sym
metric function of time: em = Cm' In communication science the M equat
ions 3.89 and 3.90 with the K unknowns ak are known as Yule- Walker equations 
[HONERKAMP 91]. 

In most cases far less than M table values ak (k = 1, ... K) are needed to 
generate an ACF given by M values. For example, in the case of a simple Markov 
sequence the instantly decaying memory function ak = a c)kl already produces an 
exponentially, i.e. less rapidly, decaying ACF. However, for K < M the system 
of equations 3.90 is overdetermined, and we cannot fulfill it exactly. In such cases 
one attempts to optimize the ak in such a way that the desired ACF is at least 
approximately reproduced. The approximation error consists of the elements em == 

3The exact definition of the memory function will be given in Section 6.6. 



76 Chapter 9 Stochastics 

em - E:=l akem-k, and we will try to minimize the quantity E;;;=l c~. This leads 
us to the equations 

c T . C . a = C T . c 

Having determined the coefficients ak, we use the relation 

K 

(Z2) = Co - L akck 
k=l 

(3.92) 

(3.93) 

to calculate that variance of the random process z(n) which is needed to produce, 
by applying 3.85, a random sequence {x( n)} with the desired properties [SMITH 90, 
NILSSON 90]. 

EXAMPLE: The desired ACF is given as Co = 1, CI = 0.9, C2 = 0.5, C3 = 0.1. We want to 
find an autoregressive process of order K = 2 whose ACF approximates the given table 
{em, m = 0, ... ,3}. The matrix C is given by 

( 
1.0 0.9) 

C = 0.9 1 
0.5 0.9 

(3.94) 

and equation 3.92 reads 

( 2.06 2.25). ( al ) = (1.0 01.9 00.59)' ( ~:~ ) (3.95) 
2.25 2.62 a2 0.9 . 0.1 

The solution is 

= ( 1.55 ) 
a -0.80 (3.96) 

Let us check whether this process indeed has an ACF that fits the given em-values: 
Co al + CI a2 = 0.83 (instead of 0.9), C1 al + CO a2 = 0.60 (for 0.5), C2 al + CI a2 = 0.06 (for 
0.1). 

The correct variance (x2 ) = CO is obtained by choosing for (z2) the value CO - alCI -

a2C2 = 0.005 (see equ. 3.93). 

EXERCISE: Write a program to generate a random sequence with the ACF given above. 
Test the code by computing the ACF of the sequence thus produced. 

When trying to invert the matrix CT. C one may run into trouble. Quite gener
ally, fitting problems of this kind often lead to almost singular matrices. There are 
well-proven ways to deal with such situations, and "Numerical Recipes" by PRESS 

et al. is again a good source to turn to for help [PRESS 86]. 
To make an ad hoc suggestion: One may solve - uniquely - the first K equations 

of the overdetermined system 3.90. Then the values {ak' k = 1, ... K} may be 
used as initial estimates in an iterative procedure treating the full system (see Sec. 
2.2). (However, we then have to expect a rather low convergence rate.) 



3.3 Random sequences 77 

Wiener-Levy process: 

Let A and llt (or just the product Allt) be given. Choose x(O) = O . 

• Pick z(n) from a Gauss distribution with zero mean and variance Allt . 

• Compute 
x(n + 1) = x(n) + z(n) (3.100) 

The random sequence thus produced is a nonstationary Gaussian process with 
variance [x(n)J2 = n A llt. 

Figure 3.18: Unbiased random walk 

3.3.4 Wiener-Levy Process 

Consider once more the stochastic differential equation 3.72. If we take the pa
rameter f3 to be zero, the x-increment for the step tn ---t tn + llt equals (see equ. 
3.80) 

x(n + 1) = x(n) + z(n) (3.97) 

where rtl. t 

z(n) == Jo s{tn + t') dt' (3.98) 

is a Gaussian random variate with (z) = 0 and (Z2) = Allt. Since z and x are 
uncorrelated, we have 

([x(nW) = n A llt (3.99) 

Thus the variance of x now increases linearly with the number of steps. In other 
words, this random process is no more stationary. 

As an example, interpreting x as one cartesian coordinate of a diffusing particle 
we identify ([x(n)J2) with the mean squared displacement after n time steps. In 
this case we may relate the coefficient A to the diffusion constant according to 
A=2D. 

A stochastic process obeying equ. 3.98 is called a Wiener-Levy process, or 
Brownian (unbiased) random walk (see Fig. 3.18). 

EXERCISE: 500 random walkers set out from positions x(O) homogeneously distributed in 
the interval [-1,1]. The initial particle density is thus rectangular. Each of the random 
walkers is now set on its course to perform its own one-dimensional trajectory according 
to equ. 3.100, with A flt = 0.01. Sketch the particle density after 100, 200, ... steps. 

Incidentally, it is not really necessary to draw z(n) from a Gaussian distribution. 
For instance, if z(n) comes from an equidistribution in [-llx/2, llx/2]' the central 
limit theorem will enforce that the "compound" x-increment after every 10 - 15 



78 Chapter 3 Stochastics 

steps will again be Gauss distributed. (See the footnote on page 58.) We may 
even discretize the x-axis and allow single steps of the form z = 0, +~x or -~x 
only, with equal probability 1/3 for any of these. After many steps, and on a scale 
which makes ~x appear small, the results will again be the same as before. 

To simulate a 2- or 3-dimensional diffusion process one simply applies the above 
procedure simultaneously and independently to 2 or 3 particle coordinates. 

3.3.5 Markov Chains and the Monte Carlo method 

A Markov sequence in which the variable Xo: can assume discrete values only is 
called a Markov chain. As there is no reason to restrict the discussion to scalar 
variables, we will consider a discrete set of "state vectors" {xo:, a = 1, ... M}. The 
conditional probability 

Po:[3 == P {x(n) = x[31 x(n - 1) = xo:} (3.101) 

is then called transition probability between the states a and (3. 
Let M be the total number - not necessarily finite - of possible states. The M x 

M-matrix P == {Po:[3} and the M-vector p consisting of the individual probabilities 
Po: == P{x = xo:} determine the statistical properties of the Markov chain uniquely. 

We are dealing with a reversible Markov chain if 

Po: Po:[3 = P[3 P[3o: (3.102) 

Recalling that Po:Po:[3 is the probability that at some step (the n-th, say) the state 
x = Xo: is realized and that at the next step we have x = x[3, the property of 
reversibility simply means that the same combined event in reverse order (i.e. 
x = x[3 at step n and x = Xo: at step n + 1) is equally probable. 

The M2 elements of the matrix P are not uniquely defined by the M(M -1)/2 
equations 3.102. For a given distribution density p we therefore have the choice 
between many possible transition matrices fulfilling the reversibility condition. A 
particularly popular recipe is the so-called "asymmetrical rule" introduced by N. 
Metropolis: 

Assume that all x[3 within a certain region around Xo: may be reached with 
the same a priori probability 7ro:[3 = l/Z, where Z denotes the number of these x[3 

(including Xo: itself.) We then set the rule 

Po:[3 

Po:[3 

7r 0:[3 

P[3 
7ro:[3 -

Po: 

if P[3 '2 Po: 

if P[3 < Po: 

(3.103) 

(3.104) 

It is easy to see that this rule fulfills the reversibility condition 3.102. Another 
widely used prescription is the symmetrical, or Glauber, rule 

P[3 
P 0:[3 = 7r 0:[3 --=-"--

Po: + P[3 
(3.105) 



3.3 Random sequences 79 

Random numbers a la Metropolis: 

Let p == {p"'; a = 1,2, ... } be the vector of probabilities of the events x = 
x",. We want to generate a random sequence {x(n)} in which the relative 
frequency of the event x(n) = x", approaches p"'. 

• After the n-th step, let x(n) = x",. Draw a value x(3 from a region 
around x"" preferably according to 

x(3 = x", + (~ - 0.5) ~x 

where ~ is a random number from an equidistribution E (0,1), and 
where ~x defines the range of directly accessible states x(3. (This recipe 
corresponds to the a priori transition probability 7r",(3 = l/Z; note, 
however, that other symmetric a priori probabilities are permissible.) 

• If for P(3 == p(X(3) we have P(3 ~ P"" then let x(n + 1) = X(3. 

• If P(3 < P"" then pick a random number ~ from an equidistribution 
E (0,1); if ~ < P(3/p"" let x(n + 1) = x(3; else put x(n + 1) = x",. 

It is recommended to adjust the parameter ~x such that approximately one 
out of two trial moves leads to a new state, x(n + 1) = X(3. 

Figure 3.19: Random numbers by a biased random walk 

(Incidentally, other a priori transition probabilities than l/Z may be used; all that 
is really required is that they are symmetrical with respect to a and (3.) 

Now for the important point. There is a beautiful theorem on reversible sta
tionary Markov chains which in fact may be regarded as the central theorem of the 
Monte Carlo method (see Chapter 6): 

If the stationary Markov chain characterized by p == {p"'} and P == 
{p",(3} is reversible, then each state x", will be visited, in the course of 
a sufficiently long chain, with the relative frequency p"'. 

We may utilize this theorem together with the asymmetric or symmetric rule to 
formulate yet another recipe for generating random numbers with a given proba
bility density p. This procedure is described in Figure 3.19. It is also sometimes 
called a random walk, and to discern it from the Wiener-Levy process the name 
biased random walk is often preferred. Recall that in a simple (unbiased) random 
walk on the discretized x-axis the transition probability to all possible neighboring 
positions is symmetric about x(n) = x",. (In the most simple procedure only the 
positions X",±l or x", are permitted as the new position x(n + 1), and the probabil
ities for X",+l and X",-l are equal.) 



80 Chapter 9 Stochastics 

Thus the method of the biased random walk generates random numbers with the 
required distribution. However, in contrast to the techniques discussed in Section 
3.2 this method produces random numbers that are serially correlated: (x(n) x(n+ 
k)) ¥ o. 

EXERCISE: Serial correlations among pseudorandom numbers are normally regarded as 
undesirable, and the use of the biased random walk for a random number generator is 
accordingly uncommon. In spite of this we may test the method using a simple example. 
Let p(x) = A exp[-x2] be the desired probability density. Apply the prescription given in 
Fig. 3.19 to generate random numbers with this density. Confirm that (x(n) x(n + k)) i= 
o. 

An essential advantage of this method should be mentioned which more than makes 
up for the inconvenient serial correlations. In the transition rules, symmetric or 
asymmetric, the probabilities of the individual states appear only in terms of ratios 
Pf3/Po. or Pf3/(Po. + Pf3). This means that their absolute values need not be known 
at all! Accordingly, in the preceding exercise the normalizing factor of Po., which 
we simply called A, never had to be evaluated. 

In the most prominent application of the biased random walk, namely the 
statistical-mechanical Monte Carlo simulation, the state vector Xo. is a configura
tion vector comprised of 3N coordinates, with N the number of particles in the 
model system. The probability Po. is there given by the thermodynamic probability 
of a configuration. As a rule we do not know this probability in absolute terms. We 
only know the Boltzmann factor which is indeed proportional to the probability, 
but with a usually inaccessible normalizing factor, the partition function. 

Thus the feasibility of the Monte Carlo technique hinges on the fact that in 
a biased random walk the probabilities of the individual states need be known 
only up to some normalizing factor. The above theorem guarantees that in a 
correctly performed random walk through 3N -dimensional configuration space all 
possible positions of the N particles will be realized with their appropriate relative 
frequencies (see Sec. 6.2). 

3.4 Stochastic Optimization 

Optimization problems pop up in many branches of applied mathematics. They 
may always be interpreted as the task of finding the global extremum of a function 
of many variables. Examples are the nonlinear fit to a given set of table values (the 
function to be minimized being the sum of squared deviations), the improvement 
of complex electronic circuits ("travelling salesman problem"), or finding the most 
stable (i. e. lowest energy) configuration of microclusters or biopolymers. 

A systematic scan of variable space for such a global extremum is feasible 
only for up to 6 - 8 variables. Above that, a simple stochastic method would 
be to repeatedly draw a starting position and find the nearest local minimum by 



3.3 Random sequences 81 

a steepest descent strategy. However, if the function to be minimized has a very 
ragged profile, this procedure will again be slow in id€ntifying the lowest one among 
all local minima. 

Thus it came as a welcome surprise that there is a much more efficient stochas
tic method to detect the global extremum of a function of many variables. In the 
Eighties, Kirkpatrick et al. [KIRKPATRICK 83] found that the Monte Carlo prin
ciple introduced in 3.3.5 may be employed in this task. Since the principle of the 
method resembles a cautious cooling of a thermodynamic system, the technique 
came to be called "Simulated Annealing" . 

Yet another group of optimization methods had been developed even earlier. 
Called evolutionary algorithms (EA) or genetic algorithms (GA), they are nowa
days applied to optimization tasks in such widely separated fields as material sci
ence, biochemistry, artificial intelligence, and commerce. 

3.4.1 Simulated Annealing 

When performing a Monte Carlo walk through the set of possible events, or "stat
es" xa , following Metropolis' directions, we occasionally penetrate into regions of 
smaller probability Pa. Let us now write this probability as 

Pa = Aexp -,8U(x) (3.106) 

where U(Xl,'" XM) is a "cost function" to be minimized, and ,8 a tunable param
eter. The lower the value of ,8, the smaller the variation of the probabilities Pa· 
Referring to the procedure given in Fig. 3.19 we see that it is then easy to visit the 
"high ranges" of the U(x) landscape. As the parameter ,8 is increased, the point x 
representing the state of our system will preferably move "downhill". Eventually, 
for ,8 ~ 00 only the nearest local minimum of the function U (x) can be reached 
at all. 

The probability 3.106 closely resembles the Boltzmann factor of statistical ther
modynamics, giving the probability of a configuration x having energy U(x). Ac
cordingly, we may interpret the parameter (3 as a reciprocal temperature, ,8 == 
l/kT. High temperatures then refer to high accessibility of all regions of configu
ration space, and by lowering the temperature kT we gradually force the system 
to remain in regions where U(x) is low. In material technology such slow cooling is 
called annealing, which explains the name "Simulated Annealing" for the present 
method. 

In practice one proceeds as follows. A starting vector XO == {x~, ... x~ } is drawn 
at random, and an initial "temperature" kT is chosen such that it is comparable 
in value to the variation tlU == Umax - Umin . Accordingly, a MC random walk will 
touch all regions of variable space with almost equal probability. If the temperature 
is now carefully lowered, the entire x-space will still remain accessible at first, but 
regions with lower U(x) will be visited more frequently than the higher ranges. 
Finally, for kT ~ 0 the system point will come to rest in a minimum that very 
probably (albeit not with certainty) will be the global minimum. 



82 Chapter 3 Stoehasties 

Kirkpatrick and co-authors applied this technique to the minimization of elec
tric leads in highly integrated electronic modules. Even at their very first attempt 
they achieved a considerable saving in computing time as compared to the proven 
optimization packages used until then. [KIRKPATRICK 83] 

EXERCISE: Create (fake!) a table of "measured values with errors" according to 

Yi == !(Xi; el,··· e6) + ~i, i == 1,20 (3.107) 

with ~i coming from a Gauss distribution with suitable variance, and with the function 
! defined by 

(3.108) 

(el ... C6 being a set of arbitrary coefficients). 
Using these data, try to reconstruct the parameters Cl ... C6 by fitting the theoretical 

function! to the table points (Xi, y;). The cost function is 

U(c) == I: [Yi - !(Xi; C)]2 (3.109) 

Choose an initial vector CO and perform an MC random walk through c-space, slowly low
ering the temperature. 

3.4.2 Genetic Algorithms 

The evolution of biological systems is related to optimization in at least two re
spects. One, the adaptation of species to external conditions may be interpreted in 
terms of an optimization process. Two, the adaptation strategy itself has evolved 
over time, from the simple selective multiplication of prebiotic molecular systems 
to the sophisticated recipe of sexual reproduction used by eukaryotic organisms. 
Given the apparent success of the latter method, it is worthwhile to explore its 
performance in the setting of computational optimization. 

For simplicity, consider some oscillatory function J(x) of a single variable, hav
ing one global minimum within the range of definition, x€[a, b]. The solution of the 
minimization problem is then a number x* with J(x*) == min{f(x), u[a, b]}. 

A genetic strategy to find x* proceeds as follows: 

1. Start with a population of randomly chosen numbers (individuals), {x?€[a, b], 
i = 1, ... N}. The size N of the population (N = 100, say) will be kept 
constant throughout the calculation. The bit string representing any of the 
members x? is understood as the "gene" of that individual which competes 
in "fitness" with all other x~. In our simple example the fitness is bound to 
the value Ji == J(x?): the lower 1;, the higher the fitness of x? It is always 
possible, and convenient, to assign the fitness such that it is positive definite. 

A relative fitness, or probability of reproduction, is defined as Pi == Jd 2:~1 J;. 
It has all the markings of a probability density, and accordingly we may also 



3.3 Random sequences 83 

define a cumulative distribution function, P(Xi) == Pi == E~=l Pj (see equs. 
3.15-3.16). 

2. Next, draw N individuals in accordance with their reproduction probability, 
allowing for repeated occurence of the same member. The proven recipe for 
this step is the well-known transformation (or inversion) method of Section 
3.2.2: 0 draw a random number ~ equidistributed in [0,1]; 0 put P(Xi) = ~ 
and identify that Xi for which this is true. 

Obviously, the new population {x~, i = 1, ... N} will as a whole be fitter 
than the original one. However, thus far we have remained at the level of 
primitive selective reproduction without mutation or sexual crossover. 

3. Pairs of individuals are now picked at random, and their genetic strings 
are submitted to crossover. In the simplest variant this is done as follows: 
o Draw a position m within the bit strings; 0 swap the bits following m 
between the two strings. The number of such pairings, the "crossover rate" , 
should be around 0.6 N. The resulting set {x~, i = 1, ... N} is called the 
offspring population. 

4. Finally, mutation comes into play: within each string X~' every single bit is 
reversed with a probability Pmut ~ 0.01. 

The resulting population is regarded as the next generation, {xI, i = 1, ... N}, 
and we are back at step 2. 

A thorough textbook on the history, theory and practice of genetic algorithms 
is [GOLDBERG 89]' and a fairly recent review is [TOMASSINI 95]. Hovever, genetic 
algorithms are very much en vogue, and are rapidly improved, modified and applied 
in ever more fields. The only way to remain abreast of this development is a web 
search. 

EXERCISE: Apply the simple genetic algorithm to find the minimum of the function 
[2 sin(lO x-1)j2+10 (x-l)2 within the interval [0,2]. 



Chapter 4 

Ordinary Differential Equations 

Leonhard Euler provided the basic integration scheme 

An ordinary differential equation (ODE) in its most general form reads 

L{x, y, y', y", ... y(n)) = 0 ( 4.1) 

where y{x) is the solution function and y' == dy/dx etc. Most differential equations 
that are important in physics are of first or second order, which means that they 
contain no higher derivatives such as ylll or the like. As a rule one may rewrite 
them in explicit form, y' = f{x, y) or y" = g(x, y). Sometimes it is profitable to 
reformulate a given second-order DE as a system of two coupled first-order DEs. 
Thus, the equation of motion for the harmonic oscillator, d2x/dt2 = -w5x, may be 
transformed into the system of equations 

dx dv 2 
dt = v j dt = -WoX (4.2) 

Another way of writing this is 

where y == ( Xv) and L = ( 0 1) 
-w5 0 

(4.3) 

89 

F. J. Vesely, Computational Physics
© Kluwer Academic / Plenum Publishers, New York 2001



90 Chapter 4 Ordinary differential equations 

As we can see, y and dy / dt occur only to first power: we are dealing with a linear 
differential equation. 

Since the solution of a DE is determined only up to one or more constants, we 
need additional data in order to find the relevant solution. The number of such 
constants equals the number of formal integrations, i.e. the order of the DE. If 
the values of the required function and of its derivatives are all given at one single 
point xo, we are confronted with an initial value problem. In contrast, if the set of 
necessary parameters is divided into several parts that are given at several points 
xo, Xl,· .. , we are dealing with a boundary value problem. 

Typical initial value problems (IVP) are the various equations of motion to be 
found in all branches of physics. It is plausible that the conceptual basis of such 
equations is the idea that at some point in time the dynamical system can be known 
in all its details ("prepared"); the further evolution of the system is then given by 
the solution y(t) of the equation of motion under the given initial condition. 

As a standard example for boundary value problems (BVP) let us recall the 
equation governing the distribution of temperature along a thin rod. It reads 
>. d2T / dX2 = 0, and the two constants that define a unique solution are usually the 
temperature values at the ends of the rod, T(xo) and T(XI). 

The distinction between IVP and BVP is quite superficial. It is often possible 
to reformulate an equation of motion as a BVP (as in ballistics), and a BVP may 
always be reduced to an IVP with initial values that are at first estimated and 
later corrected (see Sec. 4.3.1). However, the numerical techniques for treating the 
two classes of problems are very different. 

4.1 Initial Value Problems of First Order 

As mentioned before, initial value problems occur mainly in conjunction with equ
ations of motion. We will therefore denote the independent variable by t instead 
of x. The generic IVP of first order then reads 

;; = f(y, t), with y(t = 0) = Yo (4.4) 

To develop a numerical algorithm for solving this problem, let us apply the ma
chinery of finite differences. First we discretize the t-axis, writing y n == y(n At) 
and fn == f(Yn). The various formulae of Section 1.1 then provide us with several 
difference schemes - of varying quality - for determining YI, Y2, etc. 

4.1.1 Euler-Cauchy Algorithm 

Recall the DNGF approximation to the first derivative of a tabulated function, 

dy I = AYn + O[(At)] 
dt tn At 

(4.5) 



Initial value problems of first order 91 

Inserting this in the given differential equation we obtain the difference equation 

'i.tn = fn + O[(~t)l (4.6) 

which immediately yields the Euler-Cauchy algorithm 

(4.7) 

The obvious charm of this basic integration scheme is its algebraic and computa
tional simplicity. However, we can see that it is accurate to first order only. An 
even worse flaw is that for certain f(y) the EC method is not even stable, so that 
small aberrations from the true solution tend to grow in the course of further steps. 
We will demonstrate the phenomenon of instability of a difference scheme by way 
of a simple example. 

The relaxation or decay equation 

dy(t) = -Ay(t) 
dt 

(4.8) 

describes an exponential decrease or increase of the quantity y(t), depending on 
the sign of the parameter A. The Euler-Cauchy formula for this DE reads 

Yn+l = (1 - A ~t) Yn (4.9) 

Of course, this formula will work better the smaller the time step ~t we are using. 
The error per time step - the "local error", which increases with (~t)2 - will 
then be small. Indeed the numerical solution obtained with A~t = 0.1 is almost 
indiscernible from the exact solution y(t)/yo = exp( -At) (see Fig. 4.1). For 
A~t = 0.5 the numerical result clearly deviates from the exponential. A~t = 1.5 
and 2.0 result in sawtooth curves that differ quite far from the correct function, 
but at least remain finite. For even larger values of A~t the numerical solution -
and therefore the error - increases with each step. 

4.1.2 Stability and Accuracy of Difference Schemes 

What happened? The following stability analysis permits us to determine, for a 
given DE and a specific numerical algorithm, the range of stability, Le. the largest 
feasible ~t. As a rule the rationale for choosing a small time step is to achieve a 
high accuracy per step (Le. a small local error.) But there are cases where an ever 
so small ~t leads, in the course of many steps, to a "secular", systematic increase 
of initially small deviations. Stability analysis allows us to identify such cases by 
returning the verdict "zero stability range." 

We denote by y(t) the - as a rule unknown - exact solution of the given DE, 
and by e(t) an error that may have accumulated in our calculation. In other words, 



92 

1 

Chapter 4 

exact 

,/ C, dt=O.5 
"' 

" 
1\ ,,2"" ;'3 

, " , " 
( " , \ 

\ 

.' , , . 

Ordinary differential equations 

, , 

, , 
EC, dt=2.0 

Figure 4.1: Solutions to the equation dyjdt = ->.y, with>. = 1 and Yo = 1 

our algorithm has produced the approximate solution Y n + en at time tn. What, 
then, is the approximate solution at time tn+l? For the EC method we have 

(4.10) 

The EC formula is the most basic member of a class of so-called single step algo
rithms, which produce the solution at time tn+! by application of some transfor
mation T to the value of the solution at time tn: 

(4.11) 

Assuming that the deviation en is small and the transformation T is well-behaved, 
we may expand T(Yn + en) around the correct solution Yn: 

( 4.12) 

Since T(Yn) = Yn+!, we have from 4.11 

en+! ~ d~ (y) I . en == G . en 
Y Yn 

(4.13) 

The matrix G is called amplification matrix. Obviously the repeated multiplication 
of some initial error eo (which may simply be caused by the finite number of digits 
in a computer word) may lead to diverging error terms. Such divergences will be 
absent only if all eigenvalues of G are situated within the unit circle: 

Igil ~ 1, for all i (4.14) 

Let us apply this insight to the above example of the relaxation equation. In 
the Euler-Cauchy method 4.9 the transformation T is simply a multiplication by 
the factor (1 - >'~t): 

(4.15) 



Initial value problems of first order 93 

The amplification "matrix" G then degenerates to the scalar quantity (1- ADot), 
and the range of stability is defined by the requirement that 

11 - ADotl ~ 1 (4.16) 

For A = 1 this condition is met whenever Dot ~ 2. Indeed, it was just the limiting 
value Dot = 2 which produced the marginally stable sawtooth curve in Figure 4.1. 

EXAMPLE: As a less trivial example for the application of stability analysis we will 
consider the harmonic oscillator. Applying the Euler-Cauchy scheme to 4.3 we find 

The amplification matrix is 

Yn +1 = [I + L~tl· Yn == T(Yn) 

G == dT(y) I = 1 + L~t 
dy Yn 

The eigenvalues of G are gl,2 = 1 ± iwo~t, so that 

(4.17) 

(4.18) 

(4.19) 

Regardless how small we choose ~t, we have always Ig1,21 > 1. We conclude that the EC 
method applied to the harmonic oscillator is never stable. 

In the following descriptions of several important algorithms the range of sta
bility will in each instance be given for the two standard equations - relaxation 
and harmonic oscillator. A more in-depth discussion of the stability of various 
methods for initial value problems may be found in [GEAR 71J . For completeness, 
here follow a few concepts that are helpful in discussing the stability and accuracy 
of iterative methods: 

Let L(y) = 0 be the given DE, with the exact solution y(t). (Example: L(y) == 
iJ+AY = 0; relaxation equation.) Also, let F(y) = 0 be a truncated difference 
scheme pertaining to the given DE, with its own exact solution Yn. (Example: 
Yn as computed by repeated application of 4.9.) 

Cumulative truncation error: This is the difference, at time tn, between the 
solution of the DE and that of the difference equation: 

(4.20) 

Convergence: A difference scheme is convergent if its solution approaches for 
decreasing time steps the solution of the DE: 

lim Yn = y(tn) or lim en = 0 
Cl.t--+O Cl.t--+O 

(4.21 ) 



94 Chapter .4 Ordinary differential equations 

Local truncation error: Inserting the exact solution of the DE in the difference 
scheme one usually obtains a finite value, called the local truncation error: 

Consistency: The algorithm F(y) = 0 is consistent if 

lim Fn = 0 
~t-+O 

(4.22) 

(4.23) 

Roundoff error: Due to the finite accuracy of the representation of numbers (for 
example, but not exclusively, in the computer) the practical application of 
the difference scheme yields, instead of Yn, a somewhat different value Yn' 
The discrepancy is called roundoff error: 

Tn=Yn-Yn (4.24) 

Stability: The ubiquitous roundoff errors may "excite" a solution of the differ
ence equation that is not contained in the original DE. If in the course of 
many iterations this undesired solution grows without bounds, the method 
is unstable. 

4.1.3 Explicit Methods 

The Euler-Cauchy formula is the most simple example of an explicit integration 
scheme. These are procedures that use an explicit expression for Yn+l in terms of 
Y and I as given from preceding time steps. (If only Yn and In occur, as in the EC 
method, we are dealing with an explicit single step scheme.) 

The EC formula was derived using that difference quotient which in Section 
1.2 was called DNGF approximation. We may obtain another explicit scheme by 
introducing the DST approximation: 

(4.25) 

The DE dy/dt = f(t) is thus transformed into a sequence of difference equations, 

Yn+l = Yn-l + fn 2~t + O[(~t)3l 
Yn+2 = Yn + fn+l2~t + O[(~t)3l 

etc. 

(4.26) 
(4.27) 

Each line is an explicit formula of first order that couples the values of Y at time 
steps tn+l and tn- 1, omitting the quantity Yn. However, fn == f(Yn) is needed and 



Initial value problems of first order 95 

has to be evaluated in the preceding step. This two-step procedure is pictorially 
called leapfrog technique. 

Note that on the right hand side of 4.26 there appear two time steps. The 
stability analysis of such multistep techniques is a straightforward generalization of 
the method explained before. Let us write the general form of an explicit multistep 
scheme as 

k 

Yn +1 = L [ajYn_j + bj~tfn-j] (4.28) 
j=O 

Applying the same formula to a slightly deviating solution Yn-j + en-j and com
puting the difference, we have in linear approximation 

(4.29) 

Defining the new error vectors 

= ( ::-1 ) '1n - : 

en-k 

(4.30) 

and the quadratic matrix 

(4.31) 

we may write the law of error propagation in the same form as 4.13, 

'1n+1 = G . '1n (4.32) 

Again, the stability criterion reads 

Igil :S 1, for all i (4.33) 

EXAMPLE 1: Applying the leapfrog scheme to the relaxation equation one obtains the 
scalar formula 

Yn+1 = Yn-1 - 2~t>'Yn + O[(~t)31 
The error propagation obeys 

(4.34) 

(4.35) 



96 Chapter 4 Ordinary differential equations 

so that Ao = -2Dot>., and Al = 1. The matrix G is therefore given by 

G = (-2~t>' ~) (4.36) 

with eigenvalues 
gl,2 = ->.Dot ± J(>.Dot}2 + 1 (4.37) 

Since in the relaxation equation the quantity >.Dot is real, we have Ig21 > 1 under all 
circumstances. The leapfrog scheme is therefore unsuitable for treating decay or growth 
problems. 

EXAMPLE 2: If we apply the leapfrog method to the harmonic oscillator, we obtain (using 
the definitions of equ. 4.3) 

Yn+l = 2DotL· Yn + Yn-l 

and consequently 
en+l ~ 2Dot L . en + e n-l 

The amplification matrix is therefore, with a == 2Dot, 

For the eigenvalues of G we find 

so that 
Igl = 1. 

(4.38) 

(4.39) 

(4.40) 

(4.41 ) 

(4.42) 

Thus the algorithm, when applied to the harmonic oscillator, is marginally stable, regard
less of the specific values of Dot and w~. 

4.1.4 Implicit Methods 

The most fundamental implicit scheme is obtained by approximating the time 
derivative by the DNGB (instead of the DNGF) formula: 

dy I = "Vy n+l + O[~t] 
dt n+l ~t 

(4.43) 

Inserting this in dy/dt = f[y(t)] we find 

Yn+l = Yn + fn+l~t + O[(~t)2] ( 4.44) 



4.1 Initial value problems of first order 97 

This formula is of first order accuracy only, no more than the explicit Euler-Cauchy 
scheme, but as a rule it is much more stable. The problem is that the quantity 
fn+1 is not known at the time it would be needed - namely at time tn. Only iff(y) 
is a linear function of its argument yare we in a position to translate 4.44 into a 
feasible integration algorithm. Writing fn+1 = L · Yn+l, we then have 

( 4.45) 

The higher stability of this method as compared to the Euler formula may be 
demonstrated by way of our standard problems. The evolution of errors obeys 

en+1 = [I - L~trl . en == G . en (4.46) 

For the relaxation equation G = G = 1/(1 + A~t), and obviously 191 < 1 for 
any A > O. (On first sight the case A < 0 seems to be dangerous; but then we 
are dealing with a growth equation, and the relative error ely will still remain 
bounded.) In the case of the harmonic oscillator we have 

-I 1 (1 ~lt ) 
G == [I - L~tl = 1 + (wo~t)2 -w~~t ( 4.47) 

with eigenvalues 
1 . 

91,2 = 1 + (wo~t)2 [1 ± zWo~tl (4.48) 

so that 

1912 = 1 + (~o~t)2 ( 4.49) 

which is smaller than 1 for any ~t. 
An implicit scheme of second order may be obtained in the following manner. 

We truncate the DNGF approximation 1.30 after the second term and write it 
down for u = 0 (i.e. t = tn) and for u = 1 (meaning tn+1)' respectively: 

Adding the two lines yields 

Yn+1 = Yn + ~t[fn + fn+1l + O[(~t)3l 

(4.50) 

(4.51) 

(4.52) 

Again, this implicit formula can be of any practical use only if f is linear in y. 
With fn = L· Yn etc. we obtain from 4.52 

(4.53) 



98 Chapter 4 Ordinary differential equations 

f(t) 

(0) 

-I 

f(t) 

.---

, 

,2 , , , , , 

/1 
(b) 

Figure 4.2: PC method: a) EC ansatz: step function for f(t); b) general predictor
corrector schemes: 1 ... linear NGB extrapolation; 2 ... parabolic NGB extrapola
tion 

Stability is guaranteed for the decay equation if 

1

1 - >. D.t/21 
Igl == 1 + >. D.t/2 ~ 1 

which is always true for>. > O. For the harmonic oscillator 

_ 1 ± iWoD.t/2 
gl,2 = 1 + (woD.t)2 /4 

with Igl ~ 1 for all D.t. 

4.1.5 Predictor-Corrector Method 

( 4.54) 

(4.55) 

The explicit and implicit schemes explained in the preceding sections are of first 
and second order only. In many applications this is not good enough. The following 
predictor-corrector schemes provide a systematic extension towards higher orders 
of accuracy. In this context the predictor is an explicit formula, while the corrector 
may be seen as a kind of implicit prescription. 

To understand the way in which predictors of arbitrary order are constructed we 
once more consider the simple EC formula. Equation 4.7 is based on the assumption 
that the kernel f(t) maintains the value fn for the entire period [tn' tn+d (see Fig. 
4.2a). It is evident that for a systematic improvement we simply have to replace 
this step function by an extrapolation polynomial of order 1,2, ... using the values 
of fn, fn-lo fn-2 ... (Fig. 4.2b). The general NGB polynomial 

u u(U+l) 2 
f(tn+r)=fn+ I!Vfn+ 2! V fn+... (4.56) 



Initial value problems 01 first order 99 

(with u == T / 6.t) is thus extended into the time interval [tn' tn+!l. This renders 
the right-hand side of the DE dy/dt = I(t) formally integrable, and we obtain 
according to 

Y:+1 = Yn + 6.t 11 du I(tn + u6.t) 

the general Adams-Bashlorth predictor 

P - A [1 1 f 5 "21 3 "31 Yn+1 - Yn+l..J.t n+2"V n+ 12 v n+ g V n+ 

251 4 95 5 ] 
+ 720 V In + 288 V In + ... 

(4.57) 

(4.58) 

Depending on how far we go with this series we obtain the various predictor for
mulae listed in Table 4.1. The predictor of first order is, of course, just the Euler
Cauchy formula; the second order predictor is often called open trapezoidal rule. 

As soon as the predictor Y:+! is available we may perform the evaluation step 
to determine the quantity 

(4.59) 

which will usually deviate somewhat from the value of the extrapolation polyno
mial 4.56 at time tn+!' Now inserting I::+! in a backward interpolation formula 
around tn+!, we can expect to achieve a better approximation than by the origi
nal extrapolation - albeit within the same order of accuracy. Once more we may 
integrate analytically, 

Yn+! = Yn + 6.t I: du I(tn+! + u6.t) (4.60) 

to obtain the general Adams-Moulton corrector 

[ 1 1 2 1 3 
Yn+! = Yn + 6.t In+l - 2" V In+! - 12 V In+! - 24 V In+! 

19 4 3 5 ] 
-720 V In+! - 160 V In+! - ... (4.61) 

(where V In+l == 1::+1- In etc.). The first few correctors of this kind are assembled 
in Table 4.2. 

A final evaluation step In+! == I(Yn+1) yields the definitive value of In+l to be 
used in the calculation of the next predictor. One might be tempted to insert the 
corrected value of In+l once more in the corrector formula. The gain in accuracy, 
however, is not sufficient to justify the additional expense in computing time. 
Thus the PC method should always be applied according to the pattern PECE, i.e. 
"prediction-evaluation-correction-evaluation." An iterated procedure like P(EC)2E 
is not worth the effort. 



100 Chapter 4. Ordinary differential equations 

Predictors for first order differential equations: 

Y~+1 = Yn + Llt In + O[(Llt)2J 

Llt[ [3 + "2 31n - In-IJ + 0 (Llt) J 

+ ~; [231n - 161n-1 + 5In-2] + O[(Llt)4] 

~[ 5J + 24 551n - 591n-1 + 371n-2 - 9In-3] + O[(Llt) 

Table 4.1: Adams-Bashforth predictors 

Correctors for first order differential equations: 

(4.62) 

(4.63) 

(4.64) 

(4.65) 

Yn+1 = Yn + Lltl:+1 + O[(Llt)2] (4.66) 

+ ~t[J:+I + In] + O[(Llt)3] (4.67) 

+ ~; [51:+1 + 81n - In-I] + O[(Llt)4] (4.68) 

+ ~:[91:+1 + 191n - 51n-1 + In-2] + O[(Llt)5] (4.69) 

Table 4.2: Adams-Moulton correctors 



Initial value problems of first order 101 

The PC methods may be thought of as a combination of explicit and implicit 
formulae. Accordingly the stability range is also intermediate between the narrow 
limits of the explicit and the much wider ones of the implicit schemes. Applying, 
for example, the Adams-Bashforth predictor of second order to the relaxation equa
tion one finds for the eigenvalues of the amplification matrix G the characteristic 
equation 

2 3 a 
9 - g(1 - -a) - - = 0 

2 2 
(4.70) 

where a == )..f:l.t. For positive).. we have Igl ~ 1, as long as f:l.t < 1/)". The 
Adams-Moulton corrector on the other hand yields the error equation 

1- a/2 _ 
en+l = 1 + a/2 en = gen (4.71) 

with Igl < 1 for all a > 0, i.e. for any f:l.t at all. The limit of stability for 
the combined method should therefore be situated somewhere between f:l.t = 1/)" 
and f:l.t = 00. This is indeed borne out by testing the method on the relaxation 
equation. Inserting the predictor formula of order 2, 

p a ) 
Yn+l = Yn - "2(3Yn - Yn-l (4.72) 

in the corrector formula 

(4.73) 

one finds 

(4.74) 

with an identical error equation. The amplification factor thus obeys the equation 

2 ( 3 2 a 2 
9 - 9 1 - a + -a ) + - = 0 

4 4 
(4.75) 

For positive a ~ 2 the solutions to this equation are situated within the unit circle; 
the condition for the time step is therefore f:l.t ~ 2/)". The stability range of the 
combined method is thus twice as large as that of the bare predictor (f:l.t ~ 1/)..). 

4.1.6 Runge-Kutta Method 

To understand the idea of the RK technique we once more return to the simple 
EC formula 4.7. It rests on the assumption that f(t) retains the value fn during 
the whole of the time interval [tn' tn+d (see Figure 4.3a). A more refined approach 
would be to calculate first a predictor for Y at half-time tn+1/2' evaluate fn+1/2 = 
f(Yn+l/2) and then compute a kind of corrector at tn+1 (Fig. 4.3b): 



102 Chapter .4 Ordinary differential equ.ations 

y(t) y(t) 

/, 
I 
I 
I 

tn 
I 
I tn. , to: tn. , 

I 
I 

f(t) f(t) 
I 
I 
I I 
I 

~ I k2 i 
I k, 

tn tn. , tn t •• , 

(a) (b) 

Figure 4.3: Runge-Kutta method. a) EC formula (= RK of first order); b) RK of 
second order 



Initial value problems of first order 103 

Runge-Kutta of order 4 for first-order ODE: 

ki = Dot f(Yn) 

k2 
1 

Dot f(Yn + 2kl) 

k3 
1 

Dot f(Yn + 2k2) 

k4 = Dot f(Yn + k3) 

Yn+! = Yn + ~[ki + 2k2 + 2k3 + k4] + O[(Dot)5] (4.77) 

Table 4.3: Runge-Kutta of order 4 

Runge-Kutta of order 2: 

ki = Dot f(Yn) 
1 

k2 = Dot f(Yn + 2kl) 

Yn+1 Yn + k2 + O[(Dot)3] (4.76) 

This algorithm is called Runge-Kutta method of second order, or half-step method. 
Yet another name for the same algorithm is Euler-Richardson method. It is related 
to the predictor-corrector technique of second order - with the difference that the 
quantity fn-I is not needed. Equation 4.76 is therefore a single step method and 
may accordingly be applied even at the first time step to -+ t l ; such an algorithm 
is called self-starting. 

A much more powerful method that has found wide application is the RK 
algorithm of order 4, as described in Table 4.3. 

The most important advantage of the RK method as compared to the PC 
algorithms is that at time tn no preceding values of fn-I, fn-I, .. ' need be known. 
This is a valuable property not only for starting a calculation from to, but also 
for varying the time step in the course of the computation. If, for instance, the 
variation of f[y(t)] goes up, Dot may be decreased to keep numerical errors small. 
Also, the local truncation error may be estimated most easily by computing Yn+! 
first with Dot and then once more in two steps of length Dot/2. 

One flaw of the RK method is the necessity ofrepeatedly evaluating f (y) in one 
time step. Particularly in N-body simulations (molecular dynamics calculations) 
the evaluation step is very costly, and the RK method has never become popular 
with simulators. 

Stability analysis for the RK algorithm proceeds along similar lines as for the 
PC methods. The half-step technique applied to the decay equation leads to an 



104 Chapter 4 Ordinary differential equations 

Extrapolation method: 

1. From a given (rather large) interval D.t == tl - to form successively 
smaller steps h == D.t/n, with n = 2,4,6,8, 12, ... , (in general, nj = 
2nj_2') 

2. With each of these divided steps h compute the table values 

Zo Yo 

Zl = Zo + hf(zo) 

zm+1 = Zm-l + 2hf(zm); m = 1,2 ... n - 1 (leapfrog!) 

and finally 

(4.79) 

3. In this way a sequence of estimated end values Yl are created that 
depend on the divided step width h: Yl = Yl (h). This sequence is now 
extrapolated towards vanishing step width, h -+ O. The best way to 
do this is rational extrapolation, meaning that one fits the given pairs 
{ h, Yl (h)} by a rational function 

R(h) = P(h) 
Q(h) 

where P and Q are polynomials. 

Figure 4.4: Extrapolation method by Bulirsch and Stoer 

error propagation following 

0:2 
en+l = (1 - 0: + "2 )en == gen 

with 0: == )'D.t. For positive). this implies Igl :S 1 whenever D.t :S 2/),. 

4.1.7 Extrapolation Method 

(4.80) 

(4.78) 

When discussing the Runge-Kutta method we have already mentioned the possi
bility of estimating the local truncation error by subdividing the given time step 
D.t. The authors Richardson, Bulirsch, and Stoer [STOER 89, GEAR 71] have ex
tended this idea and have forged it to a method which to a large extent eliminates 
that error. The principle of their method is sketched in Figure 4.4. 

A thorough description of this extremely accurate and stable, but also rather ex-



Initial value problems of second order 105 

pensive technique may be found in [STOER 89] and in [PRESS 86]. 

EXERCISE: Test various algorithms by applying them to an analytically solvable prob
lem, as the harmonic oscillator or the 2-body Kepler problem. Include in your code tests 
that do not rely on the existence of an analytical solution (energy conservation or such.) 
Finally, apply the code to more complex problems such as the anharmonic oscillator or the 
many-body Kepler problem. 

4.2 Initial Value Problems of Second Order 

The fundamental equation of motion in classical point mechanics reads, in cartesian 
coordinates, 

cPr 1 
dt2 = m K[r(t)] (4.81) 

Similar equations hold for the rotatory motion of rigid bodies or of flexible chains. 
And in almost all branches of physics we are faced with some paraphrase of the 
harmonic oscillator or the more general anharmonic oscillator 

cPy _ 2 3 _ ( ) 
dt2 - -woy - f3y - ... = by (4.82) 

Since in many instances the acceleration b may depend also on the velocity dy / dt 
- as in the presence of frictional or electromagnetic forces - we will write the 
second-order equation of motion in the general form 

cPy 
dt2 = b[y, dy/dt] (4.83) 

It was mentioned before that a second-order DE may always be rewritten as a 
system of two coupled equations of first order, so that the algorithms of the preced
ing section are applicable. However, there are several very efficient techniques that 
have been specially designed for the direct numerical integration of second-order 
differential equations. 

4.2.1 Verlet Method 

Loup Verlet introduced this technique in 1967 in the context of his pioneering 
molecular dynamics simulations on Argon [VERLET 67]. A different formulation 
of the same algorithm was introduced earlier by G. H. Vineyard [VINEYARD 62]. 
Although it contains terms up to (D.t)2 only, the algorithm is of third order accu
racy, which is sufficient for this type of simulations. A more accurate technique 
which shares the first three terms with Verlet's had been used as early as 1905 by 
the Norwegian mathematician C. St(lSrmer to trace the capricious paths of charged 
elementary particles that are trapped in the magnetic field of the earth. St(lSrmer 



106 Chapter .4 Ordinary differential equations 

performed these computations on the aurora problem together with several of his 
students, without any modern computing aids, in about 5000 hours of work - a 
true founding father of computational physics [STOERMER 07, STOERMER 21]. 

To derive the Verlet algorithm one simply replaces the second differential quo
tient by the Stirling approximation (see equ. 1.48): 

This leads immediately to 

d2 y I 82Yn 2 
dt2 n = (~t)2 + O[(~t) ] (4.84) 

(4.85) 

Note that the velocity v == y does not appear explicitly. The a posteriori estimate 
for the velocity Vn, 

(4.86) 

is quite inaccurate and may be used for crude checks only. Also, the Verlet algo
rithm is not self-starting. In addition to the initial value Yo one needs Y-l to tackle 
the first time step. In a typical initial value problem the quantities Yo and Yo are 
given instead. By estimating some suitable Y-l in order to start a Verlet calcula
tion one solves not the given IVP but a very similar one. Still, the method has 
become very popular in statistical-mechanical simulation. It must be remembered 
that the aim of such simulations is not to find the exact solution to an accurately 
defined initial value problem, but to simulate the "typical" dynamics of an N-body 
system, for approximately given initial conditions. 

If the Verlet method is to be applied to a problem with exact initial values, the 
first time step must be bridged by a self-starting technique, such as Runge-Kutta 
(see below.) 

Stability analysis proceeds in a similar way as for the methods of Section 4.1. 
For our standard problem we will use the harmonic oscillator in its more common 
formulation as a DE of second order. The Verlet algorithm then reads 

whence it follows that 
en+l = (2 - o?)en - en-l 

with 0: == wo~t. The eigenvalue equation 

reads 
g2 _ (2 - 0:2)g + 1 = 0 

(4.87) 

(4.88) 

(4.89) 

(4.90) 



4·2 Initial value problems of second order 

Verlet leapfrog: 

Vn+l/2 = Vn-l/2 + bnt:..t 
1 

Vn = 2(Vn+l/2 + Vn-l/2) (if desired) 

Yn+l = Yn + Vn+l/2t:..t + O[(t:..t)4] 

Figure 4.5: Leapfrog version of the Verlet method 

Velocity Verlet: 

Its root 

Yn+l 
(t:..t)2 

= Yn + vnt:..t + bn- 2- + O[(t:..t)4] 

t:..t 
Vn +bnT Vn+l/2 

Evaluation step Yn+l -+ bn+l 
t:..t 

Vn+l = Vn+l/2 + bn+lT 

Figure 4.6: Swope's formulation of the Verlet algorithm 

a2 ~4 9 = (1 - -) ± - - a 2 
2 4 

107 

(4.92) 

(4.93) 

(4.94) 

(4.95) 

(4.96) 

(4.97) 

(4.98) 

(4.91 ) 

is imaginary for a < 2, with Igl2 = 1. In the case a 2:: 2 - which for reasons of 
accuracy is excluded anyway - the Verlet algorithm would be unstable. 

Incidentally, there are two further formulations of the Verlet method, which 
are known as the "leapfrog" - this is the one given by Vineyard - and "velocity 
Verlet" algorithms, respectively. We have already encountered a leapfrog method 
for treating differential equations of first order (see Sec. 4.1.3). Figure 4.5 shows 
the leapfrog scheme appropriate to second order DEs. It is important to note that 
in this formulation of the procedure the velocity - or rather, a crude estimate of v 
- is available already at time tn (see equ. 4.93). 

Also equivalent to the Verlet algorithm is the velocity Verlet prescription in
troduced by Swope [SWOPE 82]. The first line in Figure 4.6 looks like a simple 
Euler-Cauchy formula, but this is mere appearance. The quantity Vn+l is not 
computed according to Vn+l = Vn + bnt:..t, as the EC method would require. 



108 Chapter 4. Ordinary differential equations 

4.2.2 Predictor-Corrector Method 

In the equation fily/dt2 = b(t) we again replace the function b(t) by a NGB polyno
mial (see Sec. 4.1.5). Integrating twice, we obtain the general predictor formulae 

(4.99) 

(4.100) 

A specific predictor of order k is found by using terms up to order V k - 2bn . Thus 
the predictor of third order reads 

(4.101) 

(4.102) 

For a compact notation we define the vector 

bk = {bn,bn_l, ... bn_k+2}T (4.103) 

and the coefficient vectors Ck and dk. The predictor of order k may then be written 
as 

Predictor of order k for second order DE: 

Y~+1!::l.t - Yn!::l.t 

y~+1 - Yn - Yn!::l.t 

(!::l.t)2Ck . b k + O[(!::l.t)k+1] 

(!::l.t) 2 dk • b k + O[(!::l.t)k+1] 
2 

The first few vectors Ck, dk are given by 

( 3/2) 
C3 = -1/2 ( 4/3) 

d 3 = -1/3 

( 
23/12) 

C4 = -16/12 
5/12 

( 
19/12) 

d 4 = -10/12 
3/12 

(4.104) 

(4.105) 

(4.106) 

(4.107) 

(4.108) 



4·2 Initial value problems of second order 109 

( 
55/24) _ -59/24 

C5 - 37/24 

-9/24 

( 
323/180) 

-264/180 
d 5 = 159/180 

-38/180 

(4.109) 

Having performed the predictor step, we may insert the preliminary result 
Y~+l' il~+l in the physical law for b[y, ill. This evaluation step yields 

bP - b [P .P] n+l = Yn+l, Yn+l (4.110) 

(If the acceleration b is effected by a potential force that depends on Y but not 
on il, the quantity il~+l need not be computed at all.) By inserting b~+l now in 
a NGB formula centered on tn+l and again integrating twice we find the general 
corrector 

Defining the vector 
(4.113) 

and another set of coefficient vectors ek, f k , we may write the corrector of order k as 

Corrector of order k for second-order DE: 

Yn+l - Yn - iln~t 

The first few coefficient vectors are 

( 1/2 ) 
e3 = 1/2 

(~t)2ek . bf + O[(~t)k+l] 
(~t)2 fk . bf + O[(~t)k+l] 

2 

( 1/3 ) 
f3 = 2/3 

(4.114) 

(4.115) 

(4.116) 

(4.117) 



110 Chapter 4 Ordinary differential equ.ations 

( 5/12) ( 3/12) 
e4 = 8/12 f4 = 10/12 

-1/12 -1/12 
(4.118) 

( 9/24) ( 38/180) 
e5 = 19/24 

f5 = 171/180 
-5/24 -36/180 

1/24 7/180 

(4.119) 

The PC method should always be applied according to the scheme P(EC)E. Re
peating the corrector step, as in p(EC)2E, is uneconomical. Of course, omitting 
the corrector step altogether is not to be recommended either. The bare predic
tor scheme PE is tantamount to using one of the explicit algorithms whose bad 
stability rating we have discussed in Section 4.1.3. 

4.2.3 Nordsieck Formulation of the PC Method 

There are two ways of extrapolating a function - as, for instance, the solution y(t) 
of our differential equation - into the time interval [tn' tn+ll. One is to thread a 
N G B polynomial through a number of preceding points {tn-k, Yn-k}; the other is 
to write down a Taylor expansion about tn. For the latter approach one needs, 
instead of the stored values Yn-k, a few derivatives dky/dtk at tn. Such a Taylor 
predictor of order 3 would read 

p 
Yn+l 

. .. (~t)2 ... (~t)3 4 
Yn + Yn~t+ Yn 21+ Yn 3! + O[(~t) 1 

iJ~+l~t = iJn~t+ Yn (~t)2+ Yn (~~)3 + O[(~t)4l 
up (~t)2 

= Y (~t)2 + Y (~t)3 + O[(~t)4l 
Yn+12! n 2! n 2! 

... p (~t)3 Yn (~~)3 + O[(~t)4l Yn+l 3! = 
Defining the vector 

[ 
Yn 1 iJn~t 

ii)~l)' 

and the (Pascal triangle) matrix 

1 1 
o 1 

A= o 0 

1 1 
2 3 
1 3 

1 

(4.120) 

(4.121) 

(4.122) 

(4.123) 

(4.124) 

(4.125) 



Initial value problems of second order 111 

we have 

(4.126) 

Now follows the evaluation step. Inserting the relevant components of Z~+l in 
the given force law we obtain the acceleration 

bP - b[ P .p J 
n+l = Yn+l' Yn+l , (4.127) 

which in general will deviate from the extrapolated acceleration as given by equ. 
4.122. We define a correction term 

- [bP .. p J (~t)2 
'Y = n+l - Yn+l -2- ( 4.128) 

and write the corrector for Zn+l as 

(4.129) 

with an optimized coefficient vector c [GEAR 66J. For the first few orders of 
accuracy this vector is given as 

( 
1/6 ) _ 5/6 

c - 1 ' 

1/3 

19/120 
3/4 

1 
1/2 

1/12 

3/20 
251/360 

1 
11/18 
1/6 
1/60 

, ... (4.130) 

These coefficients were optimized by Gear under the assumption that b depends on 
the position coordinate Y only, being independent of y. The simple but important 
case of point masses interacting via potential forces is covered by this apparatus. 
Whenever b = b(y, y), as in rigid body rotation or for velocity dependent forces, 
Gear recommends to replace 19/120 by 19/90 and 3/20 by 3/16 (see Appendix C 
of [GEAR 66]). 

Finally, the evaluation step is repeated to yield an improved value of the ac
celeration, bn+1• As before, the procedure may be described in short notation as 
P(EC)E. 

The Nordsieck PC method offers the advantage of being self-starting - provided 
that one adds to the initial conditions Yo, Yo and the corresponding acceleration Yo 
some ad hoc assumptions about the values of Yo, ·i/o etc. (for instance, ... = 0). 
As in all self-starting (single step) algorithms it is possible to modify the time step 
whenever necessary. 

Stability analysis is somewhat tedious for this formulation of the PC method, 
but there are no real surprises. Once again the quasi-implicit nature of the correc
tor provides a welcome extension of the stability region as compared to the bare 
predictor formula. 



112 Chapter 4 Ordinary differential equations 

Runge-Kutta scheme of 4th order for second order DE: 

bl b [Yn] 

b2 b [yn + Yn ~t] 
[ . ~t (~t)2] 

b3 = b Yn + Yn 2: + bl - 4-

b4 b [yn + Yn~t + b2 (~;)2] 
~t 

Yn+! = Yn + {f[bl + 2b2 + 2b3 + b4 ] + O[(~t)5] 
(~t)2 

Yn+! = Yn + Yn~t + -6-[b l + b2 + b3] + O[(~t)5] 

(4.131) 

(4.132) 

Figure 4.7: Runge-Kutta algorithm of 4th order for a second-order DE with b = 
b(y). (The coefficient (~t)2 /4 in the expression for b3 is correct; it has a different 
origin than the respective coefficient in Fig. 4.8 below.) 

4.2.4 Runge-Kutta Method 

The basic idea of the RK method was sketched in 4.1.6. Without giving a de
tailed derivation, we here list a widely used RK algorithm of fourth order for the 
equation d2y/dt2 = b[y(t)] (see Figure 4.7). If the acceleration b depends not 
only on y but also on y, then the procedure given in Figure 4.8 should be used 
[ABRAMOWITZ 65]. With regard to the economy of the RK method the consid
erations of Sec. 4.1.6 hold: the repeated evaluation of the acceleration b(y) in 
the course of a single time step may be critical if that evaluation consumes much 
computer time; this more or less rules out the method for application in N-body 
simulations. In all other applications the RK method is usually the first choice. It is 
a self-starting algorithm, very accurate, and the assessment of the local truncation 
error using divided time steps is always possible. 

4.2.5 Symplectic Algorithms 

There is more to life than accuracy and stability. In recent years a class of integra
tion schemes called "Hamiltonian" or "symplectic" algorithms have been discussed 
a lot. These are integration procedures that are particularly well suited for the 
treatment of mechanical equations of motion. 

"Symplectic" means "interlaced" or "intertwined". The term, which is due 
to H. Weyl (cited in [GOLDSTEIN 80D, refers to a particular formulation of the 
classical Hamiltonian equations of motion. The motivation for the development 



4·2 Initial value problems of second order 113 

Runge-Kutta scheme of 4th order for velocity dependent forces: 

b1 = b[Yndinl 

Yn+! = Yn + 

Yn+! = Yn + 

[ . ~t (~t)2. ~t] 
b Yn + Yn T + bl - 8-, Yn + b1 T 

[ . ~t (~t)2. ~t] 
b Yn + YnT + bl - 8--,Yn + b2T 

b [yn + Yn~t + b3 (~;)2, Yn + b3~t] 
~t 
6[b1 + 2~ + 2b3 + b4] + O[(~t)5l 

(~t)2 
Yn~t + -6-[b1 + b2 + b3l + O[(~t)5l 

(4.133) 

(4.134) 

Figure 4.8: Runge-Kutta of 4th order for second-order DE with b = b(y, y) 

of symplectic algorithms was the hope to "catch" the inherent characteristics of 
mechanical systems more faithfully than by indiscriminately applying one of the 
available integration schemes. 

Consider a classical system with M degrees of freedom. The complete set of 
(generalized) coordinates is denoted by q, the conjugate momenta are called p. 
Hamilton's equations read 

dq 
dt = V' p H (q, p) 

dp 
dt = -V'q H(q, p) (4.135) 

where H(q, p) is the (time-independent) Hamiltonian. By linking together the two 
M-vectors q and p we obtain a phase space vector z whose temporal evolution is 
described by the concise equation of motion 

dz 
dt = J . V' z H (z) (4.136) 

with the "symplectic matrix" 

( 0 I) J= 
-I 0 

(4.137) 

A glance at this matrix makes the significance of the term "intertwined" apparent. 
Let us now assume that we are to solve the dynamic equations with given initial 

conditions. If there is an exact solution, yielding z(t) from the initial vector z(to), 
the mapping 

z(to) =} z(t) (4.138) 



114 Chapter 4 Ordinary differential equations 

represents a canonical transformation in phase space. It is well known that such a 
transformation conserves the energy (= numerical value of the Hamiltonian), and 
this property is often used to assess the quality of numerical approximations to the 
exact solution. However, there is another conserved quantity which has for a long 
time been disregarded as a measure of quality of numerical integrators. Namely, 
canonical transformations leave the symplectic form 

(4.139) 

unchanged. This tells us something about the "natural" evolution of volume ele
ments (or rather, "bundles" of trajectories) in phase space. Indeed, Liouville's theo
rem, that (deterministic) cornerstone of statistical mechanics, follows from the con
servation of the standard symplectic form. 

EXAMPLE: Let us unclamp that harmonic oscillator once more. Writing, in honor of R. 
Hamilton, q for the position and P for the (conjugate) momentum, we have 

( 4.140) 

The canonical transformation producing the solution at time t from the initial conditions 
q(O),p(O) may be written 

() ( q) ( coswt Jw sinwt) (q(O)) _ ( ) zt= = . =A·zO 
P -mwsinwt coswt p(O) 

(4.141) 

(with w 2 = kim.) The energy is, of course, conserved: 

~q2 + L = ~q2(0) + p2(0) 
2 2m 2 2m 

(4.142) 

What about symplectic structure? Writing {ql(O),Pl(O)} and {q2(0),P2(0)} for two dif
ferent initial conditions we find 

S(ql(O) . . 'P2(0)) - (ql(O),Pl(O))· (~1 ~). ( ;:~~~ ) 
= ql(0)p2(0) - Pl(0)q2(0) 

( 4.143) 

(4.144) 

There is a simple geometric interpretation for s. Regarding z == {q, p} as a vector in two
dimensional phase space we see that s is just the area of a parallelogram defined by the 
two initial state vectors Zl,2' Let us check whether s is constant under the transformation 
4.141: 

zf(t). J . Z2(t) 

zf(O) . AT . J . A· Z2(0) 

zf(O). J. Z2(0) 

In other words, the matrices A and J fulfill the requirement AT. J . A = J. 

(4.146) 

(4.146) 

(4.147) 



Initial value problems of second order 115 

So much for the exact solution. Now for the simplest numerical integrator, the Euler
Cauchy scheme. It may be written as 

( q) ( 1 t::..t) (q(O)) z(t) = = m. == E· z(O) 
p -mw2 t::..t 1 p(O) 

(4.148) 

It is easy to prove that this procedure enhances both the energy and the symplectic form 
by a factor 1+ (wt::..t) 2 at each time step. In this simple case there is an easy remedy: divid
ing the Euler-Cauchy matrix by Jl + (wt::..t)2 we obtain an integrator that conserves both 
the energy and the symplectic structure exactly. Of course, this is just a particularly har
monious feature of our domestic oscillator. 

There are several ways of constructing symplectic algorithms. After pioneer
ing attempts by various groups the dust has settled a bit, and the very readable 
survey paper by Yoshida provides a good overview, with all important citations 
[YOSHIDA 93]. 

A symplectic integrator of fourth order that has been developed independently 
by Neri and by Candy and Rozmus is described in Fig. 4.9 [NERI 88], [CANDY 91]. 

Note that the Candy algorithm is explicit and resembles a Runge-Kutta proce
dure; in contrast to a fourth-order RK algorithm is requires only three force eval
uations per time step. A third-order scheme (comparable in accuracy to St0rmer
Verlet) was found by R. D. Ruth; it has the same structure as Candy's algorithm, 
with the coefficients [RUTH 83] 

(aI, a2, a3) 

(b l , b2 , b3 ) 

(2/3, -2/3, 1) 
(7/24,3/4, -1/24) 

(4.151) 

(4.152) 

For Hamiltonians that are not separable with respect to q and p symplectic 
algorithms may be devised as well. However, they must be implicit schemes 
[YOSHIDA 93]. 

Of course, the various time-proven algorithms discussed in the preceding sec
tions have all been examined for their symplecticity properties. Only one among 
them conserves symplectic structure: the St0rmer-Verlet formula. The venerable 
Runge-Kutta scheme fails, and so do the PC methods. 

Is it not an unprofitable enterprise to construct an integrator that conserves 
so seemingly abstract a quantity as S(ZI, Z2)? Not quite. It is a well-established 
fact that for non-integrable Hamiltonians (and as one might guess, practically all 
interesting systems are non-integrable) there can be no algorithm that conserves 
both energy and symplectic structure. But Yoshida has shown that symplectic 
integrators do conserve a Hamiltonian function that is different from, but close to, 
the given Hamiltonian [YOSHIDA 93]. As a consequence, symplectic algorithms 
will display no secular (i.e. long-time) growth of error with regard to energy. This 
is in marked contrast to the behavior of, say, the usual Runge-Kutta integrators, 



116 Chapter 4 Ordinary differential equations 

Symplectic algorithm of fourth order: Let the Hamiltonian be separable 
in terms of coordinates and momenta: H(q, p) = U(q) + T(p). For the 
derivatives of H we use the notation 

F(q) == - V' q U(q) , P(q) == V'p T(p) 

The state at time t is given by {qo, Po}. 

• For i = 1 to 4 do 

where 

a1 = a4 = (2 + 21/ 3 + 2-1/ 3 ) /6 

a2 = a3 (1 - 21/ 3 - T 1/ 3 )/6 

b1 0 

~ = b4 = 1/(2 - 21/ 3) 

b3 1/ (1 - 22/3) 

• The state at time tn+1 is {q4,P4}' 

Figure 4.9: Symplectic algorithm by Neri and Candy 

(4.149) 

(4.150) 



Initial value problems of second order 117 

which show good local (short-time) accuracy but when applied to Hamiltonian 
systems will lead to a regularly increasing deviation in energy. 

To be specific, the simple first-order symplectic algorithm 

(4.153) 

exactly conserves a Hamiltonian iI that is associated to the given Hamiltonian H 
by 

(4.154) 

where 

1 1( 2 2 1 
Hi = 2 HpHq , H2 = 12 HppHq + HqqHp) , H3 = 12HppHqqHpHq ... (4.155) 

(Hq being shorthand for \1 qH etc.) In particular, for the harmonic oscillator the 
perturbed Hamiltonian 

- w2tlt 
H = H ho + -2-PQ (4.156) 

is conserved exactly. 
Incidentally, the one-step algorithm 4.153 is also known as the Euler-Cromer 

method. When applied to oscillator-like equations of motion it is a definite improve
ment over the (unstable) Euler-Cauchy method of equ. 4.7. 

EXERCISE: Apply the (non-symplectic) RK method and the (symplectic) St0rmer-Verlet 
algorithm (or the Candy procedure) to the one-body Kepler problem with elliptic orbit. 
Perform long runs to assess the long-time performance of the integrators. (For RK the 
orbit should eventually spiral down towards the central mass, while the symplectic proce
dures should only give rise to a gradual precession of the perihelion.) 

4.2.6 Numerov's Method 

This technique is usually discussed in the context of boundary value problems 
(BVP), although it is really an algorithm designed for use with a specific initial 
value problem (IVP). The reason is that in the framework of the so-called shooting 
method the solution to a certain kind of BVP is found by taking a detour over a 
related IVP (see Sec. 4.3.1). An important class of BVP has the general form 

d2 y 
dx2 = -g(x)y + s(x) (4.157) 

with given boundary values y(xt} and y(X2). A familiar example is the one
dimensional Poisson equation for the potential </>(x) in the presence of a charge 
density p(x), 

(4.158) 



118 Chapter 4 Ordinary differential equ.ations 

with the values of ¢ being given at Xl and X2. In terms of equ. 4.157, g(x) = 0 
and s(x) = -p(x). 

The shooting method then consists in temporarily omitting the information 
Y(X2), replacing it by a suitably estimated derivative y' at Xl and solving the initial 
value problem defined by {Y(Xl), y'(xd} - for example, by the Numerov method. 
By comparing the end value of Y(X2) thus computed to the given boundary value 
at X2 one may systematically improve y'(Xl), approaching the correct solution in 
an iterative manner. 

To implement Numerov's method one divides the interval [Xl, X2J into sub
intervals of length t.x and at each intermediate point Xn expands y(x) into a 
power series. Adding the Taylor formulae for Yn+l and Yn-l one finds 

_ 2 "( A)2 (4) (t.x)4 0[( A )6J Yn+l - Yn - Yn-l + Yn I...J.X + Yn 12 + I...J.X (4.159) 

(Note that up to the third term on the r.h.s. this is just Verlet's formula 4.85.) 
Insertion of the specific form 4.157 of Yn" yields 

Yn+l = 2Yn - Yn-l + (t.x)2[-gnYn + snJ + (~~)4 y~4) + 0[(t.X)6J 

For the fourth derivative y(4) one writes, to the same order of accuracy, 

cPY"1 cP(-gY+S)1 1 2 y~4) = dx2 n = dX2 n ~ (t.x)26n( -gy + S) = 
1 

= (t.x)2[-gn+1Yn+1 + 2gnYn - gn-1Yn-l + 

+Sn+l - 2sn + sn-d 

Inserting this in 4.160 one arrives at Numerov's formula 

(4.160) 

(4.161) 

To start this two-step algorithm at the point Xl one needs an estimated value of 
Y(Xl -t.x). Alternatively, one may estimate y'(Xl) and treat the first subinterval by 
some self-starting single step algorithm such as Runge-Kutta. 

EXERCISE: Write a code that permits to solve a given second-order equation of motion 
by various algorithms. Apply the program to problems of point mechanics and explore the 
stabilities and accuracies of the diverse techniques. 



4.3 Boundary value problems 

4.3 Boundary Value Problems 

The general form of a BVP with one independent variable is 

~~ = fi(X, YI,'" YN); i = 1, ... N 

119 

(4.163) 

where the N required boundary values are now given at more than one point x. 
Typically there are 

nl boundary values aj (j = 1, ... nl) at x = Xl, and 
n2 == N - nl boundary values bk (k = 1, ... n2) at X = X2' 

Of course, the quantities Yi, aj and bk may simply be higher derivatives of a single 
solution function y(x). In physics we often encounter BVPs of the type 

cPy 
dX2 = -g(x)y + s(x) (4.164) 

which may be transformed, via the substitutions YI == y, Y2 == -g(X)YI + s(x), into 

dYI 
dx 
dY2 
dx = -g(X)YI + s(x) 

(4.165) 

(4.166) 

Important examples of this kind of boundary value problems are Poisson's and 
Laplace's equations and the time independent Schroedinger equation. 

The one-dimensional Poisson equation reads cP¢/dX2 = -p(x), or 

d¢ 
dx 

= -e 

de 
= p(x) 

dx 

(4.167) 

(4.168) 

where p(x) is a charge density. Laplace's equation is identical to Poisson's, but 
with p(x) = 0, i.e. in charge-free space. Another physical problem described by 
the same equation is the temperature distribution along a thin rod: cPT I dx2 = O. 

The Schroedinger equation for a particle of mass m in a potential U(x) reads 

cP¢ . 2m 
dx2 = -g(x)¢, wIth g(x) = 1i2[E - U(x)] (4.169) 

Also, the case of a particle on a centrosymmetric potential U(r) may be treated 
by the same formalism. Factorizing the wave function as in 

1 
¢(r) == - R(r) Yzm((j, ¢) 

r 
(4.170) 



120 Chapter 4 Ordinary differential equations 

we have for the radial function R( r) 

= -g(r)R, 

with g(r) = 2m [E _ U(r) _ l(l + 1)1i2 ] 

1i2 2mr2 

(4.171) 

(4.172) 

Two methods are available for finding a solution to any boundary value prob
lem, not necessarily of the form 4.164. They are known as the shooting and the 
relaxation technique, respectively. 

4.3.1 Shooting Method 

The basic strategy here is to transform the given boundary value problem into an 
initial value problem with estimated parameters that are then iteratively adjusted 
so as to reproduce the given boundary values. The detailed procedure is as follows: 

First trial shot: Augment the n1 boundary values given at x = Xl by n2 == N -n1 

estimated parameters 

a (l) = {a(1). k - 1 n }T - k' - , ... 2 (4.173) 

such that a completely determined initial value problem is obtained. Now 
integrate this IVP by some suitable technique up to the second boundary 
point X = X2. (For equations of the frequently occuring form y" = -g(x)y + 
s(x) Numerov's method is recommended.) The newly calculated functional 
values at X = X2, 

(4.174) 

will in general deviate from the given boundary values b == {bk ; •.• V. The 
difference vector 

(4.175) 

is stored for further use. 

Second trial shot: Change the estimated initial values ak by some small amount: 

a(2) == a(l) + 8a (4.176) 

and again perform the integration up to x = X2. The boundary values bi2) 

thus obtained are again different from the required values bk : 

e(2) == b(2) - b (4.177) 

Quasi-linearization: Assuming that the deviations e(l) and e(2) depend linearly 
on the estimated initial values a(l) and a(2), we may compute that vector a(3) 
which would make the deviations disappear (Newton-Raphson technique): 

b~2) _ b(l) 
a(3) = a(l) - A-I. e(l) , with Aij == (2) '(1) (4.178) 

aj - aj 



Boundary value problems 121 

As a rule the vectors e are in fact not exactly linear in a. Therefore one has 
to iterate the procedure, putting a(1) = a(2) and a(2) = a(3) etc., until some 
desired accuracy has been achieved. 

EXAMPLE: Let the boundary value problem be defined by the DE 

1 
(4.179) 

(1 + y}2 

with given values y(O) = y(l} = O. 
First trial shot: To obtain a completely determined IVP, we choose a(l) == y'(O} = 1.0. 
Application of a 4th order Runge-Kutta integrator with 10 sub-intervals ~x = 0.1 yields 
b(l) == y(l} = 0.674. Since the required boundary value at x = 1 is y(l} = 0 the deviation 
is e(1) = 0.674. 
Second trial shot: Now we put a(2) = 1.1 and integrate once more, finding b(2) = 0.787, 
i.e. e(2) = 0.787. 
Quasi-linearization: From 

(3) _ (1) a(2) - a(1) (1) 
a - a - b(2) _ b(1) e (4.180) 

we find a(3) = 0.405 (== y'(O)}. 
Iteration: The next few iterations yield the following values for a (== y'(O)) and b (== y(I)}: 

n a(n) b(n) 

3 0.405 - 0.041 
4 0.440 0.003 
5 0.437 0.000 

It is sometimes inconvenient to integrate the (artificial) initial value problem 
over the entire interval [Xl, X2]. Physical conditions (forces, densities, etc.) may 
vary in different sub-regions of that interval, so that different step sizes, or even 
algorithms, are appropriate. In such cases one defines internal border points Xb 

between such subintervals and joins the piecewise solution functions together by 
requiring smooth continuation at Xb. An example for this variant of the shooting 
method is given in [KOONIN 85]. 

4.3.2 Relaxation Method 

By discretizing the independent variable X we may always transform a given DE 
into a set of algebraic equations. For example, in the equation 

(4.181) 



122 Chapter 4 Ordinary differential equations 

the second derivative may be replaced by the DDST approximation 

cPy 1 
dX2 ~ (~X)2 [Yi+1 - 2Yi + Yi-1] (4.182) 

which leads to the set of equations 

Yi+1 - 2Yi + Yi-1 - bi(~X)2 = 0, i = 2, ... M - 1 (4.183) 

The values of Y1 and YM will be given: we are dealing with a boundary value 
problem. 

Assume now that we are in possession of a set of values Yi, compactly written 
as a vector y(l), that solve the equations 4.183 approximately but not exactly. The 
error components 

ei = Yi+1 - 2Yi + Yi-1 - b;(~X)2, i = 2, ... M - 1 (4.184) 

together with e1 = eM = 0 then define an error vector e(l) which we want to make 
disappear by varying the components of y(l). To find out what alterations in y(l) 

will do the trick we expand the error components ei linearly in terms of the relevant 
Yj: 

ei(Yi-1 + ~Yi-1' Yi + ~Yi' Yi+1 + ~Yi+d ~ 
oei oei oei 

~ ei + --~Yi-1 + -~Yi + --~Yi+1 
0Yi-1 0Yi 0Yi+1 

== ei + ai~Yi-1 + /3i~Yi + 'Yi~Yi+1 (i = 1, ... M) (4.185) 

This modified error vector is called e(2). The requirement e(2) = 0 may be written 
as 

A. ~y = _e(l) (4.186) 

with 

C' 
'Y1 0 

~~ ) A= 
a2 /32 'Y2 

(4.187) 

aM 

(If y(xd and Y(XM) are given, then 'Y1 = aM = 0 and /31 = /3M = 1.) Thus our sys
tem of equations is tridiagonal and may readily be solved by the recursion technique 
of Section 2.1.4. 

EXAMPLE: We take the same example as for the shooting method, 

1 
(4.188) 

(1 + y}2 

with y(O) = y(l} = O. The Stirling approximation to the second derivative yields 

(~x}2 
ei = Yi+1 - 2Yi + Yi-1 + (1 + Yi}2 (4.189) 



Boundary value problems 123 

and thus 

(4.190) 

for i = 2, ... M - 1. Furthermore, we have 01 = 1'1 = 0, fit = 1 and OM = 'YM = 0, 
fJM = 1. Therefore we may write 

(4.191) 

To start the downwards recursion we put 9M-l = -OM/fJM = 0 and hM-l = -eM/fJM = 
o. The recursion 

-Oi -1 -ei - hi 
Yi-l = = fJ--; hi-l = fJ 

fJi + 'Yi9i i + 9i i + 9i 
(4.192) 

brings us down to 91, hI. Putting 

(4.193) 

we take the upwards recursion 

D.Yi+l = 9iD.Yi + hi; i = 1, ... M - 1 (4.194) 

to find the corrections D.Yi. Improved values of Yi are formed according to Yi --+ 
Vi + D.Yi and inserted in 4.189. After a few iterations these corrections are negligi
ble. 



Chapter 5 

Partial Differential Equations 

Waves: a hyperbolic-advective process 

Entering now the vast field of partial differential equations, we immediately an
nounce that our discussion shall be restricted to those types of equations that are 
of major importance in physics. These are the quasilinear PDEs of second order, 
which may be written in the general form 

("Quasilinear" means that the second derivatives of u appear in linear order only). 
The official typology of partial differential equations distinguishes three types 

of such equations, viz. hyperbolic, parabolic, and elliptic: 

hyperbolic: 
parabolic: 
elliptic: 

alla22 - a~2 < 0 
alla22 - a~2 = 0 
alla22 - a~2 > 0 

(or in particular a12 = 0, alla22 < 0) 
(or a12 = 0, alla22 = 0) 
(or a12 = 0, alla22 > 0) 

Table 5.1 lists a few important examples for these kinds of PDEs. 

125 

F. J. Vesely, Computational Physics
© Kluwer Academic / Plenum Publishers, New York 2001



126 Chapter 5 Partial differential equations 

hyperbolic c?82u 82u 8x2 - at2 = f(x, t) Wave equation 

c?82u 82u 8u 
8x2 - 8t2 - a Of = f(x, t) Wave with damping 

parabolic D 82u 8u - f( ) 8x2 - Of - x, t Diffusion equation 

li2 82u + iii 8u _ U(x) u = 0 
2m 8x2 Of Schroedinger equation 

elliptic 82u 82u 
8x2 + 8y2 = -p(x, y) Potential equation 

82u + 82u _ 2m U(x) u = 0 
8x2 8y2 V Schroedinger equation, 

(or ... = f u) stationary case 

Table 5.1: Some PDEs (partial differential equations) in physics 

In the context of physical theory hyperbolic and parabolic equations as a rule de
scribe initial value problems, which is to say that one of the independent variables 
is the time t, and that for t = 0 the values of u and 8u/8t are known throughout 
the spatial region under scrutiny. The reason for this state of affairs is that such 
equations arise naturally from the description of transport phenomena, i.e. time
dependent problems. In contrast, elliptic PDEs as a rule occur in the description 
of stationary states u(x, y), the variables x and y (and possibly a third independent 
variable, z) being spatial coordinates. The values of the stationary function u(x, y) 
must then be given along a boundary curve C(x, y) = 0 (or surface, S(x, y, z) = 0): 
we are dealing with a boundary value problem. With the usual "controlled sloppy
ness" of physicists in matters mathematical we write: 

hyperbolic 
parabolic 

elliptic 

} ¢::::::} initial value problems 

¢::::::} boundary value problems 

Furthermore, we will restrict the discussion of initial value problems (IVP) to 
certain "pure" types which do not exhaust the vast multitude of hyperbolic and 
parabolic PDEs. The equations that are relevant to the description of physical 
transport processes are usually derived under the additional assumption that the 



127 

quantity to be transported (mass, energy, momentum, charge, etc.) is conserved 
as a whole. The resulting law of continuity leads to (hyperbolic or parabolic) 
equations which are called conservative. 

Let the spatial distribution of some measurable quantity be described by a 
"density" u{r, t). Just for simplicity, but without restriction of generality, we 
assume u to be scalar. The total amount of this quantity contained in a given 
volume V is then 

Mv{t) == j u{r, t) dr (5.2) 
v 

The "flux" through the surface S of the volume is denoted by J. It is defined as 
the net amount entering the volume V per unit time. We further define a "flux 
density", or "current density" j{r, t) as a local contribution to the total influx (see 
Fig. 5.1): 

J - -j j{r, t) . dS (per def.) (5.3) 

0 

= - j{V ·j)dr (Gauss law) (5.4) 
v 

Restricting the discussion to the particularly important case of an in toto conserved 
quantity, we require the continuity equation 

to hold, which is equivalent to 

dMv =J 
dt 

j[~;+v.j]dr=o 
v 

or, since the volume V is arbitrary, 

I :=-V.j I 
We denote equ. 5.7 as the general conservative PDE. 

(5.5) 

(5.6) 

(5.7) 

In most physically relevant cases the flux density j will not depend explicitly on 
rand t, but only implicitly by way of the density u{r, t) or its spatial derivative, 
Vu{r, t): 

j = j{u) or j = j{Vu) (5.8) 

In the first instance, j = j{u), we are dealing with the conservative-hyperbolic 
equation 

8u=_V.j(u) 
at (5.9) 



128 Chapter 5 Partial differential equations 

dS 

Figure 5.1: Derivation of the conservative PDE 

Why "hyperbolic"? At first sight, equation 5.9 does not resemble the standard 
form as presented by, say, the wave equation 

fPu 2fPu 
-=c-at2 ax2 

(5.10) 

We can see the connection if we introduce in equ. 5.10 the new variables r:= au/at 
and s:= c(au/ax). We find 

or 

where 

ar 
at 
as 
at 

as 
cax 

ar 
cax 

au aj au -=--:=-c·at ax ax 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

EXAMPLE: The equation of motion for a plane electromagnetic wave may be written in 
two different ways. Denoting by Ey and Bz the non-vanishing components of the electric 
and magnetic fields, respectively, Maxwell's equations lead to 

aBz c-ax 
aEy 

c-ax 

(5.15) 

(5.16) 

The equations have indeed the form 5.13. However, differentiating by t and x and 
subtracting one may easily derive the wave equation 

a2Ey 2 a2Ey 
at2 = c ax2 (5.17) 



5.1 Initial value problems I (hyperbolic) 129 

hyperbolic parabolic elliptic 

conservative-hyperbolic conservative-parabolic 

I 
advective diffusive 

I 
Table 5.2: Partial differential equations in physics 

As evident from equ. 5.14, the vector j(u) is a linear function of u. Equations with 
this property are again an important subclass of the conservative-hyperbolic PDEs. 
They are known as advective equations. The numerical schemes to be described in 
the following sections are applicable to the entire class of conservative-hyperbolic 
PDEs, but the analysis of stability is most easily demonstrated in the context of 
advective equations. 

An heuristic overview on the various types of PDEs that are of importance in 
physics is presented in Table 5.2. 

5.1 Initial Value Problems I: Conservative-hy
perbolic DE 

We seek to construct algorithms for the general equation 

au 
at 

or the more specific advective equation 

aj 
ax (5.18) 

(5.19) 

It will turn out that the "best" (i.e. most stable, exact, etc.) method is the Lax
Wendroff technique. To introduce this method it is best to proceed, in ascending 
order of sophistication, via the FTCS scheme, the Lax and the leapfrog methods. 

5.1.1 FTCS Scheme; Stability Analysis 

Using the notation u'J == u(Xj, tn ) we may rewrite equ. 5.18 to lowest order as 

(5.20) 



130 Chapter 5 Partial differential equations 

n+l o o o 

I 

n .• ~~"'--""""i •. 
j-l j j+l 

Figure 5.2: FTCS scheme for the conservative-hyperbolic equation 

The time derivative is here replaced by Llnun / Llt (which explains part of the name: 
FT for "forward-time"), and in place of 8j/8x the centered DST approximation 
J1-8j j j /Llx is used (CS for "centered-space"). The result of all this is an explicit 
formula for u n+l 

J ' 

(5.21) 

which is depicted, in a self-explaining manner, in Figure 5.2. 
What about the stability of such a method? The following procedure, due to 

von Neumann, permits an appropriate generalization of the stability analysis we 
have used in the context of ordinary differential equations. 

Assume, for simplicity, that the solution function u be scalar. At some time tn 
the function u(x, t) may be expanded in spatial Fourier components: 

u'J = 2: Ukeikxj 
k 

(5.22) 

where k = 27fl/ L (l = 0,1, ... ) is a discrete wave number (see Appendix B, with 
a slightly different notation). The coefficients Uk thus determine the shape of the 
"snapshot" of u(x) at time tn. If we can obtain, by inserting the Fourier series 
in the transformation law u']+l = T[u'J,J, an according transformation rule for the 
Fourier components, 

Uk+l = g(k) Uk 

then the stability condition reads 

Ig(k)1 ~ 1 for all k 

(5.23) 

(5.24) 

Applying this idea to the FTCS formula for the advective equation with flux density 
j = cu we find 

g(k) Uneikj 6x = Uneikj 6x _ C Llt un [eik(j+l)6X _ eik(j-l)6xJ 
k k 2 Llx k (5.25) 



5.1 Initial value problems I (hyperbolic) 131 

n+l 0 0. 0 
; , 

; , 
; , 

; 

fe\ 
, 

n .. • 
j-l j j+l 

Figure 5.3: Lax scheme (Conservative-hyperbolic equation) 

or 
ic!:1t . 

g(k} = 1 - !:1x sm k!:1x (5.26) 

Obviously, Ig(k}1 > 1 for any kj the FTCS method is inherently unstable. Recalling 
our earlier experiences with another explicit first order method, the Euler-Cauchy 
scheme of Section 4.1.3, we cannot expect anything better. 

5.1.2 Lax Scheme 

Replacing in the FTCS formula the term u'] by its spatial average [u']+! + u']_1l/2, 
we obtain 

(5.27) 

(see Fig. 5.3). The same kind of stability analysis as before (assuming scalar u 
and j, with the advective relation j = cu) leads to 

1 At ikAz -ikAz 
(k) __ [ ikAz -ikAz] _ . ~ e - e 

9 - 2 e + e ~ !:1x 2i 

or 

g(k} = cos k!:1x - i~: sin k!:1x 

The condition Ig(k}1 ::s; 1 is tantamount to 

Icl!:1t < 1 
!:1x -

(5.28) 

(5.29) 

(5.30) 

This inequality, which will pop up again and again in the stability analysis of 
integration schemes for the advective equation, is called Courant-Friedrichs-Lowy 
condition. Its meaning may be appreciated from Figure 5.4. The region below 
the dashed line encompasses, at time tn, that spatial range which according to 
x(tn+d = x(tn} ± Icl !:1t may in principle contribute to the value of the solution 



132 Chapter 5 Partial differential equations 

n+l o .P, o 
'" , '" , " , " , 

n ,,"'. • .', '" , " , 
'" j-l j+l' 

Figure 5.4: Courant-Friedrichs-Lowy condition 

function u']+l at the next time step. For a large propagation speed c this region 
is, of course, larger than for small c. If a numerical algorithm fails to take into 
account all values u'} situated within the relevant region, it will be unstable. 

Comparing the Lax scheme to the FTCS formula, we find an apparently spuri
ous term which cannot be accounted for by considering the original DE: 

urI - u'J U'J+I - U'J-I 1 U'J+I - 2u'J + U'J-I 
D.t = -c 2D.x + "2 D.t (5.31) 

The second fraction on the right-hand side has the form of a diffusion term, 

c5Ju'J fPu (D.X)2 
2D.t ~ ax2 2D.t (5.32) 

implying that by using the Lax method we are in fact solving the equation 

au au (D.x)2a2u 
at = -c ax + 2D.t ax2 (5.33) 

However, for small enough (D.X)2 / D.t this additional term - which obviously brought 
us the gift of stability - will be negligible. We require therefore that in addition to 
the stability condition IclD.t :S D.x we have 

D.x 1c52ul 
IclD.t » 2 lc5ul (5.34) 

Incidentally, the Lax scheme amplification factor g(k) for small k, i.e. for long 
wave length modes, is always near to 1: 

g(k) ~ 1 _ (kD.X)2 _ {D.t kD.x ~ 1 
2 D.x 

(5.35) 

This means that aberrations from the correct solution that range over many grid 
points will die off very slowly. This flaw can be mended only by introducing algo
rithms of higher order (see below). 

EXAMPLE: The one-dimensional wave equation may be written in advective form as 

au = -C. au 
at ax 



5.1 Initial value problems I (hyperbolic) 

where 

(see 5.13-5.14). The Lax scheme for this equation reads 

133 

(5.36) 

(5.37) 

To make the connection to the above-mentioned example of a plane electromagnetic wave 
we may interpret rand s as the magnetic and electric field strengths, respectively, and c 
as the speed of light. Of course, this particular equation may be solved easily by analytic 
methods; but any slight complication, such as a locally varying light velocity, will render 
the numerical procedure all but irresistible. 

Warning: Since the Lax scheme is sensitive to the ratio 1§2ul/l§ul, it may fail for quite 
simple wave propagation problems. 

5.1.3 Leapfrog Scheme (LF) 

Both in the FTCS and in the Lax scheme a first order approximation was used for 
the time derivative: au/at ~ ~nu'J / ~t. Remembering the excellent record of the 
second-order Stirling formula (see Sec. 1.2.3) we insert 

au un+1 _ un-1 

at ~ 2~t 

in the above equation, to find the leapfrog expression 

(Similar formulae were developed earlier for ordinary DE; see equ. 
4.5.) 

The amplification factor g(k) obeys (assuming j = cu) 

or, with a == c~t/~x, 

g(k) = -ia sin k~x ± \/1- (a sin k~X)2 

The requirement Igl2 :S 1 results once more in the CFL condition, 

(5.38) 

(5.39) 

4.26 and Fig. 

(5.40) 

(5.41) 



134 Chapter 5 Partial differential equations 

n+l 0 0 0 

n • ~ • 
n -1 • • • 

j-l j j+l 

Figure 5.5: Leapfrog scheme for the conservative-hyperbolic equation 

0 Q . - I - - ~ - - - -I I 

• • 
J J+3 

Figure 5.6: Decoupled space-time grids in the leapfrog scheme 



5.1 Initial value problems I (hyperbolic) 

n+l o 

n 

j-l 

<;> 

, I / , / 

j 

o 

, , 

j+l 

Figure 5.7: Lax-Wendroff scheme 

cllt 1 -< Ilx -

135 

(5.42) 

One drawback of the leapfrog technique is that it describes the evolution of the 
solution function on two decoupled space-time grids (see Fig. 5.6). The solutions 
on the "black" and "white" fields will increasingly differ in the course of many time 
steps. An ad hoc remedy is to discard one of the two solutions, giving up half the 
information attainable with the given grid finesse. A better way is to connect the 
two subgrids by adding a weak coupling term, which once more has the form of a 
diffusion contribution, on the right-hand side of 5.39: 

... + C:[Uj+l - 2uj + uj-ll (5.43) 

5.1.4 Lax-Wendroff Scheme (LW) 

A somewhat more complex second-order procedure which, however, avoids the 
disadvantages of the methods described so far, is explained in the Figures 5.7 and 
5.8. 

Stability analysis is now a bit more involved than for the previous techniques. 
Assuming once more that j = cu and using the ansatz U:+1 = g(k)Ur one inserts 
the Fourier series 5.22 in the successive stages of the LW procedure. This yields 

g(k) = 1 - ia sin kllx - a2 (1 - cos kllx), (5.47) 

with a = cllt/ Ilx. The requirement Igl2 ~ 1 leads once again to the CFL condition 
5.30. 

5.1.5 Lax and Lax-Wendroff in Two Dimensions 

For simplicity we will again assume a scalar solution u(r, t). The conservative
hyperbolic equation reads, in two dimensions, 

au = _ ajx _ ajy 
at ax ay 

(5.48) 



136 Chapter 5 Partial differential equations 

Lax-Wendroff scheme: 

• Lax method with half-step: 6.x/2, 6.t/2: 

(5.44) 

d I I t' n+1/2 an ana ogous y lor U j _ 1/ 2 . 

• Evaluation, e.g. for the advective case j = C . u : 

(5.45) 

• leapfrog with half-step: 

(5.46) 

Figure 5.8: Lax-Wendroff method 

(where in the advective case jx = cxu and jy = Cyu.) The Lax scheme is now 
written as 

n+1 1 [ n n n n] 6.t [.n .n] 
uiJ = 4 Ui+1J + UiJ+1 + Ui-1,j + Ui,j-l - 26.x Jx,i+1,j - Jx,i-l ,j 

6.t [~ ~] 
- 26.y Jy,i,j+1 - Jy,iJ-l (5.49) 

In the more efficient Lax-Wendroff algorithm we require, as input for the second 
stage (half-step leapfrog), quantities such as j;,~~G2,j-l/2 . These would have to be 

computed, via U~:11/:'j_l/2' from U?'j_l/2' Uf+l,j-l/2 etc. Here we have a problem: 

quantities with half-step spatial indices (i+l/2, j-1/2 etc.) are given at half-step 
times (tn+1/2) only. To mend this, one modifies the Lax-Wendroff prescription 
according to Figs. 5.10-5.11. To calculate ufJl, only the points 0 (at t n ) are 
used, while uftlJ is computed using the points D. This again results in a slight 
drifting apart of the subgrids 0 and D. If the given differential equation happens 
to contain a diffusive term, the two grids are automatically coupled. If there is no 
diffusive contribution, it may be invented, as in the leapfrog method [POTTER 80]. 

Stability analysis proceeds in the same way as in the one-dimensional case, 
except for the Fourier modes being now 2-dimensional: 

u(x, y) = L L Uk,leikX+ily 

k I 

(5.53) 

Further analysis results in a suitably generalized CFL condition [POTTER 80], 



5.1 Initial value problems I (hyperbolic) 137 

-y 

i-I • • • I 

x I 

.--0-- .... 

i+I • • 
j-l 

Figure 5.9: Lax method in two dimensions 

Lax-Wendroff in 2 dimensions: 

• Lax method to determine the u-values at half-step time tn+1/2: 

(5.50) 

etc. 

• Evaluation at half-step time: 

n+1/2 .n+l/2 
Ui+l,j ,... ==} Jx,i+l,j'··· (5.51) 

• leapfrog with half-step: 

n+l n 
Ui,j = ui,j 

tlt [.n+1/2 .n+1/2 ] 
2tlx J x ,i+l,j - Jx,i-l,j 

tlt [.n+1/2 .n+1/2 ] 
2tly Jy,i,j+l - Jy,i,j-l (5.52) 

Figure 5.10: Lax-Wendroff in two dimensions 



138 Chapter 5 Partial differential equations 

- y 

1 
0 0 <;> 0 0 

I 

X 
0 <;>- - -¢- - -<;> 0 

0- - -¢- --i.- -¢- --0 
I 11,J I 

0 6---¢---O 0 
li+l,j 

0 0 6 0 0 

Figure 5.11: First stage (= Lax) in the 2-dimensional LW method: 0 ... tn, tn+l, 
O ... tn+l/2 

namely (assuming 6.x = 6.y) 

6.t < 6.x 
- V2Jc~ +c~ 

(5.54) 

5.2 Initial Value Problems II: Conservative-para
bolic DE 

The generic equation of this kind is the diffusive equation 

(5.55) 

which for a constant transport coefficient A assumes the even simpler form 

(5.56) 

In the case of parabolic equations there are more feasible integration algorithms to 
choose from than there were for hyperbolic equations. The method that may be 
regarded "best" in more than one respect is the second-order algorithm by Crank 
and Nicholson. However, there is also another quite competitive method of second 
order, called Dufort-Frankel scheme, and even the various first-order methods, 
which for didactic reasons will be treated first, are reasonably stable. 

5.2.1 FTCS Scheme 

We can once more derive a "forward time-centered space" algorithm, replacing 
au/at by the DNGF approximation 6.n u/6.t, and a2u/ax2 by the DDST formula 



5.2 Initial value problems II (parabolic) 139 

o o o 
I 

• • • 
Figure 5.12: FTCS method for the parabolic-diffusive equation 

1 [n+ 1 n] ,\ [n n n] 
t1t Uj - Uj = {t1x)2 Uj +1 - 2Uj + Uj_1 (5.57) 

Using a == ,\t1t/{t1X)2 this may be written as 

(5.58) 

(see Fig. 5.12). In contrast to the hyperbolic case the FTCS method is stable for 
parabolic-diffusive equations. For the k-dependent growth factor we find 

g{k) = 1 - 4a sin2 k~x (5.59) 

which tells us that for stability the condition 

(5.60) 

must be met. Noting that the characteristic time for the diffusion over a distance 
t1x (i.e. one lattice space) is 

{t1x)2 
7=--

2,\ 
(5.61 ) 

we understand that t1t ~ 7 is required for stability. 
If we try to enhance the spatial resolution by reducing t1x, the characteristic 

time will decrease quadratically, leading to an unpleasant reduction of the permit
ted time step. The FTCS scheme is therefore, though simple and stable, rather 
inefficient. 

To allow for an explicit or implicit spatial variation of,\ we may write the FTCS 
formula as 

n+1 _ n + t1t [\ (n n) \ (n n)] {5 62} uj - Uj (t1x)2 /\j+1/2 uj+l - uj -/\j-1/2 uj - u j _1 . 

where 
{5.63} 



140 Chapter 5 Partial differential equations 

Of-------cOt---O 

• • • 
Figure 5.13: Implicit method for the parabolic-diffusive equation 

denotes a suitably interpolated interlattice value of A. 

EXERCISE: Apply the FTCS scheme to the thermal conduction problem of Sec. 1.4.2. In
terpret the behavior of the solution for varying time step sizes in the light of the above sta
bility considerations. 

5.2.2 Implicit Scheme of First Order 

We obtain a considerable increase in efficiency if we take the second spatial deriva
tive at time tn+l instead of tn: 

1 A - [un+1 _ un] = __ [un+1 _ 2u~+1 + u~+1] 
tl.t J J (tl.x)2 1+1 J J-l (5.64) 

(see Fig. 5.13). Again defining a == Atl.tj(tl.x)2, we find, for each space point Xj 

(j = 1,2, .. N - 1), 

(5.65) 

Let the boundary values Uo and UN be given; the set of equations may then be 
written as 

A. un+1 = un (5.66) 

with 
1 0 0 0 

-a 1 + 2a -a 0 0 

A== 
0 0 

(5.67) 

-a 1 +2a -a 
0 0 1 

We have seen before that a tridiagonal system of this kind is most easily inverted 
by recursion (see Section 2.1.4). 

Asking for error propagation, we find 

-a 9 e-ikt.x + (1 + 2a)g - a 9 eikt.x = 1 (5.68) 



5.2 Initial value problems II (parabolic) 

0-----<0..--0 
I 

• • • 

141 

Figure 5.14: Crank-Nicholson technique for the parabolic-diffusive equation 

or 
1 

9 = -----,,..----,--.,-
1 + 4a sin2(kAx/2) 

(5.69) 

Since Igl ::; 1 under all circumstances, we have here an unconditionally stable 
algorithm! 

Interestingly, the method retains its consistency regarding the limit Ax -t 0 
even if we make the time step At very large. In that case 

(5.70) 

which corresponds neatly to the differential equation a2u/ax2 = 0 describing the 
long time (stationary) behavior of the diffusion equation. 

EXERCISE: Apply the implicit technique to the thermal conduction problem discussed in 
Sects. 5.2.1 and 1.4.2. Consider the efficiency of the procedure as compared to FTCS. 
Relate the problem to the random walk of p. 77. 

5.2.3 Crank-Nicholson Scheme (CN) 

As before, we replace au/at by Anu/ At == (un+l - un)/ At. However, noting that 
this approximation is in fact centered at tn+l/2' we introduce the same kind of time 
centering on the right-hand side of 5.56. Taking the mean of oJun (= FTCS) and 
OJUn+l (= implicit scheme) we write 

1 [n+l n] _ >. [( n+l 2 n+l + n+l) + (n 2 n + n )] (5 71) At uj - uj - 2(Ax)2 Uj+l - uj Uj_l Uj+l - uj Uj_l . 

(see Fig. 5.14). A closer look reveals that this Crank-Nicholson formula is now of 
second order in At [PRESS 86]. Defining a == >'At/2(Ax)2 (note the factor 1/2 as 
compared to earlier definitions!) we may write the CN algorithm as 

-auj~; + (1 + 2a)uj+l - auj:; = auj_l + (1 - 2a)uj + auj+l (5.72) 

In matrix notation this is 
(5.73) 



142 Chapter 5 Partial differential equations 

with 

1 0 0 0 1 0 0 0 
-a 1+2a -a 0 0 a 1-2a a 0 0 

A= 0 0 
B= 

0 0 

-a 1+2a -a a 1-2a a 
0 0 1 0 0 1 

Thus we have to solve, at each time step, a tridiagonal system of equations. The 
recursion technique of Section 2.1.4 does the trick fast enough. 

Whenever the transport coefficient ;\ depends - either explicitly or implicitly 
via u - on position, the eN algorithm may be adapted accordingly [PRESS 86]. 

The amplification factor is 

(k) 1 - 2a sin2(k~xI2) 
g = 2 <1, 

1 + 2a sin (k~xI2) -
(5.74) 

which makes the eN method unconditionally stable. 
For large time steps the eN algorithm is not quite as well-behaved as the first

order implicit scheme. ~t -t 00 results in 

(5.75) 

yielding 
lim Ig(k)1 = 1 

~t-+oo 
(5.76) 

In this limit the method is only marginally stable - errors do not grow, but do not 
decay either. 

EXAMPLE: The time-dependent Schroedinger equation, 

8u 'H 8t = -l U, 
82 

with H == 8x2 + U(x) (5.77) 

when rewritten a la Crank-Nicholson, reads 

L[uj+1 - uj] = -~[(Hu)j+1 + (Hu)j] 

i [c5JUj +1 n+l c5Juj n] 
-'2 (~x)2 + UjUj + (~x)2 + UjUj (5.78) 

With a == ~t/2(~x)2 and bj == U(xj)~t/2 this leads to 

(ia)uj~l + (1 - 2ia + ibj)uj+l + (ia)ujtl = 

= (-ia)uj_l + (1 + 2ia - ibj)uj + (-ia)uj+l (5.79) 

Again, we have a tridiagonal system which may be inverted very efficiently by the recur
sion method of Sec. 2.1.4. 



5.3 Boundary value problems: elliptic PDE 143 

o 

• 
Figure 5.15: Dufort-Frankel technique for the parabolic-diffusive equation 

5.2.4 Dufort-Frankel Scheme (DF) 

The DF scheme is similar to the leapfrog algorithm - which, however, would be 
unstable when applied without precaution to the diffusive equation. We write 

1 [n+1 n-I] >. [n (n+1 + n-I) + n ] 2.6.t uj - uj = (.6.x)2 uj+1 - uj uj Uj_1 (5.80) 

Note that instead of the term -2uj we have introduced the combination _(uj+1 + 
Ur;-I) (see Fig. 5.15). Using a == 2>..6.tj(.6.X)2 this may be written as 

(5.81) 

The DF algorithm is of second order in .6.t, just as the CN scheme. It has the 
advantage over CN that 5.81 is an explicit expression for uj+l - albeit with the 
necessity to store the past values uj-I. 

The amplification factor is 

9 = _1_ [a cos k.6.x ± \h - a2 sin2 k.6.x ] 
l+a 

(5.82) 

Considering in turn the cases a2 sin2 k.6.x ~ 1 and . .. < 1 we find that Igl2 ~ 1 
always; the method is unconditionally stable. 

5.3 Boundary Value Problems: Elliptic DE 

The standard problem we will consider to demonstrate the various methods for 
elliptic equations is the two-dimensional potential equation, 

fPu 82u 
8x2 + 8y2 = -p(x, y) (5.83) 



144 Chapter 5 Partial differential equations 

For finite charge densities p(x, y) this is Poisson's equation; in charge-free space 
p == 0 it is called Laplace's equation. 

Written in terms of finite differences (assuming D.y = D.x == D.l) equ. 5.83 
reads 

(5.84) 

or 

2u- -+ U--1 - + u- -+1 - 2u- -+ u- --1] = -p- -1..1 I,) I,) .,) I,) I,) (5.85) 

(i = 1,2, ... N; j = 1,2, ... M) 

In enumerating the lattice points one may apply the rules familiar from matrices, 
such that the coordinate y and the index j increase to the right, and x and i 
downwards. 

We now construct a vector v of length N.M by linking together the rows of 
the matrix {UiJ}: 

Vr = UiJ, with r = (i - l)M + j (5.86) 

Conversely, 

i = int (r 1~/) + 1 and j = [(r - 1) mod M] + 1 (5.87) 

where int( ... ) denotes the next smaller integer. Equation 5.85 then transforms to 

(5.88) 

which may be written 
A·v=b (5.89) 

with the vector b == -(D.l)2{P1,'" PN_M V and the pentadiagonal matrix 

-4 1 1 

1 -4 1 

A== (5.90) 

1 

What about the boundaries of the physical system we are considering? The equat
ions 5.85, which lead to the specific form 5.90 for the matrix A, apply in this form 
only to the interior region of the lattice. At the rim of the grid - and thus in certain 
parts of A - the most fundamental (Dirichlet) boundary conditions will provide 
us with obligatory values for the solution u?,j. (In this context the superscript 0 
denotes a required value, and not the time t = 0). Assume that the grid consists 
of only 5 x 5 points on a square lattice, with Ui,j = u?J being given along the sides 



5.3 Boundary value problems: elliptic PDE 145 

.. J 

! 
0 0 0 0 0 

(1,1) 

0 • ~ 0 

1 0 0 

0 • 0 

0 0 0 0 0 
(5,5) 

Figure 5.16: Potential equation on a 5 x 5 lattice: at the points 0 the values of 
the potential u(x, y) are given (Dirichlet boundary conditions) 

of the square (see Fig. 5.16). This gives us a number of trivial equations of the 
type VI = u~ 1 for the points on the rim. At the interior points equ. 5.89 holds: , 

(5.91) 

etc. More specifically, the matrix A has the form given in Fig. 5.17. The vector 
v consists of the nine elements V7, Vs, V9, VI2, VI3, V14, Vl7, VIS, VI9, and the vector b 
has components 

b7 = _(~l)2p7 - u~ 2 - ug 1 , , 
bs = _(~l)2pS - U~,3 

b9 = -(~l?P9 - U~,4 - Ug,5 

bI2 = _(~l)2pI2 - U~,I 

bI3 = _(~l)2pI3 

bI4 = _(~l)2pI4 - U~,5 

bl7 = _(~l)2pl7 - U~,I - Ug,2 

bIS = _(~l)2pIS - ug,3 

bI9 = - (~l)2 PI9 - U~,5 - Ug,4 

So far we have considered boundary conditions of the Dirichlet type. If we are 
dealing with Neumann boundary conditions of the form 

(5.92) 



146 Chapter 5 Partial differential equations 

-4 1 1 
1 -4 1 1 

1 -4 1 

1 -4 1 1 
1 1 -4 1 1 

1 1 -4 1 

1 -4 1 
1 1 -4 1 

1 1 -4 

Figure 5.17: Treatment of Dirichlet-type boundary conditions Ui,j = u?,j in the 
case of a 5 x 5 lattice 

a linear approximation for u{x, y) is used to link the boundary values of Ui,j to the 
adjacent interior points. In the context of the previous example, the derivatives 
are now given along the contour of the square. One proceeds as follows: 

• The given grid is enlarged by a surrounding layer of additional lattice points. 
For the function U at these external points, UO,I, UO,2, .. • , one writes 

UO,1 = U2 ,1 - 2al,1 tll 

UO,2 U2,2 - 2al,2 tll 

• At the original boundary points, such as (I, 1), we have 

U2,1 - 2UI ,1 + UO,1 + UI,2 - 2UI,1 + UI,O = -PI,1 {tll)2 

Elimination of the external values yields 

(5.93) 

Thus the form of the discretized Poisson equation at the boundary points is the 
same as in the interior region (equ. 5.85) , except that on the right-hand side of 
5.94 we now have a modified, "effective" charge density. Again introducing the 
vector v and the system matrix A, we find that the upper left-hand corner of A 
looks as shown in Fig. 5.18. 



5.3 Boundary value problems: elliptic PDE 147 

-4 2 2 
1 -4 1 2 

1 -4 1 2 
1 -4 1 2 

2 -4 2 

1 -4 2 2 
1 1 -4 1 2 

Figure 5.18: Treatment of Neumann-type boundary conditions in the case of a 
5 x 5 lattice 

5.3.1 Relaxation and Multigrid Techniques 

This is the big moment for the relaxation methods of Section 2.2. Having trans
formed the given physical equation into the set of linear equations 5.89, we can 
apply anyone of those iterative techniques to solve for the vector v. In particular, 
the Jacobi scheme reads 

(5.95) 

Since the matrix A is sparsely populated, the Gauss-Seidel and the SOR methods 
are just as easy to implement. 

However, relaxation methods for the potential and similar equations are lame 
on one leg. They perform fast for certain types of iterated solution vectors v n but 
slow for others. Multigrid techniques go a long way to mend this shortcoming. 

Let us denote by e == v - vn the residual error after the n-th relaxation step. 
As the iteration proceeds, this vector should approach zero. In Chapter 2 we 
have already discussed the rate of convergence in very general terms, based solely 
on the properties of the system matrix A. We learned that the estimated rate 
of convergence is linked to the largest (by absolute value) eigenvalue of A - or 
rather, of the iteration matrix constructed from A. The farther this spectral radius 
deviates from zero, the more slowly will the relaxation converge. 

Inspecting the Jacobi and Gauss-Seidel iteration matrices pertaining to the 
specific system matrix 5.90, we find that their spectral radii are close to 1, which 
spells bad performance. However, close scrutiny shows that this is just a worst
case estimate. Convergence depends also on the properties of the iterated vector 
e, and by applying multigrid schemes we may manipulate these properties so as to 
improve convergence by orders of magnitude. 

For the moment, let us denote the total number of grid points by K == N· Mj 
then the iterated vectors vn and e are both of dimension K. Like any table of 
scalars, e == (eo, . . . eK-l) may be written as a sum of Fourier components, or 



148 

modes, 

where 

Chapter 5 Partial differential equations 

K-l 

ej = ~ ~ Ek exp-21rij k/K 

k=O 

K-l 

Ek = ~ ej exp21rijk/K 

j=O 

(5.96) 

(5.97) 

(see Appendix B). Further analysis shows that relaxation will be faster for the 
"oscillatory" high wave number modes of e than for the "smooth" , low wave number 
components. In other words, embarking on a relaxation procedure with a certain 
starting approximation vO we will find that any spike- or ripple-like deviations from 
the exact solution will die off much faster than the worst case estimate would make 
us expect, while the smooth components of the error will indeed linger on for many 
further iterations. 

This is where multigrid methods come in. The idea is that "smoothness" is 
really just a matter of scale. Rewriting the original problem such that the lattice 
width is now double the old one, each wave number is automatically increased 
by a factor of two; this may be verified by replacing K by K/2 in 5.97. The 
respective modes are therefore processed more efficiently on the coarser grid than 
in the original representation. The trick, then, is to switch back and forth between 
representations of the physical property v on grids of different spacings. First the 
oscillatory modes are taken care of by several iterations on the fine grid, until only 
the smooth modes remain. Then the grid spacing is doubled - by considering only 
every other lattice point, or by a more refined recipe - and the remaining long
wavelength modes are relaxed through a number of steps. A cascade of several such 
coarsening stages may be passed before the fine grid is gradually reconstructed 
using some interpolation scheme. 

There is a rich literature on various implementations of the multigrid technique. 
A short introductory overview is [BRIGGS 94); more technical details may be found 
in [WESSELING 92). 

5.3.2 ADI Method for the Potential Equation 

We are now ready to keep the promise made in Section 2.2.4, to demonstrate 
the use of the particularly effective alternating direction implicit technique in the 
context of the potential equation. 

In addition to the previously defined vector v we construct another long vector 
w by linking together the columns of the matrix {Ui,j}: 

Ws = Ui,j, with s = (j - l)N + i (5.98) 

and conversely 

j = int ( s ~ 1) + 1; i = [( s - 1) mod N) + 1 (5.99) 



5.3 Boundary value problems: elliptic PDE 149 

j (1 ••• M) 

• • • 
U._I,J= W._I 

i (1 ... N) • • • 
U -v .,J-1 ,-I U.,J= v,= w. U.,J+F V,+I 

• • • 
U.+I,J= W.+I 

Figure 5.19: AD! method 

The vectors y and w have equal status. They are related to each other by the 
reordering transformation 

w=u·y (5.100) 

where U is a sparse matrix consisting solely of elements 0 and 1. 
With this the discretized potential equation 5.85 may be written as 

(5.101) 

or 
Al . Y + A2 . w = b (5.102) 

The matrix Al now acts exclusively on the "rows" of the Ui,j lattice, while A2 
effects the "columns" only (see Fig. 5.19). The advantage of equ. 5.102 over 
5.89 is that the matrices Al and A2 are tridiagonal, and not pentadiagonal as the 
matrix A. They may therefore be treated by the fast recursion method of Section 
2.1.4. 

The ADI method, then, consists in the iteration of the following double step: 

ADI method: 

(AI + wI) . yn+l/2 b - (A2 . w n - Wyn) 

wn+l/2 = U. yn+l/2 

(A2 + wI) . wn+l b - (AI' yn+l/2 - wwn+l/2) 

(5.103) 

(5.104) 

(5.105) 



150 Chapter 5 Partial differential equations 

Here, the optimal value of the relaxation parameter is given by 

w = VAIA2, (5.106) 

where Al and A2 are the smallest and largest eigenvalue, respectively, of the matrix 
A. In the specific case of the potential equation, assuming a lattice with M = N, 
wehavew ~ 1r/N. 

EXERCISE: Apply the AD! method to the Laplace problem with M = N = 5. 

5.3.3 Fourier Transform Method (FT) 

We consider once more the discretized Poisson equation on a M x N lattice. This 
time it is more convenient to enumerate the grid points starting with index 0, 
i.e. according to Xk (k = 0,1, ... M - 1) and Yl (I = 0,1, ... N - 1) . If the 
given boundary conditions are compatible with a periodic spatial continuation of 
the basic pattern, meaning that UO,1 = UM,1 and Uk,O = Uk,N, we may employ the 
Fourier series representation (see Appendix B) 

M-l N-l 

U = _1_ ""' ""' U e-21r:ikm/Me-21r:inl/N 
k,l MN~~ m,n 

m=O n=O 

(5.107) 

with 
M-l N-l 

U = ""' ""' U e 21r:ikm/Me21r:inl/N 
m,n ~~ k,l (5.108) 

k=O 1=0 

A similar expansion is used for the charge density Pk,l: 

(5.109) 

Inserting these expressions in the equation 

(5.110) 

we find 
U _ - Rm,n (D.I)2 

m,n - 2[cos 21rm/M + cos 21rn/N - 2] 
(5.111) 

which may be used in 5.107 to evaluate the solution function Uk,l' The FT method 
therefore consists of the steps listed in Figure 5.20. Such a method is competitive 
only if the numerical Fourier transformation may be performed at a moderate 
expense in computing time. But this is just what the modern fast Fourier transform 
techniques (FFT; see Appendix B) are offering. To transform N given table values 



5.3 Boundary value problems: elliptic PDE 151 

FT method for periodic boundary conditions: 

• Determine Rm,n from 

(5.112) 

• Compute Um,n according to 5.111 

• Insert Um,n in 5.107 to get Uk,l 

Figure 5.20: Fourier transform method 

they need no more than about N In N (instead of N 2 ) operations, and are therefore 
essential for the considerable success of the FT method. 

Boundary conditions other than periodic demand different harmonic expans
ions. For instance, if the potential values at the boundaries are zero, so that Uk,l = ° 
for k = 0, k = M, 1 = ° and 1 = N (special, or homogeneous Dirichlet conditions), 
it is better to use the sine transform of U and p, defined by 

2 2 ~ ~ s . 7rkm . 7rln 
= M N L..J L..JUm,nsmMsm N 

m=1 n=1 

(5.113) 

M-l N-l 
us '" '" . 7r km . 7rnl 

m,n = L..J L..J Uk,l sm M sm N 
k=1 1=1 

(5.114) 

The function U is then automatically zero at the boundaries. Figure 5.21 gives 
details of the sine transform procedure. 

It turns out that this method may easily be modified so as to cover the case of 
more general (inhomogeneous) Dirichlet boundary conditions. For instance, let U 

be given along the lower side of the lattice: UM,I = u1"I' For the penultimate row 
M - 1 we write 

u1,,1 - 2UM-l,1 + UM-2,1 + UM-l,l+l - 2UM-l,1 + UM-l,I-1 = _(Lll)2pM_1,1 (5.117) 

Subtracting u1, I on both sides, we find an equation that is identical to the last of 
equs. 5.110 for'special Dirichlet conditions UM,I = 0, except that the right-hand 
hand side now contains an "effective charge density": ... = -(Lll)2pM_l,1 - u1"I' 
Thus we may apply the sine transform method again, using modified charge terms 
at the boundaries. 

Special Neumann boundary conditions have the form 

( ~u) = (~u) = 0 at the lattice boundaries 
uX k,l UY k,l 

(5.118) 



152 Chapter 5 Partial differential equations 

FT method for homogeneous Dirichlet boundary conditions (u = 0 
at the sides): 

• Determine R:",n from 

M-1 N-1 

R s '"" '"" . 1rkm . 1rln 
m,n = ~ ~Pk,ISmMsm N 

k==l 1==1 

• Compute U:",n according to 

-RS (lll)2 Us = m,n 

m,n 2[cos 7rm/ M + cos 7rn/ N - 2) 

• Insert U:",n in 5.113 to get Uk,1 

Figure 5.21: FT Method using sine transforms 

They are most naturally accounted for by a cosine series, 

U;:",n = 

M-1 N-1 
1 c 2 2 '"" '"" c 7rkm 1rln 2Uo,0+ M N ~ ~Um,ncosMcos N 

m==l n==l 

M-1 N-1 7rkm 7rnl L LUk,1 cos MCOS N 
k==O 1==0 

For details of the cosine transform method see Figure 5.22. 

(5.115) 

(5.116) 

(5.119) 

(5.120) 

General (inhomogeneous) Neumann boundary conditions of the form 

( ~u) = i3k,1 at the lattice boundaries 
Y k,l 

(5.124) 

may again be reduced to special Neumann conditions by the introduction of ef
fective charge densities. Writing the last line of the discretized potential equation 
as 

UM+l,1 - 2UM,1 + UM-1,1 + UM,I+l - 2UM,1 + UM,I-l = _(1ll)2PM,1 (5.125) 

and requiring that 

(au) - -al ax MI-, 
(5.126) 

we approximate the potential on an "outer" line of grid points according to 

(5.127) 



5.3 Boundary value problems: elliptic PDE 153 

FT method for homogeneous Neumann boundary conditions: 

• Determine R':n n from , 

M-l N-l 

C '" '" 7rkm 7rln 
Rm,n = ~ ~ Pk,l cos M cos N 

k=O 1=0 

(5.121) 

• Compute U:;",n according to 

-RC (6.l)2 UC = m,n 
m,n 2[cos 7rmj M + cos 7rnj N - 2] 

(5.122) 

• Insert U:;",n in 

M-I N-I 
1 C 2 2 '" '" C 7rkm 7rln 

Uk,l = 2Uo,0 + M N ~ ~ Um,n cos M cos N 
m=l n=l 

(5.123) 

to find Uk,l 

Figure 5.22: FT method using the cosine transform 

Subtracting this from 5.125 we find 

UM-I,l - 2UM,1 + UM-I,l + UM,I+l - 2UM,1 + UM,I-1 = _(6.l)2pM,1 - 2al6.l (5.128) 

This, however, is identical to the M-th line in the case of special Neumann con
ditions al = 0, except for a modified charge density appearing on the right-hand 
side. Thus we may again employ the cosine transformation method, using effective 
charge densities. 

5.3.4 Cyclic Reduction (CR) 

We consider once more the discretized potential equation, 

Uk+l,l - 2Uk,1 + Uk-l,l + Uk,l+l - 2Uk,1 + Uk,l-l = -Pk,I(6.1)2 (5.129) 

The grid points are enumerated in the same way as for the FT method: 0 to N - 1 
and M - 1. For the number of columns in the lattice we choose an integer power 
of 2: M = 2P• Defining the column vectors 

(5.130) 

we may write 5.129 as 

(5.131) 



154 

where 

( ~2 1 

T -2 

B 

Chapter 5 

0 
1 ) e 

Partial differential equations 

o 
2 

21 

o 
o ) 

Note that Band T have the appealing property of being tridiagonal. Next we 
form linear combinations of every three successive equations 5.131, according to 
the pattern [k - 1]- T· [k] + [k + 1], to find 

with 

T(l) 21 - T2 

Pkl) = Pk-l - T· Pk + Pk+l 

(5.132) 

(5.133) 

(5.134) 

Evidently, the "reduced" equation 5.132 has the same form as 5.131, except that 
only every other vector Uk appears in it. We iterate this process of reduction until 
we arrive at 

(5.135) 

But the vectors Uo and UM are none other than the given boundary values UO,I and 
UM,/ (l = 0,1, ... N - 1). Furthermore, the matrix T(p) is known since it arose 
from the p-fold iteration of the rule 5.133. Of course, T(p) is not tridiagonal any 
more; however, it may at least be represented by a 2P-fold product of tridiagonal 
matrices [HOCKNEY 81]: 

T(p) = - II [T - ,B/I] (5.136) 
/=1 

with 

[2(l- 1)11"] 
,BI = 2 cos 2P+l (5.137) 

Thus it is possible to solve 5.135 for the vector UM/2 by inverting 2P tridiagonal 
systems of equations. 

Now we retrace our steps: the vectors UM/4 and U3M/4 follow from 

Uo + T(p-l) . UM/4 + UM/2 = -p<:t7;) (t::..l) 2 

UM/2 + T(p-l) . U3M/4 + UM -~-;)/4(t::..l)2 

and so forth. 
Hockney has shown that a combination of the CR technique and the Fourier 

transform method is superior to most other techniques for solving the potential 
equation [HOCKNEY 70]. In his "FACR" method (for Fourier analysis and cyclic 



5.3 Boundary value problems: elliptic PDE 155 

reduction) one uses in place of the column vector Uk == {Uk,l; 1 = 0, ... N - 1 V its 
N Fourier components, 

N-l 

Uk(n) == L uk,le21rinl/N; (n = 0, ... N - 1) (5.138) 
1=0 

Inserting the Fourier series for Uk,l in the potential equation one obtains for the 
n -th Fourier component the equation 

(5.139) 

As before, a linear combination of every 3 successive equations may be formed, 
yielding 

(5.140) 

Formal iteration eventually leads to 

(5.141) 

where b(p) and P<:)/2 are given by the iteration. Backwards iteration then yields the 
desired quantities Uk(n) in succession; inserting them in the Fourier series for Uk,l 
one obtains the solution. 

The performance of this method is once again linked to the efficiency of the 
Fourier transform algorithm. It is therefore absolutely necessary to use the FFT 
(fast Fourier transform) algorithm explained in Appendix B. 



Part III 

Anchors Aweigh 



159 

It is now the time to describe a few applications of the methods developed in 
Parts I and II. I have tried hard, and failed, to come up with some reasonable 
categorization of applied computational physics. It seems that computation has 
transformed all parts of physics, and it is probably best to hold on to the usual 
partitioning of physics into its various branches. Clearly, we cannot cover here 
all those branches, neatly tracking every possible application of computational 
techniques. All we can do is discuss a few well-chosen exemplary cases, trying to 
convey the spirit of the computational approach. 

Unabashedly, then, I will start off with my own field of interest, viz. statistical
mechanical simulation. The Monte Carlo technique explained at the beginning of 
Chapter 6 makes extensive use of the stochastic methods of Chapter 3. In contrast, 
the "molecular dynamics" method is based on the treatment of classical dynamical 
equations it la Newton, and the algorithms of Chapter 4 will accordingly play an 
important role. 

Numerical quantum mechanics is a large-scale business, and the large-scale 
businessmen are mostly chemists, not physicists. However, in addition to the 
standard program packages of quantum chemistry that, with increasing computer 
power, are being applied to ever more complex molecules, there are a number 
of interesting alternative methods tailored to specific problems. Some of these 
approaches date back to the early days of computer-based stochastics [KALOS 74], 
while others are relatively new [CAR 85]. Chapter 7 is devoted to an overview of 
these techniques. 

The space-time behavior of flowing continua is described by partial differential 
equations. Some widely used methods of computational hydrodynamics, obtained 
by combining the calculus of differences with linear algebra, are explained in Chap
ter 8. 

Another powerful approach to hydrodynamic calculations is based on the con
cept of a lattice gas. This discretized representation of matter may be treated 
either in the spirit of cellular automata propagation or using the newer technique 
of Lattice Boltzmann calculations. Both of these approaches are outlined in Section 
8.3. 

Finally, the "Direct Simulation Monte Carlo" technique will be described in 
Section 8.4. It is a widely used method for simulating flow in rarefied gases, be it 
in aircraft and space engineering or in earthbound gas flow technology. 



Chapter 6 

Simulation and Statistical 
Mechanics 

Ludwig Boltzmann surely would have approved of 
simulation 

"Why is the water wet?" says a nursery rhyme in my country. And the grown-up 
physicist is still striving to explain the macroscopically observable properties of 
matter in terms of the microscopic kinetics and dynamics of molecules. Since the 
simultaneous motion of a large number of interacting particles is not tractable by 
analytical means, statistical mechanics has always been obliged to introduce addi
tional, simplifying assumptions whose effect upon the results is hard to estimate. 

What makes the kinetic theory of matter so difficult is not the particularly 
large number of molecules contained in a chunk or drop of a substance. In fact, 
the properties of a micro drop of some hundred molecules will differ from those of 
Ii. macroscopic sample by no more than a few percent. The catch is that we cannot 
solve, in closed form, the coupled equations of motion of even three particles only, 
let alone a hundred or more. 

However, as soon as computers were available to take over the drudgery of 

161 

F. J. Vesely, Computational Physics
© Kluwer Academic / Plenum Publishers, New York 2001



162 Chapter 6 Simulation and statistical mechanics 

repetitive calculations, the well-preserved numerical algorithms were brushed up 
and applied to various manybody problems. 

Incidentally, the term computer originally meant just what it says - one who 
computes. The earliest computers to actually bear this name were woman em
ployees of astronomical institutes whose task was the fast and reliable execution 
of celestial-mechanical calculations [LANKFORD 90].1 And the older term "calcu
lator" may be equated to "applied mathematician". It is worth remembering that 
none less than Johannes Kepler once held the position of calculator ("Rechenmeis
ter") . 

Still, it was not before the advent of electronic computers that statistical
mechanical problems could be approached earnestly. In the early years powerful 
machines were available only at the American "National Laboratories". Thus the 
National Lab at Los Alamos came to be the cradle of statistical-mechanical si
mulation. Nicholas Metropolis, the Rosenbluths, and Edward Teller employed a 
stochastic procedure to sample various configurations of 32 hard disks. Like that 
other stochastic method they had developed to treat neutron transport through 
matter, they called their technique "Monte Carlo calculation" [METROPOLIS 53). 

There existed a prejudice at that time that in a fluid of hard spheres without 
attractive pair forces there could not be a solid-liquid phase transition. Thus it 
came as quite a surprise when, in the following years, extensive simulations of the 
hard disk and hard sphere systems proved the existence of a melting transition 
[HOOVER 68). 

Only a few years later the molecular dynamics method was developed at Law
rence Livermore Lab. Berni Alder found out that it was feasible to reproduce 
by computer simulation the "actual" dynamics going on in a dense fluid of hard 
spheres. In a classic paper published in 1957 he formulated the main ingredients 
of a workable simulation procedure [ALDER 57). In the following years he studied 
in detail the structural and dynamical properties of the hard sphere fluid. In the 
course of these investigations he discovered a very profound and quite unexpected 
effect. At low densities - roughly corresponding to the critical density of a real fluid 
- there appeared an anomaly of molecule dynamics which Alder and other authors 
could later explain as the effect of microscopic vortices. These thermally excited 
"Alder vortices", which initially comprise no more than a few dozens of particles, 
have the capacity to store part of the momentum a thermally agitated molecule 
may possess at some given time, and to gradually pay back the stored momentum 
to that molecule. The fluid molecules will thus retain some fraction of their original 

1 An amusing example of the early use of "parallel computers" is the development of the first 
photographic combination lenses. For this project the Viennese mathematician Petzval, whom 
we have encountered before (see page 87), had several artillery men of the Imperial Austro
Hungarian army (of ranks "Bombardier" and "Oberfeuerwerker") be put under his command. In 
the course of the year 1840 these efficient - and, well, sure-fire - calculators traced the paths of 
light rays through various lens combinations until an optimum with respect to lens power and 
aberrations had been found. In the history of photography the "Petzvallens" has a special place 
as the first high-performance objective for portrait work. 



163 

velocity for much longer than may be expected according to simple kinetic theories. 
This may be illustrated in terms of the velocity autocorrelation junction, which at 
these densities displays a pronounced "long time tail". A consequence of this is 
that the mean squared displacement, and consequently the diffusion constant, is 
far higher than expected. 

With Hoover's proof of the existence of a melting transition in hard sphere fluids 
and Alder's discovery of the long time tail, computer simulation rose from its role 
as a "handmaiden of theory" to an autonomous field of research. In the sixties 
Aneesur Rahman and Loup Verlet proceeded to perform the first simulations of a 
Lennard-Jones fluid [RAHMAN 64, VERLET 67]. The interaction potential 

(6.1) 

(with substance-specific parameters f and a) is richer of detail than the interaction 
between hard spheres; in fact, it describes rather accurately the forces acting be
tween the atoms in a noble gas. Thus it was possible for the first time to compare 
the results of simulations to experiments on real substances. 

In the years that followed, liquid state physics advanced in great leaps. The mi
croscopic structure and dynamics as well as the thermodynamics and the transport 
properties of simple fluids were understood ever more clearly. The "Alder vortex" 
was rediscovered in the Lennard-Jones fluid, again causing an enhanced diffusion 
coefficient as compared to theoretical predictions [LEVESQUE 69]. The phase tran
sitions solid-liquid [HOOVER 68] and liquid-gas [HANSEN 69] were located, and 
more recently one could even resolve the long-standing paradox of irreversibility 
(which apparently should not occur in a classical system obeying reversible equat
ions of motion) [HOLIAN 87, POSCH 90]. 

In 1971 Aneesur Rahman and Frank H. Stillinger undertook to simulate so 
complex a liquid as water [RAHMAN 71]. Since then many different model poten
tials for water have been proposed and used in simulations [NEUMANN 86]. Most 
of the properties of water and aequeous solutions are by now well understood, 
while others - mostly those connected to the H-bond structure and to quantum 
effects -- remain fuzzy. With increasing power of the computing machines, but 
also with increasing refinement of the algorithms, ever more complex molecules 
became accessible to simulation. In these days program packages are offered that 
will at the push of a button reproduce the conformational dynamics of proteins 
made up of several hundred atomic groups [VAN GUNSTEREN 84, BROOKS 83, 
MACKERRELL 98, SMITH 96, SMITH WWW]. Also, stunning numbers of parti
cles may be followed by simulation. When even the flow patterns in mesoscopic 
vortices are now computed by molecular simulation [RAPAPORT 88], the borderline 
towards hydrodynamic phenomena in the strict sense has been crossed. 

Various methodological paths have been tried out with the objective of using 
the available computing power most efficiently. Apart from the molecular dynam
ics method, the technique of "stochastic dynamics" is often employed. In many 
instances one is interested only in the motion of a minority of "primary" particles 



164 Chapter 6 Simulation and statistical mechanics 

within a large system. An important example is a dilute solution of ions, in which 
the solvent molecules may be regarded as "extras" whose role is just to provide 
frictional hindrance as well as thermal agitation to the ions. This type of ionic 
motion in a viscous, thermally fluctuating medium is reasonably well described by 
a generalized Langevin equation. One may therefore simulate the ion dynamics by 
solving this stochastic equation of motion, without having to follow the motion of 
the far too many solvent particles (see Section 6.6). 

An extensive discussion of the the various statistical-mechanical simulation met
hods and their application would be outside the scope of this book. Suffice it to 
cite a few out of the many textbooks on this subject: [VESELY 78], in German, 
is by now somewhat outdated with regard to applications but still valid as an in
troduction to the basic simulation procedures. [ALLEN 90], in English, is a more 
recent, excellent methodological overview. Up-to-date reviews of applications of 
the MC method appear frequently and may be found easily by a web or library 
search. 

In the following sections a coherent sequence of" projects" will serve to provide 
you with a working knowledge of the two basic simulation methods, Monte Carlo 
and molecular dynamics. Small, re-usable code units will be developed that may 
be assembled into complete simulation programs of both kinds. 

6.1 Model Systems of Statistical Mechanics 

6.1.1 A Nutshellfull of Fluids and Solids 

Simulation requires a model in which the microscopic constituents of a piece of 
matter are correctly represented. A fluid, for one, may be regarded as a collection 
of atoms or molecules which, if only they are massive enough, will obey the laws 
of classical mechanics. These particles may then be treated as mass points or rigid 
bodies interacting with each other by pair forces, and possibly torques, derived 
from certain model potentials. A list of the most popular interaction potentials is 
presented in tables 6.1 and 6.2. 

A microscopic snapshot of a small subvolume in a simple fluid sample, contain
ing N point particles, is uniquely described by the N positional vectors. If the 
motion of the particles - in the context of a molecular dynamics simulation - is to 
be followed, the momentary velocities of all particles must be given as well. 

If the position vectors of the N atoms are combined into a vector r e == {rl ... 
rN}, then the set of all possible such vectors spans the 3N-dimensional "config
uration space" re. Given some property a(re) of the N-body system, depending 
on the positions of all particles (i.e. of the microstate r e), the thermodynamic 
average of the quantity a is given by 

(6.2) 

where p(r e) is the probability density at the configuration space point r c· 



6.1 Model systems 165 

Hard spheres u(r) =00 ifr<ro First approximation in 
=0 if r ~ ro many applications 

[cr12 cr6
] 

Noble gas atoms; near-
Lennard-Jones u(r)=4f -;; --;; ly spherical molecules 

u(r) = Noble gas atoms; near-
Isotropic Kihara 

4 f [ (~ = ~ r12 
_ (~ = ~) -6] 

ly spherical molecules 
(a = 0.05 - 0.1 a) 

Intramolecular bonds, 
Harmonic u(r) = A (r - ro)2 if kT is small compared 

to the bond energy 

u(r) = Intramolecular bonds, 
Morse A [e- 2b(r-ro) _ 2e-b(r-ro)] if kT is comparable to 

the bond energy 

Born-Huggins- u(r) = Ionic melts; qi are the 
Mayer ~+Be-ar _ C _ D ion charges 

rrfor ~ ~ 

Table 6.1: Isotropic model potentials in statistical-mechanical simulation: u = u(r) 



166 Chapter 6 Simulation and statistical mechanics 

Hard dumbbells, 
'1.£(12) = 00 if overlap First approximation to 

hard spherocylin-
ders, etc. =0 otherwise rigid molecules 

'1.£(12) = sum of isotropic pair 

Interaction site energies u(ri(1),j(2)), where sev-

models, rigid 
eral interaction sites i and j are Rigid molecules 
in fixed positions on molecules 
1 and 2, respectively 

Interaction site '1.£(12) = sum of isotropic pair 
models with energies, both intra- and inter- Non-rigid molecules 
non-rigid bonds molecular 

'1.£(12) = sum of isotropic pair 
energies, exclusively between 

Flexible molecules, from 
Kramers-type sites on different molecules; cer-

tain intramolecular distances 
ethane to biopolymers 

(bonds) and/or angles are fixed 

Stockmayer '1.£(12) = Lennard-Jones + point First approximation to 
dipoles small polar molecules 

'1.£(12) = 
Rigid linear molecules 

Anisotropic Ki- 4f [(~r12 - (~r6] with distributed 
hara Lennard-Jones interac-

where P12 is the shortest dis- tion 
tance between two linear rods 

'1.£(12) = 

4 f(12) [ (r12 - 0'~~2) + 0'0) -12 

_ (r12 - 0'~~2) + 0'0 ) -6] 
Liquid crystal molecules 

Gay-Berne of ellipsoidal shape, with 
smoothly distributed 

where 0'(12) and f(12) de- Lennard-Jones sites 
pend on r12, el, e2 and certain 
substance-specific shape pa-
rameters 

. Table 6.2: Anisotropic model potentials in statistical-mechanical simulation: 

'1.£(12) = u(r12' el, e2) 



6.1 Model systems 167 

It would be all too nice if we could actually compute averages of this form, 
since the macroscopically measurable properties of a substance are indeed equal to 
such averages. For instance, it is easy to show that the internal energy of a piece 
of matter is given by 

1 
U = NkT + 2( L: L: u(rij)) (6.3) 

i #i 

where u(rij) is the potential energy of a pair of particles with pair distance rij' 
Similarly, the pressure is 

p = NkT _ ~(L:L:rij dul ) 
V 6V i #i dr rij 

(6.4) 

The problem with evaluating the expression 6.2 is - apart from the truly high 
dimensionality of the integral - that the probability density p(1' c) is in general 
unknown. We do know that for instance in the canonical ensemble p(1' c) is pro
portional to the Boltzmann factor exp[-E(1'c)jkT], but the normalizing factor Q, 
which according to 

(6.5) 

defines the absolute value of the probability density, is not known. Incidentally, Q 
is called the configurational partition function. 

In a basic model of ferromagnetic solids the atoms are taken to reside at fixed 
positions on the vertices of some appropriate crystal lattice. However, they are 
carrying dipole vectors (spins) with individually varying directions. In the frame
work of the early Ising model the spins may point either up or down, while the 
later Heisenberg model permits all directions. The microscopic configuration l' c of 
such a model system is defined, not by the (trivial) positions, but by the N spins 
on the lattice. 

In a two-dimensional square Ising lattice only the four nearest spins are assumed 
to contribute to the energy of some spin ai (= ±1); in three dimensions the six 
nearest neighbors must be considered. The total energy of the N spins is given by 

A N 4or6 

E = - 2" L: L: aiaj(i) 
i=l j(i)=l 

(6.6) 

(A being a coupling constant). This expression for the energy may be inserted in 
the Boltzmann factor to yield the density in canonical phase space. 

One relevant "observable" a (1' c) whose average may be compared to measure
ments on real ferromagnets is the magnetic polarization 

N 

M == L:ai (6.7) 
i=l 

as a function of temperature. An external magnetic field H may be applied, with 
the additional potential energy being given by EH = -H Ei ai' 



168 Chapter 6 Simulation and statistical mechanics 

6.1.2 Tricks of the Trade 

A few preliminary tasks have to be performed before the actual simulation of 
a disordered fluid or a spin system may begin. First of all, we have to choose a 
suitable set of units in which to express the mechanical relations; the use of meters, 
kilograms and such would imply the clumsy manipulation of very small numbers. 
Next, a reasonable rule must be invented to treat the boundaries of our - necessarily 
quite small - model system. And a suitable initial configuration has to be set up 
from which to start the simulation, and by adjusting density and temperature we 
define a thermodynamic state at which our simulation is to take place. 

Units: 
Meters were not meant to measure molecules. It is wise to choose the units of 
energy, mass, and length such that the values of the mechanical quantities are 
always in a convenient range, i.e. of order 1. For instance, in simulations with 
Lennard-Jones molecules it is best to count energies in multiples of Eo = f and 
lengths in units of Lo = a. The energy of a given pair of particles is then given by 

(6.8) 

where u* == r/f and r* == ria. Here we see an additional advantage of using 
self-consistent or reduced units: the Lennard-Jones parameters never occur in the 
formulae, and we are spared many computationally expensive multiplications along 
the way. Only after finishing the simulation do we transform the results to the usual 
metric units, to compare them to experimental data. 

Mechanics requires three independent units, of which we have mentioned two. 
Choosing the atomic mass mo = lAMU = 1.6606· 10-27 kg as the third, we 
arrive at a closed system of mechanical units. The time, which in macroscopic 
mechanics is one of the basic quantities having a unit of its own, is now measured 
self-consistently in multiples of to = Jmoa2 I f. 

If electrical charges are in the game, the natural unit to be used is, of course, 
the electron charge, qo = 1.602 . 10-19 As. 

The number density in a molecular system is simply P = N IV. This is normally 
a large number, and again we want to reduce its numerical value by scaling it by 
some standard density. For Lennard-Jones systems this standard is Po = II a 3 , and 
the reduced density is thus defined as p* == N a3 IV. In systems of hard spheres of 
diameter do = 2 ro the accepted standard density is Po = V2ld~, and the reduced 
density is thus p* = N dglv V2. 

Temperature is best reduced by To = flk in the case of Lennard-Jones particles. 
For hard spheres there is no "natural" unit of energy. It is then convenient to choose 
Eo = kT which suggests a self-consistent time unit to = Jmod2/kT. 



6.1 Model systems 

(4) o 2 3 4 (0) 

t Itt t ttl f 
Figure 6.1: Periodic boundary conditions on a spin lattice 

Periodic boundary conditions (PBC) and 
nearest image convention (NIC): 

169 

Due to the small size of our model system - typically, 5 - 100 molecular diameters 
- the majority of fluid particles or lattice spins would be situated near some "wall" 
or "boundary", which certainly is not a good representation of the situation inside 
a macroscopic sample. Therefore the authors of the very first Monte Carlo studies 
already employed "periodic boundary conditions", meaning that they surrounded 
the basic cell containing the N particles by periodic images of itself. In the case of 
the very short-ranged spin interaction this means that even the last ("rightmost") 
spin in a lattice row feels the effect of a right neighbor - whose spin value is simply 
taken to be the same as that of the first (leftmost) spin in that row (see Fig. 6.1). 
Similar rules apply at the other boundary lines (or faces) of the grid. 

In the case of the disordered model fluid the periodic boundary conditions are 
defined by the following rule: 

Instead of the x-coordinate Xi of some particle the quantity 

(Xi + 2L) mod L (6.9) 

(with L the side length of the cell) is stored; the same goes for Yi and 
Zi. In this way the number of particles within the basic cell is always 
conserved. A particle leaving the cell by crossing the right boundary is 
automatically replaced by a particle entering from the left, etc. (Adding 
2L before performing the modulo operation only serves to catch any 
runaway particles with Xi < - L.) 

To compute the potential pair energy or the force between two particles i and 
j one augments the periodic boundary conditions by the so-called nearest image 
convention. For example, if the coordinate difference l:l.Xij == Xj - Xi is larger than 
L/2, then the particle j will be disregarded as an interaction partner of i, with 
its left image, having coordinate Xj - L, taking its place. In practice this means 
simply that when calculating u( Tij) or similar we use the quantity l:l.Xij - L in place 
of l:l.xij. An analogous rule holds for l:l.Xij ~ -L/2 and for the other coordinates. 

Incident;llly, it is advantageous to code the conditions llx > L/2 etc. without using 
the if command. Many modern computers offer the possibility of "vectorization", i.e. 
the simultaneous execution of a code command acting on an entire array of variables. 



170 Chapter 6 Simulation and statistical mechanics 

The if command, however, is a hindrance for vectorization. It is therefore recommended 
to use the equivalent code line 

~x = ~x - L . nint ( ~x ) (6.10) 

which may be vectorized. (Here, nint(a) denotes the rounded value of a, i.e. the integer 
nearest to a). 

Starting configuration: 
Setting up an initial configuration for the Ising lattice is simple: draw N spin values 
at random, with equal probabilities for + 1 and -1. For molecules in disordered 
media the matter is not as straightforward. If we were to sample the initial positions 
of the particles at random there would be many particle pairs with unphysically 
small distances. The strong repulsion - e.g. proportional to r- 12 for Lennard
Jones molecules - would give rise to very high initial energies and forces, and thus 
to numerical instabilities. It is therefore customary to initially place the molecules 
onto the vertices of some crystal lattice - face-centered cubic is very popular for 
isotropic interactions - and to have them intermingle in a longish "thermalization 
run" before starting on the simulation proper. Since the population number in 
a cubic cell with face-centered cubic arrangement is 4m3 , with m = 1,2, ... , the 
literature abounds with particle numbers such as N = 32, 108,256,500 etc. 

Adjusting density and temperature: 
Since the number of particles is usually fixed, the way to arrive at a desired density 
is to shrink or expand the volume. This is easy: simply scale all coordinates by a 
suitable factor. 

What about the temperature? In Me simulations temperature is a constant 
parameter, but in molecular dynamics it is a measurable quantity. Kinetic theory 
tells us that 

(6.11) 

where k = 1.3804· 10-23 J/deg is Boltzmann's constant, and (IvI2) is the aver
aged square of the particle velocity. In reduced units, this relation reads T* = 
m*(lv*12)/3. To arrive at a desired temperature we first take the average of Iv*12 
over a number of MD steps and thus determine the actual temperature of the 
simulated system. Then we scale each velocity component of every particle by 

VTdesired/T;ctua/' 
It should be kept in mind that T* is a fluctuating quantity and can therefore 

be adjusted only approximately. 

EXERCISE: To get a feeling for reduced units, consider a pair of Lennard-Jones particles 
with € = 1.6537· 10-21 J and u = 3.405 . 10-10 m - these are the accepted values 
pertaining to Argon. Let the two molecules be situated at a distance of 3.2 . 10-10 m 
from each other, and calculate the potential energy of this arrangement. Now do the same 



6.2 Monte Carlo method 171 

calculation using f and a as units of energy and length, respectively. These parameters 
then vanish from eq. 6.1, and the calculation is done with quantities of order 1. 

Using the above values for the energy and length units together with the atomic mass 
unit, what is the metric value of the self-consistent unit of time? Let one of the par
ticles have a metric speed v = 500 ml s, typical of the thermal velocities of atoms or small 
molecules. What is the value of v in self-consistent units? 

PROJECT MC/MO: As a first reusable module for a simulation program, write a code to 
set up a cubic box inhabited by N = 108 or 32 particles in a face-centered cubic arrange
ment. Use your favourite programming language and make the code flexible enough to 
allow for easy change of volume (i.e. density). Make sure that the lengths are measured 
in units of aLJ. For later reference, let us call this subroutine STARTCONF. 

By scaling all lengths, adjust the volume such that the reduced number density be
comes p. = 0.6. 

PROJECT MO: Augment the subroutine STARTCONF by a procedure that assigns ran
dom velocities to the particles, making sure that the sum total of each velocity component 
is zero. 

PROJECT MC/MO: The second subroutine will serve to compute the total potential 
energy in the system, assuming a Lennard-Jones interaction and applying the nearest 
image convention: 

(6.12) 

Write such a subroutine and call it ENERGY. Use it to compute the energy in the system 
created by STARTCONF. 

6.2 Monte Carlo Method 

In Section 3.3.5 we learned how to compute averages even if the probability density 
is known no better than up to an undetermined normalization factor. In the context 
of statistical mechanics this is a well-known problem: the configurational partition 
function Qc is in most cases unknown. The trick is to generate a Markov chain of, 
say, K configurations {r c (k), k = 1, ... K} such that the relative frequency of a 
configuration in the chain is proportional to the corresponding Boltzmann factor. 
We may then estimate the mean value (a) from 

1 K 

(a) = K La [rc(k)] 
k=l 

(6.13) 



172 Chapter 6 Simulation and statistical mechanics 

A widely used prescription for generating a suitable Markov chain of microstates 
is the biased random walk through configuration space described in Figure 6.2. 
The parameter d should be adjusted empirically in such a way that in step 3 
approximately one out of two attempted steps r~ is accepted. 

Incidentally, the random variate sampled in step 1 need not come from an 
equidistribution; any probability density that is symmetrical about 0, such as a 
Gauss distribution, will serve the purpose. 

Step 3 is the proper core of the Me method. In the case of hard disks or spheres 
it looks slightly different. E(k) and E' may then assume the values 0 and 00 only, 
and the Boltzmann factors are either 1 or o. Figure 6.3 shows the accordingly 
modified part of the Me procedure. 

Still another modification is needed to deal with Ising (or related) systems. The 
appropriate procedure is described in Figure 6.4. 

The basic recipes explained above should be sufficient to guide the reader in 
writing an Ising Me program and do "experiments" with it. 

PROJECT MC (FLUID): Write a subroutine MCSTEP which performs the basic Monte 
Carlo step as described in Fig. 6.2: selecting at random one of the LJ particles that 
were placed on a lattice by STARTCONFIG, displace it slightly and apply the PBCj 
then compute the new potential energy (using NIC!) and check whether the modified 
configuration is accepted or not, given a specific temperature T*j if accepted, the next 
configuration is the modified one, otherwise the old configuration is retained for another 
step. 

Write a main routine to combine the subroutines STARTCONF, ENERGY, and 
MCSTEP into a working MC program. 

Note: The maximum displacement of a particle in the MC trial move is up to you. It 
should be chosen such that about 50% of the trial steps are accepted. 

PROJECT MC (LATTICE): Let N = n.n spins O'i = ±Ij i = 1, ... N be situated on the 
vertices of a two-dimensional square lattice. The interaction energy is defined by 

(6.16) 

where the sum over j involves the 4 nearest neighbors of spin i. Periodic boundary 
conditions are assumed 

• Write a Monte Carlo program to perform a biased random walk through configu
ration space . 

• Determine the mean total moment (M) == (Ei O'i) and its variance as a function 
of the quantity I/kT. Compare your results to literature data [BINDER 87]. 



6.2 Monte Carlo method 173 

Metropolis Monte Carlo: 

Let r c{k) == {rl ... rN} be given; the potential energy of this configuration is 
E{k) == (1/2) L:i L:j u{\rj - ri\). 

1. Generate a "neighboring" configuration r~ by randomly moving one of the 
N particles within a cubic region centered around its present position: 

xj = Xj + d (~ - 0.5) 

and similarly for Yj,Zj. Here, d (= side length of the displacement cube) is 
a parameter to be optimized (see text), and ~ is a random number from an 
equidistribution in (0,1). The number j of the particle to be moved may 
either be drawn among the N candidates, or may run cyclically through the 
set of particle indices. 

2. Determine the modified total energy E'; since displacing particle j affects 
only N - 1 of the N (N - 1) /2 pair distances in the system, it is not necessary 
to recalculate the entire double sum to get E'. 

3. If E' $ E{k), we accept r~ as the next element of the Markov chain: 

E'$E{k): ~ rc{k+1)=r~; go to (I) 

If E' > E{k), compare the quotient of the two thermodynamic probabilities, 

q == e-[E' - E{k)J/kT 

to a random number ~ E (0,1): 

E' > E{k): 

~ < q: ~ rc{k+1)=r~; go to (I) 

~ > q: ~ rc{k + 1) = rc{k); go to (I) 

(This is the so-called "asymmetric rule"; see also Sec. 3.3.5.) 

Figure 6.2: Statistical-mechanical Monte Carlo for a model fluid with continuous 
potential 



174 Chapter 6 Simulation and statistical mechanics 

Let rc(k) == {ri" .rN} be given . 

• Trial move rc(k) -+ r~: 

xj = Xj + d (~ - 0.5) etc., for Yj, Zj (6.14) 

• If particle j now overlaps with any other particle, let rc(k + 1) = r c(k); 
otherwise let rc(k + 1) = r~ . 

Figure 6.3: Monte Carlo for hard spheres 

• Pick a spin ai and tentatively invert it. The resulting energy change is 

4 

tlE = Aai Laj 
j(i) 

(6.15) 

• If tlE :::; 0, accept the inverted spin: ai(k+1) = -ai(k); otherwise, draw 
an equidistributed ~ E (0,1) and compare it to w == exp[-tlE/kT]; if 
~ < w, accept -ai, else leave ai unchanged: ai(k + 1) = ai(k). 

Figure 6.4: Monte Carlo simulation on an Ising lattice 



6.3 Molecular dynamics 175 

6.3 Molecular Dynamics Simulation 

Two simple examples will serve to demonstrate the principle of the MD method. 
First we will deal with a system of hard spheres (or disks), then the standard model 
for simple liquids, the Lennard-Jones fluid, will be treated. 

6.3.1 Hard Spheres 

For an initial configuration of a system of hard spheres we will once again set 
up a suitable lattice. The N spheres are given random initial velocities, with the 
additional requirement that the total kinetic energy is to be consistent with some 
desired temperature according to Ek = 3NkT/2. Furthermore, it is advantageous 
to make the total momentum (which will be conserved in the simulation) equal to 
zero. 

The next step is to find, for each pair of particles (i, j) in the system, the time 
tij it would take that pair to meet: 

(6.17) 

where d is the sphere diameter, r is the distance between the centers of i and j, 
and 

b 

v 

(rj - ri) . (Vj - Vi) 

I(Vj - Vi)1 (6.18) 

For each particle i the smallest positive collision time t(i) = min(tij) and the 
corresponding collision partner j (i) is memorized. If particle i has no collision part
ner at positive times, we set j(i) = 0 and t(i) = [00], i.e. the largest representable 
number. 

Evidently, the calculation of all possible collision times is quite costly, since 
there are N(N - 1)/2 pairs to be scanned. However, this double loop over all 
indices has to be performed only once, at the start of the simulation. 

Next we identify the smallest among the N "next collision times", calling it 
t(io). This gives us the time that will pass until the very next collision occuring in 
the entire system. Let the partners in this collision be io and jo. 

Now all particle positions are incremented according to the free flight law 

ri ---t ri + Vi· t(io) (6.19) 

and all t(i) are decreased by t(io). 
The elastic collision between the spheres i = io and j = jo leads to new velocities 

of these two particles: 

V~ = Vi + ~v, vj = Vj - ~v (6.20) 



176 Chapter 6 Simulation and statistical mechanics 

Molecular dynamics simulation of hard spheres: 

Immediately after a collision, for each particle i in the system the time t( i) 
to its next collision and the partner j (i) at that collision is assumed to be 
known. 

1. Determine the smallest positive element t(io) among the t(i), identify 
the corresponding particle io and its collision partner jo == j(io). 

2. Let all particles follow their free flight paths for a period tlt == t (io); 
subtract tlt from each t(i). 

3. Perform the elastic collision between io and jo; after the collision these 
spheres have the new velocities 

v' = v ± tlv, with tlv = b r; (6.22) 

4. Recalculate all times t( i) that involve either io or jo, i.e. for i = io, 
i = j(io), i = jo, and i = j(jo). 

5. Go to (1). 

At low densities the large free path may create problems with the peri
odic boundary conditions, some particle suddenly appearing where it over
laps another. One therefore limits the time allowed for free flight such that 
for each particle and each coordinate a the free flight displacement fulfills 
tlxa == Va tlt :::; L/2 - d. 

Figure 6.5: Molecular dynamics of hard spheres 

where 
(6.21) 

All pairwise collision times t ij that involve either io or jo must now be recalculated 
using the new velocities. For this purpose no more than 2N - 3 pairs have to be 
scanned. 

The elementary step of a hard sphere MD calculation is now completed. The 
next step is started by once more searching all ti for the smallest element. The 
detailed pattern of a single hard-sphere MD step is described in Fig. 6.5. 

EXERCISE: For a two-dimensional system of hard disks, write subroutines to a) set up an 
initial configuration (simplest, though not best: square lattice;) b) calculate t(i) and j(i); 
c) perform a pair collision. Combine these subroutines into an MD code. To avoid the dif-



6.3 Molecular dynamics 177 

ficulty mentioned at the end of Fig. 6.5 one might use reflecting boundary conditions, do
ing a "billiard dynamics" simulation. 

6.3.2 Continuous Potentials 

The interaction between hard particles was treated as an instantaneous collision 
process, implying forces of infinite strengths acting during infinitely short times. A 
dynamical equation is of no use in such a model, and it was therefore appropriate 
to invoke the collision laws for calculating the altered velocities. In contrast, for 
continously varying pair potentials we have for some particle i at any time t 

(6.23) 

with 
(6.24) 

We will consider the standard Lennard-Jones interaction 6.1. For the pair force we 
find 

€ [(rij )-14 (rij)-S] Kij = -2\.2 2 -;; - -;; rij (6.25) 

where rij == rj - rio 
When evaluating the total force acting on a particle we apply periodic boundary 

conditions and the nearest image convention (see Sec. 6.1). In this way we may 
determine the quantity on the right-hand side of 6.23. The road is then clear for the 
stepwise integration of the dynamical equations by one of the methods explained 
in Chapter 4. One very popular method is the Verlet algorithm 

(6.26) 

(with b i == L:#i Kij/m). But the predictor-corrector method - usually in the 
Nordsieck formulation - is also widely used. 

PROJECT MD (LENNARD-JONES): Augment the subroutine module ENERGY such that 
it computes, for each Lennard-Jones particle i in the system, the total force exerted on 
it by all other particles j: Ki == L#i Kij, with Kij as given by 6.25; remember to apply 
the nearest image convention. 

Write a subroutine MOVE to integrate the equations of motion by a suitable algo
rithm such as 6.26. Having advanced each particle for one time step, do not forget to 
apply periodic boundary conditions to retain them all in the simulation box. 

Write a main routine that puts the subroutines STARTCONF, ENERGY and MOVE 
to work. Test your first MD code by monitoring the mechanically conserved quantities. 

Do a number of MD steps - say, 50-100 - and average the quantity Iv· 12 to estimate 
the actual temperature. To adjust the temperature to a desired value, scale all velocity 



178 Chapter 6 Simulation and statistical mechanics 

components of all particles in a suitable way. Repeat this procedure up to 10 times. Af
ter 500-100 steps the fluid will normally be well randomized in space, and the temperature 
will be steady - though fluctuating slightly. 

6.3.3 Beyond Basic Molecular Dynamics 

There are many generalizations of this basic idea of molecular dynamics simulation, 
involving orientation dependent potentials and ionic interactions, polymers or other 
complex molecules. An prerequisite for the simulation of chain molecules is a 
computationally economic method for treating geometrical constraints such as fixed 
bond length between successive atomic groups in a polymer. 

Also, in the many years that have passed since Alder's inspiration we have 
learned how to simulate nonequilibrium phenomena as well, such as the laminary 
flow of a liquid. For a detailed discussion of Non-Equilibrium Molecular Dynam
ics (NEMD) we have to refer the reader to the literature, e. g. [EVANS 86] and 
[HOOVER 99]. However, an important tool in this context is the representation of 
an external thermostat applied to the model system. The most efficient thermostat
ting recipe, which is of value also in other simulation problems, will be described 
below [NOSE 91]. 

Geometrical constraints / SHAKE method: 
In table 6.2 we mentioned model molecules with internal geometrical conditions, 
such as rigid bond lengths. A straightforward but inefficient method to treat such 
systems is the introduction of very stiff harmonic bond potentials that permit only 
small deviations from a given interatomic spacing. The problem with this approach 
is that large spring constants induce large inaccuracies in the time integration step. 
To reduce these errors one would have to use a very small time step. 

The proven method to accommodate such constraints in a MD program is due 
to Ryckaert et al. [RYCKAERT 77] . The SHAKE algorithm introduced by these 
authors is best discussed by considering a system made up of the smallest non
trivial K ramers chain molecules consisting of three atoms that are sequentially 
connected by massless rigid bonds. In each such molecule, the two constraint 
equations involving the three atomic positions rl,2,3 and the bond lengths h,2 are 

(6.27) 

where r12 == r2 - rl etc. 
We now postulate Lagrangean constraint forces which, when added to the phys

ical forces acting on each atom, will guarantee the two equations to remain valid 
as the atoms move around. In the present case it is clear that the constraint force 
acting on atom 1 must be proportional to r12. Atom 2 takes part in two constraints 
and therefore is subject to two constraint forces, one directed along -r12 and one 
along r23. Atom 3 experiences a force pointing along -r23' Thus we may write the 



6.3 Molecular dynamics 179 

three equations of motion 

al 
rl = b l + -r12 

ml 
1 

r2 = b2 + - [-aIrI2 + a2r23] 
m2 
a2 

r3 = b3 - -r23 
m3 

(6.28) 

(6.29) 

(6.30) 

where b1..3 are the physical accelerations due to Lennard-Jones or other pair po
tentials. 

To solve these equations of motion, one proceeds as follows: 

1. Given the positions rj at time tn, integrate the equations of motion for one 
time step without considering the constraint forces; let the resulting positions 
be denoted as r~. Of course, these preliminary position vectors will not fulfill 
the constraint equations; rather, the values of al (r~2) and a2(r~3) will have 
some nonzero values which we denote as a~, a~. 

2. Making the correction ansatz 

(6.31) 

(6.32) 

(6.33) 

and requiring that the corrected position fulfill the constraint equations we 
have 

o 

o 

(6.34) 

(6.35) 

where we have written 11 J.L12 == 11mI + 11m2 etc., and where [ .. Yare terms 
that are quadratic in al,2' 

We could now solve these two quadratic equations for the unknowns aI,2 and 
insert the solutions in 6.31-6.33 to obtain the corrected positions at time 
tn+!' However, it is more convenient to ignore the small quadratic terms 
- this is why we have not bothered to write them out explicitely. Rather, 
the linear parts of 6.34-6.35 are solved iteratively, meaning that this system 
of linear equation is solved to arrive at an improved estimate for aI,2 which 
is again inserted in 6.31-6.33 leading to a new set 6.34-6.35 etc., until the 
absolute values of aI,2 are negligible; generally, this will occur after a very 
few iterations. 



180 Chapter 6 Simulation and statistical mechanics 

Since we have to iterate anyway, another simplification will do no harm. 
Instead of solving the linearized equs. 6.34-6.35 exactly at each iteration 
step, which involves a matrix inversion, we start from one end of the chain 
and consider only one constraint per atom as we go along. In other words, 
we first repair the bond rl2 by displacing 1 and 2, and then destroy it again 
by repairing the next bond r23. The point is that by going through the chain 
several times the errors introduced by neglecting the quadratic terms and by 
considering only one constraint at a time will normally get smaller at each 
stage. 

In our case the procedure is (see 6.34-6.35 without the "cross" terms) 

Jtl2 a~ 
al = -2 ' n r l2 • r l2 

(6.36) 

insert this in 6.31-6.33 and iterate until al,2 are negligible. 

The generalization of this technique to long chains is trivial. Applications to very 
long chain molecules, particularly biomolecules, abound in the literature. 

Molecules and robots: 
Another interesting application of "constraint dynamics" may be found in robotics. 
Obviously, robot arms made up of several successive links and joints bear some 
resemblance to chain molecules. By exploiting this similarity one may attack a 
standard problem of robotics, known as the inverse kinematic problem, in an en
tirely new way [KASTEN MEIER 86]. 

Thermostats / Nose-Hoover method: 
When simulating nonequilibrium processes one is faced with the problem of a grad
ual temperature rise in the sample. This is not a numerical artifact but a genuine 
physical effect. The external fields that must be introduced to sustain the nonequi
librium situation necessarily perform work on the system, causing an increase of 
internal energy. 

Introducing a thermostat in a dynamical simulation is a nontrivial task. The 
temperature of a molecular dynamics sample is not an input parameter to be 
manipulated at will; rather, it is a quantity to be "measured" in terms of an 
average of the kinetic energy of the particles, 

(6.37) 

(d ... dimension). Many authors have come up with suggestions how to main
tain a desired temperature in a dynamical simulation - for instance, by repeatedly 
rescaling all velocities ("brute force thermostat") or by adding a suitable stochas
tic force acting on the molecules. Such ad hoc tricks have great disadvantages: 
they are unphysical, and they introduce an artificial trait of irreversibility and/or 



Evaluation of simulation experiments 181 

indeterminacy into the microscopic dynamics. Finally Shuichi Nose succeeded in 
finding a thermostating strategy that is compatible with the spirit of microscopic 
(reversible and deterministic) simulation. Nose, and later Hoover, could prove that 
under very mild conditions the following augmented equations of motion will lead 
to a correct sampling of the canonical phase space at a given temperature To : 

Vi 
1 

(6.38) = -Ki - ~Vi 
m 
2 

(6.39) ~ = Q [Ekin - 3NkTo/2] 

In this formulation of the thermostated dynamical equations the coupling param
eter Q describes the inertia of the thermostat . The quantity ~(t) bears some sim
ilarity to a viscosity - with the important difference that it is temporally varying 
and may assume negative values as well. 

It should be mentioned that a single NH thermostat produces a thorough per
ambulation of canonical phase space only if that phase space has more than just a 
few degrees of freedom. For systems of many particles this is not a problem, but 
in basic investigations of low-dimensional systems it may be necessary to use two 
NH thermostats in tandem [MARTYNA 92J . 

Many profound insights into the foundations of nonequilibrium statistical me
chanics have been gained by the application of the deterministic, reversible, yet 
thermostated equations of motion 6.38-6.39. A more detailed account of the met
hod may be found in [HOOVER 91, HOLIAN 95J. Important applications are given 
in [POSCH 89, POSCH 92, POSCH 97J. 

6.4 Evaluation of Simulation Experiments 

We are now in a position to proceed to calculating averages of the form 6.2. The 
most elementary thermodynamic observables, pressure and internal energy, may 
be expressed as averages of the virial and the potential energy, respectively (see 
equs. 6.3-6.4). The virial is defined by 

(6.40) 

However, the powerful "microscope" of computer simulation gives access to 
many more details about the structure and the dynamics of statistical-mechanical 
systems. An important characteristic of microscopic structure is the pair correla
tion function g(r); and the main features of molecular motion are most concisely 
described in terms of the velocity autocorrelation function C(t). 

PROJECT MC/MD (FLUID): In your Lennard-Jones MD and MC programs, include 
a procedure to calculate averages of the total potential energy and the virial. From 



182 Chapter 6 Simulation and statistical mechanics 

these compute the internal energy and the pressure. Compare with results from lit
erature, e.g. [McDoNALD 74, VERLET 67]. Allow for deviations in the 5 - 10% 
range, as we have omitted a correction for the finite sample size ('cutoff correction'). 

6.4.1 Pair Correlation Function 

Quite generally, the quantity to be averaged according to equation 6.2 need not be 
a simple function of dynamical variables; it may well be an "indicator function", 
or distribution function, of the type 

(6.41 ) 

A verages of this or similar quantities represent relative frequencies - in the present 
case the relative frequency of some particle residing near r. Such relative frequen
cies may also be interpreted as probability densities. In our example the quantity 
(a(r)) = p(r) would simply denote the mean fluid density at position r: 

(6.42) 

In a fluid we usually have p(r) = const; only in the presence of external fields or 
near surfaces p(r) varies in a non-trivial manner. A much more interesting quantity 
to be evaluated is the "pair correlation function" (PCF) 

(6.43) 

This is in fact a (ill-normalized) conditional probability density - to wit, the prob
ability of finding a particle at r, given that there is a particle at the coordinate 
origin. g(r), then, provides a measure of spatial ordering in a fluid (or any molec
ular system). 

To determine g(r) in a simulation one first divides the range of r-values (at 
most [0; L/2]' where L is the side length of the basic cell) into 50 - 200 intervals 
of length 6.r. A given configuration {rl,'" rN} is scanned to determine, for each 
pair (i, j), a channel number 

k = int (rij) 
6.r 

(6.44) 

In a histogram table g(k) the corresponding value is then incremented by 1. This 
procedure is repeated every, say, 50 MD steps (or 50N MC steps). At the end 
of the simulation run the histogram is normalized according to 6.43. The typical 
shape of the PCF at liquid densities is depicted in Fig. 6.6. 

The extraordinary importance of the PCF for the physics of fluids stems from 
the fact that the average of any quantity that depends on the pair potential u(r) -



6·4 Evaluation of simulation experiments 183 

3.6,....---..-----r---...----..,----..,----, 

3 
g(r) 

2.5 

2 

1.5 

0.5 

o~-----' 

-0.5 '--__ "'---__ ..1..-__ -'--__ -'--__ -'-__ ..... 

o 0.5 1.5 2 2.5 3 

Figure 6.6: Pair correlation function of the Lennard-Jones liquid 

and this holds for the majority of physically relevant properties - may be expressed 
as an integral over g(r). Thus, we have for the pressure (see also 6.4) 

NkT N2 j du 
p = V- - 6V2 r drg(r) dr (6.45) 

v 

Moreover, the peF is the natural meeting place of theory, experiment, and 
computer simulation. It is possible to compute g(r) for a given pair potential 
u(r) by analytical means - albeit under rather restrictive simplifying assumptions 
[KOHLER 72J, [HANSEN 86J. And the Fourier transform of g(r), the "scattering 
law" 

S(k) = 1 + ~ j[g(r) - IJ eik . r dr (6.46) 

v 
is accessible to laboratory experiments. In fact, S(k) is just the relative intensity 
of neutron or X-ray scattering at a scattering angle () which is related to k by 

k == ~ sin~ (6.47) 

PROJECT MD fMC (LENNARD-JONES): Augment your Lennard-Jones MD (or MC) pro
gram by a routine that computes the pair correlation function g(r) according to 6.44; 
remember to apply the nearest image convention when computing the pair distances. As 
the subroutine ENERGY already contains a loop over all particle pairs (i,j), it is best 
to increment the g(r) histogram within that loop. 



184 Chapter 6 Simulation and statistical mechanics 

Plot the PCF and see whether it resembles the one given in Figure 6.6. 

6.4.2 Autocorrelation Functions 

In dynamical simulations not only spatial correlations such as g(r) but also tem
poral correlations of the type 

Ca(t) == (a(O)a(t)) (6.48) 

may be computed. An elementary example is the velocity autocorrelation in fluids 
defined by 

(6.49) 

This was the very first autocorrelation function (ACF) to be determined in MD 
simulations [ALDER 67]. It turned out that at intermediate fluid densities the 
long time behavior deviates strongly from theoretical expectations. The simplest 
kinetic theory would predict C(t) ex e->'t; instead, Alder found C(t) ex t-3/ 2 . The 
diffusion constant D of a liquid is given by 

00 

D = ~! C(t) dt (6.50) 

° 
The value of D is therefore strongly affected by the long time tail of C(t); indeed, 
MD experiments yield values of D that are about 30 percent higher than simple 
kinetic theory would estimate. 

It could later be shown that the surprising persistence of C(t) is due to collective 
effects. Part of the momentary momentum of a particle is stored in a microscopic 
vortex that dies off very slowly [DORFMAN 72]. 

To calculate simple autocorrelation functions in a computer simulation, proceed 
as follows: 

• At regular intervals of 20-100 time steps, mark starting values {a(to,m)' m = 
1, ... M}. Since in the further process only the preceding M ~ 10 - 20 
starting values are required, it is best to store them in registers that are 
cyclically overwritten . 

• At each time tn, compute the M products 

Zm = a(tn) . a(to,m) , m = 1, ... M (6.51) 

and relate them to the (discrete) time displacements Lltm = tn - to,m; a 
particular Lltm defines a channel number 

k = Lltm/ Llt (6.52) 

indicating the particular histogram channel to be incremented by Zm. To 
simplify the final normalization it is recommended to count the number of 
times each channel k is incremented. 



6.5 Particles and fields 185 

0.06 

0.05 
e(l) 

0.04 

0.03 

0.02 

0.01 

0 

-0.01 
0 0.5 1.5 2 2.5 3 3.5 4 4.5 

t 

Figure 6.7: Velocity autocorrelation function of the Lennard-Jones fluid 

Figure 6.7 shows the general shape of the velocity ACF in a simple fluid. 

EXERCISE: Run your MD program for 2000 time steps and store the velocity vector of a 
certain particle (say, no. 1) at each time step. Write and test a program that evaluates the 
autocorrelation function of this vector. 

PROJECT MD (LENNARD-JONES): Using the experience gathered in the above exercise, 
write a procedure that computes the velocity ACF, averaged over all particles, during 
an MD simulation run. 

Plot the ACF and see whether it resembles the one given in Figure 6.7. 

6.5 Particles and Fields 

In describing the basic simulation methods of statistical mechanics we concentrated 
on interparticle potentials that are negligible beyond a few particle diameters. A 
measure for the importance of the neglected "tail" of a potential u( r) is the integral 

(6.53) 

where r co is the cutoff distance. Well-behaved potentials such as Lennard-Jones 
decay with a high enough negative power of r so as to keep this integral small. 
There are important cases, however, where we cannot hope for such convenience. 
The interaction between charged particles decays only as r- 1, and it will never do 



186 Chapter 6 Simulation and statistical mechanics 

to "cut off" the potential at any distance. The same holds for the gravitational 
potential acting between stars or yet larger assemblies of heavenly matter. 

6.5.1 Ewald summation 

To account for the effect of the long-ranged ion-ion interaction 

q1q2 
U qq =--

r 
(6.54) 

we may take recourse to a method known from solid state theory [EWALD 21]. 
In the Ewald summation approach the periodic boundary conditions are taken 
literally: the basic cell containing N /2 each of positive and negative charges in some 
spatial arrangement is interpreted as a single crystallographic element surrounded 
by an infinite number of identical copies of itself. Such an infinitely extended, 
globally neutral ion lattice contains an infinite number of charges situated at points 
r j+ and r j_ , respectively. The total potential at the position of some ion i residing 
in the basic cell is therefore given by the finite difference of two diverging series: 

00 1 00 1 
¢(ri) = q L (ri - r +) - q L -:-(r-i --r-'_--:-) 

3+=1 3 3-=1 3 

(6.55) 

The calculation of the potential in r -space would thus lead to an undetermined 
form 00 - 00. Alternatively, the point charges creating the potential may be de
scribed by a sum of delta-like charge densities, 

00 00 

p(r) = q L £5 (r - rj+) - q L £5 (r - rj_) (6.56) 
j+=1 j-=1 

This periodically varying charge density may be expanded in a Fourier series whose 
terms determine the Fourier components ¢(k) of the electrostatic potential. In 
principle these components can be summed to give the total potential at some 
position. However, the Fourier representation of a delta-function requires infinitely 
many terms, and the Fourier space calculation would again lead to convergence 
problems. 

A way out of this dilemma is to split up the potential in two well-behaved parts, 
one being represented in r-space and the other in k-space by rapidly converging 
series. Without restriction of generality we consider a one-dimensional "ion lattice" 
with a charge distribution as depicted in Figure 6.8. The delta-like point charges 
(represented by narrow Gaussians) are augmented by Gaussian charge "clouds" of 
opposite sign, 

( 
2)3/2 2 2 p'(r) = _qj: e-T] (r - rj) (6.57) 

to form an auxiliary lattice 1. A further lattice (2) is then introduced to compensate 
the additional Gaussian charges, such that "lattice 1 + lattice 2 = original lattice" . 



6.5 Particles and fields 187 

A 

~ ~ 
given lattice 

-t- ! -t- ~ lattice 1 

~ 
~ ----v-- ~ ----v-- lattice 2 

Figure 6.8: Ewald summation 

The potential produced by lattice 1 is computed in r-space. The farther we 
walk away from a Gaussian charge cloud, the more it will resemble a delta-like 
point charge, effectively mmpensating the original charge it accompanies. Thus 
the series in r-space will converge quite rapidly - the more so if the Gaussians are 
narrow, i.e. if the parameter TJ in 6.57 is large. 

The potential created by lattice 2 is evaluated in k-space. If the Gaussians are 
broad, i.e. if TJ is small, we will need a smaller number of Fourier components. By 
suitably adjusting TJ, optimal convergence of both series may be achieved. 

Let us now turn to the more interesting case of three-dimensional model sys
tems. Considering a cubic base cell with side length L containing N charges, the 
Fourier series now involves the vectors 

(6.58) 

with integer numbers kx etc. The most general interparticle vector, involving both 
base and periodic cell charges, may be written as 

ri,j,n==rj+nL-ri (i,j=l, ... ,N) (6.59) 

where nL is a general translation vector in the periodic lattice. Performing the 
Ewald procedure again we obtain the total potential at position ri, 

(6.60) 

with 
2 100 

2 F(z) ==..fi z e- t dt (6.61) 

Two tricky details should be mentioned that caused some confusion in the 
literature before they could be straightened out. First, a Gaussian charge cloud will 
formally interact with itself, giving rise to a spurious contribution to the potential 



188 Chapter 6 Simulation and statistical mechanics 

energy of a point charge qi; this contribution must be subtracted in the final 
formula. Second, the infinitely repeated lattice should be thought of as the result of 
a stepwise extension of a finite (roughly spherical) array of image cells. Obviously, 
the properties of such a finite lattice will depend on the dielectric constant fs of 
the surrounding continuum. It turns out that this influence does not vanish when 
we take the limit of an infinitely large repeated array. Thus the potential energy 
of a charge in the base cell contains a contribution from f s • Usually, one assumes 
f" = l. 

Taking into consideration these two corrections, we have for the total potential 
energy of the system 

2 1 N N 2 N 

Epot = 2 t; qiC/J (ri) - }; t; q; + 3;3 t; qiri (6.62) 

A similar procedure may be developed for particles that carry point dipoles in place 
of charges. The method is known as "Ewald-Kornfeld summation" This and other 
methods suited for the dipole-dipole potential, such as the reaction field method or 
Ladd's multipole expansion method are explained in [VESELY 78] and [ALLEN 90]. 

6.5.2 Particle-Mesh Methods (PM and P3M): 

In large-scale model simulations it is often appropriate not to insist on information 
about every single constituent particle. Hot plasmas (or galaxies, for that matter) 
may be described by bunching together some 104 - 108 of the ions, electrons, or 
stars into "superparticles". The position vector of such a superparticle indicates 
the center of mass of a charge cloud or a cluster of stars. Collisions or interactions 
between neighboring sub-particles are irrelevant for the behavior of the system as 
a whole and are therefore neglected. For a detailed discussion of these arguments 
see [HOCKNEY 81]. 

The dynamics of a superparticle is governed by the electromagnetic or grav
itational field created by all other charges or masses in the system. Due to the 
long range of these l/r-potentials the local field is to a large extent produced by 
superparticles that are quite far removed from the particle in question. This fact 
was utilized by Hockney and others to introduce an essential simplification and 
speed-up of such simulations. 

Consider the following model system: a square cell, subdivided into M x M 
cells of side length 6.x = 6.y = 6.l. The minor cells should still be large enough to 
contain on the average 10 - 100 superparticles each. (Taking M ~ 100 this means 
we are dealing with N ~ 105 - 106 superparticles - a formidable number for the 
molecular dynamicist.) The equation of motion for a superparticle reads 

.. qk ,"".li. qk E( ) 
rk = --Vk'¥ = - rk 

mk mk 
(6.63) 

where 1>(r) denotes the solution of the potential equation \721> = -po The charge 
(or mass) density p(r, t) is defined by the positions of all superparticles. 



6.5 Particles and fields 189 

Suppose that the configuration of superions is known at some time tn. Our first 
task is then to compute, using the positions of all particles, the potential function 
at the centers of the minor cells. The methods explained in Chapter 5.3 are useful 
here. 

The given configuration of superions must first of all be replaced by a dis
cretized, lattice-like charge distribution Pi,j' Various approximations come to mind. 
The most elementary, called nearest grid point (NGP) rule, reads 

N 

1 '" (Xk .) ( Yk .) Pi,j = (~l)2 ~ qk 6 ~l - z 6 ~l - J 
k=l 

(6.64) 

Here the charge density at the center of each cell (i, j) is determined simply by 
adding up all charges situated in that cell. 

The calculation of the potential may now be performed by a relaxation method 
or - most efficiently - by the FACR technique as developed by Hockney; see Sec. 
5.3.4 and [HOCKNEY 81]. As a result of this step the values of the potential <Pi,j 
at the cell centers are available. 

Assuming that a given superparticle k is presently located in cell (i, j) we may 
approximate the field at the position rk by 

- [<Pi+l,j - <Pi-l,j] /2~l 

- [<Pi,j+l - <Pi,j-d /2~l 

(6.65) 

(6.66) 

Given the local fields, the equation of motion 6.63 may be integrated by a suitable 
algorithm, such as the Verlet formula 

(6.67) 

(6.68) 

Having thus updated the positions r~+l we may begin the next time step by once 
again distributing the irregularly located charges to the cell centers and computing 
the potential <Pi,j. A systematic prescription for the PM procedure is shown in Fig. 
6.10. 

If the cells are only sparsely inhabited by superparticles, the cell charge Pi,j 
changes considerably upon entry or exit of a single particle. The resulting jumps 
in <Pi,j and Ei,j tend to destabilize the numerical procedure for integrating the dy
namical equations. It is an easy matter to reduce this oversensitivity with respect 
to charge transfer by applying a more refined method of charge assignment than 
the NGP rule 6.64. Instead of having all charges contribute with equal weights to 
the local charge density we distribute appropriate fractions of each charge to the 
four nearest cell centers. (We are speaking of two dimensions; in three-dimensional 
systems there would be eight cells in the vicinity.) According to the cloud in cell 
(CIC) rule these fractions, or weights, are assigned in proportion to the overlap ar
eas of a square of side length ~l, centered around the particle under consideration, 
and the respective neighbor cells (see Fig. 6.9) . 



190 Chapter 6 Simulation and statistical mechanics 

• • 
,.---------

o 

• • 

Figure 6.9: Area weighting according to the CIC (cloud-in-cell) rule 

Particle-mesh method: 

At time tn the spatial distribution {rk} of the charged (or gravitating) super
particles is given. 

1. Assign charge densities Pi,j to the centers of the cells, either according 
to the NGP rule 

N 

Pi,j = (;l)2 t;qk 6 (~l - i) 6 (~l - j) (6.69) 

or by some more refined method such as CIC (see Fig. 6.9). 

2. Compute the potential at the cell centers, preferably by the FACR met
hod. For the local field within cell (i, j) use the approximation 

(6.70) 

etc. 

3. Integrate the dynamical equations up to tn+l, for instance by using the 
Verlet scheme 

(6.71) 

Figure 6.10: Particle-mesh method 



6.5 Stochastic dynamics 191 

In the framework of the PM technique only the fields originating from far
removed superparticles are correctly represented. In many applications the as
sumption that nearby particles have little influence upon the dynamics is not jus
tified. Be it that we study the interpenetration of galactic spiral arms, investigate 
the properties of dense plasmas or follow the behavior of ions in melts (or crystals), 
the short-range interactions must not be neglected. 

Similarly, in the simulation of ionic melts by molecular dynamics proper - no 
superparticles, but actual molecules - short-ranged forces are an essential part of 
the total interaction. One widely used model potential for ions is the one introduced 
by Born, Huggins and Mayer (see Table 6.1): 

U() qiqj B -a·r Gij Dij 
r = -- + i·e ' J - - - -

47rtor J r6 r8 
(6.72) 

Here we have, in addition to the electrostatic interaction, contributions that are 
repulsive at short distance (the B- term) and attractive at intermediate distances 
(G-, D- terms) . 

Hockney suggested that the optimal strategy in such cases is a mixture of the 
PM method and the molecular dynamics technique [HOCKNEY 81]. The short
ranged forces are taken into account up to a certain interparticle distance, while 
the long-ranged contributions are accounted for by the particle-mesh procedure. 
This combination of particle-particle and particle-mesh methods has come to be 
called PPPM- or p 3M technique. 

6.6 Stochastic Dynamics 

In molecular dynamics experiments we deal with equations of motion of the form 

i\ = 2.. L K ij , i = 1, ... N 
m . 

J 

(6.73) 

By far the most costly step is the evaluation of the N(N - 1)/2 coupling terms 
K ij . As a rule some 90 - 95 percent of the computing time is spent in the nested 
loop of the force calculation. 

In some applications, however, there are two different classes of degrees of 
freedom in the system - primary ones whose temporal evolution we want to follow, 
and secondary ones that are in fact just dragged along to provide at any given time 
the complete set of intermolecular forces K ij . The basic example for such a system 
is a dilute ionic solution of, say, 10 - 50 ions in the company of some 5000 water 
molecules. 

In such a situation it may be a good idea to replace the effect of the secondary 
particles by suitably sampled stochastic forces having similar statistical properties 
as the proper forces Kij(t). 



192 Chapter 6 Simulation and statistical mechanics 

Forgetting for the moment about the relatively few interactions between ions, 
we may write down an equation of motion for the single ion in a viscous solvent: 

v(t) = -1]v(t) + a(t) (6.74) 

This is Langevin's equation. The statistical properties ofthe stochastic acceleration 
a == S / m (S... stochastic force) are given by 

(v(O) . a(t)) = 0 for t ~ 0 

(a(O) . a(t)) = 321]kT 8(t) 
m 

(6.75) 

(6.76) 

The first of these relations tells us that a(t) is not correlated to previous values 
of the ion velocity; the second equation means that the stochastic and frictional 
forces are mutually related - which is not surprising since they are both caused 
by collisions of the ion with solvent molecules. Equation 6.76 gives us only the 
autocorrelation of the quantity a(t); the statistical distribution of lal is not known 
a priori. As customary in such cases, we assume that the components of a(t) are 
Gauss distributed. 

The formal solution to 6.74 reads 

t 

v(t) = v(O)e-'1t + / e-1](t - t')a(t') dt' 

o 

(6.77) 

By comparing v(t) (and a corresponding expression for the second integral r(t)) 
at times tn and tn+! we find 

t;.t 

Vn+l = v n e-1]b.t + / e-1](b.t - t')a(tn + t') dt' 

o 

1 - e-1]b.t /t;.t 1 _ e-1](b.t - t') 
rn+l = rn + Vn + a(tn + t') dt' 

1] 1] 
o 

Using the definitions 

and 

e(t) == e-1]t , 
1 -1]t 

f(t) == - e 
1] 

t;.t 

V n == / e(b.t - t') a(tn + t') 
o 
t;.t 

Rn == / f(b.t - t') a(tn + t') 
o 

(6.78) 

(6.79) 

(6.80) 

(6.81) 

(6.82) 



6.5 Stochastic dynamics 

the stepwise solution to Langevin's equation may be written as 

Vn+1 = Vne(~t)+Vn 
rn+l = rn + Vn f(~t) + R,., 

193 

(6.83) 

(6.84) 

The cartesian components of the stochastic vectors V n, R,., are time integrals of 
the respective components of the 8-correlated stochastic process a(t) whose sta
tistical properties are given. They are therefore random variates themselves, with 
statistical properties that are uniquely determined by, and easily derived from, 
those of the generating process a(t). In particular, we have (Vn) = (Rn) = 0, 
(Vn Vn+1) = (RnRn+1) = 0, and 

(V;) 
kT 

(6.85) = - [1 - e2(~t)] 
m 

(R~) 
kT 

= -2 [2ry~t - 3 + 4e(~t) - e2(~t)] (6.86) 
mry 

(VnRn) = kTry f2(~t) (6.87) 
m 

We have learned in Section 3.2.5 how to generate pairs of correlated Gaussian 
variates. At each time step, then, we may invoke the procedure explained there 
to produce random numbers Vn , Rn with the desired statistics and insert them, 
component-wise, in 6.83-6.84. 

In the intuitive formulation of equ. 6.74 by P. Langevin, as well as in its much 
belated stringent derivation, it was always assumed that the stochastic force has 
a 8-like autocorrelation (see equ. 6.76). This is tantamount to assuming that the 
solvent particles are much lighter, and therefore faster, than the solute particle. In 
contrast, if both particle types have comparable masses, the generalized Langevin 
equation applies: 

where 

v(t) = -lot M(t - t') v(t') dt' + a(t) 

(v(O)a(t)) = 0 
kT 

(a(O)a(t)) = - M(t) 
m 

for t;::: 0 

(6.88) 

(6.89) 

(6.90) 

We are now faced with a stochastic integrodifferential equation that involves the 
"history" of the solute particle's motion in the form of the memory function M(t) 
(see [MORI 65]). In practice M(t) is usually fast-decaying, implying that the 
integrand in 6.88 need be considered for a limited time span only. 



194 Chapter 6 Simulation and statistical mechanics 

There are various methods to render the generalized Langevin equation acces
sible to numerical work. One group of methods proceeds by approximating the 
memory function by a certain class of functions. To put it more clearly, one as
sumes - with good physical justification - that the Laplace transform Ai (s) may be 
represented by a truncated chain fraction in the variable s. Under this condition 
the integrodifferential equation may be replaced by a set of coupled differential 
equations. When written in matrix notation these equations have exactly the 
same shape as 6.74. They may therefore be treated using the same principles 
[VESELY 84]. 

In the other group of techniques one does not attempt to approximate the 
memory function; instead, one assumes that M (t) may be neglected after K ~ 
20 - 60 time steps. The random process a(t), whose autocorrelation is given by a 
limited table of M(t)-values, may then be generated as an autoregressive process 
by the method described in Sec. 3.3.3. Replacing the integral in 6.88 by a sum 
over the most recent 20 - 60 time steps, one may construct v(t) and r(t) in a 
step-by-step procedure (see [SMITH 90], and also [NILSSON 90]). 



Chapter 7 

Quantum Mechanical Simulation 

Erwin Schrodinger: his equation is at the bottom 
of it all 

We will not concern ourselves with the time-proven methods that are applied by 
quantum chemists to compute electronic energies of ever larger molecules; one 
recommended reference on those crafts is [HEHRE 86J. In the following sections 
four "physical" techniques will be described that are suited for the investigation 
of simple quantum systems. They have been applied first to solvated electrons, 
hydrogen, helium, neon and silicon, and more recently also to metals, carbon and 
ionic melts. 

The technique of quantum mechanical diffusion Monte Carlo (QMC, or DMC) 
dates back to the early days of stochastic simulation. At a meeting held just a 
few years after publication of the very first statistical-mechanical MC calculations, 
various ideas on how to treat the Schroedinger equation by stochastic methods 
were suggested [MEYERS 56J. Many of these ideas were in fact premature, and 
it took several generations of computing machines before they could be put into 
action. The "rediscovery" of DMC in the eighties is due to D. Ceperley and - once 
again - Berni Alder [CEPERLEY 80J. 

195 

F. J. Vesely, Computational Physics
© Kluwer Academic / Plenum Publishers, New York 2001



196 Chapter 7 Quantum mechanics 

In its basic formulation the DMC method serves to determine the ground sta
te of a bosonic system. The first calculations of this kind were done for 4He 
[KALOS 74, WHITLOCK 79]. Later the method was tuned up in such a way that 
fermions and excited states may be attacked as well [BARNETT 86, CEPERLEY 88]. 
Modern applications may be found in [CEPERLEY 96]. 

With the path integral Monte Carlo (PIMC) method we are entering the sta
tistical mechanics of quantum systems. Diffusion Monte Carlo usually refers to 
the ground state, meaning that the temperature is effectively zero. In PIMC cal
culations a finite temperature enters by way of a Boltzmann factor - or rather, by 
its quantum mechanical equivalent, the density matrix. Applications of the proce
dure range from the study of solvated electrons in simple liquids [PARRINELLO 84, 
COKER 87] to the investigation of the properties of solid para-hydrogen [ZOPPI 91]. 
Recent PIMC work is surveyed in [CEPERLEY 95] and [CEPERLEY WWW]. 

Wave packet dynamics (WPD) constituted the first attempt of a dynamical 
semiclassical simulation - an adaptation, as it were, of the molecular dynamics 
method to quantum mechanics. Building upon ideas proposed by Heller et al. 
[HELLER 75, HELLER 76], Konrad Singer developed a procedure for simulating 
the dynamics of "smeared out" neon atoms [SINGER 86]. The further development 
of the method seems to be possible only by extensive formal and computational 
effort [HUBER 88, KOLAR 89, HERRERO 95, MARTINEZ 97]. 

The most exciting new development of the last decades was the designing of a 
veritable quantum molecular dynamics method by Car and Parrinello [CAR 85]. 
While in this context the atomic cores (i.e. nucleus plus inner electrons) are still 
treated as classical particles (Born-Oppenheimer approximation), the outer elec
trons obey truly quantum mechanical laws. The first substance to be investigated 
in this manner was amorphous silicon. Subsequently, however, the method has 
come to be applied to a much wider class of materials: lithium [WENTZCOVICH 91]; 
micro clusters of alkali metals [VITEK 89]; molten carbon [GALLI 90B]; ionic melts 
[GALLI 90A]. A survey of applications of the technique is given in [VITEK 89]. 

The dynamical simulation of quantum systems is a rapidly developing branch of 
computational physics. Many attempts are under way to tame the time-dependent 
Schroedinger equation, and the dust has not settled sufficiently to show which of 
these methods will survive. For recent surveys, see [MAKRI 99], [MAZZONE 99], 
[OHNO 99]. 

7.1 Diffusion Monte Carlo (DMC) 
The time-dependent Schroedinger equation for a particle of mass m located in a 
potential U(r) reads 

(7.1) 



7.1 Diffusion Monte Carlo 197 

where the operator H is defined as 

h2 
H =- __ V'2 + [U(r) - ETJ 

2m 
(7.2) 

The trial energy ET is an arbitrary parameter that effects only the - unobservable 
- phase of the wave function but not its modulus. Introducing a new "imaginary 
time" variable s =- it/h we obtain 

ow(r, s) 
as = DV'2w(r, s) - [U(r) - ETJ w(r, s) (7.3) 

with D =- h2 /2m. 
This equation describes the evolution, in space and "time", of a density W as 

the consequence of a diffusion process (first term on the right) superposed upon 
autocatalysis (second term). For easier visualization one may think of a population 
of bacteria diffusing about in a fluid with locally varying nutrient concentration. 

By expanding W in eigenfunctions 'lin of the energy operator one may verify 
the following points: 

• If ET = Eo (ground state energy), then all 'lin except Wo will fade out for 
large "times" s: 

lim w(r, s) = wo(r) 
s-+oo 

(7.4) 

• If ET > Eo, the total momentary weight l(s) =- f w(r, s) dr will grow expo
nentially in time. 

• If ET < Eo, the integral l(s) decreases exponentially in time. 

Thus we should try to solve 7.3 for various values of ET , always monitoring the 
temporal behavior of l(s). If we succeed in finding a value of ET that gives rise 
to a solution w(r, s) whose measure l(s) remains stationary, we may be sure that 
ET = Eo and W = woo 

How, then, do we generate a solution to equ. 7.3? Consider the terms on the 
right-hand side one at a time. The diffusion part of 7.3 reads 

on(r, t) _ D ~2 ( ) 
at - v n r, t (7.5) 

Instead of invoking for this partial differential equation one of the methods of 
Chapter 5 we may employ a stochastic procedure. We have already learned that the 
diffusion equation is just the statistical summing up of many individual Brownian 
random walks as described in Sec. 3.3.4. We may therefore put N Brownian 
walkers on their respective ways, letting them move about according to 

(7.6) 



198 Chapter 7 Quantum mechanics 

the components ~x,y,% of the single random step being drawn from a Gauss distri
bution with a2 = 2D D.t. If we consider an entire ensemble made up of M such 
N-particle systems, the local distribution density at time t, 

11M N 

p(r, t) == (6 [ri(t) - r]} = M N L L 6 [ri,/(t) - r] 
1=1 i=1 

(7.7) 

will provide an excellent estimate for the solution n(r, t) of the diffusion equation 
7.5. 

At long times t this solution is a very broad, flat and uninteresting distribution, 
regardless of what initial distribution n(r,O) we started from. However, if there 
is also a built-in mechanism for a spatially varying autocatalytic process, we will 
obtain a non-trivial inhomogeneous density even for late times. 

The autocatalytic part of the transformed Schroedinger equation 7.3 has the 
shape 

8n(r,t) - f() ( ) at - rnr,t (7.8) 

Of course, the formal solution to this could be written 

n(r, t) = n(r, 0) exp [f(r)t] (7.9) 

However, we will once more employ a stochastic scheme to construct the solution. 
Again, consider an ensemble of M systems of N particles each. The particles are 
now fixed at their respective positions; the number M of systems in the ensemble is 
allowed to vary: those systems which contain many particles located at "favorable" 
positions where f(r) is high are to be replicated, while systems with unfavorable 
configurations are weeded out. To put it more clearly, the following procedure is 
applied when going from tn to tn+l: 

• For each of the M(tn ) systems, determine the multiplicity (see equ. 7.9) 

K, ~ exp [t. 1(",) at l, I ~ 1, ... M(t,,) (7.10) 

• Replicate the l-th system such that on the average KI copies are present. To 
achieve this, produce first int(KI)-l copies (int( .. )= next smaller integer) and 
then, with probability w == KI - int(K1), one additional copy. (In practice, 
draw ~ equidistributed E [0,1] and check whether ~ ~ w.) If KI < 1, remove, 
with probability 1 - K 1, the l-th system from the ensemble. 

The total number M(tn ) of systems in the ensemble may increase or decrease upon 
application of this rule. At the end the distribution density 7.7 may again be used 
to estimate the density at position r. 

Let us now apply these ideas to the transformed Schroedinger equation 7.3. 
Combining the two stochastic techniques for solving the diffusion and autocatalytic 
equations we obtain the procedure described in Figure 7.1. 



7.1 Diffusion Monte Carlo 199 

Diffusion Monte Carlo: 

N (non-interacting) particles of mass m, distributed at random in a given 
spatial region, are subject to the influence of a potential U(r). Determine the 
"diffusion constant" D = fj,2/2m; choose a trial energy ET, a time step D.s 
and an initial ensemble size M(so). 

1. For each system I (= 1, . . . M ( so)) in the ensemble and for each particle 
i (= 1, ... N) perform a random displacement step 

(7.11) 

where the components of the vector ei,l are picked from a Gaussian 
distribution with (12 = 2D D.s. 

2. For each system l determine the multiplicity Kl according to 

(7.12) 

3. Produce int(Kd - 1 copies of each system (int( ... ) denoting the nearest 
smaller integer;) with probability w = Kl - int(KI) produce one ad
ditional copy, such that on the average there are Kl copies in all. If 
Kl < 1, purge the system with probability 1 - Kl from the ensemble. 

4. If the number M of systems contained in the ensemble increases sys
tematically (i.e. for several successive steps), choose a smaller ET ; if M 
increases, take a larger ET . 

5. Repeat until M remains constant; then the ground state energy is Eo = 
ET and 

wo(r) = (c5(ri,1 - r) (7.13) 

Figure 7.1: Quantum mechanical diffusion Monte Carlo 



200 Chapter 7 Quantum mechanics 

It is evident from the above reasoning that the method will work only for real, 
non-negative functions W. In this basic formulation it is therefore suited only 
for application to bosonic systems such as 4He. Two advanced variants of the 
technique that may be applied to fermions as well are known as fixed node and 
released node approximation, respectively [CEPERLEY 88]. If the node surfaces of 
W - i.e. the loci of sign changes - are known, then the regions on different sides of 
these surfaces may be treated separately; within each of these regions W is either 
positive or negative, and the modulus of W is computed by the above method (fixed 
node). Normally the positions of the node surfaces are only approximately known; 
in such cases they are estimated and empirically varied until a minimum of the 
energy is found (released node). 

It must be stressed that the analogy between the wave function w(r, t) and 
a probability of residence n(r, t) which we are exploiting in the DMC methoa 
is purely formal. In particular, it has nothing to do with the interpretation of 
the wave function in terms of a positional probability according to Iw(r)12 = 
prob{quantum object to be found at r}. 

There are situations in which the DMC method in the above formulation is 
unstable. Whenever we have a potential U(r) that is strongly negative in some re
gion of space, the autocatalytic term in 7.3 will overwhelm everything else, playing 
tricks to numerical stability. Such problems may be tamed by a modified method 
called importance sampling DMC. Introducing an estimate wT(r) of the correct 
solution wo(r) we define the auxiliary function 

f(r, s) == wT(r) w(r, s) 

By inserting this in 7.3 we find for f(r, s) the governing equation 

af 2 [HWT] [I 12] - = D\1 f - -- - ET f - DV· f \1 In WT 
as WT 

The autocatalytic term is now small since 

HWT 
--~Eo~ET 

WT 

(7.14) 

(7.15) 

(7.16) 

The multiplicity Kl will thus remain bounded, making the solution well-behaved. 
The last term to the right of equ. 7.15 has the shape of an advective contribu

tion. In the suggestive image of a diffusing and procreating bacterial strain it now 
looks as if there were an additional driving force 

F(r) == \1 In IWT(rW (7.17) 

creating a flow, or drift. The random walk of the individual diffusors has then a 
preferred direction along F(r), such that 

(7.18) 



7.2 Path integral Me 201 

instead of 7.11. And the multiplicity K/ is to be determined from 

(7.19) 

instead of the rule 7.12. All other manipulations described in Fig. 7.1 remain 
unaltered. 

A different formulation of the DMC procedure (actually the older one) is known 
as "Green's function Monte Carlo" (GFMC); see, among others, [SKINNER 85]. 

For a recent survey of the DMC method and its applications see [CEPERLEY 96]. 
Current developments may be followed by visiting respective web sites such as 
[CEPERLEY WWW] or [CAVENDISH WWW]. 

7.2 Path Integral Monte Carlo (PIMC) 

Up to now we have only considered the ground state of an isolated quantum system. 
Let us now assume that the object of study is part of a larger system having a finite 
temperature. Then statistical mechanics, in a guise appropriate for quantum sys
tems, enters the stage. Feynman's path integral formalism has proved particularly 
useful in this context. 

Since our quantum system is now in contact with a heat bath of temperature 
kT > 0, it must be in a mixed state consisting of the various eigenstates of the 
energy operator: 

IJI = Len IJIn , where HlJln = En IJIn (7.20) 
n 

The quantum analog of the Boltzmann factor of classical statistical wechanics is 
the density matrix defined by 

n 

(7.21) 
n 

Writing (3 for l/kT, we have for the average of some observable a(r), 

(a) = ! a(r) p{r, r; (3) dr / ! p(r, r; (3) dr == Sp[ap] / Sp[p] (7.22) 

Evidently, the denominator Sp[p] here plays the role of a canonical partition func
tion. If we could simply write down p{r, r; (3) for a quantum system, the road would 
be free for a Monte Carlo simulation along the same lines as in the classical case. 
However, the explicit form of the density matrix is usually quite complex or even 
unknown. Somehow we will have to get along using only the few simple density 
matrices we are prepared to handle. 



202 Chapter 7 Quantum mechanics 

Let us review, therefore, the explicit forms of the density matrix for two very 
simple models - the free particle and the harmonic oscillator. Just for notational 
simplicity the one-dimensional case will be considered. 

Density matrix for the free particle: Let a particle of mass m be confined to 
a box of length L. (We will eventually let L approach 00.) In the absence of an 
external potential the energy operator reads simply 

n2 82 
H=----

2m 8X2 
(7.23) 

and considering the normalization of the eigenfunctions over the interval [-L /2, L /2] 
we have 

with kn == 2~n and E = ~k2 
n 2m n 

(7.24) 

Inserting this in the definition of the density matrix we obtain 

Po(X, x'; (3) = L ~e-ikn(X - x') e-(3n2k;/2m (7.25) 
n 

In the limit L -+ 00 the discrete wave number kn turns into a continuous variable 
k whose differential is approximated by dk :::::: tlk = kn+1 - kn = 27r / L. The sum 
in Po may then be written as an integral, such that 

-00 

Thus we find for the density matrix of the free particle 

[ ]
1/2 I 2 2 

Po(X, X'; (3) = 27r;n2 e -m(x - x) /2(3n (7.27) 

The probability for the particle to be located at x, as given by the diagonal element 
Po(x, X; (3), is obviously independent of X - as it must be for a free particle. 

Density matrix for the harmonic oscillator: A particle of mass m may now 
be moving in a harmonic potential well, 

mw2 
U(x) = _0 x2 

2 
(7.28) 



7.2 Path integral Me 203 

Again determining the eigenfunctions of the energy operator and inserting them 
in the general expression for the density matrix, we find (see, e.g., [KUBO 71]) 

, mwo ,lWo [ 
(3 1<, , ] 1/2 

p(x, x; (3) = trn tanh-2-

{ mwo [( ')2 1 (')2 (3fu..Jo] } ·exp -4/i x + x tanh2(3fu..Jo + x - x coth-2- (7.29) 

For the evaluation of statistical-mechanical averages we require only the diagonal 
elements 

[mwo (3fu..Jo] 1/2 {mwo 2 (3fu..Jo} 
p(x, x; (3) = trn tanh-2- exp -Tx tanh-2- (7.30) 

The trick in the PIMC method is to express the density matrix of any given 
system in terms of the free particle density 7.27. The following transformation 
provides an excuse for doing this: 

n 

n 

L w~(x) e-fJH/2 ! dx"c5(x' - x") e-fJH/2wn (x") = 
n 

L w~(x) e- fJH/2 ! dx" L wm(x') W;"(X") e-JJH/2wn(x") = 
n m 

~ I dx" [~>T!~ (x) ,-,HI' W" (x") 1 [~?:, (x") ,-'HI'wm(x') 1 
Therefore, 

( '. (3) - ! d II ( II. (3) (" '. (3) p x,x, - x p x,x ''2 p x ,x, '2 (7.31 ) 

The expression on the right-hand side is known as a path integral. The beauty 
of it is that the integrand consists of two density matrices pertaining to (3/2, i.e. 
double the original temperature. But the higher the temperature, the smaller will 



204 Chapter 7 Quantum mechanics 

the effect of the potential U (x) be - and the more closely will the respective factor 
in the integrand resemble the density matrix of a free particle. Might there be a 
way to iterate this formal procedure, such that the remaining high-temperature 
density matrices may essentially be equated to the free particle density Po? 

There is such a way. Writing xo, Xl, X2 ... in place of x, x', x", ... , we have the 
strict relation 

p{xo, xPi f3) = f···! dXI dX2 ... dXP-I p{Xo, Xli ~) ... P{XP-I, xpi ~) (7.32) 

The number P of intermediate steps is called the Trotter number. If we only choose 
P large enough - in practice, between 5 and 100 - the following ansatz provides a 
good approximation to the real thing: 

n 

n 

= P (x x . /3) e-(/3/2P) [U(xp) + U(xp+!)] o p, p+!, P (7.33) 

For the diagonal element p(xo, Xo; /3) required to perform averages we find 

with 
mP 

A == 27r/311,2 ' 

P-I 

Uext == L U(xp) / p 
p=o 

and 
A P-I 

7r"", . 2 
Uint == 7f L...J (Xp - Xp+!) 

p=o 

Proceeding now to the more relevant case of three dimensions, we have 

p(ro, ro; /3) = A3P/ 2 ! ... ! drl ... drp_I e -/3(Uint + Uext ) 

with the same A as above, and 

P-I 

Uext == L U(rp)/ P , 
p=o 

(7.34) 

(7.35) 

(7.36) 

(7.37) 

(7.38) 



7.2 Path integral Me 205 

• 
classical quantum mechanical 

Figure 7.2: Classical isomorphism for one particle 

Chandler and Wolynes have pointed out that the expression 7.37 has the shape 
of a classical Boltzmann factor pertaining to a particular kind of ring polymer 
[CHANDLER 81]. The P elements of this polymer are under the influence of an 
external potential 

(7.39) 

Successive links of the ring chain are coupled together by a harmonic bond potential 

An 2 
Uint(Xp, xp+d = --r3 (Xp - xp+d (7.40) 

where we have put Xp = Xo. This so-called classical isomorphism is illustrated in 
Figure 7.2. 

It follows that we may play the old classical Monte Carlo game to obtain quan
tum statistical averages. All we have to do is replace a single particle by a flexible 
ring polymer made up of 5 - 100 links that are coupled according to the pattern 
just described. The PIMC procedure for one particle in an external potential is 
described in Fig. 7.3. 

The strength of the springs acting between successive elements of the polymer, 
as given by k = Pm//32fi2, increases with larger Trotter numbers, while the in
fluence of the external potential will decrease according to Uext(rp) = U(rp)/ P. 
The forceful springs permit only very small displacements per Monte Carlo step, 
although the mild variation of Uext(rp) would allow much larger strides. 

This dilemma may be solved by first moving the entire ring polymer, without 
changing its shape, by a large random step, and subsequently displacing the in
dividual elements relative to each other by a small amount. Another way out is 
to construct the entire ring polymer anew at each time step, sampling the single 
element positions from the narrow multivariate Gauss distribution 

(7.44) 

and to displace the center of mass of the chain by a wide random step. 



206 Chapter 7 Quantum mechanics 

Path integral Monte Carlo for one particle: 

A particle that is under the influence of an external potential U(r) is repre
sented by a ring polymer consisting of P links. Let r == {ro, ... rp-d and the 
according potential energy 

(7.41) 

be given, with 

(7.42) 

(7.43) 

1. Displace r as a whole by .6.r (large); also, move each link rp by a small 
amount .6.rp; the new configuration is called r'. 

2. Compute Upot(r') and .6.U == Upot(r') - Upot(r). 

3. Metropolis step: Draw ~ from an equidistribution in [0,1]; 
if .6.U :::; 0, put r = r'; 
if .6.U > 0 and ~ :::; e-fj f:;.U, put r = r' as well; 
if .6.U > 0 and ~ > e-fj f:;.U, let r remain unchanged. 

4. Return to (1). 

Figure 7.3: PIMC for one particle 



7.2 Path integral Me 207 

The preceding considerations may without any difficulty be generalized to the 
case of N particles interacting by a pair potential u(lrj - ril). Each of these par
ticles has to be represented by a P-element ring chain. Denoting the position of 
element p in chain (=particle) i by ri,p, we have for the diagonal element of the 
total density matrix 

p(ro, ro; (3) = 

[ 
N P-l 1 

A3NP/2 /··.1 drl,l ... drN,p-l exp -An ~ ~ (ri,p - ri,p+d 2 

[ 
13 N P-l 1 

·exp - p ~ f; ~ u(lrj,p - ri,pl) (7.45) 

with ro == {rl,O ... rN,O}. Obviously, the pair potential acts only between respective 
links (p) of different chains. 

EXERCISE: Write a PIMC program treating the case of one particle of mass m in a two
dimensional oscillator potential U(r) = kr2 /2. Let the Trotter number vary between 
2 and 10. Determine the positional probability p(r) of the particle from the relative 
frequency of residence at r, averaged over all chain links. Noting that 

p(r) == p(r, r; (3) (7.46) 

we would expect for the two-dimensional harmonic oscillator (with w5 = kim) 

p(r) = 21l"r [~] e- Ar2 , 
mW5 (3liwo 

where A == -- tanh--
Ii 2 

(7.47) 

(For convenience, put Ii = 1.) Draw several configurations of the ring polymer that occur 
in the course of the simulation. 

Three examples may serve to illustrate the practical application of the PIMC met
hod. 

Parrinello and Rahman studied the behavior of a solvated electron in molten 
KCI [PARRINELLO 84J. The physical question here is whether such electrons are 
localized or smeared out in the quantum manner. (Apart from the theoretical 
interest of such simple quantum systems, solvated electrons may serve as spec
troscopic probes for the microscopic dynamics in polar liquids. And they are an 
attractive playground for trying out the PIMC method.) The simulation yielded 
the definitive answer that electrons in molten KCI are clearly localized. 

Coker et al. investigated the solvation of electrons in simple fluids, in contrast 
to the molten halogenide studied by Parrinello and Rahman. It turns out that an 
electron in liquid helium will be strongly localized, whereas in liquid xenon it has 
quite an extended positional probability (see Fig. 7.4). The probable reason for 
this behavior is that the atomic shell of He is rather rigid and difficult to polarize, 



208 Chapter 7 Quantum mechanics 

Figure 7.4: From Coker et al.: solvated electron a) in liquid helium, b) in liquid 
xenon 

resulting in a strong repulsion experienced by an extra electron. The solvated 
particle is therefore surrounded by rigid walls that confine it much like a cage. In 
contrast, the shells of the larger noble gas atoms are easily polarizable, producing 
a long-ranged dipole potential that adds up to a flat local potential; the solvated 
electron is therefore "quasi-free" [COKER 87]. 

Zoppi and Neumann studied the properties of solid parahydrogen [ZoPP! 91]. 
The kinetic energy contained in the lattice may be measured by neutron scatter
ing, but is also accessible to PIMC simulation. The authors found good agreement 
between experiment and simulation. (Due to its small mass, hydrogen is an em
inently quantum mechanical system; any attempt to calculate the energy along 
classical or semi-classical lines is therefore doomed to failure.) 

A fairly recent survey of PIMC applications is [CEPERLEY 95]. An update to 
this paper and other relevant information may be found at [CEPERLEY WWW]. 



7.3 Wave packet dynamics 209 

7.3 Wave Packet Dynamics (WPD) 

Particles of moderately small mass, such as neon atoms, may not be treated as 
classical point masses, yet do not require a full-fledged quantum mechanical treat
ment. The quantum broadening is small enough to permit simple approximations. 
A useful approach is to represent the wave packet describing the (fuzzy) position 
of the atomic center of some particle k by a Gaussian: 

(7.48) 

where the quadratic form Qk is defined by 

Qk(t) = [r - Rk(t)]T . Ak(t) . [r - Rk(t)] + Pk(t) . [r - Rk(t)] + Dk(t) 

- eI(t)· Ak(t) . ek(t) + Pk(t) . ek(t) + Dk(t) (7.49) 

The center of the packet, then, is located at Rk(t). The matrix Ak(t) describes 
the momentary shape, size and orientation of the wave packet. In the most simple 
case Ak is scalar, making the wave packet spherically symmetric. In general Ak 
describes an ellipsoidal "cloud" with a typical size of about (TLJ /10. The vector 
Pk(t) defines the momentum of the wave packet, and Dk(t) is a phase factor that 
takes care of normalization. 

For easy visualization of the formalism let us consider the one-dimensional case. 
An individual wave packet is described by 

¢>(x, t) = e* Q(t) (7.50) 

where 

Q(t) A(t)[x - X(tW + P(t)[x - X(t)] + D(t) 
= A(t)e(t) + P(t)~(t) + D(t) (7.51) 

(A and D are in general complex; P is real.) The expectation value of the position 
operator x is then given by 

(¢>Ixl¢» == ! dx x ¢>*(x, t)¢>(x, t) = X(t) (7.52) 

and the expected momentum is 

(¢>I - iii! I¢>) = ... = P(t) (7.53) 

Thus the given wave packet indeed represents a semiclassical particle located at 
X(t) and having momentum P(t). 

The assumption of a Gaussian shape for the wave packet has no physical foun
dation. It is made for mathematical convenience, the argument being that any 



210 Chapter 7 Quantum mechanics 

approximation that goes beyond the classical assumption of a mass point (i.e. a 
8-like wave packet) will improve matters. The specific advantage of the Gaussian 
shape as compared to others is that such a wave packet, when subjected to the 
influence of a harmonic potential, will retain its Gaussian shape - albeit with pa
rameters A, P and D that may change with time. But any continuous potential 
may be approximated locally by a quadratic function, i.e. a harmonic potential. 

The wave function 7.48 describes a single particle. In a system of N atoms the 
complete wave function is often approximated by the product 

N 

w(r, t) = II ¢k(r, t) (7.54) 
k=l 

The effects of exchangeability are thus assumed to be negligible - a safe bet when 
dealing with medium-mass atoms such as neon. 

We are now ready to solve the time-dependent Schroedinger equation 

'/iaw(r, t) H'T'( ) - 0 
t at - 'l! r, t - (7.55) 

Following a suggestion of Heller, we apply the minimum principle of Dirac, Frenkel, 
and McLachlan. The DFM principle tells us that the temporal evolution of the 
parameters A k, Pk, and Dk must occur in such a way that the expression 

(7.56) 

will at all times assume its minimum value. 
By applying the tools of variational calculus to this problem, and introducing 

the simplifying assumption that Ak = AkI (spherical Gaussian) one obtains the 
following equations of motion for the quantities Ak, P k, and Dk (omitting the 
particle index k): 

( . 2 2) 2 - [31ii p2 . ] A + m A (~) + (U) + --;;;A - 2m + D 

j>a(~~) + ([J~a) 

(4+ ~A2) ((e)2) + (Ue) + [_3!iA_ :~ +b] (e) 

Here, ( ... ) denotes an expectation value, and 

Uk == 2:! U(rkl)¢i¢1 drl 
1# 

o 

o 

o 

(7.57) 

(7.58) 

(7.59) 

(7.60) 



Density functional MD 211 

is the potential created at rk by the "smeared out" particles t. Singer et al. recom
mend to approximate the given pair potential U (r) by a sum of Gaussian functions; 
in this way the right-hand side of 7.60 can be split up into a sum of simple definite 
integrals. 

The above equations (7.57-7.59) may be cast in a more compact form by intro
ducing auxiliary variables e, d, and Z according to 

e - «(e)2) - (e)2 (7.61) 

d = (Ue) - (U) (e) (7.62) 

and 
mZ 

A==2Z (7.63) 

With It == p 1m, the equations of motion for the position R and the shape param
eter Z read 

.. 2 d 
Z = - --Z 

me 
(7.64) 

They can be solved using any appropriate integration method, such as the St0rmer
Verlet algorithm. 

Singer and Smith applied this procedure to liquid and gaseous neon [SINGER 86]. 
The basic thermodynamic properties could be reproduced in good agreement with 
experimental values. The pair correlation function exhibits a smearing out of its 
peaks, in qualitative accordance with prediction (although rather more pronounced 
than expected) . 

According to quantum mechanical formalism the kinetic energy of the wave 
packets is given by the curvature of ¢k . The shape parameter Ak therefore deter
mines the temperature of the system. It turns out that the temperature calculated 
in this manner is always too high if Ak is allowed to vary between individual wave 
packets. Better agreement with experiment is obtained by the "semi-frozen" ap
proximation, in which all Ak are taken to be equal, changing in unison under the 
influence of a force that is averaged over all particles. 

A more recent application of the WPD method is [KNAUP 99]. However, 
methodological progress for this technique is slow; see [HUBER 88, KOLAR 89, 
HERRERO 95, MARTINEZ 97]. 

7.4 Density Functional Molecular Dynamics 
(DFMD) 

In a pioneering work Car and Parrinello introduced a method that permits a ver
itable dynamical simulation of quantum mechanical systems [CAR 85]. In the 



212 Chapter 7 Quantum mechanics 

context of this "ab initio molecular dynamics" technique the only tribute to clas
sical mechanics is the application of the Born-Oppenheimer approximation. The 
atomic cores (or "ions") consisting of the nucleus and the inner electronic shells are 
assumed to move according to classical laws, their masses being much larger than 
the single electron mass. But the valence and conduction electrons are represented 
by wave functions that are allowed to assume the configuration of least energy in 
the momentary field created by the ions (and by all other valence and conduction 
electrons). Let wi(r) be the - mutually orthonormalized - wave functions of the 
N electrons. The electron density at some position r is then given by 

N 

n(r) == L IWi(r)1 2 (7.65) 
i=l 

The momentary configuration of the (classical) ions is given by the set of ionic 
position vectors, {Rt }. The ions produce a potential field U(r; {Rt }) which the 
electronic wave functions are invited to adjust to. 

The energy of the system depends on the spatially varying electron density and 
on the ion potential U( .. . ). To be exact, the expression for the total energy is 

(7.66) 

with 

E1 = t! dr w;(r) [- 21i~ V2] Wi(r) 
.=1 v 

(7.67) 

E2 = ! drU(r;{Rt})n(r) (7.68) 

v 

E3 = ~ ! ! d d ' n(r) n(r') 
2 r r Ir - r'l 

(7.69) 

v v 

E4 = Exc[n(r)] (7.70) 

E1 gives the kinetic energy of the electrons, and their potential energy in the field 
created by the ions is given by E2. The term E3 accounts for the electrostatic inter
action between the electrons. Finally, Exc stands for "exchange and correlation", 
representing the contribution of quantum mechanical exchange and correlation in
teractions to the total energy. There are various approximate expressions for this 
latter term. The most simple one, which has proved quite satisfactory in this 
context, is the so-called local density approximation (see [CAR 85]). 

In practical work the wave functions wi(r) are usually expanded in terms of 
plane waves, 

Wi(r) = L ci(k)eik . r 

k 

(7.71) 



Density functional MD 213 

with up to several hundred terms per electron. The problem now is to find that set 
of expansion coefficients {ci(k)}, i.e. those wave functions {'lid, which minimize 
the energy functional 7.66. Of course, the orthonormality condition 

J wi(r, t) wj(r, t) dr = 8i j 

v 

(7.72) 

must be met as well. Application of variational calculus to this problem leads to 
the so-called Kohn-Sham equations [KOHN 65] which may be solved by an iterative 
method. However, this procedure is too slow to permit a dynamical simulation. 

Fortunately, we are already in possession of a powerful and efficient method for 
finding the minimum of a many-variable function: simulated annealing. The origi
nal formulation of this technique, as given by Kirkpatrick et al. [KIRKPATRICK 83], 
has been explained in the context of the statistical-mechanical Monte Carlo method 
(see Sec. 3.4.1). It may be employed here without alteration. 

In addition, Car and Parrinello have suggested a variant of simulated annealing 
that is more in keeping with the spirit of dynamical simulation; they called their 
approach "dynamical simulated annealing": 

Let J.L denote an abstract (and at the moment arbitrary) "mass" assigned to 
each electronic wave function Wi . We may then define an equally abstract "kinetic 
energy" pertaining to a temporal change of Wi: 

(7.73) 

The formal analogy to mechanics is carried even further by the introduction of 
a Lagrangian 

L = L ~ J dr l~i(r)12 + ~ L lit,12 - E({Wi}; {R,}) 
• v I 

(7.74) 

Here M is the ionic mass, and the Lagrange multipliers Aij have been introduced 
to allow for the conditions 7.72. Application of the Lagrangian formalism of me
chanics yields the "equations of motion" 

J.L~i(r, t) (7.75) 

(7.76) 



214 Chapter 7 Quantum mechanics 

Equation 7.76 describes the classical dynamics of the ions. The first equation, 
however, represents the abstract "motion" in the space of the electronic degrees 
of freedom. If we keep the "temperature" of this motion, as given by the "kinetic 

energy" (fJ-/2) L l~iI2, small at all times, then the electronic subsystem will always 
remain close to the momentary minimum of the energy surface defined by the slowly 
varying ionic configuration. 

To meet the requirement that the electronic degrees of freedom are to adjust 
quite fast to the varying energy landscape we have to choose the abstract mass fJ
rather small in comparison to the ionic masses. (A good choice is fJ- = 1.0 atomic 
mass unit.) 

If we were to leave the dynamic system 7.75-7.76 to its own devices, the elec
tronic degrees of freedom would gradually assume the temperature of the ionic 
motion. To keep the temperature of the Wi small we may either rescale all ~i 
from time to time or introduce one of the thermostats available from statistical
mechanical simulation; see Sec. 6.3.3. 

The DFMD technique has become a major tool in computational material sci
ence. Current applications may be found by a web search, or in one of the reg
ularly appearing survey articles, such as [VITEK 89, MAKRI 99, MAZZONE 99, 
OHNO 99). 



Chapter 8 

Hydrodynamics 

!7ll 11: lh 
J...,j 1.' Loci. Il' I" 

Fixed and co-moving grids 

The flow field v(r, t) in a compressible viscous fluid obeys the equation of motion 

a 
atPV + V . [pvv] + Vp - p,V . U = 0 (8.1) 

with p, denoting the viscosity, and the Navier-Stokes tensor U defined by 

U = Vv + (Vv)T - ~(V . v)I - 3 (8.2) 

(The coefficient in the last term is dependent on dimensionality; in two dimensions 
it is 1 instead of 2/3.) 

This equation contains both advective (hyperbolic, that is) and diffusive (parabolic) 
terms. For small or vanishing viscosity the advective character is predominant, 
while in the viscous case the diffusive terms dominate. In the stationary case, i.e. 
for a/at = 0, we are dealing with an elliptic equation. 

The Navier-Stokes equation 8.1 is supplemented by the continuity equation for 
the mass, 

ap 
-+V·pv=O at 

215 

(8.3) 

F. J. Vesely, Computational Physics
© Kluwer Academic / Plenum Publishers, New York 2001



216 Chapter 8 Hydrodynamics 

and by the equation for the conservation of energy, 

ae 
at + v . [(e + p)v] = 0 (8.4) 

where 

(8.5) 

denotes the energy density (to ... internal energy per unit mass ofthe fluid). Finally, 
an equation of state p = p(p, to) coupling the pressure to density and thermal energy 
is required. 

Equations 8.1-8.4 describe a perplexing multitude of phenomena, and it is ad
visable to stake out smaller sub-areas. If we make the viscosity negligible we find 
instead of 8.1 an equation describing the motion of an "ideal fluid" (Section 8.1). 
The air flow in the vicinity of an aircraft may be represented in this way. On the 
other hand, by taking into account the viscosity but neglecting the compressibility 
we arrive at equations that describe the flow of real liquids (Section 8.2). 

Equation 8.1 does not contain the influence of gravity. If we add a term pg 
(g .. . acceleration of gravity) the fluid will have a free surface capable of carrying 
waves. To calculate and visualize such phenomena one may use the MAC (marker 
and cell) method (see Section 8.2.3). 

The partial differential equations 8.1-8.4, or their simplified versions, may be 
tackled using the techniques explained in Chapter 5. A quite different approach to 
numerical hydrodynamics has recently been suggested by the study of lattice gas 
models (see Section 8.3). These are a specific type of cellular automata, i.e. 2- or 
3-dimensional bit patterns evolving according to certain rules. 

Related to the lattice gas techniques is the slightly newer "Lattice Boltzmann 
method" of Section 8.3.2. Finally the "Direct Simulation Monte Carlo" technique 
introduced by Bird for the treatment of rarefied gas flow will be described in Section 
8.4. 

8.1 Compressible Flow without Viscosity 

The frictionless flow of a fluid is described by the equations 

ap 
0 (8.6) -+V · pv = at 

apv at + v . [pvv] + Vp 0 (8.7) 

ae 
at + v . [(e + p)v] 0 (8.8) 

In these Eulerian flow equations a laboratory-fixed coordinate system is assumed 



8.1 Compressible inviscid flow 217 

implicitely. The time derivative 0/ ot is to be taken at a fixed point in space. 
However, the properties of a volume element that is moving along with the flowing 
substance will change according to the Lagrange derivative 

d 0 
-:=-+v·V 
dt ot (8.9) 

so that the above equations may alternatively be written in the Lagrange form 

dp 

dt 
dv 

p dt 
de 
dt 

= -pV·v 

-Vp 

= -(e+p)Vp- (v·V)p 

= -e(V · v) - V· (pv) 

(8.10) 

(8.11) 

(8.12) 

Using 8.5 the last equation may be cast into the form 

dE p 
-=--(V·v) 
dt p 

(8.13) 

8.1.1 Explicit Eulerian Methods 

Euler's equations 8.6-8.8 may always be written in the standard conservative
advective form that has been discussed at the beginning of Chapter 5: 

with 

ou _ ojx _ ojy _ ojz 

ot ox oy oz 
(8.14) 

( 
:;~ p ) (~~y) (~~z) pvyvx , jy = pv; + p , jz = pvyvz 
pvzVx pvzvy pv~ + P 

(e + p)vx (e + p)vy (e + p)vz 

(8.15) 

Therefore the entire arsenal of methods given in Chapter 5 for the numerical treat
ment of conservative-advective equations - Lax, Lax-Wendroff, leapfrog - may be 
invoked to solve equ. 8.14. As a simple example let us write down the Lax algo
rithm for the one-dimensional case (see [POTTER 80]): 



218 Chapter 8 Hydrodynamics 

Explicit Euler I Lax: 

pJn+ 1 = 1 (pn + pn ) "2 j+l j-1 

At (n n n n) 
- 2Ax Pj+lvj+l - Pj-1Vj-1 (8.16) 

Pn+lv~+1 = 1 (n n + n n) 
J J "2 Pj+l vj+l Pj-l v j _ 1 

At [n (n )2 + n n (n)2 n] - 2Ax Pj+l Vj+1 Pj+l - Pj-1 Vj _ 1 - Pj-1 (8.17) 

(8.18) 

8.1.2 Particle-in-Cell Method (PIC) 

For simplicity we will here consider an ideal gas. Also, at this level we want to 
avoid having to deal with the effects of thermal conductivity. Our assumption 
therefore is that the gas flows so fast that the adiabatic equation of state holds. In 
a moving mass element of the fluid, then, the quotient pip' = c will be constant -
in other words, its Lagrangian time derivative is zero: 

ac 
-+v·Vc=O 
at 

Together with 8.6 this yields a continuity equation for the quantity pc, 

a 
at [pc] + V . [pcv] = 0 

(8.19) 

(8.20) 

Thus the equations for the inviscid flow of an ideal gas that are to be treated by 
the PIC- (particle in cell-) method read 

ap 
0 (8.21) - + V· (pv) = at 

apv 
-Vp (8.22) - + V· (pvv) = at 

a at (pc) + V . (pcv) 0 (8.23) 

With no harm to generality we may consider the two-dimensional case. First we 
discretize the spatial axes to obtain an Eulerian (lab-fixed) lattice of cells with side 
lengths Ax = Ay = At. A representation of the local density is achieved by filling 



8.1 Compressible inviscid flow 219 

each cell with a variable number of particles; to keep statistical density fluctuations 
low the number of particles in a cell should not be too small. The particles are 
not meant to represent atoms or molecules but "fluid elements" whose properties 
at time tn are described by the vectors 

k= 1, ... N (8.24) 

The net properties of the Eulerian cells are then simply sums over the particles 
they contain: 

n 
Pi,j 

(pv)n. 
',J 

N 

= (::)2L8[rk(i,j)] 
k=1 

N 

= (::)2 t; vk8 [rk(i,j)] 

N 

(pc)~j = (::)2 L ek8 [rk(i, j)] 
k=1 

where we have used the short notation 

8 [r(i,j)] == 8 [int(~l) - i] 8 [int(~l) - j] 

(8.25) 

(8.26) 

(8.27) 

(8.28) 

To update the cell velocities - the velocities within the cells, that is - we write 8.22 
in the form 

8v 8p 
p- = -\1p - v- - \1. (pvv) 

at at 
(8.29) 

and for a moment neglect the last two terms on the right hand side. The remaining 
equation describes the effect of the pressure gradient on the cell velocities. By 
discretizing and using the equation of state to evaluate the cell pressures Pi,j we 
obtain the preliminary new values 

n ( n n) 
vx,i,j - a Pi+1,j - Pi-I,j 

n ( n n) 
Vy,i,j - a Pi,j+1 - Pi,j-I 

with 
a == bot /2(bol)p~j 

(8.30) 

(8.31 ) 

(8.32) 

Each particle (fluid element) k may now be given a new value of the velocity 
and of the quantity c. We assume that the particles simply adopt the properties 
pertaining to the Euler cell they inhabit (local equilibrium), writing 

(8.33) 

Now we attend to the Lagrangian transport terms in equation 8.29. The sim
plest way to account for their effect is to let the fluid particles move along with 
suitable velocities. Defining the time centered cell velocities 

(8.34) 



220 Chapter 8 Hydrodynamics 

we compute the particle velocities by taking a weighted sum over the adjacent 
Eulerian cells: 

n+l/2 _ 1 ~ n+l/2 
v k - (1:::..1)2 ~ a(ij)v(ij) 

(ij) 

(8.35) 

The weights a(ij) are the overlap areas of a square of side length I:::..l centered around 
particle k and the nearest Euler cells (ij). (We have encountered this kind of area 
weighting before, in conjunction with the particle-mesh method of 6.5.2; see Fig. 
6.9.) With the updated positions 

(8.36) 

and the quantities of equ. 8.33 we have completed the new vector of particle 
properties, U~+1. A step-by-step description of the PIC method is given in Figure 
8.1. 

8.1.3 Smoothed Particle Hydrodynamics (SPH) 

The PIC technique is a cross-breed between an Eulerian and a Lagrangian method. 
The velocity change due to pressure gradients is computed using a fixed grid of 
Euler cells, but the transport of momentum and energy is treated a la Lagrange, 
namely by letting the fluid elements (particles) move in continuous space. The 
rationale for switching back and forth between the two representations is that 
equation 8.29 involves a pressure gradient . Tradition has it that gradients are 
most easily evaluated on a regular grid - see 8.30-8.31. In contrast, the transport 
of conserved quantities is simulated quite naturally using a particle picture - see 
8.36. 

However, there have been very fruitful attempts to altogether avoid the use of 
the Euler lattice. All information about the state of the moving fluid is contained 
in the vectors Uk (k = 1, ... N), and steps 1 and 2 in the PIC method (Fig. 8.1) are 
really just a methodological detour through Euler territory, with the sole purpose of 
evaluating density and pressure and differencing the latter. In principle, it should 
be possible to determine the pressure gradients, and thus the forces acting on the 
fluid elements, without ever leaving the particle picture. 

If we abandon Euler cells we have to provide for some consistent representation 
of the spatially continuous fluid density. In the PIC method the average density 
within a cell was determined by the number of point particles in that cell. Lucy 
[Lucy 77] and Gingold and Monaghan [GINGOLD 77, MONAGHAN 92] pointed 
out that by loading each particle with a spatially extended interpolation kernel one 
may define an average density at any point in space as a sum over the individual 
contributions. Let w(r - ri) denote the interpolation kernel centered around the 
position of particle i; the estimated density at r is then 

N 

(p(r)) = L mi w(r - rl) (8.45) 
i=1 



8.1 Compressible inviscid flow 

PIC method (2-dimensional): At time tn the state of the fluid is 
represented by N particles with the property vectors ui: == {ri:, vi:, ci:} 
(k = 1, ... N). In each Eulerian cell of side length Al there should be at 
least ~ 100 particles. 

1. Compute, for each Euler cell (i,j), the cell properties 
N 

P~j = (:;)2 L 0 [ri:(i,j)J 
k=l 

N 

(pv)~j (:;)2 L vi:o [ri:(i,j)J 
k=l 

N 

(pc)~j (:;)2 L ci:o [ri:(i,j)J 
k=l 

(8.37) 

(8.38) 

(8.39) 

2. Using the equation of state to evaluate cell pressures Pi,j, compute 
new (preliminary) flow velocities according to 

vn+1 
X,t,) 

Vn+1 
y,I,] 

n ( n n) Vx,i,j - a Pi+l,j - Pi-l,j 
n ( n n) Vy,i,j - a Pi,j+l - Pi,j-l 

(8.40) 

(8.41 ) 

with a == At /2(AI)p~j' For each fluid particle k we now have v~+l = 

V~+l and cn+1 = pn .j(pn .)"1. ',J k ',J ',J 

3. From the time-centered cell velocities vn+1/2 == [v~+l + v~ .J/ 2 'I.,) I,) t,) 

compute for each particle k an intermediate velocity 

n+l/2 _ 1 '"" n+l/2 ) 
v k -(AI)2~a(ij)v(ij) (8.42 

(ij) 

using suitable weights a(ij) (see text); calculate new particle positions 

r~+l = ri: + At v~+1/2 (8.43) 

4. Each particle is now given the new state vector 

un+1 = {rn+! vn+1 cn+1} 
k - k'k'k 

Figure 8.1: Particle-in-cell method 

(8.44) 

221 



222 Chapter 8 Hydrodynamics 

where mi is the mass of the particle (i.e. the fluid element). More generally, any 
spatially varying property A(r) of the fluid may be represented by its "smoothed 
particle estimate" 

N 

(A(r)) = L mi A((r~)) w(r - rl) 
i=l p r, 

(8.46) 

(where p(ri) now denotes the average 8.45 taken at the position ri). The func
tion w(s), which by the various authors has been called smoothing, broadening, 
weighting or interpolating kernel, is most conveniently assumed to be a Gaussian. 
In three dimensions, then, 

(8.47) 

with an arbitrary width d. If the width is small, the density interpolant will 
fluctuate rather heavily; if it is too large, the summations cannot be restricted to 
nearby particles and thus become time-consuming. In practice one chooses d such 
that the average number of neighboring particles spanned by the Gaussian is about 
5 for two dimensions and 15 in the three-dimensional case. Other functional forms 
than the Gaussian are possible and sometimes even lead to better results. 

We return now to the Lagrangian equations of motion for mass, momentum and 
energy, equs. 8.10,8.11 and 8.13, and try to rewrite them consistently in smoothed 
particle form. In keeping with the somewhat intuitive character of the SPH method, 
various ways of defining the quantity A(r) to be interpolated according to 8.46 
have been tried out. For instance, in the momentum equation dv/dt = -Vplp one 
might interpolate p and Vp directly, inserting the results on the right hand side. 
It turns out that this procedure would not conserve linear and angular momentum 
[MONAGHAN 92]. Instead, one uses the identity 

1 (p) P -Vp=V - +-Vp 
p p p2 

(8.48) 

and the SPH expressions for A == pip and A == p to write the velocity equation as 

(8.49) 

with Wik == w(rik) == w(rk - ri). If Wik is Gaussian, this equation describes the 
motion of particle i under the influence of central pair forces 

( Pk Pi) 2rik 
F ik = -mimk p~ + Pf d:2 Wik (8.50) 

Similar considerations lead to the SPH equivalents of the other Lagrangian flow 
equations, 

N 
dp' L -' = mkv'k· V'W'k dt " , 

k=l 

(8.51) 



8.1 Compressible inviscid flow 223 

N 

d€i " dt = - ~mk {8.52} 
k=l 

The equation of motion for the density P need not be integrated. Instead, equ. 
8.45 may be invoked to find and estimate for the density at ri once all particle 
positions are known. Note that in addition to Pi, Vi and €i the position ri must 
also be updated to complete a time step cycle. The obvious relation 

dri 
dt =Vi {8.53} 

may be used, but Monaghan has shown that the less obvious formula 

N 
dri L mk - = v' + -V'kW'k dt • _.. 

k=l Pik 
{8.54} 

with Pik == (Pi + Pk}/2 leaves angular and linear momentum conservation in
tact while offering the advantage that nearby particles will have similar velocities 
[MONAGHAN 89). 

Equations 8.51, 8.49, 8.53 and 8.52 may be solved simultaneously by some 
suitable algorithm {see Chapter 4}. The leapfrog algorithm has often been applied, 
but the use of predictor-corrector and Runge-Kutta schemes has also been reported. 
One out of many possible integration procedures is the following variant of the half
step technique ([MONAGHAN 89)): 

Given all particle positions at time tn, the local density at ri is computed from 
the interpolation formula 8.45. Writing equs. 8.49 and 8.52 as 

the predictors 

and 

dVi _ F, 
dt - • 

and d€i _ Q' 
dt - • 

{8.55} 

{8.56} 

{8.57} 

are calculated. Mid-point values of ri, Vi and €i are determined according to 

n+l/2 _ ( n + n+l) /2 r i - r i r i {8.58} 

etc. From these, mid-point values of Pi, Fi and Qi are computed and inserted in 
correctors of the type 

{8.59} 

Note that the equation of motion for the density, equ. 8.51, is not integrated 
numerically. Using the interpolation formula for P takes somewhat longer, since 



224 Chapter 8 Hydrodynamics 

Smoothed particle hydrodynamics: At time tn the state of the fluid is repre
sented by N particles with masses mi and the property vectors uf == {rf, vf, Ef} 
(i = 1, ... N). (In the case of an ideal gas undergoing adiabatic flow, the specific 
energy E may be replaced by c == p/p"f = €('Y - 1)/p"f-1 ). A suitable interpolation 
kernel is assumed, e.g. w(s) = (1/1T3/2d3)exp{ _s2 /d2}, with the width d chosen so 
as to span about 5 (in 2 dimensions) or 15 (3-d) neighbors. 

1. At each particle position ri the density Pi is computed by interpolation: 

N 

Pi = L mk w(rik) 
k=l 

(8.60) 

2. From the given equation of state p = p(p, E) compute the pressures Pi 
P(Pi, E;). 

3. Integrate the equations of motion 

dri 
(or equ. 8.54) (8.61) = Vi 

dt 

dVi N (Pk po) (8.62) 
dt - Lmk 2" +-;. 'ViWik 

k=l Pk Pi 

dEi 
N 

-Lmk (Pk po) (8.63) = 2" + -;. Vik' 'ViWik 
dt Pk Pi k=l 

over one time step by some suitable integrator (Runge-Kutta, or the simple 
procedure 8.55-8.59) to obtain 

i = 1, ... N (8.64) 

A modification of this scheme is obtained by including the density Pi in the state 
vector of particle i and integrating the pertinent equation of motion, 8.51. The 
time step integrations for r, v, P and E may then be performed simultaneously, and 
the evaluation of the density according to 8.60 is omitted. This procedure works 
faster, but exact mass conservation is not guaranteed. 

Figure 8.2: Smoothed particle hydrodynamics (SPH) 



8.1 Compressible inviscid flow 225 

the summation in 8.45 has to be performed separately, but mass conservation is 
better fulfilled than by integrating 8.5!. 

Figure 8.2 gives an overview of one time step in a basic version of the SPH 
procedure. 

It should be noted that the SPH technique, although it is here discussed in 
conjunction with compressible inviscid flow, may be applied to other flow problems 
as well. Incompressibility may be handled by using an equation of state that keeps 
compressibility effects below a few percent [MONAGHAN 92]' and the influence of 
viscosity is best accounted for by an additional term in the equations of motions 
for momentum and energy, equs. 8.49 and 8.52, thus: 

(8.65) 

(8.66) 

The artificial viscosity term TIik is modeled in the following way: 

{ 
-ai;k/I.ik + f3J..1.~k 

TIik = Pik 
o 

(8.67) 

with c denoting the speed of sound, J..I. defined by 

(Vik . rik) d 
J..I.ik= 2+2 

Tik 'T/ 
(8.68) 

and the conventions aik == ak - ai and aik == {ai + ak)/2. This form of TI takes 
care of the effects of shear and bulk viscosity. The parameters a and f3 are not 
critical, but should be near a = 1 and f3 = 2 for best results [MONAGHAN 92]. 
The quantity 'T/ prevents singularities for Tik ~ o. It should be chosen according to 
'T/2 = 0.01~. 

Another physical feature that has been excluded from our discussion but may be 
treated in the framework of SPH is thermal conduction. A suitable term represent
ing the exchange of thermal energy between particles is given in [MONAGHAN 89]. 

A long-standing problem in the application of SPH has been the treatment of 
interfaces. The spatial region beyond a boundary has to be populated with particles 
that interact with the particles representing the moving fluid. The properties - in 
particular the velocities - of these dummy particles have to be chosen with care 
such that either a free surface or a "sticky" solid boundary is represented in a 
consistent manner. 

Recently, both the free surface and the no-slip boundary problem have been 
tackled successfully. Nugent and Posch [NUGENT 00] devised a method to treat 
free surfaces, and Ivanov [IVANOV 00] found a way to represent rough interfaces 
in the smoothed particle picture. 



226 Chapter 8 Hydrodynamics 

Figure 8.3: Comparison of Smoothed Particle Hydrodynamics with an Eulerian 
finite-difference calculation. The density (above) and temperature (below) contours 
for a stationary Rayleigh-Benard flow are shown. Left: SPHj right: Euler. (From 
[HOOVER 99], with kind permission by the author) 

A standard test exercise in numerical hydrodynamics is the simulation of "Ray
leigh-Benard" convection: a slab of fluid that is heated from below and cooled from 
above may form stable convective rolls which transport heat from the bottom to 
the top. Figure 8.3 compares the performance of Smoothed Particle Hydrody
namics with that of an Euler-type calculation.[HoovER 99] Computing times are 
comparable for both calculations, and the results are in good agreement. There 
are, of course, no fluctuations in the continuum calculation, in contrast to the 
particle simulation. However, the SPH program is extremely simple, being just 
a MD program with a special kind of interaction, while the effort that goes into 
developing 8. Euler finite-difference scheme is considerable. 

8.2 Incompressible Flow with Viscosity 

Assuming dp/ dt = 0 in 8.3 we find 

V·v=o (8.69) 

The flow of an incompressible liquid is necessarily source-free. Furthermore, 8.69 
implies that 

V· (Vv) + V . (Vvf = V2v 

so that the Navier-Stokes equation now assumes the form 

(8.70) 

(8.71) 



8.2 Incompressible viscous flow 227 

with v:: J.Llp and p:: pip. 
The two classic techniques for the numerical treatment of 8.69 and 8.71 are the 

vorticity and the pressure method. 

8.2.1 Vorticity Method 

Taking the rotation of equ. 8.71 we obtain 

Ow 7ft + (v· V)w = vV2w (8.72) 

where we have introduced the vorticity w :: V x v. We can see that the vorticity 
is transported both by an advective process (v· V w) and by viscous diffusion. 

Since the velocity has no divergence it may be written as the rotation of a 
streaming function u. The definition 

v::Vxu (8.73) 

does not determine the function u uniquely; we are free to require that V . u = O. 
Thus the relations that provide the starting point for the vorticity method read 

Ow 
vV2w (8.74) - + (v· V)w = 

at 
V2u = -w (8.75) 

v = Vxu (8.76) 

In the two-dimensional case the vectors u and w have only z-components and may 
be treated as pseudoscalars: 

ow 
at 

V 2u = -w 

v = uV x ez = 

(8.77) 

(8.78) 

( Oyu) 
-oxu 

(8.79) 

The proven numerical method for solving these equations, a modification of the 
Lax-Wendroff scheme, is described in Figure 8.4. The stability of the method is 
once more governed by the CFL condition (see Section 5.1), 

fj,t < 2fj,l (8.80) 
- V2vmax 

In addition, the presence of diffusive terms implies the restriction 

fj,t < (fj,l)2 
- V 

(8.81) 



228 Chapter 8 Hydrodynamics 

Vorticity method (2-dimensional): 

Let the flow field at time tn be given by uf,j and wf,j. For simplicity, let f:j.y = 
f:j.x == f:j.l. 

1. Auxiliary quantities: 

V~,i,j+1 

V;,i ,j+1 

n+I/2 
wi,j+1 

(8.82) 

(8.83) 

(8.84) 

etc., for the 4 lattice points nearest to (i,j). Thus the viscous terms are 
being neglected for the time being (compare 8.74). 

2. From the Poisson equation 8.75 the streaming function is also determined at 
half-step time, using diagonal differencing (see Section 1.3): 

n+I/2 n+l/2 n+l/2 n n+I/2 _ n+l/2(f:j.1)2 
'Ui ,j+ I + Ui,j-I + Ui+2,j+1 + Ui+2,j-1 - 4Ui+I,j - -Wi+I,j 

3. Now follows the integration step proper, the viscous term included: 

n+I/2 
V .. 

x,'&,) 

n+I/2 
V .. '11,1.,] 

1 (n+l/2 n+I/2) 
2f:j.l Ui,j+1 - Ui,j-I 

1 (n+l/2 n+l/2) 
- 2f:j.l ui+l,j - Ui_l,j 

W~+l n f:j.t n+l/2 (n+I/2 n+I/2) 
',J Wi,j - 2f:j.l Vx,i,j wi+l,j - wi-I,j 

_ f:j.t n+I/2 ( n+I/2 _ n+l/2) 
2f:j.1 Vy,i,j wi,j+1 wi,j-I 

vf:j.t ( n n 4 n) + 2(f:j.l)2 wi+l,j-1 + Wi-I,j-I + wi-I,j+1 + Wi+l,j+l - Wi,j 

Figure 8.4: Vorticity method 

(8.85) 

(8.86) 

(8.87) 

(8.88) 



8.2 Incompressible viscous flow 229 

8.2.2 Pressure Method 

Going back to the Navier-Stokes equation for incompressible flow, we now take the 
divergence (instead of rotation) of 8.71 and use the identity 

V' . (v· V') v = (V'v) : (V'v) 

(with A : B == Li Li AiiBii) to obtain the set of equations 

f)y 
- + (v· V')v 
8t 

V'2p -(V'v) : (V'v) 

which provide the basis for the pressure method. 
In the two-dimensional case these equations read 

8vx 

8t 
8vy 
at 

82- 82~ 
-.!!..+-.!!.. 
8x2 8y2 

(8.89) 

(8.90) 

(8.91) 

(8.92) 

(8.93) 

(8.94) 

When attempting to solve these equations by a finite difference scheme we have to 
make sure that the divergence condition V' . v = 0 will stay intact in the course of 
the calculation. To achieve this, Harlow and Welch have suggested the following 
kind of discretisation ([HARLOW 65], see also [POTTER 80]): 

The grid values of the pressure Pi,i are taken to be localized at the centers of 
the Euler cells, while the velocity components vx,i,i and vy,i,i are placed at the right 
and upper box sides, respectively (see Fig. 8.5). The divergence of the velocity is 
then approximated by 

1 1 
Di,i == fil [Vx,i,i - vx,i-l,il + fil [Vy,i,i - vy,i,i-ll (8.95) 

or, in "geographical" notation, 

1 1 
Dc == fil [vx,c - vx,wl + fil [vy,c - vy,sl (8.96) 

The requirement of vanishing divergence then reads simply Dc = O. 
Using this staggered grid, the Navier-Stokes equations 8.92-8.93 are now treated 

a. la Lax (all terms on the right hand side having the time index n): 

1 fit [ 2 2] = "4 [Vx,N + Vx,E + Vx,s + Vx,wl- 2fil Vx,E - Vx,w 



230 Chapter 8 Hydrodynamics 

• :> 
N 

vy,c 

• Pc • vx,c. 

W C E 
~ 

• S 
~ 

Figure 8.5: Grid structure in the pressure method 

6t [1 1 ] - 261 2 (Vy,E + vy,e) (Vx,N + vx,e) - 2 (vy,s + Vy,SE) (vx,s + vx,e) 

6t v6t 
- 61 (fiE - fie) + (61)2 (Vx,N + Vx,E + vx,s + vx,w - 4vx,e) (8.97) 

n+l _ 1 [ 1 6t [ 2 2 ] Vy,e - 4 Vy,N + Vy,E + Vy,S + Vy,W - 261 Vy,N - vy,s 

6t [1 1 ] - 261 2 (Vx,N + vx,e) (Vy,E + vy,e) - 2 (Vx,NW + vx,w) (vy,w + vy,e) 

6t v6t 
- 61 (fiN - fie) + (61)2 (Vy,N + Vy,E + vy,s + vy,w - 4vy,e) (8.98) 

Inserting the new velocity components in 8.96 we find 

Dn+l _ 1 (Dn Dn Dn Dn) 6t sn 
e - 4 N + E + S + W - 2(61)2 e 

6t 
- (61)2 (fiN + fiE + fis + fi~ - 4fic) 

+ (~~;2 (Dr;. + Dr;; + D'S + D~ - 4Dc) (8.99) 

with 

se == (V;,E - v;,e - v;,w + v;,ww) + (V~,N - v~,e - v~,s + v~,ss) 
1 1 

+2 (Vy,E + vy,e) (Vx,N + vx,c) - 2 (vy,s + Vy,SE) (vx,s + vx,e) 

1 1 - 2 (Vx,NW + vx,w) (vy,e + vy,w) + 2 (vx,w + vx,sw) (Vy,ES + vy,sw) (8.100) 

Next we have to solve the Poisson equation 8.94. If the methods for doing this 
were without error, and if indeed all Df,j and DfJl were zero, we could simply 



8.2 Incompressible viscous flow 231 

write 
PN + PE + Ps + Pw - 4p = -Se (8.101) 

to compute the pressures at each time step. The Lax method by which we have 
produced the new velocities is conservative, meaning that (disregarding machine 
errors) it would fulfill the condition D~j = 0 at all times. However, the Poisson 
solver introduces an error in p~jl which makes D~jl depart from zero. To balance 
this we take into account these non-vanishing values of the divergence at time tn+l 
and write in place of 8.101 

PN + PE + Ps + Pw - 4Pe = -Se + (~it2 (DN + DE + Ds + Dw) 

+v (DN + DE + Ds + Dw - 4De) (8.102) 

In this manner we can prevent a gradual accumulation of errors which would pro
duce spurious compressibility effects in the flow. 

For the pressure method to be stable, once again the conditions 

!::.t < !::.l and!::.t < ~ (!::.l)2 (8.103) 
- v'2lvlmax - 2 v 

must be met. 

8.2.3 Free Surfaces: Marker-and-Cell Method (MAC) 

Thus far we have assumed the liquid to reach up to the vessel walls at all sides. 
A barytropic liquid, however, is capable of spontaneously forming a free surface 
as a boundary against the "vacuum". In the MAC (marker and cell) method 
appropriate boundary conditions are introduced to handle such an open surface. 
The "marker" particles, which primarily serve to distinguish between liquid-filled 
and empty Euler cells, may also be utilized for the graphical representation of the 
shape of the liquid surface. 

To integrate the hydrodynamic equations 

av 
at 

V·v o 
(8.104) 

(8.105) 

one makes use of any of the foregoing techniques - the pressure method seems most 
popular in this context. However, each Euler cell now contains marker particles 
moving along according to the simple law rn+l = rn + v n !::.t, where v1l is a particle 
velocity whose value is determined by interpolation, with suitable weights, from 
the velocities v x , Vy in the adjacent Euler cells [HARLOW 65]. 

The salient point here is the treatment of the Eulerian cells that constitute 
the free surface. There are four possible types of such interfacial cells. Figure 8.6 
shows these four kinds of cells and the respective boundary conditions pertaining 
to the velocity components vx , vy. The boundary conditions for the pressure are 
the same in all cases: p = Pvac, where Pvac is the "external" pressure in the empty 
Euler cells. 



232 Chapter 8 Hydrodynamics 

v y,N=V y,S 
N V y,N=Vy,S N V x,w=V x,E 

weE W C E 

s S 

V D+ 1 -VD x,w- X,W 

N Vy,N=Vy,S N D+l D 
V x,E=V x,E 

W C E W C E 

S v o+1 -vo 
x,w- x,w S 0+1 0 Il 

V y,N=V y,N+g t 
0+1 0 Il 

Vy,S=Vy,S+g t 
n+l n 

V x,E=V x,E 

Figure 8.6: MAC method: the 4 types of surface cells and the appropriate boundary 
conditions for v x , Vy (see POTTER) 

8.3 Lattice Gas Models for Hydrodynamics 

8.3.1 Lattice Gas Cellular Automata 

Cellular automata are one- or two-dimensional bit patterns that evolve in (discrete) 
time according to certain simple rules. The classic example is provided by John 
H. Conway's famous computer game "Life", in which each pixel on a screen is to 
be set or erased depending on the status of the neighboring pixels [EIGEN 82]. 
Informatics [WOLFRAM 86]' evolution theory, and the mathematical theory of 
complexity [WOLFRAM 84] were quick to acquire this discretized representation 
of reality for their respective purposes. The following more physical application is 
just a kind of footnote to the broad theme of cellular automata. 

Hardy, Pomeau and de Pazzis were the first to suggest a model representing a 
two-dimensional flow field in terms of bit patterns. Their "HPP model" works as 
follows [HARDY 73]: 

A two-dimensional region is once more depicted by a grid of Eulerian cells, or 
"points". Each grid point (i, j) may be populated by up to four "particles" whose 
velocities must point into different directions of the compass. The absolute value 
of the velocity is always v = 1. 

Thus the number of possible "states" of a grid point is 24 = 16. An economical 
way to describe the state of the grid point (i, j) is to define a 4-bit (or half
byte) computer word ai,j representing the "empty" or "full" status of the compass 
directions E,N,W,S by one bit each (see Fig. 8.7). However, in many applications 
it is advantageous to combine the bits referring to the same direction at several 
successive grid points into one computer word. For example, in a 16 x 16 grid each 



B.3 Lattice gas models for hydrodynamics 

o o o 

o ... v:.-ffu eo 
I,] 

s 
000 

e n w s 
alj = [ 1 1 0 1 

Figure 8.7: HPP model 

eo no Wo So e l n l WI SI 

e 2 n 2 w2 S2 . . 

. 
. . 

. . . 
e 30 n30 W30 S30 e 31 n 31 W31 S31 

Figure 8.8: Storage methods in the HPP model 

233 

compass direction would be described by a set of 32 words of 1 byte each (see Fig. 
8.8). 

The state of the entire grid at time tn+l follows from the configuration at time 
tn according to a deterministic rule which is comprised of two substeps, free flight 
and scattering. In the free flight phase each particle moves on by one vertex in its 
direction of flight. In the example of Figure 8.8 each "north" bit in the second row 
(i.e. the bits in words n2 and n3), if it had value 1, would be reset to 0, while the 
respective bit above (in words no and nd would be set to 1. Similar translations 
take place for the bit elements of the "south" words, while the I-bits within the 
"east" and "west" words are right- and left-shifted, respectively, by one position. 

In most programming languages logical operations may be performed not only 
with logical variables consisting of single bits, but also with byte-words or even 
integers made up of several bytes. In the above example the new word n~ could be 
computed as 

(8.106) 

with V denoting the bitwise or-operation. 
Analogous commands apply to the s-words. The compass directions e and 

w have to be handled, with this storing arrangement, in a bit-by-bit manner. 
However, nothing prevents us from combining the east and west bits column-wise; 
the translation may then be formulated as simply, and computed as speedily, as 
for north and south. 



234 Chapter 8 Hydrodynamics 

t 
Figure 8.9: Scattering law for the HPP model 

Obviously, one has to invent some plausible procedure for those bits that en
counter any of the boundaries; there may be a law of reflection, or a periodic 
boundary type rule. For example, if the grid is meant to describe the flow field 
in the interior of a horizontal tube, it will make sense to decree that all n-bits in 
the top row are to be transformed into s-bits before the translation takes place: 
this is reflection. At the left and right borders one may assume periodic boundary 
conditions. Reflection laws may also be used to outline the shapes of any obstacles 
that may be present within the flow region. 

Periodic boundary conditions will preserve momentum and energy exactly, 
while in the presence of reflexion the conservation laws can hold only on the aver
age. 

Now for the second step, scattering. If after the translation step a grid point 
is inhabited by two particles, its state is changed according to the rule depicted in 
Fig. 8.9. In all other cases the state remains unaltered. Momentum and energy 
are conserved by this scattering rule. We may write the HPP scattering rule in a 
concise, computer-adapted way as follows: 

a~,j = {e EB u, n EB u, w EB u, s EB u} (8.107) 

where aiJ == {e, n, w, s} is the state of grid point (i, j) before scattering (but after 
translation), and 

u == [(e EB n) 0 (w EB s)]0 [e EB (-,w)] (8.108) 

By 0, EB and -, we denote the logical operators and, exclusive or, and not. (EB differs 
from V in that 1 EB 1 = 0.) Instead of using these operators (and the respective 
computer commands) one may store the set of scattering rules in terms of a lookup 
table. 

Primitive as this model may seem when compared to the usual description 
of the flow field, it proves to be quite relevant for hydrodynamics [FRISCH 86, 
WOLFRAM 86B]. The momentary population number at a grid point defines a 
density at that position, and the sum of velocities at (i,j) may be interpreted as 
a local velocity density in a fluid. By analyzing the foregoing "rules of the game" 
in a spatially and temporally coarse-grained manner one obtains for the averaged 
dynamics of mass and velocity very suggestive formulae that closely resemble the 
continuity and Navier-Stokes equations. The important practical point is that 
in simulating a system by the above rules only logical operations between logical 
or integer variables need be performed. Such calculations are much faster than 



8.3 Lattice gas models for hydrodynamics 235 

~ 
.! . 

·x· ~ + -
~ ~ 

. \. ~ 

~. #.r, I. #.)\ . 

Figure 8.10: Scattering rules in the FHP model 

the floating point operations needed for integrating the differential equations of 
hydrodynamics. 

The still rather crude HPP model may be improved by the introduction of 
hexagonal cells in place of the simple quadratic lattice. In this "FHP model" , thus 
named after the authors Frisch, Hasslacher, and Pomeau [FRISCH 86], there are 
six possible flight directions per grid point - and an accordingly larger number of 
scattering rules (see Figure 8.10). Further refinements of the model make allowance 
for the possibility of particles at rest, which makes for a still richer microdynamics. 

The primary advantage of the FHP model over HPP is the fact that it guar
antees rotational symmetry of the flow distribution, in spite of the discretization 
of particle velocities. In this respect, three-dimensional models require some more 
sophistication: in order to retain rotational symmetry, a four-dimensional face cen
tered hypercubic (FCHC) lattice is set up and used in the propagation and collision 
steps. The results are then mapped onto three dimensions following a rule due to 
[O'HUMIERES]. 

It should be noted that in the basic HPP and FHP models the particles lose 
their identity in the process of scattering (see Figs. 8.9). It seems therefore that one 
cannot determine single particle properties, like velocity autocorrelations, by such 
simulations. However, it is always possible to "tag" some particles and augment 
the scattering law in such a way that in each scattering process the tags are passed 
on in a unique (be it random or deterministic) manner. 

D. Frenkel has used such a procedure to study the long time behavior of the 
velocity autocorrelation function [FRENKEL 90, ERNST 91]. This is a molecular 
property all right, but at long times it will certainly be governed by hydrodynamic 
effects. It is a well underpinned tenet of kinetic theory that the "long time tail" 
of the velocity ACF should decay as ex: C d/ 2 , where d is the spatial dimension (2 
or 3). However, the usual molecular dynamics simulations are not well suited to 
accurately study details of the long time behavior. By a two-dimensional FHP 



236 Chapter 8 Hydrodynamics 

simulation with tagging, Frenkel et al. were able to produce unequivocal proof for 
the expected t-1 decay. 

8.3.2 The Lattice Boltzmann Method 

Here is a promising development that arose from the lattice gas methods explained 
in the previous section. While the HPP and FHP calculations are very fast, they 
are also quite noisy. The fates of many single "particles" have to be followed, and 
many lattice sites have to be bundled together by a coarse-graining procedure, 
until reasonably clean flow patterns can be discerned. Both the computing speed 
and the noise are consequences of the discrete nature of the particle density in 
position-velocity space: at each grid point, any of the allowed discrete velocities 
Ci may be taken by just one or no particle. In the Lattice Boltzmann method this 
latter rule is relaxed, and a floating point number is used to describe the degree 
to which each (r, c)-cell is filled. It turns out that the loss in computing speed by 
the re-introduction of floating point arithmetic is more than compensated by the 
elimination of digital noise. 

For easy notation the density, at time t, at position r and velocity Ci is denoted 
by h(r, t). Let the allowed velocity vectors point to each of the nearest neighbours 
on the lattice, and let their magnitudes be such that after one time step (~t = 1, 
for simplicity) each particle will have arrived at the neighbouring site it aimed 
at. In a two-dimensional lattice square there are eight neighbours; including the 
possibility of particles at rest (i = 0), we are dealing with a set of nine numbers 
[/i(r, t), i = 0,1, ... 8] at each grid point. The appropriate speeds are Icol = 0, 
ICiI = 1 for the four directions along the grid axes, and ICil = .j2 for the diago
nal directions. Similarly, in the 2-D hexagonal (FHP) lattice there are 6 nearest 
neighbours plus one rest particle. Three-dimensional models are again treated in 
the manner introduced by [D'HuMIERES] for lattice gas cellular automata. 

The combined propagation-collision step may be written as 

(8.109) 

where ~i(J) denotes the increase or decrease of Ii due to the collision process. 
In early applications of the LB method the collision term was treated in the 

same way as in the underlying cellular automata model. This means that boolean 
operators were invoked to add or subtract inhabitants of a particular position
velocity cell. Around 1992 it was realized by two groups of authors ([QUIAN 92, 
CHEN 91]) that the LB model may be regarded as a representation of the Navier
Stokes equations, independent of the lattice gas cellular automata which precursed 
it. Following this train of thought, new approximations for the collision term were 
developed, and it turned out that the single time relaxation expression 

(8.110) 



8·4 Direct Simulation Monte Gado 237 

is sufficient to reproduce Navier-Stokes dynamics. Here, l/T is a suitable relaxation 
rate, and ftq denotes an appropriate equilibrium distribution. In the case of the 
2-D hexagonal lattice this distribution is [QUIAN 95, CHEN 94] 

p p 2p 2 P 
12 + 3 ei . v + 3 (ei . v) - '6 . v 2 (8.111) 

P 2 - -pv 
2 

(8.112) 

where ei is a unit vector along Ci, and p and v are the hydrodynamic density and 
flow velocity, respectively: 

p(r, t) = L fi(r, t) pv(r, t) = L c;!i(r, t) (8.113) 

Both compressible and incompressible flow may be treated using the Lattice 
Boltzmann method. Applications range from basic research on the dynamics of 
vortices to applied studies of turbulent channel flow, or oil recovery from sand
stone. A recent survey of methodological refinements and specific applications is 
[QUIAN 95]. 

8.4 Direct Simulation Monte Carlo / Bird 
method 

This not very enlightening name denotes an extremely successful semi-deterministic 
technique for solving flow problems in gases. It was introduced by G. Bird [BIRD 94] 
and further developed by, among others, K. Nanbu [NANBU 83] and F. Alexander, 
A. Garcia and B. Alder [ALEXANDER 95]. Its main area of application used to 
be dilute gas flow, both in earthbound engineering and in space science; recently, 
however, it was shown that the method may be extended so as to apply also to 
dense gases.[ALEXANDER 95] 

There is a large and growing literature on the DSMC method and its applica
tions. The basic method may be acquired by one of the books that contain sample 
codes, [GARCIA 99, BIRD 94]. A recent review is [GARCIA 97]. Search the web 
for the current developments. 

The basic idea of the DSMC method as applied to a dilute gas of hard spheres may 
be sketched as follows: 

1. Divide the sample to be studied into cells of volume Ve , each containing 
Ne ~ 20 - 40 particles whose position and velocity vectors are given. The 
side length of the cells should be smaller than but of the order of the mean free 
path. Boundary conditions appropriate to the problem at hand are defined, 
the most simple ones being specular (reflecting wall) and periodic boundaries. 
A time step D.t smaller than the typical intercollision time is assumed. 



238 Chapter 8 Hydrodynamics 

2. Propagate all particles along their individual velocities according to ri -+ 
ri + Vi tlt, applying the respective boundary conditions. 

3. Within each cell, draw Me pairs of particles (i,j) that are to undergo a 
collision. As this step is at the heart of the method, we have to elaborate a 
bit. 

(a) First of all, the probability of a pair (i, j) to collide is linked only to their 
relative speed Vij == !v j - Vi! and not to their positions. The argument 
for this is that all particles in one cell are within free path range of 
each other. The probability for the pair (i,j) to collide is thus simply 
proportional to the relative speed: Pe( i, j) ex: Vij' Recalling the rejection 
method of Section 3.2.4 we can easily see how to draw pairs (i,j) in 
accordance with this probability density: assuming the maximum of Vij 

for all pairs in the cell to be known, draw a random number ~ from 
a uniform distribution in [0,1] and compare it to Vij/Vmax' However, 
calculating Vmax would amount to the expensive scanning of all pairs 
of particles in the cell. The standard procedure therefore is to use an 
estimated value of v:nax' If that value is larger than the actual Vmax , the 
density Pij is still sampled correctly but with a slightly lower efficiency. 

(b) The total number of collision pairs to be sampled in a cell during one 
time step is determined as follows. For a gas of hard spheres with 
diameter d the average number of pair collisions within the cell is 

Me == Z Ve tlt = p27rcf2(Vrel) Vc tlt 
2 

(8.114) 

where Z is the kinetic collision rate per unit volume, p = Ne/Vc is the 
number density, and (Vrel) is the average relative speed. In order to 
have Me trial pairs survive the rejection procedure of step 3a we have 
to sample 

I 2 d2 I 

M. = M Vmax - P 7r Vmax v: tlt 
trzal- e()- 2 e 

Vrel 
(8.115) 

collisions. 

4. Having identified a pair of collision partners (i,j), perform the actual colli
sion. Since the post-collision velocities are determined by the impact param
eter which is unknown, they must be sampled in a physically consistent way. 
In the hard sphere case this is most easily done by assuming an isotropic 
distribution of the relative velocity Vij after the collision. Since the relative 
speed !Vij! remains unchanged, the problem is reduced to sampling a uni
formly distributed unit vector. Marsaglia's recipe may be used for this (see 
Figure 3.15). 

5. Return to step 2. 



Appendixes 



Appendix A 

Machine Errors 

This book is about algorithms, not machines. Nevertheless we will here display 
a few basic truths about the internal representation of numbers in computers. 
Keeping in mind such details often helps to keep the ubiquitous roundoff errors 
small. 

In a generic 32-bit machine a real number is stored as follows: 

I ± I e (exponent; 8 bits) I m (mantissa; 23 bits) I 
or, in a more usual notation, 

x = ±m . 2e - eo 

• The mantissa m is normalized, i.e. shifted to the left as far as possible, such 
that there is a 1 in the first position; each left-shift by one position makes 
the exponent e smaller by 1. (Since the leftmost bit of m is then known 
to be 1, it need not be stored at all, permitting one further left-shift and a 
corresponding gain in accuracy; m then has an effective length of 24 bits.) 

• The bias eo is a fixed, machine-specific integer number to be added to the 
"actual" exponent e - eo, such that the stored exponent e remains positive. 

EXAMPLE: With a bias of eo = 151 (and keeping the high-end bit of the mantissa) the in
ternal representation ofthe number 0.25 is, using 1/4 = (1.222 ).2-24 and -24+151 = 127, 

~ = I + I 127 I 1 00 ... 00 I 

Before any addition or subtraction the exponents of the two arguments must be 
equalized; to this end the smaller exponent is increased, and the respective man
tissa is right-shifted (decreased). All bits of the mantissa that are thus being 
"expelled" at the right end are lost for the accuracy of the result. The resulting 

241 



242 

I + I 35 I 11 1. .. 1 1 1 I 
I + I 35 I 111... 11 0 I 

= I + I 35 I 0 0 0 ... 0 0 1 I 
= I + 114 1100 ... 000 I 

Appendix A Machine errors 

Figure A.1: Subtraction of two almost equal numbers 

error is called roundoff error. By machine accuracy we denote the smallest num
ber that, when added to 1.0, produces a result #- 1.0. In the above example the 
number 2-22 == 2.38 . 10-7 , when added to 1.0, would just produce a result #- 1.0, 
while the next smaller representable number 2-23 == 1.19· 10-7 would leave not a 
rack behind: 

1.0 I + 1 129 1100 ... 00 1 

+2-22 
I + 11071100 ... 00 1 

1 + 1 129 1100 ... 01 1 

but 

1.0 I + 1 129 1100 . . . 00 1 

+T23 
I + 1 106 1100 ... 00 1 

I + 1 129 1100 .. . 00 1 

A particularly dangerous situation arises when two almost equal numbers have to 
be subtracted. Such a case is depicted in Figure A.1. In the last (normalization) 
step the mantissa is arbitrarily filled up by zeros; the uncertainty of the result is 
50%. 

There is an everyday task in which such small differences may arise: solving 
the quadratic equation ax2 + bx + c = O. The usual formula 

-b ± v'b2 - 4ac 
XI ,2 = 

2a 
(A. 1) 

will yield inaccurate results whenever ac < < b2. Since in writing a program one 
must always provide for the worst possible case, it is recommended to use the 
equivalent but less error-prone formula 

q 
Xl = -, 

a 
C 

X2 =-
q 

(A.2) 



243 

with 

q == -~ [b + sgn(b) v'b2 - 4ac] (A.3) 

EXERCISE: Assess the machine accuracy of your computer by trying various negative pow
ers of 2, each time adding and subtracting the number 1.0 and checking whether the result 
is zero. 



Appendix B 

Discrete Fourier Transformation 

B.l Fundamentals 

We are using the convention 

00 00 

}(v) = ! f(t) e21rivt dt, f(t) = ! }(v) e-2trivt dv (B.1) 

-00 -00 

Assume that the function f(t) is given only at discrete, equidistant values of its 
argument: 

fk == f(tk) == f(kb..t) k = ... - 2,-1,0, 1,2, ... (B.2) 

The reciprocal value of the time increment b..t is called sampling rate. The higher 
the sampling rate, the more details of the given function f(t) will be captured by 
the table of discrete values fk. This intuitively evident fact is put in quantitative 
terms by Nyquist's theorem: if the Fourier spectrum of f(t), 

00 

}(v) == ! f(t)e27rivtdt 

-00 

is negligible for frequencies beyond the critical (or Nyquist) frequency 

1 
±vo==±-

2b..t 

(B.3) 

(B.4) 

then f(t) is called a band-limited process. Such a process is completely determined 
by its sampled values fk. The formula that permits the reconstruction of f(t) from 
the sampled data reads 

f(t) = ~ fk sin[27rvo(t - kb..t)] 
~ 27rvo(t - kb..t) 

k=-oo 

(B.5) 

245 



246 Appendix B Discrete Fourier transformation 

(In contrast, if f(t) is not band-limited, sampling with finite time resolution results 
in "mirroring in" the outlying parts of the spectrum from beyond ±vo, superpos
ing them on the correct spectrum. In signal processing this effect is known as 
"aliasing" .) 

Let us assume now that a finite set of sampled values is given: 

fk, k = 0,1, ... N - 1 (B.6) 

and let N be an even number. Define discrete frequencies by 

n N N 
vn= N~t' n=-2, .. ·,0'''·'2 (B.7) 

(The Vn pertaining to n = N/2 is again the Nyquist frequency.) Then the Fourier 
transform of f(t) at some frequency Vn is given by 

N-l N-l 

j(vn) ~ ~t 2: fke27rivntk = ~t 2: fke27rikn/N (B.8) 
k=O k=O 

Thus it makes sense to define the discrete Fourier transform as 

N-l 

Fn = 2: /ke27rikn/N (B.9) 
k=O 

with N even, and n = 0, ±1, .. . , N /2 

According to B.8 the Fourier transform proper is just j(vn) ~ ~t Fn. 
From the definition of Fn it follows that F_n = FN - n. We make use of this 

periodicity to renumber the Fn such that n runs from 0 to N -1 (instead of -N/2 
to N/2): 

-If, -If + 1, 0, If-I, If, -If+l, -1 

0, If - 1, ±If, If + 1, N-1 

With this indexing convention the back transformation may be conveniently writ
ten 

N-l 

fk = ~ 2: Fne-27rikn/N 
n=O 

(B.lO) 

B.2 Fast Fourier Transform (FFT) 

If we were to use the definition B.9 "as is" to calculate the discrete Fourier trans
form, we would have to perform some N 2 operations. Cooley and Tukey (and before 



B.2 Fast Fourier transformation 247 

them Danielson and Lanczos; see [PRESS 86]) have demonstrated how, by smart 
handling of data, the number of operations may be pushed down to :::::: N log2 N. 
Note that for N = 1000 this is an acceleration of 100 : 1. Indeed, many algorithms 
of modern computational physics hinge on this possibility of rapidly transforming 
back and forth long tables of function values. 

In the following it is always assumed that N = 2m • If N is not a power of 2, 
simply "pad" the table, putting fk = 0 up to the next useful table length. Defining 

(B.ll) 

we realize that W~ = WN / 2 etc. The discrete Fourier transform is therefore 

(B.l2) 
k=O 

N/2-1 N/2-1 
= L W~~2hl+W~ L W~~2hl+1 (B.l3) 

1=0 1=0 

- Fe 
n + W~F~ (B.l4) 

where the indices e and 0 stand for "even" and "odd". Next we treat each of the 
two terms to the right of B.l4 by the same pattern, finding 

Fe = Fee + wn Feo 
n n N/2 n 

FO = Foe + wn FOO 
n n N/2 n 

(B.l5) 
(B.l6) 

By iterating this procedure m = log2 N times we finally arrive at terms FJ"') that 
are identical to the given table values /k. 

EXAMPLE: Putting N = 4 we have W4 == exp[21Ti/4] and 

3 

Fn = L W4'k 1k n = 0, ... 3 
k=O 

1 1 

L Wrlhl + W.r L Wrl hl+l 
1=0 1=0 

F~ + W.rF~ 
F~e + Wr F~O + W.r [F~ + Wr F~O] 
10 + wrh + w.r [h + Wrh] 

(B.17) 

(B.IS) 

(B.19) 

(B.20) 

(B.2I) 

Thus the correspondence between the table values !k and the terms F~e etc. is as follows: 

ee 
o 

eo 
2 

oe 
1 

00 

3 



248 Appendix B Discrete Fourier transformation 

a 4 2 6 1 5 3 7 
m=l a b a b a b a b 

"'-v--" "'-v--" "'-v--" "'-v--" 
m=2 a b a b 

~ ~ 
m=3 a b 

Figure B.1: Decimation for N = 8 

EXERCISE: Demonstrate that a similar analysis as above leads for N = 8 to the corre
spondences 

eee 
o 

eeo 
4 

eoe 
2 

eoo 
6 

oee 
1 

oeo 
5 

ooe 
3 

000 

7 

It is easy to see that this correspondence is reproduced by the following rule: 1) 
put e H a and 0 H 1, such that eeo H 001 etc.; 2) reverse the bit pattern thus 
obtained and interpret the result as an integer number: eeo H 001 H 100 = 4. In 
other words, arrange the table values fk in bit-reversed order. (For example, k = 4 
is at position 1 since 4 = 100 ~ 001 = 1.) 

The correctly arranged fk are now combined in pairs according to B.21. The 
rule to follow in performing this "decimation" step is sketched in Fig. B.1. On 
each level (m) the terms a, b are combined according to 

(B.22) 

It is evident that the number of operations is of order N log2 N. 
Further details of the method, plus sample programs in Pascal, Fortran, or Care 

given in [PRESS 86). 

EXERCISE: Sketch the pattern of Figure B.l for N = 4 and perform the "decimation". 
Compare your result to equ. B.21. 



Bibliography 

[ABRAMOWITZ 65] Abramowitz, M., Stegun, 1. A., eds.: Handbook of Mathematical 
Functions. Dover, New York, 1965. 

[ALDER 57] Alder, B. J. and Wainwright, T. E., J. Chern. Phys. 27 {1957} 1208. 

[ALDER 67] Alder, B. J., and Wainwright, T. E., Phys. Rev. Lett. 18 {1967} 988. 

[ALEXANDER 95] Alexander, F. J., Garcia, A. L., and Alder, B. J., Phys. Rev. Lett. 74 
{1995} 5212. 

[ALLEN 90] Allen, M. P., and Tildesley, D. J.: Computer Simulation of Liquids. Oxford 
University Press, 1990. 

[BARNETT 86] Barnett, R. N., Reynolds, P. J., and Lester, W. A., J. Chern. Phys. 84 
(1986) 4992. 

[BINDER 87] Binder, K.: Applications of the Monte Carlo Method in Statistical Physics. 
Springer, Berlin 1987. 

[BINDER 92] Binder, K.: The Monte Carlo Method in Condensed Matter Physics. 
Springer, Berlin 1992. 

[BIRD 94] Bird, G. A.: Molecular Gas Dynamics and the Direct Simulation of Gas 
Flows. Oxford University Press. 

[BRIGGS 94] Briggs, W. L.: A Multigrid Tutorial. Society for Industrial and Applied 
Mathematics (SIAM), Philadelphia, Pennsylvania 1987,1994. 

[BROOKS 83] Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swami
nathan, S., and Karplus, M., CHARMM: A Program for Macromolecular Energy, 
Minimization, and Dynamics Calculations, J. Compo Chern. 4 {1983} 187-217. 

[CANDY 91] Candy, J., and Rozmus, W., J. Computat. Phys. 92 {1991} 230. 

[CAR 85] Car, R., and Parrinello, M., Phys. Rev. Lett. 55 {1985} 2471. 

[CAVENDISH WWW] Web site on Quantum Monte Carlo Simulations, Cavendish Lab
oratory, University of Cambridge: www.tcm.phy.cam.ac.ukrmdt26/cqmc.html 

[CEPERLEY 80] Ceperley, D. M., and Alder, B. J., Phys. Rev. Lett. 45/7 {1980} 566; 
Science 231 {1986} 555. 

249 



250 Bibliography 

[CEPERLEY 88] Ceperley, D. M., and Bernu, B., J. Chern. Phys. 89 (1988) 6316. 

[CEPERLEY 95] Ceperley, D. M., Path Integrals in the Theory of Condensed Helium. 
Rev. Mod. Phys. 67 (1995) 279. 

[CEPERLEY 96] Ceperley, D. M., and Mitas, L., Quantum Monte Carlo Methods in 
Chemistry, in: Prigogine, I., and Rice, S. A. (Eds.): New Methods in Compu
tational Quantum Mechanics. Advances in Chemical Physics, XCIII. John Wiley, 
New York 1996. 

[CEPERLEY WWW] Web site of the National Center for Supercomputing Applications, 
dept. of Condensed Matter Physics: www.ncsa.uiuc.edu/Apps/CMP/ 

[CHANDLER 81] Chandler, D., and Wolynes, P. G., J. Chern. Phys. 74 (1981) 4078. 

[CHEN 91] Chen, S., Chen, H., Martinez, D., and Matthaeus, W. H., Phys. Rev. Lett. 
67 (1991) 3776. 

[CHEN 94] Chen, S., Doolen, G. D., and Eggert, K. G., Los Alamos Science 22 (1994) 
98. 

[CICERO -44] Cicero, M. T.: De Fato, Book XX. Rome, 44 A.C. Quoted from: Cicero: 
On Fate & Boethius: The Consolation of Philosophy. Edited with Introduction, 
Translation and Commentary by R. W. Sharples. Aris & Phillips Ltd., Warminster, 
England. 

[COKER 87] Coker, D. F., Berne, B. J., and Thirumalai, D., J. Chern. Phys. 86 (1987) 
5689. 

[COLDWELL 74] Coldwell, R. L., J. Computat. Phys. 14 (1974) 223. 

[COOPER 89] Cooper, Necia G.: The beginning of the MC method. In: Cooper, N. G., 
ed.: From Cardinals to Chaos. Reflections on the Life and Legacy of Stanislaw 
Ulam. Cambridge University Press, New York 1989. 

[D'HuMIERES] D'Humieres, D., Lallemand, P., and Frisch, U., Europhys. Lett. 2 (1986) 
1505. 

[DORFMAN 72] Dorfman, J. R., and Cohen, E. G. D., Phys. Rev. A6 (1972) 776. 

[EIGEN 82] Eigen, Manfred, and Winkler, Ruthild: Das Spiel- Naturgesetze steuern den 
Zufall. Piper, Munich/Zurich 1982. (See also: Gardner, M., Scientific American, 
Oct. 1970 and Feb. 1971.) 

[ENGELN 91] Engeln-Muellges, G., and Reutter, F.: Formelsammlung zur Numerischen 
Mathematik mit Standard-FORTRAN 77-Programmen. HI-Verlag, Mannheim, 
1991. 

[ERNST 91] Ernst, M. H., in: Hansen, J.-P., Levesque, D., and Zinn-Justin, J. (eds.): 
Liquides, Cristallisation et Transition Vitreuse. Les Houches, Session LI. North
Holland, Amsterdam 1991. 



Bibliography 251 

[EVANS 86) Evans, D. J.: Nonequilibrium molecular dynamics. In: Ciccotti, G., and 
Hoover, W. G., eds.: Molecular dynamics simulation of statistical-mechanical sys
tems. (Proceedincs, Intern. School of Physics "Enrico Fermi"; course 97) North
Holland, Amsterdam 1986. 

[EWALD 21) Ewald, P. P., Ann. Phys. 64 (1921) 253. 

[FRENKEL 90] Frenkel, D., in: Van Beijeren, H.: Fundamental Problems in Statistical 
Mechanics VII. North-Holland, Amsterdam 1990. 

[FRISCH 86) Frisch, V., Hasslacher, B., and Pomeau, Y., Phys. Rev. Lett. 56 (1986) 
1505. 

[GALLI 90A) Galli, G., and Parrinello, M., J. Phys.: Condensed Matter 2 (1990) SA227. 

[GALLI 90B) Galli, G. et al., Phys. Rev. B 42/12 (1990) 7470. 

[GARCIA 97] Garcia, A. L. , and Baras, F .: Direct Simulation Monte Carlo: Novel Appli
cations and New Extensions. In: Proceedings of the Third Workshop on Modelling 
of Chemical Reaction Systems, Heidelberg (1997). CD-ROM ISBN 3-932217-00-4, 
or download from "www.wenet.netralgarcia/Pubs/". 

[GARCIA 99] Garcia, A. L.: Numerical Methods for Physics. Prentice Hall, New Jersey, 
1999. 

[GEAR 66] Gear, C. W., Argonne Natl. Lab. Report ANL-7126 (1966). 

[GEAR 71] Gear, C. W.: Numerical Initial Value Problems in Ordinary Differential 
Equations. Prentice-Hall, New Jersey 1971. 

[GINGOLD 77] Gingold, R. A., and Monaghan, J. J ., Mon. Not. Roy. Astron. Soc. 181 
(1977) 375. 

[GOLDBERG 89) Goldberg, D. E.: Genetic Algorithms in Search, Optimization and Ma
chine Learning. Addison-Wesley, Reading, MA 1989. 

[GOLDSTEIN 80] Goldstein, H.: Classical Mechanics; Second Edition. Addison-Wesley, 
Reading, Mass., 1980. 

[GUTBROD 99) Gutbrod, F.: New trends in pseudo-random number generation, in: 
Stauffer D. (Ed.), Ann. Rev. Compo Phys. VI, World Scientific, 1999. 

[HANSEN 69] Hansen, J.-P., and Verlet, L., Phys. Rev. 184 (1969) 151. 

[HANSEN 86] Hansen, J.-P., and McDonald, I. R.: Theory of Simple Liquids; 2nd edi
tion. Academic Press, London 1986. 

[HARDY 73] Hardy, J., Pomeau, Y., and de Pazzis, 0., J. Math Phys. 14 (1973) 1746; 
Phys. Rev., A 13 (1976) 1949. 

[HARLOW 65) Harlow, F. H., and Welch, J. E., Phys. Fluids 8 (1965) 2182. 



252 Bibliography 

[HEHRE 86] Hehre, W. J., Radom, L., Schleyer, P. v. R., and Pople, J. A.: Ab initio 
molecular orbital theory. Wiley, New York 1986. 

[HELLER 75] Heller, E. J., J. Chern. Phys. 62 (1975) 1544. 

[HELLER 76] Heller, E. J., J. Chern. Phys. 64 (1976) 63. 

[HERRERO 95] Herrero, C. P., Ramirez, R., Phys. Rev. B 51 (1995) 16761. 

[HEYES 86] Heyes, D. M., Mol. Phys. 57/6 (1986) 1265. 

[HOCKNEY 70] Hockney, R. W.: The potential calculation and some applications, in: 
Alder, B., Fernbach, S., Rotenberg, M. (eds.): Methods in Computational Physics, 
Vol. 9, Plasma Physics. Academic Press, New York/London, 1970. 

[HOCKNEY 81] Hockney, R. W., and Eastwood, J. W.: Computer Simulation Using 
Particles. McGraw-Hill, New York 1981. 

[HOLIAN 87] Holian, B. L., Hoover, W. G., Posch, H. A., Phys. Rev. Lett. 59/1 (1987) 
10. 

[HOLIAN 95] Holian, B. L., Voter, A. F., and Ravelo, R., Phys. Rev. E 52 (1995) 2338. 

[HONERKAMP 91] Honerkamp, J.: Stochastische Dynamische Systeme. Verlag Chemie, 
Weinheim 1991. 

[HOOVER 68] Hoover, W. G., and Ree, F. H., J. Chern. Phys. 49 (1968) 3609. 

[HOOVER 91] Hoover, W. G.: Computational Statistical Mechanics. Elsevier, Amster
dam, Oxford, New York, Tokyo 1991. 

[HOOVER 99] Hoover, W. G.: Time Reversibility, Computer Simulation, and Chaos. 
World Scientific, Singapore, New Jersey, London, Hong Kong 1999. 

[HUBER 88) Huber, D., and Heller, E. J., J. Chern. Phys. 89/8 (1988) 4752. 

[IVANOV 00] Ivanov, D., Doctoral Dissertation, University of Vienna, 2000. 

[JAMES 90] James, F.: A Review of Pseudorandom Generators. CERN-Data Handling 
Division, Rep. No. DD/88/22, 1988. 

[JENNEWEIN 00] Jennewein, Th., Achleitner, U., Weihs, G., Weinfurter, H., and 
Zeilinger, A., Rev. Sci. Instr. 71/4 (2000) 1675. 

[JONES 1711) Jones, William, ed.: Analysis per Quantitatum Series, Fluxiones, ac Dif
ferentias. London 1711. 

[KALOS 74] Kalos, M. H., Levesque, D., and Verlet, L., Phys. Rev. A 138 (1974) 257. 

[KALOS 86] Kalos, M. H., and Whitlock, P. A.: Monte Carlo Methods. Wiley, New York 
1986. 

[KASTENMEIER 86) Kastenmeier, Th., and Vesely, F. J., Robotica 14 (1996) 329. 



Bibliography 253 

[KIRKPATRICK 81] Kirkpatrick, S., and Stoll, E. P., J. Compo Phys. 40 (1981) 517. 

[KIRKPATRICK 83] Kirkpatrick S., Gelatt, C. D., Jr., and Vecchi, M. P., Science 220 
(1983) 671. 

[KNAUP 99] Knaup, M., Reinhard, P.-G., and Toepfer, Ch., Contrib. Plasma Phys. 39 
(1999) 57. 

[KNUTH 69] Knuth, D. E.: The Art of Computer Programming. Addison-Wesley, Read
ing, Massachusetts, 1969. 

[KOHLER 72] Kohler, F., Findenegg, G. H., Fischer, J., Posch, H., and Weissenboeck, 
F.: The Liquid State. Verlag Chemie, Weinheim 1972. 

[KOHN 65] Kohn, W., and Sham, L. J., Phys. Rev. 140 (1965) A1133. 

[KOLAR 89] Kolar, M., and Ali, M. K, J. Chem. Phys. 90/2 (1989) 1036. 

[KOONIN 85] Koonin, S. E.: Computational Physics. Benjamin, New York 1985. 

[KUBO 71] Ryogo Kubo: Statistical Mechanics. North-Holland, Amsterdam/London 
1971. 

[LANDAU 62] Landau, L. D., and Lifschitz, E. M.: Mechanik. Berlin 1962. 

[LANKFORD 90] Lankford, J., and Slavings, R. L., Physics Today, March 1990, p.58. 

[LEVESQUE 69] Levesque, D., and Verlet, L., Phys. Rev. 182 (1969) 307; Phys. Rev. 
A2/6 (1970) 2514; - and Kuerkijaervi, J., Phys. Rev. A7/5 (1973) 1690. 

[Lucy 77] Lucy, L. B., The Astronomical Journal 82/12 (1977) 1013. 

[MACKERRELL 98] MacKerell, A. D., Brooks, B., Brooks, C. L., Nilsson, L., Roux, B., 
Won, Y., and Karplus, M.: CHARMM: The Energy Function and Its Parameteri
zation with an Overview of the Program, in: Schleyer, P. V. R. et aI., editors: The 
Encyclopedia of Computational Chemistry, John Wiley & Sons, Chichester 1998. 

[MAKRI 99] Makri, N., Ann. Rev. Phys. Chem. 50 (1999) 167. 

[MARSAGLIA 72] Marsaglia, G., Ann. Math. Stat. 43/2 (1972) 645. 

[MARSAGLIA 90] Marsaglia, G., and Zaman, A., Stat. & Probab. Letters 8 (1990) 35. 

[MARTYNA 92] Martyna, G. J., Klein, M., and Thckerman, M. J ., Chem. Phys. 97 (1992) 
2635. 

[MARTINEZ 97] Martinez, T. J., Ben-Nun, M., Levine, R. D., J. Phys. Chem. 101 (1997) 
6389. 

[MAZUR 70] Mazur, P., and Oppenheim, I., Physica 50 (1970) 241. 

[MAZZONE 99] Mazzone, A. M., in: Stauffer, D. (Ed.): Ann. Rev. Compo Ph. VI, World 
Scientific, Singapore 1999. 



254 Bibliography 

[McDoNALD 74) McDonald I. R., J. Phys. C: Sol. St. Ph., 7 (1974) 1225. 

[McKEOWN 87) McKeown, P. K, and Newman, D. J.: Computational Techniques in 
Physics. Adam Hilger, Bristol 1987. 

[METROPOLIS 49) Metropolis, N., and Ulam, S., J. Amer. Statist. Assoc. 44 (1949) 335. 

[METROPOLIS 53) Metropolis, N. A., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. 
H., and Teller, E., J. Chern. Phys. 21 (1953) 1087. 

[MEYERS 56) Meyers, H. A. (ed.): Symposium on Monte Carlo Methods. Wiley, New 
York 1956. 

[MONAGHAN 92] Monaghan, J. J., Ann. Rev. Astron. Astrophysics 30 (1992) 543. 

[MONAGHAN 89) Monaghan, J. J., J. Comput. Phys. 82/1 (1989) 1. 

[MORI 65) Mori, H., Prog. theor. Phys. 34 (1965) 399. 

[MULLER 58) Muller, M. E., Math. Tables Aids Compo 63 (1958) 167. 

[NANBU 83) Nanbu, K, J. Phys. Soc. Jpn. 52 (1983) 3382. 

[NERI 88) Neri, F., preprint, Dept. of Physics, Univ. of Maryland, 1988. 

[NEUMANN 86) Neumann, M., J. Chern. Phys. 85 (1986) 1567. 

[NEWTON 1674) Newton, Sir Isaac, quoted from Whiteside, D. T., ed.: The Mathemat
ical Papers of Isaac Newton, Volume IV, 1674-1684. Cambridge University Press, 
1971, p.6. 

[NIEDERREITER 82] Niederreiter, H., in: Grossmann, W" et aI., eds.: Probability and 
Statistical Inference. Reidel, Dordrecht, 1982. 

[NILSSON 90) Nilsson, L. G., and Padro, J. A., Mol. Phys. 71 (1990) 355. 

[NOSE 91) Nose, Sh.: The development of Molecular Dynamics simulations in the 1980s. 
In: Yonezawa, F., Ed.: Molecular Dynamics Simulation. Springer, Berlin 1992. 

[NUGENT 00) Nugent, S., and Posch, H. A., Phys. Rev. E 62/4 (2000), to appear. 

[OHNO 99) Ohno, K, Esfarjani, K, and Kawazoe, Y.: Computational Materials Science 
- From Ab Initio to Monte Carlo Methods. Springer, Berlin 1999. 

[PAPOULIS 81) Papoulis, Athanasios: Probability, Random Variables and Stochastic 
Processes. McGraw-Hill International Book Company, 1981. 

[PARRINELLO 84) Parrinello, Rahman, J. Chern. Phys. 80 (1984) 860. 

[POSCH 89) Posch, H. A., and Hoover, W. G., Phys. Rev. A 39/4 (1989) 2175. 

[POSCH 90) Posch, H. A., Hoover, W. G", and Holian, B. L., Ber. Bunseng. Phys. Chern. 
94 (1990) 250. 



Bibliography 255 

[POSCH 92] Posch, H. A., and Hoover, W. G., in: J. J. C. Texeira-Dias (ed.): Molecular 
Liquids - New Perspectives in Physics and Chemistry. Kluwer Academic, Nether
lands 1992; p. 527. 

[POSCH 97] Posch, H. A., and Hoover, W. G., Phys. Rev. E 55 (1997) 6803. 

[POTTER 80] Potter, D.: Computational Physics. Wiley, New York 1980. 

[PRESS 86] Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: 
Numerical Recipes - The Art of Scientific Computing. Cambridge University Press, 
New York 1986. 

[QUIAN 92] Quian, Y. H., D'Humieres, D., and Lallemand, P., Europhys. Lett. 17 (1992) 
479. 

[QUIAN 95] Quian, Y. H., Succi, S., and Orszag, S., Ann. Rev. Comput. Phys. III (1995) 
195. 

[RAHMAN 64] Rahman, A., Phys. Rev. 136/2A (1964) A405. 

[RAHMAN 71] Rahman, A., Stillinger, F. H., J. Chern. Phys. 55/7 (1971) 3336. 

[RAPAPORT 88] Rapaport, D. C.: Molecular Dynamics: A New Approach to Hydrody-
namics? In: Landau, D. P., Mon, K K, and Schuettler, H.-B., eds.: Springer 
Proceedings in Physics, Vol. 33: Computer Simulation Studies in Condensed Mat
ter Physics. Springer, Berlin 1988. 

[RUTH 83] Ruth, R. D., IEEE Trans. Nucl. Sci. NS-30 (1983) 2669. 

[RVCKAERT 77] Ryckaert, J. P., Ciccotti, G., and Berendsen, H. J. C., J. Compo Phys. 
23 (1977) 327. 

[SINGER 86] Singer, K, and Smith, W., Mol. Phys. 57/4 (1986) 761. 

[SKINNER 85] Skinner, D. W., Moskowitz, J. W., Lee, M. A., Whitlock, P. A., and 
Schmidt, K E., J. Chern. Phys. 83 (1985) 4668. 

[SMITH 90] Smith, D. E., and Harris, C. B., J. Chern. Phys. 92 (1990) 1304. 

[SMITH 96] Smith, W., and Forrester, T. R., J. Molec. Graphics 14 (1996) 136. 

[SMITH WWW] Smith, W., and Forrester, T. R., downloadable software package 
DL.J>OLY: www.dl.ac.uk/TCS/Software/DLPOLY/ 

[STAUFFER 89] Stauffer, D., Hehl, F. W., Winkelmann, V., and Zabolitzky, J. G.: Com-
puter Simulation and Computer Algebra. Springer, Berlin 1989. 

[STOER 89] Stoer, J.: Numerische Mathematik. Springer, Berlin 1989. 

[STOERMER 07] Sti21rmer, C., Arch. Sci. Phys. Nat. Geneve, 1907. 

[STOERMER 21] St0rmer, C., in: Congres International Mathematique Strasbourg. 
Toulouse 1921. 



256 Bibliography 

[SWOPE 82] Swope, W. C., Andersen, H. C., Berens, P. H., and Wilson, K. R, J. Chern. 
Phys. 76 (1982) 637. 

[TAUSWORTHE 65] Tausworthe, R C., Math. Compo 19 (1965) 20l. 

[TOMASSINI 95] Tomassini, M.: A Survey of Genetic Algorithms. In: Ann. Revs. Compo 
Phys., Vol. III, p. 87. World Scientific, Singapore 1995. 

[ULAM 47] Ulam, S., Richtmeyer, R. D., Von Neumann, J., Los Alamos Nat. Lab. Sci. 
Rep. LAMS-551, 1947. 

[VAN GUNSTEREN 84] Van Gunsteren, W. F., and Berendsen, H. J. C., GROMOS Soft
ware Manual. University of Groningen 1984. 

[VERLET 67] Verlet, L., Phys. Rev. 159/1 (1967) 98; ibidem, 165/1 (1968) 20l. 

[VESELY 78] Vesely, F. J.: Computerexperimente an Fluessigkeitsmodellen. Physik Ver
lag, Weinheim 1978. 

[VESELY 82] Vesely, F. J., J. Computat. Phys. 47/2 (1982) 29l. 

[VESELY 84] Vesely, F. J., Mol. Phys. 53 (1984) 505. 

[VINEYARD 62] Vineyard, G. H., Proc. Intern. School of Physics Enrico Fermi, Course 
XVIII (1960). Academic Press, New York 1962. 

[VITEK 89] Vitek, V., Srolovitz, D. J., eds.: Atomistic simulations of materials: Beyond 
pair potentials. Plenum, New York 1989. 

[WENTZCOVICH 91] Wentzcovich, R M., and Martins, J. L., University of Minnesota 
Supercomputer Institute Res. Rep. UMSI 91/13, 1991. 

[WESSELING 92] Wesseling, P.: An Introduction to Multigrid Methods. John Wiley, 
New York 1992. 

[WHITLOCK 79] Whitlock et aI., Phys. Rev. B 19 (1979) 5598. 

[WILKINSON 67] Wilkinson, J. H.: in Klerer, M. and Korn, G. A.(Eds.}: Digital Com
puter User's Handbook, McGraw-Hill, New York 1967. 

[WOLFRAM 84] Wolfram, S., Nature 311 (1984) 419. 

[WOLFRAM 86] Wolfram, S.: Theory and Applications of Cellular Automata. World 
Scientific, 1986. 

[WOLFRAM 86B] Wolfram, S.: J. Statist. Phys. 45/3-4 (1986) 47l. 

[YOSHIDA 93] Yoshida, H., Celest. Mech. Dynam. Astron. 56 (1993) 27. 

[ZOPPI91] Zoppi, M., and Neumann, M., Phys. Rev. B43 (1991) 10242. 



Index 

Adams-Bashforth predictor 99 
Adams-Moulton corrector 99 
AD! method 36, 45, 148 
Advective equation 130 
Alder vortices 162, 163 
Amplification matrix 92 
Angular equidistribution 66 
Anharmonic oscillator 19, 105 
Asymmetrical rule 78 
Autocorrelation 70, 72, 73, 75, 80, 184 
Autoregressive processes 74 
Back substitution 23, 24, 27 
Backward difference 8 
Biased random walk 79, 172 
Boltzmann factor 167, 171, 201 
Boundary value problems 21, 90, 119, 

126 
Box-Muller method 66 
Brownian dynamics 74 
Canonical ensemble 167 
Cellular automata 159, 232 
Central difference 8, 11 
Central mean 8, 11 
Chebysheff acceleration 35 
CIC weighting 220 
Compound probability 54, 62, 69 
Conditional moment 70 
Conditional probability density 54, 63 
Conditional probability 78 
Configurational partition function 167 
Conjugate gradient method 36, 37, 39 
Conservative PDE 127 
Consistency 94 
Continuity equation 127 
Convergence 93 
Courant-Friedlichs-Lowy condition 131, 

227 
Covariance matrix 22, 62, 65 

257 

Covariance 55, 63 
Crank-Nicholson scheme 138, 141 
Cross correlation 55 
Cumulative truncation error 93 
Cyclic reduction 153 
Density matrix 201 
Diagonal differencing 18 
Diagonally dominated matrix 4 
Difference calculus 3 
Difference equations 87 
Difference quotients 12, 88 
Differencing 17, 88 
Differential equations 87 
Diffusion equation 19, 138, 141, 197 
Diffusion Monte Carlo 199 
Diffusion 19, 43 
Direct Simulation Monte Carlo 237 
Dirichlet boundary conditions 44, 144, 

151 
Distribution functions of higher order: 69 
Distribution function 53 
DNGB formulae 14, 17, 96 
DNGF formulae 12, 13, 17, 43, 90, 138 
Downward recursion 30 
DST formulae 15, 17, 43, 94, 106, 122, 

133, 139 
Dufort-Frankel scheme 143 
Eigenvalues 40, 45 
Eigenvectors 40 
Elliptic differential equation 44, 143 
Equation of motion 21 
Equidistribution, angular 66 
Euler equations of flow 216 
Euler-Cauchy algorithm 90, 91, 99 
Euler-Cromer method 117 
Euler-Richardson method 103 
Evaluation step 99 
Ewald-Kornfeld summation 188 



258 

Explicit difference schemes 94 
Explicit scheme for hyperbolic DE 130 
Extrapolation method 104 
FACR method 155, 189 
Fast Fourier transform (FFT) viii, 150, 

155,246 
Ferromagnets 167 
FHP model 235 
Finite differences 3, 21, 44, 159 
Fluxion calculus 87 
Forward difference 7 
Forward substitution 27 
Fourier transform method (FT) 150 
Fourier transformation 245 
FTCS scheme 20, 43, 129, 138 
Gauss elimination 22, 23 
Gauss-Seidel relaxation 32, 34 
Gaussian Markov process 71 
Gaussian process 71 
Genetic Algorithms 5, 81 
GSR method 34 
Half step method 103 
Hard spheres 175 
Harmonic oscillator 18, 89, 93 
Householder Transformation 25 
HPP model 232 
Hydrodynamics 159, 163 
Implicit methods 96 
Implicit scheme 140, 141 
Initial value problems 21, 90, 126 
Internal energy 167 
Inverse iteration 42 
Inverse kinematic problem 180 
Irreversibility paradox 163 
Iterative improvement 31 
Jacobi relaxation 32, 147 
Kramers chains 178 
Ladd's method 188 
Lagrange derivative 217 
Lagrange equations of flow 217 
Langevin equation 48, 72, 119, 164 
Lattice gas 159 
Lax scheme 131, 217, 231 
Lax-Wendroff scheme 135, 227 
Leapfrog (Verlet) 107 
Leapfrog scheme 95, 133 

Lennard-Jones potential 170, 177 
Linear algebra 3, 4, 88, 159 
Linear congruential generators 49 
Linear differential equation 90 
Local truncation error 94 
Long time tail 163 
LV decomposition 26, 28, 31 
Machine accuracy 31 
Marginal distribution 54, 63 
Marker and cell method 231 
Markov chains 78, 171 
Markov processes 71 
Memory function 75, 193 
Microstate 164 
Minimization problem 36 

Index 

Molecular dynamics simulation 103, 159, 
162, 175 

Moments of a probability density 54, 70 
Monte Carlo method 4, 79, 162, 171, 173, 

49 
Multigrid techniques 147 
Multivariate Gauss distribution 62, 205 
Navier-Stokes equation 215, 229, 234 
Nearest grid point rule 189 
Neumann boundary conditions 44, 145, 

151 
NGB interpolation 10, 11, 98, 108, 110 
NGF interpolation 10 
NGF interpolation 9 
Nordsieck formulation,110 
Normal distribution 58 
Nose-Hoover thermostat 178, 181 
N umerov method 117 
Open trapezoidal rule 99 
Ordinary differential equations 18, 89 
Orientation space, equidistribution 66 
Pair correlation function 182 
Partial differential equations 4, 17, 21, 

36, 44, 88, 159, 197, 216 
Particle-in-cell method 218 
Particle-mesh method (PM) 188 
Particle-particle/particle-mesh method (P3M) 

191 
Path integral Monte Carlo 206 
PC method, Nordsieck formulation 110 
Periodic boundary conditions 169 



Index 

Phase space 48, 49 
Phase transition 162 
PIC method 218, 221 
Pivoting 23, 29, 31 
Poisson equation 117, 119,230 
Polarization 167 
Potential equation 44, 143, 148 
Predictor-corrector method (PC) 98, 108, 

177 
Pressure method 227, 229 
Primitive polynomials 51 
Principal axis transformation 63, 64 
Probability density 53, 164, 167 
Quantum chemistry 43 
Quantum mechanics 159 
Random processes 68 
Random walk 49, 62, 77 
Reaction field method 188 
Recursion method 29, 44, 122, 140, 142, 

149 
Rejection method 59 
Relaxation equation 91 
Relaxation method 45, 120, 121, 147 
Relaxation parameter 150 
Reversible Markov chain 78 
Robotics 180 
Roundoff error 94 
Runge-Kutta method, for second order 

DE 112 
Runge-Kutta method 101 
Schroedinger equation 45, 119 
Self-starting algorithm 103, 112 
SHAKE algorithm 178 
Shift register generators 50 
Shooting method 117, 120 
Simulated annealing 5, 81 
Simulation 88 
Single step algorithms 92 
Smoothed particle hydrodynamics 220 
SOR method 32, 34 
Spectral density 55 
Spectral radius 33 
SPH method 220, 224 
ST interpolation 11 
Stability 91, 94 
Stationary random processes 69, 75 

259 

Statistical (in)dependence 54 
Statistical mechanics 48, 159 
Steepest descent method 37 
Stochastic differential equation 72, 77 
Stochastic dynamics 74, 163, 191 
Stochastics 3, 4, 22, 47, 159 
Streaming function 227 
Superparticles 188 
Swope algorithm 107 
Symplectic algorithms 112 
Tausworthe generators 50 
Thermal conduction 19, 43 
Thermodynamic average 164 
Transformation of probability densities 

55 
Triangular matrices 23, 27 
Triangulation 24 
Tridiagonal matrices 29,36,44, 122, 140, 

142, 154 
Unbiased random walk 77 
Upward recursion 30 
Velocity autocorrelation 163, 235 
Velocity Verlet 107 
Verlet algorithm 19, 105, 177 
Vorticity method 227 
Vorticity method 227, 228 
Vorticity 227 
Wave equation 132 
Wiener-Levy process 77 
XOR generators 50 


