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Preface

This textbook has been developed from 25 years of experience teaching seismology at the
universities of Madrid and Barcelona. The text is at an introductory level for students in
the last years of European licentiate or American upper-division undergraduate courses
and at similar levels in other countries. As a first book, no previous knowledge of
seismology, as such, is assumed of the student. The book’s emphasis is on fundamental
concepts and basic developments and for this reason a selection of topics has been made.
It has been noticed that sometimes even graduate students lack a true grasp of the very
fundamental ideas underlying some aspects of seismology. The most fundamental con-
cepts are developed in detail. Simple cases such as one-dimensional problems and those
in liquid media are used as introductory topics. Mathematical developments are worked
out in complete detail for the most fundamental problems. Sometimes more difficult
subjects are introduced, but not fully developed. In these cases references to more
advanced books are given.

The book presupposes a certain amount of knowledge of mathematics and physics.
Knowledge of mathematics at the level of calculus and ordinary and partial differential
equations as well as a certain facility for vector and tensor analysis are assumed.
Cartesian, spherical, and cylindrical coordinates and some functions such as Legendre
and Bessel functions are used. Tensor index notation is used preferentially throughout
the book. Fundamental ideas about certain mathematical subjects are given briefly in
Appendixes 1—4. Basic knowledge of the mechanics of a continuous medium and of
the theory of elasticity is also presupposed. The reader is reminded about the basic
equations of elasticity in chapter 2, but they are not all fully explained. The student is
referred to textbooks on elasticity that are cited in the bibliography.

Throughout the book there is an emphasis on the fundamental theoretical aspects of
seismology and observations are treated briefly. Thus, some readers will miss discussion
of recent results; I refer them to the excellent recent book by Lay and Wallace (1995).
Also advanced developments of the theory of wave propagation and generation are
not treated; see Pilant (1979), Aki and Richards (1980), and Ben Menahem and Singh
(1981). I hope that my book is a good introduction to these excellent advanced books.
It is difficult to decide where to stop in the subjects treated in a textbook that is designed
as an introduction. I have selected to develop only, but with all mathematical detail, the
very basic problems. In this sense, this book is different than those that already exist. The
style and approaches are also sometimes different, and reflect those of the author

The first chapters are dedicated to the fundamentals of elasticity theory, solutions of
the wave equation, normal modes, and ray theory. The following chapters are dedicated
to the propagation of body and surface waves, and free oscillations. Four chapters are
devoted to the study of the source. One chapter gives an introduction to anelasticity and

xiii



Xiv Preface

anisotropy and the two final ones introduce the reader to seismicity, seismotectonics,
and seismic risk, and to seismologic instrumentation. Appendixes 1—-4 cover some math-
ematical tools, Appendixes 5—7 give some helpful information, and Appendix 8§ is a
collection of problems and exercises divided into seven topics. These exercises are related
to the theoretical developments in the book. The bibliography includes books on seis-
mology and related topics. Other references cited in the text are given separately.
Some books are listed as references, so one must use both lists.

I wish to thank in the first place all my students, to whom I am indebted for their
questions and suggestions that have helped me to write this book and their patience
during my lectures. I must thank also a long list of Spanish seismologists, many of
them former students, who will be difficult to name without omitting some of them,
especially E. Buforn and D. Mufioz (Universidad Complutense de Madrid), E. Surifiach
and A. Correig (Universidad de Barcelona), and A. Lopez Arroyo, G. Payo, and
J. Mezcua (Instituto Geografico Nacional). Revision of some chapters was aided and
valuable suggestions were given by B. A. Bolt (University of California, Berkeley), R.
Madariaga (Ecole Normale Supérieure, Paris), A. Cisternas (Institut de Physique du
Globe, Strasbourg), and H. Kanamori (California Institute of Technology). I am
especially indebted to S. Das (Oxford University) who encouraged me to write the
English version and put me in contact with Cambridge University Press and S. Holt
who revised the manuscript. Naturally, I am aware that I am leaving out many names
that I should have listed and I hope that they all feel included in my thanks.



I SEISMOLOGY, THE SCIENCE
OF EARTHQUAKES

1.1 The historical development

The term seismology is derived from two Greek words, seismos, shaking, and
logos, science or treatise. Earthquakes were called seismos tes ges in Greek, literally
shaking of the Earth; the Latin term is terrae motus, and from the equivalents of these
two terms come the words used in occidental languages. Seismology means, then, the
science of the shaking of the Earth or the science of earthquakes. The term seismology
and similar ones in other occidental languages (séismologie, sismologia, sismologia,
Seismologie, etc.) started to be used around the middle of the nineteenth century.
Information about the main historical developments of seismology can be found in
each chapter; a very short overview is given in the following paragraphs.

In antiquity, the first rational explanations of earthquakes, beyond mythical stories,
are from Greek natural philosophers. Aristotle (in the fourth century BC) discussed
the nature and origin of earthquakes in the second book of his treatise on meteors
(Meteorologicorum libri IV"). The term meteors was used by the ancient Greeks for a
variety of phenomena believed to take place somewhere above the Earth’s surface,
such as rain, wind, thunder, lightning, comets, and also earthquakes and volcanic erup-
tions. The term meteorology derives from this word, but in modern use it refers only to
atmospheric phenomena. Aristotle, following other Greek authors, such as Anaxagoras,
Empedocles, and Democritus, proposed that the cause of earthquakes consists in the
shaking of the Earth due to dry heated vapors underground or winds trapped in its inter-
ior and trying to leave toward the exterior. This explanation was part of his general
theory for all meteors caused by various exhalations of gas or vapor (anathymiaseis)
that extend from inside the Earth to the Lunar sphere. This theory was spread more
widely by the encyclopedic Roman authors Seneca and Plinius. It was commented
upon by medieval philosophers such as Albert the Great and Thomas of Aquinus,
and, with small changes, was accepted in the West until the seventeenth century. For
example, in 1678 A. Kircher related earthquakes and volcanoes to a system of fire
conduits (pyrophylacii) inside the Earth. In the eighteenth century, M. Lister and
N. Lesmery proposed that earthquakes are caused by explosions of flammable material
concentrated in some interior regions. This explanation was accepted by Newton and
Buffon.

The great Lisbon earthquake of 1 November 1755, which caused widespread destruc-
tion in that city and produced a large tsunami, may be considered the starting point
of modern seismology. In 1760 J. Mitchell was the first to relate the shaking due to
earthquakes to the propagation of elastic waves inside the Earth. This idea was further
developed by, among others, T. Young, R. Mallet, and J. Milne. Descriptions of damage
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2 The science of earthquakes

due to earthquakes and the compilation of lists of their occurrence can be traced back to
very early dates. Sometimes these lists include other natural disasters such as floods,
famines, and plagues. Among the first catalogs of earthquakes published in Europe
are those of J. Zahn in 1696 and J. J. Moreira de Mendonga in 1758. Modern catalogs
started to be published around 1850 by A. Perrey and R. Mallet (Chapter 15).

Mallet’s study of the earthquake of Naples of 1857 constitutes one of the first basic
works of modern seismology. Mallet developed the theory of the seismic focus from
which elastic waves are propagated in all directions and connected the occurrence of
earthquakes with changes in the Earth’s crust that are often attended by dislocations
and fractures, abandoning the explosive theory. C. Lyell and E. Suess related earth-
quakes to volcanic and tectonic motions, and, at the beginning of this century, F. Mon-
tessus de Ballore and A. Sieberg assigned the cause of earthquakes to orogenic processes
and contributed to many aspects of observational seismology (Chapter 15). R. D.
Oldham, K. Zéppritz, and E. Wiechert published the first studies of the propagation
of seismic waves, based on early work on the theory of elasticity (Chapter 2). The first
models of the interior of the Earth based on seismologic observations were proposed
between 1900 and 1940 by, among others, R. D. Oldham, B. Gutenberg, H. Jeffreys,
K. Bullen, and J. B. Macelwane (Chapter 9). The first instruments used to observe the
shaking of the ground produced by earthquakes were based on the oscillations of a
pendulum and started to be used around 1830. By the end of the century, the first
seismographic continuous recordings had been produced. In 1889, E. von Rebeur
Paschwitz recorded in Potsdam an earthquake that took place in Tokyo; this was the
first seismogram recorded at a large distance. Among the first names related to the
development of seismologic instrumentation are those of J. Milne and F. Omori with
the inclined pendulum, E. Wiechert with the inverted pendulum, B. B. Galitzin with
the electromagnetic seismograph, and H. Benioff with that of variable magnetic reluc-
tance (Chapter 21).

Since 1945, seismology has experienced a very rapid development. Details of this
development and names associated with it can be found in the introductions to each
chapter and elsewhere in this book. In this rapid evolution, two important subjects
are the propagation of elastic waves in the Earth and the mechanism of the generation
of earthquakes. Both include theoretical and observational aspects. In the study of the
propagation of seismic waves, the Earth is approximated by models that have progressed
from the early very simple models of homogeneous elastic media or media divided into
layers to those with three-dimensional heterogeneity including anelasticity and aniso-
tropy (Chapters 9 and 12—14). Models of the source of earthquakes developed from
simple models of point foci to those including the complex process of fracture of crustal
rocks (Chapters 18 and 19). Observations of seismic waves have improved and multi-
plied with the development of seismologic instrumentation from early mechanical
seismographs with analog recording to the present systems with a broad-band response,
electronic amplification, and digital recording (Chapter 21). These developments have
contributed to an increase in knowledge about the complex processes which cause
earthquakes and the properties and composition of the materials of the Earth’s interior.
Other aspects of seismology concerning the occurrence of earthquakes, its relation to
tectonic processes, and the evaluation of seismic risk have also significantly expanded
(Chapter 20).
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1.2 Seismology, a multidisciplinary science

Recent trends in seismology tend to overemphasize those aspects related to the
generation and propagation of seismic waves. With this emphasis, Aki and Richards
(1980) define seismology as a science based on data called seismograms, which are the
records of mechanical vibrations. Lay and Wallace (1995), following this point of
view, define seismology as the study of the generation, propagation, and recording of
elastic waves in the Earth (and other celestial bodies) and of the sources that produce
them, and conclude that recordings of ground motion as a function of time, or seismo-
grams, provide the basic data for seismologists. Lomnitz (1994) considers this approach
rather narrow, because seismograms provide us with much less information about earth-
quakes than is needed. Moreover, this definition downplays many other aspects present
in the complex phenomena of earthquakes.

In a more traditional approach, seismology is defined in a broader sense, as the science
of the study of earthquakes. The analysis of seismic waves forms a very important part of
seismology, but not its totality. Bolt (1978) considers the task of seismologists the study
of all aspects of earthquakes, including their causes, occurrence, and properties. For
Bullen (1947), it is evident that the study of earthquakes belongs to many fields of knowl-
edge such as physics, chemistry, geology, engineering, and even philosophy. For this
reason, Macelwane and Sohon (1936), Madariaga and Perrier (1991), and many other
authors consider seismology a multidisciplinary science.

There is no doubt that the study of seismic waves recorded by seismographs is funda-
mental to seismology, for example, to the study of the mechanism causing earthquakes
and the constitution of the Earth’s interior. However, this does not imply that wave ana-
lysis is the only source of information about earthquakes. The seismicity of a region, for
example, can not be understood correctly if solely instrumentally recorded earthquakes
are considered. Owing to the long return periods for large earthquakes, the study of
historical earthquakes is essential. The need to go even farther back into the past has
promoted the study of other types of information from archeoseismicity and paleoseis-
micity. The characteristics of large earthquakes can not be fully understood without geo-
logic field observations after their occurrence. Comparison of geodesic measurements
before and after earthquakes is another important source of knowledge. All these
types of data are important in helping one to interpret the nature of earthquakes and
their consequences, and must be integrated with the information obtained from the ana-
lysis of seismic waves.

Two parts of seismology with a marked multidisciplinary character are the evaluation
of seismic risk and work toward the prediction of earthquakes. In the first case, the inter-
action of seismologists with geologists and engineers is necessary in order to correctly
assess earthquake hazards, expected ground motion, soil conditions, seismic zonation,
and the responses of structures and buildings. In the second, many of the suggested pre-
cursory phenomena (electromagnetic signals, changes in resistivity, emissions of radon
gas, and changes in geodesic measurements) are not directly related to seismic waves.
Progress in the problem of earthquake prediction can not be achieved without a great
multidisciplinary effort involving scientists working in many fields, such as seismologists,
engineers, geologists, and physicists. Finally, we must not forget that earthquakes are
natural disasters that affect human lives. Depending on the correct assessment of the
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seismic risk and the adequacy of the design and construction of buildings, the damage
from earthquakes, especially loss of human lives, may vary greatly. The response of
the population to the occurrence of an earthquake must also be taken into account,
with all its serious psychological, social, and economic consequences. Seismologists
can not be indifferent to all these problems.

1.3 Divisions of seismology

Seismology can be divided into three disciplines: seismology in the strict sense,
seismic engineering, and seismic exploration. Seismology treats the occurrence of earth-
quakes and their related phenomena and is primarily based on the application of the
principles of the mechanics of a continuous medium and of the theory of elasticity to
them. As has already been mentioned, its two main subjects are the generation of
earthquakes and the vibrations and propagation of seismic waves inside the Earth.
From observations of these vibrations together with other types of data, we derive
our knowledge about the nature of earthquakes, the structure of the Earth’s interior,
and its dynamic characteristics. The part of seismology that deals with seismologic
instrumentation, called seismometry, studies the physical theory of the various types
of instruments used to measure seismic motion.

Seismic or earthquake engineering is an applied science that treats how the motion
produced by earthquakes affects buildings and other man-made structures. Starting
from the characterization of ground displacement, velocity, and acceleration, seismic
engineering proceeds to consider their effects on structures and seeks to design them
to resist such motions. If earthquake-resistant structures are not to be unnecessarily
expensive, a reliable evaluation of the expected ground motion at a particular site is
necessary. For this task, an assessment of the seismic risk for a particular zone is
needed. This assessment includes the consideration of many factors, such as the occur-
rence of earthquakes near a site, their source mechanism, seismic-wave attenuation and
soil conditions, and the vulnerability of structures. The complete evaluation of seismic
risk implies the statistical analysis of all these factors and requires the collaboration
of seismologists, engineers, and geologists.

In seismic exploration, seismologic methods are applied to the search for mineral
resources, especially oil deposits. These methods are based on the reflection and refrac-
tion of artificially generated seismic waves in geologic structures associated with the
presence of such deposits. The methods that have proved to be the most effective are
those based on vertical reflection of waves. Closely spaced distributions of wave genera-
tors and detectors together with complex processing of the digital data allow one to
obtain detailed images of the upper part of the Earth’s crust. The increasing demand
for energy resources makes this work more and more important.

14 Theory and observation

Just like in all experimental sciences, theoretical and observational aspects of
seismology must be considered. The first are based on the principles of the mechanics
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of continuous media with the assumption that the Earth is an imperfectly elastic body in
which vibrations are produced by earthquakes. The study of the generation of these
vibrations constitutes the theory of the source mechanism. In this theory, models of
the processes occurring at the focus of earthquakes are proposed. They range from
the more simple ones of instantaneous point sources to the more complex. The aim is
to approximate the process of fracture along geologic faults.

Vibrations in the Earth can be treated using two approaches: wave propagation and
normal modes theory. The first approach considers waves propagating inside the Earth
or on its surface. The second considers the eigenvibrations or oscillations of the Earth as
a whole. This approach is necessary when wave lengths are near the dimensions of the
Earth. In the simplest models, the Earth behaves like a homogeneous isotropic perfectly
elastic medium. For some problems the flat-Earth approximation may be sufficient,
whereas others require the treatment of its sphericity. Heterogeneity in the Earth can
be treated using layered models with different elastic properties for each layer or
models in which these properties vary with the spatial coordinates. The assumption of
a spherical radially heterogeneous medium is useful in providing a close approximation
to the real Earth. Ray theory is used as a high-frequency approximation to wave propa-
gation in heterogeneous media. Surface waves in layered media describe wave dispersion
with the separation of phase and group velocities. The lack of perfect elasticity is
accounted for by introducing the attenuation of vibrations and waves and by consider-
ing viscoelastic models. Isotropic models are adopted as a first approximation but
further analysis needs to consider anisotropic conditions. By proceeding through these
successive modifications in models of the Earth, its imperfect elasticity, heterogeneity,
and anisotropy can be adequately considered.

An important part of seismologic observations consists in the recording of the
ground’s motion by instruments installed on its surface. Nowadays classical analog seis-
mograms on photographic paper have largely been replaced by digital data kept on mag-
netic tapes or compact disks, which can be obtained directly from world data banks
through the Internet. Previous to their interpretation through the use of digital compu-
ters, seismologic observations usually need careful complex numerical processing. As
has already been mentioned, important seismologic data are also provided by other
sources, for example, historical records of damage from pre-instrumental earthquakes,
field observations of structural damage and ground deformation after earthquakes, geo-
desic measurements related to the occurrence of earthquakes, in situ stress measurements
and geologic and tectonic implications. Progress in the methods of observation of all
kinds of seismologic data has allowed one to apply models of increasing complexity
to the problems of the generation of earthquakes and the structure of the Earth’s
interior.

The relation between observations and theories or models can be approached through
direct and inverse problems. The direct problem refers to the determination of ground
displacements from theoretical models of the generation and propagation of seismic
waves. In the direct problem, theoretical models are assumed « priori and from them
synthetic displacements are determined, which are compared with observations. If
they agree, we consider the model well-suited to observations. However, in many
instances, there is no assurance of its uniqueness and many other models may equally
well satisfy the same observations. The inverse problem consists in the estimation of
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the parameters of a theoretical model from observations. This is often a more compli-
cated problem than the direct one. Observations are always incomplete and contain
errors, so that a solution of the inverse problem may exist only in a probabilistic
sense. In general, inverse problems become more intractable as the number of para-
meters of the model increases. The mathematics of inverse problems requires, generally,
the solution of nonlinear integral equations. Linearization of the problem is a standard
procedure that leads, very often, to large unstable systems of equations. Difficulties in
the solution of inverse problems lead to their substitution by repeated solutions of
direct problems until sufficient agreement between observations and synthetic data
predicted by the assumed models is reached.

1.5 International cooperation

The main objectives of seismology require the cooperation of, and exchange of
observations among, scientists from different parts of the world. This collaboration was
accomplished from early times through private initiatives. The global character of large
earthquakes soon required the establishment of institutional cooperation at national and
international levels. The first organizations were national ones such as the Seismological
Society of Japan, created after the earthquake of 1880 with J. Milne as first secretary. In
1890, the Committee for the Investigation of Earthquakes was founded, also in Japan, of
which F. Omori was president from 1897 to 1923. In Italy, the Italian Seismological
Society (Societa Sismologica Italiana) was created in 1895; L. Palmieri, T. Bertelli,
and G. Mercalli were among its first members. Another national society with great influ-
ence in the history of seismology is the Seismological Society of America, which was
founded in 1906 as a response to the great San Francisco earthquake, with G. Davidson
as its first president. The idea of an international association of seismology was first
proposed by G. Gerland, during the sixth International Congress of Geography that
was held in London in 1895. In 1904, the International Association of Seismology
was finally created, but it was suppressed in 1916. Since 1922, seismology has formed
a section of the International Union of Geodesy and Geophysics (IUGGQG), created in
1919. In 1930, the IUGG was reorganized and included as one of its associations the
International Association of Seismology, which finally, in 1951, received its present
name of the International Association of Seismology and Physics of the Earth’s Interior
(IASPEI). One of its commissions is the European Seismological Commission (ESC),
which was founded in 1951. There are also active seismology sections of geophysical
scientific societies such as the American Geophysical Union, European Geophysical
Society and European Union of Geosciences.

Exchange of seismologic data between observatories was carried out in the past
through the publication of seismologic bulletins. These bulletins preserve a great
wealth of information about earthquakes of the early instrumental period. One of the
first publications of epicenter determinations was The Reports of the Seismological
Committee of the British Association for the Advancement of Science, which started
in 1911 with the determinations for the period 1899—-1903. In 1922, this publication
became the International Seismological Summary (ISS), its first volume being dedicated
to the earthquakes of 1918. Later, in 1963, the publication was continued by the
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International Seismological Centre (ISC), Newbury, UK. The Bureau Central Inter-
national de Séismologie (BCIS) was created in Strasbourg in 1906 and published a
bulletin with epicenter determinations from 1904 until 1975. In 1976 the Centre Séismo-
logique Européen Méditerranéen (CSEM) was created by the ESC with the task of deter-
mining hypocenters of earthquakes of the Mediterranean region. Other agencies started
also to publish epicenter determinations, such as, in North America, the Jesuit Seismo-
logical Association that was active between 1925 and 1960 and the United States Coast
and Geodetic Survey (USCGS), which later was transferred to the National Earthquake
Information Center (NEIC), which was dependent on the United States Geological
Survey. Since 1968, its monthly publication Preliminary Determination of Epicenters
has included also information on determinations of focal mechanisms for sufficiently
large earthquakes. Similar information has also been published since 1977 by Harvard
University. At present, there are several world centers of seismologic data including digi-
tal seismograms from broad-band stations, such as the IRIS (USA), GEOFON (Ger-
many), and ORFEUS (Holland).

1.6 Books and journals

Among the early treatises on seismology are those of Mallet (1862), Great Nea-
politan Earthquake of 1857: The First Principles of Observational Seismology (London);
Milne (1886), Earthquakes and Other Earth Movements (Fig. 1.1) (New York); and
Hoernes (1893), Erdbebenkunde (Leipzig). At the beginning of this century, several
books on seismology were published, among them those by Sieberg (1904), Handbuch
der Erdbebenkunde (Braunschweig); Hobbs (1908), Earthquakes. An Introduction to
Seismic Geology (London); Montessus de Ballore (1911), La sismologie moderne
(Paris); and Galitzin (1914), Vorlesungen der Seismometrie (Leipzig).

From 1930, textbooks about seismology that may be considered modern started to be
published. Only those of general character will be mentioned (full references are given in
the Bibliography): Macelwane and Sohon (1936), Introduction to Theoretical Seismol-
ogy. Part I, Geodynamics and Part II, Seismometry; Byerly (1942), Seismology; Bullen
(1947), An Introduction to the Theory of Seismology; Richter (1958), Elementary Seismol-
ogy; Sawarensky and Kirnos (1960), Elemente der Seismologie und Seismometrie; and
Bath (1973), Introduction to Seismology.

More recently, since 1979, several textbooks on general seismology at various levels
have been published. Four excellent advanced books are by Pilant (1979), Elastic
Waves in the Earth; Aki and Richards (1980), Quantitative Seismology. Theory and
Methods; Ben Menahem and Singh (1981), Seismic Waves and Sources and Dahlen
and Tromp (1998) Theoretical Global Seismology. At an introductory level there are
books by Bullen and Bolt (1985), An Introduction to the Theory of Seismology; Bolt
(1978), Earthquakes, a Primer; Gubbins (1990), Seismology and Plate Tectonics; Madar-
iaga and Perrier (1991), Tremblements de terre; Lay and Wallace (1995), Modern Global
Seismology; Doyle (1995), Seismology; Gershanik (1995), Sismologia; and Udias and
Mezcua (1996), Fundamentos de sismologia.

There are books covering only certain aspects of seismology, such as, for example,
wave propagation and free oscillations, by Officer (1958), Ewing et al. (1957), Lapwood
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THE INTERNATIONAL SCIENTIFIC SERIES

EARTHQUAKES

OTHER EARTH MOVEMENTS

BY
JOHN MILNE

PROFCESOR OF MINING AND QEOLOGY IN THE IMPERIAL COLLEGE GF ENGINEERING,
TOK10, JAPAN

WITH THIRTY-EIGHOT FIGURES

NEW YORK

D. APPLETON AND COMPANY
1, 8, axp 5 BOND STREET

1886

Fig. 1.1. The title page of Milne’s book on seismology.

and Usami (1981), Kennett (1983), and Babuska and Cara (1991); source mechanisms,
by Kasahara (1981), Kostrov and Das (1988), and Scholz (1990); seismicity, earthquake
prediction, and other topics, by Gutenberg and Richter (1954), Kisslinger and Zuzuki
(1978), Kulhanek (1990), and Lomnitz (1994). There are excellent collections of
review papers such as those by Dziewonski and Boschi (1980), Kanamori and Boschi
(1983), and Boschi et al. (1996). Entries on seismologic subjects in James’ (1989) The
Encyclopedia of Solid Earth Geophysics are very good short up-to-date presentations.
The first scientific articles about seismology were published in the Bollettino del
vulcanismo italiano founded by de Rossi in 1874 and in the Beitrdge zur Geophysik,
founded by Gerland in 1887. The first journals exclusively dedicated to seismology



1.6 Books and journals 9

were the Transactions of the Seismological Society of Japan published from 1880 to 1892
and the Seismological Journal of Japan published from 1892 to 1895, both directed by
Milne. In 1985 the Bollettino della Societa Sismologica Italiana was founded by the
Italian Seismologic Society and, in 1897, the Mitteilungen der Erdbeben was founded
by the Vienna Academy of Sciences. In 1907 the publication of the Bulletin of the
Imperial Earthquake Investigation Committee started in Japan, in 1908, the Publications
du Bureau Central de I’Association International de Sismologie started to be published in
Strasbourg, in 1911, the Bulletin of the Seismological Society of America, in 1926, the
Bulletin of the Earthquake Research Institute of Tokyo University, and in 1929 Earth-
quakes Notes, that changed its name to Seismological Research Letters in 1987. In
1997, the publication of the Journal of Seismology (Kluwer, Dordrecht) started. The
following journals are dedicated to the field of earthquake engineering: Earthquake
Engineering and Spectral Dynamics, European Earthquake Engineering, Soil Dynamics
and Earthquake Engineering, and Earthquake Spectron.

Besides the journals dedicated entirely to seismology, articles on this subject are
published in geophysical journals. The list is very long so only the most representative
are mentioned, in chronologic order of the first year of publication: Geophysical Maga-
zine (1926), Fizica ziemly (1937), Pure and Applied Geophysics (Geofisica pura e applicata)
(1939), Annali di geofisica (1948), Journal of Geophysical Research (1949), Journal of
Physics of the Earth (1952), Geophysical Journal International (1992) (a fusion of the
Geophysical Journal of the Royal Astronomical Society (1958), the Zeitschrift fiir
Geophysik (1924) and the Annale de géophysique (1948)), Reviews of Geophysics
(1963), Tectonophysics (1964), Earth and Planetary Science Letters (1966), and Physics
of the Earth and Planetary Interiors (1967).

Actually, the amount of published material in seismology keeps on increasing consid-
erably. Students will find it useful to consult the most important textbooks, where they
will find different approaches to the topics treated in this book. Also, they should read
some of the classical papers, references to which are given in the Bibliography, and look
through the recent issues of seismologic journals to find out about the present topics of
research.



2 FUNDAMENTAL EQUATIONS
OF AN ELASTIC MEDIUM

2.1 Stress, strain, and displacement

An important part of seismology consists in the study of the generation and
propagation of seismic waves, that is, waves produced in the Earth by earthquakes.
For this purpose it is necessary to approximate the Earth by a continuous elastic
medium to which the equations of mechanics can be applied. A continuous medium is
an idealization of a material in which the distance between two contiguous points can
be made infinitesimally small. In this idealization, the granular structure of the materials
of the Earth and their molecular and atomic nature are not considered. In a continuous
medium the term particle is used to mean a geometric point without dimensions. Density
and mechanical properties are considered as continuous functions of spatial coordinates
and time.

The study of the mechanical behavior of continuous media can be traced back to the
discovery in 1660 by Hooke of the linear law that relates stress and strain in an elastic
body and its applications formulated by Mariotte around 1680. The first studies on
the behavior of elastic materials were those of Bernoulli, Euler, Lagrange, and Coulomb.
In 1827, Navier established the general equations for equilibrium and vibration in elastic
solids. This work was continued by Cauchy, Poisson, Lamé, Kirchhoff, Lord Kelvin,
Lamb, Rayleigh, and Love, among others.

We start by recalling some of the basic ideas of the mechanical behavior of continuous
media. Let us consider, in a continuous medium, a region of volume V" surrounded by a
closed surface S, in such a way that there is matter on both sides of the surface. For each
point inside ' we can define elastic stresses, strains, and displacements as continuous
functions of the spatial coordinates and time (Fig. 2.1).

Stresses at a point inside V' are defined as the limits of the quotients of the forces that
act at this point per unit surface through a plane with a certain orientation. Both the
orientation of the force F and that of the plane AS are included in the definition of
the stress. The stress through a plane with normal v is represented by a vector T,

. F

r= Ahsrilo AS
Stress exists only if there is material on both sides of the surface. Stress can also be
represented by a second-order tensor t with nine elements 7;; that are the stresses through
three orthogonal planes (Appendix 1). In Cartesian coordinates, these planes are normal
to the three axes (x;, x, and x;) (Fig. 2.2). With this tensor we can define the state
of stress at a point through a plane of arbitrary orientation. For a plane with a
normal given by the unit vector v, Cauchy’s relation between the vector T and the

10
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Fig. 2.1. The stress, strain, and displacement in an elastic medium.
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Tz T]_]_ T12
T22 / TL
T2 X,
T32
T31 T33

X,

Fig. 2.2. The components of the stress tensor, 7;, through three orthogonal planes and of the stress
vector 7; through a plane normal to the unit vector in v;.

tensor 7 is

T = Ty (2.1)

In this equation we have used the index notation and the convention that repeated
subindexes are summed through their three values (Appendix 1). It is easy to show
that, in the absence of external moments, the tensor t is symmetric (7; = 7;) and only
six of the nine components are different. With respect to the three planes normal to
the coordinates’ axes, the components of 7;; with subindex 7 = j correspond to normal
stresses and those with i # j correspond to tangential or shear stresses.

Displacements at a point in a continuous medium are given by the vector u. If d/ is the
distance between two points, for a rigid-body displacement, u is the same for all points
and d/ remains constant. When a body is deformed u is different for different points and
the distance d/ changes. The strain is defined as the change of this distance. If the
distance before deformation is d/ and that after deformation is d/, we can write, in a
first-order approximation,

Ou;
di* — dP =2
B

Xj
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Fig. 2.3. Representations of the longitudinal strain e;; and shear strain ey,.

The deformation or strain in the body depends on the derivatives of the displacements.
Because the strain implies variations in the displacements in the directions of the three
spatial coordinates, it must be represented by a tensor. In the case of infinitesimal
deformations, the strain can be represented by the Cauchy tensor e, which, if u varies
continuously and slowly with position, is given by

¢ =5 (8xj + 8»c,) = 5 (g + ;) (23)

In this expression we have used the commas to represent partial derivatives with respect
to the corresponding spatial coordinate (Appendix 1). This definition implies that the
increments in the displacements (du) are smaller than those in position (dx). The
tensor e is, by definition, symmetric (e; = ¢;;) and only six of its nine components are
different. The components of the strain tensor e have a simple geometric interpretation.
Those with subindexes i = j correspond to longitudinal deformations along the axes of
coordinates. For i # j, they correspond to variations in the angles between the directions
of the axes of the deformed and undeformed states; deformations of this type are called
shear strains (Fig. 2.3).

Another important tensor related to changes in the displacements in a deformable
continuous body is the rotation tensor

wy =3 (i — uy;) (2.4)

The rotation tensor ® is antisymmetric. Using the tensors e and o the partial derivatives
of the displacements are given by

U ;= e; +wj (2.5)
The rotation tensor wy; is related to the curl of the displacements,

o=V xu

Wi = €Uy, (2.6)

by the equation

W; = zeijkwj'k (27)
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where e is the alternating or permutation tensor (Appendix 1). According to (2.5), the
partial derivatives of u are totally defined by the two tensors e;; and w;;. This means that
the variations of displacements from one point to another in a deformable medium
include both strains and rotations.

2.1.1  Eigenvalues and eigenvectors

The tensors 7; and e; can be studied in terms of their eigenvalues and eigen-
vectors. Since both tensors are represented by 3 x 3 symmetric matrices, in each case,
their three eigenvalues are real and their three eigenvectors mutually orthogonal. The
eigenvectors form a system of orthogonal axes such that, when referred to it, all
components of the tensor are zero, except those in the main diagonal, where they are
the eigenvalues. The reference system formed by the eigenvectors represents the
system of principal axes of stress and strain. The eigenvalues are also called the principal
values of the stress and strain. Eigenvectors and eigenvalues are found through the
equation

(15 — 06;)v; =0 (2.8)
In this equation é; is the Kronecker delta tensor (Appendix 1). The eigenvalues are the
three roots of the cubic equation resulting from equating to zero the determinant of (2.8),
Det[r; — 06;] =0 (2.9)
The three eigenvectors v}, v and v} correspond to the three eigenvalues oy, 0, and oy

and are obtained by substituting each of these values into equation (2.8). Thus, referred
to its principal axes, the tensor 7; has the following form:

g1 0 0
0 0 g3

In this system of axes, the tensor 7; has only normal components. Regarding the planes
normal to the axes, there exist only normal stresses (7;;, i = j) and the shear stresses
(74, i # j) are null. The principal values of the stress, o, 0, and o3, are, usually, ordered
so that o is the largest and o3 the smallest.

A similar result is obtained for the strain tensor e;. When it is referred to its principal
axes, the shear components are null and the tensor takes the form

&1 0 0
0 0 £3

In both cases, for t and e, the sum of the elements of the main diagonal is the first
invariant of the matrix, so that, for any orientation of the axes,

T1y + Top + T33 = 0 + 0, + 03 = constant

ey + ey + ez = ¢ + &y + €3 = constant
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In the case of the strain tensor, this sum represents the change in volume per unit volume
and it is called the cubic dilation 6. It can be obtained from (2.3) that the cubic dilation is
equal to the divergence of the displacements,

e tentess=u +upytuzz =10
Veou=0 (2.12)

The tensors 7; and ¢; can be expressed as the sum of two tensors, one isotropic and the
other deviatoric:

7y = 008 + 7
where o and ¢, are one third the sums of the principal stresses and strains, respectively:
o) Z%(Ul + 0, +03)
-1
3

go=3(e1+er+53)

The deviatoric stress and strain T,I/ and egj are, thus, defined by equations (2.13). In the
case that the deformation implies only changes in volume without changes in form,
eﬁ-j = 0. If there are only changes in form, without changes in volume, ¢, = 0. In this
case the strain is purely deviatoric.

2.2 Elasticity coefficients

The mechanical behavior of a continuous material is defined by the relation
between the stress and the strain. For a linear elastic body, this relation is given by
Hooke’s law, which states that the strain is proportional to the stress. Cauchy’s
formulation in tensor form of this law is

7 = Ciwaer (2.14)

This equation states the linear relation between the strain and stress tensors and is the
foundation of the theory of linear elasticity. The fourth-order tensor Cjy; is the tensor
of the elasticity coefficients or moduli and has 81 components. Owing to the symmetry
of 7; and ey, only 36 are different. For perfect elasticity, there exists a strain-energy
function and it follows that Cyj; = Cy;; and the number of elasticity coefficients is
further reduced to 21 (Malvern, 1969). Equation (2.14) can also be expressed in terms
of the derivatives of the displacements, by substituting (2.3) into it:

7 = Chais (2.15)

L/

The simplest case for the elasticity coefficients corresponds to an isotropic medium, that
is, a medium with the same properties in all directions. For such a medium, all compo-
nents of Cy; can be expressed by two, A and p, called Lamé’s coefficients:

Cijr = Nojjors + 1186y + 6105.) (2.16)
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The 21 different components of Cyy, in terms of A and u are
Ciin=Con=C3=A+2p
Criza = Crizs = Cazz = Coppp = Cazpp = Czp = A
Cioia = Coia1 = Ciap1 = Copnp = Ciz13 = Ca131 = Ciazp = Gapz = Cosns
=Con=Cpn=Cons =4

By substitution of (2.16) into (2.14), the relation between the stress and the strain for an
isotropic medium is found to be

In terms of the derivatives of the displacements
le = )\(Sl‘ju]ﬂk -+ /I,(Z/ll] + Mj.’,') (218)

From a different point of view, the mechanical behavior of an isotropic elastic
medium can be stated in terms of two coefficients, K, the bulk modulus, that relates the
changes in volume without changes in form and G, the shear modulus that relates the
changes in form without changes in volume to the stresses that produce them. For
the first case,

T+ T2 + 733 = 3K (e + e + e33) (2.19)
In the case of hydrostatic pressure, the normal stresses are equal (7] = 7 = 733 = —P)
and equation (2.18), taking into account (2.12), results in

P=-K0 (2.20)

The coefficient K represents the quotient relating the pressure to the change in volume it
produces (K = —P/60). For this reason it is called the bulk modulus or incompressibility.

The second elasticity coefficient G relates changes in form without changes in volume
to the shear stresses or deviatoric strain and stress:

7 = 2Geéj; (2.21)
The coefficient G is equivalent to p and is called the shear modulus or rigidity. By
substituting equation (2.19) into (2.17), and considering (2.13), we obtain G = u and

K=X+2p (2.22)

Another elasticity coefficient is Young’s modulus E that relates the longitudinal stress

and strain in the same direction:

E=m /ey (2.23)
The relations of E to A, p and K are

w(3X+2p) 9K
E= = 2.24
A p 3K+ ( )

In a medium subject only to a longitudinal stress 7, in the direction of the x; axis, the
quotient relating the strain in a perpendicular direction e,, and that in the same direction
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Table 2.1. Correspondences among the values of K, \, and . for
some values of o.

o K
? ! i
B M ©
1 3
3 K IH
1

1
°2

1

4

0

M 2u 3u au K

Fig. 2.4. The relation between Poisson’s ratio o and the bulk modulus K in terms of the rigidity p or
shear modulus.

as the stress ey; is called Poisson’s ratio:
o= —enfey (2.25)

On substituting this into equation (2.17) and considering that e33 = e,, the following
relation is obtained:

A
o= 20t ) (2.26)
Poisson’s ratio ¢ has values between 0 and % The correspondence among the values of K,
A, and p for some values of o are given in Table 2.1 and shown in Fig. 2.4.

For o < %, the material changes volume with greater facility than it changes its form
(K < ). For o > %, we have the opposite case; the material changes form more easily
than it changes in volume (K > p). When p =0, the material cannot support any
shear stress, which is the case for a fluid. If 4 = 0 and K = oo, the fluid is incompressible.
If K = 0o and p # 0, the material is an incompressible solid. The condition o = %, for
which A = p, is known as Poisson’s condition and the elastic behavior of the material
(Poisson’s solid) is defined by only one parameter. This condition is approximately
satisfied for most materials in the Earth’s interior (o varies in the range 0.22—0.35).
Solutions of many seismologic problems are greatly simplified by using this condition.

The units used nowadays in seismology are preferentially those of the International
System (IS), although sometimes cgs units are still used. For displacements the units
are m (IS) and cm (cgs), for stress Nm~ or Pa (IS) and dyn cm > (cgs) and also bars
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(1bar = 10°dyncm™") (10° Pa = 1 MPa = 10 bars). The elastic coefficients K, A, p, and
E have the same units as stress. Strain has units of mm~' (IS) and cmem ™' (cgs).

2.3 The influence of temperature

In the process of deformation of a continuous elastic medium, temperature
changes may be produced. This means that the thermodynamic conditions must be
considered. If, during a process, the temperature changes from an initial value 7, to
another 7T, the relation between the stress and the strain for an isotropic medium is

where, in the last term, « is the coefficient of thermal expansion. If there are no applied
stresses (7; = 0), then, considering equation (2.22), we obtain from (2.27)

Cri = 0= (X(T — To) (228)

If the temperature increases (7" > T)), 6 is positive and there is an increase in volume.
The coefficient « relates the increase in volume to the increase in temperature at constant
pressure:

o <g;)1) (2.29)

We have defined K as the quotient relating the applied pressure to changes in volume; its
inverse 1/K represents the change in volume with a change in pressure. Since, in the
definition of K, we have not considered changes in temperature, this coefficient is
valid for processes with a constant temperature and is called the isothermal bulk
modulus:

%: (?;)T (2.30)

In processes with changes in temperature when there is no heat transfer, that is, adiabatic
processes, we can define the adiabatic bulk modulus K. Its inverse 1/K, represents the
change in volume with a change in pressure at constant entropy:

1 oV
x (), 230
From the basic thermodynamic equations, the increments of heat dQ and enthalpy dH
are
99 %Y

do=|(—=—=) dT — | dP 2.32
o= (g7),97+ (55), 232
dH=TdS+VdP (2.33)

From these two equations and thermodynamic relations, we find that

(gz)s - (ng)>+ci(g;)2 (2.34)
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If we substitute (2.29), (2.30), and (2.31) into (2.34), we obtain
1 T

1
where
_ (92
e (%) a3

(Cp is the specific heat at constant pressure). Equation (2.35) relates isothermal and
adiabatic bulk moduli.

In conclusion, the coefficients that define the mechanical behavior of isotropic elastic
media are K, u, and p. If there are changes in temperature we have to add « and, for
adiabatic processes, substitute K for K.

2.4 Work and energy

In an elastic medium stresses that produce deformations result in an amount of
work. The work done by each increment of strain per unit volume is

If the medium is perfectly elastic there is no dissipation of energy and d}¥ is an exact
differential that depends uniquely on the strain:

ow
W — ) 2.
d 9e; de;; (2.38)
From (2.37) and (2.38) we can derive
ow
iy aeij

In this expression W can be considered as the potential function of elastic energy. If we
replace 7; in (2.37) by its value in terms of ¢; (2.14), we obtain

dW = Cyeps dey; (2.40)
If we integrate this expression, the energy per unit volume for an elastic body is given by
W =3 Cieriey = 375¢; (2.41)

Considering the thermodynamic problem, the change in internal energy U in an elastic
body subject to changes in work and heat is given by
dU = d0o+ dWw (2.42)

On substituting for d W according to (2.37) and dQ in terms of the change in entropy d.S,
we have that
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In an adiabatic process, there is no transport of heat and the entropy is constant, so

This equation can also be written as

oUu

On comparing it with equation (2.39), this expression shows that, in an elastic body,
under adiabatic conditions, the internal energy is formed only by the elastic potential
energy.

In order to consider isothermal processes, we introduce the free energy or Helmholtz’s
function F defined in the form

F=U-TS (2.46)

If we take differentials of this equation and substitute for dU from (2.44), since the
temperature and entropy are constant, we obtain

This expression can also be written as

OF

For isothermal processes, the elastic energy potential function is given by the free energy.
In conclusion, in a perfectly elastic body there exists an elastic energy potential function
of the strain from which we can derive the stress. This function is given by the internal
energy in adiabatic processes and by the free energy in isothermal processes.

2.5 Equations of continuity and motion

The fundamental equations that rule the mechanical behavior of an elastic
medium are those of continuity and motion. The first is a consequence of the principle
of conservation of mass and energy and the second is a consequence of Newton’s second
law. The application of these two equations to the processes in the Earth derived from
the occurrence of earthquakes constitutes the fundamentals of theoretical seismology.

2.5.1  The equation of continuity

The mass contained in a volume V" of a continuous medium of density p(x, ¢), a
function of the spatial coordinates and time, is given by

M(1) = JV plx,)dV (2.49)

The principle of conservation of mass states that mass is conserved in all physical pro-
cesses. This may be expressed mathematically using the concept of the material deriva-
tive with respect to time (D/Dr) that must be zero. For a volume ¥V, contained inside a
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Fig. 2.5. The change with time of the mass inside the volume V" and the flux of mass through its
external surface S.

closed surface S, the material derivative of the mass is (Malvern, 1969)

D Jdp
EjypdV_JVE dV+va_,y,~dS (2.50)

On the right-hand side of (2.50), the first integral represents the change of mass with time
inside the volume V' and the second the flux of mass through the surface S. For each
element of the surface dS with normal v, the velocity of mass flow is v and the flux
per unit surface area is F = pv (Fig. 2.5). The conservation of mass implies that expres-
sion (2.50) is null. Therefore the variation of mass with time inside the volume V" must
equal the flux through its surface S. If we apply Gauss’s theorem to convert the surface
integral into a volume integral in equation (2.50) and equate it to zero, we obtain

op 0
In differential form this expression is
dp 0 B
o ox, (pvi) =0 (2.52)

In an analogous way, if w(x, ¢) is the energy density per unit volume and the flux of
energy F = wU, then the conservation of energy in a volume V is given by

ow 0
—_— ) . f— 2.
JV ( ar + o, (w U,)) dV =0 (2.53)

where now U is the velocity of the energy flow through the surface S that surrounds 7. In
differential form the resulting equation is similar to (2.52). The equations of continuity
(2.51) and (2.53) show the relation between the change with time of the mass and energy
inside a volume V" and their flow through a surface S. If the change is negative (the mass
or energy in V' diminishes), the flow is positive (going out through .S) and vice versa.

2.5.2  The equation of motion

The motion at each point inside a volume V" is determined by the forces acting in
its interior and stresses on its external surface. Newton’s second law, that the sum of the
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Q T

Fig. 2.6. The displacement u, force per unit volume F (the body force), and stress per unit surface
area T, acting on an elastic medium of density p and elastic coefficients Cy,.

forces equals the time derivative of the linear momentum, for a continuous body, accord-
ing to Euler’s formulation, is given by

J EdV+J ﬂdS:iJ pv;dV (2.54)
vV S dr )y

where F are forces acting on volume elements d7 or body forces, T stresses acting on
surface elements dS and w is the velocity at each point of the volume (Fig. 2.6). On
substituting for the vector T the tensor t according to (2.1) and applying Gauss’s
theorem to the surface integral to convert it in a volume integral, we obtain

oty d
F; L)dV =— dV 2.55
J, (re52)ar=5 [ m (255)
If the density is constant with time, this equation becomes
oy dv;
S+ F=p—
Tij,; + Fi = po;

in differential form. In the second formulation, we use commas for derivatives with
respect to spatial coordinates just like in (2.3) and (2.4) and an overdot for the total
time derivative.

The total derivative with respect to time of the velocity v can be expressed in the
form

dv_ o o
de ot 7ox;

When using infinitesimal deformations and for very small velocities and changes in
velocity with distance, second-order terms can be neglected and the total derivative
with respect to time approximated by the partial derivatives. An overdot on a letter
will denote now a partial derivative with respect to time. In this type of approximation,
there is no difference between the Lagrangian and Eulerian formulations. However,
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since in seismology we are more interested in the displacement field, the Lagrangian
formulation is more appropriate.

If we substitute for the total the partial time derivative in (2.54) and express the
velocity in terms of displacement, replacing T by t (2.1), we obtain,

v s v
For an infinite medium, replacing the surface integral by one over the volume by means
of Gauss’s theorem, as in (2.55), we obtain
87',/ 821/{,*

P 2.57
8xj+ ! patz ( )

Equation (2.57) can be written in terms of the strain for an elastic medium by the
substitution of (2.14) into it:
d & u;
— (Cypen)) + Fi = !
axj( ijkl k/) i P atz
In terms of the derivatives of displacements, according to (2.15), for constant elastic
coefficients, we obtain

Cijiur gy + Fy = pii; (2.59)

(2.58)

For an isotropic material, using equation (2.18) and substituting into (2.57), we obtain
Nojup i + pluij + ;)] ; + Fi = pii; (2.60)

For a homogeneous material, that is, for A and p constant, we can write the equation of
motion in index and vector notation as

(A + g i + pag; j + F; = pii;
A+ w)V(V -u) + uNVu+ F = pii (2.61)

This expression represents the equation of motion in terms of displacements for a
continuous, homogeneous, isotropic, infinite, elastic medium. The first term is the
gradient of the divergence and the second the Laplacian of the displacements. This is,
then, a second-order differential equation for partial derivatives with respect to the
spatial coordinates and time with an independent term formed by the body forces. If
we specify these forces, the solution of (2.61) gives us the elastic displacement field for
the infinite medium. This equation is very important in seismology, since many problems
can be solved using this approximation.

We can suppose that an earthquake is generated by processes that can be represented
by a system of body forces acting in a certain focal region; then, outside this region, the
only body forces are those of gravity (F = gp). However, except for waves with very
large periods (7 > 600 s), the influence of gravity is very small and is usually neglected
(section 3.5). Thus, we can use equation (2.61), approximating the Earth by an infinite
medium, for the elastic displacements outside the focal region (Chapter 16).

The equation of motion (2.61) can also be expressed in terms of the cubic dilation
and the rotation vector w, whose relations to the displacements are given by (2.12)
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and (2.6), respectively. For this we use the equation that relates the curl of the curl of a
vector to the gradient of the divergence and the Laplacian (Appendix 1; (A1.30) or
(A1.31)). On substituting for the Laplacian of # in (2.61) its value in (A1.30), we obtain

(A + 20)uty i — pregjcentin j + F; = pii; (2.62)
Replacing € and w according to (2.12) and (2.6) and dividing by p results in
F.
a’f; — /Bzeijkwk,j +—=ij;
P
2 2 F .
a’VO— 3V Xwt+—=i (2.63)
P
In this equation we have introduced the parameters o and (3 whose values in terms of the
elastic coefficients are
azz)\Jrzﬂ:K‘*‘%M
P P
3 =u/p (2.65)

The parameter « is related to # and, in consequence, to changes in volume, and (3 is
related to w, that is, to changes in form without changes in volume.

If, in expressions (2.61) and (2.63), we make the forces F null, we obtain the homo-
geneous equation of motion, also known as Navier’s equation:

A+ )V (V) + uVu = pii (2.66)
VO — YV xw=ii (2.67)

(2.64)

Solutions for this equation are the elastic displacements in a medium where there are no
forces acting. With this equation we can study elastic perturbations in an infinite medium
without considering the effects of any forces. We will see that this equation can be easily
transformed into the wave equation.

2.6 Potential functions of displacements and forces

Displacements u(x,7) in an elastic medium form a vector field. We can,
therefore, apply Helmholtz’s theorem that allows their representation in terms of two
potential functions, a scalar potential ¢ and a vector potential 1):

u=Vo+V x
up= @ ;+ ey, (2.68)

The vector potential ¥ must satisfy the condition that its divergence is zero (V - ¢ = 0).
Using expressions (2.12) and (2.6) it is easy to deduce the relations of the two potentials
to the cubic dilation 6 and the rotation e:

0=V (2.69)
© =~V (2.70)
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These relations indicate that ¢ is related to changes in volume and 1 to changes in
form.

The body forces F can also be represented in a similar form by two potential functions,
a scalar potential ¢ and a vector potential of zero divergence ¥:

F=Vé+Vx¥ (2.71)

Equation (2.63) can now be written in terms of the potentials, using (2.69)—(2.71), and
can be separated into a scalar equation and a vector equation:

&v%+%=& (2.72)
¢W¢+%:¢ (2.73)

The vector differential equation of motion (2.61) and (2.63) is now expressed in terms of
the potentials by a scalar and a vector equation of a much more simple form. We must
remember that the three components of the vector potentials 1) and ¥ are not indepen-
dent, since they must satisfy the condition that their divergencies are zero. Then (2.72)
and (2.73) represent only three independent equations corresponding to the three
equations of (2.61) or (2.63). Equation (2.72) is related to the elastic perturbations
which imply changes in volume and equation (2.73) is related to perturbations with
changes in form only. This separation of the components of the equation of motion is
very important, because it greatly facilitates its solution.

2.7 The Green function of elastodynamics

In the Earth, neglecting the forces of gravity, body forces in the equation of
motion (2.61) may be used to represent the processes that generate earthquakes. In
general, these forces F(x,t), functions of the spatial coordinates and time, may be
different for each earthquake and are defined only inside a certain volume. An example
of a convenient simple time dependence is the harmonic function

F(x,1) = F(x)e"' (2.74)

This form of time dependence simplifies the solution of many problems in seismology.
Use of the harmonic function is not in itself a very realistic way to represent the time
dependence of the forces that generate earthquakes, but solutions to this problem
may be used to find solutions for other time functions by means of the Fourier transform
(Appendix 4).

A type of body forces of great importance in the solution of many problems of
elastodynamics is that formed by a unit impulsive force in space and time with an
arbitrary direction. This force may be represented mathematically by means of Dirac’s
delta function

Fi(xs7 l) = 6(Xs - 65)6(1 - 7)61';1 (2'75)

The force is applied at the point of the coordinates £; and the time 7, and is null outside
this point and time. Its orientation is given by its three components represented by the
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Fig. 2.7. Displacements G,; (Green’s function) at x; produced by an impulsive force in time and
space at &;.

subindex n. If we substitute this force into the equation of motion (2.54), its solutions are
the elastic displacements for every point of coordinates x for every time ¢, in a certain
volume ¥V surrounded by a surface S. Each component of the displacement (subindex
i) depends on the orientation of the force (subindex 7) and thus the displacement is
given by a second-order tensor with components G,;(xg, &, ¢, 7), which is a function of
the coordinates and time (x;, f) of each point in V" and of the coordinates and time of
the point of application of the force (&, 7) (Fig. 2.7). On replacing the stress in terms
of the derivatives of the displacements (2.15) into the equation of motion (2.56), we
obtain

JV pGidV — Js Cii1 G v; dS = JV 6(xg = &)o(t — 7)6, AV (2.76)

On taking the reciprocal of the surface integral by using Gauss’s theorem as in (2.55), for
a homogeneous, infinite medium according to (2.59), we have

PG — Cijpa Gy = 6(xs — &)0(t — 7)6 (2.77)
The solutions of equations (2.76) and (2.77) represent the elastic displacements due to
a unit impulse force in space and time. For this reason the tensor G is called the Green
function of elastodynamics or the response of the medium to an impulsive excitation.
The form of this function depends on the characteristics of the medium, its elastic
coefficients, and its density. In a finite medium (2.76), it depends also on the shape of
the volume 7 and the boundary conditions on its surface S. For each medium there is
a different Green function that defines how this medium reacts mechanically to an
impulsive excitation force and is, therefore, a proper characteristic of each medium.

2.8 Theorems of reciprocity and representation

As we have seen, displacements in an elastic medium depend on the body forces
and stresses acting on it. Let us consider an elastic medium of volume V" surrounded by a
surface S. For a system of body forces facting on each volume element dV” and stresses
T on every element of surface dS, the displacements are u. In the same volume let us
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Fig. 2.8. Elastic displacements # and w corresponding to body forces f and g acting inside the volume
V and stresses T and T" acting on the surface S.

consider also a different system of forces and stresses g and T”, to which correspond the
displacements w (Fig. 2.8). For each case we can write the equation of motion (2.56) in
the form

J (f,i—pui)dV—&—J T4 ds =0 (2.78)
V S

A similar expression is found for g, T" and w. In (2.78) we take the scalar product of each
term with w and, in its analog, we do this with u. Since each expression is now a scalar
equation equal to zero, we can equate them, resulting in

J (fi — piiy)w; dV + J T'w;dS = J (gi — pWiu; + J T"u;dS (2.79)
v s v s

This expression is known as Betti’s reciprocity theorem. It shows the reciprocal relation
between the displacements corresponding to two systems of forces and stresses acting in
the same volume. If we reorder the terms in (2.79) and integrate each one through all
time, we obtain

J dZJ p(u,-lh'/,» — W’l’i/ii) dVv = J
14

—00

o0

le (uig; —wi f;)dV
o0 V

—+ J dtJ (Hl‘Tiw — VV[T[”) dS (280)
—00 S
In this expression, the products are convolutions in time (Appendix 4). Thus, the first
term can be written in full form by changing the order of integration:

o0
J dVJ pluts (3,7 — 1) — iig(£)wi(r — £)] di (2.81)
14 —00
Equation (2.80) is known as the Green—Volterra formula and is a generalization of
Betti’s reciprocity theorem. This expression relates the displacements and accelerations
produced by two systems of forces and stresses on the same volume integrated over space
and time.

A particular case results if displacements and velocities are null for all times previous
to a given one. This condition implies the causality principle, namely that the medium is
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at rest until a given time when motion starts. If this time is ¢ = 0, it follows that
Uu; = L‘ll' = O7 t S 0
w; =w; =0, t<0

Under these conditions, the integral of time in (2.81) can be written in the form

Td

pJ a[ul(t)w’l(’r* t) +V’Vl‘(7—7 l‘)u,(l‘)} dt (282)
0

The change in sign is due to the fact that the first derivative with respect to time of w is

negative. On integrating we obtain

plii(T)w;(0) +;(0)u; (1) — 1;(0)wy(7) — vy (1)1;(0)]

Taking into account the conditions specified above for u, w, and their derivatives at
t = 0, this expression is zero (Aki and Richards, 1980). Then, equation (2.80) becomes

J°° d[JV(uigi —wifi)dV = J

—00

0

dtJ (w, T — u,T?)dS (2.83)
—00 N

This is a very important result for seismology, since it allows the representation of the
displacements due to a system of forces by those produced by a different system, given
that causality conditions are satisfied. We can, then, represent the displacements due to a
complicated system of forces in terms of those produced by a simpler one.

We can select, as the simplest system of forces, an impulsive force in space and time.
As we have seen above, the displacements corresponding to this type of force are given
by Green’s function. Thus, we substitute into (2.83) g by expression (2.75) and the
displacements w by Green’s tensor G. Accordingly, equation (2.83) becomes

Joo le [uié(xs - 55)6(1 - 7-)(Sin - Gmfz] dv
vV

|t (GuT: - wCiGr as (284)
—00

where we have replaced T” by T and T" by its value in terms of the derivatives of the
displacements (2.15),

T = 1yv; = Cipy G v (2.85)
According to the definition of the delta function,

| st = xoax = s (2.86)
the first integral of (2.83) results in

JOO dt JV ui(xg, 1)6(xg — &)6(t — 7)6;, AV = u,, (&, 7) (2.87)

Since equation (2.84) is symmetric with respect to the variables x, ¢, £, and 7, we can
interchange them and, on replacing them in (2.87), we obtain

Uy (X, 1) = J dr JVfiGm' dv + J dr L[Gni T; — Cijqut;G jv;] dS (2.88)

—00 —00
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Fig. 2.9. Elastic displacements # at point x and time ¢, corresponding to a body force f and stress T'
acting at £ and 7, in a medium with Green’s function G.

This is an important result, as a special case of (2.83), and is generally referred to as the
representation theorem. This equation gives us the elastic displacements inside a volume
V' as the sum of two double integrals over time and space. The first is the volume integral
of the body forces multiplied by Green’s function. The second is the surface integral of
the stress multiplied by Green’s function minus the displacements times the derivatives
of Green’s function. The displacements u(x, f) are given for every point of the volume V/
at every time. In the two integrals f; T and u are functions of the integration variables &;
and 7, and, in general, also of v;(&;), dV (&), and dS(&,). Green’s function G ,;(&, 7; x,, t)
depends both on x, and ¢ and on & and 7 (Fig. 2.9).

Equation (2.88) allows us to determine the elastic displacements produced by a system
of body forces defined in a volume or by a system of stresses and displacements defined
over a surface by means of the Green function, as we will see in Chapter 16. To use this
equation we need to have determined Green’s function for the medium in question pre-
viously. This means that we need only solve the equation of motion once to find Green’s
function. Once Green’s function for a certain medium with specified characteristics is
known, we can determine the elastic displacements for any type of system of body
forces in a volume and of stresses and displacements on a surface using equation
(2.88). In this equation, Green’s function acts as a propagator, since it propagates the
effects of forces, stresses, or displacements defined on coordinates (£, 7) to determine
the elastic displacements at points of the coordinates (x, ¢).

In general, the determination of Green’s function is not easy. The difficulty increases
with the complexity of the medium. The most simple case is for an infinite, homo-
geneous, isotropic, elastic medium (Chapter 16). Solutions for other media such as a
layered half-space and a radially symmetric sphere have been determined. The advan-
tage of using equation (2.88) is that, for a specified medium, Green’s function, which
implies the solution of the equation of motion, need only be solved once. As we will
see in Chapter 16, equation (2.88) is very important in the determination of the source
mechanism of earthquakes.
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3.1 Wave equations for an elastic medium

In an infinite, homogeneous, isotropic, elastic medium, the equation of motion
in the absence of body forces is given by Navier’s equation, which may be expressed in
terms of the displacements (2.66) and the cubic dilation and rotation vector (2.67). These
two equations may be easily transformed into wave equations.

In the first place, we apply the divergence operation in equation (2.67). The divergence
of the gradient of @ is its Laplacian, that of the curl of w is null and the divergence of the
displacement u is the cubic dilation 8. Thus, we obtain

, 1 .0%

V= (3.1)
To the same equation, (2.67), we apply the curl operation. The curl of the gradient of the
scalar function @ is null and that of the displacement u is the rotation vector w. The curl

of the curl of w is equal to the gradient of the divergence, which is null minus the
Laplacian (A1.30). The result is

1 dw

2
Ve=g 52

(3.2)
The same results (3.1) and (3.2) can be obtained by taking the divergence and the curl
operations in equation (2.66). Equations (3.1) and (3.2) have the form of wave equations
for the scalar function # and vector function w. The solutions of both equations
represent waves that propagate in the elastic medium and the parameters o and 3 are
their velocities. These velocities are functions of the elastic coefficients A and p and
the density p, according to (2.64) and (2.65). When Poisson’s ratio is %, a = v/33. Because
0 represents changes in volume without changes in shape, solutions of equation (3.1)
correspond to compressional and dilational motion, or longitudinal waves. As waves
propagate, the elastic material expands and contracts keeping the same form. In
seismology, these waves are given the name of P ( prima) waves, since they are the first
to be observed in the seismograms (« is greater than (3). Solutions of equation (3.2)
represent shear waves that propagate with velocity 4. The medium changes in shape,
but not in volume, since the divergence of w is null. In seismology these waves are
given the name of S (secunda) waves, because they are the second type of prominent
waves arriving after P waves. Therefore, in an infinite, homogeneous, isotropic, elastic
medium there exist only these two types of waves that are called body waves. This
important result was first found by Poisson in 1829.

29
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The same result can be obtained for the potentials ¢ and v defined in (2.68). If
in equations (2.72) and (2.73) we make null the potentials of the forces ¢ and ¥, we
obtain

2

(o))
©-

1
24
Vio=——3 (3.3)
. 1

Therefore, under conditions of the absence of body forces, the potentials ¢ and ) are
also solutions of the wave equation. Since « and [ are the velocities of P and S waves,
¢ is the potential of P waves and 1 that of S waves. The total elastic displacement u is
the sum of the displacements of P and S waves and can be written as

u=u" +d° (3.5)
According to equation (2.68),

u’ =V (3.6)

u =V xp (3.7)
Displacements of the P and S waves can be deduced from the potentials ¢ and 1,
respectively.

Elastic displacements u in the absence of body forces are solutions of equation (2.66),
which is not a wave equation. However, if they represent only P or S waves, they are
solutions of wave equations. For example, if # depends only on x; and has only a
component in the direction of x,, that is, u,(x,?), corresponding to a transversal
displacement, then, on substituting into equation (2.66), we obtain

827/!2 o 1 821/{2

ox: @ or
The displacement u;, is in this case the solution of the wave equation. Solutions of (3.8)
correspond to S waves that propagate in the x; direction with velocity g.

The same result can be obtained for a displacement of only a component u; (xi, ¢) that
depends only on x;. By substitution into (2.66) we obtain

82141 - i 82u1
ox2 o or

(3.8)

(3.9)

Therefore u; is, in this case, the solution of the wave equation. The solutions are P waves
with displacements and propagation in the same direction x; and velocity «.

If, in the wave equation (3.3), the potential ¢ has a harmonic dependence on time with
frequency w,

$(x, 1) = p(x) e
After substitution, we obtain

(V2 +k2)p =0 (3.10)
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where k, = w/« is the wave number of P waves. This is Helmholtz’s equation, from
which the time dependence has been eliminated. The same can be done starting from
equation (3.4) and we obtain an equation for 4 similar to (3.10), in which k5 = w/3 is
the wave number of S waves.

3.2 Solutions of the wave equation

From the equation of motion for displacements in an elastic medium in the
absence of body forces (2.66), we have derived wave equations for the cubic dilation 6
(3.1), the rotation vector w (3.2) and the scalar ¢ (3.3) and vector 1 (3.4) potentials.
The simplest case of a wave equation is that in one dimension:

& 1 &

@f(xﬁ):cfzﬁf(x»t) (3.11)

where c¢ is the velocity of wave propagation. To solve this equation we apply the method
of separation of variables, making f(x, ) = R(x)T(¢). By substitution into (3.11), we
obtain

2 12 2
C d°R 1 d T 2
Raz-Tag - ¥ (12

Where we have introduced w” as the variable separation constant. From (3.12) we obtain
two separate equations for R and 7"

d’R

@—l—sz:O (3.13)
2

T
%ﬂ +T=0 (3.14)

where k* = w?/c*. The solutions of both equations are harmonic functions and, for
f(x, 1), their product is

f(X7 [) _ Aei(kxfwr) + Bei(kx+wt) (315)

From the form of this solution, we can see that the separation constant w represents the
angular frequency and k is the wave number. The velocity of wave propagation is
¢ =w/k. In conclusion, equation (3.15) represents harmonic waves of frequency w
that propagate with velocity ¢ in the positive and negative x directions.

A more general solution of the wave equation, not restricted to harmonic functions,
can be written in the form

S, ) =f(x—ct)+f(x+ct) (3.16)

where, as before, ¢ = w/k is the velocity of propagation and, depending on the sign,
waves propagate in the positive or negative x direction.

A particular solution, such as that in (3.15), may be given by harmonic functions,
represented by imaginary exponentials, sines, and cosines. For one value of w, they
represent monochromatic waves, which, for propagation in the positive x direction,
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Fig. 3.1. A representation of sinusoidal wave motion as a function of the distance x and time . 4 is
the amplitude, ¢ is the initial phase, A is the wave length, and 7 is the period.

may be expressed in the following forms:

f(x,1) = celbxmerte (3.17)
f(x,1) = Ccoslk(x — ct) + €] (3.18)
f(x,1) = Acos(kx — wt) + Bsin(kx — wr) (3.19)

In (3.17) and (3.18), C is the amplitude of the wave and ¢ is the phase at the origin or
the initial phase. In (3.19), 4 and B include the amplitude and initial phase. In all cases,
the solutions have two arbitrary constants, 4 and B or C and e. Their relation is

C*= A+ B (3.20)
e =tan ' (B/A) (3.21)

For harmonic waves, f(x,7) has the same values at constant intervals of distance,
multiples of the wave length A\ =2x/k and of time, and multiples of the period
T = 27/w (Fig. 3.1). In terms of A and T, equation (3.18) may be written in the form

f(x,1) = Ccos {27r<;€ —;) + 5}

The argument & of the harmonic function for each value of x and ¢ is the phase
E=k(x—ct)+e¢ (3.22)
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For a constant value of &, if we vary ¢, x also varies, and this phase value propagates in
time and space with a velocity c. For this reason, c¢ is the velocity of propagation of each
phase or phase velocity.

3.2.1 Wave fironts and rays

In three dimensions, a solution of the wave equation for monochromatic waves
of frequency w may be written as

f(x;,1) = Aexp{i[kS(x;) — wt + €]} (3.23)

The geometric surface of all points in space for which the phase £ has the same constant
value forms a wave front. According to (3.23), for each time, the function S(x;) gives us
the spatial coordinates of the corresponding wave front. Let us suppose that the phase
& = 0, then the spatial coordinates of the wave front corresponding to this value of the
phase for times #; and ¢, are given by (Fig. 3.2)

w 9

w 3
Sz(xj) = E[z — E (325)

The unit vector normal at each point of the wave front at each time defines the ray’s
direction or direction of propagation of each element of the wave front. The trajectory
followed by the normal of the same element of the wave front during a certain time
interval defines the ray’s trajectory. The orientation of the ray at each time is given by
its direction cosines that can be derived from the gradient of S:

,_05 /|05
liaxi 6X[

(3.26)

S,(x)

Fig. 3.2. Wave fronts S; (x) and S, (x) corresponding to times 7; and ¢, and the ray’s trajectory. As is
an element of distance along the ray.



34 Elastic waves

Equations of ray trajectories are given by
dv _dv, _dx
o5 05 9§
Ox; Oxy Ox3

(3.27)

where ds* = dx} 4 dx3 + dx3 is the element of distance in the ray’s direction. If the wave
fronts for the same phase, which correspond to times ¢ and ¢ + At, are, respectively, S;
and S,, then, from (3.24) and (3.25), we obtain

kSl —wt = kSz — W(t + Al) (328)

If the increment in the direction of propagation between the two wave fronts is
S, — §) = AS, then, from (3.28), we obtain

AS w

L _r_ 3.29

Atk (329)
where c¢ is, again, the velocity of propagation of the wave front corresponding to the
same phase or phase velocity. According to (3.29), with this velocity, the wave front
advances a distance AS in a time A¢. This velocity may depend on the spatial coordi-
nates and in this case each element of the wave front advances with a different velocity
in a different direction.

3.2.2  Waves of several frequencies

Up to this point, we have considered only monochromatic harmonic waves, that
is, harmonic waves with only one value of the frequency w. Waves with an arbitrary
dependence on time can be represented by the sum or integral of harmonic waves of
different frequencies using Fourier’s theorem (Appendix 4):

Flxnt) = %ﬂr F(w) exp [i (‘”S(x,) - wt)] dw (3.30)

o c(w)
where F(w) is a complex function that is called the complex spectrum of f(x, ¢) and can
be represented as

F(w) = R(w) +1l(w) = A(w) @ (3.31)

where A(w) is the amplitude spectrum and ®(w) is the phase spectrum. These two
functions of frequency represent the contributions of amplitude and initial phase by
each harmonic component to the resulting function of time. The phase velocity ¢(w) is
now a function of frequency, that is, each harmonic component may have a different
phase velocity. Motion due to a propagating wave at a point is given by a function of
time, /(). The same information can be represented as a function of frequency, F(w),
that is obtained by means of the inverse Fourier transform (A4.12):

Flw) = J: F(0) e di (3.32)

f(¢) is a real function that represents the amplitudes of waves at each time for a
particular point of space. Its Fourier transform F(w) is a complex function that can



3.3 Displacement, velocity, and acceleration 35

be represented by its amplitudes A4 (w) and initial phases ®(w) for each frequency. In this
way, problems of wave propagation can be studied in the time or frequency domain.

33 Displacement, velocity, and acceleration

In the one-dimensional case, the displacement at a point of an elastic medium
due to a monochromatic wave that propagates in the positive direction of the x axis
with velocity ¢ is given by

u(x, 1) = Acos [u)(j— r) +€} (3.33)

At a distance x, the displacement varies with time from 4 to —A4 and the maxima
correspond to phase values of 0, 7, 27, 3, etc. (Fig. 3.3). The velocity of this motion,
or the particle velocity (not to be mistaken for the phase velocity), is given by the time
derivative,

v(x, 1) = % = Awsin [w(j — t) + 5} (3.34)
The acceleration is given by the second derivative,
&u ) X
a(x, 1) = VT —Aw” cos {w(c - t) + 5] (3.35)

The particle velocity is shifted in phase by 7/2 with respect to the displacement and by «
with respect to the acceleration (Fig. 3.3). The amplitude of the velocity is multiplied by
the frequency and that of the acceleration by its square. The study of ground displace-
ment, velocity, and acceleration is an important subject in seismology. Damage
produced by earthquakes is caused by the effects of such motion, especially the effect
of its acceleration on buildings and other structures.

2
(OA i

0A —_~ N

2
- WA+

Fig. 3.3. The displacement, velocity, and acceleration for a cosine wave.
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34 The propagation of energy. The Lagrangian formulation

The solution of the equation of motion for an elastic medium results in the
existence of elastic waves in its interior. The wave phenomenon is a way of transporting
energy without transport of matter. The propagation of energy is, then, a very important
aspect of wave propagation. In mechanics, the formulation of a problem from the point of
view of energy is different from that of the equation of motion, which we have considered.

The equation of energy continuity in a continuous medium in differential form,
according to (2.53), is given by

ow 0

ot + 0x;
where w is the energy density and U is the velocity of the energy flux or propagation.
The energy density in an elastic medium is given by the sum of kinetic 7" and potential
V' energies per unit mass:

—T+V (3.37)

In terms of energy, the problem must be solved using the Lagrangian formulation.
This formulation uses the Lagrangian density function, L = T — V. For a discrete
system, formed by N particles, this function depends on the generalized coordinates
of each particle ¢;, their time derivatives ¢;, and time, L(g;,q;,?). The application of
Hamilton’s principle of stationary action results in Lagrange’s equation (Lanczos,
1986; Lindsay, 1960):

d oL OJL
dt 8¢; dq;
In a continuous system, which is the case for the problem of elastic waves, the
Lagrangian density function depends on the generalized coordinates of each point of

the continuous medium ¢;(x, ), their derivatives with respect to the spatial coordinates
and time, and the independent variables x; and ¢:

9q; 0q;
L{ g, t
(qﬂ o1 vaxka-xkv )
In this case, application of the principle of stationary action leads to Euler’s equations
(Lindsay, 1960):

(Uw) =0 (3.36)

(3.38)

Z _ oL
Ox;, P ( 361, > 0q;

a’Ck

=0 (3.39)

Equations (3.38) and (3.39) allow the solution of mechanical problems from the point of
view of energy as an alternative to the application of Newton’s second law.

The energy density w can be expressed in terms of the Lagrangian function L, the
generalized coordinates ¢; and their derivatives:

Z 94; OL _ (3.40)
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N

Fig. 3.4. The energy W contained in a volume V' surrounded by a surface S. The energy density w
and energy flux F through an element of surface dS are shown.

By taking the time derivative of this expression, we obtain

Ow 9*q; OL  dq; 0 OL oL
81_2<8t26qi+ azazaq,-)_c’)t (341)

i
The flux of energy per unit surface and unit time F is given by (Fig. 3.4)
F=wU (3.42)

where U is the velocity of propagation or transport of energy. The flux of energy can also
be derived from the Lagrangian function L (Lindsay, 1960):

F, 94; 0L _ (3.43)

- ; ot Jq;
8(33%)

A simple application of these principles to the propagation of energy in an elastic
medium is the case of a shear wave with displacement u# and propagation in the x
direction. In this case x; = x and ¢; = u. The kinetic T and potential ' energy densities
are given by

T:é’(‘?f‘)z (3.44)
V—’z‘(g;‘)z (3.45)

The Lagrangian function is

_p [ Ou 2_,u ou\?
L2(8t> 2<8x> (3.46)

On applying Euler’s equation (3.39), we obtain

0 ou 0 ( Ou
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From this equation, we finally derive

Fu_p o

- _F 3.48
ox?  p Of (3.48)

This is the wave equation for a shear displacement (3.8), where 3° = u/p is the velocity
of phase propagation. Here we have derived the wave equation from energy considera-
tions by applying Euler’s equation. Previously, we had obtained the same result from the
equation of motion.

The energy density w, according to (3.37), is the sum of the kinetic and potential
energies:

ou\? ou\?
w:§<az) +‘2‘<ax> (3.49)

and its time derivative is

ow Ou 0*u Ou 0O (8u>

o P o Traxar \ox (3.50)

If we replace the second time derivative of u according to (3.48) and change the order of
derivatives in (3.50), we obtain

ow 0 [ Ou du

== (== .51

a1 ”ax(az ax) (3:51)
Substituting this expression into the energy-continuity equation (3.36) results in

0 Ou Ou

=4y = .52

8x<uat 6x—f—wU) 0 (3.52)

The quantity inside the brackets is independent of x. For a localized wave whose value
tends to zero when x tends to infinity, this quantity is zero for all times. Hence, the
velocity of the propagation of energy U is given by

_ _pouou
U= w Ot Ox (3.53)

Thus, the velocity of energy propagation U does not necessarily coincide with the phase
velocity ¢ of the harmonic wave’s motion.

3.4.1  Phase and group velocities

We have seen that, for harmonic wave motion, the phase velocity ¢ = w/k, is
not, in general, equal to the energy-transport velocity. For waves with more than one
frequency, the phase velocity is a function of the frequency c¢(w) or wave number c(k).
This implies that the wave number is a function of frequency k(w) and vice versa for
w(k). In this case, as we will see in Chapter 12, we have the phenomenon of wave disper-
sion and can define the group velocity as

dw

- (3.54)

v
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This is the velocity of the propagation of the packets or groups of waves and we will see
that is the velocity corresponding to the frequencies that make the phase stationary
(section 12.3). If we substitute w = ck into equation (3.54), we obtain the relation
between phase and group velocities

de
dk

Since energy is contained in wave packets, the group velocity coincides with the velocity
of propagation of energy v = U. According to equation (3.55), if the phase velocity ¢
depends on the wave number k, then the phase and group velocities are different,
whereas if ¢ is constant they are equal.

For the simple case of a monochromatic shear wave that propagates in the x direction

u= Acos(kx — wt) (3.56)

v=c+k (3.55)

The phase velocity is ¢ = § = w/k. According to (3.49), the energy density is
w = pd’k? sin® (kx — wr) (3.57)

The energy contained in one wave length A can be obtained by integration:

A
W= qukZJ sin®(kx — wt) dx (3.58)
0

and this results in
A 2
W = mukA* = 27725,0T(T) (3.59)

where we have taking into account that k = 27/(8T) and > = u/p. This result can be
applied also to P waves by changing the velocity [ into a. Hence, the energy contained
in a wave length of a monochromatic wave is proportional to the square of the amplitude
or the square of the amplitude divided by the period.

We can also calculate the velocity of energy transport U using equation (3.53) by
substitution of w from (3.57) and the derivatives of u from (3.56). The result is U = ;
the velocity of energy propagation is equal, in this case, to the phase velocity. This
result is consistent with the fact that the phase velocity is constant and therefore equal
to the group velocity.

In conclusion, in an elastic medium, energy is propagated by waves with a velocity
that, in general, is equal to the group velocity and different than the phase velocity. In
the case that the phase velocity is constant with frequency, the two velocities are equal.

35 The effect of gravity on wave propagation

The Earth possesses a gravitational field that affects the propagation of waves in
its interior. In a nonrotational spherical Earth, the gravitational potential is U = GM /r.
For points in its interior, the potential satisfies Poisson’s equation:

VU = —4nGp (3.60)
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With the passage of a wave, the potential at an element of volume is perturbed so that
dU = U — U, is the difference between the perturbed and the unperturbed potentials.
If the unperturbed and perturbed densities are p, and p, we have

VAU - Uy) = ~47G(p - po) (3.61)
In terms of the cubic dilation (§ = 8V /V), this equation is
V(U — Uy) = —47Gph (3.62)

The force due to the change in the gravitational potential is F = pV (U — U,). If we
substitute this force into the equation of motion (2.63), we obtain

VO — BV x w+ V(U - Uy) =ii (3.63)
by taking the divergence in (3.63) and substituting (3.62) into it, we obtain
V20 + 4nGph = 6 (3.64)
If we substitute as a solution § = A cos(kx — wt) and solve for ¢ = w/k, we obtain
c=a(l—¢)'/? (3.65)
_ 4nGp
a’k?

The phase velocity ¢ is now a function of the wave number & and differs from « accord-
ing to the value of ¢. If, for the Earth’s mantle, we take o« = 8kms ' and p = 4.4 gem 3,
then, for waves of 1s period (k= 0.78), €= 10"" and the velocity of P waves is not
affected by gravity. If we consider waves of 300s period, the value of € is 0.01 and the
velocity will be decreased by approximately 0.1%. This shows that we need consider
the effect of gravity on wave propagation only for waves with very long periods.

3.6 Plane waves

The simplest geometry of the wave front is that of a plane and the corresponding
waves are called plane waves. The equation of the wave front in Cartesian coordinates is
given by

S(x1, X2, X3) = V1X) + 15X + 13X3

According to equation (3.26), v, v, and 14 are the direction cosines of the normal to the
plane wave front which define the direction of propagation or ray trajectory.
In Cartesian coordinates the wave equation is

>IN P 1S

— === 3.66

ox3  Ox3  0x3 * Or (3.66)
Solutions for monochromatic waves of frequency w can be written as

S (x1,x,x3, 1) = Aexp{ilk(x vy + X107 + X313) —wit + €} (3.67)

or
Sf(x;,1) = Aexpli(k;x; — wt + )] (3.68)
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where k; = kuv; is the wave-number vector. The equation of the wave front for a phase at
a given time is

kixi + kox, + k3x3 = constant (3.69)

If we are dealing with waves with plane wave fronts of infinite extension, it is implied

that their source is at an infinite distance. This condition does not correspond to any real

problem. However, if we are interested only in wave propagation and can assume that

the source is at a very large distance, plane waves are a good simplifying approximation.
Plane-wave solutions for the potentials ¢ and ) are

¢ = Aexplik, (v;x; — at +¢€)] (3.70)
Yy = By expliks(vjx; — Bt 4 1)] (3.71)

where k, = w/a and kg = w/( are the wave numbers of P and S waves. Displacements
for P and S waves are obtained by substitution of (3.70) and (3.71) into (3.6) and (3.7):

up = Aiko(v1,v2,v3) explik, (vx; — at + )] (3.72)
Uy = [(Bsvy, — Byvs), (Byvs — Bswy), (Bavy — Bywny)liks explikg(v;x; — Bt + )]
(3.73)

Cartesian components of amplitudes of displacements of P waves are proportional to the
direction cosines of the rays corresponding to longitudinal waves. Displacements of S
waves are perpendicular to the direction of propagation, which can be verified by
taking the scalar product of #® and v, which is always zero. S waves are, therefore, trans-
verse waves.

Another way of showing the properties of displacements of P and S waves is to
consider the total elastic displacements in the form of plane waves (with the initial
phase null):

u; = Cyexplik(v;x; — ct)] (3.74)

where ¢ is the phase velocity whose value we do not yet know. By substitution of (3.74)
into the homogeneous equation of motion (2.72), we obtain three equations for the three
components of the displacement that, after dividing by k> and the exponential, may be
expressed in matrix form as

szpcz_u 87 87
O 12 13
2 G
vivy V%_pc # Uy3 G| =0 (3.75)
A+ p c
3
Vv 87 Vz_pcz—u
173 273 3 )\+N

This is a homogeneous system of equations for C;, C, and Cs, and the condition for the
existence of a solution is that the determinant of the system is null. From this condition
we obtain a cubic equation for ¢ that has two different solutions that correspond to
the already known values of « and § (2.67) and (2.68). This result confirms what we
knew from the solution for the potentials ¢ and 1, namely that, in a homogeneous,
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X,

Fig. 3.5. Displacements of P and S plane waves propagating in the x| direction.

isotropic, elastic medium, there are only these two types of waves. The components of
the displacement for each wave can be obtained by replacing the two values of ¢ in
equation (3.75).

As an example, if we have a wave that propagates in the positive direction of the x;
axis, that is, v; = (1,0,0), equation (3.75) now has the simpler form

pc’ — pu
-5 0
me C
0 pe =y G | =0 (3.76)
A+ p

2 &

0 pe —
A+p

For the value ¢ = a, we obtain C; # 0 and C, = C3 = 0. Displacements of the P waves
are in the same direction as the propagation. For the value ¢ = 3, we obtain C; = 0,
C, #0, and C; # 0. Displacements of S waves are on the (x,,x3) plane, normal to
the propagation direction (Fig. 3.5). The equations for displacements of the P and S
waves are given by

up = (C,0,0) explik, (x; — at)] (3.77)

up = (0, Gy, C3) expliks(x) — )] (3.78)
In the general case, displacements of P and S plane waves can be written as

up = Dy explik,, (v;x; — at +¢)] (3.79)

up = Ey expliks(v;x; — Bt +1)] (3.80)

Since displacements of P and S waves are perpendicular to each other, their scalar
product must be null; D;E; = 0. The relations between the amplitudes of displacements
(3.79) and (3.80) and those of potentials (3.70) and (3.71), according to (3.72) and
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(3.73), are
D; = ikov;A (3.81)
Ej = ik‘ﬁeﬂdka; (382)

If the amplitudes of displacements are given in meters, those of potentials are given in
m”. Their phases are shifted by 7/2.

3.7 The geometry of P and S wave displacements

In seismology, the reference coordinate system generally used is the geographic
one (xy, x5, X3), with x| and x, in the horizontal plane, x; positive to the North and x,
positive to the West, and x3 in the vertical direction positive up (zenith) (another choice
is positive axes in the directions of North, East, and down (nadir)). The positive direc-
tions of the axes must satisfy a right-handed system. The direction of propagation of a
wave is given by the vector r(v|, 1, v3) and its projection onto the horizontal plane by R.
The angle between r and x; is the angle of incidence i (0—7/2), and its complementary is
e =90 — i, the angle of emergence. The angle between R and x; is the azimuth «,
measured from the North (0-27) (Fig. 3.6). In terms of i and «, the direction cosines
of the ray are

v; =sinicos« (3.83)
v, = sinisina (3.84)
vy = COosi (3.85)

In reference to the direction of wave propagation or the ray’s direction given by the
vector r, we can define an orthogonal system of coordinate axes (R, T, Z); R, already
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Fig. 3.6. Geometries of P and S wave displacements referred to geographic coordinate axes x;
(North, West, and zenith). Definitions of SH and SV components of the S wave are shown. « is
the azimuth, 7 is the angle of incidence, and ¢ is the angle of polarization.
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Fig. 3.7. Geometries of P and S wave displacements in reference to vertical or incidence, horizontal,
S wave motion and S wave planes of polarization.

defined, is the horizontal component of the direction of the ray (r), T is normal to R in
the horizontal plane, and Z is vertical. Z is positive up, R is positive in the direction of
propagation and T is positive to the left looking forward in the direction of propagation.

Displacements of P waves have, in general, three components with respect to the
geographic axes (url’, u, ug) and only two with respect to the propagation axes
(u})g, 0, uPZ) Displacements of S waves are contained on a plane normal to the vector r
and have, in general, three components in both systems, (u?, ug, ug) and (ui, uS}, u%)

In order to understand the geometry of plane P and S waves in Cartesian coordinates,
it helps to define four planes: the vertical plane or plane of incidence; the horizontal
plane; the plane of S motion; and the polarization plane of the S wave (Fig. 3.7). The
plane of incidence contains the vectors Z, r, and R. The plane of S motion is normal
to the vector r. The intersection of this plane with the horizontal plane defines the SH
direction and that with the vertical plane defines the SV direction. In consequence,
the displacement of the S wave can be divided into two components, namely, SH and
SV. The polarization plane of the S wave contains the vectors r and u°. This plane
forms an angle ¢, called the polarization angle, with the incidence or vertical plane. In
terms of the SH and SV components of S displacement, the angle of polarization is
given by

tane = uSH/uSV (386)

The projection of the angle € onto the horizontal plane is the angle +, which is the angle
between R and the horizontal component of S motion (uIS{)

tane = tan-ycosi (3.87)

The unit vectors r, SH, and SV form another orthogonal system of axes. With respect
to this system, amplitudes of P waves have components (,,0,0) and those of S waves
have (0, ugy, usy). The relations among the different components of the amplitudes of
P and S waves on the plane of incidence, plane of S motion, and horizontal plane are
represented in Fig. 3.8.
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(a) (b) c) SV
X, X, (©)

uS
:————

Uy SH

Fig. 3.8. Components of displacements of P and S waves: (a) on the horizontal plane, (b) on the ver-
tical or incidence plane, and (c) on the plane of S wave motion. Planes are defined in Fig. 3.6 and
angles are defined in Fig. 3.7.

3.8 Particular forms of the potentials

In many problems of propagation of plane waves in Cartesian coordinates, the
relations between displacements and their potentials are simplified if the coordinate axes
are selected to be in some particular direction. In general, expressions of the components
of the displacements of P and S waves in terms of the scalar ¢ and vector 1 potentials
are, according to (2.68),

O Ohy Oy p g

u = ax1 + axz ax3 = U + Uuj (388)
_ 00 O O3 p g
O Oy O p g

27 9
us = 8)63 8Xl (9)62 =u3 +u3 (3 0)
If we take the axis x; as the direction of propagation, the displacements are
u; = A;yexp{ilk(x; — ct) +¢l} (3.91)

In this case, the displacements can be derived from three scalar potentials, ¢, 1, and A.
The relations between the last two and the components of the vector potential 1) are
1 =1, and A = —)3. The relations between the components of displacements and the
scalar potentials are

u = gf ut (3.92)
1
U = gj u (3.93)
1
o gy
Uy = o, =u (3.94)

As we see, given the geometry of the problem, u; corresponds to the complete P wave
and u, and u; to the SH and SV components of the S wave.
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Fig. 3.9. A ray trajectory on the (x, x3) plane, showing the angles of incidence i and emergence e.

In many problems of wave propagation, it is convenient to use as the plane of
incidence the plane (xy,x3), so that the ray is contained in such a plane (Fig. 3.9). The
direction cosines of the ray (v, 0, v3) in terms of the angles of incidence / and emergence
e are

v; =sini = cose (3.95)
vy = cosi =sine (3.96)

In this case, the potentials and displacements are functions of x; and x3; only. The
components u; and uz can be derived from two scalar potentials ¢ and 1, where

=1y

_ 00 O p sy

u = ox on uy + uj (3.97)
_09 0 _ . sy

Uz = 8)63 + ax] = Uz + us (398)

The u, component is usually kept separate, since, in this case, it is a solution of the wave
equation (as in (3.8)). However, it can also be derived from a third scalar potential A:

A
04 _ sn

= (3.99)

Uy =
The components u; and u; correspond to P and SV motion and the component u,
corresponds to SH. The total displacement can be expressed in a single vector equation
as a function of the ¢, ¥, and A potentials:

u=Veé+V x (01,0 +V x (0,0, 4) (3.100)

This equation is a particular form of the more general relation of Eringen and
Suhubi (Pilant, 1979) that expresses displacements as functions of three scalar potentials.
We must remember that, when we use the vector potential ), it must satisfy the
condition that its divergence is null. In consequence, only two of its components are
independent and it is always possible to use three scalar potentials to represent the
displacements.
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3.9 Cylindrical waves

Many problems of wave propagation in seismology have axial symmetry and it
is convenient to use cylindrical coordinates in their resolution. An example is the
propagation of surface waves. Using expressions for the gradient and curl in cylindrical
coordinates (r,¢,z) (Appendix 2), expressions for the displacement components
(4, ugy,u,;) (Fig. 3.10) in terms of the scalar potential ¢ and vector potential

z

(Vﬁrﬂ/)aﬂ/’z) are
0P 19y, DY,

100 0w, o
= ast o o (3.102)
C0p 10 13,

The condition for null divergence of the vector potential 1, according to (A2.12), is
ror r oo 0z
In many problems we can assume symmetry with respect to ¢ and the equations are

simplified. In this case, instead of the vector potential v, we can use two scalar
potentials, ¢ and A, and the components of the displacements are

(rpy) +

0 (3.104)
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Fig. 3.10. Cylindrical coordinates (r,z, ¢) and components of the displacement (u,, u., u).
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If waves propagate in the r direction and z is the vertical axis, u, corresponds to P waves,
u. to the SV, and ug to the SH component of the S wave.

To study the solutions of the wave equation in cylindrical coordinates, we will con-
sider first the case of axial symmetry (independence of ¢). If we assume a harmonic
dependence on time, Helmholtz’s equation (3.10) for the potential @(r, z) is

02 1 0P 82
EEa ror
Using the method of separation of variables, &(r,z) = R(r)Z(z) (as in section 3.2), the
following equations are found:

d’R 1dR

+ k2P =0 (3.108)

Pl s k2,R=0 (3.109)
d2
o +k(2uZ 0 (3.110)

where k2 = k2, + k2. and k>, is the constant of separation. On making in equation
(3.109) the change of variable x = k,,r, we obtain for R(x) the equation
d*R 1dR

——+R=0 3.111
dx? +xdx+ ( )

This is a differential Bessel equation for n = 0 and its solutions are the Bessel functions of
zeroth order Jy (k,r) (Appendix 3). Equation (3.110) for the dependence of z has
solutions that are harmomc functions. Adding the harmonic time dependence, the
complete solution of the potential @ is

D(r,z, 1) = AJy(ky,r) expli(ky.z — wt)] (3.112)

For large values of r, we can express Bessel functions in an asymptotic form in terms of
harmonic functions:

1/2
&(r,z,t) = <7ﬂi > Aexp [i (km.r + kyoz —wt — Z)] (3.113)

In this equation, we find the dependence of the amplitude of the potential on the inverse
of the square root of the distance r. In this case, wave fronts are cylindrical surfaces
whose areas increase with increasing r. If the energy generated at the source is finite,
then, with increasing r, it must be distributed over an increasing area and, in conse-
quence, amplitudes per unit area decrease with distance. This decrease in amplitude
with distance is called the geometric spreading. This term has not appeared for plane
waves, since their wave fronts are always infinite planes and their source is at an infinite
distance, implying infinite energy.

Solutions for the two other scalar potentials ¢ and A are of similar forms to (3.112)
and (3.113), with k, replaced by k3. Components of displacements are obtained from
the three potentials &, 1, and A using equations (3.105)—(3.107).

For the more general case in which the potentials depend on the three coordinates, for
example, &(r, ¢, z), Helmholtz’s equation is given by

0P +1a¢+132¢ 62
o or 1?2 od?

+ki¢ 0 (3.114)
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Using the method of separation of variables, as before, @(r, ¢,z) = R(r) Y ($)Z(z), we
obtain the following equations:

d’R 1dR , o

(1?‘2+I”dr+(km_r2>R:0 (3'115)
dy ,

——+n’Y =0 (3.116)
d¢?

2

C(‘wacgzzzo (3.117)
A

The first equation is a differential Bessel equation and its solutions, finite at » = 0, are
Bessel functions of order n. The other two equations (3.116) and (3.117) have harmonic
functions for solutions. The solution for @, adding the harmonic time dependence, is

D(r, ¢, 2, 1) = AyJy(koyr) explilkazz + n¢ — wi)] (3.118)

The solutions for components of the vector potential ¥ have similar forms, replacing k,,
by ks. As in the previous case, components of displacements are obtained by using
equations (3.101)—(3.103).

3.10  Spherical waves

The problem of propagation of elastic waves generated by a point source, which
is commonly encountered in seismology, leads to the consideration of spherical waves. In
this problem, we use spherical coordinates (r, 8, ¢) and the components of displacements
are u,, up, and u, (Appendix 2). If r is the direction of the ray, 6 is measured from the
vertical axis and ¢ on the horizontal plane, then u, corresponds to the P wave, uy to
SV and u, to SH (Fig 3.11).

Components of displacements, as functions of potentials, are obtained by replacing
the gradient and curl in spherical coordinates in equation (2.68) (Appendix 2). The

Xs

Fig. 3.11. Spherical coordinates (r,6, ¢) and components of the displacement (u,, ug, u).
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vector potential ¥ must satisfy the condition of null divergence that, in spherical coor-
dinates, is given by (A2.28):

e 10 1 9y

U= rsing 965 T nd 9 (3:119)
1op 1 oy, 10

=25 rng a6 7 ar ") (3.120)
1 0o 10 1 O,

"= rsing a6 v ag ) T a0 (3.121)

For P waves that propagate from a point source with spherical symmetry and
harmonic time dependence, we have only the potential ¢(r) and Helmholtz’s equation
is given by

d*¢  2do

- - 2 —
ot g TR =0 (3.122)

If we make the substitution & = F/r, we obtain

d’F

W+1<§F:0 (3.123)

whose solution is
F = Aexp(£ik,r) (3.124)
Adding the term of the harmonic time dependence for waves that propagate only in the
positive direction of r, the potential &(r, f) is
A .
&(r,t) = - expli(k,r — wt)] (3.125)

The amplitude of the potential decreases with distance by the factor 1/r. This is the
factor of geometric spreading due to the increase in area of the spherical wave front
with increasing distance from the origin.

If the problem has symmetry with respect to ¢, displacements may be derived from
three scalar potentials @, 1, and A, which are functions of r, 8, and

oP 1 0 .
1o 10
A
uéz—g—a (3.128)

Assuming a harmonic dependence on time, the potentials must satisfy Helmholtz’s
equation, which, for a potential &(r, ), is given by

19 (00 1 9/ . ob ,
ﬂa(’a)+ﬂwmw(m9w>+“¢:° (3.129)
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Applying the method of separation of variables, @(r,6) = R(r)Y (), we obtain the
following differential equations:

r F+2ra+[kir2—n(n+l)]R:0 (3.130)
r
1 d*y dy

where n(n+ 1) is the constant of separation. By the substitution of R=S/\/r in
equation (3.130), we obtain

s 1ds , (n+1?
it (ka— — )S—O (3.132)

r

If, in this equation, we substitute x = k,r, we obtain a differential Bessel equation
whose solutions are Bessel functions of the type J,1/2(k,r). These functions may be
expressed in terms of spherical Bessel functions j,(k,r) (Appendix 3):

2k, r 12
#)

JlH— 1/2(kur) = ( jn(kar) (3133)

For complex solutions spherical Hankel functions, h,(z) =j,(z) + in,(z), are used
(Appendix 3). Then, the solution for the function R(r) is given by

7 1/2
R(r) =4, (k“) Julkyr) (3.134)
T
Making in equation (3.131) the change of variable u = cos f, we obtain
d*y dy
1 — ) — 2u— )Y = 1
(1 —u) W +nn+1) 0 (3.135)

This is a differential Legendre equation and its solutions are Legendre functions, P, (u)
and Q,(u) (Appendix 3).

The complete solution for the potential &(r, 6, r), adding the harmonic time depen-
dence and using only Legendre functions of the first kind and Hankel spherical
functions, is given by

2k 1/2 )
B(r,0,1) = An< ) hy(kor) P,y (cos 0) e (3.136)
™

For large values of r, using the asymptotic expression for /,(k,r) in terms of harmonic
functions, the solution may be written as

1/ 2 \"? 1
¢ = An; (1%77) P,(cosb)exp [i (kar —wi—3 (n+ 1)7r>} (3.137)
For each value of n, there is a particular solution and the general solution is given by
their sum. Solutions for the potentials v and A have the same form, with k, replaced
by kﬁ.

For the most general case in which there is no symmetry with respect to ¢, displace-
ments must be derived from scalar ¢ and vector (v, ¢y, 1,) potentials that are functions
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of the three coordinates r, 8, and ¢. For the scalar potential &(r,0, ¢), Helmholtz’s
equation is given by

ror\’ or 90 57 ) Treag o ke = 1
ﬁ&(r&>+ﬁmew(me%>+ﬂmw0&+% 0 (3.138)

Using the method of separation of variables, @(r, 0, ¢) = R(r)N(0)L(¢), we obtain the
following differential equations:

_ = k- R = 3.139

2 dr (r dr)+( @ r 0 ( )
1 d/ . dN m’

L,

?&+m L=0 (3.141)

where n(n + 1) and m” are the constants of separation. The solutions of equation (3.139),
as in the previous case, may be expressed by Bessel or Hankel spherical functions.
Solutions of equation (3.140) are associate Legendre functions (Appendix 3) and
those of (3.141) are harmonic functions. The potential &(r, 0, ¢, t) is given by the product
of the three solutions and the harmonic function of time:

1/2
B(r,0,6,1) = A, (i’j) h(fegr) P2 (05 0) im0 (3.142)
As in the previous case, the general solution is the sum for all values of n. For each value
of n, there are values of m from m = —n to m = n. Then, for each value of n, there are
2n + 1 solutions corresponding to different values of m. Solutions for the components
of the vector potential (v, 1y, ;) are of similar form, with &, replaced by k3. The com-
ponents of displacements u,, uy, and u, can be obtained from the potentials by using
equations (3.119)—(3.121).

An important relation between the formulations in spherical coordinates (r, 6, ¢) and
cylindrical coordinates (p, z, ¢), when there is symmetry with respect to ¢ is

! exp(ik,r) = J Jo(kp) exp(ik_,z)kE dk (3.143)
r 0 z
where
e
=12+ k

This equation, known as Sommerfeld’s relation, allows one to relate problems of
spherical and cylindrical symmetries.



4 NORMAL MODE THEORY

4.1 Standing waves and modes of vibration

In Chapter 3 we saw that perturbations produced in an unbounded elastic
body have the form of waves that propagate in its interior. If the medium is perfectly
elastic, homogeneous, and isotropic, there are only two types of waves (P and S) that
propagate with constant velocities (o and ) that depend on the elastic coefficients
and density with no conditions imposed on their frequency. The Earth has finite dimen-
sions and is bounded by a free surface, therefore it can not be considered an infinite
medium. For this reason, we have to consider the elastic behavior of an elastic body
of finite dimensions. This consideration leads us into normal mode theory. In this
chapter we will give the fundamentals of this theory that will be applied to the Earth
in Chapter 13.

As a first approximation, we start with the results of Chapter 3 and consider the
phenomenon of standing waves. Let us assume waves in one dimension with the same
frequency and amplitude that propagate in both directions. For sinusoidal waves,
according to (3.18),

u(x, t) = Afsin(kx + wt + ¢;) + sin(kx — wt + ¢,)] (4.1)

where ¢ and ¢, are the initial phases. Applying the relation sin(a + b) + sin(a — b) =
2sinacos b, we can write (4.1) in the form

u(x,t) = 24 sin(kx + @) cos(wt + ¢5) (4.2)

where ¢} = ¢1/2+ ¢,/2 and ¢5 = ¢;/2 — ¢,/2. Since in (4.2) we do not have the
propagating term k(x % ct), this expression corresponds to standing waves such that
the dependences of x and 7 are separated. For each value of 7, u(x) is a sine function
of x with wave length A = 27 /k and, for each value of x, u(¢) is a cosine function of ¢
with period T = 27/w.

If we impose the condition that, for x = 0, the amplitude of the standing wave is zero
for all values of ¢, we obtain

u(x,t) = 24 sin(kx) cos(wt + ¢) 4.3)

where ¢ = ¢;. If we further impose that, for another value, x = L, the amplitude is also
zero for all ¢, then we have

2A4sin(kL) =0 and kL=(n+1)r, n=0,1,2,3,... (4.4)

53
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Hence, in order to fulfill both conditions, the wave number & must have certain discrete
values, namely,

(n+1)m

kn: L )

n=0,1,2,3,... (4.5)
Since the velocity of the waves that travel in opposite directions has the same constant
value ¢ (4.1), frequencies of standing waves that satisfy the two imposed conditions are
also limited to certain discrete values,

(n+ 1)mc

w, = =0,1,2,3,... (4.6)
L

Finally, standing waves that satisfy both conditions are given by
1
u,(x, 1) = 24 sin (ML)WC) cos(wpt +¢);  n=0,1,2,... (4.7)

Since, for each value of 1, equation (4.7) is a solution, the general solution of the problem
is given by their sum:

u(x, 1) = nzo_c:o 24 sin <(n+L1)7rx> cos(w,t + ¢)

Standing waves generated by waves traveling in opposite directions with the same
velocity, when they are forced to have certain values at two points, limit their frequencies
and wave numbers to multiples of the inverse of the distance between the two points
((4.6) and (4.5)). Each solution in (4.7) is called a mode of vibration, the lowest, that
for n =0, is called the fundamental mode and the rest are higher modes, harmonics,
or overtones. The largest wave length and period correspond to the fundamental
mode, A\g = 2L and Ty = 2L/c. The period of the fundamental mode corresponds to
the time it takes for progressive waves to travel in both directions between 0 and L.
For higher modes, wave lengths and periods are fractions of those of the fundamental
mode (A, =2L/(n+ 1) and T, = 2L/(n+ 1)c). Total motion of standing waves is the
sum of all modes.

4.2 Vibrations of an elastic string of finite length

A mechanical problem concerning vibrations of an elastic medium with finite
dimensions is that of the vibrations of an elastic string of length L fixed at both ends
(Fig. 4.1). The transverse motion of each point of the string y(x,¢) depends only on
the tension 7T in the direction of the string that is supposed to be constant. If p is the
mass per unit length, the equation of transverse motion for a point of the string is

2

oy
T, = pdx— 4.8
Ey y = pds (4.8)

The forces T, the components of T in the directions y between a point x and another
x+dx, are given by T, = T'sin6, and T, = T'sin¢ (Fig. 4.2). For small angles we
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Fig. 4.1. A vibrating elastic string with both ends fixed.
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Fig. 4.2. Tensions F and F acting on an element of an elastic string.

can approximate sines by tangents and equation (4.8) becomes

&

T(tan¢ — tan) = pdxa—;; (4.9)
However, tan and tan @ are the slopes of the curve formed by the string at the two
points, and, therefore, for point x, tan 8 = dy/0x. For the point x + dx, the slope has
changed and it is given by

,_ Oy 0 [0y
tan9 —a-ﬁ*ax (C()x) dX (410)
By substitution into (4.9), we obtain
2 2
Oy _p 9y (@.11)
oxr T o

This equation has the same form as the wave equation (3.11) for a displacement y that
propagates in the x direction. To solve equation (4.11), we apply the method of separa-
tion of variables, as in section 3.2. On making the substitutions y(x, ) = u(x)v(z) and
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a = T /p, we obtain the following equations:

du
wtze=0 (4.12)
dz’U 2

where —u? is the constant of separation of variables. The solution of (4.11) is the product
of the solutions of (4.12) and (4.13) and can be written as

y(x, 1) = [A cos (f) + Bsin <“;’“ﬂ [Ccos(wi) + D sin(wr)] (4.14)

This equation is equivalent to (4.2), where w is the frequency of transverse displacements
of the string. The boundary conditions at both ends of the string are that they must
remain fixed for all times, that is, y(0,7) = 0 and y(L,7) = 0. From the first condition
results that 4 = 0 and from the second

y(L,t) =0

which implies that

sin (wL> =0
a

In consequence, the argument of the sine function must have the values
wL/a= (n+ 1), n=0,1,23,... (4.15)

where we have not considered the value of the argument equal to zero, because for that
value y(x,t) = 0 for all values of x. Then, the frequency can only have certain values,
namely,

wy=an(n+1)/L, n=0,1,273,... (4.16)

Since for each value of w, there exists a solution of (4.11), there is an infinite number of
solutions that, according to (4.14), can be written as

(n+ )max

t) = B,si
o) = Bysin (5

) [C, cos(w,t) + D, sin(w,?)] (4.17)
If we add the condition that, for t = 0, the string is at rest, (9y/9t = 0), and has an initial
configuration y(x,0) = f(x), then equation (4.17) can be written as

¥l 1) = F, sin(k, ) cos(wy) (4.18)

where F, = f(x)/sin[r(n + 1)x/L] and k, = (n + 1)7/L, where w, are the frequencies of
vibration and k,, are the corresponding wave numbers. Equation (4.18) is analogous to
(4.7) in the problem of standing waves with null values at x = 0 and x = L. The general
solution is given by the sum of solution (4.17) or (4.18) for all values of n. Therefore, the
final solution of the problem of the vibrating string is a sum of an infinite number of
functions y,(x, ), each representing a harmonic motion of a different frequency w,,
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that is, a mode of vibration:

e8]
y(x,0) =Y Fysin(k,x) cos(w,?) (4.19)
n=0
The mode corresponding to the lowest frequency (n = 0) is the fundamental mode,
7 (T\"Y?
and its period is
1/2
TozzL(;) (4.21)

The other values of n correspond to the higher modes, harmonics, or overtones whose
frequencies are multiplied by n + 1 and whose periods are divided by n + 1.

Regarding the form that the string takes in its vibrations, it is easy to prove that, for
the fundamental mode, there is no value of x in the interval (0, L) for which y(x, ) is
zero; that is, there are no nodes of motion. For each higher mode there is a number
of nodes equal to the order number of the mode (Fig. 4.3). The x coordinate of the
position of the nodes for each mode of order n is given by

mL
n+1’
In conclusion, the problem of the vibration of an elastic string results in a solution
with an infinite number of modes of vibration (4.18). The solutions y,(x, f) correspond-
ing to each mode of vibration are the eigenfunctions of the system and the frequencies w,,

are the eigenvalues (eigenfrequencies). The complete solution of the problem is given by
the sum of all modes (4.19).

m __

n

m=1,2,3,....n (4.22)

n=0 n=1 n=2

Fig. 4.3. The shape of a vibrating elastic string for the fundamental (» = 0) and first two higher
modes (n=1,2).
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4.3 Vibrations of an elastic rod

Another example of motion in a finite body is the vibration of an elastic rod of
finite length. This problem introduces us, in a simple way, to the vibrations of an elastic
medium of finite dimensions that can be applied to the Earth. Let us consider a
cylindrical rod of radius ¢ and length L (L >> a) and use cylindrical coordinates
(r,z,¢) (Appendix 2) (Fig. 4.4).

4.3.1  Longitudinal vibrations

If we apply to the elastic rod a force in the direction of its axis (z), it will start
to vibrate longitudinally along its axis and will continue vibrating after the force has
ceased to act. Let us consider these vibrations after the force has been removed. If the
material is isotropic, the relation between the stress and the derivatives of displacement
(2.18), assuming that there are displacements only along the axis (u, = u, =0 and
u. (z,1)), is

ou
- =(A+2 - 4.23
= (0 2m) (4.23)
The equation of motion in the absence of forces (2.66) is
2 2
;1 ;
o, o, (4.24)

02 o? 92

where o = (A+2u)/p (2.64) is the velocity of longitudinal waves (P waves). The
solution of this equation in the form of (4.3) may be written in two ways:

u. = Asin(kz) cos(wt + ¢€) (4.25)
u. = Acos(kz) sin(wt + ¢€) (4.26)

First, we will consider that both ends of the rod are fixed to a rigid material, in such a way
that displacements at them are null (u.(0,7) = u.(L, ) = 0) (Fig. 4.5(a)). In this case, we
use the solution (4.25), since it satisfies ©.(0,7) = 0. For the other end, the condition
u(L,t) =0 gives

Asin(kL) =0;  kL=(n+1)m,  n=0,1273,... (4.27)
@
l AN
[y )
1 1
| Jr-o | s
0

Fig. 4.4. A vibrating elastic rod: cylindrical coordinates and components of the displacements u. and
uy are shown.
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Fig. 4.5. A vibrating elastic rod: (a) with both ends fixed to a rigid medium, and (b) with both ends

Fig. 4.6. Longitudinal vibrations of an elastic rod with both ends fixed, for the fundamental mode
and the first two higher modes.

In consequence, as in the case of the vibrating string (4.18), the solution is given in terms
of modes:

. |
Wl (z,1) = A, sin <(”+L)”> cos(wyt +e,); n=0,1,2,... (4.28)
where, just like in (4.6),
wn:@; n=0,1,2,... (4.29)

For each value of n, the solution (4.28) represents a mode of vibration. In this case,
because of the type of motion, they are called longitudinal modes. The total motion is
given by the sum of all modes. The lowest order mode, corresponding to n = 0, is the
fundamental mode, whose frequency is wy = wa/L; its wave length is Ay = 2L and its
period is Ty = 2L/« (the time that it takes a longitudinal wave to travel along the rod
in both directions). Frequencies of higher modes are multiples and periods of higher
modes are fractions of those of the fundamental mode. Since we have not considered
the applied force, this solution corresponds to free longitudinal vibrations of the elastic
rod.

For the fundamental mode there is no value of z along the rod where u. is null. For
each higher mode of order n, as in the case of the string, there exist 7 values of z, between
0 and L, where u. is zero. These are given by the same equation (4.22) (Fig. 4.6).

Another possibility is that the two ends of the rod are free (Fig. 4.5(b)). The boundary
conditions for free surfaces are that stresses through them (tractions) are null. In this
case, we consider only normal components of the stress (7..(0) = 7..,(L) = 0). Now we
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n=1

Fig. 4.7. Longitudinal vibrations of an elastic rod with both ends free, for the fundamental mode and
the first two higher modes.
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Fig. 4.8. Torsional vibrations of an elastic rod.

take solution (4.26) and normal stress (if e, = e4; = 0), according to (2.18) and (2.64), is
given by

7., = —pa’ Ak cos(kz) sin(wt + €) (4.30)

The condition of null stress at z =0 and z = L leads to the same values of the wave
numbers k, and frequencies w, as in the previous case, (4.27) and (4.29).

According to (4.26), for all modes, the amplitude of displacements at each end of the
rod is always a maximum (for the fundamental mode, n =0, u.(0)=A4 and

u.(L) = —A). The relation for the position of nodes along the rod’s axis for different
modes is now given (Fig. 4.7) by
m  (2m+1)L
= =0,1,2,3,... 4.31
Z/’l 2(n+1) ? m 07 ) 737 7n ( 3 )

For the fundamental mode there exists a node at z = L/2. The number of nodes for each
mode of order nis n + 1.

4.3.2 Torsional vibrations

Another way of generating vibrations in an elastic rod is to apply a torsional
moment at a tangent to its surface and normal to its axis. The result is a torsion of
the rod with deformations in the direction of the angle ¢, corresponding to displace-
ments u, (Fig. 4.8). If u, varies only with z along the rod, the equation of motion is
given by

82u¢ B L (’)zu@
92 B o

(4.32)
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where, just like in (2.65), g = w/p is the velocity of transverse waves (S waves). If the
two ends of the rod are fixed to a rigid body so that its displacements are null
(us(0,1) = uy(L,t) = 0), then the solution of equation (4.32), after imposing the
boundary conditions, as in the previous case, is given by

1
wh(z,t) = A, sin (WLMZ) cos(w,t +€,); n=20,1,23,... (4.33)
where
1
wnzw; n=0,1,2,3,... (4.34)

For each value of 7, there exists a mode of vibration with frequency w,. The value n = 0
corresponds to the fundamental mode and the others correspond to higher modes. Since
the elastic deformation is of torsional character, these modes are called torsional modes.

In conclusion, free vibrations of an isotropic elastic rod of finite length, with the
simplifying assumptions that we have used, are formed by modes of two types,
longitudinal and torsional ones, which are related to longitudinal (P) and transversal
(S) waves. Just like the infinite medium, a finite isotropic elastic body has different
responses to longitudinal and torsional stresses. The lowest frequency corresponds to
the fundamental mode and the frequencies for higher modes are multiples of it. The
total motion is given by the sum of all modes.

4.4 The general problem. The Sturm—Liouville equation

The general problem of the vibration of an elastic body of finite dimensions with
arbitrary shape and boundary conditions does not have such simple solutions as those
we have seen in this chapter for the string and rod. The solutions depend on the geometry
of the shape of the body and the boundary conditions on its external surface. In many
cases, however, the problem can be reduced to the Sturm—Liouville equation. This
differential equation for a function f(z) has the general form

& (1022 + e+ w2l =0 (439)

where p(z), ¢(z), and s(z) are algebraic functions with finite numbers of zeros and poles.
The solutions of f(z) for specific p(z), ¢(z), and s(z) depend on the values of the
parameter n and on the boundary conditions imposed on the problem. The most general
properties of this problem are the following. For each value of n there is a solution f, (z),
which is called an eigenfunction, and the general solution is the sum of these functions:

=3 £) (436)

There is a minimum value of n, but not a maximum value. As n increases, zeros of f,(z)
correspond to values of z that are more similar to each other. When, for the same value
of n, there are several different eigenfunctions f,(z), this is known as a degenerate case.
The eigenfunctions f,(z) for different values of n form a complete set of orthogonal
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functions. If the functions are normalized, it follows that

Jicfn(z)-ﬁn(z) dz = {0’ m#n

1

In the cases that we have considered for the elastic string and rod, equations (4.11),
(4.24), and (4.32), applying the separation of variables as in (4.12) or assuming a
harmonic dependence on time results in equations like

2
¢ d—"; +uf =0 (4.38)

dz
This is the simplest form of the Sturm—Liouville equation, in which p(z) = ¢?, ¢(z) = 0,
and ns(z) = w’. The solutions £, resulting from the application of boundary conditions
are the eigenfunctions of the problem and the frequencies w, are its eigenvalues. As we
have seen, the eigenvalues are real and the eigenfunctions, which are harmonic functions,

are orthogonal and form a complete set.

The application of this approach to free oscillations or vibrations of the Earth will be
handled in Chapter 13. The first approximation is that of a homogeneous elastic sphere
with the same radius, density, and elastic properties as the average values for the Earth.
Further problems will introduce variations of density and elastic properties with the
radius, more heterogeneous conditions, a lack of sphericity, and anelastic properties.
From this point of view, elastic displacements generated by earthquakes can be obtained
as the sum of normal modes or eigenvibrations. This is an alternative to the problem of
wave propagation.

(4.37)

, m=n



5 REFLECTION AND
REFRACTION

5.1 Snell’s law

In Chapter 3 we considered the propagation of elastic waves in homogeneous
media. We know that materials in the Earth are not homogeneous, rather their elastic
properties vary with depth and from one region to another. This variation may be
gradual, but there are also discontinuities that separate media with different densities
and elastic coefficients. Let us consider now the phenomena that takes place when
waves propagate from one medium to another with different properties. When waves
fall upon the surface separating the two media, part of the energy is reflected back
into the first medium and part is transmitted or refracted into the second medium.
Reflection of waves also occurs when there is a free surface. These problems are very
important in seismology, since in the Earth there is a free surface and several dis-
continuities that separate media with different densities and elastic coefficients. In
some cases, such as for the crust and mantle, and for the mantle and core, the contrast
between materials is large and produces notable phenomena of reflection and refraction
of waves. The theory of reflection and refraction of seismic waves was first developed by
Zoppritz and Knott. In this chapter, we will consider the problems of reflection and
refraction using plane geometry and waves.

Fermat’s principle in mechanics and optics states that waves follow a trajectory for
which the duration of the journey is stationary and minimum. From this principle,
there follow two well-known consequences for the reflection and refraction of waves on
a plane surface that separates two media. First, incident, reflected, and refracted rays
are in the same plane, normal to the plane of separation of the two media, which is
called the plane of incidence. Second, the trajectories of incident, reflected, and refracted
rays follow Snell’s law. For two media in which the waves’ velocities are v and v/, if i is the
angle between the incident ray in the medium of velocity v and the normal to the plane and
i’ is that of the refracted ray in the medium of velocity v', this law establishes that

sini_sini’ 1

=—= 5.1
v v’ ¢ P (5.1)

where p is called the ray parameter and ¢ = v/sini = v’/sini’ is the component of the
velocity in the direction parallel to the plane separating the two media. Also c¢ is the
apparent velocity of propagation of the points of intersection of wave fronts with the
plane of separation. In Fig. 5.1, the point P travels a distance OP with velocity «
during the same time as that in which the point Q travels a distance QO with velocity
¢. For reflection, the angles of incident and reflected rays are obviously the same, for
both rays are in the same medium.
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Fig. 5.1. Reflection and refraction of waves in two liquid media (M and M) for waves incident from
medium M.

5.2 Reflection and refraction in two liquid media

We will start with the problem of the reflection and refraction of waves in two
liquid media of densities p and p’ and bulk moduli K and K'. In a liquid medium there are
no shear waves, only longitudinal or acoustic waves whose displacements are defined by
only one potential, ¢. Let us consider that the two media are separated by the plane
(x1,X,). The potentials ¢ and ¢’ in each medium are solutions of the wave equation
(3.3) with velocities of propagation « and «'. For a liquid o® = A/p and A = K. If we
take the plane (x;,x3) as the incidence plane (Fig. 5.1) and express the direction cosines
in terms of the angle of incidence i and angle of refraction i’ ((3.95) and (3.96)), then the
potentials in each medium for plane waves of frequency w are

¢ = Agexplik,(x; sini + x3cosi — at))

+ A explik,(x; sini — x3cosi — at)] (5.2)
¢ = A'explik, (x) sini’ + x3cosi’ — a't)] (5.3)
where the wave numbers in each medium are
k,=w/a (54)
ky =w/d (5.5)

The potential ¢ represents the sum of the incident and reflected waves in the medium M
and the potential ¢ is for a wave refracted or transmitted in medium M’ (Fig. 5.1). The
amplitudes of the potentials of the incident, reflected, and refracted waves are A, 4, and
A’. Equations (5.2) and (5.3) can be expressed in terms of the tangent of the angles of
emergence (e = w/2 — i) in the form

¢ = Agexplik(x; + x3tane — c1)] + A exp[ik(x; — x3 tane — ct)] (5.6)
¢ = A’ explik(x; + x3tane’ — ct)] (5.7)
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where, according to Snell’s law,

k =k, cose =k, cose (5.8)

/
« «

c= = (5.9)

" cose cose

where k& is the wave number associated with the apparent velocity ¢ (k = w/c). From
equation (5.9), we can derive

tane = (o’ — 1)/ =r (5.10)
tane = (¢*/a? = 1)'2 =/ (5.11)

Equations (5.6) and (5.7) can be expressed using (5.10) and (5.11) in terms of the
velocities o, o/, and ¢. When there are reflected and refracted waves, ¢ is larger than o
and o/, and in consequence r and # are real. Equations (5.6) and (5.7) for ¢ and ¢’
are of a very convenient form since, for x; = 0, all exponentials are equal.

The relations between the amplitude A4, of the potential of the incident wave and A
and A’ of reflected and refracted waves are obtained by applying boundary conditions
at the surface separating the two media (x; = 0). For two liquids, the boundary condi-
tions are the continuity of the normal component of stress 733 and of the displacement u5:

T33 = 7';,3 (512)
Uy = us (5.13)

In general, for the potential of a ray (each term of (5.6) and (5.7)), if we express the stress
in terms of the strain (2.17), the strain in terms of derivatives of displacements (2.18),
taking into account that for a liquid x4 = 0, and, finally, displacements as functions of
the potential ¢ (2.68), we obtain

T3 =N +¢33) = pw’ (5.14)
Uy = ¢,3 = iktan €¢ (515)

where we have used the fact that, according to the wave equation, A\V>¢ = pu’¢. By
substituting (5.14) and (5.15) into (5.12) and (5.13), with the potentials of each ray
from equations (5.6) and (5.7), taking into account (5.10) and (5.11), we finally obtain
for x3 =0

/

Ao—i—Az%A’ (5.16)

/

Ag—A="4 (5.17)

7

These two equations can be written in matrix form:

o [=1 Ad/el[4
11[1 r//rllA’

The reflection coefficients V" and refraction or transmission coefficients W are defined as
the quotients of reflected and refracted or transmitted amplitudes with respect to the

Ay (5.18)
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incident amplitude:

_ A _pr=pr (5.19)
Ay prtpr '
A 2pr
=T (5.20)
0o pr+opr
If, instead of using equations (5.6) and (5.7), we use (5.2) and (5.3), we obtain
/! . ./
p o cosi— pacos i
V= 5.21
pla’ cosi+ pacosi’ (5:21)
2pa’ cosi
W= (5.22)

pla’ cosi+ pacosi’

These two equations can also be expressed in terms of the refractive index n = a/a’, the
contrast m = p'/p of densities between the two media, and angles of emergence ¢ and ¢":

msine — nsineé

= 5.23
msine + nsin ¢’ (5.23)
2

W — . S e . , (524)

msine + nsine

According to these equations, the relation between W and V is
1

W=—>01+V 5.25
—(1+7) (5.25)

The mechanical impedance Z is defined as the quotient relating the stress and particle
velocity in a particular orientation. In the x; direction, for a liquid, according to (5.14)
and (5.15), Z is given by

z=2_02 (5.26)
3 sine

Equations (5.23) and (5.24) can be written in terms of Z as

A4

V= 77 (5.27)
1 27

W:m(z+z) (528)

If waves travel from a medium M’ to medium M, the reflection and refraction coeffi-
cients ’ and W', according to (5.19) and (5.20), are

A _pl o

A 5.29
Ay o+ p'r (5.29)
A 2 N

w=2 =P (5.30)
Ay pr' +p'r

The complete problem with waves traveling from both media in both directions is
completely described by the four coefficients V', V', W, and W’. The matrix formed
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Fig. 5.2. Normal incidence in two liquids.

by these four coefficients is called the dispersion matrix; it is

vV
D=
wow

The first column represents the partition of amplitudes between reflected and refracted
waves for waves traveling from medium M to medium M’ and the second represents the
partition for waves traveling from M’ to M. It is important to notice that " and W repre-
sent the partition of amplitudes of potentials but not the partition of energy between
reflected and transmitted waves. For this reason their sum is not unity.

5.2.1 Normal incidence

A particular case of reflection and refraction corresponds to normal incidence,
that is, when rays travel perpendicular to the surface separating the two media (i = 0, or
e = 7/2) (Fig. 5.2). The reflection and transmission coeflicients are given by

!/
ap —ap
= — 5.31
o) T ap (5.31)
2 /
- (5.32)
o' p + ap

We can see from these two equations that, if the contrast between the densities and
velocities of the two media is small, V" is very small and W is nearly unity. Waves are
transmitted into the second medium with little reflection. For the opposite case, if the
contrast is large, V is nearly unity and W is small. Waves are reflected back into the
same medium with little transmission. The larger the contrast between the properties
of the two media the larger the reflections. From equations (4.31) and (4.32) we can
easily verify that the sum of J and W is not unity, for they do not represent the partition
of energy between the reflected and refracted waves.
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Fig. 5.3. Critical incidence in two liquids (e, and i, are the critical angles).

5.2.2  Critical incidence

According to Snell’s law, if o’ > «, there is an angle i, or e, called the critical
angle of incidence or emergence, which corresponds to rays refracted in the medium
of velocity o’ with angle ¢ = 0, or i’ = 7/2. Then, according to (5.1),

sinip, cose, | 1

_ - - 5.33
e @ o ¢ ( )

and, therefore,
cose, =sini, = a/a’ =n (5.34)

If we substitute ¢’ = 0 into equations (5.23) and (5.24) we obtain V' = 1 and W = 2p//’.
Waves refracted in medium M’ propagate along the surface separating the two media
and therefore ¢ = o (Fig. 5.3). Such a wave is called a critically refracted or head
wave. Its potential is given by

¢l = 2A0p/p/ exp[ika’(xl - O/t)] (535)

Rays with angles of emergence ¢ < ¢, or angles of incidence i > i, are not refracted
into medium M’ and their energy is completely reflected back into medium M. This
situation is called total reflection. Thus, from the point of view of the angle of incidence,
we have subcritical (i < i;) and supercritical (i > i.) reflections. Supercritical reflected
waves carry more energy than do subcritical waves since, in the former case, no
energy is transmitted to the second medium. For supercritical waves, according to
(5.9) and (5.33), cos ¢ would have a value larger than unity, which cannot correspond
to a real angle, and ¢ < o’. Hence, according to (5.11), tan¢’ is an imaginary number:

tane’ =i(1 — /o) =i (5.36)
The reflection coefficient V' (5.19) is now a complex number with modulus equal to unity:

/ -
y =Ll (5.37)
p'r+1pr
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where

—/ 2 12\1/2
2 p’r pl(C2/a2_1)1/2

On putting 4 = AoV and replacing V from (5.37), the expression for the potential of
supercritical reflected waves is given by

¢ = Agexplik(x; — rxz — ct — 0/k)] (5.39)

Supercritical reflected waves have the same amplitude as incident waves, but they have a
phase shift of 6.

5.2.3  Inhomogeneous waves

As we have seen, waves with angles of incidence greater than the critical angle
(i > i, or e < ¢.) are not refracted into the second medium; all of the energy is reflected
back. However, we can verify from (5.20) that W is not zero but rather has a complex
value, since # is imaginary. Therefore, there is a potential ¢’ that corresponds to some
type of elastic perturbation in the medium M’. This perturbation is formed not by
normal transmitted waves but by waves of a special type. If we substitute the imaginary
value of /' in expression (5.7) for ¢, we obtain

¢ = AgW exp|—ki'x; + ik(x| — ct))] (5.40)

where W is a complex number and 7' is real. This potential represents waves that
propagate in medium M’ in the direction of x; with velocity ¢ with values a < ¢ < o
and amplitudes decreasing exponentially with the distance x; from the surface separat-
ing the two media. This potential corresponds to an elastic perturbation in medium M’
that exists only near the surface separating the two media. Owing to the special charac-
teristics of these waves whose amplitudes decrease with the distance x; along the same
wave front, they are called inhomogeneous or evanescent waves.

Displacements of inhomogeneous waves also have different properties than those of
normal transmitted waves. If we derive the displacements from the potential ¢’ in
equation (5.40) according to (3.97) and (3.98), keeping only the real part, we obtain

uy = —Ao| Wk e k% sin[k(x; — ct) — €] (5.41)
uy = —Ao| W ki’ ek cos[k(x; — ct) — €] (5.42)

where the phase angle ¢ = tan™"'[pi'/(o'r)].

Components #; and wu; of displacements are shifted in phase by 7n/2 and in
consequence the particles’ motion is elliptical with its major axis in the direction of
x; (7 < 1) and of retrograde sense (Fig. 5.4). These are not, therefore, normal longitu-
dinal waves of the type that exist in liquids, but waves of a special type with elliptical
motion, similar in some ways to waves generated by wind on the surface of a liquid.
Inhomogeneous waves are a phenomenon characteristic of supercritical reflections
and we will see that they are related to surface waves.
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Fig. 5.4. Particle motion for an inhomogeneous wave produced by an incident wave with angle of
incidence e < e..

5.2.4  Reflected and transmitted energy

We have already mentioned that coefficients of reflection V" and transmission W
do not represent partition of energy and for this reason their sum is not unity. If we want
to find the partition of the incident wave energy between reflected and refracted waves
we have to consider the energy that arrives at the surface of separation. For plane
waves the energy contained in an element of volume 67 = ds 6x, where ds is an element
of the wave front and dx is the distance traveled in the direction of propagation in an
increment of time &8¢, according to (3.49), is the sum of kinetic and potential energies

1 3” 2 2 (914 2
8E7§ [p<8t) +a p((’)x> ] ds Ox (5.43)

For a unidimensional plane wave in a liquid of velocity «, u = Bcos(kx — wt), and
a=w/k,

Ou 1 Ou
- - 5.44
Ox a Ot ( )
Since dx = « dt, substituting into (5.43) gives
2
O0F = p(?j) a ds ot (5.45)

We define the intensity / as the energy per unit surface of the wave front and per unit
time. From (5.45) the intensity is given by

ou'\
I = i 5.46
(%) (5.46)
If we derive the displacements from a potential ¢,
¢ = Asin(kx — wt) (5.47)

then, on substituting into (5.46), we can find the intensity in terms of the amplitude of the
potential,

4
I = aplt? 42 =22 42 (5.48)
[0
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Fig. 5.5. The transmission of energy from a liquid medium to another by a beam of incident rays
with element of wave-front area dS. The element of wave-front area of transmitted rays is dS’.

For normal incidence, an element of the wave front is equal to an element of the surface
separating the two media and we can write directly the partition of energy on such a
surface:

Line = Ire + Iivans (549)

If we substitute values of intensities according to (5.48), knowing that the amplitudes of
incident, reflected, and refracted potentials are, respectively, Ay, VA4, and WA, we
obtain, after dividing by A4,

/
=12+ 222 (5.50)
pa

This equation represents the partition of incident energy between reflected and refracted
waves for normal incidence. If we substitute expressions for ¥ and W from (5.31) and
(5.32), we can easily verify this relation.

In the general case, we have to take into consideration the angle of incidence. Let us
consider the energy contained in a ray bundle that occupies an element of the wave front
of area ds that strikes the surface separating the two media with an angle of emergence ¢
(Fig. 5.5). The ray bundle of transmitted or refracted waves leaves the surface with an
angle ¢’ and occupies an element of the wave front of area ds’, while that of reflected
waves occupies an element ds equal to that of incident waves. The element of area of
the surface separating the two media do occupied by the three ray bundles (incident,
reflected, and refracted) must be the same. The relations among ds, ds’, and do are

ds =dosine (5.51)
ds’ = dosiné (5.52)

The energy incident on the element of area do must be divided between the energies of
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Fig. 5.6. The partition of energy between reflected and transmitted waves in two liquids of velocities
o = a/2 and densities p' = p/2 as a function of the angle of emergence e. (a) Waves travel from
medium M to medium M’. (b) Waves travel from medium M’ to medium M; for ¢ < 60° all
energy is reflected. (c) The phase shift between incident and reflected waves for angles of emergence
less than the critical one (¢’ < 60°).
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the refracted and reflected waves:
Iinc ds = Ireﬂ ds + Itrans dsl (553)

On substituting equations (5.51) and (5.52) and intensities in terms of the amplitudes of

incident, reflected, and refracted potentials (5.48), we finally obtain
/ . /

) pasme WZ

1=+ (5.54)

pa sin e
This equation represents the partition of incident energy between reflected and refracted
waves for an arbitrary angle of incidence.

Figure 5.6 shows an example of the partition of energy between reflected and refracted
waves in two liquids with velocities o' = «/2 and densities o’ = p/2 as a function of the
angle of emergence. In Fig. 5.6(a), waves travel from medium M to medium M’; this
represents waves traveling from a medium of larger velocity to one of smaller velocity.
For angles e < 39°, the reflected energy is larger than the refracted energy, whereas for
angles e > 39°, the transmitted energy is larger. Figure 5.6(b) shows the case for waves
traveling from medium M’ to medium M, that is, from a medium of smaller velocity to
one of larger velocity. The critical angle is e, = 60°; for smaller angles waves are not
transmitted and all the energy is reflected into medium M’. For angles larger than
¢ = 68°, there is more energy transmitted than there is reflected. Figure 5.6(c) shows
the phase shift of the reflected waves for supercritical incidence (¢’ < ¢.).

5.2.5  Reflection on a firee surface

The case of the reflection of waves on a free surface (Fig. 5.7) is of special
interest. This is a particular case in which the second medium is the vacuum. The



74 Reflection and refraction

Xs

VACUUM

Ao A
,Q,A

Fig. 5.7. Incident and reflected waves on a free surface of a liquid.

potential for incident and reflected waves is given by equation (5.6):
¢ = Agexplik(x; + rx — ct)] + A explik(x; — rx; — ct)] (5.55)

The boundary conditions on a free surface are that normal stresses or tractions are null.
In our case, for x3 = 0, 33 = 0. According to equation (5.14), this condition in terms of
potentials leads to

M1+ ¢33) =0 (5.56)
By substitution of ¢ from (5.55), we obtain
A= -4 (5.57)

The potential of reflected waves has the same amplitude as that of the incident wave but
with the opposite sign; that is, there is a phase shift of 7. The total displacement at the
free surface is given by the sum of those of the incident and reflected waves,
U = u;,. + ur. Using the potential ¢ from (5.55), taking derivatives according to
(3.97) and (3.98) and using (5.57), we obtain for the real part that U; = 0 and Uj is
given by

U3 = —2rkA0 Siﬂ[k(xl — Cl)} (558)

As we expected, the motion of the free surface of a liquid produced by the arrival of
acoustic waves has only a vertical component and its amplitude depends on the angle
of incidence of the waves.

5.3 Reflection and refraction in elastic media

Since in elastic media there are two types of waves, P and S, the problem of the
reflection and refraction of waves is more complicated than that for two liquids. For
incident P and S waves there are, generally, reflected and refracted P and S waves.
This is due to Huyghens’ principle that states that, when waves reach the surface
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separating two media, its points become sources of waves that, in an elastic medium, are
of both types. This problem was first solved by Knott in 1899 and Z6ppritz in 1919. We
take the plane (x;,x,) as that separating the two media and the plane (x,x3) as the
plane of incidence. The components of elastic displacements #; and u; can be derived
from the scalar potentials ¢ and v, according to equations (3.97) and (3.98), and the
component u, is kept apart. This way the potential ¢ represents P waves, whereas
the potential ¢ represents the SV and u, represents the SH component of S waves
(section 3.7).

If ¢ and f are the angles of emergence of P and S incident and reflected waves in
medium M of velocities a and 3 and ¢’ and 1 are those of waves refracted or transmitted
in medium M’ with velocities o/ and 3, then Snell’s law (5.1) is given by

cose:cos_f:cos/e':cosf':lzp (5.59)
« 3 o I) c
where p and ¢ have already been defined. As functions of the velocities, the tangents of e
and f are

tane = (*/a® — )2 =+ (5.60)
tanf = (/3 — 1) =5 (5.61)

and similarly for tane’ =+ and tanf’ =s. The boundary conditions at the surface
separating two elastic bodies (x; = 0) are continuity of the three components of the
displacement u; and continuity of the three components of stresses 73; across the surface
(xl ) XZ):
u; = u (5.62)
T3 = Tai (5.63)

These conditions imply that the two media are welded together. We will treat separately
the cases for incident SH (S waves with an SH component only), P, and SV waves.

5.3.1 Incident SH waves

Incident SH waves, owing to the selection of the orientation of the reference
coordinate axes, have only the displacement component u,. It is easy to verify that,
for only SH incident waves, the boundary conditions for u;, uz, 731, and 733 result in
homogeneous equations for the amplitudes of the reflected and refracted potentials ¢,
¥, ¢, and ¢/ that admit only a zero solution. This means that, if the incident S wave
has only an SH component, then there are only reflected and refracted SH waves
(Fig. 5.8). The problem is reduced to that of the displacement component u,, which is
given in both media by

uy = Coexplik(x; + sx3 — ct)] + Cexplik(x; — sx3 — ct)] (5.64)
uy = C'explik(x; + s'x3 — ct)] (5.65)

where Cy, C, and C’ are the amplitudes of the incident, reflected, and refracted waves.
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Fig. 5.8. Reflection and refraction in two elastic media for incident SH waves.

The boundary conditions at the surface separating the two media (x; = 0) are
uy = i (5.66)
T3 = ng (567)

By expressing the stress 73, in terms of the strain es, (2.17), and this in terms of the
derivatives of the displacement u, (2.18), and substituting the expressions (5.64) and
(5.65) into the boundary conditions (5.66) and (5.67), we obtain the equations for the
amplitudes in matrix form (just like in (5.18)):

-1 1
1

Co _ Su ¢ (5.68)
1 1 = J\c

Sp
On solving for the amplitudes’ quotients C/C, and C’/C, we obtain

Vo = S s s (5.69)
TGy ps+ s '
C 2us
Wen = o = i (5.70)

where Vgy is the reflection coefficient and Wgy is the refraction or transmission
coefficient for SH waves. In this case, the coefficients are quotients of displacement
amplitudes. Expressions (5.69) and (5.70) are similar to (5.19) and (5.20) obtained for
the two liquids. Here, also, the reflected energy is larger for a large contrast between
the shear moduli p and p' of the two media.

If SH waves travel from medium M’ into medium M, the reflection and transmission
coefficients are

' s —us
Vop = = = "= 5.71
SH C6 ’ulsl+’us ( )
C 2 !/
Wiy = — = K (5.72)

66 s + ps
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The matrix for the total dispersion of SH motion between two elastic media is given by

<VSH VéH)
Wsu Wsn

In a similar way to what we did with the case of two liquids, we can find the partition
of energy between the reflected and refracted waves for an arbitrary angle of emergence /"

(5.73)

As in the case of two liquids, this equation shows the partition of the energy of the
incident wave between the energy that is reflected back into the same medium and
that which is transmitted into the second medium.

5.3.2  Critical incidence and inhomogeneous waves

When for the two media 3 > (3, then, for waves that travel from medium M to
M, there is a critical value for the angle of incidence f, = cos™ (8/3), for which waves
are refracted into medium M’ with the angle ' = 0 and propagate along the surface
separating the two media. For angles of incidence f < f., no waves are transmitted
into the second medium and all the energy is reflected back into medium M (total
reflection). For those values of f, s is imaginary, since ¢ < 3 and Vg is a complex
quantity of modulus unity. Reflected supercritical waves present a phase shift § with
respect to incident waves:

0 u's'

where
§'=(1-c/p%)'"? (5.75)

For supercritical reflections (/' < f) we find also the phenomenon of the generation of
inhomogeneous waves in medium M’, whose displacements are given by

l/llz = CO WSH exp[—kf'x3 + ik(xl — Cl)] (576)

These waves have the same characteristics as SH waves with only a u, component of
displacement; they propagate in the x; direction with a velocity ¢ (8 < ¢ < @) that
depends on f and their amplitude on the same wave front decreases exponentially
with the distance (x3) from the surface separating the two media.

5.3.3  Incident P and SV waves

For incident P waves, we have both reflected and refracted P and S
waves (Fig. 5.9). Incident P waves that travel from medium M are represented by the
potential ¢ with the amplitude A4,. Reflected P and S waves are represented by potentials
¢ (P) and ¢ (SV) with amplitudes 4 and B, and a displacement component u, (SH) of
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Fig. 5.9. Reflection and refraction in two elastic media for incident P waves. Reflected and refracted
P and SV waves.

amplitude C. Waves transmitted in medium M’ are represented by potentials ¢’ (P) and
Y/ (SV) with amplitudes A" and B’ and a displacement component 5 (SH) with ampli-
tude C'.

The relations between the amplitudes of incident P waves and those of reflected and
refracted P and S waves are found by applying the boundary conditions of the continuity
of stress and displacement at the surface separating the two media (x3 = 0). From the
conditions u, = u5 and T3, = T4, it is easily found that C and C’ are zero. This means
that, for an incident P wave, reflected and refracted S waves have only SV components.
The other four boundary conditions are

up = i) (5.77)
Uy = us (5.78)
T3 = Th (5.79)
T3 = Ti3 (5.80)

The potentials for P and SV motion in both media corresponding to incident, reflected,
and refracted waves are

¢ = Agexplik(x; + rx; — ct)] + A explik(x; — rx; — ct)] (5.81)
¥ = Byexplik(x| + sx3 — ct)] + Bexplik(x; — rx; — ct)] (5.82)
¢ = A explik(x; + ' x3 — ct)] (5.83)
Y = B explik(x; + s'x3 — ct)] (5.84)

On substituting in equations (5.77)—(5.80), and taking into account the relations
between the stress and strain (2.17), strain and derivatives of displacements (2.18),
and displacements and potentials (3.97) and (3.98), we obtain for the potentials the
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following equations:

G — Y3 = ¢fl - 1/){3 (5.85)
baty =d5+Y, (5.86)
1215+ s+ 1) = 1 (2913 — Vs +v4) (5.87)
Mz + o) + 213 = N (@3 + ¢l) + 20015 (5.88)

By substitution into equations (5.85)—(5.88) of the expressions for the potentials (5.81)—
(5.84) and writing the resulting equations in matrix form, we obtain

1 —S
r 1
4 2rp o 1+ s
A1+ 17) 2us
-1 —s 1 —s A
_ —r -1 — 1 B (5.89)
“2rp —(1=s) 24 =) || A
A1+ =2us N+ 248 B

For an incident P wave, By = 0, and for an incident SV wave, 4, = 0. The resulting
expressions are known as Zoppritz’s equations. For incident P waves, by solving the
resulting equations from (5.89) with By = 0, we determine the reflection and trans-
mission coefficients. Now we have four coefficients corresponding to reflected and
transmitted P and SV waves:
!/ /

VPP:AiO3 VPSZ/%§ WPP:%§ WPS:AEO
Reflected and transmitted SV waves from an incident P wave are often called converted
waves.

For incident SV waves, the problem is similar. The reflection and transmission
coeflicients are derived from equation (5.89) by putting 4, = 0. We have four coefficients
and the converted reflected and transmitted waves are P waves:

B Bl !/
Vssiﬁo; VSP:%; WSS:E; WSP:%O
Reflection and transmission coefficients for incident P and SV waves in isotropic media
are functions of the elastic coefficients A and p, the densities p of the two media and the
angles of incidence ¢ and f. The resulting expressions are simplified if we assume the
value of Poisson’s ratio o = 0.25 (A = p) (Section 2.2).

The dispersion matrix for the general P-SV motion generated in two elastic media in
contact with incident waves traveling in both directions has 16 elements, eight for
incident P and SV waves traveling from medium M and another eight for those traveling
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from medium M’

Vep Vsp Ver Ve
Ves  Vss  Vps Vs
Wep Wsp Wpp Wep
Wes Wss Wps Wss

The partition of incident energy between the reflected and transmitted waves, P and
SV, is deduced in a similar way to that which was presented for two liquids (5.54) and
for the case of two solids for SH waves (5.73). For incident P waves we obtain

asinf dasine 5 pasinf’
Vip + —— Vs + ——— W, ———— Wps =1 5.90
ert Bsine bs pa’ sine er t pBsine  ©S (5.90)

For incident SV waves,

Bsine  ,  p'Bsinf’ P Bsine
V3 Vsp W 7. Wsp =1 591
St ysing asinf G sing pl sinf + o sin f sp ( )

In both cases, the energy of an incident P or SV wave is divided into that of reflected and
transmitted P and SV waves.

Just like incident SH waves, incident P and SV waves traveling from a medium of
lesser velocity to one of greater velocity (o > o) present the phenomenon of total reflec-
tion with critical angles given by cose, = a/a’ and cosf, = 3/3. For supercritical
angles we have also the generation of inhomogeneous waves. Since § < a, there is
also a critical angle for incident SV waves for which there is no reflected P wave:

cosf, = f/a.

54 Reflection on a free surface

The problem of the reflection of elastic waves on a free surface is of particular
interest in seismology since it represents the situation of the arrival of seismic waves at
the Earth’s surface. The boundary conditions on a free surface, as we saw for a liquid,
are that the components of stress across the surface are zero. We will treat first incident
SH waves and then incident P and SV waves.

54.1 Incident SH waves

Let us consider an elastic half-space bounded by the free surface formed by the
plane (xi, x;). It is easy to show that, for incident SH waves, there are no reflected P or
SV waves, but only reflected SH waves. The displacement u, of incident and reflected SH
waves is given (Fig. 5.10) by

uy = Cyexplik(x; + sx3 — ct)] + Cexplik(x; — sx3 — ct)] (5.92)
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Fig. 5.10. SH waves incident on and reflected from a free surface of an elastic medium.
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Fig. 5.11. Incident P and reflected P and SV waves for a free surface of an elastic medium.

where C is the amplitude of incident waves and C is that of reflected waves. On applying
the boundary condition for x; = 0, we obtain
T3 = /,6142“’3 =0 (593)

On substituting (5.92) we obtain C = C and that the reflection coefficient Vgy = 1. The
reflected SH wave has the same amplitude as the incident wave.

5.4.2  Incident P waves

For an incident P wave there are reflected P and SV waves (Fig. 5.11). The non-
existence of reflected SH waves is also easily shown from the boundary condition
735 = 0. The potentials of incident P and reflected P and SV waves are

¢ = Agexplik(x; + rxz — ct)] + Aexplik(x; — rx; — ct)] (5.94)
1 = Bexplik(x; — sx3 — ct)] (5.95)

The two pertinent boundary conditions at x; = 0 are that the stress components 73; and
733 are null. Writing the stress in terms of the strain for an isotropic material (2.17), the
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Fig. 5.12. Incident SV and reflected P and SV waves for a free surface of an elastic medium.

strain in terms of the derivatives of displacements (2.18), and, finally, displacements in
terms of the potentials (3.97) and (3.98), we obtain

731 = (2P 13 — P33 + 1) (5.96)
T3 = AP 11+ (A +2u) 33 + 13 (5.97)

For Poisson’s relation (A = p), by substituting the potentials (5.94) and (5.95) into
equations (5.96) and (5.97), we obtain

(3r* +1)(4g+ 4) —2sB=0 (5.98)
2r(Ag — A) + B(1 —5*) =0 (5.99)
The coeflicients of reflection are

A 4rs—(1+ 3r%)?
Ay 4rs+ (14 3r2)
B 4r(1 4 3%)
Vps=—=—"—5
Ao drs+ (1 +3r7)

Vep = (5.100)

(5.101)

These two coefficients represent the ratios of the amplitudes of the potentials of reflected
P and SV waves with respect to that of incident P waves.

5.4.3  Incident SV waves

For incident SV waves, the problem is very similar. Again there are reflected SV
and P waves, but no reflected SH waves (Fig. 5.12). The potentials of the incident and
reflected waves are

1 = Byexplik(x; + sx3 — ct)] + Bexp[ik(x; — sx3 — ct)) (5.102)
¢ = Aexplik(x; — rx; — ct)] (5.103)
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By applying the boundary conditions as in the previous case, (5.96) and (5.97), and with
the condition A = u, we obtain

(1 —5%)(By+ B) —2rd=0 (5.104)
25(By — B) + (1 +31)4=0 (5.105)
The reflection coeflicients are

B drs— (1437
Vss == ( )

_ 5.106
By 4rs+ (1+37) (5.106)

A —45(1 + 317
Vsp = — ( )

_ _—Hl+3r) 5.107
By drs+ (1+37) (5.107)

Equations (5.98), (5.99), (5.104), and (5.105) can be expressed in matrix form by

1437 ) 2s 5 _ —(1+31%) 2s A 5108
2r o 1-s)" 2r —(1-s )\ B (3:108)

From this equation, we can derive the particular cases for incident P or SV waves by
letting By = 0 or 4y = 0.

5.4.4  Critical reflection of SV waves

According to Snell’s law (5.59) for SV waves incident on a free surface, since
«a > 3, there exists a value of the angle of incidence f for which the angle e of reflected
P waves is zero. This angle is called the critical angle f; and is given by

cosf. = B/ (5.109)

Incident SV waves with angles f* < f; (supercritical SV waves) produce no reflected P
waves, but only reflected SV waves. For these waves, we have § < ¢ < « and therefore
r is imaginary. In consequence, the reflection coefficient Vg is a complex number:

(1—3/)° —idrs o0

Vg =~ ) — 0 5.110
71— 372)2 + idrs (5-110)
where
F=(1-c/a)? (5.111)
0 4rs
tan( = | = ——— 5112
<2> (1 —372)? ( )

Reflected SV waves have the same amplitude as incident waves but with a phase shift 6.
There are no reflected P waves, but there is a reflected potential ¢ that corresponds to an
elastic perturbation in the form of inhomogeneous waves of P type that travel in the x;
direction with velocity ¢ < «:

¢ = BO VSP exp[kfx3 + ik(xl — Ct)] (51 13)
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Since r = i7 is imaginary, Vsp has complex values (5.107). This situation is similar to that
found for supercritical incident waves in two elastic media when they travel from a
medium of lesser velocity to one of larger velocity. Inhomogeneous P waves present in
a half-space travel in the direction parallel to its surface and their amplitudes are
attenuated exponentially with the distance from this surface. This is an elastic perturba-
tion that exists near the free surface and we will see that it is related to the generation of
surface waves.

5.4.5  The partition of energy

In the same way as for the reflection and refraction of waves in two elastic
media, we can derive the partition of energy between P and SV waves reflected on a
free surface. For incident P waves, the energy brought to the surface is divided between
those of reflected P and SV waves (Fig. 5.13). In terms of energy intensities as in (5.53) we
have the relation

Lneds = I ds + Iy ds’ (5.114)

where ds/sine = ds'/sinf = do. On substituting ds and ds’ in terms of do, the energy
intensities as functions of the amplitudes of the potentials, as in (5.48), and those in
terms of the coefficients of reflection for P and SV waves, the partition of energy is
given by
12 asinf _, 1 1
PP"’mVPS = (5.115)

For an incident SV wave, the relation is

Bsine ,
Ve Vi =1 5.116
SS+asinf Sp ( )

Figures 5.14 and 5.15(a) show the partition of energy between reflected P and SV
waves for incident P and SV waves with A = p. For an incident P wave, Vpp = 0, for

Xs

X,

Ao

Fig. 5.13. An incident ray beam of P waves and a reflected ray beam for SV waves at a free surface of
an elastic medium.



5.5 Motion at the free surface

85

1.0

Epp

0.0

20

60

40
e (degrees)

Fig. 5.14. The partition of energy between reflected P and SV waves for a P wave incident on a free
surface of an isotropic elastic medium with A = pu.

angles of incidence e = 30° and 12.47°; and Vpp = 1 for e = 0 and 90°. For an incident
SV wave, for angles of incidence less than the critical angle ( f, = 54.73°), Vss = 1 and
there are no reflected P waves. For normal incidence, the reflected waves are of the same
kind as the incident ones. Figure 5.15(b) shows the phase shift of the supercritical

reflected SV waves.

5.5 Motion at the free surface

Seismologic observations are carried out at the Earth’s surface, thus seismo-
grams are recordings of the total motion of this surface upon the arrival of seismic
waves, not only of the incident waves. Damage to buildings produced by earthquakes
is also caused by the total motion of the Earth’s surface. It is important, then, to
study the total motion of the free surface of an elastic medium upon the arrival of
waves that were traveling in its interior. The total displacement of points on a free
surface is the sum of those of incident and reflected P and S waves. We will treat
separately the motions of the surface upon the arrival of incident P and S waves.

5.5.1 Incident P waves

For an incident P wave, the total displacement of the free surface (U P) is the sum
of the displacements of the incident wave (") and of the reflected P (u") and SV (#™")
waves (Fig. 5.16):

UP =™ + " (5.117)
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Fig. 5.15. (a) The partition of energy between reflected P and SV waves for an SV wave incident on a
free surface of an isotropic elastic medium with A = y; for f* < f; there are no reflected P waves. (b)
The phase shift between incident and reflected SV waves for supercritical angles of incidence

(f <fo)
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Fig. 5.16. The total motion of the free surface of an elastic medium for an incident P wave. The
apparent angle of emergence is e.

If (x5, x;) is the plane of incidence, 4 is the amplitude of the potential ¢ of incident P
waves, and 4 and B are those of the potentials ¢ and v of reflected P and SV waves,
(5.94) and (5.95), then the amplitudes of the horizontal and vertical components of
the displacement at the free surface, according to (3.97) and (3.98), are

Ut =k(4y + A+ Btanf) (5.118)
Uy = k(Aptane — Atane + B) (5.119)

On substituting for the values of 4 and B in terms of 4, and the reflection coefficients
Vpp and Vpg, according to equations (5.100) and (5.101), we obtain

1244k
U = DO tan e tan’ f sece (5.120)
6Ayk
UY = =22 (1 + 3tan’ ¢) tan esec’ e (5.121)
D =4tanetanf + (1 + 3tan’e)’ (5.122)

5.5.2  Incident S waves

For an incident S wave with SH and SV components, such that, according to the
orientation of the coordinates axes, U5 is the SH component, and U} and U are the
horizontal and vertical components of SV motion (Fig. 5.17),

US =i + "+ ul" (5.123)
US = +u5" (5.124)
US = + 5 + (5.125)

On substituting into these equations the amplitudes of SH displacement (C incident and
C reflected) and of the potential v of SV displacement (B, incident and B reflected) and 4
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Fig. 5.17. The total motion of the free surface of an elastic medium for an incident SV wave. The
apparent angle of emergence is f.

of the potential ¢ of reflected P waves, according to equations (5.92), (5.102), and
(5.103), and the relations between the displacements and the potentials (3.97) and
(3.98), we obtain

UY = k(Bytanf + A — Btanf) (5.126)
US=Cy+C (5.127)
Us = —k(—By + Atane + B) (5.128)

Just like in the previous case, using the relations between the reflected and incident
amplitudes in terms of reflection coefficients, according to (5.106) and (5.107), and
C = C,, we obtain

6Bk
Uy = —2=(1 + 3tan®¢) tanf sec’ e (5.129)
US =2¢, (5.130)
12Byk
Us = — DO tan e tan f sec’ e (5.131)

The amplitudes of the total displacement of the free surface depend on the amplitudes
and angles of incidence of the incident waves. For incident P waves, the variables are
Ay and e; for incident S waves, they are By, Cy, and f. Equations (5.120)—(5.122) and
(5.129)—(5.131) allow also the determination of incident wave displacement amplitudes
from the total motion observed at the free surface.

5.5.3  Apparent angles of incidence and polarization

Displacements observed at the Earth’s surface correspond to the total motion of
a free surface and thus include incident and reflected waves. If we want to calculate the
incidence and polarization angles from amplitudes observed at the surface we have to
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Fig. 5.18. The apparent polarization angle ¥ measured from the horizontal transverse (U,) and
radial (U;) displacements at the free surface of an elastic medium for an incident S wave.

take this fact into account. The angles of incidence € and f derived directly from the
observed total motion for arriving P and S waves are called apparent angles of incidence
(Figs. 5.16 and 5.17). If we substitute for incident P waves equations (5.120) and (5.121),
and for incident S waves (5.129) and (5.131), we obtain

Uy 1+3tan’e
tane — =3 — i 5.132
ane Ut 2tanf ( )

S 2
_ 1+ 3t
tanf = JL_ _1Hdtane

= 5.133
U 2tane ( )

The apparent angle of polarization 4 (3.87) is measured from the radial component, in
our case U, and the transverse component, Us, of the observed motion at the surface
for an arriving S wave (Fig. 5.18):

U3 _ Cyldtanetanf + (1 +3 tan® e)?]

tany = —< = 5.134
7 Uj  3Byktanf(1+ 3tan?e)sec’ e ( )
According to the definition of the polarization angle ¢ (3.86),
S
B U5 _ Cycosf
tane = (u§2+u§2)1/2 = "Bk (5.135)
On substituting (5.135) into (5.134) we obtain the relation between 5 and &:
D
tanf?: ane (5136)

t:
3sinf sec’ e(l + 3 tan®e)

where D is given in (5.122). By replacing equation (3.87) into (5.136) we obtain the
relation between 4 and . Equation (5.136) is valid only for angles of incidence less
than the critical one, that is, for f > f.. When f < f;, there are no reflected P waves,
tane is an imaginary quantity and the factor in (5.136) is a complex quantity. There is
a phase shift between the incident and reflected SV, but not for the SH waves, and the
total motion of the free surface is not linear.
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In conclusion, the total motion of a free surface upon the arrival of P and S waves is
complicated by the presence of reflected waves. For incident S waves and angles of
incidence greater than the critical angle, the total motion is not linear. Thus, it is not
always easy to find the amplitudes of incident waves.



6 RAY THEORY. MEDIA OF
CONSTANT VELOCITY

6.1 Ray theory. The eikonal equation

The differential equation of motion in a continuous medium is given in terms of
the divergence of the stress tensor (2.57). For an elastic body, we substitute for the stress
in terms of the strain and the elastic coefficients (2.58). If the medium is homogeneous
and isotropic with constant elastic coefficients, we obtain equation (2.61) for displace-
ments. If there are no body forces, Navier’s equation (2.66) and (2.67) can easily be
reduced to the wave equations (3.1)—(3.4), where the velocities of propagation o and
(3 are also constant.

If the medium is not homogeneous, the elastic coefficients and density are functions of
the spatial coordinates. The equation of motion (2.58) can be written in terms of the
displacements:

azul‘
(Cyttres) + Fi=p (6.1)

9
8x] ! 812

For a liquid, for which Cyuy; = Kuy ., if K is a function of the coordinates, equation
(6.1), for no body forces, becomes

OK Ou, d [ Ou O u;
———+K—|— )= 6.2
0x; Oxy + ox; <8xk) pYye (62)
This equation can not be reduced to the wave equation either for the cubic dilation 6 or
for the displacement potential ¢, as we did in the homogeneous case. Taking the
divergence in (6.2), we obtain

o PO P _op i, PK oK
0x; 0x; paﬂ*ax,- s Ox;0x; ~ Ox; 0x;

The three terms on the right-hand side are introduced by the dependences of K and p on
the coordinates and the equation is difficult to solve. For this reason, for the problem of
the propagation of waves in inhomogeneous media or media of variable velocity, we use
a different approach, called the ray theory. As we saw in Section 3.2, the trajectories
followed by the propagation of waves are given by the trajectories of rays or normals
to wave fronts. In many problems of seismology, we are primarily interested in these
trajectories, their traveling times, and the behavior of their amplitudes. In many of
these problems it is not necessary to find a complete solution of the wave equation;
rather, it is sufficient to solve for the behavior of rays using ray theory.

91
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We will treat the problem of the propagation of P waves that are represented by only
one scalar potential ¢. Let us consider a medium in which the velocity v(x;) varies
continuously with the coordinates. If we call vy an initially constant value of the velocity
or the value for a reference point or region, then the wave equation for such a reference
region is

1 9%¢
Vip=—— 6.3
¢ v O (63)
The solution for this equation for harmonic waves of frequency w with constant ampli-
tude and zero initial phase can be written just like (3.23):

¢ = Aexp{ilkoS(x;) — wil} (6:4)

where kg =w/v, is the wave number corresponding to the velocity v, and
S(x;) = constant, for the equations of wave fronts. Let us consider the phase
& = koS(x;) — wt, with the same value at two different times #; and 7, separated by a
time interval Az =1, —t;, and wave fronts separated by a distance AS =S, —S;;
then we can write

koS] — wtl = koSQ — U}l2 (65)
From these relations we can deduce that
w AS

In another region of the medium, where the velocity has a different value, v, the relation
between two wave fronts, corresponding to the same phase, separated by a time interval
At and distance AS, gives
w AS
V== —
kAt

Let us consider now the propagation of wave fronts through a medium of smoothly
continuous variable velocity v(x;). For each wave front corresponding to a constant
value of the phase &, its time derivative must be zero:

(6.7)

a6 _o¢ 06 _

EPRR TR M (68)
and, therefore,

o 0¢

E =Y ax,» (69)

where the vector component v; is the velocity in the direction normal to the wave front.
The gradient of £ can be substituted by the derivative in the direction of the normal to the
wave front (n) and the vector v by the scalar v, the velocity in the same direction:

o _ 9
ot On

According to (6.4), the gradient of £ can be replaced by the gradient of S. Then its
derivatives with respect to the normal to the wave front and with respect to time are

(6.10)



6.1 The eikonal equation 93

given by
% =k g—i (6.11)
% =—w (6.12)
By substituting (6.11) and (6.12) into (6.10), we obtain
vk g—i =w (6.13)

Taking the square of (6.13) and replacing ko =w/v, and (8S/0n)* =
(0S/0x1)* + (0S/9x,)* + (3S/Dx3)?, we finally obtain

(o) () () - (2) 614

This equation is known as the eikonal equation (from the Greek word eikon for image)
or the equation of the characteristic functions of Hamilton. The equation relates the
value of the square of the gradient of the wave front at a point of a medium of variable
velocity to the quotient of the velocity v, at a reference point or the initial velocity and v
at any other point. These velocities are in the direction normal to the wave fronts or
along the ray’s direction. The quotient v/vy = n is the refractive index at each point.
Since the gradient of the wave front represents the direction of propagation or the
ray’s trajectory, equation (6.14) shows how this trajectory changes as wave fronts
propagate through a medium of variable velocity. If we know how v varies in the
medium, the eikonal equation shows us how the trajectories of rays change.

Let us consider now the wave equation for an arbitrary point of the medium of vari-
able velocity v, as in (6.3):

S
Vi = iy (6.15)

For a harmonic time dependence of ¢, we can write Helmholtz’s equation (3.10), in
which the wave number k = w/v is a variable. This wave number can be expressed in
terms of that of the reference region or the initial value ky = w/vy, in the form
k = kyvy/v; thus, we obtain

2
(V2+k3”§)¢o (6.16)
v
If we substitute into this equation a solution given by (6.4), we obtain
*s S aS v
ey — 2= .1
18x,~ ox;  Yox; ox; 042 0 (6.17)
This equation reduces to the eikonal equation (6.14) if
'S as ds
kol =— — 6.18
‘836,- 8)(,- < 0 6){:1‘ 8xl~ ( )
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Therefore, if this condition is satisfied, for a medium of variable velocity, solutions of the
eikonal equation (6.14) and, in consequence, the principles of ray theory are good
approximations to the solutions of the wave equation (6.15).

6.1.1  The condition of validity

The condition of validity for the approximation of ray theory in a medium of
variable velocity is given by equation (6.18). To see the significance of this condition,
we start with the expression for the direction cosines of the ray (3.26):

oS oS

8)6, 8)Cl'
If we substitute for the gradient of the wave front in (6.19) the derivatives in the direction
of its normal n and then substitute these values into (6.18), we obtain

s |?

:Vi

(6.19)

0 oS
87)(1- <l/[an) ’ < k() l/,‘% (620)
where we have used
oS as
By replacing equation (6.14) into the second term of (6.20), we obtain
6 8S Vo
The first term of (6.22) can be written using equation (6.13) in the form
0 oS\ 9 (v vy \ OV;
3)6,» (Vian> =V (9x,» ('U) * (U) 8xl‘ (623)

On putting (6.23) into condition (6.22), this is satisfied if each term of the sum in (6.23) is
much smaller than the right-hand term of (6.22). Taking the derivatives of vy/v, the
validity condition can be expressed by two conditions:

% < w (6.24)

g;i < %’ (6.25)
In terms of the wave length A, these conditions can be written as

% % < % (6.26)

g}’: < % (6.27)

The first condition (6.24) implies that the change in velocity in the direction normal to
the wave front must be small compared with the angular frequency, or, according to
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(6.26), this change per unit velocity must be small compared with the inverse of the
wave length. In both cases, this condition is satisfied if the frequency of the wave is
large or its wave length is small. The second condition implies that the variation of
the normal to the wave front (the ray’s direction) must be small compared with the
inverse of the wave length (6.27). This means that wave lengths must be small in com-
parison with the distance along which the ray changes significantly in direction. In
conclusion, ray theory is a good approximation that is valid for high frequencies or
short wave lengths.

The theory we have presented is known as the classical ray theory. The presence of
discontinuities and strong velocity gradients in the medium, such as are found in the
Earth’s interior, leads to serious inadequacies and limitations of this theory. An
improvement in ray theory for inhomogeneous media is obtained by using the WKBJ
approximation (the initials are those of Wenzel, Kramers, Brillouin, and Jeffreys). A
presentation of this theory can be found in brief form in Bullen and Bolt (1985) and
in a more complete form in Aki and Richards (1980).

6.2 Ray trajectories

According to the eikonal equation (6.14), the trajectories of rays or ray paths in
a medium of variable velocity change depending on the variations of velocity. As wave
fronts advance through the medium, they change in shape and consequently change the
directions of their normals or the direction of rays. If we select a point on a wave front
and, as it propagates, follow the changes in the direction of its normal, we have the
trajectory of the ray or ray path corresponding to that point of the wave front.
The trajectory or line of propagation of a ray is given by equation (3.27). The direction
cosines of rays can be written from (6.19) and (6.14) as
y =298 (6.28)
Vo 8x,«
where v, is a reference velocity and v, /v = n is the refraction coefficient at each point of
the medium.
If we consider the trajectory for a particular ray given by the curve s (Fig. 6.1), the
direction cosines of the ray at each point can be written as

o Xm dXz dX3
(vi,vy,13) = <ds’ds’ds (6.29)
By substitution into (6.28), we obtain
oS vy dx;
—=— 6.30
ox; v ds ( )

By substituting for 9S/0x; from equation (6.28) and using d/ds = v; 9/0x; we obtain an
equation for the refraction coefficient n:

on d [ dx;
axi = a (n ds ) (631)
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X,

dX,

V3=d_s S,(x)=C

Fig. 6.1. Wave fronts S; and S, and the ray trajectory.

This equation can be considered to be a generalized form of Snell’s law. It shows how the
direction of the ray changes along its trajectory for a medium of variable velocity. In a
medium of constant velocity, v = v, and n = 1, from equation (6.31) we obtain that the
direction cosines dx;/ds are constant along the ray’s trajectory; that is, rays are straight
lines.

6.3 Propagation in the (x, z) plane

Many problems of ray theory in two dimensions can be solved in a more
convenient way if we take the (x,z) plane as the plane that contains the rays. In this
plane x represents the horizontal direction and z the vertical (positive downward).
For a ray that forms an angle i (the angle of incidence) with the z axis (Fig. 6.2), the
potential of P waves of a monochromatic harmonic wave of frequency w can be
expressed according to (5.2) as

¢ = Aexplik,(sinix + cosiz — at)) (6.32)
Two other ways of writing this are

¢ = Aexpli(k,x + k.z — wt)] (6.33)

¢ = Aexp [iw(j—kj—tﬂ (6.34)

where ¢, and ¢, are the apparent velocities of the wave front in the directions of the axes
x and z, and k, and k. are the corresponding wave numbers. Thus, we have the relations

ki + k2 = ke, (6.35)
I 1 1

Cy cz «
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Cx

& /

z

Fig. 6.2. A ray path or trajectory. The true velocity of propagation is o and the apparent velocities
are ¢, and c..

According to (6.34) and (6.32),
e’ e’
Cxy == C;=—— (6.37)
sin i cosi
In many problems, for example when « is a function of z, it is convenient to separate the
propagation in the z direction from that in the x direction. For this we call ¢ and k the
apparent velocity and wave number in the x direction. If we have waves propagating in
positive and negative z directions (downward and upward), they can be expressed in the
following way:

¢ = [Aexp(ikrz) + Bexp(—ikrz)] explik(x — ct)] (6.38)
where r = tan e = coti from (5.10), and also in the form
¢ = [Aexp(iwgz) + Bexp(—iwgz)] expliw( px — t)] (6.39)

where p=1/c=sini/a and ¢=1/c. =cosi/a are the inverses of the apparent
velocities in the x and z directions, also called the slowness components in the two direc-
tions. As functions of ¢ and «, r and ¢ are given by

() 6a0)

(07

1 CZ 1/2 1 1 1/2

In order to have real waves propagating in the z direction, r and ¢ must be real, or ¢ > a.
If ¢ < «, r and ¢ are imaginary, and, according to (6.38) and (6.39), waves propagate in
the x direction and their amplitudes decrease or increase exponentially in the z direction.
The exponential increase has no physical meaning and hence we must put B = 0. The
exponential decrease corresponds to inhomogeneous waves, as we saw in the study of
supercritical incidence (sections 5.2 and 5.3). The same procedure can be applied to S
waves by replacing o by 8. When the two types of waves are treated together, the
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following notation is used: for P waves, r, p,, and ¢,; and for S waves, s, pg, and g;.
Then, we have the relations kr = wgq,, and ks = wg;.

6.4 Ray trajectories and travel times. A homogeneous half-space

We start by considering the propagation of rays in a homogeneous half-space. If
the free surface is the horizontal plane, this is a simple way to represent a model of the
Earth of planar geometry. A flat Earth is a sufficiently good approximation for small
distances (less than 1000 km), for which effects of its curvature can be neglected. For
the two-dimensional problem, we choose the coordinates (x, z) as defined in the previous
section with x along the horizontal plane and z in the vertical direction positive down-
ward. The origin of rays is at a point (focus or hypocenter) situated at a certain depth 7
from the surface and observation points are situated along the x axis on the surface. The
origin of coordinates is located at the projection of the focus onto the surface, or epi-
center (Fig. 6.3). The depth of the focus introduces a certain spatial dimension; therefore,
the application of ray theory requires that the wave lengths be much smaller than the
depth. We are interested in ray trajectories or paths and travel times, that is, the times
which waves take to propagate from the focus to each observation point as a function
of the horizontal distance #(x). For a medium of constant velocity the ray trajectories
are straight lines (6.31) contained in the (x,z) plane.

Times taken for rays to travel from the focus F to an observation point P for a medium
of velocity v (v represents the velocity either of P or of S waves) are given (Fig. 6.3) by
2, 2012
G LD (6.42)
v
Both the travel time ¢ and the distance x can also be expressed in terms of the angle of
incidence at the focus i:

h
= 4
! VCOS 1 (6.43)
X =htani (6.44)

z

Fig. 6.3. Trajectories of two near rays in a half-space of constant velocity. The wave front advances
from P to P’ in time dz.
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Equation (6.42) gives the travel times directly as a function of the horizontal distances
t(x), whereas equations (6.43) and (6.44) are parametric equations for times and
distances #(i) and x(i). In this case, the parameter used is the take-off angle at the
focus. Only for cases of simple geometry is it possible to write explicit equations for
t(x). However, no matter how complicated the geometry, we can write, using Snell’s
law, equations of parametric form. We will see that this holds also for media of variable
velocity.

As we saw already, if v is the velocity of propagation along the ray and c is the
apparent velocity of the intersection of the wave front with the x axis (Fig. 6.3), then

v
= 6.45
¢ sin ( )
For two rays that arrive at distances x and x + dx with traveling times ¢ and 7 4 d¢, we
can deduce easily from Fig. 6.3 (sini = vd¢/dx) that
dr  sini 1

R L=P (6.46)
where p is the ray parameter, which, according to Snell’s law, is constant along each ray.
This is an important relation between the slope of the curve of travel times at a distance x
and the parameter of the ray that arrives at that distance. From (6.46), we can express
sini, cosi and tani in terms of v and p, and n = 1 /v, the slowness or inverse of the
velocity:

sini =wvp = p/n

cosi=(l— vzpz)l/2 = v(n —pz)

vp _ P
1 =p) =)
On substituting these equations into (6.43) and (6.44), we obtain

2 1/2

tani =

h
(= (6.47)
v = p)'"?
___ph
X = R (6.48)

These are another pair of parametric equations for ¢ and x, in terms now of the ray
parameter and the slowness. These are very useful equations, as we will see in the next
chapter.

The travel time curve #(x), according to (6.42), is a hyperbola that tends asymptoti-
cally toward a straight line of slope 1/v (Fig. 6.4). If the focus is at the surface
(h =0), t(x) is a straight line with slope 1/v that passes through the origin.

At every distance x there arrives a ray of a different parameter p, so the curve p(x) is
also characteristic of each medium. For the homogeneous half-space we find from (6.48)
that

nx

T (6.49)

p:
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X X

Fig. 6.4. The traveling time curve of rays in a half-space with constant velocity v for a focus at
depth A.

X
Fig. 6.5. The curve of the ray parameter with distance p(x), for a half-space with constant velocity v.

The curve p(x) (Fig. 6.5) starts with p = 0 for x = 0, corresponding to the vertical ray
upward (i =0). For very large values of x the curve tends asymptotically toward
p =n = 1/v. This straight line corresponds to a ray that travels horizontally (i = 90°),
which naturally exists only for # = 0.

Another important relation is the change in distance x with the ray parameter p.
Taking the derivative with respect to p in (6.48), we obtain

dx h N hp*

o P =p)"? - p)
According to this equation, dx/dp is always positive; that is, if p increases, x increases
too (Fig. 6.6). For p =0, dx/dp has a constant value (/v) and, for the maximum
value of p (p =1n), tends to infinity. For small values of p, rays are nearly vertical

(i ~0°) and x varies little for changes in the angle i, whereas for values of p near

p = n, rays are nearly horizontal (i = 7/2) and small changes in i produce large changes
in x.

e (6.50)
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dax
dp

hv

SFe—————

p

Fig. 6.6. The curve of the variation of distance with the ray parameter dx/dp, in a half-space with
constant velocity v.

X
Fig. 6.7. The traveling time curve #(x) and the meaning of the reduced time 7(p) (the tau function) for

a half-space with constant velocity v.

Another important relation in the study of ray propagation is that of reduced times
with the ray parameter or tau function 7( p), defined by

7(p) = t(p) — px(p) (6.51)
If we take derivatives with respect to p, we obtain
dr  dr dx (6.52)

A T
On substituting,
di_drdy_ ds
dp dxdp P dp
we obtain
dr _
dp
The slope of the curve 7( p) gives us the distance x which corresponds to the ray with

parameter p. From Fig. 6.7 we can see that 7 is the intersection of the tangent to the
curve #(x) with the 7 axis at a point at a distance x and with a slope p. An important

—x (6.53)



102 Media of constant velocity

<|=

n p

Fig. 6.8. The curve of the rau function (the reduced time with the ray parameter) 7(p), in a half-space
with constant velocity v.

property of 7( p) is that it is always a single-valued function even for cases in which #(x)
is a multiple-valued function.
For a homogeneous half-space, on replacing (6.47) and (6.48) in (6.51), we obtain

m(p) = h(n* — p*)'? (6.54)

Figure 6.8 shows the curve 7(p). For p =0, 7 represents the traveling time of the
vertical ray and, in the upper limit of p (p =n), it corresponds to a horizontal ray,
T=0.

This exercise has shown the behavior of ray propagation in a homogeneous half-space
and has served to define some important concepts such as the ray’s trajectory, horizontal
distance, travel time, ray parameter, apparent horizontal velocity, and reduced time. We
have also seen the curves #(x), p(x), 7( p), and dx/dp( p) that describe the characteristics
of ray propagation.

6.5 A layer over a half-space

Another example of ray propagation in media of constant velocity is that of
a layer of thickness H and velocity v/ over a half-space of velocity v. This situation
allows the study of ray trajectories and travel times due to the presence of a surface
of contact between the layer and the half-space. The layer’s thickness is a parameter
that gives a spatial dimension to the model. For this reason, the application of
ray theory is valid if the wave lengths are much smaller than the thickness of the
layer. This example represents, in a simplified way, the situation of the Earth’s
crust over the upper mantle for small distances, for which the flat-Earth approxima-
tion is valid.

We start with the velocity of the layer smaller than that of the half-space (v < v) and
the focus at the surface (& = 0) (Fig. 6.9). At a point P at a distance x from the focus we
have three types of rays: (a) direct rays, traveling from F to P; (b) rays reflected on the
surface between the layer and the half-space (FCP); and (c) critically refracted rays or
head waves, that is, rays with a critical angle of incidence i, at the contact surface that
propagate a certain distance horizontally through the half-space and come back to the
free surface with the same angle (FBDP) (see section 5.2 and equation (5.33)). Travel
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Fig. 6.9. Ray paths in a layer over a half-space (v/ < v), for a surface focus. The direct ray is FP, the
reflected ray is FCP, and the critically refracted ray is FBDP.

times for the three types of ray are

ty = x/V/ (6.55)
2(H* + X7 /4)'?
X . /4) (6.56)
2H — 2H tani
fo= e (6.57)
v' cos i, v

The equation for head waves can be written as a function of the velocities, taking into
account that sini, = v'/v:
v 2H(E — )2
. Calet B (6.58)

v VU

The second term in (6.58) is called the ‘delay time’ and is the difference between the times
taken to travel the distances FB with velocity ' and AB with velocity v (Fig. 6.9). Head
waves reach the free surface from a minimum distance called the ‘critical distance’ x.,
which corresponds to the reflected ray with the critical angle (Fig. 6.9). As a function
of the velocities, the critical distance is given by

2HY
(Uz _ ,U/2)1/2

Travel time curves of the three types of ray are given in Fig. 6.10. For direct rays (a)
and head waves (c), they are straight lines with slopes 1/v and 1/v, respectively. For
reflected rays they are hyperbolas that tend asymptotically toward the straight line of
the direct rays. Reflected rays can be divided into subcritical and supercritical rays
according to the value of their angle of incidence. Supercritical reflected rays are total
reflections and thus carry more energy than do subcritical reflections (Chapter 5).
First arrivals correspond to direct rays up to a certain distance x’, and, for greater
distances, to critically refracted rays. The distance x’, in terms of velocities, is given by

/N 1/2
Y= 2H<“ * U,> (6.60)

X, =

(6.59)




104 Media of constant velocity
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Fig. 6.10. Travel times of rays in a layer over a half-space: (a) direct rays; (b) reflected rays, SBC,
subcritical and SPC, supercritical; and (c) critically refracted rays (head waves).
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Fig. 6.11. Reduced travel time curves for a layer over a half-space: (a) the reduced velocity v’ (the
layer velocity), and (b) the reduced velocity v (the half-space velocity).

A useful representation is given by the reduced travel times, the ordinate representing
times reduced with respect to a certain velocity vy in the form ¢ — x/vg. Figure 6.11(a)
shows reduced travel times with vg = ¢/, and Fig. 6.11(b) shows those with vg = v. In
both cases, this type of representation increases the differences between the slopes of
the lines for the travel times of the rays. The curve corresponding to rays with velocity
equal to vy is parallel to the x axis, those corresponding to lower velocities have positive
slopes, and those corresponding to higher velocities have negative slopes.

In order to study travel times of reflected rays, it is also useful to represent square
times and distances (tz,xz). In this representation, travel times of reflected rays are
straight lines with slopes 1/1/2 (Fig. 6.12).

For each of the three types of ray (direct, head waves, and reflected) there is a curve
p(x) (Fig. 6.13). For direct rays (a), it is a straight line, since the value of p is constant;
p = 1/v. For reflected rays (b), the curve is a hyperbola that starts at the origin and
tends asymptotically toward the straight line of slope 1/v'. Finally, for head waves
(c), the curve is a straight line with p = 1/v.

The relation between travel times and the parameters of the model (H, v and v") makes
their determination easy. The layer velocity ¢/ is the inverse of the slope of the travel
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Fig. 6.12. The square of the traveling time curve (r27 x2) for reflected rays in a layer over a half-space.
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Fig. 6.13. A plot of the ray parameter versus distance p(x) for a layer over a half-space: (a) direct
rays, (b) reflected rays, and (c) critically refracted rays (head waves). The critical distance is x,.

times corresponding to direct rays and the velocity of the half-space v is that of critically
refracted rays. Once the velocities are known, the thickness of the layer can be deter-
mined from the value of the critical distance x, using (6.59) or from the time of intersec-
tion of head waves (x = 0) using (6.58). The velocity and thickness of a layer can also be
determined from the slope and intercept time of reflected rays in the (xz7 12) representa-
tion. This methodology, explained only for the case of there being one layer, can be
applied to the determination of velocities and thicknesses of layered media in seismic
refraction profiles for the study of the Earth’s crustal structure (Chapter 9). The one-
layer model may be used as a first approximation to the study of sediments over a
rock basement or the crust over the upper mantle.

If the focus is not at the surface (Fig. 6.14), but rather at a depth A, equations of
traveling times for direct rays (a), reflected rays (b), and critically refracted rays (c)
are modified with respect to (6.55), (6.56), and (6.58) to the forms

(XZ + h2)1/2

fo= T (6.61)
v
2 21/2
x*+Q2H—-h
g = . /] (6.62)
B 2 212
N C el )i ClalCls) (6.63)
v VU

The travel time curves now have the following forms (Fig. 6.15): the curve for direct rays
is a hyperbola tending asymptotically toward the line of slope 1/v' and does not pass
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Fig. 6.14. Ray trajectories for a focus at depth / in a layer over a half-space: direct, reflected, and
critically refracted rays.
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Fig. 6.15. Traveling times for a focus at depth /1 in a layer over a half-space: (a) the direct ray, (b) the
reflected ray, and (c) the critically refracted ray (head wave).

through the origin; the curve for critically refracted rays is a straight line of slope 1/v, but
its time intersection depends also on the focal depth; and that of reflected rays is a hyper-
bola as in the previous case. In these two examples we have considered that the velocity
of the layer is smaller than that of the half-space. In the opposite case, there are no
critically reflected rays, but only direct and reflected rays.

6.6 The dipping layer

Let us consider now that the surface of the contact between the layer and the
half-space is not parallel to the free surface, but has a dip angle 6. This is known as
the case of a dipping layer. The thickness H of the layer is now measured perpendicularly
from the base of the layer under the focus to the free surface. We have two different cases
if we observe arrivals of rays in down-dip or up-dip manner (Fig. 6.16). Travel times
of critically refracted and reflected rays are affected by the dip of the layer. For critically
refracted rays and down-dip observations of a surface focus, using the results from (6.57)
and that, according to Fig. 6.16(a), FC = xcosf, EC = xsinf, E'C = xsinftan i, and
EE' = xsinf/cos i, the travel times ¢~ are

_ xcosf xsinftani. 2Hcosi., xsin@
_xeosd o 2HCoste | xon (6.64)
v v v v
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(a) (b)
Fig. 6.16. Trajectories of critically refracted rays (head waves) for a dipping layer: (a) down-dip

observations, and (b) up-dip observations.

By replacing v = v'/sin i into the first and second terms and combining them, we obtain

__ xsin(i; +6) n 2H cos i,

o o (6.65)
and, as a function of the velocities,
_ xsin(i, +0) 2HW — )2
_ xsin( : ) [ 2H( v ) (6.66)

v 00,
Because H is measured normal to the base of the layer, the depth of the layer under the
focus is H' = H /cos 6.

For up-dip observations (the layer is inclined upward from the focus) (Fig. 6.16(b)),
traveling times of critically refracted rays are obtained in a similar way:

;o xsin(i, —0) 2Hcosi,
- 7

v v

(6.67)

If we compare equations (6.65) and (6.67) with (6.58) we find that, on putting
v/ = wsini, in the first two, the first terms are multiplied by sin(i, + 6)/sini, and
sin(i, — 0)/sin i, respectively. If § = 0, both factors are unity and equations (6.65) and
(6.67) are equal to (6.58). These factors contain the influence of the layer’s dip on the
traveling times.

Travel time curves for these rays are shown in Fig. 6.17, in which direct rays are also
drawn. The slopes of straight lines corresponding to down- and up-dip traveling times of
head waves according to (6.65) and (6.67) are

~_sin(i +0)
5= vsin i (6.68)
g+ = Sinte —0) (6.69)

vsin i,
For down-dip observations, the slope is larger than that for a flat layer of the same
velocity, whereas for up-dip observations, it is smaller. If we determine the velocity of
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St S

Fig. 6.17. Travel time curves in both directions (direct and inverse) for direct and critically refracted
rays in a dipping layer. S~ and S™ are the slopes of the curves of the critically refracted rays for
down- and up-dip observations.

the half-space from the inverse of the traveling time curve without considering the dip of
the layer, the result is larger or smaller than the real velocity. If we have observations in
one direction only, we can not detect the dip of the layer and in consequence the slope of
the curve of head waves gives us only an apparent velocity that may be smaller or larger
than the real one, depending on the direction of the dip of the layer.

If we have observations in both directions, down- and up-dip ones, we can determine
the dip of the layer and the true velocity of the half-space. The dip 6 can be determined
from the slopes of the critically reflected rays S* and S™, using (6.68) and (6.69), and
making the substitution v = vsin i.:

0 =1[sin""(vS7) —sin ' (v'ST)] (6.70)
The velocity v/ of the layer is deduced from the slope of the traveling time curve of direct
waves. Once the dip 6 is known, the true velocity of the half-space is given by
2cosf
V=
St+S8-

The depth along the vertical from the focus to the base of the layer can be determined
from the intersection times of travel time curves of down- and up-dip head waves #;
and f; :

(6.71)

i
H =——— 6.72
cos i, cost ( )

tH
oY (6.73)

~ cosi,cosf
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Fig. 6.18. The trajectory of a reflected ray in a dipping layer.

The determination of dips of layers and true velocities from observations of traveling
times of head waves is possible only if we have observations along the same line in
both directions. In the context of seismic refraction profiles these are known as direct
and inverse profiles.

The equation for travel times of the reflected rays in a dipping layer can easily be
found by using the image method of optics (FAP = F'AP) (Fig. 6.18):

1
t:g(xz + 4H? + 4xH sin )"/ (6.74)

The sign depends on whether the observations are down-dip (+) or up-dip (—). The
dipping layer problem can be used as a first approximation to the study of dips in the
Earth’s crust.

6.7 A plane layered medium

A plane layered medium consists of &V flat parallel layers of different thicknesses
H; and different constant velocities v; over a half-space. For a surface focus, if the
velocity increases with the depth in all layers, the traveling times of critically refracted
rays at the interface at the top of layer k can be written from equation (6.58) as

k

x 2H, (v — 7))
t =— _— 6.75
k + ; v (6.75)

The second term corresponds to the sum of the delay times from layer | to layer k. The
critical distances and intersection times are given by

k - 2Hw;

Xe = — (6.76)
‘ i=1 (Uzzc - U?)l/z
k 2 oN1)2
2H;(vi —v;
K= Z M (6.77)

Uk V;
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Fig. 6.19. Traveling time curves for direct and critically refracted rays (head waves) for a plane-
layered medium: (a) normal traveling times, and (b) reduced traveling times (reduced velocity vy).
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Fig. 6.20. Trajectories of reflected rays in a plane-layered medium.

Travel time curves for these rays have the form of N segments each with a slope equal to
1 /vy, (Fig. 6.19(a)). The slopes have decreasing values and the critical distances and inter-
section times have increasing values. The reduced traveling times with the reference
velocity v, are line segments with positive slopes for rays refracted at layers above
layer k (smaller velocities) and negative slopes for rays refracted under it (higher
velocities) (Fig. 6.19(b)).

If a layer has a smaller velocity than the one on top of it, this is called a low-velocity
layer. At the top of this layer there are no head waves. Head waves that arrive at the
surface after traveling through the low-velocity layer are refracted at a layer with a
velocity higher than the one at the top of this layer. These rays are delayed by the
time spent traveling through the low-velocity layers.

Travel times and distances of reflected rays at each layer interface in parametric form
are given (Fig. 6.20) by

k
=2 i (6.78)

“— v; COS I;

k
Xy =2 Hitanj; (6.79)
i=1
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According to (6.47) and (6.48), these two equations can also be written in terms of the
ray parameter p, and slowness in each layer #;:

H.
=2 i (6.80)
; Ui(77,'2 —Pi)l/z
k
PiH;
X = _— (6.81)
,; (2 —p})'?

The angles of incidence of rays that pass from one layer to another, according to Snell’s

law, satisfy the relation
sinj; _siniiy (6.82)

Vi Vi+1

Using this relation, equations (6.78) and (6.79) can be written solely in terms of the take-

off angle at the focus. Therefore, for each reflected ray, we can find the traveling time and

corresponding distance in terms solely of the take-off angle at the focus or of the ray

parameter.

The parametric expressions for reflected waves (6.78)—(6.81) can also be generalized to
other geometries of layers or blocks of different constant velocities. These expressions
can also be written for cases in which the focus is not at the surface. This analysis is
part of the technique called ray tracing in which travel times and amplitudes are
calculated by following the trajectories of the rays. Once the take-off angle of the ray
at the focus has been fixed, its trajectory is specified by Snell’s law and travel times
and distances can be determined. However, this is not possible for critically refracted
rays or head waves, since rays that leave the focus with the same take-off angle arrive
at different distances.



7 RAY THEORY. MEDIA OF
VARIABLE VELOCITY

7.1 A variable velocity with depth

Although in the general case of a variable velocity its dependence is on the three
spatial coordinates, for many seismologic problems it is sufficient to consider only the
variation of the velocity with depth. For relatively short distances (A < 1000 km),
plane geometry is a good approximation and the Earth may be considered as a half-
space limited by a free surface. The vertical direction is represented by the z coordinate
positive downward and the horizontal direction is represented by x. Rays are contained
in the (x, z) plane and problems are reduced to two dimensions (section 6.3). The velocity
vy and angle of incidence i, at the surface are taken as reference values. The direction
cosines for an arbitrary point on the trajectory of a ray are given (Fig. 7.1) by

dx

dz
, == j 2
v, ds COS 1t (7 )

where ds is an increment of the distance along the ray. Taking the x component in
equation (6.31), and replacing (7.1), we obtain

d Vo . .
o (Usm z) =0 (7.3)

where v(z) and i(z) are arbitrary functions of the depth. This equation indicates that
(vg/v) sin i has a constant value along the ray. Since, for z = 0, this constant is sin iy, equa-
tion (7.3) represents Snell’s law for media with velocities that are variable with depth:
sini(z) sini,
_ =p (7.4)
v(z) Yo

where, as we have already seen, p is the ray parameter, which has a constant value for
each ray along its complete trajectory. If we take derivatives in equation (7.4) with
respect to s (the ray’s direction), then

d, . . d

e (sini) = a(pv) (7.5)
and substituting in (7.2), we have

di dv

P pa (7.6)
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Vv(0)=Vo
v(@)

Fig. 7.2. The radius of curvature of a ray trajectory.

This equation relates changes in the angle of incidence i(z) along the ray, that is changes
in the ray trajectory, to changes in velocity.

According to (7.6), the curvature of the ray changes along its trajectory. At a point of
this trajectory, the radius of curvature (Fig. 7.2) is given by

ds
= 7.7
G (7.7)
Substituting equation (7.6) into this gives
1
Pz

If the velocity is constant, the radius of curvature is infinite and ray trajectories are
straight lines. If the gradient of the velocity is constant, R is also constant and the ray
trajectory is a circle. The curvature of a ray changes along its trajectory according to
the changes in the velocity gradient. The curvatures of different rays vary according
to their p values.

For two contiguous rays with parameters p and p + dp, and for two wave fronts at
times ¢ and ¢+ dt, separated by a horizontal distance dx (Fig. 7.3), we can easily
deduce (from sini = ds/dx) that

e _sni_, (79)

dx v
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Fig. 7.3. The relation between the wave fronts and trajectories of two rays with parameters p and
p+dp.

This result is similar to that obtained for a medium of constant velocity (6.46) and is
known as the Benndorf relation.

As we have seen for the propagation of rays in media of constant velocity (Chapter 6),
in the study of rays in media with variable velocities it is important to obtain expressions
for the horizontal distance x, the distance traveled along the ray’s trajectory s, and the
travel time ¢. For media in which the velocity varies with depth, for a ray that starts at the
surface and arrives at a certain depth z (Fig. 7.1), x, s, and ¢ are given by

x= J tanidz (7.10)
0
2 dz
y — .11
5 J() cosi (7 )
t:JH dz (7.12)
0 VCOS1

If the velocity increases with depth, dv/dz is positive and the radius of curvature is also
positive; that is, rays are concave upward. If rays start at the surface, they will also end at
the surface, turning at a maximum depth / (Fig. 7.1). The horizontal distance x, distance
traveled along the ray s, and travel time ¢ are given by twice the integrals (7.10)—(7.12),
putting z = A. In a similar manner to what we did with equations (6.47) and (6.48),
expressions (7.10)—(7.12) for rays that start and end at the surface, turning at a
maximum depth A, can be written in terms of the ray parameter p and slowness

n(n=1/v)as

h
pdz
x:2J —_— (7.13)
o (i = p?)'"?
h
ndz
s:2J —_— (7.14)
o (P —p)'?
i 2
7 dz
t:2J —_— (7.15)
0 (P —p)'"?
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We can also derive an expression for reduced times or the rau function 7(p), by
substituting (7.13) and (7.15) into (6.51):

h
() =2 o =) Pz (7.16)

We notice that expressions (7.13) and (7.15) for x and ¢ are similar to those derived for a
half-space of constant velocity (6.47) and (6.48). If the velocity increases with depth, then
for each value of p there is a ray that arrives at a distance x in a time ¢, reaching a
maximum depth /. Since, for z = h, i = «/2, the ray parameter p = 7, = 1/v,, where
v, is the velocity at depth 4. Along the ray n > p, and there is a singularity in expressions
(7.13)—(7.15) at the limit z = A. According to (7.9), the slope of the travel time curve #(x)
equals the ray parameter at each value of x and corresponds to the inverse of the velocity
at the turning depth / (dz/dx = 1/v,). This is an important relation between travel time
curves and velocity distributions. Depending on the form of v(z), integrals for x and ¢
may have analytic solutions. Only in some simple cases is it possible to find an explicit
analytic function for #(x).

7.2 The generalized formulation

The analysis of ray propagation in media with velocities that depend solely on
depth allows a simplified approach to the generalized ray theory in terms of a
Lagrangian formulation and Hamilton’s canonical equations. We present only a brief
discussion of the problem. The generalized formulation is very useful in the solution
of problems in which the velocity varies with more than one coordinate. The travel
time can be expressed, in a similar way to that in (7.12), in terms of the horizontal
distance x and the differential ds along the ray (Cisternas, 1982):

,:rif (7.17)

0 v
The differential along the ray ds is given (Fig. 7.1) by
ds = (dx® +d2A)"?* = (1 + %)% dx (7.18)

where 7' = dz/dx and the independent variable is x, so that vis a function of z and z is a
function of x. Equation (7.17) can be written as

X 2y1/2 x
t:J wdxzj L(z,Z')dx (7.19)
0 v 0

where L(z,z') may be considered the Lagrangian function of the ray,

L@A:“Tﬁm (7.20)
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Since (7.19) represents the travel time, according to Fermat’s principle, this must be sta-
tionary, and, therefore,

X
SJ L(z,Z)dx=0 (7.21)
0

This condition is satisfied if L is a solution of Lagrange’s equation,

d /0L OL

(=) Z= 22

dx(c‘)z’) 0z 0 (7.22)
If now we define the moment P = 9L/3Z, then from equation (7.22) we deduce that

dp , 0L

v P = P (7.23)
We can now define the Hamiltonian H(z, P):

H(z,P) =P - L (7.24)
The differential dH is given by

dH =Z7dP- P dz (7.25)
Since dH is a perfect differential,

oOH
I -
Z=2p (7.26)
OH
P =__" 2
0z (7.27)

This is a system of canonical equations of first order of Hamilton. Since, in our problem,
the independent variable is x, we can determine dH/dx and, using (7.26) and (7.27), we
have

dH OH , O0OH

— = —P =0 7.28

dx 0z " op (7.28)
In consequence, H is constant with x. If we substitute the Lagrangian L from (7.20) into
equation (7.24), we obtain for H

-1

where, according to (7.28), p(x) is a constant. From equation (7.16) we have (Fig. 7.1)
that

1 X L
m = a =S (730)
On substituting (7.30) into (7.29), we find that p is the ray parameter:
sini _ % _ (7.31)

where ¢ is the apparent velocity of the wave front in the direction of x (section 6.3,
Fig. 6.2). The condition H(x) = constant for each ray is a formulation of Snell’s law.

v
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This is a different formulation of ray theory that has led to the same results as those we
already knew. For more general problems this formulation is very useful.

7.3 The change of distance with the ray parameter

For a given depth distribution of the velocity, at a distance x there arrives a ray
with parameter p. In order to understand the behavior of ray trajectories in media of
different velocity distributions, it is important to consider the change in distance with
the change in ray parameter. Equation (7.13) with p as a variable represents distances
corresponding to rays of different parameters. If we take derivatives with respect to p,
we obtain

dx_zr dz ) th dz
- Tl p = )

Changing the integral over z to one over 7, putting dz = f(n) dn and changing the limits
of integration accordingly (for z = 0, to n = n; and for z = h, to n = 7),), we have

% _, J?]p f(’l’]) d’l’] n 5 iJ’ﬂp f(’l’]) d'r]
dp (2 =)' T dp (P = p1)' 2
Integrating by parts in the second term gives

2| = romeos () < [Meos! () ) (7.34)

o

(7.32)

(7.33)

Derivation with respect to p in this expression results in

0. (1) o f'(n)dny
20 ( 2)1/2+J 2 ( )2 1/2 (7.35)
(g —p?) w p(n° —p*)
Substituting (7.35) into (7.33) gives
dx  2nof [ f(n) 4+ nf(n)]d
b i (?01)/2+2J [ (n)2 nz(z)z} U (736)
P (ng—p?) m (0" —p7)

Now we introduce the variable ¢, which is the gradient of the velocity per unit of velocity:

= % % _ _U% (7.37)
Since f(n) = dz/dn, nf(n) = —1/¢ and
, , d 1 d¢
Sm)+nf(n) = a nf(n)] = 2 dn (7.38)

By substitution into (7.36) and changing the integral over n to one over z, we finally
obtain

y —dg d
dx -2 ! d z
—:7+2J —4dz (7.39)
dp G —p)'? o - p)'?
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where, as a function of the gradient of the velocity with depth,

d¢ 1 (dv>2 1 d*v

52 7.4
dz v? (7.40)

dz v dz?
Equation (7.39) represents the change in horizontal distance x when we pass from one
ray of parameter p to another of parameter p 4+ dp. This is an important relation for
studying the behavior of rays in a medium with a certain distribution of velocity with
depth, v(z). The first term of (7.39) depends on the gradient of the velocity at the surface
(o and the second depends on the gradient at each depth ¢ and its change with depth,
d¢/dz. If changes in the gradient of the velocity are small, the first term is dominant
and dx/dp is negative. This means that rays with smaller values of p arrive at larger
distances. If there are large changes in the gradient of the velocity, dx/dp may
become positive and there is an inversion, which means that rays with smaller values
of p arrive at smaller distances.

7.4 The velocity distribution with ¢ constant

A first application of equation (7.39) corresponds to the case with ¢ constant
and, thus, the second term is zero:

dx -2
dp Go(mg —p*)'?
This case is of no direct interest in seismology, but constitutes a good exercise to help the

reader understand the applications of this equation. If we assign a constant value ( = «
(a small positive value), then, from equation (7.37), we obtain

dv

adz =—
v

(7.41)

By integration of this equation with the condition that, for z = 0, v = vy, we obtain an
exponential distribution of velocity with depth:

v=uye” (7.42)
From equation (7.41), integrating with respect to p between 7, and 7,, we obtain for x
(" -2d 2
)C:—leizpl/z:—cos_1 (77") (7.43)
@ Jng (77() -p’) « "o
Since 7), = p, the ray parameter for the distance x, on solving for p(x) we have
1 ax
=— — 7.44
G o

Since p = dt/dx, by integrating (7.44) between 0 and x, we obtain the travel time #(x):

2 ax
- " sin( & 4
t v s1n( 3 ) (7.45)
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In this distribution, both the velocity and its gradient increase exponentially with depth,
which is not a property applicable to real media. However, this simple exercise has
shown us how to obtain travel times #(x) from the expression for dx/dp for a specified
distribution of velocity with depth. We will see later how we can find certain character-
istics of traveling time curves, using equation (7.39), without solving the integral.

7.5 A linear increase of velocity with depth

A distribution of velocity that is very useful in seismology is that with a linear
increase with depth. This distribution is applicable in many cases to the Earth’s crust and
upper mantle. It is

v(z) = vy + kz (7.46)
where vy is the velocity at the surface (z =0) and k is the constant velocity gradient

(dv/dz = k). A ray that arrives at a horizontal distance x penetrates to a maximum
depth £ (Fig. 7.4). The ray parameter p is, then, given by

1
= 7.47
p Vo + k/’l ( )
According to (7.8), the radius of curvature is
R= UTCO +h (7.48)

Since R is constant, the ray’s trajectory is circular with its center at a distance v, /k above
the surface (Fig. 7.4). According to ray geometry, the radius of curvature can also be
written as a function of the horizontal distance:

=) ()T 7

From (7.48) and (7.49) we can deduce that the velocity at the maximum ray depth is

vm:k[(;)2+ (1‘))2]1/2 (7.50)

Fig. 7.4. The circular path of a ray in a medium with a linear increase of the velocity with depth.



120 Media of variable velocity

According to Snell’s law,

(7.51)

The travel time can be determined directly by integration; on substituting (7.51) into
(7.15), we obtain

h

= %J kdz (7.52)

k Jo vy + kz 271/2
(vo—l—kz)[l—( . )]
On substituting for v,,, we obtain

2 1 Um

= — h _— .

t =7 cos ( " > (7.53)

and, finally, using (7.50), we get the travel time as a function of the horizontal distance

1(x):

- 2 . -1 kx
tfzsmh (2UO> (7.54)

This expression can also be obtained by using equation (7.39) for dx/dp, as we did in
section 7.4. According to (7.37), for a linear increase in velocity, ¢ and d¢/dz are
given by

k
= 7.55
C Vo + kz ( )
i3

de = (7.56)

dz (vy +kz)

On substituting into (7.39), we obtain

-2

dx _ (7.57)

A kA1 o)

By integration with respect to p between 7, and 7, (the slowness at the ray’s deepest
point) and remembering that for each ray 7, = p, we obtain for x(p)

2
X:Eu Y (7.58)
Solving for p as a function of x gives
1

BE

(7.59)

p:



7.6 Distributions of velocity with depth 121

Since p = dt/dx, t(x) can be obtained by integration of (7.59) between 0 and x:
1 b
J dx (7.60)

ey,
2’00

The result of this integral is again expression (7.54).

For a medium with a linear increase in velocity with depth, that is, one with a constant
velocity gradient (Fig. 7.5(a)), rays are circular (Fig. 7.5(b)). The curve dx/dp
(Fig. 7.5(c)) always has negative values and singularities at p = 0 and p = 7,. The ray
parameter p decreases when x increases, with a maximum value 7, for x =0, and
tends to zero for x infinite (Fig. 7.5(d)). The travel time curve ¢(x) has a positive slope

with value dz/dx = 7y, for x = 0, that decreases monotonically as x increases (Fig.
7.5(e)).

7.6 Distributions of velocity with depth

Equation (7.39) may be used to find the behavior of rays for different distribu-
tions of velocity with depth without solving completely for expressions of p(x) and 7(x).
This equation provides us with information on rays’ trajectories and travel times for gen-
eral types of velocity distributions. The first step is to relate the characteristics of the
velocity distribution v(z) and its gradient dv/dz to values of ¢ and d{/dz, and thus
find the general form of the curve dx/dp as a function of p. Integration of this equation
gives us the curve for p(x), that is, the behavior of the ray parameter with distance. Since
p = dt/dx, a new integration gives us the travel time curve (x). Also, from knowledge of
the velocity gradient, we obtain the radius of curvature (7.8) and the general character-
istics of rays’ trajectories. In this way, even if we do not know the analytic expression for
the velocity distribution with depth, knowing some of its characteristics we can find some
properties of rays’ trajectories and travel times. We will study three cases corresponding
to velocity distributions with a gradual increase, rapid increase, and decrease of velocity
with depth.

7.6.1 A gradual increase of velocity

A useful distribution of velocity with depth applicable to the Earth is a gradual
increase with a small gradient that changes very slowly. This distribution is known in
seismology as the normal distribution of velocity. Since dv/dz is small and positive, ¢
has the same characteristics (7.37). Since there are only very small changes in velocity
gradient, according to (7.40), d¢/dz is very small. Therefore, in (7.39), the first term is
the most important and dx/dp is negative. In this aspect, this case is similar to that of
constant ( (section 7.4). The velocity distribution with constant gradient of section
7.5, for small values of gradient, is a particular case of the normal distribution.

The most important properties of this distribution are represented in Fig. 7.6 for a
surface focus. The velocity v(z) increases gradually with depth (Fig. 7.6(a)) from a
value v, at the surface; the gradient of velocity changes very slowly with depth. The
slowness 7 decreases with depth from a value 7, at the surface (Fig. 7.6(b)). The rays
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Fig. 7.5. A medium with a linear increase of velocity with depth. (a) The distribution of the velocity with depth. (b) A ray trajectory. (c) The variation of
the distance with the ray parameter dx/dp. (d) The variation of the ray parameter with distance. (¢) The travel time curve.
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Fig. 7.6. A medium with a normal distribution of velocity with depth. (a) The distribution of velocity with depth. (b) The distribution of slowness (the
inverse of velocity) with depth. (c) Ray trajectories. (d) The variation of the distance with the ray parameter dx/dp. (e) The variation of the ray parameter
with distance. (f) The travel time curve.
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Fig. 7.7. A medium with a zone of a rapid increase of velocity with depth. (a) The distribution of velocity with depth. (b) The distribution of slowness (the
inverse of velocity) with depth. (c) Ray trajectories. (d) The variation of distance with the ray parameter dx/dp. (¢) The variation of the ray parameter
with distance. (f) The travel time curve.
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are curved, concave upward since the radii of curvature (7.8) are positive and large,
dv/dz being small (Fig. 7.6(c)). For each distance, the ray parameter p equals the
slowness at each deepest point p = 1,. A generic ray that arrives at x,, turns at its
deepest point z,, and has a parameter p =n,, has a velocity at that point of
v(zA) = va = 1/na.

dx/dp is always negative and varies with p from the singularity at p =7, that
corresponds to x =0, to a limit value for very small values of p that correspond to
distances that tend to infinity (Fig. 7.6(d)). The limit, p = 0, can not be considered
since it corresponds to a vertical ray that does not arrive at the surface (or arrives at
an infinite distance). For all other values of p, rays arrive at a finite distance. The integral
of this curve gives us the relation between p and x (Fig. 7.6(¢)). For distances between
zero and infinity, p varies between 7, and 0. Since p = d¢/dx, by integration of the
curve p(x) we obtain the travel time curve #(x) (Fig. 7.6(f)). At the origin the slope of
t(x) is d¢/dx = ng, inverse of the surface velocity vy. As x increases, the slope of #(x)
decreases monotonically. The travel time curve has, then, the form of a curve with a
continuously decreasing slope, that is, dzt/ dx? is negative.

7.6.2 A rapid increase of velocity

Let us consider a distribution of velocity such that, at a certain depth, the
velocity passes from a gradual increase to a rapid increase and, at a further depth,
returns to a gradual increase (Fig. 7.7(a)). The zone of rapid increase is located between
depths z5 and zg and there the velocity varies from v, to vg (the slowness varies from 7,
to ng). The gradient in this zone is larger than those for depths above and below, so that
it changes rapidly at both ends (Figs. 7.7(a) and (b)). From the origin to a distance x,,
rays do not penetrate the zone of rapid increase and have the properties of a normal
distribution.

Since the radius of curvature depends on the inverse of the velocity gradient (7.8),
rays inside the zone of a rapid increase in velocity have smaller radii (Fig. 7.7(c)).
Owing to this change, a ray that turns there may arrive at a distance xp smaller
than x,. To understand this situation, let us consider the curve dx/dp. If, for a
range of values of p near the value 7,, the change in the velocity gradient is sufficiently
large that d{/dz is large and positive, according to (7.39), then dx/dp becomes positive
(Fig. 7.7(d)). The curve for p(x) (Fig. 7.7(e)) now has a range of values of p between 7,
and 7g, for which x decreases when p decreases. Rays with these values of p that pene-
trate deeper arrive at shorter distances (Figs. 7.7(c) and (e)). For rays that turn at
greater depth (z > zp), where the velocity distribution is again normal, p decreases
with increasing Xx.

The travel time curve ¢(x) has its first part (between 0 and x,) just like that in the form
of the normal distribution (Fig. 7.7(f)). For distances corresponding to rays with values
of p for which dx/dp is positive (between 1, and 7p), distances decrease from x, to xp
and d¢/dx increases with x (dzt/ dx? is positive). These rays form a second branch of the
travel time curve for which the curvature has changed sign; now it is concave upward.
Rays that penetrate to greater depths have negative values of dx/dp and arrive at greater
distances as p decreases. On the travel time curve (Fig. 7.7(f)), these rays correspond to
a third branch with negative curvature, concave downward, like the first. According
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Fig. 7.8. The reduced travel time curve for a medium with a zone of a rapid increase of velocity with
depth. The reduced velocity v, corresponds to the beginning of the rapid increase.

to the p(x) curve (Fig. 7.7(e)), for distances between xp and x, there exist three values of
p for each distance x. This means that three different rays arrive at each distance. This
results in the triplication of the travel time curves with cusps at their ends, which repre-
sent a focusing of rays known as a caustic. There is a branch of positive curvature
(upward concavity), called a retrograde branch, since rays that penetrate deeper arrive
at shorter distances (dp/dx > 0). The presence of this triplication of travel times is a
typical feature of velocity distributions for which there is a zone of rapid increase in
velocity with depth with a pronounced change in the velocity gradient. If the change
in velocity gradient is not very pronounced, dp/dx does not become positive and
there is no retrograde branch in the travel time curve. In this case, there is at a certain
distance a change in the slope of the travel time curve which is formed by two branches,
both with downward concavity.

In the reduced travel time representation, the curve has the same characteristics (Fig.
7.8). If the reduced velocity v, corresponds to the region above the zone of rapid
increase, the first branch of the curve corresponds to rays that penetrate to a depth
za, the second for distances between xg and x4 is the retrograde branch with positive
values of dp/dx and upward concavity, and the third is a normal branch for rays that
penetrate deeper than zp. In this representation, differences among the three branches
are accentuated.

We have seen that, in this case, the travel time #(x) is not a single-valued
function (there is a zone of the curve for which, for each value of x, there are three
values of 7). However, for the same case, the rau function 7(p) (6.51) is a single-
valued function (for each value of p there is one value of 7). According to (6.51), for
x=0,t=0, p=mny, and 7=0. The slope of the curve dr/dp is always negative
(6.53) and 7 increases when p decreases (Fig. 7.9). The change in the slope is given
by d*7/dp? which, according to (6.53), is —dx/dp. Thus, for values of p for which
dx/dp is negative, the curve is concave upward, and, when dx/dp is positive, the
curve is concave downward (Fig. 7.9). In the 7(p) curve the rapid change in velocity
gradient results in a change in the sign of the curvature corresponding to the triplica-
tion of the 7(x) curve.
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Fig. 7.9. The curve of the rau function (reduced time) with the ray parameter, for a medium with a
zone of a rapid increase of velocity with depth.

7.6.3 A decrease of velocity. A low-velocity layer

We consider now a velocity distribution such that the velocity decreases at a
certain depth and, further down, increases again (Fig. 7.10(a)). Between the surface
and a depth z4, the velocity increases just like it does in the normal distribution. Between
z4 and zg, the velocity decreases with depth. From zg downward the velocity increases
again. There are, then, two depths, z, and z¢, at which the velocity has the same value
va. The zone where the velocity is less than v, is called a low-velocity layer. Rays that
penetrate to depths less than z, behave just like they do in the normal distribution,
reaching a maximum distance x, (Fig. 7.10(c)). Rays that penetrate into the zone
where the velocity decreases with depth, since dv/dz is negative, change their curvature,
which is now concave downward. Those that penetrate below zg have again an upward
concavity. According to Snell’s law, rays can not turn upwards until a depth z where the
velocity starts to be larger than v,.

Values of dx/dp are negative for ray parameters p between 7, and 74, that is, for those
rays that do not penetrate into the low-velocity layer. For depths between z, and zc, the
ray parameter p is not defined, since there are no rays that turn at those depths. The
curve for dx/dp is discontinuous at p =7, (Fig. 7.10(d)). Values of p less than 7,
correspond to rays that turn upward at depths below zc. Since, in the integral of
(7.39), for these rays there are two zones (z4 and zg) where the change in velocity
gradient is large, d¢/dz is also large and dx/dp may become positive. In the integral
of (7.39) for rays that penetrate further down, this contribution is smaller and dx/dp
becomes negative again. In the p(x) curve (Fig. 7.10(e)), the discontinuity of dx/dp at
p = na results in the existence of two rays for the same value of p, those that turn
upward at z, and arrive at x,, and those that turn upward at zc and arrive at a
larger distance xc. Since, for p =n,, dx/dp is positive, x decreases as p decreases,
corresponding to rays that arrive at distances from xc to xg. When dx/dp becomes
negative again, x increases as p decreases (Fig. 7.10(e)). This change happens at a
distance xp that is always larger than x4.

Depending on the thickness of the low-velocity zone and its magnitude, the distance
interval from x4 to xp is larger or smaller. Since, at these distances, there are no values of
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Fig. 7.10. A medium with a zone of a decrease of velocity with depth. (a) The distribution of velocity with depth. (b) The distribution of slowness (the
inverse of velocity) with depth. (c) Ray trajectories. (d) The variation of the distance with the ray parameter dx/dp. (e) The variation of the ray parameter
with distance. (f) The travel time curve.
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P, this means that no rays arrive and the interval is called a ‘shadow zone’. Behind the
shadow zone, between xp and xc, there are two values of p for each value of x. There-
fore, two rays arrive at each of these distances (Fig. 7.10(e)). For distances greater than
Xc, the situation becomes normal again.

The travel time curve #(x) (Fig. 7.10(f)) has, for distances up to x,, the same form as
that in the normal velocity distribution. Between the distances x5 and xg, there is a
shadow zone where no rays arrive and the curve is discontinuous. At the distance xp
two branches correspond to the two values of p for each value of x in the p(x) curve
(Fig. 7.10(e)). The first branch starts at xp, has the form corresponding to a normal
distribution, concave downward, and continues indefinitely. The second branch starts
at xg with slope 7,4, the same as that at x, before the shadow zone, has positive curvature
(concave upward) corresponding to positive values of dx/dp, and ends at xc. This is a
retrograde branch since it corresponds to the part of the p(x) curve for which x decreases
as p also decreases (Fig. 7.10(c)). A caustic appears at the cusp of the two branches. The
time corresponding to the distance xg, after the shadow zone, has a delay with respect to
the prolongation of the curve from the point before it. In conclusion, travel time curves
for cases in which there are low-velocity zones exhibit a shadow zone, a duplication of
rays, and a delay of arrivals after the shadow zone.

The tau function curve 7( p) is single-valued; its slope dr/dp increases for decreasing
values of p from 7, to 1. At this point there is a discontinuity and, in the interval
from 74 to ng, the slope of the curve decreases with decreasing p. For values of p smaller
than 7y the slope increases again.

7.7 Travel times for deep foci

Let us consider now travel times corresponding to deep foci in a medium with a
normal distribution of velocity with depth. The travel time curve starts at a value of time
corresponding to that of the vertical ray from the focus to the surface. For short dis-
tances, rays travel from the focus upward (i, > 7/2), at a certain distance the ray
leaves the focus horizontally (i, = 7/2), and for greater distances rays leave the focus
in the downward direction (i), < 7/2) (Fig. 7.11(a)).

X, X t

@

Fig. 7.11. A deep focus. (a) Ray paths. (b) The travel time curve.
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The travel time curve has a first part that is concave upward corresponding to upward
rays (dx/dp > 0). The inflection point corresponds to the distance for the ray with
i, = w/2. For larger distances, the curvature of the travel time curve is concave down-
ward (dx/dp < 0) (see Fig. 7.13(b) later). At the inflection point, the slope of the
travel time curve corresponds to the inverse of the wvelocity at the focus
(dt/dx = 1/vy). This property can be used to find the velocity at focal depth.

7.8 The determination of the velocity distribution

We have seen how the form of travel time curves depends on the velocity’s dis-
tribution with depth. Therefore, we may be able to obtain velocity distributions from
travel time curves. This is one of the classical inverse problems in seismology. The
direct problem, that of how to calculate travel time curves from velocity distributions,
is always soluble, with greater or lesser difficulty. The inverse problem involves a greater
difficulty and need not always be soluble in an exact and unique way.

Let us suppose that we know the continuous travel time curve #(x), in such a way
that we can calculate its slope d¢/dx = p at each point. The distance x at which a ray
of parameter p arrives, according to (7.13), changing the integral over z to one over 7,
is given by

dz dn

0 din
x= ZpJ —_—
Mp (772 _p2)1/2

The limits of the integral are 7, the slowness for z = 0, and 7, that corresponds to z = £,
the depth of the turning point of the ray that arrives at a distance x with the parameter
p = 1,. Expression (7.61) represents an integral along a single ray of parameter p. Let us
consider now all rays that arrive at distances from x = 0 to x = x;, corresponding to
values of p between py and p;. For all these rays we may write the integral

Jﬁo dp
n (P =)'

(7.61)

where p is a variable.
If we apply this operation to both sides of (7.61), we obtain

dz
2p —dndp

Do xdp Do ("o d77
[ 62

2 w (P =) (m? = pP)]'?

n (p* =i
In this expression x and p are variables that take values between 0 and x; and between pg
and p,, respectively. If we consider the relation between 1 and p, in the right-hand-side
term of (7.62), the first integral between 7, and 7, corresponds to a single ray that arrives
at a distance x. In the second integral over p from p; to py, 7, is a variable and the
operation corresponds to integration over all rays that arrive at distances from 0 to
x;. Considering the plane (n, p) (Fig. 7.12), the first integral from 7, to 7, corresponds
to a vertical strip. The second integral from p; to p, covers horizontally the triangle

P
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Fig. 7.12. The relation of the integrals over p and over 1 on the plane (p,n).

with vertices ( pg, 1), (P1,7M0), and (py,n;). Then, we can cover the same triangle by
changing the order of integration, integrating first over p along a horizontal strip
from p; to p and then vertically over 7 from 7, to 7. The double integral is now

o (P pdp dZ
— dp (7.63
Jm Ll [(P? = n})(? = p*)]'/> dn )

The integral over p, taking into account that p = n and p; = n; at the limits, is a definite
integral whose value is 7:

b xdx
L (- -2 "

The integral over 7 can be transformed into an integral over z from 0 to z; and its value is
z1. The value of the double integral (7.63) is finally 7z;. In the integral of the left-hand-
side term of (7.62), changing the limits to p, = 7, and p; = 7, and integrating by parts,
we obtain

o cd o 7o d
J 2’”7121/2: {xcosh1 (p)} —J cosh™! <p>xdp (7.64)
m (p* —np) m/ 1n m m /) dp
The first term is zero, since, for n = 1y, x = 0, and, for = 7, the hyperbolic arccosine is
zero. The second term can be written as an integral over x, from 0 to x;. The argument of

the hyperbolic arccosine can be rewritten, since p = 7, = 1/v, and , = 1/v;, and finally
we obtain

z; = lj l cosh™! (vl) dx (7.65)

™Jo Up

This equation is known as the Herglotz—Wiechert integral for a plane medium. Using
this expression we can calculate the velocity’s distribution with depth from the travel
time curve. The application of equation (7.65) consists in the following steps. The
depth z; is the turning point (maximum depth) of the ray which arrives at a distance
x1. At this depth the velocity is v;, which can be obtained from the slope of the #(x)
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X, X

(CY) )

Fig. 7.13. The application of the Herglotz—Wiechert integral formula to obtain the velocity distribu-
tion from the travel time curve. (a) The travel time curve. (b) The distribution of velocity with
depth.

curve (at xy, dz/dx = n; = 1/v;). To obtain the value of z; we have to calculate the inte-
gral of (7.65). This can be done numerically, since we can determine v, from the slope of
t(x) for each value of x between 0 and x; (Fig. 7.13(a)). In this way we obtain v, and zy,
that is, one point of the curve v(z) (Fig. 7.13(b)). We obtain the other points by changing
the value of x;.

This method is valid if we know #(x) and dz/dx for each value of x and d¢/dx is a
monotonically decreasing function of x. This limits the method to normal velocity
distributions. The method can not be applied directly if there are velocity discontinuities,
zones of very rapid increase, or low-velocity layers. However, there are modifications of
the method that allow its application to such distributions. Another limitation is the
need to know the travel time curve in a continuous fashion, which is not possible for
observed curves that are formed by discreet values of x and ¢. This limitation is overcome
by interpolation between observed values. For plane geometry, this method can be
applied to find velocity distributions for regions of the crust or upper mantle where
the above conditions are assumed to be satisfied.

7.9 The energy propagated by ray beams. Geometric spreading

From the point of view of ray theory, energy is propagated along a bundle or
beam of nearby rays. Since rays may converge or diverge during their propagation
due to the velocity distribution, this fact must be taken into account in order to
determine the energy that arrives at a certain distance. Let us consider a point source
of seismic waves from which an energy E is emitted homogeneously in all directions
per unit time. The energy emitted per unit solid angle is P = dE/df2 and the total
energy per unit time is £ = 4w P. For a focus at depth 4, an element of solid angle d{?
sustained by an element of take-off angle dij, corresponding to a ray beam with take-
off angles between i, and i, + dij is given by

df2 = 2xsin ih dih (766)
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Fig. 7.14. The circular area covered by a wave front of a ray beam that leaves the focus with take-off
angle #, for a distance x.

At a horizontal distance x, the surface element of the wave front d4 swept by a ray beam
of solid angle df? (Fig. 7.14) is

dA4 =2nxcosidx (7.67)

where 7 is the angle of incidence of the ray at a distance x. The energy intensity or energy

per unit of wave-front area is I/ = dE/dA4 or, in terms of P, I = Pd(2/dA. On substitut-

ing (7.66) and (7.67) into this, we obtain

Psin ih dih
=— 7.68
xcosidx ( )

Because the distance x reached by a ray depends on the take-off angle at the focus i, the
distance interval can be expressed by the interval in angle of incidence dx = (dx/di,) di,
and, by substitution into (7.68),

Psin i,

cos1 dx
X COS I, —

"di,

If we differentiate with respect to x in Snell’s law (6.46), we obtain

d (sini,\ dp d%
dx( o )—dx—dxz (7.70)

From (7.70) we deduced that
dx cosi,
di,  d%
(%A @
where v, is the velocity at the focus. By substituting in (7.69), we can express (7.69) in
terms of the second derivative of the traveling time:

1= (7.69)

(7.71)

PUh tan i/1 d2[
I=——— 7.72

xcosi dx? (7.72)

If rays arrive at the surface with angle of incidence iy, then, by substitution into (7.68)

and (7.72), we obtain the energy per unit time and per unit of wave-front area that
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Fig. 7.15. The arrival at the surface of a wave front corresponding to a ray beam that leaves the focus
with take-off angle i, and arrives at the surface with angle of incidence .

arrives at a distance x (Fig. 7.15):

Psin i Py, tan i, d*
I — h Uil 7.73
o dx  xcosiy dx? (7.73)
XCOS 1y ——

Iy

If the focus is at the surface, i;, = .

In expression (7.73), we can see that the energy intensity decreases with the inverse of
the distance. This dependence on the factor 1/x is called geometric spreading and is due
to the increase in the wave-front area comprised by a ray beam as rays propagate from
the focus. According to the first term of (7.73), the energy intensity depends inversely on
dx/dij,. When dx/dj, is small this means that x varies little with 7, and therefore the ray
density at an interval of distance dx is large. If dx/di, is large, x varies greatly with i, and
the ray density for an interval of distance is small. According to the second term of
(7.73), the variation in energy density with distance is related to the second derivative
of the travel time. If the travel time has a uniform gradient, then the distribution of
the energy density with distance is also uniform. When there are large changes in the
gradient, at the cusps, we find an accumulation of energy at the corresponding distances.
This may occur when there is a zone of rapid increase in velocity with depth, or also
when there is a low-velocity zone (Figs. 7.7 and 7.10).



8 RAY PROPAGATION IN A
SPHERICAL MEDIUM

8.1 The geometry of ray trajectories and displacements

In the study of seismic waves for large distances (x > 1000 km), the flat-Earth
approximation is no longer valid and the spherical shape of the Earth must be
considered. The theory of propagation of seismic rays was developed by Rudzki,
Benndorf, Zoppritz, Geiger, and Wiechert. Ray propagation inside a sphere requires
certain modifications to the notions treated in Chapter 7. Let us consider a sphere of
radius ry and velocity depending on the radius v(r). Rays propagate from a focus F
on the surface to a point P that is also on the surface (Fig. 8.1). If the velocity depends
solely on the radius, rays are contained on a plane that includes the center of the sphere.
If the velocity increases toward the center, ray trajectories are concave toward the
surface and they reach a point on the surface. Distances between two points on the
surface (from F to P in Fig. 8.1) are represented by the angle A at the center of the
sphere (the distance on the surface is ryA). The angle of incidence, i, is measured from
the ray trajectory to the radius. The radial distance from the center to the point where
a ray turns upward is r,,, corresponding to the velocity v, (Fig. 8.1).

If the spherical medium is formed by concentric spherical layers of constant velocity
(Fig. 8.2), then according to Snell’s law (5.1), a ray that passes from a layer of velocity v,
to another of velocity v, must satisfy

sin i; _ sinf 8.1)

G CF)

We want to relate the angles 7; at the base of layer 1 to i, at the base of layer 2. Consider-
ing the triangles POR and QOR, we can write the relation

rysini, = rysin f (8.2)
By substitution in (8.1), we obtain a new formulation of Snell’s law,

r sin il ry sin iz

8.3
o > (8.3)
where p is the ray parameter and the variables r, i, and v are referred to the same point on
the ray’s trajectory. The units of the ray parameter p are now those of time (seconds),
whereas in the plane case they were of inverse velocity (sm™'). In a spherical medium,
where the velocity varies continuously with the radius, we can write for each point on a ray

Fsin i

” (8.4)
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Fig. 8.1. A ray path in a sphere where the velocity increases with depth. The wave front advances
from F to N in time dr.

Fig. 8.2. The trajectory of a ray in three concentric spherical regions of constant velocities
v; < vy < vy (Snell’s law).

For a wave front that advances from the focus F, within a time interval d¢, a distance
along the ray FN = v, d¢, we find (Fig 8.1)

. FN Vo dl
Sin ¢y —E—aa (85)
From (8.4) and (8.5) we obtain the Benndorf relation
dr
pP= aA (8.6)

At the point of the ray’s trajectory where it turns upward, i = 7/2, and, from (8.4),
r,/v, = p, where r, and v, are the radial distance and velocity at that point. The slowness
n is now defined as n = r/v and, in consequence, p = 1,.

To study wave propagation in a sphere, we use the spherical coordinates (r, 8, ¢)
(Appendix 2). If 6 has its origin in the radius that passes through the focus and ¢ on
a plane that contains the ray, components of the displacements of P, SV, and SH
waves, in the directions of the unit vectors e,, e; and e, are (Fig. 8.3)

(P,,,P@,O); (SvraSV%O); (0,0,SH)
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Fig. 8.3. A ray trajectory in a sphere and displacement components.

PNG

Fig. 8.4. A ray path on a sphere and displacement components at its surface referred to geocentric
geographic coordinates r, 0, and ¢.

In terms of the angle of incidence i, at the observation point (Fig. 8.3),
P,A:PCOSZ.O; P9:Psini0
SV, = SVsin i; SVy =SV cos i

If the sphere represents the Earth, with a system of geographically geocentric
coordinates (r, 6, ¢), with origins at the center (r), North Pole of the rotation axis (6)
and Greenwich meridian on the equatorial plane (¢), then the components of P, SV,
and SH waves in the directions of the unit vectors e,, ¢y and e, positive in the directions
of the zenith, South and East (Fig. 8.4) are

(Pﬁpﬁvpa); (SV,,SV@,SV@); (0,SH0,SH®‘)
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As functions of the angle of incidence i, and azimuth « at the observation point P
(section 3.7) (Fig. 8.4),

P, = Pcosiy; Py = Psiniycosq; P, = Psinijsina
SV, = SVsiniy; SVy = SV cosijcos a; SV, =SV cosjjsina
SHy = SH sin «; SH,; = SHcos a

P and SV displacements have three components whereas SH has only two horizontal
components. In relation to the geographic components (x,y,z) in the directions of
(North, West, zenith) defined in section 3.7, x = —ej, y = —e,, and z = e,.

8.2 A sphere of constant velocity

In a sphere of radius R with constant velocity V, rays propagate in straight lines
and the traveling time for an angular distance A is given by (Fig. 8.5(a))

t:27Rsin (?) (8.7)

The travel time curve is not a straight line, like that in the plane case, but a sine
function (Fig. 8.5(b)). The ray parameter p varies with the distance A in the form
(Fig. 8.5(¢c))

dt R A
p_mywﬂm<2) (8.8)

Thus, p equals the radial distance to the center of the ray divided by the velocity
(Fig. 8.5(a)). From this expression we obtain

(A Loy aip
i R 8.9

sin(5) =5 07 - 7" (8.9)
where n = R/ V. Using (8.9) we derive the expression for the change of A with p,

da___ -2

dp o )"
In consequence, dA/dp is always negative (A increases when p decreases) and has a sin-
gularity for A =0 (p = n) (Fig. 8.5(d)).

(8.10)

8.3 A sphere with a velocity that is variable with the radius

In a sphere in which the velocity varies with the radius, such as in the plane case,
the radius of curvature of the ray is given by R = ds/di (7.7). Using Snell’s law, we deduce

_pdv
T cosi

di (8.11)
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Fig. 8.5. A sphere of constant velocity. (a) A ray trajectory. (b) The travel time curve 7(A). (¢) A plot of the ray parameter with the angular distance p(A).
(d) The variation of dA/dr with p.
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Fig. 8.6. A ray trajectory in a sphere where the velocity increases with depth and radius of curvature.

—_—

Fig. 8.7. A ray trajectory in a sphere with a velocity that depends on the radius, showing the com-
ponents dr and rdA of an element of distance ds along the ray.

Since ds = dr/cosi (Fig. 8.6), we obtain
r
P dr
To deduce the expressions for the angular distance A, distance along the ray trajectory
s, and travel time ¢, we use the geometry of the ray (Fig. 8.7):

A
sini = rjs (8.13)
ds* = dr? + 7 dA? (8.14)
By substitution of (8.13) into Snell’s law (8.4), we obtain
2
rda_ (8.15)

v ds
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From equation (8.14), dividing by ds?, using (8.15), and making the substitution = r/v,
we obtain
ds N

e/ — (8.16)
dr (> = p)'7?

We divide (8.14) by dA? | and in a similar manner to what we did for the derivation of

(8.16), obtain
dA p
dr v — )" 7

By integrating equations (8.16) and (8.17), we obtain the expressions for the angular
distance A and distance along the ray s. The travel time ¢ is obtained by integration
of ds/v. If the focus is at the surface we obtain

N pdr
A=2 J R (8.18)
"o ndr
T 2
_ 0 n dr
(=2 J A T (8.20)

If the focus is at a depth / from the surface the expressions have two integrals, the first
from r, to ry — /i and the second from r, to r.

In a similar way to that in the plane case, we can deduce the expression for the reduced
time or fau function 7( p) (7.16), which results in

(p) = Jrol(nz -p)"dr (8.21)

.
rp T

These expressions are very similar to those deduced for plane geometry, (7.13)—(7.16).
We must bear in mind the different form of Snell’s law (8.4), the use of the angular
distance, and the definition of slowness.

8.3.1  The change of distance with the ray parameter

The derivation of the expression for dA/dp for a spherical medium is similar to
that of dx/dp in plane geometry (section 7.4). By differentiating with respect to p in
(8.18), we obtain

%fzir pdr
dp “dp s, r(n? = p?)'

On making the substitution () = (1/r) dr/dn and changing the integral over r to one
over 7, we have

70 o
gzzj Smdn gJ f(n)dn
dp w (P = p)'"?

(8.22)

p (8.23)
Tlp (772 7])2)1/2 dp
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For the second term on the right-hand side of (8.23), we integrate by parts before taking
the derivative:

d ~1 (Mo (M
2p[f cosh™! () —J cos = f'(n)d 8.24
O (m0) » ) » (n)dn (8.24)
After taking the derivative, we obtain
— : 1) !
200/ (mo) [™ 0/ (mAdn (8.25)
=)' D = p)'?
By adding the first term of (8.23), we finally obtain
d. .
da —2n0f (mo) o d777 [77]( (77)] dn
—_— =42 (8.26)
dp (g —-p)'? Ty P =)'
On introducing the variable ¢ related to the gradient of the velocity,
r do
_rdv 2
¢ v dr (8.27)
it is easy to find that nf(n) = (1 —¢)~' and
d 1 d¢
—fn=——5 8.28
a0 = g (8.28)
By substitution into (8.26) and changing the integral over n to one over r, we obtain
d¢
—dr
dA -2 "o -
FrE > 2 1/2+2J 2d’ SCNIE (8.29)
P (1=G)(mp —p7) n (1=07 (" —p7)

This expression is similar to that of the plane case (7.39). On making the substitution
& =2/(1—¢), equation (8.29) can be written in the form

da__ -1 . J Y
dp g —p)'* ), (P =)'

Equations (8.29) and (8.30) are very useful when one wants to study the propagation of
rays in a spherical medium for different distributions of velocity with the radius.

(8.30)

8.4 A velocity distribution with ¢ constant

Just like in the plane case, a velocity distribution with the radius in a sphere
corresponding to ¢ constant allows an easy derivation of expressions for the relations of
the ray parameter to the distance p(A) and travel time #(A). If the velocity increases
with depth, according to the definition of ¢ (8.27), then, putting ( = —«, we obtain

U:U()(rro)” (8.31)
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where ry and v, are the values at the surface. This distribution gives infinite velocity for
the center of the sphere, so it can not be used for very small values of r. The gradient of
the velocity is negative, that is, it also increases with depth:

dv avy (10!

N[0 .32
d)‘ ro ( r ) (8 3 )

Since d{/dr is zero, the second term of (8.29) is null and the expression for dA/dp is
dA -2

e 8.33
dp 1+ a)(? - p)"? (539
By integration we obtain for A(p) the expression
A= 2 cos™! (p) (8.34)
l+o Mo
and for p(A)
1 A
D = 1o COs (H;)) (8.35)
Since p = dt/dA, by integration of (8.35) we obtain the expression for the travel time
t(A):
=1 + g o ( 3 (8.36)

Equation (8.36) is not valid for rays passing through the center of the sphere,
(14 a)A/2 =72, since there the velocity becomes infinite. This velocity distribution
is known as Mohorovi¢i¢’s law and may be used to approximate the velocity distribu-
tions for certain regions inside the Earth away from its center.

8.5 Rays of circular trajectories

Another special distribution of increasing velocity with depth is that corre-
sponding to rays with circular trajectories. The radius of curvature (8.12) must be
constant, which condition is satisfied if the velocity depends on the radius in the form

v=a—br (8.37)

where @ and b are constants. According to (8.12), the radius of curvature is now
R =1/(2pb) (Fig. 8.8). In terms of the radius of the sphere and surface velocity, the
velocity is

v =1y +b(r} — 1) (8.38)
The velocity has a finite value at the center. The velocity gradient decreases with depth
according to

dv

3= 2 (8.39)
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Fig. 8.8. The circular trajectory of a ray in a sphere.

The radius of curvature for a ray with take-off angle at the surface §; is given by
Yo

S 8.4
2r0b sin i() ( 0)

As we have seen, the velocity’s distribution with the radius for rays of circular trajec-
tories is different than that for the plane case (7.6) and does not correspond to a constant
gradient. It is possible to derive an analytic expression for travel times #(A), but it has a
complicated form (Bullen and Bolt, 1985).

8.6 Distributions of the velocity with the radius

We have seen two distributions of the velocity with the radius inside a sphere for
which it is possible to find explicit expressions for p(A) and #(A). In general this is not
the case. However, we can deduce many characteristics of ray propagation for certain
general distributions using the expression for dA/dp, in a similar way to what we did
in the plane case. For a sphere we must remember that the slowness is defined as
n = r/v and the ray parameter is p = nsini. Therefore we must take into account the
changes with depth of v and r. Just like in the plane case (section 7.6), we will consider
a distribution for which the velocity increases very slowly with depth and its gradient
decreases or has a normal distribution. To this situation we add a region where the
velocity increases rapidly or decreases with depth. The latter case results in the presence
of a low-velocity layer. The description of the characteristics of these velocity distribu-
tions is very similar to that of section 6.6 for the plane case, so we refer the reader to that
section for details.

8.6.1 A normal distribution

In the normal distribution the velocity increases slowly with depth (decreasing r)
and its gradient dv/dr, which is negative and small, changes very slowly (Fig. 8.9(a)).
Therefore, ¢ is negative (its absolute value is small and generally less than 0.25) and
d¢/dr is very small.
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Fig. 8.9. A sphere with a normal distribution of velocity with depth. (a) The distribution of velocity with depth. (b) Ray trajectories. (¢) The variation of
the angular distance with the ray parameter dA/dp. (d) The variation of the ray parameter with distance p(A). (e) The travel time curve 7(A).
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Fig. 8.10. A sphere with a zone of a rapid increase of velocity with depth. (a) The distribution of velocity with depth. (b) Ray trajectories. (c) The varia-
tion of the angular distance with the ray parameter dA/dp. (d) The variation of the ray parameter with the distance p(A). (¢) The travel time curve 7(A).
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Ray trajectories are curved concave upward (Fig. 8.9(b)). The curve for dA/dp
(Fig. 8.9(c)) has negative values and a singularity for p = 7. The curve of p(A) exhibits
a gradual decrease of p with distance (Fig. 8.9(d)), from a value 7, for A = 0. The travel
time curve 7(A) exhibits a gradual increase of time with distance with a slow decrease of
its gradient (Fig. 8.9(e)). A velocity distribution with a small inverse power of the radius
(8.36), corresponding to constant (, is a particular case of the normal distribution.

8.6.2 A rapid increase in velocity

Just like in the plane case (section 7.6), we consider a region between the radii rp
and rg, where the velocity increases rapidly with depth, while above and below this
region the velocity distribution is normal (Fig. 8.10(a)). When rays penetrate into this
region their radii of curvature decrease (8.12), since dv/dr is large (Fig. 8.10(b)). If the
change in gradient is sufficiently large that the second term in (8.30) is larger than the
first, then the curve of dA/dp has a positive part (Fig. 8.10(c)). In consequence, the
curve of p(A) has a part for which p decreases with decreasing A (Fig. 8.10(d)). Then,
within a certain range of values of distance, say between A, and Ag, there are three
values of p for each value of A, that is, three rays arrive at the same distance. Finally,
the travel time curve 7(A) (Fig. 8.10(¢)) has a triplication with a concave upward
branch that corresponds to the rays for which p decreases with decreasing A, with
two cusps due to the caustic. These characteristics are similar to those explained for
the plane case (section 7.6).

8.6.3 A decrease in velocity. A low-velocity layer

In a region bounded by the radii o and rg, the velocity decreases with depth
while outside of this region it increases just like it does in the normal distribution
(Fig. 8.11(a)). In this region, rays change curvature from concave upward to concave
downward (8.12), due to the change in sign of dv/dr (Fig. 8.11(b)). According to Snell’s
law, rays can not turn upward until they reach the depth where n has again the same
value as that at r,, that is, under rc. The curve of dA/dp has a discontinuity and the
contribution of the large change in gradient leads to the fact that, for certain values
of p, dA/dp becomes positive (Fig. 8.11(c)). The curve of p(A) is also discontinuous
(Fig. 8.11(d)). Up to a distance Ay, rays do not penetrate into the low-velocity zone
and the curve corresponds to a normal distribution of velocity. At A, there is a
discontinuity and, for the same value of p = 7, a ray arrives also at the distance Ag.
Rays that arrive at distances between A and A correspond to a retrograde branch
of the curve with positive values of dA/dp, that is, p decreases with decreasing A
(Fig. 8.11(d)). From A there starts a second normal branch for which p decreases
with increasing A (Fig. 8.11(d)). There is, then, a range of distances, between A, and
Ac, for which no rays arrive (there exist no values of p), namely a shadow zone, and
another range of distances from Ac to Ay, for which two rays arrive at the same
distance.

The travel time curve corresponds to these characteristics (Fig. 8.11(e)). From zero to
Ay, the curve corresponds to a normal distribution. Between A, and A, there is a
shadow zone where no rays arrive. Behind the shadow zone, the curve separates into
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Fig. 8.11. A sphere with a zone of a decrease of velocity with depth. (a) The distribution of velocity with depth. (b) Ray trajectories. (c) The variation of
the angular distance with the ray parameter dA/dp. (d) The variation of the ray parameter with the distance p(A). (e) The travel time curve 7(A).
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two branches that come together at A with a cusp, the first with the properties of the
normal distribution that continues to the limit of A, and the second from A to Ay, for
which dz/d A decreases with decreasing A (a retrograde concave upward branch). From
Ac to Ag, two rays arrive at different times at each distance. The time for Ac is delayed
with respect to that corresponding to a prolongation of the first part of the curve. This
delay is due to propagation in the low-velocity layer. The main characteristics of the tra-
veling time curve are, then, the existence of a shadow zone and, behind it, a time delay
and a duplication of arrivals.

8.7 The determination of velocity distribution

We can derive a relation to determine the velocity distribution with the radius
v(r) from the travel times 7(A) for a spherical medium in a similar form to that in the
plane case (section 7.8). We start with equation (8.18), which, on changing the
integral over r to one over 7, can be written as

dr

o P
"o
A= 2J & 1/2
Ty V(772 _pZ) /
This is an integral along a ray that arrives at a distance A, has a parameter p, and turns
upward at 7 = 7,. Consider now all the rays that arrive at distances between A = 0 and

A = A, and correspond to values of p between p, and p,. For these rays we can define
the integral

dn
(8.41)

JI’U dp
(P =)'
By applying this operation to both sides of (8.41) we obtain

d
rdn
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'Po Ad Po (Mo
J P 51/221 J > 2 15127] s n (8.42)
n (p” =) i dny r(” = p?) 2 (p* = my)

The first integral on the right-hand side is over a generic ray of parameter p = 1), and the
second is over all rays of parameters from p, to py, where p and 7, are variables. In the
integral on the left-hand side A and p are variables that take all values from 0 to A; and
from p; to p,, respectively.

In the double integral on the right-hand side of (8.42), similarly to what we did in the
plane case (7.63), we can change the order of integration. We integrate first over p from
p =mnto p=mn; and the result has the value of w. The integral over n from 7 to 7, is
changed into an integral over r from ry to rg, resulting in

o (N " "
J J 2pdp dr (R (8.43)
o [ = ) (P — )] r

The term on the left-hand side of (8.42) can be integrated by parts, as we did in (7.64).
Taking into account that, for n =7y, A=0, and, for 5 =7, cosh™'(1) =0, and
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Fig. 8.12. The application of the Herglotz—Wiechert integral to obtain the distribution of velocity
with depth in a spherical medium from the travel time curve. (a) The distribution of velocity with
depth. (b) The travel time curve.

changing the integral over p to one over A, we finally obtain

A
J lcosh’1 (p) dA=7ln <r0> (8.44)
0 U Tl

This is the integral equation of Herglotz—Wiechert that allows the determination of the
velocity’s distribution with the radius from the travel time. Just like in the plane case, the
equation is valid only for velocity distributions in which the velocity increases
monotonically with depth. It can not be directly applied when there are rapid changes
in gradient or low-velocity layers (although, as was mentioned in the plane case, there
are modifications that can handle those cases).

Equation (8.44) is applied in the following manner. For a fixed distance Ay, n; is
known from the value of the slope of the curve #(A) for such a distance. To find vy,
we need to know ry. The value of r| corresponds to the turning point of the ray that
arrives at a distance 4;, and is obtained from equation (8.44). The integral can be
calculated numerically, since, from each value of A, from A=0to A= A, p is the
slope of 7(A) (Fig. 8.12(b)). For each pair of values v; and r;, we have a point of the
velocity distribution (Fig 8.12(a)). By repeating the process for different distances, we
obtain values of the velocity for different values of r. Since usually 7(A) are discrete
observed data, we have to interpolate in order to find the values of df/dA. This
method can be applied to obtain velocity distributions in the lower mantle of the
Earth where the conditions of validity of equation (8.44) are fairly well satisfied.

8.8 Energy propagation by ray beams. Geometric spreading

The energy propagated by a ray beam inside a sphere follows the same treat-
ment as that in the plane case (section 7.9) with a few modifications. From the focus,
an energy E is emitted homogeneously per unit time. The energy per unit solid angle
is P =dE/df2, whence E = 4rP.
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Fig. 8.13. The area on the surface of a sphere covered by the wave front corresponding to a ray beam
that leaves the focus with take-off angle i, at a distance A.

Fig. 8.14. The arrival at the surface of a sphere of a wave front corresponding to a ray beam that
leaves the focus with take-off angle i, and arrives with angle of incidence ). The area of the free
surface is ds. The area of the wave-front surface is dA4.

If the focus is at a depth & from the surface, then the take-off angle at the focus is
i,. Rays that leave the focus between angles i, and i, + di, arrive at the surface at
distances between A and A 4+ dA, with angles of incidence between i, and i, + di,
(Fig. 8.13) (if the focus is at the surface, i, = i)). The element of solid angle d{?
around the focus is

df2 = 2msin ih dih (845)

The area dS over the surface of the sphere defined by the intersection of the element of
the solid angle d{?2, at an angular distance A4, is given (Fig. 8.13) by

dS = 2mdsin AdA (8.46)

The area dA defined on the wave-front surface (Fig. 8.14) is d4 = dScosi,. The

energy intensity, / = dE/dA, is the energy that arrives at a distance A per unit wave-

front surface per unit time. As a function of the energy that leaves the focus per unit

solid angle, I = Pdf2/dA. By substitution of (8.45) and (8.46), we obtain

Psin i/1 dlh
= — 8.47
r3cosipsin A dA (8.47)

The derivative di;,/dA can be expressed in terms of the slope of the travel time 7(A) by
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using Snell’s law:

d /[ r,sini, dp d*t
il = £ - " 4
dA ( v ) dA  da? (8.48)
and, therefore,
di, v, d%
Zh_ - 4
dA  r,cosi, dA? (8.49)
By substituting (8.49) into (8.47) we find
p .. 2
I vy, Sin i, d-t (8.50)

13ry cos iy cos ip sin A dA?

If the focus is at the surface, i;, = iy and r, = ry. Hence, equations (8.47) and (8.50) are
simplified.

Equations (8.47) and (8.50) represent the geometric spreading of energy propagated
inside a sphere. The energy that arrives at a certain distance A decreases with the
factor 1/sin A and depends on the value of di/dA or, equivalently, that of dzt/dAz. If
di/dA is large, its inverse dA/di is small and A varies little with changes in #,. This
means that the corresponding interval of distances dA is small, the density of rays is
large, and the energy per unit surface area is also large. The opposite happens when
di/dA is small. Ray beams spread themselves over a larger surface so that dA is large
and the energy density small. Because di/dA is proportional to dp/dA, for distances
at which dp/dA is large we will have concentrations of energy. This happens when
there are large changes in the velocity gradient. For those situations there are also
changes in the slope of the travel time curve (dzt/ dA? is large). Hence we expect large
concentrations of energy at distances corresponding to cusps of 7(A) when we have
rapid increases in velocity or low-velocity layers.



9 TRAVEL TIMES AND THE
STRUCTURE OF THE EARTH

9.1 Observations and methods

In Chapters 6—8 we have seen how travel time curves depend on the character-
istics of the media through which the seismic waves propagate and that the velocity’s dis-
tribution with depth can be deduced from them. In this chapter we will apply these
results to observations regarding the Earth and discuss the results concerning its internal
structure obtained. For short distances (less than 1000 km) we can use the flat-Earth
approximation and plane geometry. Seismic waves for that range of distances give
information on depths of about 100 km, that is, on the crust and part of the upper
mantle. For this range of distances we can apply the theory derived in Chapters 6 and
7. For greater distances the spherical shape of the Earth must be considered, so the
results of Chapter 8 must be applied. The effects due to the deviations of the form of
the Earth from a sphere, that is, mainly its flatness, can be taken into account by
using corrections to the spherical model. In seismology these effects are not very
important.

The first seismic waves used for the study of the Earth’s structure were those produced
by earthquakes. Even today this is the main source of information, especially for the
deep interior. Among the first tables and curves of travel times of seismic waves were
those of Oldham, who in 1906 deduced the existence of the Earth’s core. These tables
were completed by Zoppritz and Turner and later, in 1914, by Gutenberg. In 1940,
Jeffreys and Bullen published their tables of travel times that are very widely used
even today. In 1968 Herrin published tables of travel times for P waves only. More
recently, on a recommendation from the IASPEI, travel time tables have been derived
from a spherically symmetric velocity model known as iasp91 based on modern data
(the ISC catalog 1964—88) (Kennett and Engdahl, 1991). For shorter distances, the
pioneering work was done by Mohorovici¢, who in 1909 discovered the discontinuity
between the Earth’s crust and mantle that has been given his name. Observations of
traveling times of P and S waves generated by earthquakes continue to provide impor-
tant information about the internal structure of the Earth (Bolt, 1982).

Observations of seismic waves generated by earthquakes have the limitation of the
lack of control over the exact place and time of their origin. For this reason, for the
study of the shallowest layers of the Earth, seismic waves generated artificially by
explosions and other methods are used. These studies, which were started around
1920, are the basis of the methods of seismic prospecting using what are known by
the generic name of seismic profiles or seismic soundings. These were developed first
by the oil industry and consist in the analysis of reflected and refracted waves. These
measurements are called deep seismic profiles or soundings when they are applied to
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the determination of the structure of the Earth’s crust and upper mantle. They are
divided into two types, namely, refraction and wide-angle reflection and vertical reflec-
tion. The first method uses waves refracted and reflected with large angles of incidence at
long distances and the second uses waves reflected vertically at very short distances. In
both cases, information consists in traveling times and amplitudes of waves observed
along linear profiles, but quite different treatments are applied to the data.

Another, more recent, method developed to study the interior of the Earth is that of
seismic tomography. This method, based on techniques borrowed from other fields,
especially medicine, allows the mapping of inhomogeneities existing in the medium
traversed by seismic waves. The method consists in the observation of a very large
number of seismic rays that cross a given region in different directions. Applications
of this method have resulted in the establishment of three-dimensional models of the
Earth’s interior.

The first complete velocity models of the Earth’s interior based on seismological
observations were developed around 1930 by Jeffreys, Bullen, Gutenberg, Macelwane,
and Richter, among others. These models have radial symmetry separating the Earth’s
interior into three regions: the crust (0—30 km), mantle (30—2900 km), and core (2900—
6370 km). They have very similar general characteristics, although they differ in terms
of the transition zones, especially those between the mantle and the core and between
the outer and inner cores. The widely used Jeffreys—Bullen (JB) model was recognized
to have an average offset of 1.8s in the travel times. More accurate velocity models
with spherical symmetry have been presented. They include the preliminary Earth
model (PREM) of Dziewonski and Anderson (1981) and CALS of Bolt and Uhrhammer
(1981) (Fig. 9.1, Appendix 6). More refined models using the ISC catalog for 1964—88
with a better fit to the observed travel time data have recently been developed,
namely, the already mentioned iasp91 (Kennett and Engdahl, 1991) that has been
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Fig. 9.1. Velocity distribution of P and S waves inside the Earth according to the Jeffreys—Bullen
(continuous line) and PREM (dashed line) models (modified from Bullen and Bolt (1985)).
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improved for the core phases by the model ak135 (Kennett et al., 1995) and the model
SP6 with slightly higher velocities in the upper mantle than iasp91 (Morelli and
Dziewonski, 1993). These models have radial symmetry and are used as reference
models for the study of lateral inhomogeneities. Actually, more detailed velocity
models of the Earth interior are three-dimensional and include also inelastic properties
and anisotropy (Boschi et al., 1996).

9.1.1  Refiraction and wide-angle reflection

The first methods based on the observation of seismic waves generated by
explosions are those employing what are called refraction and wide-angle reflection
profiles. These methods were in use in the oil industry during the 1920s. Their use for
the study of the structure of the crust has been very extensive, since approximately
1940, especially after the development of portable seismograph stations with magnetic
recording in 1960. Since the penetration of seismic rays depends on the distance of
observation, long profiles are used to reach depths down to the base of the crust and
layers of the upper mantle. This implies the use of large explosions and recording at
great distances. The size of explosions establishes the practical limit on the depth that
can be investigated with this method.

The general outline of the method consists in recording along lines of portable
seismographic stations of lengths from tens of kilometers to nearly 1000 km at intervals
of 1-5km from explosions whose size may vary from tens of kilograms up to five metric
tons of explosives (Fig. 9.2). Explosions are generated in holes drilled underground or by
the use of underwater charges at various depths (60—200 m) in the sea. Basically, the
method is based on the analysis of travel times and amplitudes of recorded waves
according to the theory developed in Chapters 6 and 7, for layered media of constant
velocities and continuous distributions of velocity with depth with different velocity
gradients. The forms of travel time curves, critical distances of reflected waves, and
slopes of refracted waves, together with distributions of amplitudes, allow the determin-
ation of velocity models for the Earth’s crust. When possible, profiles are recorded in
both directions along the same line, with direct and inverse profiles, in order to detect
dipping layers and true velocities (section 6.6). By obtaining profiles with a high density
of recording stations, detailed models with lateral heterogeneity of layer thicknesses and
velocities can be obtained.

>
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Fig. 9.2. An explosion and the line of recording stations for a refraction and wide-angle-reflection
seismic profile in a two layer medium.
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A very common representation of observations in seismic profiles is that of record
sections, whereby complete seismograms are represented versus distance instead of
only travel times so that the information includes also amplitudes of waves. Examples
of record sections are shown later in Fig. 9.7 for a theoretical model of the crust and
in Fig. 9.8 for an observed profile. A recent technique of interpretation is the comparison
of observed and theoretical record sections calculated by the method of ray tracing (see
Fig. 9.7 later). This method provides synthetic seismograms at given distances from
models of the crust with velocity gradients and lateral changes in velocity and layers’
thicknesses. Seismic refraction and wide-angle reflection profiles have provided
abundant observations on the structure of the crust and upper mantle during the last
30 years.

9.1.2  Vertical reflection

Since 1950, workers involved in industrial seismic exploration have
abandoned the use of methods of seismic refraction for those of vertical reflection.
These methods are based on observation of waves reflected almost vertically at
short distances from the source. The source of energy can be small explosions or
mechanical vibrators coupled to the surface. These methods allow one to identify
with great detail by using complex processes of data reduction, the presence of
reflectors at various depths, and provide an accurate image of the structures present
underground (Sheriff and Geldart, 1982). Around 1965, these methods developed
by the oil industry started to be used for the study of the crust in order to obtain
clear reflections from its base. Since 1970, many programs of extensive deep vertical
reflections have been started in many countries, such as COCORP in the USA,
BIRPS in the UK, ECORS in France, DEKORP in Germany, and IBERCORS in
Spain.

Vertical seismic reflection is based on the generation of reflections in layers of
the crust’s interior by rays of near-vertical incidence using short distances from the
source to observing stations (Fig. 9.3). Assuming that the crust is formed by layers of
constant velocity, the equations for the times and distances of reflected waves are
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Fig. 9.3. An explosion and the recording stations for a vertical reflection seismic profile in a two-
layer medium.
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given by (6.78) and (6.79). For vertical reflections, the traveling time of a reflection at
layer k is

k—1
H;
=2y~ 9.1)

iz1 Vi

This is called the two-way time for normal incidence at layer k, that is, the time taken for
the wave to travel from the surface to the top of layer k and back to the surface. Layers
with clear reflections are called reflectors. The depth H, at which each reflector is located,
is the sum of the thicknesses H; of all the layers on top of the reflector. Since the
observation is #;, to obtain H we need to know the velocities v; of all layers on top, or
at least a mean value of the velocity from the surface to the reflector. Owing to the
difficulty of determining velocities, depths to reflectors are often expressed in terms of
two-way times.

To increase the signal-to-noise ratio of reflections from a given reflector, a series of
techniques developed by the oil industry is used. A common technique is the stacking
or sum of amplitudes of near records into a single trace. Each record is corrected for
the differences among two-way times due to the differences in distance by using what
is called the ‘normal move out’ (NMO) correction given by

Af =—— (9.2)

where x is the distance from each trace to the point where stacking is performed and ¢ is
the two-way time for that point. This correction permits the summation of several
amplitudes as if they were located at a single point and produced by a common point
of reflection (the common depth point; CDP). Owing to the fact that layers are not
flat but rather have different dips, vertical displacements and irregularities, the traveling
times of reflected waves do not have the simple form of equation (9.1). Besides, we have
the presence of diffracted waves and multiple reflections. To eliminate the influences on
recordings of these undesirable effects that may conceal the real position of reflectors, a
technique called migration is used. There are many methods for performing migration
that involve, in general, complex data processing. The results are migrated sections
from which diffractions and multiple reflections have been removed and in which non-
flat reflectors are correctly located.

Another problem to consider in the resolution of vertical reflections is the influence of
the frequency of signals. As we saw in Chapter 6, ray theory, on which all these methods
(refraction and reflection) are based, is valid only for high frequencies. There is, then, a
limit into the resolution of lateral dimensions or vertical irregularities of reflectors that
can be detected with waves of a certain frequency. Approximately, for vertical dimen-
sions to be detectable they must be greater than a quarter of the wave length of the
signal. For example, for waves of 20 Hz and velocity 6kms~', the minimum size of
detectable bodies is about 30 m. For horizontal dimensions of reflectors, we must also
take into account the Fresnel zone, that is, the zone from which energy is reflected by
half a cycle of a spherical wave incident on a plane surface. Inside the crust, for waves
of 20 Hz, minimum detectable horizontal dimensions are of the order of kilometers.
Vertical reflection profiles allow correlation of reflectors to the continuation in depth
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of geologic structures at the surface. Even though this method does not give distributions
of velocities, taken together with refraction profiles, it has contributed to the establish-
ment of detailed models of the crustal structure.

9.1.3  Seismic tomography

The method of seismic tomography applied to the study of the Earth’s interior
was developed from the mid-1970s (AKki et al., 1976). This method is based on the study
of the time residuals of the arrival of seismic waves with respect to those expected from
an initial model. The foundations of the general theory of tomography can be found in
the work of the mathematician J. Radon in 1917 and its applications presented by
A. Cormack in 1963. Tomography has been applied to other fields, for example in
medicine, to obtain detailed images of the human body from x-rays crossing in many
directions. To study the Earth’s interior, a large number of seismic rays that cross a
particular region in many directions is used. From observations of the arrival times of
these rays, we can find variations in velocity in the studied region with respect to a
reference model. In this way, the method permits the deduction of three-dimensional
models of inhomogeneities in the Earth’s interior from the crust to the nucleus, such
as have been shown to exist by the work of Clayton, Dziewonski, Nakanishi, and
Nolet (Nolet, 1987), among others.

A commonly used method of seismic tomography is based on time residuals of arrival
times, that is, the differences between observed travel times and those calculated from a
reference model, usually with a distribution of velocity with depth (At = #,ps — tineo)-
Time residuals are interpreted in terms of anomalous structures of velocity with respect
to the reference velocity model. Reference models of the Earth are taken from those
already established with distributions of velocity with the radius (Jeffreys—Bullen,
PREM, etc.). If the observed traveling time at one station differs from that of the
reference model for the same trajectory, the residual is assigned to a difference in velocity
in some region along the ray. The aim of tomography is to explain residuals of travel
times in terms of variations in the velocity distribution inside the Earth or velocity
anomalies. If we have a large number of ray trajectories in many directions, the
anomalous regions can be defined well in terms of the extent and the magnitude of
the anomaly.

Since the travel times of waves depend on the inverse of the velocity (the slowness,
1 = 1/v), this variable is the one that generally is used. If the anomaly in velocity in a
certain region is Av = v — v, the anomaly in slowness is

_ b1 Av
o4+ Av v P

An (9.3)

Once the time residuals Az have been corrected for other factors, they can be assigned to
anomalies in velocity (slowness) in a given region (Fig. 9.4). If the length of a ray’s
trajectory through the anomalous region is /, then

[ Av

At=1An=——- (9.4)
(%
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Fig. 9.4. Ray paths that cross an anomalous region (shaded) inside the Earth in a study of seismic
tomography. Stations 2, 3, and 4 present traveling time residuals whereas stations 1 and 5 do not.
Cells crossed by rays are shown.

In general, the region of the Earth that is being studied is divided into cells of constant
dimensions with a velocity that differs from that of the reference model by a quantity Av
that must be determined. The time residual A at a station is assigned to the sum of time
increments, positive or negative, due to velocity anomalies in each cell:

Af — i liA;}i

- 9.5)

If a particular ray crosses N cells where the velocities of the reference model are v;,
the relation between Atr and Aw; is given by equation (9.5). The length across the
cells can be written in terms of the vertical dimensions of each cell s, which usually
are the same for all cells, and the angles of incidence of the ray at those points,
l; = h/cosi;. Equation (9.5) has N unknowns (Aw;), the velocity anomalies of cells
crossed by one ray. The complete model has a total number of M cells, of which
each ray crosses only a limited number (N < M). The problem consists in finding
Aw; for each of the M cells. This is possible only if we have many rays crossing each
of the M cells in different directions. The problem requires the solution of a system
of many linear equations of the type of (9.5) for the M unknowns (Awv;). The solution
is generally found by a least squares method. For the solution to be well conditioned,
the total number of equations must be much larger than M and each cell must be
crossed in different directions by many rays. This implies that we have a dense distri-
bution of stations that received rays from a large number of sources. Owing to the large
number of observations, complex inversion algorithms and statistical methods are
used.

This explanation has shown only the fundamentals of the method, without mention-
ing many other important aspects, such as the influence of observation errors, errors
in hypocenters, and ray trajectories. All of them must be considered if one is to
obtain results that are representative of the velocity structure of the region being
studied. Seismic tomography studies provide the distributions of zones of positive or
negative velocity anomalies with respect to those of the reference model of the Earth.
Positive anomalies represent zones of higher velocities and are associated with regions
where the material is more rigid and colder, whereas negative anomalies corresponding
to lower velocities are associated with less rigid and warmer material.
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9.2 Distributions of velocity, elasticity coefficients, and density

The methods we have briefly described provide knowledge of velocity distribu-
tions of body waves inside the Earth. In most cases these methods use P waves only, and
the Earth’s structure is given as distributions of their velocities. Observations of S waves
are less commonly used and the distributions of their velocities are less accurate. This is
due, in part, to the fact that S waves are not first arrivals and they are not efficiently
generated by explosions. If the velocities o and 3 are known, we can deduce the distribu-
tion of Poisson’s ratio 0. The quotient 3/« can be expressed in terms of o by using (2.26),
(2.64), and (2.65):

Also, o can be written in terms of « and 3 as

o =23
o= =P (9.7)
In this form, if we know independently the distributions of « and [ with depth, we can
deduce that of o.
The elastic coefficients p (the rigidity modulus), K (the bulk modulus), and A (the
Lamé coefficient) can be expressed in terms of the velocities of elastic waves « and (3,
and the density p:

= pp (©-8)
K = p(a® —4p%) (9.9)
A =p(a® —26%) (9.10)

The variation of the density with depth inside the Earth may be determined from the
velocities of seismic waves o and 3 under certain conditions. In a simplified form, let
us assume that a material is homogeneous, in hydrostatic equilibrium, and existing
under adiabatic conditions. In this case, the variation of the pressure P with the
radius inside the Earth is

dp
= (9.11)

where g is the gravitational attraction of the mass inside a given value of r (for a spherical
Earth g = —Gn1/r2). The variation of the density p with the radius for hydrostatic
equilibrium is

dp dpdP

—_—=—— 9.12

dr dP dr ( )
since, by the definition of K, for a homogeneous material at constant volume and
adiabatic changes (2.30),

1 1dp

—=—— 9.13

K pdpP ( )
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Fig. 9.5. Distributions in the Earth’s interior of gravity (g), density (p), pressure (P), the bulk
modulus (K), and the rigidity modulus ().

by substituting (9.11) and (9.13) into (9.12) and expressing K in terms of « and 5 (9.9),
we obtain

dp Gmp

ar m (9.14)

This expression is known as the Adams—Williamson equation. The gradient of the
density with the radius for a value of r can be determined from values of a and [
and the mass of the Earth inside such a value of r. This equation can be applied to
obtain the distribution of density inside the Earth if there are no discontinuities in the
values of p and consequently also none in those of o and . Once the distribution of
p 1s known, we can find those of the elastic coefficients K and p, from values of «
and (3, according to (9.9) and (9.8). For a more general treatment see Bullen and Bolt
(1985).

The distributions of u, K, and p inside the Earth are shown in Fig. 9.5. We can see that
the density increases gradually with depth from 3.4 gem ™ in the mantle and there is a
sharp increase from 5.57 gem > in the base of the mantle to 10—13 gem ™ in the core.
Owing to this high density, the largest contribution to gravity is from the mass of the
core. The pressure increases gradually with depth in the mantle and core. The bulk
modulus K increases slowly in the mantle and more rapidly in the core. The rigidity
modulus p increases very slowly in the mantle, is null inside the outer core, which is
in a fluid state, and has a finite value in the inner core.
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9.3 The crust

The outermost part of the Earth is called the crust. From the seismologic
point of view, the first observations that led to the discovery of the existence of a
sharp contrast between the material of the crust and that of the mantle under it were
made in 1909 by Mohorovici¢, studying the travel times of earthquakes in central
Europe. He observed that, for an epicentral distance of about 150 km, there was a
change in the slope of traveling times. This change in slope corresponds to a velocity
discontinuity at about 30 km depth that he identified as the base of the crust. This
discontinuity today bears his name or is called, in abbreviated form, the Moho. A
second discontinuity inside the crust was discovered by V. Conrad in 1923 (it is called
the Conrad discontinuity) and H. Jeffreys in 1926.

The thickness of the crust is not homogeneous; in shields or stable continental zones it
is about 30 km, whereas under the oceans it is only 8—15km and in regions of high
mountains it can be as much as 60 km (Fig. 9.6). The simplest models of the continental
crust have two layers with constant velocity or with a small gradient, covered by a thin
layer of sediments. These two layers were known as granitic and basaltic layers due to
their assumed compositions and today are more generally referred to as the upper and
lower crust (Fig. 9.6). Approximate values of P wave velocities for the crust are 2.5—
5kms™! in sediments, 5.7-6.3kms™! in the upper crust, 6.6-7.3kms"! in the lower
crust, and 7.8-8.3kms™! for the top of the upper mantle.

The nomenclature used to designate rays traveling through the crust is the following:
rays in the upper crust are denoted P,, waves reflected in the Moho are denoted PP,
and waves refracted in the upper mantle are denoted P,. Rays refracted and reflected
in an internal discontinuity of the crust (the discontinuity between the upper and
lower crust) are called P, and P_P, or P; and P;P. For observations of earthquakes
waves refracted in the lower crust are also called P*. For S waves the nomenclature is
similar, that s, S,, S,,, S*, SuS, ete. For reflected waves we must also consider converted
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Fig. 9.6. Typical values of P wave velocity (kms™') in oceanic material, continental shield, and
orogenic crust.
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Fig. 9.7. Ray trajectories and a synthetic seismic record section for a two-layer crust with small
velocity gradients (courtesy of J. Tellez).

waves, that is, incident P or S waves that are reflected as S or P waves. For rays reflected
in the Moho, they are denoted Py;S and Sy,P.

Rays traveling in a two-layer crust with a sedimentary layer are shown in Fig. 9.7 with
the corresponding theoretical reduced record section (reduced velocity 6 kms™") (section
6.5). For distances less than 140 km, first arrivals correspond to P, and, for greater
distances, to P,, which have smaller amplitudes. Depending on the thickness of the
crust, this distance may vary in the range 90—160 km. A prominent arrival belongs to
PP, with large amplitudes, especially near the critical distance (80—140km). The
critical distance of Py;P can be used to determine the total thickness of the crust (section
6.5). In seismograms of local earthquakes, we observe the same phases but P, is observed
with large amplitudes beyond the critical distance and S phases have large amplitudes in
the horizontal components (Fig. 9.8). Rays refracted or reflected at internal discontinu-
ities of the crust, P; or P* and S; or S*, have, in general, small amplitudes. They are
observed better in seismograms of earthquakes than they are in seismic profiles.

Low-velocity layers have often been observed in the crust. Their presence in the upper
and lower crust produces delays in rays reflected and refracted at discontinuities below
them. In general, models of the crust with layers of constant velocity reproduce many



164

I Lg :
— Sg —
5 _
_ s* i
L Sn | _
P
i P* 'g 1
M
0 |
_5 - |
i | |
| | I 1 1 | | | 1 Il 1 I | I ] 1 | I |
50 700 150 200 250 300

Fig. 9.8. A seismogram (the vertical component) of a local earthquake in Faro, Portugal (1 May 1997) recorded at the SFUC BB station (Cadiz, Spain) at

138 km distance, showing crustal phases.



9.3 The crust 165

observed characteristics of travel times and record sections. Better results are obtained
upon introducing velocity gradients in the layers. A simple model of this type is that
shown in Fig. 9.7 with two layers with small gradients. Rays have curved trajectories
and there is a maximum distance for those traveling inside the upper crust (P,) and
those reflected in the mantle (PyP). The real situation is, in general, more complex
than those predicted by simple models, as can be seen from Fig. 9.9. The main
phases, however, correspond, in general, to those of the two-layer model (Fig. 9.7).

In oceanic regions, the structure of the crust is different than that explained for a stable
continental crust. First of all, its thickness is smaller, 6—10 km, and is formed by a thin
layer of sediments underlain by a single layer with P velocities in the range 6.6—7 kms ™',
corresponding to what has been called the basaltic layer or lower crust under continents.
Underneath, in the upper mantle, P wave velocities are in general lower than they are in
continental regions, 7.6-7.9kms~! (Fig. 9.6). This is manifested by the travel times’
smaller values for critical distances of Py;P waves and there being lower slopes of rays
refracted inside the crust than those for continents. This holds for a typical oceanic
crust corresponding to oceanic abyssal planes (of about 4000 m depth). For shallow
seas and near the coast, the crust is thicker and velocities are a little lower.

The structure of the crust below continents is not homogeneous. In regions of
mountain ranges, also called orogenic zones, the thickness is usually larger than that
observed for shields or stable regions. In zones of large mountains such as in the
Andes and Himalayas, the crustal thickness may be as great as 60 km, that is, nearly
double that of stable regions. The first seismologic observations that revealed this
effect were due to Gutenberg for the Alps and Byerly for the Sierra Nevada, California.
This thickening of the crust or roots under mountains agrees with the isostatic models
proposed by G. B. Airy in 1856. The structure of the crust in mountain regions may
differ also from that of stable regions with more homogeneous characteristics and in
some cases there is no discontinuity between the upper and lower crust. The transition
from continental crust to oceanic crust in coastal regions is gradual, with decreasing
thicknesses and the disappearance of the granitic layer. The surface of the Moho has,
in consequence, a complex topography that resembles an inverse image of the free-
surface topography (Fig. 9.10).

The crustal structure, which is relatively constant in continental shields or stable
regions, varies rapidly from one place to another in geologically complex regions
(Meissner, 1986; Taylor and McLennan, 1985). Laterally homogeneous models of the
crust are, then, not very representative. The base of the crust and the intermediate
layers inside have dips and gradients that vary from place to place. Detailed refraction
studies have revealed these lateral inhomogeneities. Vertical reflection surveys have
shown the presence of dipping reflectors, offsets, and other complexities. These studies
have also shown that the upper crust is relatively transparent to vertical rays whereas
the lower crust presents multiple reflections. This has been interpreted as a thin layered
or laminated structure in the form of multiple lenses of small dimensions in the lower
crust (Fig. 9.11). The upper crust is, then, formed by a more rigid or brittle material
and the lower crust by one that is more ductile, laminated, and possibly with greater
fluid concentrations. This result agrees with the hypothesis of a seismogenetic layer (a
layer where earthquakes are generated) that, more or less, coincides with the upper
crust, as we will see in Chapter 20.
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Fig. 9.9. An observed seismic record section of a refraction seismic profile offshore of Galicia, Spain. Pg, Pn, and PP phases are clearly recorded (cour-
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lower crust are shown (Gallart er al., 1995) (with permission from the Sociedad Geologica de
Espana).
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Table 9.1. The compositions of the most common igneous rocks

Granite Basalt Peridotite
SiO, 72 51 43
Al,O4 14 14 4
Fe,O,, 3 12 12
MgO 1 6 34
CaO 2 10 4
Na,O 3 2 1

9.3.1  The mineralogical composition of the crust

Seismic observations give us directly only information on the distribution of
velocities of body waves inside the Earth and indirectly the density and elastic coeffi-
cients. The mineralogic compositions of materials in the interior of the Earth can be
derived from those of rocks on the surface, laboratory experiments, and indirect
evidence. Surface rocks can be separated according to their origin into sedimentary
and igneous ones. Briefly, sedimentary rocks are formed by the compaction of sediments
deposited mainly on the sea floor. The most abundant are limestones (CaCO;) and
sandstones (SiO,). The seismic velocities in rocks vary according to the degree of
compactness and depend on their age. Igneous rocks are formed by solidification
from fused magma. The most representative are granite, basalt, and peridotite. These
three types of rocks are examples of acid, basic or mafic, and ultrabasic or ultramafic
rocks. This classification refers to the content of silica (SiO,), which is greater than
52% for acid rocks, 45-52% for basic rocks, and less than 45% for ultrabasic rocks.
Other classifications give for acid rocks a silica content of over 66% and call inter-
mediate those with silica contents in the range 52—-66%. The proportions of components
of the three basic igneous rocks are given in Table 9.1.

Most commonly accepted results give for the global composition of the continental
crust a proportion of silica (SiO,) of approximately 60%, with 64% in the upper crust
and 58% in the lower crust. The content of Al,O5 is 16% and that of CaO is 7%.
The contents of FeO and MgO are 9% and 5%, with greater proportions in the lower
crust. The old denomination of granitic and basaltic layers for the upper and lower
crust is, then, only an approximation to their mineralogic compositions. The composi-
tion of the oceanic crust is 49% SiO,, 16% Al,Os, 11% CaO, 11% FeO, and 8%
MgO. This composition is similar to that of the lower continental crust and to those
of basaltic rocks.

9.4 The upper mantle and lithosphere

From the point of view of seismology, material under the crust down to a depth
of 700 km forms the upper mantle. The most important characteristics of the distribution
of velocities of P and S waves in its interior are the following. Velocities increase
with depth from values under the Moho of approximately 7.8—8.3kms™! for P and
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Fig. 9.12. (a) The velocity distribution of P waves in the upper mantle. (b) The reduced travel time
curve, showing branches of waves refracted in a, reflected in b, refracted in b, reflected in ¢, and
refracted in c.

3.8-4.1kms~' for S waves to about 10.7kms™' for P and 5.9kms™' for S waves.
Approximately between 60 and 220 km depth, a low-velocity layer, which is more pro-
nounced for S waves, is found. The depth, thickness, and decrease in velocity of this
layer vary from region to region and in some regions it may even not be present. This
low-velocity layer is responsible for the shadow zone observed around 20° distance.
Under the low-velocity layer, from approximately 220 km depth, velocities both for P
and for S waves increase slowly. At depths of 450 and 670 km there are two zones of
rapid increases in velocity (Fig. 9.12(a)). Travel time curves of rays that penetrate to
those depths have properties corresponding to rapid increases in velocity with normal
and retrograde branches (Fig. 9.12(b)). These two zones are sometimes considered to
be discontinuities in the velocity distribution.

The material of the upper mantle, according to A. E. Ringwood (1975), is a composite
of magnesium and iron silicates called pyrolite, formed from basalt and olivine. With
increasing depth, there are changes of phases in the minerals, for example, that of
plagioclase to form garnets. Changes in mineral phases with the same composition are
also used to interpret the rapid increases in velocity at the 450 and 670 km discontinu-
ities; for the first, a change from olivine to spinel, and, for the second, a change from
spinel to perovskite.

9.4.1  The lithosphere and the astenosphere

The crust and upper mantle are the parts active in tectonic processes. For this
reason, other concepts related to tectonics must also be introduced here. In plate
tectonics an important role is played by the lithosphere, a rigid layer that forms the
units of plate motion and includes the crust and part of the upper mantle. Under the



170 Travel times and the Earth’s structure

VELOCITY (Km/s)

5 10
CRUST
LITHOSPHERE 1500°%
100 T -
ASTENOSPHERE
=
E 200p_________ N ______|
p—_
I
'_
T
o 300}
UPPER MANTLE
400 |

Fig. 9.13. P wave velocity profile in the lithosphere, astenosphere, and mantle.

lithosphere, the material is less rigid, has plastic characteristics, and is in a state of partial
fusion, forming a weak layer called the astenosphere (Fig. 9.13). The existence within the
Earth of an upper rigid layer (the lithosphere) divided into plates lying over a plastic or
viscous layer (the astenosphere) that allows its horizontal motion is necessary in all
models of plate tectonics (section 20.5).

From the seismologic point of view, the lithosphere can be identified with the layer
that includes the crust and the lid of the upper mantle, where the velocities of P and S
waves are relatively high. The thickness found for the lithosphere varies on going
from oceans to continents, with values in the range 60—120 km. The astenosphere is
identified with the low-velocity layer both for P and for S waves which extends from
depths of about 60 km under the oceans and 120 km under the continents to about
200 km down. Its thickness varies from region to region and its lower limit is not well
defined. From the thermal point of view, the lithosphere is the relatively cold layer
with a large temperature gradient and its lower boundary is located at the isothermal
of 1500 °C. These three definitions of the lithosphere (tectonic, seismologic, and thermal)
do not always coincide and the term itself has no unique meaning.

The lower limit of the upper mantle at about 700 km depth coincides with the
maximum depth of earthquakes and approximately with the 2000 °C isotherm. This
depth corresponds also to the depth of material involved in tectonic processes and,
for this reason, the whole layer down to this depth is sometimes called the tectonosphere.
In relation to the upper mantle, subduction zones have a depth in some cases of as much
as 700 km. These zones were first manifested by the occurrence of deep earthquakes or
Wadati—Benioff zones where the oceanic lithosphere is introduced under the continental
lithosphere in regions of collisions between plates (sections 20.1 and 20.5). These and
other heterogeneities in the upper mantle have recently been detected by seismic
tomography. Inside the upper mantle, regions of positive (higher than normal velocities)
and negative (lower than normal velocities) anomalies with respect to the models of
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Fig. 9.14. A study of seismic tomography under the Iberian Peninsula. A positive-velocity anoma-
lous region at depths between 200 and 600 km is shown (Blanco and Spakman, 1993) (with permis-
sion from Elsevier Science).

radial symmetry with values up to 5% have been found for P and S waves (Fig. 9.14).
These regions are interpreted as zones in the upper mantle where material is colder
(positive anomalies) and warmer (negative anomalies). Positive anomalies are associated
with subduction zones and negative anomalies are associated with the material under rift
or extension zones and are related to thermal convection currents (Woodward and
Master, 1991). Workers using seismic tomography have also discovered structures in
the lower mantle, sometimes down to the core, that may show that tectonic processes
are really more deeply rooted.

9.5 The lower mantle

The lower mantle extends in depth from 700 km to the boundary of the core at
2900 km (the core—mantle boundary, CMB). The seismic characteristics of the lower
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Fig. 9.16. (a) Velocity distributions of P and S waves in the lower mantle. (b) Travel times curves of
P and S rays, direct and reflected at the core.

mantle are very uniform, with gradual increases in P and S wave velocities. P velocities
increase from 10.75 to 13.72kms ™' and S velocities increase from 5.95 to 7.26 kms™".
The density also increases in a gradual way from 4.38 to 5.57 gcm °. The trajectories
of seismic rays correspond to a normal distribution of velocities (section 8.6). In the
lower mantle we find direct P and S rays and rays that are reflected on the free surface
and on the surface of the core.

Direct P and S rays propagated in the lower mantle arrive at distances between 35° and
105° (Fig. 9.15). At 105° there arrive rays that turn upward immediately above the core’s
boundary. At somewhat larger distances, between 105° and 115°, we find arrivals of P
and S waves that have been diffracted at the core’s surface. Traveling time curves for
direct P and S waves have characteristics corresponding to a normal distribution of
velocities such that the velocity increases slowly and its gradient changes very little
(section 8.6) (Fig. 9.16).

The strong velocity contrast at the CMB (transitions from 13.72 to 8.06kms~! for P
waves and from 8 to 0 kms ™! for S waves) produces reflections of P and S waves that are
called PcP and ScS waves (¢ for core) and also converted reflections, PcS and ScP
(Fig. 9.16(b)). Travel time curves corresponding to reflected waves are concave
upward and tangential to direct branches at their maximum distance (105°) (Fig. 9.16).
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For surface foci, intersection times for PcP and ScS are 8'30” and 15'36”. Diffracted P
and S waves arriving at distances greater than 105° can also be considered to be grazing
reflected PcP and ScS waves at the core’s surface.

Inside the lower mantle, we find also P and S waves that are reflected once or several
times at the free surface (Fig. 9.17(a)). These waves are designated PP, PPP, etc. and SS,
SSS, etc. When there are phase conversions in the reflections we have PS, SP, PSS, PSP,
PPS, SSP, etc. Rays reflected several times arrive at later times than do direct rays and
those reflected fewer times (Fig. 9.17(b)). One also observes waves reflected at the discon-
tinuities in the upper mantle, that is, at depths of 260 (the lower limit of the low-velocity
layer), 450, and 670 km. These reflected rays are designated PdP, where d is the depth of
the reflecting layer (e.g. P450P). Owing to the small contrasts in velocity at these
discontinuities, the energies of these waves are not large and they are difficult to
detect on seismogrames.

For deep-focus earthquakes, two types of rays reflected at the free surface can arrive at
the same distance, corresponding to rays that travel upward or downward from the focus
(Fig. 9.18(a)). In the first case, the rays are designated pP and they arrive at a given
distance before the PP rays that correspond to rays that travel downward
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Fig. 9.19. A seismogram for a surface-focus earthquake in Peru (21 February 1996) recorded at the ANMO BB station (A = 51°), showing direct and
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(Fig. 9.18(b)). The ray with take-off angle i, = 7/2 arrives at the minimum distance A,
(for h = 300km, A, = 24°) where the two branches of traveling times for pP and PP
rays come together. Since the distance from the focus to the surface is small compared
with the distance to the observation point, pP rays arrive a little later than do direct P
rays. Hence the time interval Az = ¢(pP) — ¢(P) depends on the focal depth and is
used in its determination.

Rays that travel through the lower mantle can be observed on seismograms recorded
at distances from 30° to 100°. For a surface focus, the most prominent body-wave phases
correspond to direct P and S waves; the other phases that are observable are reflected PP
and SS waves (Fig. 9.19). On a seismogram of a deep-focus earthquake, we can also
observe pP and sS phases and waves reflected at the core, PcP and ScS (Fig. 9.20).
Usually, seismograms for deep-focus earthquakes provide clearer recordings of body
waves because of the poor generation of surface waves. On seismograms of surface
shocks the large amplitudes of surface waves come after S waves (Fig. 9.19).

Seismic tomography has been applied to the study of velocity heterogeneities in the
lower mantle (Inoue et al., 1990, Dziewonski, 1996). Regions with higher and lower
velocities than those of the reference model have been found. High velocities (positive
anomalies) are interpreted as corresponding to colder material and lower velocities
(negative anomalies) are thought to correspond to warmer material. These results
have been related to the presence in the lower mantle of convection currents with
upward (warm) and downward (cold) movements (Fig. 9.21).

The composition of the lower mantle is considered to be very homogeneous and
predominantly formed by silicates of magnesium and iron such as perovskite and
oxides of magnesium and iron such as magnesiovskite. The gradual increases in velocity
and density inside the lower mantle are attributed to crystalline structures which become
more compact with depth due to the increase in pressure. Inside the lower mantle the
pressure increases from 10% to 10> MPa and temperatures increase from 1000 to 3000 °C.

9.6 The core

The first evidence about the existence of the Earth’s core from the analysis of
traveling times of seismic waves was presented in 1906 by Oldham, who deduced that
its velocity is lower than that of the mantle. In 1912 Gutenberg fixed the depth of the
core at 2900 km from the study of reflected waves. In 1926 Jeffreys discovered its fluid
nature from the absence of S waves. The existence of a solid inner core was first proposed
in 1936 by Lehmann. The Earth’s core is, then, formed by two regions, an outer core (K)
of 3486 km radius and an inner core (I) of 1216 km radius (Fig. 9.22).

S waves do not propagate in the outer core, which indicates that its material is fluid
enough not to allow the existence of shear stress. The P wave velocity decreases sharply
from 13.72kms ™" at the base of the lower mantle to 8.06 kms~' at the surface of the
outer core (Fig. 9.22). According to section 8.6, we expect to find a shadow zone in
travel time curves and, after it, a duplication with two branches, one normal and another
retrograde at a later time (Fig. 8.11). For the Earth, without considering the inner core,
the shadow zone extends from 105° to 143°. Rays that penetrate into the core are called
PKP rays (K from Kern, German for core). Owing to the rapid decrease in velocity, rays



176

I pP S sS A=31° 1
10 H=600 KM -

N S |
Bl PcP ¢S _

1 1 | | | 1 | | I ‘ | 1 1 | I 1 1 ‘ 1 I | 1 I 1

0 2 4 6 8 10 12 14
X 1042

Fig. 9.20. A seismogram for a deep-focus earthquake in Peru (10 January 1994) recorded at the SJG BB station, showing direct P and S phases, and P and
S phases reflected at the free surface and at the core.
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Fig. 9.21. Seismic tomography of the lower mantle for S waves. (a) A polar section along the
meridian 108°. (b) A polar section along the meridian 144°. The dashed line circle shows the
670 km discontinuity and the innermost thick line shows the CMB (Dziewonski, 1996) (with permis-
sion from the Istituto Nazionale di Geofisica).

6370 3486 1216 0 Km

0 2900 5170 6370 Km

Fig. 9.22. Velocity distributions of P and S waves in the mantle, and in the outer and inner core.

incident on the core with large angles of incidence are refracted to distances of about
170°. With decreasing angle of incidence, rays arrive at shorter distances, forming the
retrograde branch PKP,, which is concave upward. The minimum distance for these
rays is 143°. At this distance there starts the normal branch PKP; that continues to
180° (Fig. 9.23). Travel times in the absence of diffracted waves and inner-core reflec-
tions present a shadow zone from 105° to 143°. From 143° we find the duplication
of branches PKP; and PKP, with a time delay of 3 min with respect to direct P waves
propagated in the lower mantle (Fig. 9.24(a)).

The presence of the solid inner core with a greater P wave velocity than that of
the outer core (Fig. 9.22) modifies the traveling time curve. First of all, there are
rays reflected on the surface of the inner core (designated PKiKP) that start to arrive
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Fig. 9.23. Ray trajectories of P waves through the mantle, and of P waves refracted in and reflected
from the outer core.
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Fig. 9.24. (a) Traveling time curves for P waves in the mantle and core. (b) Detail of traveling times
for P waves in the outer and inner core.

at a distance of about 120°, in the shadow zone (Fig. 9.24(a)). Arrivals of these waves
form the main evidence for the existence of the inner core. Rays refracted in the inner
core, PKIKP, arrive ahead of the PKP; rays. The travel time curve is, then, formed
by four branches, PKP;, PKP,, PKiKP, and PKIKP (Fig. 9.24(b)). PKP, rays arrive
from 143° to 156°, PKP, (concave upward) rays from 143° to 170°, PKiPK (concave
upward) rays from 120° to 156°, and PKIKP rays from 120° to 180° (Fig. 9.24(b)).
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SKS

Fig. 9.25. Ray trajectories of S waves in the mantle and of S waves refracted in and reflected from the
core.

| |
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Fig. 9.26. Travel times for S waves in the mantle and for S waves refracted in and reflected from the
outer and inner core.

As has been mentioned, the fluid nature of the outer core blocks the propagation of S
waves. However, S waves propagated in the lower mantle are converted into P waves in
the outer core that are again converted into S waves in the mantle. Such rays, when they
travel through the outer core only, are designated SKS rays; if they penetrate the inner
core, they are called SKIKS rays. SKiKS rays are those reflected on the surface of the
inner core (Fig. 9.25). Since, for rays passing from S (the lower mantle) to K (the
outer core) and from K to I (the inner core), the velocity always increases, the travel
times have characteristics associated with media with zones of rapid increases in velocity
(section 8.6, Fig. 8.10). Direct S rays arrive at distances of up to 105°. Rays refracted in
the outer core, SKS rays, start to arrive at 62°, a point common to the branch of reflected
ScS rays, and they are observed up to 133°. Rays that are refracted into the inner core,
SKIKS rays, arrive at distances from 99° to 180°. Rays reflected from the inner core,
SKiKS rays, arrive at distances from 99° to 133°, forming a concave upward branch
(Fig. 9.26). Since the inner core is solid, S waves also propagate in its interior. S (J)
waves in the inner core are converted from P (K) waves in the outer core. They are
called SKJKS rays, and their travel time branch is parallel to the SKIKS branch, but
delayed in time. These waves have little energy and are difficult to observe.

On seismograms, for epicentral distances greater than 105°, we observe arrivals of rays
that have traveled through the core. Owing to the complexity of arrivals of rays refracted
and reflected in the outer and inner core, seismograms vary rapidly in appearance on
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Fig. 9.27. A seismogram of an earthquake in Peru (18 March 1993), recorded at the APR BB station (A = 155°), showing the core’s phases.
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Fig. 9.28. Velocity distributions of P and S waves in the inner and outer core. Transition zones
between the core and the mantle (D and D”) (the CMB) and between the inner and the outer
core (F) are shown.

going from one distance to another. PKiKP rays start to arrive at about 120°, PKIKP
rays at 130°, and PKP; and PKP, rays at 142° (Fig. 9.27).

Velocity models of the core agree in their general characteristics with that shown in
Fig. 9.28 (Bolt, 1982; Jeanloz, 1990). The velocity of P waves decreases sharply from
13.5kms ! at the base of the lower mantle to 8.06kms™~' in the core and increases
slowly in the outer core from 8.06 to 10.36kms ™!, where the velocity of S waves is
zero. There are several models for the boundary between the outer and inner core. A
simple model consists in a decrease in the velocity gradient followed by a sharp increase
in velocity from 10.36 to 11.03kms~!. In the inner core, the velocity is practically
constant or increases very slowly from 11.03 to 11.26kms™".

The density increases rapidly from 5.57 gem ™ at the base of the lower mantle to
9.9gcm ™ in the outer core. Inside the core, the density increases gradually, with a
small increment at the boundary of the inner core, reaching a value of 13.1 gem ™.
Owing to its large density, the mass of the core is approximately 35% of the mass of
the Earth. The composition of the core is basically iron with a small proportion
(about 10%) of lighter elements such as silicon, nickel, sulfur, carbon, and oxygen.
The presence of some of these elements is necessary in order to explain the values of
the density and bulk modulus in the core, both of which are lower than those expected
for pure iron at high pressures and temperatures. The iron composition is confirmed by
the presence of this mineral in meteorites and the existence of the Earth’s internal
magnetic field. The generation of this field is explained by models of autoexcited
dynamos produced by motion of fluid conductive material of the outer core. The
material of the core seems to be very homogeneous and the difference between the
outer and inner core is due only to its fluid or solid state. Some authors, however,
propose also a difference in composition, with iron and nickel in the inner core and
iron and sulfur in the outer core.

Transition zones between the mantle and the outer core, CMB, called by Bullen the D
zone, and between the outer and inner cores, or the F zone, are still a subject of
discussion. The first models of the CMB posited a sharp decrease in velocity whereas
more modern ones favor a previous increase in velocity at a depth of about 2600 km
followed by the decrease (Young and Lay, 1987). The CMB marks a sharp contrast in
physical and chemical characteristics, from solid material of magnesium and iron
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silicates to a fluid made basically of iron. Above this boundary, there is an anomalous
layer in the mantle known as the D" zone of up to 300 km thickness and great lateral
inhomogeneities. The characteristics of the outer—inner core boundary or F zone are
less well known. Models present a gradual increase in velocity from about 4600 km
depth (Fig. 9.28). The transition zone may extend further, from 4500 to 5200 km
depth (Song and Helmberger, 1992). Modern seismic tomography studies have revealed
the existence of lateral velocity anomalies that may be related to thermal convection
currents present in the fluid material in the outer core. These currents are related to
the generation of the magnetic field. Velocity anomalies and a strong axial anisotropy
have also been found in the solid inner core.



10 SURFACE WAVES

10.1  Rayleigh waves in a half-space

The presence of a free surface on an elastic medium introduces a series of
phenomena that must be considered in the study of wave propagation. First of all, as
we have seen in section 5.4, there are body-wave reflections. Under certain conditions
(supercritical incidence of S waves) the generation of inhomogeneous or evanescent
waves occurs (sections 5.3 and 5.4). These are body waves that propagate along a
direction parallel to the free surface and whose amplitudes decrease with the distance
from the free surface. A different phenomenon is the generation of surface waves
from constructive interference of body waves in connection with a free surface.

Surface waves are defined as those produced in media with a free surface which
propagate parallel to the surface and whose amplitudes decrease with the distance
from the surface. Surface waves are generated by energy brought to the free surface
by incident body waves. Their existence is related to the presence of a free surface,
although they are affected by other surfaces of contact between layers of different elastic
properties. There are also waves of similar characteristics, but not related to a free
surface, called Stoneley waves, which are associated with an interface between two
media in contact.

The first problem is that of determining whether, in an elastic, homogeneous half-
space limited by a plane x3 = 0 (x; being positive upward), there exist surface waves
that propagate in the direction of x; with velocity ¢ and whose amplitudes decrease
with depth (—x;) (Fig. 10.1). According to (3.97) and (3.98), the components of
displacement u; and u; can be expressed in terms of the scalar potentials ¢ and 1, and
u, is kept apart:

up=0¢1—1v; (10.1)
Uy = Uy (102)
uzy =3+, (10.3)

For waves of frequency w that propagate in the positive x; direction with velocity ¢, the
potentials, ¢ and ¢, and transversal displacement, u,, are given by

b = f(x3) explik(x, — ¢0) (10.4)
b = glixs) explik(x, — cf) (10.5)
uy = h(x3) explik(x; — ct)] (10.6)

where f(x3), g(x3), and h(x3) express the amplitude’s dependence on depth and k = w/c¢
is the wave number. By substitution into the wave equations for ¢, v, and u, (3.66),
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Fig. 10.1. A ray incident on a free surface and the component of velocity along the surface.

we obtain
S (x3) + kr’f(x3) =0 (10.7)
g (x3) + ksg(x3) =0 (10.8)
' (x3) + ks*h(x3) = 0 (10.9)
where, just like in (5.60) and (5.61),
2 1/2
r= <az—1> (10.10)
2 1/2
s = <52—1> (10.11)
The solutions of equations (10.7)—(10.9) are
f(x3) = A exp(ikrx;) + A exp(—ikrxs) (10.12)

and expressions of the same form for g(x3) and /(x3), with r replaced by s.

Surface waves must have amplitudes that decrease with depth, (—x3). Hence r and s
must be imaginary and positive and consequently 4’ = B = C' = 0.

According to (10.10) and (10.11), if r and s are imaginary, ¢ < 8 < «, that is, the
velocity of surface waves is smaller than that of S waves. For incident body waves on
the free surface, ¢ is the apparent velocity in the direction of x|, r and s are real, and
¢ > a > [ (section 5.4). Also r =tane and s =tanf, (5.60 and 5.61), where ¢ and f
are the angles of emergence of incident and reflected P and S waves. If a > ¢ > £,
there are incident and reflected S waves and inhomogeneous P waves (r is imaginary).
For surface waves, we have both r and s imaginary and ¢ < 8 < a. The problem is
thus related to the incidence of waves on a free surface.

By substituting f(x3) from (10.12) and the similar expressions for g(x3) and A(x3) into
(10.4)—(10.6), with the conditions specified above, we finally obtain

¢ = Aexp[—ikrx; +ik(x; — ct)] (10.13)
¥ = Bexp[—iksxs + ik(x; — ct)] (10.14)
uy = Cexp[—iksx; + ik(x) — ct)] (10.15)
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To evaluate the arbitrary constants 4, B, and C, we apply the boundary conditions at the
free surface, that is, null stresses across the surface: for x; = 0, 3; = 73, = 733 = 0. For
an isotropic medium, the stresses in terms of the displacements, according to (2.18), are

T3 = pus ) +up3) (10.16)
T3 = Uz +uy3) (10.17)
T3z = (A + 2p)us 3 + Muy | + us) (10.18)

By replacing the displacements u; and u; in terms of the potentials (10.1) and (10.3), and
considering that they are independent of x,, for x3 =0, we obtain the following
equations:

2051 +¢11 —¥33=0 (10.19)
w3 =0 (10.20)
(A+2p)¢ 33+ A+ 2pp 3 =0 (10.21)

By substitution of (10.15) into equation (10.20), we obtain that C = 0. Therefore, surface
waves in a half-space do not have a transverse component of displacement. By substitut-
ing (10.13) and (10.14) into (10.19) and (10.21), we obtain for x; = 0 that

2rA—(1—s)B=0 (10.22)
[0*(r? +1) — 2644 — 2*sB =0 (10.23)

This is a homogeneous system of equations; therefore, the condition for the existence of
a solution, apart from the trivial one 4 = B = 0, is that the determinant of the system be
null:

. 12
A U (10.24)
a (r+1)-2p —203%s
Solving the determinant gives
[P+ 1) = 2641 — %) —4rsB* =0 (10.25)

On replacing the values of r and s from (10.10) and (10.11), and taking into account that
they are imaginary, we have

282 2\ 12 2\ 12
(2;2) 4(12{2) (1;2> (10.26)

This equation is known as Rayleigh’s equation in honor of John W. Strutt, Lord
Rayleigh, who solved this problem for the first time in 1887. In order to study the
solutions of Rayleigh’s equation, we make the changes of variables ¢ = (¢/8)> and
q=(8/ a)2. The value of ¢ is related to Poisson’s ratio (section 2.2) and depends on
the elastic properties of the medium. On taking the square of (10.26) and eliminating
the solution £ = 0, we obtain a cubic equation for &:

€ -8 +83+2¢)E+16(g—1)=0 (10.27)
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Table 10.1. Values of € and cg corresponding to certain values of o, together with the
relations among the values of q, A\, and p.

o q % ¢ CR
0 % 0 %K 0.7640 0.87413
% % %IL K 0.8059 0.89773
% % I %K 0.8453 0.91943
% 0 K 0 0.9128 0.0

1

0.25 0.5

Fig. 10.2. The variations of ¢ (4/«) and & (¢/3) with Poisson’s ratio.

The solutions of this equation depend on the values of ¢. Since Poisson’s ratio has
values between 0 and % (section 2.2), ¢ varies between % and 0. For each value of ¢,
equation (10.27) has three roots. From them only those for values of £ < 1 correspond
to surface waves, since they must satisfy the condition that ¢ < 8. Waves corresponding
to these solutions are called Rayleigh waves and their velocity cg is a fraction of the
shear-wave velocity in the half-space. In Table 10.1, values of £ and cg corresponding
to certain values of o are given, together with the relations among the values of ¢, A,
and p.

Values of £ and ¢ versus o are shown in Fig. 10.2. For all possible values of o, £ varies
very little, between 0.7640 and 0.9128. For o = %, the medium is a liquid, p and 3 are null,
and the root £ = 0.9128 corresponds to a zero value of cg. Hence, Rayleigh waves do not
exist in a liquid half-space.

A special case is that for o = % (A=p)and ¢ = %, which condition is approximately
satisfied for the Earth’s materials. For this case, we derived in section 5.4 expressions
for the reflection coefficients of incident P and S waves reflected on the free surface of
an elastic medium, Vgg and Vpp. Both (5.100) and (5.106) have the same numerator.
If we put this numerator equal to zero, we obtain the same equation (10.26) for g = %
This shows again that the generation of Rayleigh waves is related to the reflection of
P and S waves on the free surface of an elastic half-space. For this particular case,



10.1 Rayleigh waves in a half-space 187

equation (10.27) results in
€82 +%¢-2=0 (10.28)

The roots of this equation are 4, 2+42/v/3 and 2 —2/+/3. The first two (¢ > 1),
correspond to cases of wave reflection for which ¢ > a > (3. For incident P waves,
these values of ¢ correspond to angles of incidence for which there are no reflected P
waves, since Vpp = 0. Because cose = a/c, these angles are ¢ = 30° and e = 47°47'.
For an incident S wave, they correspond to f = 60° and f = 55°44’ (Vgs = 0). The
third root is £ = 0.8453 and corresponds to Rayleigh waves.

In conclusion, in an elastic half-space, Rayleigh surface waves that propagate parallel
to the free surface with a velocity cg = /€0, where £ are the roots with values less than
unity of equation (10.27), are generated. The amplitudes of these waves decrease
exponentially with depth. In a certain way, these waves may be considered to be
generated by energy brought to the surface by incident P and S waves that produce
no reflections.

10.1.1 Displacements of Rayleigh waves

Displacements of Rayleigh waves are obtained by substituting expressions
(10.13) and (10.14) for the potentials ¢ and ¢ into (10.1) and (10.3). For the particular
case of 0 = %, we have cg = 0.91948, r = 0.85i, and s = 0.39i. By first substituting these
values into (10.22), we obtain B = —1.47i4. Finally, taking only the real part, the
displacements are given by

uy = —Ak(e™¥ —0.58 ™) sinfk(x; — cg1)] (10.29)
1y = —Ak(—0.85e%8%% 11470355 cos[k(x) — cgt)] (10.30)

We must remember that A is the potential amplitude (in units of m?) and Ak is the
displacement amplitude (in units of meters). For points at the free surface (x; = 0),
letting —Ak = a, we find that

u; = 0.42asinfk(x; — cr?)] (10.31)
uy = 0.62acoslk(x; — crt)] (10.32)

Since Rayleigh waves have no transverse component, they are polarized in the vertical
plane. The horizontal and vertical components are shifted in phase by 7/2 and thus the
motion is elliptical. If we substitute into (10.31) and (10.32) the values of ¢ during a
complete cycle (0 to T, where T = 27/w is the period), we obtain for the particle’s
motion an ellipse with a vertical major axis and retrograde motion (opposite to that
of wave propagation) (Fig. 10.3).

The dependences of the displacement components #; and u; on depth (—x;3) are given
by (10.29) and (10.30). There is a value of x; for which u; is null, x3 = —0.19A (A = 27 /k
is the wave length), whereas u5 is never null. At the depth where u; is null, its amplitude
changes sign. For greater depths the particle’s motion is prograde (Fig. 10.4). With
increasing depth, the amplitudes of u; and u; decrease exponentially, with u; always
larger than u;.
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Fig. 10.3. A diagram of a particle’s motion on the vertical plane for a Rayleigh wave at the free
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Fig. 10.4. A plot of the amplitudes of the displacement components u; and u3 of Rayleigh waves in a
half-space versus depth.

10.2 A liquid layer over a rigid half-space. Guided waves

The existence of one or more layers of finite thickness and different properties
lying over a half-space modified the results we have obtained for surface waves. As an
introduction to this problem, we consider a liquid layer of thickness H, density p, and
velocity « lying over a rigid half-space (Fig. 10.5). Since there is no propagation of
waves in a rigid medium, we have no surface waves, only waves contained in the
liquid layer.

The motion in the liquid layer can be expressed in terms of a scalar potential ¢. For
waves that propagate in the positive x; direction with velocity ¢, the potential is given by

¢ _ (A eier3 + Befier3) eik(xl —ct) (1033)

where r is given by (10.10). Since x; can vary only between 0 and H, we can not
yet impose any condition on the real or imaginary character of r. The boundary con-
dition on the free surface (x; = H) is that the normal component of stress across the
surface be null, 33 = 0. At the base of the layer (x3 = 0), the vertical component of
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Fig. 10.5. Rays in a liquid layer over a rigid medium, showing constructive interference on the wave
front AB.

the displacement is null, u3; = 0. In terms of the potential ¢, these two conditions are
X3 = H: Qﬁj]] + ¢733 =0 (1034)
x3 =0: ¢3=0 (10.35)

The first condition, from the relation among the cubic dilation, the Laplacian of ¢ (2.13),
and the wave equation (3.3), can be written as pw2¢ = 0. Using the potential ¢ according
to (10.3), conditions (10.34) and (10.35) give

A 4 ge it — (10.36)
A—B=0 (10.37)

Since this is a homogeneous system of equations for 4 and B, the existence of a solution
implies that its determinant is null:

e e — ¢ (10.38)

If r is imaginary, equation (10.38) leads to the impossible result cosh(krH) = 0. There-
fore, r must be real and condition (10.38) gives

cos(krH) =0 (10.39)
On substituting for r its value in (10.10), the condition leads to
kH( /o> =) = (n+Yr,  n=0,1,2,3,... (10.40)

Since r is real, that is ¢ > «, waves in the x; direction with velocity ¢ are formed by
reflections in the interior of the liquid layer. Waves propagate parallel to both limits
of the layer and are called guided or channeled waves. Contrary to the previous case
(10.25), in equation (10.38) the wave number k appeared. Thus, equation (10.40) implies
that the velocity of propagation is a function of the wave number, c¢(k), or of the
frequency, c¢(w). This means that waves are dispersed and equation (10.40) that relates
the velocity to the frequency is called the dispersion equation. Wave dispersion is a
consequence of introducing a finite dimension (the layer’s thickness) into the problem,
since the velocity depends on the relation between the wave length and the layer’s
thickness.

Another important result is the presence in the dispersion equation (10.40) of the
integer n that takes an infinite number of discrete values. For each value of n, the relation



190 Surface waves

between ¢ and k is different; that is, we have a different type of wave propagation. Each
of these forms of wave propagation is called a mode, just like in the problem of
vibrations of finite elastic bodies (Chapter 4). Here the presence of modes is due to
the finite dimension of the layer’s thickness. Just like in Chapter 4, the lowest value of
n corresponds to the fundamental mode and the other values to higher modes or
harmonics.

10.2.1 Constructive interference

We have seen that the solution for guided waves corresponds to real values of r;
that is, ¢ > «. Therefore we can consider that these waves are generated by constructive
interference of body (acoustic) waves propagated in the interior of the liquid layer and
reflected from its two surfaces. Hence we can also find the dispersion equation (10.40) by
using the ray-theory approach for plane waves and the condition of constructive inter-
ference. This condition implies that waves that coincide on the same wave front must be
in phase so that their amplitudes are summed. For a ray that is reflected on both surfaces
(Fig. 10.5), the same wave front AB corresponds to rays that pass through A and
through B. For constructive interference on this wave front, the two waves must be in
phase; that is, the distance along the ray from A to B (AP + PQ + QB) must be an
integer multiple of the wave length, taking into account the possible phase shifts at
the points of reflection. The phase shift at the rigid surface is zero whereas that at the
free surface is 7 (section 5.2). The condition of constructive interference can, then, be
written as

ii(AP+PQ+QB)_7r:27m (10.41)

According to the ray geometry (Fig. 10.6)
AP+ PQ+ QB =2Hcosi (10.42)

Since sini = a/c, cosi = (a/c)(?/a® —1)"/2, and k = k,sini, by substitution into
(10.41) we obtain the dispersion equation (10.40). Guided waves that appear on the

o 3na 5o [0}
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Fig. 10.6. Dispersion curves for guided waves in a liquid layer over a rigid medium. The fundamental
mode and the two first higher modes with their cut-off frequencies are shown.
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liquid layer are, thus, formed by constructive interference of acoustic waves reflected
from its two surfaces.

10.2.2  The dispersion equation and curves

If we write (10.40) in terms of the frequency w and solve for ¢, we find the explicit
form of the dispersion equation:

c(w) = : (10.43)

([t s}

The fundamental mode corresponds to n = 0; thus, according to (10.40), kHr = /2.
Higher modes correspond to n > 1. For real values of ¢(w), the expression in the denomi-
nator must be larger than zero. The frequency w, corresponding to the zero value of the
denominator is called the cut-off frequency, since there are no values of ¢(w) for w < w.
For any mode of order n, the cut-off frequency is
m(n+Ha

= T E 2 ;2) (10.44)
The lower cut-off frequency, w, = an/(2H), corresponds to the fundamental mode. In
all modes, the velocity ¢ becomes infinite for the cut-off frequency w = w,. With increas-
ing w, the velocity ¢ decreases and, in the limit, when w tend to infinity, ¢ tends to «.. The
¢(w) curves are called dispersion curves (Fig. 10.6). For each mode there is a dispersion
curve with values of the velocity for frequencies from the cut-off frequency to infinity.
We can see that the lowest value of the velocity corresponds to the fundamental mode
for a given frequency and increases with the order of the mode. Also, a given velocity
corresponds to the lowest frequency for the fundamental mode and to higher frequencies
with increasing order of the modes (Fig. 10.6).

10.2.3 Displacements

Using equations (10.33) and (10.37), we can determine the displacements of
guided waves, by taking derivatives of the potential ¢, according to (10.1) and (10.3):

u, = —2Ak cos (er’E) sinfk(x, — ct)] (10.45)
uy = —2Akrsin <er);;) cosk(x; — ct)] (10.46)

The components u; and u3 are shifted in phase by 7/2, and the resulting motion in the
vertical plane is elliptical and retrograde. For the fundamental mode, kHr = w/2, we
obtain

X3

u; = —2Akcos <2H> sin[k(x; — ct)] (10.47)

mAd . (7
Uy = ——-sin (21_;> cos[k(xy — ct)] (10.48)
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Fig. 10.7. (a) The amplitude of the displacement components u; and u3 of guided waves in a liquid
layer over a rigid medium for the fundamental mode. (b) A diagram showing a particle’s motion on
the vertical plane.

0 1

Fig. 10.8. Amplitudes with depth for the displacement components u; and w3 for the first higher
mode of guided waves in a liquid layer over a rigid medium.

For the free surface (x; = H), u; = 0 and the motion is vertical, whereas at the base of
the layer (x3 = 0), u3 = 0 and the motion is horizontal. Inside the layer, the motion is
elliptical; the major axis changes with depth from vertical to horizontal (the motion is
circular for x3 = (2H /7) tan" ' [x/(2hk)]) (Fig. 10.7).

For the fundamental mode there is no depth inside the layer at which the amplitude
either of u; or of usz is zero (Fig. 10.7(a)). For higher modes, there are values of x;
inside the layer, equal to the order number of the mode, at which either u; or us is
zero (nodes), but they do not coincide. For example, for the first higher mode,
krH = 3m/2, u; is zero for x3 = H/3 and u; is zero for x; = 2H/3 (Fig. 10.8). This
characteristic of guided waves is similar to the vibrations of an elastic rod of finite
length (Chapter 4).

In conclusion, guided waves in a liquid layer over a rigid half-space present the follow-
ing characteristics that are found in all cases of the propagation of waves in layers of
finite thickness: (a) dispersion; that is, the velocity depends on the frequency; (b) an
infinite number of modes corresponding to values of n, namely fundamental (n = 0)
and higher (n > 1) modes; (c) for each mode there is a different dispersion curve with
a cut-off frequency; and (d) displacements for higher modes have a number of amplitude
nodes equal to their order number.
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10.3  An elastic layer over a half-space. Love waves

The characteristics of Rayleigh waves on the free surface of a half-space do not
agree with those of surface waves observed on the Earth. Ever since the installation of
the first seismographs, it has been observed that surface waves are formed by dispersed
trains and have transverse components of motion. Therefore, the theory deduced in
section 10.1 is not sufficient to explain observations and we must introduce the presence
of layers that affect the propagation of surface waves. The first to consider this problem
was Love in 1911. He found that, in an elastic layer over a half-space, dispersed surface
waves are produced with transverse components, which are now called Love waves.

In this problem, we consider only waves with a transverse component of displacement,
u,, that propagate in the direction x; with a velocity ¢, in a medium consisting of a layer
of thickness H, density p’ and shear velocity ', over a half-space of density p and
velocity 3 (Fig. 10.9). We can write the displacements in the form of (10.15), but allowing
for waves travelling in positive and negative directions of x; inside the layer leads to

iy = (A' W% 4 B et gkt —en (10.49)
Uy = Befiks,m +ik(x; —ct) (1050)

where s is given by (10.11) and s has a similar form obtained by replacing 5’ by 3. In
(10.50), according to the condition for surface waves, amplitudes must decrease with
depth (—x3); therefore, s must be positive and imaginary, s =i5 (¢ < ). We can not
impose any condition on s, since x; inside the layer is limited to values between 0 and
H. The boundary conditions are now as follows. (a) At the free surface (x; = H), the
component of stress 75, is null. (b) At the surface of contact between the layer and the
half-space (x; = 0), there is continuity of the stress (75, = 73,) and displacement
(b = up). The second condition implies that the layer and half-space are welded
together. The three boundary conditions in terms of the displacements are

X3 = H: ‘LL/M/2,3 =0 (1051)
X3 = 0: /,L/M/2’3 = /,61423 (1052)
s = Uy (10.53)
X3
H
Qo p’
0
Qa,p X

Fig. 10.9. An elastic layer of thickness H over an elastic half-space.
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By substitution into (10.49) and (10.50), we find the following three equations:

A/ eikx/H _ B efikS’H =0 (1054)
A'p's —By's + Bsp =0 (10.55)
A+B—-B=0 (10.56)

A solution of this system of equations, apart from the trivial one 4’ = B = B =0,
requires that the determinant be zero:

eiks’H . e—iks’H 0
ws o o—us s |=0 (10.57)
1 1 -1
By expanding the determinant we obtain

iks' H —iks' H
us et —e

ws T ok Lok H (10.58)
If s is imaginary (¢ < 3'), then, on making the substitution s’ = is’, we obtain
P tanh(ks' H) (10.59)

/El

Since the left-hand side is always positive and the hyperbolic tangent is, too, this result is
not possible. Therefore s’ must be real (8 > ¢ > 3), so the velocity of the layer must be
less than that of the half-space, and the velocities of Love waves have values between the
two. Since s is imaginary and s is real, from equation (10.58) we obtain

p(l=c/ph)'"?
//(62/5/2 _ 1)1/2

On making the substitution k = w/¢, we obtain

p1/e —1/8°)'"?

ul(l/ﬁd _ 1/62)1/2
Just like in the case of guided waves in a liquid layer, the velocity of Love waves is a
function of the frequency, ¢(k), or ¢(w) and equations (10.60) and (10.61) are dispersion
equations. The tangent has positive values between zero and infinity for various intervals
of its argument kHys', the first between 0 and 7/2, the second between 7 and 37/2, etc.
Each of them corresponds to a mode of propagation; the fundamental mode
corresponds to the first interval (0 < khs' < m/2) and higher modes to the rest.

= tan[kH (/8% — 1)'/?] (10.60)

= tan[wH(1/3% = 1/c*)'?] (10.61)

10.3.1 Constructive interference

In a similar manner to what we did in the case of guided waves in a liquid layer,
we can also deduce the dispersion equation of Love waves (10.60), using the principle of
constructive interference for SH rays reflected inside the layer corresponding to angles of
incidence greater than the critical one. The condition of constructive interference
requires that waves on the same wave front must be in phase. In Fig. 10.10, at points
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Fig. 10.10. Constructive interference on the wave front AB of SH waves with angles of incidence
greater than the critical one inside an elastic layer over a half-space.

A and B waves must have the same phase; that is, the length AP + PQ + QB must be a
multiple of the wave length, taking into account changes in phase at points P and Q. The
change of phase between incident and reflected SH waves with supercritical incidence at
P is given by (5.74)

§=—2tan"" (/fs/)
u's

At the free surface (Q) there is no change in phase (section 5.4). Using (10.41) and
(10.42), the condition for constructive interference is
us

Zkngcosi—2tan71 (/ﬂs’) = 27n, n=20,1,2,... (10.62)
where kg is the wave number of SH waves in the layer. Its relation to k, the wave number
corresponding to the velocity ¢, is ky = k/sini. Then, sini = 3'/c and cosi = 5’3’ /c. On
replacing these values and those of s and s’ into (10.62) we obtain the same dispersion
equation (10.60).

Since s’ is real (¢ > ), there exist in the layer SH waves that propagate upward and
downward, reflecting from its base and free surface. In the half-space there are no trans-
mitted waves (angles of incidence are greater than the critical one), only inhomogeneous
waves represented by (10.50), where s is imaginary (¢ < ). We can conclude that Love
waves are formed by the constructive interference of SH waves with supercritical

incidence in the layer and inhomogeneous waves in the half-space.

10.3.2 Dispersion curves

The dispersion equation of Love waves (10.60) or (10.61) represents the depen-
dence of the velocity on the frequency. Dispersion curves are represented by c(k), c(w),
or ¢(T), where T is the period (T = 27/w). The forms of these curves depend on the
parameters of the model 3, ', and H. Owing to the periodicity of the tangent function,
for each model there is an infinite number of modes of propagation and consequently an
infinite number of dispersion curves. Modes depend on the range of the values of the
argument of the tangent, the first (n = 0) corresponding to the fundamental mode, the
rest (n > 1) to the higher modes:

2n+ 1
—_— T

nm < KH(C /6% - D)2 <=,

n=0,1203,...
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K

Fig. 10.11. Dispersion curves for the fundamental mode of Love waves for various thicknesses (H)
of the layer.

Fig. 10.12. Dispersion curves of Love waves in a layer over a half-space for the fundamental mode
and the three first higher modes with their cut-off frequencies.

For the fundamental mode, according to (10.60), we have
0<kH(3/B? - 1)'2<x/)2

For kHs' =0,k =0and ¢ = 3. For kHs' = 7/2, k =occ and ¢ = (3.

In the fundamental mode all frequencies are present (0 < k < oo) and the velocity of
Love waves varies between the values of the S wave velocity in the half-space and the
layer (8" < ¢ < B). For the same velocities, the form of the curve depends on the layer
thickness H (Fig. 10.11). The influence of the layer thickness (H) is conditioned by its
relation to the wave length (\). For A < H, propagation is mainly influenced by the
layer and ¢ ~ . For A > H, propagation is conditioned by the half-space and ¢ ~ £3.
Therefore, for small thicknesses, the Love wave velocity approaches that of the half-
space, ¢ ~ (3; for relatively high frequencies (w > 2m¢/H) and for large thicknesses this
is true for lower frequencies (Fig. 10.11).

For higher modes, since the argument of the tangent does not start at zero, there is a
limit for low frequencies, called the cut-off frequency (section 10.2). For each higher



10.3 Love waves 197

mode, the cut-off frequency has a different value. For a mode of order #, the cut-off wave
number is

nm

For the first higher mode we have
T <kH(/8% - 1)"* < 3x/2

For kHs' = 7, k = n/(Hs') and ¢ = 3. For kHs' = 37/2, k = oo and ¢ = 3. The cut-off
frequency is k; = m/(Hs') and the form of the dispersion curve is similar to that of the
fundamental mode (Fig. 10.12).

In general, dispersion curves for higher modes start at the cut-off frequency with the
value ¢ = 3, and, for very high frequencies, this tends toward ¢ = 3. For a given
frequency, the lowest velocity corresponds to the fundamental mode and the highest
to the mode of highest order. A given velocity corresponds to lower frequencies in the
fundamental mode and to higher frequencies in higher modes (Fig. 10.12). For a
given distance, waves of lower frequencies of the fundamental mode arrive at the
same time as those of higher frequencies of higher modes.

10.3.3 Displacements

Displacements of Love waves can be deduced from expressions (10.49) and
(10.50). From (10.54), we have

B = A M (10.64)

On substituting this into (10.49) and multiplying and dividing by exp(ikHs'), we obtain
for the real part of the displacement in the layer

iy = 24' cos [ks’H(l - E)] coslk(s H — x, — ct)] (10.65)

Displacements in the half-space can be derived from (10.50). From (10.56) and (10.64)
we have

B =24 cos(ks' H) "1 (10.66)
By substitution into (10.50), we obtain for the real part
1 = 24" cos(ks' H) & cos[k(s H + x; — ct)] (10.67)

In the half-space, displacements decrease exponentially with depth (—x3). Inside the
layer, displacements vary with depth depending on the value of ks'H. Therefore, the
variation will be different for each mode.

For the fundamental mode, 0 < kHs' < 7/2:

k=0, |us| = 24’ for all values of x3

, 24" forx;=H
k = o0, || =
0 for X3 = 0
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Fig. 10.13. The amplitude versus depth of Love waves in a layer over a half-space, for (a) the funda-
mental mode and (b) the first higher mode.

On the free surface (x3 = H), |ub| = 24’ for all values of k. At the base of the layer
(x3 = 0), the amplitude varies between 24" and zero (24’ > |u5| > 0), for wave numbers
between zero and infinity (0 < k < 0o). There are no nodes or values of x; inside the
layer for which the amplitude is null (Fig. 10.13(a)). In the half-space, amplitudes
decrease exponentially with depth, starting with the value at the base of the layer.

For the first higher mode, m < kHs' < 37/2:

24" forxy=H
k=m/Hs, lus] =4 0 for x; = H/2
—2A4" forx; =0

24" forxy;=H

0 for x3 =2H/3
—2A4" forx;=H/3
0 for x; =0

k=oo, =

At the free surface, amplitude is always |u5| =24, for all frequencies and modes.
Depending on the value of k, there is a node where amplitudes are zero, for x; between
H /2 and 3H/2 (Fig. 10.13(b)). At the base of the layer, amplitudes have values between
0 and —2A4' for k between 7/ Hs" and infinity.

In a similar way, we can find the positions of nodes for any higher mode. In each
mode, the number of nodes is equal to the order number of the mode. The dispersion
and existence of modes of propagation in Love waves, just like in the case of guided
waves in a liquid layer (section 10.2), are consequences of the finite dimension of the
layer thickness. The characteristics of propagation depend on the relation between the
wave length and the layer thickness. As has been mentioned the situation is similar to
that of vibrations of an elastic rod of finite length (section 4.3).
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10.4  An elastic layer over a half-space. Rayleigh waves

In the previous section, we considered only the transverse component of dis-
placements (u,); now we must consider the longitudinal and vertical components (i
and u3). The resulting surface waves are similar to the Rayleigh waves found for an
elastic half-space (section 10.1). To determine the existence and properties of these
waves we proceed in the same way as for the problem of Love waves. The displacement
components #; and u; are derived from the scalar potentials ¢ and v according to (10.1)
and (10.3). For surface waves that propagate in the x; direction with a velocity ¢, in a
layer of thickness H and velocities o’ and [, over a half-space of velocities o and 3
(Fig. 10.9), taking into account that amplitudes must decrease with depth in the half-
space, the potentials are given by

¢ = A explikr'x; —ik(x| — ct)] + B exp[—ikr'x; — ik(x| — ct))] (10.68)
Y = C'expliks'x; — ik(x) — ct)] + D' exp[—iks'x; — ik(x; — ct)] (10.69)
¢ = Aexp[—ikrx; —ik(x; — c1)] (10.70)
1 = Cexp[—iksx; —ik(x; — ct)] (10.71)

/

where r and s are given by (10.10) and (10.11), and similarly  and s’ (on replacing a by o
and 3 by 3). Since amplitudes must decrease with depth (—x3), » and s must be
imaginary and positive (r = ir and s = i§), and consequently ¢ < 8 < «.

Just like in the case of Love waves, the boundary conditions are x; = H for the free
surface, the components of stress are null, 753 = 75, = 0, the contact surface is x; = 0,
and one has continuity of the stress and displacement components 753 = 733, T3 = T3,
uy = uy, and uy = u;. As functions of the displacements, the boundary conditions
result in the following equations:

xy=H: uy;+u);=0 (10.72)
Ny + N + 2 )us3=0 (10.73)
x3=0: uy = u, (10.74)
Uy = u3 (10.75)
( (s g+ u3) = pluzy + uy 3) (10.76)
Nuy g+ (N + 2 )ty 3 = Ay + (A + p)us 3 (10.77)

On substituting for the displacements in terms of the potentials ¢, ¢', ¢, and ¢/, accord-
ing to equations (10.68)—(10.71), we obtain

274 —B)+ (1 =5 +D)=0
P\/(l + ’,/2) +2u/1‘/2](A' JrBl) +2M/S,(D, . C/) -0

: ! a1t o 3 o 1l 9

(' e1er B eﬂki H JC' elk.s H D'se iks H le ikrH sCe iksH (1080
: / ) o . J — ik ke

I‘, [/ elkr H r/B/ e—lkl H Cl elk.s H D/ e iks' H rAe ikrH Ce iksH (
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u'[2r’(A’ eikl"H + Bl e—ikr/H) + (1 _ S/2)(C/ eik‘v/H _ Dl e—ik‘v/H)]

= p2rde M 4 (1 — ) e ™) (10.82)
[)\/(1 + r/Z) + 2/L,I‘/2](A/ eikr'H + B e—ikr'H) o 2[LISI(D/ e—iks’H o C/ eiks'H)

= N1+ 72) + 2ur)Ae*rH 4 2)sC e RH (10.83)

Equations (10.78)—(10.83) form a system of six equations for six unknowns 4’, B, C’,
D', A, and C, the amplitudes of the potentials ¢ and 1/ in the layer and half-space. Again,
the condition for a solution is that the determinant of the system is null. Making the
determinant equal to zero, we find an equation for ¢, the velocity of Rayleigh waves.
Since this equation implies that the velocity ¢(k) is a function of the frequency, Rayleigh
waves in a layer over a half-space are dispersed.

For the particular case when Poisson’s ratio in the layer and half-space is 0 = i A=p
and \ = /), the expressions are simplified. We can verify that

A1+ 1) + 2% = (1 +3r%) = p(1 + %) (10.84)

If in the system of equations (10.78)—(10.83), we use as unknowns 4’ ¢’ Be i e,
De ' Ae™ and Ce ™, where d = ki'H, b' = ks'H, a =krH, and b = ksH, the
determinant of the system can be written in the form

2’/ efia' _2r/ eia' (1 _ S/2) e—ib' (1 _ S/2) eib' 0 0
—(1=s%)e ™ —(1-¢Me’  2fe 25 " 0 0
1 1 —s' s -1 —s
¥ - 1 —1 r 1
217 2u'r w1l —s% = (1 =57 —2ur —p(l — %)
—d(1=5% =g (1—-s7) 2's —2u's’ u(l —s)? —2us

The dispersion equation is obtained by expanding the determinant and putting it equal
to zero. There are several ways of expanding this determinant. The one proposed by
Love in 1911 results in the equation

& —€n=0 (10.85)

where, substituting the variables used here in place of those used by Love,

€= (1—s)[Xcosd + (Yr/r)sind] + 25 [Wrsinb' — Z/s sinb'] (10.86)
¢ = (1 -5 [Wscosd + Zr' sind] + 25'[X sind — (Ys/s') cos ] (10.87)
n=(1—-s%[Wrcosb' + (Z/s)sinb'] + 2/ [X sind — (Yr/r')cosd (10.88)
7 = (1—5%)[Xcosb + (Ys/s')sinb| + 2 [Wssind — (Z/')cosd]  (10.89)
and, using g = p/1t,
X =gl/F -2g—1) (10.90)
Y=73/6%+2(g-1) (10.91)
Z=g?/B* =B —2(g - 1) (10.92)
W=2g-1) (10.93)
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Fig. 10.14. Dispersion curves of Rayleigh waves in an elastic layer over a half-space for the funda-
mental mode (M) and the three first higher modes (symmetric M,, and antisymmetric M,; and
Mp,).

For a solution that implies the existence of Rayleigh waves that decrease exponentially
with depth in the half-space r and s are imaginary, while s’ and  are real. In some cases,
however, ’ can also be imaginary. These conditions imply that the velocity ¢ of Rayleigh
waves satisfies the condition a > 3 > ¢ > 3, while o' is, generally, less than ¢, but not
necessarily. In a similar way to Love waves, Rayleigh waves in a layer over a half-
space are formed by constructive interference of both P and SV waves reflected super-
critically from the contact surface.

Solutions of the dispersion equation (10.85) give the velocity of Rayleigh waves as
a function of the frequency c¢(k) or ¢(w). There are an infinite number of solutions
corresponding to different modes. Modes in this case are separated into two types,
symmetric (M;) and antisymmetric (M,), in analogy with the vibrations of an elastic
layer. For symmetric modes, vertical displacements at the free surface and contact
surface have opposite signs, whereas for antisymmetric modes they have the same
sign. The particle motion is elliptical with a vertical major axis. At the free surface,
the particle motion is retrograde for symmetric modes and prograde for antisymmetric
ones.

The characteristics of dispersion curves are different for each mode and depend on the
values of the model parameters H, 3, ', a, and o'. The first two symmetric modes are
M;; and M, and the first two antisymmetric ones are M,; and M,, (Fig. 10.14). M,
represents the fundamental mode which is a symmetric mode and has all values of
frequency (0 < k < 00). All other modes, symmetric and antisymmetric, have a cut-off
frequency (k,, k»,). For M in the limit of low frequencies (k = 0) the velocity tends
toward the Rayleigh wave velocity in the half-space (cg = 0.9203), whereas for all the
other modes the velocity for cut-off frequencies tends to that of S waves in the half-
space (). In the limit of high frequencies (k = oo) for M;;, the velocity tends to that
of Rayleigh waves in the layer (cg = 0.923") whereas for the other modes the limit is
the S wave velocity in the layer (3.
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10.5  Stoneley waves

If instead of a layer over a half-space we have two elastic half-spaces of different
characteristics in contact, we find waves similar to surface waves related to the contact
surface (Fig. 10.15). This case can be considered as the limit of the one-layer problem
when its thickness tends to infinity. These waves are generated by constructive inter-
ference, their existence was shown by Stoneley (1924), and they are known by his
name. The amplitudes of these waves decrease exponentially with the distance from
the contact surface in both half-spaces. Thus, the potentials ¢ and ) and displacements
u, for waves propagating in the x; positive direction are given by

¢ = Aexp[—ikrx; +ik(x; — ct)] (10.94)
1 = Bexp[—iksx; + ik(x; — ct)] (10.95)
uy = Cexp[—iksx; + ik(x; — ct)] (10.96)
¢ = A explikr'x; + ik(x) — ct)) (10.97)
Y = B expliks'x; + ik(x| — ct)] (10.98)
uy = Cexpliks'xs + ik(x; — ct)] (10.99)

The boundary conditions are the continuity of stress and displacement components
across the contact surface (x; = 0):

/. I !

731 = T31;5 T32 = T323 T33 = 733
p— /. j— /. j— /
Uy = uy; Uy = Up; Uz = uj

We proceed just like in the previous section, writing stresses as functions of displace-
ments and these in terms of potentials. The conditions for 73, and u, give the result
C = C' = 0. Stoneley waves have no transverse component of displacement. From the

X3 |
|
|
I ¢
|
I a, e’
o f
: a,B,Q
|—>
| C
|
|
|
X3 |

Fig. 10.15. Waves incident on the surface of contact between two elastic half-spaces. Stoneley waves
are shown.
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other four conditions we obtain

A+Bs=4—BY (10.100)
—rA+B=rA+B (10.101)
Bpl2rd — (1 — 5B = f?p[2r' A — (1 — §*)B] (10.102)
pla? (P +1) — 2844 — 28%psB = p'[o”* (" + 1) — 287]4' — 2875 p'B (10.103)

The condition for the existence of a solution is that the determinant of the system is
null. For the particular case in which o = % (A = p) in both media, the determinant is
given by

1 s —1 s

—r 1 — -1,

2 —(l=Sp =2 (=P
(3t —1) —2us — (37 = 1) 2u's'

By expanding the determinant we obtain a fourth-order equation for ¢. The four
roots are real only for certain values of the ratios p/p’ and 8/3. If 3 is less than £,
the velocity of Stoneley waves cg is in the range 3 < ¢g < cr, where cg is the Rayleigh
wave velocity for the half-space of velocity 5. Stoneley waves have characteristics similar
to Rayleigh waves with generally prograde elliptical particle motion and a vertical
major axis. The frequency does not appear in equations (10.100)—(10.103); therefore,
waves are not dispersed and their velocity is constant, just like for Rayleigh waves in
a half-space.

10.6  Surface waves in a spherical medium

In a flat medium, surface waves propagate along the surface and have cylindri-
cal symmetry. Using the solution of the wave equation in cylindrical coordinates (3.113),
for symmetry with respect to ¢, we can write the displacements as

zKRJ)::(ﬂiR>lﬂAemab<kR——wr—Z>] (10.104)

The amplitude depends on the square root of the distance R along the surface. Thus the
energy is constant along a circle of radius 27 R.

In a spherical medium of radius a, the displacements of surface waves have the form of
the solutions of the wave equation in spherical coordinates (3.137). For symmetry with
respect to ¢, they can be written as

magza(é>mim@mmamFcn—m+n§” (10.105)

For wave lengths that are small relative to the radius, they correspond to high values of n
and we can use the asymptotic expansion of P, (cos §) which, for values of § away from
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the poles (f = 0 and ), is given by

P, (cos 0) 2\ LA P (10.106)
neost) = {5 Gng) <s|\"T2)0 3 '

Then, the displacements of surface waves may be written in a simplified way in terms of
the angular distance A (Ben Menahem and Singh, 1981):

1/2
7r . 3m
Uy ~ A(sin > exp {1 <kaA Wt >] (10.107)

Similarly to the flat case, the amplitudes depend on the inverse of the square root of
the distance (sin A) and the energy is constant on a circle of radius 27sin A. Surface
waves in a sphere can be approximated by those of a flat medium if their wave length
is small compared with the radius. The wave number corresponding to a spherical
medium k, can be obtained from that of the flat medium k¢, by introducing the correc-
tion (Ben Menahen and Singh, 1981)

9
2
ky = <kf +4az) (10.108)
From this expression we can find the relations between the phase velocities (¢ = w/k)
9c2\ ~1/2
¢, :wcf(w2+‘g> (10.109)
4a

and group velocities (U = dw/dk)

9
U=|14+—= |U 10.110
S ( +4kt2d2) f ( )

An important phenomena in the propagation of surface waves in a sphere is the polar
phase shift of A\/4 when waves cross the poles. This is due to the fact that harmonic waves
are not exactly sinusoidal or cosinusoidal in the vicinity of the poles. This does not affect
the determinations of group velocities but affects phase velocities. Thus, for determina-
tions of phase velocities along paths that include the epicenter or its antipole, a phase
shift of 7/2 must be added for each pole or antipole crossing. This effect must be
taken into account when determining phase velocities using surface waves that have
circled the Earth (Brune et al., 1961).



11 WAVE PROPAGATION IN
LAYERED MEDIA

11.1  The equation for the displacement—stress vector

Many problems in seismology can be solved by representing the Earth as a
stratified or layered medium, that is, one formed by layers of certain thicknesses and
mechanical properties. For certain problems we can use a flat approximation of parallel
horizontal layers and they are reduced to two dimensions. Layers of constant properties
may be considered as an approximation for media whose elastic coefficients vary in a
continuous form with depth. In layered or stratified media, problems are presented in
discrete form and may be treated using matrix formulations. Solutions of problems of
wave propagation in layered media using matrix formulation were introduced by
Thomson (1950) and Haskell (1953), receiving the name of the Thomson—Haskell
method. A similar formulation was proposed by Knopoff (1964). Gilbert and Backus
(1966) introduced the concept of the propagator matrix that allows a more generalized
formulation of the problem (Kennett, 1983).

In a half-space, we use Cartesian coordinates x horizontal and z vertical (positive
downward). For monochromatic plane waves of frequency w that propagate in the
plane (x,z), according to (6.38) and (6.39), one component of the displacement of S
waves can be expressed in the following forms:

= [A ei/cx: + Befi/cx:] eik(xfct) (l 11)
U= [A eiu.)qz + Befiqu] eiw(prf) (1 1 2)

where ¢, k, p, s, and ¢ were defined in section 6.3. In terms of the velocities, ¢ and 3, and
angles of incidence i and f, s and ¢ are given by (equations (6.40) and (6.41) upon
replacing « by ) (Fig. 11.1):

2 1/2
s = (52— l) =coti=tanf (11.3)
1 1 1/2 . .,

The relation between s and ¢ is ks = wgq.

In the general problem of an elastic medium, we have both P and S waves. Using
expressions in the form of equations (11.1) and (11.2), in the exponential function we
have s and ¢4 for S waves and r and ¢, for P waves (r and ¢,, are defined as in (11.3)
and (11.4) by replacing (§ by «).

Components of the stress tensor across surfaces normal to z (z = x3 and x = x) are
73;. Since rays propagate in the (x,z) plane, the problem can be separated into two

205
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Fig. 11.1. The ray trajectory, and velocity components ¢ in the x direction and c. in the z direction.
AB is the wave front.

parts: first, SH waves with displacements u, and stress component 73,; and second, P and
SV waves with displacements u; and u3 and stress components 73; and 733. According to
(11.1) and (11.2), the displacement and stress can be expressed in the forms:

(2, x) = [ (), u(2), 3 (2)] 7 (11.5)

731(2,x) = [131(2), T32(2), T33(2)] et (11.6)

Since the term for propagation in the horizontal direction is the same in both equations,
we can consider the displacement and stress as functions of z only. The displacement and
stress can be put together, defining the displacement—stress vector. For SH motion, it is
given by

[t2(2), T32(2)] (11.7)
and for P-SV motion it is given by
[11(2),u3(2), 731 (2), 733(2)] (11.8)

For SH motion in an isotropic homogeneous elastic medium for waves propagating in
the (x;,x3) plane, the relation between the stress and the displacement is 73 = s 3
(2.17), which can now be written as

du 1
CT;ZQT” (11.9)

As we have already seen (in section 3.1), the transverse displacement u,(x,z,?) is a
solution of the wave equation
uy,  *uy P *uy
oxt 922 u ot
By substituting (11.1) into (11.10) and considering that 73,3 = uu, 33, we obtain the
relation

(11.10)

dr
Tf = (Mkz - sz)“2 = kQP(ﬂz - Cz)“z (11.11)
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Equations (11.9) and (11.11) can be expressed as a single matrix equation for the
displacement—stress vector of SH motion (11.7):

&)= (e 00 112

For P-SV motion, the derivation of an equation similar to (11.12) is more complicated.
The displacement components u; and u3 are not solutions of the wave equation. These
must be expressed in terms of scalar potentials ¢ and v according to (3.91) and (3.92).
The components of the stress 73; and 733 also must be written in terms of ¢ and 1,
just like in section 5.3. Finally, the matrix equation for the displacement—stress vector
is (Kennett, 1983)

ty 0 o () 0 ty
d | u 1-28%/a* 0 0 (pa?)™! us
dz [ my | W’ ph 0 0 K(1-28/% || ™
733 0 —pw2 —1 0 733

1 2
h:4ﬁzcz<l—§2>—l

The matrix equations (11.12) and (11.13) for SH and P-SV motion show that the
derivatives with respect to z of the components of the displacement—stress vector are
linear functions of the same components. The matrix of proportionality coefficients
contains the elastic parameters of the medium («, 3, and p), the frequency w, and the
horizontal velocity ¢. Equations (11.12) and (11.13) are fundamental for the develop-
ment of matrix methods for the resolution of wave propagation in layered media.

11.2  The propagator matrix

Equations (11.12) and (11.13) can be written in a general matrix form as
db(z)
dz

where b is the displacement—stress vector defined in (11.7) and (11.8) and A is a square
matrix whose elements are the elastic parameters and density of the medium as functions
of the depth (a(z), 5(z), and p(z)), frequency w, and horizontal velocity c. In the case of
layers of constant parameters, in each layer, the only variables are ¢ and w.

For equations of the type of (11.14), a matrix B that is a solution of the same equation
is called a fundamental matrix of the equation (Gilbert and Backus, 1966). Thus we can
write

= A(c, 2)b(z2) (11.14)

dB
dz —
For a fixed value of z = z;, a reference depth, the vector b(z) is a solution of (11.14).
For the same depth, there exists also a solution of (11.15) that is the constant matrix

AB (11.15)
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B(z;). We can normalize the problem and make B(zy) = L, the unit matrix. We define
now a new matrix P(z, z,) that is a solution of equation (11.15) and thus a fundamental
matrix:

P(z,z0) = B™'(z0)B(2) (11.16)

Then, it follows that, for z = z;, P(zg,z9) = L. If z is an arbitrary level, for an inter-
mediate level z; between z; and z, according to (11.16), we can write

P(z,z9) = P(z1,29)P(z,21) (11.17)

If z, is the nth level starting from z,, we can write the matrix P(z,, z;), using (11.17),
which relates the nth level to the zeroth level, as a product of the matrices that relate
all the intermediate levels step by step:

P(z,,20) = ﬁP(Ziazi—l) (11.18)

i=1

Considering the properties of the matrix P(z,zy), we have that, for the zeroth level,
b(zy) = P(zg,z0)b(zg), since P(zg,zo) is a unit matrix. For an arbitrary value of z, we
can, then, write

b(z) = P(z,29)b(z) (11.19)

This follows from the fact that b(z) and P(z, z,) are both solutions of the same equation
according to (11.14) and (11.15). Equation (11.19) shows that we can determine the
vector b(z) at an arbitrary level z from its value b(z,) at a reference level z;, by means
of the matrix P(z, z;). For this reason P(z, z;) is called the propagator matrix. According
to (11.18) and (11.19), if we have n levels, we can relate the displacement—stress vector
for level n, b(z,), to that of the zeroth level b(z):

bz = [[ PGz b(z) (11.20)

i=1

By changing the order of levels we can also write

n
b(zo) = [[ P(zirzi-1)b(z0) (11.21)
i=1
Equations (11.19)—(11.21) show the meaning of the propagator matrix P(z,z,) which
allows the determination of the displacement—stress vector b(z) at an arbitrary level
from its value at a reference level, b(zy). The form of equations (11.20) and (11.21) is
specially useful when we have layered media with constant elastic parameters.

11.3 A layered medium with constant parameters

Wave propagation in a layered medium formed by # layers with constant para-
meters can be conveniently studied using the formulation in terms of the displacement—
stress vector and the propagator matrix. According to equations (11.12) and (11.13), for
each layer matrix A is constant. Let us start by considering the problem with only one
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Fig. 11.2. A layered medium with constant parameters for each layer.

dimension. Equation (11.14) is reduced to

d)(/li(zz) =ay(z) (11.22)
where a is a constant. A solution of this equation is

y(z) =e* (11.23)
If we know the value of the function for a reference level z;, y(zy) = e, we can write

(z) = ey (z0) (11.24)

This equation has the same form as (11.19), so we can define the propagator matrix, in
this case with only one element, in the form

P(z,zp) = e“C=7) (11.25)

For the general case when b(z) is a vector of m elements and A is a square matrix of
m x m constant elements, the solution of equation (11.14) is

b(z) = erC-)p(z)) (11.26)
The propagator matrix has the form
P(z,zy) = %) (11.27)

If we have n levels corresponding to n layers, each with constant parameters, A; =
A(«;, B, piy ¢, w) (Fig. 11.2), then, according to (11.18), the propagator matrix is given by

n
P(z,,z9) = [[ MV (11.28)
i=1

The relation between the displacement—stress vector b for the nth level and that for the
reference (zeroth) level (11.20) for a layered medium of constant parameters is

b(z,) = [[ &7 Vb(z) (11.29)
i=1

Thus, the propagator matrix is given by the product of the exponential functions of the
matrix A for each layer.
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11.3.1 Eigenvalues and eigenvectors

The solution of equation (11.29) can be simplified by using the eigenvalues and
eigenvectors analysis of matrix A (Lanczos, 1957). If A has eigenvalues )\, and eigen-
vectors u¥, these satisfy the equation

(A — Mb)uf =0 (11.30)
The eigenvalues are solutions of the equation

|[4; — Moyl =0 (11.31)
The transpose matrix AT has the same eigenvalues and eigenvectors o*. If we form the
matrix U with eigenvectors ¥, the matrix V with v* and a diagonal matrix A with eigen-

values \;, according to the theorem of Eckart and Young, the matrix A and its inverse
A" are given by

A =UAV' (11.32)
Al=uAV! (11.33)

The matrices V and U satisfy the property that the product of one by the transpose of the
other is the unit matrix, UV' = U'V = VU" = VU = L. Using this property and rela-
tion (11.32) and multiplying by VT from the left-hand side in equation (11.14), we obtain

d

o (V'b) = A(V'b) (11.34)
Then, according to (11.26),

VIb(z) = 220V Tp(z) (11.35)
If we multiply by U from the left-hand side, since UV = I, we obtain

b(z) = UerC-2yTph(z) (11.36)
The propagator matrix (10.27) is now given by

P(z,z)) = UerC-2yT (11.37)

If we now multiply (11.36) by VT from the left-hand side and substitute w = V15, we
obtain an equation similar to (10.26) for the new vector w:

w(z) = A (z) (11.38)
For the vector w the propagator matrix is
Q(z,z) = et (11.39)

The vector w is called the wave vector and its propagator matrix Q(z, zy) is called the
wave propagator.

Equations (11.36) and (11.38) relate values of the vectors b and w from one level to
another. They are fundamental in the solution of problems of wave propagation in
stratified media. By using the generalized Lanczos inverse matrix we avoid the calcula-
tion of the inverse of the matrix A. This procedure is very practical since there are
standard fast methods for calculating the eigenvalues and eigenvectors of a matrix.
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11.3.2  The propagator matrix for SH motion

As an example, we present the determination of the propagator matrix of SH
motion. According to equation (11.12), the matrix A for SH motion is given by

B 0 (p3)"!
A= <pk2(52 o ) (11.40)

Its transpose is

202 2
AT:< 271 pk= (8 C)) (11.41)
(pB7) 0
The eigenvalues of A are found by solving the corresponding equation (11.31); we obtain
A\ = iks and A\, = —iks. For AT the eigenvalues are the same. The matrix A is given by
iks 0
A= . (11.42)
0 —iks

By solving equation (11.30) for A and AT, we obtain the following eigenvectors, corre-
sponding to each eigenvalue:

u' = [1,ikspp3?], u =1, —ikspB’]
o' =1, (ikspp?) "], o =[1,—(ikspp?) "]
The matrices U and V are
1 1
U= (ikspﬂz _ikspﬂz> (11.43)
1 1
V= ((ikspﬁz)l —(ikspﬂz)l> (1149

On putting ksp> = a and ks(z — zy) = d, according to (11.36), the propagator matrix is
given by

P(Z’ZO):<ila 1ia)(e(i)d ei:)(i 11//(1(?0)1)) (11.45)

Taking the product and substituting for exponential functions sines and cosines, for real
values of d, we obtain

P(z,z) = 2( cosd  (i/a) sind)

L. (11.46)
1asind cosd

In (11.46) we have assumed that d is real, or in consequence that s is real. This means that
¢ > [ and, therefore, that there are SH waves that propagate in the positive and negative
directions of z, that is, waves going downward and upward. If s is imaginary, ¢ < f3, and
we will have hyperbolic sines and cosines in (11.46). In this case, no SH waves are
propagated in the z direction; waves are propagated in the x direction only. Further-
more, imposing the condition that their amplitudes decrease with depth, the solutions
represent inhomogeneous waves.
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11.4 SH motion in an elastic layer over a half-space

Let us now apply the propagator matrix to SH motion in a single elastic layer
over a half-space (Cisternas, 1982). This problem has already been studied in section
10.3 for the propagation of Love waves. We use the notation z = x3, u(z) = u(z),
and 7(z) = m3,(z) = pdu/dz. Subindexes 1 and 2 refer now to values of variables in
the layer and the half-space, respectively (Fig. 11.3). The z coordinate is positive down-
ward with z = 0 at the free surface and z = H at the surface of contact between the layer
and the half-space. For an arbitrary value of z, the displacement—stress vector b(z) (11.1)
is given by

ulz A iksz B —iksz
( ())_ oo Ae o wEe (11.47)
7(z) ipksAe™ —iuksBe "
This vector can be expressed in terms of the product of a matrix and a vector formed by
the displacement amplitudes 4 and B:

iksz —iksz A
(u(z)) S < > (11.48)
7(2) ipkse™  —ipkse " B

The boundary conditions at the free surface (null stress) and at the contact surface
(continuity of displacement and stress) are given by

71(0) = 0; ui(H) = uy(H); T (H) = m(H)
By substitution into (11.47), we can write the vectors in the layer, at the free surface

b;(0), at the contact surface b (H), and in the half-space at the same contact surface
b,(H) in the forms

A B
b1(0)=< 1:; 2) (11.49)
eid‘ e*idl (Al )
b(H) = . . 11.50
1( ) <ia1 eldl —ial eﬂd, ) B, ( )
id, —id, A
(& € 2
b,(H) = . . 11.51
2(H) (iaz et —ia, eldz) <Bz> ( :
0
b,(0) 1,B1,9
P,(H)
y b,(H)
b,(H) 2, 2,92
z

Fig. 11.3. An elastic layer over a half-space. Values of b(z) and P(z) are shown.
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where
a, = ,ulslk7 dl = SlkH
ar = 5k, dy = s,k H

According to the definition of the propagator matrix (11.21), since z, = 0, z; = H and,
from the boundary condition on the contact surface between the layer and the half-
space, by (H) = b,(H), we have

51(0) = Py(H)bs(H) (11.52)
From (11.46), the propagator matrix P;(H) can be written in the form

cosd; (l/al)sind1>

. (11.53)
a; sind; cosd;

P,(H) = 2(
where we have considered that s; is real (¢ > ;) and that SH waves propagate upward
and downward inside the layer. By substitution of expressions (11.49), (11.53) and
(11.51) into equation (11.52), we obtain

(A1+Bl> 2( cosdy (l/al)smd1> el® e b <A2>
0 - \asind, cosd, iy e —igyei® |\ B,
(11.54)

This equation relates the amplitudes in the layer, 4; and By, to those in the half-space, 4,
and Bz.

From equation (11.54) we can derive the dispersion equation of Love waves. For
surface waves we impose the condition that there are no SH waves propagating in the
z direction in the half-space; that is, s, is imaginary (¢ < [3,). Since amplitudes must
decrease with z positive, it follows also that B, = 0. With these conditions, the equation
resulting from the zeroth component of the vector b(0) in (11.54) is

As(a; sind, e +ia, cosd, eidz) =0 (11.55)

The existence of Love waves requires that 4, is not zero, since Love waves propagate in
the x direction and attenuate in the z direction in the half-space. The expression inside
the brackets must be zero and we obtain

sin dl N iaz

=—— 11.56
cosd, a ( )

If we substitute the values for ay, d|, @y, and d, and put s, = i5,, we obtain

K}
tan(kHs|) = 2%
K181

This is the same dispersion equation (10.60) we derived for Love waves in Chapter 10. As
we saw in section 10.3, there is no solution for s; imaginary. Since s, is real, SH waves
propagate inside the layer in both z directions (positive and negative). These waves are
totally reflected from the contact surface so that there are only inhomogeneous waves (s,
imaginary) in the half-space.
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11.5 Waves in layered media

The general problem of wave propagation in layered media corresponds to
N — 1 elastic layers over an elastic half-space. Each layer is characterized by its thickness
H; and elastic parameters f3;, o;, and p;. Some layers may be liquid (3; = 0). Wave
propagation in the z direction is specified by the values of s; for SH imotion and by r;
and s; for P-SV motion (Fig. 11.4). The boundary conditions are that the stress
components across the free surface (z = 0) are null (r3; = 0). At each surface of contact
between any two layers and that between the last layer and the half-space, there is
continuity of the displacement and stress (b;(z;) = b;1(z;),i =1,..., N — 1). In terms
of the propagator matrix (11.21), the relation between the displacement—stress vector
at the free surface (z = 0) and that at the half-space benecath the last layer (z = zy) is
given by
N-1
bi(0) = H P;(H;)by(zy) (11.57)
i=1
where the subindex i refers to the value at each layer from 1 to N — 1 and N refers to the
half-space. The matrices P; and vectors b; for each layer depend on the parameters «, 3,
and p, frequency w, and velocity ¢. According to (11.37), the propagator matrix for each
layer is given by

P.(H,) = U,eMfivT 11.58
i(H;) =1 i

where A; is the diagonal matrix formed by the eigenvalues of the matrix A;, and U; and
V; are the matrices formed by the eigenvectors of the same matrix and its transpose.

11.5.1 SH motion

For SH motion, the matrix A is given by (11.40) and its transpose by (11.41).
The diagonal matrix of the eigenvalues (11.42) in each layer is

A; = diagonal(iks;, —iks;) (11.59)
0 X
b,(0)
P;(H H
| b )
1
Z'l_l _______________
bi(Zi-1) A
& 1-1 Pl(HL) Hi
Zi. bl(Zl) v
bi+1(Z{) 4
Pi+1(Hi+1) | Hi+
Zi+x1 bi+1(Zi+y) T v !
ZN by(Zy)

Fig. 11.4. A stratified medium with N layers of constant parameters for each layer. Values of 5(z)
and P(z) are shown.
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According to (11.46), the propagator matrix in each layer is given by

cos(ks;H;)  (i/a;) sin(ks;H;) )

11.60
ia; sin(ks; H,) cos(ks;H;) ( )

P;(H;) = 2(
where a; = ks;p;3? and k = w/c. In this expression we assume that s; is real; that is,
0; < ¢, and that in each layer SH waves are propagated upward and downward. If, in
a particular layer, k, there is total reflection, no waves are propagated to the following
layer (k + 1); thus, s, is imaginary and ;| > c.

If all layers have the same thickness H; = H, the problem is somewhat simplified. Just
like in the case of a single layer, the dispersion equation of Love waves for N layers is
found by imposing the condition of transmission of SH waves in the layers and a
decrease in amplitude in the half-space (sy is imaginary and By = 0). The dispersion
equation (f(w,c) =0) corresponds to the zeroth value of the amplitude in the half-
space.

11.5.2 P-SV motion

The problem of P—SV motion is more complicated since the matrix A has 4 x 4
elements (11.13). For each layer the matrix A is given by

0 S (piﬁiz)il 0
A | 1728l 0 0 (pai)”’
’ wpih; 0 0 K(1-28/a})
0 —pt =1 0
43% 2
h; = 52 (1—@2) -1 (11.61)
c Q;

The eigenvalues are +iks; and +ikr;. The diagonal matrix A is given by
A= diagonal(ik}’l’Hi, ikSiHl‘, —ikrl‘Hl‘, —ikSiHj) (1 162)

If r; and s; are real (¢ > a > (3), exponential functions of A according to (11.58) represent
P and SV waves that propagate in the positive and negative directions of z. If r; or s; have
imaginary values for a layer, then we have total reflection from the layer above and
inhomogeneous P or SV waves that propagate in the x direction, and their amplitudes
decrease with depth.

The problem is solved by forming the matrices A; and their transposes A} for each
layer and determining the matrices of eigenvalues A; and of eigenvectors U; and V.
From these matrices we find the propagator matrices P;(H;) (10.58). The product of
these matrices according to (11.57) relates the displacement—stress vector at the surface
to that of the half-space. Just like in the case of Love waves, imposing the conditions that
waves propagate only in the x direction in the half-space and their amplitudes decrease
with z (ry and sy have imaginary values and By = Dy = 0), we obtain the dispersion
equation (f(c,w) = 0) for Rayleigh waves.

The matrix formulation that has been presented in the context of the problem of
surface waves is also applied to the determination of the problem of reflected and
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transmitted SH and P—SV waves in a layered medium. This is, in general, a more com-
plex problem that varies with the depth of the focus. If the focus is at the surface, in the
half-space there are only waves travelling downward, whereas in the layers there are
waves going down and up (transmitted and reflected waves). In general, the matrix
formulation is very convenient for the solution of problems of wave propagation in
layered media with constant parameters. In our presentation we have given only the
fundamental ideas of the method; a more complete discussion can be found in Aki
and Richards (1980) and Kennett (1983).



12 WAVE DISPERSION. PHASE
AND GROUP VELOCITIES

12.1  Phase and group velocities

We have seen that surface waves in layered media are dispersed; that is, their
velocity is a function of the frequency (or period). Thus, for an impulsive time function
at the source, surface waves at some distance are formed by trains of waves, different
frequencies arriving at different times. Arrival times, amplitudes, and phases for each
frequency depend, then, on the dispersion equation. In section 3.4 we saw that, if the
phase velocity is a function of the frequency, then the velocity of energy transport is
not the same, but equal to the group velocity, or the velocity of propagation of wave
groups. We will consider now wave dispersion and the relation between phase and
group velocities.

The displacement of a sinusoidal wave of angular frequency w and wave number k that
propagates in the x direction is given by

u(x, 1) = Asin[(kx — wt) + @] (12.1)
where the phase velocity, or the velocity of propagation of each value of the phase, is
c=wlk (12.2)

For monochromatic waves in a homogeneous medium, c is constant and for each value
of w there is a single value of k. In this case, the velocity of energy transport or the group
velocity is equal to the phase velocity (section 3.4). If the phase velocity is a function of
the frequency ¢(w), then we can also write k(w) and w(k), and we can use as the indepen-
dent variable either k or w. In the first case we are looking at the wave phenomenon from
the point of view of its dependence on space and in the second, in terms of its dependence
on time. As we saw in section 3.4, the group velocity is given by

U =dw/dk (12.3)
If we take derivatives with respect to k in (12.2) we obtain
de
U= k— 12.4
etk (12.4)
For the dependence on w, taking the derivative with respect to w, we obtain
¢
¢ dw

The simplest case of a wave with more than one frequency is that formed by the sum of
two waves with the same amplitude and two similar frequencies, namely, w; = wy — Aw
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Fig. 12.1. Two frequencies at an interval Aw from a central wy.
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Fig. 12.2. The sum of two waves of frequencies at an interval Aw from a central w.

and w, = wy + Aw (Fig. 12.1). The displacement for null initial phase, ¢ = 0, is
u = Asin(k;x —wit) + Asin(kyx — wyt)

This equation can be written as

. . k1+k2 w1+w2 kz—kl Wy — Wi
u2Asm< 5 X — 1) cos R (12.6)

and, on substituting for k, k,, w;, and w, in terms of wy and Aw,
u = 2A4sin(kgx — wyt) cos(Akx — Aw't) (12.7)

The displacement has the form of a sine wave of frequency w, modulated by a cosine
wave of frequency Aw. It is, then, formed by groups or packets of waves of frequency
wo with duration 7/Aw (Fig. 12.2). According to (12.2), the phase velocity of sine
waves is ¢ = wy/ky, whereas the maxima of the cosine function propagate with the
velocity U = Aw/Ak. Since groups of waves correspond to maxima of the cosine
function, this is the group velocity. Energy is associated with amplitude maxima and
is propagated by the group velocity U. Even for a wave formed by two frequencies we
can distinguish between the phase and group velocities.

A wave with a discrete content of N frequencies of values w; can be represented by the
sum of the displacements of each of these frequencies:

u(x, 1) = ZN:Ak cos [‘*”‘(cxk_ z) +¢k] (12.8)

k=1
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where ¢ is the phase velocity corresponding to each frequency wy, 4, is the amplitude,
and ¢, is the initial phase. If the content of frequencies is continuous between zero and
infinity, then the displacement is expressed by the integral:

u(x, 1) = J A(w) cos {w(c(xw) - z) + qS(w)] (12.9)

0
A(w) is the amplitude corresponding to each frequency and ¢(w) is the initial phase. The
wave displacement u(x, ¢) is the sum of the contributions from all frequencies. The
displacement observed at a particular distance x is a function of time u(7) (a seismogram)
and by means of Fourier transformation can be expressed as a function of frequency
u(w) (a complex spectrum) (section 3.2; Appendix 4).

(o.0)

12.2  Groups of waves

Let us consider now a wave formed by a continuous distribution of frequencies
limited to a narrow band centered at a frequency w, and a band width 2Aw (Fig. 12.3(a)).
Using as a variable the wave number k, the displacements from equation (12.9), with
zero initial phase for all frequencies and constant amplitude A4, are given by
ko + Ak
u(x,t) = Ag J cos(kx — wt) dk (12.10)
ko — Ak
On performing a Taylor-series expansion of the phase around k, and taking only the
term with the first derivative, we have

kxfwl:k0x7w0t+(kfko)%(kxfwt)ko+... (12.11)
X
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|
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Fig. 12.3. A wave formed by a narrow band of frequencies centered at k, and of width 2 Ak. (a) The
band of frequencies. (b) The wave as a function of time, the product of cos(wy?) and sin X/ X.
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On substituting into (12.10), we have

ko + Ak dw dw
u= A JkoAk cos {kxo —wty — (x — dkt)ko + (x — dkt)k} dk (12.12)

The derivatives dw/dk are evaluated at k = k. This integral can be written as

ko + Ak
uzAOJ — cos(a + bk)bdk (12.13)
ko— Ak b

a:koiizt*wOl:koUZ*wO

b=x-— j—zl =x-—Ut
where U is the group velocity. On solving the integral,

u= %{sin[a + b(ky + Ak)] — sinfa + b(ky — Ak)]} (12.14)
Since sin(x + y) — sin(x — y) = 2sin xcos y, we obtain

u= %sin(Akb) cos(a + bky) (12.15)
On replacing the values of ¢ and b and multiplying and dividing by Ak, we have

ulx, 1) = Ay Ak Si‘;(X cos(kox — wot) (12.16)

X = (x—j?it) Ak = (x — Ur) Ak (12.17)

The displacement u(x, ) is a cosine wave of wave number kj, modulated by the function
sin X /X. This function has a maximum value equal to unity for X = 0, and zeros for
X = +m, 27, etc. The main pulse is centered at X = 0, and the amplitudes of the
other pulses decrease with 1/X. As a function of time for a fixed distance, the displace-
ment is formed by a group or packet, of width 27/Aw, of waves of frequency wy. The
maximum of the wave group arrives at t = x/U (Fig. 12.3(b)). The group velocity U
is, then, the velocity of propagation of the wave packet formed by the envelope of the
function sin X/ X. The phase velocity of waves contained in the packet with frequency
wo 1Sc= wO/k().

12.3  The principle of a stationary phase

The principle of a stationary phase is used in order to evaluate displacements of
dispersed waves with a continuous distribution of frequencies with a broad spectrum
(12.9). As a function of the wave number k and assuming all initial phase to be zero,
equation (12.9) can be written as

ux, 1) = Jm A(K) cos[® (k)] di (12.18)

—00
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Fig. 12.4. The shapes of the functions A4(k), ®¢(k), and cos®, showing the contribution of the
stationary phase.

where
D(k) = kx — wt (12.19)

If the amplitude A4 (k) is a slowly varying function of k compared with the variation of the
phase @(k), the integral (12.18) has significant values only for frequencies for which @(k)
is stationary; that is, when d®/dk = 0 (Fig. 12.4). For rapid variations of ¢(k), the cosine
function changes sign and its integral becomes null, except for those values of k = k), for
which @(k) does not vary (d®/dk = 0). We call k& and w, the wave number and frequency
for which the phase is stationary. The integral (12.18) becomes, in a similar way to that in
(12.10),
ko + Ak
u(x, 1) = Alky) J cos[ (k)] dk (12.20)
ko — Ak
This integral has values distinct from zero only for values of k near k.
If we take the derivative with respect to k of @ and put it equal to zero,

do

d
then, since this is zero for k = ky, and dw/dk = U, we obtain
x/t = Ulkg) (12.22)

where U (k) is the group velocity corresponding to the wave number k,. Then, at a
distance x and time ¢, energy is contained in waves with wave number k, or frequency
wy that correspond to stationary values of the phase. According to the principle of a
stationary phase, for that distance and time, the other frequencies do not contribute
to the amplitude. For each value of x and ¢, &k has a different value. This result is similar
to that of the previous section, in which &, was the central value of the wave-number
band. Here we have all wave numbers but, for each pair of values of x and ¢, k; is the
only value that makes the phase stationary.

An equivalent expression to (12.21) is obtained by taking derivatives of the phase &
with respect to the frequency w:

do  d

X
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For the stationary phase, d®/dw = 0, and the corresponding frequency wy, we obtain the
same result as that in (12.22). The group velocity is, then, the velocity corresponding to
the frequency that makes the phase stationary for a given distance and time. If we write ¢
in terms of the phase velocity, the condition of the stationary phase results in

%i di[ (x_ )} —0 (12.24)

and, since for the stationary phase x/¢t = U, from (12.24) we obtain the relation between
the group and phase velocities (12.5):

1 wde)™!
U=|-—5— 12.25
( ¢ dw) ( )
In order to determine the amplitudes corresponding to the stationary phase, we start
with the equation

u(x, 1) = J A(k)e® =0 dk (12.26)
where, for simplicity, we have assumed the initial phases to be zero. According to the
principle of the stationary phase, this integral is null outside the values near the
frequency that makes the phase stationary (12.20). On performing a Taylor expansion
of the phase about the wave number kg, including the second derivatives, we have

d
v [kX — wt]ko:k

kx—wl:kox—th+<k—k0) dk

1 , d?
+5(k — ko) @[kx — wl]k:ko (1227)

As we have seen, for the stationary phase, the term of the first derivative is null. On
substituting (12.27) into (12.26), we obtain

u(x, 1) = A(kg) elkox <o’ f exp ( (k — ko)zilk]t> dk (12.28)
where we have used that
dk( —wt)=x—-Ut (12.29)
On making the change of variable
(k ko)? i(/i (12.30)

equation (12.28) takes the form

A 12 -
u(x, t) = A(ky) elkox =0’ B‘;ﬂk L < 7do (12.31)
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Fig. 12.5. Phase- and group-velocity dispersion curves and the corresponding train of dispersed
waves at a distance x as functions of time.

The definite integral has the value (ir)'/?. On substituting into (12.31), since v/i =

+exp(mw/4), we obtain for the real part of (12.31)

2w 1/2
u(x,t) = A(kg) | x dU cos (kox — wotiz> (12.32)
U dk

Then, for a given time and distance, energy is contained in a cosine wave of wave number
ko and frequency wy, values corresponding to the stationary phase. Since dU/dk is in the
denominator, the largest amplitudes correspond to dU/dk = 0, or Airy’s phase. In this
case, in the series expansion (12.27), the second term is now zero and we must take the
third term. The amplitudes of Airy’s phase are given by
2w 13
u(x, l) = A(ko) X dzU COS (kgx — wyl :l:%) (1233)
U dk?

An example of the distribution of amplitudes as a function of time in a dispersed train
of surface waves is shown in Fig. 12.5. The phase velocity curve c(k) is that of Love
waves for a layer over a half-space (section 10.3). The group velocity curve U(k) is
derived from the phase velocity according to (12.4) (Fig. 12.5(a)). With this curve and
equation (12.32), amplitudes observed at a distance x as a function of time are shown
in Fig. 12.5(b). The waves observed are those corresponding to the frequencies that
make the phase stationary. In consequence, they travel with the group velocity.
Waves corresponding to the lowest frequencies arrive first, starting at time 7 = x/(.
At time ¢ = x/3, waves with the highest frequencies that are superimposed on those
of lower frequencies arrive. The last arrival, at t = x/U,,, is that of waves that travel
with the minimum group velocity. At this time, waves with similar frequencies near
ky, arrive together and are summed up to form Airy’s phase. According to (12.32), on
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a seismogram recorded at a given distance, for each value of time, we observe only the
wave corresponding to the frequency that makes the phase stationary.

12.4  Characteristics of dispersed waves

At a given distance, dispersed waves have the form of trains of waves with
different frequencies arriving at different times, according to the frequency dependence
of the velocity (the dispersion curve). Since the frequencies observed are those corre-
sponding to stationary values of the phase, their times of arrival depend on the group
velocity rather than on the phase velocity. This is an important aspect of dispersion,
which is not always well understood, that can be further explained by considering the
derivatives of the phase with respect to distance and time.

Taking derivatives of the phase @ with respect to distance for a fixed time, we obtain

aﬁx(kx—wt) :k+%(x— Ur) (12.34)
For a wave number k, that corresponds to a stationary value of the phase, U(k,) = x/¢
and, consequently,
ob
ax
This means that, for a fixed time, at a distance x, energy arrives in a wave of wave
number k, called the local wave number, which is different for every distance. Its
wave length is A\ = 27/k.
If we take the time derivative of the phase &, for a fixed distance, we obtain

= ko (12.35)

0 ok
5(/{)6 —wt) = —w—l—E(x - Ur) (12.36)

Just like in the preceding case for the frequency w, corresponding to the stationary
phase, we have
0P
ot
For a fixed distance, at each time, energy arrives in a wave of frequency wy called the
instantaneous frequency, which is different for every time. Its period is T\, = 27/wy,
and, for a fixed distance, in the train of dispersed waves, at each time, we observe
only this period (Fig. 12.6). In conclusion, waves observed at a given distance and
time correspond to a local wave number k, or instantancous frequency wy, and propa-
gate with the group velocity.
Let us consider now an increment in phase 89, related to changes in distance and time
and also in frequency and wave number:

O(kx — wt) = kdx + xdk — tdw — wdt (12.38)

For frequencies and wave numbers corresponding to stationary values of the phase
x 0k — tdw = 0, and we obtain

—wp (12.37)
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(a)

Fig. 12.6. (a) Arrivals of waves of instantaneous frequencies w; and w, in a dispersed wave train.
(b) Phase- and group-velocity dispersion curves.

If we observe the same phase in a wave of the same frequency wy, at two points separated
by a distance dx, with a time interval 8¢, then the phase increment is null (6& = 0) and we
can find that

ox  wy

—=—=c

3tk
where ¢ is the phase velocity of waves with frequency and wave number w, and k. This
expression should be compared with equation (12.22) for the group velocity.

Using equations (12.22) and (12.40) we can determine both group and phase velocities
from observations of dispersed wave trains. Consider a wave observed at distance x and
time ¢, with instantaneous frequency wy; we obtain the group velocity U(wy) = x/1.
Consider now a wave observed at two nearby points separated by a distance dx, if the
same phase for the same instantaneous frequency wy arrives with a time difference oz,
we can calculate the phase velocity ¢(wy) = 6x/8t. These ideas are at the base of methods
used for determination of phase and group velocities from observations of dispersed
wave trains.

(12.40)

12.5  The determination of group and phase velocities. Instantaneous frequencies

The determination of group and phase velocities from observations of dispersed
surface waves is based on the ideas discussed previously. A seismogram is the recording
of waves as a function of time for a given distance. The amplitudes of dispersed surface
waves, according to (12.32), are given by

o 1/2
u(x,t) = A(wy) | x dU cos (kox—w0t+¢>+¢1:|:Z) (12.41)
U dK
where we have introduced the initial phase ¢ and the phase shift ¢; produced by the
instrument. For a given distance x (the epicentral distance), a wave of instantaneous
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frequency wy arrives at time ¢. As has already been explained, these are the frequencies
that correspond to stationary values of the phase. Methods that use directly recorded
waves are, then, limited to these frequencies.

12.5.1 The group velocity

The group velocity can be determined from the record of surface waves at a
single station. If we correct for the instrumental phase shift ¢y, the phase is given by

qﬁ:kx—wt+¢i§ (12.42)

On taking the derivative with respect to w and, since dw/dk = U, solving for U, we
obtain

X
dv  dw

For a stationary phase d¢/dw = 0 and w = wy. Assuming that the initial phase does not
depend on frequency, we obtain for each instantaneous frequency wy

U(wy) =

X
1(wo)
The method for determination of the group velocity consists in measuring times of
arrival of peaks and troughs of waves in a dispersed train (these are phases ¢ = 0
and 7) (Fig. 12.7(a)). These values are represented in a plot with respect to the order
number (Fig. 12.7(b)). On doubling the intervals between pairs of values (or from
peak to peak) we obtain the periods corresponding to instantaneous frequencies and,
from the ordinates, we obtain their arrival times. On dividing the epicentral distance
by each arrival time (12.44), we obtain the group velocity U(T,) for each period
(Fig. 12.7(c)). This velocity corresponds to a mean value of the structure along the
trajectory from the epicenter to the station.

(12.44)

1 2 345617n T3 2, 7T
1 2 3 45678910

@ (b ©

Fig. 12.7. Determination of the group velocity from the instantaneous frequencies at one station.
(a) Identification of peaks and troughs. (b) Traveling times of peaks and troughs and determination
of their periods. (c) The group velocities corresponding to each period.
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12.5.2  The phase velocity

On a seismogram of dispersed surface waves, peaks correspond to values of the
phase equal to multiples of 27. The waves recorded are those corresponding to instan-
taneous frequencies (12.41), so that we can write

kox—w0t+¢+¢li§:2Nw (12.45)

After correcting for the instrumental phase ¢;, on dividing (12.45) by k,, we obtain for
the phase velocity (¢ = w/k)
(7o)

X
Ct—(p+NEHT

(12.46)

If we want to determine ¢, we need to know the value of the initial phase ¢ corresponding
to the azimuth to the station for each instantaneous frequency. This is possible only if we
know the focal mechanism of the earthquake. Only in this case can we use equation
(12.46) to determine the phase velocity. The method consists in selecting the peaks (or
peaks and troughs) in the seismogram (phases ¢ = 2N7) and measuring their traveling
times ¢; and periods 7;. For the same periods we determine from the focal mechanism the
initial phases ¢ and substitute them into equation (11.46). Values of N are found by trial
and error, by successive substitutions 0, 1, 2, etc. and selecting those which give a reason-
able value of the velocity. The value of NV corresponds to the number of complete cycles
that must be added for each period so that they correspond to the observed phase.

The necessity of knowing the focal mechanism if one is to calculate the phase velocity
from a single station is the reason why this method is rarely used. This difficulty is
avoided by using two stations. In this method two stations that are lined up with the
epicenter are selected (that is, both stations and the epicenter lie on the same great
circle). For the same instantaneous frequency wy, the phases corresponding to peaks
at each station are given by

k0x1 — wol +¢+¢l :I:Z: 2L (1247)
koxy — woly + & + & i%: M (12.48)

We subtract (12.47) from (12.48) and solve for ¢ =w/k, putting Ax = x, — xy,
At=1t,—t,and N = M — L, and obtain

Ax

c(To) ~ A= NT, (12.49)

N is now the number of complete cycles separating the phases of the two stations. In the
two records we identify peaks of waves that correspond to the same period T;, and
subtract their traveling times from each other to get Ar; (Fig. 12.8(a)). The integer N
is selected, just like in the previous case, by trial and error so that the dispersion curve
is continuous and velocities are reasonable. In this way we obtain the phase velocity
for periods present on the two seismograms (Fig. 12.8(b)). The phase velocities obtained
correspond to a mean value of the structure along the trajectory between the two
stations.
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Fig. 12.8. Determination of the phase velocity using two stations. (a) Identification of the same phase
for the same period at both stations and determination of the time interval. (b) The phase velocities
corresponding to each period.

12.6  The determination of phase and group velocities. Fourier analysis

12.6.1 Fourier analysis of seismograms

The recording of a dispersed train of surface waves at a station located at a given
distance from the epicenter is a real function of time u(¢). Its Fourier transform is a com-
plex function of frequency F(w) (Appendix 4):

F(w) = J:O u(r)e " dr (12.50)
F(w) is the complex spectrum F(w) = R(w) + 1l (w) and can be expressed also as

F(w) = A(w) '@ (12.51)
where

A(w) = [R(@) + 1)) (12.52)

P(w) = tan " [[(w)/R()] (12.53)

A(w) is the amplitude spectrum and &(w) is the phase spectrum. By using the inverse
transform we pass from F(w) to u(¢):

(o)
u(t) = ij F(w)e“ dw (12.54)
27 ) —oo
Seismic waves can be studied in the time domain u(¢) or in the frequency domain F(w).
Spectra show the contribution of each frequency to the waves observed. The record at a
given distance of a dispersed train of surface waves, as we have already mentioned,
shows at each time only the presence of waves corresponding to instantaneous
frequencies. However, all frequencies are really present with more or less energy and
their amplitudes and phases can be obtained by using Fourier transformation. In this
way, we can calculate phase and group velocities for all frequencies, without being
limited to instantaneous values like in the previous section.
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In equations (12.50) and (12.54), u(z) is a continuous real function of time defined
from zero to infinity. In practice, it is only defined for a finite length and sampled at
certain time intervals; that is, it is formed by a finite number of discrete values, u;, for
i=1to N at time intervals &¢. Its Fourier transform is also discrete, Fj, for k =1 to
N/2, corresponding to frequencies between 0 and w/d¢ at frequency intervals of
dw = 27/(N&t). The highest frequency wy = /8¢ is the Nyquist frequency and depends
only on the sampling interval (Appendix 4).

Since early work by Sato (1955), many methods for determination of phase and group
velocities of surface waves on the basis of Fourier analysis have been developed,
especially since 1960 with the availability of digital computers and fast methods of
computation of Fourier transform (Dziewonski and Hales, 1972). We show the basic
ideas of two of these methods as examples.

12.6.2 The phase velocity

Fourier analysis can be easily applied to determination of the phase
velocity from records of surface waves at two stations. The method is similar to that
of instantaneous frequencies, but now we use all of the frequencies obtained from
Fourier spectra. At each station the amplitude and phase spectrum, starting at times
t; and t,, is determined. For a distance Ax between stations and an interval
At = t, — t; between the times of starting analysis at the stations, the difference between
the phases is

D) (w) — Py (w) = 0P(w) + 27N =k Ax —w At (12.55)

The term 27N, as before, is added to compensate for the number of complete cycles
separating the two phases. On dividing by k& and solving for the phase velocity
(¢ = w/k), we find an equation similar to (12.49):

Ax
c(w) =
(1/w)[0P(w) + 27N]| + At
If, for the two seismograms, we take the same starting time for calculating the Fourier

transform, then A7 = 0. On expressing equation (12.56) as a function of the period, we
obtain

(12.56)

Ax
“T) = T5aT) + N

Equations (12.56) and (12.57) give the phase velocity for all frequencies obtained in the
Fourier transform. In practice, since the seismogram is a sampled function of limited
length, discrete Fourier transformation provides only a limited number of frequencies
(Appendix 4). These limitations are present in all methods based on Fourier analysis
of sampled functions of finite length.

(12.57)

12.6.3 The group velocity

Most methods used to obtain the group velocity using Fourier analysis are
based on the application of a band-pass filter called a multiple filter that is centered
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on a frequency that takes various values (Landisman et a/., 1969). We will present only
the basic ideas of this method. We define a Gaussian filter in the frequency
domain centered on a certain frequency w, and with a width related to the constant «,
in the form

H(w,,w) = e )/ (12.58)

The Gaussian function has the advantage that its transform is also a Gaussian function.
The frequency w, takes successive values for which we want to calculate the group
velocity. The Gaussian filter (12.58) is applied to the Fourier transform of the dispersed
surface waves u(t). The result, after eliminating the effects of initial and instrumental
phases, can be written as

) = |

where h(w,, t) is the inverse transform of the filtered function. Because of the shape of the
filter, A(w) and k(w) can be expressed using a Taylor expansion about the central
frequency w,:

A(w) e @)/ cos(kx — wr) dw (12.59)

—00

Aw) = Al,) + (0= @) S = A, + (0= )4, (12.60)

k(W) = k() + (0 ) o = Ky + (0= )k, (1261)
On substituting these into (12.59), we obtain

W 1) = e, 1) sk — i + &) explu (ki — 17 (4a)] (12.6)
where

€l 1) = (1/2) P (A2 4 (A (K — 0/ (40) (12,69

En(wy, 1) = tan™ ' [ALw, (kK,x — 1)/(2a4,)] (12.64)

We can define the instantaneous amplitude a(7) and phase @(¢) for an arbitrary function
f(¢) (Dziewonski and Hales, 1972) in the form

a(t) = [f(1) +q(0)]'? (12.65)
(1) = tan”'[g(1) /f (1)) (12.66)

where ¢(¢) is the inverse transform of the Fourier transform of f(¢) after introducing a
phase shift of 7/2, or equivalently after interchanging its real and imaginary parts. The
function a() can be considered as the envelope of f(¢). On applying this operation to
h(w,,t), we obtain

a,(1) = g(wn, 1) exp—w’ (kx — 1)*/ (4a)] (12.67)
D,(1) = wyt — k,x — g, (12.68)

From the principle of a stationary phase it follows that d®/dr = —w (12.37), where w is
the instantaneous frequency corresponding to each time. Maxima of a(¢) correspond to
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times for which da/dz = 0. Taking the derivative in (12.67) and putting it equal to zero,
this is satisfied for ¢, = kj,x. However, k,, = dk,/dw = U, is precisely the group velocity
associated with the maxima of a,(¢) which is given by

U, = x/t, (12.69)

where x is the distance from the station to the epicenter and ¢, is the time corresponding
to the arrival of the maximum of a,,(#). Since this function is the envelope of /i(w,,, ), that
is, of the original function u(z) filtered by the Gaussian function centered at the
frequency w,, this maximum represents the energy contained in u(¢) corresponding to
the frequency w,. In consequence, ¢, is the group traveling time associated with the
frequency w,. By giving various values to w,, we find their corresponding group traveling
times ¢, and, according to (12.69), we find the values of their group velocities. The
method is actually equivalent to the method of measuring the times of peaks and troughs
on a seismogram, but it is not restricted to instantaneous frequencies. If, for the same
frequency w,, there is more than one maximum of a,(¢), they correspond to different
modes of surface waves. The greatest traveling times (lowest velocities) correspond to
the fundamental mode.

Since, in practice, we always use a sampled function u,, (im = 1,..., M), the function
a,,, has a matrix form and is called the energy diagram, where the subindex m refers to
times and # refers to frequencies used in the filter. In this matrix, for each value of the
frequency w,, we select the time 7, that corresponds to the maximum of a,,,. This time
is the group traveling time associated with the maximum of energy corresponding to
the frequency w,. By dividing the epicentral distance by ¢, we find the group velocity
U, (12.69) corresponding to each frequency w, or period T, (Fig. 12.9). This type of
analysis can be used also to filter the signal with a selected distribution of group
velocities. In this form, we can separate the energies propagated by the various
modes, for example, that of the fundamental mode from those of higher modes. Filters
of this type are called group-velocity filters.

12.7  Dispersion curves and the Earth’s structure

12.7.1 Observations

Surface waves in the Earth are observed on seismograms of distant surface
earthquakes as long trains of dispersed waves with large amplitudes. Dispersion is
easily detected, first arrivals corresponding to waves of longer periods. As has been men-
tioned, the periods present on seismograms correspond to instantaneous frequencies.
Love waves are registered only in the horizontal components whereas Rayleigh waves,
which are polarized in the vertical plane, are registered both in horizontal and in vertical
components. If we rotate the two horizontal components to make them coincide with the
radial and transverse directions with respect to the orientation from the station to the
epicenter, Love waves (LQ) are recorded only in the transversal component and
Rayleigh waves (LR) are recorded only in the radial one (Fig. 12.10). Love waves of
long periods (60—300s) are also called G waves (in honor of B. Gutenberg). For these
periods, the dispersion curve is practically flat with a velocity of about 4.4kms™' and
waves have an almost impulsive form.
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Fig. 12.9. Determination of the group velocity using the multiple-filter method. Dispersed surface
waves and the energy diagram with group velocities and periods are shown for the Alaska earth-
quake of 20 November 1993 recorded at the HRV, A = 50° (courtesy of L. A. Rivera).



Il

I

—t—

I B

|

|

=l

P

X 1042

Fig. 12.10. Vertical, radial, and transverse components of the record of the broad-band station ANMO of a shallow earthquake in Peru (21 February

1996); my, = 6.7.

14

16

20

233



234

10 _I l T T T T T T T T T T T T T T T T T T T T ]
L Rl -
- R R, |
L 2 R6 _
5 - R, R R, _
I Ry _
0 W N
,5 L —

_I | 1 | 1 | | | ‘ | | | 1 | ‘ | | 1 I I I | \ | |

1 7 3 4 5 6 7

X 10+4

Fig. 12.11. Records of several groups of Rayleigh waves that circle the Earth. They were recorded at the broad-band station SFUC from the earthquake
of the Balleny Islands (25 March 1998); M = 8.
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Love and Rayleigh waves of short periods (8—12s) in continental trajectories are
channeled in the upper crust and are known as Lg and Rg waves. For periods between
60 and 300s Love and Rayleigh waves travel mainly through the mantle and are called
mantle waves. For large earthquakes, surface waves that travel around the Earth more
than once are observed. These waves are designated with a subindex, G;, G,, G3, etc. for
Love waves, and Ry, R,, R3, etc. for Rayleigh waves (Fig. 12.11). Groups G; and R, are
direct waves from the epicenter to the station and G, and R, are waves that arrive at the
station traveling in the opposite direction. For higher subindexes, waves with an odd
subindex circle the Earth, leaving the epicenter in the direction of the station; and
those with an even subindex do it leaving in the opposite direction.

12.7.2  Interpretation

The forms of dispersion curves of phase and group velocities of Love and
Rayleigh waves depend on the characteristics of the medium (section 10.3). Thus,
their study allows the determination of the structure along their trajectories. Since
surface waves travel along the surface of the Earth, their penetration into its interior
depends on their wave lengths. For periods less than 60 s they are affected by the crust
and for periods between 60 and 300s they are affected by the mantle. They provide
average values of the structure along their trajectory and do not give details of lateral
variations. However, the analysis of surface waves along many trajectories permits the
separation of effects of the various structures they have crossed. With this type of
analysis, called regionalization, we can separate structures for different regions, such
as oceanic regions with various ages of the sea floor, shields, orogenic regions, rifts,
etc. Owing to the difficulty of interpreting surface waves of short periods (less than
10s) because of the presence of large lateral heterogeneities, in general, regionalization
does not give good results for small regions of the crust.

The first studies of the structure of the Earth’s crust and mantle by means of
the analysis of Rayleigh and Love waves were those by Ewing, Roehrbach and
Carder in the 1930s. Later, during the 1950s, we have the work of Sato, Press,
Oliver, and Wilson (Press, 1956; Oliver, 1962) among others. The rapid development
both of long-period seismographic instrumentation and of digital computers during
the 1960s gave a great impulse to these studies. During the 1960s and 1970s many
studies of crust and mantle structures along a large number of trajectories, crossing
all types of structures, oceanic, continental, shields, rifts, etc., were completed. Com-
puters also made possible the calculation of theoretical dispersion curves for
stratified media with many layers that are needed for interpretation of observations.
Observed dispersion curves were at first inverted by comparison of observed and
theoretical curves for various types of models. More recently, observed data have
been inverted directly, including compensation for errors in observations and resolu-
tion of models.

One of the first results from the analysis of dispersion curves of surface waves was the
difference between crust and upper mantle structures under oceans and those under
continents. Purely oceanic trajectories show that group velocities of Rayleigh waves
with periods 20-100s have a very constant value of about 4kms~' and that those
with shorter periods, 10-20s, have a sharp fall due to the water layer. For continental
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Fig. 12.12. Theoretical group-velocity dispersion curves for continental and oceanic structures.

Continental crust, H = 30km, §=3.5km s, and upper mantle, 5 =4.6km s7!; and oceanic
crust H = 10km, 8 = 3.2km s7!, and upper mantle, 3 = 4.3km s7h

trajectories for periods shorter than 60s, the group velocity decreases from 4km s, and
for 10's it reaches a minimum of about 3 kms~'. This is due to the thickness of the crust
being greater and to the presence of sediments with low velocities. For periods greater
than 150s, dispersion curves for continents and oceans are similar due to the influence
of deeper parts of the mantle. These general characteristics can be explained by invoking
the very simple model of oceanic and continental crusts and the upper mantle shown in
Fig. 12.12. A summary of observed dispersion curves for group velocities of Rayleigh
and Love waves for a large range of periods is shown in Fig. 12.13. Love waves have
higher velocities than Rayleigh waves. For oceanic paths Love waves have a practically
constant velocity of about 4.4kms~' for periods in the range 20—400s. For periods
shorter than about 80s Love and Rayleigh waves for continental paths have lower
values than they do for oceanic paths. There is a sharp drop in velocity both for Rayleigh
and for Love waves of about 10—20 s period for oceanic paths. For Rayleigh waves there
is minimum for a period of about 200s that is produced by the influence of the low-
velocity layer in the mantle. Characteristics of the crust and mantle found from the ana-
lysis of surface waves agree with those found from traveling times of body waves (sec-
tions 8.3 and 8.4).

A comparison among dispersion curves for various types of paths reveals that their
structures are different (Knopoff, 1972). For Rayleigh waves and periods in the range
60—140s, phase velocities are highest for continental shields and lowest for rift zones
(Fig. 12.14). These curves reveal the effect of the differing thicknesses of the lithosphere
and the influence of the astenosphere. The thickness of the lithosphere is greater
for continental shields and smaller in rift zones with a shallower astenosphere. The
mean curves shown in Fig. 12.14 show only the differences among very broad types of
crust.

Since 1980, with the installation of global networks of seismographic stations with
digital broad-band instrumentation (Chapter 21), it has been possible to analyze surface
waves for various types of trajectories using not only dispersion curves but also ampli-
tudes. These studies allow a more detailed regionalization of the structure of the crust
and mantle, revealing lateral inhomogeneities through the whole mantle. Generally,
these studies concern S wave velocity distributions obtained using spherical harmonics
(Appendix 3). The best results have been found for harmonics of orders between four
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Fig. 12.14. Average phase-velocity dispersion curves of Rayleigh waves for regions of shields,
oceans, continents, and rift regions (modified from Knopoff (1972)) (with permission from Elsevier
Science).

and ten, applied to the resolution of mantle structure 300—1000 km deep (Dziewonski
and Woodhouse, 1987). In this way, global three-dimensional models of the Earth’s
mantle have been obtained by the application of tomographic techniques to observa-
tions of surface waves.



13 FREE OSCILLATIONS OF
THE EARTH

13.1 Wave propagation and modes of vibration

In Chapter 4, we considered the problem of free vibrations of an elastic body of
finite dimensions, considering the vibrations of a string and a rod. Since the Earth has a
finite radius and is bounded by a free surface, we must consider its free oscillations. Up
to this point, we have treated wave propagation in the Earth without considering its
finite dimensions. We find body waves traveling in its interior and the presence of its
free surface generates surface waves. Body waves have relatively high frequencies (larger
than 0.07 Hz) or short periods (less than 155s). For an average velocity of 10kms ™' they
correspond to wave lengths of about 150 km, which is small compared with the Earth’s
radius (6370 km). Hence, body waves’ trajectories, traveling times and energy transport
can be studied using the wave propagation approach and ray theory approximation in
a flat or spherical medium, depending on distances. Surface waves extend to very low fre-
quencies or large periods and their wave lengths reach values of the order of the Earth’s
dimensions. For example, waves of 400s period, for a velocity of 4.5kms™', have a
wave length of 1800 km, about a third of the Earth’s radius. For wave lengths of this
order, the problem must be treated in the form of free oscillations or vibrations.

From the point of view of free oscillations, the Earth reacts to an earthquake by vibrat-
ing as a whole, in the same way as does a bell when it is hit. As we have seen in Chapter 4,
the vibration of a finite elastic body is the sum of an infinite number of modes (harmonics)
which correspond to frequencies with values that are multiples of the inverse of the body’s
dimensions. For an elastic body of finite dimensions, wave propagation and free vibrations
are two different approaches to studying the same phenomenon. For wave lengths that are
small compared with the dimensions of the body we can use wave propagation, but we can
not do this if they are of the same order. Free-vibration or normal mode theory includes
the complete phenomenon, but for small wave lengths we need a sum of many modes,
which is not very practical. Thus, wave propagation is used for high frequencies and
normal mode theory is used for low ones. The study of the Earth’s free oscillations is
based on the theory of vibrations of an elastic sphere. The problem increases in complexity
as we proceed from an isotropic homogeneous sphere to models with radial distributions
of elastic parameters and density, three-dimensional heterogeneities, and effects of gravity,
rotation, and ellipticity.

13.2  Free oscillations of a homogeneous liquid sphere

As an introduction to the problem, let us first consider the free oscillations of a
liquid sphere with constant density and bulk modulus. The components of displacements
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Fig. 13.1. Spherical coordinates and components of the displacements and stresses.

in spherical coordinates (Appendix 2) u,, uy, and u, can be derived from a single scalar
potential &(r, 0, ¢, t) (section 3.10) (Fig. 13.1):

od
u= (13.1)
1 09
1 0P
W= 5590 (13.3)

According to (3.3), in the absence of body forces, the potential ¢ satisfies the wave
equation
1 &*®
VP = — —
o’ or
where o = K /p (K is the bulk modulus and p is the density) is the velocity of longitu-
dinal (acoustic) waves. If @ has a harmonic time dependence,

(13.4)

O(r,0,6,1) = O(r,0,8) e (13.5)
then equation (12.12) becomes the Helmholz equation (3.10),
(V242D =0 (13.6)

where k = w/« is the wave number. By expressing the Laplacian in spherical coordinates
(A2.30) and applying the method of separation of variables, @(r, 0, ¢) = R(r)N(0)L(¢),
we obtain three equations for R, N, and L, just like (3.139), (3.140), and (3.141), where
the constants of separation of variables are / and m (in section 3.10, we used n and m).
These three equations, upon introducing into the second equation the change of variable
y = cos @, may be written in the following form:

d (rz dR

5 5) + [Pk =1+ 1)]R=0 (13.7)
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d dN m?
d—y((l—yz)d—y)+(l(1+l)—1_y2>N:0 (13.8)
2

jd)lg—&-mzL:O (13.9)

These three equations have the form of the Sturm—Liouville equation (4.35). In
equation (13.7), p(r) = 1%, q(r) = r*k*, and ns(r) = I(I+1); in (13.8), p(y) =1 — )7,
q(y) = —m?/(1 —y*), and ns(y) = I(I+1); and in (13.9), p(¢) = 1, q(¢) = m*, and
ns(¢) = 0.

As we have seen in section 3.10, the solutions for R(r) are given by spherical Bessel
functions jj (kr), those of N(6) by associate Legendre functions Pj"(cos#), and those
for L(¢) by harmonic functions et (Appendix 3). In consequence, we obtain for
the potential ¢ a solution as a sum of normal modes (Chapter 4):

/

5.0,6) =3 ilkn) 3 ¥7'(0,6) (13.10)
=0

m=—1

Y = (—=1)" (214—; ! 8 1:3: ) P'(cos 0)[C}" cos(mg) + S} sin(mg)]  (13.11)

We impose the boundary condition that, for each point of the surface of the sphere, the
normal component of the stress or pressure is null. According to (2.19) and (2.69),

P=—-KV®=0 (13.12)

for r = a. By substitution into (13.6), putting k in terms of w, the boundary condition
becomes

Ko?
Since in the solution (13.10), the only part that depends on r is given by spherical Bessel
functions, condition (13.13) implies that

Ko’ [ wa
This condition depends on the roots of j;(x) (Appendix 3). Using Rayleigh’s formula to

express spherical Bessel functions by sines and cosines (A3.14), for the first values of
[ =0, 1, and 2, these are

. sin x

Jolx) = (13.15)
X

. sinx Ccosx

N(x) =—7%-— (13.16)

X X

31 3
Jo(x) = (xz'_x> sinx—x—zcosx (13.17)
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Each of these functions has an infinite number of roots, which, for the first values of /, are
/=0, x=10xr, 2.0m, 3.0m,...
=1, x = 143037, 2.45907, 3.4709x,...
=2, x = 1.8346mw, 2.8950w, 3.9226m,...
For each value of /, we use the subindex n for each of these roots. For example, according
to equation (13.14), the roots for / = 0 correspond to
%“:(n+1)7r, n=0,1,2,3,... (13.18)

Thus, normal modes impose conditions on the possible values of the frequency. Since
these values depend on both subindexes, / and n, possible frequencies are designated
by ,w;. For [ =0, according to (13.18), the frequencies are

w0 = T (n+1) (13.19)
a
and the periods are
2
,,T():Ea(n—&-l) (13.20)

Just like for an elastic string and a rod (Chapter 4), a liquid sphere vibrates at certain
fixed frequencies that depend on its properties (K and p, or «) and its radius (a).
There is an infinite number of modes of vibration, each with its own frequency that
depends on two subindexes, n and /. For each value of /, n = 0 corresponds to the funda-
mental mode and n > 1 correspond to higher modes, harmonics, or overtones. The
potential for / = 0, according to (13.10) and (13.11), is given by

Py = Cp—— sin ("“’0”) (13.21)
nwWol [0

In this case, the subindex m has only the value zero, and the potential does not depend on
0 and ¢. Then, according to (13.1), (13.2), and (12.3), displacements have only radial
components (u,), and these modes are called radial modes. According to (13.19) and
(13.20), the frequencies and periods corresponding to the first three modes are

owo = maja 0Ty =2a/a
\wo = 2mae/a Ty =a/a
20.)0:371'04/61 2T0:2£l/(30£)
The period of the fundamental mode (n = 0) is the longest possible and corresponds to
the time that a wave takes to travel with a velocity « along the diameter of the sphere.
For a sphere of the size of the Earth (¢ = 6370 km) with velocity o = 9kms™', (7}
equals 23.6 min.
For [/ = 1, we have three values of m, —1, 0, and 1, and there are also n roots of
Ji(wa/a). Since P, = (—1)"P;, the potential @ is given by
WP = j1 (/) [CY cos 6 + (C} — C7 ) sinfcos ¢ + (S| + S7') sin Osin @]
(13.22)
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Fig. 13.2. Spheroidal modes for values of / = 0, 2, and 3.

According to the roots of j; (,w;a/a), we have the following frequencies for the funda-
mental and two first higher modes:

owp = 143037Ta/a
\wp = 2.45907a/a (13.23)
»wp = 3.47097a/a

These frequencies are higher than those corresponding to modes for / = 0. For / = 1, the
fundamental mode (n = 0) does not exist, since it implies a change in the position of the
center of mass of the sphere that is not allowed for free vibrations. In general, the higher
the mode order the higher the corresponding frequencies. Since, for / > 1, the potentials
(13.10) and (13.11) depend on the three coordinates r, 8, and ¢, the displacements have
three components, u,, uy, and u,. For each value of /, m takes 2/ + 1 values and there are
2] 4+ 1 potential functions, all corresponding to the same frequency. For example, for
[ =2, m takes the values m = —2, —1, 0, 1, and 2 and there are five potentials for the
same frequency ,w,. This means that there are several eigenfunctions for one eigenvalue,
which is known as a degeneracy problem (Chapter 4). For general, nondegenerate cases,
the frequencies depend on the three indexes n, I, and m (,w]"); modes depending on n are
called radial modes, those depending on / are angular modes, and those depending on m
are azimuthal modes.

If there is symmetry with respect to ¢, that is for m = 0, then the displacements depend
on 6 according to the Legendre polynomials P;(cos#). For [ = 0 (P, = 1), the displace-
ments are purely radial. For / =2, the body takes an ellipsoidal form, alternatively
elongated and flattened at the poles (# = 0). For higher values of /, the forms are
symmetric with respect to the equatorial plane (§ = 7/2) if [ is even and asymmetric if
[ is odd (Fig. 13.2).

13.3  Free oscillations of an elastic sphere

A first approximation to the problem of free oscillations of the Earth is that of a
homogeneous elastic sphere. This problem was treated by Poisson in 1829 and in a more
complete form by Lamb in 1882. In 1911 Love calculated the fundamental period of the
vibrations of a sphere with the dimensions of the Earth and found a value near to 1h.
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The problem is similar to that of the oscillations of a liquid sphere. Displacements in
spherical coordinates are derived from a scalar potential ¢ and a vector potential ¢ as
we saw in section 3.10. The vector potential 1) can be separated into two potentials
that are products of the unit vector in the radial direction and a scalar potential:

Y=V xSr+Tr (13.24)
u=vVoé+VxVxSr+VxTr (13.25)

In equation (13.25), the displacements are separated into three parts, the first term
representing P wave motion, the second SV wave motion, and the third SH wave
motion. In relation to surface waves, @ and S represent Rayleigh wave motion and T
represents Love wave motion. S is called the spheroidal potential and 7 is called the
toroidal potential. When there is symmetry with respect to ¢, the relations between
these potentials and the scalar potentials @, ¢, and A used in section 3.10 are

d=0 (13.26)
1 0S8
A=T/r (13.28)

The components of displacements in the directions of the coordinates r, #, and ¢ in terms
of the potentials @, S, and T are given by

oD 1 [0 [sinddS 1 &S
o rsinH[@G( r %)W&W} (13.29)
106 10 [0S 1 oT
ugr(%r@r(ae)Jrsinﬁ&b (13.30)
1 00 190 r 0S 10T
“¢mma¢ﬂm<ma¢>3aa (1331

Spheroidal motion depending on the potentials @ and S is a combination of P and SV
displacements with u,, uy, and u, components, whereas toroidal motion depending on
the potential T is of SH type with uy and u, components only.

The boundary conditions on the free surface are that the components of the stress
across it are null:

Tor = Ty = Ty = 0 (13.32)

For an isotropic medium, the components of the stress as functions of the displacements
are given by

ou, 2u, 1 0 . Ouy
T = (A4 ZN)E—F )\[r+ g (69(1/[9 sin 6) +8¢)} (13.33)
- 8u9 Uy 1 8u,.

- 1 8u,, 8u¢ I/ld)
7—r‘/’zﬂ<rsin9 8¢+8rr> (13.35)

where A\ and p are Lamé’s coefficients.
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In the absence of body forces and without considering rotation and gravity, Navier’s
equation (2.67) is

AV (Veu)—FV XV xu=ii (13.36)

where o and 3 are the P and S waves’ velocities. The problem is solved by expressing # in
terms of the potentials @, S, and T according to equation (13.25) and applying the
surface boundary conditions (13.32). The complete problem is rather complex and we
will give here only the most basic parts.

13.4  Toroidal modes

The part of the problem that corresponds to the toroidal potential T'(r, 6, ¢, 1)
can be treated separately, as was done with SH waves (Chapter 3) and Love-wave
propagation (Chapter 10). If we assume a harmonic dependence on time, we can write
the Helmholtz equation for 7" and the problem is similar to that with a liquid sphere:

(V24 k)T =0 (13.37)

where k3 = w/f3 is the wave number of S wave motion. Just like in (13.10), the solution
can be written in terms of spherical Bessel, associated Legendre and harmonic functions:

Z (kgr) Z Pj'(cos 0)[C]" cos(mep) + Si" sin(ma)] (13.38)

m=—|

As mentioned before, the subindex / is the angular number and m is the azimuthal
number. For each value of / there are 2/ + 1 values of m. The solution is given by an
infinite sum of modes 7" that are called toroidal modes. Since the potential T represents
transverse motion, these modes are similar to the torsional modes of vibration of an
elastic rod (section 4.3). From (13.30) and (13.31), the toroidal displacements are
given by

1 or

10T

The boundary condition at the surface of the sphere (r = a) is 7,, = 0. From (13.35),
since for toroidal motion u, = 0, we obtain

3u¢ Md)
_ e — 13.41
or r 0, r=d (13.41)
On putting u, as a function of 7" according to (13.40), this condition gives
100T 10T 10 (0T T
ettt ) = = 13.42
ror a0 12 o0 ;ae(ar r) 0, r=a (1342)

According to (13.38), T is a product of three parts, each depending on one only of the
coordinates, 7(r,0, ¢) = T,(r)Tp(0) T,(¢). Equation (13.42) imposes only a condition in
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the form
oT,
d or
on T,(r). Since, according to (13.38), T, = jy(kgr), on putting x = kgr, condition (13.43)
gives

~T,=0, r=a (13.43)

xj(x) = ji(x), x =kga (13.44)
Using the relation j; = [1/(/ — 1)]j;,1(x), this condition may be written as
Xji1(x) = (I = 1)j;(x), x =kga (13.45)

This equation has an infinite number of solutions for which we use the subindex n. For
each value of /, the first value of n (n = 0) corresponds to the fundamental mode and the
rest to higher modes, harmonics, or overtones.

For /=0, Py(cost) =1 and T, = jy(kgr). Then, 0T /00 = 0T /0 =0 and uy =
uy = 0; that is, there are no toroidal vibrations of order zero.

For/=1 (P(l) = cosf and P} = sin §), condition (13.45) corresponds to the roots of
J»(x) which, according to (13.16), gives

tanx =

T2 x =kga (13.46)
The first three roots, corresponding to n =0, 1, and 2, are x = 1.8346m, 2.89507, and
3.9226m. Since ks = w/ 3, the eigenfrequencies for / = 1 and n =0, 1, and 2 are

1.834673 ~2.8950m8 ~3.9226m8

oW1 =3 W =3 2]
a a a

For toroidal modes, a solution for n = 0 is not physically possible for free vibrations (in
the absence of external torques) since this corresponds to a rigid oscillation of the whole
sphere. For n =1 and 2, if we use approximate values of ¢ and (3 for the Earth
(a=6370km and 8= 6kms™ '), then the corresponding periods in minutes are
1T1 =12.22 and 2T1 =9.02.
The potential function T(r,0,¢) for /=1 and m = —1, 0, and 1 is, according to
(13.38),
2T = ji G/ ) {CY cos 6 + sin0[(Ci — Cr') cos ¢+ (Si + Sy!) sin ¢}
(13.47)
For each value of #, this can be considered as a sum of three eigenfunctions, , 77, , 71,
and 77", that correspond to the same eigenvalue, ,w,. Therefore, the problem is a

degenerate one.
For [/ =2, condition (13.44), by substitution of (13.17), gives

(12 = x*)x
12 — 5x2
The first three roots of this equation, corresponding to n = 0, 1, and 2, are x = 0.796m,
2.2717, and 3.346m. The corresponding periods, for the given values of a and 3, are

oT>, = 44.46min, T, = 15.58 min, and , 7, = 10.58 min. In this case, we have a funda-
mental mode (y7,) which has the longest period (lowest frequency) of all toroidal

tanx = (13.48)
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Table 13.1. Periods (in minutes) of toroidal modes

n
[ 0 1 2 3
1 - 13.45 7.63 5.22
2 43.82 12.60 7.49 5.17
3 28.35 11.56 7.28 5.08

Fig. 13.3. Toroidal modes for values of / = 1, 2, and 3.

modes. The period of (T, (44.46 min) is greater than the time (35.39 min) which an SH
wave takes to travel along the diameter of the sphere.

For toroidal modes the index / refers to the order of associated Legendre functions
and in consequence to the distribution of displacements on spherical surfaces depending
on the angle 8. For / = 1, the fundamental mode implies that whole-body oscillations
around the origin of the 6 axis, that are not possible as free vibrations, occur. They
are possible for higher modes since internal parts oscillate in different senses and there
is no change in total angular momentum. For / = 2, the two hemispheres oscillate in
opposite senses. For higher values (/ > 3), there are as many zones oscillating in opposite
senses as the order number of the mode (Fig. 13.3). The index m refers to the depen-
dences of displacements on the azimuthal angle ¢ and takes values from —1 to 1. The
index n refers to the number of roots in the r dependences of displacements for each
configuration of / and m (Fig. 13.4). Since, for a homogeneous sphere, the eigen-
frequencies do not depend on the index m, displacements that are different according
to their values of m correspond to the same frequencies; that is, the problem is a
degenerate one. The same happens if elastic properties depend on the radius only, but
not for the complete heterogeneous problem. For each value of / and m, n=0
corresponds to the fundamental mode and n > 1 correspond to the higher modes or
overtones.

The eigenperiods in minutes for toroidal modes of low order corresponding to a model
of the Earth with radial symmetry are given in Table 13.1 (Dziewonski and Gilbert,
1972). Periods decrease with increasing mode-order number. The longest period,
43.82 min, corresponds to the fundamental mode of the second-order mode (7,. The
values in Table 13.1 are similar to those found for a homogeneous sphere with the
assumed value of S wave velocity (6 kms™").
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13.5  Spheroidal modes

The problem of spheroidal modes is more complicated since it implies solutions
for two potentials, @ and S, and the displacements correspond to P—SV motion. Let us
consider briefly a homogeneous sphere of velocities o and (3, and density p. The
boundary conditions at the free surface are that the stresses are null:

T =T = 0, r=a (13.49)

Wave equations in spherical coordinates have solutions for potentials ¢ and S of the
same type as those found for 7' (13.38). Different spheroidal modes are represented
by nSl'

For the lowest order / = 0, according to (13.38), the potentials ¢ and S are functions
of r only. Then, according to (13.29)—(13.31), there are only displacements u,, and
ug = uy = 0. These modes are called radial modes. The boundary condition 7,, =0
gives the equation (Ben Menahem and Singh, 1981)

S VA 13.50
Ccotlx = ; Z (E) X ( . )
where x = k,a. For a = /36 (\ = p), the first roots are x = 0.816m, 1.9297, 2.9367, and
3.966m, corresponding to harmonics of orders n = 0, 1, 2, and 3. If, for an approximation
to the Earth, we substitute ¢ = 6370 km and o = 9kms ™!, the corresponding periods in
minutes are 28.91, 12.23, 8.03, and 5.95. The fundamental mode S, corresponds to an
expansion and contraction of the sphere without its form changing (Fig. 13.2). For
higher values of n, there are as many nodal surfaces inside the sphere as the order
number for which the motion is null and changes sign.

{=2

/ / /

n: 0 1 2 3

Fig. 13.4. The distribution of amplitude with radius for the fundamental (n = 0) and higher order
harmonics (n = 1, 2, and 3) for the toroidal mode of order / = 2.
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Table 13.2. Periods (in minutes) of spheroidal modes

n
[ 0 1 2 3
0 20.45 10.25 6.62 5.10
1 - 41.30 17.66 11.79
2 53.80 24.5 15.08 8.48
3 35.53 17.72 13.43 8.14

For /=1, the fundamental mode (S| does not exist, since it corresponds to a
displacement of the center of mass, which is not possible in free vibrations, as we saw
for the liquid sphere (Lapwood and Usami, 1981). We have values for the higher
modes 157, »S7, 35, etc.

For / = 2, displacements are symmetric with respect to the plane normal to the origin
of the axis 6. The surface takes an ellipsoidal form that is alternately flattened and
elongated at the poles (Fig. 13.2). The fundamental mode (S, has the lowest frequency
of all modes and no nodes of displacements in the interior of the sphere. For higher
modes (n > 1), just like for toroidal modes, there are in the interior of the sphere as
many nodal surfaces as the order of the mode.

Eigenperiods in minutes for spheroidal modes of lowest order for a model of the Earth
with radial symmetry are given in Table 13.2 (Dziewonski and Gilbert, 1972). The
longest period corresponds to the mode (S, and is greater than the period of the
corresponding toroidal mode (75. Thus, this is the longest period for free oscillations
of the Earth. For the same order, periods of spheroidal modes are longer than those
of toroidal modes.

13.6 Effects on free oscillations

We have considered the properties of the free oscillations of an isotropic homo-
geneous elastic sphere. If the elastic properties vary with the radius the solutions are
similar. With the Earth there are circumstances that deviate from this simple model.
First of all, we have the effect of gravity that affects mainly spheroidal modes. Secondly,
the presence of a liquid core results in the existence of toroidal modes in the mantle only.
This influence is greater for low-order modes. For example, spheroidal modes have
periods significantly different than those in models without a liquid core. These two
effects do not change the spherical symmetry of the problem.

Three additional effects derive from the ellipticity of the shape of the Earth, its lateral
heterogeneity (the dependences of # and ¢ on the elastic properties), and its rotation.
These three factors separate the problem from that of spherical symmetry. The problem
is no longer degenerate and the values of the eigenfrequencies are modified. For each
value of / and n, there are now several frequencies, depending on the index m with a
maximum of 2/ + 1. These frequencies are called multiplets (Fig. 13.5).
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The most important of these effects is due to the Earth’s rotation. Centrifugal and
Coriolis forces have axial symmetry, so the problem no longer has spherical sym-
metry. This effect produces splitting of the eigenfrequencies (Dahlen, 1980). If the
angle ¢ is measured on a plane normal to the axis of the Earth’s rotation, a
perturbation, due principally to the Coriolis force, displaces the eigenfrequencies asso-
ciated with modes of angular order / by a quantity related to the index m, dw = mb,
where b is a function of the index / and the quotient 2/,w; ({2 is the Earth’s
frequency of angular rotation and ,w; are the unperturbed eigenfrequencies). Since
this quotient is small for high eigenfrequencies, this effect is observed only for low
frequencies.

Two other effects are due to the Earth’s ellipticity and deviations of elastic properties
and density from radial symmetry. These effects are small and also produce splittings of
eigenfrequencies. If the lack of radial symmetry in the Earth’s composition were very
large, then, besides splitting of eigenfrequencies we could have coupling of toroidal
and spheroidal modes. Although their effects are small, heterogeneities in the Earth’s
composition can be detected in the analysis of free oscillations.

13.7  Observations

Free oscillations of the Earth can be observed in the analysis of seismograms of
large earthquakes (M > 7). In large shocks enough energy is released to generate low-
frequency free oscillations that can be observed by means of long-period seismographs
and gravity meters. However, the eigenfrequencies of the various modes are not
observed directly on seismograms, but must be obtained from the peaks of their
power spectra (Appendix 4). The eigenfrequencies of the various modes are found
from observations taken from spectral analysis of long-period records using long time
windows in order to obtain sufficient precision for peaks of the spectra (Fig. 13.6). To
increase the signal-to-noise ratio, methods involving the stacking of several records
for the same earthquake are used to correct for phase differences.

The first observations of free oscillations of the Earth were obtained from long-period
records of the two large (M > 8) earthquakes in Kamchatka in 1952 and Mongolia in
1957, but the earthquakes that provided better data were those in Chile in 1960, the
Kurile Islands in 1964, and Alaska in 1964 (Alsop et al., 1961; Benioff et al., 1961).
Splittings of spectral peaks due to the rotation of the Earth, especially for low-order
modes, were observed even in the earliest studies. Observed values of periods in minutes
for low-order toroidal and spheroidal fundamental modes are given in Table 13.3 (Derr,
1969).

Comparison of observed values of eigenperiods of free oscillation and those calculated
from theoretical models is used to obtain global models of the Earth’s interior. If we
compare corresponding values of Table 13.3 with those of Tables 13.1 and 13.2, we
find that the model with radial symmetry is not a bad approximation for very-low-
order modes. Since the greatest energy for each mode corresponds to a particular
depth, they provide information about the structure at such a depth. Thus, mode data
may contribute to determination of the structures at depths for which the structure is
not well known from body-wave data. For example, mode analysis gives a value of S
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Table 13.3. Observed periods (in minutes) of low-order modes

l OTl OSI
2 44.011 53.883
3 28.463 35.559
4 21.739 25.786
5 17.938 19.821
6 15.422 16.065
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Fig. 13.6. Spectral peaks of spheroidal modes observed at the BDF station of the IDA network
(Buland et al., 1979) (with permission from Macmillan Magazine Ltd).

wave velocity of 3.5kms™! for the rigidity of the inner core. The splitting of spectral
peaks due to lateral heterogeneities is also used in mode studies of the Earth’s interior.
Modern models of the Earth’s interior integrate data from body waves, surface waves,
and free oscillations covering a wide range of frequencies.



14 ANELASTICITY AND
ANISOTROPY

14.1  Anelasticity and damping

In all previous chapters we have considered the mechanical behavior of perfectly
elastic bodies. We know, however, that the Earth can not behave in this way. According
to the second law of thermodynamics, in all physical deformable media, there is dissipa-
tion of energy in the form of heat through mechanisms known as internal friction. As we
have seen, in a perfectly elastic medium, the amplitudes of waves decrease with distance
due to geometric spreading, which depends on factors of 1/r for spherical waves (body
waves) and 1/+/r for cylindrical waves (surface waves) (sections 3.9 and 3.10). The lack
of perfect elasticity adds a further decrease in wave amplitude due to anelastic
attenuation.

Loss of energy in the Earth due to internal friction is responsible for the attenuation of
seismic waves with distance and time. Concrete mechanisms of internal friction are
complex and depend on the atomic and molecular structures of crystals in minerals,
the presence of small cracks and fractures, and the inclusion of liquids in rocks. Since
these mechanisms depend on the nature of the materials through which waves propa-
gate, their effect is called intrinsic attenuation. From the very first studies (Jeffreys,
1957; Lomnitz, 1957) anelastic attenuation of seismic waves in the Earth has been an
important subject of seismology (Jackson and Anderson, 1970; Minster, 1980).

14.1.1 Anelasticity

According to Hooke’s law, the deformation (strain) of a perfectly elastic body is
proportional to the applied stress (2.14). Once stresses are removed, the body instanta-
neously recovers its initial form. In one dimension, an elastic body may be represented
by a spring and the strain—stress relation is given by (Fig. 14.1(a))

o= pe (14.1)

where o represents the stress, ¢ is the elongation or strain, and p is the coefficient of
elasticity of the spring.

A different type of mechanical behavior corresponds to a viscous body for which,
according to Stokes’ law, the applied stress is proportional to the time derivative of
the strain. In one dimension, a viscous body can be represented by a dashpot with
viscosity coefficient 7, and the relation between the stress and the strain (Fig. 14.1(b)) is

de .
0’:775177@ (14.2)

253
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@ (b

Fig. 14.1. Mechanical models of elastic and viscous bodies: (a) elastic (a spring) and (b) viscous
(a dashpot).
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Fig. 14.2. A combination of a spring and dashpots to represent viscoelastic bodies (a) in series —
a Maxwell body; and (b) in parallel — a Kelvin—Voigt body.

Imperfectly elastic bodies can be considered as having properties intermediate
between those of elastic and viscous bodies, and are called viscoelastic bodies. Their
behavior can be understood in terms of one-dimensional mechanical models consisting
in combinations of springs and dashpots. A Maxwellian body consists in an elastic
(spring) and a viscous (dashpot) element in series (Fig. 14.2(a)). If a stress o acts on
both elements, the deformations in each of them are different and given by

o = e (14
o =1, (14.4)
The total deformation of the system is e = ¢; + ¢,, and its rate is given by
e=247 (14.5)
won

A Kelvin—Voigt body is represented by an elastic (spring) and a viscous (dashpot)
element in parallel (Fig. 14.2(b)). The deformation in the spring and dashpot is the
same e, but the stresses acting on each element are different. The total stress is the
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sum ¢ = 0y + 0,, namely

In both models, when a stress is applied, the spring is deformed immediately but the
dashpot takes some time to respond. From their combined action it results that the
system presents a time delay of the elastic deformation with respect to the applied
stress, an inelastic deformation, and a relaxation time for the system to recover its initial
state when the stress is removed. The anelastic behavior of the Earth’s materials does not
agree with either of the two simple models and more complex systems with more than
two elements have been proposed. One of them is the standard linear solid consisting
in a combination of three elements, two springs and a dashpot.

14.1.2 Harmonic excitation of a Maxwellian body

Certain properties of the response of imperfect elastic bodies may be understood
by studying the excitation of a Maxwellian body by a harmonic stress:

o = o sin(wr) (14.7)

On substituting into equation (14.5) and integrating, we obtain for the deformation at a
time 7 (0 < ¢ < 7/w)

t t
e(t) = @J cos(wr) dr + @J sin(wr) dr (14.8)
HoJo n Jo
Solving the integrals gives
2912
e(t) = "0{ [1 + (“) ] sin(w? + ¢) +“} (14.9)
I nw nw

where ¢ = tan™'[;1/ (nw)]. A perfect elastic response (for one spring only) is
e(t) = 20 sin(wr) (14.10)
u

On comparing (14.9) and (14.10) we see the difference between the responses of

Maxwellian and pure elastic bodies. This difference can be expressed by a parameter
Q defined as

1 p
0 (14.11)
Equation (14.9) becomes
oo 1\'% . 1
e(t) :u[<1+Q2> sm(wt+¢>)+é (14.12)

where ¢ = tanfl(l /Q). The factor 1/Q represents how much the response of a
Maxwellian body differs from that of a perfectly elastic one. If it is zero (Q is infinite),
the problem reduces to one of perfect elasticity. The presence of the element of viscosity
modifies the amplitude of the deformation and introduces a phase shift between the
stress and the strain (Fig. 14.3).
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e®

Fig. 14.3. The response of a Maxwell body to a harmonic excitation of frequency wy. The dashed line
is for an elastic body.
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Fig. 14.4. A mechanical model of a system with damped harmonic motion.

14.1.3 Damped harmonic motion. The Q coefficient

The effect of anelastic deformation on wave propagation can be understood by
considering damped harmonic motion. Let us consider a mass m, suspended by a spring
of elasticity coefficient u, and a dashpot of viscosity 7 mounted in parallel, in a config-
uration similar to that of a Kelvin—Voigt body (Fig. 14.4). The equation of motion of the
mass is given by

i+lerLly=o (14.13)
m m
In a system without damping (one with no dashpot), the motion is harmonic with a
frequency wy = (u/m)l/ 2. The damping effect of the dashpot can be represented by
the coefficient Q, which now is defined by

I 7

o 14.14

0 mun (14.14)
On replacing the values of wy and Q, we rewrite equation (14.13) as

jé+%)'c+w%x=0 (14.15)
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x(t) ~. e

x(1)

Fig. 14.6. The decrease of amplitude during one period in damped harmonic motion.

The solution of this equation is

x(t) = Aexp < - ;gz) sin(wt + ¢) (14.16)

1 12
= (1‘4@2) “u

Equation (14.16) represents damped harmonic motion of frequency w that has been
modified with respect to wy, the frequency of the undamped system (Fig. 14.5). For
0= %, the motion is exponentially decreasing with no harmonic component and the
system is said to have critical damping. For larger values (Q > %) the motion is a
damped harmonic motion. For smaller values (Q < %) w is imaginary and the motion
is exponentially decreasing.

In damped harmonic motion, amplitudes decrease exponentially with time. For two
times separated by a period T = 27/w, the ratio of amplitudes according to (14.16)
(Fig. 14.6) is given by

™

MO Q<11>1/2 (14.17)
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The logarithm of this quotient is called §, the logarithmic decrement,

™

w o
N
Q(1_4Q2)

If we consider the decrease in amplitude during one period,

5= 0>1 (14.18)

AAd=x(t) —x(t+T)=A(1 —e™®) (14.19)

then, for large values of Q, according to (14.18), on taking a series expansion of the
exponential function, we obtain

1 A4 1

s A0 (14.20)
This expression defines the coefficient Q from the point of view of damped harmonic
motion. The factor 1/Q represents the ratio of the decrease in amplitude during one
period and the initial amplitude. This definition is valid for values of Q that are
sufficiently large with respect to unity (the approximation of (14.18)).

In conclusion, we have seen that the inelastic behavior of a material may be
represented by the coefficient Q, which is called the quality factor and can be defined
in various ways. For damped harmonic oscillations, 1/Q represents the ratio of the
decrease in amplitude during one cycle and its initial value. This definition of Q can
be used to characterize any type of process in media in which the amplitude of
motion decreases due to there being a lack of perfect elasticity.

14.2  Wave attenuation. The quality factor Q

Wave propagation, as we saw in Chapter 3, implies a variation of motion in
space and time. Thus, attenuation of wave motion can be considered in time or in
space. For a given location wave motion is attenuated with time and, for a given time,
it is attenuated with distance. For wave motion, similarly to equation (14.20), we can
define the quality factor Q(w) as a function of frequency in the form

b = 1 AE (14.21)

Olw) 27 E
In this definition, 1/Q represents the ratio of the elastic energy AFE dissipated during one
cycle of harmonic motion of frequency w and the maximum or the mean energy F
accumulated during the same cycle.

If we consider a harmonic wave of amplitude A that is attenuated so that, after one
period or one wave length, its amplitude is A exp(—n/Q), then, since the energy is
proportional to the square of the amplitude (section 3.4), the energy dissipated in one
cycle is

AE = A* {l—exp<—2Qﬂ->} (14.22)
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On taking the ratio AE/E, we obtain equation (14.21) in the same way as we derived
equation (14.20). On taking the amplitude ratio A4/A, we obtain equation (14.20)
and define for wave propagation
1 1AA4
0 x4 (14.23)
Since wave phenomena can be considered as variations in time or in space, the energy
dissipated during one cycle can be considered as the dissipation during one period or in
one wave length. In this form we define temporal (Q;) and spatial (Q,) quality factors.
According to (14.21) and (14.23), Q, represents the wave attenuation with time during
one period for a fixed point of space and Q, represents the attenuation at a given time
along a wave-length distance.
Wave attenuation can also be considered by assigning complex values to the frequency
and wave number. For a harmonic elastic wave,

u(x,t) = Aexpli(k'x — o't)] (14.24)
where the wave number and frequency are now complex quantities:

K =k +ik* (14.25)

W =w—iw' (14.26)

Equation (14.24) becomes
u(x,t) = Aexplilkx — wt) — (k*x + w'1)] (14.27)

At a fixed time, amplitudes attenuate with distance; and, at a given distance, amplitudes
attenuate with time:

u(x) = Ae ¥ cos(kx — wi) (14.28)
u(t) = Ae " cos(kx — wr) (14.29)
According to definitions of Q; and Q. we can easily deduce that
1 2w
= 14.30
0. (14.30)
1 2k
— == 14.31
0. & (14.31)

Since the phase velocity is ¢ = «'/k’, it has also a complex value ¢’ = ¢ +ic". If v* < w
and k* < k, the imaginary part of the phase velocity is

c*:c(w+l;€) (14.32)

w

In conclusion, Q, is related to the imaginary part of the frequency and Q. is related to
that of the wave number. A monochromatic wave of frequency w and phase velocity ¢
travels a distance x in time 7 and k"x = w"t. Since ¢ = x/t, by using (14.30) and
(14.31) we obtain that Q; = Q.. For nondispersed waves the spatial and temporal
attenuations are equal.
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14.3  The attenuation of body and surface waves

14.3.1 Body waves

The attenuation of body waves can be expressed by taking complex values for
the velocities of P and S waves, namely o' = a4 ia” and 8/ = 3 4 i3". Since the attenua-
tion of body waves is measured from amplitudes at various distances, the imaginary
parts of velocities are related to the spatial quality factor Q.. For P and S waves we
can define quality factors in a similar way to (14.31):

i 2 (14.33)
Ql[j = 22* (14.34)
The complex velocities can now be expressed in terms of the corresponding Q factors:
o = a<l + 250) (14.35)
ﬂ’:ﬂ(l +2éﬁ) (14.36)

We can also consider complex values for the elasticity coefficients p and K (the rigidity
and bulk modulus), 1/ = p+ip" and K' = K 4 iK*, and define the quality factors Q,

and Qg:
w0\ 1/2
Ql :2(’;) (14.37)
o
*\ 1/2
Q11<:2<11<<> (14.38)

According to (2.64) and (2.65), the relations between Q,, and Qg and Q, and Q4 (for
values of Q, and Qg larger than unity) are

1 1

- 4.39
0,” 0, (14.39)
1 4/p\ 1 45\ 1

Qa_3<a) o." [“s@) h (14.40)

In most seismologic problems, it is assumed that there is no dissipation of energy in
purely compressive or dilational processes and therefore Qg = co. Under this hypo-
thesis, from (14.39) and (14.40), we obtain

1 4 5)2 1
(2} = 14.41
O, 3 (a o ( )
If ¢ = 0.25, « = v/33 and the relation gives 0, = 50;.

In the ray theory approximation for body-wave propagation (Chapters 6—8), we are
interested in the attenuation along a ray from the focus to the observation point. The



14.3 Attenuation of waves 261

Fig. 14.7. The trajectory of P or S waves inside the Earth with the radial dependences of the velocity
v(r) and attenuation Q(r).

attenuation of the amplitude of a monochromatic P wave in the Earth’s interior, accord-
ing to (14.28) and (14.31), is given by

A= Agexp (- 2;2“) — Age " (14.42)
where 4 and A4, are the amplitudes at the observation point and the focus, and s is the
distance traveled along the ray. For a homogeneous medium ¢* = ¢/(2Q,), where
t = s/« is the traveling time of P waves. A similar relation can be written for S waves
using # and Q. For a spherical Earth of radial symmetry, v(r) (n(r) = r/v(r)), the
quality factor Q(r) depends also on the radius. Using (8.20) for a ray with a surface
focus and a ray parameter p, we obtain (Fig. 14.7)

S Gr
t J O I (r) — 7

If Q is the mean value of Q(r) along the ray and ¢ is the traveling time, then an approxi-
mation of (14.43) is #* = ¢/(2Q). For the Earth, for surface foci and epicentral distances
between 30 and 90 degrees, * is practically constant with values of 1s for P wavesand 5s
for S waves. This means that S waves attenuate faster than do P waves.

Since we do not know the amplitude at the focus, the attenuation is usually determined
from amplitude ratios of waves observed at different distances. For body waves, we need
observations along similar ray paths, so that the attenuation of the amplitude is referred
to a certain distance As along the ray inside the Earth. In an approximate form, the
attenuation with epicentral distance between two stations may be found from

(14.43)

A (w)
In (Al(w)> =InC —~(w)Ax (14.44)
where v(w) is the overall attenuation of amplitude with horizontal distance and C
depends on the geometric spreading. According to (14.42), v = wAx/(2aQ), and &
and Q are average values corresponding to the increment in epicentral distance.
Equation (14.44) illustrates the difference between the influences of geometric spreading
and anelastic attenuation on the decrease in amplitude with distance.
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14.3.2  Surface waves

The anelastic attenuation of surface waves with distance and time can be
expressed by using the coefficients -, and ~;:

u(x) ~ Aexp [%x + w(“z - z)] (14.45)

u(t) ~ Aexp [%zﬂw(’;— z)] (14.46)

According to equations (14.28)—(14.31), the attenuation coefficients for each frequency,
in terms of the quality factors, are given by

w

- 14.47

" = %0, ( )
w

" =20 (14.48)

For a dispersed wave, energy propagates with the group velocity U. For amplitudes
corresponding to instantancous frequencies, the phase velocity must be replaced by
the group velocity (section 12.1). If wy is the instantaneous frequency, then, for given
values of x and ¢, the time that the corresponding wave takes to travel through the
medium is z = x/U. Then its attenuation in time and space is given by

A exp <—;}g) = Aexp (— 2“3; ) (14.49)
t t

Since, for a distance x, the amplitude is attenuated by ~.x, by substitution of (14.47) into
(14.49) we deduce for dispersed waves the relation
1 U1
[N
For dispersed waves, the temporal and spatial quality factors are different. In a homo-

geneous half-space Rayleigh waves are not dispersed and we can define for them a
quality factor Qg that is related to those of P and S waves:

(14.50)

1 1 1
g:m@+(l—m)Q—ﬁ (14.51)
m= 2=5)1—b) (14.52)

2 —b)(1—b) — b/la(l —a)(2 — 3b)]
a=(c/a),  b=(c/B)

where c¢ is the velocity of Rayleigh waves. In a layered medium or one with a depth-
dependent velocity distribution, Q values for Rayleigh and Love waves depend on the
distributions of Q,(r), Qs(r), a(r), and [(r). Because the depth to which surface
waves penetrate depends on their wave length, their Q values are also functions of the
frequency, Qg (w) and Qy (w).

The attenuation of surface waves can be determined from spectral amplitude ratios of
waves of the same frequency at two stations at different distances along the same great
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circle path relative to the epicenter. For a spherical Earth, according to (10.107),

In (j?éii) - %m (:2 2?) —~(w) Ax (14.53)

where the A are angular distances from the epicenter to the stations and Ax is the
distance between the stations. The coefficient v(w) represents the anelastic attenuation
of surface waves along the distance between the two stations for each frequency.
From ~(w) we can find values of Q by using (14.47).

14.4  The attenuation of free oscillations

In Chapter 13, we discussed free oscillations of the Earth considered as a
perfectly elastic sphere. If the elasticity is not perfect, the amplitude of each mode of
the free oscillations decreases with time due to anelastic attenuation. According to
(14.29) and (14.30), the attenuation with time depends on the quality factor Q,. For a
homogeneous Earth, the attenuation of toroidal modes depends on Q4 and that for
spheroidal modes depends on a combination of Q3 and Q,,. For an Earth with radial
symmetry, Q, and Qg are functions of the radius and Q corresponding to free oscilla-
tions varies according to the eigenfrequencies corresponding to each mode Q(,wi).
The maximum amplitude for each mode corresponds to a certain depth and thus it is
influenced by the Q value corresponding to that depth.

We have seen that free oscillations are detected in peaks of the power spectrum
corresponding to the frequencies of each mode. In a perfectly elastic medium, the
displacements of each mode are harmonic functions of time and their power spectra
are delta functions of eigenfrequencies §(w — w,) (Fig. 14.8(a)). In the presence of
anelasticity, the displacements of each mode are represented by damped harmonic
motion:

Uy (1) = A, e W Fint (14.54)
According to (14.30), 7, = w,/(2Q). The power spectrum of (14.54) is
42
U(w) = . (14.55)

(@

On

Fig. 14.8. The broadening of the spectral peak of a mode of oscillation due to attenuation.
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The spectrum now has a maximum amplitude 4, /7, centered at a frequency w, and a
certain width Aw (Fig. 14.8(b)). If Aw is the width of the spectrum when its amplitude
is half its maximum value, we can obtain from (14.55) that

1 Aw

Qt Wn
Hence Q, can be found from the width of the spectrum. Since the attenuation increases
with 1/0Q, the larger the attenuation the wider the peaks of the spectrum. Broadening of
spectral peaks is the main effect of anelasticity on free oscillations. This is a very general
effect that applies also to observations in the time domain of propagating pulses in an
imperfectly elastic medium. In all cases, the larger the attenuation the wider the pulses
become.

(14.56)

14.5 The attenuation of coda waves

Waves observed in the last part of a seismogram are called coda waves. This
name seems to have been given by Jeffreys in 1929 to waves arriving after surface
waves. Today this name is applied to waves of near earthquakes that arrive after Lg
waves with amplitudes decreasing exponentially with time (Aki, 1969) (Fig. 14.9). The
attenuation of coda waves has become an important area of research in seismology
(Aki and Chouet, 1975; Herraiz and Espinosa, 1987). The attenuation of coda waves
is caused by two different effects, anelasticity and scattering of waves due to their inter-
action with obstacles or heterogeneities in the medium. In the first case, as we have seen,
energy is lost by conversion into heat through internal friction (intrinsic attenuation). In
the second, energy is distributed through space so that part of it does not arrive at the
observation point. Both factors contribute to the attenuation of amplitudes observed
at a given distance relatively near to the focus. For such short distances, waves propagate
mainly through the crust and are affected by its anelasticity and heterogeneity. The total
attenuation is given by the coda Q factor, Q., which includes both effects:

11 n 1
Qc Qi Qs
Q; represents the intrinsic attenuation and is approximately equal to Q, indicating that

coda waves are principally transverse waves, and Q, accounts for the attenuation due to
scattering phenomena. A formula proposed by Dainty (1981) for Q; is

(14.57)

1 gv

0. (14.58)
where v and w are the velocity and frequency, and g = AI/(IL) is the dispersion coeffi-
cient given by the wave’s energy I and the fraction of it A7 that is lost when it crosses a
layer of thickness L where heterogeneities are present. Many other models are used to
explain coda waves’ attenuation. They range from pure diffusion, for which Q. = Q;,
to simple and multiple scattering with complex interaction of waves with obstacles
and heterogeneities. In principle, the attenuation of coda waves allows the determination
both of the anelasticity (Q;) and of the heterogeneity (Q;) of crustal material. However,
it is not easy to separate the two effects that contribute to Q.. The amplitudes of coda
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Fig. 14.9. A seismogram of a near earthquake, for which coda waves are shown (the SFUC BB station, for the earthquake of 21 May 1997, A = 324 km).
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waves attenuate with time in the form

wt
A =4 - 14.59
(@) = oexp (-5 ) (1459
Experimentally it has been found that Q. varies with frequency in the form
n

w
0.() =00 2 ) (1460

“o

where Q) is the value corresponding to the reference frequency w,. The exponent n varies
in the range 0.2—0.4 for high values of Q, and is close to unity for low values.

14.6  Attenuation in the Earth

Studies of seismic waves’ attenuation lead to the determination of the Q
distribution in the interior of the Earth. In the first models with radial symmetry,
O(r), the velocity distribution was kept constant and independent from the attenuation.
In the formulation of complex velocities, (14.35) and (14.36), this implies that the real
and imaginary parts are considered independently. More recent determinations use
simultaneous inversion of attenuation and velocities (Anderson and Archambeau,
1964; Lee and Solomon, 1978). The observations used for determination of the attenua-
tion inside the Earth are those of the amplitudes of body, P, S, PcP, ScS, surface,
Rayleigh, and Love waves, and free oscillations.

A widely used model of the distribution of Q inside the Earth is that known as SL8
(Anderson and Hart, 1978) (Fig. 14.10). Its most important features are a lithosphere
(0-80 km) with moderate to high values of Q4 in the range 200500, an upper mantle
(80—500 km) with low values of about 110, and a lower mantle (500—2880 km) with a
gradual increase from 150 to 500 of Q4 with depth. Qg is null in the outer core and
varies in the range 400—800 in the inner core. Qg is infinite in the mantle and equal to
0, in the inner core. This model is consistent with observations of practically constant
values of ¢* for distances between 30 and 90 degrees of 1 s for P waves and 5s for S waves.
The attenuation in the Earth’s interior is principally due to dissipation of energy in shear
motion. The absence of energy loss in compressive processes leads to an infinite value
of Qk in the mantle. However, the attenuation of radial modes of free oscillations
seems to indicate that it has a large but finite value. Most seismic data can be explained
by invoking relatively simple models of the Q distribution with radial symmetry and
independence from frequency. For high frequencies, however, there seems to be such
a dependence.

For the lithosphere and upper mantle (0—300 km) there are more detailed models of
the distribution of Q with depth. In the crust, values are relatively low; Q ~ 160.
Under the crust (50—100 km) values are higher; Q ~ 500. In the astenosphere or low-
velocity layer (100—200 km), values are low; Q ~ 125. The values of Q. are related to
the conditions in the upper crust. In the shallowest layers, there are strong variations
in Q. for different regions with values in the range 120—600. Since Q. depends on the
presence of heterogeneities, low values indicate that the crust is very heterogeneous,
which can be associated with seismically active zones, whereas high values can be
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Fig. 14.10. The distribution of Q in the Earth’s interior according to model SL8 (Anderson and Hart,
1978) (with permission from the American Geophysical Union).

ascribed to the more homogeneous crust of stable regions. Thus values of Q. can be
correlated to seismicity.

14.7  Anisotropy

In previous chapters we have always assumed isotropy for the material of the
Earth. We have seen that this material is not perfectly elastic; we will see now that it
is not perfectly isotropic. Consideration of the lack of isotropy or anisotropy in the
Earth is becoming an important subject in seismology and it is related to geodynamic
processes. Although deviations from the conditions of isotropy are small, their effect
on the propagation of seismic waves can be observed and provides important informa-
tion (Crampin, 1977; Babuska and Cara, 1991). Only the most fundamental ideas about
wave propagation in anisotropic media are presented.
For an elastic body the relation between stress and strain is given by Hooke’s law
(2.14):

7 = Cijriern (14.61)

As we saw in section 2.2, Cyy, the tensor of elasticity coefficients, has 21 independent
components. For an isotropic body, these are reduced to two (the Lamé coefficients A
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Fig. 14.11. The system of axes in a medium with hexagonal symmetry and the principal axis in the x3
direction.

and p) and the tensor is given by (2.16)

Cijr = Nojgors + 1186y + 61051.) (14.62)
Thus, it has the following values:

Ciin=Con=Cs3=A+2p

Cin =Czs =Cozz = A

Con=Ciai=Cup=p

Apart from these components and those related to them by symmetry, the components
are zero. According to (2.41), the strain energy is given by

W =1Mei +exn+ e)’ + pejie;; (14.63)

For complete anisotropy without any kind of symmetry, the elastic tensor has 21
independent components. If there is some kind of symmetry this number is reduced.
For example, there are nine for orthorhombic symmetry, five for hexagonal symmetry,
and three for cubic symmetry.

Hexagonal or cylindrical symmetry is often assumed in seismologic problems. This
symmetry has a principal axis and is called transverse symmetry since any direction
normal to this axis has the same properties (Fig. 14.11). According to Love (1945),
the five independent elastic coefficients for a medium with hexagonal symmetry and
its principal axis in the x3 direction are

Cim=Con=4
Ciz=C
Cinn=Cpnp=F
Crup=Cpi=L
Con=N
Ciip=Cpiy=4-2N
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The strain energy is given by
W= %A(e%l +5) +%C€§3 + F(ey) +exn)ess + (4 —2N)eyjen
+1L(els + ¢31) + Nety (14.64)

On comparing (14.64) with (14.63) we can see that, even for this relatively simple case of
anisotropy, the expression becomes more complicated. With the Earth, there are several
situations that may be treated using this type of anisotropy. For example, in finely
stratified media with elastic properties alternating from layer to layer, the material
behaves as a whole like an anisotropic medium with hexagonal symmetry with its
principal axis normal to the layers. Since the properties of the medium normal to that
axis are the same, this is also called a transverse isotropic medium. Another case with
the same characteristics is that of a material with cracks aligned in a particular direction
that constitutes the principal axis of symmetry.

14.8  Wave propagation in anisotropic media

14.8.1 Body waves

Some properties of wave propagation in anisotropic media can be understood
by studying hexagonal symmetry or transverse isotropy. Let us consider the case of
the principal axis being in the direction of x3. Monochromatic plane waves propagating
in the x; and x; directions are given by

u; = A;sin |w 2 — 14.65
= sl 1469
u; = B;sin {w(xcl— z)] (14.66)

Using the same procedure as that used in section 3.6 for an isotropic medium, for
propagation in the x; direction, we substitute (14.65) into the homogeneous equation
of motion (equation (2.59) with F = 0) and obtain

1
(c,%3 - c26ik>A,» =0 (14.67)
p
For hexagonal symmetry, on substituting for the components of the elastic tensor in

terms of the five independent coefficients 4, C, F, L, and N, equation (14.67) is given
in matrix form by

L/p—¢c 0 0 A
0 L/p—¢c 0 A, | =0 (14.68)
0 0 Clp—c] | 45

Then, there are two velocities, given by (C/p)"/* and (L/p)'/. The first corresponds to
waves with only the A; component, and, since this is the direction in which waves
propagate, it corresponds to P waves with the velocity o = (C/p)l/ 2. The second
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corresponds to waves with components A; and A,, that is, S waves, and their velocity is
B = (L/p)"?. The displacements are given by

W = (0,0, 43) sin [w()s - z)}; a=(C/p)' (14.69)

ud = (4;, 45,0) sin [u}(’;;)} B=(L/p)"> (14.70)

Wave propagation in this case is similar to that of an isotropic medium.
For propagation in the x; direction, on substituting (14.66) into the equation of
motion, just like in the previous case, we obtain

1
(pC,m - czé,-k> B;=0 (14.71)
Proceeding as before, we have
Alp—c* 0 0 B,
0 N/p—¢ 0 B,| =0 (14.72)
0 0 L/p—¢ | | Bs

In this case, however, we have three velocities and therefore three different waves. Since
waves propagate in the x; direction, B; corresponds to P waves and their velocity is
a=(4/ p)l/ 2. The displacements with amplitudes B, and B, are perpendicular to the
direction of propagation and correspond to S waves. There are now two different S
waves with different velocities, one with a displacement in the x, direction and the
velocity 8, = (N/ p)l/ 2 and another with a displacement in the x; direction and the
velocity 3, = (L/p)"/%. The displacements of the three waves are

W = (B,,0,0)sin [w();l— z)}; a=(4/p)/? (14.73)
' = (0, B,, 0) sin [w(g— z)} B = (N/p)'? (14.74)
u$2 = (0,0, By) sin [w(;;— r)} By = (L/p)"/> (14.75)

By comparison of equations (14.69) and (14.70) with (14.73)—(14.75) we can draw the
following conclusions. In an anisotropic medium with hexagonal symmetry, P waves
propagate with different velocities along the principal axis of symmetry (x3) and along
a direction normal to it (x;). In the first case there is only one type of S wave and in
the second there are two. If x5 is the vertical direction, then, for waves traveling in the
x; direction, S1 corresponds to SH and S2 to SV. In this way, SH and SV components
propagate with different velocities and are two different waves. This phenomenon is
known as S wave splitting, since the SV and SH components arrive with a time delay
between them (Fig. 14.12). Owing to the type of symmetry, this phenomenon takes
place for any orientation of propagation in the plane normal to the principal axis.
Thus, for example, in the Earth S wave splitting occurs during horizontal propagation
in media with fine layering of layers with alternating high and low rigidities. In the
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Fig. 14.12. The propagation of P () and S () waves in a medium with hexagonal symmetry and the
principal axis in the x; direction: (a) waves in the x; direction; and (b) waves in the x; direction, SH
waves have velocity 3; and SV waves have velocity (3,.

same medium, P waves propagate with different velocities in the vertical and horizontal
directions.

In general, for any type of anisotropy, there are always three types of waves propagat-
ing with three different velocities. Choosing the three components of displacement
adequately, they are called quasi-P, quasi-SH, and quasi-SV waves. The velocities for
these three types of waves change according to the type of symmetry present in the
medium. Because of these properties, anisotropy is detected by observations of changes
in P wave velocity along two perpendicular directions and by observations of S wave
splitting. For both effects it is not necessary that the whole medium be anisotropic;
only a certain part of it need be. The time delay between SH and SV components
produced in the anisotropic part is preserved while waves travel along the isotropic part.

14.8.2  Surface waves

The main effect of anisotropy on surface waves is that they can not always be
separated into Rayleigh and Love waves, unlike in isotropic media. The radial and trans-
verse components are coupled, forming generalized dispersed surface waves that are a
combination of Rayleigh and Love waves. To summarize, we can distinguish three
effects of anisotropy on the propagation of surface waves. First, there is a discrepancy
in the relation between the phase velocities of Rayleigh and Love waves with respect
to that of isotropic media. This effect is the reason behind the difficulty in finding a
unique model of layered isotropic media that agrees with observations of both types
of data. Second, there are discrepancies in phase velocities found for trajectories along
different azimuths in the same region. Third, there is a departure of the plane of polar-
ization of Rayleigh waves from vertical orientation.

Because of the relatively long wave lengths of surface waves, the type of anisotropy
that affects them is produced by oriented heterogeneities in some preferential directions.
If heterogeneities are randomly distributed, the medium as a whole behaves isotropi-
cally, whereas if they are consistently oriented, they produce an effect of anisotropy.
The distinction between heterogeneity and anisotropy is not always an easy one to
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make and depends on the relation between the dimensions of heterogeneities and the
wave lengths. For anisotropy produced by heterogeneities with some preferential
orientation, if the resulting symmetry axis is in a particular horizontal direction, then,
along that direction, Rayleigh waves propagate with higher velocities and Love waves
with lower ones than in the isotropic case. For a perpendicular trajectory, the effect is
opposite, with lower velocities for Rayleigh waves and higher ones for Love waves.

14.9  Anisotropy in the Earth

Observations of the propagation of seismic waves have revealed anisotropy in
the material of the Earth’s interior. Essentially two types of anisotropy have been
observed. The first type has a symmetry with the principal axis in the vertical direction
(transverse isotropy) and is due principally to stratifications or horizontal alignments of
structural or mineralogic nature. This results in splitting of S waves with delays in
traveling times of SV and SH components and different phase velocities for Rayleigh
and Love waves depending on their trajectories. The second type is due to preferential
alignments of crystals, cracks, or heterogeneities along a particular azimuth (azimuthal
anisotropy). This produces effects on the velocities of propagation of waves along
trajectories in a particular azimuth in comparison with those perpendicular to them.
Some authors distinguish between anisotropy due to stratification and that due to
fractures and cracks.

In the shallow part of the crust, anisotropy due to sediment stratification has been
observed. A similar effect has also been observed in the lower crust, which has a laminated
structure. Another type of anisotropy observed in the crust is due to the presence of
cracks. For a determined stress regime, cracks are oriented in the direction of compres-
sion and normal to tensional stresses. Since the crust is subject to tectonic stresses, this
may be a very general situation (Crampin, 1978). In subcortical oceanic lithosphere,
sea floor spreading may also be responsible for anisotropy. The flow of material from
oceanic ridges produces a preferential orientation of olivine crystals along flow lines
that is preserved through the aging process, resulting in azimuthal anisotropy.

In the upper mantle, the astenosphere under the lithosphere is a region of strong
anisotropy related to plastic flow of material that follows the motion of lithospheric
plates. Two symmetries may be present, one with a vertical principal axis produced by
horizontal flow that results in higher SH than SV velocities and another with azimuthal
anisotropy along flow lines with higher seismic velocities. For regions with predomi-
nantly vertical flow, the opposite effect is observed, with SV velocities higher than SH
velocities. These two effects have been observed in surface wave propagation along
different trajectories in the Pacific Ocean. Rayleigh waves propagating along trajectories
that coincide with plate-motion directions have higher velocities than do those with
perpendicular trajectories. This anisotropy may extend down to 300 km depth and is
associated with the orientation of olivine crystals along flow lines. Variations in
velocities for different trajectories may be of magnitude 3—10% (Leveque and Cara,
1985; Nishimura and Forsyth, 1989).

For depths below 400 km, observations reveal no appreciable anisotropy and the
lower mantle can be considered isotropic. The region of transition between the mantle
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and the core (the CMB) is considered anisotropic by some authors, but data are not yet
sufficient for a definitive conclusion to be drawn. The solid material of the inner core,
according to increasing evidence from observations of PKIKP waves and free
oscillation modes of low order, is thought to be strongly anisotropic with hexagonal
symmetry and a principal axis of symmetry in the direction of the axis of the Earth’s
rotation (Shearer et al., 1988). The origin of this anisotropy is assigned to the preferential
alignment of iron crystals parallel to the axis of rotation.



15 FOCAL PARAMETERS OF
EFEARTHQUAKES

15.1 Earthquakes and faults

The causes of earthquakes have interested man since antiquity. As was
mentioned in section 1.1, various ideas have been proposed from the time of the ancient
Greek natural philosophers to our days. During the 19th century systematic field studies
after earthquakes were started and the first attempts to relate them to tectonic processes
were made by Mallet (Naples, Italy, 1857), Koto (Neo, Japan, 1891), and Oldham
(Assan, India, 1897) among others. With the increase in number of field observations
and in precision of localization of epicenters, the correlation between earthquakes and
faults became clearer. Authors such as Suess, Koto, Montessus de Ballore, and Sieberg
assigned the cause of earthquakes to stresses accumulated in the Earth’s crust by tectonic
processes and their release by its fracture. The first mechanical model was presented by
Reid (1911) in order to explain the origin of the San Francisco earthquake of 1906. His
theory, known as elastic rebound, proposes that earthquakes take place by fracturing of
the Earth’s crust with the total or partial release of the elastic strain accumulated in a
region owing to tectonic stress. According to plate tectonics, which was developed in
1960, tectonic stresses are ultimately related to the relative motion of lithospheric plates.

An earthquake can be considered to be produced by rupturing of part of the Earth’s
crust with a relative displacement of its two sides and the release of the accumulated
elastic strain that had been produced by tectonic processes. The place where earthquakes
originate is called the focal region or focus. The parameters that define the focus are
those that describe the motion of a fracture or fault. These are the following
(Fig. 15.1): The azimuth, ¢, is the angle between the trace of the fault (the intersection
of the fault plane with the horizontal) and North (0° < ¢ < 360°); the angle is measured
so that the fault plane dips to the right-hand side. The dip, 6, is the angle between the
fault plane and the horizontal at a right angle to the trace (0° < 6 < 90°). The slip or
rake, )\, is the angle between the direction of relative displacement or slip and the
horizontal measured on the fault plane (—180° < A < 180°); X is negative for normal
faults and positive for reverse faults. According to the values of § and A\, we have
different types of faults, namely, for 6 = 90° and A = 0°, strike slip faults; for 6 = 90°
and A = 90°, vertical faults; for § > 0°, inclined faults for which, A = 0°, 180° or
—180°, the motion is horizontal, for A = 90° or —90°, the motion is vertical, and, for
other values of A, the motion has vertical and horizontal components, of reverse or
normal type according to its sign. The slip or displacement, Au, is the distance traveled
in the relative motion of a point on one side with respect to one on the other. If Au varies
along the fault plane, its mean value is A#. The area of the fault is S (for a rectangular
fault S = LD, where L is its length and D is its width; for a circular fault S = na®, where
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Fig. 15.1. Parameters of the motion on a fault.

aisits radius). Thus, the orientation of the motion of the fault is given by the three angles
¢, 6, and A, and its dimensions are given by its area S and mean displacement Au.

The location of the focus is given by its geographic coordinates, its depth, and the time
of occurrence or origin time. Owing to the fault’s dimensions, the focal coordinates refer
to a certain point, for example, where rupture starts, and the origin time refers to the
initiation of faulting. The reduction of the focus to a point is called the point-source
approximation. The definitions of the parameters of the focal location used this approx-
imation.

15.2  The location of an earthquake’s focus

The concept of an earthquake’s point focus from which waves propagate in all
directions was introduced by Mallet and is fundamental to the determination of its
location and time of origin. The focus at a certain depth is called the hypocenter and
its horizontal projection is called the epicenter. The hypocentral parameters are the
geographic latitude and longitude of the epicenter (¢ and )), the focal depth (4) and
the origin time (7y). The desirability of being able to represent of earthquakes’ foci on
maps and the difficulty, sometimes, of determining their depth justifies the use of the
concept of an epicenter. Since the process of rupturing in earthquakes has dimensions
and a duration, the point focus is a simplification. We will see that the point focus has
different meanings depending on how it is determined.

Lists and catalogs of earthquakes have been being published since the 17th century.
The first epicenter determinations were based on damage and were started in the
second half of the 19th century; today they are known as macroseismic determinations.
One of the first modern catalogs was published by Mallet in 1858. The first instrumental
determinations were started in 1904, when the Central Bureau of the International
Association of Seismology started their publication in Strasbourg. In 1911, the
Seismological Committee of the British Association for the Advancement of Science
started the publication of an earthquake catalog that in 1918 became the International
Seismological Summary (ISS). The catalogues of the International Seismological Center
(ISC) have been being published since 1963. Other agencies such as the United States
Coast and Geodetic Survey (USCGS), later the National Earthquake Information
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Center (NEIC) of the United States Geological Survey (USGS), started to publish
hypocenter determinations. In many countries there are institutions that perform
hypocenter determinations and publish catalogs of local earthquakes.

15.2.1 Macroseismic determination of epicenter locations

The first determinations of the locations of foci of earthquakes were based on
information regarding damage to buildings, fractures and cracks in the ground, and
other effects. Michell in 1760 proposed, for the first time, methods based on this type
of observation. However, the first to perform a true determination of an earthquake’s
focus was Mallet in 1862, for the Naples earthquake of 1857. By using the orientation
of the lines along which he thought waves had propagated, on the basis of the orienta-
tions of cracks and other evidence, he determined in his own words ‘the real position of
the place upon the earth’s surface vertically above that one beneath, whence the shock
emanated’ (Davison, 1927). This is, I think, the first clear reference to the concepts of
the epicenter and hypocenter. Early work in determination of foci was done by Milne,
Omori, and Mercalli, among many others.

Macroseismic epicenter determination is based on field observation of the effects of an
earthquake on the ground and on buildings and other structures. From these observa-
tions intensities are assigned to each location and an intensity or isoseismal map is
drawn, as we will see later (section 15.3). The macroseismic epicenter is located at the
central point of maximum intensity (Fig. 15.2). The depth of the focus can also be
determined from intensity maps, as we will see later, from the distribution of the
zones of various intensities. This method was used until the installation of seismographic
instruments at the beginning of this century. The method is still used today for

25 Dec. 1884
MSK-INTENSITY
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Fig. 15.2. An intensity map of the Andalucian earthquake of 25 December 1884 and the location of
the macroseismic epicenter (courtesy of D. Muiioz).
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determination of the epicenters of historical earthquakes, that is, those that occurred
before the instrumental period. The study of historical earthquakes is an important
part of the evaluation of the seismicity of a region. Large earthquakes may be separated
by long periods of time, so it is necessary to extend the study as far into the past as
possible. These studies require a search for historical documents and a careful evaluation
of the information about damage produced by earthquakes in order to draw reliable
intensity maps and estimate their locations and sizes.

The concept of the macroseismic epicenter is not equivalent to instrumental determin-
ation based on the times of arrival of seismic waves. An instrumentally determined
hypocenter corresponds to the point and time of initiation of the fracture process
whereas a macroseismic epicenter is situated at the central point of the zone of maximum
damage. This point may represent, in an approximate way, the projection onto the
surface of the central point on the fracture plane. In this sense, it may approximate
the horizontal projection of the centroid of the fault area. This concept was introduced
in some methods for the determination of the focal mechanism (section 19.4).

15.2.2  Graphical methods

Instrumental hypocenter determinations are based on the arrival times of
seismic waves, mainly P and S waves, recorded on seismograms at stations distributed
around the epicenter. The first methods were graphical ones using a map for short
distances and a globe for larger or teleseismic distances. Graphical methods determine
the location of the epicenter, its origination time, and an estimation of its focal depth.

For short distances (A < 1000 km), the problem is solved on a map on which we have
situated the positions of seismographic stations. The method consists in an iterative
graphical process of successive approximations. Let us consider N stations (N > 4)
where we have measured the arrival times of P and S waves of a local earthquake,
namely, lf and tl-s, i=1, ..., N. It is necessary to have travel times tables or curves
for these waves. We start by determining the time interval between arrivals of P and S
waves at one or several stations (87 = > —¥). From the travel times curve, this
interval (87) at one station gives us the distance A and traveling time of P waves (¢)
corresponding to that station (Fig. 15.3(a)). The origin time is determined by
subtracting the travel time from the arrival time, 7, = /* — /*. From this value of the
origin time, we obtain the travel times for all of the stations /¥ = 7% — 1, and, from
them, using travel times curves or tables, we determine the distances 4; for all of the
stations. Using these distances (4; ) as radii, we draw circles with their centers at the
positions of all of the stations. In the absence of errors, these circles will cross at a
point that corresponds to the epicenter whose coordinates (¢, and ), ) are found
from the map (Fig. 15.3(b)). If the circles do not cross at a point, the origin time ¢, is
changed a little and the process is repeated until all or most circles nearly cross at one
point.

Figure 15.3 shows an ideal example using five stations. In general, all the arcs of circles
can not be made to cross at a single point, but their intersection defines a small area that
reflects errors present in determinations of arrival times and travel times curves. The epi-
center is located at the center point of this area. If the focus is at a certain depth and we
have used travel times for a shallow focus, the circles will not cross at a point. In this
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Fig. 15.3. Graphical determination of the origin time and epicenter. (a) Determination of
epicentral distance from the S — P time interval (87 = 5 — ¢7) and of the distance A, from the P
wave travel time /7. (b) Location of the epicenter from the intersection of the epicentral distances
at five stations.

case, we have to repeat the process with travel times of different depths (e.g. 20, 40,
80 km, etc.) until a good fit is found. In this way, the depth of focus is also determined.
We need a minimum of three stations in order to determine the epicenter and four for
adjusting its depth. For large distances, the method is similar but a terrestrial globe is
used for the stations’ locations. In this case, the depth of the focus can be estimated
first using the time interval between the arrivals of the pP and P rays (section 9.5). Deter-
mination of focal depths by graphical methods are not very exact and, in many cases,
they indicate only whether the focus is shallow, intermediate, or deep. In general, if
the stations do not surround the epicenter, determinations are not very precise.

15.2.3 Numerical methods

The theoretical basis of numerical methods for hypocenter determination was
developed relatively early with the work of Geiger (1910) and Inglada (1928). Their
application, however, was not generalized until the development of digital computers
around 1960 made fast resolution of the problem for a large number of observations
possible. The basis of all methods consists in the linearization of equations representing
arrival times and their solution using least squares methods. Various methods have been
developed by many authors; we will present only the fundamental ideas common to
many of them. The first algorithms and computer programs for hypocenter determina-
tion were proposed around 1960 (Bolt, 1960). Among those developed for regional
distances, a widely used one is that known by the name of HYPO, of which there are
several updated versions (Lee and Lahr, 1971).

The arrival times of seismic waves ¢; (generally P and S waves, though other phases
may also be used) are recorded at N stations (N > 4) with geographic coordinates ¢;
and );. The arrival times can be considered as nonlinear functions of the coordinates
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of stations (¢; and J;), focal parameters (coordinates, depth, and origination time)
(¢o, Mo, 1, and 1), and the distribution of velocities of seismic waves in the Earth’s
interior. The problem can be linearized by using a Taylor expansion about a set of
approximate initial values of the focal parameters (¢, Ao, iy, and #5) thought to be
sufficiently near the real ones that we can write
ot; ot; )
i =1;+08+—— 8¢+ 8)\+ L 3, i=1,...,N (15.1)
0¢ oh

where 7; are the arrival times at each station calculated from the initial solutions
(60, Mo, ho, and #;) and partial derivatives are evaluated for that solution. We define
residuals as the differences between observed and calculated arrival times for each
station:

By substituting (15.2) into (15.1) and expressing the N equations in matrix form, we
obtain

V,:AUSXJ, l:17,N,]:1,,4

15.3
r=Adx ( )

The matrix A (4 x N) is formed by taking the partial derivatives of traveling times for
each station with respect to the coordinates of the epicenter, depth, and origin time,
which are calculated from travel times curves or tables. The four components of the
vector dx formed by the increments of the four focal parameters are the four unknowns
of the problem. The method is iterative. From the first initial values of focal parameters,
by solving equation (15.3), we obtain the first set of increments dx that we add to the
initial values to give us new values of the parameters. These new values are used again
as initial values and the process is achieved when the increments become small, that
is, of the order of errors in observations, or when the overall error has a minimum
value. Since the problem is overdetermined, the system (15.3) consists in NV equations
with four unknowns. For its solution we use a least squares method that minimizes
the sum of the squares of the residuals:

Zr
1—1

Several methods may be used for the solution of equation (15.3). Solutions give
minimum-error estimates of the parameters and of their standard deviations. A solution
can be obtained by multiplying (15.3) from the left-hand side by the transpose of A and
then finding the inverse of the (4 x 4) matrix ATA:

Sx = (ATA)'ATy (15.4)

Another solution can be found by using the generalized inverse matrix (Lanczos, 1957).
As we saw in section 11.3, the matrix A can be factored as

A =UAV' (15.5)
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where A is a diagonal matrix formed by the square roots of the eigenvalues of ATA, Vis a
matrix formed by the eigenvectors of ATA, and U is a matrix formed by the eigenvectors
of AAT. The generalized inverse of A is given by

Al=UA"Y (15.6)
Thus the solution of (15.3) is
dx=U"A""Vr (15.7)

From the matrices U and V, we can form the covariance matrix C = VA~2VT, whose
diagonal elements are the variances of the parameters, the resolution matrix
R = VVT, whose elements indicate the relative resolution of each parameter, and the
information density matrix D = UU", whose elements indicate which observations
contribute the most information to the problem.

If the matrix A is nearly singular, the problem becomes unstable. One way to avoid
this is to introduce an attenuation factor by replacing the matrix ATA in (15.4) by
ATA + kI, where k has a small value, before determining the inverse (Marquardt,
1963). In this form we eliminate the occurrence on the diagonal of elements with
values near to zero. In the case of the generalized inverse (15.7), the problem manifests
itself in the presence of very small or zero eigenvalues. The matrix A is replaced by
A + K1, so that eigenvalues near to zero become finite.

Several methods are also used in order to speed up the convergence, such as the intro-
duction of a weighting procedure for observations, use of a scaling factor, and centering.
A scaling factor is introduced so that the columns of the matrix A have norm unity.
Centering consists in replacing the origin time by the weighted mean of the other
terms, so that the matrix A satisfies the condition of being centered. These procedures
are commonly used in statistical regression problems.

15.2.4 Joint hypocenter determination

Often the problem of hypocenter determination is not well conditioned, even
though the number of equations is greater than the number of unknowns. Some of
the equations need not be really independent and in many cases the origin time and
depth of focus are coupled together. Also, travel times are deduced from average
tables or simplified models of the Earth’s velocity distribution and do not correspond
to real values. For regional distances, heterogeneities of the crust and upper mantle
may affect hypocenter determinations. One solution is to introduce station corrections
into the equations, but this is not easy insofar as they depend on ray paths and must
be known a priori.

A solution for this problem is given by the joint hypocenter determination (JHD), that
is, the determination of groups of hypocenters using the same group of stations. The
method, proposed by Douglas (1967) and developed by Dewey (1972), basically consists
in joint determination of hypocenters of M earthquakes using observations from the
same set of NV stations, introducing as new unknowns N station corrections, which are
the same for all events. For simplicity, let us consider that at each station we read
only the arrival times of P waves for all shocks. In this case we have NM equations
and 4M parameters of the M hypocenters. If we add N station corrections, the
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number of unknowns is 4M + N. The method uses one earthquake, usually the largest
and best-recorded one, as a calibration event for which the solution is supposed to be
known previously and the number of unknowns is 4(M — 1) + N. The linearized
equations (15.3) are

r/A:AJ](/6xsk+8g/7 j:17...,N, kzl,...7M, s:17...,4 (15.8)

where the subindex j refers to stations, k refers to events and s refers to hypocenter
parameters. The 6g; terms are station corrections or anomalies in traveling times for
each station. The unknowns are four increments dx,, of the parameters of each event
(a total of 4M) and N corrections dg; for each station. The method is used for earth-
quakes that are relatively near to each other, for example, aftershocks or swarms of
earthquakes, so that the same station corrections can be used for all shocks. Sometimes,
this condition may render the problem unstable, since time corrections and traveling
times may become linearly dependent. Since the number of equations is greater than
the number of unknowns, the problem is solved by a least squares method, just like
the normal hypocenter determination.

15.3  Seismic intensity

The first way to describe the size of an earthquake is in terms of its intensity on
the basis of observations on the Earth’s surface of damage to buildings and other
structures and ground effects such as fractures, cracks and landslides. Traditionally
intensity is represented by degrees given by Roman numbers, using scales on which
each degree is defined in a descriptive way. Although intensity applies directly to the
degree to which an earthquake is felt at a particular location, it can be used also to
designate the size of an earthquake. For this purpose the maximum intensity /,,, or
epicentral intensity I, is used. These two concepts are generally considered equivalent.
This need not always be correct. For offshore earthquakes the maximum damage is
on the coast, so I,,, does not correspond to /. Instrumental epicenters, in some
cases, do not correspond to the region of maximum damage or maximum felt intensity
and hence these two values are different.

The first attempt to classify the damage caused by an earthquake was that
by D. Pignataro in Italy in 1783. The first scales of intensity were developed by
de Rossi and Forel, in Italy and Switzerland, who together proposed in 1883 the
Rossi—Forel scale divided into ten degrees represented by the Roman numbers [-X.
A modification of this scale was proposed by Mercalli in 1902, first with ten degrees
and later, after a proposal of Cancani, with twelve (I-XII). This scale has served as
the basis for later scales. In North America, a scale named the Modified Mercalli
(MM) scale, was proposed by Wood and Newman in 1931 and revised by Richter
in 1956. In Europe, the most commonly used scale is the MSK scale published by
Medvedev, Sponheuer, and Karnik in 1967. The two last scales are practically equiva-
lent. The MSK scale has been updated to the European Macroseismic Scale 1992
(Griinthal, 1993) (Table 15.1).

The assignment of degrees of intensity from field observations after an earthquake is
not free from a certain amount of subjectivity. Although descriptions of degrees of
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Table 15.1. The European Macroseismic Scale 1992 (an updated version of the MSK scale)
(abridged from Griinthal (1993))

Type of structure: masonry (five classes from rubble stone to reinforced brick), reinforced
concrete (RC) (four classes from RC without antiseismic design (ASD) to RC with a high
level of ASD), and wood

Vulnerability (classes A—F): A, rubble stone, adobe; B, stone, unreinforced brick; C, brick with
RC floors, RC without ASD; D, reinforced brick, RC with minimum ASD; E, RC with
moderate ASD; and F, RC with high ASD (ranges of vulnerability are given for each type of
structure)

Classification of damage: (grades 1-5): 1, negligible to slight (no structural damage); 2,
moderate (slight structural, moderate nonstructural); 3, substantial to heavy damage
(moderate structural, heavy nonstructural); 4, very heavy (heavy structural, very heavy
nonstructural); and 5, destruction (very heavy structural, near or total collapse)

Effects: (a) on humans, (b) on objects and nature, and (c) on buildings

Degrees of intensity
I Not felt. (a) Not felt.

II  Scarcely felt. (a) Felt by very few.
III  Weak. (a) Felt indoors by a few. (b) Hanging objects swing.

IV Largely observed. (a) Felt indoors by many, outdoors by a few. (b) Doors and glasses
rattle, furniture shakes.

V  Strong. (a) Felt indoors by most, outdoors by a few, strong shaking, people awake.

(b) Objects swing, some fall down, doors open or shut, window panes break. (c) Grade 1
damage to a few buildings.

VI  Slightly damaging. (a) Felt by most indoors and many outdoors, many people frightened.
(b) Small objects fall, furniture shifts, glassware breaks, animals frightened. (c) Grade 1
damage to many buildings, grade 2 damage to a few.

VII Damaging. (a) Most people frightened, find it difficult to stand. (b) Furniture shifted and
overturned, objects fall, water splashes. (c) Many buildings of class B and a few of C
suffer grade 2 damage, many buildings of Class A suffer grade 4 damage, especially to
their upper parts.

VIII Heavily damaging. (a) Many find it difficult to stand. (b) Furniture overturned, objects
fall, tombstones displaced or overturned, waves seen on soft ground. (c) Many class C
buildings suffer grade 2 damage, many class B and a few class C buildings suffer grade 3
damage, many class A and a few class B buildings suffer grade 4 damage, a few class A
buildings suffer grade 5 damage, a few class D buildings suffer grade 2 damage.

IX Destructive. (a) General panic, people thrown to the ground. (b) Many monuments and
columns fall or are twisted. Waves seen on soft ground. (c) Many class C buildings suffer
grade 3 damage, many class B and a few class C buildings suffer grade 4 damage, many
class A and a few class B buildings suffer grade 5 damage, many class D buildings suffer
grade 2 damage and a few suffer grade 3 damage, a few class E buildings suffer grade 2
damage.

X Very destructive. (c) Many class C buildings suffer grade 4 damage, most class A, many
class B and a few class C buildings suffer grade 5 damage, many class D buildings suffer
grade 3 damage and a few suffer grade 4 damage, many class E buildings suffer grade 2
damage and a few suffer grade 3 damage, a few class F buildings suffer grade 2 damage.
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Table 15.1. (cont.)

XI  Devastating. (c) Most class C buildings suffer grade 4 damage, most class B and many
class C buildings suffer grade 5 damage, many class D buildings suffer grade 4 damage
and a few suffer grade 5 damage, many class E buildings suffer grade 3 damage and a few
suffer grade 4 damage, many class F buildings suffer grade 2 damage and a few suffer
grade 3 damage.

XII Completely devastating. (c) Practically all structures above and below ground are
destroyed.

intensity for the scales are well defined, the same situation may be accorded different
degrees by different observers.

15.3.1 Isoseismal or intensity maps

Isoseismal or intensity maps are drawn from observed intensities with lines
separating regions of different degrees on a map (Fig. 15.2). The first such map seems
to have been drawn by P. N. C. Egen for the earthquake of 1828 in the Netherlands,
using his own scale of six degrees (Davison, 1927). Intensity maps, despite their lack
of precision, are a very important means of establishing distributions of ground vibra-
tion levels due to earthquakes. These maps have a great deal of information regarding
the extent and intensity of shaking of the ground, and the response of buildings and
other structures. From the point of view of intensity, the size of an earthquake depends
not only on its maximum value but also on the extents of the areas with various degrees
of intensity.

The distribution of intensity on the Earth’s surface shown on isoseismal maps depends
not only on the size of an earthquake but also on its focal depth and the attenuation of
the shaking of the ground with distance. If the epicentral intensity is /;, the intensity 7, at
a certain distance A, can be expressed by writing

I=1I,—alog (}11(4\2 + /12)1/2> - b((A2 +1?)? - h) (15.9)

where / is the focal depth, a is a coefficient related to geometric spreading (section 7.9),
and b is related to the anelastic attenuation (section 14.3). Thus, from the intensity map
of an earthquake we can estimate its size given by I, or I, the macroseismic epicenter,
depth of focus, and values of the coefficients a and b, which give information on how
intensities are attenuated in the region near the epicenter (the near field) (Fig. 15.4).

Despite the lack of precision, the information provided by isoseismal maps is very
important and complementary to that provided by analysis of instrumentally recorded
seismic waves. For historical earthquakes, this is the only information available. Even
for recent earthquakes, this information is very important, especially from the point
of view of engineering. The study of earthquakes does not end with the analysis of the
shaking of the ground but rather extends also to consideration of damage to buildings
and the responses of persons affected by them.
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15.4  Magnitude

Intensity, by its very definition, is an indirect measure of the size of an earth-
quake. A very shallow earthquake can produce very high intensities in a limited
region although its size need not be large. For this reason, the maximum intensity is
not always a good indication of the size of an earthquake. Measurement of the size of
an earthquake must be done in terms of the energy released at its focus, independently
of the damage caused. Since earthquakes are caused by fracturing of crustal material,
quantification of their size must represent in some way the energy released by such a
phenomenon.

15.4.1 Scales of magnitude

The idea of measuring the size of an earthquake by means of an instrumental
estimation of the energy released at the focus led Richter (1935) to the creation of the
first scale of magnitude. The concept of magnitude is based on the fact that amplitudes
of seismic waves depend on the energy released at the focus after it has been corrected for
their attenuation during their propagation. Using observations of the amplitudes of
waves of earthquakes in California at seismographic stations for regional distances
(A <600km), Richter defined the magnitude M in the form

M =logA —logA, (15.10)

where A is the maximum amplitude of waves measured on a seismogram in mm (usually
Lg waves) and A, is a calibration function that depends on distance. Richter defined his
scale using records of a particular instrument, the Wood—Anderson torsion seismograph
(with amplification 2800 and period 0.85s). 4, corresponds to the amplitude that would
be recorded at a given distance for an earthquake of magnitude M = 0 (Table 15.2).
Calibration of the scale was achieved by assigning the value M = 3 to an earthquake
that, at a distance of 100 km, is recorded by a Wood—Anderson seismograph with a
maximum amplitude of 4 = Imm (log 4y = —3, for A = 100km). This definition is
applicable only to surface earthquakes at regional distances and in its original or
modified form it is today known as the local magnitude M .

Richter’s magnitude for local earthquakes (15.10) can be reformulated in terms of
ground motion measured by any type of seismograph with a period near to 1s by

Table 15.2. The calibration term in Richter’s magnitude

A (km) —log 4, A (km) —log 4,
10 1.5 150 33
20 1.7 200 3.5
30 2.1 300 4.0
40 24 400 4.5
50 2.6 500 4.7

100 3.0 600 4.9
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Table 15.3. The calibration term of the magnitude my, (Pz) for a
shallow shock

A (degrees) o A (degrees) o

20 6.00 50 6.85
25 6.45 60 6.90
30 6.65 70 6.95
35 6.70 80 6.90
40 6.70 90 7.00
45 6.80 100 7.40

using the formula
M; =logA+2.56log A —1.67 (15.11)

where A is the maximum amplitude of ground motion (usually corresponding to Lg
waves) in micrometers, that is, the amplitude corrected for the instrumental amplifica-
tion and A is the distance in kilometers (A < 600 km).

The extension of the definition of magnitude to earthquakes at large distances
(teleseisms) (A > 600 km) was done by Gutenberg and Richter between 1936 and 1956.
Two scales were defined in terms of ground motion recorded at a distance A, one for
body waves (generally P waves) and the other for surface waves (Rayleigh waves)
(Gutenberg and Richter, 1942, 1956). The first is given by

my, = log(A4/T) + o(A, h) (15.12)

where A is the amplitude of the ground motion of body waves (corrected for the instru-
ment’s response), 7 is the period, and o(A, &) is a calibration term that depends on the
distance and focal depth (Table 15.3). Remember that the energy propagated in a wave is
proportional to the square of A4/T (section 3.4). Generally, A is measured as the
maximum amplitude of the P wave group on seismograms of short periods (7 ~ 15s),
namely vertical component instruments.

For surface waves, the magnitude scale is valid only for surface earthquakes at
distances greater than 15°. The formula has the general form

Ms =1og(4/T) + alogA+ 4 (15.13)

where A is the maximum amplitude in micrometers of ground motion of Rayleigh waves,
T is the period (approximately 20s), A is the distance from the epicenter in degrees, and
« and 3 are two calibration constants. The original values given to these constants by
Gutenberg (1945) are o« = 1.656 and 3 = 1.818. In 1964, the IASPEI adopted the
values a = 1.66 and 8 = 3.3 (Vanék et al., 1962).

For earthquakes for which there are no instrumental records, but only macroseismic
information concerning the damage they caused (historical earthquakes), magnitudes
can be estimated from the epicentral intensity /. A relation proposed by Sponheuer
(1960) is

M =0.6611, + 1.7logh — 1.4 (15.14)
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There are other magnitude scales based on amplitudes of certain waves. One
introduced by Nuttli (1974), which is valid for regional distances, uses the maximum
amplitude of Lg waves (section 12.6). These waves are the maximum recorded ampli-
tudes on short-period seismograms for continental paths at regional distances:

My, =log A+ 0.83log A+ (A —0.09)loge + 3.81 (15.15)

where A is the amplitude of the ground motion of Lg waves in micrometers, A is the
distance in degrees, and -y is an attenuation coefficient that is different for each region
(for the central USA, v = 0.07; for California, v = 0.53).

For near earthquakes (A < 200km), owing to the large magnification of modern
seismographs, even relatively small earthquakes saturate records and maximum ampli-
tudes can not be measured. This situation has led to a scale of magnitude based on the
duration of a seismic signal instead of its amplitude. The first attempt to use the duration
to determine magnitudes was by Bisztricsany in 1958. The magnitudes for local earth-
quakes based on durations have formulas such as

M. =alogr—b+cA (15.16)

where 7 is the duration of the earthquake signal in seconds and the constants a, b, and ¢
are adjusted so that values of M, correspond to those of My. For California these
constants are a = 2.2, b = 0.87, and ¢ = 0.0035 (Lee et al., 1972).

A different type of magnitude scale was introduced by Kanamori (1977) in order to
avoid the problem of saturation that afflicts all other scales (Hanks and Kanamori,
1979). This scale is based on the determination of the seismic moment and is called
the moment magnitude scale:

My = 2log My — 10.7 (15.17)

where M, is the scalar seismic moment that will be defined later, which is deter-
mined from amplitude spectra at low frequencies or observations of fault areas and

slippage.

15.4.2 The saturation of magnitude scales

Most magnitude scales depend on the frequency of the waves used for their
determination. For this reason it is not possible to define a single scale that is valid
for the whole range of observed magnitudes (approximately from —1 to 9). Since the
definition of the two teleseismic scales m, and Mg, it has been observed that they
coincide only for values of about 6.5. For smaller magnitudes m, is larger and for greater
ones Mg is larger (Fig. 15.5). The relation between the two magnitudes established by
Gutenberg and Richter (1956) is

my = 0.63Ms + 2.5 (15.18)

This indicates that the size of small earthquakes (M < 6.5) is better measured by m,, and
that of large ones (M > 6.5) by Mg. This is an example of the saturation of the scales.
The scale for my, becomes saturated at about 6.5 and larger earthquakes do not give
greater values. The scale for Mg that underestimates the size of small earthquakes
(M < 6.5) behaves well for those in the range 6.5-8, but saturates above that value.
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Fig. 15.5. The relation among the magnitudes Mg, m,, and M| .

This phenomenon is due to the fact that the amplitude spectrum is displaced toward low
frequencies with increasing size of earthquakes.

As we have mentioned, the Mg scale is saturated at about M = 8 and sizes of very
large earthquakes are not measured well. These earthquakes produce fractures hundreds
of kilometers long with displacements of several meters and waves of 20s are not
representative of the energy radiated. This problem is solved with Kanamori’s
moment magnitude My,. This scale does not depend on frequency and can be used
for the whole range of sizes of earthquakes from very small to very large up to values
of about 9.5. However, its determination is not so simple as are those of other scales
(direct measurement of an amplitude or duration), since it requires the determination
of the seismic moment, from spectra of seismic waves or other methods.

15.5  Seismic energy

The first reference to the energy produced by an earthquake was made by
Bassani in 1895 in the study of the Florence earthquake of the same year. Later Reid,
Galitzin and Navarro-Neumann between 1911 and 1916 estimated the energies of
some large earthquakes. The energy propagated by seismic waves is proportional to
the square of their amplitudes (section 3.4) and, thus, the magnitude is proportional
to the logarithm of the energy. Gutenberg and Richter (1942, 1956) established the
first empirical relations between the magnitude and the energy:

log Eg = 2.4my, — 1.3 (15.19)
log Eg = 1.5M¢ + 4.2 (15.20)

where Eg in joules is the energy propagated in seismic waves, which is often called the
seismic energy. According to (15.20), an earthquake of Mg = 8 has a seismic energy
of 10" J (10% erg). For comparison, a nuclear explosion of 5 megatons (Amchitka,
Alaska 1971) has an energy of 10'®J, and is equivalent to an earthquake of magnitude
6.7. If we calculate the approximate energy of all earthquakes that happen in 1 year we
obtain a value in the range 10'-10" J. About 90% of this energy corresponds to earth-
quakes with magnitudes equal to and larger than 7. This energy is approximately equal
to the global energy consumption in 1 year.
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The total energy E released by an earthquake is the sum of the seismic energy Eg and
the energy Eg dissipated by inelastic phenomena and in the form of heat at the focus:

E = Eg + Ey (15.21)

Since the only part of £ we can measure is the seismic energy, we can consider this as a
fraction of the total energy by using the seismic efficiency coefficient 7,

Es = nE (15.22)

This coefficient has a value less than unity that is difficult to estimate since we can not
measure the total energy released by earthquakes. For nuclear explosions whose yields
are known, values obtained for n vary from case to case according to the conditions
of the medium in which they are produced. The mechanism of explosions is very different
than that of earthquakes, so the results are not comparable.

15.6  The seismic moment, stress drop, and average stress

The magnitude of an earthquake is related to the energy released and is indepen-
dent from the mechanism of its generation. Another measure of the size of an earthquake
is the seismic moment M|, which was introduced by Aki (1966). It is based on the idea
that earthquakes are caused by shear fractures in the Earth’s crust and defined as

My = phAuS (15.23)

where /1 is the shear or rigidity modulus, Au is the mean value of the slip or displacement
on the fault plane, and S is the area of the fault plane. In cgs units the seismic moment is
given in dyn cm and in SI units it is in N m. The seismic moment includes the area of the
fault, slip, and strength of the material, and thus constitutes a good physical measure of
the size of an earthquake.

In a simplified model of fracture, the relative slip Au of the two sides of a fault is due to
the shear stress acting, which, at a given moment, exceeds the strength of the material or
the friction that maintains the fault locked. If the shear stresses acting on the fault plane
before and after an earthquake are oy and o, we can define two new parameters, namely,
the average stress & (the mean value of the stresses acting before and after the earth-
quake) and the stress drop Ao (the difference between them) (Fig. 15.6):

& =1%(0o+0y) (15.24)
AU:UO—O'I (1525)

The drop in stress represents the part of the stress acting that is employed in producing
the slip of the fault. If o; = 0, the stress drop is total and Ao = 2. Owing to the friction
between the two sides of a fault there is always some residual stress o after the fracturing
has finished. Only if there is no friction would the stress drop be total. The initial stress o
is the tectonic stress responsible for the strain in the focal region.

In a simplified form, the total release of energy during fracturing can be expressed by

E=6AuS (15.26)
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Fig. 15.6. The stress acting before (a) and after (b) the occurrence of a shear fracture of slip Au and
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(7S represents a force). On substituting into this the seismic moment (15.23), we obtain
E=7M, (15.27)
W
If the stress drop is total, equation (15.26) gives

E=—M 15.28
3 My (15.28)
This expression relates the total energy released by an earthquake to the seismic moment
and the stress drop. For a shear fracture, the stress drop is proportional to the deforma-
tion of the fault, Aoc = Au/L’, where L' is a length dimension of the fault plane (for
example, for a circular fault L' = a, the radius, whereas for rectangular faults L' = D,
the width). The stress drop is then given by
Au

Aa::Cuj% (15.29)
where C is an adimensional factor that depends on the shape of the fracture (e.g.
C =7r/16 for a circular fault). For a circular fault, by substituting (15.29) into
(15.23), we obtain the relation between the seismic moment and the stress drop:

16
=7fmr (15.30)
Then, if we know the seismic moment and the dimensions of the fracture, we can deter-
mine the stress drop:

_ 7
164

M,

Ao M, (15.31)
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Fig. 15.7. The relation between the fault area S and the seismic moment M, with lines of equal drop
in stress Ao (modified from Kanamori and Anderson (1975)) (with permission from the Seismo-
logical Society of America).

Since the fault radius is present in this equation raised to the power of three, small errors
will produce large errors in determinations of the stress drop. If we substitute the fault
area (S = ma’) into (15.31), we obtain

16AO' 3/2
My = Py S (15.32)
and, on taking logarithms,
3 16 Ao

From this equation it follows that, if the stress drop is constant for all earthquakes, then
log S is proportional to %10g M. That this hypothesis is valid for a large range of mag-
nitudes has been shown empirically (Kanamori and Anderson, 1975). For earthquakes
of moderate and large magnitudes (m > 5), Ao has values in the range 1-10 MPa (10
and 100 bars) and a mean value of 6 MPa (60 bars) (Fig. 15.7). Kanamori and Ander-
son (1975) suggested that earthquakes that take place at plate boundaries (interplate
shocks) have lower stress drops (of 3 MPa (30 bars)) than do those in plate interiors
(intraplate shocks), for which stress drops are about 10 MPa (100 bars). The mean
stress drop (6 MPa) is of the same order of magnitude as the value suggested by
Tsuboi (1956) for the critical strain of the Earth’s crust.

Constancy of the stress drop is required in the definition of Kanamori’s moment mag-
nitude M+y,. The formula for the moment magnitude (15.17) is obtained by substitution
of (15.28) into (15.20), assuming a constant value for Ao/u = 10~* and solving for Mg,
which is now renamed My. The moment magnitude is, then, the magnitude derived
from the seismic moment, under the hypothesis of a constant stress drop that satisfies
the relation of Gutenberg and Richter between the surface waves magnitude and the
energy.
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Fig. 15.8. The relation between the seismic moment M|, and the surface wave magnitude Mg with
lines of equal apparent average stress ng (modified from Kanamori and Anderson (1975)) (with
permission from the Seismological Society of America).

By substituting for the energy in terms of the seismic energy (15.22) we can define from
(15.27), the apparent average stress
Eg
b= p— 15.34
= ry (15.34)
A simple way to relate the magnitude Mg to the seismic moment M, is by using
equations (15.20) and (15.34), resulting in

logMO:%Ms+1l.8—log (T) (15.35)

If na is constant, we have a linear relation between log M, and Mg with a slope equal to %
Observations agree with this hypothesis, although there is a certain dispersion in the
data, especially for very large earthquakes, that may be due to saturation of the Mg
scale (Kanamori and Anderson, 1975) (Fig. 15.8). In this case, there is also some
evidence that mean stresses for intraplate earthquakes (5 MPa) are larger than those
for interplate earthquakes (1.5 MPa).

If the drop in stress is total, we can make the approximation that ng ~ Ao/2. Accord-
ing to Orowan’s fracture model, the residual energy Eg corresponds to the energy lost by
friction and, similarly to in (15.26), it is given (Orowan, 1960) by

Eg =o0;AuS (15.36)
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where oy is the friction stress during fracturing. The situation for which o; = oy, known
as Orowan’s condition, implies that the stress drop is total and thence ng ~ Ao /2. This
means that the stress that does not contribute to the slip is lost in friction as heat. When
this condition is satisfied, the energy given by (14.28) is the minimum estimation of the
total energy E. If the stress drop is not complete, the final stress can be greater or less
than the friction stress and the average stress can be greater or less than half the stress
drop.

In conclusion, the seismic moment M|, can be considered the best measure of the size
of an earthquake. This quantity assumes the mechanism of shear fracture. This model
introduces also the concepts of the stress drop and average stress. Through the
relations of these quantities to the energy released during fracturing, we have found
useful relations among them.



16 THE SOURCE MECHANISM

16.1  The representation of the source. Kinematic and dynamic models

We saw in Chapter 15 that earthquakes are produced by fractures in the Earth’s
crust. In Reid’s model of elastic rebound, faulting is caused by the sudden release of
accumulated elastic strain when the strength of the material is overcome. In seismology
the problem of the source mechanism consists in relating observed seismic waves to the
parameters that describe the source. In the direct problem, theoretical seismic wave
displacements are determined from source models, whereas in the inverse problem,
the parameters of source models are derived from observed wave displacements. The
first step in both problems is to define the seismic source in terms of a mechanical
model that represents the physical fracture. These models or representations of the
source are defined by parameters whose number depends on their complexity. Simple
models are defined by a few parameters whereas more complex ones require a larger
number of parameters (Madariaga, 1983; Udias, 1991; Koyama, 1997).

Fracturing can be approached in two different ways, kinematic and dynamic.
Kinematic models of the source consider the slip of the fault without relating it to the
stresses that cause it. Fracturing is described purely in terms of the slip vector as a
function of the coordinates on the fault plane and time. From models of this type, it
is relatively simple to determine the corresponding elastic displacement field. The
second approach considers the complete fracture process relating the fault slip to the
stress acting on the focal region. A complete dynamic description must be able to
describe fracturing from the properties of the material of the focal region and the
stress conditions. Dynamic models present greater difficulties and their solutions, in
many cases, can be found only by numerical methods.

16.2  Equivalent forces. Point sources

The first mathematical formulation of the mechanism of earthquakes was
presented by Nakano (1923) using the ideas already developed by Lamb (1904) and
Love (1945). Nakano used the point-source approximation, which is valid if observation
points are at a sufficiently large distance compared with source dimensions and wave
lengths are also large. Thus he could represent the source by a system of body forces
acting at a point. Since these forces must represent the fracture phenomenon they are
called equivalent forces.

The problem may be stated as follows. Let us consider an elastic medium of volume V'
surrounded by a surface S. In its interior there is a small region of volume V),

294
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Fig. 16.1. The stress and displacement in a medium of volume V surrounded by a surface S. The
body force f and stress T are acting in the focal region of volume ¥V, surrounded by the surface X.

surrounded by a surface X, which we will call the focal region, where fracture takes place
(Fig. 16.1). This process can be represented by a distribution of body forces F(¢;, )
acting per unit volume inside V. If it is assumed that no other body forces (gravity,
etc.) are present, the equation of motion (2.55) can be written as

|, i) = () av = | Fggnav (16.1)
V—V, v,

0

where &; are the coordinates inside of the focal region and x; are those outside of it. Only
elastic displacements and stresses outside of the focal region are considered. From the
static case (2.57), the body forces F; are formally related to stresses inside of V; by

Fi = =7y (16.2)

In the case of a point source, if the volume V' is an infinite medium, the equation
(16.1), according to (2.57), is given by

pii; — 7y ; = F; (16.3)

where F; are forces at a point that is selected as the origin of the x; coordinates where the

elastic displacements u(x, t) are evaluated. These forces are the limit of the forces acting
on Vj as it tends to zero:

Fi(t) = lim JV Fi(&,0)dV (16.4)

Vo=0
For a homogeneous medium, equation (16.3) can be expressed in terms of displace-
ments, using (2.59), as

pii; — Cyppyry = F; (16.5)
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This equation allows the determination of the elastic displacements u(x, ) produced by a
force or system of forces F acting at the origin of the coordinates. In the inverse problem,
from the observed elastic displacements we can obtain certain characteristics of these
forces.

16.2.1 The formulation using Green’s function

A more convenient formulation of the problem can be obtained by using the
representation theorem in terms of Green’s function (section 2.8). According to (2.88),
if body forces are limited to the focal region V|, (Fig. 16.2) and on its surface X' the
stresses and displacements are null, we obtain for a volume V' surrounded by a surface
S that

o0

dr JS(G_/:T/ — U;Citin G yVi) dS (16.6)

—00 —00

u[:J dTJ FkaldV+J
Vo

where T; = 7;1; is the stress vector, v; is the normal to the surface element dS, and Gy, is
Green’s function of the medium, defined by equation (2.76) in section 2.7. Green’s
function, a tensor, is continuous throughout the volume ¥ and represents the effect of
propagation in the medium. As we saw in section 2.7, Green’s function is the solution
of the equation of motion for an impulsive force and depends on the characeristics
(Cjirs and p) of the medium. If the medium is infinite, conditions on the surface S are
homogeneous (the stress and displacement are null) and equation (16.6) becomes

(Fig. 16.3)
ui(xs, t) = J

The function Gy; acts as a ‘propagator’ of the effects of the forces F) from the points
where they are acting (& inside V) to points x, outside V; where the elastic displace-
ments u; are produced. For a point focus at the origin of coordinates we have

00

dTJ Fk(ng)Gki(xmt; gsvT)dV (167)
0 Vo

(o ) = J Fo(r)Gu(x,,t — 1) dr (16.8)
X
3 u(X,v
//\
F(t) S
// {//
X2

Fig. 16.2. A body force F() acting at the origin of coordinates and elastic displacements u(x, 7) at a
point at a distance r.
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F(iiI) U(Xi,t)
(4y\}/}§//\
mf ) G(Xi.t:&D

Fig. 16.3. A body force F(¢;, t) acting on a source volume ¥}, and elastic displacements u(x, ) at a
distance r in an infinite medium.

X2 u(Xi,t)
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<.~
7
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> >
7
S X1
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Fig. 16.4. A single couple of forces acting at the origin and elastic displacements u(x, ¢) at a distance r.

The elastic displacements are now given by the time convolution of the forces acting at
the focus with Green’s function of the medium.

From the point of view of the representation of the seismic source in terms of equiva-
lent forces, there are two ways to find the elastic displacements. The first consists in
solving directly the equation of motion (16.1). This implies solving a second-order
inhomogeneous differential equation for displacements or solving a homogeneous
equation and introducing the forces as boundary conditions. In both cases, the problem
is not easy. The second consists in using equation (16.6), (16.7), or (16.8). In this case we
have to have prior knowledge of Green’s function. Since Green’s function is the solution
of the equation of motion, this equation must be solved anyway. However, the
advantage of the second approach is that, for a given medium, the equation of
motion must be solved only once to find Green’s function, whereas in the first, it must
be solved for each system of forces. For example, in the point-source problem, the
first approach requires for each system of forces the solution of equation (16.5) in the
same medium. In the second approach, equation (2.77) is solved only once to find
Green’s function. Then, for each system of forces, we apply equation (16.8), which is
a convolution of each system of forces with Green’s function.

16.2.2  Single and double couples

Several systems of forces have been proposed to represent the source of an earth-
quake. For point sources, the most common are those of a couple of forces (SC, a single
couple) and two couples perpendicular to each other without a resulting moment (DC, a
double couple) (Figs. 16.4 and 16.5). The second system is also equivalent to two linear
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X2
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Fig. 16.5. A double couple of forces without a moment acting at the origin and the displacement
u(x, ) at a distance r. An equivalent system of two linear dipoles of pressure and tension forces P
and T is shown.

dipoles of forces (with arms in the same direction as the forces) corresponding to pressure
and tension acting at 45° to the couples. Both models were thought to represent shear
fracture, but, as we will see, this is true only for the second. For models of extended
sources, distributions of single or double couples on a plane surface were used.

For a point source, elastic displacements due to a couple of forces can be derived from
those from a single force. If u} are the displacements due to a force acting at the origin in
the x; direction, those of a couple of forces in the plane (x;, x,) with forces along the x;
axis and the arm in the x, direction (Fig. 16.4) are derived by performing a Taylor
expansion for each force of the couple, displaced by s/2 from the origin along the x,
axis. For the force in the positive direction of x; and shifted by s/2 from the origin in
the positive direction of x,, the elastic displacement is

u = u —1—%14}72 (16.9)
For the force in the negative direction of x; and shifted by s/2 in the negative direction of
X,, the displacement is

ur = —u! —|—%u}12 (16.10)
The displacement due to a single couple is the sum of the two:
uSC = sul, (16.11)

For a double couple in the (x;,x;) plane, with forces in the directions of x; and x,
(Fig. 16.5), using (16.11), the elastic displacement is given by

up© = s(uly +uiy) (16.12)

If we substitute (16.11) into (16.8), we obtain the displacement due to a SC, as defined
above, in terms of Green’s function:

uC = J M(1)Gya(t —7)dr (16.13)

where M (r) = F(t)s is the moment of the couple. For a DC in the x; and x, directions,
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using (16.12), we obtain
uPC = J M()[Gualt — 7) + Gy (i — 7)) dr (16.14)

For a SC in an arbitrary orientation, with forces in the direction of the unit vector / and
the arm in that of n, where n-I = 0, and a DC with the second couple with forces in the
direction of n and its arm in that of I, general expressions are

u,sc = ‘[7 MlkanikJ dr (1615)

up® = J M (L + mily) Gy d7 (16.16)

Let us consider now two perpendicular linear dipoles with opposite signs. The linear
dipole with forces in the positive direction corresponds to tension, whereas that with
forces in the negative direction corresponds to pressure. If the forces are in the directions
of x| and x5, in a similar form to that in (16.12), the elastic displacements are

u'" = s(ully — uih) (16.17)

If the system of coordinates (x}, x5) in (16.17) is rotated by 45° with respect to (x;, x,) of
equation (16.12), the two expressions can be shown to be equivalent. If the tension and
pressure forces are defined by the scalar moment M and unit vectors T and P, in a similar
form to that in (16.16), the elastic displacement in terms of Green’s function is

o0
“z’TPZJ M(Ty Ty — P, P;)Gy dr (16.18)

For the two equivalent systems, relations between the unit vectors P and 7 and n and /
are

P:\}Z(n—l) (16.19)
1

T = %(n—kl) (16.20)

B=nxI=PxT (16.21)

where B is the unit vector normal to the plane of the forces. This vector is known as the
null axis, since there is no component of forces in its direction. In this way, for a DC
point source, we can define two orthogonal systems of axes in the directions of the
unit vectors n, I, and B and P, T, and B to specify the orientation of the source. We
will see that the second system corresponds to the principal axes of stress.

16.3  Fractures and dislocations
If an earthquake is produced by fracturing of the Earth’s crust, a mechanical

representation of its source in terms of fractures or dislocations in an elastic medium
can be achieved. The theory of elastic dislocations was developed by Volterra in 1907
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Fig. 16.6. A dislocation Aw on a surface X and the elastic displacement u(x, 7) at a distance r in an
infinite medium.

and discussed by Love (1945). Its first applications to the problem of seismic sources
were by Vvedenskaya (1956), Keylis-Borok (1956), Steketee (1958), Knopoff and Gilbert
(1960) and Burridge and Knopoff (1964).

A dislocation consists in an internal surface inside an elastic medium across which
there is a discontinuity of displacement or strain. Here we will consider only displace-
ment dislocations, that is, those for which there is a discontinuity of displacement but
the stress is continuous. The problem will be formulated using the representation
theorem in terms of Green’s function (2.88). The focal region consists in an internal
surface X' with two sides (positive and negative). This surface can be considered to be
derived from the focal volume V|, that is flattened to form a surface with both sides
together without any volume. The coordinates on this surface are &; and the normals
at the points are 7,;(£;). From one side to the other of this surface there is a discontinuity
in displacement or slip (Fig. 16.6) so that

i (s 1) — ui (& 1) = Dy, 1) (16.22)

where the plus and minus signs refer to the displacements at each side of the surface 3. If
there are no body forces (F = 0), the stresses are continuous through X' (their integral is
null) and the conditions on the external surface S are homogeneous (all integrals on S
are null), then equation (2.88) results in

(s, ) J

In consequence, the seismic source is represented by a dislocation or discontinuity in
displacement given by the slip vector Au on the surface X, which corresponds to the
relative displacement of the two sides of a fault. This is, then, an inelastic displacement
that, once it has been produced, does not go back to the initial position. In the most
general case, Au(&;, 7) can have a different direction for each point ¢; of the surface X
and, at each of these points, varies with time, starting from a zero value at t =0, to a
maximum value at a certain time. The normal to the surface X, given by the unit
vector n(§;), can have different directions at points of the surface, but usually is

o0

dr J Aui(gw T) C[jk/nj (fs)Gnk,[(fsa T Xs) Z) ds (1623)
b YKL,

—00
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Fig. 16.7. Parameters of the orientation of a fault or shear fracture ¢, ¢, and A, and unit vectors
nand [.

considered to be constant; that is, 3/ is a plane. Green’s function G includes the effects of
the medium on propagation from points &; on the surface X' to points x; where elastic
displacements u; are evaluated. To solve the problem, according to equation (16.23)
we must first know the derivatives of Green’s function for the medium, which are also
known as excitation functions.

Equation (16.23) corresponds to a kinematic model of the source; that is, a model in
which the elastic displacements u are derived from the slip vector Au, which represents
the inelastic displacement of the two sides of a fault of surface Y. The slip is assumed to
be known rather than being derived from the stress conditions in the focal region as is
done in dynamic models. In equation (16.23) the derivatives of Green’s function include
derivatives of the delta function. If we change the order of integration, integration over
time of the product of Au with the derivatives of the delta function results in time
derivatives Au, that is, the slip velocity. Thus, elastic displacements depend not on the
slip but rather on the slip velocity. This means that the source radiates elastic energy
only while it is moving. When motion at the source stops it ceases to radiate energy.

As a particular case, let us consider an isotropic medium of coefficients A and p, a
plane surface 3 (with n constant) and a constant slip Au with the same direction defined
by the unit vector . The integrand of (16.23) becomes

Au()[ My b + p(ling + 6n;)1Gi (16.24)

The geometry of the source is now defined by the orientations of the two unit vectors n
and /. These two vectors, referred to the geographic system of axes (North, East, and
nadir), define the orientation of the source, namely, n is the orientation of the fault
plane and [/ is that of the slip (Fig. 16.7). Since they are unit vectors, each has only
two independent components. For i =, expression (16.24) gives the component of
the displacement normal to the fault plane which implies changes in volume. If / and
n are perpendicular, the slip is along the fault plane, there are no changes in volume,
and it represents a shear fracture. In this case (n- I = 0), there are only three independent
components of n and L

In the kinematic model of a dislocation on a plane surface with a constant slip, the
parameters of the source are the elastic coefficients of the focal region A and pu, four
independent components of n and / defining the orientation of the fault plane and
slip, the magnitude of the slip Au, and the area S of the fault. There are eight parameters
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that, when added to the four of the hypocenter (¢, Ay, #, and t;), sum up to 12. If the
source is a shear fracture the number of parameters is only ten.

16.4 The Green function for an infinite medium

The problem of determining Green’s function is not an easy one and depends on
the characteristics of each medium. As we saw in section 2.7, Green’s function is the
solution of the equation of motion for an impulsive force in time and space ((2.76)
and (2.77)). Let us consider Green’s function for an infinite, homogeneous, isotropic
elastic medium with force acting at the origin and = 0. According to (2.61) and
(2.77), Green’s function is the solution of the equation

PGy — (A + )Gy — 1Gypr = 6(x)8(1)8; (16.25)
In terms of the velocities « and 3 (2.63), we also have

. 1

Gy — a’V(V-Gy) + [V x (V x Gy) = ;5(%)(5(:)5[, (16.26)

We will start with a simplified problem in only one dimension.

16.4.1 The radial force

In a problem with spherical symmetry and an impulsive radial force, elastic
displacements have only radial components and the problem can be solved in one
dimension (Fig. 16.8). Green’s function has only one component, G; = u(r,t). Since
for this case V x u = 0, equation (16.26) becomes

1
ii(r, 1) = o*V2u(r, 1) = S8ne() (16.27)
On substituting the Laplacian in spherical coordinates for a dependence on r alone
(A2.30), we have
Pu_o’
or 1 o

If there are no forces, equation (16.28) for a harmonic dependence results in Helmholtz’s
equation (3.122) and its solution (3.125) is

(ru) —&-%6(1’)6([) (16.28)

A . r
u(r,t) = ~exp {w(t —a>] (16.29)
\
\
\
_ ‘r_,_____
s(r)s(t) I u r

Fig. 16.8. An impulsive radial force at the origin and the displacement at a distance r.
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Let us now consider Poisson’s equation,

Viu(r) = ——6(r) (16.30)
a’p
Its solution is
6(r)
= 16.31
u(r) 47ra2pr ( )

We can consider that the solution of (16.28), in analogy with (16.29) and (16.31), can be
written as
o(t —
u(r, 1) = (72/6“) (16.32)
4rapr

Then, for an impulsive radial force, the elastic radial displacements have the form of an
impulse that depends on (f — r/«a). This impulse travels with a velocity « (P wave),
arrives at a distance r at time 7 = r/a, and its amplitude decreases with distance as
1/r. Equation (16.32) represents Green’s function for a radial force with spherical
symmetry in an infinite medium.

16.4.2 An impulsive force in an arbitrary direction

The complete problem of Green’s function corresponds to an impulsive force in
an arbitrary direction (Aki and Richards, 1980). Using Cartesian coordinates, we start
with the particular case of a force in the x; direction applied at the origin of coordinates
(Fig. 16.9). Equation (16.26), putting G;; = u;, is (2.63), namely

i=F/p+a’V(V-u)— 3V x (V xu) (16.33)
where F is given by
F = 6(1)6(x1,x2,x3)(1,0,0) (16.34)
% Gyj=Uj

Fig. 16.9. An impulsive force F acting at the origin in the x; direction and the elastic displacement u
equivalent to Green’s function Gy;.
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Just as in section 2.6, we introduce the potentials ¢ and 1) for displacements and & and ¥
for forces ((2.68) and (2.71)),

u=Vo+V x (16.35)

F=Vo+VxW¥ (16.36)
On replacing (16.35) and (16.36) into (16.33) we obtain (2.72) and (2.73),

b —aVie* =d/p (16.37)

$— PV ="/p (16.38)

We introduce now a new vectorial function W from which we can deduce the force
potentials:

o=V-W (16.39)
U=-VxW (16.40)
By substitution into (16.36), we obtain
VW =F (16.41)
This equation has the form of Poisson’s equation (16.30) and its solution can be given as
F
= (16.42)

where r is the distance from the origin, where the force is applied to a point of
coordinates x; where we evaluate the displacements u;. If F is distributed in a volume
V', wherein the coordinates of each point are &;, the solution of (16.41) is

L[ F(&)
N=—| = 16.4
W(x,) 4WJV < av (16.43)
where r = |x; — &|. In our case, F is given by (16.34) and W is
o(¢
WZQ(LO’O) (16.44)
471
According to (16.39), (16.40), and (16.44), the force potentials ¢ and ¥ are
6(r) 0 (1
p=""0 (- 16.4
4m Ox <r> (16.45)
LS. 0 (1 o (1
v = s (0 5a (7)) Ho40)

Equations (16.37) and (16.38) have the same form as (16.27); therefore, their solutions
can be written in a similar form to (16.32), where the right-hand terms are ®/p and
¥ /p, respectively. Since the force potentials are defined in the whole volume V, the
solutions must be written in integral form as in (16.43):

1 D(t—r/a)
_ 4m2pJV 1Y ay (16.47)
1 w(r—r/f3)

P = R JV . dv (16.48)



16.4 The Green function 305

Fig. 16.10. A spherical surface with its center at x; with radius a7 for the evaluation of integral
(16.49) (¢ is the variable of integration).

In our problem, the volume V' represents the whole of the infinite space. We must notice
that the potentials are defined over the whole volume under consideration. This may
sound strange, especially for force potentials. Even when forces are acting at a point
(the origin of coordinates), the potentials ¢ and ¥ that represent them are defined
over the whole volume of the problem, in our case the infinite space. By substituting
expression (16.45) into (16.47), we obtain the solution of the displacement potential ¢
for an impulsive force in the x; direction:

¢ : JV‘S(Z_"/O‘)E)C) av (16.49)

- 1672 pa? r ox; \r

where V represents the infinite medium. A similar expression is found for %) by using
(16.46) and (16.48). The evaluation of these integrals is performed in the following
manner. The integral over the volume V' (in our case the infinite medium) is separated
into two parts, first an integral over a spherical surface S, with its center at x;, the
point where the displacements are evaluated, and a radius equal to a7t for ¢ and to
Bt for 1 (Fig. 16.10), and second an integral over the time 7 from zero to infinity. In
this form we cover the infinite medium. With these substitutions equation (16.49)
becomes

1 ©o(t—T1)[ O 1
= — —dSd 16.50
i 16ﬂ2Pa2J; T Jsaf1|€J " (16:30)

where |¢;] is the distance from the origin to an element dS of the spherical surface S,
|x;| = r is the distance from the origin to the point where u is evaluated, and
|x; — &| = a7 is the distance from the point x; to the spherical surface (Fig. 16.10).
We change the orders of differentiation and integration in the integral over the surface
S. Then, it can be shown that, when the spherical surface includes the origin (7 > r/«),
the integral over S of 1/|¢;| is constant and equal to 4war and consequently its derivative
is zero. If the surface does not include the origin (7 < r/«), the integral has the value
4r?a’r? /r (Aki and Richards, 1980). Thus, we obtain
J o1 ds = 471'204272il
s 9§ 1€l Oxy r




306 The source mechanism

X3
Gij
///}\A
2
|
5 i
yl -'7/ 'Y2 :
~ | X2
F \\\\ :
X1 \\\!

Fig. 16.11. The geometry of an impulsive force F in the x| direction and displacements (Green’s
function) G; at a distance r and direction cosines ;.

and, on substituting this into (16.50), we have
r/o
:——fj T76(t — 1) dr (16.51)

The derivative with respect to £ now becomes one with respect to x; and the integral
over 7 extends only to 7 = r/« since, for 7 > r/a, the integrand is zero. In a similar
manner we obtain the expression for the vector potential v, using (16.48) and (16.46):

1 o1 9 1\ ("
/1!1 = % <0,6x; r,—ax2r) JO T(S(t— ’7—) dT (1652)

By taking the corresponding derivatives according to (16.35) in (16.51) and (16.52), we
obtain the displacement u, that is, Green’s function for a force in the x; direction or G;;.
The derivatives of 1/r can be expressed in terms of the direction cosines +; of the vector r
from the point &; where the force is applied (in our case the origin) to the point x; where
Green’s function is evaluated (Fig. 16.11). This is easily shown, since

r=lx = &)+ (- &)+ (3 — &)
Its derivative with respect to Xx; is

3r X1 — 61

— =——=cos(r =
axl r (’ ) X]) "
and, in general,

or

= — 16.53
Ox; i ( )
The derivatives with respect to &; are
ar
o Vi
9,
It is also easy to show that
a 1 Yi
——) 16.54
ox; r ¥ ( )
; 1
f=—— (v — &) (16.55)

0x; r
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After taking the corresponding derivatives and substituting in the direction cosines, we
obtain

1 /6
Gy = 4p [’3(3’)’1%’ —611) L/a 76(t — 7)d7
I (P B A ] (16.56)
ra27171 o rﬂz NVi 1i 3 .

This equation corresponds to a force in the x; direction. We can generalize this result
for Green’s function corresponding to a force in an arbitrary direction given by the
vector v

1 [1 /B

1 1

This is the expression for Green’s function for an infinite, homogeneous, isotropic elastic
medium with velocities « and (. This is a very important result in elastodynamics, which
gives the elastic displacement field for the most fundamental type of source. It constitutes
the basic building block of seismic source studies.

A similar, fundamental problem is the static solution for a constant force acting at a
point in the direction of the unit vector v; . For an infinite, homogeneous, isotropic

i
elastic medium, the static displacements are solutions of the equation

o*V(V-u)— 37V x (V xu)=F/p

The solution can be found in a similar way to that in the previous problem by expressing
the displacement and force in terms of potentials. This leads to equations of the form of
Poisson’s equation (Lay and Wallace, 1995). The result for the displacement, in terms of
the direction cosines ~;, is

F 1 1 1 1
55| (22 )+ (224 ey

The subindex j indicates the direction of the force and, just like in (16.57), the displace-
ments are given by a tensor. This expression, known as Sommigliana’s tensor, is the
fundamental equation in elastostatics.

16.5  The separation of near and far fields

The first term of Green’s function in equation (16.57) depends on the distance as
3 and the other two have r~' dependences. Thus, the displacement represented by the
first term is attenuated more rapidly with distance and for this reason is called the near
field. This term depends both on o and on (3, and is a displacement of mixed P and S
motion. The second and third terms constitute the far field where P and S waves are
separated. In both cases, near and far fields, displacements have two parts, one, called
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the radiation pattern, depends on the direction cosines and expresses the spatial distri-
bution of amplitudes, and another that depends on time or the wave form.

16.5.1 The near field
The time dependence of the near field (16.57) can be rewritten (Knopoff, 1967) as

J:ﬂ 8(t — 1) dr = J: 78(1 — 7) [H<T - ;) - H<T - ﬁ>] dr (16.59)

where H(¢) is the step or Heaviside function. According to the properties of step and
delta functions, the integral on the right-hand side of (16.59) results in

J:[ ]dT:tH(t—;) —tH(t—é) (16.60)

Each of these two terms can be written as

o-2)- (-2 u(r=5) ()

The term (¢ — r/a)H(t — r/«) is a ramp function of slope unity. The complete expression
for the near field can be written as

N e T )
) )

The time dependence of the near field now has two parts that depend on distance as >
and r~2, both depending on the velocities of P and S waves. The first part is the difference
between two ramp functions and the second is the difference between two step functions
of different amplitudes. The result is shown in Fig. 16.12. The part that depends on > is
formed by a ramp of unit slope starting at t = r/« and continuing until = r/8. From
this time onward the displacement has a constant amplitude of 1/8 — 1/«. The part that
depends on 2 is a step function starting at ¢ = r/a and amplitude 1/« followed at
t =r/f3 by one of amplitude 1/« — 1/8. The displacement in the near field has a part
that remains constant with time. The radiation pattern is common to the complete
near-field displacement.

16.5.2 The far field

The far field (the part that depends on 1/r) of Green’s function is formed by
separate P and S waves:

P 1 _ r
G = e Y| . (16.63)
GS -1 ( —6;)6 t—l (16.64)
Y 47Tp62r L v Jé] '
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Fig. 16.12. The near-field displacement of Green’s function for an infinite medium as a function of
time at a distance r.

|

Fig. 16.13. The far-field displacement of Green’s function for an infinite medium (P and S waves) ata
distance r.

Amp1itude

Time

= f————s

The time dependence is in both cases a delta function. The far field is, then, formed by
two impulses that propagate with velocities o and 3, that is, P and S waves of impulsive
form (Fig. 16.13).

The radiation patterns for P and S waves are different ((16.63) and (16.64)). To
represent the radiation patterns we take polar coordinates (r,6) with their center at
the focus and consider the distribution of normalized amplitudes. If the force is in the
x; direction, the normalized components of the displacement of P waves in the
(x1,x3) plane are given (Fig. 16.14) by

G} =7, = cosfcosf (16.65)
GY, = 3 = cosfsinb (16.66)

It can easily be seen that the displacement is in the radial direction, as expected for
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Fig. 16.14. Components of Green’s function in the far field corresponding to P and S waves for a
force in the x; direction.
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Fig. 16.15. The radiation pattern of Green’s function on the (xi, x3) plane for a force in the x; direc-
tion: (a) P waves and (b) S waves.

P waves, and that its modulus is

|Gh| = cos (16.67)
For S waves, the normalized displacement components are

G = —(mm — 1) =sinfsin g (16.68)

G5 = —vv; = —sinfcos (16.69)

The resulting displacement is in the transverse direction and its modulus is
|G| = sin0 (16.70)

The displacements of P and S waves are in the radial and transverse directions
correspondingly for each type of wave. By giving values from 0 to 360° to #, we obtain
radiation patterns. In both cases the pattern has two lobes (Fig. 16.15). For P waves,
the displacements are radial, in the right lobe outward, that is, compressions and in the
left inward, dilations, with maxima at § = 0 and 7 (Fig. 16.15(a)). For S waves, the displa-
cements are transverse ones that converge toward the direction of the force in both lobes
with maxima at = /2 and 37/2 (Fig. 16.15(b)). P waves have a nodal plane (x5, x3)
normal to the force and S waves are in the plane (x;,x,) that contains the force.
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16.6 A shear dislocation or fracture. The point source

Let us consider the seismic source represented by a shear dislocation fracture,
with fault plane X' of area S, normal n, and slip Au(§, 7) in the direction of the unit
vector I, contained on the plane so that / and n are perpendicular (rn-7 =0). For an
infinite, homogeneous isotropic medium, the displacement, according to (16.23) and
(16.24), is

Uy = J dTJ Auu(l,n/—&—l/n,)le,,dS (1671)
- - Tt .
If the distance from the observation point to the source is large in comparison with the
source dimensions (r > X)) and the wave lengths are also large, the problem can be
approximated by a point source and equation (16.71) takes the form

(o.¢]

u(t) = uS(ln; + Liny) J N Au(T)Gy ;(t — 1) dT (16.72)

The displacements are given by the time convolution of the slip with the derivatives of
Green’s function.

For the far field, Green’s functions for P and S waves are given by (16.63) and (16.64).
The derivatives for P waves are

1 o |1 r

P

G L oL T 16.73
ki.j dmpa’ 85_/[}’%%( a)] ( )

If in the derivatives we keep only the terms that depend on the least negative power of
r (1/r), then we obtain

l i(s t— L — _i 6 t— 1 ﬁ
r 71’)//( 851 a - ro rYlfW\’ «a afj

On substituting in the direction cosine, we obtain for P waves

1 . r
Gllzzi,j = 4’Yi’7k’Yj5<f - a) (16.74)

npa’r
In a similar form for S waves,

S

-1 . r
Grij = m(%% — 0 )6 (l - ﬁ) (16.75)

This approximation is consistent with the far field. Now, we substitute (16.74) and
(16.75) into (16.72) and take into account the property of the derivative of the delta
function:

J: Au(T)S(z—;—T> dTZAu<z—;> (16.76)
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The final result, after this substitution, gives for the displacements of the P and S waves
in the far field

P pS . r
P _ /. L) vy Al t —— 16.77
uj 47Tp0(3l’ (nk 1 + nl /x)’}/l’Yk’YJ u( Oé) ( )
S S : r
Y= droiPr (il + nilic) (85 — i)y Aai | 1 — 3 (16.78)

It is important to notice, as we mentioned in section 16.3, that elastic displacements
depend on the slip velocity or rate of slip. The source radiates elastic energy only
while it is moving and ceases so to do when it stops. If the source time function is a
step function Au(t) = Au H(t), its derivative is the delta function, and we obtain from
(16.77) and (16.78)

P MO r

uj = 3, (mel; + n,-lk)fy,-vkyié t—— (16.79)
S 0 r

uj = m (”kli =+ nllk)(6l] Vi yl)’}’ké([ ﬁ) (1680)

where we have substituted in the seismic moment M, = p Au S (15.23). Therefore, for a
step source time function, elastic displacements in the far field for P and S waves are
impulses that arrive at a distance r at times, t = r/«a and t = r/f.

16.6.1 The radiation pattern

The radiation pattern consists in the spatial distribution of amplitudes around
the source. Let us consider a shear fracture on the plane (x;, x,), with slip in the x; direc-
tion, that is, n = (0,0,1) and 7/ = (1,0,0) (Fig. 16.16). In a similar form to that for
Green’s function, the normalized displacements in the (x, x3) plane in polar coordinates

uj(x,t)

X3 r=xi-&il

7
Ni A i/
AW /
/\6
li X1

&

Fig. 16.16. Displacements u(x, 7) at a distance r due to a shear dislocation with slip in the x; direction
on a plane normal to the x; axis.
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Fig. 16.17. The radiation pattern in the plane (x,x3) due to a point shear dislocation (Fig. 16.16)
and the equivalent DC and PT system of forces: (a) P waves and (b) S waves.

(r,0) for P waves are

uy = 271, = sin(26) cos 0 (16.81)

us = 2743~ = sin(26) sin 0 (16.82)
and those for S waves are

uy = (1 —241)y; = —cos(26) sin 0 (16.83)

ui = (1 —293)7; = cos(26) cos 0 (16.84)

We can see that the displacement of P waves is in the radial direction and that of S waves
is in the transverse direction. If we define the components u, and u, in these two
directions, we obtain

uf = sin(26) (16.85)
Uy = cos(26) (16.86)

In both cases, the radiation pattern has four lobes or quadrants. For P waves the lobes
have alternating directions of motion, outward or positive (compression) and inward or
negative (dilation). There are two nodal planes, (x;,x;) and (x3,x,), the first corre-
sponds to the fault plane and the second, corresponding to the normal to this and to
the direction of Au, is called the auxiliary plane. The maxima of the displacement are
at 45° to the directions of /and n (Fig. 16.17(a)). In the four lobes of the radiation pattern
of S waves, the motion changes direction. The maxima coincide with the directions of /
and n and the nodal planes are at 45° to them (Fig. 16.17(b)). In both cases, the radiation
pattern is symmetric and we can interchange n and / without changing the result. Thisis a
consequence of the expression (16.71) being symmetric with respect to r and /. For this
reason, the radiation patterns of P and S waves do not distinguish the fault plane from
the auxiliary plane. This ambiguity is present in the methods used to determine the
orientation of the fault plane from far-field displacements of P and S waves.

To study the radiation pattern in three dimensions we use spherical coordinates
(r,0,¢). The focus is located at the center of a sphere of unit radius (the focal sphere)
and displacements are evaluated for points on its surface. A system of Cartesian
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Fig. 16.18. Components of the displacement u(r, 6, ¢) in spherical coordinates for the point shear
dislocation of Fig. 16.16.

coordinates (xy, x,,x3) with its origin at the center of the sphere, called the source
system, is defined so that (x,x,) is the fault plane, n is in the x; direction and /is in
that of x;. For a point on the surface of the sphere, the direction cosines of r with respect
to the three axes are

~1 = sinfcos ¢ (16.87)
v, = sinfsin ¢ (16.88)
3 = cosf (16.89)

where 6 is measured from x3 and ¢ is measured from x;. At each point of the spherical
surface, we define a system of Cartesian coordinates with unit vectors (e, ey, ¢4) in the
directions of the increments of r, 6, and ¢. The components of displacements in these
directions correspond to P waves and two components of S waves, respectively
(Fig. 16.18). The normalized amplitudes are given by

P: u, = sin(26) cos ¢ (16.90)
SI: ug = cos(20) cos ¢ (16.91)
S2: Uy = cosfsin ¢ (16.92)

Displacements of P waves have two nodal planes, 6§ = 7/2, (x1,x,), and ¢ = 7/2,
(x5, x3). Displacements of SI component have a nodal plane for ¢ = /2, (x,,x3),
and are null also for points of intersection of the surface of the focal sphere and the
solid angle # =n/4 and 3n/4. Displacements of S2 have two nodal planes for
0=m7/2, (x1,x5), and ¢ =0, (xy, x3).

16.6.2 The geometry of a shear fracture

As we have seen, the orientation of a shear fracture is given by two orthogonal
unit vectors n and I. These two vectors must be expressed in relation to the geographic
reference system defined by the axes x;, x,, and x3, positive in North, East, and nadir
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Fig. 16.19. Relations between the angles ¢, §, and A, and 6, and ¢, for a shear fault.

directions. With respect to these axes we define now the spherical coordinates 6
measured from x; and ¢ measured from x; on the (x;,x,) (horizontal) plane. In
reference to this system the vector n is given by

n, = sind, cos ¢, (16.93)
ny, = siné, sin ¢, (16.94)
ny = coséb, (16.95)

We do this in a similar way for the vector I (/|,,,/). Since / and n are orthogonal unit
vectors, only three components are independent. We saw in section 15.1 that a fault or
shear fracture can also be defined by the angles ¢, 6, and A (Fig. 15.1). These angles can
be expressed in terms of those defining the geographic orientations of the vectors / and n
(Fig. 16.19):

¢=¢,+m/2 (16.96)
5=10, (16.97)
.1 COS 0[
_ 16.
A = sin (sin 6,1) (16.98)

The components of n and / referred to the geographic axes (x, x,, and x3) can be written
in terms of ¢, 6, and A, in the form

ny = —sinésin ¢ (16.99)
ny = sin§ cos ¢ (16.100)
ny = —cosé (16.101)
[} = cos Acos ¢ + cos dsin Asin ¢ (16.102)
[, = cos Asin ¢ — cos § sin A cos ¢ (16.103)
[y = —sin Asiné (16.104)

In every case, the orientation of the source is given uniquely by three parameters,
namely, ¢, 6, and A, or 6,, ¢,, and 6,. Since, as we have mentioned already, there is
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Fig. 16.20. Displacements of P waves and SV and SH components of S waves, in spherical geometry
for a source at the center.

always an ambiguity with respect to the vectors n and /, the source orientation given by
8,, ¢,) and (0;, ¢;) does not assume a distinction between fault and auxiliary planes. We
assumed that this is the orientation of the fault plane given in terms of ¢, 6, and A. If we
do not know which one is the fault plane, we must give values of ¢, ¢, and X for both
nodal planes.

Displacement of P waves and of SV and SH components of S waves can be referred to
the geographic coordinate axes through the direction of the seismic ray. In the focal
sphere, this is a straight line from the center to the surface. If ¢ is the azimuth of the
ray measured from North and 7 is the take-off angle of the ray measured from the down-
ward vertical, then the direction cosines of the ray with respect to the geographic axes
(North, East, and nadir) are

v, = sinicos ¢ (16.105)
v, = sinisin ¢ (16.106)
Y3 = cos8i (16.107)

The components of P, SV, and SH displacements along the geographic axes (Fig. 16.20)
are

P, = Psinicos ¢, SV, =SV cosicos ¢, SH;, = —SHsin ¢
P>, = Psinisin ¢, SV, = SV cosisin ¢, SH, = SHcos ¢
P3 = Pcosi, SV; = —SVsini, SH; =0

where the P, SV, and SH wave amplitudes depend on the location of the observation
point with respect to the source orientation. For points on the focal sphere, the
observation point is given by (¢, i) and the orientation of the source is given by

(0. 6, A) or (6, by, 0).
16.7  The source time function
The source time function (STF) Au(t) represents the slip’s dependence on time

and is an important characteristic of the focal mechanism. We have already considered
the most simple STF, namely, the step function. There are other functions; some
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Fig. 16.21. The source time function for a slip Au(¢): (a) a step function; (b) a ramp function with a
rise time 7; and (c) an exponential function with a rise time 7.

commonly used ones, including the step function (Fig. 16.21), are

Au(r) = AuH(1) (16.108)
t
Au(r) = 4 Bz 0sisT (16.109)
Au, t>T
Au(t) = AuH(1)(1 —e ') (16.110)

In all cases, the slip of the fault starts at = 0, and, once it has reached its maximum
value Au, it stays constant. The fault does not return to its initial state. In the first
case (16.108), Au(¢) has the form of a step or Heaviside function such that the slip
reaches its maximum value instantaneously at time ¢ = 0. In the second case (16.109),
Au(t) increases linearly from =0 to =7, and at that time reaches its maximum
value. This STF introduces a new parameter of the source, namely, 7, the time taken
for the slip to reach its maximum value, or the rise time. In the third case (16.110),
Au(t) is a continuous function for ¢ > 0. The slip reaches its maximum value asympto-
tically with time. For the rise time, Au(7) = 0.63 Au.

We have seen in equations (16.77) and (16.78) that elastic displacements depend
on the slip velocity Au. For this reason, the time dependence of the slip velocity
is often also called the STF. For the first two models ((16.108) and (16.109)) we
obtain

Ai(r) = AV §(1) (16.111)
Ad(t) = AV [H(t) — H(t — 7)] (16.112)

In these two models, at ¢ = 0, the slip velocity jumps instantaneously from 0 to its
maximum value AV (Figs. 16.22(a) and (b)). In the first, the slip velocity is an impulse
and in the second it has a duration 7 with constant value. More realistic is to define a
STF with a slip velocity that increases from zero to its maximum value and then
decreases to zero after a time 7. A model that satisfies these conditions is a triangular
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Fig. 16.22. The source time function for a slip velocity Au(z) and its relation to that for a slip Au(¢): (a) an impulsive function; (b) a rectangular function
with duration 7; (c) a triangular function of duration 7; and (d) a trapezoidal function of duration 7.
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Al

Fig. 16.23. The source time function for a slip velocity Au(7) for a complex source with several
events.

function (Fig. 16.22(c)):

0, t<0
INGS ogzgg
Aii = T (16.113)
2 _
a2z T
T 2
0, t>T1

The slip velocity increases linearly from zero at ¢ = 0 to reach its maximum value (AV)
at t = 7/2 and then decreases to zero for ¢t = 7. During the first part of the process, the
slip acceleration (Aii) is positive, whereas in the second it is negative. If we want to
increase the duration of the source process we can use a STF of trapezoidal form
(Fig. 16.22(d)). In this case, the slip velocity maintains its maximum value for a certain
time before decreasing to zero at t = 7.

The models of the STF we have mentioned represent simple sources consisting of a
single event. A complex source can be represented by a STF consisting of several
triangles or trapezoids of different heights (Fig. 16.23). In this way we represent with
a point source a mechanism that has several accelerations (Aii > (), decelerations
(Aii < 0), and stops (Au = 0), during the total process of fracturing.

16.8  The equivalence between forces and dislocations

We have seen that the source of earthquakes can be represented by systems of
forces (16.7) or by displacement dislocations (16.23). We will see now that the double-
couple system of forces is equivalent to a shear dislocation or fracture. For a point
source, the elastic displacement due to a single couple with forces in the x; direction
and the couple’s arm s in the x; direction (I = (1,0,0) and n = (0,0, 1)), according to
(16.15), is

U = J MG, 5dT (16.114)

Where M = Fs is the moment of the couple. For a double couple with forces in the
x; and xj3 directions (I; = (1,0,0), n; = (0,0,1), I, = (0,0,1), and n, = (1,0,0)), by
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Fig. 16.24. The equivalence between a double couple (and PT system) and a point shear dislocation.

substitution into (16.16), we obtain
pp _ [~
u; = J M[G,‘1’3+G,'37|]d7' (16115)

We substitute Green’s function for the far-field P waves (16.63) into (16.114) and
(16.115), and, putting M(t) = MH(t), we obtain

. . M r
uzDC'P:ZM,'SC'P:47Tpa3r’71737i5(1_a) (16.116)

For displacements of S waves in the far field, by substituting (16.64) into (16.114) and
(16.115), we get

. -M r
SC:S
DY = i —0q13)0 t——= 16.117
Ui 471',063}’ (71’71 73 /173) ( ﬂ) ( )
. -M r
DC:S
up Y = 4ﬂpﬁ3r(2%7173 — 83 — 6,-3%)6(l - 5) (16.118)

The radiation pattern for P waves is the same as those for SC and DC models. The first
studies of focal mechanisms were based on the polarity distribution of P waves, which is
the same for both models. This explains the discussion about which model really corre-
sponded to the seismic source. The radiation pattern of S waves, however, is different for
each model. Analysis of S waves, especially after 1960, proved that the DC model was
the one that is consistent with observations.

Let us consider now elastic displacements in the far field due to a point shear disloca-
tion (16.72). For the slip orientation given by n = (0,0,1) and / = (1,0,0), that is, a
fracture on the plane (x,x,), with slip in the x; direction, equation (16.72) becomes

U = /.LSJ

o0

Au(Gr 3+ Grsp) dr (16.119)
This expression is equivalent to (16.115). In consequence, a double couple with one
couple in the direction of the slip and the other perpendicular to the fault plane is
equivalent to a shear fracture (Fig. 16.24). The same result is obtained when we compare
expressions (16.79) and (16.80) for the far field of P and S waves due to a shear disloca-
tion, substituting / = (1,0,0) and n = (0,0, 1) with the expressions for a DC (16.116)
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and (16.118). In the comparison of the two sets of expressions, we find that the moment
of the couple of forces M = sF is equivalent to the seismic moment My = p Au S of the
shear fracture; in both cases the dimensions are force times distance.

Another more general manner to show this equivalence is to start with the equality
(Aki and Richards, 1980)

J FkGik dV = J AM /,L(nkl] + njlk)Gik,j dS (16120)
14 X

In this equation, we search for the set of body forces Fj, distributed inside of the volume
V" which corresponds to the shear dislocation on the surface X located inside of V. Inside
of the volume V' the coordinates are &; and 7; on the surface X~. We consider the same
particular case for n = (0,0, 1) and I = (1,0,0):

J pAu(Gyz+Gpp)dS = J F Gy dV (16.121)
b)) ’ 14

The integral on the left-hand side can be expressed in the form of an integral over the
volume V' by using the delta function §(¢; — n;). This function is zero for all points &

in ¥ that do not coincide with the points 7); on the surface X, that is, for all points of
the volume that are not on the surface. The left-hand side of equation (16.121) becomes

J pAu (G 3+ Gz 1)0(§, — m,) dV (16.122)
v

According to the properties of the derivatives of the delta function, the derivatives of G
can be written using those of §(§; — n;) in the form

0
Gir=1| =[6(& —m,)]G; dV 16.123
ij.k JV agk[ (fn 7711)] ij ( )
On substituting (16.123) into (16.122), we obtain
| uAu(a‘SGﬂ +‘%G,»3)6<£” )V = | FGuav (16.124)
v 083 9 v

where both integrals are defined over the same volume. If we shrink the volume to a
point, for a point source, the part in brackets can be taken out of the integral and the
integral becomes

J AU, —n,) dV = plAuS =M,
14
Then, equation (16.124) becomes

a6 06
F.Gy =Myl =— G, +=—G; 16.125

kGik o(a£3 il +8§1 :3) ( )
In this equation we can identify the components of the force F), that are equivalent to the
shear dislocation:

06 06
Fi=M F, = = M,— 16.12
1 0 852 ) 2 07 3 0 8&1 ( 6 6)
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Since the delta function represents an impulsive force, its derivatives with respect to a
particular coordinate represent a dipole or a couple with its arm in that direction. For
example, 96/0x3 is a couple with its arm in the x; direction. Thus Fj in (16.126) is
formed by two couples in the plane (xi,x3), in the directions of x; and x3, or a
double couple. The two couples have the same moment, equal to the seismic moment
M. In consequence, a double couple on the plane (x, x3) is the force system equivalent
to a shear fracture on the plane (x{,x,), with slip in the x; direction. In general, the
system of equivalent forces for a shear dislocation is a double couple with one couple
in the direction of the slip and the other normal to the fault plane. Here we have
shown this equivalence for a particular case and a point source. The equivalence can
be shown in a more general form and also for an extended fracture. In the latter case,
the equivalent forces are a distribution of double couples on the fault plane (Aki and
Richards, 1980). Owing to this equivalence, the term double-couple source is often
used as a synonym for a shear fracture.



17 THE SEISMIC MOMENT
TENSOR

17.1  The definition of the moment tensor

In Chapter 15 we introduced the scalar seismic moment as a measure of the size
of an earthquake. In the formulation of the theory of the source mechanism an impor-
tant concept is that of the seismic moment tensor M;;, and the moment tensor density
per unit volume or unit surface m; (Jost and Herrmann, 1989). The relation between
them is

The seismic moment tensor was first proposed by Gilbert (1970), who related it to the
total drop in stress Ao of earthquakes. Backus and Mulcahy (1976) clarified that the
moment tensor represents only that part of the internal drop in stress that is dissipated
in inelastic deformations at the source.

If we consider an elastic medium in which only elastic processes occur, then, in the
absence of body forces, the equation of motion (2.56) is

Since in the real or physical situation there are besides elastic also inelastic processes
occurring, the total stress is given by o; and 7; correspond only to the pure elastic
model. The equation of motion for the real situation is, then,

If we define the moment tensor density m; as the stress in excess of the purely elastic
stress or the stress glut, it will be given by the difference

my =1, — 0y (17.4)
If we substitute o;; from (17.4) into (17.3), we obtain
Pl = Tij j — My j (17.5)

If we compare this equation with (16.3), in which the seismic source was represented by
equivalent body forces F;, we get

Fi=-m (17.6)

i,J

Equivalent body forces can be derived from the moment tensor and both can be used
to represent the seismic source. Equation (17.6) clarifies the meaning of (16.2), in
which body forces were related to stresses in the focal region. Equivalent body forces

323
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correspond only to the stresses responsible for inelastic processes in the source region.
The moment tensor according to (17.5) represents, precisely, those stresses that are
directly related to inelastic displacements at the source of an earthquake. Just like for
equivalent body forces, the seismic moment is defined only inside of the focal region,
the region where the inelastic processes take place, and is zero outside of it.

If we substitute m;;, according to (17.6), into (16.7), we can express elastic displace-
ments outside the focal region ; in terms of m; and the corresponding Green function:

U; :J dTJ —mk“G,-k dv (177)
Vo .

—00

Integrating by parts with respect to the spatial coordinates gives

—00

U, = J mijkj dr + J dr JV mijikvj ar
00 0

In the absence of external forces and torques, the sum of all internal forces and moments
is null; then, by an appropriate choice of the origin of coordinates, n;Gy; = 0, and we
obtain

u; = J dTJ mij,jkﬁjdV (178)
Vo

—00

If the moment tensor is defined only on a surface X, we use m;;, the moment tensor

density per unit surface, and we write (17.8) as a surface integral:

(o.¢]
Uu; = J dTJ miji/c,j ds (179)
—0o0 X
Equations (17.8) and (17.9) show that elastic displacements outside of the focal region
can be derived from the seismic moment tensor and the derivatives of Green’s function
integrated over the focal region (¥, or X'). Since we have not specified its form, m; can
represent a very general type of source. It corresponds to any system of internal body
forces according to (17.6), provided that the nett effect of their sum and the sum of
their moments are null. The moment tensor is, thus, a very convenient form in which
to represent the source of an earthquake in a general way.

For a point source, equations (17.8) and (17.9) can be written in a compact form using
an asterisk to express time convolution:

The physical meaning of the moment tensor can be understood in relation to the
equivalent body forces. According to (16.7), the elastic displacements are given by

u;(xg, 1) = J

If we perform a Taylor expansion of G, around the origin, & = 0, the first three
terms are

o0

dTJ Fie (&, 7) G (x5, 1:&5,7) AV (17.11)
0 Vo

PGy
98, O

9Gy,
9

1
Gir(&) = Gi(0) + &= +36& +... (17.12)
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Fig. 17.1. Representations of the components of the seismic moment tensor: (a) for i = j and (b) for
i # j (only three components are shown).

Taking only the first two terms and substituting into (17.11), the first term is zero by
virtue of the condition that the sum of internal forces must be zero:

J Fi(0)Gy(0,x)dV =0 (17.13)
Vo
Therefore, we obtain

0 Vo

By comparison of (17.14) with (17.8), we find that
i = &F (17.15)

The moment tensor density m; corresponds to the first nonzero term in the Taylor
expansion of (17.12), and thus it is called the first-order moment tensor. This term is
associated with the first derivatives of Green functions. We can also derive moment
tensors of higher order that are associated with higher derivatives of Green functions,
for example, the second-order moment tensor, the third term in (17.12), which represents
its variation with space.

According to (17.15), the components of m;; correspond to force couples or dipoles.
The components m;;, my, and ms; are linear dipoles without moments, that is, the
arm is in the same direction as the forces. The other components have their arms perpen-
dicular to the forces and are couples with moments (Fig. 17.1). The condition of zero nett
moment implies that the tensor is symmetric, m; = mj;; couples with opposite moment
must be equal. We have seen that Green’s function represents displacements due to
impulsive forces, whereas its derivatives represent displacements due to couples or
dipoles of impulsive forces. In consequence, according to equations (17.8) and (17.9),
elastic displacements are given by the convolution of distributions of dipoles or couples
of forces representing the source (moment tensor) with displacements due to couples of
impulsive forces (derivatives of Green’s function).

The components of the moment tensor are expressed in relation to a coordinate
system of reference, usually, the geographic system, with its origin at the focus of the
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A=0 A=0

(a) (b)

Fig. 17.2. Systems of coordinates at the focus referred to the geocentric geographic system of the
Earth (r,0,¢). (a) The system formed by unit vectors (e,, ey, es) (zenith, South, East). (b) The
system in geographic directions (x, y,z) or (x, X, x3) (North, East, nadir).

earthquake, for example, the Cartesian coordinate system (x, x5, x3) or (x, y, z), positive
in the directions North, East, and nadir (Fig. 17.2(b)) or also North, West, and zenith.
Another system that also is used is referred to as geocentric spherical coordinates of the
focus (r, 0, ¢), where r is in the radial direction, 6 is the geocentric colatitude and ¢ is the
geocentric longitude. At the focus a Cartesian coordinate system with unit vectors e,, e,
and e (in the directions of positive increments of r, 6, and ¢) is formed. This system has
positive axes in the directions zenith, South, and East (Fig. 17.2(a)). The correspondence
among the six components of the moment tensor in the three systems is

My =M, = My
My =M, = My,
My =M., =M,
My =M,, =My,
My =M, =M,y
My =M,.=—-M,

17.2 The moment tensor and elastic dislocations

If we compare equations (17.9) and (16.23), we can define the moment tensor
density corresponding to a dislocation with slip Au on a surface X' of normal n as

mj; = Cijy Auy ny (17.16)
and that for an isotropic medium as

my; = Ay Ay 6 4 p(Au;n; + Au;n;) (17.17)
If the slip direction is given by the unit vector / equation (17.17) becomes

my; = Au (Mo + p(lin; + Ln)] (17.18)
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Fig. 17.3. Representations of the source: (a) for an explosion and (b) for a shear fracture.

From this expression we can find the moment tensor for various types of sources, by
specifying the orientations of n; and /;.

17.2.1 An explosive source

An explosive source may be considered as an expansion along the three coordi-
nate axes. This situation is represented by linear dipoles (/ and n in the same direction)
along each axis, that is, (1,0, 0), (0, 1,0), and (0,0, 1). The moment tensor is the sum of
the three and, using (17.18), we obtain (Fig. 17.3(a))

1 0 0
my=KAu[ 0 1 0 (17.19)
00 1

where K = \ +%u is the bulk modulus (2.22). The sum of elements of the principal
diagonal gives the increase in volume per unit volume:

myy + niyy + nsy = 3K Au (1720)

17.2.2  Shear fracture

In a shear fracture slip, Aw is along the fault plane; that is, n and / are perpen-
dicular. Using equation (17.18) and the definition of M, after integration over the source
surface of area S, the moment tensor for a point source is

My = Mo(ln; + Lny) (17.21)

For a particular case in which the fault plane is the (xi, x,) plane, that is, n = (0,0, 1),
and the slip is in the x; direction, I = (1,0,0) (Fig. 17.3(b)), we obtain

00 1
Mj=My[0 0 0 (17.22)
100

The sum of the principal diagonal is null, indicating that there is no change in volume.
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Fig. 17.4. Orientations of the unit vectors / and n, and definitions of the angles 6,, ¢,, and 6,.

The unit vectors n and [/ referred to the geographic reference system can be written
in terms of the angles 0, and ¢,, and 6, and ¢,, respectively (Fig. 17.4). By substitution
into (17.21) of the expressions for the components of n, according to (16.93)—(16.95),
and similarly for I/, we obtain for the six components of the normalized moment
tensor

my; = 2sin @, cos ¢, sin b, cos ¢,

myy = 2sin 6, sin ¢, sin 6, sin ¢;

m33 = 2cosf,cos b,

mj, = sin 6, cos ¢; sin 6, sin ¢,, + sin 6, sin ¢; sin 6,, cos ¢,,

my3 = sin §; cos ¢; cos 6, + cos 0, sin 0, cos ¢,

my3 = sin 6, sin ¢; cos 6, + sin ¢,, sin §,, cos 6, (17.23)

As we have seen, a shear fracture can also be specified in terms of the angles ¢, 6, and
A (section 16.6). Using the relations between ¢, 6, and A, and n; and /;, equations
(16.99)—(16.104), from (17.21), the components of the moment tensor (Fig. 17.5) are

my; = — sin 6.cos Asin(2¢) — sin(26) sin® ¢ sin A
sin § cos A sin(2¢) — sin(26) cos® ¢ sin A
sin(26) sin A

nyy

ms33
myy = sin§cos Acos(2¢) + 5 sin(26) sin(2¢) sin A
my3 = — sin Asin ¢ cos(26) — cos § cos Acos ¢

My; = cos ¢ sin A cos(26) — cos § cos Asin ¢ (17.24)

In (17.23), the expressions are symmetric with respect to n and /, and do not imply that
one can select the fault plane from the two possible planes. In (17.24), the equations are
related to the orientation of motion on the selected fault plane (Fig. 17.5). Naturally, the
result is the same for values of ¢, 6, and A of the second plane.
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X3 (zenith)

X1(North)

Fig. 17.5. Relation between unit vectors / and n, and the angles ¢, 6, and A that define the motion in a
fault.

17.3  Eigenvalues and eigenvectors

As we saw in the discussion of stress and strain tensors (section 2.1), we can also
perform an eigenvalue and eigenvector analysis of the moment tensor. Since this tensor is
symmetric, its eigenvalues are real and its eigenvectors are mutually orthogonal. They
satisfy the equation

where the three eigenvalues oy, 0,, and o3 are the roots of the cubic equation resulting
from putting the determinant of (17.25) equal to zero. By substituting each eigenvalue
into (17.25) we obtain the three eigenvectors v}, v, and 1/,3, which form the principal
axes. In reference to these axes, the moment tensor has the form

g1 0 O
Mi=|0 o, 0 (17.26)
0 0 g3

In this system, the moment tensor is formed by three linear dipoles in the direction of the
principal axes and thus represents the principal stresses. If we order the eigenvalues
o1 > 0, > 03, then oy corresponds to the greatest stress, o3 to the least stress, and o,
to the intermediate stress. The sum of the elements of the principal diagonal is the
first invariant of the tensor and has the same value for any reference system:

My + My + M3y =0y + 0y + 03 (17.27)

This sum represents the change in volume, as we saw for the explosive source. Thus we
can define the isotropic part of the moment tensor as

O'O :%(O'l +O'2+0'3) (1728)

If we subtract this from the tensor M, we obtain the deviatoric tensor M,{j, the sum of

whose diagonal elements is always zero and does not include changes in volume:
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According to (17.29), the moment tensor can be separated into two tensors, one

isotropic, M, 2 = 6,700, and the other deviatoric, M ;/,

My, = M)+ M} (17.30)

Changes in volume are thus separated from other parts of the moment tensor. The
moment tensor that represents an explosive source (17.19) is purely isotropic and that
for a shear fracture (17.22) is purely deviatoric.

If we represent the moment tensor for an explosive source referred to its principal axis,
we obtain the same result as that in (17.19). An explosive source is purely isotropic and
any reference system is equivalent to the principal axes. For the shear fracture of (17.22)
(the fault plane is normal to x; and slip is in the x; direction), the eigenvalues of the
matrix (17.22) are 1, —1, and 0. The eigenvectors are found by substitution into
(17.25), resulting in (1/v/2, 0, 1/v/2) for o = 1, and (1/v/2, 0, —1/+/2) for ¢ = —1.The
tensor referred to its principal axes is

10 0
My=M,[0 0 0 (17.31)
00 -1

This tensor represents two linear dipoles of positive and negative forces or tension and
pressure forces along the principal axes, that is, in the (x, x3) plane at 45° to the direc-
tion of slip. Thus, for a shear fracture, eigenvectors corresponding to the eigenvalues o,
and o3 define the principal axes of stress or pressure and tension axes, P and 7. The third
axis corresponding to the zero eigenvalue is the null axis B. In terms of the unit vectors P
and T, the moment tensor is given by

My = My(T:T; — P;P;) (17.32)

This result is analogous to that found in section 16.2 regarding the equivalence of a
double couple to pressure and tension forces at 45° to the couples.

17.4  Types of sources and separation of the moment tensor

We have already said that the moment tensor represents a very general type of
source. The analysis of its eigenvalues indicates, in each case, the type of source. The
most general case corresponds to three different eigenvalues, oy # 0, # 03, whose sum
is not zero, o + 0, + 03 # 0. Then, the source has changes in volume and, after separa-
tion of the isotropic part (17.29), the deviatoric part is of a general type, not necessarily a
shear fracture or double couple.

If oy = 0, = 03, as we have seen, the source is an isotropic expansion or contraction
depending on the sign. In each case 0| + o, + o3 represents the increase or decrease in
volume. For positive sign the source represents an explosion.

For sources without nett volume changes, o + 0, + 03 = 0, the moment tensor is
purely deviatoric. This condition is often imposed on earthquake sources. In this case,
only two of the eigenvalues are independent, since 0, = —o; — 03. For a shear fracture
or double-couple source, the moment tensor is deviatoric and must satisfy the conditions
03 = —0] and 0y = 0.
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Earthquake sources are thought to be shear fractures or nearly so. However, this need
not always be the case and even the possibility of the occurrence of changes in volume
can not be completely ruled out. Methods of inversion of the moment tensor from
observations (17.7) do not impose any condition and result, for some earthquake sources
in the presence of certain amounts of anisotropic and nondouble-couple components.
For this reason, it is convenient to separate the moment tensor into three parts, one
isotropic, corresponding to changes in volume, one of pure shear fracture or a double
couple (DC), and a third that may be of various kinds (Strelitz, 1989). This analysis is
called partition or separation of the moment tensor and can be expressed by writing

M =M’ + MP¢ + MR (17.33)

The isotropic part (17.28) has already been defined. Partition of the deviatoric part
P €+ MR®) can be done in several ways. The simplest is to separate this part into
two DCs, major and minor. To do this we take into account that, for a deviatoric
tensor, 0, = —o| — 03, and obtain

o 0 0 o 0 0 0 0 0
0 o 0|=]0 -0, 0)+[0 -5 © (17.34)
0 0 oy 0 0 0 0 0 oy

The two DCs have different orientations, the major DC with moment M, = o, and the
minor one with M, = o3.
A more efficient separation is that proposed by Knopoff and Randall (1970):

o 0 0 oy —03) O 0 —05/2 0 0
0 oo 0 |= 0 0 0 + 0 o 0
0 0 o3 0 0 —1(oy—o03) 0 0 —0y/2
(17.35)
As before 0y = —0 — 03. The first term is a DC source. The second is called a compen-

sated linear vector dipole (CLVD). Its physical meaning is a sudden change in the shear
modulus in a direction normal to the fault plane, without changes in volume. The source
represented by a DC plus a CLVD corresponds to a shear fracture in which, during the
rupture process, the shear modulus in the focal region changes suddenly. This separation
represents the best solution that maximizes the DC part of the source.

In conclusion, a seismic point source of general type can be represented by the
moment tensor. This source may involve changes in volume, shear fracture and
sudden changes in rigidity at the source, and thus can be separated in the form

M =M’ 4+ MP€ 4 MCVP (17.36)

This partition separates shear fracture, considered the standard model for the source of
earthquakes, from other effects that may also occur. The isotropic part is presupposed to
be zero in many problems. A deviatoric source is formed by the DC plus CLVD sum. A
deviation from a pure DC is sometimes represented by ¢ = |03/, the ratio of the
greatest and least eigenvalues. For a pure DC, 6 = 1.

When the moment tensor is obtained from observations, the presence of non-DC
components may be due to errors in observations or to propagation effects that have
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not been taken into account, rather than to the source itself. There is always a certain
amount of ambiguity in distinguishing between effects that are due to the source and
those due to propagation. Perfect separation of these two effects is not always possible.

17.5 Displacements due to a point source

According to (17.10), displacements due to a point source can be expressed by a
time convolution of the moment tensor with derivatives of the Green function:

ui(x,, 1) = J

Derivatives of the Green function for P and S waves in the far field for an infinite,
homogeneous isotropic medium are given by (16.74) and (16.75). For P waves, time
convolution according to (16.76) is given by

Jic M,j(T)(é(t—;—T) dT—Mij<z—;> (17.38)

If we separate the modulus and time dependence from the orientation in the form
M ;(t) = M(t)m;, according to (16.77) and (16.78), we obtain the elastic displacements
of P and S waves in the far field:

p_ Myt —r/a)

o0

M;(7)Gy ;(t — 7)dT (17.37)

U = Ampalr ViV Ve (17.39)
My(t—r/B)
S 0
U = 47rpﬂ3r (6 — %%)V_/mg (17.40)

Elastic displacements depend on the time derivative of the moment or the moment rate.
Displacements for P waves and for SV and SH components of S waves are (calling the
factors in (17.39) and (17.40) A and B)

where SV; and SH; are unit vectors in the SV and SH directions and we have taken into
account that SV;~; = 0 and SH; ; = 0. Since ~; is a unit vector in the ray’s direction, P
displacements are in the same direction and those of S are perpendicular (Fig. 16.20). If
the problem is referred to geographic axes (North, East, and nadir), for a homogeneous
medium, ;, SV;, and SH; can be given in terms of the azimuth ¢ and take-off angle i of
the ray:

~1 = sinicos ¢
v, = sinisin ¢ (17.44)
Y3 = COS i

SV, =cosicos¢
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X, (East)

X3 (Nadir)

Fig. 17.6. Displacements of P, SH, and SV waves, and their relations to the angles i and ¢ of the ray
at the focus.

SV, = cosisin ¢ (17.45)
SV; = —sini

SH, = —sin¢

SH, = cos ¢ (17.46)
SH; =0

The displacements up, ugy, and ugy can finally be given in terms of i and ¢ (Fig. 17.6) and
components of the moment tensor, by substituting equations (17.44)—(17.46) into
equations (17.41)—(17.43):

up = A{sin® i [cos’ ¢ my, + sin® ¢ my, + sin(2¢) my,]

+ cos? i my; + sin(2i)(cos ¢ my3 + sin ¢ my3)} (17.47)
Ugy = B{% Sln(zl) [COS2 qull + Sin2 ¢MQ2 — N33 —+ Sln(2¢) mlz]
+ cos(2i)(cos pmyz + sin pmys) } (17.48)
usy = B{sin i [}sin(2¢) myy — $sin(2¢) my; + cos(2¢) my,]
+ cosi(cos pmy; —singmyz)} (17.49)

These three equations are for a general form of the moment tensor without assuming any
particular condition.

17.6  The temporal dependence

For a point-source moment tensor, if all of its components have the same time
dependence, the source time function is given by M(z). As we saw in (17.39) and (17.40),
the displacements depend on the moment rate M () and its time dependence is also called
the STF. This function represents the form according to which the moment rate changes
with time and its integral is the scalar seismic moment M.
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Fig. 17.7. The temporal dependence of Mo(t) for a simple source.

(a) (b)

Mo ()

t t

Fig. 17.8. The temporal dependence of M, (7) for a complex source. (a) The main moment release
occurs at the beginning. (b) The main moment release occurs at the end.

Just like for the time dependence of the slip rate, for a simple source a commonly used
function for M(z) is a triangle or a trapezoid (Fig. 17.7). We have discussed the proper-
ties of this STF in section 16.7 (Fig. 16.22). Since the size of an earthquake is given by
M, the same size will result in two different functions of the moment rate, one with a
greater modulus and shorter duration and another a with smaller modulus and longer
duration. We must remember that this is a point-source representation, whereby the
duration of the moment rate function is related to an extended source with a specific
duration of the fracturing process and thus to its dimensions. For a complex source,
the moment rate may be represented by several triangles of different sizes (Fig. 17.8).
The relative sizes of these sources show how the moment’s radiation with time or
moment release takes place. In some cases, the greatest part of the moment release
occurs during the first part of the shock and a minor part follows later (Fig. 17.8(a)).
Another possibility is that there is first a small moment release and then, later, the
main part (Fig. 17.8(b)). The small event may be considered as an aftershock in the
first case and as a foreshock in the second. Since these events are parts of the fracturing
process, the total duration of the source includes the complete moment release.

17.7  Inversion of the moment tensor

According to equations (17.8) and (17.9), for a point source (17.10), the elastic
displacements are linear functions of the components of the moment tensor and deriva-
tives of Green functions. In an explicit form, this is given in equations (17.47)—(17.49) for
P and S waves in the far field of an infinite, homogeneous isotropic medium. This linear
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dependence makes it possible to determine the six components of the moment tensor
from observations of the elastic displacements by linear inversion.

For a point source, the elastic displacements in the far field can be expressed in the
time domain as a convolution (17.37):

u(t) = My(1) * Gy (1) (17.50)

Taking the Fourier transform, in the frequency domain, the relation is a product of their
transforms:

(W) = My(w)Gy ;(w) (17.51)
In both cases, inversion consists in the determination of the six components of M; from
observed values of elastic waves u; and components of appropriate functions for Gy; ;
that are assumed to be known. Depending on the waves used (P, S, LR, or LQ) and
the characteristics of the problem, the medium can be approximated by an infinite homo-
geneous medium, a half-space, or a layer medium using a flat or spherical Earth.
Naturally, the Green functions become more complicated with increasing complexity
of the model. Derivatives of Green functions have in general 27 components that for
some particular cases can be reduced in number to eight.

If we impose no conditions, there are six components of the moment tensor to be
determined. If the source is assumed to be purely deviatoric, M; + My + M33 =0,
that is, M3; = —M,; — M, and the number of unknowns is five. This is a linear condi-
tion and the problem remains linear. If we assumed the source to be a shear fracture or
DC, the condition is that the determinant of Mj; is zero, and the problem ceases to be
linear. For this reason this condition is not imposed for linear inversions.

For the linear problem, equations (17.50) and (17.51) may be written in matrix form as

u=GM (17.52)

We need a number of observations larger than the number of unknowns (six or five), and
solutions are obtained by a least squares procedure (15.4):

M= (G'G)"'G"u (17.53)
Or, using the generalized inverse (15.7),
M=U"A"Vu (17.54)

where U and V are matrices formed by the eigenvectors of GTG and GG, respectively,
and A is a diagonal matrix formed by the eigenvalues of G'G. In practice, there are
several methods for the solution of this problem; some are presented in Chapter 19.
Some methods use linear inversion whereas others use iterative procedures minimizing
the differences between theoretical and observed displacements.

The observed data are the amplitudes of seismic waves recorded by seismographs. The
problem can be solved in the time (17.50) or frequency (17.51) domain. In the frequency
domain, the problem is linear either for the real or for the imaginary part of the spectrum
but not for the spectral amplitude. In all cases, observations at different locations and at
different times or frequencies are used so that the problem is well conditioned. Generally,
we obtain the six components of the moment tensor or five assuming that there is no
change in volume. Since solutions do not necessarily correspond to a DC source, the
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moment tensors obtained are separated into a DC and a non-DC part, as we saw in
section 17.4. The main advantage of using the moment tensor formalism is that the
source problem can be solved by linear inversion. Also we can represent the source in
a general form and investigate whether there are volume changes and non-DC
components.



18 MODELS OF FRACTURE

18.1  Source dimensions. Kinematic models

In Chapters 16 and 17 we considered in some detail the characteristics and
displacement field corresponding to point sources. A more complete representation of
the seismic source must include its dimensions and consider its effects on wave radiation.
The first considerations of the dimensions of the seismic focus proposed models
consisting in spherical cavities of finite radii with uniform distributions of stresses on
their surfaces (Jeffreys, 1931; Nishimura, 1937; Scholte, 1962).

The first models for extended sources of shear fracture were kinematic models
consisting in slip that propagates with a constant velocity over a surface of finite area.
Ben Menahem (1961, 1962) described extended sources in terms of distributions of
single and double couples propagating with a certain velocity over a rectangular
surface, and determined the corresponding displacements of body and surface waves.
Berckhemer (1962) studied the effect of a circular fracture of finite radius that propagates
from its center on the width of temporal pulses. Burridge and Knopoff (1964) treated
shear dislocations that propagate over a certain area and showed their equivalence to
propagating double couples. Haskell (1964, 1966) proposed a rectangular model of
fracture, and Savage (1966) proposed an elliptical fault and studied the effects on the
spectra of body and surface waves. Brune (1970) presented a model with shear stresses
suddenly applied to a circular fault, and studied elastic displacements in near and far
fields. More recent kinematic models include propagating shear fractures on finite
faults with variable slip, rupture velocity, and rise time (Hartzell, 1989).

Let us consider first some general characteristics of kinematic models of extended
sources represented by a surface X' over which a shear dislocation Au(¢;) propagates
with a constant velocity v in one direction, from the origin (§; = 0) to a final point
over a distance L (Fig. 18.1) (Aki and Richards, 1980). The velocity of the fracture’s
propagation is assumed to be constant and less than the velocity of wave propagation
(v < B < «); that is, we treat subsonic fractures (a common value is v = 0.73). From
equations (16.71) and (16.77), the displacements of P waves in the far field for an infinite,
homogeneous, isotropic medium can be written as

R(ny, ., . r
up (x;,) :47TZ3PL ( krk %) Au(g,.,t—a) ds (18.1)

where r = |x; — &;| is the distance from the point of observation x to a point of the source
&; where the slip Au is located at each moment and R(ny, /i, ) is the radiation pattern
that depends on the orientation of the source (/,n) and the position of the observation
point (v;). If we are interested only in the wave form as a function of time at a certain
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b

Fig. 18.1. An extended source of dimension L, with slip Aw at &; and an elastic displacement u at x;.

distance r, from the origin of & (Fig. 18.1), we need only consider the integral
(section 16.3)

u(t) = J Adl (g,, - V) ds (18.2)
b o
Expressing r in terms of a Taylor expansion about r, we obtain
2 O
= 18.3

r= r0+£l a§,+ é-l 862 ( )
and, since (16.53) applies,

or

— = 18.4

€ (18.4)

If we keep only the first-order term of ; and neglect those involving higher powers, we
obtain

r=ro—&"i (18.5)

Since the first neglected term is &7 /ro, and the maximum value of |¢;| is L, the approxi-
mation given by (18.5) is good for displacements of wave length A greater than the
neglected term, that is, for Ary > L. For these wave lengths, elastic displacements of
P waves are given by (18.2):

u(t) = J Adl (gi, - ’0_57) ds (18.6)
x «
Its Fourier transform is
U(w) = J dsJ Ad(r) exp {— iw(t - ’0_57)} de (18.7)
X —oo «

Since the transform of Au is

AU(w) = r@ Au(t)e ™ dr (18.8)

—00
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we obtain for U(w)

U(w) = e“rolo L it AU (w, &) e 476/ 4 (18.9)
where we have used that, if the transform of Au(z) is AU(w), that of Au(z) is iw AU(w).
Thus, the transform of elastic displacements U(w) has the form of a spatial transform
over the fault plane of the transform of the slip AU(w). In the exponential,
wy;/a = k~; is the projection of the wave number k onto the fault plane X

If the slip has a step-function time dependence Au(t, ;) = Au(§;) H(t), its transform is
Au(§;)/(iw). By substituting into (18.9), we obtain

U(w) = /e J Au(&;) e “Eilags (18.10)
z
If we take the limit for low frequencies, then, when w tends to zero, we obtain
U(O):,,LJ Au(€)dS ~ u AiS ~ M, (18.11)
b

For low frequencies, the spectral amplitudes are proportional to the seismic moment.
The proportionality depends on the factors present in (18.1). For high frequencies, as
they tend to infinity, if the slip does not change sign, the spectral amplitudes tend to
zero. The form in which U(w) tends to zero from the limit of U(0) depends on the
form of the slip function.

In general, the form of amplitude spectra corresponding to a source with finite dimen-
sions is the following: U(w) is constant for a range of low frequencies and starts to
decrease from a certain frequency that, as will be shown later, is proportional to the
inverse of the source dimensions. The envelope of the spectrum in the high frequencies
has a frequency dependence of w™°, where € has values between zero and three, and
generally equals two (Aki, 1967). Thus, high-frequency spectra are limited to a certain
range. For point sources and a step source time function, we saw that the far-field elastic
displacements of P and S waves are impulses (delta functions) ((16.79) and (17.80)) and
in consequence their spectra are constant for all frequencies. The source dimensions limit
the high-frequency spectra to a certain maximum value. The larger the source dimension
the lower the frequencies present in the spectrum. These results have been obtained with-
out specifying the form of the source and are common characteristics for all sources of
finite dimensions such that slip starts at zero and ends with a constant value.

18.2  Rectangular faults. Haskell’s model

A simple kinematic model of finite dimensions, known as Haskell’s model, is a
rectangular fault of length L and width 7, such that the slip Au propagates only along
the L direction with a constant velocity v (the slip moves instantaneously along W)
(Haskell, 1964). The coordinate along L is &, with its origin at one end of the fault
and Awu has only one component (Fig. 18.2). Fractures that propagate only in one
sense (from 0 to L) are called unilateral fractures and those that propagate in both
senses (from 0 to L/2 and from 0 to —L/2) are called bilateral fractures. For unilateral
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Fig. 18.2. The rectangular fault of Haskell’s model.

fractures, according to (18.6), considering the radiation pattern, the dependence on
distance, and the other factors of (18.1), the form of P waves in the far field is given by

u(x;, 1) = WJLAa(g,z—""_ifOS% de¢ (18.12)
0

If the slip moves in the positive direction of £ with a constant fracture velocity v, then
Au(&, 1) = Au(t — £/v) and we obtain

L ro ¢«
u(x;, 1) = WJ AI;I|:[——<—COS9>:| d¢ (18.13)
0 a al\v
If we make the substitution
d:ro+£<a—cos0> (18.14)
a al\v
then the Fourier transform of u(x;, 1) is
L 00 X
Ul w) = WJ ng Ni(t — d) e 0= 4y (18.15)
0 —00

However, we have that
J Ai(t —d)e =D dt = iw AU (w) e (18.16)

where AU (w) is the transform of Au(¢), the transform of Au(¢) is iw AU(w), and that of
Au(t — d) = AU(w) exp(—iwd). Therefore, equation (18.15) becomes

: —iwrg/a L . Ew a
U(xj,w) = Wiw AU(w)e™ ™" exp | —i~— ;—cos@ d¢ (18.17)
0
To evaluate the integral in (18.17), we make the substitution » = —(w/«a)(a/v — cos )
and obtain

L. 2 bL bL sin X ;
ib¢ _ca v ) iX
L e df—bmn( 5 )exp (1 5 > L e (18.18)
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Fig. 18.3. The function sin X'/ X.
where
bL wL [«
X—z——za(v—cosﬁ> (1819)

The final form for the transform of elastic displacements of P waves U(x;, w), according
to (18.17), is

U(x,,w) = WLw AU(w) S”)l(X exp {—i(“”"—x—”ﬂ (18.20)
where we have replaced i = ¢"™2. The form of the amplitude spectrum depends on the
factor sin X/ X. We have discussed the form of this function in section 12.2. It has the
value unity for X = 0 and roots for X equal to integer multiples of 7, and its envelope
decreases as 1/X (Fig. 18.3). Since, for fixed values of § and L, X depends on w, in
the limit when w tends to zero (low frequencies), the factor equals unity and for high
frequencies its envelope decreases with 1/w.

The form of the amplitude spectrum depends also on the form of AU(w), the
transform of the source time function (STF) (18.20). If Au(r) = Au H(¢) its transform
is AU(w) = Au/(iw). From (18.20) we obtain that U(w) is proportional to the seismic
moment (Mo = uLW Au) for the limit of low frequencies and decreases as 1/w for
high frequencies. If the STF has a rise time 7 that Au takes to attain its maximum
value at each point of the fault plane (section 16.7), the spectrum depends on the
transform of the STF. For example, the transforms of the STF given by (16.109) and
(16.110) are

Aut/ry, 0<i<rT Au(l —e )
A = ; A =" 18.21
u(1) {Au, (>t U(w) = (18.21)
Au(t) = AuHO( —e ) AUw) = — 24 (18.22)
’ (1 + iwT)iw

In both cases, the transforms depend on 1/w?. If we substitute these values of AU(w)
into (18.20), the envelope of U(w) decreases with the frequency as 1/w?. If we represent
the spectrum with respect to the logarithm of the frequencys, its form is a flat part for low
frequencies and, from a certain frequency w,, called the corner frequency, its envelope is
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Fig. 18.4. The form of the amplitude spectrum of seismic waves for an extended fault with finite
dimensions and rise time.

a straight line of slope —2 (Fig. 18.4). This form of the spectrum is due to the combined
effect of the source dimensions and the rise time. If we consider the particular case in
which § = 7/2 and w, corresponds to X = 7/2, we obtain w, =2v/L; that is, the
corner frequency is proportional to the inverse of the source length. Observed spectra
of seismic waves exhibit these characteristics, indicating the finite dimensions of the
source and the existence of the rise time (Aki, 1967).

The influence of the source dimensions can be isolated by means of the directivity
function D(w) defined by Ben Menahem (1961) as the quotient of spectral amplitudes
of waves that leave the source in opposite directions, that is, with angles 6 and 6 + .
According to (18.19) and (18.20), this quotient is

Dlw) = sin{[wL/(2¢)](¢/v — cos )]} (¢/v + cos §)
(@) = sin{[wL/(2¢)](c/v+ cosb)]}(c/v — cosb)

where ¢ is the wave velocity. This function has a series of maxima and minima for
frequencies that depend on L and v, and can be used to determine the source dimensions
and velocity of fracture propagation. This is easier for surface waves, since 6 represents
the azimuth at the focus with respect to the trace of the fault.

Another effect of equation (18.20) is on the form of the radiation pattern (section 16.5,
Fig. 16.17). If the wave length is much larger than the source dimensions (A > L), X
tends to zero and sin X /X is unity for all values of §. Amplitudes are not affected and
the radiation pattern corresponds to that of a point source. If the wave length is of
the same order as the dimensions (A = L), amplitudes are affected by the factor
sin X/X that depends on 6 and the radiation pattern is modified. According to
(18.19), this factor is maximum for § = 0 and minimum for 6 = 7; that is, amplitudes
are larger in the same direction as that of fracture propagation (f = 0) and smaller in
the opposite direction (§ = w) (Fig. 18.5). This effect is called the focusing of energy in
the direction of fracture propagation and is a phenomenon that occurs for all propagat-
ing sources.

The kinematic model of a rectangular unilateral fracture with a constant rupture
velocity has shown us the effects of the source dimensions on the radiated displacement

(18.23)
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Fig. 18.5. The effect of fracture propagation on the radiation pattern of P waves.
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Fig. 18.6. The amplitude spectrum of seismic waves according to Savage’s model.

field. Amplitude spectra of displacements have constant values proportional to the
seismic moment at low frequencies and these values decrease with the frequency for
high frequencies, starting from the corner frequency. If the STF includes a rise time,
this decrease corresponds to 1 /w2 . The radiation pattern is also affected by dimensions,
with more energy radiated in the azimuth corresponding to the direction of propagation
of the rupture.

Haskell’s model with bilateral fracture, a rupture velocity of v = 0.9 and a STF given
by (18.22) has two corner frequencies w; and w, instead of one (Savage, 1972). For
frequencies between zero and wy, the spectrum is flat; between w; and w, it decreases
as w '; and for frequencies higher than w,, it decreases as w2 (Fig. 18.6). A third
corner frequency ws is defined by the intersection of the flat part and the decay as
w2, For P and S waves wi, wy, and ws are given by

« 3.60
P: wp; = i S: wp = 7[4
2.4a 413
2Ty AT
2o 2.90° = 14.83°
STLW TOLw
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The corner frequencies of P waves are always lower than those of S waves. Usually,
observed corner frequencies w, correspond to ws, and from this value we can obtain
the source dimensions:

1.7 3.88
(LW)W:T:F (18.24)

The difference between w; and w, depends on the relation between Land W. If W « L,
that is, the fault is long and narrow, then the difference is large, whereas, if L =~ W, the
three frequencies practically coincide.

18.3  Circular faults. Brune’s model

Another fundamental model of an extended seismic source is that of a circular
fault known as Brune’s model (Brune, 1970). This model consists in a circular fault plane
with finite radius on which a shear stress pulse is applied instantancously (Fig. 18.7).
Since this model specifies the stress on the fault, this is not exactly a kinematic model.
Because the stress pulse is applied instantaneously on the whole fault area, there is no
fracture propagation. The shear pulse generates a shear wave that propagates perpendi-
cularly to the fault plane. Adapting Brune’s notation to the one we have used, we call Ao
Brune’s effective shear stress and Au the displacement on the fault plane (that is, for
x =0, where x is the distance normal to the fault plane). The stress pulse has a time
dependence given by a step function and, for a distance x, is

Ao(x, 1) = Ao-H(t _%> (18.25)

The shear displacement Au, for x = 0, is obtained by integration of (18.25), since, in this
case, o = uOu/dx:

Au(t) = H(1) Auaﬁt (18.26)

u(x,t)

AG (1)

Fig. 18.7. Brune’s model of a circular fault.
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Its Fourier transform is

A
AU(w) = — Uf (18.27)
e
The effective stress is the difference between the tectonic stress o, acting on the fault
plane and the friction stress oy (Ao = gy — of = €0y). This coincides with the drop in
stress defined in (15.25) with o = 0. For a total drop in stress (Ao =0 and € = 1)
the displacement of S waves in the far field at distance r, not including the radiation
pattern and the dependence on distance, is

u(z)_ﬁ’ﬂ(z—;;)exp[—b(t—;ﬂ (18.28)

Its spectrum is
Acp 1
Uw)=————
(w) Lo w?+ b2
2333
a

(18.29)

b (18.30)

where a is the radius of the fault. The spectrum (18.29) has a flat part at low frequencies
as they tend to zero and decreases as w > for high frequencies, starting at the corner
frequency w, = b. If the stress drop is not total, then, for small ¢ (¢ ~ 0.01), the
spectrum decreases as w ™' . The fault radius can be deduced from the corner frequency
of S waves:

a=2.3308/w, (18.31)

Brune’s model is commonly used to obtain fault dimensions from spectra of S waves for
earthquakes of small-to-moderate size (M < 6), for which the circular fault is a good
approximation. We have mentioned (section 15.1) that earthquakes take place in the
brittle part of the crust (about 20 km thickness) or the seismogenic layer. For dimensions
less than 20km (M < 6), fault planes are contained inside the seismogenic layer.
Fractures start at a point and grow unhindered in all directions with near circular
form (L ~ W) and can be approximated by Brune’s model. Larger earthquakes have
larger dimensions, so, since their widths are limited to about 20 km, their lengths must
be larger than their widths (L > W). In these cases, Haskell’s rectangular model is a
better approximation.

18.4  Nucleation, propagation, and arrest of a rupture

Haskell’s model does not include the effect either of the beginning or nucleation
of a rupture or of its cessation or arrest. The first kinematic model that included both
effects was proposed by Savage (1966). Savage’s model consists in an elliptical fault in
which slip begins at one of the foci and stops when it reaches the border of the ellipse.
The model can be simplified for a circular fault of radius a, for which the slip Au
(which is constant for all points) begins at the center, propagates radially with a constant
rupture velocity v and circular rupture fronts and stops at the circular border. We use
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Fig. 18.8. The slip as a function of time and distance inside the fault for Savage’s model of initiation
and cessation of rupturing.

polar coordinates (p, ¢) on the fault plane, p with its origin at the center of the fault and ¢
measured from x;. Then, the time dependence of the slip is a step function and the slip is
a function only of p given in the form

Au(p,t)_AuH(t—)[l— H(p - a)] (18.32)

v

At the center of the fault (p = 0), the slip at = 0 passes instantaneously from zero to
Au. For a value at a distance p (0 < p < a) from the center, the slip is 0 until 7 = p/v,
when it becomes Au. For p = a, rupture stops and, for p > a, the slip is zero for all
values of 7 (Fig. 18.8).

For a point of observation on the x3 axis, that is, over the center of the fault at a
distance ry (Fig. 18.9(a)), the form of P waves, according to (18.2), is given by

u(rg, t) = Jjﬂ r Au(p,t)pdpd(b (18.33)

Since rupture propagates in the p direction with a velocity v, as in (18.13), the slip can be
written as Au(t — r/a — p/v). Substituting into (18.33) and with the approximation that,
for ry > a, r = ry, after integration over ¢, we have

u(ro,t):ZﬂJ:Au(l—a—v> dp (18.34)

Taking the time derivative in (18.32) and substituting it into (18.34), the displacement is
given by

u(ro, )_27TAMH<1—) J:‘S("p‘a)“‘ H(p - a)lpdp (18.35)

(0% v

To evaluate this integral we use the relation

[ rtnar-srac=1r(2) (18.36)

—00
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Fig. 18.9. Effects of initiation and cessation of a circular fault for points on a perpendicular axis at its
center. (a) The fault and observation point. (b) The elastic displacement of P waves at a distance r
along the perpendicular axis.

The integral of (18.35) can be extended to the interval (—oo, 00) since it is zero outside the
interval (0, @), and thus, by applying (18.36), we obtain

u(ro, 1) = 277Auv2H(t 2) <z - ’Of) {1 - H{v(t 2) - a} } (18.37)

According to this expression, for

r< and 2242wy =0 (18.38)
0% (6% v

whereas for
LO<I<®+£, u(ro,t):27rAuU2(t—r0) (18.39)
o a v «

Displacement starts at ¢ = ry/« and increases linearly with time until 1 = a/v + ry/a,
when it drops to zero (Fig. 18.9(b)). According to the approximation used (r = ry),
the time of inception of the discontinuity corresponds to the arrival of the signal from
the cessation of the fracture at the border (p = @), which is called the stopping phase.
The displacement drops discontinuously to zero and the velocity and acceleration
become infinite.

In Savage’s model the slip passes instantancously from zero to its maximum value at
each point of the fault as the rupture propagates from the center outward. The slip
velocity is a pulse that propagates in the same way until it reaches the border of the
fault. Since elastic displacements depend on the slip velocity, other models specify this
value directly (as was done for the STF in section 16.7) (Molnar et al., 1973). For a
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Fig. 18.10. The source model for the slip velocity in a fault with initiation and cessation.

circular fault the slip velocity can be expressed as
. . P p a
Au(p,t)AV{H(t——)—H<t+———)}H(a—p) (18.40)
( v v

In this model, the slip velocity takes a constant value Au = AV at each point of the fault
as the rupture front arrives at 1 = p/v that remains constant as long as t < (¢ — p)/v and
ceases for 1 > (a — p)/v. This means that the slip velocity persists at each point of the
fault until fracture stops at the border p = a (Fig. 18.10). It is not physically possible
to stop motion in the fault, since this implies that information on the cessation of the
fault at the border instantaneously (with infinite velocity) reaches all points of the
fault. This can be solved by introducing a finite velocity, for example, the velocity of
P waves, to bring the information on the cessation of rupture at the border to all
points of the interior of the fault. This can be done by replacing the second term
inside the square brackets of (18.40) by H[t — a/v — (a — p)/a]. Now the slip velocity
becomes zero at each point of the fault as a P wave arrives from the fault border,
once the motion has stopped. This wave is called the healing front, since it heals the
fault by stopping its motion. In kinematic models the healing of the rupture inside the
fault must be introduced in some way.

Models represented by (18.32) and (18.40) have the slip and slip-velocity time
dependences of a step function. Just like for point sources, we can introduce a rise
time into these models. As the rupture front reaches each point of the interior of the
fault, the slip velocity starts to increase from zero to a maximum value during a time
7. The slip velocity is brought down to zero at each point of the fault as a healing
front arrives from the border of the fault where it has stopped. More realistic kinematic
models can be established with various shapes, generally rectangular, in which the slip
and slip velocities decrease gradually with rupture near to the border of the fault, and
the fracture velocity, maximum slip, slip velocity, and rise time vary along the fault
plane (Archuleta, 1984; Mendoza and Hartzell, 1989). In general, kinematic models of
faulting can be made to correspond quite realistically to conditions on a fault, but
they are not completely exempt from a certain arbitrariness. Some conditions must be
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imposed on the faulting process a priori, such as the velocity of rupture propagation,
stopping at the border, and the healing process.

18.5 Dynamic models of fracture

The kinematic models we have considered up to this point are, naturally,
simplifications of real fractures and include certain arbitrary factors in the definition
of the slip and conditions at the fault border. The physical problem of fracture is a
dynamic problem in which the slip has to be considered a consequence of stress condi-
tions and the strength of material in the focal region. Dynamic models of the seismic
source take these conditions into consideration and are based on the theory of the
generation and propagation of fractures in stressed media. From this point of view,
the mechanism of an earthquake is represented by a shear fracture produced by the
drop in stress in the focal region. Fracture initiates at a point of the fault when the
stress acting on the fault plane exceeds a critical value, propagates with a certain velocity,
and finally stops when conditions impede its further propagation. A complete dynamic
model must, then, include the whole of the fracturing process, its initiation or nucleation,
propagation and arrest, derived from stress conditions and properties of the material in
the focal region. Two determinant factors are tectonic stresses that are a consequence of
lithospheric plate motion and mechanical properties of rocks in the fault region. Among
the first studies of fracture dynamics applied to earthquakes were those of Keylis-Borok
(1959), Kostrov (1964, 1966), Burridge (1969), Freund (1972, 1979), and Madariaga
(1976). These studies were based on the work on fractures of crystals and metals
published between 1920 and 1950 by Griffith, Starr, and Irwin. The dynamic problem
is more complicated than the kinematic problem; therefore, we will present only the
more basic principles in a simplified form.

Let us consider the energy produced by the fracture process given by (15.26). From the
dynamic point of view, a fracture is produced by a drop in stress Ao = o, — o, where gy
is the sum of the tectonic stresses acting before faulting (the shear component) and oy is
the friction between the two sides of the fault. By substitution into (15.26), assuming that
= Aoc/2, we obtain

E=1AcAuS+o;AuS (18.41)

where the first term represents the seismic energy due to the slip on the fault and the
second represents the residual energy lost by friction. From the dynamic point of
view, the stress drop is the parameter that determines the fracture and the slip is its con-
sequence.

18.5.1 The static problem

Let us start with the static problem of a fracture free from stress. For a circular
fault of radius a, the shear stress before faulting is oy and, after faulting, the stress
inside the fault (p < @) is null. Then, Aoy = oy is the static drop in stress. In absence
of body forces (F = 0), for the static case, the equation of motion (2.57) is 7; ; = 0.
For shear slip on the fault u(p), in a homogeneous isotropic elastic medium, the
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Fig. 18.11. The static model of fracture with a total drop in stress: (a) slip and (b) stress.

equation becomes

uV2u =0
The conditions of displacement and stress inside and outside of the fault are
p=0, u(0) = Au
p=a u(p) =0
p<a, o(p) =0
p =00, o(p) = o9

Under these conditions, the solution for the displacement inside of the fault is
Au(p) = %( - p<a (18.42)

From this expression, we can derive the stress outside of the fault (p > a), since
o(p) = p0u/op:

(o
o(p) :ﬁ, p>a (18.43)
Equations (18.42) and (18.43) describe the static distribution of slip inside of the fault
and stress outside of it (Fig. 18.11). Since the drop in stress is total, Ao, = 0y, equation
(18.42) establishes the relation between the slip and the stress drop. We must notice from
(18.43) that a complete drop in stress inside of the fault implies that the stress becomes
infinite outside of it at its border (p = a), which is not physically possible.

18.5.2 The dynamic problem

The dynamic problem requires the solution of the fracture problem as a
function of time. The fracture front propagates with a certain velocity and, as it
advances, material becomes fractured. Behind the front, the stress becomes zero for a
total drop in stress or has a residual value that depends on the friction. Let us consider
a simple case with a plane rupture front unlimited in the x, direction that advances in the
x direction with a constant velocity v.

The relation between the direction of the slip in the fracture plane and its direction of
propagation defines three modes of fracture (Fig. 18.12). In mode I, tensional fracture,
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Fig. 18.12. Modes of fracture: (a) mode I, tensional fracture; (b) mode II, in-plane shear fracture;
and (c) mode III, antiplane shear fracture.

Au is normal to the fracture plane and to the direction of propagation. As the fracture
propagates, the two sides of the fault separate and therefore the drop in stress is always
total. In mode II, in-plane shear fracture, Au is contained in the fracture plane and has
the same direction as that of its propagation. In mode III, antiplane shear fracture, Au is
contained in the fracture plane with its direction normal to that of its propagation. From
the point of view of seismology, mode I has little application, since earthquakes are
assumed to be produced by shear fracture. In mode II, along the x; axis (defined as
the direction of propagation of the fracture) we observe P and SV waves, whereas in
mode IIT we observe only SH waves. The last case has a simpler solution.

The dynamic problem of the propagation of a fracture is centered on the energetic
situation at the rupture front (Kostrov and Das, 1988). Let us consider a tensional
fracture (mode I) whereby the stress drop is total. For the fracture front to advance,
new fracture surface must be created and a certain amount of energy must be consumed.
For this, an elastic energy flux from the part which has not been fractured to the fracture
front is necessary. We call the energy necessary to create a unit of new fracture surface
the specific effective surface energy or Griffith’s energy . The value of + is a character-
istic of each material. When the flux of energy to the rupture front G equals the energy
necessary to create new fracture surface (G = =), then fracture progresses. This is called
Griffith’s fracture condition. To produce an element of new fracture surface dS, the
energy necessary is 2y d.S (the factor of two is due to there being two sides of a fracture).
This energy comes from the stress drop Ao behind the rupture front and is given by
G = Ao AudS. For a perfect brittle fracture in elastic material, the material ahead of
the fracture front (which is not yet fractured) is continuous (¥" = u~) and that behind
(which has already been fractured) is discontinuous (#* — u~ = Auw). If drop in stress
is total, then, for each point behind the rupture front, the stress is zero (¢ = 0). There
is, then, a discontinuity at the rupture front and there is no transition between
unfractured and fractured material.

The problem of the relation between the stress drop and the slip in the dynamic
problem is not easy. In a simplified form, the problem consists in the solution of the



352 Models of fracture

Iml
I
I
|
|
|
|

~pF———

[1¢9) X [1¢9) X [{¢9)
(@) (b) (c)

Fig. 18.13. The situation at the rupture front (x =/(¢)) for dynamic fracture: (a) slip, (b) slip
velocity, and (c) stress.

equation of motion (2.56) for the relative displacement (slip) of the two sides of the fault
plane Au(x,t) =u" —u", for x < vt, where x is the direction of propagation of the
rupture with velocity v (for simple cases v is constant). The boundary conditions require
that, as the fracture front advances on the fault plane, the stress drops by Ao = g — oy.
If the fracture front is planar and propagates in the direction of x, with a constant
velocity v, its position at each moment is given by /(¢) = vt. The slip inside the fault
can be written as

Au(x,t) = %(’Uzlz — X)) x <t (18.44)

and the slip velocity is
Vv

Au(x, 1) = 7(1)2[2 — xz)l/z :

x < vt (18.45)
If the drop in stress is total (o; = 0), the stress inside of the fault is zero and that outside
of it, in a similar form to (18.43), is

K

U(xa t) = 4()62 _ v2t2)1/2 )

x> vt (18.46)
Here V' is the velocity intensity dynamic factor and K is the stress intensity dynamic
factor. As the rupture front advances (v increases in the x direction), the slip (18.44)
increases from zero ahead of the rupture front to a constant value inside of it (Fig.
18.13(a)). The slip velocity (18.45) becomes infinite at the rupture front (Fig. 18.13(b)).
The stress (18.46) becomes infinite when it approaches the rupture front from outside
(Fig. 18.13(c)) and has a constant value or zero inside. The dynamic factors K and V'
are related to the flux of energy from unfractured material to the rupture front

™
2v
For mode III (antiplane), K and V" are related by

G="KV (18.47)

K= Vz%(l — /) (18.48)
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For a circular fracture that grows from its center, according to Madariaga (1976), the
relation between Au and Ao is

Au(p,1) = %UC(v)v(lz —p* /A > pv (18.49)

where v < (3, and C(v) is a factor with a value near unity. The growth of the fracture is
assured by the constant flux of energy from the material that has not yet been fractured.
If the medium is homogeneous, then rupture, once it has started, can not stop and grows
indefinitely. This is due to the constant conditions of the material ahead of the rupture
front.

Since, in an homogeneous medium, rupture, once it has started, can not be stopped by
itself, stopping must be introduced as a condition, for example, for a circular fault by
imposing that the limit is at a predetermined value of the radius p = a. The beginning
of the fracture must also be introduced as an added condition; for example, fracture
starts when the applied stress exceeds a certain critical value. This value represents the
maximum stress the material can support without breaking. Dynamic models of fracture
allow determination of the slip and its propagation over the fault plane from a specified
drop in stress. Thus, we can solve for the elastic displacement field from the dynamic
conditions in the source region. The solution of dynamic problems, even for simple
cases, is difficult and in many cases they must be solved numerically.

18.6  The complexity of a fracture

Under homogeneous conditions, the dynamic problem of the propagation of a
rupture implies certain unrealistic border conditions concerning the stress and slip
velocity and their nucleation and arrest. To solve some of these problems we must
introduce inhomogeneities into the medium and complexities into the fracture process.

18.6.1 The cohesive zone

According to (18.46), there is a discontinuity of stress at the rupture front. As we
approach it from the outside, the stress becomes infinite and drops to zero or a constant
value inside. Another discontinuity occurs for the slip velocity (18.45), which becomes
infinite immediately behind the rupture front. This is a situation that is not physically
possible, since no material of finite strength can sustain an infinite stress or move with
an infinite velocity. These two inconsistencies of the homogeneous model follow from
the fact that material is either purely elastic (unfractured) ahead of the front or fractured
behind it. To avoid this situation we must consider the existence of a transition zone
immediately ahead of the fracture front where material behaves in an inelastic way.

The first fracture model with a transition zone was proposed by Barenblatt (1959).
The transition zone is called the cohesive zone. In this zone cohesive forces act to
oppose the advance of the fracture and hold the stress immediately ahead of the rupture
front finite, eliminating the stress singularity. In the cohesive zone of width d, the stress
has a finite mean value o, that is larger than the applied tectonic stress o and reduces to
the friction stress behind the rupture front (Fig. 18.14(a)). The value of o, is related to
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Fig. 18.14. The cohesive zone ahead of the rupture front: (a) cohesive stress and (b) the critical slip
and length of the cohesive zone.
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Fig. 18.15. The dependence of the stress on the slip in the slip-weakening model.

Griffith’s energy in the form
B 202d
 pmC(v)

~y (18.50)
where C(v) is a factor that depends on the velocity of fracture and has a value near unity
for subsonic fractures. The slip does not become zero in the cohesive zone and there is no
singularity in the slip velocity at the rupture front (Fig. 18.14(b)).

In the model with weakening slip, the cohesive stress is taken to be dependent on the
slip (Ida, 1972; Palmer and Rice, 1973). This model assumes that the stress inside of the
fracture is a function of the slip o(Au) in such a way that it has a finite value for Au = 0,
and decreases with increasing slip to a final value equal to the friction stress oy for Au
larger than a certain critical value Au = D (Fig. 18.15). The average stress, between
Au = 0 and Au = D, equals the cohesive stress. The critical value of the slip D is related
to Griffith’s energy and the cohesive stress in the form

y=4%0.D (18.51)



18.6 The complexity of a fracture 355

This relation shows that the energy dissipated in the creation of a unit fracture surface
equals the product of the cohesive stress and the critical slip. From (18.50) and (18.51),
we can derive a relation between d and D:

prC(v)

d= 4o,

D (18.52)

For earthquakes, values of d and D are small relative to the total dimensions of the
fracture. For a fracture several kilometers long, d is only some meters and D some
centimeters.

18.6.2 Barriers and asperities

We have seen that homogeneous models of fracture with uniform slip and
constant rupture velocity are not very realistic. The simple fact that rupture must stop
at the border of the fault indicates that the conditions can not be homogeneous. In
the Earth, faults cross rocks of various strengths, change direction often, and present
jumps, joints, and bends. Analysis of observed wave forms from earthquakes also reveals
greater complexity than would be expected from homogeneous fractures. This is
especially so for the complex form of high-frequency waves in the near field. Another
item of evidence for the complexity of the source is the observation of practically
constant values of stress drops (in the range 1-10 MPa) for earthquakes of magnitudes
larger than five. Since it has been shown in laboratory experiments that rocks can sup-
port larger stresses without breaking, the observed drops in stress are really average
values for the whole of the fracture process. All these observations show that earthquake
sources are complex fracture processes. Two models have been proposed to explain this
complexity, namely, models with barriers and asperities.

The barrier model (Das and Aki, 1977; Aki, 1979) assumes that fracture takes place
under uniform conditions of stress on the fault fracture, but with different strengths in
the material (Fig. 18.16). Zones in the fault surface with high strengths form barriers
that make fracture propagation difficult or impede it. When the rupture front reaches
a zone of barriers it stops and, if the barrier is sufficiently strong, it will not break.

BARRIERS
(a)
A\
ASPERITIES <>
(b)
—
v

Fig. 18.16. Models of complex sources: (a) barriers and (b) asperities.
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Fracture may stop there or continue behind the barrier, leaving an unruptured zone on
the fault plane. Once the fracture process has finished on the whole fault plane, stress is
released in fractured zones and accumulated in the unbroken barriers. After the earth-
quake, the distribution of stress on the fault plane becomes heterogeneous. For a
large earthquake there may be several barriers and the fracturing process is the sum
of several ruptures separated by the barriers. Unbroken barriers may break later,
giving rise to aftershocks (section 20.2). Papageorgiou and Aki (1983) have proposed
a barrier model in which a rectangular fault is formed by several elementary circular
fractures separated by barriers. In this model we can distinguish between the global
stress drop, which is the mean value over the whole fault area, and the local stress
drop due to the breakage of each individual elementary fracture. The latter is
generally larger than the former. In this way we can explain the observed low values
of drops in stress and the high energies in high-frequency waves of strong motion
instruments in the near field.

The model of asperities (Kanamori and Stewart, 1978; Madariaga, 1979), consists in a
fault with a heterogeneous distribution of stress on its surface, with zones of high and
low values (Fig. 18.16). Zones with high stress are called asperities. This model takes
into account the previous history of the accumulation of stress in certain zones of the
fault (asperities) and the release of stress in other weaker zones. This process is achieved
by the production of small earthquakes (foreshocks) that release stress in weak zones
and accumulate it in strong ones. The breaking of strong zones or asperities where
high stresses have accumulated constitutes the occurrence of the main large earthquake.
The complexity of the source in this model is given by the fracture of several asperities in
the main event. After the fracture of all asperities, the fault plane remains with a homo-
geneous distribution of residual frictional stress. This model explains the occurrence of
foreshocks, but not that of aftershocks.

In both models, earthquakes are produced by complex fracture processes consisting in
the breaking of several asperities or zones between barriers. Since neither model can
explain both foreshocks and aftershocks, mixed models in which both asperities and
barriers are present must be considered (Kostrov and Das, 1988). Barriers are zones
that remain unbroken after the main earthquake and asperities are those that break
with high drops in stress. The distribution of stress on the fault plane is heterogeneous
before and after an earthquake. Thus we can have both foreshocks that break the weak
zones before the main shock and aftershocks that break the barriers that had been left
unbroken. The complexity of the source is due both to the heterogeneous distribution
of stress that is concentrated on the asperities and to the varying strengths of barriers.

An important factor in the heterogeneity of the fault surface is the distribution of
friction. High and low values of friction along the fault plane contribute to the accumu-
lation of stress. Recent dynamic models of fracture accord great importance to the
problem of friction (Kostrov and Das, 1988; Cochard and Madariaga, 1994). In the
asperity model, motion starts when the applied stress overcomes friction and stops
when the friction is larger. For constant friction, motion can only stop arbitrarily at
the asperity’s border. Authors of models introduce a weakening of the friction with
velocity, that is, a decrease in friction with the slip velocity. In this situation the arresting
of motion at the fault can be obtained from a healing pulse generated by friction itself
(Heaton, 1990). Thus the rupture front advances by stress overcoming friction and is
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healed by friction behind the front. Energy is radiated, as the rupture front advances,
from a narrow strip of the fault while the rest of the fault has already been healed.
Thus, the motion does not need to be stopped by a healing pulse from the fault
border, as we saw in kinematic models.

The search for more realistic models of earthquake sources leads to the consideration
of complexities in the fracturing process, heterogeneities in the distributions of stress,
strength, and friction along the fault surface, and the existence of a transition zone at
the rupture front. These considerations increase the number of parameters necessary
in order to define source models, by introducing the dimensions of asperities, the
distances between barriers, a cohesive zone, a critical slip, the distribution of friction,
etc. Also we must consider geometric irregularities of the fault surface such as branching,
stepping, bending, and junctions that depart from the simple planar model (Andrews,
1989).

18.6.3 Acceleration spectra

We have seen how the dimensions of the source affect the form of the spectra of
seismic waves in the far field. Complexities of the source influence the radiation at high
frequencies and their effect can be observed in the accelerations in the near field, since
they attenuate rapidly with distance. In complex models, rupture is not uniform, but
rather has accelerations and decelerations, stopping and restarting with successive
breakings of several elementary units (asperities). These irregularities result in the
complexities observed in the accelerations of the near field at high frequencies.

The spectrum of acceleration is related to that of displacement by a factor of w”. Thus,
its form depends on w? for low frequencies, corresponding to the flat part of the
displacement spectrum, and is flat for frequencies higher than the corner frequency
w,. For higher frequencies, we find a maximum value wp,x Or fr.x, approximately in
the range 8—10Hz, from which the spectrum decreases rapidly (Hanks, 1982) (Fig.
18.17(a)). This frequency has been related to the attenuation due to propagation in

O¢ ®max Tlog ® Oc ®p  Omax log ®

(a (b)

Fig. 18.17. The amplitude spectrum of acceleration in the near field, for (a) a simple source and (b) a
complex source.
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the upper part of the crust and to processes at the source. In the latter interpretation, this
frequency is related to the smallest elementary dimension of asperities approximately
about 200 m. Aki (1988), however, related f,,, to the dimensions of the cohesive zone
and the critical value of slip in the form

fmax

LU Ao
—d  prC(v)D

The cohesive zone, with dimensions of about 100 m to 1 km, acts as a low-pass filter that
is responsible for the attenuation of high frequencies.

Other authors, such as Madariaga (1989), introduce another frequency w, with a
change in the slope of the envelope of the spectrum which is related to the length b
(or its average value b) of elementary fractures (patches) that form the total fracture
(fp ~v/b). This frequency has a value between the corner frequency w, and the
maximum wp,,,, which is due to attenuation effects (Fig. 18.17(b)). For small earth-
quakes, with only one elementary fracture, w, =~ w,, whereas for larger events
wp > w,. The value of w, varies with the size of earthquakes, wj, varies very little, and
wmax 18 practically constant. However, we must realize that the estimation of these
frequencies from acceleration spectra is very much affected by attenuation. The study
of source complexities has been made possible by digital strong motion records in the
near field.

(18.53)



19 METHODS OF
DETERMINATION OF SOURCE
MECHANISMS

19.1 Parameters and observations

The determination of the source mechanism of earthquakes consists in finding
the parameters of the model used in its representation, whose number depends on its
complexity. The localization of the source is given by four parameters (¢, A, s, and
ty), the coordinates of the epicenter, depth of focus, and origin time (section 15.2).
Generally, in determinations of focal mechanisms, these parameters are assumed to be
known, although in some methods some (the focal depth) or all (the centroid) are deter-
mined anew. The size given by the magnitude M is independently determined, but, in
many methods, the seismic moment M|, is evaluated as part of the mechanism.

The simplest models of source mechanism are those with point sources. For a point
shear dislocation, the orientation of the mechanism is given by the angles ¢, 6, and A
(section 15.1). For the equivalent double-couple force model, the orientation is given
by those of the X and Y axes, that is, by the angles ©,, ., and &,, or by the P and
T axes, angles Op, ¢p, and & (section 16.2). If the source is not a shear fracture, it
can be represented by five components of the moment tensor M (for a deviatoric
source) or six if there are changes in volume (Chapter 17). Including its size, a shear-
fracture point source or DC source is given by four parameters (M, ¢, 6, and A) plus
four for its location, that is a total of eight parameters. If the source is not a DC we
need one or two more. If there is a rise time 7 in the STF we have to add a new one
and the total number is hence nine, ten, or 11.

For an extended source we have to introduce the dimensions of its length and width
for rectangular faults or its radius for circular faults. If there is propagation of a fracture
we introduce its velocity (Chapter 18). In fracture models, the value of the slip can be
obtained from the seismic moment and dimensions. For a rectangular fault with a con-
stant slip, rupture velocity, and rise time, there are five additional parameters (L, D, Au,
v, and 7) that with three for the source’s orientation and four for its location sum up to
12 parameters. Thus, even relatively simple models of the source require a considerable
number of parameters for its definition. Complex models need new parameters such as
the distribution of slip, rise time and rupture velocity on the fault-plane, the number and
dimensions of asperities, friction, etc.

The observations used in the determination of focal mechanisms are the displacements
of seismic waves recorded at several points on the Earth. Ground displacements are
obtained from seismograms in graphical or digital form corrected for the instrument’s
response. Usually, methods are separated into those that use body and surface waves.
Since waves propagate from the focal region to observation points, the elastic properties
of the Earth must be known a priori. Owing to the heterogeneous nature of the Earth,
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incomplete knowledge of its structure imposes certain limitations upon the investigation
of the source. There is always a latent ambiguity about which characteristics of seismic
waves are due to the source and which are effects of the propagating medium. There are
ways to isolate these two effects, but there is a trade-off between the details of the source
that are to be determined and those of the medium that are supposed to be known.
Simple models of the source, with observations at relatively large distances and low
frequencies, are, in general, very little affected by propagation effects. However, very
detailed models determined by observations from near distances and at high frequencies
are more influenced by the heterogeneities of the crustal structure.

An important factor to be considered in observations is that of the development of
seismologic instrumentation (Chapter 21). The oldest seismographs (up to 1930) were
mechanical ones with smoked paper recording and have very low magnification and
not very precise time control. From 1930 onward, electromagnetic seismographs with
photographic recordings have increased the amplification and were an important
improvement. The installation of the WWSSN global network of seismographs in
1962 provided very good homogeneous observations for studies of mechanisms. Since
1990, modern digital high-dynamic-range broad-band instruments distributed globally
have been providing excellent data.

There are many methods of determination of focal mechanisms based on observations
of body (P and S) and surface waves (Kasahara, 1981; Udias, 1991). In the following
sections, we will present the fundamentals of four of them, which are based on the
signs of P waves’ first motions, wave-form analysis, moment-tensor inversion, and
seismic wave spectra.

19.2 P waves’ first motion polarities. Fault-plane solutions

The first method developed to determine the focal mechanism is based on the
sign or polarity of the first motion of P waves. The first authors to study data of this
type were Omori and Galitzin around 1905, and Shida in 1917 was the first to recognize
the alternating distribution of polarities in the four quadrants. Although there were
several attempts by European and Japanese seismologists to use these data to study
the source, the first operational method was proposed by Byerly (1928). The method
is known as the fault-plane solution and also as Byerly’s method. The method was
simplified by the introduction of the focal sphere proposed by Koning in 1942 and devel-
oped by Honda and Ritsema among others in the 1950s. The focal sphere allows a simple
graphical resolution of the problem using stereographic projections such as Wulff and
Schmidt nets. Between 1950 and 1970, seismologists in the USSR used graphical
methods extensively, adding to P polarities those of SV and SH waves. Because of the
simplicity of polarity data, fault-plane solutions are still very widely used.

The method is based on the quadrant distribution with alternating signs (compres-
sions and dilations) separated by two orthogonal planes of polarities of the radiation
pattern of P waves produced by a shear fracture or double-couple source (section
16.6). The signs of the first motion of P waves are usually read from vertical-component
seismograms (upward for compressions, downward for dilations). The method consists
in separating the four quadrants of compressions and dilations into two orthogonal
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Fig. 19.1. The focal sphere and a ray’s trajectory from the focus to a station.

planes, one of which is the fault-plane. Owing to the seismic velocity’s dependence on
depth, rays are curved and quadrants can not be separated directly by using the distribu-
tion of observations on the Earth’s surface. To correct for this effect, Byerly proposed
extended distances, locating the points on the intersection of straight rays with the
surface of the Earth. Today the concept of the focal sphere is more commonly used.
The focal sphere is a sphere of homogeneous material and unit radius around the
focus. Observation points are located at the surface of the focal sphere corresponding
to the rays that arrive at each station, by tracing their trajectories back to the focus
(ray back-tracing). If an observing station is located at a distance A and azimuth ¢ at
the surface of the focal sphere, its location is given by its azimuth ¢ and take-off angle
i, measured from the vertical downward (Fig. 19.1) (section 16.6).

To determine the take-off angle i, which corresponds to a given distance A and focal
depth A, it is necessary to know the structure of the medium of propagation. For tele-
seismic distances (A > 1000 km), i, can be calculated from the travel time curves 7(A)
for a focal depth /4, by using Snell’s law (section 8.1):

o dt
ry dA

It is necessary to know the velocity of P waves v, at the focal depth / (r, = R — h). Errors
in this velocity result in errors in i, and consequently in the mislocation of points on the
focal sphere. For local or regional distances (A < 1000 km), determination of i, requires
knowledge of the velocity distribution in the crust and upper mantle for the region. In
general, layered models of constant velocity or with linear velocity distributions are
used. Models with velocity gradients are more convenient since they give a continuous
relation of i, to A, whereas layers with constant velocities give a discontinuous relation.
Once we have determined values of ¢ and i, for each observation point, they are located
on the surface of the focal sphere and the problem is reduced to that of a homogeneous
medium. A reliable solution requires a sufficient number of observations distributed over
azimuths and take-off angles so that the focal sphere is covered well.

The source model corresponds to a point shear fracture or a double couple (section
16.6). The orientation of the mechanism is given by that of the vectors n (the normal
to the fault-plane) and / (the direction of slip), or by that of the axes X and Y of the
two couples of forces or also by P and T (the pressure and tension axes). Since all of

sini;, =

(19.1)
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Fig. 19.2. The focal sphere with a vertical axis and a horizontal plane. Planes A and B separate quad-
rants of compressions and dilations. The locations of the X, Y, Z, P, and T axes are shown.

these pairs are orthogonal unit vectors, the orientation is given by only three angles,
(®,,0,,P)), (Py,Ox,Py), and (Pp, Op, D). Also we can define the source in terms of
the angles ¢, 6, and \ for the orientation of the two planes, the fault-plane (A) and
auxiliary plane (B) (Fig. 19.2). The method can not distinguish the fault-plane from
the auxiliary plane due to the symmetry of the equations for the displacement field
with regard to the vectors n and / (section 16.6).

19.2.1 Graphical methods

To solve the problem in graphical form, the focal sphere is projected onto a
plane by means of a stereographic projection; the most commonly used one is the
Schmidt or equal-area projection (Fig. 19.3). Since, in most cases, observations corre-
spond to rays leaving the focus downward, we project onto the lower hemisphere. If
there are very near stations or for very deep earthquakes at short distances, stations
corresponding to upgoing rays are projected first onto the lower hemisphere along
the diameter of the focal sphere. A point s in the lower hemisphere projects as s on
the plane AA’ (the horizontal plane through the focus) (Fig. 19.3). The hemisphere
projects as a circle of unit radius and a point on the sphere defined by (¢, i) projects
as (¢,r), where r = /2sin(i/2). Planes through the center project as great circles. In
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Fig. 19.3. Projections of the Earth ((a) and (b)) and of the focal sphere ((c), (d), and (e)) used in studies of focal mechanisms. (a) Byerly’s extended posi-
tion (s') and projection (5). (b) Knopoff’s (1961) extended position (s') and central projection. (c) The central projection. (d) Wulff’s nett projection. (e)
Schmidt’s equal-area nett projection.
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Fig. 19.4. The Schmidt projection of the focal sphere. Planes A and B are the fault and auxiliary
planes. The locations of the X, Y, Z, P, and T axes, and an observation point are shown.

practice, the problem is solved by using a Schmidt net or its simulation on a computer
screen.

The first step is the location of all observations (¢, i;,) on the projection at points (¢, r),
using different symbols for compressions and dilations (Fig. 19.4). Compressions and
dilations are separated in the projection by two orthogonal planes into four quadrants
alternating in sign. This is done by drawing first a plane (a great circle) and locating
its pole (the normal through the center) and then drawing the second plane such that
it must pass through the pole of the first and its pole must be on the trace of the first
plane (Fig. 19.4, where X is the pole of plane A and Y is that of plane B). Usually, several
attempts are necessary in order to separate all compressions and dilations with a mini-
mum number of inconsistencies. The quality of the solution is given by the score, which
is the quotient of the number of correct observations and the total number of observa-
tions. Once we have obtained the solution, we measure the orientations of the two planes
A and B in terms of the angles ¢, §, and A and those of the axes X, Y, P, and T in terms of
the angles 6 and ¢ (Fig. 19.4). We can see that all four axes are on the same plane (the
plane of forces), which is normal to the A and B planes.

The process we have described can be performed on the screen of a computer by
using an interactive program. For example, a program implements the following steps
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(Buforn, 1994). Enter observations of the station name, azimuth (¢), take-off angle (i),),
and P wave polarity; +1 for compression and —1 for dilation. Values of ¢ and i;, have
been found previously by another program. The program locates the points on the
screen on an equal-area projection. A trial solution is given by specifying the orientation
of Xand Y,of Pand T, or of ¢, 6, and . The program draws the two orthogonal planes
and determines the score of the solution. By successive steps, the solution is changed
until the one with the maximum score is found.

19.2.2  Numerical methods

Since 1960, with the development of digital computers, several methods for the
numerical determination of fault-plane solutions have been proposed. The first formula-
tion is that of Knopoff (1961), reformulated by Kasahara (1963), and applied in a
computer program developed by Wickens and Hodgson (1967). This method seeks an
orientation of the nodal planes that maximizes the probability of a correct observation
at each station. We present briefly a method that uses maximization of a likelihood
function and allows for individual and joint solutions for several earthquakes, giving
estimations of the variances of the focal parameters (Brillinger et al., 1980; Udias
and Buforn, 1988). The method defines the probability that all observations are con-
sistent with a determined orientation of the source as the product of the individual
probabilities of each observation and looks for an orientation of the source that
maximizes this total probability. The probability of observing a compression at station
i is expressed as a function of the theoretical amplitude expected from an orientation of
the source as

m; = prob(¥; = 1) = v+ (1 — 29)2[4;(&)] (19.2)

where 0 < v < %represents reading errors and is given a small value (y = 0.01). @[4;(&,)]
is the Gaussian cumulative function of normalized theoretical amplitudes expected from
a determined orientation of the source defined by its three parameters (£, &, and &)
which correspond to ¢ , 6, and A or @p, Op, and @7. In this form, the probability is
greater for values of 4 near unity (maximum amplitudes in the radiation pattern).

If we have N observations Y; for an earthquake, the probability that its mechanism
corresponds to a determined orientation of the source given by &, can be written as

N
P =" 120 — @)1 (19.3)
i=1

The method searches for the parameters of the orientation of the model &, that maximize
the likelihood function L = log P. Since L is a continuous function of &, its maximum is
found by searching for the values of £ that satisfy dL/9¢, = 0. Once these values have
been found, the method is used to calculate all the other parameters of the point source
which are represented in the focal sphere (Fig. 19.5). The method determines the
covariance matrix whose main diagonal gives the standard errors of the parameters
and the information matrix. This method is generalized to find also joint solutions for
groups of earthquakes with the same mechanism, which is useful in the study of mechan-
isms of aftershock sequences or swarms of earthquakes.
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North Atlantic 16-02-98
COPLUNGE  TREND

T 85.66 233.85
P: 87.15 324.06
STRIKE DIP SLIP
A: 9.00 84.92 178.94
B: 278.91 88.95 5.08
N= 49 SCORE=0.96

Fig. 19.5. The fault-plane solution of the North Atlantic earthquake of 16 February 1998 (courtesy
of E. Buforn).

19.3  Wave-form modeling

The method of P wave polarities uses the minimum information contained in
seismic waves. Among the methods using more information are those based on the
analysis of wave forms (Langston and Helmberger, 1975). The method consists in the
comparison of P and S wave forms observed at various azimuths around the focus
with those calculated from a point-source model. The comparison is made visually or
by a method of minimization of the difference between observed and calculated waves
(Nabelek, 1984). Wave-form analysis is frequently applied to earthquakes with observa-
tions at teleseismic distances (A > 30°). Its application to local or regional earthquakes
is more difficult because of the heterogeneity of the crustal structure. A solution for this
problem is the use of empirical Green functions as proposed by Hartzell (1978). Empiri-
cal Green functions are found from waves of small earthquakes located at the same place
and recorded at the same stations as those that record the larger shock whose mechanism
is being studied.

Wave-form modeling is based on the determination of theoretical or synthetic seismo-
grams for P and S waves from a given model of the point source defined in terms of its
depth, the orientation of the mechanism (DC), the source time function, and the seismic
moment. For P waves of long periods, at teleseismic distances (30° to 90°) layering in the
focal region and at the recording station does not affect wave forms. Thus the observed P
waves are given by the sum of direct P waves and reflected pP and sP waves at the free
surface above the focus. Because of the critical influence of the focal depth on these
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Fig. 19.6. Ray trajectories of P waves from the focus to a station and elements that are used in wave-
form modeling.

waves, this is a parameter that is evaluated as part of the analysis (Deschamps et al.,
1980; Okal, 1992).
According to (16.79), the displacement of P waves for an infinite medium is given by

L Mof(t=r/a)

i drpadr (micl; + nili ) vivey; (19.4)

For a shear fracture, the components of the vectors / and n can be expressed in terms of
the fault angles ¢, 6, and A according to (16.99)—(16.104). The STF f(¢) represents the
time dependence of the slip velocity and ~; are the direction cosines of the ray that arrives
at the station and can be given in terms of its azimuth ¢, and take-off angle i), at the focus
(16.105)—(16.107).

If the focus is very deep, reflected pP and sP waves are separated from direct waves
and we need consider direct waves only (Fig. 19.6). The vertical component of a P
wave at an observation point on the Earth’s surface is given by

= T TI0) R 5,60, 1)g(A)G (. Q)C.(0) (19.5)
TP
where r is the distance along the ray from the focus to the station, RP(¢,6,>\71‘,1) is
the pattern of the radiation for P waves, ¢ is the azimuth at the focus measured from
the trace of the fault (¢ = drur — Pstation)> in 18 the take-off angle at the focus, i, is
the angle of incidence of the ray at the station, g(A) is a factor due to geometric
spreading of the wave front (section 8.8), G(r, Q) = exp[—wr/(2aQ)] is the anelastic
attenuation (section 14.3), and C.(iy) is the effect of the free surface on amplitudes
(section 5.5).
In terms of ¢ , §, and A, the pattern of the radiation of P waves is given by

R = A(3cos’ i, — 1) — Bsin(2i,) — Csin’ i, (19.6)
and that of SV waves is given by

RS = —3 Asin(2iy) — Bcos(2iy) — 4 Csin(2i) (19.7)
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P+pP+SP

Fig. 19.7. Ray trajectories at the focus (a) and at a station (b) for P, pP, and sP waves.

with
A = 1sin Asin(26) (19.8)
B = sin Acos(26) sin ¢ + cos Acos §cos ¢ (19.9)
C = sin§cos Asin(2¢) — 1sin Asin(26) cos(2¢) (19.10)

The STF f(¢) has, for a simple source, a triangular or trapezoidal form, and, for a
complex source, a combination of triangular and trapezoidal functions (section 16.7).
The duration of the source action is given by the rise time in the first case and by the
sum of all rise times in the second.

For a shallow focus or one of intermediate depth, the displacement > (1) at the surface
is the sum of P, pP, and sP waves:

(1) = g A)G(, Q)[R (6,i) /(1 — 1)
TPROGT
+ RP(¢; ™= ih) Vpr(t - tP - AZpP)
+ R, — ju) Vep S (1 — tp — Atp)] (19.11)

The first term corresponds to the direct P wave, the second to the pP wave, and the third
to the sP wave (Fig.19.7). R® and RS are the normalized patterns of the radiation for P
and SV waves (19.6) and (19.7). For pP and sP waves, rays take-off from the focus in the
upward direction and correspond to angles of incidence © — i, and 7 — j;,, and, according
to Snell’s law, sinj, = (8, /ay) siniy,. If fp is the arrival time of P waves, then the delays
with respect to this time of pP and sP waves’ arrivals are calculated using the approxi-
mation that direct and reflected rays have the same take-off angles at the focus and
the surface (Fig. 19.7(a)). Then, from F and F', the traveling times of the two rays are
the same and the delay At,p = (/; + 1)/, where [} 4+ [, = 2hcosij. The delays of sP
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P+pP+SP
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Fig. 19.8. Pulses of P, pP, and sP waves, and their sum.
waves are derived in a similar way:

2hcosi
Atyp = top — tp :Th (19.12)
h

(19.13)

COSj Cos i
Atsp = ZSP_ZP :h< Jh+ h)

Bn Qp

Vpp and Vg are the coefficients of reflection at the free surface for an incident P and
reflected P wave, and an incident SV and reflected P wave. These coefficients are for
the vertical component of displacement and can be derived from (5.100) and (5.107)
(section 5.4). The observed P wave is the sum of the three waves (Fig. 19.8).

In the process of modeling wave forms, the parameters which are adjusted are the
seismic moment M, orientation of the source (¢, §, and \), source time function f(¢),
and focal depth /. The rest of the parameters are assumed to be known and are kept
constant except for those that vary with the focal depth.

The method consists in selecting observations of P waves at different azimuths within
the accepted range of distances. At present the best results are obtained by using broad-
band digital records. Observed wave forms must be transformed into ground displace-
ments by correcting for the instrument’s response. Theoretical wave forms are calculated
by assuming some initial values of the variable parameters. A first approximation for the
orientation of the source is obtained from the fault-plane solution. Values of focal
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Fig. 19.9. Modeling of P waves for the Azores earthquake of 27 June 1997 (courtesy of E. Buforn).

parameters are changed to improve the fit to observed wave forms. Sometimes the value
of Q is also changed. On increasing /1 delays between arrivals of P, pP, and sP waves
increase, and on varying Q the width of the pulses is changed. The fitting is done visually
by comparing theoretical and observed wave forms or numerically by an iterative
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procedure in which the residuals of amplitudes are minimized by a least squares method.
A method in which the parameters are adjusted by a least squares procedure is known as
wave-form inversion (Nabelek, 1984; MacGrafirey et al., 1991). An example of wave-
form modeling is given in Fig. 19.9. The method is also applied to S waves by separating
SV and SH components beforehand. Theoretical seismograms are calculated directly in
the time domain or are first calculated in the frequency domain and then transformed to
the time domain. A problem with these methods, especially if only a few stations with a
poor coverage of azimuths are used, is that of how to assign the observed complexity of
wave forms to the source that actually belongs to the propagating medium.

19.4  Inversion of the moment tensor

In section 17.7, we saw how the formulation of the source mechanism in terms
of the moment tensor allows a linear inversion of its components from the observations
of elastic wave displacements. The most common problem concerns the inversion of the
first-order time-independent moment tensor that corresponds to a point source. The first
method used observations of free oscillations (Gilbert and Dziewonski, 1975). Methods
for inversion of surface waves in the time and frequency domains (Mendiguren, 1977;
Kanamori and Given, 1981) and of body waves have been proposed (Stump and John-
son, 1977; Strelitz, 1978). A generalized method applicable both to body and to surface
waves uses summation of normal modes (Dziewonski et a/., 1981). This method, known
as the ‘centroid moment tensor’ (CMT) method because in it one redetermines hypo-
center coordinates corresponding to the centroid of the source area in the inversion
process, is applied on a routine basis at Harvard University to sufficiently large earth-
quakes. A method that also uses both body and surface waves is applied in a routine
form by the USA’s Geological Survey to all earthquakes of magnitude larger than 5
(Sipkin, 1982). Most methods assume the source to be purely deviatoric and afterwards
separate the DC part of the solution (section 17.4).

19.4.1 The inversion of Rayleigh waves

As an example of the methodology followed in moment-tensor inversions, we
present the basic procedure followed in the inversion of Rayleigh waves. Usually verti-
cal-component seismograms recorded at several stations are used. The data must be
reduced to ground motion by correcting for the instruments’ responses. If all data are
reduced to a common distance, in the frequency domain, then the complex spectra are
functions only of the azimuth of each station and the frequency:

U(w, ¢) = A(w, ¢) " = R(w, ¢) + il (w, ¢) (19.14)

According to (17.51), the spectra can be expressed as the product of the spectrum of the
seismic moment and the derivatives of Green’s function:

Ui(w, ¢) = Mj(w)Gy j(w, @) (19.15)

The real and imaginary parts of the spectra are linear combinations of the components
of M;; and those of Gy; ;. The latter are called the excitation functions Gy. For a purely
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deviatoric source they can be reduced to seven components. These functions are calcu-
lated for an appropriate model of a layered medium for ¢ = 0, and for other values of ¢
are given by their product with the sines and cosines of ¢. The spectrum of the source
time function can be separated into the form M (w) = M;F(w), assuming that all of
the components have the same time dependence. For low frequencies, the problem is
practically independent from the frequency, since we are dealing with the flat part of
the spectrum. In this case, the real and imaginary parts of the spectrum for the vertical
components of displacements and a deviatoric tensor are given by

R= Gl [Mxy Sll’l(2¢) 7%(Myy - Mxx) Sll’l(2¢)] + G2Mzz - %GlMxx (1916)
I = G5(M,.sin$ + M., cos ¢) (19.17)

where the components of the moment tensor are referred to the geographic axes (section
17.1). The variables are the six components of the moment tensor. For their solution, we
need observations at NV stations at different azimuths so that the problem is well condi-
tioned. The resulting system of 2N equations with six unknowns is solved by a least
squares procedure.

The problem can also be solved by using the spectral amplitudes of Rayleigh waves
A(w, ¢). In this case, their relation to the components of Mj; is not linear. If the six com-
ponents of the moment tensor are M;, i = 1,...,6, then the spectral amplitudes can be
expressed as A(w, ¢, M;). The problem is solved by taking a Taylor expansion about
some initial known values M?:

A(w, ¢, M;) = A(M?) +Z (‘3Mk (19.18)

The unknowns are now the six values of the corrections dM;, and the solution is given by
M; = M? + 8M,. Just like in the previous case, we need observations from N stations at
different azimuths and the problem is solved by a least squares method. The process is
repeated until it converges to a minimum-error solution. The error is defined as the
sum of the squares of residuals between observed and calculated spectral amplitudes
at each iteration.

In these methods the moment tensor is assumed to be deviatoric and hypocenter
coordinates and origination times are supposed known. Since the focal depth affects
the excitation functions and its value is often not very precise, it is incorporated into
the problem as another variable. In the CMT method, hypocenter coordinates and
the origin time are incorporated into the problem as four added unknowns that are recal-
culated together with the five components of the moment tensor. Coordinates obtained
from the minimum-error solution correspond not to the point of initiation of the frac-
ture, as do those obtained from arrival times, but rather to the centroid of the source
area. This relocation of the hypocenter results in a better estimation of the moment
tensor’s components.

In all methods of inversion of the moment tensor, an appropriate model of the Earth is
used to calculate the excitation functions. Errors in this model result in errors in the
moment tensor obtained. For low frequencies this is not important, but it becomes a
problem for small distances and relatively high frequencies. The non-DC part of the
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solution is in many cases due to these errors rather than to the source itself. As has
already been mentioned, moment-tensor inversions give the five components of a devia-
toric tensor and must be separated into a DC part and a non-DC part (section 17.4).
From the DC part, the parameters of the orientation of the source are obtained accord-
ing to (17.24). The method gives also the rate of release of the moment as a function
of time. In general, solutions are more stable when observations are taken from many
different azimuths.

19.5 Amplitude spectra of seismic waves

The amplitude spectra of body and surface waves are used to obtain certain
source parameters such as seismic moments and source dimensions (Hanks and Wyss,
1972). According to sections 18.2 and 18.3, the amplitude spectra of seismic waves
depend on the source dimensions, practically independently from the model of the
source. The seismic moment is determined from the value of the flat part of the spectrum
for low frequencies of body and surface waves, corrected for the instrument’s response,
the pattern of radiation, and all factors that affect wave propagation. For P waves, the
seismic moment is given by

Mo — 4UF mpa’rexplwr/(aQ,)]
" 4(A)C.(i0)Re(,6, ) iy)

where U? is the mean spectral amplitude for low frequencies for the vertical component
of P waves, r is the distance along the ray from the focus to the station, Q,, is a quality
factor for P waves, g(A) is the geometric spreading, C.(iy) is the effect of the free surface
on amplitudes, and Rp(¢, 6, A, i;) is the pattern of radiation corresponding to the
orientation of the source given by ¢, 6, and A, where ¢ is the azimuth from the fault
trace to the station and i, is the take-off angle at the focus. The expression for S

(19.19)
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Fig. 19.10. Effects of source dimensions on the spectrum (a) and the pulse width (b) of P waves.
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waves is similar. For Rayleigh waves the expression is

UR(27R)"/* exp(1x R)
0 =
le{*N.(R, h)(¢, 8, \)

(19.20)

where UR (w) is the mean spectral amplitude for low frequencies of the vertical compo-
nents of Rayleigh waves, R is the distance from the epicenter, R is an attenuation factor,
kg is the wave number, N.(R, &) is the excitation function corresponding to the depth /,

Amplitude (m)

X 1043

10 T T ! ]IIIll] T Illlll[]
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Fig. 19.11. Determination of the seismic moment and the radius of the source from the amplitude
spectrum of P waves for the Azores earthquake of 27 June 1997; My = 3.5 x 10! Nm, r = 10 km
(courtesy of E. Buforn).
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and Rg(¢,6,A) is the pattern of radiation. Expressions (19.19) and (19.20) can be
simplified by making appropriate approximations for factors.

As we saw in sections 18.2 and 18.3, the source dimensions are related to the corner
frequency w, (Fig. 19.10). If the spectrum is drawn on a logarithmic scale it can be
fitted by two straight lines, one parallel to the frequency axis for low frequencies and
another of slope —2 for high frequencies. The intersection of these two lines marks
the corner frequency. For a rectangular fault of length L and width W, according to
Savage’s model,

12 _ 1.7« o 38ﬁ

LW 19.21
(L)' =2t == (19.21)
For a circular fault, according to Brune’s model,
2.33
a= 786 (19.22)
wC

In this form, both the seismic moment and the source dimension can be estimated from
amplitude spectra (Fig. 19.11). Estimations of the seismic moment are very stable, if we
use wave lengths larger than the source dimensions. Estimations of dimensions for small
earthquakes can be affected by attenuation. For this reason, determinations must be
made from data of several stations and a mean value taken. Once the seismic moment
and dimensions are known, we can estimate values of the apparent average stress and
stress drop (section 15.6).



20 SEISMICITY,
SEISMOTECTONICS,
AND SEISMIC RISK

20.1 The spatial distribution of earthquakes

The term seismicity was probably used for the first time by Montessus de
Ballore in 1906 to describe the distribution of earthquakes and their characteristics
within a particular region. The most important aspects of seismicity are given by the
geographic distribution of earthquakes’ foci, their magnitude, their occurrence over
time, their mechanisms, and the damage produced by them. Studies of seismicity are,
then, based on seismic catalogs that include parameters such as the dates and times of
occurrence, hypocenter coordinates, magnitudes and focal mechanisms of earthquakes
and their correlation to regional geological and geophysical characteristics. Historical
descriptions of earthquakes can be traced back to written records of old civilizations
such as those of China and, for Europe, of Greece and Rome. Among the first universal
catalogs of earthquakes were those published by J. Zahn in 1680 and by J. J. Moreira de
Mendonga in 1758. Modern catalogs started about 1850 with the work of Perrey, Mallet,
and Milne. Today global and regional catalogs are being compiled by various agencies,
such as the ISC (International Seismological Centre, Newbury) and NEIC (National
Earthquake Information Service, Denver) (Chapter 1). Among the first studies of
seismicity were those of Montessus de Ballore between 1850 and 1923, Sieberg between
1923 and 1933, Gutenberg and Richter (1954) and Karnik (1969, 1971). Studies of
seismicity are fundamental for understanding the seismotectonic and geodynamic con-
ditions of a region and for the assessment of its seismic risk.

From antiquity it has been known that some regions are more prone to the occur-
rence of earthquakes than are others. Thus we can separate seismically active regions
from those that are more stable. Once the determination of epicenters had become
sufficiently accurate, it was observed that earthquakes occur in narrow zones that
surround relatively stable regions (Fig. 20.1). These bands or alignments of earth-
quakes coincide in some cases with the margins of continents, or with oceanic ridges
under the oceans. However, not all continental margins correspond to seismic zones,
so that they can be divided into active and passive margins, which classification is
related to plate tectonics, as we will see later. For example, the western margin of the
Americas is active whereas the eastern margin is passive, the northern margin of
Eurasia is passive whereas its southern and eastern margins are active, and all margins
of Africa are passive.

The depths of earthquakes vary from the surface to about 700 km. According to their
depth, earthquakes are classified as shallow (less than 30km deep), that is, inside the
crust, intermediate (30—300 km deep), and deep (more than 300 km deep). Intermediate
and deep earthquakes occur in active zones where, according to plate tectonics,
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Fig. 20.1. A world map of shallow earthquakes (4 < 60 km) for the period 1970-90, M > 4 (NEIC, USA’s Geological Survey).
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Fig. 20.2. A world map of deep earthquakes (4 > 60 km) for the period 1970-90, M > 4 (NEIC, USA’s Geological Survey).
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lithospheric plates are introduced into the mantle in zones of subduction. As a general
rule, for oceanic ridges there are only shallow earthquakes whereas for island arc regions
there are shallow, intermediate, and deep earthquakes (Figs. 20.1 and 20.2). Although
shallow earthquakes are classified as those less than 30 km deep, most of them take
place at depths less than 20 km, that is, in the upper rigid part of the crust that is
called the seismogenic layer (section 15.2). Earthquakes at greater depths correspond
to zones where this rigid and relatively cold material of the upper crust is introduced
into the upper mantle by lithospheric subduction. However, very deep earthquakes
may be produced by processes related to phase changes in focal material instead of
brittle fracture.

According to plate tectonics, the global distribution of epicenters is related to bound-
aries between lithospheric plates (Fig. 20.1). Earthquakes at plate boundaries are called
interplate earthquakes. Less commonly, earthquakes also take place in plate interiors
and these are called intraplate earthquakes. The most active region in the world corre-
sponds to the margins of the Pacific Ocean. Earthquakes with large magnitudes take
place along this zone in the Americas from the Aleutian Islands to southern Chile and
from the Kamchatka peninsula in Asia to New Zealand. Besides shallow earthquakes,
throughout most of this long region, intermediate and deep shocks take place along
the margin of Central and South America and on the other side of the Pacific along
the systems of island arcs (Aleutians, the Kuriles, Japan, the Philippines, Fiji, etc.)
(Fig. 20.2).

Another large seismically active region is known as the Mediterranean—Alpine—
Himalayas region and extends from West to East from the Azores to the eastern coast
of Asia. This region is related to the boundary between the plates of Eurasia to the
North and Africa, Arabia, and India—Australia to the South (Fig. 20.1). Its seismicity
involves shallow, intermediate, and deep ecarthquakes. A third seismic region is
formed by earthquakes located on ocean ridges that form the boundaries of oceanic
plates, such as the Mid-Atlantic Ridge, East Pacific Rise, etc. (Fig. 20.1). In these regions
earthquakes of shallow depths are concentrated in relatively narrow bands following the
trend of the oceanic ridges. On comparing Figs. 20.1 and 20.2, we can see the location of
shallow and deep earthquakes and the presence of zones of concentrated seismicity and
others with earthquakes spread over wide areas. In general, boundaries between oceanic
plates and between oceanic and continental plates have simpler distributions of seismi-
city than do boundaries between continental plates.

An example of a complex distribution of seismicity in a boundary between two con-
tinental plates is the Mediterranean region (Fig. 20.3) (Udias and Buforn, 1994).
Inside this region the most active zones in order of activity correspond to Greece,
Turkey, Italy and the Alps, the Carpathians and Dynarics, North Africa, southern
Spain and the Pyrenees, and the Rhine Graben. Along this region, seismic activity is
formed by a continuous occurrence of earthquakes of small and moderate magnitudes
(M < 6) with the occurrence of large earthquakes (M > 6) separated by larger intervals
of time. Destructive earthquakes have happened more or less often in all active regions.
Most earthquakes are of shallow depths with four zones of intermediate and deep earth-
quakes, namely the Hellenic arc, the Carpathians, Sicily—Calabria, and southern Spain
and Morocco. The deepest earthquakes have taken place in southern Spain (640 km) and
Sicily—Calabria (450 km). In the other two regions the maximum depth is about 200 km.
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Fig. 20.3. A map of earthquakes in the Azores—Mediterranean region for the period 1970-90, M > 3 (NEIC, USA’s Geological Survey).
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As can be seen from Fig. 20.3, earthquakes are spread over wide areas, indicating the
presence of several small plates between the two large plates of Eurasia and Africa.

20.2  The temporal distribution of earthquakes

In studies of seismicity, the temporal distribution of earthquakes is as important
as their spatial distribution. In a very general way, it can be said that earthquakes in a
region behave as a temporal series of point events resulting from a process of release
of stress in the Earth’s crust. Statistical studies of temporal series of earthquakes
reveal some characteristics of their distribution. The limits of the area being studied
and the durations of time intervals are two important factors to consider.

From a statistical point of view, the simplest model of the occurrence of earthquakes
with time is a Poisson distribution. This distribution assumes that earthquakes are
independent events, that is, their occurrence does not affect that of others. If A is the
rate of occurrence of earthquakes within a time ¢, the probability that n earthquakes
take place within such an interval is

/\n ef)\

n

p(n) (20.1)
If the occurrence of earthquakes follows a Poisson distribution, then the intervals of time
3t between consecutive earthquakes have an exponential distribution. The probability
that two earthquakes are separated by an interval 8¢ is

p(81) = e ¥ (20.2)

For a given rate of occurrence, the probability is greater for smaller intervals. Studies of
temporal series of earthquakes show that they deviate, to greater or lesser extents, from
Poisson’s law. The global distribution of large earthquakes follows this distribution
quite well, but moderate and small earthquakes and those in a limited region do not.
The assumption of independence is not totally correct since earthquakes are grouped
in series of various kinds. The interdependence of earthquakes shows up in the occur-
rence of clusters such as sequences of aftershocks and swarms. Clusters can be better
observed in temporal series including small earthquakes in limited areas. Shocks that
are near in space and time are necessarily interrelated.

20.2.1 Foreshocks, aftershocks, and swarms

The most important clustering of earthquakes is that associated with the occur-
rence of an earthquake of larger magnitude that is called the main shock. Earthquakes of
lesser magnitudes preceding the main shock are called foreshocks and those following
immediately thereafter are called aftershocks. The occurrence of aftershocks is a
common phenomenon and is related to the release of energy in the fracture zone that
is not completed by the main shock. In complex models of earthquake sources, we
saw that not all of the accumulated stress is released by the main shock, but rather
zones of the source remain unbroken and break afterwards, causing aftershocks. Fore-
shocks are less frequent, but many earthquakes are preceded by small shocks that break
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Fig. 20.4. Aftershocks during the year after the Alaska earthquake of 28 March 1964, M = 8.6. The star shows the location of the main shock (NEIC,

USA’s Geological Survey).
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weak zones on the fault plane before the main event. When, in a series of earthquakes in
a small area, there is no main shock, the series is called a swarm of earthquakes.

In a general way, series of earthquakes can be related to the nature of the conditions of
the material of the fracture zone (Mogi, 1963). If the material is very homogeneous and
the distribution of stress uniform, there are no foreshocks and the main shock is followed
by a series of aftershocks of lesser magnitude. Foreshocks are associated with hetero-
geneities in the source material that result also in longer sequences of aftershocks. If
the material is very heterogeneous and the stress not uniform, then earthquakes
happen in swarms without a real main shock.

Both the spatial and the temporal distribution of quakes within series of aftershocks
are of interest. Aftershocks are distributed over the fracture area of the main shock and,
in some cases, there is a certain migration from one end to another of the fault. Thus, the
fault area of large earthquakes can be determined by the area over which the aftershocks
are distributed. The number of aftershocks, their magnitudes, and their durations
depend on the magnitude of the main shock. An earthquake of magnitude 5 usually
has a sequence of aftershocks lasting a few days, whereas for one of magnitude 8, the
series may last more than a year. The earthquake in Alaska in 1964 (M = 8.6) had a
long series of aftershock lasting more than a year and a half over an area of about
360 000 km? (F ig. 20.4). To estimate the total duration of a series of aftershocks is some-
times difficult, especially for very large earthquakes. The last part of the series may last
for years. In general, shallow shocks have longer series of aftershocks than do deeper
ones. The magnitudes of aftershocks depend on that of the main shock. The largest after-
shock has a magnitude about one unit lower than that of the main shock.

The distribution in time of the number of aftershocks follows, generally, an inverse
power law of time. In 1894 Omori proposed a dependence of 1/¢ that has been modified
to the form (Utsu, 1961)

K
N(t) = iy (20.3)
where K and ¢ vary with each series and p has values in the range 0.7—-1.4. Also here,
values of p are interpreted in terms of the heterogeneity of the fault material. The
number of aftershocks diminishes more rapidly for a very homogeneous material
(high values of p) than it does for a heterogencous material (low values of p).

20.2.2  Seismic cycles

Earthquakes occur when the stress overcomes the strength of the source
material at a critical value, producing its fracture. The accumulation of stress in a parti-
cular area is produced by tectonic processes that are related ultimately to plate motion. If
we assume that stress accumulates at a constant rate, it will reach the critical value and
produce earthquakes in a certain fault area at more or less regular intervals. The process
of the accumulation of stress and its release by the occurrence of an earthquake on a
particular fault constitutes a seismic cycle.

In the simplest case, the rate of accumulation of stress is uniform and reaches the same
critical level at which an earthquake is produced with constant drop in stress, reducing
the stress to the same level, from which it starts to accumulate again. In this case, all
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Fig. 20.5. Models of the occurrence of earthquakes. (a) Periodic, equal drop in stress, and equal time

interval. (b) Nonperiodic, different drops in stress, and different time intervals (the time-predictable
model) (Shimazaki and Nakata, 1980) (with permission from the American Geophysical Union).

earthquakes would have the same magnitude and repeat at constant intervals with
periodic seismic cycles. In this ideal case, the magnitudes and times of occurrence of
earthquakes could be predicted (Fig. 20.5(a)). A more realistic model was proposed
by Shimazaki and Nakata (1970), whereby stress is released when it reaches the same
maximum value, but the drops in stress for earthquakes are not always the same; that
is, stress is released by earthquakes of different sizes. The intervals between earthquakes
are not always the same, but rather depend on the size of the preceding earthquake (Fig.
20.5(b)). This situation, known as the time-predictable model, allows prediction of the
time of occurrence of the next earthquake, but not its size. A model with earthquakes
happening when the stress reaches various levels and also with different drops in
stress will have earthquakes of different sizes occurring at different intervals. In this
case, we can not predict the time or magnitude of the next earthquake from knowledge
of the preceding seismic cycle.

The concept of a seismic cycle is very important if one is to understand the occurrence
of earthquakes on the same fault. Although the accumulation of stress may be approxi-
mately uniform, the heterogeneity of the material does not allow the existence of periodic
or regular cycles of occurrence of earthquakes of the same magnitude. Owing to the het-
erogeneous conditions at the fault, stress may be released starting at various levels and
producing earthquakes of different sizes, so that the time-predictable model is not valid.
Another problem that affects the regularity of seismic cycles is the existence on a fault of
aseismic slip caused by creep phenomena. Thus, part of the accumulated stress is
released by continuous aseismic slippage of the fault, independently from the occurrence
of earthquakes. The aseismic slip depends on the nature of each fault and it is difficult to
observe. The result is that the sum of the stresses released by earthquakes does not add
up to that accumulated by tectonic processes and so the seismic slippage is only part of
the total slippage on the fault.

A concept related to the seismic cycle is that of a characteristic earthquake (Schwartz
and Coppersmith, 1984; Aki, 1984). This concept is based on the consideration that a
particular fracture, owing to its dimension remaining constant, can only produce earth-
quakes with a certain maximum size. For each fault, earthquakes with this maximum
magnitude are called characteristic earthquakes. These earthquakes have very similar
characteristics and repeat themselves on the same fault, at quasi-regular intervals.
Implicit in this concept is that each fault is an independent unit that breaks in its totality,
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producing always an earthquake of the same maximum magnitude. However, it has been
observed that large earthquakes may break through several faults, and, thus, the princi-
ple of characteristic earthquakes is not always satisfied. Here again, the problem is that
the conditions in fault regions are not homogeneous and regularities in the occurrence of
earthquakes are difficult to establish.

The main problem with respect to the regularity of seismic cycles and characteristic
earthquakes is that observations of the occurrence of large earthquakes are very limited
in availability. Instrumental data started to be recorded at the beginning of this century
and reliable global data do not extend more than 50 years back. Historical earthquakes
dating back several centuries may be known in some regions, but our knowledge of them
has many limitations. Even admitting the reliability of data of this type, the record can
not be extended back any further than 1000 years ago. In most active regions, large
earthquakes (M > 6.5) repeat at intervals that vary from tens to hundreds of years.
In regions of low seismicity these intervals may be larger, of the order of thousands of
years. Moreover, very large earthquakes (M > 8) are very rare events that may be
separated by even greater intervals. For example, it is difficult to know the return
time for the great Lisbon earthquake of 1755, there has been no similar event in histor-
ical times. A new source of observations comes from paleoseismicity studies of active
faults. Detailed field observations on trenches through faults allow the dating of large
earthquakes in the geological past but there are still few of them. In conclusion, with
the information we have at present, it is difficult to solve the problem of the periodicity
of large earthquakes and to know to within a certain precision the characteristics of
seismic cycles.

20.3  The distribution of magnitudes

Observations show that, in seismic regions, during any period of time, the
number of small earthquakes is many times that of larger ones. This fact is expressed
in the empirical law suggested by Omori in 1889 and proposed by Gutenberg and
Richter (1954) in logarithmic form:

logN(M) =a—bM (20.4)

where N (M) is the number of earthquakes of magnitude larger than M, a is a constant
that represents the number of earthquakes of magnitude larger than zero, and b is the
proportion of earthquakes with small and large magnitudes. Although we do not
know the exact form in which the elastic energy accumulated in a region is released
by earthquakes, the distribution of their magnitudes follows this universal law. The
value of b is an important parameter in studies of seismicity. It is determinined by finding
the slope of the straight-line fit to the distribution of the logarithm of the number of
earthquakes versus their magnitudes. In general, observations fit this distribution,
with some deviations, corresponding to very small and very large earthquakes (Fig.
20.6). For a large area and long interval of time, these deviations are generally due to
a lack of completeness in observations at both ends of the magnitude range. For obser-
vations from a single fault, deviations may be related to its conditions and the size of the
characteristic earthquake.
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Fig. 20.6. The number of earthquakes together with their magnitudes for the Azores—Gibraltar
region.

Values obtained for b are very stable, in the range 0.6—1.4, and its most common value
is very near to unity. Changes in values of » on going from one region to another are
related to their mechanical characteristics. High values of b indicate a high number of
small earthquakes, which is to be expected in regions of low strength and large hetero-
geneity, whereas low values indicate the opposite, namely high resistance and homoge-
neity. Changes of b with time for the same region are associated with changes in stress
conditions and hence b has been proposed as a parameter to consider in the problem
of the prediction of earthquakes. The degree of significance of these changes has been
questioned by some authors.

20.4  Models of the occurrence of earthquakes

Observations of the occurrence of earthquakes in space, time, and magnitude
have led to the proposal of models that simulate certain properties of their distribution.
These models specify the form in which accumulated elastic stress is released along the
fault surface, producing earthquakes of varying magnitude at different times. Models
describe the process of stress loading in terms of elastic strain in the focal region and
its subsequent release with the occurrence of earthquakes. As we have seen, the process
of stress loading and the subsequent release of stress constitutes a seismic cycle. Models
must satisfy Gutenberg and Richter’s relation and that the universal value of b is near
unity, and should try to explain this fact.

The first model to simulate the properties of the occurrence of earthquakes consists in
a series of blocks connected by springs that slide on a horizontal surface with friction as
they are drawn by means of springs that connect them to a block that moves with a con-
stant velocity (Fig. 20.7) (Burridge and Knopoff, 1967). The moving block represents the
material on one side of a fault that is drawn by tectonic movements loading springs that
connect it to the small blocks. Owing to friction between blocks and the stable surface,
motion is not transmitted directly to the blocks, but rather first deforms the springs.
Once the springs have accumulated enough energy to overcome the friction of the
blocks, these move. When a block moves, it loads elastic energy onto the springs that
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Fig. 20.7. The model of blocks and springs for simulating the occurrence of earthquakes.

link it to adjacent blocks, causing their later displacement. The motion of one or a few
adjacent blocks represents small earthquakes and that of many blocks corresponds to
a large one. The smallest earthquake is represented by the motion of one block and
the maximum size possible is represented by that of all blocks of the system. Owing to
friction, the blocks do not move uniformly, but rather by sudden increments, in the
form called stick—slip motion.

With models of this type, we can simulate the occurrence of earthquakes with a
proportion of small and large earthquakes similar to that of Gutenberg and Richter’s
law. Another result of these models is that small events take place in a random
manner whereas large ones occur in a quasi-periodic way. Originally, the model was
only one-dimensional, but it has been generalized to two and three dimensions. More
recent models are more complex with viscoelastic elements between blocks, the friction
variable with the velocity, and other conditions that allow the simulation of series of
aftershocks after large events and other properties of the occurrence of earthquakes
(Dieterich, 1972; Mikumo and Miyatake, 1979). The fundamental idea of these
models is that each element of a fracture interacts with those surrounding it and thus
influences the evolution of the whole system. Although these systems are in themselves
deterministic, they behave chaotically as their complexity is increased, due to the
increase in their instability. The result is a quasi-chaotic behavior in which very small
changes in initial conditions lead to very large effects on the evolution of the system
that behaves more and more randomly with time.

Another approach to studying the occurrence of earthquakes is to consider their
fractal nature using the fractal theory developed by Mandelbrot (1977) (Andrews,
1980; Aki, 1981; Hirata, 1989). A basic property of all fractal distributions of a variable
r is that they obey a power law of the type A4r ”, where the exponent D represents the
fractal dimension and is related to the coordinates associated with the elements of the
set that represent the phenomenon being studied.

Gutenberg and Richter’s law (20.4) can be transformed into a power law for the
number of earthquakes as a function of the seismic moment N (M) by substituting equa-
tion (15.35) into it:

N(M,) = BMy” (20.5)

where B is constant for a constant drop in stress. Since the seismic moment is propor-
tional to the source dimensions, a similar relation can be written for the fault’s length
or area using (15.30) and (15.33). According to Aki, D = 2b and, since b has a value
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near to unity, D, the fractal dimension, is approximately equal to two. This result can be
interpreted as representing the fact that earthquakes are distributed over two dimensions
(a plane), which agrees with the observation of their occurrence on fault planes.

The fractal nature of the occurrence of earthquakes implies that they have a self-
similar stochastic distribution, that is, they behave in a similar form, independently
from the range of sizes considered. Although this is the general rule, self-similarity
need not be perfectly satisfied. It has been observed that the relation between the fault’s
length and the seismic moment is different for moderate and small earthquakes
(M < 6.5) than it is for large ones (M > 6.5) (Scholz, 1982). In the first case the seismic
moment is proportional to the cube of the source’s length whereas in the second it is
proportional to its square. This break in the self-similar rule can be explained by invok-
ing the influence of the thickness of the seismogenic layer. As we saw, this layer has an
approximate thickness of 20km and thus affects the geometry of the seismic source,
which is nearly circular for small earthquakes and rectangular (L > W) for large ones
(section 15.1).

Once we have accepted the fractal nature of earthquakes and their self-similarity, we
may ask what the dynamic process responsible for this behavior is. Some authors have
answered this question in terms of self-organized criticality (SOC) (Bak and Tang, 1989;
Sornette and Sornette, 1989; Ito and Matsuzaki, 1990). This term (SOC) is applied to
dynamic systems that evolve by themselves until they reach a critical state in which
phenomena take place randomly, according to a power law. In the case of earthquakes,
the system is the material of the Earth’s crust, which evolves under tectonic stresses until
it reaches a state of SOC. In this state, earthquakes of all sizes take place with only the
limitation of a minimum possible size (a minimum earthquake) and a maximum size
imposed by the dimensions of the seismogenic region (the maximum or characteristic
earthquake). This behavior is a consequence of the nonlinear dynamic space—time char-
acteristics of the Earth’s crustal system in response to stresses generated by lithospheric
plate motion.

This type of process can be modeled, in a form similar to that of the models of blocks
and springs, by a distribution of cellular automata whose behavior under an applied
stress is specified. Each cell receives and transmits stress to its neighbor cells as it
moves, changing the stress distribution of the whole system. After a sufficiently long
time, the system evolves by itself into a critical state (SOC), in which events of all
sizes are produced with a power-law distribution. The size of events is given by the
number of adjacent cells that move at a given moment. Models of this type reproduce
certain properties of the occurrence of earthquakes, such as the value of b being near
unity and the occurrence of aftershocks that decay in number with the inverse of time.

20.5 Seismotectonics

The relation between geological characteristics and the occurrence of earth-
quakes started to be studied at the end of the 19th century and very early on in the
20th century, by Milne, Mercalli, Sieberg, Montessus de Ballore, Koto, and Omori,
among others. The term seismotectonics began to be used around 1910 by Sieberg
and Hobbs and is applied to the characteristics of the occurrence of earthquakes in
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Fig. 20.8. The correspondence between faults and diagrams of the focal mechanism (horizontal and
vertical projections of the focal sphere).

relation to regional tectonics and general geodynamic conditions. In seismotectonic
studies one tries to integrate earthquake data with other information available from
the tectonics, geophysics, and geology of a particular region. Seismologic data used in
seismotectonics include the geographic distribution of epicenters, with indications of
their magnitude, depth, and focal mechanism. A very common representation of the
focal mechanism in seismotectonic studies is shown by means of the projection of the
focal sphere with quadrants of compressions and dilations in black and white. The cor-
respondence of diagrams of this type to various types of faults (strike—slip, vertical,
normal, and reverse) is shown in Fig. 20.8, together with projections of the focal
sphere onto a vertical plane. In strike—slip faults the two planes that separate the quad-
rants are vertical, whereas in normal and reverse faults, the center of the projectionisin a
dilation and a compression quadrant, respectively. Another graphical representation of
focal mechanisms is by horizontal projection of slip vectors and pressure and tension
axes. Slip vectors are related to kinematic aspects of tectonics, that is, the directions
of motion of plates or blocks. Pressure and tension axes refer to dynamic aspects, that
is, stress orientations is a particular region.

The tectonic interpretations included in seismotectonic studies depend on the accepted
theories for the general processes active in the Earth’s crust. Historically, the first of
these theories, based on vertical movements of crustal blocks related to the contraction
of the Earth due to its cooling, were presented by Dana, Hall, and Suess, among others.
Authors of early seismotectonic studies used this tectonic framework to interpret seismic
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data. In 1912, Wegener proposed his theory of continental drift, whereby tectonic pro-
cesses are derived from the horizontal motion of continental blocks, but the geophysical
objections presented against continental drift (Jeffreys, 1959) were an obstacle to its use
in the interpretation of earthquake data. During the 1960s, plate tectonics theory, in
whose development seismologic data played an important role, was introduced.
Modern seismotectonic studies are based on its principles.

20.5.1 Seismicity and plate tectonics

The basic ideas of plate tectonics can be summarized in a very brief form as
follows (Kearey and Vine, 1990). First of all, the basic unit of tectonic motion is the litho-
sphere—astenosphere system. As was explained in section 9.4, the lithosphere is a layer of
about 100 km thickness including the crust and part of the upper mantle that behaves as
rigid and cool material in relation to the underlying layer, the astenosphere, a weak
warmer layer that behaves with plastic or viscous flow. The viscosity of the astenosphere
allows the horizontal motion of the lithosphere with velocities in the range 1-6 cm yr ™.
The motion of the lithosphere is due to a number of processes, including thermal convec-
tion currents inside the mantle. The lithosphere is divided into a number of plates that,
generally, include both continental and oceanic crust (Fig. 20.9). The most important
plates are the Pacific, the Americas (sometimes divided into two, North and South), Eur-
asia, Australia—India (sometimes also divided), Africa, and Antarctica. Other minor
plates are Nazca, the Cocos, the Philippines, the Caribbean, Arabia, Somalia, and
Juan de Fuca. Other even smaller units are called sub-plates or microplates. Plate bound-
aries can be established from the distribution of seismic regions, as was mentioned in the
discussion of the geographic distribution of seismicity. The first interpretations of seismo-
logic data in terms of plate tectonics revealed the agreement of seismicity and the distri-
bution of focal mechanisms with the expected conditions due to the relative motion at
plate boundaries (Isacks et al., 1968; McKenzie, 1972).

The types of plate boundaries can be reduced basically to three, namely, divergent or
rift zones, convergent or subduction zones, and transcurrent horizontal slip or transform
faults (Fig. 20.10). At divergent boundaries and in rift zones, plates separate themselves
from one another, and new oceanic lithosphere is created between them, for example, in
ocean ridges. For plate boundaries of this type, earthquakes are of shallow depth and
moderate magnitude (M < 7), forming a narrow band along boundaries. Their focal
mechanisms correspond to normal or strike—slip faulting with the horizontal tension
axis normal to the plate’s boundary.

At convergent boundaries plates collide and one of them is introduced under the other
in the mantle in a process called subduction. Subduction zones are located in zones of
deep earthquakes under orogenic belts or island arcs. The subducted lithosphere is
always of oceanic nature and its dip varies from case to case. In subduction zones, sub-
ducted plates maintain their rigidity and earthquakes take place from the surface to a
maximum depth of 700 km. The seismic zone, called the Wadati—Benioff zone, is, gen-
erally, limited to the upper part of the subducted plate (Fig. 20.11). Beyond 700 km
depth, subducted plates are aseismic and become assimilated into the material of the
mantle. If, at a converging boundary, both plates are continental, processes are more
complex, with seismicity extended over a wide area, such as for the boundary between



392 Seismicity, seismotectonics, and risk

RIDGE ISLAND ARC

TRANSFORM
—

OCEAN

SUBDUCTION

Fig. 20.10. Processes occurring at plate boundaries, namely divergence or extension (at a ridge),
convergence or collision (subduction), and transcurrent motion (at a transform fault).

B B,
0 1) 1 IC, 1 I 1 1 1 1 !
oodoe © (] :“ .*
3 . (A H o o o
o . o ° A} ° oo ©
[ 3 Py . L4 L4 .
4 L) o° o L
-100 ¢ @ .. ..*g . ® . o e .
®2c 00’y o0
— »
iE‘, oo/ -
-200- -
=
-
o
[ ] L]
g ., L4 o ®
-600 Mye® ,
L]
4
T T T T T T T T T
100 200 300 400 500 600 700 800 900 1000

DISTANCE (km)

Fig. 20.11. The distribution of earthquakes with depth in the subduction zone of Peru. The line BB’
is perpendicular to the coast. T, trench; and C, coast (courtesy of H. Tavera).

Eurasia and Africa (Fig. 20.3). At convergent boundaries earthquakes reach large mag-
nitudes (M > 7), and their mechanisms correspond to thrust or reverse faulting due to
horizontal pressure normal to the trend of the boundary. In depth, either the pressure or
the tension axis is in the direction of the subducted plate, indicating its condition under
compression or tension. Generally, the tension axes are along the plate in the upper part
and the pressure axes are in the lower part. Thus, the upper part of the plate is stretched
while the lower part is compressed against the mantle. Extension and subduction zones
are connected by boundaries of horizontal transcurrent slip or transform faults, formed
by strike—slip faults whose motion is transformed into extension or compression at their
ends (Wilson, 1965). Along these faults, earthquakes are shallow ones with the strike—
slip mechanism and may reach large magnitudes (M > 7). Two zones of convergence
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may be linked by a transform fault. The mechanisms of shallow earthquakes on the con-
vergence front are of reverse or thrust faulting corresponding to the horizontal pressure
being normal to the front and of strike—slip motion corresponding to pressure along the
transform fault (Fig.20.12(a)). For two zones of extension connected by a transform
fault, the mechanisms of earthquakes in the rift zones correspond to normal faulting,
whereas those in the transform fault correspond to strike—slip faulting (Fig 20.12(b)).

Figure 20.13 shows an example of a seismotectonic framework for the Mediterranean
region based on seismicity and focal mechanism data (Udias and Buforn, 1994). The tec-
tonic situation is due to the converging motion of the plates of Eurasia to the North and
Africa and Arabia to the South. The situation is complex due to the continental nature of
both plates and the presence of several small plates such as the Italy—Adriatic, Aegean,
and Anatolian plates. The seismicity is somewhat diffused over a wide region, indicating
that there are some intraplate deformations. The predominant types of focal mechan-
isms are shown together with the direction of horizontal stresses and slip directions.
The regional stresses correspond to horizontal pressure in the NW—SE to N—S direction
due to the converging motion of Eurasia, Africa, and Arabia, with two localized regions
of horizontal tensions, in the NE—SW direction in central Italy and in the N—S direction
in northern Greece. Two regions of right-lateral strike—slip motion are located in the
Azores—Gibraltar and north Anatolia faults. Two subduction zones are located in
the Hellenic arc and Sicily—Calabria, with another two zones of deep earthquakes in
southern Spain—northern Morocco and the Carpathians.

20.6  Seismic hazard and risk

In a general way, the risk associated with the occurrence of earthquakes can be
separated into two factors. The first, called the seismic hazard, represents the probability
that ground motion of a certain intensity takes place at a certain place due to nearby
earthquakes. The second, called the vulnerability, represents the probability that a
certain structure suffers an appreciable amount of damage due to the action of earth-
quakes. Both factors, hazard and vulnerability, are included in the general term of
seismic risk. In this form, we separate the purely seismologic aspect of seismic hazard
from the engineering considerations regarding the vulnerability of various structures.

The seismic hazard of a site is given in terms of the ground motion (displacement,
velocity, and acceleration) produced by nearby earthquakes. Commonly, only accelera-
tions are considered, and, in many instances, ground motion is represented by values of
the seismic intensity. The seismic hazard is defined as the probability that ground motion
of a certain amplitude takes place at a given site during a certain period of time. The seis-
mic hazard of a site depends on many factors, namely, the distribution of nearby seismic
sources, their magnitudes and focal mechanisms, the nature of the propagating medium,
especially wave attenuation and geometric spreading, and the characteristics of the
shallow layers under the site that increase or decrease the amplitudes of ground motion.

The seismic hazard can be evaluated by deterministic and probabilistic methods.
Deterministic methods are based on the assumption that the seismicity near a site in
the future will be identical to that in the past. Thus, the seismic hazard is given by the
maximum values of the amplitudes of ground motion calculated for past earthquakes.
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If the seismic history is not well known for a sufficiently long time, maximum values can
be extrapolated from an incomplete frequency—intensity relation. These methods
depend very strongly on our knowledge of the past seismicity of the region surrounding
a given site. The greatest problem is that often we do not know with any accuracy about
the occurrence of earthquakes during a very long period of time. This is more crucial for
regions of moderate seismicity where large earthquakes are separated by hundreds of
years.

Probabilistic methods use statistical distributions to represent the seismic activity of a
region on the basis of the occurrence of earthquakes in the past. The result is the deter-
mination of the probability of the occurrence of a certain level of ground motion or seis-
mic intensity for a particular time interval. Probabilistic methods have many advantages
over deterministic methods. The occurrence of earthquakes in the future is not given
directly by that in the past, but rather is estimated from a statistical distribution. In
order to calculate the expected ground motion, earthquakes of the past are not consid-
ered in terms of their exact location, but rather are assigned to seismogenic zones that
group all earthquakes of the same tectonic origin. The determination of these zones (seis-
mic zonation) is an important problem in the determination of seismic hazards. Different
zonifications lead to different estimations of hazards from the same set of earthquake
data. Probabilistic methods provide estimations of probabilities for various levels of
intensities rather than solely maximum values as deterministic methods do.

The seismic hazard is given by the probability that, in a particular region and within a
given time interval, ground motion reaches a certain amplitude or the seismic intensity
attains a certain degree. This can be formulated also as the probability that, during a
certain time interval, the maximum value of the intensity or ground acceleration exceeds
a particular value. The inverse of this probability, or the time in which we expect with a
certain probability that a certain intensity (or ground acceleration) is exceeded, is called
the return period for that intensity. One of the statistical methods used in the assessment
of seismic hazard is the method of extreme values. This method consists in using, instead
of the complete seismic catalog, only the distribution of the earthquakes with the largest
magnitudes for certain time periods. This permits one to extend the analysis further back
in time, for which we know about only the largest events. Bayesian methods, in which
certain a priori probabilities are introduced, can also be used. Each method has its
advantages and disadvantages, but ultimately they all depend on the accuracy of our
knowledge of the seismic history. From this there follows the importance of instrumental
and historical studies of seismicity and of the results from paleoseismicity.

The seismic hazard specifies the probability of ground motion at a particular site and
depends on earthquakes at various distances from its neighborhood. We know that
ground motion is attenuated with distance due to geometric spreading and anelastic
attenuation. Since seismic intensities are used in most hazard studies, we need to
know the laws governing the attenuation of intensity with distance (section 15.3, Fig.
15.4). Generally an expression similar to (15.9) is used, whereby the values of the coeffi-
cients @ and b are determined from intensity maps for earthquakes in the region. With
the availability of dense networks of accelerographs we can determine directly the
attenuation of the ground acceleration with distance. From knowledge of the occurrence
of earthquakes over time and their maximum intensities, inside each seismogenic zone
surrounding a site together with the laws governing the attenuation with distance, we
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Fig. 20.14. A schematic representation of the determination of the seismic hazard (courtesy of
D. Munoz)

can determine their expected ground motion or intensities at the site (Fig. 20.14). Thus
we can calculate the probability of a certain level of intensity (or ground acceleration)
being exceeded within a given time interval that defines the seismic hazard, for example,
the probability that intensity VIII (or a ground acceleration of 0.4g) is exceeded within
200 years. If we calculate values of the seismic hazard at many sites we can draw maps
with intensities or ground accelerations expected with a given probability within a
certain interval of time (Fig. 20.15). The ground acceleration is the parameter that is
most directly related to engineering design, so modern seismic hazard maps are given
in terms of this parameter. However, often ground accelerations are derived from seismic
intensities and this relation has a wide margin of variability.

Adequate assessment of seismic hazards is fundamental to prevention of the damage
caused by earthquakes, since buildings and other structures can be designed to withstand
without collapsing the maximum ground acceleration expected for a given site. As we
saw in the intensity scale (Table 15.1), for a given intensity, the damage to buildings
depends greatly on the building materials and structural design. For intensities of
about VIII, many masonry buildings of adobe or rubble stones suffer very heavy
damage and even total destruction, but only a few buildings of reinforced concrete
with a minimum of antiseismic design suffer moderate damage. Reinforced concrete
and steel-structure buildings with high levels of antiseismic design can escape very
heavy structural damage even at maximum levels of intensity. The study of the structural
responses of various types of buildings is fundamental for a safe building practice in
seismic regions. All countries with an appreciable seismic risk have antiseismic building



398

Peak Acceleration (%g) with 10% Probability of Exceedance in 50 Years

ite: NEHRP B-C o
50 120" site boundary 0 50

30°

O=NWHrhOION®O

- T 80’
-100° -90°

U.S. Geological Survey
National Seismic Hazard Mapping Project

~11oe

Fig. 20.15. A seismic hazard map for the USA (NEIC, USA’s Geological Survey).



20.7 Prediction 399

codes that are sanctioned by law. Safety norms are stricter for structures whose collapse
can produce large catastrophes, such as nuclear plants, dams, public buildings, etc.

20.7  The prediction of earthquakes

The problem of predicting earthquakes has always been on the horizon of seis-
mology (Simpson and Richards, 1981; Rikitake, 1982; Lomnitz, 1994). For many years,
this was considered a task beyond the possibilities of true science (Macelwane, 1946).
From about 1970 until 1980, attitudes were more optimistic and the solution of the
problem was considered to be practically to hand. More recently, a more critical view
has returned, recognizing the difficulty of the problem and even hinting at its impossibil-
ity (Geller, 1997). However, since forecasting the occurrence of earthquakes with suffi-
cient advance warning is a very efficient way of diminishing the number of casualties
and preventing, in part, damage, it remains an unrenounceable task for seismologists.

A true prediction means specifying the location, time, and magnitude of an impending
earthquake to within narrow margins and with a high level of probability, with sufficient
advance warning that certain measures to reduce its effects can be taken. Prediction can
be considered in long, medium, and short terms. Long-term prediction, in practice, can
be identified with the assessment of the seismic hazard of a region. In this context, the
determination of a high probability for the occurrence of a large earthquake in an
area does not constitute a true prediction. Medium- and short-term predictions are
really related. For example, a medium-term prediction could be that an earthquake of
magnitude about 6 will happen in a certain area within 4—-6 months. As this time
approaches, prediction requires that the probability increases and the time and place
of occurrence are specified more precisely. Finally, enough evidence should make it
possible to give a short-term prediction, specifying the size, place, and time of the
impending earthquake within relatively narrow margins, so that the authorities can
take adequate measures for protection of the population. In the actual state of the
problem, there is not yet a methodology that allows medium- and short-term predictions
of this type.

The problem of prediction is based on the identification of precursor phenomena that
indicate the impending occurrence of an earthquake. Precursors are observables that are
related to changes in physical conditions in the focal region. Strictly speaking, some
phenomena such as the abnormal behavior of animals can not be considered true seis-
mologic precursors. It is difficult to verify and quantify such phenomena, let alone
establish their relation to a future earthquake. Precursors can be divided into seismic
and nonseismic ones.

One seismic precursor is the observation of patterns of seismicity in a region with
variations in space and time. This observation has shown the existence of seismic
gaps, areas in active regions where there is low seismicity during a certain time previous
to a large earthquake. In an active region, where the seismicity is expected to be distrib-
uted more or less homogeneously, the existence of an area where the level of seismicity is
lower than average is called a seismic gap and is considered the most probable place for a
large earthquake in the future. The size of the seismic gap and the duration of the lack of
activity can be correlated to the magnitude of the future large shock. Correlations
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between the existence and extent of seismic gaps and the occurrence of large earthquakes
have been established a posteriori in several instances. However, the use of this type
of precursor as a predictor is not very reliable because it is not known when a large
earthquake will be produced in an observed seismic gap. A second seismic precursor
is the observation of changes in a given active region of the rate of occurrence of
small earthquakes, or background seismicity, with intervals of decreasing or increasing
activity. In the first case, we have a seismic quiescence that is associated with an impend-
ing larger earthquake. Also the opposite effect, an increase in activity, can be associated
with a future earthquake. Although it may seem contradictory, both effects can be con-
sidered precursors; that is, a change in the rate of occurrence of small shocks may signal
the occurrence of a large earthquake. For example, the rate may first diminish and later
increase, or vice versa. Just like in the previous case, this type of change in seismicity
preceding an earthquake has been observed a posteriori, but its use as a true precursor
is problematic.

Another seismic precursor that had wide acceptance at one time is the change in the
velocity of seismic waves in the neighborhood of the focal region, previous to the occur-
rence of an earthquake. In some cases, it has been observed that the velocity of body
waves that cross the focal region diminishes before a large earthquake. The time interval
and amplitude of this decrease are somewhat related to the magnitude of the future
earthquake. Sometimes the velocity tends to increase immediately before the occurrence.
Although this phenomenon has been observed in some cases, in others changes in
velocity were not followed by an earthquake. Thus, although this precursor raised
great expectations, more controlled experiments have shown that it has little reliability.

Nonseismic phenomena of diverse types have been investigated, for example, changes
in ground elevation or tilting, water levels in wells, strain in rocks, the ground’s electric
resistivity, electromagnetic fields, and emissions of radon gas. Observations of these
physical parameters near an active fault are used to detect consistent patterns that
may be correlated to the possible occurrence of an earthquake in the future. Geodetic
measurements near faults can detect an accumulation of strain, but do not provide
clues about its possible release. The presence of high-frequency electromagnetic signals
that is the basis of the proposed VAN method also seems problematic (Varotsos and
Lazaridou, 1991).

Some changes in physical parameters that have been proposed as precursors have been
justified theoretically in terms of the phenomenon called dilatancy, which is observed in
laboratory experiments on the fracture of rocks. According to the dilatancy of a material
subject to increasing stress before the occurrence of a fracture, small cracks are produced
that are then filled with fluids (water) present in the material and thus its volume
increases. Owing to this phenomenon certain physical characteristics, such as the seismic
wave velocity, seismicity, electric resistivity, and emission of radon gas, change. If the
stress keeps on increasing, water is expelled and variations in some parameters (the
seismic velocity and seismicity) change sign. In this state, instabilities that determine
its failure occur in the focal region. If this model were universally consistent, precursors
would always have the same pattern in all cases, which is not the case.

At present, none of the proposed precursors can be considered a clear indication of the
occurrence of a future earthquake and in consequence we can not speak of a proved
method (Wyss and Booth, 1997). Some modern programs of prediction have abandoned
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the idea of a unique precursor and search for a coherent pattern of convergence of
several precursors. The rationale behind this practice is that, although no single precur-
sor is a reliable predictor, the convergence of several of them may reveal consistent
patterns. This approach was followed in the Parkfield experiments in which many differ-
ent types of measurements were made in order to detect precursor patterns (Lindh et al.,
1979). The present state of prediction research is very provisional and a solution is not
foreseen for the near future (Evans, 1997). A question regarding complex nonlinear
dynamic systems has recently arisen from the new models of the occurrence of earth-
quakes. In these systems very small changes of initial or boundary conditions may
produce very large effects on their subsequent development. Models of self-organized
criticality have these properties and, if the occurrence of earthquakes follows these
lines, it is possible that earthquakes may, in practice, not be predictable.

If the prediction of earthquakes remains a distant and problematic question, the pre-
vention of damage is perfectly achievable with the existing state of knowledge. If we can
not predict a future large earthquake, we can mitigate or even prevent in great part the
damage that it will cause, especially in terms of human casualties, with an adequate
building practice. Recent earthquakes in countries with strict antiseismic design practice
and in those without such practice produced very different numbers of casualties. The
Loma Prieta, California, earthquake of 1989 (M = 7) produced only 62 dead whereas
the Latur, India, earthquake of 1993 (M = 6.3) produced an estimated 11000 dead.
Good assessment of the seismic risk and adequate building practice can avoid the
total collapse of buildings and decrease drastically the number of human casualties.
We must not forget that it is buildings that produce casualties, not earthquakes per se.



21 SEISMOGRAPHS AND
SEISMOGRAMS

21.1  The historical evolution of seismographs

The oldest instrument used to detect the occurrence of an earthquake was prob-
ably constructed in China during the second century AD and is attributed to the philo-
sopher Chian-hen. This instrument consisted in a bronze figure of a dragon with eight
heads in whose mouths there were eight balls. Inside the figure there was some kind
of pendular device that pushed the balls and made them fall when it was shaken by
an earthquake. The figure was oriented in the geographic directions so that, upon the
arrival of seismic waves, the corresponding ball will fall and show the occurrence and
orientation of a shock. In Europe, the first instrument was a mercury seismoscope
designed by De Haute-Feuille in 1703, consisting in a vessel with mercury connected
by eight channels to eight cavities. Earthquakes will make the mercury flow into one
or several of the cavities, indicating their orientations and sizes (quantities of mercury
spilled). It is not certain that the instrument was actually built, although we have a
description of it, but similar instruments were built in 1784 by Cavalli and in 1818 by
Cacciatori (Ferrari, 1992). Vertical and horizontal pendulums started to be used
around 1750. These instruments have an alarm to indicate the occurrence of an earth-
quake or a stylus attached to the mass that left a mark on sand or smoked plate of
glass in which case they are called seismoscopes.

The first true seismographs with continuous recordings on a rotating drum with
smoked paper on which time marks were also recorded were designed at the end of
the nineteenth century, mostly in Italy, by Cecchi, Agamennone, Cancani, Grablovitz,
and Vicentini. These instruments were horizontal and vertical pendulums with large
masses and magnifications under 100. Palmieri, in 1859, was probably the first to use
the term seismograph for an electromagnetic instrument that recorded arrival times
and durations of motion (Ferrari, 1992). In 1890, Milne introduced the seismograph
with an inclined pendulum, which with a very limited length, has a relatively large
natural period. Later, in 1915, in collaboration with Shaw, Milne produced the
Milne—Shaw seismograph with a mass of 0.5kg, a period of 8s, and a magnification
of about 200. Similar instruments were designed in Japan by Omori and in Russia by
Nikiforov. Toward 1900, Wiechert developed a horizontal seismograph consisting in
an inverted pendulum that recorded two components with a single mass and a vertical
seismograph with a mass suspended from a spring. Both types of instrument had
masses in the range 80—1000 kg, periods of about 12 s, viscous damping and magnifica-
tions in the range 100—1000. Another mechanical seismograph that found extended use
was developed by Mainka, with a mass in the range 200—500 kg and a magnification of
about 300. These were purely mechanical instruments with viscous damping, in which
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the amplification was produced by a system of levers and recorded on a drum with
smoked paper together with time marks from a clock. Wiechert and Mainka seismo-
graphs were very popular and many are still in operation (Dewey and Byerly, 1969).

Significant progress in seismologic instrumentation was made due to the electromag-
netic seismograph developed in Russia around 1910 by Galitzin. This instrument incor-
porates a coil attached to the mass of the pendulum that moves in the field of a magnet.
The electric current generated in the coil by its motion is passed to a galvanometer whose
deflection is recorded on photographic paper by a light beam reflected from a small
mirror. Damping of the system is provided by the force opposed to the motion of the
coil in the field of the magnet. A further development of this instrument in 1920 resulted
in the Galitzin—Wilip seismograph with 12 s period and a magnification of about 1500.
These instruments were the first of a series of electromagnetic seismographs based on the
combination of a seismometer and a galvanometer. Another instrument of small dimen-
sions, the torsion horizontal seismograph, was developed by Wood and Anderson in
1922. It is formed by a small mass attached to a metallic fiber that is made to oscillate
by torsion and records on photographic paper via a light beam that is reflected from
amirror attached to the mass. This instrument with a period of 0.8 s and an amplification
of 2800 was used in the first definition of local magnitude by Richter in California.

Toward 1930, Benioff developed the variable-reluctance seismograph, the action of
which is based on changes in reluctance due to variations in the distance between two
magnets, one fixed to the frame and the other to the mass of a pendulum. Owing to
their relative motion, a current is generated in a coil around the magnet of the mass
that is passed to a galvanometer and is recorded on photographic paper. This instru-
ment, known as the Benioff seismograph, has a period of 1s and a magnification in
the range 1000—100 000. After around 1945, several models of electromagnetic seismo-
graphs with short, intermediate and long periods were developed by Sprengnether
with the collaboration of Macelwane. For long periods, Press and Ewing developed in
1953 a seismometer—galvanometer system with seismometer periods in the range 15—
30s and galvanometer periods of 100s, which operated with magnifications in the
range 750—6000. The combination of short-period and long-period seismographs
avoided the microseismic noise present for intermediate periods of about 6s and was
used at many seismographic stations (Melton, 1981). Similar systems of electromagnetic
seismographs were developed in the USSR by Kirnos, such as those with a seismometer
period of 12.5s and a galvanometer period of 1.2, resulting in a nearly flat response
in the range 0.2—10s, and those of seismometer periods of 0.6—1s and galvanometer
periods of 0.2—0.4s, resulting in a peak response in the range 0.2—1 s (Sawarenski and
Kirnos, 1960).

Since 1970, three developments have influenced seismologic instrumentation. The first
was the electronic amplification of the electric signal from the seismometer by means of
electronic amplifiers that increased the possibilities of the seismometer—galvanometer
system. The second was the introduction of digital recordings that could be analyzed
directly by computers. Digital recording is carried out by means of an analog—digital
converter that transforms the electric output of the seismometer. The first instrument
of this type (the Caltech Digital Seismograph) was developed in 1962. The combination
of electronic amplification and digital recording is the basis of all modern seismographs.
The third was the development of wide-band seismographs, that is, systems with a
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response curve that is practically flat for a large range of periods, for example 0.1-1000 s.
For this purpose a new seismometer that uses a feed-back circuit to extend the response
to very low frequencies was developed by Wieland and Streckeisen in 1983. With instru-
ments of this type, the duality of short- and long-period instruments has been overcome.
Broad-band seismographs record digitally and, with adequate filters, can simulate a
response in any frequency range.

21.2  Seismologic observatories and networks

Early seismologic observations were performed at individual observatories with
different kinds of instruments. The exchange of data was by the publication of bulletins
and the loan of seismograms. The need to have a large number of observations for
hypocenter determinations led to the creation of world and regional centers that received
readings of arrival times by mail or telegraph. Seismologic stations kept on updating
their instrumentation from early mechanical instruments, such as Wiechert and
Mainka seismographs, to later electromagnetic instruments such as Galitzin—Wilip,
Benioff, Sprengnether, and Kirnos devices. Stations functioned independently and
instrumentation was very heterogeneous, hindering seismologic studies. The first
global seismologic network was installed by Milne after his return to England in 1895.
It consisted in about 50 stations equipped with his horizontal pendulum seismograph,
mainly in territories of the British Empire. The central station was at Shide, on the
Isle of Wight. He had the support of the British Association for the Advancement of
Science (BAAS). Another early network with homogeneous instrumentation (Wiechert
devices, 80kg) was installed in North America in 16 Jesuit universities in 1911 and
reorganized in 1925 under the auspices of the Jesuit Seismological Association (JSA).
Its central station was in Saint Louis, Missouri.

In 1962, an important improvement took place with the installation by the USA’s
government of a world-wide network of 125 seismographic stations with homogeneous
instruments (three components, short-period Benioff and long-period Press—Ewing
devices) known as the World Wide Standard Stations Network (WWSSN). Data from
all stations were sent to a central station in Albuquerque, New Mexico, where they
were copied onto microfilm and made available to researchers. This network furthered
seismologic research greatly and was in operation from 1962 to 1990. New instrumental
developments led to the installation of new types of networks by the USA in various parts
of the world, such as the High Gain Long Period stations (HGLP) with digital recording
in 1974 and later the Seismic Research Observatories (SRO), the Abbreviated Seismic
Research Observatories (ASRO), and, in 1976, the International Deployment of Accel-
erometers (IDA), with 14 stations consisting in digital force-feedback Lacoste—Romberg
gravimeters. Other networks were also installed in Canada, Japan, and the USSR.

With the development of digital broad-band seismographs, new networks replaced the
old ones, starting around 1990. Broad-band networks with world-wide coverage are
the IRIS (Incorporated Research Institutions for Seismology) installed by the USA,
GEOSCOPE installed by France, GEOFON installed by Germany, MEDNET, which
was installed in the Mediterranean region by Italy, and POSEIDON installed by
Japan (Fig. 21.1). At regional or national level, many countries have installed centralized
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Fig. 21.1. Broad-band seismologic stations of the IRIS and GEOSCOPE networks.
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networks with telemetry in order to study the local seismicity. The instrumentation
consists, usually, in short-period seismographs with high gain and digital recording
that, in some cases, are being replaced by broad-band instruments.

Another type of seismologic observatory is formed by arrays of instruments deployed
over a certain area and connected to a central unit where data are processed in digital
form. Usually seismometers are distributed in concentric circles of various radii or
along lines in specific directions. These arrays can be used as antennas with respect to
incoming seismic waves. Examples of seismographic arrays are those of the LASA
(Long Aperture Seismic Array) in the USA, the NORSA (Norwegian Seismic Array)
in Norway, GERESS in Germany, FINESSA in Finland, and Sonseca in Spain.

21.3  The theory of the seismometer

The physical principles of most types of seismometer are based on the forced
motion of a pendulum, be it vertical or horizontal. When the ground moves due to
arrivals of seismic waves, it produces a displacement of the frame of the pendulum
with respect to the mass due to its inertia. This motion, conveniently amplified, is
recorded as a function of time. From this relative displacement, we can deduce the
ground motion. In order to understand the basic principle of the theory of a seis-
mometer, we will consider an ideal system consisting in a vertical pendulum with a
mass m suspended by a spring of elastic coefficient K and a dashpot with viscous damp-
ing ¢ (Fig. 21.2). When the frame of the pendulum is displaced by x(¢), the mass moves
(1), and the relative displacement of the mass with respect to the frame is

z(1) = y(1) = x(1) (21.1)
With respect to a reference system at rest, since the spring and the dashpot are affected

only by the relative motion of the frame and the mass z(¢), the equation of motion for the
mass is given by

my = —Kz — ¢z (21.2)
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Fig. 21.2. An ideal vertical seismometer formed by a mass hanging from a spring and a dashpot.
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If we displace the mass with the frame at rest y(¢) = z(¢) and the equation of motion
becomes, after division by m,

K
FrlieTz=0 (21.3)
m m

For a system without damping (¢ = 0), the solution of (21.3) is given by harmonic
motion:

z(t) = A sin(wy?) (21.4)

The natural frequency of the undamped system is given by

wo = (K)l/z (21.5)

m
On substituting in wy, equation (21.3) can be written as
£ 4 2Bwpz+wiz =0 (21.6)

where 3 is the damping factor,

C
ﬂ_z

) (21.7)

If 8 =1, the system is critically damped and ¢ = Z(Km)l/ 2. Fora damped system, the
solution of (21.6) is

z=Ae " sinfwy(1 — )1 + €] (21.8)

where A4 (the amplitude) and e (the phase) are constants. Equation (21.8) represents
damped harmonic motion of frequency wy(1 — 8%)"2.

If the frame is displaced by x(t), then, on making the substitution y(¢) = z(¢) + x(z) in
(21.2), we obtain

4 2Bwy? 4 whz = — (21.9)
where X(¢) is the acceleration of the ground. This equation is called the seismometer
equation, since it relates the relative motion z(#) of the mass and the frame that can
be measured to the ground motion x(¢). If the motion is very fast, the acceleration
term is predominant and we have Z = —X. Then, z = —x; that is, the relative displace-
ment of the mass corresponds to the ground displacement. If the motion is very slow
(¢ and 2 are small), then z = —X/wy; the relative displacement of the mass corresponds
to the acceleration of the ground.

If we apply to the frame a harmonic motion of frequency w, x(f) = X sin(wf?), equation
(21.9) becomes

4 20wz + wiz = Xw’ sin(wr) (21.10)
The solution of this equation, without considering the transient part, is

z = Zsin(wt — ¢) (21.11)
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Fig. 21.3. Frequency-response curves of a mechanical seismometer: (a) the amplitude response and
(b) the phase response.

where Z and ¢, the amplitude and phase of the relative motion between the mass and the
frame, are

Z = X (21.12)
[(wf — ) = (2Bww)] 2 '
£=tan"! ( 2zﬂww02) (21.13)

wO — W

Thus, the amplitude Z of the relative motion of the mass depends on the amplitude of the
ground motion X, its frequency w, the natural frequency of the pendulum wy, and its
damping . The motion z(¢) measured by the seismometer is shifted by a phase ¢ with
respect to the ground motion x(¢). The ratio Z/X depends on the frequency and damp-
ing (Fig. 21.3). When w = wy, the system is in resonance and, if it is undamped (8 = 0),
the ratio becomes infinite and the phase is ¢ = 7/2. For critical damping (8 = 1), when
w = wy, the ratio Z/X = % For large values of w, Z/X = 1 and € = w. Usually, a seis-
mometer has a damping near its critical value. Equations (21.12) and (21.13) represent
the amplitude and phase responses of a seismometer.

Another way to study this problem is to consider the response of the system to an
impulsive acceleration, that is, ¥ = §(¢). By substitution into (21.9), we obtain

4 2Bwoz 4 w§ = —6(1) (21.14)

If we take the Fourier transform, then, since the transform of 6(¢) is 1 and that of z(¢) is
Z(w),

—wZ(w) + 2iwwyBZ(w) + W Z(w) = —1 (21.15)
We obtain for Z(w)

-1
T —w? + 2iBwwy + wy

Z(w) (21.16)
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Using Z(w) = |Z(w)]| explie(w)], we obtain for the amplitude and phase responses two
expressions similar to (21.12) and (21.13) (with X = 1):

1

1Z(w)| = (@ =+ QT (21.17)
_ 2 Bww

e(w) = tan”! <w§ w°2> (21.18)

The response in time z(¢) is found by taking the inverse transform of Z(w). The response
of the seismometer to an impulsive acceleration represents its behavior for all frequen-
cies. The response for an acceleration of arbitrary form X(¢) can be obtained by its
convolution with the response to the impulsive acceleration or, in the frequency
domain, by taking the product of their transforms.

21.4  Recording systems, magnification, and dynamic range

The motion of the mass of the seismometer is recorded in analog or digital form
after its amplification. The complete system of the seismometer, amplifier, and recorder
is known as a seismograph. The first seismographs were totally mechanical systems in
which amplification was carried out by means of systems of levers and recording was
by a stylus onto smoked paper fixed onto a revolving drum. This system is today obso-
lete, but it is useful to study it in order to understand the behavior of a seismograph.

The ratio Z/X in (21.12) is called the dynamic magnification V4(w) of the seismometer
for a harmonic input signal of frequency w:
V4 W’

Vy(w) X (o mp +4w2ﬂ2]1/2 (21.19)
By using a system of levers we can amplify the amplitude of the relative motion of the
mass, so that the recording amplitude is z = V,z, where the factor V, is called the
static magnification. The total magnification of the system is given by the product of
both factors V(w) = V,V4(w). The total response of the seismograph is given by the
magnification curve in the frequency domain V' (w) which, according to (21.12) and
21.13), is formed by the amplitude and phase responses. The maximum value of the
amplitude magnification V,,,, and its corresponding period are used as characteristics
of the response of each seismograph. The ground motion x(¢) is obtained from the
recorded signal Z'(¢), dividing its transform by the response of the instrument:

(21.20)

To obtain the time function x(#) of the ground motion, we take the inverse transform of
X (w). An approximation to the amplitude of the ground motion for a given period can
be obtained by dividing the recorded amplitude by the corresponding magnification for
that period.

Mechanical seismographs are very limited by friction between their parts, and the
dimensions of the pendulum and amplification and recording systems. To increase
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their magnification, their mass was increased in order to overcome friction, reaching
several tons in some cases. The Wiechert seismograph of 1000 kg had a maximum
magnification of nearly 1000 and the Mainka device of 350 kg had one of about 400.
A recording system that avoided friction between the pen and the paper uses a light
beam and photographic paper, such as in the Wood—Anderson device that, with a
small mass of some grams, attained a magnification of 2800.

In the problem of the amplification of signals, an important concept is the dynamic
range, that is, the range between the maximum and minimum amplitudes possible for
a particular system. The dynamic range of a system is given by the logarithm of the
ratio A/ A, where A is the maximum amplitude recorded and 4, is the minimum ampli-
tude or that taken as the zero level. The units used are decibels (dB) such that, for a given
ratio, its dynamic range is 20log(A4/A,) dB. For example, if A/A4, equals 1000, the
dynamic range is 60 dB. For a seismograph, 4 and A4, are the maximum and minimum
recorded amplitudes. In an analog record, A, is related to the minimum detectable
amplitude and the noise generated by the system itself, and A is related to the dimensions
of the record or the saturation level of the recording system. The saturation level is the
maximum amplitude possible with a particular recording system. For example, for a
photographic analog seismogram, taking into account the thickness of the trace and
the size of the record, the minimum appreciable amplitude is about 0.2mm and the
maximum one is 20 cm; thus, 4/A4, = 1000 and the dynamic range is 60 dB.

The dynamic range is in itself independent from the magnification. If we increase the
magnification for the same dynamic range, the system is saturated for smaller amplitudes
of ground motion and we lose information about large amplitudes. For example, if the
maximum amplitude of a graphical record is 10 cm and the minimum one is 1 mm, its
dynamic range is 40dB. If the maximum magnification is 10000, the minimum
ground motion recorded is 0.1 um and the maximum one is 10 um. If we increase mag-
nification to 100 000 we can detect ground motions of 0.01 um amplitude, but the system
saturates for amplitudes larger than 1 um. For observations of local seismicity, in order
to detect very small earthquakes, short period seismographs with very large magnifica-
tions (1 000 000) are used. Since their dynamic range remains limited (60 dB), records are
saturated for very small ground motions. These records are useful only for detecting first
arrival times; amplitude information is largely lost.

21.5 Electromagnetic seismographs

The foundation of the electromagnetic seismograph consists in adding a coil
to the mass of the pendulum that moves in the magnetic field of a magnet. The same
effect is produced if the moving part is a magnet inside a fixed coil. In both cases, the
relative motion of the coil in the magnetic field generates an electric current in the coil
that is proportional to the velocity of the relative movement of the coil and the
magnet. This electric current is passed to a galvanometer whose deflection is recorded
graphically.

Let us consider the same ideal case of a vertical pendulum as that in section 21.3, with
a moving coil and a fixed magnet (Fig 21.4). The force F that acts on the mass of the
pendulum due to the motion of the coil in the magnetic field B of the magnet, according
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Fig. 21.4. A vertical electromagnetic seismometer.

to the Biot-Savart law, is
F = IBI] (21.21)

where 7 is the current in the coil, / = 277N is the coil’s length (r is the radius and N is the
number of turns), and B is the amplitude of the magnetic induction. If z is the relative
displacement of the coil and the magnet, the work done by the force is Fz and the
power is Fz. In the electric circuit (Fig. 21.4), power is dissipated by its total resistance
Ry + R (R is the coil’s resistance and R is an additional resistance in parallel). The
power in the circuit is given by IV, where V is the difference in electric potential, thus

VI = IIB: (21.22)

If we make G = /B, a constant that depends on the specifications of the instrument, we
have that V' = Gz and F = GI. Using Ohm’s law, I = V'/R, we obtain

_ ¢ (21.23)
R, + R
2.

-G (21.24)
Ry + R

The force that acts on the mass due to the motion of the coil in the magnetic field
depends on its velocity and acts in the opposite sense, that is, it is a damping force.
The resulting equation of motion has the same form as (21.7), but now the damping
coefficient is

GZ

0= k) P (R + B)

(21.25)

The damping of the system is electromagnetic and its critical value (3 = 1) corresponds to
G
Ry+ R

= 2muw, (21.26)
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Fig. 21.5. An electromagnetic seismograph formed by a vertical seismometer and a galvanometer.

The damping can be adjusted changing the value of the resistance in parallel R, for each
fixed value of the resistance of the coil Ry.

21.5.1 The seismometer—galvanometer system

The recording of the electromagnetic seismograph consists in connecting the current
generated in the coil of the seismometer to a galvanometer whose angular deflection is
recorded on a drum with photographic paper by using a beam of light that is reflected
from a mirror attached to the galvanometer’s moving part (Fig. 21.5). Since the seis-
mometer and the galvanometer are connected, the current in the circuit generated by
the motion of the mass is affected by the motion of the galvanometer. The motion of
the mass of the seismometer is also affected by a force that depends on this current.
The motions of the galvanometer and of the mass of the seismometer are coupled
through the circuit, so that their equations must be solved together. The equations of
motion of the seismometer and galvanometer are

Z 4 2Bwi 4+ wiz = —X — Gyl /m (21.27)
0+ 2B,we0 + wp) = Gyl /h (21.28)

where z is the relative vertical displacement of the seismometer and 6 is the angular
deflection of the galvanometer. The subindexes s and g refer to the seismometer and
galvanometer, and / is the inertial moment of the moving part of the galvanometer.
The electric currents that pass through the coils of the seismometer and galvanometer
are interrelated. The recorded motion 6(¢) due to a ground motion x(¢) is obtained by
the solution of a fourth-order differential equation. In equations (21.27) and (21.28),
ws and w, are the natural frequencies of the seismometer and galvanometer whose
values are characteristic to each system.

The seismometer—galvanometer system responds to a ground displacement x(¢) with a
deflection of the galvanometer 6(¢), which is recorded on photographic paper. Since the
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short period for local seismicity (SP-L), and broad-band (VBB) seismographs.

current generated in the moving coil of the seismometer is proportional to its relative
velocity with respect to the magnet fixed to the ground, the instrument records the
ground velocity. The total magnification of the system is given by

V(w) = VyViVy (21.29)

where V is the static magnification described by the mechanical seismograph, and V
and V, are the dynamic magnifications of the seismometer and galvanometer, which
are obtained from the solutions to equations (21.27) and (21.28). The result is expressed
in terms of the response curves for the amplitude and phase relating the recorded motion
to the ground displacement.

The first Galitzin electromagnetic seismographs had natural periods of the seis-
mometer and galvanometer of 7y = T, = 12s and maximum magnifications of the
order of 1000. The presence of microseismic noise of meteorologic origin in the period
range 4—8s motivated the avoidance of these periods by separating instruments into
two types, of short and long periods. A very commonly used configuration was
T, =1s and T, =0.75s for short-period instruments, and 7 = 15s and 7, = 100s
for long-period instruments. These instruments have maximum magnifications in the
range 10000—100 000 for short periods and 750—6000 for long periods (Fig 21.6).

A later development of eclectromagnetic seismographs was the inclusion in the
circuit of an electronic amplifier and replacement of the galvanometer by a transducer
that transforms the amplified current into the motion of a recording pen. A very
common type of recorder involves a heated pen that leaves a mark on thermosensitive
paper. Modern seismographs include operational amplifiers of various types, with
optional filters. In this way, in theory, the magnification of the instrument can be
made as high as desired. The dynamic range, however, remains limited by the
noise generated by the system and the dimensions of the graphical record. As was
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mentioned before, an instrument with graphical recording of the normal type can not
exceed a dynamic range of 60 dB. Electromagnetic seismographs of short period have
in many instances very high magnifications of the order of a million and, in conse-
quence, are saturated by very small ground motions, providing records with very
limited information.

21.6  Digital seismographs

The magnification of old mechanical seismographs was limited by friction
between their parts and the size of the mass. Electromagnetic seismographs do not
have this limitation and, in theory, using electronic amplifiers, can have magnifications
as large as desired. However, as we have seen, because of their analog graphical record-
ing, minimum amplitudes detectable visually and dimensions of recording paper limit
the dynamic range to about 60 dB. With the development of electronic digital computers
during the 1960s seismologic analysis came to be performed in digital form and digital
data were required. The development of digital seismographs took some time; the first
instruments were developed around 1965 and it took more than 10 years to solve all
the problems associated with their use.

In order to record in digital form, the variable electric current from an electromagnetic
seismometer must be amplified and converted into digital form by an analog—digital
converter (ADC). The ADC samples the continuous signal at constant intervals that
are usually in the range 0.005-10s, that is, for sampling frequencies of 0.1-200 Hz.
The resulting series of digital data are recorded into some kind of magnetic memory.
Until recently ADCs were of maximum 12 or 16 bits, so that amplitudes could extend
only from zero to 2'! or 2'° (the first bit is used for the sign), that is, maximum ampli-
tudes without saturation of about 2000 and 70 000, and thus their dynamic ranges were
60 and 96 dB. Modern ADCs of 24 and 32 bits can express maximum amplitudes of 10’
and 10°, which correspond to dynamic ranges of 140 and 185 dB. From the point of view
of seismic wave amplitudes, with an instrument of 140 dB, saturation of the signal will
occur for local earthquakes at less than 10 km distance of magnitude M > 5, or tele-
seisms at a distance of less than 30° of magnitude M > 9. Hence the same seismograph
can record both near and distant earthquakes.

With a digital seismograph, the amplitudes of seismic waves are given by a series of
discrete values a(1;), at constant intervals of time, of the voltage of the electric current
generated in an electromagnetic seismometer, proportional to the relative velocity of
the mass and the frame. To obtain the ground displacement, the signal is transformed
into the frequency-domain s(w;) by means of discrete Fourier transformation (Appendix
4). The transform s(w;) is divided by the transfer function of the seismograph T'(w;) to
obtain g(w;), the transform of the ground displacement:

s(w;)
g(w;) = 21.30
@) =y (21.30)
The transfer function is defined in such a way that it relates the voltage output to the
ground displacement. In general, this function has the form of a quotient of two poly-
nomials and can be expressed in terms of its poles and zeros (Scherbaum, 1996). For
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example, in a simple case, corresponding to an electromagnetic seismograph,

1 Gw;
C 2n w? + 2hwyw; + w}

T(w,) (21.31)

where G, h, and wy are characteristics of each instrument. As a function of the poles of
T (w;), equation (21.29) can be expressed as
1 Guw?

1) = o o= P = p2)

(21.32)

where p; and p, are the roots of the denominator of (21.31). Transfer functions for more
complex systems can be expressed in the form

_ Lo (Wi —2)
T@) = G o) (21.33)

where p; are the poles and z; are the zeros of the transfer function. Ground displace-
ments as a function of time are obtained by taking the inverse Fourier transform of
g(w;). Since we are talking about digital systems, the signals are sampled time functions
of finite duration and their transforms are also sampled functions that are limited to a
finite frequency band (Appendix 4).

An important problem with digital data is their storage. A station with a three-
component seismograph with continuous recording sampling at a rate of 20 Hz produces
about 100 Mbytes of data per week. These may be copied onto magnetic tapes or optical
disks but in some years the amount of storage room required may be fairly great. The
stability over time of this type of storage of data may create some problems. Computer
systems develop so fast that within a few years they are obsolete and data recorded by
them may not be able to be read by more modern systems. Usually the compatibility
of systems from one generation to the next is assured, but it may be problematic for
distant generations. This may force one to copy all data every so many years, which
in time may become an impossible task.

21.7  Broad-band seismographs

As we have already mentioned, the presence of microseismic noise at abouta 6s
period resulted in the avoidance of these periods by the separation of short- and long-
period instruments with relatively narrow response curves. Modern instrumental
development has moved in the direction of an instrument with a response curve that
is practically flat for a large range of periods. This type of instrument is called a
broad-band seismograph, and using digital recording with a high dynamic range
allows the recording of both near and distant earthquakes. The problem of microseismic
noise is solved by adequate filtering of data.

The seismometer used in broad-band systems is a force-balanced instrument. This
type of seismometer has a feed-back circuit whereby the current generated by motion
of the mass is amplified and connected to a device that applies an electromagnetic
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force to the mass, which moves it to its original equilibrium position, forcing it to follow
the ground motion. The voltage generated by this force is proportional to the velocity of
the mass and constitutes the output of the instrument. Modern electronic transducers are
very sensitive and can detect very small movements of the mass and pass the generated
current to the feed-back system. In this way, we can obtain a magnification as large as we
like, the only limitation being the noise level. There are several models of instruments of
this type that have response curves that are practically flat for the period range 0.05—
1000 (Fig. 21.6).

21.8  Accelerographs

Most seismographs respond to the ground velocity and are designed to record
very small ground motions from small near earthquakes or distant large ones. These
instruments are saturated by the occurrence of large earthquakes nearby. Near the
epicenter of a moderate-to-large earthquake, in what is called the near field, large
ground accelerations are produced at high frequencies that may reach values larger
than the acceleration due to gravity (1G). Seismographs specifically designed to
record this type of motion are known as strong motion instruments or accelerographs.
In these instruments the relative displacement of the mass corresponds to ground accel-
erations (section 21.3).

Accelerographs are instruments with very low magnification in order to avoid satura-
tion in response to the very strong motions of accelerations of about 0.1G to 2G at rela-
tively high frequencies, 1-20 Hz. The seismometer is a force-balanced instrument with
transducers of variable capacitance and near-critical electromagnetic damping, resulting
in a practically flat response curve. With the old models recording was onto photo-
graphic film, whereas for modern instruments it is done in digital form.

Because their purpose is to record only very strong ground motions, accelerographs
do not record in a continuous fashion, but rather their recording system is triggered
when ground accelerations reach a preset threshold value. Thus, with the old models,
the first few seconds of the record were lost. Modern digital instruments have a pre-
event memory that allows one to obtain a complete record of the motion. Instruments
have an internal clock that, in modern instruments, can adjust itself to real time. Mini-
mum and maximum values of the recorded acceleration are established, depending on
the dynamic range of the instrument.

The observation of ground accelerations in the near field is of great interest in
earthquake engineering. Antiseismic designs of buildings are based on knowledge of
the accelerations expected from near earthquakes. Large arrays of accelerographs
allow the observation of ground accelerations at different distances and different sites.
Thus the attenuation of acceleration in the near field can be measured directly rather
than its having to be determined from intensity data. Accelerographs can be located
on the ground (free field) or in buildings at various levels. In this way, responses of build-
ings can be obtained at various heights. The properties of the near-surface layers (rock,
soft or hard soil) are important for high-frequency ground motion and constitute the site
effect. This effect is determined by using strong-motion instruments installed on various
kinds of soil.
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21.9  Other types of seismologic instruments

Besides the instruments we have described, there are other seismologic instru-
ments that will be discussed briefly. Benioff’s strain seismometer, developed around
1935, consists in a long (10—100m) quartz bar with one end fixed to a pillar and the
other free and near to a second pillar. By means of a transducer, variations of the dis-
tance between the free end of the bar and the pillar fixed to the ground are measured.
This distance represents the deformation of the ground between the two pillars. The
current from the transducer is passed to a galvanometer and the resulting system has
a response similar to that of a long-period seismograph.

A special type of seismograph is portable instruments designed to record small near
earthquakes. They are short-period instruments with high gain that can be installed in
the field and operated with batteries. The first models, developed during the 1960s,
used continuous analog recording (on smoked paper or by pen and ink). Modern instru-
ments employ digital recording and can be used for continuous recording or as event
recorders. The latter are triggered when the ground motion reaches a certain threshold
value by a triggering algorithm. Some of these instruments form small telemetric arrays
sending the signals to a central recording unit by radio. These instruments are very useful
for detailed studies of the seismicity of a limited region, studies of aftershocks after a
large earthquake, and monitoring volcanic activity.

Seismographs designed to record earthquakes at the bottom of the sea are known as
Ocean Bottom Seismographs (OBSs). Owing to the fact that oceans cover 70% of the
Earth’s surface, these instruments are becoming more and more important as a means
to improve the geographic distribution of stations. Also, they are very useful for study-
ing the seismicity of oceanic regions. There are several models of OBS; some are con-
nected to a buoy at the surface of the sea with a radio transmitter whereas others
record on an internal system and must be recovered after a certain length of time.
Deployment at large depths is difficult and conditions on the high seas may result in
the loss of a number of instruments.

Two types of instruments used in studies related to seismology, which are not seismo-
graphs, are tiltmeters and dilatometers. The first measure changes in the tilt of the
Earth’s surface and the second measure changes in the volume of rocks. Both types
are used in connection with prediction programs to measure the accumulation of
strain in a region. The ground strain and relative displacements of crustal material in
a region can be measured directly using GPS (Global Position System) techniques.
Repeated measurements of base lines during long periods of time can give us actual dis-
placements resulting from plate motion. The relative motion of tectonic plates can also
be measured directly by VLBI (Very Long Base Interferometry) methods with measure-
ments between two stations repeated every several years.

21.10 Seismograms and accelerograms

Graphical recordings of earthquakes by seismographs are called seismograms.
Until recently seismographs were analogical on smoked, photographic, thermosensitive,
or plain paper. The aspect of these recordings depends on the characteristics of the
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Fig. 21.7. A seismogram from the Mainka seismograph of the EBR station (Observatorio del Ebro,
Spain) for the earthquake of 9 February 1948 in Greece.
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Fig. 21.8. A seismogram of a vertical Galitzin seismograph of the DBN station (Holland) for the
earthquake of 19 May 1951 (M = 5) in Spain.

instruments’ response curves. Old mechanical instruments (Wiechert or Mainka devices)
give seismograms on smoked paper that are limited by their very low magnification but
have fairly flat response curves over a relatively broad range of periods. Another limita-
tion of these instruments is that the levers which hold the recording stylus produce a
curvature on traces with large amplitudes. Their dynamic ranges are also small and
good records are limited to sufficiently large earthquakes at intermediate distances
(Fig. 21.7). Early electromagnetic seismographs (Galitzin devices) have greater magnifi-
cations and their recordings have characteristics between short and long periods
(Fig. 21.8). Records from these seismographs are useful for studying old earthquakes
(previous to 1960); for Wiechert and Mainka devices, from 1900; and for Galitzin
devices, from 1920.

Between 1960 and 1990, seismographs were separated into short- and long-period
instruments. Examples of seismograms of instruments of this type are those of the
WWSSN stations (Fig. 21.9). Records from these stations are very useful for studying
earthquakes that occurred between 1962 and 1990. Short-period instruments used in
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Fig. 21.9. Seismograms of the vertical seismographs of short and long periods of the TOL station
(Spain) of the WWSSN network for the earthquake of 17 September 1972 (M = 6) in Greece
(courtesy of E. Ruiz de la Parte, Observatorio 