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Preface to the Third Edition

It has been a great pleasure for me to have prepared the latest edition of my
book on nonlinear optics. My intrigue in the subject matter of this book is as
strong as it was when the first edition was published in 1992.

The principal changes present in the third edition are as follows: (1) The
book has been entirely rewritten using the SI system of units. I personally
prefer the elegance of the gaussian system of units, which was used in the first
two editions, but I realize that most readers would prefer the SI system, and
the change was made for this reason. (2) In addition, a large number of minor
changes have been made throughout the text to clarify the intended meaning
and to make the arguments easier to follow. I am indebted to the countless
comments received from students and colleagues both in Rochester and from
around the world that have allowed me to improve the writing in this man-
ner. (3) Moreover, several sections that treat entirely new material have been
added. Applications of harmonic generation, including applications within the
fields of microscopy and biophotonics, are treated in Subsection 2.7.1. Elec-
tromagnetically induced transparency is treated in Section 3.8. Some brief but
crucial comments regarding limitations to the maximum size of the intensity-
induced refractive-index change are made in Section 4.7. The use of nonlinear
optical methods for inducing unusual values of the group velocity of light are
discussed briefly in Section 3.8 and in Subsection 6.6.2. Spectroscopy based
on coherent anti—-Stokes Raman scattering (CARS) is discussed in Section
10.5. In addition, the appendix has been expanded to include brief descrip-
tions of both the SI and gaussian systems of units and procedures for conver-
sion between them.

Xiii
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The book in its present form contains far too much material to be covered
within a conventional one-semester course. For this reason, I am often asked
for advice on how to structure a course based on the content of my textbook.
Some of my thoughts along these lines are as follows: (1) I have endeavored
as much as possible to make each part of the book self-contained. Thus, the
sophisticated reader can read the book in any desired order and can read only
sections of personal interest. (2) Nonetheless, when using the book as a course
text, I suggest starting with Chapters 1 and 2, which present the basic formal-
ism of the subject material. At that point, topics of interest can be taught in
nearly any order. (3) Special mention should be made regarding Chapters 3
and 6, which deal with quantum mechanical treatments of nonlinear optical
phenomena. These chapters are among the most challenging of any within the
book. These chapters can be skipped entirely if one is comfortable with estab-
lishing only a phenomenological description of nonlinear optical phenomena.
Alternatively, these chapters can form the basis of a formal treatment of how
the laws of quantum mechanics can be applied to provide detailed descrip-
tions of a variety of optical phenomena. (4) From a different perspective, I am
sometimes asked for my advice on extracting the essential material from the
book—that is, in determining which are topics that everyone should know.
This question often arises in the context of determining what material stu-
dents should study when preparing for qualifying exams. My best response to
questions of this sort is that the essential material is as follows: Chapter 1 in
its entirety; Sections 2.1-2.3, 2.4, and 2.10 of Chapter 2; Subsection 3.5.1 of
Chapter 3; Sections 4.1, 4.6, and 4.7 of Chapter 4; Chapter 7 in its entirety;
Section 8.1 of Chapter 8; and Section 9.1 of Chapter 9. (5) Finally, I often tell
my classroom students that my course is in some ways as much a course on
optical physics as it is a course on nonlinear optics. I simply use the concept
of nonlinear optics as a unifying theme for presenting conceptual issues and
practical applications of optical physics. Recognizing that this is part of my
perspective in writing, this book could be useful to its readers.

I want to express my thanks once again to the many students and colleagues
who have given me useful advice and comments regarding this book over the
past fifteen years. I am especially indebted to my own graduate students for
the assistance and encouragement they have given to me.

Robert Boyd
Rochester, New York
October, 2007



Preface to the Second Edition

In the ten years since the publication of the first edition of this book, the field
of nonlinear optics has continued to achieve new advances both in fundamen-
tal physics and in practical applications. Moreover, the author’s fascination
with this subject has held firm over this time interval. The present work ex-
tends the treatment of the first edition by including a considerable body of
additional material and by making numerous small improvements in the pre-
sentation of the material included in the first edition.

The primary differences between the first and second editions are as fol-
lows.

Two additional sections have been added to Chapter 1, which deals with the
nonlinear optical susceptibility. Section 1.6 deals with time-domain descrip-
tions of optical nonlinearities, and Section 1.7 deals with Kramers—Kronig
relations in nonlinear optics. In addition, a description of the symmetry prop-
erties of gallium arsenide has been added to Section 1.5.

Three sections have been added to Chapter 2, which treats wave-equation
descriptions of nonlinear optical interactions. Section 2.8 treats optical para-
metric oscillators, Section 2.9 treats quasi-phase-matching, and Section 2.11
treats nonlinear optical surface interactions.

Two sections have been added to Chapter 4, which deals with the intensity-
dependent refractive index. Section 4.5 treats thermal nonlinearities, and Sec-
tion 4.6 treats semiconductor nonlinearities.

Chapter 5 is an entirely new chapter dealing with the molecular origin of
the nonlinear optical response. (Consequently the chapter numbers of all the
following chapters are one greater than those of the first edition.) This chap-
ter treats electronic nonlinearities in the static approximation, semiempirical

XV
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models of the nonlinear susceptibility, the nonlinear response of conjugated
polymers, the bond charge model of optical nonlinearities, nonlinear optics of
chiral materials, and nonlinear optics of liquid crystals.

In Chapter 7 on processes resulting from the intensity-dependent refrac-
tive index, the section on self-action effects (now Section 7.1) has been sig-
nificantly expanded. In addition, a description of optical switching has been
included in Section 7.3, now entitled optical bistability and optical switching.

In Chapter 9, which deals with stimulated Brillouin scattering, a discussion
of transient effects has been included.

Chapter 12 is an entirely new chapter dealing with optical damage and mul-
tiphoton absorption. Chapter 13 is an entirely new chapter dealing with ultra-
fast and intense-field nonlinear optics.

The Appendices have been expanded to include a treatment of the gaussian
system of units. In addition, many additional homework problems and litera-
ture references have been added.

I would like to take this opportunity to thank my many colleagues who
have given me advice and suggestions regarding the writing of this book. In
addition to the individuals mentioned in the preface to the first edition, I would
like to thank G. S. Agarwal, P. Agostini, G. P. Agrawal, M. D. Feit, A. L.
Gaeta, D. J. Gauthier, L. V. Hau, F. Kajzar, M. Kauranen, S. G. Lukishova,
A. C. Melissinos, Q-H. Park, M. Saffman, B. W. Shore, D. D. Smith, 1. A.
Walmsley, G. W. Wicks, and Z. Zyss. I especially wish to thank M. Kauranen
and A. L. Gaeta for suggesting additional homework problems and to thank
A. L. Gaeta for advice on the preparation of Section 13.2.



Preface to the First Edition

Nonlinear optics is the study of the interaction of intense laser light with mat-
ter. This book is a textbook on nonlinear optics at the level of a beginning
graduate student. The intent of the book is to provide an introduction to the
field of nonlinear optics that stresses fundamental concepts and that enables
the student to go on to perform independent research in this field. The au-
thor has successfully used a preliminary version of this book in his course at
the University of Rochester, which is typically attended by students ranging
from seniors to advanced PhD students from disciplines that include optics,
physics, chemistry, electrical engineering, mechanical engineering, and chem-
ical engineering. This book could be used in graduate courses in the areas of
nonlinear optics, quantum optics, quantum electronics, laser physics, elec-
trooptics, and modern optics. By deleting some of the more difficult sections,
this book would also be suitable for use by advanced undergraduates. On the
other hand, some of the material in the book is rather advanced and would be
suitable for senior graduate students and research scientists.

The field of nonlinear optics is now thirty years old, if we take its begin-
nings to be the observation of second-harmonic generation by Franken and
coworkers in 1961. Interest in this field has grown continuously since its be-
ginnings, and the field of nonlinear optics now ranges from fundamental stud-
ies of the interaction of light with matter to applications such as laser fre-
quency conversion and optical switching. In fact, the field of nonlinear optics
has grown so enormously that it is not possible for one book to cover all of the
topics of current interest. In addition, since I want this book to be accessible to
beginning graduate students, I have attempted to treat the topics that are cov-
ered in a reasonably self-contained manner. This consideration also restricts

Xvii
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the number of topics that can be treated. My strategy in deciding what topics
to include has been to stress the fundamental aspects of nonlinear optics, and
to include applications and experimental results only as necessary to illustrate
these fundamental issues. Many of the specific topics that I have chosen to
include are those of particular historical value.

Nonlinear optics is notationally very complicated, and unfortunately much
of the notational complication is unavoidable. Because the notational aspects
of nonlinear optics have historically been very confusing, considerable effort
is made, especially in the early chapters, to explain the notational conventions.
The book uses primarily the gaussian system of units, both to establish a con-
nection with the historical papers of nonlinear optics, most of which were
written using the gaussian system, and also because the author believes that
the laws of electromagnetism are more physically transparent when written in
this system. At several places in the text (see especially the appendices at the
end of the book), tables are provided to facilitate conversion to other systems
of units.

The book is organized as follows: Chapter 1 presents an introduction to the
field of nonlinear optics from the perspective of the nonlinear susceptibility.
The nonlinear susceptibility is a quantity that is used to determine the nonlin-
ear polarization of a material medium in terms of the strength of an applied
optical-frequency electric field. It thus provides a framework for describing
nonlinear optical phenomena. Chapter 2 continues the description of nonlin-
ear optics by describing the propagation of light waves through nonlinear op-
tical media by means of the optical wave equation. This chapter introduces the
important concept of phase matching and presents detailed descriptions of the
important nonlinear optical phenomena of second-harmonic generation and
sum- and difference-frequency generation. Chapter 3 concludes the introduc-
tory portion of the book by presenting a description of the quantum mechan-
ical theory of the nonlinear optical susceptibility. Simplified expressions for
the nonlinear susceptibility are first derived through use of the Schrodinger
equation, and then more accurate expressions are derived through use of the
density matrix equations of motion. The density matrix formalism is itself de-
veloped in considerable detail in this chapter in order to render this important
discussion accessible to the beginning student.

Chapters 4 through 6 deal with properties and applications of the nonlinear
refractive index. Chapter 4 introduces the topic of the nonlinear refractive in-
dex. Properties, including tensor properties, of the nonlinear refractive index
are discussed in detail, and physical processes that lead to the nonlinear re-
fractive index, such as nonresonant electronic polarization and molecular ori-
entation, are described. Chapter 5 is devoted to a description of nonlinearities
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in the refractive index resulting from the response of two-level atoms. Related
topics that are discussed in this chapter include saturation, power broaden-
ing, optical Stark shifts, Rabi oscillations, and dressed atomic states. Chapter
6 deals with applications of the nonlinear refractive index. Topics that are
included are optical phase conjugation, self focusing, optical bistability, two-
beam coupling, pulse propagation, and the formation of optical solitons.

Chapters 7 through 9 deal with spontaneous and stimulated light scatter-
ing and the related topic of acoustooptics. Chapter 7 introduces this area by
presenting a description of theories of spontaneous light scattering and by de-
scribing the important practical topic of acoustooptics. Chapter 8 presents a
description of stimulated Brillouin and stimulated Rayleigh scattering. These
topics are related in that they both entail the scattering of light from material
disturbances that can be described in terms of the standard thermodynamic
variables of pressure and entropy. Also included in this chapter is a descrip-
tion of phase conjugation by stimulated Brillouin scattering and a theoreti-
cal description of stimulated Brillouin scattering in gases. Chapter 9 presents
a description of stimulated Raman and stimulated Rayleigh-wing scattering.
These processes are related in that they entail the scattering of light from dis-
turbances associated with the positions of atoms within a molecule.

The book concludes with Chapter 10, which treats the electrooptic and pho-
torefractive effects. The chapter begins with a description of the electrooptic
effect and describes how this effect can be used to fabricate light modulators.
The chapter then presents a description of the photorefractive effect, which is
a nonlinear optical interaction that results from the electrooptic effect. The use
of the photorefractive effect in two-beam coupling and in four-wave mixing
is also described.

The author wishes to acknowledge his deep appreciation for discussions
of the material in this book with his graduate students at the University of
Rochester. He is sure that he has learned as much from them as they have
from him. He also gratefully acknowledges discussions with numerous other
professional colleagues, including N. Bloembergen, D. Chemla, R. Y. Chiao,
J. H. Eberly, C. Flytzanis, J. Goldhar, G. Grynberg, J. H. Haus, R. W. Hell-
warth, K. R. MacDonald, S. Mukamel, P. Narum, M. G. Raymer, J. E. Sipe,
C.R. Stroud, Jr., C. H. Townes, H. Winful, and B. Ya. Zel’dovich. In addition,
the assistance of J. J. Maki and A. Gamliel in the preparation of the figures is
gratefully acknowledged.



Chapter 1

The Nonlinear Optical Susceptibility

1.1. Introduction to Nonlinear Optics

Nonlinear optics is the study of phenomena that occur as a consequence of
the modification of the optical properties of a material system by the pres-
ence of light. Typically, only laser light is sufficiently intense to modify the
optical properties of a material system. The beginning of the field of nonlin-
ear optics is often taken to be the discovery of second-harmonic generation
by Franken et al. (1961), shortly after the demonstration of the first working
laser by Maiman in 1960.* Nonlinear optical phenomena are “nonlinear” in
the sense that they occur when the response of a material system to an ap-
plied optical field depends in a nonlinear manner on the strength of the optical
field. For example, second-harmonic generation occurs as a result of the part
of the atomic response that scales quadratically with the strength of the ap-
plied optical field. Consequently, the intensity of the light generated at the
second-harmonic frequency tends to increase as the square of the intensity of
the applied laser light.

In order to describe more precisely what we mean by an optical nonlinear-
ity, let us consider how the dipole moment per unit volume, or polarization
P (1), of a material system depends on the strength E(¢) of an applied optical

* It should be noted, however, that some nonlinear effects were discovered prior to the advent of
the laser. The earliest example known to the authors is the observation of saturation effects in the
luminescence of dye molecules reported by G.N. Lewis et al. (1941).
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field.* In the case of conventional (i.e., linear) optics, the induced polarization
depends linearly on the electric field strength in a manner that can often be
described by the relationship

P()=exVE®), (1.1.1)

where the constant of proportionality x (! is known as the linear suscepti-
bility and € is the permittivity of free space. In nonlinear optics, the optical
response can often be described by generalizing Eq. (1.1.1) by expressing the
polarization 13(1‘) as a power series in the field strength E (1) as

P =eo[x VE®) +xPEX ) + xVE 1) + -]
=PV +PP0)+PO)+---. (1.1.2)

The quantities x® and x @ are known as the second- and third-order non-
linear optical susceptibilities, respectively. For simplicity, we have taken the
fields ﬁ(t) and E () to be scalar quantities in writing Egs. (1.1.1) and (1.1.2).
In Section 1.3 we show how to treat the vector nature of the fields; in such
a case x1 becomes a second-rank tensor, x ¥ becomes a third-rank tensor,
and so on. In writing Egs. (1.1.1) and (1.1.2) in the forms shown, we have
also assumed that the polarization at time ¢ depends only on the instantaneous
value of the electric field strength. The assumption that the medium responds
instantaneously also implies (through the Kramers—Kronig relations’) that the
medium must be lossless and dispersionless. We shall see in Section 1.3 how
to generalize these equations for the case of a medium with dispersion and
loss. In general, the nonlinear susceptibilities depend on the frequencies of the
applied fields, but under our present assumption of instantaneous response, we
take them to be constants.

We shall refer to P (t) =¢p X(2>E 2(1) as the second-order nonlinear po-
larization and to P (1) =e€ox OF 3(1) as the third-order nonlinear polariza-
tion. We shall see later in this section that physical processes that occur as
a result of the second-order polarization P® tend to be distinct from those
that occur as a result of the third-order polarization P In addition, we shall
show in Section 1.5 that second-order nonlinear optical interactions can occur
only in noncentrosymmetric crystals—that is, in crystals that do not display
inversion symmetry. Since liquids, gases, amorphous solids (such as glass),

* Throughout the text, we use the tilde (~) to denote a quantity that varies rapidly in time. Constant
quantities, slowly varying quantities, and Fourier amplitudes are written without the tilde. See, for
example, Eq. (1.2.1).

f See, for example, Loudon (1973, Chapter 4) or the discussion in Section 1.7 of this book for a
discussion of the Kramers—Kronig relations.
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and even many crystals display inversion symmetry, x ®) vanishes identically
for such media, and consequently such materials cannot produce second-order
nonlinear optical interactions. On the other hand, third-order nonlinear optical
interactions (i.e., those described by a x ) susceptibility) can occur for both
centrosymmetric and noncentrosymmetric media.

We shall see in later sections of this book how to calculate the values of the
nonlinear susceptibilities for various physical mechanisms that lead to optical
nonlinearities. For the present, we shall make a simple order-of-magnitude
estimate of the size of these quantities for the common case in which the non-
linearity is electronic in origin (see, for instance, Armstrong et al., 1962). One
might expect that the lowest-order correction term P would be compara-
ble to the linear response P(1 when the amplitude of the applied field E is of
the order of the characteristic atomic electric field strength Ey = ¢/(dmepa é ),
where —e is the charge of the electron and ag = 4w eghi’/me? is the Bohr ra-
dius of the hydrogen atom (here # is Planck’s constant divided by 277, and m is
the mass of the electron). Numerically, we find that E, = 5.14 x 101! V/m.*
We thus expect that under conditions of nonresonant excitation the second-
order susceptibility x ? will be of the order of x !/ Ey. For condensed mat-
ter x1 is of the order of unity, and we hence expect that x ®) will be of the
order of 1/E, or that

x®~1.94 %1072 m/V. (1.1.3)

2

2> which for condensed

Similarly, we expect x ) to be of the order of x V' /E
matter is of the order of

x® ~3.78 x 1072 m?/V>. (1.1.4)

These predictions are in fact quite accurate, as one can see by comparing these
values with actual measured values of x @ (see, for instance, Table 1.5.3) and
X @) (see, for instance, Table 4.3.1).

For certain purposes, it is useful to express the second- and third-order
susceptibilities in terms of fundamental physical constants. As just noted,
for condensed matter x ! is of the order of unity. This result can be justi-
fied either as an empirical fact or can be justified more rigorously by noting
that x (1 is the product of atomic number density and atomic polarizability.
The number density N of condensed matter is of the order of (ap) 3, and
the nonresonant polarizability is of the order of (ap)®. We thus deduce that
x D is of the order of unity. We then find that ¥ @ ~ (4rep) / m2e> and
x® ~ (4e0)®hn8 /m*e'0. See Boyd (1999) for further details.

* Except where otherwise noted, we use the SI (MKS) system of units throughout this book. The
appendix to this book presents a prescription for converting among systems of units.
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The most usual procedure for describing nonlinear optical phenomena is
based on expressing the polarization P () in terms of the applied electric field
strength E (1), as we have done in Eq. (1.1.2). The reason why the polarization
plays a key role in the description of nonlinear optical phenomena is that a
time-varying polarization can act as the source of new components of the
electromagnetic field. For example, we shall see in Section 2.1 that the wave
equation in nonlinear optical media often has the form

o= n?d’E 1 9*PN-

V“E 202 e o2 (1.1.5)
where 7 is the usual linear refractive index and c is the speed of light in vac-
uum. We can interpret this expression as an inhomogeneous wave equation
in which the polarization PN associated with the nonlinear response drives
the electric field E. Since 82 PNL /812 is a measure of the acceleration of the
charges that constitute the medium, this equation is consistent with Larmor’s
theorem of electromagnetism which states that accelerated charges generate
electromagnetic radiation.

It should be noted that the power series expansion expressed by Eq. (1.1.2)
need not necessarily converge. In such circumstances the relationship between
the material response and the applied electric field amplitude must be ex-
pressed using different procedures. One such circumstance is that of resonant
excitation of an atomic system, in which case an appreciable fraction of the
atoms can be removed from the ground state. Saturation effects of this sort
can be described by procedures developed in Chapter 6. Even under nonreso-
nant conditions, Eq. (1.1.2) loses its validity if the applied laser field strength
becomes comparable to the characteristic atomic field strength Ej, because
of strong photoionization that can occur under these conditions. For future
reference, we note that the laser intensity associated with a peak field strength
of E, is given by

1
Iy= EeocEgt =3.5x 102 W/m?> =3.5 x 10'* W/cm?. (1.1.6)

We shall see later in this book (see especially Chapter 13) how nonlinear
optical processes display qualitatively distinct features when excited by such
super-intense fields.

1.2. Descriptions of Nonlinear Optical Processes

In the present section, we present brief qualitative descriptions of a number
of nonlinear optical processes. In addition, for those processes that can oc-
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FIGURE 1.2.1 (a) Geometry of second-harmonic generation. (b) Energy-level dia-
gram describing second-harmonic generation.

cur in a lossless medium, we indicate how they can be described in terms of
the nonlinear contributions to the polarization described by Eq. (1.1.2).* Our
motivation is to provide an indication of the variety of nonlinear optical phe-
nomena that can occur. These interactions are described in greater detail in
later sections of this book. In this section we also introduce some notational
conventions and some of the basic concepts of nonlinear optics.

1.2.1. Second-Harmonic Generation

As an example of a nonlinear optical interaction, let us consider the process of
second-harmonic generation, which is illustrated schematically in Fig. 1.2.1.
Here a laser beam whose electric field strength is represented as

E(t)=Ee ' +c.c. (1.2.1)

is incident upon a crystal for which the second-order susceptibility x® is
nonzero. The nonlinear polarization that is created in such a crystal is given
according to Eq. (1.1.2) as PA ) =egx P E?(t) or explicitly as

P (1) =2e0x PEE* + (eox P E?e > +c.c.). (1.2.2)

We see that the second-order polarization consists of a contribution at zero fre-
quency (the first term) and a contribution at frequency 2w (the second term).
According to the driven wave equation (1.1.5), this latter contribution can
lead to the generation of radiation at the second-harmonic frequency. Note
that the first contribution in Eq. (1.2.2) does not lead to the generation of elec-
tromagnetic radiation (because its second time derivative vanishes); it leads
to a process known as optical rectification, in which a static electric field is
created across the nonlinear crystal.

* Recall that Eq. (1.1.2) is valid only for a medium that is lossless and dispersionless.
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Under proper experimental conditions, the process of second-harmonic
generation can be so efficient that nearly all of the power in the incident
beam at frequency w is converted to radiation at the second-harmonic fre-
quency 2w. One common use of second-harmonic generation is to convert the
output of a fixed-frequency laser to a different spectral region. For example,
the Nd: YAG laser operates in the near infrared at a wavelength of 1.06 pum.
Second-harmonic generation is routinely used to convert the wavelength of
the radiation to 0.53 um, in the middle of the visible spectrum.

Second-harmonic generation can be visualized by considering the interac-
tion in terms of the exchange of photons between the various frequency com-
ponents of the field. According to this picture, which is illustrated in part (b)
of Fig. 1.2.1, two photons of frequency w are destroyed, and a photon of fre-
quency 2w is simultaneously created in a single quantum-mechanical process.
The solid line in the figure represents the atomic ground state, and the dashed
lines represent what are known as virtual levels. These levels are not energy
eigenlevels of the free atom but rather represent the combined energy of one of
the energy eigenstates of the atom and of one or more photons of the radiation
field.

The theory of second-harmonic generation is developed more fully in Sec-
tion 2.6.

1.2.2. Sum- and Difference-frequency Generation

Let us next consider the circumstance in which the optical field incident upon
a second-order nonlinear optical medium consists of two distinct frequency
components, which we represent in the form

E(t)=Eje " 4+ Eye 2 4 cc. (1.2.3)

Then, assuming as in Eq. (1.1.2) that the second-order contribution to the
nonlinear polarization is of the form

PO ) =eoxPE@), (1.2.4)
we find that the nonlinear polarization is given by
};(2) ([) =€ox 2) [Elzefzia)lt + E%efzia)zt + 2E] Eze*l’(a)l +wy)t

+2E 1 Eje @7 ¢ cc] + 2e0x P[E1ET + E2E3).
(1.2.5)



1.2. Descriptions of Nonlinear Optical Processes 7

It is convenient to express this result using the notation

PP =" P(wp)e ™, (1.2.6)

where the summation extends over positive and negative frequencies w, . The
complex amplitudes of the various frequency components of the nonlinear
polarization are hence given by

PQwy) =eoxPE} (SHG),
PQuwn) =ex@E5 (SHG),
P(w1 +wn) =2¢0x P E1E2  (SFG), (1.2.7)
P(w1 —w) =2e0xPE1E3  (DFG),
P(0) =2¢ox P (EI1E} + E2E3)  (OR).
Here we have labeled each expression by the name of the physical process
that it describes, such as second-harmonic generation (SHG), sum-frequency
generation (SFG), difference-frequency generation (DFG), and optical rectifi-

cation (OR). Note that, in accordance with our complex notation, there is also
a response at the negative of each of the nonzero frequencies just given:

P(201) =exPE{?,  P(=2w)=eox?E}?,

P(—w) —wp) = ZEOX(Z)ETE; P(wy —wy) = ZEOX(Z)EzET.
(1.2.8)
However, since each of these quantities is simply the complex conjugate of

one of the quantities given in Eq. (1.2.7), it is not necessary to take explicit
account of both the positive and negative frequency components.*

* Not all workers in nonlinear optics use our convention that the fields and polarizations are given
by Egs. (1.2.3) and (1.2.6). Another common convention is to define the field amplitudes according to

~ 1 : .
E@) = E(E;e—’“’lf + Ehe™' 2" cc),

1 .
O
n
where in the second expression the summation extends over all positive and negative frequencies.
Using this convention, one finds that
1 1
P'Quwy) = 5eox(z)E’lz, P’ Quy) = 550X<2>E§2,
Pl +w) =exPE[E),  Pl(o] —w)=ecxPEEY,
P'(0) = eox P (E} Ef* + ELELY).

Note that these expressions differ from Eqs. (1.2.7) by factors of %
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We see from Eq. (1.2.7) that four different nonzero frequency components
are present in the nonlinear polarization. However, typically no more than one
of these frequency components will be present with any appreciable intensity
in the radiation generated by the nonlinear optical interaction. The reason for
this behavior is that the nonlinear polarization can efficiently produce an out-
put signal only if a certain phase-matching condition (which is discussed in
detail in Section 2.7) is satisfied, and usually this condition cannot be satisfied
for more than one frequency component of the nonlinear polarization. Oper-
ationally, one often chooses which frequency component will be radiated by
properly selecting the polarization of the input radiation and the orientation
of the nonlinear crystal.

1.2.3.  Sum-Frequency Generation

Let us now consider the process of sum-frequency generation, which is illus-
trated in Fig. 1.2.2. According to Eq. (1.2.7), the complex amplitude of the
nonlinear polarization describing this process is given by the expression

P(w) + wy) =2e0x PE Es. (1.2.9)

In many ways the process of sum-frequency generation is analogous to that of
second-harmonic generation, except that in sum-frequency generation the two
input waves are at different frequencies. One application of sum-frequency
generation is to produce tunable radiation in the ultraviolet spectral region by
choosing one of the input waves to be the output of a fixed-frequency visible
laser and the other to be the output of a frequency-tunable visible laser. The
theory of sum-frequency generation is developed more fully in Sections 2.2
and 2.4.

(a) b ________
o, )
— > o 0, =0 to, 2
)
, X SR R S X
— >
o,

FIGURE 1.2.2 Sum-frequency generation. (a) Geometry of the interaction.
(b) Energy-level description.
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1.2.4. Difference-Frequency Generation

The process of difference-frequency generation is described by a nonlinear
polarization of the form

P(w) — ) =2e0x P E\E} (1.2.10)

and is illustrated in Fig. 1.2.3. Here the frequency of the generated wave is
the difference of those of the applied fields. Difference-frequency generation
can be used to produce tunable infrared radiation by mixing the output of a
frequency-tunable visible laser with that of a fixed-frequency visible laser.
Superficially, difference-frequency generation and sum-frequency gener-
ation appear to be very similar processes. However, an important differ-
ence between the two processes can be deduced from the description of
difference-frequency generation in terms of a photon energy-level diagram
(part (b) of Fig. 1.2.3). We see that conservation of energy requires that
for every photon that is created at the difference frequency w3 = w1 — w;,
a photon at the higher input frequency (w;) must be destroyed and a pho-
ton at the lower input frequency (w») must be created. Thus, the lower-
frequency input field is amplified by the process of difference-frequency
generation. For this reason, the process of difference-frequency generation
is also known as optical parametric amplification. According to the photon
energy-level description of difference-frequency generation, the atom first
absorbs a photon of frequency w; and jumps to the highest virtual level.
This level decays by a two-photon emission process that is stimulated by
the presence of the w, field, which is already present. Two-photon emission
can occur even if the w; field is not applied. The generated fields in such
a case are very much weaker, since they are created by spontaneous two-
photon emission from a virtual level. This process is known as parametric

(a) (b)

w
IH w, =0 —0
©) 3 1 2
o, X _—>
ﬁ

FIGURE 1.2.3 Difference-frequency generation. (a) Geometry of the interaction.
(b) Energy-level description.
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fluorescence and has been observed experimentally (Byer and Harris, 1968;
Harris et al., 1967).

The theory of difference-frequency generation is developed more fully in
Section 2.5.

1.2.5.  Optical Parametric Oscillation

We have just seen that in the process of difference-frequency generation the
presence of radiation at frequency w; or w3 can stimulate the emission of
additional photons at these frequencies. If the nonlinear crystal used in this
process is placed inside an optical resonator, as shown in Fig. 1.2.4, the w;
and/or w3 fields can build up to large values. Such a device is known as an op-
tical parametric oscillator. Optical parametric oscillators are frequently used at
infrared wavelengths, where other sources of tunable radiation are not readily
available. Such a device is tunable because any frequency w; that is smaller
than w; can satisfy the condition wy + w3 = w; for some frequency w3. In
practice, one controls the output frequency of an optical parametric oscillator
by adjusting the phase-matching condition, as discussed in Section 2.7. The
applied field frequency w is often called the pump frequency, the desired out-
put frequency is called the signal frequency, and the other, unwanted, output
frequency is called the idler frequency.

1.2.6. Third-Order Nonlinear Optical Processes
We next consider the third-order contribution to the nonlinear polarization
POt =eoxPVE@)>. (1.2.11)

For the general case in which the field E(r) is made up of several different
frequency components, the expression for P (¢) is very complicated. For
this reason, we first consider the simple case in which the applied field is

/\ o, (signal)
2 3 _—

> )
(pump) _—
@, (idler)

(!)1=(D +0

FIGURE 1.2.4 The optical parametric oscillator. The cavity end mirrors have high
reflectivities at frequencies w; and/or w3. The output frequencies can be tuned by
means of the orientation of the crystal.
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monochromatic and is given by
E(t)=Ecoswt. (1.2.12)

Then, through use of the identity cos® wr = Alf cos 3wt + % cOs wt, wWe can ex-
press the nonlinear polarization as

- 1 3
PO = Zeox(3)83 cos 3wt + Zeox(3)€3 cos wt. (1.2.13)

The significance of each of the two terms in this expression is described briefly
below.

1.2.7. Third-Harmonic Generation

The first term in Eq. (1.2.13) describes a response at frequency 3w that is
created by an applied field at frequency w. This term leads to the process
of third-harmonic generation, which is illustrated in Fig. 1.2.5. According to
the photon description of this process, shown in part (b) of the figure, three
photons of frequency w are destroyed and one photon of frequency 3w is
created in the microscopic description of this process.

1.2.8. Intensity-Dependent Refractive Index

The second term in Eq. (1.2.13) describes a nonlinear contribution to the po-
larization at the frequency of the incident field; this term hence leads to a
nonlinear contribution to the refractive index experienced by a wave at fre-
quency . We shall see in Section 4.1 that the refractive index in the presence
of this type of nonlinearity can be represented as

n=ng+nl, (1.2.14a)
(a) b) ——g---1-
®

w __1__

LN 2 ) 30

3w

_— I

A

FIGURE 1.2.5 Third-harmonic generation. (a) Geometry of the interaction.
(b) Energy-level description.
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9_—
_)_—>n >0

2

FIGURE 1.2.6 Self-focusing of light.

where ng is the usual (i.e., linear or low-intensity) refractive index, where

3
ny=——x" (1.2.14b)
2ngepc

is an optical constant that characterizes the strength of the optical nonlinearity,
and where I = %noeocé’ 2 is the intensity of the incident wave.

Self-Focusing  One of the processes that can occur as a result of the intensity-
dependent refractive index is self-focusing, which is illustrated in Fig. 1.2.6.
This process can occur when a beam of light having a nonuniform transverse
intensity distribution propagates through a material for which n, is positive.
Under these conditions, the material effectively acts as a positive lens, which
causes the rays to curve toward each other. This process is of great practical
importance because the intensity at the focal spot of the self-focused beam is
usually sufficiently large to lead to optical damage of the material. The process
of self-focusing is described in greater detail in Section 7.1.

1.2.9. Third-Order Interactions (General Case)
Let us next examine the form of the nonlinear polarization
PO =eoxPE3 ) (1.2.15a)
induced by an applied field that consists of three frequency components:
E(t) = Eje " 4 Epe™ 2 4 E3e7i3 4 g (1.2.15b)

When we calculate £3(r), we find that the resulting expression contains 44
different frequency components, if we consider positive and negative frequen-
cies to be distinct. Explicitly, these frequencies are

w1, w2, w3, 3w1, 3w, 3ws, (W1 + w2 + w3), (W1 + W2 — w3),
(w1 + w3 —w2), (w2 + w3 —wy), Qo £ w2), Qo £ w3), Cwr £ wy),
Qwr £ w3), CQwsz £ 1), Qwsz £ wy),
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and the negative of each. Again representing the nonlinear polarization as
PO =" P(oy)e ™", (1.2.16)
n
we can write the complex amplitudes of the nonlinear polarization for each of
the positive frequencies as
P(w1) = eox P (3EIE} + 6E2E5 + 6E3E}) Ey,
P(w) = eox P (6EIE} + 3E2E5 + 6E3E}) Ea,
P(w3) = eox P (6EIET + 6E2E5 + 3E3E}) Es,
PGBo) =eoxVE], PG =exVE,  PGws) =ecoxVE3,

P (01 + w2 + w3) = 6e0x P E1 E> E3,
P(w1 + 0y — w3) = 660V E| Ey Ef,
P(w1 + w3 — w)) = 6€0x Y E| E3E3,
P(wr + w3 — w1) = 6e0x P E2E3EF,

PQw; +w) =3eox P ETE,, PQw; +w3) = 3eox P ETEs,
PQRwr+ w)) = 3€0X(3)E%E1, PQRwr + w3) = 3€0X(3)E%E3,
PQws+w1) =3¢xVEJE;,  PQuws+aw) =3cxVESEs,
PQw — ) =3eox P EIES, PQw; — w3) =3eox Y ETES,
PQwy — w1) =3eox P ESE}, PQwy — w3) =3eox P ESES,
PQw; —w) =3eox P ESE}, P Qw3 — wp) =3eox P EZE;
(1.2.17)

We have displayed these expressions in complete detail because it is very
instructive to study their form. In each case the frequency argument of P
is equal to the sum of the frequencies associated with the field amplitudes
appearing on the right-hand side of the equation, if we adopt the convention
that a negative frequency is to be associated with a field amplitude that appears
as a complex conjugate. Also, the numerical factor (1, 3, or 6) that appears in
each term on the right-hand side of each equation is equal to the number of
distinct permutations of the field frequencies that contribute to that term.

Some of the nonlinear optical mixing processes described by Eq. (1.2.17)
are illustrated in Fig. 1.2.7.

1.2.10. Parametric versus Nonparametric Processes

All of the processes described thus far in this chapter are examples of what
are known as parametric processes. The origin of this terminology is obscure,
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(@)

O —> 0, =0 +0,+0,
3

0, > 2@ -y

0, >

(b)

0 —> 0, =0 +0, -0,
3 ;

0, —> X _

0, — >

FIGURE 1.2.7 Two of the possible mixing processes described by Eq. (1.2.17) that
can occur when three input waves interact in a medium characterized by a x® sus-
ceptibility.

but the word parametric has come to denote a process in which the initial and
final quantum-mechanical states of the system are identical. Consequently, in
a parametric process population can be removed from the ground state only
for those brief intervals of time when it resides in a virtual level. According
to the uncertainty principle, population can reside in a virtual level for a time
interval of the order of /i/§ E, where § E is the energy difference between the
virtual level and the nearest real level. Conversely, processes that do involve
the transfer of population from one real level to another are known as non-
parametric processes. The processes that we describe in the remainder of the
present section are all examples of nonparametric processes.

One difference between parametric and nonparametric processes is that
parametric processes can always be described by a real susceptibility; con-
versely, nonparametric processes are described by a complex susceptibility
by means of a procedure described in the following section. Another differ-
ence is that photon energy is always conserved in a parametric process; photon
energy need not be conserved in a nonparametric process, because energy can
be transferred to or from the material medium. For this reason, photon en-
ergy level diagrams of the sort shown in Figs. 1.2.1, 1.2.2, 1.2.3, 1.2.5, and
1.2.7 to describe parametric processes play a less definitive role in describing
nonparametric processes.
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As a simple example of the distinction between parametric and nonpara-
metric processes, we consider the case of the usual (linear) index of refrac-
tion. The real part of the refractive index describes a response that occurs as a
consequence of parametric processes, whereas the imaginary part occurs as a
consequence of nonparametric processes. This conclusion holds because the
imaginary part of the refractive index describes the absorption of radiation,
which results from the transfer of population from the atomic ground state to
an excited state.

1.2.11. Saturable Absorption

One example of a nonparametric nonlinear optical process is saturable absorp-
tion. Many material systems have the property that their absorption coefficient
decreases when measured using high laser intensity. Often the dependence of
the measured absorption coefficient @ on the intensity / of the incident laser
radiation is given by the expression*
ap
o=—-,
14+ 1/1

where «q is the low-intensity absorption coefficient, and I is a parameter
known as the saturation intensity.

(1.2.18)

Optical Bistability One consequence of saturable absorption is optical bista-
bility. One way of constructing a bistable optical device is to place a saturable
absorber inside a Fabry—Perot resonator, as illustrated in Fig. 1.2.8. As the
input intensity is increased, the field inside the cavity also increases, lowering
the absorption that the field experiences and thus increasing the field inten-
sity still further. If the intensity of the incident field is subsequently lowered,
the field inside the cavity tends to remain large because the absorption of the
material system has already been reduced. A plot of the input-versus-output
characteristics thus looks qualitatively like that shown in Fig. 1.2.9. Note that

1 1
in saturable out
> absorber ;

FIGURE 1.2.8 Bistable optical device.

* This form is valid, for instance, for the case of homogeneous broadening of a simple atomic
transition.
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FIGURE 1.2.9 Typical input-versus-output characteristics of a bistable optical device.

over some range of input intensities more than one output intensity is possible.
The process of optical bistability is described in greater detail in Section 7.3.

1.2.12.  Two-Photon Absorption

In the process of two-photon absorption, which is illustrated in Fig. 1.2.10,
an atom makes a transition from its ground state to an excited state by the
simultaneous absorption of two laser photons. The absorption cross section o
describing this process increases linearly with laser intensity according to the
relation

o=0P1, (1.2.19)

where 0@ is a coefficient that describes strength of the two-photon-
absorption process. (Recall that in conventional, linear optics the absorption
cross section o is a constant.) Consequently, the atomic transition rate R due
to two-photon absorption scales as the square of the laser intensity. To justify
this conclusion, we note that R = o I /fiw, and consequently that

@2

R= . 1.2.20
P ( )

FIGURE 1.2.10 Two-photon absorption.
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(a) ()
® Raman |%s =@~ 9y
> medium 3

FIGURE 1.2.11 Stimulated Raman scattering.

Two-photon absorption is a useful spectroscopic tool for determining the po-
sitions of energy levels that are not connected to the atomic ground state by a
one-photon transition. Two-photon absorption was first observed experimen-
tally by Kaiser and Garrett (1961).

1.2.13.  Stimulated Raman Scattering

In stimulated Raman scattering, which is illustrated in Fig. 1.2.11, a photon
of frequency w is annihilated and a photon at the Stokes shifted frequency
ws = w — wy is created, leaving the molecule (or atom) in an excited state with
energy Awy. The excitation energy is referred to as w, because stimulated Ra-
man scattering was first studied in molecular systems, where %, corresponds
to a vibrational energy. The efficiency of this process can be quite large, with
often 10% or more of the power of the incident light being converted to the
Stokes frequency. In contrast, the efficiency of normal or spontaneous Raman
scattering is typically many orders of magnitude smaller. Stimulated Raman
scattering is described more fully in Chapter 10.

Other stimulated scattering processes such as stimulated Brillouin scatter-
ing and stimulated Rayleigh scattering also occur and are described more fully
in Chapter 9.

1.3. Formal Definition of the Nonlinear Susceptibility

Nonlinear optical interactions can be described in terms of a nonlinear po-
larization given by Eq. (1.1.2) only for a material system that is lossless and
dispersionless. In the present section, we consider the more general case of a
material with dispersion and/or loss. In this more general case the nonlinear
susceptibility becomes a complex quantity relating the complex amplitudes of
the electric field and polarization.
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We assume that we can represent the electric field vector of the optical wave
as the discrete sum of a number of frequency components as

Er.n=Y E.r.0), (13.1)

where
E,(r,t) =E,(r)e " +c.c. (13.2)

The prime on the summation sign of Eq. (1.3.1) indicates that the summation
is to be taken over positive frequencies only. It is also convenient to define the
spatially slowly varying field amplitude A,, by means of the relation

E,(r) = A,e*T, (1.3.3)
so that
Er =Y A®ren e, (1.3.4)
n

On occasion, we shall express these field amplitudes using the alternative no-
tation

E,=E(w,) and A, =A(w,), (1.3.5)
where
E(—w,) =E(w,)* and A(—wy,) =A(w,)*. (1.3.6)

Using this new notation, we can write the total field in the more compact form

E(r, 1) = Z E(w,)e !

n

= Awp)e!*rrment), (1.3.7)
n

where the unprimed summation symbol denotes a summation over all fre-
quencies, both positive and negative.
Note that according to our definition of field amplitude, the field given by

E(r,1) =Ecos(k - — wt) (1.3.8)
is represented by the complex field amplitudes

E(w) = %Ee""", E(—o0) = %ge_ik'r, (1.3.9)
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or alternatively, by the slowly varying amplitudes
1 1
A(w) = 55, A(—w) = 55. (1.3.10)

In either representation, factors of % appear because the physical field ampli-
tude &£ has been divided equally between the positive- and negative-frequency
field components.

Using a notation similar to that of Eq. (1.3.7), we can express the nonlinear
polarization as

P(r,1) = Zp(a)ﬂ)e—iwn’, (1.3.11)

where, as before, the summation extends over all positive- and negative-
frequency field components.

We now define the components of the second-order susceptibility tensor
Xi(jzlg (wp + wm, Wy, @) as the constants of proportionality relating the ampli-
tude of the nonlinear polarization to the product of field amplitudes according
to

Pi(wn+om)=€0 Y Y X7 (@n + O, 0, 0n) Ej(@0n) Ex(@n). (13.12)
Jk (nm)

Here the indices ijk refer to the Cartesian components of the fields. The no-
tation (nm) indicates that, in performing the summation over n and m, the
sum w, + wy,, is to be held fixed, although w, and w,, are each allowed
to vary. Since the amplitude E(w,) is associated with the time dependence
exp(—iw,t), and the amplitude E(w,) is associated with the time depen-
dence exp(—iwy,t), their product E (w,) E (w,,) is associated with the time de-
pendence exp[—i (wy, + wy,)t]. Hence the product E(w,)E (w,,) does in fact
lead to a contribution to the nonlinear polarization oscillating at frequency
Wy + wpy, as the notation of Eq. (1.3.12) suggests. Following convention, we
have written x ® as a function of three frequency arguments. This is tech-
nically unnecessary in that the first argument is always the sum of the other
two. To emphasize this fact, the susceptibility x ® (w3, w2, w1) is sometimes
written as X(2) (w3; w2, w1) as a reminder that the first argument is different
from the other two, or it may be written symbolically as ¥ (w3 = wy + w1).
Let us examine some of the consequences of the definition of the nonlinear
susceptibility as given by Eq. (1.3.12) by considering two simple examples.

1. Sum-frequency generation. We let the input field frequencies be w; and
w7 and the sum frequency be w3, so that w3 = w; + wy. Then, by carrying
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out the summation over w, and w,, in Eq. (1.3.12), we find that

Pi(w3)=éoz uk(“)3 w1, ) Ej(w1) Ex(w2)

+ X (@3, 02, 01) Ej (@2) Ex(@1)]. (1.3.13)

We now note that j and k are dummy indices and thus can be interchanged
in the second term. We next assume that the nonlinear susceptibility pos-
sesses intrinsic permutation symmetry (this symmetry is discussed in more
detail in Eq. (1.5.6) below), which states that

2
Xish @ + On, O, ) = X5 (@ + On, O, On). (1.3.14)

Through use of this relation, the expression for the nonlinear polarization
becomes

P(w3)—2€oZXUk(w3,w1 @) Ej(w1) Ex(@2), (1.3.15)

and for the special case in which both input fields are polarized in the x
direction the polarization becomes

Pi(3) = 20X (@3, @1, 2) Ex (1) Ex (). (1.3.16)

XX

Second-harmonic generation. We take the input frequency as w; and the
generated frequency as w3 = 2w; . If we again perform the summation over
field frequencies in Eq. (1.3.12), we obtain

2
Pi(w3)=e0 Y xin (@3, o1, 0) Ej(@1) Ex(). (1.3.17)
Jjk
Again assuming the special case of an input field polarization along the x
direction, this result becomes

Pi(@3) = €ox 2 (w3, w1, 1) Ex (1) (1.3.18)

Note that a factor of two appears in Eqgs. (1.3.15) and (1.3.16), which de-
scribe sum-frequency generation, but not in Eqs. (1.3.17) and (1.3.18), which
describe second-harmonic generation. The fact that these expressions re-
main different even as w» approaches w; is perhaps at first sight surprising,
but is a consequence of our convention that X( ik (@3, w1, @2) must approach
Xz Y k(a)3 w1, w1) as w approaches w,. Note that the expressions for P(2w;)
and P (w1 + w2) that apply for the case of a dispersionless nonlinear suscepti-
bility (Eq. (1.2.7)) also differ by a factor of two. Moreover, one should expect
the nonlinear polarization produced by two distinct fields to be larger than that
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produced by a single field (both of the same amplitude, say), because the total
light intensity is larger in the former case.

In general, the summation over field frequencies (Z(nm)) in Eq. (1.3.12)
can be performed formally to obtain the result

2
Pi(wn + wm) = €D Z X,'(j]g (@n + Om, 0n, 0m) E j(0n) Ex(©n),
Jjk
(1.3.19)
where D is known as the degeneracy factor and is equal to the number of
distinct permutations of the applied field frequencies w, and wy,.

The expression (1.3.12) defining the second-order susceptibility can readily
be generalized to higher-order interactions. In particular, the components of
the third-order susceptibility are defined as the coefficients relating the ampli-
tudes according to the expression

3
Pi(wo + wn + @p) = GOZ Z X,‘(j]zl(wo + wn + Om, o, WO, O)
jkl (mno)

X E j(wo) Ex(wn) Ei(wm). (1.3.20)
We can again perform the summation over m, n, and o to obtain the result

Pi(wo + wy + wm) = €gD Z Xi(f;gl(wo + wn + Om, o, W, )
I
x Ej(wo) Ex(wn) El(wp), (1.3.21)

where the degeneracy factor D represents the number of distinct permutations
of the frequencies wy,, ®,, and w,.

1.4. Nonlinear Susceptibility of a Classical Anharmonic Oscillator

The Lorentz model of the atom, which treats the atom as a harmonic oscillator,
is known to provide a very good description of the linear optical properties of
atomic vapors and of nonmetallic solids. In the present section, we extend the
Lorentz model by allowing the possibility of a nonlinearity in the restoring
force exerted on the electron. The details of the analysis differ depending
upon whether or not the medium possesses inversion symmetry.* We first treat
the case of a noncentrosymmetric medium, and we find that such a medium

* The role of symmetry in determining the nature of the nonlinear susceptibilty is discussed from a
more fundamental point of view in Section 1.5. See especially the treatment leading from Eq. (1.5.31)
to (1.5.35).
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can give rise to a second-order optical nonlinearity. We then treat the case of
a medium that possesses a center of symmetry and find that the lowest-order
nonlinearity that can occur in this case is a third-order nonlinear susceptibility.
Our treatment is similar to that of Owyoung (1971).

The primary shortcoming of the classical model of optical nonlinearities
presented here is that this model ascribes a single resonance frequency (wp)
to each atom. In contrast, the quantum-mechanical theory of the nonlinear
optical susceptibility, to be developed in Chapter 3, allows each atom to pos-
sess many energy eigenvalues and hence more than one resonance frequency.
Since the present model allows for only one resonance frequency, it cannot
properly describe the complete resonance nature of the nonlinear susceptibil-
ity (such as, for example, the possibility of simultaneous one- and two-photon
resonances). However, it provides a good description for those cases in which
all of the optical frequencies are considerably smaller than the lowest elec-
tronic resonance frequency of the material system.

1.4.1.  Noncentrosymmetric Media

For the case of noncentrosymmetric media, we take the equation of motion of
the electron position x to be of the form

;+2y§+wéi+ai2=—el§(t)/m. (14.1)

In this equation we have assumed that the applied electric field is given by
E(t), that the charge of the electron is —e, that there is a damping force of the
form™ —2my X, and that the restoring force is given by

L 2~ ~2
Frestoring = —mwyX — max~, (1.4.2)

where a is a parameter that characterizes the strength of the nonlinearity. We
obtain this form by assuming that the restoring force is a nonlinear function
of the displacement of the electron from its equilibrium position and retaining
the linear and quadratic terms in the Taylor series expansion of the restoring
force in the displacement X. We can understand the nature of this form of the
restoring force by noting that it corresponds to a potential energy function of
the form

Y - TR S Y5 SO S
Ux) = Flestoring dX = 2ma)0x + 3max . (1.4.3)

* The factor of two is introduced to make y the dipole damping rate. 2y is therefore the full width
at half maximum in angular frequency units of the atomic absorption profile in the limit of linear
response.
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FIGURE 1.4.1 Potential energy function for a noncentrosymmetric medium.

Here the first term corresponds to a harmonic potential and the second term
corresponds to an anharmonic correction term, as illustrated in Fig. 1.4.1.
This model corresponds to the physical situation of electrons in real mate-
rials, because the actual potential well that the atomic electron feels is not
perfectly parabolic. The present model can describe only noncentrosymmet-
ric media because we have assumed that the potential energy function U (X)
of Eq. (1.4.3) contains both even and odd powers of X; for a centrosymmetric
medium only even powers of X could appear, because the potential function
U (x) must possess the symmetry U (x) = U(—x). For simplicity, we have
written Eq. (1.4.1) in the scalar-field approximation; note that we cannot treat
the tensor nature of the nonlinear susceptibility without making explicit as-
sumptions regarding the symmetry properties of the material.
We assume that the applied optical field is of the form

E(t) = Eje ' 4 Epe™ @2 4 coc. (1.4.4)

No general solution to Eq. (1.4.1) for an applied field of the form (1.4.4) is
known. However, if the applied field is sufficiently weak, the nonlinear term
ax? will be much smaller than the linear term wéi for any displacement X
that can be induced by the field. Under this circumstance, Eq. (1.4.1) can be
solved by means of a perturbation expansion. We use a procedure analogous
to that of Rayleigh—Schrodinger perturbation theory in quantum mechanics.
We replace E (t) in Eq. (1.4.1) by LE (t), where X is a parameter that ranges
continuously between zero and one and that will be set equal to one at the end
of the calculation. The expansion parameter A thus characterizes the strength
of the perturbation. Equation (1.4.1) then becomes

X 42y% + 0ff 4+ ai? = —reE(1)/m. (1.4.5)
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We now seek a solution to Eq. (1.4.5) in the form of a power series expan-
sion in the strength A of the perturbation, that is, a solution of the form

F=a5D 4 a25@ 350 4 (1.4.6)

In order for Eq. (1.4.6) to be a solution to Eq. (1.4.5) for any value of the
coupling strength X, we require that the terms in Eq. (1.4.5) proportional to A,
A2, A3, etc., each satisfy the equation separately. We find that these terms lead
respectively to the equations

P02y 1 280 = —eEy/m,  (147)
i 42y ~‘2)+w 25@ 4 a7 V] =0, (1.4.7b)
942989 £ 02i® £ 203 V5D =0, ete. (1.4.7¢)

We see from Eq. (1.4.7a) that the lowest-order contribution ¥V is governed
by the same equation as that of the conventional (i.e., linear) Lorentz model.
Its steady-state solution is thus given by

0@ =xD(w)e @ + xD(wy)e 2 4 coc., (1.4.8)

where the amplitudes xD(w ;) have the form

Dy =& _Ei 1.4.9
(a)]) mD(a)J) (1.4.9)

where we have introduced the complex denominator function
D(w)) = o) — o} —2iw;y. (1.4.10)

This expression for D () is now squared and substituted into Eq. (1.4.7b),
which is solved to obtain the lowest-order correction term %®. The square
of ¥V (¢) contains the frequencies +2w;, +2w;, +(w1 + w2), £(w] — w2),
and 0. To determine the response at frequency 2wi, for instance, we must
solve the equation

2 ,—2iwt
,.,(2) 2~(2) —a(eE]/m) e
2y X = 1.4.11
+ 2y wyx Do) ( )
We seek a steady-state solution of the form
@ (1) =xP Qwy)e HoM (1.4.12)
Substitution of Eq. (1.4.12) into Eq. (1.4.11) leads to the result
252
— E
2@ 2y = 4/ E; (1.4.13)

DQwi)D*(w1)’
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where we have made use of the definition (1.4.10) of the function D(w;).
Analogously, the amplitudes of the responses at the other frequencies are
found to be

2 _ —a(e/m)zEg
x (sz)——D(sz)Dz(a)Z), (1.4.14a)
—2a(e/m)*E\E>
@) _ 1.4.14
et ) = o) D@ D(@y)’ (1.4.14b)
- 2 *
xP () — ) = 2ae/myErE; (1.4.14¢)
D(w1 — w2) D(w1) D(—wy)
@) —2a(e/m)?E\E} —2a(e/m)?E>E}
X = .
DO0)D(w1)D(—w1)  D(0)D(w2) D(—w2)
(1.4.14d)

We next express these results in terms of the linear ( x 1) and nonlinear
(x @) susceptibilities. The linear susceptibility is defined through the relation

PV (w)) =eoxV(w)E(w)). (1.4.15)
Since the linear contribution to the polarization is given by
PY(w;)=—NexPD(w)), (1.4.16)
where N is the number density of atoms, we find using Eqs. (1.4.8) and (1.4.9)
that the linear susceptibility is given by

xV(wj) = —L—. (1.4.17)
€0 ;

The nonlinear susceptibilities are calculated in an analogous manner. The
nonlinear susceptibility describing second-harmonic generation is defined by
the relation

PP Qwy) =eox® Qwi, wr, w1)E(w1)?, (1.4.18)

where P (2w) is the amplitude of the component of the nonlinear polariza-
tion oscillating at frequency 2w and is defined by the relation

PP Qw) = —Nex® 2w)). (1.4.19)
Comparison of these equations with Eq. (1.4.13) gives

N(eS/mz)a
€0DQwi)D*(wy)

x?Qwi, w1, 0)) = (1.4.20)
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Through use of Eq. (1.4.17), this result can be written instead in terms of the
product of linear susceptibilities as

2
eoma

WX(I)(ZwI)[X(l)(wl)]Z. (1.4.21)

x?P w1, w1, w1) =

The nonlinear susceptibility for second-harmonic generation of the w» field
is obtained trivially from Eqgs. (1.4.20) and (1.4.21) through the substitution
W] —> w.

The nonlinear susceptibility describing sum-frequency generation is ob-
tained from the relations

PP () + w3) =2€0x? (w1 + w2, w1, 02) E(w1) E (w2) (1.4.22)

and
p® (w1 + ) = —Nex® (w1 + w2). (1.4.23)

Note that in this case the relation defining the nonlinear susceptibility con-
tains a factor of two because the two input fields are distinct, as discussed in
relation to Eq. (1.3.19). By comparison of these equations with (1.4.14b), the
nonlinear susceptibility is seen to be given by

N(es/mz)a
eoD(w1 + w2)D(w1)D(wy)’

x @ (01 + w2, 01, w2) = (1.4.24)

which can be expressed in terms of the product of linear susceptibilities as

2
GOI’I’lCl

Fra X @i+ o)x P @nx V). (1425

x P (01 + w2, 01, 1) =
It can be seen by comparison of Eqs. (1.4.20) and (1.4.24) that, as w» ap-
proaches w1, X(z) (w1 4+ w3, w1, w2) approaches X<2) w1, w1, w1).

The nonlinear susceptibilities describing the other second-order processes
are obtained in an analogous manner. For difference-frequency generation we
find that

N(e3/eom2)a
D(w) — w2) D(w1) D(—w?)

xP(w1 — w2, w1, —an) =

2
eEma
= %xm(wl — ) x V() x P (—wn),

(1.4.26)
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and for optical rectification we find that
N(e3 / m?)a
€0D(0)D(w1)D(—w1)

x@(0, w1, —w1) =

2
= %X(1)(0)X(1)(w1)X(1)(—0)1)- (1.4.27)
The analysis just presented shows that the lowest-order nonlinear contri-
bution to the polarization of a noncentrosymmetric material is second order
in the applied field strength. This analysis can readily be extended to include
higher-order effects. The solution to Eq. (1.4.7¢), for example, leads to a third-
order or x @ susceptibility, and more generally terms proportional to A” in the
expansion described by Eq. (1.4.6) lead to a x ™ susceptibility.

1.4.2. Miller’s Rule

An empirical rule due to Miller (Miller, 1964; see also Garrett and Robinson,
1966) can be understood in terms of the calculation just presented. Miller
noted that the quantity

x P (w1 + w2, w1, @)
x V(w1 + @2) x D (1) x D(wn)

is nearly constant for all noncentrosymmetric crystals. By comparison with
Eq. (1.4.25), we see this quantity will be constant only if the combination

(1.4.28)

maeg

NZe3
is nearly constant. In fact, the atomic number density N is nearly the same
(~10%2 cm™?) for all condensed matter, and the parameters m and e are fun-
damental constants. We can estimate the size of the nonlinear coefficient a by
noting that the linear and nonlinear contributions to the restoring force given
by Eq. (1.4.2) would be expected to become comparable when the displace-
ment X of the electron from its equilibrium position is approximately equal to
the size of the atom. This distance is of the order of the separation between
atoms—that is, of the lattice constant d. This reasoning leads to the order-of-
magnitude estimate that ma)(z)d = mad? or that

(1.4.29)

% (1.4.30)
a=—. A,
d

Since wp and d are roughly the same for most solids, the quantity a would
also be expected to be roughly the same for all materials where it does not
vanish by reasons of symmetry.
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We can also make use of the estimate of the nonlinear coefficient a given
by Eq. (1.4.30) to estimate of the size of the second-order susceptibility under
highly nonresonant conditions. If we replace D(w) by a)(z) in the denominator
of Eq. (1.4.24), set N equal to 1/d3, and set a equal to w(z)/d, we find that x @
is given approximately by

@ e’

= 1.4.31
X eomZa)gdA' ( )
Using the values wp = 1 x 100 rad/s, d =3 A, e = 1.6 x 1071 C, and
m=9.1 x 1073! kg, we find that

x® ~69x%x107"2m/V, (1.4.32)

which is in good agreement with the measured values presented in Table 1.5.3
(see p. 50).

1.4.3.  Centrosymmetric Media

For the case of a centrosymmetric medium, we assume that the electronic
restoring force is given not by Eq. (1.4.2) but rather by

Frestoring = —ma)%i + mbi3, (1.4.33)

where b is a parameter that characterizes the strength of the nonlinearity. This
restoring force corresponds to the potential energy function

. 1 1
U@F)=— / Frestoringd ¥ = Emngz — Zmbi“. (1.4.34)

This potential function is illustrated in the Fig. 1.4.2 (for the usual case in
which b is positive) and is seen to be symmetric under the operation X — —X,
which it must be for a medium that possesses a center of inversion symmetry.
Note that —mbx* /4 is simply the lowest-order correction term to the parabolic
potential well described by the term %mw(z)fc'z. We assume that the electronic
displacement X never becomes so large that it is necessary to include higher-
order terms in the potential function.

We shall see below that the lowest-order nonlinear response resulting from
the restoring force of Eq. (1.4.33) is a third-order contribution to the polar-
ization, which can be described by a x® susceptibility. As in the case of
non-centrosymmetric media, the tensor properties of this susceptibility can-
not be specified unless the internal symmetries of the medium are completely
known. One of the most important cases is that of a material that is isotropic
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FIGURE 1.4.2 Potential energy function for a centrosymmetric medium.

(as well as being centrosymmetric). Examples of such materials are glasses
and liquids. In such a case, we can take the restoring force to have the form

Frestoring = —mw3F + mb(F - )F. (1.4.35)
The second contribution to the restoring force must have the form shown be-
cause it is the only form that is third-order in the displacement r and is di-
rected in the r direction, which is the only possible direction for an isotropic
medium.

The equation of motion for the electron displacement from equilibrium is
thus

T+ 29T 4 02F — b(F - P)F = —eE(1)/m. (1.4.36)
We assume that the applied field is given by
E(t) = Eje " + Epe '@ L Bze ' 4 cc; (1.4.37)

we allow the field to have three distinct frequency components because this is
the most general possibility for a third-order interaction. However, the algebra
becomes very tedious if all three terms are written explicitly, and hence we
express the applied field as

E(t) = ZE(wn)e_i“’"’. (1.4.38)

The method of solution is analogous to that used above for a noncentrosym-
metric medium. We replace E(t) in Eq. (1.4.36) by AE‘(t), where A is a pa-
rameter that characterizes the strength of the perturbation and that is set equal
to unity at the end of the calculation. We seek a solution to Eq. (1.4.36) having
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the form of a power series in the parameter A:
t(0) =280 + P20 + FV @) + - (1.4.39)

We insert Eq. (1.4.39) into Eq. (1.4.36) and require that the terms proportional
to A" vanish separately for each value of n. We thereby find that

D 42y FD 4 28D = —eE(1)/m, (1.4.40a)
@ 4+ 2yF? 4+ 2F? =0, (1.4.40b)
i3 4283 4 w(Z)fG) _ b(f“) ) f(l))f-(l) =0 (1.4.40¢)

for n =1, 2, and 3, respectively. Equation (1.4.40a) is simply the vector ver-
sion of Eq. (1.4.7a), encountered above. Its steady-state solution is

P00 =)t (@p)eien, (1.4.41a)
where
r®(w,) = w (1.4.41b)

with D(w,) given as above by D(w,) = w% — wﬁ — 2iwyy. Since the polar-
ization at frequency w, is given by

PO (w,) = —Ner" (w,), (1.4.42)

we can describe the Cartesian components of the polarization through the
relation

P (@) =0 Y %) (@) Ej(@n). (1.4.43a)
j
Here the linear susceptibility is given by
%5 (@n) = x V()8 (1.4.43b)
with x (" (w,) given as in Eq. (1.4.17) by
N 2
XD () = N/ (1.4.43c)
€0D(wn)

and where §;; is the Kronecker delta, which is defined such that §;; =1 for
i=jandé;; =0fori#j.

The second-order response of the system is described by Eq. (1.4.40b).
Since this equation is damped but not driven, its steady-state solution
vanishes, that is,

i@ —o. (1.4.44)
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To calculate the third-order response, we substitute the expression for
¥ () given by Eq. (1.4.41a) into Eq. (1.4.40c), which becomes

EO 120 4o = -3

mnp

be? [E(wn) - E(a)n)]E(wp)
m3D(wm)D(wn)D(a)p)

« e~ i@mtontop)t (1.4.45)

Because of the summation over m, n, and p, the right-hand side of this equa-
tion contains many different frequencies. We denote one of these frequencies
by wy = wm + w, + wp. The solution to Eq. (1.4.45) can then be written in
the form

V1) =Y 1P (wy)e . (1.4.46)
q

We substitute Eq. (1.4.46) into Eq. (1.4.45) and find that r® (wgq) is given by

be*[E(wp) - E(w,)E(w),)
m3D(wm)D(a)n)D(wp) ’

(-0} oy + o) =~ 3
(mnp)

(1.4.47)

where the summation is to be carried out over frequencies wy,, w,, and w,

with the restriction that w,, + w, + @, must equal w, . Since the coefficient of
r® (wgq) on the left-hand side is just D(w,), we obtain

Do = Y @) E@IE®,)

3 . (1.4.48)
m D(wq)D(wm)D(a)n)D(wp)

(mnp)
The amplitude of the polarization component oscillating at frequency w, then
is given in terms of this amplitude by

PO (w,) = —Ner® (w,). (1.4.49)

We next recall the definition of the third-order nonlinear susceptibility
Eq. (1.3.20),

P =c0Y Y Xin(@q om, o, 0p) E;(@n) Ex(@n) Ei(p).
Jkl (mnp)
(1.4.50)

Since this equation contains a summation over the dummy variables m, n,
and p, there is more than one possible choice for the expression for the nonlin-
ear susceptibility. An obvious choice for this expression for the susceptibility,
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based on the way in which Eqgs. (1.4.48) and (1.4.49) are written, is

Nbe*s ji8i
€om? D(wg) D(wm) D(wn) D(wp)

3)
,Jkl(wqa W, Wp s (Up)

(1.4.51)

While Eq. (1.4.51) is a perfectly adequate expression for the nonlinear sus-
ceptibility, it does not explicitly show the full symmetry of the interaction
in terms of the arbitrariness of which field we call E;(w;), which we call
Ey(wy), and which we call Ej(w)). It is conventional to define nonlinear
susceptibilities in a manner that displays this symmetry, which is known as
intrinsic permutation symmetry. Since there are six possible permutations of
the orders in which E;(wy,), Ex(w,), and E;(w,) may be taken, we define
the third-order susceptibility to be one-sixth of the sum of the six expressions
analogous to Eq. (1.4.51) with the input fields taken in all possible orders.
When we carry out this prescription, we find that only three distinct contribu-
tions occur and that the resulting form for the nonlinear susceptibility is given
by

Nbe*[8;8k1 + 8ik 1 + 8i18 k]
3eom3 D(wq) D(wm) D(wy) D(w)p)

(1.4.52)

Xz]kl (wg, Om, wp, wp) =

This expression can be rewritten in terms of the linear susceptibilities at the
four different frequencies wg, Wy, w,, and w, by using Eq. (1.4.43c) to elim-
inate the resonance denominator factors D(w). We thereby obtain

bmey (1) ) (1)
e I @ x P mx Ve Vwp)]

X [8;0k1 + 8ikdj1 + 8i1d k] (1.4.53)

X,Jkl(a)q» O, Wy, Wp) =

We can estimate the value of the phenomenological constant b that appears
in this result by means of an argument analogous to that used above (see
Eq. (1.4.30)) to estimate the value of the constant a that appears in the ex-
pression for x ). We assume that the linear and nonlinear contributions to the
restoring force given by Eq. (1.4.33) will become comparable in magnitude
when the displacement X becomes comparable to the atomic dimension d, that
is, when mw}d = mbd?, which implies that

2
@y

ar
Using this expression for b, we can now estimate the value of the nonlinear
susceptibility. For the case of nonresonant excitation, D(w) is approximately

b= (1.4.54)
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equal to (u(z), and hence from Eq. (1.4.52) we obtain

Nb 4 4
PRSI - (1.4.55)
eom3wy  €om3wyd>
Taking d =3 A and wo =7 X 1015 rad/sec, we obtain
x @ ~ 344 pm?/V? (1.4.56)

We shall see in Chapter 4 that this value is typical of the nonlinear suscepti-
bility of many materials.

1.5. Properties of the Nonlinear Susceptibility

In this section we study some of the formal symmetry properties of the non-
linear susceptibility. Let us first see why it is important that we understand
these symmetry properties. We consider the mutual interaction of three waves
of frequencies w1, wy, and w3 = w| + wy, as illustrated in Fig. 1.5.1. A com-
plete description of the interaction of these waves requires that we know the
nonlinear polarizations P(w;) influencing each of them. Since these quantities
are given in general (see also Eq. (1.3.12)) by the expression

Pi(wn + om) = €0 Z Z Xl(fk)(wn + Wm, Wy, 6Um)Ej (wn) Ex(@m), (1.5.1)
Jjk (nm)

we therefore need to determine the six tensors

2 2 2
Xl'(jk)(a)l , @3, —@2), X,~(jk)(w1, —w2, w3), Xj(jk)(a)27 w3, —w1),

2 2 2
Xi(jk)(wz,—wl,ws), X,~(jk)(w3,w1,w2), and Xl'(jk)(w?)’wval)

and six additional tensors in which each frequency is replaced by its negative.
In these expressions, the indices i, j, and k can independently take on the
values x, y, and z. Since each of these 12 tensors thus consists of 27 Cartesian
components, as many as 324 different (complex) numbers need to be specified
in order to describe the interaction.

0 —
(,()2 >
o, 5

FIGURE 1.5.1 Optical waves of frequencies w1, w;, and w3 = @] + w» interact in a
lossless second-order nonlinear optical medium.
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Fortunately, there are a number of restrictions resulting from symmetries
that relate the various components of x @ and hence far fewer than 324 num-
bers are usually needed to describe the nonlinear coupling. In this section, we
study some of these formal properties of the nonlinear susceptibility. The dis-
cussion will deal primarily with the second-order x ® susceptibility, but can
readily be extended to x® and higher-order susceptibilities.

1.5.1. Reality of the Fields

Recall that the nonlinear polarization describing the sum-frequency response
to input fields at frequencies w, and w,, has been represented as

Pi(r, 1) = Pi(wy 4 wp)e {@ntem) L p(—w, — wy)et @t (1.5.2)

Since P;i(r,t) is a physically measurable quantity, it must be purely real, and
hence its positive- and negative-frequency components must be related by

Pi(—w, — wm) = Pi(wy + 0p)™. (1.5.3)

The electric field must also be a real quantity, and its complex frequency com-
ponents must obey the analogous conditions:

Ej(—wy) = Ej(wn)", (1.5.4a)
Ex(—wm) = Ex(on)”. (1.5.4b)

Since the fields and polarization are related to each other through the second-
order susceptibility of Eq. (1.5.1), we conclude that the positive- and negative-
frequency components of the susceptibility must be related according to

2 2
Xi(jlg(_wn — Wy —Wp, — W) = Xi(j]z(wn + W, O, O™ (1.5.5)

1.5.2.  Intrinsic Permutation Symmetry

Earlier we introduced the concept of intrinsic permutation symmetry when we
rewrote the expression (1.4.51) for the nonlinear susceptibility of a classical,
anharmonic oscillator in the conventional form of Eq. (1.4.52). In the present
section, we treat the concept of intrinsic permutation symmetry from a more
general point of view.

According to Eq. (1.5.1), one of the contributions to the nonlinear polar-
ization P;(wy + wy,) is the product Xi(jzk) (wn + ©p, Op, W) E j () Ex (wp).
However, since j, k, n, and m are dummy indices, we could just as well have
written this contribution with n interchanged with m and with j interchanged
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with k, that is, as Xi(kz} (wn + @p, W, 0y) Ex(wm) E j(wy). These two expres-
sions are numerically equal if we require that the nonlinear susceptibility be
unchanged by the simultaneous interchange of its last two frequency argu-
ments and its last two Cartesian indices:

Xish @n + Oy O, ) = X5 (@ + Oy Oy D). (1.5.6)
This property is known as intrinsic permutation symmetry. More physically,
this condition is simply a statement that it cannot matter which is the first field
and which is the second field in products such as E; (w;) Ex ().

Note that this symmetry condition is introduced purely as a matter of conve-
nience. For example, we could set one member of the pair of elements shown
in Eq. (1.5.6) equal to zero and double the value of the other member. Then,
when the double summation of Eq. (1.5.1) was carried out, the result for the
physically meaningful quantity P;(w, + wy) would be left unchanged.

This symmetry condition can also be derived from a more general point
of view using the concept of the nonlinear response function (Butcher, 1965;
Flytzanis, 1975).

1.5.3.  Symmetries for Lossless Medlia

Two additional symmetries of the nonlinear susceptibility tensor occur for the
case of a lossless nonlinear medium.

The first of these conditions states that for a lossless medium all of the com-
ponents of Xi(jzlg (wn +om, @y, 0y) are real. This result is obeyed for the classi-
cal anharmonic oscillator described in Section 1.4, as can be verified by evalu-
ating the expression for x ®) in the limit in which all of the applied frequencies
and their sums and differences are significantly different from the resonance
frequency. The general proof that x® is real for a lossless medium is ob-
tained by verifying that the quantum-mechanical expression for x ® (which
is derived in Chapter 3) is also purely real in this limit.

The second of these new symmetries is full permutation symmetry. This
condition states that all of the frequency arguments of the nonlinear suscep-
tibility can be freely interchanged, as long as the corresponding Cartesian
indices are interchanged simultaneously. In permuting the frequency argu-
ments, it must be recalled that the first argument is always the sum of the
latter two, and thus that the signs of the frequencies must be inverted when
the first frequency is interchanged with either of the latter two. Full permuta-
tion symmetry implies, for instance, that

2 2
X (@3 =01 + @) = X p)(—01 = w0y — w3). (1.5.7)
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However, according to Eq. (1.5.5), the right-hand side of this equation is equal

to Xﬁ? (w1 = —wy + w3)*, which, due to the reality of x® for a lossless
medium, is equal to xﬁz (w1 = —wy + w3). We hence conclude that
2 2
X3 =01 + ) = X fH @1 = —0y + w3). (1.5.8)

By an analogous procedure, one can show that
2 2
Xz'(jk)(“)3 =01 + ) ZXzfi}(wzzm —w1). (1.5.9)

A general proof of the validity of the condition of full permutation symme-
try entails verifying that the quantum-mechanical expression for x ® (which
is derived in Chapter 3) obeys this condition when all of the optical frequen-
cies are detuned many linewidths from the resonance frequencies of the op-
tical medium. Full permutation symmetry can also be deduced from a con-
sideration of the field energy density within a nonlinear medium, as shown
below.

1.5.4. Field Energy Density for a Nonlinear Medium

The condition that the nonlinear susceptibility must possess full permutation
symmetry for a lossless medium can be deduced from a consideration of the
form of the electromagnetic field energy within a nonlinear medium. For the
case of a linear medium, the energy density associated with the electric field

Ei(t)=)_ Ei(wy)e " (1.5.10)
is given according to Poynting’s theorem as
1~ - 1 i
U=§(D'E)=§Z( i E;), (1.5.11)

i
where the angular brackets denote a time average. Since the displacement
vector is given by
Dity=eo Y ejEjt)=e0 Y Y eij(@)Ej(@e ", (1.5.12)
J jon

where the dielectric tensor is given by

€ij(@n) =8 + X} (@), (1.5.13)
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we can write the energy density as

= %OZZE (@0 Ei(0n) + 7 ZZE @D} (@) Ej(@n).

(1.5.14)

Here the first term represents the energy density associated with the electric
field in vacuum and the second term represents the energy stored in the polar-
ization of the medium.

For the case of a nonlinear medium, the expression for the electric field
energy density (Armstrong et al., 1962; Kleinman, 1962; Pershan, 1963) as-
sociated with the polarization of the medium takes the more general form

ZZX(”«%)E (n) Ej(en)

€0 2y
3 D2 D Kii (—on — o o on) Ef (@ + 0n) Ej(@n) Ei(wn)

ijk mn

€0
T30 D Xt (— 00 = On = O, @ 0, ) (1.5.15)

z]kl mno
X E,*(a)m + w, + CUo)Ej(wm)Ek(a)n)El(wo) + -

For the present, the quantities X(Z)/, X(S)/, ... are to be thought of simply
as coefficients in the power series expansion of U in the amplitudes of the
applied field; later these quantities will be related to the nonlinear susceptibil-
ities. Since the order in which the fields are multiplied together in determining
U is immaterial, the quantities x )’ clearly possess full permutation symme-
try, that is, their frequency arguments can be freely permuted as long as the
corresponding indices are also permuted.

In order to relate the expression (1.5.15) for the energy density to the non-
linear polarization, and subsequently to the nonlinear susceptibility, we use
the result that the polarization of a medium is given (Landau and Lifshitz,

1960; Pershan, 1963) by the expression
oU
P; = 1.5.16
i (@n) DEF (@n) ( )

Thus, by differentiation of Eq. (1.5.15), we obtain an expression for the linear
polarization as

PV (wn )—GOZX( ) (Om) E j (@m), (1.5.17a)
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and for the nonlinear polarization as*

2 2)’
P,'( )(wm + wp) = €0 Z in(j']g (—wm — on, Om, 0p) E j(@m) Ex (0n)

Jk (mn)
(1.5.17b)
3 3y
P,'( )(a)m + wn + w,) = €0 Z Z Xi(j]zl(_wm — Wy — Wo, W, Wp, Wp)
jkl (mno)
X E j(wm) Ex (wn) Ei(wo). (1.5.17¢)

We note that these last two expressions are identical to Eqgs. (1.3.12) and
(1.3.20), which define the nonlinear susceptibilities (except for the unimpor-
tant fact that the quantities x ) and x ™" use opposite conventions regarding
the sign of the first frequency argument). Since the quantities x @' possess
full permutation symmetry, we conclude that the susceptibilities ™ do also.
Note that this demonstration is valid only for the case of a lossless medium,
because only in this case is the internal energy a function of state.

1.5.5.  Kleinman’s Symmetry

Quite often nonlinear optical interactions involve optical waves whose fre-
quencies w; are much smaller than the lowest resonance frequency of the
material system. Under these conditions, the nonlinear susceptibility is es-
sentially independent of frequency. For example, the expression (1.4.24) for
the second-order susceptibility of an anharmonic oscillator predicts a value of
the susceptibility that is essentially independent of the frequencies of the ap-
plied waves whenever these frequencies are much smaller than the resonance
frequency wq. Furthermore, under conditions of low-frequency excitation the
system responds essentially instantaneously to the applied field, and we have
seen in Section 1.2 that under such conditions the nonlinear polarization can
be described in the time domain by the relation

P(t) =eoxPE* 1), (1.5.18)

where x® can be taken to be a constant.

Since the medium is necessarily lossless whenever the applied field fre-
quencies w; are very much smaller than the resonance frequency wy, the con-
dition of full permutation symmetry (1.5.7) must be valid under these circum-
stances. This condition states that the indices can be permuted as long as the

* In performing the differentiation, the prefactors %, %, z]T* ... of Eq. (1.5.15) disappear because 2,
3,4, ... equivalent terms appear as the result of the summations over the frequency arguments.
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frequencies are permuted simultaneously, and it leads to the conclusion that
X,Jk(wa =] twy)= Xjk) (w1 =—w +w3) = Xk,)(w2 = w3 — wy)
—xlkj(w3 w2+w1)—xkj)(wz——w1 + w3)
—Xﬂk(wl ®3 — @2).

However, under the present conditions x ¥ does not actually depend on the
frequencies, and we can therefore permute the indices without permuting the
frequencies, leading to the result

,]k(w3_w1 +w2)—xjk,(w3 w1+ w) = Xkl)(w3—w1 + w2)
= X[k)(w3 w] + )= X,,k(w3 w1+ w2)
= X (@3 = w1 + ). (1.5.19)

This result is known as the Kleinman symmetry condition. It is valid whenever
dispersion of the susceptibility can be neglected.

1.5.6. Contracted Notation

We now introduce a notational device that is often used when the Kleinman
symmetry condition is valid. We introduce the tensor
e
dijk_ 2X1]k (1520)
and for simplicity suppress the frequency arguments. The factor of % is a

consequence of historical convention. The nonlinear polarization can then be
written as

Pi(wn +om)=€0 Y _ Y 2dijxE(0n) Ex(0m). (1.5.21)
jk (nm)

We now assume that d; jx is symmetric in its last two indices. This assumption
is valid whenever Kleinman’s symmetry condition is valid and in addition is
valid in general for second-harmonic generation, since in this case w, and wy,
are equal. We then simplify the notation by introducing a contracted matrix
d;; according to the prescription

jk: 11 22 33 23,32 31,13 12,21

I: 1 2 3 4 5 6 (1.5.22)
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The nonlinear susceptibility tensor can then be represented as the 3 x 6 matrix

dun dip diz dis dis die
dii=|dn dy dy d dys dy |. (1.5.23)
dy1 dx di3z dig dis  dse

If we now explicitly introduce the Kleinman symmetry condition—that is, we
assert that the indices d;jx can be freely permuted, we find that not all of the
18 elements of d;; are independent. For instance, we see that

dp=din=dy2=d (1.5.24a)

and that
dia=d123 =do13 =dps. (1.5.24b)

By applying this type of argument systematically, we find that d;; has only 10
independent elements when the Kleinman symmetry condition is valid; the
form of d;; under these conditions is

diy dip diz disa dis dis
diy=|die dyp dy dyy dis di2|. (1.5.25)
dis dy di3z dyz diz dia

We can describe the nonlinear polarization leading to second-harmonic gen-
eration in terms of d;; by the matrix equation

E(w)?
E 2
P Qw) diy dip diz dig dis die Eyg;z
PyQw) | =20 | dy1 dp drz day dys dy ¢
P,(2w) dyi dy dy du dss dsg | | 2o @QE@)
2 3odn dyw dudss das | e p ()
_2Ex(w)Ey(w)_
(1.5.26)

When the Kleinman symmetry condition is valid, we can describe the nonlin-
ear polarization leading to sum-frequency generation (with w3 = w1 + w3) by
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the equation

Py (w3) din dip diz dis dis dig
Py(w3) | =4eo | do1 dan drz dys dps dae
P (w3) d31 dy dyz dyg dss  die
i Ey(w1)Ex(w2)
Ey(wl)Ey(Q)Z)
E;(w1)E (02)
X ' : . 1.5.27
Ey (@) E<(n) + E: (@) Ey(w) |~ 27
Ey(w1)E;(w2) + E;(w1) Ex(w2)
_Ex(wl)Ey(wZ)+Ey(a)1)Ex(w2)_

As described above in relation to Eq. (1.3.16), the extra factor of 2 comes
from the summation over n and m in Eq. (1.5.21).

1.5.7.  Effective Value of d (deg)

For a fixed geometry (i.e., for fixed propagation and polarization directions) it
is possible to express the nonlinear polarization giving rise to sum-frequency
generation by means of the scalar relationship

P(w3) = 4epder E(w1) E(w2), (1.5.28)
and analogously for second-harmonic generation by
P (2w) = 2€deft E (w)?, (1.5.29)
where
E(w)=|E(w)| and P(0)=|P(w)|.

In each case, d.fr is obtained by first determining P explicitly through use of
Eq. (1.5.26) or (1.5.27).

A general prescription for calculating desr for each of the crystal classes
has been presented by Midwinter and Warner (1965); see also Table 3.1 of
Zernike and Midwinter (1973). They show, for example, that for a negative
uniaxial crystal of crystal class 3m the effective value of d is given by the
expression

deff = d31 Sin0 — dp» cos 6 sin 3¢ (1.5.30a)

under conditions (known as type I conditions) such that the two lower-
frequency waves have the same polarization, and by

dett = dpo cos” 6 cos 3¢ (1.5.30b)
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under conditions (known as type II conditions) such that the polarizations are
orthogonal. In these equations, 6 is the angle between the propagation vector
and the crystalline z axis (the optic axis), and ¢ is the azimuthal angle between
the propagation vector and the xz crystalline plane.

1.5.8.  Spatial Symmetry of the Nonlinear Medium

The forms of the linear and nonlinear susceptibility tensors are constrained by
the symmetry properties of the optical medium. To see why this should be so,
let us consider a crystal for which the x and y directions are equivalent but
for which the z direction is different. By saying that the x and y directions are
equivalent, we mean that if the crystal were rotated by 90 degrees about the
z axis, the crystal structure would look identical after the rotation. The z axis
is then said to be a fourfold axis of symmetry. For such a crystal, we would
expect that the optical response would be the same for an applied optical field
polarized in either the x or the y direction, and thus, for example, that the
second-order susceptibility components Xz(ﬂ and XZ()Z; would be equal.

For any particular crystal, the form of the linear and nonlinear optical sus-
ceptibilities can be determined by considering the consequences of all of the
symmetry properties for that particular crystal. For this reason, it is necessary
to determine what types of symmetry properties can occur in a crystalline
medium. By means of the mathematical method known as group theory, crys-
tallographers have found that all crystals can be classified as belonging to one
of 32 possible crystal classes depending on what is called the point group
symmetry of the crystal. The details of this classification scheme lie outside
of the subject matter of the present text.* However, by way of examples, a
crystal is said to belong to point group 4 if it possesses only a fourfold axis
of symmetry, to point group 3 if it possesses only a threefold axis of sym-
metry, and to belong to point group 3m if it possesses a threefold axis of
symmetry and in addition a plane of mirror symmetry perpendicular to this
axis.

1.5.9. Influence of Spatial Symmetry on the Linear Optical
Properties of a Material Medium

As an illustration of the consequences of spatial symmetry on the optical
properties of a material system, let us first consider the restrictions that this

* The reader who is interested in the details should consult Buerger (1963) or any of the other
books on group theory and crystal symmetry listed in the bibliography at the end of this chapter.
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symmetry imposes on the form of the linear susceptibility tensor x 1. The
results of a group theoretical analysis shows that five different cases are pos-
sible depending on the symmetry properties of the material system. These
possibilities are summarized in Table 1.5.1. Each entry is labeled by the crys-
tal system to which the material belongs. By convention, crystals are cate-
gorized in terms of seven possible crystal systems on the basis of the form
of the crystal lattice. (Table 1.5.2 on p. 47 gives the correspondence be-
tween crystal system and each of the 32 point groups.) For completeness,
isotropic materials (such as liquids and gases) are also included in Table
1.5.1. We see from this table that cubic and isotropic materials are isotropic
in their linear optical properties, because x ! is diagonal with equal diag-
onal components. All of the other crystal systems are anisotropic in their
linear optical properties (in the sense that the polarization P need not be
parallel to the applied electric field E) and consequently display the prop-
erty of birefringence. Tetragonal, trigonal, and hexagonal crystals are said
to be uniaxial crystals because there is one particular direction (the z axis)
for which the linear optical properties display rotational symmetry. Crystals
of the triclinic, monoclinic, and orthorhombic systems are said to be biax-
ial.

TABLE 1.5.1 Form of the linear susceptibility tensor x ) as determined by the
symmetry properties of the optical medium, for each of the seven crystal classes
and for isotropic materials. Each nonvanishing element is denoted by its cartesian
indices

[xx x y Xz 1
Triclinic yx yy yz
L X 2y 2T |
[xx 0 Xz ]
Monoclinic 0 yy O
[ z2x 0 =z
[xx 0]
Orthorhombic 0 yy O
0 0 zz
Tetragonal [xx 0 o0
Trigonal 0 xx O
Hexagonal 0 0 zz
[xx 0 0
Cubi
Isl(l)trlz ic 0 xx 0
i
P L 0 0 xx
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1.5.10. Influence of Inversion Symmetry on the Second-Order
Nonlinear Response

One of the symmetry properties that some but not all crystals possess is cen-
trosymmetry, also known as inversion symmetry. For a material system that is
centrosymmetric (i.e., possesses a center of inversion) the x ) nonlinear sus-
ceptibility must vanish identically. Since 11 of the 32 crystal classes possess
inversion symmetry, this rule is very powerful, as it immediately eliminates
all crystals belonging to these classes from consideration for second-order
nonlinear optical interactions.

Although the result that x ® vanishes for a centrosymmetric medium is
general in nature, we shall demonstrate this fact only for the special case of
second-harmonic generation in a medium that responds instantaneously to the
applied optical field. We assume that the nonlinear polarization is given by

P(t)=eox PE* (1), (1.5.31)
where the applied field is given by
E(t) = Ecoswt. (1.5.32)

If we now change the sign of the applied electric field E(1), the sign of the
induced polarization P (t) must also change, because we have assumed that
the medium possesses inversion symmetry. Hence the relation (1.5.31) must
be replaced by

s d 2
—P)=eoxP[-ED]". (1.5.33)
which shows that
—P(t) =eox PE>(1). (1.5.34)

By comparison of this result with Eq. (1.5.31), we see that P (1) must equal
— P(t), which can occur only if P(¢) vanishes identically. This result shows
that

x@ =0. (1.5.35)

This result can be understood intuitively by considering the motion of an
electron in a nonparabolic potential well. Because of the nonlinearity of the
associated restoring force, the atomic response will show significant harmonic
distortion. Part (a) of Fig. 1.5.2 shows the waveform of the incident mono-
chromatic electromagnetic wave of frequency w. For the case of a medium
with linear response (part (b)), there is no distortion of the waveform asso-
ciated with the polarization of the medium. Part (c) shows the induced po-
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FIGURE 1.5.2 Waveforms associated with the atomic response.
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larization for the case of a nonlinear medium that possesses a center of sym-
metry and whose potential energy function has the form shown in Fig. 1.4.2.
Although significant waveform distortion is evident, only odd harmonics of
the fundamental frequency are present. For the case (part (d)) of a nonlinear,
noncentrosymmetric medium having a potential energy function of the form
shown in Fig. 1.4.1, both even and odd harmonics are present in the wave-
form associated with the atomic response. Note also the qualitative difference
between the waveforms shown in parts (c) and (d). For the centrosymmet-
ric medium (part (c)), the time-averaged response is zero, whereas for the
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noncentrosymmetric medium (part (d)) the time-average response is nonzero,
because the medium responds differently to an electric field pointing, say, in
the upward direction than to one pointing downward.*

1.5.11. Influence of Spatial Symmetry on the Second-Order
Susceptibility

We have just seen how inversion symmetry when present requires that the
second-order vanish identically. Any additional symmetry property of a non-
linear optical medium can impose additional restrictions on the form of the
nonlinear susceptibility tensor. By explicit consideration of the symmetries
of each of the 32 crystal classes, one can determine the allowed form of the
susceptibility tensor for crystals of that class. The results of such a calculation
for the second-order nonlinear optical response, which was performed origi-
nally by Butcher (1965), are presented in Table 1.5.2. Under those conditions
(described following Eq. (1.5.21)) where the second-order susceptibility can
be described using contracted notation, the results presented in Table 1.5.2
can usefully be displayed graphically. These results, as adapted from Zernike
and Midwinter (1973), are presented in Fig. 1.5.3. Note that the influence of
Kleinman symmetry is also described in the figure. As an example of how to
use the table, the diagram for a crystal of class 3m is meant to imply that the
form of the d;; matrix is

0 0 0 0 d31 —dxp
diy=|—dyp dp 0 d3 0 0
dy1 dy1 diyz O 0 0

The second-order nonlinear optical susceptibilities of a number of crystals
are summarized in Table 1.5.3. This table should be used only with some cau-
tion. There is considerable spread in the values of the nonlinear coefficients
quoted in the literature, both because of the wavelength dependence of the
nonlinear susceptibility and because of measurement inaccuracies. A detailed
analysis of the measurement of nonlinear coefficients has been presented by
Shoji et al. (1997). The references cited in the footnote to the table provide
more detailed tabulations of nonlinear coefficients.

* Parts (a) and (b) of Fig. 1.5.2 are plots of the function sinwt, part (c) is a plot of the function
sinwt — 0.25sin3wt, and part (d) is a plot of —0.2 + sinwt + 0.2 cos 2wt .
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TABLE 1.5.2 Form of the second-order susceptibility tensor for each of the 32
crystal classes. Each element is denoted by its Cartesian indices

Crystal System  Crystal Class Nonvanishing Tensor Elements
Triclinic 1=C All elements are independent and nonzero
1=5, Each element vanishes
Monoclinic 2=0C, XYZ,XZY, XXy, XYX, VXX, YYY, YZZ, YIX, YXZ,2YZ,
22y, 2xy, zyx (twofold axis parallel to )
m=Cyy XXX, XYY, XZZ,XZX,XXZ, YYZ, YZV, YXY, YYX, XX,
7YYy, 222, 22X, zxz (mirror plane perpendicular to y)
2/m = Cyy, Each element vanishes
Orthorhombic 222 = D, XYZ,XZY, YZX, YXZ,ZXY, ZyX
mm?2 = Cp, XZX,XXZ, YYZ, YZY,2ZXX, ZYY, 222
mmm = Dy, Each element vanishes
Tetragonal 4=0Cy XYZ = —YyXZ,XZy = —YIX,XIX = YTy, XXZ =YYz,
XX = ZYY, 222, ZXY = —ZyX
4=25 XyZ = yXZ,XZy = yIX,XZX = —yZy,XXZ = —YyZ,
XX = —ZYY, ZXy = ZyX
422 =Dy XyZ = —YXZ,XZY = —YIX,ZXy = —ZyX
Amm = Cyy XZX = yZy,XXZ = YyZ,ZXX =2ZYY, 2%
42m = Doy XyZ = yXZ,XZy = yIX,ZXy = ZyX
4/m = Cyp Each element vanishes
4/mmm = Dyy, Each element vanishes
Cubic 432=0 XYZ = —XZy = YIX = —YXZ=2ZXy = —ZyX
43m = Ty XyZ =XZY = YIX = YXZ =2ZXy =YX
23=T XYZ = yIX = ZXYy, XZy = YXZ =YX
m3 =Ty, m3m = O,  Each element vanishes
Trigonal 3=C3 XXX = —Xyy = —yyZ = —YyXY,XyZ = —yXZ,XZy = —yIX,
XZX = YZY,XXZ = yYZ, YYy = —yXX = —XXYy = —XYX,
XX =Z2YyY,322,ZXY = —ZyX
32=D3 XXX = —XYy = —YYX = —YyXy, Xy = —yXZ,
XZy = —YyIX,IXy = —IyX
3m=Csy XZX = Y2, XXZ = YYZ, ZXX =2YY,22L, YYY = —YXX =
—xxy = —xyx (mirror plane perpendicular to x)
3=S,3m= D3y Each element vanishes
Hexagonal 6=Cg XYZ = —YyXZ,XZy = —yZX, XX = YyZy,XXZ =YYz,
XX = ZYY, 222, ZXY = —ZYX
6=Cy, XXX = —XYY = =YXy = — )X,
VYY = —YXX = —XYX = —XXY
622 = Dg XYZ = —YyXZ,XZy = —YXZ,ZXy = —Z)X
6mm = Cgy XZX =YY, XXZ = YYyZ,IXX =Yy, 222
6m2 = D3, YYY = —YXX = —XXy = —Xyx
6/m = Cgp, Each element vanishes

6/mmm = Dgy,

Each element vanishes
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1.5.12. Number of Independent Elements of Xi(jzk) (w3, W, w1)
We remarked in relation to Eq. (1.5.1) that as many as 324 complex numbers
must be specified in order to describe the general interaction of three optical
waves. In practice, this number is often greatly reduced.

Because of the reality of the physical fields, only half of these numbers are
independent (see Eq. (1.5.5)). Furthermore, the intrinsic permutation symme-
try of x® (Eq. (1.5.6)) shows that there are only 81 independent parameters.

Biaxial crystal classes

* .8 & 08 ¢ #o2 2 __l*;_'..-—.
e N,

class ] o--8 (@ m; W - class2 o --§ e - w
»

class m . OB T class222 . . . . Va

»

classmm2 . , .- .

Uniaxial crystal classes

class 3 :% class 3m 0_/
/” ”’
” "
—ee . . . e - .
class 6 ;j>:<z class Emzo"/

FIGURE 1.5.3 Form of the d;; matrix for the 21 crystal classes that lack inversion
symmetry. Small dot: zero coefficient; large dot: nonzero coefficient; square: coeffi-
cient that is zero when Kleinman’s symmetry condition is valid; connected symbols:
numerically equal coefficients, but the open-symbol coefficient is opposite in sign
to the closed symbol to which it is joined. Dashed connections are valid only under
Kleinman’s symmetry conditions. (After Zernike and Midwinter, 1973.)
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Uniaxial crystal classes (Continued)
classes S x C:S?:ifls ... / .
6andd °~ ° " _- and -
—eo e - - - 4mm e—e e -

classes ’ \I * o X ;
622 T T . class4 , ., . .
and P .
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FIGURE 1.5.3 (continued)

For a lossless medium, all elements of x ® are real and the condition of full
permutation symmetry is valid, implying that only 27 of these numbers are in-
dependent. For second-harmonic generation, contracted notation can be used,
and only 18 independent elements exist. When Kleinman’s symmetry is valid,
only 10 of these elements are independent. Furthermore, any crystalline sym-
metries of the nonlinear material can reduce this number further.

1.5.13. Distinction between Noncentrosymmetric and
Cubic Crystal Classes

It is worth noting that a material can possess a cubic lattice and yet be non-
centrosymmetric. In fact, gallium arsenide is an example of a material with
just these properties. Gallium arsenide crystallizes in what is known as the
zincblende structure (named after the well-known mineral form of zinc sul-
fide), which has crystal point group 43m. As can be seen from Table 1.5.2
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TABLE 1.5.3 Second-order nonlinear optical susceptibilities for several crystals

Material Point Group d;j; (pm/V)
Ag3AsS3 3m=Czy dyy =18
(proustite) dis=11
AgGaSe, 42m = Doy dzg =33
AgSbSy 3m=Czy dis =38
(pyrargyrite) dy =9
beta-BaB,O4 (BBO) 3m = Cszy dy =22
(beta barium borate)
CdGeAs, 42m = Doy d3g =235
CdS 6mm = Cgy dz3 =178
dy1 =—40
GaAs 43m d3g =370
KH,POy4 2m dzg =0.43
(KDP)
KD,POy4 2m dzg =0.42
(KD*P)
LilO3 6=Cg di5=-5.5
d3) =—1
LiNbO3 3m =Czy d3y =-30
d3; =-59
Quartz 32=D3 d;; =03
d14 =0.008

Notes: Values are obtained from a variety of sources. Some of the more complete tabulations are
those of R.L. Sutherland (1996), that of A.V. Smith, and the data sheets of Cleveland Crystals, Inc.

To convert to the gaussian system, multiply each entry by (3 x 10_8)/471 =2.386 x 1072 to obtain
d in esu units of cm/statvolt.

In any system of units, x @ =24 by convention.

or from Fig. 1.5.3, materials of the 43m crystal class possess a nonvanish-
ing second-order nonlinear optical response. In fact, as can be seen from
Table 1.5.3, gallium arsenide has an unusually large second-order nonlinear
susceptibility. However, as the zincblende crystal structure possesses a cu-
bic lattice, gallium arsenide does not display birefringence. We shall see in
Chapter 2 that it is necessary that a material possess adequate birefringence
in order that the phase matching condition of nonlinear optics be satisfied.
Because gallium arsenide does not possess birefringence, it cannot normally
participate in phase-matched second-order interactions.
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(a) diamond structure (b) zincblende structure

e C ® GaorZn
O AsorS

FIGURE 1.5.4 TIllustration of (a) the diamond structure and (b) the zincblende struc-
ture. Both possess a cubic lattice and thus cannot display birefringence, but the car-
bon structure is centrosymmetric, whereas the zincblende structure is noncentrosym-
metric.

It is perhaps surprising that a material can possess the highly regular
spatial arrangement of atoms characteristic of the cubic lattice and yet be
noncentrosymmetric. This distinction can be appreciated by examination of
Fig. 1.5.4, which shows both the diamond structure (point group m3m) and
the zincblende structure (point group 43m). One sees that the crystal lattice
is the same in the two cases, but that the arrangement of atoms within the
lattice allows carbon but not zincblende to possess a center of inversion sym-
metry. In detail, a point of inversion symmetry for the diamond structure is
located midway between any two nearest-neighbor carbon atoms. This sym-
metry does not occur in the zincblende structure because the nearest neighbors
are of different species.

1.5.14. Distinction between Noncentrosymmetric and Polar
Crystal Classes

As noted above, of the 32 crystal point groups, only 21 are noncentrosymmet-
ric and consequently can possess a nonzero second-order susceptibility x .
A more restrictive condition is that certain crystal possess a permanent dipole
moment. Crystals of this sort are known as polar crystals, or as ferroelectric
crystals.* This property has important technological consequences, because
crystals of this sort can display the pyroelectric effect (a change of perma-
nent dipole moment with temperature, which can be used to construct optical

* The subtle distinctions among polar, pyroelectric, piezoelectric, and ferroelectric crystals are
described by Nye (1985, pp. 78-81).
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detectors)® or the photorefractive effect, which is described in greater detail
in Chapter 11. Group theoretical arguments (see, for instance, Nye, 1985)
demonstrate that the polar crystal classes are

1 2 3 4 6
m mm2 3m 4mm 6mm

Clearly, all polar crystal classes are noncentrosymmetric, but not all noncen-
trosymmetric crystal classes are polar. This distinction can be seen straightfor-
wardly by means of an example from molecular physics. Consider a molecule
with tetrahedral symmetry such as CCly. In this molecule the four chlorine
ions are arranged on the vertices of a regular tetrahedron, which is centered
on the carbon ion. Clearly this arrangement cannot possess a permanent dipole
moment, but this structure is nonetheless noncentrosymmetric.

1.5.15. Influence of Spatial Symmetry on the Third-Order
Nonlinear Response

The spatial symmetry of the nonlinear optical medium also restricts the form
of the third-order nonlinear optical susceptibility. The allowed form of the sus-
ceptibility has been calculated by Butcher (1965) and has been summarized
by Hellwarth (1977); a minor correction to these results was later pointed out
by Shang and Hsu (1987). These results are presented in Table 1.5.4. Note that
for the important special case of an isotropic optical material, the results pre-
sented in Table 1.5.4 agree with the result derived explicitly in the discussion
of the nonlinear refractive index in Section 4.2.

1.6. Time-Domain Description of Optical Nonlinearities

In the preceding sections, we described optical nonlinearities in terms of the
response of an optical material to one or more essentially monochromatic
applied fields. We found that the induced nonlinear polarization consists of
a discrete summation of frequency components at the harmonics of and the
sums and differences of the frequencies present in the applied field. In partic-
ular, we described the nonlinear response in the frequency domain by relating
the frequency components P (w) of the nonlinear polarization to those of the
applied optical field, E (o).

It is also possible to describe optical nonlinearities directly in the time do-
main by considering the polarization P (1) that is produced by some arbitrary

* The operation of pyroelectric detectors is described, for instance, in Section 13.3 of Boyd (1983).
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TABLE 1.5.4 Form of the third-order susceptibility tensor x® for each of the
crystal classes and for isotropic materials. Each element is denoted by its Carte-
sian indices

Isotropic

There are 21 nonzero elements, of which only 3 are independent. They are:
YYZZ = ZZYY = ZZXX = XXZZ = XXYYy = YYXX,
YZYZ = ZYZY = ZXIX = XIXZ = XYXY = YXYX,
YIZYy = ZYYT = IXXT = XIIX = XYYX = YXXY;

and
XXXX = YYYy = 2222 = XXYYy + XyxXy + xXyyXx.

Cubic
For the two classes 23 and m3, there are 21 nonzero elements, of which only 7 are independent.

They are:
XXXX = yyyy = 2222,
VYIZ = ZZXX = XXYY,
ZZYy = XXZZ = YYXX,
YZYZ = ZXZX = XyXYy,
ZyZy = XIXZ = YXYX,
YZZY = ZXXZ = XYyX,
ZyyZ = XZZX = yXXy.
For the three classes 432, Zl3m, and m3m, there are 21 nonzero elements, of which only 4 are indepen-
dent. They are:
XXXX = Yyyy = 2222,
YYZZ = ZZYY = ZZXX = XXZZ = XXYY = YYXX,
YIYZ = ZYZY = ZXIX = XZXZ = XYXYy = yXYX,

VZZY = ZYYZ = ZXXZ = XZZX = XYYX = yXXy.

Hexagonal
For the three classes 6, 6, and 6/m, there are 41 nonzero elements, of which only 19 are independent.
They are:
XXYy = Yyxx,
2222, VYE = vix
XXXX = Yyyyy = Xxyy +Xyyx + xyxy, %4 IXEY,
XYXYy = yXyx,
yyiz = XXz, Xy2Z = —YXZz,
ZZyy = ZIXX, ZZXY = —IIYX,
ZYyZ = ZXXZ,  ZXYT = —IYXZ,
yZZy = XZZX, XZZYy = —YyIZX,
YIYZ = XIXZ, XIYI = —YIXZ,
Zyzy = ZXZX, ZXZY = —IYIX,
Yyxy = —Xxxyx,
XXXy = —YYyX = yyxy + yxyy +xyyy, YXYYy = —XyXxXx,
Xyyy = —yXxx.

(continued)
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TABLE 1.5.4 (continued)

For the four classes 622, 6mm, 6/mmm, and 6m2, there are 21 nonzero elements, of which only 10
are independent. They are:

XXyy = yyxx,
2222, Xyyx = yxxy
XXXX = YYyyy = XXyy + XYyyX + Xyxy, ’
XyXy = yxyx,
Yyiz = XXZZ,
ZZyy = zZXX,
Yy = TXXZ,
yzZy = X7ZX,
yzZyz = X7XZ,
Zyzy = ZXZX.
Trigonal
For the two classes 3 and 3, there are 73 nonzero elements, of which only 27 are independent. They
are:
XXYy = yyxx,
2222, VYA = VX
XXXX =YYYy =XXYY +XyyXx +Xyxy, Y YXXYs
XyXy = yxyx,
yyiz = XXzz, XyIz = —yXiz,
ZZYy = ZIXX, ZZXy = —ZZYX,
YyZ = 2XXZ, XYy = —2YyXz,
yzzy = XX, Xy = —YIZX,
YIyZ = XXz, XIYI = —YyIXZ,
ZyZy = ZXZX, ZXZYy = —ZIYZX,
YyXy = —XxXyx,
XXXy = —YYYX = yyxXy + yXyy +xyyy, YXYy =—Xyxx,
Xyyy = —yXXX.
YYYZ = —YXXZ = —XYXZ= —XXYZ,
YYLY = —YXZX = —XYIX = —XXZY,
YZYY = —YIXX = —XZyX = —XZX),
ZYyyy = —ZYXX = —ZXYX = —ZXX),
XXXZ = —XYyZ = —yXyZ = —yyxz,
XXZX = —XYIY = —yXZY = —yyIX,
XZXX = —YyZXYy = —YIyX = —XZYY,
ZXXX = —ZXYy = —ZyXYy = —ZYyX.

For the three classes 3m, 3m, and 32, there are 37 nonzero elements, of which only 14 are independent.
They are:

XXyy = yyxx,

XYyx = yxxy,

XyXy = yxyx,

2222,
XXXX = YYYY = XXYY + XYYX + XYXY,
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TABLE 1.5.4 (continued)

yyiz = xXx2z, XXXZ = —XYYZ = —yYXyYZ = —YyyXxz,
ZZYY = ZZXX, XXZX = —XYyIy = —yXZy = —YYZX,
ZYyz = ZXXZ, XZXX = —XZYy = —YZIXy = —YyIYX,
YZZY = XZZX, IXXX = —ZXYY = —ZyXy = —ZYYX,
yZyz = X7XZ,
Zyzy = ZXZX.

Tetragonal
For the three classes 4, 4, and 4/m, there are 41 nonzero elements, of which only 21 are independent.
They are:
XXXX =YyYyyy, 222%,
2ZXX =2Z72yy, XYZZ = —YyXZZ, XXYY =YYXX, XXXy =—YYYX,
XX7Z =22yy, 2IXY = —ZZYX, XYXY = YXYX, XXYX = —YyyXy,
ZXZX =2yzy,  XZIYZ=TYIXZ,  XYYX =YXXY,  XYXX = —YXYY,
XZXZ=YyIyzZ, IXIy = —2IYyIX, YXXX = —XYYYy,
IXXZ =2Z2YyyZ, IXYI=—ZyXZ,
Xz7ZX =yzzy, XZZy = —YIZX.
For the four classes 422, 4mm, 4/mmm, and Z12m, there are 21 nonzero elements, of which only 11
are independent. They are:
XXXX =Yyyyy, 2222,
YYZZ =XXZZ, YIZY =XZZX XXYy = YYXX,
2ZYY =2ZXX, YIYI =XZXZ XYXY = yXYX,
ZYYZ =ZXXZ, ZYZY =ZXZX  XYYX = yXX)Y.
Monoclinic
For the three classes 2, m, and 2/m, there are 41 independent nonzero elements, consisting of:

3 elements with indices all equal,

18 elements with indices equal in pairs,

12 elements with indices having two y’s one x, and one z,
4 elements with indices having three x’s and one z,

4 elements with indices having three z’s and one x.

Orthorhombic
For all three classes, 222, mm?2, and mmm, there are 21 independent nonzero elements, consisting of:

3 elements with indices all equal,

18 elements with indices equal in pairs.
Triclinic
For both classes, 1 and 1, there are 81 independent nonzero elements.

applied field E (). These two methods of description are entirely equivalent,
although description in the time domain is more convenient for certain types
of problems, such as those involving applied fields in the form of short pulses;
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conversely, description in the frequency domain is more convenient when each
input field is nearly monochromatic.

Let us first consider the special case of a material that displays a purely
linear response. We can describe the polarization induced in such a material
by

173“)(t)=eo/oo RO@E( —1)dr. (1.6.1)
0

Here R( () is the linear response function, which gives the contribution to
the polarization produced at time ¢ by an electric field applied at the earlier
time ¢ — 7. The total polarization is obtained by integrating these contributions
over all previous times t. In writing Eq. (1.6.1) as shown, with the lower limit
of integration set equal to zero and not to —oo, we have assumed that RV (1)
obeys the causality condition R (7) = 0 for 7 < 0. This condition expresses
the fact that P(V(¢) depends only on past and not on future values of E(t).

Equation (1.6.1) can be transformed to the frequency domain by introduc-
ing the Fourier transforms of the various quantities that appear in this equa-
tion. We adopt the following definition of the Fourier transform:

E(w) = f - E®)e'“ dt (1.6.2a)
E(t) = 1 / - E()e " dw (1.6.2b)
27 J oo

with analogous definitions for other quantities. By introducing Eq. (1.6.2b)
into Eq. (1.6.1), we obtain

oo [ee]

i J |

PV (1) = eo/ dr/ 4O L) (1) E (@)e—@t—0)
0 oo 2T

o0 da) o 1 . ot
=60/ —/ dt RV (1)e' T E(w)e (1.6.3)
—00 27T 0
or
o0
~ d .
P(l)(t)ze()/ z—wx“)(w; ) E (w)e ", (1.6.4)
_oo 27

where we have introduced an explicit expression for the linear susceptibility
o0 .
x D (w; ) =/ dt RV (1)el". (1.6.5)
0

Equation (1.6.4) gives the time-varying polarization in terms of the frequency
components of the applied field and the frequency dependent susceptibility.
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By replacing the left-hand side of this equation with [ PO (w)exp(—iwt)dw/
27 and noting that the equality must be maintained for each frequency w, we
recover the usual frequency domain description of linear response:

PY(w) =eox V(w; w)E(w). (1.6.6)

The nonlinear response can be described by analogous procedures. The
contribution to the polarization second-order in the applied field strength is
represented as

o0 o
f’(z)(t)zéof dn/ dn RP (1, )E(t —t)E(t — 1), (1.6.7)
0 0

where the causality condition requires that R@ (1, 17p) = 0 if either 7| or 7
is negative. As above, we write E(t — t1) and E(t — 12) in terms of their
Fourier transforms using Eq. (1.6.2b) so that the expression for the second-
order polarization becomes

- d d
P(z)(t):e()/ wl/ a)z/ dn/ d‘L’zR(Z)(‘El )

% E(a)l)eﬂw' (I*TI)E(w )e*lwz(tffz)
da)1 da)g
=60f / x P (@ 01, ) E(@1) E(w)e ™",

(1.6.8)

where we have defined w, = w; + wy and have introduced the second-order
susceptibility

o0 o0
X(Z)(wa;wl,wz)=/ dn/ dr, R? (11, m)e!@mtem) - (1,6.9)
0 0

This procedure can readily be generalized to higher-order susceptibilities. In
particular, we can express the third-order polarization as

- d d d
PO 1) = 60/ e / e / e x O (055 01, 2, ®3)

x E(w1)E(w) E(w3)e !, (1.6.10)
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where w, = w; + wy + w3 and where

o o0 o
X(3)(wa;w1,w2,w3)=/ dn/ dfz/ dt;
0 0 0

% R(3)(‘L’1 7, 13) ol (@1t tontwst)

(1.6.11)

1.7. Kramers—Kronig Relations in Linear and Nonlinear Optics

Kramers—Kronig relations are often encountered in linear optics. These con-
ditions relate the real and imaginary parts of frequency-dependent quantities
such as the linear susceptibility. They are useful because, for instance, they al-
low one to determine the real part of the susceptibility at some particular fre-
quency from a knowledge of the frequency dependence of the imaginary part
of the susceptibility. Since it is often easier to measure an absorption spec-
trum than to measure the frequency dependence of the refractive index, this
result is of considerable practical importance. In this section, we review the
derivation of the Kramers—Kronig relations as they are usually formulated for
a system with linear response, and then show how Kramers—Kronig relations
can be formulated to apply to some (but not all) nonlinear optical interactions.

1.7.1.  Kramers—Kronig Relations in Linear Optics

We saw in the previous section that the linear susceptibility can be represented
as

o0
x V() = xV(w; a)):/ RW (1)l dr, (1.7.1)
0

where the lower limit of integration has been set equal to zero to reflect the
fact that RV (1) obeys the causality condition RMW (1) =0 for t < 0. Note
also (e.g., from Eq. (1.6.1)) that RV (1) is necessarily real, since it relates
two inherently real quantities 13(1) and E (t). We thus deduce immediately
from Eq. (1.7.1) that

x V() = xV(w)*. (1.7.2)

Let us examine some of the other mathematical properties of the linear sus-
ceptibility. In doing so, it is useful, as a purely mathematical artifact, to treat
the frequency w as a complex quantity @ = Re @ + i Im w. An important
mathematical property of x (w) is the fact that it is analytic (i.e., single-valued
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and possessing continuous derivatives) in the upper half of the complex plane,
that is, for Im w > 0. In order to demonstrate that y () is analytic in the up-
per half plane, it is adequate to show that the integral in Eq. (1.7.1) converges
everywhere in that region. We first note that the integrand in Eq. (1.7.1) is of
the form RW (1) expli(Re w)t]exp[—(Im w)T], and since RMD (1) is every-
where finite, the presence of the factor exp[—(Im w)t] is adequate to ensure
convergence of the integral for Im w > 0. For Im w = 0 (that is, along the
real axis) the integral can be shown to converge, either from a mathematical
argument based on the fact the R(!)(r) must be square integrable or from the
physical statement that x (w) for w real is a physically measurable quantity
and hence must be finite.
To establish the Kramers—Kronig relations, we next consider the integral

oo (g, do’
Int:/ X (@)dw (1.7.3)
o W —w

We adopt the convention that in expressions such as (1.7.3) we are to take the
Cauchy principal value of the integral—that is,

/‘OO X(l)(w/) do’ ) |:/w8 X(l)(w/) do’ fOO X(l)(w/)dw/}
— = lim e _— .
w

) §—0| J_oo o —w s O —o
(1.7.4)

We evaluate expression (1.7.3) using the techniques of contour integration,
noting that the desired integral is given by Int = Int(A) — Int(B) — Int(C)
where Int(A), Int(B), and Int(C) are the path integrals of x (') /(' — w)
over the paths shown in Fig. 1.7.1. Since x (') is analytic in the upper half
plane, the only singularity of the integrand x (»’)/(«’ — w) in the upper half-
plane is a simple pole along the real axis at @’ = w. We thus find that Int(A) =
0 by Cauchy’s theorem since its closed path of integration contains no poles.
Furthermore, Int(B) = 0 since the integration path increases as |w’|, whereas
for large |’| the integrand scales as x (@')/|@’|, and thus the product will tend
toward zero so long as x (') approaches zero for sufficiently large «’. Finally,
by the residue theorem Int(C) = —mi x (w). By introducing these values into
Eq. (1.7.3), we obtain the result

. oo (1) Ndw'
/ 1 (@)do (1.7.5)
—o0

1w =— /
T w —w

By separating x"(w) into its real and imaginary parts as x(w) =
Re x D (w) +i Im xV(w), we obtain one form of the Kramers—Kronig re-
lations:
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(a) complex w’plane

Im(w’) ‘
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FIGURE 1.7.1 Diagrams used in the contour integration of Eq. (1.7.3). (a) shows
the complex @’ plane, (b) shows the desired path of integration, and (c), (d), and (e)
show paths over which the integral can be evaluated using the techniques of contour
integration. In performing the integration the limits r{ — oo and r, — 0 are taken.

1 £ ImyD(o)do
Re 3D (w) = _/ w (1.7.62)
T J o —w
1 [® RexV(w)do
T J_so o —w

These integrals show how the real part of x (! can be deduced from a knowl-
edge of the frequency dependence of the imaginary part of x (!, and vice
versa. Since it is usually easier to measure absorption spectra than the fre-
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quency dependence of the refractive index, it can be quite useful to make use
of Eq. (1.7.6a) as a means of predicting the frequency dependence of the real
part of x (1.

The Kramers—Kronig relations can be rewritten to involve integration over
only (physically meaningful) positive frequencies. From Eq. (1.7.2), we see
that

Re xV(—w) =Re x V(w), ImyP(—w)=—-ImxP(w). (1.7.7)
We can thus rewrite Eq. (1.7.6b) as follows:

m 1 (O RexD(@w)de 1 [*®RexD(w)do
Im "/ (w) = —— -t - - A I
T J_ o —w T Jo o —w

_1/°°Rex(1)(a)/)da)’ 1/00 Re x V(o) do’
0 0

4 o' + o b4 o —w
(1.7.8)
and hence
-2 *© Re y D (w/
Imy (o) = —= / — Z‘;) do. (1.7.92)
0 —
We similarly find that
2 © 1 ¢,/
RexV(w) == / “’;12)‘70)(2‘”) do. (1.7.9b)
o _

1.7.2.  Kramers—Kronig Relations in Nonlinear Optics

Relations analogous to the usual Kramers—Kronig relations for the linear re-
sponse can be deduced for some but not all nonlinear optical interactions. Let
us first consider a nonlinear susceptibility of the form X(3) (wg; w1, w2, 3)
with ws, = w1 + w2 + w3 and with w1, wy, and w3 all positive and distinct.
Such a susceptibility obeys a Kramers—Kronig relation in each of the three
input frequencies, for example,

1

3 .
X( )(w0'7w15w27w3):._/ /
it J_« W, — w2

*© xO(w); o1, 0y, w3)

doh,  (1.7.10)

where ), = w| + ) + w3. Similar results hold for integrals involving )
and wj. The proof of this result proceeds in a manner strictly analogous to that
of the linear Kramers—Kronig relation. In particular, we note from Eq. (1.6.11)
that X(3)(a)g; w1, wy, w3) is the Fourier transform of a causal response func-
tion, and hence X(B’)(a)g; w1, wy, w3) considered as a function of its three
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independent variables wj, wp, and w3, is analytic in the region Imw; > 0,
Imw; > 0, and Imw3 > 0. We can then perform the integration indicated on
the right-hand side of Eq. (1.7.10) as a contour integration closed in the up-
per part of the complex w; plane, and obtain the indicated result. In fact, it
is not at all surprising that a Kramers—Kronig-like relation should exist for
the present situation; the expression X(3)(a)g; w1, wy, w3)E(w1)E(w) E(w3)
is linear in the field E (w;) and the physical system is causal, and thus the rea-
soning leading to the usual linear Kramers—Kronig relation is directly relevant
to the present situation.

Note that in Eq. (1.7.10) all but one of the input frequencies are held fixed.
Kramers—Kronig relations can also be formulated under more general circum-
stances. It can be shown (see, for instance, Section 6.2 of Hutchings et al.,
1992) by means of a somewhat intricate argument that

XM (05 01 + pro, 0+ pro, ..., 0y + paw)

_ [P x" @ ot poor 4 pos o ont pae)

ir J_s o —w

(1.7.11)

where p; > 0 for all i and where at least one p; must be nonzero. Among the
many special cases included in Eq. (1.7.11) are those involving the suscepti-
bility for second-harmonic generation

1 oo ,,(2) 2 /; /’ /
x? Qo 0, w) = —/ wdw’ (1.7.12)
T J_o o —w
and for third-harmonic generation
1 oo (3 3 /; /’ /’ /
X(3)(3a);a),a),w)=_—/ X w/ v.L w)da)/. (1.7.13)
i J_co o —w

Kramers—Kronig relations can also be formulated for the change in refrac-
tive index induced by an auxiliary beam, which is described by a susceptibility
of the sort x G (w; w, 1, —w1). In particular, one can show (Hutchings et al.,
1992) that

x(w; 0, 01, —0)) = — (1.7.14)

1 /OO x D@ o, 01, —01)do’
iT J_o o — o '

Probably the most important process for which it is not possible to
form a Kramers—Kronig relation is for the self-induced change in re-
fractive index, that is, for processes described by the nonlinear suscepti-
bility x @ (w; w, w, —w). Note that this susceptibility is not of the form
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of Eq. (1.7.10) or of (1.7.11), because the first two applied frequencies are
equal and because the third frequency is negative. Moreover, one can show
by explicit calculation (see the problems at the end of this chapter) that for
specific model systems the real and imaginary parts of x ) are not related in
the proper manner to satisfy the Kramers—Kronig relations.

To summarize the results of this section, we have seen that Kramers—Kronig

relations, which are always valid in linear optics, are valid for some but not
all nonlinear optical processes.

Problems

Conversion from Gaussian to SI units. For proustite X;?y has the value
1.3 x 10~7 cm/statvolt in Gaussian units. What is its value in MKS units?
[Ans: 5.4 x 10711 m/V.]

Numerical estimate of nonlinear optical quantities. A laser beam of fre-
quency w carrying 1 W of power is focused to a spot size of 30-yum di-
ameter in a crystal having a refractive index of n = 2 and a second-order
susceptibility of x® =4 x 10! m/V. Calculate numerically the ampli-
tude P(2w) of the component of the nonlinear polarization oscillating at
frequency 2w. Estimate numerically the amplitude of the dipole moment
per atom u(2w) oscillating at frequency 2w. Compare this value with the
atomic unit of dipole moment (eag, where ag is the Bohr radius) and with
the linear response of the atom, that is, with the component () of the
dipole moment oscillating at frequency w. We shall see in the next chapter
that, under the conditions stated above, nearly all of the incident power
can be converted to the second harmonic for a 1-cm-long crystal.

[Ans: P(2w) =4.7x 107! C/m3. Assuming that N = 10?8 atoms/m?,
wQRw) = 4.7 x 1073 Cm = 5.56 x 10~%qq, where eag = 8.5 x
10730 Cm. By comparison, P(w) = 9.7 x 107% C/m3 and u(w) =
9.7 x 1073% Cm = 1.14 x 10~*eag, which shows that u(2w)/u(w) =
49 %1076
Perturbation expansion. Explain why it is unnecessary to include the term
195 in the power series of Eq. (1.4.6).

Tensor properties of the anharmonic oscillator model. Starting from
Eq. (1.4.52), relevant to a collection of isotropic, centrosymmetric, an-
harmonic oscillators, show that the nonlinear susceptibility possesses the
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following tensor properties:

X1122 = X1212 = X1221 = X1133 = X1313 = X1331 = X2233 = X2323
= X2332 = X2211 = X2121 = X2112 = X3311 = X3131 = X3113
1 1 1
= X3322 = X3232 = X3223 = 3 X1111 = 3 X2222 = 3 X3333,

with all other elements vanishing. Give a simple physical argument that
explains why the vanishing elements do vanish. Also, give a simple phys-
ical argument that explains why x;;u possesses off-diagonal tensor com-
ponents, even though the medium is isotropic.

Comparison of the centrosymmetric and noncentrosymmetric models. For
the noncentrosymmetric anharmonic oscillator described by Eq. (1.4.1),
derive an expression for the third-order displacement ¥ and conse-
quently for the third-order susceptibility Xl(‘f)“(a)q, O, Wy, Wp). Com-
pare this result to that given by Eq. (1.4.52) for a purely centrosymmetric
medium. Note that for a noncentrosymmetric medium both of these con-
tributions can be present. Estimate the size of each of these contributions
to see which is larger.

Determination of degs. Verify Egs. (1.5.30a) and (1.5.30b).

Formal properties of the third-order response. Section 1.5 contains a de-
scription of some of the formal mathematical properties of the second-
order susceptibility. For the present problem, you are to determine the
analogous symmetry properties of the third-order susceptibility x®. In
your response, be sure to include the equations analogous to Egs. (1.5.1),
(1.5.2), (1.5.5), (1.5.6), (1.5.8), (1.5.9), and (1.5.19).

Consequences of crystalline symmetry. Through explicit consideration of
the symmetry properties of each of the 32 point groups, verify the results
presented in Tables 1.5.2 and 1.5.4 and in Fig. 1.5.3.

[Notes: This problem is lengthy and requires a more detailed knowl-
edge of group theory and crystal symmetry than that presented in this
text. For a list of recommended readings on these subjects, see the refer-
ence list to the present chapter. For a discussion of this problem, see also
Butcher (1965).]

Subtlety regarding crystal class 432. According to Table 1.5.2, x® pos-
sesses nonvanishing tensor elements for crystal class 432, but according
to Fig. 1.5.3 d;; for this crystal class vanishes identically. Justify these two
statements by taking explicit account of the additional constraints that are
implicit in the definition of the d;; matrix.

Kramers—Kronig relations. Show by explicit calculation that the linear
susceptibility of an optical transition modeled in the two-level approx-
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imation obeys the Kramers—Kronig relations, but that neither the total
susceptibility x nor the third-order susceptibility x ) obeys these rela-
tions. Explain this result by finding the location of the poles of x and
of x@.

[Hints: x and x® are given by Eqgs. (6.3.33) and yx is given by
Eq. (6.3.23).]

11. Kramers—Kronig relations. For the classical anharmonic oscillator model
of Eq. (1.4.20) show by explicit calculation that x ® (2w; w, w) obeys
the Kramers—Kronig relations in the form (1.7.12). Show also that
x D (w1; w3, —wy) does not satisfy Kramers—Kronig relations.

12. Example of the third-order response. The third-order polarization in-
cludes a term oscillating at the fundamental frequency and given by

PO (@) =3e0x P |E(@) [ E (o).

Assume that the field at frequency w includes two contributions that prop-
agate in the directions given by wave vectors k; and ky. Assume also that
the second contribution is sufficiently weak that it can be treated linearly.
Calculate the nonlinear polarization at the fundamental frequency and
give the physical interpretation of its different terms.
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Chapter 2

Wave-Equation Description of
Nonlinear Optical Interactions

2.1. The Wave Equation for Nonlinear Optical Media

We have seen in the last chapter how nonlinearity in the response of a material
system to an intense laser field can cause the polarization of the medium to
develop new frequency components not present in the incident radiation field.
These new frequency components of the polarization act as sources of new
frequency components of the electromagnetic field. In the present chapter,
we examine how Maxwell’s equations describe the generation of these new
components of the field, and more generally we see how the various frequency
components of the field become coupled by the nonlinear interaction.

Before developing the mathematical theory of these effects, we shall give
a simple physical picture of how these frequency components are generated.
For definiteness, we consider the case of sum-frequency generation as shown
in part (a) of Fig. 2.1.1, where the input fields are at frequencies w; and w;.
Because of nonlinearities in the atomic response, each atom develops an os-
cillating dipole moment which contains a component at frequency w; + w;.
An isolated atom would radiate at this frequency in the form of a dipole ra-
diation pattern, as shown symbolically in part (b) of the figure. However, any
material sample contains an enormous number N of atomic dipoles, each os-
cillating with a phase that is determined by the phases of the incident fields.
If the relative phasing of these dipoles is correct, the field radiated by each
dipole will add constructively in the forward direction, leading to radiation in
the form of a well-defined beam, as illustrated in part (c) of the figure. The
system will act as a phased array of dipoles when a certain condition, known
as the phase-matching condition (see Eq. (2.2.14) in the next section), is satis-

69
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FIGURE 2.1.1 Sum-frequency generation.

fied. Under these conditions, the electric field strength of the radiation emitted
in the forward direction will be N times larger than that due to any one atom,
and consequently the intensity will be N2 times as large.

Let us now consider the form of the wave equation for the propagation of
light through a nonlinear optical medium. We begin with Maxwell’s equa-
tions, which we write in SI units in the form*

V.-D=p, (2.1.1)
V-B=0, (2.1.2)
- oB
VxE=——, (2.1.3)
at
. oD -
VxH=_"+]. (2.1.4)

We are primarily interested in the solution of these equations in regions of
space that contain no free charges, so that

5 =0, 2.1.5)

* Throughout the text we use a tilde (~) to denote a quantity that varies rapidly in time.
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and that contain no free currents, so that
J=o0. (2.1.6)
We also assume that the material is nonmagnetic, so that
B = uoH. (2.1.7)

H0w§ver, we allow the material to be nonlinear in the sense that the fields D
and E are related by

D = ¢E + P, (2.1.8)
where in general the polarization vector P depends nonlinearly upon the local
value of the electric field strength E.

We now proceed to derive the optical wave equation in the usual manner.
We take the curl of the curl-E Maxwell equation (2.1.3), interchange the order
of space and time derivatives on the right-hand side of the resulting equation,
and use Egs. (2.1.4), (2.1.6), and (2.1.7) to replace V x B by u0(81~)/8t), to
obtain the equation

- 92 .
VxVxE+MoﬁD=O. (2.1.92)
We now use Eq. (2.1.8) to eliminate D from this equation, and we thereby
obtain the expression

1 92 - 1 3?p

VxVxE+—-—E=——1—.
v +628t2 €oc? 912

(2.1.9b)
On the right-hand side of this equation we have replaced s by 1/€yc? for
future convenience.

This is the most general form of the wave equation in nonlinear optics.
Under certain conditions it can be simplified. For example, by using an iden-
tity from vector calculus, we can write the first term on the left-hand side of
Eq. (2.1.9b) as

VxVxE=V(V-E)- VE. (2.1.10)

In the linear optics of isotropic source-free media, the first term on the right-
hand side of this equation vanishes because the Maxwell equation V - D = 0
implies that V - E = 0. However, in nonlinear optics this term is generally
nonvanishing even for isotropic materials, as a consequence of the more gen-
eral relation (2.1.8) between D and E. Fortunately, in nonlinear optics the first
term on the right-hand side of Eq. (2.1.10) can usually be dropped for cases of
interest. For example, if E is of the form of a transverse, infinite plane wave,
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V - E vanishes identically. More generally, the first term can often be shown to
be small, even when it does not vanish identically, especially when the slowly
varying amplitude approximation (see Section 2.2) is valid. For the remain-
der of this book, we shall usually assume that the contribution of V(V - E) in
Eq. (2.1.10) is negligible so that the wave equation can be taken to have the
form

.19 1 9P
VE- —-—E=——. 2.1.11
c? 912 €oc? 912 ( )
Alternatively, the wave equation can be expressed as
V2 82f)—o (2.1.12)
€oc 92 o

where D = eOE +P.
It is often convenient to split P into its linear and nonlinear parts as

P=pP" 4+ pNL, (2.1.13)

Here PO is the part of P that depends linearly on the electric field strength E.
We can similarly decompose the displacement field D into its linear and non-
linear parts as

D=D" 4 PN, (2.1.14a)
where the linear part is given by
DY = gE+PW. (2.1.14b)
In terms of this quantity, the wave equation (2.1.11) can be written as
1 a?p® 1 PPNt
€oc?  0t? - epc?  9t2

VZE — (2.1.15)

To see why this form of the wave equation is useful, let us first consider the

case of a lossless, dispersionless medium. We can then express the relation

between DV and E in terms of a real, frequency-independent dielectric tensor
€]

€' as

D = eV -E. (2.1.16a)
For the case of an isotropic material, this relation reduces to simply
DY = e VE, (2.1.16b)

where €1 is a scalar quantity. Note that we are using the convention that €y =
8.85 x 10712 F/m is a fundamental constant, the permittivity of free space,
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whereas €1 is the dimensionless, relative permittivity which is different for
each material. For this (simpler) case of an isotropic, dispersionless material,
the wave equation (2.1.15) becomes

W H’E 1 92PNk
2 a2 epc? a2
This equation has the form of a driven (i.e., inhomogeneous) wave equation;
the nonlinear response of the medium acts as a source term which appears
on the right-hand side of this equation. In the absence of this source term,
Eq. (2.1.17) admits solutions of the form of free waves propagating with
velocity ¢/n, where n is the (linear) index of refraction that satisfies n> = 1.
For the case of a dispersive medium, we must consider each frequency com-
ponent of the field separately. We represent the electric, linear displacement,
and polarization fields as the sums of their various frequency components:

—V2E + (2.1.17)

Er0 =Y E.r,0), (2.1.18a)
DO, =Y "D .0, (2.1.18b)
P =Y B o), (2.1.18¢)

where the summation is to be performed over positive field frequencies only,
and we represent each frequency component in terms of its complex amplitude
as

E,(r,1) =E,(r)e " fcc, (2.1.19a)
DV (r, 1) =DV (e~ c.c., (2.1.19b)
PML(r, 1) = PNL(r)e i - coc. (2.1.19¢)

If dissipation can be neglected, the relationship between 13,(11) and E,, can be
expressed in terms of a real, frequency-dependent dielectric tensor accord-
ing to

D (r, 1) = cpe V) (wy) - Eu(x, 1). (2.1.20)

When Egs. (2.1.18a) through (2.1.20) are introduced into Eq. (2.1.15), we

obtain a wave equation analogous to (2.1.17) that is valid for each frequency
component of the field:

eD(w,) 0’E, 1 9P\t

V’E =
" c? 92 egc? 912

(2.1.21)
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The general case of a dissipative medium is treated by allowing the dielec-
tric tensor to be a complex quantity that relates the complex field amplitudes
according to

DV (r) = eoeV (w,) - E, (1), (2.1.22)

This expression, along with Eqgs. (2.1.17) and (2.1.18), can be introduced into
the wave equation (2.1.15), to obtain

2 a’;% 1) a)% NL
VZE,(r) + e (w,l).En(r):—eocan (r). (2.1.23)

2.2. The Coupled-Wave Equations for Sum-Frequency
Generation

We next study how the nonlinear optical wave equation that we derived
in the previous section can be used to describe specific nonlinear optical
interactions. In particular, we consider sum-frequency generation in a lossless
nonlinear optical medium involving collimated, monochromatic, continuous-
wave input beams. We assume the configuration shown in Fig. 2.2.1, where
the applied waves fall onto the nonlinear medium at normal incidence. For
simplicity, we ignore double refraction effects. The treatment given here can
be generalized straightforwardly to include nonnormal incidence and double
refraction.*

The wave equation in Eq. (2.1.21) must hold for each frequency component
of the field and in particular for the sum-frequency component at frequency
3. In the absence of a nonlinear source term, the solution to this equation for
a plane wave at frequency w3 propagating in the +z direction is

E3(z, 1) = Aze! 37030 e c 2.2.1)

_ 2) =
de= 52X —> ;=0 10,

FIGURE 2.2.1 Sum-frequency generation.

* See, for example, Shen (1984, Chapter 6).
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where*

k=22 2= eW(wy), (22.2)
C

and where the amplitude of the wave A3 is a constant. We expect on physical
grounds that, when the nonlinear source term is not too large, the solution to
Eq. (2.1.21) will still be of the form of Eq. (2.2.1), except that A3 will become
a slowly varying function of z. We hence adopt Eq. (2.2.1) with A3 taken to be
a function of z as the form of the trial solution to the wave equation (2.1.21)
in the presence of the nonlinear source term.

We represent the nonlinear source term appearing in Eq. (2.1.21) as

Py(z,1) = P3e " 4 c.c,, (2.2.3)
where according to Eq. (1.5.28)
P3 = 4epdeirE1 E>. (2.2.4)
We represent the applied fields (i =1, 2) as
Ei(z,t) = E;e™'" +cc., where E; = A;e'i%, (2.2.5)
The amplitude of the nonlinear polarization can then be written as
P3 = 4degderA] Ape' K11K2)7 = p3ei(k1+k2)z. (2.2.6)

We now substitute Eqs. (2.2.1), (2.2.3), and (2.2.6) into the wave equation
(2.1.21). Since the fields depend only on the longitudinal coordinate z, we can
replace V2 by d?/dz>. We then obtain

d?As dAs eD(w3)3A37 g
|: iz + 2ik3— iz —k§A3+#3 el tec.
icszng Ageiltithz—osl 4 ¢ o (2.2.7)
c

Since k% =eWD (wg)w_% / ¢2, the third and fourth terms on the left-hand side of
this expression cancel. Note that we can drop the complex conjugate terms
from each side and still maintain the equality. We can then cancel the factor
exp(—iwst) on each side and write the resulting equation as

d2A3 dAs  —4d.

foig 0 Ty ks )
dz c?

* For convenience, we are working in the scalar field approximation; n3 represents the refractive
index appropriate to the state of polarization of the w3 wave.
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It is usually permissible to neglect the first term on the left-hand side of this
equation on the grounds that it is very much smaller than the second. This
approximation is known as the slowly varying amplitude approximation and
is valid whenever

‘d2A3 dAs
,488)

— 229
dz? dz (229)
This condition requires that the fractional change in A3 in a distance of the
order of an optical wavelength must be much smaller than unity. When this

approximation is made, Eq. (2.2.8) becomes

dAsy  2idegw?
d_; - ];4*;2*/4 Ayl Bz (2.2.10)

where we have introduced the quantity
Ak =ki + ko — k3, (2.2.11)

which is called the wavevector (or momentum) mismatch. Equation (2.2.10) is
known as a coupled-amplitude equation, because it shows how the amplitude
of the w3 wave varies as a consequence of its coupling to the w; and w, waves.
In general, the spatial variation of the w; and w, waves must also be taken
into consideration, and we can derive analogous equations for the w; and w;
fields by repeating the derivation given above for each of these frequencies.
We hence find two additional coupled-amplitude equations given by

2id,
dA1 _ﬂA Ale —idkz, (2.2.12a)
dz k]C2
A 2id,
dAy _ ﬂA Afe —iAkz (2.2.12b)
dz kac?

Note that, in writing these equations in the forms shown, we have assumed
that the medium is lossless. For a lossless medium, no explicit loss terms
need be included in these equations, and furthermore we can make use of
the condition of full permutation symmetry (Eq. (1.5.8)) to conclude that the
coupling coefficient has the same value de¢r in each equation.
For future reference, we note that Eq. (2.2.10) can be written more generally
in terms of the slowly varying amplitude p3 of the nonlinear polarization as
@ _ & iAkz

= 2.2.13
dz 2¢€gnsc’ " ( )
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where according to Eq. (2.2.6) p3 is given by P3 = p3expli(k; + k2)z]. Anal-
ogous equations can be written of course for the spatial variations of Aj
and Aj.

2.2.1.  Phase-Matching Considerations

For simplicity, let us first assume that the amplitudes A; and A; of the input
fields can be taken as constants on the right-hand side of Eq. (2.2.10). This
assumption is valid whenever the conversion of the input fields into the sum-
frequency field is not too large. We note that, for the special case

Ak =0, (2.2.14)

the amplitude A3z of the sum-frequency wave increases linearly with z, and
consequently that its intensity increases quadratically with z. The condition
(2.2.14) is known as the condition of perfect phase matching. When this con-
dition is fulfilled, the generated wave maintains a fixed phase relation with
respect to the nonlinear polarization and is able to extract energy most ef-
ficiently from the incident waves. From a microscopic point of view, when
the condition (2.2.14) is fulfilled the individual atomic dipoles that constitute
the material system are properly phased so that the field emitted by each di-
pole adds coherently in the forward direction. The total power radiated by the
ensemble of atomic dipoles thus scales as the square of the number of atoms
that participate.

When the condition (2.2.14) is not satisfied, the intensity of the emit-
ted radiation is smaller than for the case of Ak = 0. The amplitude of the
sum-frequency (w3) field at the exit plane of the nonlinear medium is given
in this case by integrating Eq. (2.2.10) from z =0 to z = L, yielding

2idefrw3 A1 Az /Lemkz e 2idefrw3 A1 As (efAkL - 1>
0

A3(L) =
3(@) k32 k3c2 i Ak

(2.2.15)

The intensity of the w3 wave is given by the magnitude of the time-averaged
Poynting vector, which for our definition of field amplitude is given by

I; =2nieoc|Ai?, i=1,2,3. (2.2.16)
‘We thus obtain
8n3eodwi|A11?| A | AL — 1 |2
3= > (2.2.17)
k3c Ak
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The squared modulus that appears in this equation can be expressed as

G AKL _ 1|2 G DKL _ |\ [ o—ifAKL _ | (1 —cos AkL)
Ak =L’ AKL AKL =2L (AKL)?
s 2
AKL/2
_ 2% = L%sinc’(AkL/2). (2.2.18)

Finally, our expression for /3 can be written in terms of the intensities of the
incident fields by using Eq. (2.2.16) to express | A; |? in terms of the intensities,
yielding the result

8d2. w2l I AkL
L= 37172 2 G2 (252, (2.2.19)
n1n2n36062 2

Note that the effect of wavevector mismatch is included entirely in the factor
sinc?>(AkL/2). This factor, which is known as the phase mismatch factor, is
plotted in Fig. 2.2.2.

It should be noted that the efficiency of the three-wave mixing process
decreases as |Ak|L increases, with some oscillations occurring. The reason
for this behavior is that if L is greater than approximately 1/Ak, the output
wave can get out of phase with its driving polarization, and power can flow
from the w3 wave back into the w; and w, waves (see Eq. (2.2.10)). For this
reason, one sometimes defines

Leon =2/ Ak (2.2.20)
T T I T T ] T

1 — —
a
=~
3

0 C | | | | | 1 ! i

-3n 0 3n

Ak L/[2

FIGURE 2.2.2 Effects of wavevector mismatch on the efficiency of sum-frequency
generation.
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to be the coherent buildup length of the interaction, so that the phase mismatch
factor in Eq. (2.2.19) can be written as

sinc?(L /Leoh)- (2.2.21)

2.3. Phase Matching

We saw in Section 2.2 that for sum-frequency generation involving undepleted
input beams, the intensity of the generated field at frequency w3 = w1 + w2
varies with the wavevector mismatch

Ak =k +ky— k3 (2.3.1)

according to

- 2
I = [ [w} . (2.3.2)

3 (AKL/2)

This expression predicts a dramatic decrease in the efficiency of the sum-
frequency generation process when the condition of perfect phase matching,
Ak =0, is not satisfied.

For nonlinear mixing processes that are sufficiently efficient to lead to de-
pletion of the input beams, the functional dependence of the efficiency of the
process on the phase mismatch is no longer given by Eq. (2.3.2). However,
even in this case the efficient generation of the output field requires that the
condition Ak = 0 be maintained.

Behavior of the sort predicted by Eq. (2.3.2) was first observed experimen-
tally by Maker et al. (1962) and is illustrated in Fig. 2.3.1. Their experiment
involved focusing the output of a pulsed ruby laser into a single crystal of
quartz and measuring how the intensity of the second-harmonic signal varied
as the crystal was rotated, thus varying the effective path length L through
the crystal. The wavevector mismatch Ak was nonzero and approximately the
same for all orientations used in their experiment.

The phase-matching condition Ak = 0 is often difficult to achieve because
the refractive index of materials that are lossless in the range w; to w3 (we
assume that w; < w» < w3) shows an effect known as normal dispersion: the
refractive index is an increasing function of frequency. As a result, the condi-
tion for perfect phase matching with collinear beams,

moL | nawy 13w

) (2.3.3)

C C c
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quartz crystal photomultiplier
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FIGURE 2.3.1 (a) Experimental setup of Maker et al. (1962). (b) Their experimental
results.

where

wl + wy) = w3, 2.3.4)

cannot be achieved. For the case of second-harmonic generation, with w; =
w2, w3 = 2w1, these conditions require that

n(wy) =nwy), (2.3.9)

which is clearly not possible when 7 (w) increases monotonically with w. For
the case of sum-frequency generation, the argument is slightly more compli-
cated, but the conclusion is the same. To show that phase matching is not
possible in this case, we first rewrite Eq. (2.3.3) as
njwi +nyw
ny= L 22 (23.6)

w3
This result is now used to express the refractive index difference n3 — nj as

niw; +nowy —now3  njwp —np(@3 — )  Nniop —no)

’

n3—nz=

w3 w3 w3
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or finally as

w1

ny—ny=(Mny—ny)—. 2.3.7)

w3
For normal dispersion, n3 must be greater than nj, and hence the left-hand
side of this equation must be positive. However, n, must also be greater
than n1, showing that the right-hand side must be negative, which demon-
strates that Eq. (2.3.7) cannot possess a solution.

In principle, it is possible to achieve the phase-matching condition by mak-
ing use of anomalous dispersion, that is, the decrease in refractive index with
increasing frequency that occurs near an absorption feature. However, the
most common procedure for achieving phase matching is to make use of the
birefringence displayed by many crystals. Birefringence is the dependence of
the refractive index on the direction of polarization of the optical radiation.
Not all crystals display birefringence; in particular, crystals belonging to the
cubic crystal system are optically isotropic (i.e., show no birefringence) and
thus are not phase-matchable.

The linear optical properties of the various crystal systems are summarized
in Table 2.3.1.

In order to achieve phase matching through the use of birefringent crys-
tals, the highest-frequency wave w3 = w; + w; is polarized in the direction
that gives it the lower of the two possible refractive indices. For the case of
a negative uniaxial crystal, as in the example shown in Fig. 2.3.2, this choice
corresponds to the extraordinary polarization. There are two choices for the
polarizations of the lower-frequency waves. Midwinter and Warner (1965) de-
fine type I phase matching to be the case in which the two lower-frequency
waves have the same polarization, and type II to be the case where the polar-
izations are orthogonal. The possibilities are summarized in Table 2.3.2. No
assumptions regarding the relative sizes of w; and w; are implied by the clas-
sification scheme. However, for type II phase matching it is easier to achieve
the phase-matching condition (i.e., less birefringence is required) if wy > w
for the choice of w; and w; used in writing the table. Also, independent of the
relative values of w; and wy, type I phase matching is easier to achieve than
type 1I.

Careful control of the refractive indices at each of the three optical frequen-
cies is required in order to achieve the phase-matching condition (Ak = 0).
Typically phase matching is accomplished by one of two methods: angle tun-
ing and temperature tuning.

Angle Tuning  This method involves precise angular orientation of the crystal
with respect to the propagation direction of the incident light. It is most sim-
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TABLE 2.3.1 Linear optical classification of the various crystal systems

System Linear Optical Classification

Triclinic, monoclinic, orthorhombic  Biaxial

Trigonal, tetragonal, hexagonal Uniaxial
Cubic Isotropic
A
o
Q
E
= n
(3] o
=
=
&
= L
2

frequency, ®
FIGURE 2.3.2 Dispersion of the refractive indices of a negative uniaxial crystal. For

the opposite case of a positive uniaxial crystal, the extraordinary index n. is greater
than the ordinary index n,.

TABLE 2.3.2 Phase-matching methods for uniaxial crys-

tals
Positive uniaxial Negative uniaxial
(ne > np) (ne <ng)
Type 1 nfwz =n{w| +njw; nfwz =njw +njan
Type 1T nfw3 =njw) +nSwy nfw3 =nfo| +njwy

ply described for the case of a uniaxial crystal, and the following discussion
is restricted to this case. Uniaxial crystals are characterized by a particular
direction known as the optic axis (or ¢ axis or z axis). Light polarized per-
pendicular to the plane containing the propagation vector k and the optic axis
is called the ordinary polarization. Such light experiences the ordinary refrac-
tive index n,. Light polarized in the plane containing k and the optic axis is
called the extraordinary polarization and experiences a refractive index n.(6)
that depends on the angle 6 between the optic axis and k according to the
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C
(0] 19 20
— > k _—

® ordinary I extraordinary

FIGURE 2.3.3 Geometry of angle-tuned phase matching of second-harmonic gener-
ation for the case of a negative uniaxial crystal.

relation™
1 sin?f  cos?6
ne(0)? i n2
Here 1, is the principal value of the extraordinary refractive index. Note that
ne(0) is equal to the principal value 7 for & = 90 degrees and is equal to n,
for & = 0. Phase matching is achieved by adjusting the angle 6 to obtain the
value of n.(0) for which the condition Ak = 0 is satisfied.

As an illustration of angle phase matching, we consider the case of
type I second-harmonic generation in a negative uniaxial crystal, as shown in
Fig. 2.3.3. Since n. is less than n, for a negative uniaxial crystal, one chooses
the fundamental frequency to propagate as an ordinary wave and the second-
harmonic frequency to propagate as an extraordinary wave, in order that the
birefringence of the material can compensate for the dispersion. The phase-
matching condition (2.3.5) then becomes

ne Qw, 0) = no(w), (2.3.9)

(2.3.8)

or
sin® 6 cos? 0 _ 1
e2w)? " no2w)?  no(w)?’

(2.3.10)

In order to simplify this equation, we replace cos?6 by 1 — sin’6 and solve
for sin’ § to obtain

1 1
2 2
sin? = ”0(1‘”) ”0(21“’) . (2.3.11)

MeCw)?  no2w)?
This equation shows how the crystal should be oriented in order to achieve

the phase-matching condition. Note that this equation does not necessarily

* For a derivation of this relation, see, for example, Born and Wolf (1975, Section 14.3), Klein
(1970, Eq. (11.160a)), or Zernike and Midwinter (1973, Eq. (1.26)).
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possess a solution for a physically realizable orientation angle (that is, a real
value of the angle 6). For example, if for some material the dispersion in
the linear refractive index is too large or the birefringence is too small, the
right-hand side of this equation can have a magnitude larger than unity and
consequently the equation will have no solution.

Temperature Tuning  There is one serious drawback to the use of angle tuning.
Whenever the angle 6 between the propagation direction and the optic axis
has a value other than 0 or 90 degrees, the Poynting vector S and the propaga-
tion vector k are not parallel for extraordinary rays. As a result, ordinary and
extraordinary rays with parallel propagation vectors quickly diverge from one
another as they propagate through the crystal. This walkoff effect limits the
spatial overlap of the two waves and decreases the efficiency of any nonlinear
mixing process involving such waves.

For some crystals, notably lithium niobate, the amount of birefringence is
strongly temperature-dependent. As a result, it is possible to phase-match the
mixing process by holding 6 fixed at 90 degrees and varying the temperature
of the crystal. The temperature dependence of the refractive indices of lithium
niobate has been given by Hobden and Warner (1966).

2.4. Quasi-Phase-Matching

Section 2.3 describes techniques that utilize the birefringence of an optical
material to achieve the phase-matching condition of nonlinear optics. This
condition must be maintained for the efficient generation of new frequency
components in any nonlinear optical interaction. However, there are circum-
stances under which these techniques are not suitable. For instance, a particu-
lar material may possess no birefringence (an example is gallium arsenide) or
may possess insufficient birefringence to compensate for the dispersion of the
linear refractive indices over the wavelength range of interest. The problem of
insufficient birefringence becomes increasingly acute at shorter wavelengths,
because (as illustrated very schematically in Fig. 2.3.2) the refractive index of
a given material tends to increase rapidly with frequency at high frequencies,
whereas the birefringence (that is, the difference between the ordinary and
extraordinary refractive indices) tends to be more nearly constant. Another
circumstance under which birefringence phase matching cannot be used is
when a particular application requires the use of the d33 nonlinear coefficient,
which tends to be much larger than the off-diagonal coefficients. However, the
d33 nonlinear coefficient can be accessed only if all the interacting waves are
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polarized in the same direction. Under this circumstance, even if birefringence
is present it cannot be used to compensate for dispersion.

There is a technique known as quasi-phase-matching that can be used when
normal phase matching cannot be implemented. The idea of quasi-phase-
matching is illustrated in Fig. 2.4.1, which shows both a single crystal of non-
linear optical material (part (a)) and a periodically poled material (part (b)).
A periodically poled material is a structure that has been fabricated in such a
manner that the orientation of one of the crystalline axes, often the ¢ axis of a
ferroelectric material, is inverted periodically as a function of position within
the material. An inversion in the direction of the ¢ axis has the consequence
of inverting the sign of the nonlinear coupling coefficient defr. This periodic
alternation of the sign of defr can compensate for a nonzero wavevector mis-
match Ak. The nature of this effect is illustrated in Fig. 2.4.2. Curve (a) of
this figure shows that, in a perfectly phase matched interaction in an ordinary
single-crystal nonlinear optical material, the field strength of the generated
wave grows linearly with propagation distance. In the presence of a wavevec-
tor mismatch (curve c), the field amplitude of the generated wave oscillates
with propagation distance. The nature of quasi-phase-matching is illustrated
by curve (b). Here it is assumed that the period A of the alternation of the
crystalline axis has been set equal to twice the coherent buildup length Lo
of the nonlinear interaction. Then, each time the field amplitude of the gener-
ated wave is about to begin to decrease as a consequence of the wavevector
mismatch, a reversal of the sign of degf occurs which allows the field amplitude
to continue to grow monotonically.

A mathematical description of quasi-phase-matching can be formulated as
follows. We let d(z) denote the spatial dependence of the nonlinear coupling
coefficient. In the example shown in part (b) of Fig. 2.4.1, d(z) is simply the

(a) T

U

A

FIGURE 2.4.1 Schematic representations of a second-order nonlinear optical material
in the form of (a) a homogeneous single crystal and (b) a periodically poled material
in which the positive ¢ axis alternates in orientation with period A.
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(a) with perfect phase-matching ~__ i
L (b) with quasi-phase-matching

(c) with a wavevector
mismatch

field amplitude

z/ Lcoh

FIGURE 2.4.2 Comparison of the spatial variation of the field amplitude of the gener-
ated wave in a nonlinear optical interaction for three different phase matching condi-
tions. Curve (a) assumes that the phase-matching condition is perfectly satisfied, and
consequently the field amplitude grows linearly with propagation distance. Curve (c)
assumes that the wavevector mismatch Ak is nonzero, and consequently the field am-
plitude of the generated wave oscillates periodically with distance. Curve (b) assumes
the case of a quasi-phase-matched interaction, in which the orientation of the positive ¢
axis is periodically modulated with a period of twice the coherent buildup length Lo,
in order to compensate for the influence of wavevector mismatch. In this case the field
amplitude grows monotonically with propagation distance, although less rapidly than
in the case of a perfectly phase-matched interaction.

square-wave function which can be represented as
d(z) = degrsign[cos(2mz/A)]; (2.4.1)

more complicated spatial variations are also possible. In this equation, defr
denotes the nonlinear coefficient of the homogeneous material. The spatial
variation of the nonlinear coefficient leads to a modification of the coupled
amplitude equations describing the nonlinear optical interaction. The nature
of the modification can be deduced by noting that, in the derivation of the cou-
pled amplitude equations, the constant quantity degr appearing in Eq. (2.2.6)
must be replaced by the spatially varying quantity d(z). It is useful to describe
the spatial variation of d(z) in terms of a Fourier series as

d@)=deii Y Gmexp(iknz), (24.2)

m=—0o0
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where k,,, = 2mrm/A is the magnitude of the grating vector associated with
the mth Fourier component of d(z). For the form of modulation given in the
example of Eq. (2.4.1), the coefficients G,, are readily shown to be given by

G = (2/mm)sin(mm /2), (2.4.3)

from which it follows that the fundamental amplitude G is given by G| =
2/m. Coupled amplitude equations are now derived as in Section 2.2. In per-
forming this derivation, one assumes that one particular Fourier component
of d(z) provides the dominant coupling among the interacting waves. After
making the slowly varying amplitude approximation, one obtains the set of
equations

dA; _ 2iwidg A3A§efi(AkQ72km)z’ (2.4.42)
dz nic
dA; _ 2iwndg A3ATe—i(AkQ—2km)z’ (2.4.4b)
dz nac
dA 2iawsd ;

3 _ 4w Q A, Ayei Koz, (2.4.4¢)
dz n3c

where d is the nonlinear coupling coefficient which depends on the Fourier
order m according to

dg =deitGm (24.5)

and where the wavevector mismatch for order m is given by
Akg =ki +ky — k3 + ki (2.4.6)

Note that these coupled amplitude equations are formally identical to those
derived above (that is, Egs. (2.2.10), (2.2.12a), and (2.2.12b)) for a homoge-
neous material, but they involve modified values of the nonlinear coupling
coefficient defr and wavevector mismatch Ak. Because of the tendency for dg
to decrease with increasing values of m (see Eq. (2.9.3)), it is most desirable to
achieve quasi-phase-matching through use of a first-order (m = 1) interaction
for which

Akg =k +ky — k3 =2 /A, do = 2/m)dest. (2.4.7)

From the first of these relations, we see that the optimum period for the quasi-
phase-matched structure is given by

A =2Lconh =2n/(k1 + k2 — k3). (2.4.8)
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As a numerical example, one finds that Loy is equal to 3.4 um for second-
harmonic generation of radiation at a wavelength of 1.06 um in lithium nio-
bate.

A number of different approaches have been proposed for the fabrication of
quasi-phase-matched structures. The idea of quasi-phase-matching originates
in a very early paper by Armstrong et al. (1962), which suggests slicing a non-
linear optical medium into thin segments and rotating alternating segments
by 180 degrees. This approach, while feasible, is hampered by the required
thinness of the individual layers. More recent work has involved the study of
techniques that lead to the growth of crystals with a periodic alternation in
the orientation of the crystalline ¢ axis or of techniques that allow the orien-
tation of the ¢ axis to be inverted locally in an existing crystal. A particularly
promising approach, which originated with Yamada et al. (1993), is the use of
a static electric field to invert the orientation of the ferroelectric domains (and
consequently of the crystalline ¢ axis) in a thin sample of lithium niobate. In
this approach, a metallic electrode pattern in the form of long stripes is de-
posited onto the top surface of a lithium niobate crystal, whereas the bottom
surface is uniformly coated to act as a ground plane. A static electric field of
the order of 21 kV /mm is then applied to the material, which leads to domain
reversal only of the material directly under the top electrode. Khanarian ez al.
(1990) have demonstrated that polymeric materials can similarly be periodi-
cally poled by the application of a static electric field. Quasi-phase-matched
materials offer promise for many applications of nonlinear optics, some of
which are outlined in the review of Byer (1997).

2.5. The Manley-Rowe Relations

Let us now consider, from a general point of view, the mutual interaction of
three optical waves propagating through a lossless nonlinear optical medium,
as illustrated in Fig. 2.5.1.

(1)]—)
(1)2—)

CO3H

FIGURE 2.5.1 Optical waves of frequencies w1, w», and w3 = w; + w» interact in a
lossless nonlinear optical medium.
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We have just derived the coupled-amplitude equations (Egs. (2.2.10)
through (2.2.12b)) that describe the spatial variation of the amplitude of each
wave. Let us now consider the spatial variation of the intensity associated with
each of these waves. Since

I,' =2n,‘6()CA,'A;k, (2.5.1)

the variation of the intensity is described by

ai_, Arddi A (252)
— = ZLN;€ENnC . ; . e
dz i€0 i dz i dz

Through use of this result and Eq. (2.2.12a), we find that the spatial variation
of the intensity of the wave at frequency w is given by

2
an _ 2nieoc%(iA’{A3A§e*’AkZ +cc)
= depdefron (iA3ATAZ€7iAkZ + C.C.)

or by
dl

dz

We similarly find that the spatial variation of the intensities of the waves at
frequencies w; and w3 is given by

= —8edefrwr Im(A3 AT A5e 1 2K%), (2.5.32)

dlp

- = —Seoderrn Im(A3ATA%e ™45, (2.5.3b)
Z
dI .
2 = _Beqderiwz Im(A3 A) Agel 29)
Z

= Beodetrws Im(A3 A A e 14%%). (2.5.3¢)

We see that the sign of d11/dz is the same as that of d I /dz but is opposite to
that of d13/dz. We also see that the direction of energy flow depends on the
relative phases of the three interacting fields.

The set of Eqgs. (2.5.3) shows that the total power flow is conserved, as
expected for propagation through a lossless medium. To demonstrate this fact,
we define the total intensity as

I=5L+5h+5. (2.5.4)
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We then find that the spatial variation of the total intensity is given by
ar _dh  db_drs
dz dz dz dz
= —8eodefi(w) + w2 — w3) Im(A3AT A5 2%) =0,  (25.5)
where we have made use of Eqs. (2.5.3) and where the last equality follows

from the fact that w3 = w; + ws.
The set of Egs. (2.5.3) also implies that

1 I I
d(hy_d(BL)__d(h) (2.5.6)
dz \ w dz \w dz \ w3

as can be verified by inspection. These equalities are known as the Manley—
Rowe relations (Manley and Rowe, 1959). Since the energy of a photon of
frequency w; is fiw;, the quantity I; /w; that appears in these relations is pro-
portional to the intensity of the wave measured in photons per unit area per
unit time. The Manley—Rowe relations can alternatively be expressed as

d (I I d (1 I d (1 I
S(24L58)=o, (A L3 )=, S _22)\_p
dz\w>» w3 dz\w1 w3 dz\w;

2.5.7)

These equations can be formally integrated to obtain the three conserved
quantities (conserved in the sense that they are spatially invariant) My, M>,
and M3, which are given by
=285 B R s
w2 W3 w; w3 w1 w2
These relations tell us that the rate at which photons at frequency w; are
created is equal to the rate at which photons at frequency w» are created and
is equal to the rate at which photons at frequency w3 are destroyed. This re-
sult can be understood intuitively by means of the energy level description
of a three-wave mixing process, which is shown in Fig. 2.5.2. This diagram
shows that, for a lossless medium, the creation of an w; photon must be ac-
companied by the creation of an w; photon and the annihilation of an w3 pho-
ton. It seems at first sight surprising that the Manley—Rowe relations should
be consistent with this quantum-mechanical interpretation, when our deriva-
tion of these relations appears to be entirely classical. Note, however, that
our derivation implicitly assumes that the nonlinear susceptibility possesses
full permutation symmetry in that we have taken the coupling constant de¢s
to have the same value in each of the coupled-amplitude equations (2.2.10),
(2.2.12a), and (2.2.12b). We remarked earlier (following Eq. (1.5.9)) that in
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FIGURE 2.5.2 Photon description of the interaction of three optical waves.

a sense the condition of full permutation symmetry is a consequence of the
laws of quantum mechanics.

2.6. Sum-Frequency Generation

In Section 2.2, we treated the process of sum-frequency generation in the
simple limit in which the two input fields are undepleted by the nonlinear
interaction. In the present section, we treat this process more generally. We
assume the configuration shown in Fig. 2.6.1.

The coupled-amplitude equations describing this interaction were derived
above and appear as Eqs. (2.2.10) through (2.2.12b). These equations can be
solved exactly in terms of the Jacobi elliptic functions. We shall not present
the details of this solution, because the method is very similar to the one that
we use in Section 2.7 to treat second-harmonic generation. Details can be
found in Armstrong et al. (1962); see also Problem 2 at the end of this chapter.

Instead, we treat the somewhat simpler (but more illustrative) case in which
one of the applied fields (taken to be at frequency w) is strong, but the other
field (at frequency w;) is weak. This situation would apply to the conver-
sion of a weak infrared signal of frequency w; to a visible frequency w3 by
mixing with an intense laser beam of frequency w; (see, for example, Boyd
and Townes, 1977). This process is known as upconversion, because in this
process the information-bearing beam is converted to a higher frequency. Usu-
ally optical-frequency waves are easier to detect with good sensitivity than
are infrared waves. Since we can assume that the amplitude A of the field at
frequency w» is unaffected by the interaction, we can take A; as a constant
in the coupled-amplitude equations (Egs. (2.2.10) through (2.2.12b)), which
then reduce to the simpler set
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wl wl
1@
Wy —> dcff=EX() — o,
Wy - > —> 0, =0 t0,

FIGURE 2.6.1 Sum-frequency generation. Typically, no input field is applied at fre-
quency 3.

dA :
L= K AzemidR (2.6.12)
dz
dA :
Z2 — KaAjetik (2.6.1b)
dz
where we have introduced the quantities
2iwldest 2iw3dese
= y = = , 2.6.2
1 e 2 3 2 (2.6.2a)
and
Ak =ky + ky — k3. (2.6.2b)

The solution to Eq. (2.4.1) is particularly simple if we set Ak = 0, and we
first treat this case. We take the derivative of Eq. (2.6.1a) to obtain

d*Ay dAs
—=K;—.
dz? dz
We now use Eq. (2.6.1b) to eliminate d A3 /dz from the right-hand side of this
equation to obtain an equation involving only A (z):

d*A,
dz?
where we have introduced the positive coupling coefficient x2 defined by

dotwid%] Az

(2.6.3)

= —k2A;, (2.6.4)

2
=-K1K3z= 2.6.5
K 1K3 kiksch (2.6.5)
The general solution to Eq. (2.6.4) is
A1(z) = Bcoskz + Csinkz. (2.6.6a)

We now obtain the form of A3(z) through use of Eq. (2.6.1a), which shows
that A3(z) = (dA1/dz)/K1, or

C
~ sinkz + i COSKZ. (2.6.6b)

Ax(z) =
3(2) X X
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We next find the solution that satisfies the appropriate boundary condi-
tions. We assume that the w3 field is not present at the input, so that the
boundary conditions become A3(0) = 0 with A1(0) specified. We find from
Eq. (2.6.6b) that the boundary condition A3(0) = 0 implies that C = 0, and
from Eq. (2.6.6a) that B = A1(0). The solution for the w; field is thus given
by

A1(z) = A1(0)coskz (2.6.7)
and for the ws field by

A3(2) = —A, (O)KL1 sinkz. (2.6.8)

To simplify the form of this equation we express the ratio /K as follows:

K 2wimydefrlAa| ki _i(n1w3>]/2 |As|
K| (kik3)1/2¢c? ZiQ)%deffA; n3wi A; '
The ratio |Az|/ A% can be represented as
[A2] _ Az [Aa| _ AolAo] _ Az _ g,
A5 Ay A |[As2>2 |As '
where ¢, denotes the phase of A;. We hence find that
w3 172 .
A3(2) :i<—*> A1(0)sinkze'?2. (2.6.9)
n3wi

The nature of the solution given by Egs. (2.6.7) and (2.6.9) is illustrated in
Fig. 2.6.2.

Jaf' e
1

intensity

<

Kz

FIGURE 2.6.2 Variation of |A|? and |A3|? for the case of perfect phase matching in
the undepleted-pump approximation.
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Let us next solve Egs. (2.4.1) for the general case of arbitrary wave vector
mismatch. We seek a solution to these equations of the form

A1(z) = (Fe'$% 4 Ge™18%)e 1 AK/2 (2.6.10)
A3(z) = (Ce'$% + De™18%) ! k22 (2.6.11)

where g gives the rate of spatial variation of the fields and where C, D, F,
and G are constants whose values depend on the boundary conditions. We
take this form for the trial solution because we expect the w; and w3 waves
to display the same spatial variation, since they are coupled to each other.
We separate out the factors e*'2¥/2 because doing so simplifies the final
form of the solution. Equations (2.6.10) and (2.6.11) are now substituted into
Eq. (2.6.1a), to obtain

(igFeigZ _ igGe—igz)e—(l/Z)iAkz _ %iAk(FeigZ + Ge—igz)e—(l/Z)iAkz
= (K1Ce'$% + K De™'8%) e~ (1/2iAk, (2.6.12)

Since this equation must hold for all values of z, the terms that vary as ei8?
and e~ ’8% must each maintain the equality separately; the coefficients of these
terms thus must be related by

F(ig — 3iAk) = K/ C, (2.6.13)
~G(ig + %iAk) = K D. (2.6.14)

In a similar fashion, we find by substituting the trial solution into Eq. (2.6.1b)
that

(igceigz _ igDe—igz)e(lﬂ)iAkz + %iAk(CeigZ + De*igz)e(l/Z)iAkz
= (K3Fe'$* + K3Ge'87)e1/2inkz, (2.6.15)

and in order for this equation to hold for all values of z, the coefficients must
satisfy

C(ig + 3i Ak) = K3F, (2.6.16)
—D(ig — YiAk) = K3G. (2.6.17)

Equations (2.6.13) and (2.6.16) constitute simultaneous equations for F
and C. We write these equations in matrix form as

[k ][
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A solution to this set of equations exists only if the determinant of the matrix
of coefficients vanishes, i.e., if

g’ =—KiK3+ Ak (2.6.18)

As before (cf. Eq. (2.6.5)), we introduce the positive quantity x> = — K K3,
so that we can express the solution to Eq. (2.6.18) as

g =1/Kk2+ 1AK% (2.6.19)

In determining g we take only the positive square root in the foregoing ex-
pression, since our trial solution (2.6.10) and (2.6.11) explicitly contains both
the e™8% and e~ 8% spatial variations.

The general solution to our original set of equations (2.6.1) is given by
Egs. (2.6.10) and (2.6.11) with g given by Eq. (2.6.19). We evaluate the arbi-
trary constants C, D, F, and G appearing in the general solution by applying
appropriate boundary conditions. We assume that the fields A; and A3 are
specified at the input plane z = 0 of the nonlinear medium, so that A;(0) and
A3(0) are known. Then, by evaluating Eqgs. (2.6.10) and (2.6.11) at z =0, we
find that

A1(0)=F + G, (2.6.20)
A3(0) = C + D. (2.6.21)

Equations (2.6.13) and (2.6.14) give two additional relations among the quan-
tities C, D, F, and G. Consequently there are four independent linear equa-
tions relating the four quantities C, D, F, and G, and their simultaneous so-
lution specifies these four quantities. The values of C, D, F, and G thereby
obtained are introduced into the trial solutions (2.6.10) and (2.6.11) to obtain
the solution that meets the boundary conditions. This solution is given by

K i Ak .
A1(z) = | A1(0)cos gz + <—1A3(O) + ’Z—Al(O)) singz]e(l/z)’Akz,
g g

(2.6.22)

A3(z) = | A3(0)cos gz + (

—iAk
A
2g

K .
3(0) + _3A1(0)) sin gZ]E(I/Z)zAkz‘
8
(2.6.23)

In order to interpret this result, let us consider the special case in which
no sum-frequency field is incident on the medium, so that A3(0) = 0.
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FIGURE 2.6.3 Spatial variation of the sum-frequency wave in the undepleted-pump
approximation.

Equation (2.6.23) then reduces to

K .
A3(z) = — A1(0) sin gz eI/ 8K (2.6.24)
8
and the intensity of the generated wave is proportional to
K3|* .
@ =) 32' sin gz, (2.6.25)

8

where g is given as before by Eq. (2.6.19). We note that the characteristic scale
length g~! of the interaction becomes shorter as Ak increases. However, as
Ak increases the maximum intensity of the generated wave decreases. Since,
according to Eq. (2.6.25), the intensity of the generated wave is inversely pro-
portional to g2, we see that as Ak is increased the maximum intensity of the
generated wave is decreased by the factor |K31%2/ (k2 + A—{Akz). This sort of
behavior is illustrated in Fig. 2.6.3, in which the predictions of Eq. (2.6.25)
are displayed graphically.

2.7. Second-Harmonic Generation

In this section we present a mathematical description of the process of second-
harmonic generation, shown symbolically in Fig. 2.7.1. We assume that the
medium is lossless both at the fundamental frequency w; and at the second-
harmonic frequency w; =2wj, so that the nonlinear susceptibility obeys the
condition of full permutation symmetry. Our discussion closely follows that
of one of the first theoretical treatments of second-harmonic generation (Arm-
strong et al., 1962).

We take the total electric field within the nonlinear medium to be given by

E(z,t)=E\(z,1) + Ea(z2, 1), Q2.7.1)
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FIGURE 2.7.1 Second-harmonic generation.

where each component is expressed in terms of a complex amplitude E;(z)
and slowly varying amplitude A ;(z) according to

Ej(z,t) = Ej(z)e ™" +-cc., (2.7.2)
where
Ej(z) =A@, (2.7.3)
and where the propagation constant and refractive index are given by

172

ki=njwi/e, nj=[eD ()] (2.7.4)

We assume that each frequency component of the electric field obeys the
driven wave equation (see also Eq. (2.1.21))

PE; D o’E; 1 9 o

072 c2 a2 eyc? ﬁPj' 2.7.5)
The nonlinear polarization is represented as
PNY(z,1) = Py(z.1) + Py (2. 1) (2.7.6)
with
Pi(z,t) = Pj()e " +cc., j=1,2. (2.7.7)

The expressions for the polarization amplitudes are given according to
Eqgs. (1.5.28) and (1.5.29) by

Pi(z) = 4€0deffE2ET = 460deffA2ATei(k27kl)Z (2.7.8)
and
P(2) = 26()deffE% = 2€0deffA%€2ik1Z. 2.7.9)

Note that the degeneracy factors appearing in these two expressions are dif-
ferent. We obtain coupled-amplitude equations for the two frequency com-
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ponents by methods analogous to those used in Section 2.2 in deriving the
coupled-amplitude equations for sum-frequency generation. We find that

dA;  2iwtdes

T he Ay Ate Ak (2.7.10)
and
dd_/Zz - i‘éj;ﬁA%eiAkZ, (2.7.11)
where
Ak =2k; — ks. (2.7.12)

In the undepleted-pump approximation (i.e., A; constant), Eq. (2.7.11) can
be integrated immediately to obtain an expression for the spatial dependence
of the second-harmonic field amplitude. More generally, the pair of coupled
equations must be solved simultaneously. To do so, it is convenient to work
with the modulus and phase of each of the field amplitudes rather than with the
complex quantities themselves. It is also convenient to express these ampli-
tudes in dimensionless form. To do so, we write the complex, slowly varying
field amplitudes as

J 2
Al = < ) upe'? (2.7.13)
2n1€pc

J 12
Ay = < ) ure'?2, (2.7.14)
2ny€pc

Here we have introduced the total intensity of the two waves,
I=1L+1D, (2.7.15)
where the intensity of each wave is given by
1; =2n;eoc|Aj % (2.7.16)

As a consequence of the Manley—Rowe relations, the total intensity / is in-
variant under propagation. The real, normalized field amplitudes u; and uy are
defined such that u% + u% is also a conserved (i.e., spatially invariant) quantity
that satisfies the relation

u1(2)” +ur ()’ = 1. 2.7.17)
We next introduce a normalized distance parameter

¢=z/1, (2.7.18)
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where

| (2nin2 e (2.7.19)
el 2w dett o

is the characteristic distance over which the fields exchange energy. We also
introduce the relative phase of the interacting fields,

0 =2¢1 — ¢ + Akz, (2.7.20)
and a normalized phase mismatch parameter
As = Akl. (2.7.21)

The quantities u j, ¢;, ¢, and As defined in Eqs. (2.7.13) through (2.7.21) are
now introduced into the coupled-amplitude equations (2.7.10) and (2.7.11),
which reduce after straightforward (but lengthy) algebra to the set of coupled
equations for the three real quantities u1, u,, and 6:

d
S wunsine, (2.7.22)
dg

d
22 _WPsine, (2.7.23)
dg

do 0 d

2 = As+ 2225 (nuduy). (2.7.24)
dc sinf d¢

This set of equations has been solved under general conditions by Armstrong
et al. We shall return later to a discussion of the general solution, but for now
we assume the case of perfect phase matching so that Ak and hence As van-
ish. It is easy to verify by direct differentiation that, for As =0, Eq. (2.7.24)
can be rewritten as

d 2

— In (ujup cosf) = 0. (2.7.25)
d¢

Hence the quantity In(cos 9u%u2) is a constant, which we call InT", so that the
solution to Eq. (2.7.25) can be expressed as

uluycos =T. (2.7.26)

The quantity I" is independent of the normalized propagation distance ¢, and
thus the value of I" can be determined from the known values of u1, uy, and 0
at the entrance face to the nonlinear medium, ¢ = 0.

We have thus found two conserved quantities: u% + u% (according to
Eq. (2.7.17)) and u%uz cos6 (according to Eq. (2.7.26)). These conserved
quantities can be used to decouple the set of equations (2.7.22)—(2.7.24).
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Equation (2.7.23), for instance, can be written using Eq. (2.7.17) and the iden-
tity sin®6 + cos26 =1 as

‘2—”;2 = +(1—ud)(1 — cos20) "%, (2.727)

Equations (2.7.26) and (2.7.17) are next used to express cos? 6 in terms of the
conserved quantity I' and the unknown function u;; the resulting expression
is substituted into Eq. (2.7.27), which becomes

duz 5 ( FZ )1/2 5 ( I—Q )1/2
— =x(l—u 1—— =+(1—u 1l-— .
dt ( 2) u‘l‘u% ( 2) a- u%)zu%

(2.7.28)

This result is simplified algebraically to give

2 a1 )
or
2
‘Z—if R (2.7.29)

This equation is of a standard form, whose solution can be expressed in terms
of the Jacobi elliptic functions. An example of the solution for one particular
choice of initial conditions is illustrated in Fig. 2.7.2. Note that, in general,
the fundamental and second-harmonic fields interchange energy periodically.

The solution of Eq. (2.7.29) becomes particularly simple for the special
case in which the constant I vanishes. The condition I' = 0 occurs whenever

J

—
T
|

, u?

fraction of total power

FIGURE 2.7.2 Typical solution to Eq. (2.7.29), after Armstrong et al. (1962).
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the amplitude of either of the two input fields is equal to zero or whenever the
fields are initially phased so that cos & = 0. We note that since I" is a conserved
quantity, it is then equal to zero for all values of ¢, which in general requires
(see Eq. (2.7.26)) that

cosf =0. (2.7.30a)

For definiteness, we assume that
sinf = —1 (2.7.30b)

(rather than +1). We hence see that the relative phase of the interacting fields
is spatially invariant for the case of I' = 0. In addition, when I" = 0 the
coupled-amplitude equations (2.7.22) through (2.7.24) take on the relatively
simple forms

d
dLCI = —uius, (2.7.31)
d
22 (2.7.32)
d¢
This second equation can be transformed through use of Eq. (2.7.17) to obtain
duy
P 1 —u3, (2.7.33)
whose solution is
ur = tanh(¢ + &), (2.7.34)

where ¢ is a constant of integration.
We now assume that the initial conditions are

u1(0) =1, u(0) =0. (2.7.35)

These conditions imply that no second-harmonic light is incident on the non-
linear crystal, as is the case in most experiments. Then, since tanh0 = 0, we
see that the integration constant &y is equal to O and hence that

u>(¢) = tanh . (2.7.36)

The amplitude u; of the fundamental wave is found immediately through use
of Eq. (2.7.32) (or through use of Eq. (2.7.17)) to be given by

u1(¢) = sech. (2.7.37)
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FIGURE 2.7.3 Spatial variations of the fundamental and second-harmonic field am-
plitudes for the case of perfect phase matching and the boundary condition u,(0) = 0.

Recall that ¢ = z//. For the case in which only the fundamental field is present
at z =0, the length parameter of Eq. (2.7.19) is given by

_ (mn)'e
- 2widett|A1(0)]

The solution given by Egs. (2.7.36) and (2.7.37) is shown graphically in
Fig. 2.7.3. We see that in the limit { — oo all of the incident radiation is con-
verted into the second harmonic. In addition, we note that tanh (¢ + &) has
the same asymptotic behavior for any finite value of ¢g. Thus, whenever I' is
equal to zero, all of the radiation at the fundamental frequency will eventually
be converted to the second harmonic, for any initial ratio of u| to u5.

As mentioned above, Armstrong et al. have also solved the coupled-
amplitude equations describing second-harmonic generation for arbitrary Ak.
They find that in this case the solution can also be expressed in terms of el-
liptic integrals. We shall not reproduce their derivation here; instead we sum-
marize their results graphically in Fig. 2.7.4 for the case in which no radiation
is incident at the second-harmonic frequency. We see from the figure that the
effect of a nonzero propagation-vector mismatch is to lower the conversion
efficiency.

As an illustration of how to apply the formulas derived in this section, we
estimate the conversion efficiency for second-harmonic generation attainable
using typical cw lasers. We first estimate the numerical value of the parame-
ter ¢ given by Eqgs. (2.7.18) and (2.7.38) at the plane z = L, where L is the
length of the nonlinear crystal. We assume that the incident laser beam carries
power P and is focused to a spot size wy at the center of the crystal. The field

(2.7.38)
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E=z/¢

FIGURE 2.7.4 Effect of wavevector mismatch on the efficiency of second-harmonic
generation.

strength A can then be estimated by the expression

P
Iy = — =2nj€cAf. (2.7.39)
7Tw0

We assume that the beam is optimally focused in the sense that the focal spot
size wy is chosen so that the depth b of the focal region is equal to the length L
of the crystal, that is,*
27 w%
Coha/mi

where A; denotes the wavelength of the incident wave in vacuum. From
Egs. (2.7.39) and (2.7.40), the characteristic value of the laser field amplitude
under these conditions is seen to be given by

P 1/2

Al = , (2.7.41)
€ocA L

hence the parameter { = L/ is given through use of Eq. (2.7.38) by

272 1/2
- (16n deffLP) /
eocnlnzk%

(2.7.40)

(2.7.42)

Typical values of the parameters appearing in this equation are degf = 4 X
1072 m/V,L=1cm, P=1W, A=0.5 x 107% m, and n = 2, which lead

* See also the discussion of nonlinear interactions involving focused gaussian beams presented in
Section 2.10.
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to the value ¢ = 0.14. The efficiency n for conversion of power from the w;
wave to the wy wave can be defined by
- u3(L)
u7(0)

(2.7.43)

and from Eq. (2.7.36), we see that for the values just given, n is of the order
of 2%.

2.7.1.  Applications of Second-Harmonic Generation

Surface Nonlinear Optics  One important application of second-harmonic gen-
eration is its use as an exacting diagnostic of the surface properties of optical
materials. As noted above, second-harmonic generation is a forbidden process
for a material that possesses a center of inversion symmetry. The surface of
a material clearly lacks inversion symmetry, and thus second-harmonic gen-
eration can occur at the surface of a material of any symmetry group. For
the same reason, the intensity and angular distribution of surface second-
harmonic generation depends critically on the morphology of a surface and
on the presence of impurities on the surface of the material. Good reviews of
the early work in this area are given by Shen (1985, 1989), and procedures for
calculating the intensity of the second-harmonic light are given by Mizrahi
and Sipe (1988).

Nonlinear Optical Microscopy ~An important application of harmonic genera-
tion is nonlinear microscopy. One motivation for using nonlinear effects and
in particular harmonic generation in microscopy is to provide enhanced trans-
verse and longitudinal resolution. Resolution is enhanced because nonlinear
processes are excited most efficiently in the region of maximum intensity of a
focused laser beam. Microscopy based on harmonic generation also offers the
advantage that the signal is far removed in frequency from unwanted back-
ground light that results from linear scattering of the incident laser beam.
Moreover, light at a wavelength sufficiently long that it will not damage bio-
logical materials can be used to achieve a resolution that would normally re-
quire a much shorter wavelength. Harmonic-generation microscopy can make
use either of the intrinsic nonlinear response of biological materials or can
be used with materials that are labeled with nonlinear optical chromophores.
Microscopy based on second-harmonic generation in the configuration of a
confocal microscope and excited by femtosecond laser pulses was introduced
by Curley et al. (1992). Also, harmonic-generation microscopy can be used to
form images of transparent (phase) objects, because the phase matching con-
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dition of nonlinear optics depends sensitively on the refractive index variation
within the sample being imaged (Muller e? al., 1998).

Guo et al. (1997) have used tomography based on second-harmonic gen-
eration to characterize biological materials. Gauderon et al. (1998) have
demonstrated three-dimensional imaging based on second-harmonic genera-
tion with fs laser pulses. They used this method to characterize the microcrys-
tal structure of lithium triborate. Campagnola et al. (1999) have used second-
harmonic generation to produce images of live cells. Moreaux et al. (2000)
have used styrl dyes as labels to image membranes using second-harmonic
generation microscopy.

Third-harmonic generation has also been used for imaging applications.
Muller et al. (1998) have demonstrated imaging of transparent objects using
microscopy based on third-harmonic generation. Yelin and Silberberg (1999)
have constructed a scanning microscope based on third-harmonic generation
and have used it for the imaging of biological materials.

Nonlinear optical interactions that do not entail harmonic generation also
have been shown to hold great promise in optical microscopy. For example,
Gustafsson (2005) has shown that through the use of structured illumination
and a sample that exhibits saturable absorption, he was able to achieve a trans-
verse resolution of 50 nm. Moreover, Westphal and Hell (2005) have shown
the depletion of fluorescence by means of stimulated emission can be used
to achieve extremely high subwavelength resolution (in particular, 16 nm or
1/50 of their operating wavelength) in optical microscopy.

2.8. Difference-Frequency Generation and Parametric
Amplification

Let us now consider the situation shown in Fig. 2.8.1, in which optical waves
at frequencies w3 and w; interact in a lossless nonlinear optical medium to
produce an output wave at the difference frequency wy; = w3z — w;. For sim-
plicity, we assume that the w3 wave is a strong wave (i.e., is undepleted by

w3 _—> e w,%
1
O ——> g = ‘2%() —> 0
O, > > 0,=0,-0

FIGURE 2.8.1 Difference-frequency generation. Typically, no input field is applied
at frequency w;.
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the nonlinear interaction, so that we can treat A3 as being essentially con-
stant), and for the present we assume that no field is incident on the medium
at frequency w;.

The coupled-amplitude equations describing this interaction are obtained
by a method analogous to that used in Section 2.2 to obtain the equations
describing sum-frequency generation and have the form

dA 2i wzdeff

1 * zAkz
= AzAse 2.8.1
Az ki (28.12)
dA2 2i6()%deff i Ak
— = Az ATe 2R 2.8.1b
dz ka2 O01¢ (2.8.1b)
where
Ak =k — ki — k. (2.8.2)

We first solve these equations for the case of perfect phase matching—that
is, Ak = 0. We differentiate Eq. (2.8.1b) with respect to z and introduce the
complex conjugate of Eq. (2.8.1a) to eliminate d A}/dz from the right-hand
side. We thereby obtain the equation

d*A;  dolwid?
2 _ 40 A3 A5 Ay = A, (2.8.3)
d22 k]kzc

where we have introduced the real coupling constant ¥ given by

4d>0? w3
2 _ 7% ®1% 4 2 A
—_ A . 2.8.
“ kikac* A3l ( )

The general solution to this equation is
Az(z) = Csinhkz + Dcoshkz, (2.8.5)

where C and D are integration constants whose values depend on the bound-
ary conditions.
We now assume the boundary conditions

A2(0) =0, A1(0) arbitrary. (2.8.6)

The solution to Egs. (2.8.1a) and (2.8.1b) that meets these boundary condi-
tions is readily found to be

Ai(z) = A1(0)coshkz, (2.8.7)
172 A
Az(2) _l<n1w2> 3 px 1(0)sinhkz. (2.8.8)
nawi |A3]
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FIGURE 2.8.2 Spatial evolution of A; and A for difference-frequency generation
for the case Ak = 0 in the constant-pump approximation.

The nature of this solution is shown in Fig. 2.8.2. Note that both the w; and
the w; fields experience monotonic growth and that asymptotically each field
experiences exponential growth (i.e., for kz > 1, each grows as ¢“?). We see
from the form of the solution that the w; field retains its initial phase and is
simply amplified by the interaction, whereas the generated wave at frequency
@» has a phase that depends both on that of the pump wave and on that of the
w1 wave. This behavior of monotonic growth of both waves is qualitatively
dissimilar from that of sum-frequency generation, where oscillatory behavior
occurs.

The reason for the different behavior in this case can be understood intu-
itively in terms of the energy level diagram shown in Fig. 2.8.3. We can think
of diagram (a) as showing how the presence of a field at frequency w; stim-
ulates the downward transition that leads to the generation of the w, field.
Likewise, diagram (b) shows that the w; field stimulates the generation of the
w1 field. Hence the generation of the w; field reinforces the generation of the
w» field, and vice versa, leading to the exponential growth of each wave.

Since the w; field is amplified by the process of difference-frequency gen-
eration, which is a parametric process, this process is also known as para-
metric amplification. In this language, one says that the signal wave (the w;
wave) is amplified by the nonlinear mixing process, and an idler wave (at
w2 = w3 — wy) is generated by the process. If mirrors that are highly reflect-
ing at frequencies w; and/or w; are placed on either side of the nonlinear
medium to form an optical resonator, oscillation can occur as a consequence
of the gain of the parametric amplification process. Such a device is known
as a parametric oscillator and is described in greater detail in the following
section.
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FIGURE 2.8.3 Difference-frequency generation.

The first cw optical parametric oscillator was built by Giordmaine and
Miller in 1965. The theory of parametric amplification and parametric os-
cillators has been reviewed by Byer and Herbst (1977).

The solution to the coupled-amplitude equations (2.8.1) for the general case
of arbitrary Ak # 0 makes a good exercise for the reader (see Problem 4 at
the end of this chapter).

2.9. Optical Parametric Oscillators

We noted in the previous section that the process of difference-frequency gen-
eration necessarily leads to the amplification of the lower-frequency input
field. This amplification process is known as optical parametric amplifica-
tion, and the gain resulting from this process can be used to construct a device
known as an optical parametric oscillator (OPO). These features are summa-
rized in Fig. 2.9.1. Part (a) of the figure shows that in generating the difference
frequency w; = wp — ws, the lower-frequency input wave ws is amplified. Con-
ventionally, w,, is known as the pump frequency, ws the signal frequency, and
wj the idler frequency. The gain associated with the process of optical para-
metric amplification can in the presence of feedback produce oscillation, as
shown in part (b) of the figure. If the end mirrors of this device are highly
reflecting at both frequencies wg and wj, the device is known as a doubly res-
onant oscillator; if they are highly reflecting at ws or w; but not at both, the
device is known as a singly resonant oscillator. Note that when an OPO is
operated near the point of degeneracy (ws = wj) it tends to operate as a dou-
bly resonant oscillator.* The optical parametric oscillator has proven to be a

* In principle, polarization effects can be used to suppress cavity feedback for either the signal or
idler wave for the case of type-II phase matching.
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FIGURE 2.9.1 (a) Relationship between difference-frequency generation and optical
parametric amplification. (b) The gain associated with the process of optical paramet-
ric amplification can be used to construct the device shown, which is known as an
optical parametric oscillator.

versatile source of frequency-tunable radiation throughout the infrared, visi-
ble, and ultraviolet spectral regions. It can produce either a continuous-wave
output or pulses of nanosecond, picosecond, or femtosecond duration.

Let us recall how to calculate the gain of the process of optical paramet-
ric amplification. For convenience, we label the pump, signal, and idler fre-
quencies as wp = w3, ws = w1, and w; = w;. We take the coupled amplitude
equations to have the form (see also Egs. (2.8.1))

dA]  2iwldes

o= IQTA3A§eiAkZ, (2.9.1a)

dAy 2iwld .

e T T (2.9.1b)
4 2C

where Ak = k3 — k1 — k2. These equations possess the solution

| Ak 1
Ai2) =1 410 (Coshgz -5 sinhgz) +“L A%(0) sinh gz | /<72,
g g

(2.9.2a)

| Ak 1
Ar(2) = | A2(0) (cosh gz — 12— sinh gz) + QAT(O) sinh gz el ka2
8 8

(2.9.2b)
where we have introduced the quantities

2iw]destA
and k= =5, (293)
1

g = [kt — (Ak/2)2]'?

For the special case of perfect phase matching (Ak = 0) and under the as-
sumption that the input amplitude of field A, vanishes (A2(0) = 0), the
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solution reduces to

A1(z) = A1(0)coshgz = %Al (0)exp(gz) (2.9.4a)
12 A
Ay(z) = i(”“’”) L3 A%(0) sinh gz = O(1)A%(0) exp(g2).
nywi |Asz]

(2.9.4b)

In each expression, the last form gives the asymptotic value for large z, and the
symbol O (1) means of the order of unity. One sees that asymptotically both
waves experience exponential growth, with an amplitude gain coefficient of g.

Threshold for Parametric Oscillation We next consider the threshold condition
for the establishment of parametric oscillation. We treat the device shown in
Fig. 2.9.1(b), in which the two end mirrors are assumed to be identical but are
allowed to have different (intensity) reflectivities Ry and R at the signal and
idler frequencies.

As a first approximation, we express the threshold condition as a state-
ment that the fractional energy gain per pass must equal the fractional en-
ergy loss per pass. Under the assumptions of exact cavity resonance, of per-
fect phase matching (Ak = 0), and that the cavity is doubly resonant with
the same reflectivity at the signal and idler frequencies (that is, Ry = R =R,
(1 — R) « 1), this condition can be expressed as

(%L —1)=2(1-R). (2.9.5)

Under the realistic condition that the single-pass exponential gain 2gL is not
large compared to unity, this condition becomes

¢L=1—R. (2.9.6)

This is the threshold condition first formulated by Giordmaine and Miller
(1965).

The threshold condition for optical parametric oscillation can be formulated
more generally as a statement that the fields within the resonator must repli-
cate themselves each round trip. For arbitrary end-mirror reflectivities at the
signal and idler frequencies, this condition can be expressed, again assuming
perfect phase matching, as

A1(0) = [Al (0)coshgL + % A%(0) sinh gL](l 1), (2.9.7a)

50) = [A;(O) coshgL + %2 A1(0) sinh gL](l —b), (2.9.7b)
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where [; = 1 — R;e™ %" is the fractional amplitude loss per pass, «; being the
absorption coefficient of the crystal at frequency w;. By requiring that both of
Egs. (2.9.7) be satisfied simultaneously, we find the threshold condition to be

Il

hgL=1+————.
coshg +2—11—lz

(2.9.8)
The threshold conditions for both doubly resonant oscillators and singly res-
onant oscillators are contained in this result. The doubly resonant oscillator is
described by taking the limit of low loss for both the signal and idler waves
(11, I <« 1). In this limit, cosh g L can be approximated by 1 + % g%L?, lead-
ing to the conclusion that the threshold condition for a doubly resonant oscil-
lator is

2L* =11y, (2.9.9)

in consistency with Eq. (2.9.6).

The threshold condition for a singly resonant oscillator can be obtained by
assuming that there is no feedback for the idler frequency, that is, that [, = 1.
If we assume low loss for the signal frequency (that is, /; < 1), the threshold
condition becomes

g*L? =21, (2.9.10)

Note that the threshold value of gL for a singly resonant oscillator is larger
than that of the doubly resonant oscillator by a factor of (2/,)'/2. Despite
this fact, it is usually desirable to configure optical parametric oscillators to
be singly resonant because of the increased stability of singly resonant oscil-
lators, for reasons that are explained below.

For simplicity, the treatment of this subsection has assumed the case of per-
fect phase matching. It is easy to show that the threshold condition for the case
Ak # 0 can be obtained by replacing g? by g> sinc?>(AkL/2) in Eqs. (2.9.9)
and (2.9.10).

Wavelength Tuning of an OPO The condition of energy conservation ws +
w;j = wp allows any frequency ws smaller than w,, to be generated by an optical
parametric oscillator. The output frequency wg can be controlled through the
phase-matching condition Ak = 0, which invariably can be satisfied for at
most one pair of frequencies ws and w;. The output frequency bandwidth can
often be narrowed by placing wavelength-selective items (such as etalons)
inside the OPO cavity.

The principles of phase matching were described earlier in Section 2.3.
Recall that phase matching can be achieved either by varying the orientation



112 2 < Wave-Equation Description of Nonlinear Optical Interactions

of the nonlinear crystal (angle phase matching) or by varying the temperature
of the crystal.

2.9.1. Influence of Cavity Mode Structure on OPO Tuning

Let us now take a more detailed look at the tuning characteristics of an OPO.
We shall see that both the tuning and stability characteristics of an OPO are
very different for the singly resonant and doubly resonant cases.

Note first that under typical conditions the cavity mode spacing and cavity
resonance width tend to be much smaller than the width of the gain curve of
the optical parametric amplification process. This circumstance is illustrated
in Fig. 2.9.2.* Let us next consider which of these cavity modes will actually
undergo oscillation.

For the case of a singly resonant oscillator (displayed in part a of Fig. 2.9.3),
the situation is relatively simple. Oscillation occurs on the cavity mode closest
to the peak of the gain curve. Note also that (barring mechanical instabilities,
etc.) oscillation will occur on only one cavity mode. The reason for this be-
havior is that once oscillation commences on the cavity mode closest to the
peak of the gain curve, the pump power is depleted, thus lowering the gain to
the value of the loss for this mode. By assumption, the gain will be smaller at
the frequencies of the other cavity modes, and thus these modes will be below

10 MHz ~ 100 GHz

[—

Ave ~1 GHz

FIGURE 2.9.2 Schematic representation of the gain spectrum (the broad curve) and
cavity mode structure of an OPO. Note that typically many cavity modes lie beneath
the gain profile of the OPO.

* This example assumes that the cavity length L. is 15 cm so that the cavity mode spacing Ave =
¢/2L. is 1 GHz, that the cavity finesse F is 100 so that the linewidth associated with each mode is
1 GHz/F = 10 MHz and that the width of the gain curve is 100 GHz. This gain linewidth is estimated
by assuming that AkL (which is zero at the center of the gain line and where L is the crystal length)
drops to the value 7 at the edge of the gain line. If we then assume that Ak changes with signal
frequency because of material dispersion, and that dn/dv is of the order of 10715 sec, we obtain
100 GHz as the gain bandwidth.
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(a) , ~—— frequency for which Ak =0
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FIGURE 2.9.3 (a) Symbolic representation of the mode structure of a singly resonant
OPO. (b) Symbolic representation of the mode structure of a doubly resonant OPO.
The signal-frequency and idler-frequency axes increase in opposite directions, such
that at each horizontal point ws + w; has the fixed value wy. Thus, any point on the axis
represents a point where the energy conservation relation ws + wj = wp is satisfied,
although only at points where signal and idler modes occur at the same horizontal
point is the double-resonance condition satisfied.

threshold for oscillation. This behavior is very much analogous to that of a
homogeneously broadened laser, which tends to oscillate on a single cavity
mode.

Consider now the different situation of a doubly resonant oscillator
(Fig. 2.9.3(b)). For a doubly resonant oscillator, oscillation is very much fa-
vored under conditions such that a signal and its corresponding idler mode
can simultaneously support oscillation. Note from the figure that neither of
these modes is necessarily the mode closest to the peak of the gain curve
(which occurs at Ak = 0). As a consequence doubly resonant oscillators tend
not to tune smoothly. Moreover, such devices tend not to run stably, because,
for example, small fluctuations in the pump frequency or the cavity length L
can lead to disproportionately large variations in the signal frequency.

The argument just presented, based on the structure of Fig. 2.9.3(b), presup-
poses that the cavity modes are not equally spaced. In fact, it is easy to show
that the cavity mode spacing for a cavity of length L. filled with a dispersive
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medium is given by

Ave= S0 Gheren® =nty 2.9.11)
‘T n@2L’ B dv o
(see Problems 7 and 8 at the end of this chapter), which clearly is not a con-

stant as a function of frequency. Here n‘® is known as the group index.

Let us next examine more quantitatively the nature of the decreased stabil-
ity of the doubly resonant oscillator. We first estimate the characteristic fre-
quency separation dw between the peak of the gain curve and the frequency
of actual oscillation, which is illustrated pictorially in Fig. 2.9.3(b). To do so,
it is convenient to first introduce the quantity

Aw=wp — o™ — a)i(m), (2.9.12)

S

where a)gm) is one of the signal cavity-mode frequencies and similarly

for a)i(m). Clearly, oscillation can occur only for a pair of modes such that
Aw =~ 0 (or more precisely where Aw < Sw, where Sw, is the spectral width
of the cavity resonance). Note next that in jumping by one cavity mode for
both wg and wj, the quantity Aw will change by the amount

6(Aw)—27r( c __¢ )—E<M> (2.9.13)
2n§g)LC an(g)LC L, n§g)nlgg) : 9.

We next estimate the value of the frequency separation §w by noting that
it corresponds to a change in Aw from its value near the point Ak =0 to its
value (® 0) at the oscillation point. Unless the length of the OPO cavity is
actively controlled, the value of Aw near Ak = 0 can be as large as one-half
of a typical mode spacing or

1 2rce TC
Awy >~ — = , 2.9.14
=5 (Zn(g)Lc) mOL, (29:14)

where n®) is some typical value of the group index. The number of modes
between the peak of the gain curve and the actual operating point under this
situation is thus of the order of

Awp n&

N = = (2.9.15)
§(Aw) 2(n§8) _nlfg))
and the characteristic frequency separation dw is thus given by
2 1
b= AwcN ~ —" e (2.9.16)

———N=—— .
2n@ L, 2L, (ngg) _ nlgg))
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Note that this shift can be very large for ngg) ~ ngg).

The model just presented can be used to estimate an important quantity,
the operational linewidth 8w©P®) of the oscillator. We noted above that in
principle an OPO should oscillate on a single cavity mode. However, because
of unavoidable technical noise, an OPO might be expected to oscillate (si-
multaneously or sequentially) on many different cavity modes. The techni-
cal noise might be in the form of mechanical vibrations of the OPO cavity,
leading to a jitter of amount §w, in the resonance frequency of each cavity
mode. Alternatively, the technical noise might be in the form of the spectral
breadth dw, of the pump radiation. Whichever effect is larger might be ex-
pected to dominate and thus the effective value of the technical noise is given
by dweft = max(dw,, dwp). Analogously to Eq. (2.9.15), one then expects the
number of modes that undergo oscillation to be given by

S Weff _ max(§wp, dwc)

Nose = = 2.9.17
T 8(Aw) 8(Aw) ( )
Consequently, the OPO linewidth is expected to be
50 = NopoAwe = ——5— max(8wp, Swc). (2.9.18)

-

Note that the linewidth of an OPO tends to be much greater than that of the
pump field or that of the bare OPO cavity. Active stabilization can be used to
decrease this linewidth.

Equation (2.9.18) has important implications in the design of OPOs. Note
that this expression formally diverges at the point of degeneracy for a type-I
(but not a type-II) OPO. The narrower linewidth of a type-II OPO compared
to that of a type-1 OPO constructed of the same material has been observed in
practice by Bosenberg and Tang (1990).

We conclude this section with a brief historical summary of progress in the
development of OPOs. The first operating OPO was demonstrated by Giord-
maine and Miller (1965); it utilized the nonlinear optical response of lithium
niobate and worked in the pulsed regime. Continuous-wave operation of an
OPO was demonstrated by Smith er al. (1968) and utilized a BaNaNbsO15
nonlinear crystal. Interest in the development of OPOs was renewed in the
1980s as a consequence of the availability of new nonlinear materials such
as $-BaB;0y4 (beta-barium borate or BBO), LiB3Os5 (lithium borate or LBO),
and KTiOPO4 (KTP), which possess high nonlinearity, high resistance to laser
damage, and large birefringence. These materials led to the rapid develop-
ment of new OPO capabilities, such as continuous tunability from 0.42 to
2.3 um in a BBO OPO with conversion efficiencies as large as 32% (Bosen-
berg et al., 1989), and OPOs that can produce tunable femtosecond pulses in
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KTP (Edelstein et al., 1989). The use of quasi-phase-matching in periodically
poled lithium niobate has also been utilized to produce novel OPOs.

2.10. Nonlinear Optical Interactions with Focused
Gaussian Beams

In the past several sections we have treated nonlinear optical interactions in
the approximation in which all of the interacting waves are taken to be infinite
plane waves. However, in practice, the incident radiation is usually focused
into the nonlinear optical medium in order to increase its intensity and hence
to increase the efficiency of the nonlinear optical process. The present sec-
tion explores the nature of nonlinear optical interactions that are excited by
focused laser beams.

2.10.1. Paraxial Wave Equation

We assume that each frequency component of the beam obeys a wave equation
of the form of Eq. (2.1.21)—that is,
. 1 9%E, 1 8%P,

V’E, — = . 2.10.1
T (e/n)? a2 epc? 012 ( )

We next represent the electric field En and polarization f’n as
E,(r, 1) =A,@)e Fi=od 4 cc. (2.10.2a)
P,(r,1) = pp(r)e’ ®nien) 4 cc. (2.10.2b)

Here we allow E,, and P,, to represent nonplane waves by allowing the com-
plex amplitudes A,, and p,, to be spatially varying quantities. In addition, we
allow the possibility of a wavevector mismatch by allowing the wavevec-
tor of IN’,l to be different from that of En. We next substitute Egs. (2.10.2)
into (2.10.1). Since we have specified the z direction as the dominant di-
rection of propagation of the wave E,, it is useful to express the Laplace
operator as V2 = 32/3z> + V2, where the transverse laplacian is given by
V% = 92/3x> 4+ 8?/8y? in rectangular coordinates and is given by V% =
(1/r)(8/3r)(ra/ar) +(1/r)?9%/3¢>, where r> = x>+ y? in cylindrical coor-
dinates. As in the derivation of Eq. (2.2.10), we now make the slowly varying
amplitude approximation, that is, we assume that longitudinal variation of A,
can occur only over distances much larger than an optical wavelength. We
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hence find that Eq. (2.10.1) becomes

A,

2ik, —
Z

w?> .
+ V2A, = - ppe ik, (2.10.3)
0

where Ak = k], — k. This result is known as the paraxial wave equation,
because the approximation of neglecting the contribution 82A/3z> on the left-
hand side is justifiable insofar as the wave E,, is propagating primarily along
the z axis.

2.10.2. Gaussian Beams

Let us first study the nature of the solution to Eq. (2.10.3) for the case of the
free propagation of an optical wave, that is, for the case in which the source
term containing p, vanishes. The paraxial wave equation is solved in such a
case by a beam having a transverse intensity distribution that is everywhere a
gaussian and that can be represented in the scalar approximation as (Kogelnik
and Li, 1966)

A(r, ) = AL o2 [w @) fiki? 2R (@) i (@) (2.10.4a)
w(z)
where
w(z) = w1 + (rz/mwd)’]"? (2.10.4b)

represents the 1/e radius of the field distribution, where

R(2) = z2[1+ (ww}/r2)’] (2.10.4c)
represents the radius of curvature of the optical wavefront, and where

®(z) = —arctan (Az/Tw) (2.10.4d)

represents the spatial variation of the phase of the wave (measured with re-
spect to that of an infinite plane wave). In these formulas, wq represents the
beam waist radius (that is, the value of w at the plane z =0), and A =27 ¢/nw
represents the wavelength of the radiation in the medium. The angular diver-
gence of the beam in the far field is given by 6 = A/ wq. The nature of this
solution is illustrated in Fig. 2.10.1.

For theoretical work it is often convenient to represent the gaussian beam
in the more compact (but less intuitive) form (see Problem 10 at the end of the
chapter)

A(r,2) = %e—”/w%(l“f). (2.10.52)
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FIGURE 2.10.1 (a) Field amplitude distribution of a gaussian laser beam. (b) Varia-
tion of the beam radius w and wavefront radius of curvature R with position z. (c) Re-
lation between the beam waist radius and the confocal parameter b.

Here*
¢=2z/b (2.10.5b)

is a dimensionless longitudinal coordinate defined in terms of the confocal
parameter
b=2rww}/»=kw, (2.10.5¢)

which, as illustrated in part (c) of Fig. 2.10.1, is a measure of the longitudinal
extent of the focal region of the gaussian beam. The total power P carried
by a gaussian laser beam can be calculated by integrating over the transverse
intensity distribution of the beam. Since P = [ I2rrdr, where the intensity

* Note that the quantity ¢ defined here bears no relation to the quantity ¢ introduced in Eq. (2.7.18)

in our discussion of second-harmonic generation.
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is given by I = 2negc|A|?, we find that
P = negemw| AP (2.10.6)

2.10.3.  Harmonic Generation Using Focused Gaussian Beams

Let us now treat harmonic generation excited by a gaussian fundamental
beam. For generality, we consider the generation of the ¢th harmonic. Accord-
ing to Eq. (2.10.3), the amplitude A, of the w, = gw frequency component
of the optical field must obey the equation
2
. 0A w .
Zlkqa—;+V%Aq =_C_g X(q)A?elAkZ, (2.10.7)

where Ak = gk — k; and where we have set the complex amplitude p, of
the nonlinear polarization equal to p; = €9 (q)A‘II. Here x ) is the nonlinear
susceptibility describing gth-harmonic generation—that s, x©) = x 9 (g =
o+ w+---+w),and A is the complex amplitude of the fundamental wave,
which according to Eq. (2.10.5a) can be represented as

Ay 270 2010
Al(r,2) = ———e " /WoUHD, 2.10.8
1n2) =1 Tict ( )
We work in the constant-pump approximation. We solve Eq. (2.10.7) by
adopting the trial solution

A,z 2,2

Ag(r2)= 1 i( ; —ar/wp (O, (2.10.9)
where A, (z) is a function of z. One might guess this form for the trial so-
lution because its radial dependence is identical to that of the source term in
Eq. (2.10.7). Note also that (ignoring the spatial variation of .4, (z)) the trial
solution corresponds to a beam with the same confocal parameter as the fun-
damental beam Eq. (2.10.8); this behavior makes sense in that the harmonic
wave is generated coherently over a region whose longitudinal extent is equal
to that of the fundamental wave. If the trial solution Eq. (2.10.9) is substi-
tuted into Eq. (2.10.7), we find that to very good approximation it satisfies
this equation so long as A, (z) obeys the (ordinary) differential equation

% — iq_a)X(q)Aq e'th ]

dz ~ 2ng4c Y1 +it)a!

This equation can be integrated directly to obtain

(2.10.10)

Ag@) =7 —x W2 @ AT T, (AK, 20, 7). (2.10.11a)
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where
b4 PNCAY Z
2 (I+ 2i7/ /b)a~1’
and where z( represents the value of z at the entrance to the nonlinear medium.
We see that the harmonic radiation is generated with a confocal parameter
equal to that of the incident laser beam. Hence the beam waist radius of the
gth harmonic radiation is ¢!/ times smaller than that of the incident beam,
and the far-field diffraction angle 0 = A/mwyo is ¢'/? times smaller than that
of the incident laser beam. We have solved Eq. (2.10.7) by guessing the correct
form (Eq. (2.10.9)) for the trial solution; a constructive solution to Eq. (2.10.7)
has been presented by Kleinman et al. (1966) for second-harmonic generation
and by Ward and New (1969) for the general case of gth-harmonic generation.
The integral appearing in Eq. (2.10.11b) can be evaluated analytically for
certain special cases. One such case is the plane-wave limit, where b >
|zol, |z|. In this limit the integral reduces to

Jy(Ak,z0,2) = (2.10.11b)

z ol Dkz _ i Akzo
Jq(Ak, 20, 2) :/ Ay = — (2.10.12a)
20 iAk
which implies that
AkL
|74 (Ak, 20, 2)|* = L2 sinc? (T) (2.10.12b)

where L = z — z is the length of the interaction region.

The opposite limiting case is that in which the fundamental wave is fo-
cused tightly within the interior of the nonlinear medium; this condition im-
plies that zo = —|zo|, z = |z|, and b < |zol, |z|. In this limit the integral in
Eq. (2.10.11b) can be approximated by replacing the limits of integration by
plus and minus infinity—that is,

00 ei Ak7 d Z/

Jq(Ak, z0,2) =/ (2.10.13a)

oo (1 +2iz//b)a— 1
This integral can be evaluated by means of a straightforward contour integra-
tion. One finds that

Ak <0,

(béLk)q_ze_bAk/z’ Ak > 0. (21013b)

0’
Jq(Ak,ZO» Z) = { b 2r
2 (g=2)!
This functional form is illustrated for the case of third-harmonic genera-
tion (¢ = 3) in Fig. 2.10.2. We find the somewhat surprising result that the
efficiency of third-harmonic generation in the tight-focusing limit vanishes
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FIGURE 2.10.2 Dependence of the phase-matching factor J3 for third-harmonic gen-
eration on the normalized confocal parameter b Ak, in the tight-focusing limit.

identically for the case of perfect phase matching (Ak = 0) and is maximized
through the use of a positive wavevector mismatch. This behavior can be un-
derstood in terms of the phase shift of 7 radians that any beam of light experi-
ences in passing through its focus. This effect is known as the phase anomaly
and was first studied systematically by Gouy (1890). For the case of nonlin-
ear optics, this effect has important consequences over and above the phase
shift imparted to the transmitted light beam, because in general the nonlinear
polarization p = € x ¢ )A? will experience a phase shift that is g times larger
than that experienced by the incident wave of amplitude A;. Consequently,
the nonlinear polarization will be unable to couple efficiently to the gener-
ated wave of amplitude A, unless a wavevector mismatch Ak is introduced to
compensate for the phase shift due to the passage of the incident wave through
its focus. The reason why Ak should be positive in order for this compensa-
tion to occur can be understood intuitively in terms of the argument presented
in Fig. 2.10.3.

Boyd and Kleinman (1968) have considered how to adjust the focus of the
incident laser beam to optimize the efficiency of second-harmonic generation.
They find that the highest efficiency is obtained when beam walkoff effects
(mentioned in Section 2.3) are negligible, when the incident laser beam is fo-
cused so that the beam waist is located at the center of the crystal and the
ratio L /b is equal to 2.84, and when the wavevector mismatch is set equal to
Ak =3.2/L. In this case, the power generated at the second-harmonic fre-
quency is equal to

2,3 12
Pro= K[M]Pj (2.10.14)

c*niny
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FIGURE 2.10.3 Illustration of why a positive value of Ak is desirable in harmonic
generation with focused laser beams. (a) Wavevector diagram for third-harmonic gen-
eration with Ak positive. Even though the process is phase mismatched, the fun-
damental beam contains an angular spread of wavevectors and the phase-matched
process illustrated in (b) can occur with high efficiency. (c) Conversely, for Ak nega-
tive, efficient harmonic generation cannot occur.

Here K is a numerical constant that depends on the system of units in which
this equation is evaluated. For the gaussian system, which was used in the
original work, K = 1.068. In addition, Boyd and Kleinman show heuristi-
cally that other parametric processes, such as sum- and difference-frequency
generation, are optimized by choosing the same confocal parameter for both
input waves and applying the same criteria used to optimize second-harmonic
generation.

2.11. Nonlinear Optics at an Interface

There are certain nonlinear optical processes that can occur at the interface
between two dissimilar optical materials. Two such examples are shown sche-
matically in Fig. 2.11.1. Part (a) shows an optical wave falling onto a second-
order nonlinear optical material. We saw earlier (in Section 2.7) how to predict
the amplitude of the second-harmonic wave generated in the forward direc-
tion. But in fact, a much weaker second-harmonic wave is generated in reflec-
tion at the interface separating the two materials. We shall see in the present
section how to predict the intensity of this reflected harmonic wave. Part (b)
of the figure shows a wave falling onto a centrosymmetric nonlinear optical
material. Such a material cannot possess a bulk second-order nonlinear optical
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FIGURE 2.11.1 Illustration of second-harmonic generation in reflection at the surface
of (a) a second-order nonlinear optical material and (b) a centrosymmetric nonlinear
optical material.

susceptibility, but the presence of the interface breaks the inversion symmetry
for a thin region (of the order of one molecular diameter in thickness) near the
interface, and this thin layer can emit a second-harmonic wave. The intensity
of the light emitted by this surface layer depends sensitively on the structural
properties of the surface and especially upon the presence of molecules ab-
sorbed onto the surface. For this reason surface second-harmonic generation
is an important diagnostic method for studies in surface science.

Let us consider in greater detail the situation illustrated in part (a) of
Fig. 2.11.1. We assume that the wave at the fundamental frequency incident
on the interface can be described by

Ei(r,7) = Ei(w)e ' +cc. where Ej(wj) = Aj(wp)e ST, (2.11.1)

This wave will be partially reflected and partially transmitted into the nonlin-
ear optical material. Let us represent the transmitted component as

Er(w;) = A1(w;)e 1@ T, 2.11.2)

where the amplitude AT (wji) and propagation direction kt(wj) can be deter-
mined from the standard Fresnel equations of linear optics. For simplicity,
in the present discussion we ignore the effects of birefringence; we note that
birefringence vanishes identically in crystals (such as GaAs) that are noncen-
trosymmetric yet possess a cubic lattice. The transmitted fundamental wave
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will create a nonlinear polarization at frequency ws = 2w; within the medium
which we represent as

. ) N 2
iks(ws)- T and P= pEOXéff) A%(wl)

(2.11.3)

P(r,t) =Pe ' 4 c.c. where P = pe

and where Kg(ws) = 2Kkt (w;).

The details of the ensuing analysis differ depending upon whether p lies
within or is perpendicular to the plane of incidence. Here we treat only the
case of p perpendicular to the plane of incidence (also known as the TE
geometry); a treatment of the other case can be found for instance in Bloem-
bergen and Pershan (1962) or in Shen (1984). As described by Eq. (2.1.23),
this nonlinear polarization will give rise to radiation at the second-harmonic
frequency ws. The generation of this radiation is governed by the equation

V2E(ws) + [€(ws)w? /*[E(ws) = — (2 /eoc?)pre™™ (2.11.4)

where p is the component of p perpendicular to the plane of incidence. The
formal solution to this equation consists of any particular solution plus a gen-
eral solution to the homogeneous version of this equation obtained by setting
its right-hand side equal to zero. It turns out that we can meet all of the ap-
propriate boundary conditions by assuming that the homogeneous solution is
an infinite plane wave of as yet unspecified amplitude A (ws) and wavevector
kt(ws). We thus represent the solution to Eq. (2.11.4) as

_@f/ec®) pLesT, (2.11.5)
|ks|? — lkT(s)[*

where ks = +/€(ws)ws/c and where |kt (ws)|? = eT(ws) w?/c*. The electro-
magnetic boundary conditions at the interface require that the components
of E and of H tangential to the plane of the interface be continuous. These
boundary conditions can be satisfied only if we postulate the existence of a
reflected, second-harmonic wave which we represent as

Er(ws) = A(a)s)eikT(ws)'r +

ER(05) = AR (ws)e/KR©)T, (2.11.6)

In order that the boundary conditions be met at each point along the interface,
it is necessary that the nonlinear polarization of wavevector kg = 2kt (w;),
the transmitted second-harmonic wave of wavevector kt(ws), and the re-
flected second-harmonic wave of wavevector Kg (ws) have identical wavevec-
tor components along the plane of the interface. This situation is illustrated in
Fig. 2.11.2, where we let x be a coordinate measured along the interface in
the plane of incidence and let z denote a coordinate measured perpendicular
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FIGURE 2.11.2 (a) Geometry showing the creation of a transmitted and reflected
second-harmonic wave at the surface of a second-order nonlinear optical material.
(b) Definition of the electric and magnetic field vectors for the case in which P is
perpendicular to the plane of incidence.

to the plane of incidence. We thus require that
K = kR (ws) = kT (ws) (2.11.7)

(note that k$ = 2k} (wy)). Furthermore, we can express the magnitude of each
of the propagation vectors in terms of the dielectric constant of each medium

as
kr(ws) = e/ * (ws) ws/c, (2.11.82)
ke (w5) = i/ * (w3) ws/c., (2.11.8b)
ki(wr) = e * (1) wi/c, (2.11.8¢)

where er denotes the dielectric constant of the linear, incident medium and et
denotes the linear dielectric constant of the nonlinear medium. For mathemati-
cal convenience, we also introduce a fictitious dielectric constant €, associated
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with the nonlinear polarization defined such that

1/

ks = el w/c. (2.11.9)

From Eqgs. (2.11.7) through (2.11.9) we can readily determine expressions
relating the angles 6;, Or, 05, and 6t (see Fig. 2.11.2), which are given by

eé/z(wi) sinb; = ellz/z(a)s) sinfr = e}r/z(ws) sinfy = esl/z sinfs.  (2.11.10)

This equation can be considered to be the nonlinear optical generalization of
Snell’s law.

We next apply explicitly the boundary conditions at the interface between
the linear and nonlinear medium. According to Eq. (2.11.5), p will lead to
the generation of an electric field in the £ = E, direction, and in accordance
with Maxwell’s equations the associated magnetic field will lie in the xz plane
(see part (b) of Fig. 2.11.2). The continuity of the tangential components of E
and H then leads to the equations

Ey: A% = AT + py/eoc?[e; — er(wy)],

H,: - eé/z(ws)AE CcoSORr = e%/z(ws)AI cos bt
+ picostye,”? /[ e — er(y)]. 2.11.11)

These equations are readily solved simultaneously to obtain expression for
AI}_ and AI_. These expressions are then introduced into Egs. (2.11.5) and
(2.11.6) to find that the transmitted and reflected fields are given by

ER —popeR@IT
1=
[e}/2 (wg) cos BT + 61;/2 (wg) cosOr] [6}/2 (ws) cos O + €S1/2 cos 95]
= AR eikr(@) T (2.11.12a)
1/2 1/2
}v_ _ —UHopL |: ik . GS/ COS QS + ER/ (a)S) COSGR eikT(ws)‘ri|
er(ws) — € e%/za)s) cosfr + eé/z(ws) cos6r

(2.11.12b)

The transmitted second-harmonic wave is thus composed of a homogeneous
wave with propagation vector kt and an inhomogeneous wave with propaga-
tion vector k;. We see from Fig. 2.11.2 that k; — kt must lie in the z direction
and is given by

ks — ket = AkZ = (ws/0)[ed/* cos b — ey (ws) cos b7 ]2 (2.11.13)
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If this result is introduced into Eq. (2.11.12b), we can express the transmitted
field in the form

ET — | AR + ILO(CUS/C)ZPL elaks oikr(@s)r
L 2k (ws) Ak

= AT k@), (2.11.14)

This equation has the form of a plane wave with a spatially varying ampli-
tude; the spatial variation is a manifestation of imperfect phase matching of
the nonlinear optical interaction. The present formalism demonstrates that the
origin of the spatial variation is the interference of the homogeneous and in-
homogeneous solutions of the driven wave equation.

Let us interpret further the result given by Eq. (2.11.14). We assume that
Akz is much smaller than unity for all propagation distances z of interest. We
then find that, correct to first order in Ak, the amplitude of the transmitted
wave is given by

(@/0)?pLi2) _ x , i@/c)piz
2eoctkr(ws) T 2epctel(ws)
We see that the amplitude of the generated wave thus grows linearly from its

boundary value Ali