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C H A P T E R 

1 
INTRODUCTION 

The Earth is composed of silicate and 
iron-alloy materials with the remarkable 
property that, over the wide range of pres­
sure and temperature conditions existing 
within the planet, the materials respond 
nearly elastically under the application of 
small-magnitude transient forces but vis­
cously under the application of long-dura­
tion forces. This time dependence of the 
material properties means that Earth 
"rings like a bell" when short-term forces, 
such as sudden slip of rock across a fault 
surface or detonation of a buried explo­
sion, are applied, even while the fluid-like 
flow of global convection continually re­
shapes the surface and interior of the 
planet over geological time scales. The 
mechanical vibrations result from the 
quasi-elastic behavior, which involves exci­
tation and propagation of elastic waves in 
the interior. These waves are physical mo­
tions that ground-motion recording instru­
ments called seismometers can preserve for 
scientific analysis. This text describes the 
nature of these elastic waves and the anal­
ysis of their recordings. It demonstrates 
how the elastic properties of the Earth 
reveal many characteristics of the present 
state of the Earth as well as of the long-
term processes occurring in the global dy­
namic system. We hope that it will also 
provide insight into the processes produc­

ing destructive earthquakes, such as the 
January 17, 1994, Northridge, California 
event, which caused more than $20 billion 
in damage to Los Angeles. 

Seismology is the study of the genera­
tion, propagation, and recording of elastic 
waves in the Earth (and other celestial 
bodies) and of the sources that produce 
them. Both natural and human-made 
sources of deformational energy can pro­
duce seismic waves, elastic disturbances 
that expand spherically outward from the 
source as a result of transient stress imbal­
ances in the rock. The properties of seis­
mic waves are governed by the physics of 
elastic solids, which is fully described by 
the theory of elastodynamics. Basic elasto-
dynamics is presented in Chapters 2, 3, 4, 
and 8. This body of theory, rooted in con­
tinuum mechanics, linear elasticity, and 
applied mathematics dating back to the 
early 1800s, provides a quantitative frame­
work for analysis of elastic waves in the 
Earth. 

Seismological procedures provide the 
highest resolution of internal Earth struc­
ture of any geophysical method. This is 
because elastic waves have the shortest 
wavelengths of any "geophysical wave," 
and the physics that governs them localizes 
their sensitivity spatially and temporally to 
the precise path traveled by the energy. 



INTRODUCTION 

These localization properties provide far 
higher resolution than obtainable with 
electrical, gravitational, magnetic, or ther­
mal fields, which average large regions and 
times. 

Recordings of ground motion as a func­
tion of time, or seismograms, provide the 
basic data that seismologists use to study 
elastic waves as they spread throughout 
the planet. An example of a modern seis­
mic recording is shown in Figure 1.1. Three 
orthogonal components of ground motions 
(up-down, north-south, and east-west) 
are shown, as are needed to record the 
total (vector) ground displacement history, 
at station HRV (Harvard, Massachusetts). 
The source that produced these motions 
was a distant large earthquake that struck 
central Chile in 1985. The ground motions 
at HRV commenced about 10 min after 
the fault rupturing began, the length of 
time it took for the fastest seismic waves to 
travel through the Earth from the Chilean 

source region to the station. A complex 
sequence of slower wave arrivals caused 
ground motions at the station to continue 
for several hours. These recorded motions 
are quite tiny, with ground displacements 
of less than 0.7 mm and ground velocities 
of less than 60 /xm/s. Such motions were 
imperceptible at HRV other than by sensi­
tive instrumentation, but the waves were 
much stronger near the source and caused 
extensive damage and building collapse in 
Chile. Every wiggle on the seismogram has 
significance and contains information 
about the source and the Earth structure 
through which the waves have traveled. 
Seismologists strive to extract all possible 
information from the seismogram by un­
derstanding each wiggle. 

A tremendous range in scales is consid­
ered in seismology, for both the many types 
of sources and the diverse seismic waves 
that result. The smallest detectable mi-
croearthquake has a seismic moment (an 
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FIGURE 1.1 Recordings of the ground displacement history at station HRV [Harvard. 
Massachusetts) produced by seismic waves from the March 3, 1985, Chilean earthquake, 
which had the location shown In the inset. The three seismic traces correspond to vertical 
(U-D), north-south CN-S), and east -west CE-W] displacements. The direction to the 
source is almost due south, so all horizontal displacements transverse to the raypath 
appear on the east -west component. The f irst arrival is a P wave that produces ground 
motion along the direction of wave propagation. The S motion is large on the horizontal 
components. The Love wave occurs only on the transverse motions of the E-W component, 
and the Rayleigh wave occurs only on the vertical and north-south components. These 
motions are consistent with the predictions of Figure 1.2. (Modified from Steim. 1986.) 



important physical quantity equal to the 
product of the fault surface area, the rigid­
ity of the rock, and the average displace­
ment on the fault) on the order of 10^ N 
m, and great earthquakes have moments 
as large as 10̂ -̂  N m. The amplitudes of 
seismic-wave motions are directly propor­
tional to the seismic moments; thus seis­
mic-wave displacements span an enormous 
range. Seismic waves commonly used in 
exploration seismology have frequencies as 
high as 200 Hz, while the longest-period 
standing waves excited by great earth­
quakes have frequencies around 3 X 10""̂  
Hz and solid Earth tide frequencies are 
around 2.0 X10"^ Hz. Thus, transient 
ground motions spanning a frequency 
range of 10^ Hz are of interest. In fact, the 
study of seismic sources further extends 
the range of interest to zero frequency, or 
static deformations, near faults and explo­
sions, even while new, very high resolution 
shallow-imaging techniques are utilizing 
kilohertz frequencies. A local crustal sur­
vey may use waves that are traveling only 
tens of meters, while analysis of global 
structure may involve waves such as Rj, 
which travel more than 10^ m along the 
Earth's surface. 

One of the major challenges posed by 
the huge frequency range (bandwidth) and 
amplitude range (dynamic range) of inter­
est for seismic observations has been to 
build seismometers capable of registering 
all useful signals against a background of 
ambient noise. No single instrument can 
record the full spectrum of motions with a 
linear response, so a suite of different seis­
mic instruments that record limited por­
tions of the seismic spectrum has been 
developed. However, great advances have 
been made in the last 10 years in develop­
ing seismic recording systems that provide 
remarkable bandwidth and dynamic range 
for the applications of global seismology to 
be emphasized in this text. The recording 
in Figure 1.1 was produced by such a sys­
tem, and Chapter 5 describes the remark­
able instrument technology involved in the 

field of seismometry, or recording of 
ground motion. 

The global distribution of earthquake 
sources, along with the requirement of ex­
tensive surface coverage with seismome­
ters for the unraveling and interpretation 
of complex seismic signals, has made global 
seismology a truly international discipline, 
with unprecedented international collabo­
ration, seismometer development, and data 
exchange over its 119+-year instrumental 
history. Over 3000 seismological observa­
tories are in operation around the world 
today, with nearly every nation participat­
ing in the effort to record seismic waves 
continuously. The most recent efforts to 
upgrade the global network instrumenta­
tion by incorporating technological ad­
vances have involved countries such as 
Australia, Canada, China, England, 
France, Germany, Holland, Italy, Japan, 
Norway, Russia, Switzerland, and the 
United States, in keeping with the historic 
tradition of broad international collabora­
tion. Chapter 5 provides an overview of 
these efforts. 

The fault that generated the 1985 Chile 
earthquake ruptured for about 100 km, 
with sliding motions on the fault lasting 
for only about 50 s. Thus, much of the 
prolonged nature of the vibrations in Fig­
ure 1.1 is due to wave interactions with the 
transmitting medium, which are mani­
fested as a sequence of impulsive arrivals 
and longer-period oscillatory motions, in­
cluding waves that repeatedly circle the 
globe. Most of these ground motions can 
now be interpreted quantitatively in the 
light of current knowledge of Earth struc­
ture, as shown in Chapter 6. It is the 
fundamental simplicity of elastic waves, 
which transmit disturbances over great dis­
tances through the Earth with little, or 
mostly predictable distortion, that allows 
useful information to be gleaned from the 
seismograms, despite the overall complex­
ity arising from structural interactions. 

Seismology is an observation-based dis­
cipline that addresses internal Earth 
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Structure and characteristics of seismic-
wave sources by applying elastodynamic 
theory to interpret seismograms. Because 
of the physical constraint of being able to 
record seismic-wave motions only at, or 
very near, the surface of the Earth, seis­
mology draws heavily upon mathematical 
methodologies for solving systems of equa­
tions that are collectively described as geo­
physical inverse theory (Chapter 6). Many 
seismological applications and results of 
inverse theory are described in this text. 
The essence of all seismic inverse prob­
lems is that inferences about the wave 
source or the transmitting medium are 
made by applying mathematical operations 
derived from elastodynamic theory to the 
observed surface ground motions. The 
recorded motions can be viewed as the 
output response of a sequence of linear 
filters with properties we wish to deter­
mine. We can treat instrumental, propaga­
tion, and source effects as separate filters, 
and we have structured this text to concen­
trate sequentially on each factor that 
shapes the observed seismogram. Inver­
sions for filter characteristics contain many 
nonuniqueness problems, and strong 
trade-offs exist between source and propa­
gation effects that are difficult to resolve. 
The history of seismological advances is 
one of alternating progress in describing 
source properties or in improving models 
of Earth structure, and clever strategies 
have been advanced to overcome the in­
trinsic trade-offs in the signal analysis. Re­
markable resolution of deep Earth struc­
ture is now being achieved using modern 
inversion methods. Seismic inversion and 
Earth structure determination are de­
scribed in Chapter 7. 

In parallel with the rapid advances in 
our knowledge of Earth structure has come 
a comparable expansion of our under­
standing of earthquake faulting and its role 
in global plate tectonics. From the basic 
foundation of quantitative representations 
of shear faulting sources (described in 
Chapter 8) we have developed an under­

standing of most faulting phenomena. 
Chapter 9 describes the kinematic and dy­
namic characteristics of shear faulting 
sources, their scales of variation, and mea­
sures of energy release such as seismic 
magnitudes and earthquake moment. 

With independently derived knowledge 
of Earth structure, it has become possible 
to construct predicted ground motions to 
compare with observations. This serves as 
a basis for seismic inversion for faulting 
parameters. This capability has led to an 
appreciation that faulting is a very hetero­
geneous process with nonuniform stress 
release over the fault surface. Chapter 10 
reviews the contemporary source analysis 
procedures used in earthquake seismology. 

Seismology intrinsically provides infor­
mation about active, present-day processes 
in the Earth. Quantification of earthquake 
faulting characteristics such as fault orien­
tation, sense of slip, and cumulative dis­
placement has played a major role in the 
evolution of the theory of plate tectonics. 
Seismotectonics, the study of active faulting 
and its relationship to plate motions and 
lithospheric properties, is described in 
Chapter 11. Seismology is the solid Earth 
geophysical discipline with the highest so­
cietal impact, both in assessing and reduc­
ing the danger from natural hazards and in 
revealing present Earth structure and 
buried resources. Yet the relative sluggish­
ness of mantle convective flow, or thermal 
inertia of the system, ensures that knowl­
edge of the present-day internal structure 
reflects processes that have been occurring 
in the Earth over the past several hundred 
million years and, to a certain extent, over 
the entire evolution of the planet. 

1.1 Historical Development 
of Global Seismology 

Seismology is a relatively young science, 
having awaited both the evolution of the 
theory of elasticity and the development of 
an instrumental data base. Although the 
Chinese had the first operational seismic-
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wave detector around 132 AD, the theoreti­
cal side of the science was considerably 
ahead of the observational side until the 
late 1800s. From the introduction in 1660 
of Hooke's law, indicating a proportional­
ity between stress and strain, to the devel­
opment of equations for elasticity theory 
by Navier and Cauchy in 1821-1822, our 
understanding of the behavior of solid ma­
terials evolved rapidly. In the early 1800s 
the laws of conservation of energy and 
mass were combined to develop the equa­
tions of motion for solids. In 1830 Poisson 
used the equations of motion and elastic 
constitutive laws to show that two (and 
only two!) fundamental types of waves 
propagate through the interior of homoge­
neous solids: P waves (compressional 
waves involving volumetric disturbances, 
and directly analogous to sound waves in 
fluids) and S waves (shear waves with only 
shearing deformation and no volume 
change, which can therefore not propagate 
in fluids). The sense of particle motions 
relative to the direction of propagation for 
F- and 5-wave disturbances is shown in 
Figure 1.2. These two types of motion are 
called body waves, because they traverse 
the interior of the medium. P (primary) 
waves travel faster than S (secondary) 
waves and are thus the first motion to be 
detected from any source in an elastic 
solid. 

In 1887 Lord Rayleigh demonstrated the 
existence of additional solutions of elastic 
equations of motion for bodies with free 
surfaces. These are Rayleigh waves, involv­
ing wave motions confined to and propa­
gating along the surface of the body. By 
1911 a second type of surface-wave mo­
tion, produced in a bounded body with 
layered material properties, was character­
ized by Love and is hence called a Love 
wave. Rayleigh and Love waves are sur­
face waves and result from the interaction 
of P and S waves with the boundary con­
ditions on the body (i.e., vanishing shear 
stresses on the surface). The sense of par­
ticle motions for these surface waves is 

indicated in Figure 1.2. Body and surface 
waves are influenced by changes in mate­
rial properties with depth, such as the 
existence of internal boundaries in the 
Earth that can reflect energy. These inter­
actions can be quantitatively analyzed by 
solving boundary-value problems, and they 
are expressed in terms of reflection and 
transmission coefficients. 

These basic elasticity solutions for a 
general solid medium were partial motiva­
tion for the development of instruments 
capable of recording time histories of the 
ground motion of the Earth at a fixed 
location. International efforts led to the 
invention of the first seismometer by 
Filippo Cecchi in Italy in 1875. The sensi­
tivity of early seismometers improved 
rapidly, and by 1889 the first accurate 
recording of waves from a distant earth­
quake was obtained by an instrument in 
Potsdam, 15 min after the earthquake 
faulting occurred in Japan. The 119+ years 
of quantitative ground motion observa­
tions have confirmed the existence of P, S, 
Rayleigh, and Love waves in the Earth, as 
well as other, now (mostly) understood 
arrivals, demonstrating that the Earth be­
haves as a (nearly) elastic body in the 
frequency band of most seismic observa­
tions. The recordings in Figure 1.1 clearly 
exhibit distinct arrivals of P, 5, Love, and 
Rayleigh waves, with particle motions as 
predicted in Figure 1.2, along with other 
arrivals that are explained later. 

In 1892, while working in Tokyo, John 
Milne developed a seismometer that was 
sufficiently compact that it could be in­
stalled in about 40 observatories around 
the world. This began the systematic col­
lection of global seismic data. Around the 
turn of the century, seismometer technol­
ogy increased significantly, and body-wave 
data sets accumulated rapidly, revealing 
systematic behavior of body-wave arrivals 
as a function of distance from the sources. 
This began an interval of first-order dis­
coveries about the Earth's interior and 
earthquake sources. Oldham discovered 
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FIGURE 1.2 Schematic of the sense of particle motions during passage of the two funda­
mental elastic body waves, Ca) P and Cb] S waves, as well as the two surface waves in the 
Earth, (c) Love, and (d) Rayleigh waves. The waves are all propagating from left to right, with 
the surface of initial particle motion corresponding to the wavefront. The relative velocity of 
each wave type decreases from top to bottom. The passage of all four wavetypes past a 
single sensor is shown in Figure 1.1. (From Bolt. 1976.) 



1.1 Historical Development of Global Seismology 

the Earth's core in 1906, and in 1913 
Gutenberg determined an accurate depth 
to the core of about 2900 km (the current 
preferred value is 2889 km). In 1909 Mo-
horovicic discovered a sharp velocity 
contrast that we now refer to as the 
"Moho" and interpret as the base of the 
crust. In 1936 Inge Lehmann (an early 
woman seismologist) discovered the 
Earth's inner core. Sir Harold Jeffreys 
compiled the travel times of thousands of 
seismic arrivals and developed the first 
detailed cross section of the Earth from 
surface to center by 1939. These travel-
time tables are still used routinely today to 
locate global earthquakes and are referred 
to as the Jeffreys-Bullen (J-B) tables. The 
J -B tables predict the arrival times of P 
waves to any point on the Earth's surface 
to within a remarkable 0.2% accuracy, lim­
ited primarily by the existence of three-
dimensional variations in structure not al­
lowed for in the tables. 

In parallel with the advances in Earth 
structure, seismology and field observa­
tions were revealing the nature of earth­
quakes. In 1910, Reid enunciated the 
"elastic rebound theory" of earthquake 
faulting. The year 1928 brought the recog­
nition of the existence of deep-focus earth­
quakes by Wadati. In the mid-1930s 
Richter developed the first quantitative 
measure of relative earthquake size, the 
local magnitude scale ( M L ) , referred to as 
the "Richter magnitude." By 1940 the 
global distribution of earthquakes was ac­
curately mapped out, clearly defining ma­
jor belts of activity that we now associate 
with boundaries between surface litho-
spheric plates. 

Although the first half of the twentieth 
century revolutionized our knowledge of 
the Earth, seismology was still a rather 
obscure science, with only a small number 
of active seismologists. The biggest prob­
lem was that only a limited number of 
worldwide seismic stations existed. Fur­
thermore, the instrument response charac­
teristics of these stations were not stan­

dardized, making it difficult to analyze the 
details of the ground motion. It took the 
advent of underground nuclear testing for 
seismology to become a truly modern sci­
ence. 

Seismology provides a remote-sensing 
technique for monitoring nuclear testing, 
because underground explosions produce 
seismic waves that can be detected at great 
distances. In fact, a seismic station at 
Tucson was used by Gutenberg to deter­
mine accurately the detonation time of the 
first nuclear explosion (Trinity) on July 16, 
1945, when timing equipment at the test 
site failed. (The Trinity device was sus­
pended aboveground, but sufficient energy 
coupled into the ground from the blast to 
excite seismic waves.) The first under­
ground nuclear explosion (designated 
Rainier) was detonated in 1957 by the 
United States, and the 1963 Limited Test 
Ban Treaty banned atmospheric, oceanic, 
and deep space testing of nuclear devices 
by all of its 116 signatory nations. The U.S. 
government recognized the need to de­
velop a research effort to understand 
seismic-wave propagation in complex 
structures in order to monitor foreign un­
derground tests, and so it started the 
VELA UNIFORM program. One of the 
first accomplishments of this program was 
the deployment of the World Wide Stan­
dard Seismograph Network in the late 
1950s and early 1960s. This 120-station 
global network of high-quality, well-
calibrated, well-timed stations caused ob­
servational seismology to leap ahead of 
theoretical developments, bringing about 
major investments in university research 
programs. At the same time, rapid ad­
vances in computer technology enabled so­
phisticated analysis of increasing volumes 
of seismic data. Although many first-order 
discoveries about the Earth had been made 
in the pioneering days prior to 1960, the 
field of global seismology truly came into 
its own thereafter, and we will concentrate 
primarily on developments of the past few 
decades in this text. 



INTRODUCTION 

1.2 The Topics 
of Global Seismology 

Having given a brief introduction to the 
basic nature of seismology, we will now 
undertake an overview of the topics and 
contributions of global seismology. This 
text will then provide the information re­
quired for understanding how we obtain 
such quantitative results from seismic 
recordings. It is useful to state at the out­
set that the nature of elasticity allows us to 
treat mathematically the process of excita­
tion, propagation, and recording of seismic 
waves as a sequence of linear filters that 
combine to produce observed seismo-
grams. In other words, an observed ground 
displacement history, uUX can be ex­
pressed as the result of a source function, 
sit), operating on a propagation function, 
g(t), combined with an instrument record­
ing function, /(/). The filter operations will 
later be shown to be time-domain convolu­
tions of a transfer function z{t), mapping 
one function, y(t\ into another, xU), by 
an integral operation: 

x{t)=r y{T)z{t~T)dT (1.1) 

If we denote this integral operation as 

x(t) = yit)^ z(t), we can express ground 
motion as 

u(t)=s{t)^git)*i{t) (1.2) 

Modern seismology strives to describe 
mathematically each of the filters con­
tributing to the observed displacements, 
and seismological research efforts classi­
cally bifurcate into two major categories: 
(1) studying the source terms and their 
associated phenomena, and (2) studying 
the propagation terms and the associated 
Earth structure. The instrument transfer 
function is always the best-known filter but 
involves an interesting body of theory in its 
own right. Much of the organization of this 
textbook (as well as almost every other 
seismology book) tends to focus sequen­
tially on these filters. However, the convo-
lutional nature of the preceding equation 
should make it clear that any analysis of 
ground motion must consider the com­
bined source and propagation characteris­
tics. Table 1.1 lists some of the many top­
ics of classical and current interest in the 
two major categories. We will now survey 
some basic results of seismological analysis 
in each category before developing the 
theory and procedures used in global seis­
mology. 

TABLE 1.1 Major Topics of Global Seismology 

Source topics Earth structure topics 

Classical objectives 

A. Source location (latitude, longitude, depth, time) 
B. Energy release (magnitude, seismic moment) 
C. Source type (earthquake, explosion, other) 
D. Faulting geometry, area, displacement 
E. Earthquake distribution 

A. Basic layering (crust, mantle, core) 
B. Continent-ocean differences 
C. Subduction zone geometry 
D. Crustal layering, structure 
E. Physical state of layers (fluid, solid) 

Current research objectives 

A. Slip distribution on faults 
B. Stresses on faults and in Earth 
C. Faulting initiation/termination 
D. Earthquake prediction 
E. Analysis of landslides, volcanic eruptions, etc. 

A. Lateral variations in crust, mantle, core 
B. Topography of internal boundaries 
C. Anelastic properties of the interior 
D. Compositional/thermal interpretations 
E. Anisotropic properties 
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1.2.1 Seismic Sources 

Elastic waves are generated whenever a 
transient stress imbalance is produced 
within or on the surface of an elastic 
medium. Almost any sudden deformation 
or movement of a portion of the medium 
results in such a source. A great variety of 
physical phenomena in the Earth involve 
rapid motions that excite detectable seis­
mic waves. These sources can be grouped 
into those that are external to the solid 
Earth and those that are internal. Table 
1.2 lists some common seismic sources, all 
of which involve processes of interest to 
Earth scientists. 

Mathematical descriptions and physical 
theories for all of these source types have 
been developed, although most are kine­
matic descriptions rather than first-prin­
ciple theories. In order to represent these 
complex physical phenomena mathemati­
cally, we must usually determine dynami­
cally equivalent, idealized force systems 
that can be visualized as replacing the 
actual process. By "dynamically equiva­
lent" we mean that the elastic motions 
produced by the idealized force system are 
the same as those of the actual process. 
We can then place these force representa­
tions into Newtonian equations of motion 
(essentially F = ma, where F is the force 
system, m is the mass of the body, and a is 
the acceleration of the body) to predict the 
resulting waves accurately. 

External sources are usually easier to 
represent mathematically than internal 
sources. In most cases, external sources 

can be treated as time-varying tractions 
applied to the Earth's surface (a traction is 
the stress vector resulting from a force 
applied to an element of surface area). As 
the traction varies with time, a stress im­
balance near the source is created. This 
imbalance is equilibrated by motions of 
the medium, which in turn propagate out­
ward as seismic waves. The mathematics 
of this are given in Chapter 2. Internal 
force systems may be relatively simple, as 
in the three-dipole force system needed to 
represent an isotropic explosion, or quite 
complex, as in the spatial distribution of 
double-couple forces needed to represent 
a large earthquake (to be described in 
Chapter 8). All sources produce body and 
surface waves, but the relative excitation 
and the frequency and amplitude charac­
teristics of these waves depend strongly on 
the source type and force-time history. 
For example, the seismic recordings of nu­
clear explosions can usually be discrimi­
nated from jiatural earthquakes by their 
very strong excitation of high-frequency P 
waves relative to lower-frequency surface 
waves. 

Although the sources of primary interest 
for this text on global seismology are 
shear-faulting earthquakes, many of the 
sources listed in Table 1.2 can produce 
globally observable seismic signals. Figure 
1.3 shows surface ground motions pro­
duced by overhead passage of the space 
shuttle Columbia. As the shuttle de­
scended for landing, it produced a sonic 
boom, which vibrated the ground in the 
Los Angeles basin. The ground motions 
were recorded by seismometers deployed 

TABLE 1.2 Primary Sources of Seismic Waves 

Internal External Mixed 

Earthquake faulting 
Buried explosions 
Hydrological circulation 
Magma movements 
Abrupt phase changes 
Mine bursts, rock spallation 

Wind, atmospheric pressure 
Waves and tides 
Cultural noise (traffic, railways) 
Meteorite impacts 
Rocket launches, jet planes 

Volcanic eruptions 
Landslides 
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FIGURE 1.3 Ground motions produced by the sonic boom accompanying the space shuttle 
Columbia as it descended over the Los Angeles basin on its way to landing. The relative time 
of vibrations at regional seismic stations is shown on the left, with the arcuate pattern 
resulting from intersection of the sonic boom "mach cone" with the ground. The inset 
shows the trajectory of the shuttle across the basin. The actual ground-motion velocities at 
several stations are shown on the right. (Reprinted with permission from Kanamori et al. 
Nature, vol. 349, pp. 7 8 1 - 7 8 2 ; copyright©1991 Macmillan Magazines Limited.) 

in the region to monitor regional earth­
quake activity. The time of arrival of 
ground vibrations at the stations allows us 
to determine the descending trajectory of 
the shuttle as the "mach cone" intersec­
tion with the ground swept across the basin 
(shown on the left). Actual recordings of 
ground-motion velocities at different sta­
tions are shown on the right and can be 
interpreted as the result of rapidly chang­
ing air pressure on the ground as the sonic 
boom front sweeps across. As exotic as this 
moving source may be, the resulting seis­
mic motions behave predictably according 
to the theory of elastic waves. Chapter 10 
describes the recovery of seismic source 
parameters for more conventional faulting 
earthquakes, and Chapter 11 discusses how 
we can use these parameters to learn about 
active tectonics. 

1.2.2 Earthquake Sources 
Involving Shear Faulting 

The development of equivalent force 
systems for natural earthquakes required a 

basic understanding of the associated pro­
cess, which was not available before this 
century. Historically, ground breakage and 
surface faulting associated with Earth vi­
brations have often been observed, but in 
many instances no surface break could be 
associated with a tremor, confusing ob­
servers as to which was cause and which 
effect. It was difficult to apply any scien­
tific method to study earthquakes because 
of the limited observational data base. It 
was not until the 1906 San Francisco 
earthquake that a causative theory relating 
the two phenomena was clearly enunci­
ated. Reid carefully studied the well-
exposed permanent ground motions that 
occurred at the time of the 1906 earth­
quake. The horizontal deformations in the 
vicinity of the San Andreas fault (Figure 
1.4a) exhibited a simple symmetry that led 
him to formulate the elastic rebound theory 
of earthquakes. This partly empirical, partly 
intuitive theory states that crustal stresses, 
generally resulting from large-scale re­
gional crustal shearing motions, cause 
strain to accumulate in the immediate 
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vicinity of faults, which are quasiplanar 
breaks in the rock across which some pre­
vious displacement has occurred and which 
are hence relatively weak. When the strain 
accumulation reaches a threshold imposed 
by the material properties of the rock and 
the fault surface, abrupt frictional sliding 
occurs (Figure 1.4b), releasing the accumu­
lated strain energy. Much of the strain 
energy is consumed in heating and fractur­
ing of the rocks, but a portion is converted 
into seismic waves that propagate outward 
from the fault zone, communicating the 
disturbance to distant regions. The re­
gional deformations continue, leading to 
many cycles of strain accumulation and 
release during the active lifetime of the 
fault. 

The elastic rebound theory predicts per­
manent coseismic shear displacements 
(Figure 1.4) similar to the 1906 observa­
tions. We expect this particular symmetric 
pattern of surface displacement only for a 
vertical fault that slips horizontally, but 
shallow faults with other orientations pro­
duce easily predictable patterns of hori­
zontal and vertical motion due to the 
shearing offset (the governing equations 
for these static deformations are derived 
in Chapter 8). Examples of the historical 
geodetic (measured permanent ground 
deformation) observations favoring this 
model, collected largely in Japan, where 
there are numerous shallow crustal faults, 
frequent earthquakes, and many seismolo­
gists who study faulting, are listed in 
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FIGURE 1.4 Ca) Observed permanent ground displacements that occurred simultaneously 
with the 1906 San Francisco earthquake. The symmetric distribution of horizontal displace­
ments on either side of the San Andreas fault suggests that strain energy accumulated in 
the vicinity of the fault and released when the fault slipped, producing the seismic vibrations 
that were felt as an earthquake. Cb) Sketch of the process of strain accumulation in the 
vicinity of a fault resulting from regional shearing motions, followed by the sudden sliding of 
the rock on the fault surface. This is the essence of the elastic rebound theory of faulting. 
The coseismic distribution of actual permanent ground displacement is shown on the right. 
Compare this with the observations for the 1906 earthquake in Figure 1.4a. 
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TABLE 1.3 Classic Observations of Faulting Strain 

Event 

Ms = 7.8 
(see Figure 1.4) 

1927 Tango, Japan 
Ms = 7.8 

1943 Tottori, Japan 
Ms = 7.4 

1946 Nankaido, Japan 
Ms = 8.2 

1971 San Fernando, CA 
Ms = 6.6 

Fault 
length 
(km) 

200 

30 

40 

80 

30 

Average 
offset 
(m) 

5 

3 

2 

0.7 

2 

Decay 
distance 

(km) 

20 

30 

15 

100 

20 

Strain 

2.5 X 10-"^ 

1.0 XlO-"^ 

1.3 XlO"'* 

1.0 X 10"^ 

1.0 XlO-'* 

Table 1.3. These examples indicate that 
the crust cannot accumulate strains much 
larger than about 10 ""̂  without failure, 
where strain is calculated as slip on the 
fault divided by the distance perpendicular 
to the fault over which there are signifi­
cant coseismic displacements. Most events 
involve strains from 10 ~̂  to lO"'*, at least 
in typical continental situations, a funda­
mental result that we return to in Chapter 
9. A large number of such observations of 
faulting and ground displacement have 
given rise to the hypothesis that most shal­
low (less than 70 km deep) earthquakes 
result from shear dislocations on faults. 

even though most such events occur below 
the depth of direct observation. Systematic 
analysis of seismic waves from thousands 
of earthquakes over the past decade sup­
ports this hypothesis. 

The 1906 San Francisco earthquake was 
also scientifically important because it was 
widely recorded on the early generation of 
seismometers available near the turn of 
the century. Figure 1.5 shows a horizontal 
component of ground motion on an Omori 
seismometer that was located in Tokyo. 
This recording shows an initial F-wave 
arrival followed by a much larger 5-wave 
arrival and then a complex sequence of 

FIGURE 1.5 A classic seismic recording of the 1906 earthquake made by an Omori seis­
mometer located in Tokyo. Japan. The ground motion is horizontal, east-west . The station is 
at a distance of 75.05° from the source C1° = 111 km}. Time increases toward the right on 
the recordings, and the f irst arrival Is a P wave. The S wave arrives about 
10 min later (the tick marks indicate 6G-s intervals). The record wraps around from one line 
to the next, as it was recorded on a rotating, translating drum. 
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TABLE 1,4 Characteristic Seismic Wave 
Periods 

Wave type Period (s) 

Body waves 
Surface waves 
Free oscillations 

0.01-50 
10-350 

350-3600 

surface waves. The shearing nature of mo­
tions at the source is partly responsible for 
the greater amplitude of the S wave rela­
tive to the P wave. The combination of a 
conceptual model for the faulting source 
and the constraints on source force sys­
tems provided by observed amplitudes and 
polarities of P and S waves enabled the 
development of the double couple and, 
more recently, the moment tensor as gen­
eral force models for shear faulting sources 
that are now routinely used in global seis­
mology. This is fully described in Chap­
ter 8. 

1.2.3 Quantification 
of Earthquakes 

In general, earthquake body waves {P 
and S waves) have shorter characteristic 
periods of vibration than surface waves 
(Rayleigh and Love waves), which in turn 
have shorter periods than free oscillations 
of the Earth (standing modes of vibration 
of the entire planet, which are detectable 
only for the largest earthquakes) (Table 
1.4). Furthermore, the ground displace­
ments for body waves generated during a 
large earthquake may be only 10"^ cm 
after traveling 1000 km, but long-period 
surface waves may have amplitudes of sev­
eral meters after traveling the same dis­
tance. These differences result from source 
excitation and propagation interference 
effects that depend on the type of wave 
and the Earth structure. 

It is important to realize that each type 
of seismic wave involves a spectrum of 
frequencies, and the ground motion from 
the same wave will have a different ap-
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FIGURE 1.6 Broadband vertical-component 
recording of the 1989 Loma Prieta earthquake 
at station ANMO [Albuquerque, New Mexico). 
The top panel is 20 h In duration (the earthquake 
is the rider on the long-period signal): tidal 
effects dominate. The middle panel is for a 
30-min interval, and the bottom panel Is for a 
100-s interval. 

pearance depending on the filtering trans­
fer function of the recording system. A 
very broadband seismometer records many 
frequencies of ground motion, as shown in 
Figure 1.6. The recordings are for the Oc­
tober 1989 Loma Prieta earthquake that 
ruptured a fault in the Santa Cruz Moun­
tains. The top panel shows a time window 
of 20 h. The Loma Prieta earthquake shak­
ing is a large rider on the long-period 
sinusoidal signal with a period of 12 h. The 
long-period signal is the solid Earth tide; 
the Earth rises and falls about 40 cm at 
station ANMO every day in response to 
tides caused by the gravitational attraction 
of the Sun and Moon. The middle panel 
shows a time window of 30 min containing 
the main signal from the Loma Prieta 



earthquake. The largest signal is the 
Rayleigh wave, which has an amplitude of 
about 2 cm. The bottom panel shows the 
first 60 s of the P arrival, which has many 
high-frequency oscillations. The higher-
frequency energy is very complex, indicat­
ing that propagation and source effects 
have a strong frequency dependence. This 
illustrates how characterization of a seis­
mic signal in any one frequency band may 
not represent the behavior in other fre­
quency bands. 

At the long-period end of the seismic 
spectrum, other important phenomena are 
observed in the seismic waves. One of the 
most important is caused by the spherical 
nature of the planet. Figure 1.7 shows 
long-period Rayleigh waves produced by 
the Loma Prieta earthquake recorded at 
globally distributed digital seismometers. 

R^ waves travel along the short arc of the 
great circle from the source to the receiver 
and then continue to circle the Earth, 
reappearing as /?3 at the same station 3 h 
later. i?2 travels along the long arc of the 
great circle and arrives at the station again 
as /?4 and then as /?6 etc. in 3-h shifts. 
These surface waves slowly decrease in 
amplitude as they circle the Earth because 
of energy losses due to attenuation 
(anelastic losses) and increasing dispersion 
(frequency dependence of velocity) of the 
energy. Lx)nger-period oscillations are in­
creasingly dominant later in the traces be­
cause both attenuation and dispersion have 
a strong frequency dependence. We must 
account for these effects when studying 
the source, but they reveal information 
about Earth structure when directly stud­
ied. 
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FIGURE 1.7 Long-period Rayleigh waves produced by the 19B9 Loma Prieta earthquake as 
recorded at globally distributed digital seismometers of three global networks CGEOSCOPE. 
International Deployment of Accelerometers, Global Seismic Network). The vertical-compo­
nent traces are filtered to Include only periods longer than 125 s. The vertical axis is the 
angular distance along the surface from the California source, and time Is from the earth­
quake origin time. R^ and f?2 are Rayleigh waves traveling along the minor and major arcs of 
the great circle from source to station, respectively: R^ Is the next passage of the R^ wave 
after circling the entire globe. [From Velasco et al., 1993.) 
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Prior to instrumental recording, compar­
isons of earthquakes were based mainly on 
shaking damage and seismic intensity scales 
were developed based on varying damage. 
Intensity scales can be contoured, defining 
isoseismals, or regions of common shaking 
damage, typically having the highest inten­
sities close to the fault. Although such 
earthquake measures are strongly influ­
enced by proximity of the event to popula­
tion centers, construction practices, and 
local site effects, seismic intensities are 
often all that we know about preinstru-
mental events, and they play a major role 
in regions such as the eastern United 
States, where most known large events oc­
curred over 100 years ago. Earthquake 
measures based on recorded ground mo­
tions are more useful for recent events. 

Until recently it has been necessary to 
use different seismometers, sensitive to 
different frequency ranges and with vary­
ing ground-motion amplification, to record 
the different wave types. Therefore, the 
various types of instruments intrinsically 
tend to record only those types of waves 
with corresponding periods, which may 
represent only a small part of the total 
ground motion. The diversity of instru­
ments recording different wave types has 
led to the development of many different 
scales for comparing the relative size of 
earthquakes based on seismic waves, typi­
cally called seismic magnitudes. We use 
seismic waves to compare earthquake size 
because it can be done systematically and 
quantitatively and because it does not rely 
on damage or other macroscopic phenom­
ena that are strongly influenced by factors 
other than the source (such as variable 
construction standards and surface topog­
raphy). Almost all magnitude scales are 
based on the logarithmic amplitude of a 
particular seismicwave on a particular seis­
mometer, with corrections for the distance 
to the source. Examples of the primary 
magnitude scales are given in Table 1.5 
and compared with the period response of 

TABLE 1.5 Examples of Seismic 
Magnitude Scales 

Symbol 

A/,, 
'"b 
A/,s 
A/w 

Name 

Richter magnitude 
Body-wave magnitude 
Surface-wave magnitude 
Moment magnitude 

Period 
of measurement (s) 

0.1-1.0 
1.0-5.0 

20 
>200 

common seismic instruments in Figure 1.8. 
These show that any one earthquake can 
have many different seismic magnitudes, if 
measurements are made for different 
waves at different frequencies. This has 
often confused the news media, who (per­
haps reasonably) tend to expect a given 
earthquake to have only a single magni­
tude (Richter magnitude). 

A graphical presentation of the calcula­
tion of Richter magnitude is shown in Fig­
ure 1.9. The essential measurements are 
the peak amplitude of ground motion on a 
Wood-Anderson seismic recording and 
the difference between S and P arrival 
times, which is proportional to the dis­
tance to the source. Wave amplitudes de­
crease systematically with distance, so 
correction to a reference distance allows 
direct comparison of logarithmic ampli­
tudes, or magnitude. Note that for a given 
distance, a factor of 10 difference in seis­
mic amplitude yields a unit difference in 
magnitude. This relationship is empirical, 
with only a limited theoretical basis (de­
scribed in Chapter 9), and in a strict sense 
this magnitude scale is restricted to events 
in Southern California, where it was devel­
oped, because the amplitude-distance re­
lation varies in regions with different 
crustal structure. Nonetheless, seismic 
magnitudes have many uses in comparing 
earthquake properties. 

Earthquakes can be quantified by deter­
mining several physical parameters, such 
as the fault length, rupture area, average 
displacement, particle velocity or accelera-
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FIGURE 1.8 The range in period of seismic phenonnena in the Earth is shown on the left, 
along with the characteristic periods of body waves, surface waves, and different seismic 
magnitude scales. On the right, the amplitude responses of some major seismometer 
systems are shown. Each magnitude scale tends to be associated with a particular instru­
ment type; for example, the Richter magnitude, M^^, is measured on the short period 
Wood-Anderson instrument. (Courtesy of H. Kanamori.) 

tion at the fault, duration of faulting, radi­
ated energy, heterogeneity of slip distribu­
tion, or combinations of such quantities. 
Although we can determine many of these 
characteristics by detailed seismic-wave 
analysis, any given magnitude scale can 
only qualitatively describe the complex 
process at the source. We shall see that 
the best-defined physical quantity with 
which to represent the source is the seis­
mic moment, which is controlled by static 
parameters of the total fault motion, with 
a unique value for each event. The mo­
ment magnitude scale, M^, is based on 
logarithmic scaling of seismic moments to 
give numerical magnitudes that are roughly 
comparable with older magnitude scales. 
However, structural damage from earth­
quakes is often controlled by high-
frequency waves, so short-period magni­
tudes are still very useful. 

Large earthquakes have values of M^ > 
7.0, which roughly corresponds to events 
having more than 1 m of displacement on 
faults that are more than 30 km long. 
Great earthquakes have M^ values > 8.0 
and involve larger faults and greater slip. 
The largest instrumentally recorded event 
is the great 1960 Chilean earthquake 
(M^ = 9.5), which involved 20 m of dis­
placement during a few-minute-long rup­
ture that extended over a 1000-km-long 
fault. The annual average number of 
Mvv > 7.0 events is about 15 (Figure 1.10). 
One or no great events may occur each 
year, but more frequent srnaller events can 
also be catastrophic in terms of loss of life 
and damage. An example of the awesome 
destructive potential of earthquakes is the 
1976 (M^ = 7.7) Tangshan, China earth­
quake, which took approximately 250,000 
lives (some estimates put the toll as high 
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FIGURE 1,9 A graphical form of the Richter magnitude scale procedure. A recording from a 
local earthquake made on a Wood-Anderson seismometer must be used. The peak deflection 
on the record is measured, and the distance from the source is determined (it is roughly 
proportional to the time interval between the S and P arrivals]. A line connecting these 
values intersects the magnitude scale at the appropriate value. The scale is logarithmic, so 
a factor of 10 variation in the amplitude of the seismic wave gives a unit variation in the 
magnitude. 

as 700,000). Figure 1.10 shows that the 
average annual number of earthquake fa­
talities is about 15,000, with many areas of 
the world being stricken. Earthquake haz­
ard varies dramatically with location 
around the world, with inferior construc­
tion practices of developing nations often 
accentuating earthquake damage. Circum-
Pacific countries tend to have more fre­
quent large events, resulting in greater 
damage potential. The 1985 Mexico City 
earthquake is an example of an event in a 
city with moderate construction standards 
that is located near a frequent earthquake 
zone. Although Mexico City was 250 km 
from the fault zone, at least 7000 people 
lost their lives, mainly due to building col­

lapse. Soil conditions under the building 
foundations, construction practices in the 
city, and unusually long rupture duration 
have been blamed for the catastrophe. 

1.2.4 Earthquake Distributions 
One of the classical problems in global 

seismology has been the systematic map­
ping of earthquake distributions on a vari­
ety of scales. This mapping has played a 
key role in the evolution of the theory of 
plate tectonics, which describes the large-
scale relative motions of a mosaic of litho-
spheric plates on the Earth's surface. It is 
the properties of seismic waves that allow 
the source location to be determined, since 



INTRODUCTION 

40 
Number 

Year 
30 

20 h 

ioh 

1 1 1 1 1 r 
5 Year Running Average 

Mean 
17/Year 

JL JL J I I I I I L 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 

^essina j^a^^p 

T 
Loss of Life 

Kanto 

T 1 1 r 
Tangshango 

Kansu 
f p Pakistan 

9 Turkey 

o 
^ 4 

? 

iPeru 

-Morocco ■'^^M—'' 

Iran 

Guatemala'^""®fl 

o I 9 Managua < 
Algeria 

1890 1900 1910 1920 1930 1940 
Year 

1950 1960 1970 1980 1990 

FIGURE 1.10 CTop) Tine annual number of large CA/fg > 7.0) shallow earthquakes around the 
world. There are about 17 events of this size annually. (Bottom) The history of earthquake-
induced fatalities in this century, with the locations of major events being indicated. Note 
the poor correlation with the top trace. Even small earthquakes can cause extensive loss of 
life in regions with poor building construction, or if secondary hazards such as fires or 
landslides enhance the damage. (Modified from Kanamori, 1977, 1978.) 

the waves propagate through the Earth 
with velocities controlled by the material 
properties. Observations of arrival times of 
seismic waves and a model of the velocity 
structure in the Earth are needed for seis­
mic location methods. Historically, the de­
velopment of velocity models and im­
proved source locations has evolved in a 
seesaw fashion, with occasional, indepen­
dently known source locations and origin 
times providing first-order models of the 
structure, which could be statistically im­

proved over time. The procedures for 
earthquake location are described in detail 
in Chapter 6. 

By 1941, through work by Beno Guten­
berg and Charles Richter, the global distri­
bution of major earthquake belts was quite 
well determined, and the enhanced loca­
tion capabilities of the modern global net­
work now allow routine location of all 
events greater than magnitude 4.5 or so 
(Figure 1.11). The distribution of seismic 
events, or seismicity, is very nonuniform. 
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FIGURE 1.11 Maps of the distribution of earthquakes determined by the global networks 
for the years 1970 to 1990. At the top. the source location for events less than 100 km 
deep are shown; at the bottom, events with depths from 100 to 700 km are shown. 
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Most events occur around the Pacific mar­
gin, but midocean ridge and fracture zone 
structures are also quite active. Continen­
tal seismicity tends to be diffuse and is 
concentrated in seismic belts only along 
the Pacific margins. Studies by Turner and 
Wadati in the early 1920s revealed the 
occurrence of seismicity at depths greater 
than 70 km. The spatial distribution of 
such events, termed intermediate-depth 
events if they occur between 70 and 300 
km depth and deep events if they occur 
between 300 and 700 km depth, is very 
limited. Such events are found primarily in 
linear belts around the Pacific, under Eu­
rope, and under Tibet. These presumably 
occur within downwelling portions of 

oceanic plate that is sinking into the man­
tle. Deep events occur much less fre­
quently and release much less energy than 
shallow earthquakes. The nature of their 
sources is also somewhat puzzling because 
frictional sliding supposedly cannot occur 
at such great depths because of the high 
pressures, yet the seismic radiation is simi­
lar to that for shallow shear-faulting events. 
These issues are discussed in Chapter 11. 

The distribution of smaller-magnitude 
seismicity is also studied by seismologists, 
particularly in densely inhabited areas 
where the earthquake hazard is being as­
sessed. Earthquake locations for a 10-year 
interval in Southern California are shown 
in Figure 1.12. The seismic distribution is 

' I " " M I m I [ 11111111 u I [ 1111 n 1111111 m MIM M i I M M m M'i | 'n 
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FIGURE 1.12 A map of earthquake locations in Southern California for the years 1 9 7 8 -
1988. Most of the events are very small, and a dense network of seismometers Is deployed 
in the region to locate all of the earthquakes accurately. The traces of known active faults 
observed at the surface are superimposed for comparison Cas well as the borders of 
California), with the San Andreas fault labeled SAF. (Courtesy of Tom Heaton.) 
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exceedingly complex and does not strictly 
adhere to the mapped faults that break 
the surface. Dense arrays of seismometers 
are installed in areas of intense seismicity, 
or seismogenic zones, in order to obtain 
precise earthquake locations and to study 
the faulting motions that must be taking 
place in the region. Note that if we use 
just the short-term seismicity pattern to 
locate faults in this region, we may fail to 
identify the major fault that produces the 
largest earthquakes, the San Andreas fault, 
because it has few small events. 

The need to assess large-earthquake 
hazard leads global seismologists to look 
at the historic record of large earthquakes 
around the world over longer periods of 
time. The global distribution of great 
earthquakes during most of this century is 
shown in Figure 1.13, where the seismolog-
ical surface-wave magnitude scale, M^, as 
well as the moment magnitude scale, M^, 

values are given for each event (when 
known). The availability of relatively quan­
titative seismic magnitudes allows us to 
study this historical pattern. Table 1.6 list 
the major events of the century. The M^ 
values for some events near the turn of the 
century have been revised downward, with 
new values given in parentheses. The dis­
tribution mirrors the overall seismicity pat­
tern, with the largest events occurring 
around the Pacific margins, but with nu­
merous events, many of them devastating, 
occurring in the Middle East as well as in 
China. Still, one would not identify the 
southern San Andreas fault as capable of 
producing major earthquakes, and seis­
mologists push the historical record back 
to times preceding instrumental recording 
by using descriptive reports of historical 
events and by digging into near-surface 
faults to examine the history of motions 
preserved in the soil and rock disrup-

FIGURE 1.13 The global distribution of great earthquakes this century. The location and 
year of each event are shown, along with an M^ value in parentheses and an M^ value in 
brackets (if available). The filled areas are the rupture zones of the largest circum-Pacific 
ruptures. (From Kanamori, 1988.] 
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TABLE 1.6 

Date 

1904 06 25 
1905 04 04 
1905 07 09 
1905 07 23 
1906 01 31 
1906 04 18 
1906 08 17 
1906 08 17 
1906 09 14 
1907 04 15 
1911 01 03 
1912 05 23 
1914 05 26 
1915 05 01 
1917 06 26 
1918 08 15 
1918 09 07 
1919 04 30 
1920 06 05 
1920 12 16 
1922 11 11 
1923 02 03 
1923 09 01 
1924 04 14 
1928 12 01 
1932 05 14 
1932 06 03 
1933 03 02 
1934 01 15 
1934 07 18 
1938 02 01 
1938 11 10 
1939 04 30 
1941 1125 
1942 08 24 
1944 12 07 
1945 11 27 
1946 08 04 
1946 12 20 
1949 08 22 
1950 08 15 
1951 11 18 
1952 03 04 
1952 11 04 
1957 03 09 
1957 12 04 
1958 11 06 
1960 05 22 
1963 10 13 
1964 03 28 
1965 02 04 
1968 05 16 
1977 08 19 
1985 09 19 
1989 05 23 

Large Earthquak 

Time 

2100.5 
0050.0 
0940.4 
0246.2 
1536.0 
13 12.0 
0010.7 
0040.0 
1604.3 
0608.1 
23 25.8 
0224.1 
1422.7 
0500.0 
05 49.7 
1218.2 
1716.2 
0717.1 
0421.5 
1205.8 
0432.6 
160141 
0258 36 
1620 23 
0406 10 
131100 
1036 50 
1730 54 
0843 18 
1940 15 
1904 18 
2018 43 
0255 30 
1803 55 
2250 27 
0435 42 
2156 50 
175105 
1919 05 
0401 11 
1409 30 
0935 47 
0122 43 
1658 26 
1422 28 
0337 48 
2258 06 
1911 14 
0517 51 
0336 14 
05 0122 
0048 57 
0608 55 
1317 38 
1054 46 

e s with Mg > 8.0 for the Period 1 9 0 4 t o 1 9 9 2 

Region 

Kamchatka 
E. Kashmir 
MongoHa 
Mongolia 
Ecuador 
California 
Aleutian Is. 
Chile 
New Britain 
Mexico 
Turkestan 
Burma 
W. New Guinea 
Kurile Is. 
Samoa Is. 
Mindanao Is. 
Kurile Is. 
Tonga Is. 
Taiwan 
Kansu, China 
Chile 

Kanto 
Mindanao 
Chile 
Molucca Passage 
Mexico 
Sanriku 
Nepal/India 
Santa Cruz Is. 
Banda Sea 
Alaska 
Solomon Is. 
N. Atlantic 
Peru 
Tonanki 
W. Pakistan 
Dominican Rep. 
Nankaido 
Queen Char. Is. 
Assam 
Tibet 
Tokachi-Oki 
Kamchatka 
Aleutian Is. 
Mongolia 
Kurile Is. 
Chile 
Kurile Is. 
Alaska 
Aleutian Is. 
Tokachi-Oki 
Sumbawa 
Mexico 
Macquarie Is. 

Lat. 
CN) 

52 
33 
49 
49 

1 
38 
51 

- 3 3 
- 7 
17 
43.5 
21 

- 2 
47 

-15.5 
5.5 

45.5 
- 1 9 

23.5 
36 

-28.5 
54 
35.25 

6.5 
- 3 5 

0.5 
19.5 
39.25 
26.5 

-11.75 
-5.25 
55.5 

-10.5 
37.5 

-15.0 
33.75 
24.5 
19.25 
32.5 
53.75 
28.5 
30.5 
42.5 
52.75 
51.3 
45.2 
44.4 

-38.2 
44.9 
61.1 
51.3 
40.9 

-11.2 
18.2 

-52 .3 

Long. 
CE) 

159 
76 
99 
98 

-81.5 
-1 2 3 

179 
- 7 2 
149 

-100 
77.5 
97 

137 
155 

- 1 7 3 
123 
151.5 

-172.5 
122 
105 

- 7 0 
161 
139.5 
126.5 

- 7 2 
126 

-104.25 
144.5 
86.5 

166.5 
130.5 

-158.0 
158.5 

-18.5 
-76.0 
136.0 
63.0 

-69.0 
134.5 

-133.25 
96.5 
91.0 

143.0 
159.5 

-175.8 
99.2 

148.6 
-72.6 
149.6 

-147.5 
178.6 
143.4 
118.4 

-102.6 
160.6 

Ms 

8.0 (7.4) 
8.1 (7.5) 
8.4 (7.6) 
8.4 (7.7) 
8.7 (8.2) 
8.3 (7.8) 
8.2 (7.8) 
8.4(8.1) 
8.1 (7.5) 
8.0 (7.7) 
8.4 (7.8) 
8.0 (7.7) 
8.0 
8.0 
8.4 
8.0 
8.2 
8.2 
8.0 
8.6 
8.3 
8.3 
8.2 
8.3 
8.0 
8.0 
8.2 
8.5 
8.3 
8.1 
8.2 
8.3 
8.0 
8.2 
8.2 
8.0 
8.0 
8.0 
8.2 
8.1 
8.6 
8.0 
8.3 
8.2 
8.1 
8.0 
8.1 
8.5 
8.1 
8.4 
8.2 
8.1 
8.1 
8.1 
8.2 

A^w 

8.4 
8.4 
8.8 
7.9 

8.2 

8 
8.5 
7.9 

8.4 

8.5 
8.2 

8.1 

8.1 
8.1 
8.6 
7.5 
8.1 
9.0 
9.1 
8.1 
8.3 
9.5 
8.5 
9.2 
8.7 
8.2 
8.3 
8.0 
8.2 



1.2 The Topics of Global Seismology 

tions. This reveals that the southern San 
Andreas fault has indeed had great earth­
quakes, the most recent in 1857, with many 
previous events recurring about every 130 
years. Other great events revealed by his­
torical accounts occurred in regions such 
as southeastern Missouri, where a se­
quence struck in 1811-1812, and South 
Carolina in 1886. In some places, such as 
Missouri, current small-magnitude seismic-
ity alerts us to the local earthquake poten­
tial, whereas in others, like South Car­
olina, little present activity is occurring. 
Chapter 11 discusses the earthquake haz­
ard issue further. 

1.2.5 Global Faulting Patterns and 
Rupture Models 

In order to understand the distribution 
and fundamental causes of earthquakes, 
we must determine the nature of the fault­
ing motions that are involved, but only a 
few faults rupture the surface to give di­
rect observation of permanent deforma­
tions that reveal the fault geometry. Again, 
the basic properties of seismic waves assist 

us greatly. The wavefronts that expand 
outward from the earthquake source re­
gion retain the initial sense of deformation 
at the source (Figure 1.14), so that, after 
accounting for propagation effects, we can 
relate seismogram motions to near-source 
motions, even though the seismometer may 
be thousands of kilometers from the 
source. The near-source motions then de­
fine the source geometry, which for earth­
quakes involves the fault orientation and 
direction of slip. 

Seismological analysis exploits this di­
rectional information in the wavefield to 
find the fault orientations for large earth­
quakes all over the world, even at inacces­
sible depths. Figure 1.15 shows the global 
distribution of shallow (depth less than 70 
km) events with My^ > 6.5 for the year 
1989. The circular plots are stereographic 
projections that show fault-plane orienta­
tions and major strain axes, which reveal 
the sense of motion at the source (de­
scribed fully in Chapter 8). Most of the 
large events in this year occurred around 
the Pacific margin and involved under-
thrusting of oceanic plate in convergent 

FIGURE 1.14 Elastic waves propagate away from a source with the sense of ground 
motions being preserved over the wavefront. The directions of P- and S-wave particle 
motions on the expanding wavefront are shown above, with (a3 P-wave motions being 
perpendicular to the wavefront and reflecting initial motion either toward or away from the 
source, (b) S-wave motions are parallel to the wavefront. with the shearing direction being 
controlled by the orientation of the shearing at the source. It thus becomes possible to 
relate distant motions to near-source motions and determine the source geometry. (From 
Kasahara. 1981. Reprinted with the permission of Cambridge University Press.) 
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FIGURE 1.15 Top: The source mechanism for all earthquakes with M^^S.b in 1989. The 
date and stereographic projection of the P-wave radiation pattern for each event are shown, 
with the size of the projections scaling with relative moment of the source. The dark areas 
represent compression (away from the source] motions; the white areas indicate dilata-
tional [toward the source) motions. These source mechanisms are fully described in Chapter 
8, but here they can be taken to indicate the direction of faulting associated with each 
source. Bottom: The annual cumulative seismic moment release from all significant seismic 
events, which is about 800 events per year. The darker portion of each bar indicates the 
contribution from just the M^>6.5 events, demonstrating that the small number of large 
events [about 20/yr ) dominates. [From Dziewonski etal., 1990. 1991.) 

zones. The event in California is the Octo­
ber 18, 1989, Loma Prieta event, located in 
the Santa Cruz Mountains between San 
Jose and Santa Cruz. This event had a 
moderate magnitude of M^ = 6.9 but 
caused more than $7 billion in damage 
and killed 68 people. The relative impor­
tance of these large events is suggested by 

the bar graph, which shows the annual 
cumulative seismic moment release around 
the world. The darkened portions of these 
bars indicate the moment release con­
tributed by the events with My^ > 6.5, 
which clearly dominate. 

The routine determination of earth­
quake faulting orientation around the 
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world by seismic-wave analysis is one of 
the remarkable accomplishments of global 
seismology. Over 10,000 earthquakes have 
been quantified from 1977 to 1992 by the 
analysis procedure used in Figure 1,15. As 
mentioned earlier, this is too short a time 
span to assess all earthquake phenomena, 
but it has revolutionized the fundamental 
data base for studying surface motions. 
Characterizing the average fault orienta­
tion and seismic moment of the events is 
only the first step. More detailed seismic 
analysis can be used to determine the full 
rupture sequence for large events, from 
onset to termination of faulting. Some re­
cent results are shown in Figure 1.16 for a 
large earthquake in 1976 in Guatemala 
that resulted from the rupture of a nearly 
vertical fault called the Motagua fault. The 
rupture started at point 1 and spread in 

both directions down the fault, with hori­
zontal shearing of the two sides. Detailed 
analysis of very complicated P waveforms 
recorded around the world for this event 
shows that the radiation of energy was not 
uniform during the rupture and that the 
orientation of the strain release rotated 
slightly at different locations on the fault. 
The complex time history of energy re­
lease is a common attribute of large earth­
quake failures, as is the presence of 
nonuniform surface displacement along the 
outcrop of surface-breaking faults. Chap­
ter 10 describes the procedures that are 
used in such studies. 

For earthquakes more recent than 1980, 
the quality of global seismic data is greatly 
improved over earlier decades because 
digital recording systems became wide­
spread, and even great earthquakes pro-

FIGURE 1.16 A map of the Motagua fault, which ruptured in the 1976 Guatemala earth­
quake. The seismologically determined history of energy release is shown in the upper left. 
Each pulse corresponds to radiation from different sections of the fault as the rupture 
spread away from the initiation point (star). Each subevent has a source orientation 
determined in the analysis, with the projections of the P-wave nodal radiation planes being 
shown in stereographic projections. Darkened areas represent compressional P-wdve mo­
tions. The fault orientation changed during rupture, and the strength of radiation was not 
uniform along the fault. (From Kikuchi and Kanamori, 1991.) 
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FIGURE 1.17 A model of variable slip on the 
fault that ruptured in the 1989 Loma Prieta. 
California, earthquake. This model involves some 
variation in the amount and direction of slip on 
the fault. The rupture spread outward from the 
initiation point at the star in the center of the 
fault at a depth of 18 km. Slip of the fault took 
place over a total of about 8 s. Two patches of 
primary slip are highlighted. This model was 
obtained by analysis of very nearby (strong 
motion) and distant (teleseismic) P and S 
waves. (From Wald etal., 1991.) 

duced on-scale seismograms, with greater 
bandwidth than previously possible. This 
has enabled even more detailed analysis of 
seismic ruptures, involving actual contour­
ing of the variable displacement on the 
fault surface. An example is shown in Fig­
ure 1.17, in which seismic recordings at 
distant and nearby locations have been 
used to determine a model for the hetero­
geneous slip distribution on the fault caus­
ing the 1989 Loma Prieta earthquake. The 
data reveal two major patches of dominant 
slip on the fault, which ruptured in about 
8 s. Studies such as these are greatly im­
proving our understanding of earthquake 
rupture mechanics and are beginning to 
place earthquake prediction efforts on 
sounder physical grounds. The broad range 
of seismic source investigations is de­
scribed further in the last four chapters of 
this book. 

1.2.B Radial Earth Layering 
The second major branch of global seis­

mology involves studying the structure of 
the Earth's interior. In order to extract the 

types of information about seismic sources 
described above, it is critical to account for 
propagation effects, which requires a 
knowledge of the structure. In addition, 
most of what we know about the deep 
interior of the Earth regarding its compo­
sition, layering, dynamics, physical state, 
and temperature has been based on seis­
mic observations of the otherwise inacces­
sible interior regions. Just as for seismic 
sources, the remarkable contributions of 
pioneers early in this century, such as Jef­
freys, BuUen, Gutenberg, and Lehmann, 
solved many of the first-order Earth struc­
ture problems, such as demonstrating that 
the core exists and must be fluid because it 
does not transmit i'-wave energy. But, as is 
the case for understanding earthquakes, 
resolving the second-order details is 
critical to understanding the dynamical 
processes occurring in the Earth. For ex­
ample, the presence of several-hundred-
degree lateral temperature differences 
deep in the mantle may produce only a 1% 
change in seismic velocity but is sufficient 
to drive convective flow of the interior on 
long time scales. Similarly, grossly differ­
ent models of the chemistry of the interior 
differ in their elasticity parameters by a 
few percentages or less. Thus, there is an 
intense effort to determine the internal 
structure with very high precision, so that 
the composition and dynamic processes of 
the interior can be understood. 

The key to revealing the internal struc­
ture using seismograms is the collection of 
large numbers of recordings at different 
distances from a source. A display of seis­
mograms as a function of distance, or ^m-
mic profile, enables identification of coher­
ent wave arrivals between stations. An 
example for a global data collection is 
shown in Figure 1.18. The records show 
good stability of the travel-time variation 
of a given wave type as a function of 
distance in the Earth. For example, at 
epicentral distances (measured in angular 
degrees along the Earth's circumference 
between source and receiver) of less than 
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FIGURE 1.18 A collection of vertical-component seismograms for a single event that 
occurred near Sumatra, plotted at the angular distance to each station. The records are 
from the World Wide Standardized and Canadian Seismic Networks. Upward motion on each 
trace is toward the left. Note that coherent arrivals can be tracked from trace to trace. 
These define the travel-time behavior for different paths through the Earth. The start time 
of each trace has been reduced by a value of 8A s, where A Is the angular distance. Thus, 
traces on the right begin much later than traces on the left. (Modified from Muller and Kind, 
1976. Reprinted with permission of the Royal Astronomical Society.) 

100°, a clear P-wave arrival occurs at the 
onset of ground motions. The disruption 
of the P arrival branch near 100° is due to 
the low-velocity core of the planet. The 
systematic timing as a function of distance, 
or travel-time curve, for each seismic phase 
can be analyzed using inverse theory to 
determine the internal structure of the 
Earth. Any radial layering will give rise to 
reflections and conversions of P and S 
waves, and fitting the travel times of later 
arrivals determines the depths and velocity 
changes of internal discontinuities. 

The observed wavefield is complicated 
by the existence of both body and surface 
waves, by conversions and reflections of 
body waves off the core and other internal 
discontinuities, by the spherical geometry 
of the Earth and multiple reflections of 
body waves off the surface, as well as by 

relatively small lateral variations in struc­
ture. Over the past three decades immense 
data bases of travel-time observations have 
accumulated in the routine process of lo­
cating earthquakes around the world. The 
United States National Earthquake Infor­
mation Center (NEIC) and the Interna­
tional Seismological Center (ISC) in Eng­
land compile earthquake bulletins with all 
travel-time reports from stations around 
the world. Simply displaying the composite 
travel times (Figure 1.19a) reveals a global 
travel-time curve. Each continuous branch 
of arrivals defines a particular seismic-wave 
path in the Earth that can be analyzed to 
reveal layering in the Earth. The travel-
time branches are readily identified, and 
master travel-time curves such as those in 
Figure 1.19b can be determined for dif­
ferent source depths. Many of the complex 



30 60 90 120 
Delta, deg 

150 180 

6 25h 

E 

0 
160 

20 
340 

40 
320 

60 
300 

80 
280 

100 
260 

120 
240 

140 
220 

160 
200 

IKO 

Angular distance (degrees) 

FIGURE 1.19 (a] Travel times versus angular distance from the ISC bulletin for a 5-year 
period. A total of 2.538,244 arrival times from phases from shallow earthquakes are shown. 
These define continuous arrival branches. Cb} Average travel times for a surface source for 
various phases. The labeling indicates the general path of each phase. (From Bolt, 1982.) 
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interactions are low amplitude and can be 
observed only after stacking many observa­
tions at a given distance, which reduces 
background noise. This is now possible 
with the large data sets of digital seismo-
grams that are accumulating (Chapter 6). 

Once observed travel-time curves for 
seismic phases are determined, it is possi­
ble to invert for P- and 5-wave velocities 
as a function of depth using the methods 
described in Chapter 7. Through analysis 
of body waves, long-period surface waves, 
and free oscillations, global seismologists 
have developed one-dimensional models 
of the elastic velocities and density of the 
entire Earth. One of the most frequently 
used models is shown in Figure 1.20. This 
model, different from the first generation 
of global models developed in the 1930s in 
subtle but important ways, indicates the 
major subdivisions of the interior: the solid 
inner core, the fluid outer core, the lower 

mantle, and the upper mantle. The crust is 
a very thin veneer on the surface. Chapter 
7 discusses the seismological constraints 
on each region. Radial models of the 
Earth's elastic structure are used in many 
applications (including earthquake rupture 
modeling) and are critical for efforts to 
determine the composition and state of 
the interior. However, radial models fail to 
express the complexity of what we know to 
be a dynamic, evolving system, so seismol­
ogy is now striving to develop fully three-
dimensional models for the interior at all 
scale lengths. 

1.2.7 Heterogeneous Earth 
Models 

It has long been recognized that simple 
layered models are a poor approximation 
of the Earth's crust. The obvious differ­
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density Cp) as a function of depth in the Earth. (After DziewonskI and Anderson, 1981.) 
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ence between oceanic and continental re­
gions is one indication, but the exposed 
surface geology provides even clearer evi­
dence of complexity. The geological pro­
cesses that produce layering, such as sedi­
ment deposition, lava flows, and chemical 
precipitation, all do so on limited spatial 
scales, and subsequent crustal motions de­
form even the locally stratified rocks. Ef­
forts to study crustal structure, driven on 
the one hand by resource exploration and 
on the other by Earth science efforts to 
understand how the crust evolved, have 
led to many attempts to develop two- and 
three-dimensional models for crustal re­
gions. This requires collection of closely 
spaced seismic data so that coherent seis­
mic arrivals can be detected over small 
horizontal ranges. An example of a dense 
seismic reflection profile (which shows en­
ergy from surface explosions reflected back 
from the interior) collected in the rift zone 
of eastern Africa is shown in Figure 1.21. 
A dense distribution of seismometers and 
very high frequency recordings are re­
quired to see the complex, laterally discon­
tinuous arrivals reflected from deep struc­
ture, which shows tilted layering offset by 
faults. In many crustal locations a two-
dimensional model is inadequate to inter­

pret the subsurface, particularly for com­
plex formations that may trap oil; thus 
three-dimensional images are currently be­
ing developed in numerous crustal studies. 
Development of three-dimensional imag­
ing has awaited and, in part, has driven 
the development of faster computers with 
massive data storage capabilities. Such 
high-resolution seismology efforts are still 
constrained by computer limitations. 

During the 1950s and 1960s, the first 
computer-assisted analyses of long-period 
surface waves began to reveal systematic 
lateral variations in deeper Earth structure 
below the crust. By the 1980s many global 
seismologists were actively analyzing dif­
ferent types of seismic data to determine 
three-dimensional structure at depth by 
methods collectively identified as seismic 
tomography (based on mathematical simi­
larities to medical imaging tomography, 
which is used to image internal structure 
of the human body without surgery), find­
ing that every region of the interior, with 
the possible exception of the outer core, 
appears to have detectable aspherical het­
erogeneity. The ability to resolve this vari­
ation about the one-dimensional radial 
Earth models, and the recognition of its 
importance for internal dynamics, has 

FIGURE 1.21 A seismic reflection profile from the Lake Tanganyika Rift zone. At each 
distance along the east -west (E-W) line, a stack of seismic traces is plotted vertically 
downward, with increasing time. The arrivals on the adjacent traces indicate layered struc­
tures that are cut and offset by subsurface faults, most of which are not seen at the 
surface. Exploration seismology develops even more detailed images of shallower structure. 
(Modified from Rosendahl, 1989.) 
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FIGURE 1.22 Vertical cross sections through a three-dimensional model of P-velocity 
variations in the Earth's mantle, showing seismic velocity heterogeneity in regions of 
downwelling oceanic lithosphere. The darker regions correspond to material that has a 
faster than average P velocity, resulting from low temperatures in subducting oceanic 
plate. Relatively low velocities are found in the wedge above subducting plates, below Island 
arc volcanic areas. The base of the mantle in these regions is also higher velocity than 
average. (Modified from Fukao etai, 1992.) 
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FIGURE 1.23 A model of global shear velocity variations relative to the average shear 
velocity at a depth of 150 km in the mantle. Darker regions correspond to higher-velocity 
regions. This model was obtained by analysis of body waves and surface waves, using a 
truncated spherical harmonic function expansion of the heterogeneity. The model can only 
resolve fluctuations with scale lengths of 5000 km, so small features like the slabs in Figure 
1.22 are not resolved. (From Dziewonski. 1989.) 
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prompted a revolution in geophysical in­
vestigations of the deep interior. Three-
dimensional velocity variations are now be­
ing determined for localized regions, such 
as the circum-Pacific downwellings where 
deep earthquakes occur (Figure 1.22), as 
well as for global models of shear-velocity 
structure at all depths in the interior (Fig­
ure 1.23). In addition to making determin­
istic maps of the large-scale structural het­
erogeneity, seismologists are using wave 
scattering theory (mostly adapted from 
quantum mechanics) to describe statisti­
cally small-scale heterogeneities that are 
detectable, but not completely resolvable, 
by high-frequency seismic waves. 

The likelihood that the variations in ve­
locity are at least in part due to thermal 
variations (higher-velocity material being 
colder and lower-velocity material being 
hotter at a given pressure), combined with 
the fact that any thermal variations cause 
density variations, suggests that the three-
dimensional seismic models reveal density 
heterogeneity. Density heterogeneity re­
sults in long-term stresses (due to gravita­
tional pull) that cause Earth materials to 
flow, with upwellings and downwellings be­
ing driven by gravity as the Earth system 
transports heat to the surface. Thus, re­
markably, imaging the Earth with elastic 
waves provides a means for determining 
the ongoing dynamic convection of the 
mantle. Chapter 7 surveys these Earth 
structure investigations. 

1.2.8 Modern Global Seismology 
This introduction should make it clear 

that modern global seismology is a rapidly 
advancing, quantitative discipline that ad­
dresses a vast array of important physical 
phenomena in the Earth. There is beauty 
and elegance in the mathematical proce­
dures used in the discipline and in the 
richness and complexity of seismological 
data. The challenge of extracting informa­

tion from seismic signals continues to draw 
increasing numbers of researchers into the 
field, with both applied and basic science 
emphases. This text develops much of the 
basic theory and touches upon many of the 
major observations and results of modern 
global seismology. 
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CHAPTER 

2 
ELASTICITY AND SEISMIC WAVES 

Seismology involves analysis of ground 
motions produced by energy sources within 
the Earth, such as earthquake faulting or 
explosions. Except in the immediate vicin­
ity of the source, most of the ground mo­
tion is ephemeral; the ground returns to 
its initial position after the transient mo­
tions have subsided. Vibrations of this type 
involve small elastic deformations, or 
strains, in response to internal forces in 
the rock, or stresses. The theory of elastic­
ity provides mathematical relationships 
between the stresses and strains in the 
medium, and it has spawned a vast litera­
ture filled with theory and empirical docu­
mentation of elastic behavior. Here we 
develop only the basics of the theory of 
elasticity required for seismological appli­
cations, including the concepts of strain 
and stress, the equations of equilibrium 
and motion, and the fundamental nature 
of solutions to the equations of motion: 
seismic waves. Chapters 3 and 4 character­
ize wave interactions relevant to seismic 
waves in the Earth, and subsequent chap­
ters apply these basic ideas to describe 
how seismologists study the Earth's inte­
rior and the sources of seismic waves. 

Our development of elasticity follows 
that typical of texts on solid mechanics, 
and many more detailed discussions are 
available, some being listed in the Refer­

ences. In the study of solids, a useful, 
idealized concept for dealing with macro­
scopic phenomena is that of a continuum, 
in which matter is viewed as being contin­
uously distributed in space. Within this 
continuous material we can define mathe­
matical functions for displacement, strain, 
or stress fields, which have well-defined 
continuous spatial derivatives. We will see 
that applying simple laws of physics to a 
continuum (continuum mechanics) allows 
seismologists to explain nearly every ar­
rival on a seismogram. We must introduce 
atomic-scale processes to explain some im­
portant aspects of seismology, such as the 
nature of anelastic-wave attenuation, but 
even for seismic-wave attenuation, phe-
nomenological adaptations of continuum 
mechanics usually circumvent the need for 
detailed characterizations of microscopic 
phenomena. For seismology, this is criti­
cal, for we are, of course, ignorant of most 
of the detailed crystallographic and 
atomic-level structure inside the planet. 

Seismology, for the most part, is con­
cerned with very small deformations (rela­
tive length changes of -- 10~^) over short 
periods of time ( < 3600 s). This greatly 
simplifies the mathematical framework of 
our elasticity theory, which is based on 
infinitesimal strain theory. In the immedi­
ate vicinity of seismic sources, or when we 
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consider long-term, large-scale deforma­
tions of faults (as in structural geology), a 
more complete finite strain theory must be 
followed. The relationship between forces 
and deformations in infinitesimal strain 
theory is largely empirically based and 
given by a constitutive law called Hooke's 
law. The deformation is a function of ma­
terial properties of the body such as den­
sity, rigidity (resistance to shear), and in-
compressibility (resistance to change in 
volume). The material properties are 
known as elastic moduli. When stress varies 
with time, strain varies similarly, and the 
balance between stress and strain results 
in seismic waves. These waves travel at 
velocities that depend on the elastic mod­
uli and are governed by equations of mo­
tion. Seismic waves are loci of particle 
displacements, which become increasingly 
complex as the wave expands through the 
solid body. We will now proceed to show 
how these waves arise and how they are 
represented mathematically. 

2.1 Strain 

Because seismology is so directly associ­
ated with measurement of motions of a 
medium, we begin by considering how mo­
tions within a solid are described. We em­
ploy a Lagrangian description, in which 
the motion of a particular particle is fol­
lowed as a function of time and space. 
This is a natural system for seismology, 
because seismograms are essentially 
records of particle motions at near-surface 
sensors as seismic waves pass by. A contin­
uum is a continuous distribution of parti­
cles; thus a vector field, u(x, t), is required 
to describe the motions of every point in 
the medium, where we are free to choose 
a convenient reference system. 

A medium can undergo two fundamen­
tal types of motion: (1) whole-body trans­
lation and/or rotation, and (2) straining, 
or internal deformation. Translation and 
rotation can be described with a single 

vector common to all points in the medium, 
and we are not concerned with such 
whole-body motions here. Instead, we want 
to describe internal deformations within 
the solid, which intrinsically involve spatial 
and temporal variations of the displace­
ment field, u(x, t). 

Deformations within a medium are com­
posed of components that involve length 
changes and angular distortions. Consider 
a body that is initially undeformed and 
unloaded with two internal points O and 
P (Figure 2.1a) connected by a straight 
line of length A 5. When forces are applied 
to the body, deformation moves O and P 
to O' and P\ respectively, which are con­
nected by a line with length As'. To de­
scribe the deformation of the medium, 
we must characterize both the change in 
distance between the two points and any 
rotation of the line As' relative to the 
surrounding material. To do this we intro­
duce terms for spatial gradients of the dis­
placement field, or strains. Normal strains 
are measures of elongation, defined as 

"normal = lim 
As'-As 

(2.1) 

Normal strains involve a fractional change 
in distance between points. Line segment 
O'P' might not have changed length but 
might have rotated with respect to the 
surrounding material. If we consider a per­
pendicular line segment OQ (Figure 2.1b) 
in the undistorted medium that moves to 
O'Q', we can define the shear strain, a 
measure of internal angular distortion, as 

1 
^shear= T } ^ ^ Z A5, -♦ [\A (2.2) 

A5,->0 

where 6' is the angle LQ'O'F. 
To be useful, the normal and shear 

strains must be defined with respect to a 
coordinate system. Since space is three-
dimensional and we must describe all 
elongations and angular changes at every 
point in the medium with respect to all 
three dimensions, the full description of 
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FIGURE 2.1 When a medium is deformed, we must describe both relative length changes 
and shearing rotations between portions of the medium. Normal strains, involving relative 
changes In length between points, are considered in [a). Shear strains, involving angular 
changes within the medium, are considered in (b). 

Strain involves nine terms: three normal 
strains, e^^, £22̂  3̂3» giving relative length 
changes of line segments oriented in the 
coordinate directions, and six angular 
changes of each coordinate direction with 
respect to the other two directions, 6^2, 
^13' ^21' ^23' ^31' 3̂2- Thesc nine terms 
have a continuous distribution throughout 
the medium and are functions of time. We 
will now define these terms for a general 
three-dimensional case. 

2.1.1 Strain-Displacement 
Relationships 

We seek to establish general three-
dimensional relationships between nine 
Cartesian strain components and three 
Cartesian displacement components 
(wi,M2»W3)- Consider the cubic volume of 
material with a corner at point P in Fig­
ure 2.2, which has sides oriented perpen­
dicular to the coordinate axes x^,X2,X2. 
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FIGURE 2.2 Displacements of a small cubic volume with a corner at point P to a new 
position with a corner at point P'. The displacement of P is given by C2.3), and the 
displacement of Q to Q' is given by (2.43. The length of P'Q' is given to first order by (2.6). 

The volume is infinitesimally small, so that 
when it is deformed, planes remain planar 
and lines remain straight; this is, by defi­
nition, infinitesimal strain. Point P is dis­
placed by the displacement vector 

u{xp, t) = WjXi + U2X2 ■•" "3^3 

= {ui,U2,u^), (2.3) 

moving it to point P' at time t'. Point Q is 
displaced to Q' by slightly different dis­
placements, u(xg,/), which we can relate 
to u(xp, t) using a first-order Taylor series 
expansion (omitting terms of order d-^Ui/ 
dxl and higher): 

^\U2^—dx^\x2 

+ \u,^—dx,\x,. (2.4) 

From now on, the spatial and temporal 
dependence of u(x, t) and its vector com­
ponents will be implicitly assumed rather 
than given as arguments of the functions. 
If we use the definition of normal strain 
(2.1) for PQ and P'Q\ we have 

P'Q-PQ dx'-dx, 
■'normal PQ dxi 

(dx')^=[(l+6„_3,)'i^i] • (2.5) 
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FIGURE 2.3 Angular distortion of the x-jXg face of the cube at point P in Figure 2.2. The 
right angle LRPQ is distorted to LR'P'Q\ 

Since \dx'\ = \dx^ + U(XQ, 0 - u(xp, 01, 
from (2.4) and (2.3) we have 

{dx'f^ 1 + I rfjCi 

+'5i;*'i- (2.6) 

Equating (2.5) and (2.6) and expanding 
gives 

( 1 + 2enormal "*" ^normal) — 1 + 2 
dUi 

dx. 

du^ dUo 

dx^ j 1 dXi j \ dx^ 
du^ 

(2.7) 

for small strains and small displacement 
derivatives; neglecting the squared terms 
leaves 

^normal dXi 
(2.8) 

This is the same as the result we would 
find for the one-dimensional case in which 
PQ would simply change length along the 
jCj direction (see Figure 2.1a). We denote 
this normal strain as 

eu = dx^ 
(2.9a) 

The first subscript indicates the orienta­
tion of the line segment, and the second 
indicates the direction of length change. 
Similarly, two other normal strains can be 
defined by 

^22 ' dx-j ^33 ~ 
^ ^ 3 

dx-. 
, (2.9b) 

corresponding to the other line segments, 
dx2 and dbc3, intersecting point P in Fig­
ure 2.2. Note that these strain terms im­
plicitly assume the spatial and temporal 
dependence of the displacement compo­
nents. 

The shear strains are slightly more com­
plex to determine. Referring to Figure 2.3, 
we see that angle e' between P'Q and P'R 



is given by a general law of cosines 

c o s ff ■■ 1 + 
du^ \ dxi 

+ 

dxy^ I dx\ 8X2 dx'2 

1 + 
du-j \ dx 

dxn / dx'^ 

du2 dx^ 

dx^ dx\ 

du^ dx^ 

dxi dx\ I \ 3x2 ^ 2 
^ ^ 3 dX2 

(2.10) 

Ignoring products of small terms 

1 / du^ dU2 
^shear 0 1;. + 7 ^ • (2.15) 

2 \ dx-j dx^ ' 

We identify this angular distortion be­
tween segments in the x^ and X2 direc­
tions using indicial notation 

1 / du^ dU2 

^^^~^\dX2 dx^ 
(2.16a) 

From (2.2), we have 

1 iir 
^shear -lii-'Vi^Ai-") 

= — COS0', 
2 

(2.11) 

where the approximation is made for small 
angular changes (i.e., S' ~ ir/l). Thus 

1 
^shear ^ 2 ^ 1 = 2 

1 3u^ \ 3u^ 
\ 3x^ 1 3x2 

+ 1 4 - — ^ - ^ 
\ dX2 I dXi 

dXi 3x2 
dxi dx2' 

From (2.5) and (2.9) we have 

dx\ = (1 + e n ) ^ 1 

dx'2 = ( 1 + ^ 2 2 ) dx2' 

Thus, 

^shear(l "^ ^11 + ^22 + ^11^22) 

1 / du^ 3u2 3u^ 3ui 

2 \ 3X2 ^^l ^^l ^^2 

3u2 3 
3x2 ^ 

^2 3i 

Xj 3j Cj 3X2)' 

(2.12) 

(2.13) 

Similarly, we can consider distortions of 
other faces of the reference cube in Figure 
2.2 to find 

1 I3u 
£21 = 1 + ^ 

2 \ 3xi 3x2 

1 / 3ui 3u^ 

^^ 2 \3x2 3xi 

1 / <9w3 3ui 
^31 

^23" 

2 dx, 3x^ 

1 / dU2 3U2 

2 \ 3X2 ^^2 

1 I 3UT, 3u^ — _ 3 ^ ^ 2 

^^^ ~ 2 1 3X2 ^^3 
(2.16b) 

Note that e^j = Cy,. 
We can represent all nine strain terms 

of (2.16) with compact indicial notation 
(see Box 2.1): 

1 
2 ' 

1 l3u^ 3u 
^ii= :r("/ , + w,,) = ~ •- — 

/; 0^ ^; J,^^ 2\3xj 3Xi 

(2.17) 

^ ^ ^ T T V (2.14) 
These nine terms constitute the infinites-
imal strain tensor, a symmetric tensor with 
six independent quantities that can be 
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Box 2.1 Indicial Notation 

The large number (nine) of components of the stress and strain tensors and the 
proliferation of terms involving their spatial derivatives make it useful to adopt a 
simplifying notation. We follow a conventional indicial notation. In general, the 
stress and strain components are prescribed with respect to some convenient 
reference system (e.g., the Cartesian system, x^,X2,x^X and we use subscripts to 
indicate surfaces and directions in the reference system. A surface (e.g., the XjX^ 
plane) can be indicated by the direction of the normal to the surface (±JC,). 
Direction, such as components of a vector, can be indicated by subscripts as 
follows: 

U = M,X, -f W2X2 + W3X3 ( 2 . 1 . 1 ) 

w h e r e x^ are unit vectors in the coordinate direct ions. T h e term Uj is unders tood 
to take o n va lues / = 1 , 2 , 3 , as appropriate in a given equat ion . For example , the 
n ine terms of the d isp lacement gradient can be represented by a s ingle indicial 
term: 

^ W / / / = 1 , 2 , 3 
1 , 2 , 3 dXj \ J 

dx^ 

dx^ 

dx. 

8X2 

8X2 

dx-j 

dx^^ 

dU2 

dx^ 

dx-x 

(2.1.2) 

where the indicial representation denotes the appropriate component for given 
values of / and j . This can be written even more compactly as 

dU: 

" • - " ^ 
( 2 . 1 . 3 ) 

continues 

ordered as 

^u = 

dx^ 

1 ldU2 dUi \ 

'2\dx^ 8X2} 

1 1 du^ du^ \ 
1 2\'d7,^'d7,) 

1̂ 

i 

' du2 8u^ \ 

dx^ 8X2] 

8U2 

8X2 

' 8U2 ^"3 \ 
^ dx^ 8x2 ] 

\ 

\ 

' 8ui 8U2 

^8x^ 8xi 

^ 8U2 8U2 

\^ 8x2 8x2 

8U2 

8X2 

(2.18) 



special functions such as the Kronecker delta function also benefit from indicia! 
notation: 

Throughout this text we assume the Einstein summation notation, in which repeti­
tion of indices within a term explicitly requires summation on that term. Thus, for 
a term such as 

A = ei,+e22 + 3̂3 = n̂n (2.1.5) 

the repeated index n implies summation. This holds for repeated indices within 
any single term: 

"^/•y/=^1^1 +^2^2+^3^3 

^y\ ^yi ^y^ 
y / . / = T - + T - + T - (2.1.6) 

dx^ dX2 dx^ 
When a single equation is written with indicial notation, generally a set of 
equations is implied, as the indices assume all of their permutations. For example, 
the generalized, linear, isotropic, elastic Hooke's law relating stress (a;̂ ) and strain 
(e^j) terms is given by nine equations: 

or,j = A(en + £22 + 3̂3) + 2/i£i, 

(7i2 = 2/l,E|2 

C7i3 = 2^X6,3 

^21 =2 / xe2 i 

C7-22 = A ( f ,1 + £22 + ^33) + 2 M £ 2 2 ( 2 . 1 . 7 ) 

0-23 = 2fl823 

(7-3, = 2/ ie3, 

^32 ~ 2/Xe32 

^33 = '^(^11 +^22 + ^33) +2 /1^33 , 

which can be written as 

(r^j=-He,,)8,j-^2fie,j, (2.1.8) 

where it is assumed that all terms /, ; = 1,2,3 are explicitly considered. 
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Tensors are quantities that obey certain 
relations upon transformation of coordi­
nate systems, as will be discussed later. 
Note that'the strain components depend 
linearly on derivatives of the displacement 
components, a result of permitting only 
very small strains and small spatial deriva­
tives in the displacement field. The strains 
do not depend on the absolute value of 
the displacements and are unitless. The 
normal strain terms involve volumetric 
changes, being compressional when nega­
tive and extensional when positive. The 
trace of the strain tensor is called the 
cubic dilatation, 6, 

du^ du-j du-i 
0 = £:: = — i + - ^ + —^ = V • U. 

dx^ dx2 dx^ 

(2.19) 

This corresponds to a fractional change 
in volume from VQ = dx^dx2dx^ to F^ = 
[(1 + Cji) dx^d + ^22) dx2(l + £33) dx^], 
given by 

Vn Vn 
~ Cji + 822 + ^33 ~ ^• 

(2.20) 

For reference we note that rigid-body ro­
tations of the medium are expressed as 

1 1 -VXu=-
2 2 

+ 

+ 

dXi dUj 

dXj dXi 

dU2 dUi 

dx. dXo 
, (2.21) 

which includes combinations of displace­
ment gradients not in the strain tensor. 

2.2 Stress 

When a continuum is acted upon by a 
force, either internal or external, that force 
influences every point in the body. This 
requires a distribution of forces through­
out the body. Two types of forces occur 
within a continuum, body forces and con­
tact forces. Body forces are proportional to 
the volume of the material. The most com­
mon body force results from the accelera-

. tion due to gravity, F = mg, where the 
mass m depends on the volume and den­
sity of material. Contact forces are forces 
that depend on surface area. For example, 
the wind resistance a bicyclist experiences 
is a contact force because it depends on 
the cross-sectional area of the rider. Body 
forces have dimensions of force per unit 
volume; contact forces have units of force 
per unit area. 

For a continuum that is acted on by 
external forces, internal contact forces 
must act within the medium. We visualize 
the medium as having an internally dis­
tributed force system, as illustrated in Fig­
ure 2.4. Imagine a plane that passes 
through the medium, intersecting an inter­
nal point P. If we remove one side of the 
medium, it is clear that maintaining the 
other side in equilibrium requires a distri­
bution of forces on the plane that corre­
spond to actual internal forces within the 
body. The precise force geometry depends 
on the direction of the fictitious plane, but 
some geometric consistency must exist 
among the various representations of all 
possible internal force distributions. 

We subdivide the area of our fictitious 
plane through the medium into area ele­
ments with surface area A A and vector 
normal n. A small force AF acts on each 
element, one of which contains the point 
P. We define the stress vector or traction 
vector, T(n), to be 

AF 
T(i i )= lim ~- = T,x,-^T2X2 + T,x„ 

(2.22) 
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FIGURE 2.4 (Left) A continuum acted upon by external forces. (Right) Imaginary plane with 
normal, n, passing through an internal point P. A portion of the medium has been removed 
and replaced by a distribution of forces acting on the surface, keeping the remainder of the 
continuum in equilibrium. This leads to definition of internal forces and stresses on arbitrary 
surfaces in the medium. 

which acts on the surface element at P 
with normal n. The limit is defined for the 
continuum model, which visualizes a con­
tinuous distribution of internal forces. 
Stress has physical dimensions of force per 
unit area and corresponds to action of part 
of the medium upon the other. Since our 
imaginary plane is arbitrary, we can choose 
it so that it is parallel to the X2X2 plane 
for any choice of jCj. We define the stress 
components acting on this plane (jCi = 
constant), which is called the x^ face (it 
has a normal in the x^ direction), by 

rii= lim "---
AAi-

, = lim 
AF. 

AAi^O AAi 

AAi->0 AAi 

(2.23) 

where 

AF = AFiXi + AF2X2 + AF3X3. (2.24) 

The first index of ôy in (2.23) corresponds 
to the direction of the normal to the plane 

being acted on by the force, and the sec­
ond index indicates the direction of the 
force. Thus cr̂ ^ is a stress acting normal to 
the plane, and 0-^2 ^^^ 1̂3 ^^^ stresses 
acting in the plane. 

By passing two other planes through 
point P parallel to the x^X2 and x^x^ 
planes, we define six additional stress com­
ponents 

(T22, cTii, 0^23 acting on the X2 face 

0-33,0-31,0-32 acting on the x^ face. 

All of these are implicitly functions of 
space and time. Do we need all nine terms? 
The answer is yes, because we want to be 
able to represent the complete internal 
force distribution at point P in sufl̂ cient 
generality for any possible surface that in­
tersects P. We demonstrate this by balanc­
ing forces on a tetrahedron with three 
faces parallel to the coordinate planes and 
a fourth face with an arbitrary orientation 
with normal n (Figure 2.5). For the body 
to be in equilibrium, the sum of the forces 
on it, and the sum of the moments, must 
be zero. Note that we adopt a positive sign 
convention for stress components that are 
positively directed forces acting on positive 
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^ X i 

FIGURE 2.5 Balance of forces on a tetrahedron with three faces parallel to coordinate 
planes and an arbitrarily oriented fourth face with normal n. The direction of n is specified by 
direction cosines of the angles shown on the right. 

faces (faces with normals in the +jc, direc­
tions) and for negatively directed forces on 
negative faces. 

In terms of the direction cosines defined 
in Figure 2.5, Ay4̂  = A^cos^,, and n = 
^jXi + ^̂ 2̂ 2 "̂ ^3^3 = COS 6^ Xj + COS 62 ^2 
-h COS ^3X3. Balancing forces (stress X 
area) in the jCj direction gives 

X; F,̂  = 0 = Ti Av4 - (T^y A A cos 0^ 

— 0-91 A ^ cos 67 — cr̂ i A ^ COS d^ 

This result leads us to define the stress 

31 ' 

(2.25) 

Ti = (Tiirii + 0-21/12 + ^3i'^3- ( 2 . 2 6 a ) 

Similarly, letting E F̂ ^ "̂  E F^^^ = 0 gives 

T2 = 0-22^2 + 0-12^1 + 0-32/13 ( 2 . 2 6 b ) 

^3 "̂  ^33'^3 "̂  ^n'^i "̂  ^23'^2- ( 2 . 2 6 c ) 

or generally 

T, = (Tj,nj. (2.27) 

Thus, we can linearly combine our nine 
components of stress defined in the coor­
dinate planes to represent the stress on 
any arbitrarily oriented surface through the 
medium, and in general the state of stress 
of P depends on all nine terms. 

tensor o-, ij 

^11 
0-21 

'12 

'22 

o-31 a 32 

'13 

'23 

'33 

(2.28) 

The diagonal terms are called normal 
stresses, and the off-diagonal terms are 
called shear stresses. Normal stresses with 
positive values (directed outward from 
positive or negative faces as defined above) 
are called tensional stresses, and negative 
values correspond to compressional 
stresses. The common geophysical units 
for stress are bars (10^ dyn/cm^), where 
atmospheric pressure at sea level is ap­
proximately 1 bar. At a depth of 3-4 km in 
the crust the confining stress is on the 
order of 1 kbar. In SI units, stress is given 
in pascals (Pa), where 10^ Pa = 1 MPa = 10 
bars. The state of stress at depth in the 
Earth is nearly always compressional, and 
therefore all three normal stresses in (2.28) 
are negative. The maximum compressive 
stress is the stress with the largest absolute 
value, and the minimum compressive stress 
is the stress with the smallest absolute 
value. 

Consider a cubic element in the contin­
uum bounded by faces paralleling the co-
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FIGURE 2.6 A cubic element in the continuum 
bounded by faces paralleling the coordinate 
planes. Balancing the stresses on each face 
acting in a given direction leads to the equation 
of equilibrium. Only the stresses acting on the 
±Xi face are shown. Similar stress terms act 
on the other four faces. 

ordinate planes (Figure 2.6). Let us as­
sume that the cube is in static equilibrium. 
Then summing all of the forces that act in 
the jCj direction gives 

= 0 / , ; = 1,2,3. (2.30) 

These are the equilibrium equations. These 
equations require a balance of spatial gra­
dients of the stresses in a medium for that 
medium to be in stable equilibrium. 

A second condition of equilibrium is 
that the moments sum to zero. Consider 
cri2 on either side of the elemental cube. 
The stresses are oppositely directed (no 
net force), thus introducing a rotational 
moment. Moments are given by the prod­
uct of a force times the perpendicular dis­
tance from the force to a reference point. 
If we sum the moments about lines passing 
through the center of the cube in Figure 
2.6 paralleling the coordinate axes, we ob­
tain equations such as 

EM, 
d(T 

0-12 + 
12 

dx, 
Ax^ 

EF.= o-„ + — Ajr, - (r,i I Ax2 Ax^ +o-,2 Axj Ax^ 
Ax, 

da-
+ I t721 + 

21 
dx-j 

AX2 — 0-21 AATJ AJC3 da-
^21 + 

21 
dXf 

AJC^ 

do" 31 + kai + - ^ A 3̂ - 0-3,1 Ajf 1 Ax2 + a 21 
^Xn 

AJCO AjCt = 0 

or 

do'yi ^0'2\ ^^31 

dXi 8X2 dx^ ' 

Similarly, letting EF^ =T.F^ =0 gives 

or 

(9crj2 ^^2\ 

^̂  dx^ ^ ^^ 3x2 

(2.31) 

dor^2 ^^22 ^^32 

dx^ 8X2 dx^ 

^0-13 d(T22 ^^33 
+ 1 7 - + ^ = 0 (2-29C) dXi 8X2 dx^ 

= 0 (2.29b) As A-Tj, A;c2->0, we have 0-12 = 0-21. Si­
milarly, letting L M^^ = E M̂ ^ = 0 gives 
1̂3 ^ 3̂1 n̂d (723 "̂  3̂2» ̂ ^ generally 

(2.32) 
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This States that the stress tensor is sym­
metric, which reduces the number of inde­
pendent components to six. 

We have seen that both stress and strain 
are second-order tensors. A scalar is a 
zeroth-order tensor (magnitude, no direc­
tional property), and a vector is a first-
order tensor (magnitude and directional­
ity). Second-order tensors define interac­
tions between vectors and directional op­
erators, such as the orientation of the ref­
erence plane for definition of stress com­
ponents. We can show that at each point 

in a body, three mutually perpendicular 
planes occur on which no shear-stress 
components act. This is called the princi­
pal coordinate system and is found by di-
agonalizing the stress tensor, as described 
in Box 2.2. The normals to the three planes 
are called principal stress axes. Similarly, 
three mutually perpendicular axes remain 
perpendicular for infinitesimal strains and 
are called the principal axes of strain. The 
trace of the stress tensor is invariant to 
choice of coordinate system and is related 
to the total stress state. The hydrostatic 

Box 2.2 Tensor Invariants 

Stress and strain are symmetric tensors (i.e., cr.j == o)̂ ) and thus can be diagonal-
ized, or rotated into a principal coordinate system. Consider the stress tensor: 

(Tii 

'31 

'12 

'22 

'32 

a 23 

a 33 

(2.28) 

This matrk can be diagonalized by subtracting A from the elements of the trace, 
setting the determinant of the resulting matrix equal to 0, and solving for A: 

( 7 , 1 - A 

a-2, 

^31 

(7,2 

0 - 2 2 - A 

^ 3 2 

^13 ! 

^ 2 3 

0-33 - A 

which gives 

= 0, 

Â  - tr{aij)\^ + minor(fr,y)A - det(a-,y) = 0, 

(2.2.1) 

(2.2.2) 

where tr(c7,y) = ô n + 0-22 + 0-33, the trace of the original tensor matrix, minor(a-̂ y) is 
the sum of the minors of the matrix (o-,ia-22 + ^22^33 + 1̂1̂ 33 "" 2̂̂ 1 ~ 3̂̂ 2"" 3̂̂ i)» 
and det(cr-p is the determinant of the matrix i(T\i(T22^33'^ ^^2x^32^31 ~^\\^32~ 
2̂2̂ 3̂ 1 ~ ^33^21)- The parameter A is called the eigenvalue and represents the 

values of 0-^ in a principal coordinate system. The symmetry of the matrix cr^^ 
ensures that the roots of (2.2.2) are real. Because the eigenvalues of a matrix are 
unchanged by a coordinate transformation, the coefficients of the cubic equation 
(2.2.2) are invariant. This means that the trace, minor, and determinant of the 
tensor are also independent of the coordinate system and, in general, have some 
special physical significance. 

continues 
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Each eigenvalue has a corresponding eigenvector. The eigenvectors give the 1 
1 principal coordinate axis "directions." We can find the eigenvectors by solving the 1 

equation: 1 

or,,-A a-,2 o-,3 1 
^21 ^ 2 2 - ' ^ ^23 
0-3, 0-32 C r 3 3 - A j 

pi' 
U2 
[̂ 3 

= 0, (2.2.3) 

1 where A is one of the three roots. 1 

stress is defined as the average of the 
normal stresses: 

^11 +^22 + ^̂  '33 (2.33) 

The deviatoric stress is that part of the 
stress tensor minus the hydrostatic term 

A7 = «-,7 PS.^ (2.34) 

A final property of the stress and strain 
tensors is that they obey specific rules when 
a coordinate system is rotated, clearly a 
desirable property for our generally de­
fined terms. If we let /,y = coŝ y be defined 
as the direction cosines between the new 
jc- axes and the old Xj axes, then stress 
components obey a general transformation 
law given by 

'^u = hph<i'^P<i' (2.35) 

And the strain transformation law is 

e' = / / e (2.36) 

Physical fields that transform in this spe­
cific manner upon rotation of coordinate 
axes are second-order tensors. 

2.3 Equation of Motion 

We now consider a force balance on a 
cubic element in a continuum that is un­
dergoing internal motions. Referring to 
Figure 2.6, the equilibrium equations (2.29) 
must now include inertial terms as well as 
any contributions from body forces. We 
allow the cube in Figure 2.6 to be acted on 
by a body force per unit volume f = /iXi + 
/2^2 "*"/3^3- The density of the material is 
given by p. Applying Newton's law to the 
medium gives 

= // + 
dOjj^ 

dX; 
(2.37) 

This set of three equations is called the 
equation of motion for a continuum. The 
inertial terms on the left relate the den­
sity-weighted accelerations to body forces 
and stress gradients in the medium. This is 
the most fundamental equation underlying 
the theory of seismology, as it relates forces 
in the medium to measurable displace­
ments. We will see in Chapter 8 that many 
seismic sources can be represented by body 
forces that are introduced into (2.37) to 
fully describe resulting motions. Later in 
this text we will often denote derivatives 
with respect to time by overdots, du/dt = w, 
d^u/dt^ = U, so the equation of motion is 
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often found in the form 

pa.=fi + a,jj (2.38) 

or in the case in which sources or body 
forces such as gravity are not being consid­
ered, the homogeneous equation of motion: 

PUi = CTi U,J' 
(2.39) 

In order to proceed, we need relation­
ships between stress and displacement. 
There are provided by constitutive laws 
that relate stress to strain and hence stress 
to displacement gradients. In any given 
material, a complex relationship exists be­
tween stress and deformation, depending 
on parameters such as pressure, tempera­
ture, stress rate, strain history, and stress 
magnitude. Nearly all Earth materials flow 
ductilely if small, steady stresses are ap­
plied for millions of years, or they fracture 
or fail plastically if high stresses are ap­
plied. However, for the small-magnitude, 
short-duration stresses of interest in seis­
mology, almost all Earth materials display 
a linear proportionality between stress and 
strain. This has been demonstrated empir­
ically by applying controlled forces to rock 
samples and observing resulting stress-
strain behavior, as shown in Figure 2.7. 
Note that there is a substantial, nearly 
linear interval prior to failure of the rock 
and that for the small strains (lO'^-lO""^) 
being considered here, this rock sample 
could well be represented by a linear elas­
tic relationship (elastic meaning that re­
ducing the small stress restores the 
medium to its original state). 

The most general form of a constitutive 
law for linear elasticity is Hooke's law 

^ij ~ ^ijkl^kl' (2.40) 

The constants of proportionality, Qŷ /̂? ^̂ ^ 
known as elastic moduli and define the 
material properties of the medium. In its 
general form, C^j/^i is a third-order tensor 
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FIGURE 2.7 St ress-s t ra in curve for a typical 
uniaxial compression test . Stage I involves 
closure of cracks; stage II is a linear elastic 
regime; stages III and IV involve dilatancy of the 
rock due to lateral expansion of the rock and 
microcracking; stage V involves loss of 
load-bearing capacity, strain localization, and 
development of a macroscopic shear failure; and 
stage VI has stress determined by residual 
friction on the shear zone. (Modified from 
Scholz. 1990.) 

with 81 terms relating the nine elements of 
the strain tensor to the nine elements of 
the stress tensor by a linear sum. Note the 
double repeated indices in (2.40), for which 
we write out just the first term 

^ U ^ ^1111^11 ^" ^1112^12 "'" ^1113^13 

"^ ^1121^21 + ^1122^22 

-I- Cn23^23 "^ ^1131^31 

"'" ^1132^32 "̂  ^1133^33* ( ^ ' ^ V 

There are nine such equations, but the 
symmetry of the stress and strain tensors 
(e^j = Eji', a^j = aji) reduces the number of 
independent equations to six and the 
number of independent coefficients to 36 
(a^j = cTji -^ C 

^ijkl 
ijkl ~ Cjikh ■■'kl "Ik 

C^jif^). A further symmetry relation 
^^ijki "^ ^kiij^ follows from consideration 
of a strain energy density function (see 
Malvern, 1969), leaving 21 elastic moduli 
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in the most general elastic material, which 
has general anisotropy, meaning the 
stress-strain behavior depends on the ori­
entation of the sample. 

Fortunately, the elastic properties for 
many materials and material composites in 
the Earth are independent of direction or 
orientation of the sample. It is possible to 
show (see Malvern, 1969) that an isotropic 
elastic substance has only two independent 
elastic moduli, called the Lame constants, 
A and fi. These are related to Qy^/ by 

Cuki = ^^ijAi + f^{Sik^ji + Sii^jk), (2.42) 

where the Kronecker delta function is 
used. For example, Ciiii = A + 2/x, C1122 
= A, CI212 = MJ ^tc. Inserting this into 
(2.40) gives 

(2,43) 

which reduces (e.g., S^,e^, = ei^^) to 

(2.44) 

This form of Hooke's law for an isotropic 
linear elastic material was actually formu­
lated by Navier in 1821 and Cauchy in 
1823, 160 years after Hooke's work. The 
significance of the shear modulus, or rigid­
ity, jjL, is readily apparent as a measure of 
resistance to shear stress {0-^2 ^ ^l^^ii'^ 
(7,3 = 2fjiei2, etc.). For a fluid, 11 = 0, and 
for increasing values of /JL, the body de­
forms less under stress. The second Lame 
parameter. A, is most significant in combi­
nation with other terms. Table 2.1 defines 
five elastic moduli that have simple physi­
cal attributes in terms of A and /x. These 
include E (Young's modulus), k (bulk 
modulus or incompressibility), and u 
(Poisson's ratio). For most seismological 
applications, A or A: and fi are used, with 
k and JJL being tabulated functions for 
Earth parameters (see Chapter 7). For 

many Earth materials, /x«A, and when 
they are exactly equal the material is called 
a Poisson solid, for which v = 0.25 and 
k = 5/3/i. Table 2.2 gives algebraic rela­
tionships between the various moduli, and 
Table 2.3 indicates near-surface values of 
elastic moduli for common Earth materi­
als. Hooke's law can be written in terms of 
strain components as well: 

-A5, 1 
2/i(3A + 2/i) ""kk^Y^^ij- (2.45) 

Introduction of Hooke's law into the 
equation of motion allows us to derive 
basic equations for displacement fields in 
an isotropic linear elastic material. These 
are extremely useful equations, but before 
we proceed, it is important to note that 
many Earth materials are in fact not 
isotropic, and even average upper-mantle 
properties require anisotropic representa­
tions. This occurs mainly because olivine, a 
major mineral in the upper mantle, is in­
trinsically very anisotropic, with elastic 
moduli varying by 10%, depending on ori­
entation of the crystal. Some sedimentary 
rocks have fabrics that give rise to 25% 
anisotropy of elastic moduli. Although 
anisotropy can be fully analyzed, we pro­
ceed to develop our theory of seismic waves 
in the context of isotropic materials be­
cause it is simpler algebraically. We will 
return to a discussion of anisotropy later 
in the text, recognizing that it does give 
rise to observable phenomena that cannot 
be explained by isotropic structure. 

We now combine the homogeneous 
equation of motion (2.39), Hooke's law 
(2.44), and the strain-displacement rela­
tionship (2.17) to develop an equation of 
motion for an isotropic linear elastic 
medium with no body forces. First, con­
sider only the / = 1 term of (2.39): 

d^U^ doTy 

dt' 

day 
+ 

12 da 13 

dx^ 8X2 dx^ 
(2.46) 
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TABLE 2.1 Elastic Moduli 

II Shear modulus, or rigidity. This is a measure of a material's resistance to shear. 

Note that fi is nonnegative and has units of stress. Typical values are 2 X 10̂ ^ dyn/cm^ or 200 kbar. 

k Bulk modulus or incompressibility. k is the material resistance to a change in volume when subject to a 
load, and it is defined by the ratio of an applied hydrostatic pressure to the induced fractional change 
in volume: 

AK -P -P 2 

k must be nonnegative, and as a material becomes more rigid, k increases. 

A Lame's second constant. A has no simple physical meaning, but it greatly simplifies Hooke's law. 

E Young's modulus. E is a measure of the ratio of uniaxial stress to strain in the same direction. 

'^n-E(^) = £e 11; by Hooke's Law, E = 
/x(3A +2/x) 

Poisson's ratio, v is the ratio of radial to axial strain when a uniaxial stress is applied (an T̂  0, 
0-22 = ^33 = 0)-

A d-* "^22 
^22 " ' ^ S S ' 2(A+/x) 

Poisson's ratio is dimensionless and has a maximum value of 0.5. This is true for a fluid, when /x = 0 (no 
shear resistance). The smallest value is 0—infinite shear resistance. Most Earth materials have a 
Poisson ratio between 0.22 and 0.35. 

TABLE 2.2 Relationships between Elastic Moduli 

3(A:-A) 
A + ■ 

2/x 

T 
2(1 + 1.) 

4 ^ ) ^̂ [3(1-2.) 

IfJL 

k 
3 

(1 -20 

EP 2(1+,.) 3 ( 1 - 2 i . ) ( l + i . ) ( l - 2 i / ) 

9kyL 
3A: + At 

2/A(1 + v) 

/ 3A + 2/x \ 

A 

2(A-f 

A 

(3fc-

3 ^ -
H}k-

3k-

M) 

-A) 

2/1 

f / x ) 

E 
6k 
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TABLE 2.3 Elastic Moduli for Some Comnnon y^Q have 
Materials 

q2 Material A:(GPa) /i(GPa) A(GPa) 

Water 2.1 
Sandstone 17 
Olivine 129 
Perovskite 266 

0 
6 

82 
153 

2.1 
13 
74 

164 

p 

0.50 
0.34 
0.24 
0.26 

pig/cm^) 

1.0 
1.9 
3.2 
4.1 

d^u, de 
( A + A t ) + M V 2 M I (2 .49a) 

dt^ ' '̂ ^ dxi 

and similarly from the Uj and W3 equa­
tions 

The constitutive law and strain-displace- d'^u-y 36 
ment relations give P -r^f = ( A + ) L t ) - — +/xV^W2 (2.49b) 

01 ox 'J 

^11 = A0 -f IjiSii 
d^u^ 30 

(X+,jL) — -hfjLV'u,. (2 .49c) 

dU] 3Un du-i \ du^ 

dX^ 3X2 ^^3 I ^^l 

3t^ ' "̂ ^ ajC3 

W e can write these three equations in the 
equivalent vector form 

3u^ ^^2 \ 
a,2 = 2Me,2 = M| — + — (2.47) pa = ( A + M ) V ( V - u ) + M V V (2.50) 

3u. 3ui which is the three-dimensional homoge-
0-13 = 2/1^13 = )Lt( — + — I. neous vector equation of motion for a uni-

\3x2, 3xi I form, isotropic, linear elastic medium. A 
common alternate form of this equation 

^ , . . ,̂ ,. J . employs the vector identity (see Box 2.3) 
Combining these equations and assuming 
A and /JL are constant throughout the 
medium (3A/3Xi = 3/jL/3Xi = 0) gives V^u = V( V • u) - ( V X V X u ) , (2.51) 

^2^ ^0 allowing (2.50) to be written as 
p — r - = A 
^ dt^ 3Xy^ 

3 13u. 3uy 3u^ 

ajCi \3x^ 3x2 ^^3 

pu = (A 4- 2/x)V( V • u) - (fiV X V X u ) . 

(2.52) 

Equations (2.50) and (2.52) are compli­
cated, three-dimensional, partial differen-

Id^u^ 3^u^ 3^u^ \ tial equations for displacements in a con-
"•" ^ I "^^ "̂  ~^^ "̂  'J^ ' tinuum, which we assume were initiated by 

^ ^ ' an unspecified source. Although we can 
(2.48) sometimes obtain solutions by numerical 

evaluation of these equations, we can pro­
ceed to gain insight into the solutions by 

Recognizing that the first term in brackets using some standard mathematical proce-
is e and the second is the Laplacian, V^w^ dures. 
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Box 2.3 Useful Vector Relationships 

Because ground displacement has a direction and magnitude, its description is 
given by a vector, u(x, t) = MJCX, t)x^+ Ujhi, 0*2 "♦" "sC^, Ox3, with the vector equa­
tions of motion (2.50) and (2.52) giving physically realizable displacements in a 
linear, elastic continuum. It is thus helpful to review a few basic vector operations 
that occur frequently in analysis of the vector equations of motion. 

(a) The scalar product {dot product or inner product) of two vectors 

a = « iX, +^22X2^" ^3^3 

is given by 

a • b = ^i^i + ^2^2 "̂  ^3^3 "̂  ̂ i^i ^ l̂ i lb|cos 6, 

where 0 is the angle between the two vectors. The dot product gives the length of 
each vector projected on the direction of the other vector, a • b = 0 for perpendicu­
lar vectors {0 = rr/l)', a • b = b • a. 

(b) The vector product (cross product or curl) of a and b is 

a X b = ( « 2 ^ 3 ~^3'^2)^i "̂ {^^t>\ " ^ 1 ^ 3 ) ^ 2 ~^ {^\t>2 ~ ^2^1)^3 

fli a^ 

b. 

In indicial notation we can introduce the permutation symbol 

0 any two indices equal 
1 ij,k in order 

- 1 ij,k not in order 

( a X b ) , = e,,;^a,6;^.. 

The cross product defines a new vector that is perpendicular to the two vectors. 
Properties of the dot and cross product include the following: 

a X b = - b X a 

a - ( a X b ) = b - ( a X b ) = 0 

a X ( b + c ) = a X b + a X c 

a • (b X c) = b • (c X a) = c • (a X b) . 

(c) The gradient of a scalar field uses the "del" operator 
d d d 

V = 
r?X, 

-X, + 
dx^ 

- x . - f 
dXT, 

continues 
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applied to a scalar field </)(x) 

dcf) d(f> d(f) 
V(f) = X, + X2 "• ^3 

dXx dXj dx, ' 

d<b 

The gradient vector points in the direction of steepest slope, or rate of change, of 
the field </>. 

(d) The divergence of a vector field * is 

dibx dd/^ dib^ 

dXi dXf dx^ 

This is a scalar field that measures the flux of the vector field through a unit 
volume. The integral over a volume V with surface area S is 

where n is the outward-facing unit normal everywhere on 5. This is Gauss' 
theorem. This states that the accumulation of the field ^ in the volume is equal to 
the flux through the surface, 

(e) The Laplacian of a scalar field is the divergence of the gradient: 
d'^(f) d^ d^ 

V^(t) = V'V(f) = —J -f- —2: + —J =<l>Ji. dx dxi dx] 

which is a scalar. The Laplacian of a vector field is a vector with components that 
are Laplacians of the original components (if Cartesian coordinates are used). Or, 
for any coordinate system, 

V 2 ^ = V ( V * ) - V X V X ^ . 

(f) Helmholtz's theorem states that any vector field u can be represented in 
terms of a vector potential ^ and a scalar potential (f) by 

if 
u = V(/) + V X * 

VX(^ = 0 {(f) is curl free) 

V - ^ = 0 ( ^ is divergence free), 

(g) Some useful vector identities are 

V - ( V X ^ ) = 0 

VX{V(f>) = 0 . 
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2.4 Wave Equations: P and S 
Waves 

We can use Helmholtz's theorem (Box 
2.3) to represent the displacement field as 

u = V(/) + V x * , (2.53) 

where (̂  is a curl-free scalar potential field 
(V X <|> = 0) and * is a divergenceless vec­
tor potential field (V • * = 0). Physically, a 
curl-free field involves no shearing mo­
tion, and a divergence-free field involves 
no change in volume. Substituting (2.53) 
into (2.52) and using the vector identity 
(V X V X * = - V^* since V • * = 0), we 
find 

V[(A4-2M)VV-P(/>*1 

+ V x [ / i V 2 . * - p * ] =0 . (2.54) 

We can clearly satisfy this equation if each 
term in brackets goes to zero indepen­
dently. We let 

(2.55) 

« = 1 

^=1 

/A -f-2/i 

F. 
and (2.54) will be solved if 

a 
(2.56) 

where (2.56) gives a scalar wave equation 
for (f) and a vector wave equation for ^ . a 
is the velocity of wave solutions, <̂ , and is 
called the P-wave velocity, and j8 is the 
S-wave velocity corresponding to solutions 
^ . We will find that solving the equation 
of motion (2.52) in seismology generally 
involves solving wave equations such as 

(2.56), satisfied by wave potentials from 
which we can determine the displacement 
field using (2.53). In every case the dis­
placement field comprises two fundamen­
tal wave types, P and 5 waves, that propa­
gate with distinct velocities determined by 
the material properties of the medium. P 
waves involve compressional motions and 
volumetric changes as the wave distur-' 
bance passes by, whereas 5 waves involve 
shearing motions without volume change. 
From (2.55) it is clear that a>p (for 
A = ^, a - }f3py, thus P waves arrive be­
fore 5 waves. The existence of solutions of 
the P and S wave type for motions in a 
solid was first recognized by Poisson in 
1829. An important additional result that 
will not be demonstrated here is that P 
and S waves are in fact the only transient 
solutions for the homogeneous elastic 
whole space; thus together they provide a 
complete solution to the displacement 
equation of motion. We will now build up 
our insight into these wave solutions by 
considering one-dimensional and then 
three-dimensional cases. 

2.4.1 One-Dimensional Wave 
Solutions 

We can demonstrate the essence of wave 
behavior in a simple one-dimensional case. 
Let us consider longitudinal oscillations of 
a long, thin, elastic rod extending in the 
±jCi direction (Figure 2.8). Longitudinal 
oscillations involve displacements only in 
the jcj direction (wi=/=0; W2~"3~0). As 

.dA 

->x, 

FIGURE 2.8 A very thin elastic rod extending 
infinitely along the x^ axis. A stress imbalance 
produced by an unspecified source is assumed 
to exist in the rod at an instant of time. 
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in our general derivation, the equation of 
motion is derived by a balance between 
inertial terms and stress gradients, where 
we assume that an unspecified source has 
created a stress imbalance in the rod. 

EF^ =mMi = p Ay4 AJCJ Wj 

da,, \ 
-—^x,\^A-a,,^A, 

(2.57) 

where p is the density of the rod. This 
gives 

= 1^11 + 

P"i = (2.58) 

As our constitutive law we use <T]J = £ e , i , 
where E is Young's modulus (Table 2.1), 
which gives 

E-r-^ =p 
dx dt' 

(2.59) 

Defining c = (E/pY^, we have a one-
dimensional wave equation 

Jxf 
1 d^u, 

c^ dt^ 
(2.60) 

This derivation is, of course, approximate 
because in reality lateral strains occur in 
any finite rod, giving nonuniform stress 
across the cross section, but this is not 
important for wavelengths much greater 
than the lateral dimension of the bar. As a 
result of this approximation, the displace­
ments themselves satisfy the wave equa­
tion, unlike the case of our general elastic 
solutions. 

The general solution of (2.60) is 

« i ( ^ i > 0 = / ( ^ i - c O + g ( ^ i + c O , 

(2.61) 

functions / and g are arbitrary functions 
that will satisfy the initial conditions asso­
ciated with a particular source that excites 
the initial stress imbalance, giving rise to 
the propagating disturbances. These dis­
turbances propagate along the -hx, ( / ) 
and ~x, (g) directions with velocity c = 
(E/pY^. This is made clear by considering 
Figure 2.9, which considers function f(x 
-ct) at time t^ and at some later time t' 
as a function of x^, as well as a function of 
t for fixed X^^XQ. The arguments of / 
and g maintain constant functional shapes 
for constant values of (xi±ct), with the 
shape translating through space with ve­
locity c. The arguments (jCi ± cO are called 
the phase of the wave solution. For a given 
value of phase, the translating functional 
shape is called a wauefront. The velocity of 
the wavefront is controlled by the material 
properties, in this case E and p. A stiff 
rod, with a high Young's modulus, pro­
duces faster-traveling waves. Increasing 
density alone would tend to reduce the 
velocity, but in general E increases with 
increasing p, causing a compensating ef­
fect that usually gives a net increase in 
velocity. A seismogram would correspond 
to a recording of u,(xQ,t) at a fixed posi­
tion XI=XQ. This will have the form 
u,(xQ,t)=flxQ-ct)-\-gixQ-\-ctX a func­
tion of time at JCQ (a seismogram) that 
records the passage of the two wave groups 
past position XQ. 

A general procedure that we can follow 
to solve partial differential equations such 
as (2.60) is to assume the solution has a 
form that separates the spatial and tempo­
ral dependence. This is called the method 
of separation of variables. We assume 

u,{x„t)^X{x,)T{t) (2.62) 

and insert this trial solution into (2.60), 
giving 

1 d^X{x,) 1 d^T{t) 
X{x,) dxl Tit) dt' 

0. 

which is called D'Alembert's solution. The (2.63) 
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t' 

f 
1 / T ^ 

/ 1 
" ^ ^ Xo X' 

^ f ( X i - C t ' ) 

-=■ ^ X1 
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( .^AXi^dXj^ 
At dt 

velocity 

FIGURE 2.9 The one-dimensional propagating disturbance ^(x -ci) plotted above as a func­
tion of position for two times Cfg and f ) and below as a function of time at position x^ =XQ. 

Because the term on the left is a function 
only of JCj and must equal the term on the 
right, which is a function only of t, each 
term must equal a constant, which we set 
to - w l 

We now have two coupled ordinary dif­
ferential equations 

d'Tjt) 
+ 0)^7(0 = 0. 

These equations can be solved by standard 
methods such as Fourier transforms, or in 
this simple case by recognizing that they 
have the form satisfied by simple harmonic 
functions. If we let 

T{t) =B^e'''' + B^e-^''\ (2.65) 

we will clearly satisfy Eq. (2.64). The solu­
tion for u^{x^,t) given by (2.62) becomes 

(2.66) 

This general solution has four arbitrary 
constants that will be determined by initial 
and boundary conditions. This solution in­
volves general harmonic terms that have 
the form of D'Alembert's solution (2.61). 

Harmonic wave solutions such as (2.66) 
are of fundamental importance in seismol­
ogy. These solutions have the form 

(2.64) M(jc,0=v4e'"('±^/^>=^cos[a)(^±jc/c)] 

-f L4sin[a)(r ±x/c)\, 

(2.67) 

comprising monochromatic harmonic sine 
and cosine terms. For a specified value of 
o), the angular frequency, these harmonic 
terms have a period, r=27r/w, which is 
the time between passage of successive 
peaks of the harmonic wave at a given 
point (Figure 2.10). If the wave is consid­
ered as a function of x alone, the wave­
length, A, is the distance between peaks 
on the harmonic function, with A = cT. 
The term k = (w/c) = (27r/A) is the 
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x = x 

> t 

> X 

FIGURE 2.10 Definition of period, T, and wavelength, A. for a harmonic term cosluit ±x/c)]. 

wauenumber of the harmonic wave. Table 
2.4 summarizes the various variables used 
to describe a harmonic component. In 
general, seismic waves have frequencies 
between about 0.0003 and 100 Hz. For a 
typical seismic-wave velocity of 5 km/s, 
this involves signal wavelengths between 
15,000 and 0.05 km. These waves intrinsi­
cally sample very different characteristics 
of the Earth. 

The complex number representation of 
harmonic waves (2.67) does not imply the 
existence of "imaginary" waves. Ground 
displacements are real functions, and 
whenever actual initial and boundary con­
ditions are applied to general solutions 
such as (2.66), the complex terms appear 
in parts of complex conjugates that elimi­
nate the imaginary components (Box 2.4). 

We conclude our discussion of one-
dimensional wave solutions by considering 
a case in which the thin rod in Figure 2.8 

TABLE 2.4 Relationships between Wave 
Variables 

Period 
Frequency 
Wavelength 
Wavenumber 
Velocity 

T 
f 
A 
k 
c 

T=l/f==27r/(o 
f = (O/ZTT == c/A 
A = cT=2'Tr/k 
k = ITT/K — (o/c 
c = (t)/k = /A 

does not have uniform material properties 
but the spatial variations in the moduli are 
gradual. In this case our force balance 
becomes 

d I (9MJ 

dXi \ dXi 

dx dXi dXi 

(2.68) 

If dE(xi)/dxi, the spatial gradient of 
Young's modulus, is sufficiently small, the 
rightmost term can be ignored (the precise 
criteria for this approximation are dis­
cussed in the next chapter). We are left 
with 

-c\x,) ~dx[ (2.69) 

which is similar to (2.60), except that 

c(x,) = [£;(x,)/p(jc,)]^ 

varies with position. Applying the separa-
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Box 2.4 Complex Numbers 

Solutions of differential equations such as (2.64) often involve complex numbers 
of the form c = « -h ib, where / = \ / - 1 . In this case, a is the real part and b is the 
imaginary part of the complex number c. In the imaginary plane shown in Figure 
2.B4.1, a complex number, c, 

imaginary 

b| 
r 

^ I real 

FIGURE 2.B4.1 The complex plane, 

is a point, and it can be represented in a polar coordinate form as 

c = a -\- ib = re'^ = r cos 0 + ir sin 0, (2.4.1) 

where the magnitude of |c| = r = (a^-h ^^)*/^, and the phase is angle 6 = 
tan~ ' (b/^) . 

Addition of two complex numbers involves summation of the real and imaginary 
parts: 

c + d = («, +/fei) + (^2 + ^2) = (^1 +^2) +^'(^1 +'^2)- (2.4.2) 

While multiplication (note: / • / = - 1 ) is given by 

c ' d = (a, +/fe,)(fl2 + '^2) "^ i^i^2~ ^1^2) -^ i(a\b2-^ b^Uj) (2.4.3) 

or in polar form 

C'd = r^e'^'rje'^'- = r^r^e'^^'^^^^ 

The complex conjugate of a number is denoted by c* and is given by 

(2.4.4) 

(2.4.5) 

The product c - c* = re'^re~'^ = r^ gives the square of the magnitude of c. 
For a unit circle in the complex plane, r = 1, e'^ = cos0 +/s in 0, and e~'^ = 

cos 0 - i sin 0, This representation is used in (2.67) to express a complex exponen­
tial in terms of harmonic terms. As 0 assumes angles greater than TT or less than 
-TT, the value of the function repeats periodically with phase 277, just as for a 

continues 
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cosine or sine function. By adding and subtracting the exponentials, we obtain 
useful definitions: 

cosO 
e''-\-e-^' 

sin 6 = 
2/ 

(2.4.6) 

tion of variables (2.62) gives 

d^X{Xi) w 2 

dx] + c\x,) 

+ 0)^7=0 

X ( j c i ) = 0 . 

(2.70) 

Although the temporal dependence of 
(2.70) is still satisfied by (2.65), we cannot 
simply set Z(jCi) = ce-'"''i with a being a 
constant because we then obtain - a ^ + 
[(M)^/{c{x^)Y] = 0, which cannot be satis­
fied for all jCj using constant values of a 
and oj. We instead assume A'(xi) = 
^^±£a(x,)̂  which leads to the equation 

da 
+ dx\} ^ (^i) 

= 0. (2.71) 

This is a nonlinear differential equation 
that is very difficult to solve in general. To 
proceed, we assume 

d^c 

dxl 
(2.72) 

allowing us to drop the first term and solve 

da 0) 
dxy ~ c{xi) 

/
Xi ox 

-00 C{X) 

givmg 

X{x^) =cexp ( /.jci dx 

•'-00 C{X) 
(2.73) 

The condition (2.72) becomes d^a/dx]^ 
{o>/c^){dc/dx^)^o)^/c^, or dc/dxi^(i). 
This requires that spatial derivatives of 
velocity be much smaller than the frequen­
cies of interest, which must be correspond­
ingly high, and that the velocities vary 
smoothly. The high-frequency approximate 
solution for the inhomogeneous rod is then 
given by 

u{xi,t) =y4exp ±io)\t ± / : 
dx 

c{x) 

(2.74) 

Solutions of this type lead to ray theory as 
described in the next chapter. It is impor­
tant to note that (2.74) still has a D'Alem-
bert-type solution (2.61), where the phase 
function 

t + L dx 
0 c{x) 

gives the travel time of the wave through 
the medium from the source (at JCj = 0). 

2.4.2 Three-Dimensional Wave 
Solutions 

We return our attention to (2.52), the 
three-dimensional equation of motion, and 
(2.53), the decomposition of the displace­
ment field into P-wave and 5-wave com­
ponents. The displacements associated 
with the P wave are given in Cartesian 
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geometry by 

U =V<^ = 
del) 

Xi H-
dXo 

X . + 
dct> ^ 

dx^ 

and (f) satisfies (2.56) 

d^cf) 

dt^ 
^aA 

Id^ 

[dxl 
+ 

d^(t) 

dx\ 
+ 

d^ 

dxl 

(2.75) 

7 3 • (2-76) 

Based on our experience with one-dimen­
sional solutions of the wave equation, we 
seek a solution in Cartesian coordinates by 
separation of variables 

cf>{x,,x^,x^j)^X{x,)Y{x^)Z{x^)T{t), 

(2.77) 

which leads to a set of four coupled equa­
tions 

X-VklX^Q 

y+A:|y=o 

Z-^klZ- = 0, (2.78) 

where kj -\- kj -\- kj = (o^a^. Assuming 
harmonic solutions of (2.78) and multiply­
ing terms together as required by (2.77) 
gives a general wave potential for P waves 

0 ( X , / ) = ^ e X p [ ± / ( 6 J / ±/CiJCj ±k2X2 

±k,x,)], (2.79) 

which is the three-dimensional counter­
part of (2.66). The solution (2.79) again 
assumes a D'Alembert-type functional de­
pendence of space and time, with the ex­
ponential argument being the phase. This 
solution corresponds to a set of plane 
waves, free to propagate in any direction 
in the continuum. The requirement for a 
given frequency, co, and P-wave velocity, 

a, that ki -\- kl-\- kj is constant, defines a 
planar surface in Cartesian space with a 
normal vector k^ = \kjk = ((i)/a)k called 
the wavenumber vector. This vector de­
fines the direction of propagation of the 
wave (i.e., the normal to the plane wave), 
and in the next chapter we use it to define 
seismic rays. We can write a particular 
choice of the solutions in (2.79) as 

(l){\,t)=A&xp[i(a)t-k„'x)]. (2.80) 

Corresponding solutions to the vector wave 
equation in (2.56) 

d^^r 
= a2\ 

^ 2 ^ ^2^p ^ 2 ^ 

dt^ -P dx] + dxl + dxl 
(2.81) 

are similarly given by vector solutions 

* ( x , 0 = B e x p [ / ( 6 ) / - k ^ - x ) ] , (2.82) 

where |k^| = ft>//3. Equation (2.82) gives 
plane-wave solutions associated with shear 
waves. 

Let us consider a plane wave propagat­
ing with wavenumber vector k^ contained 
completely in the x^x^ plane (we can al­
ways orient our Cartesian coordinate sys­
tem so that this is the case). In this case, 
d(f)/dx2 = 0 and k2 = 0. If we let the phase 
in (2.80) be a constant, C, we have 

(x)t - /CjJCi ■ AC T X q = C. (2.83) 

For / = 0, assume C = 0, giving x^ = 
-(A:3/A:i)jC3, which defines a line in the 

JC1JC3 plane along which the phase is con­
stant (zero). This corresponds to the inter­
section of the plane-wave surface with the 
x^x^, plane (see Figure 2.11). We have the 
additional requirement that k\ -\- kl = 
(o^/a^. The wavenumber vector is perpen­
dicular to the plane wave, with compo­
nents ki and A; 3 occurring along the x^ 
and JIC3 axes, respectively. Defining the an­
gle between k^ and the x^ axis as /, we 
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see that 

^1 = — sin/ = a>p 

0) 
(2.84) 

^3 = — cos/ = wJ7a. 

The term (sin /)/« = p is called the seismic 
ray parameter, or horizontal slowness, and 
T7 = (cos i)/a is called the vertical slowness. 
We will explore these parameters at great 
length in the next chapter. 

Keeping C = 0 in (2.83) and increasing t 
in unit steps defines a sequence of parallel 
lines (Figure 2.11), all with the same phase, 
that correspond to movement of the wave-
front in the x^x^ plane in a direction 
defined by k .̂ Similarly, if we keep / = 0 

in (2.83), a set of parallel lines, C = /cjjCj + 
k^x^, will exist, each line with a different 
phase value. Because the angle / can take 
on any value from 0 to 360°, our solution 
(2.80) actually corresponds to an infinite 
set of plane waves, with all possible orien­
tations and spatial shifts filling the entire 
three-dimensional space. 

The particular solution A exp[i((ot -
k^Xi- k^X2)] corresponds to a wave prop­
agating in the -fjCj and +JC3 directions, 
while A exp[/(a>/ - k^x^ + ^3X3)] propa­
gates in the +x^ and -x^ directions, 
A Qxp[i((ot + k^x^ - A:3A:3)] propagates in 
the -JCi and +^3 directions, and 
Aexp[/(a>/ + fcjXi + A:3JC3)] propagates in 
the -jCi and -x^ directions. When the 
coefficient of cot is negative, all of these 
sense of directions reverse. 

a 

R = t a 
FIGURE 2.11 (a) The projection of the wavefront defined by t =0 . C =0 in the x^Xg plane and 
the associated wavenumber vector k„. (b) Variation of the position of a wavefront of 
constant phase CC=0) for increasing time. t. The distance that the wavefront moves after 
time t is R =at. 
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Box 2.5 Spherical Waves 

Most of this text considers plane-wave solutions for the equations of motion, but 
transient wave solutions with a concentrated source location are often more readily 
solved using spherical waves. The three-dimensional scalar wave equation 

1 .. 
V 2 c | > = — C D 

a 
(2.5.1) 

can be solved by expressing the Laplacian operator in spherical coordinates (as 
defined in Figure 2.B5.1): 

V24) = 
1 d 1 d I d^\ 

+ -:r-. s i n e — + r^ sin e 36 

1 d^^ 
dO ) r^sin^e d<y-

(2.5.2) 

For spherically symmetric solutions, <1> = <I>(r, r), the homogeneous wave equation 
becomes 

\ d l d ^ \ 1 a ^ * 

This has solutions of the form 

^{rj) 
f{t±r/a) 

(2.5.3) 

(2.5.4) 

where / is an arbitrary function, with the (/ - r/a) phase indicating outward-prop­
agating waves spreading spherically from the origin, and the (r + r/a) phase 
indicating inward-propagating spherical waves. The 1/r dependence is different 
from the Cartesian D'Alembert solution. 

The solution for the inhomogeneous wave equation with a source at r = 0 
[localized by the delta function defined by 8(r) = 0, r # 0; /^ 8(r)dv = 1] 

1 .. 
V2cl>(r, r) = —(D - 4776(r ) / (0 (2.5.5) 

is 4)(r, t) = -fit - r/p)/r. The displacements are given by u^ = V $ = {d(\)/dr)T. 
We will use this solution in Chapter 8. 

FIGURE 2.B5.1 Standard spherical-geometry coordinate system. 
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The potential c/)(x, r) is a system of tions, particles oscillate back and forth as 
waves, or a wavefield. If we want to deter­
mine the P-wave displacements, we must 
compute the gradient of (f). 

Up = V(/>= x, + x 
dx-j 

+ X, 
dx^ 

xAexp[±i((ot±k^'x)]. 

(2.85) 

For the particular choice of </> given by 

(f) =Aexp[i{a)t -k^x^ - k^x^)], (2.86) 

we have as a solution 

Vp{x,t)-^i-ik^A) 

Xexp[i{o)t - k^x^ - A:3X3)]xi 

-^0x2-^ (-ik^A) 

Xexp[i{a)t -/cjjCj -^^3^3)1X3. 

(2.87) 

Thus, the P-wave displacements are all in 
the 1̂X3 plane, and the P-wave displace­
ment field has the same functional depen­
dence as the P-wave potential field but 
difl̂ erent multiplicative constants that al­
low it to satisfy the equation of motion 
rather than the wave equation. Taking the 
ratio 

P 
(2.88) 

defines the perpendicular direction to the 
wavefront in Figure 2.11. This indicates 
that the P-waue particle motion is perpen­
dicular to the wavefront, and it parallels the 
direction in which the wave is propagating. 
This characteristic of P-wave motion also 
holds for cylindrical and spherical waves. 
Because of the harmonic form of the mo-

the wave passes, alternately compressing 
and dilating the medium. 

Let us finally consider 5-wave particle 
displacements associated with vector 
plane-wave solutions of the form (2.82). 
The displacements are found from (2.53) 

U. V X * = ^ ^ - — IX, 
dXo dx^ 

-f 
dx^ dXi 

d^2 ^^1 

dx^ 8X2 
(2.89) 

We simplify the algebra by again restrict­
ing our attention to plane waves with 
wavenumber vectors in the x^x^ plane, so 
all d(l/./dx2 -> 0. Thus 

U5 = UsX^ + Us^X2 + Us,^3 

d^ 2 U 
X i + . 

dx-^ I \ dXj dx^ 

^ ( ^ ' -
(2.90) 

If we associate the x^X2 plane with the 
Earth's surface and the x^ axis with depth 
(a common convention), the 1/^ and U^ 
components comprise 5-wave motions in 
the X1X3 plane and are called the SV 
component because they entail a compo­
nent of vertical (x^) motion. The X2 com­
ponent, involving purely horizontal (JC2) 
motions, is called the SH component. Re­
member that for a comparable choice of 
coordinate system, the P waves had no ^2 
component. The total displacement field is 
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the sum of the P, SV, and SH waves: same form as for the P potential, </>: 

U = U, + U , = , - - - , x . 
d<l) d^2 

+ 

+ 1 - + -— X3, 
BXT, dx^ 

(2.91) 

with both P and S waves propagating in 
the same medium. The linear wave approx­
imation is made in assuming the P and S 
waves do not interfere with one another, 
which is vaHd for infinitesimal strains. This 
equation emphasizes the complete separa­
tion of the SH components from the P-SV 
components. As long as internal bound­
aries or free surfaces parallel the x^X2 
plane, this separation persists, as shown in 
later chapters. 

For the SH component of motion, we 
let 

V{x^,x^,t) 

= A'exp\i(^±a)t ±k^^x^ ± A:̂ ĴC3)], 

(2.94) 

where aj^-\-kj^) = ((o^/l3^X {k^y<o)^p 
= (sin y)/)3, and (/C^/CD) = 17̂  = (cos y)/p. 
Here y is the angle that the wavenumber 
vector makes with the x^ axis. The wave-
fronts move in the x^x^, plane as discussed 
before, but now with velocity j8. All of the 
SH particle displacements are in the Xj 
direction, and thus they lie in the plane of 
the wavefront, perpendicular to the direc­
tion of propagation. For the Earth refer­
ence system the SH motions are all paral­
lel to the surface. 

For the SV displacements we use a gen­
eral plane-wave solution for (/f2* 

i/r2 = fi'exp[/(±a>/ ±kyX^ ±^3JC3)]. 

(2.95) 

Thus 

V=V^ = 
dx^ dXi 

(2.92) 
^sv--

^ ^ 2 . . ^ ^ 2 . 

dx^ -X, + 
dXi 

where if/^ and 1/̂3 are both solutions of the 
wave equation 

(2.93) 

V itself exactly satisfies the wave equation 
d^V/dt^ = l3^V^y, as is easily shown by 
substituting in (2.92). Thus, we have solu­
tions for the SH wave equation of the 

= -hk2B'iexp[i{±a)t ±k^Xi 

±/C3X3)]x, 

± A:iB'/exp[/( ±(ot ±k^x^ 

±k,x,)]x,. (2.96) 

For a particular case, J/̂ 2 "̂  ^' exp[/(a>/ -
/ciJCi - ^3X3)], the wavefront is given by 
(cut - k^x^- k^x^) = C, which has a slope 
of -ki/k^ in the x^x^ plane. The ratio of 
the corresponding SV displacement terms 
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Box 2.6 Seismic Waves in Anisotropic Media 

The P- and S'-wave behavior in isotropic homogeneous media is remarkably 
simple, but greater complexity arises for anisotropic media. In an anisotropic, 
homogeneous medium, three independent body waves are generated that have 
orthogonal planes of particle motions. These are usually called quasi-compres-
sional waves (qP) and quasi-shear waves {qSV and qSH), with names suggestive of 
the isotropic counterparts. In general, the propagation direction of these waves is 
not perpendicular to their wavefronts, so the particle motions differ from isotropic 
behavior. The velocities of these waves vary with the trajectory of the wave through 
the medium with respect to any axes of symmetry in the structure. For a wave 
propagating from an isotropic medium into an anisotropic medium, one of the 
primary effects is the separation of the isotropic 5 wave into two quasi-shear 
waves, which is called shear-wave splitting. 

These properties arise from the general stress-strain relationship expressed by 
Hooke's law, for which the most general anisotropic medium has 21 independent 
elastic moduli. Increasing symmetry in the structure reduces the number of moduli. 
If the medium has symmetry about three orthogonal planes, the medium is 
orthotropic, and only nine independent constants exist. If it has axial symmetry, 
yielding a hexagonal medium, five independent constants exist. A common case 
relevant to some Earth structures occurs when the symmetry axis is vertical, which 
is called transverse isotropy. If the medium exhibits direction dependence of 
velocity in the horizontal surface, the behavior is called azimuthal anisotropy. 

A-B PLANE B-C PLANE A-C PLANE 

*T). 00 90. 00 
AZIMUTH 

T T 
180.00*1). 00 90.00 

AZIMUTH 
180.00*^.00 90.00 

AZIMUTH 
180.00 

FIGURE 2.06.1 Variations of qP, qSH, and qSV wave velocities within planes of symmery of 
single-crystal olivine. The labels A -B , B-C. and A-C denote synnmetry planes that include 
the a and b axes, b and c axes, and a and c axes, respectively. (From Kawasaki, 1989.5 

continues 



ELASTICITY AND SEISMIC WAVES 

One of the major components of the Earth's mantle is ohvine. A single olivine 
crystal has orthotropic symmetry; thus the anisotropic seismic velocities have a 
complex behavior, as shown in Figure 2.B6.1. Since processes in the mantle may 
tend to partially align crystal orientations on a macroscopic scale, net seismic wave 
anisotropy with reduced directional dependence is often observed, as is the 
presence of shear-wave splitting. Figure 2.B6.1 shows the variations of a and p in 
a single crystal of olivine. 

Anisotropic behavior may also result from structural complexities rather than 
intrinsic crystallographic anisotropy. The presence of networks of flattened, possi­
bly fluid- or magma-filled cracks causes directional wave-speed dependence, with 
the quasi-P and -5 waves being relatively slower in propagation directions perpen­
dicular to the long axis of ellipsoidal cracks and relatively faster when propagating 
along the cracks' long axes, as shown in Figure 2.B6.2. Finely layered structures 
with alternating high- and low-velocity isotropic material can also give rise to 
effective anisotropic wave speeds. In later chapters, examples will be given of 
anisotropic body- and surface-wave observations in the Earth. 

2 4 
V(krr\/s) 

^s,y 

FIGURE 2.B6.2. Velocities as a function of angle and fluid properties in granite containing 
aligned ellipsoidal cracks (orientation shown at origin] with porosity =0.01 and aspect 
ratio =0.05. The short dashed lines are for the isotropic uncracked solid, the long dashes 
for liquid-filled cracks (K^ = 100 kbar). and the solid curves for gas-filled cracks C/Ci, =0.1 
kbar). (After Anderson etal.. 1974.) 

is the same 

^ 
U, 

k. 
(2.97) 

So the SV displacement is within the 
wavefront in the x^x^, plane. Our choice 
of discussing different components of the 
S vector in terms of SH and SV clearly 
has little significance for whole-space solu­
tions; it merely sets the stage for subse­
quent discussions in the Earth coordinate 
system. Clearly, the total ^-wave motion is 

a vector displacement in the plane of the 
wavefront, with SH and SV components 
being components projected into a conve­
nient reference system. 

The overall sense of particle motions 
associated with the P and S waves is 
shown in Figure 2.12 and in the block 
diagram in Figure 1.2. The characteristic 
particle displacements associated with P 
and S waves result in predictable polariza­
tions of the displacements. Most seismic 
stations record three components of 
ground motion: up-down (vertical), north-
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FIGURE 2.12 Sense of particle motions as a plane wave sweeps from left to right for P 
waves (top) and S waves (bottom]. The wavelength is given by A. (From Sheriff and Geldart. 
"Exploration Seismology: Vol. 1, History, theory, and data acquisition." Copyright © 1982. 
Reprinted with the permission of Cambridge University Press.) 

ALO (SAN FERNANDO, M = 6.4), A = 9.8' 

LPN, BAZ 

FIGURE 2.13 Three-component observation of the 1971 San Fernando earthquake recorded 
at ALQ (Albuquerque, New Mexico). P and SV motions are on the Z and E components, while 
SH motion is on the N component. The direction to the source is due west. (From 
Helmberger and Engen, 1980.) 
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TABLE 2.5 Compressional and Shear Velocities in Rocks 

Material and source P-wave velocity (m/s) 5-wave velocity (m/s) 

Loose sand 
Clay 
Sandstone 
Anhydrite, Gulf Coast 
Conglomerate, Australia 
Limestone, Texas 
Granite, Barriefield, Ontario 
Granodiorite, Weston, Massachusetts 
Diorite, Salem, Massachusetts 
Basalt, Germany 
Gabbro, Minnesota 
Dunite, Twin Sisters, Washington 

1800 
1100-2500 
1400-4300 

4100 
2400 
6030 
5640 
4780 
5780 
6400 
6450 
8000 

500 

3030 
2870 
3100 
3060 
3200 
3420 
4370 

Source: Clark (1966). 
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FIGURE 2.14 Vertical-component ground-motion recordings arranged from top to bottom 
with increasing distance from an earthquake. The f irst arrival on each trace is the P wave 
and the largest later arrival is the S wave. (Courtesy of Jim Mori.) 



Additional Reading 

south, and east-west. Seismic waves arrive 
at the station propagating at some angle to 
the vertical in a direction along the great-
circle path connecting the source and re­
ceiver, called the longitudinal or radial 
direction. A P-wave arrival, producing 
motions only in the direction of wave 
propagation, vibrates the ground only in 
the vertical and longitudinal directions, 
with relative strengths depending on the 
angle of incidence. On the other hand, the 
SH motion is entirely horizontal and per­
pendicular to the great-circle path direc­
tion in what is called the transverse or 
tangential direction. The SV motion is in 
the longitudinal and vertical plane but 
parallel to the wavefront. This polarization 
can be directly observed in seismograms 
when the direction to the source is either 
north-south or east-west from that sta­
tion, as shown in Figure 2.13. These seis­
mograms, from station ALQ (Albuquer­
que, New Mexico), are for the 1971 San 
Fernando, California, earthquake. The 
event was located due west of the station, 
so the LPN (north-south) seismogram 
records tangential motion only, while the 
LPE (east-west) component is purely lon­
gitudinal. The P and SV waves arrive on 
the vertical and longitudinal components, 
while the SH part of the S wave arrives 
only on the transverse component. 

As mentioned earlier, P waves travel 
faster than S waves, and for a fluid, in 
which the rigidity vanishes, 5 waves can­
not propagate at all. P waves can exist in 
a fluid, with acoustic waves or sound waves 
in the air being a form of P wave. Thus 
far, P' and 5-wave velocities are indepen­
dent of frequency or wavelength and de­
pend only on the material properties of 
the continuum. Anelastic effects can lead 
to frequency dependence of velocities, as 
discussed in the next chapter. Table 2.5 
gives examples of seismic velocities for 
near-surface conditions for a variety of 
rock types. Because a « 1.73)3, the time 

separation between P and S arrivals in­
creases with distance traveled. The ratio of 
travel time to distance traveled is called 
moveout. Figure 2.14 shows a sequence of 
seismograms at increasing distances from 
an earthquake. The moveout of the S 
waves is nearly twice that of the P waves. 
We will next consider how these waves 
have traveled through an inhomogeneous 
structure like the Earth. 
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CHAPTER 

3 
BODY WAVES AND RAY THEORY 

In the last chapter we derived the exis­
tence of P and S waves, the only transient 
solutions to a stress imbalance suddenly 
introduced to a homogeneous elastic space. 
P and S waves are known as body waves 
because they travel along paths through­
out the continuum. The solutions for P 
and S waves, like those given in Eqs. (2.85) 
and (2.90), give the locations of wave-
fronts, which are loci of points that un­
dergo the same motion at a given instant 
in time. Rays are defined as the normals 
to the wavefront and thus point in the 
direction of propagation. In the case of a 
plane wave, the rays are a family of paral­
lel straight lines; in the case of a spherical 
wave, the rays are spokes radiating out 
from the seismic source. Rays provide a 
convenient means of tracking an expand­
ing wavefront, and they provide an intu­
itive framework for extending elastic-wave 
solutions from homogeneous to inhomoge-
neous materials. If the inhomogeneities in 
velocity are not excessively chaotic, then 
the rays corresponding to P or 5 waves 
behave very much as light does in traveling 
through materials of varying indices of re­
fraction. This leads to many parallels with 
optics: rays bend, focus, and defocus de­
pending on the velocity distribution. 
Strictly speaking, we will have to approxi­
mate our displacement solutions to extract 

the ray behavior, for it cannot describe all 
wave phenomena. These approximations 
are collectively known as geometric ray 
theory and are the standard basis for seis­
mic body-wave interpretation. 

In classical optics, the geometry of a 
wave surface is governed by Huygens' 
principle, which states that every point on 
a wavefront can be considered the source 
of a small secondary wavelet that travels 
outward in every forward direction with 
the velocity of the medium at that point. 
The wavefront at a later instant in time is 
found by drawing a tangent to the sec­
ondary wavelets, as shown in Figure 3.1. 
Thus, given the location of a wavefront at 
a certain instant in time, we can predict 
future positions of the wavefront. Portions 
of the wavefront which are located in rela­
tively high-velocity material produce 
wavelets that travel farther in a given time 
interval than those produced by points in 
relatively low-velocity material. This causes 
a temporal dependence in the shape of the 
wavefront. Because rays are the normals 
to the wavefront, the rays will also change 
with time. Fermat's principle governs the 
geometry of raypaths. This usually means 
that the ray will follow a minimum'time 
path, which is the path that will allow the 
wavefront to move from point A to point 
B in the shortest amount of time. 
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FIGURE 3.1 An expanding wavefront. Huygens' 
principle states that each point on the 
wavefront serves as a secondary source. The 
tangent surface of the expanding waves from 
the secondary sources gives the position of the 
wavefront at a later time. 

Let us consider the approximations that 
must be made to the elastic-wave solutions 
such that ray theory is valid. Recall the 
equation for a plane wave: 

(̂ =y4e''̂ ± '̂±''*'̂ >, (3.1) 

where k is a vector that points in the 
direction of propagation and thus, by def­
inition, is a ray. For homogeneous mate­
rial, k does not change as the wave propa­
gates (it is a straight line). Now if the 
seismic velocity varies smoothly in space 
(i.e., p, A, and /x have small gradients), we 
must solve an equation analogous to (2.69): 

d^ d^ d^ 
' ^ Jxl 'd^ 

1 d^(f> 
c2(x) ^ 

(3.2) 

This wave equation is an approximation of 
the equation of motion for heterogeneous 
media. As we did in the last chapter [see 
Eqs. (2.70) and (2.71)], we will attempt to 
solve this partial differential equation by 
assuming a functional form 

< (̂x, 0 =A{x)e''^^^^''y'^-'\ (3.3) 

where l^(x) • (o/c^, which replaces k • x, is 
a function of position, and CQ is a refer­
ence velocity. Substitution of (3.3) into (3.2) 
yields 

1 d^ 
~c\xj'dP' 

[A{x)e^^^'^^^y'^-'^]. 

(3.4) 

The required spatial derivatives are com­
plex; for example, d^<f}/dx\ is 

d^ d {dA{x) 

dxf dx^ I dx^ 
^iu>iW{xyc^^-t) 

CQ dx^ 

d'^A{\) (o^A{\) ldW{\) 
dxl CQ \ dx^ 

H-M 
2(o dA{x) dW{x) 
CQ dx^ dXi 

^A(x) 
(o d^W{x) 
CQ dxl 

/̂wCPTCxyco-/) (3.5) 

For d^(f)/dxl and d^cfy/dxj, we obtain simi­
lar equations with real and imaginary parts. 
Equating the real and imaginary parts in 
Eq. (3.4) gives two sets of equations: 

V 2 ^ ( x ) - ^ ( x ) -
dlV{x) 

dx. 
dW{x) 

dXo 

dW{x) 
dx-i c\x) 

dW{x) dA{x) dW{x) dA{x) dW{x) dA{x) 
dXx dx^ + dx-j dx-j + dx^ dXn 

-\-A{x)V^W{x)=^0. 

A{x) (3.6) 

(3.7) 
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We can rearrange the terms from Eq. (3.6) 
as 

d]V{x) 
+ 

dW{x) 
dXo 

c{xy A{x)o)^ 

dW{x) 

(V2^(x)). (3.8) 

The right-hand side of this equation is a 
ratio of the spatial Laplacian of the ampU-
tude to the ampHtude divided by (o^. For 
high frequencies (small wavelengths) this 
term is small; in fact, let it be approxi­
mately zero, and Eq. (3.6) reduces to 

dW{x) 
dx^ + 

dW{x) 
dxo + 

dW(x) 
dx^ 

gives 

4 
^^Aix) 

Aix) dx)' 
(3.11) 

For weak inhomogeneity cl/cix)^ must be 
^ 1. Therefore 

^(x) 
(3.12) 

It is possible to use a scale analysis to add 
physical insight into this equation. From 
(3.9), we see that VW(x) • VW(x) = 
c^/cixY, which implies VWix)« CQ/C(X). 
From Eq. (3.7), we can write 

V^W{x)~\W{x) 
VA{x) 
~4ix)' 

(3.13) 

cixY 
(3.9) or 

This is called the eikonal equation. Solu­
tions to the eikonal equation are not exact 
solutions to the wave equation, but for 
many regions inside the real Earth, the 
necessary restrictions on spatial variations 
of the elastic parameters are satisfied, so 
solutions of the eikonal equation are use­
ful. 

Recall W{x) • oy/c^ was just k • x, where 
k is a vector normal to the wavefront, or a 
ray. The eikonal equation is therefore a 
partial differential equation that relates 
rays to the seismic velocity distribution. 
The condition required for geometric ray 
theory to be a useful approximation of the 
wave equation is that the change in gradi­
ent of v4(x) over one wavelength must be 
much smaller than ^(x). We define a ref­
erence wavelength: 

^0 — ^0 
277 

(3.10) 

For (3.9) to hold, we required that 
K\{V^A{X)/A{.X)) «: VWix) • VWix). This 

V.4(x) V^W{x) 
A(x) VW(x) 

V(co/c(x)) Vc(x) 
Co/c(x) c(x) 

(3.14) 

If we further compute the gradient over a 
wavelength and multiply by AQ, we can use 
(3.12) to find 

A2Vl4(x) Ao6[Ac(x)] 
^(x) c(x) 

« : 1 , (3.15) 

which states that the eikonal equation will 
approximate the wave equation well if the 
fractional change in velocity gradient over 
one seismic wavelength is small compared to 
the velocity. 

It appears that the eikonal equations in 
(3.9) are complex, and they do not seem 
any easier to deal with than the wave 
equation! However, we will see that very 
simple equations are obtained for rays 
from the eikonal. The concept of rays is 
extremely important and is the basis of 
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almost all body-wave interpretation. Rays 
allow us to track a displacement pulse 
from a source to a receiver, accounting for 
localized properties on the specific path. 
The conditions of validity require wave­
lengths smaller than a few hundred kilo­
meters and slowly varying seismic veloci­
ties, criteria that apply to most body waves 
in the Earth's deep interior. An obvious 
question is. Are rays an adequate solution 
to the wave equation at boundaries be­
tween materials with different elastic mod­
uli? Clearly condition (3.15) is violated in 
the presence of strong velocity gradients, 
but we can cast the problem as a series of 
discrete regions where ray representations 
are sufficient. The ray solutions in these 
regions are combined by matching bound­
ary conditions. We discuss this in detail in 
later sections. 

Representing a portion of a seismic 
wavefield as a ray gives rise to the concept 
of seismic phases or arrivals. These corre­
spond to transient disturbances at a re­
ceiver that are P or 5 waves that have 
traveled a defined path between the seis­
mic source and receiver. These arrivals 
have two primary characteristics: travel 
time and amplitude. The eikonal equation 
and its extensions can be used to quantify 
these two parameters. In this chapter we 
first develop equations for travel times and 
then discuss how seismic-pulse amplitude 
varies as it propagates. 

3.1 The Eikonal Equation 
and Ray Geometry 

Consider the three-dimensional wave 
surface shown in Figure 3.2. The ray, which 
is the normal to the wavefront, JF(x), is 
characterized by traveling an arc length, s, 
in a time, t. The direction cosines associ­
ated with the ray are given by dx^/ds, 
dx2/ds, and dxj/ds, and must satisfy 

dxi 
ds 

dx2 
~d^ m- 1. (3.16) 

Now consider the physical connection be­
tween s and W(\): VWix) a s, which is just 
the statement that the gradient of a func­
tion (surface) is oriented normal to that 
function (surface). Thus we can see that 
dxjds must be proportional to dWdd/dx^. 
This implies that we can rewrite (3.16) as 

dW{x) 
I + u 

+ fl-
dW{\) 

dx-K 

dW{\) 
dX'j 

= 1, (3.17) 

where a is a constant of proportionality. A 
comparison of (3.17) and (3.9) shows that 
(3.17) is just the eikonal equation if a = 
C(X)/CQ. The reciprocal, a~^ = n =CQ/C(X) 

^ X i 

Wavefront 

FIGURE 3.2 Three-dimensional wavefront with a ray or normal with length ds. 
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is commonly called the index of refraction. 
Equations (3.16) and (3.17) can be com­
bined to give the normal equations: 

dx^ dlV{x) 
ds 

dx2 
ds 

dx^ 

dx^ 

dW(x) 

dX2 

dlV(x) 
ds dx. (3.18) 

Now let us consider how the normal equa­
tions change along the path of the ray. We 
can do this by taking the derivative of the 
normal equations with respect to ds 

that the raypath is proportional to the 
spatial change in the velocity distribution. 
Two initial conditions control the behavior 
of (3.20): (1) the direction in which the ray 
leaves some arbitrary reference point 
{d%/ds)\s^ and (2) the position of the refer­
ence point SQ. 

We can obtain some insight into the 
physics of (3.20) by considering a simple 
example. If we follow a ray through a 
material that has a change in velocity in 
only one direction, say depth, then c = 
c{x^), and thus n ^n{x^. Thus dn/dx^ = 
dn/dx2 == 0. Then (3.20) reduces to 

dx^ 
ds = Ci = constant 

dx^ 
ds \ ds 

d ldW{\) 
ds 1 dx. 

dxi 
n —— = C2 = constant 

ds 

d ldW{x) dx^ 
dx^ 1 dx^ ds 

dx^ 
ds \ ds 

dn 
dx^ (3.21) 

dW{x) dx2 dW{x) dx^ 

d 

dx. 

dx-y ds 

dx, 
ds 

dx2, ds 

-h 

+ 

dx2 
ds 

dxj 
ds 

dx. 
(3.19) 

The generalized form of this equation is 
called the raypath equation: 

d I dXi 

ds 1 ds 
dn 
'd7. 

1 dx . 
— = V 

ds \ c{x) ds 
1 

c(x) j (3.20) 

This is a second-order differential equa­
tion for X, which is just the raypath; note 

The ratio of ĉ  to C2 confines the raypath 
to a plane that is normal to the x^X2 
plane. (In other words, the projection of 
the ray into the JC1JC2 plane is a straight 
line.) Figure 3.3 shows the geometry. For 
convenience, and without loss of general­
ity, we can choose this plane to coincide 

3 plane, reducing (3.21) to with the Xjjc 

dxi 
n — - = constant 

ds 

d^l dx^ 
ds \ ds 

dn 

^ 3 / (3.22) 

At a given point the direction cosine of the 
ray is given by 

dx, 
L = —— = sm I 

ds 

/ . = 
dx^ 
ds cos I. (3.23) 
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X i X2 plane 
> 

C (X3) 

FIGURE 3.3 Raypath for a medium in which the velocity is independent of the Xg and x-, 
directions. 

Thus 

= — sin / = constant 
(3.24) 

sm^ = constant =p . 

The constant p is called the ray parame­
ter, or horizontal slowness, p varies from 0 
(vertical travel path) to 1/c (horizontal 
travel path). The angle / is called the angle 

of incidence, and it gives the inclination of 
a ray measured from the vertical (x^ direc­
tion) at any given depth. For a prescribed 
reference point and takeoff angle, a ray 
will have a constant ray parameter, p, for 
the entire path. Equation (3.24) is also 
known as Snell's law, which can also be 
derived from Fermat's principle (see Box 
3.1). Fermat's principle states that a ray-
path is a path of stationary time. Thus 
travel time along a raypath is a minimum 
(or maximum) time. 

Box 3.1 Geometric Interpretation of Sneil's Law 

It is possible to use simple ray geometry and Fermat's principle of least time to 
derive SnelVs law and the definition of seismic ray parameter. Consider a ray 
leaving point F in a medium of velocity a{, what is the path the ray will take to 
arrive at point P' in a medium of velocity a{l Figure 3.B1.1 shows the geometry. 

p < 
> 

a 

> 

b 

\ 

V X 

^ 

"1 

C D i 

a-| < (X2 

FIGURE 3.B1.1 Raypath connecting two points on either side of a boundary. 

continues 
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The travel time on the path between P and P' is 

d e ]/a^+x^ ]/b^ + (c-xf 

«1 « 2 
(3.1.1) 

The minimum-time path must satisfy dT/dx = 0, which implies 

dT 
Hx = 0 = c -X 

a^yla^^-x^ a2]/b^ + (c-x)^ ' 
(3.1.2) 

note that J t /va^+j t^ =sin j , and (c -x)/\b^ + (c -x)^ = sinr. Thus 

sm I sm T 

a, a^ 
(3.1.3) 

This is the famiUar expression from optics called Snell's law after Willebrod Snell 
(1591-1626). The generalization of Snell's law is sin i/v =/?, where p is called the 
seismic parameter, ray parameter, or horizontal slowness. The ray parameter is 
constant for the entire travel path of a ray. The consequence of a ray traversing 
material of changing velocity, v, is a change in inclination angle, /, with respect to a 
reference plane. As a ray enters material of increasing velocity, the ray is deflected 
toward the horizontal. Conversely, as a ray enters material of decreasing velocity, it 
is deflected toward the vertical. If the ray is traveling vertically, then /? = 0, and the 
ray will experience no deflection as velocity changes. 

Now let us consider the second equation 
in (3.22) 

dx^ 
ds \ ds 

d dn 
X h - I T = x ( ^ c o s / ) = -— d5 dx^ 

Rewriting this using the chain rule 

dn di dn dx^ 
-— = -n^mi-— + cosf 
0X3 ds 

di 
ds 

dx^ ds 

dn 
dXrt 

Collecting terms, 

dn 
dx 

(1 - cos /) = -nsini 
di 

di 
lb 
di 
Is 

ds 

sin i dn 
n dx-i 

sin/ dc 
dx- = P 

(3,25) 

dc 
dx^ 

Equation (3.25) states that the curvature 
of a ray is directly proportional to the 
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FIGURE 3.4 Ray curvature due to increasing and decreasing velocity with depth. 

Wavefronts 

rays 

rays 

velocity gradient (dc/dx^). If velocity in­
creases with depth, then the ray curves 
upward. If velocity decreases with depth, 
then the ray curves downward. Figure 3.4 
shows this by plotting the evolution of a 
wavefront in media with different velocity 
distributions. 

Equation (3.22) has several interesting 
aspects. For each angle /, a specific ray 
leaves the source and follows a specific 
raypath. The initial angle and the velocity 
structure determine the distance at which 
the ray will emerge at the surface. For a 
given source-receiver geometry several 
possible connecting raypaths may exist, 
which means that a multiplicity of arrivals 
will occur, all with different initial angles 
and travel times. We will discuss this more 

fully in later sections, as it is the basis for 
seismic interpretation. We can use (3.22) 
with initial conditions to predict where 
and when a ray will arrive. Consider Fig­
ure 3.5. At any point along the travel path 
we have 

dx^ 
~d^ 

dx^ 

sm I = —— = cp 
ds 

cos / = —— = }/l - sin^ / = Jl -c^p^ 
ds 

dx^ 
*dx^ — ds sin / = ,cp 

cp 

^1-cV 

COSi 

dx^ 

(3.26) 

FIGURE 3.5 Geometry of the ray segment 6s, along a path from a surface sour'ce to a 
surface receiver. The velocity of the medium varies only along the Xg direction, so there will 
be symmetry of downgoing and upgoing legs of the raypath. 
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For a surface source and receiver, Eq. 
(3.26) can be integrated over the depth 
range traversed by the ray to give the 
distance Xip), at which a ray with ray 
parameter p will emerge: 

cp 

Note that the ray parameter, p, can be 
pulled outside the integral in (3.29) be­
cause it is constant along the path. Noting 
the similarity between X and T, we can 
relate the two: 

X(p)^2f dx„ (3.27) T^2r 
^ Vl - (= P Jo yf^ 

dx^ 

where z is the maximum depth of penetra­
tion. The factor of 2 arises from the sym­
metry of the downgoing and upgoing por­
tions of the raypath (see Figure 3.5). This 
is the where of ray equations; given the 
angle at which a ray leaves the source, we 
can calculate where it will arrive. If we 
generalize this to a three-dimensional case, 
we also require the azimuth of the raypath 
relative to the source. The time it takes for 
the ray to arrive is obtained similarly: 

dT = 
ds 

ds 
pathC(5) 

dx^ 
0 c{x^)cosi 

or 

■.2f-
•'o c 

dx^ 

'{yc 
(3.28) 

where T is the travel time along the ray­
path to the distance defined by Eq. (3.27). 
We can introduce some shorthand and 
rewrite Eqs. (3.27) and (3.28). Let y = 1/c; 
then 

X^lpi 
dx^ 

0 v^ 
(3.29) 

and 

7 = 2/" 0 Vr2_p2 dx^ (3.30) 

0 \ y^'y2_^2 + ^f) dx^ 

(3.31) 

-pX-\-2( yjy^-p^ dx^. 

Equation (3.31), the travel-time equation, 
is a truly remarkable representation. Note 
that it has two terms: one depends on X 
and the other on z. This implies that the 
travel-time equation is separable, and the 
vertical travel time depends only on (y^ -
p2y/2 (^s^ally written as 17) and the hori­
zontal travel time only on p, hence the 
name "horizontal slowness" for p. Simi­
larly, 17 is known as the vertical slowness. 
Also note that dT/dX==p, or that the 
change in travel time with distance is equal 
to the ray parameter. We will use this fact 
extensively when we interpret the struc­
ture of the Earth. 

We can also use Eq. (3.22) to give in­
sight into the amplitude of a seismic ar­
rival. Consider a spherical wave a small 
distance from the seismic source at the 
surface in a region of uniform velocity. Let 
the energy of the disturbance be dis­
tributed uniformly on the spherical wave-
front. As the wavefront expands with time, 
the total energy on the surface will remain 
constant, but the energy per unit surface 
area will decrease. Define the total energy 
on the initially hemispherical wavefront 
(Figure 3.6) as K, and the energy per unit 
area = K/lur^. Now consider a bundle of 
rays that leave the source between the 
angle i^ and i^ + di^. The fraction of en-
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ray paths 

FIGURE 3.6 The area, which is inversely proportional to energy, for an expanding spherical 
wavefront. 

ergy in a circular ring on the wavefront 
defined by these two takeoff angles is given 
by 

K 
lirr 

;{2Trrsin iQ){diQr), (3.32) 

where rsin^Q is the radius of the strip, 
and CHQ r is the width of the strip. Or 

EQ = K sin IQ CHQ . (3.33) 

As seen in Figure 3.7, the ray bundle ex­
pands or contracts depending on the veloc­
ity profile. Upon arrival at the surface, the 
corresponding energy will be spread out 
over area lirXdXcos IQ (Figure 3.6). The 
wave energy is now spread over this larger 
area, so the energy density, E(X), is ob­

tained by dividing (3.33) by the new area 
to obtain 

E{X) = 
K tan /Q di^ 

lir X dX 

This can be simplified by recalling 

sin /Q dT 

. (3.34) 

dX' in = sin c 

Therefore 

din 

Co d'T 
cosf'o dX^ 

dT 
'dX, 

(3.35) 

d^T 

^^ }/l-c^(dT/dXf ^^' 

(3.36) 

Surface 

FIGURE 3.7 A bundle of rays with takeoff angles between / and / +di. The amplitude of the 
seismic signal is inversely proportional to the surface area of the wavefront subtended by 
the rays idAV, as the ray bundle expands or contracts due to the velocity structure, the 
amplitude will change. One can see how there will be a relationship between changes in 
takeoff angles as a function of distance and the corresponding amplitude variations with 
distance. 
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Thus Eq. (3.34) can be rewritten as 

EiX) = 
K 

2 ^ 
tan in 

X cos in l\ dX 
d^T 

(3.37) 

If the source is not at the surface, then the 
takeoff angle at the source, /Q, will differ 
from the incident angle at the receiver, /. 
Amplitude is proportional to {E\ thus the 
amplitude of a seismic arrival is propor­
tional to the change in ray parameter with 
distance. Velocity structures for which p 
changes rapidly yield large amplitude vari­
ations. Conversely, constant p implies very 
small amplitudes. 

These simple extensions of the ray equa­
tions show their utility. We will now con­
sider some practical cases of a layered 
velocity structure and a continuous veloc­
ity distribution. 

3.2 Travel Times in a Layered 
Earth 

The standard method of inferring the 
velocity structure of the Earth is to fit the 
travel times of various seismic phases as a 
function of distance with a layered Earth 

model. The equations for travel time in a 
layered Earth are a discretization of 
Eq. (3.31). We also can derive these equa­
tions by first principles. When a ray strikes 
a boundary marking a change in seismic 
velocity (see Figure 3.8), the energy in the 
wave is partitioned between a reflected 
and a refracted ray. These two new, or 
derivative, rays will have the same ray pa­
rameter as the incident ray. The angle 
(i or r) that the reflected and refracted 
rays make with a vertical plane is governed 
by Snell's law: 

sm I sin T 
-P- (3.38) 

Consider the wavefront associated with the 
reflected ray in Figure 3.8. The wavefront 
will advance a distance d in a time 8t\ 
St = d/aj. The surface intersection of the 
wavefront will travel along the surface at a 
higher velocity than the actual seismic ve­
locity of the layer 

d 1 « i 1 
«» = 8t 

- = —, (3.39) 
sin/ 8t sin/ p' 

where a a is the apparent velocity. From 
this equation it is obvious where the name 
horizontal slowness for p comes from. If 

Surface 

«i.Pi 

a2.P2.p2 

P refracted 

FIGURE 3.8 A P wave incident on a boundary between contrasting materials, in this case 
between a fluid layer and an underlying solid. 



the ray were vertically incident on the free 
surface, p would be zero and the apparent 
velocity would be infinite. 

If the velocity in layer 2 is greater than 
the velocity in layer 1, angle r > /. As 
T -^ 90°, Snell's law predicts a critical re­
fraction 

sin/. sin 90° 1 
OL^ 

(3.40) 

This critical refraction is associated with a 
wave that is traveling horizontally (parallel 
to the interface between layers 1 and 2) 
immediately below the interface. This wave 
is usually referred to as a head wave, and 
it has the unique property that it transmits 
energy back into layer 1 continually as it 
travels along the interface. This energy 
leaves the interface with the same angle of 
incidence, Ẑ , called the critical angle: 

i, = sm-\a,/a^). (3.41) 

Note that if / > i^, no seismic energy can 
penetrate layer 2, and all the energy is 
reflected back into layer 1. If a2 < ^u there 
is no critical angle, and the refracted ray is 
deflected toward the vertical. 

Head waves in a layered structure and 
their analog in a continuous velocity struc­
ture, turning rays (discussed in the next 
section), are extremely important in deter­
mining the velocity structure of the Earth. 
The travel time of these seismic waves as a 

function of distance provides a direct mea­
sure of velocity at depth. Consider the 
three rays in the layer over a half-space 
structure shown in Figure 3.9. If a2> ot^, 
three primary travel paths exist between 
the source and the receiver: (1) the direct 
arrival, which travels in a straight line con­
necting source and receiver, (2) a reflected 
arrival, and (3) a head wave. Additional 
rays involving multiple reflections in the 
layer will also exist. The travel time for the 
direct arrival is given by 

r = A7ai=Aj9, p =! /«! . (3.42) 

The travel time for the reflected arrival is 
given by 

r= 
2th 1 
cos/ «! 

(3.43) 

where th is the layer thickness. Finally, the 
travel time of the head wave is given by 

r= 
2th 1 

+ a2 cos/J, a^ 
(3.44) 

These equations are all for a surface 
source; slight modifications are needed for 
sources within the layer. The second term 
in (3.44) is the same as (3.43) for the 
reflected arrival when i == i^- Therefore, 
the refracted arrival first appears at r = 0, 
with a travel time equal to that of the 
reflected arrival. At closer distances only 

l^headwave , ^ ^^ p̂  

FIGURE 3.9 The three principal rays in a velocity structure that is a layer over a half-space. 
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the direct and reflected waves will exist. 
As X increases, only the r/a2 term of 
(3.44) is affected; thus, the wavefront trav­
els along the surface with apparent veloc­
ity a2- This can be used to simpUfy (3.44), 
because r = (X- 2th tan i^) and sin i^ = 
a.Ja2. Thus 

1th 1 1 
r = — ; — + —iz 

cos i^ «! a2 

2tha^ 
a2 cos i^ 

2th I 1 

COSic \ « ! -I + 
« 9 

(3.45) 

Recalling that 1/^2 =P and cosf\.==(l-
sin^ i^y^^ = (1 - a^p^y^^, we can rewrite 
this as 

T==Xp + 2th7]i, (3.46) 

where r]^ = il-p^ajy^/a^. This is the 
layered structure equivalent to Eq. (3.31). 
Equation (3.46) is an extremely useful form 
of the travel-time equation because it sep­
arates the travel path into a horizontal 
term and a vertical term. No matter how 
complex a raypath in a layered structure 

becomes, it is possible to write the corre­
sponding travel-time equation with a form 
similar to (3.46). 

Equations (3.42), (3.43), and (3.46) de­
termine a travel-time curve, giving the ex­
pected travel times for a given structure. 
Figure 3.10 shows the travel-time curve for 
the principal rays for the structure in 
Figure 3.9. At short distances only the 
reflected and direct arrivals exist. The di­
rect arrival is described by a straight line, 
with a slope dT/dX = p = l/a^. The re-
flected-arrival travel time is described by a 
hyperbola. The intercept, at X = 0, has a 
travel time of 2th/a^ . At large distances 
the branch of the travel-time curve that 
corresponds to the reflection becomes 
asymptotic to the direct arrival. The 
travel-time branch associated with the 
head wave first appears as a reflection at 
X =^ 2th tan i^. The head-wave arrival 
branch is a straight line with a slope 
dT/dX = p = l/a2. Since the head wave 
travels with a faster apparent velocity, it 
eventually becomes the first arrival. The 
direct arrival is the first arrival until the 
crossover distance, X^, after which the head 
wave is the first arrival. We can find this 
distance by realizing that at X^ the travel 
times of the direct arrival and head wave 

slope - ^ 

^critical 

distance ^ 

FIGURE 3.10 Travel-time curve for Che primary waves in the velocity structure in Figure 
3.9. 
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are equal: 

T = T 
"- direct ^ head 

«1 « 2 

« 2 - « l 

or 

X^^lth «2 + « l 
^ 7 ~ « 1 

(3.47) 

Figure 3.11 shows a seismogram from an 
earthquake 314 km away. Three promi­
nent arrivals are noted: P„, P^, and 5. 
Arrivals P„ and P^ correspond to the head 
wave and direct arrival, respectively, in 
Figure 3.9. In 1909 a Croatian scientist 
named Mohorovicic first observed these 
two P-wave arrivals with different appar­
ent velocities over a several-hundred-
kilometer distance. One was observed to 
have a velocity of 5.6 km/s, and the other 
a velocity of 7.9 km/s. The arrivals arise 
because, in a gross sense, the crust-mantle 

system behaves like a layer over a half-
space. The head wave, P„, is caused by the 
large velocity increase at the crust-mantle 
boundary (known as the Moho discontinu­
ity). The reflection off the Moho is known 
as PmP and is not readily identifiable in 
Figure 3.11. 

Is the travel-time curve in Figure 3.10 
complete? No, because we have only con­
sidered three rays. Clearly, 5„, 5^, and 
SmS arrivals will also occur, with travel 
times controlled by S velocities. Further, 
multiple reflections will occur in which a 
ray bounces between the surface and the 
Moho, with some arrivals having various 
path segments which are a mixture of P 
and S waves. The many possible arrivals 
cause the oscillations in Figure 3.11. The 
importance of a travel-time curve is its 
interpretative power. If we consider a seis­
mic station at a given distance from a 
seismic source, we expect a sequence of 
arrivals, all with predictable travel times. 
Suppose we have many seismic stations 
that record a seismic event. If we deter­
mine the arrival times of various phases 
and plot them on a time-distance curve, 
we can infer the structure. We can deter-

FIGURE 3.11 Vertical component of ground motion for an earthquake {M^=2.7) on the 
Colorado Plateau in Arizona recorded at TUG (Tucson). The head wave and direct arrival are 
marked P„ and PQ, respectively. 
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mine the layer velocity from the slope of 
the direct arrival and the half-space veloc­
ity from the slope of the head-wave branch. 
The crossover distance or the zero offset 
(̂ ^ = 0) reflection time gives the layer 
thickness. Of course, the Earth is more 
complex than a layer over a half-space, so 
this procedure must be generalized to more 
than one layer. If the source is not human 
induced, it is also necessary to estimate 
the location and origin time of the source. 

The travel-time equations can be gener­
alized to the case of n layers. Consider the 
two-layered example shown in Figure 3.12. 
The crust is often approximated as a two-
layer structure like this. For a surface 
source, the travel times for the primary 
waves in the top layer are just those given 
above for a layer over a half-space. As rays 
penetrate deeper into the structure, the 
expressions become more complicated, but 
they are easily built up using the single-
layer equations. First, consider the portion 
of the head-wave travel time from point A 
to point B (a horizontal distance y =X-
2 AX): 

t'=yp + 2th2V2^ (3.48) 

where 

P = — 
sini^ 

a. 
(3.49) 

Now consider the travel time in layer 1: 

D D(sin^j-hcos^7) 
Ar = — = —̂^ 

sm M / cos J 
= D sin n -f D cos ; «! 

= ( A Z ) / 7 + //liT7i, (3.50) 

where AZ = Dsin7, /? = (sin;)/«!, r/ij = 
D cos j , and 171 = (cos j)/a^ = (l /ai)(l -
^2^2)1/2 jh^s ^g can write 

2 
T^t' + 2At=pX + 2Y,th,7]i, (3.51) 

which can be generalized to n layers 
n 

T = pX+2Y.th,7],. (3.52) 
i = \ 

If a in a many-layered structure increases 
monotonically with depth, the travel-time 
curve will have many branches due to head 
waves at each interface (see Figure 3.13). 
These will define a first-arrival "branch" 
that asymptotically corresponds to an in-
homogeneous structure with a smooth ve­
locity increase instead of layers. 

We need to mention two special cases 
that complicate the interpretation of 
travel-time curves. The first of these is the 
case of a low-velocity zone. Consider the 
structure shown in Figure 3.14, where the 
velocity of layer 2 is less than that of layer 

surface 

a <a < a 
1 2 3 

FIGURE 3.12 Head-wave raypath in a two-layered model. 
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FIGURE 3.13 Travel-time curve for a finely 
layered Earth. The first arrival is comprised of 
short segments of the head-wave curves for 
each layer, over the limited distance range 
between crossover points. 

1 and the half-space. No head wave occurs 
along the interface between layers 1 and 2. 
Therefore, we observe only a direct arrival 
and a head wave from the interface be­
tween layers 2 and 3 (as well as reflected 
arrivals from both interfaces). The corre­
sponding travel-time equations for the di­
rect wave and the head wave are 

T = pX, where p = 1/a^ (3.53) 

T = pX-{^ Ith^r]^ + 2th2'r]2y 

where p = l/a^. (3.54) 

« 3 

FIGURE 3,14 Raypath for a structure with a 
low-velocity layer. No head wave will exist on the 
interface between velocities «>, and ag-

of velocity a2. The pseudothickness esti­
mated from the crossover distance is /̂ij 4-
thji'ni/VxX which results in an overesti­
mate of the actual depth to the half-space. 

A second special case is called a blind 
zone, which arises when a layer is so thin 
that the head wave from it is never a first 
arrival. Consider the structure shown in 
Figure 3.15. The travel times for the two 
rays shown are 

T, = {pX)-^2th,rj„ (3.55) 

where p = l/aj 

Since the travel-time curve has only two 
branches (given no information from the 
reflected branches), one would interpret 
the curve as a single layer of pseudothick­
ness th with velocity a^ over a half-space where p = l/a^ 

T2 = {pX) -\-2thir]^ + 2th27]2, 

(3.56) 

ai.thi 

a2.th2 

as 

FIGURE 3.15 Travel path and corresponding travel-time curve for a blind zone. The observ­
ability of a first arrival with the slowness l /ag depends on the layer thickness and velocity 
contrasts involved. 
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FIGURE 3.16 P* is a prominent "blind-zone" arrival generated at a midcrustal boundary. 
Although it travels with a faster apparent velocity than Pg, it is never a first arrival. 

Note that rj^ for ray 1 does not equal 17 j 
for the second ray because p is different. 
For particular combinations of a2, «3, and 
th2, the travel-time curve will look like 
that shown in Figure 3.15b, where the 
head wave with slope l /a2 is not observed 
as a first arrival. This happens if a2/^ i is 
not much larger than 1 or if th2 is very 
small. Note that as th2 increases, the 
travel-time branch associated with the 
half-space is delayed, and eventually the 
l /a2 branch will be a first arrival over a 
limited range. One of the most important 
blind zones in earthquake seismology is in 
the crust, due to the Conrad discontinuity. 
The Conrad was originally thought to rep­
resent a boundary between mafic and 
granitic rocks at midcrustal depths, but 
now it is thought to be a thermodynami-
cally controlled interface or a rheological 
boundary (more on the Conrad in Chapter 
7). The Conrad head wave is often de­
noted as P*. Figure 3.16 shows an ob­
served seismogram with P„, P*, and Pg. 

3.3 Travel-Time Curves 
in a Continuous Medium 

If we take Eq. (3.52) and let the number 
of layers go to infinity as each layer thick­

ness goes to zero, the summation is re­
placed by integration, which yields 
Eq. (3.31). In other words, fine layering is 
an approximation to a continuous velocity 
distribution. Subtle differences occur in the 
character of the travel-time curves. 
Figure 3.17 shows the travel-time curve for 
a continuous, increasing velocity distribu­
tion. The slowness observed at a distance 
X can be found by taking the slope 
(dT/dX) or tangent of the travel-
time curve. It is convenient to introduce 
the concept of intercept, or delay time. 

FIGURE 3.17 Travel-time curve in a continuous 
velocity structure, T is defined as the intercept 
of the tangent to the travel-time curve at any 
given X, which has slope p. 
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Box 3.2 Travel Times for Dipping Layers 

The most common complication to the travel-time equation for a plane-layered 
Earth is the presence of a dipping layer. Consider the structure shown in 
Figure 3.B2.1. The travel-time curve depends on whether the rays are traveling 
updip or downdip. The direct arrivals have the same slowness (l/t^i), but the head 
waves have different apparent velocities. This can be seen by the area swept out by 
the wavefronts in a time A/ as they are incident on the surface at different angles: 

1 s in(/^-^) 

1 sin(/ ,+ ^) 

The resulting travel-time equation can be written as 

2^2 cos /c cos 6 X sin(/\. - 6) 
t = + 

2/2J cosi^cos 6 xs\n{i^ -\- 6) 
f = -h 

(3.2.1) 

(3.2.2) 

where u and d represent updip and downdip observations, respectively, 
Figure 3.B2.2 shows the corresponding travel-time curves. Note that the crossover 
distance is larger for updip travel paths. The total travel time for the source-re­
ceiver geometry must be the same because of reciprocity for interchanged source 
and receiver locations. 

The dipping-layer problem is very common in refraction surveys, so we will give 
some of the equations required for their interpretation. The true velocity of the 
half-space is, of course, given by Vi/(sini^). We can solve for i^ and the angle of 
dip, 0, if we have reversed profiles on which we measure the apparent velocities, v^ 
and L'j, 

/ , = j [ s in- ' (r , / rd) + s i n - * ( r , / r j ] . 
(3.2.3) 

Projecting the head-wave travel-time branches back to x = 0 gives intercept times, 
/(), that differ for the updip and downdip directions. From these intercepts the 
layer thickness at each end of the profile can be determined. 

/?, or /?2 
2 cos ey/vl - .2 

(3.2.4) 

continues 
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where r̂  is the appropriate intercept time for either updip or downdip, and V2 î  
the half-space velocity. 

The dip, 6, found from Eq. (3.2.3) must be interpreted carefully. This dip is the 
true dip only if the profile is perpendicular to the strike of the dipping layer. If the 
profile is oblique to the strike, the dip determined is actually an apparent dip. If 
the profile were parallel to the strike, the apparent dip would be zero. Without 
reversmg the profile, one cannot be confident that layers do not dip, and incorrect 
structure may be inferred, so reverse profiling is a very common seismological 
procedure. Two-dimensional profiling can map the complete geometry. 

FIGURE 3.B2.1 Raypath geometry for head waves along a dipping interface. 

A 

1 / 1 / 

1 ^ .^^^^ 

/ / / 

Va 

A 
\ 1 \ 1 

• ^ ^ ^ " ' ^ N 1 

^ 

FIGURE 3.B2.2 Travel-time curves for a dipping structure. The curve with time increasing 
to the right is for the downdip direction. The curve with time increasing to the left is for the 
updip direction. 
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from (3.31) 

r{p)^T-pX=2fyly^-p^dx^. 
•'o 

(3.57) 

where rip) is simply the intercept {X= 0) 
of the tangent to the travel-time curve for 
a given A" or p . As p increases, X de­
creases and T will decrease; hence r is a 
decreasing function of p: 

dr 
dp iH^' 

2 / 
•'n 0 ^y^-i 

-p^ dx. 

dx^ 

dr 
dp 

= -X, (3.58) 

The tau function, rip), is a single-valued 
function of p and can simplify analysis of 
travel-time curves. 

We will now characterize the travel-time 
curves for three major classes of continu­
ous Earth structure. Figure 3.18 shows 
examples of three velocity models, the ray-
paths, the travel-time curves, p as a func­
tion of distance, and T(P). In structure 1 
(Figure 3.18a) the seismic velocity in­
creases smoothly with depth, and the 
travel-time curve is a smooth, concave-
downward curve. The ray parameter de­
creases monotonically with distance. Simi­
larly, T(P) is a smooth curve. In structure 
2 (Figure 3.18b), the velocity gradient 
changes with depth; the velocity increases 
abruptly over a short depth interval. Seis­
mic rays that turn above the gradient 
change are unaffected by it; hence the 
branch of the travel-time curve from A to 
B is identical to that for structure 1. Rays 
that enter the region of increased velocity 
gradient will be turned, or deflected, to­
ward the horizontal. If the gradient is 

strong enough, the rays will be turned such 
that they appear at some distance C that 
is smaller than B, Rays that bottom well 
below the gradient zone will have a normal 
concave shape. Note the similarity be­
tween the travel-time curve for structure 2 
and that shown in Figure 3.10. The AB 
branch is analogous to the direct arrival, 
the CD branch is analogous to the re­
fracted arrival, and the BC branch takes 
on the character of the reflected arrival. If 
the velocity gradient change increases to 
become a velocity discontinuity, the 
travel-time curve will approach the dis­
crete layered case: branch AB will 
lengthen (point B will increase in distance 
XI 

The distinctive "bow tie" shape of the 
travel-time curve shown in Figure 3.18b is 
called a triplication. The name comes from 
the fact that three distinct travel-time 
branches exist at certain distances. Seis-
mograms at distances where the rays have 
passed through a structure such as that in 
Figure 3.18b can be quite complicated. 
The three different arrivals will interfere, 
and the character of interference will 
change very rapidly with distance. On the 
other hand, seismograms that are recorded 
across a triplication can be used to deter­
mine the character of the velocity change. 
The ray parameter is similarly multivalued 
in the region of the triplication, corre­
sponding to the different branches of the 
travel-time curve. However, rip) is a sin­
gle-valued function, which is one of the 
advantages of using it to "unfold" a tripli­
cation curve. 

Structure 3 (Figure 3.18c) has a low-
velocity zone beginning at a depth ZQ. For 
rays that bottom above ZQ, the travel-time 
curve is analogous to structure 1. As a ray 
penetrates below ZQ, it is deflected toward 
the vertical, or bent down, and a shadow 
is produced at distances where no arrivals 
occur (distance J9 to D). At a depth Zj, 
where the velocity is equal to that at depth 
ZQ, the shadow is terminated. Below this 
depth, two arrivals result from an effect 
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3.4 Travel Times m a Spherical Earth 

similar to the triplication. Theoretically 
this will result in a strong cusp at a dis­
tance D. The behavior of the slowness 
versus distance reflects the multivalued-
ness associated with two arrivals. Again, 
Tip) is smooth and decreases monotoni-
cally, although it will be discontinuous at 
the ray parameter corresponding to 
l/c(zo). 

These three travel-time curves will be 
important references when we begin to 
interpret actual data profiles in Chapter 7. 
It is also important to note that the three 
representations of the evolving wavefield 
[T{X\ p{X\ and rip)] are all equivalent. 
As we will see in Chapter 7, depending on 
the circumstances, we can use any of the 
three representations to infer structure. 

3.4 Travel Times 
in a Spherical Earth 

The travel-time equations derived in 
Section 3.2 are correct for a flat-layered 
Earth, that is, for problems in which the 
curvature of the Earth can be neglected. 
When curvature becomes important (at 
distances greater than about 12°), we must 
modify Snell's law. Figure 3.19 shows a 
model of the Earth that is composed of 
thin, concentric shells. Across each of the 
shell boundaries is a discrete velocity jump. 
On the local scale, the surface curvature is 
negligible, so at position P Snell's law 
must be satisfied: 

sin^i sin e\ 
(3.59) 

Now consider the geometry shown in Fig­
ure 3.19. Two right triangles share length 
d. It is clear that rf = TJ sin d\ = r2 sin ̂ 2-
Thus we can write 

Tj sin^i rj sin02 
(3.60) 

FIGURE 3.19 Ray geometry in a layered, 
spherical Earth. 

This is a general equation along the entire 
raypath, since r^ and r2 can be any value 
along the raypath; thus these ratios are 
constant. We use (3.60) to define the ray 
parameter in a spherical Earth: 

r smi 
= P. (3.61) 

Although the units of ray parameter in a 
spherical Earth differ from those we ob­
tained for flat layers, the meaning is the 
same, with p being the slope of the 
travel-time curve. Consider Figure 3.20, 
which traces the path of two adjacent rays. 
The parameters of the two rays are /?, A, 
and T (ray parameter, angular distance, 
and travel time, respectively), and p + dp, 
A + rfA, and T-^dT. From the geometry 
of the problem we can see that 

sm io = — —-
KQ dA 

VQ dT Tn sin ir dT 
= / ? . 

(3.62) 

The ray parameter p is precisely the slope 
of the travel-time curve, as it was for the 
flat-Earth case except that distance is now 
measured in angular degrees. The ray pa­
rameter can still be identified with the 
inverse apparent velocity along the surface, 
or slowness. At the turning point, p = 
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rodA 

VodT 

FIGURE 3.20 Raypaths for two adjacent rays 
in a spherical Earth. 

(smW)(r,/v,) = ryu, = ^,. Thus, unlike 
the flat-layered case, the slowness is a ra­
tio between a velocity and a depth. This is 
because in a spherical Earth, every ray will 
return to the surface—even if the velocity 
decreases with depth. The units of p in a 
spherical Earth are s/rad or s/deg. (The 
"natural" units are s/rad, and care must 
be taken to use these units when applying 
inversion formulas such as the Herglotz-
Wiechert technique. See Chapter 7.) 

The travel-time equations in a sphere 
must also reflect geometric constraints. 
Consider a homogeneous sphere with a 
ray that travels from source to receiver 
(see Figure 3.21). The travel path is, of 
course, a straight line, and the travel time 
is given by OA/u. This can be written as 

FIGURE 3.21 Travel paths in a homogeneous 
sphere. 

Note that sin / = r(d^/ds). Thus 

r^ dA 
V ds 

(3.65) 

Equation (3.65) can be used to eliminate 
ds from Eq. (3.64) to yield 

or 

r(A) = 
2roSin(A/2) 

(3.63) dA = 
p dr 

(3.66) 

Thus, even though the velocity is constant, 
the travel-time curve is not a straight line 
but has decreasing ray parameter with dis­
tance, p = (TQ COS( A/2))/i;o. 

We can derive a general equation for 
travel time in a sphere by considering the 
ray segment shown in Figure 3.22. The 
length of a small segment of the ray (ds) is 
given by 

(ds)' (dr)^ + r\dA)^. (3.64) 

where ^ = r/v. We can integrate (3.66) to 

FIGURE 3.22 Geometry of ray segment ds in 
terms of radius r and angle dA. 
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obtain 

J f 1 

dr 

V r ^ | e ^ 
(3.67) 

where r^ is the radius of the Earth and r, 
is the deepest point of penetration. This 
equation is analogous to Eq. (3.29) for a 
flat inhomogeneous model. 

We can also eliminate rfA from (3.64) 
using (3.65) to obtain 

(ds) = (d r ) + -2 

or 

The travel-time curves for a spherical 
geometry are very similar to those for a 
flat geometry, with the caveats that angu­
lar distance is used and ray parameter is 
scaled by the normalized radius. This im­
plies that the qualitative behavior of the 
travel-time curves characterizing different 
velocity profiles in Figure 3.18 can be used 
to infer the gross character of velocity 
structure in a spherical Earth. In the real 
Earth prominent triplications result from 
velocity increases at the Moho and near 
400 and 660 km depth, while the low-
velocity core produces a major shadow 
zone (more on these in Chapter 7). 

d5 = 
dr ^dr 

V I - ( P V A 2 ) V^F^V 

(3.68) 

The travel time along any path is the path 
length divided by the velocity (u): 

r ds .ro ^^ 
T=f —-if , dr. (3.69) 

•'path V K, r { e ^ 

Equation (3.69) is analogous to Eq. (3.30) 
for a flat, inhomogeneous model. Follow­
ing the same logic as we used in the flat 
geometry, we can write (3.69) as separable 
travel-time equations: 

r-^C\ e-p' 
. \ryJe-P^ r^le-p^ 

dr 

= pA + 2J r.y/e^ 
dr. (3.70) 

For a given ray parameter, the first term 
on the right-hand side of Eq. (3.70) de­
pends only on A, or surface horizontal 
distance, and the second term depends only 
on r, the vertical dimension. This is analo­
gous to (3.31), with the integral corre­
sponding to the tau function, T(P), as in 
(3.57) for a spherical geometry. 

3.5 Wave Amplitude, Energy, 
and Geometric Spreading 

Now that we have fully developed the 
concept of travel time for a ray, we can 
return to energy associated with an arrival. 
Equation (3.37) gave energy per unit sur­
face area in a flat geometry. The variation 
of wave energy depends on velocity struc­
ture (d^T/dX^) and distance traveled (X). 
In general, the wave amplitude decays with 
distance; this is known as geometric 
spreading. We can gain some insight into 
geometric spreading by considering a ho­
mogeneous, spherical Earth. This requires 
a simple modification of (3.37); instead of 
a bundle of rays illuminating a ring on a 
flat surface, they illuminate a spherical 
ring. The wavefront area incident on this 
ring is given by 

27rr^sinA|dA|cos/o, (3.71) 

where r^ is the radius of the Earth (see 
geometry in Figure 3.21). This changes Eq. 
(3.37) to 

E{A)=E,\-^ 
tan if 

ro / \ cos /g / \ sin A 
1 d^T 

dA" 

(3.72) 
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where EQ^^K/ITT, For a homogeneous 
Earth, T =[2r^%m{l!i/2)]/v^, which im­
plies 

Thus we can rewrite (3.72) as 

£ ( A ) = 
dT 
7R cos w 

= ( . 

(3.73) 

X 

X 

1 
2sin(A/2)cos(A/2) 

cos(A/2) 

Further 

sin t'o = cos( A/2) 

cos j'o = sin( A/2) 

cos(A/2) 

sin2(A/2) 

4ro^sin2(A/2) 

]\^v^] sin(A/2) 

(3.75) 

tan in 
COS/Q sin^(A/2) 

(3.74) 

The denominator is simply the square of 
the length of the cord connecting the 
source and receiver. This implies that en­
ergy decays as 1/R^, where R is the dis­
tance traveled. Qualitatively, this will also 
hold for an inhomogeneous sphere. 

Box 3.3 Caustics and the Antipode 

In Figure 3.18b near the ends of the triplication, points B and C, a special 
amplitude behavior is predicted. In Eq. (3.37) we see that the amplitude is 
proportional to dp/dx, and at B and C this derivative is infinite. This represents a 
type of focusing called a caustic. The simplest way to interpret the caustic at point 
B is to think of rays from the AB and BC branches—the energy turning above 
and reflecting off the discontinuity, respectively—constructively interfering. The 
amplitude may be large, but it is not infinite. This is an example of how ray theory 
can break down; the rays are turning in a region of the Earth where the velocity 
gradient is rapidly changing, and our assumptions for the eikonal equation are 
inappropriate. Another caustic is the cusp associated with the termination of a 
shadow zone (see point D in Figure 3.18c). 

In a spherical Earth, strong focusing occurs at the antipode. In the sphere, 
seismic waves spread in all directions. Geometric consideration shows that 
these spreading wavefields converge at a point exactly opposite the epicenter (see 
Figure 3.B3.1). If the Earth is homogeneous, then all common portions of the 
wavefront should arrive simultaneously at the receiver and produce strong ampli­
fication. Multiple arrivals will be observed because the wavefront has folded over 
on itself. Figure 3.B3.1 shows a recording of the Inangahua, New Zealand, 
earthquake at two stations on the Iberian Peninsula. Note how dramatic the 
focusing effects are for various phases within a few degrees of the antipode. 

continues 
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ANTIPODAL FOCUSING 

NEW ZEALAND 
Moy 23 . 1966 

AM7925' 
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FIGURE 3.B3.1 Example of how raypaths converge at the antipode. The seismograms show 
the constructive interference effect on amplitudes very near the antipode (A = 180°3. (Mod­
ified from Rial and Cormier. 1980.) 

How does our expression for the decay 
of energy relate to the ground shaking of a 
seismic wave? Basically, amplitude will be 
proportional to }/E, SO (3.75) tells us that 
the amplitudes will decrease inversely with 
length of the ray, -' 1/R. Let us consider 
this in more detail. Seismic waves propa­
gate as loci of particle motions, so a wave-
front transports energy in the form of 
particle momentum and/or potential en­
ergy. We can calculate this energy using a 
simple analog, namely the restoring force 
of a mass suspended from a spring. This is 
given by / = —kx, where k is the spring 
constant. The increment of work done in 
moving the mass a small distance, dx, is 
dlV= -kxdx. If the mass is initially at 
equilibrium, the total work is given by 

A similar argument can be applied to po­
tential energy. The potential energy is the 
strain associated with the transient stress 
pulse. Thus the stored strain in a small 
volume is given by 

W 
1 = j-a,e,dV. {3.11) 

Now let us evaluate Eq. (3.77) for a partic­
ular case without loss of generality. Con­
sider an SH plane wave propagating in the 
jCj direction, with all motion in the X2 
direction: 

M2=.4e'<"'-^^»>. (3.78) 

The only nonzero strains are 

W= jdW^ f -kxdx= --kx^. 
1 du^ 

^12 ~ ^21 ~ -̂  2 dx^ 
= /Â le'̂ '̂"̂ "̂ '̂  

(3.76) (3.79) 
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and the stress is given by 

^12 = ^21 = -/A:/i^e'^"'-^^J>. (3.80) 

Thus the average strain energy during a 
complete wavelength is given by 

W-jf^^'-k^'fidx, (3.81) 

where A is the wavelength. Recall that A 
equals the velocity times the period of 
oscillation. Further, /x=p)8^ and k = 
(ITT/A), which can be used to obtain 

P wave 

FIGURE 3.23 Ray for a P wave incident on a 
solid-solid boundary and the rays for waves 
generated at the interface. 

2\l3T 
A^pP^^liT^pj^. (3.82) 

Thus the energy in a plane wave is propor­
tional to the square of the pulse amplitude 
and inversely proportional to the square of 
the period. Thus, if the amplitude of two 
seismic signals is the same, the higher-
frequency signal transports more energy. 

The amplitude of a seismic signal is 
modified during propagation by several 
phenomena. We have already seen that 
geometric spreading decreases the ampli­
tude. The remainder of this chapter deals 
with two other phenomena that affect am­
plitudes: reflection/refraction at a bound­
ary and anelastic attenuation. 

3.6 Partitioning of Seismic 
Energy at a Boundary 

We have seen in the previous sections of 
this chapter that when a body wave en­
counters a boundary or discontinuity at 
which the seismic velocity changes, the 
wave will reflect or refract. As we will 
show, when a P or SV wave impinges on a 
boundary, four derivative waves result, as 
shown in Figure 3.23: (1) P\ the refracted 
or transmitted P wave (note that P head 
waves are a subset of P'), (2) SV\ the 
refracted 5K(it is possible to have P waves 
generate a SV head wave if J82 > <̂ iX (3) 

P, the reflected P wave, and (4) SV, the 
reflected SV wave. The ray geometry of 
these derived waves is governed by Snell's 
law. By Snell's law, all of the rays must 
have the same ray parameter, p, since all 
the waves must move along the boundary 
with the same apparent velocity: 

( s in / ) /a i = (siny)/)^! = (siny)/i82 

(s in/ ' ) /a 2 (3.83) 

When an SH wave encounters a disconti­
nuity surface parallel to the SH motion, 
only two waves are generated: (1) SH, 
reflected, and (2) SH\ refracted. {SH' can 
be a head wave.) The existence of multiple 
waves derived from a single incident wave 
implies that the energy of the incident 
wave must be partitioned. Although Snell's 
law and ray theory can predict the geome­
try of the wave interaction, we must return 
to a wavefield representation to determine 
the amplitude partitioning. 

In Figure 3.23, the interface separates 
two materials of distinct elastic properties. 
Within either half-space the equations of 
motion for homogeneous media are valid. 
The physics that govern the wave propaga­
tion require that stresses and displace­
ments be "transmitted" across the inter­
face. Thus a stress imbalance propagating 
in layer 1 will result in a stress imbalance 
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in layer 2, giving rise to a wavefield. There 
are several types of interface. If the inter­
face is between two solids, all components 
of stress at the interface and all compo­
nents of displacement are continuous. This 
is called a welded interface. If the interface 
is between a solid and a perfect fluid, the 
fluid may slip along the interface, since it 
has no rigidity. Thus, the tangential dis­
placements are not continuous, and the 
tangential tractions must vanish. In addi­
tion, the normal traction and normal dis­
placements at the fluid-solid contact are 
continuous. At a free surface, all the trac­
tions must be zero, and no explicit restric­
tion is placed on the displacements. Note 
that these conditions are on tractions, not 
stresses. For example, if the x^X2 plane is 
a free surface, then cr^,^ = 0-32 = 0-33 = 0, but 
the other components of stress are not 
constrained. 

These conditions on continuity of dis­
placement and stress are the basis for pre­
dicting the partitioning of energy. Now 
return to Figure 3.23. Why does the P 
wave produce both a reflected and re­
fracted P wave and a reflected and re­
fracted SV V/3WG? It makes sense that no 
SH wave will be produced because the 
particle motion of the incident P wave is 
confined to the x^x^ plane, and no "re­
fraction" of the P wave at a horizontal 
boundary will produce motion in the X2 
plane. Refraction of the P wave will cause 
particle displacements that are not parallel 
on opposite sides of the interface (see 
Figure 3.24). Thus, the jP-wave displace­
ments alone do not combine to give con­
tinuous displacements or tractions across 
the welded interface. The additional parti­
cle motion required to make the fields 
continuous results in 5K-wave-type mo­
tion, which is also confined to the x^x^ 
plane. Remember, only P- and 5-wave 
motions exist as propagating disturbances. 
In a fluid, where no S waves exist, the P 
waves reflect and transmit purely as P 
waves because only normal displacements 
and normal tractions need to remain con­
tinuous at the boundary. 

Incident 
Reflected P 

Transmitted P wave 

FIGURE 3.24 P-wave particle motions for the 
incident, reflected, and refracted P waves. Note 
that if this is a solid-solid boundary, the shear 
stress in the two layers will not match at the 
boundary, requiring the generation of SV motion 
in both media. 

We can quantify the energy partitioning 
by using the potentials introduced in Sec­
tion 2.4 for plane waves. The P-wave and 
5K-wave potentials for the various wave 
components are represented by 

^(layer 1 ) ~ ^incident ray "^ ^reflected ray 

^(layer 2) "^ ^refracted 

*A ^ ^Areflected 

^ ^ = ^refracted, (3-84) 

where (f) and if/ are the P and SV poten­
tials, respectively. The plane-wave poten­
tials are of the form 

<Aincident = - 4 ^ e x p [ / w ( / ^ X j + r]^X^ - t)] . 

(3.85) 

Recall that {kx^)/a} = (sin i)/a =p. Simi­
larly, kj^yo) = 7]^^. We can write similar 
equations for the other potentials in (3.84): 

</>renected = ^ 2 QXp[i(o{pXi " Va.^S " O ] 

<Arefracted = A^exp[i(o{pX^ + 7]^^X^ - t)] 

<Areflected = ^ 2 GXp[i(o{pXi - 7]^X^ ~ t)] 

<Arefracted = ^ 3 e X p [ / a ) ( / 7 X i + V^^^^ - t)]. 

(3.86) 
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The various vertical slownesses are for the 
associated velocities. Note that the sign of 
the X3 term changes, depending on 
whether the ray is refracted or reflected. 
This indicates the direction (down or up) 
in which the ray is traveling. 

The ratios of the postinteraction ampli­
tudes (A2, A2, B2, B^) over the incident 
amplitude (A^) are called the reflection 
and transmission coefficients. These coef­
ficients control the partitioning of ampli­
tude among the potentials. The tractions 
and displacements can be calculated from 
the potentials by taking the derivatives with 
respect to x^ and JC3, which preserves the 
exponential character of the potentials. 

In general, the boundary conditions in a 
welded interface require significant alge­
braic manipulation (see Table 3.1), so we 
will consider a simplified example. A P 
wave incident on a fluid-fluid interface 
generates no S waves, so we need only 
consider reflected and refracted P waves. 
From (3.85) and (3.86) we can write down 
equations for the P-wave potential: 

medium 1: c/)i =Aitxp[i(o(pXi + 171X3 - 0 ] 

-{-A2Cxp[io)(pxi -171^^3"" 0 ] 

medium 2: <̂ 2 =^3exp[/cu(pjCi -I-172-̂ 3 ~ 01-

(3.87) 

TABLE 3.1 Displacement Reflection and Transmission Coefficients 

Coefficient Formula 

Solid-free surface (P-
Rpp 

RssiSH) 

Solid-solid (P-SV) 

Rpp 

^PS 

Tpp 

^PS 

^ss 

^SP 

SV) 

{4(a/p)pri,[il/l3^)-2p^])/A 

{4Wa)pvplil/P^)-2p^]}/A 

{-l(l/P^)-2p^f + 4p^rj^rjp]/A 

1 

[(bVa, - cy)„^)F - (fl + drj^ri^^)Hp^]/D 

-[2rj^iiab + cdt)^7)^^)p{a,/^,)]/D 

[2p,'n,F{a,/a^)]/D 

[2p,y),Hp{a,/^^)]/D 

-[(bvp, - cVp,)E -(a+ b'n,^7)p)Gp'-]/D 

-{I'n^i.ab + cd7j„^rjp^)p(p^/aO]/D 

/ \ 5 5 V o n J 

Tss(SH) 

a = P 2 ( l - 2 / 3 2 V ) - P i ( l - 2 i 8 ? p 2 ) 

b=P2il-2plp^)-2p,l3^p^ 

c=P i ( l - 2 /32p2 ) - f 2p2i8|p^ 

^ = 2(p2/3f-Pii8?) 

D = 

A==[il/^^) 

EF + GHp^ 
-2p2]2 + 4p2 

/ A l ' ^ / 8 , + M 2 ^ ^ 2 

2MIT?^, 

^ = ^ ^ a , + ^ ^ a 2 

F==b7)p^-\-cy)p^ 

G^a- drj^rjp^ 

H = a-dr]^^T1p^ 

' ^a .^ /S, 
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The P displacements are related to the 
potentials by Eq. (2.91): 

system of equations: 

u = 
d(l> 

-X, + 0 x 9 + 
d(t> 

dx-x 
X3. ( 3 . 8 8 ) 

The appropriate boundary conditions for 
the fluid-fluid boundary are continuity of 
normal stress and displacement (0-33 and 
W3). Mathematically, the displacement 
condition is given by 

Thus 
tudes 

A, 

A\ 

- ^ 2 = 

+ A2 = 

^ ^ 3 
^1 

P2 
-A,. 
P\ 

we can solve for ratios of the 

(3.96] 

ampli 

= ^= 
2pii7i 

dx^ dx^ 
(3.89) 

XT, = 0 
^ 2 P2V1-P1V2 

Ai P1V2 + P2V1 
(3.97) 

Substituting (3.87) into this equation yields 

= /a>T72.43e'"(^^i-'> ( 3 . 9 0 ) 

or 

Vi{A,-A2)-V2A,. (3.91) 

The condition of stress continuity is given 
by 

(73-3= A V u + 2/1633 = 0-3+3, ( 3 . 9 2 ) 

but /I = 0 in a fluid. Thus 

\^^^ = k^^2' (3.93) 

We can simplify (3.93) by using the fact 
that ff) satisfies the wave equation: 

1 d^(f) - 0 ) 2 
V^^-— = —^^, (3.94) 

a ot a 

Therefore, for x^ = 0, 

^{A,+A2) = ^A,. (3.95) 

Now, for a fluid, Â  = Piaj and A2 = P2«2» 
so we can rewrite (3.91) and (3.95) as a 

^ and ^ are referred to as the transmis­
sion and reflection coefficients, respec­
tively. Note that ^ and ^ depend on 17, 
which is (cos i)/a. Thus the partitioning of 
potential amplitudes depends on the angle 
at which the ray strikes the boundary. 
Consider the case of vertical incidence 
( P = 0, i7i = l / a i , 7 )2= l / a 2 ) -

^. 
P 2 / « l - P l / « 2 P 2 « 2 - P l « l 

/ = 0 ' 

/ = o ■ 

P l / « 2 + P 2 / « l 

2 p l / « l 

P l / « 2 + P 2 / « l 

P l « l + P 2 « 2 

(3.98) 

2 p i a 2 

P l « l + P 2 « 2 

(3.99) 

Now at this point, the reflection and trans­
mission coefficients are for potential, not 
displacement. We can obtain displacement 
terms by recalling 1/3 = dcfy/dx^: 

^reflected ^ " / ^ ^ i ^ 2 ^ PjO l̂ " P2Q 2̂ 

"incident ^<^Vl ^ 

= R= -6 'u = 0 

P l « l + P 2 « 2 

(3.100) 

"refracted ^"^^2 ^^ l/a^ Ip^a^ 

"incident 10)^1 A^ \/a^ p^a^ + P2a2 

= r= -^• / = o - (3.101) 
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The R and T derived here, which are the 
vector displacement transmission and re­
flection coefficients, have extensive use in 
geophysics despite being derived for fluids 
and vertical incidence. One must be care­
ful to keep track of the vector displace­
ment with respect to the direction the 
wave is propagating in defining the sign of 
the motion. These reflection and transmis­
sion coefficients also hold for solid-solid 
interfaces at near-vertical incidence. The 
energy is partitioned quite simply: T-R 
= 1. The quantity pa is known as acoustic 
impedance, and depending on how acous­
tic impedance changes across the bound­
ary, the reflection coefficient can have val­
ues of - 1 to 4-1. Similarly, the range of 
the transmission coefficient is 0 to 2. A 
free-surface boundary will have a vertical-
incidence reffection coefficient of - 1 (the 
displacement reverses direction with re­
spect to the direction of progpagation). 
The amplitude of transmitted displace­
ment is zero. 

If we return to the general form of ^ 
and ^ (nonvertical incidence), we can in­
vestigate the behavior of the system as the 
angle of incidence varies. If a2<ai and 
P2«2>Pi"i» ^hen ^ will be a positive 
value for normal incidence. As / increases, 
^ will decrease, reaching zero at an angle 
of incidence called the intramission angle: 

Incident 

Pi V ( a , / a 2 ) ^ - s i n 2 / 

/r sin^ / 
(3.102) 

Beyond the intramission angle, the reflec­
tion coefficient decreases to a value of - 1 
at grazing incidence (/ = 90°). If a2<0L^ 
and P2OL2 <p\OL\, the reflection coeflScient 
is always negative and equals - 1 for graz­
ing incidence. 

If a2> OL^, a head wave is produced at 
the critical angle, i^ = mi~Ka^/a2). At in­
cident angles greater than the critical an­
gle, no P waves will propagate in the 
lower medium. This is because p = 
(sin O/ai = 1/c (where c is the apparent 
velocity) becomes greater than l/a2- Thus 
172 = [(\/a\) — p^]^^ become imaginary. 

NZ Reflected 

Head Wave ̂^^ 

X 
T 

FIGURE 3.25 Exponential decay of the particle 
nnotion of a head wave propagating along the 
boundary. 

We can write 172 = iri2 ^ ±i\p^ -
{l/a\)f^, where we choose the positive 
sign such that the amplitude of the re­
fracted potential (3.87) decreases expo­
nentially away from the boundary. This 
keeps the wave energy bounded. Figure 
3.25 illustrates the head wave with expo­
nentially decaying displacements in the 
half-space. The transmission coefficient is 
complex, and to keep the ray parameter 
constant, angle /2 becomes complex. 

We can rewrite the postcritical reflec­
tion coefficient in (3.97) as 

PiVx-piiVi 
PiVi-^Piirii 

(3.103) 

Now c^ is a complex number divided by its 
conjugate. This implies that the magnitude 
of c^ is 1, but there is a phase shift of 6 

' = e' (3.104) 

^ = 2 t a n - M ^ i ^ | . (3.105) 
\P2V1 

Since the modulus of the reflection coef­
ficient is 1, the postcritical reflection is 
referred to as total reflection, but it will 
behave differently than precritical reflec­
tions. Figure 3.26 shows a synthetic seis-
mogram profile generated for increasing 
angles of incidence (increasing distance). 
Beyond 60 km, the reflected arrival has an 
angle of incidence that is greater than i^. 
This is the distance at which a head wave 
first occurs and begins to move out from 
the reflected arrival. At 450 km the re­
flected wave is incident on the boundary at 
near-grazing incidence; the reflected wave-
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Reflected 
D = 50km 

75 
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FIGURE 3.26 The change in reflected pulse shape (phase) as the incidence angle exceeds 
the critical angle. For the model shown, the head wave first appears at ~ 60 km. A 
comparison of seismograms at 50 and 450 km shows that the polarity has been reversed. 

form is very similar to that at 50 km, 
except the polarity is completely reversed. 

It is clear from Figure 3.26 that the 
reflected wave changes shape as the 
source-receiver distance increases. Al­
though the phase shift in Eq. (3.105) ex­
plains this shape change, it is instructive to 
return to the equation for the reflection 
potential. Noting that A2'=A^^ =A^e'^, 
we can write the potential for the postcriti-
cal reflected arrival as 

(f) =.4iexp[/^]exp[/co(/7JCi -171^3 - 0 ] -

(3.106) 

Now consider the behavior of 6: 

d = 0 i{i = /, 
^ < 0 for / > i^ 
0 = —TT i = 7r/2. 

We first rewrite (3.106) as 

(f) =A^exp[io}(pXi ~''7i-^3 ~ ^ + ( ^ / ^ ) ) ] -

(3.107) 

Now 0/(1) is explicitly a new or additional 
phase term. If we apply the constant-phase 
argument to track the behavior of a partic-
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ular wavefront, we have 

px^ - rj^x^ ~ t + {B/(f)) = constant. 

(3.108) 

The term ~t + {S/io) = -{t - d/o)) = i is 
an apparent time that now depends on 
frequency. Thus, the position of the wave-
front is frequency dependent; lower fre­
quencies (smaller (o) will have earlier ar­
rival times than high frequencies (recall 
0 < 0). As CO -^ 00, f = ^ This implies that 
the wavefront is "spread out" for a post-
critical reflection, each harmonic term hav­
ing a separate plane wave. This behavior is 
called dispersion, a phenomenon we will 
become very familiar with in the next 
chapter. A consequence of the dispersion 
is that the strongest reflection coefficient 
occurs exactly at i^ (i? = 1, ^ = 0, and 
wavefronts do not degrade). 

Reflection and transmission at a welded 
interface are much more complicated than 
at a fluid-fluid interface. However, the SH 
system remains fairly simple because inter­

action with the boundary does not produce 
any P or SV energy, so we will briefly 
consider this case. As with the fluid-fluid 
case, there are two boundary conditions: 
(1) continuity of tangential displacement 
(V^=y~\ and (2) continuity of shear 
stress (0*2̂  =0-^3). Applying these condi­
tions yields 5//-displacement reflection 
and transmission coefficients: 

r= 
2^1'^^, 

R = (3.109) 

These equations are nearly identical to 
Eqs. (3.97), and if we consider the case of 
vertical incidence, then (3.109) reduces to 

r= 
2piP, 

R== 
P1P1-P2P2 
PiPi-^PiPi 

(3.110) 

Box 3.4 Seismic Diffraction 

The analogy between seismic ray theory and optics extends to the concept of 
diffraction. Diffraction is defined as the transmission of energy by nongeometric 
ray paths. In optics, the classic example of diffraction is light "leaking" around the 
edge of an opaque screen. In seismology, diffraction occurs whenever the radius of 
curvature of a reflecting interface is less than a few wavelengths of the propagating 
wave. Figure 3.B4.1a shows a plane wave incident upon an opaque (acoustic 
impedance is infinite) boundary. Ray theory requires that waves arriving at 
seismometers at points F and G have identical amplitudes; no energy is transmit­
ted to the right of point G. In fact, the edge of the boundary acts like a secondary 
source (Huygens' principle) and radiates energy forward in all directions. These 
diffractions can be understood from the standpoint of Fresnel zones, a concept that 
states that waves reflect from a large region rather than just a point. Thus, the 
Fresnel zone causes the ray traveling to F to "see" the edge of the reflector, 
although the geometric raypath clearly misses the boundary. The first Fresnel zone 
may be thought of as a cone with the edge of the reflector as its apex. For a 
receiver that is a distance d beyond the reflector, the cone's radius is given by 
r=-d-\-{\, where A is the wavelength of the seismic wave. Figure 3.B4.1b shows 
the amplitude variation predicted for the experiment given in 3.B4.1a. 

continues 
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F G 

DISTANCE 

FIGURE 3.B4.1 (a] Rays incident on a grating. Energy is diffracted around the edge, (b) 
Amplitude of energy as a function of distance into the diffraction zone. (From Doornbos. 
1989}. 

Diffraction is present at many scales within the Earth and has occasionally led to 
erroneous interpretations of structure. Figure 3.B4.2 shows an example from 
reflection seismology. Here, a high-velocity layer is sandwiched between half-spaces, 
and the layer is offset by a normal fault. The seismograms shown are for a source 
and receiver placed at each successive distance point. At jc = 2000, the seismogram 
is made up of two pulses, of opposite polarity, representing reflections off the top 
and bottom of the layer. As x increases, later arrivals begin to appear, forming a 
parabola known as a "diffraction frown." 

8000. 

1.000 

2.000 

FIGURE 3.B4.2 A synthetic reflection seismic section for the structure at the top of the 
figure. A fault offsets a high-velocity bed. 8 1 . S2 . and S3 are diffracted arrivals. (From 
Waters. K. H. "Reflection Seismology: A Tool for Energy Resource Exploration." Copyright 
©1981 John Wiley & Sons.) 
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The quantity pj8 is called the shear 
impedance. The SH critical-angle behavior 
for ^2^P\ is very analogous to that de­
scribed for the acoustic (fluid) case. 

The P-SV system requires using every 
potential term in Eq. (3.84). In general, 
four derivative waves exist for each inci­
dent P or SV wave. The velocities may 
permit both P and SV head waves for 
incident P or 5 waves. For the welded 
interface, 0-3., Wj, and M3 must be continu­
ous (used for boundary conditions). For 
the case of an incident P wave, the dis­
placement boundary conditions [using 
(3.86)], give (M^ continuous) 

p{A^ +A2) + VpB^ =pA^ - 'r]p^B2 

(3.111) 

and (1/3 continuous) 

Va.iA, -A2) -\-pB, = r)^^A^ +/7S2. 

(3.112) 

The continuity of stress (0-33 continuous) 
gives 

ky{A, ^A2) + Ai/7T|̂  Bi + (Ai + 2/ii) 

= A2P^^3 -pr]p^\2^2 + ( A2 + 2/X2) 

x « ^ 3 + ^/3,P^2) (3.113) 

and (0-31 continuous) 

f^il^PVal<A,-A2)^P%-vlB,] 

= f^2[^PVa2^3 +P^^2 - ^^2^2] • 

(3.114) 

Thus we have four equations with five 
unknowns. It is sufficient to determine the 
ratios with respect to v4i, thus obtaining 
Rpp, Rps, Tpp, and Tp^. The algebra re­
quired to obtain these coefficients is exten­
sive, and we leave it to the reader as an 
exercise to obtain the final values given in 

Table 3.1. Table 3.1 lists the standard re­
flection and transmission coefficients for 
solid-solid and solid-air (free-surface re­
flections) interfaces. 

Figures 3.27 and 3.28 show the reflec­
tion and transmission coefficients for P 
waves incident from below and above a 
welded interface. In the first case, the wave 
is going from a fast- to a ^tow-velocity 
material, and there are no critical angles. 
The energy partitioning is dominated by 
Rpp and Tpp from 0° to approximately 
20°. Over this range, Rpp and Tpp are 
nearly identical to what would be obtained 
from the acoustic impedance mismatch 
[Eqs. (3.100) and (3.101]. When the P wave 
is incident from the low-velocity medium, 
the critical angle is 38.5°. The P transmis­
sion coefficient is 0 beyond this angle. As 
the angle of incidence approaches 38.5°, 
the coefficients vary rapidly. In particular, 
Tpp gets very large before going to zero. 
This can be explained by a simple geomet­
ric argument, as shown in Figure 3.29. 
Because the amplitude of the pulse is pro­
portional to'the square root of energy per 
surface area, as surface area goes to zero, 
the amplitude becomes large. 

The partitioning of a wave into four 
new waves at each boundary in the Earth 
results in seismograms that are rich in 
arrivals. We refer to the partitioning of P 
waves into SV waves or SV waves into P 
waves as mode conversions. Mode conver­
sions provide important information about 
Earth structure. Figure 3.30 shows a seis-
mogram from a deep crustal earthquake in 
the Mississippi embayment. A converted 
phase Sp is generated at a sediment-
bedrock interface. This arrives ahead of 5 
by a time proportional to the depth of the 
interface and the Vp/v^ ratio in the crust. 
Other examples of reflected and converted 
phases are described in Chapter 7. 

3.7 Attenuation and Scattering 

Thus far we have been concerned with 
the elastic properties of the Earth in our 
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FIGURE 3.27 Reflection and refraction coefficients for a P wave incident on a boundary 
from a high-velocity region. For near-vertical incidence (angle =0°) . the reflected and re­
fracted P-wave amplitudes approximately equal those predicted by acoustic-impedance 
mismatches [Eqs. (3.100) and (3.10133. There are no critical angles in this case. 

a^ = 4.98 km/s P̂  = 2.667 cm^ 
a2=8.0 km/s p2=3.38cm3 

P,=2.9 km/s " i 'P i 'P i 
P2 = 4.6 km/s «2.pr^2 

\ 

90° 

Angle of Incidence 

FIGURE 3.28 Reflection and refraction coefficients for a P wave incident on a boundary 
from a low-velocity region, i^ for the P wave occurs at 38.5°. Since the S velocity in the 
lower medium is lower than the upper P velocity, the refracted S wave never reaches a 
critical angle. 



BODY WAVES AND RAY THEORY 

dAi a 

FIGURE 3.29 Schematic of ray bundles striking a boundary between low- and high-velocity 
material. The amplitude of the pulse is Inversely proportional to the surface area dA. As / 
approaches the critical angle i^, dA^ goes to zero, and the amplitude of the refracted wave 
becomes very large. 

discussion of wave propagation. In an ide­
alized, purely elastic Earth, geometric 
spreading and the reflection and transmis­
sion of energy at boundaries control the 
amplitude of a seismic pulse. Once ex­
cited, these waves would persist indefi­
nitely. The real Earth is not perfectly 
elastic, and propagating waves attenuate 
with time due to various energy-loss mech­
anisms. The successive conversion of po­
tential energy (particle position) to kinetic 
energy (particle velocity) as a wave propa­

gates is not perfectly reversible, and other 
work is done, such as movements along 
mineral dislocations or shear heating at 
grain boundaries, that taps the wave en­
ergy. We usually describe these processes 
collectively as internal friction, and we 
"model" the internal-friction effects with 
phenomenological descriptions because 
the microscopic processes are complex. 

The simplest descriptions of attenuation 
can be developed for an oscillating mass 
on a spring. Consider Figure 3.31, where a 

'W^pi^^kh^^^"^'' 

\f^l/**fl^k%^ifrM^ ■\NV<r^jAv 

J LilJ I I 1 I 

Time, s 15 
FIGURE 3.30 Example of mode conversion at a boundary. The SV wave is converted to a P 
wave at a sediment-bedrock interface, giving rise to the Sp precursor to S on the vertical 
(X) seismogram, while P^S conversions iPg] are seen on the horizontals. (Courtesy of W. 
Mooney.) 
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Box 3.5 Scattering 

The example seismograms in Figures 3.11 and 3.16 show a muhiplicity of 
arrivals. Some of these arrivals can be explained in terms of reflections and mode 
conversions at boundaries within a simple layered model of the crust, but a 
one-dimensional structure cannot explain a significant amount of energy. These 
arrivals are produced by scattering caused by the wavefield's interaction with 
small-scale heterogeneities. Heterogeneities in material properties pervade the 
Earth and span many different length scales (see Chapter 7). Small-scale hetero­
geneity causes scattering that partitions the high-frequency wavefield into a se­
quence of arrivals that are often called coda waves. 

Figure 3.B5.1 shows seismograms produced by the impact of a Saturn booster on 
the Moon's surface. These were recorded by a lunar seismometer installed during 
the Apollo 14 mission. The short-period three-component records ring on for more 
than 1 h, with waves being scattered from the highly heterogeneous region near the 
Moon's surface. The coda is spindle shaped, and analysis of the particle motions 
indicates that the energy is arriving from all directions. These differ from typical 
Earth recordings, for which the coda is weaker than the direct arrivals. This is 
because the seismic-wave attenuation on the Moon is much smaller, allowing 
strongly scattered waves to propagate for some time. The wave interactions with 
boundary irregularities and with volumetric gradients in rock properties all involve 
the conventional effects of refraction, conversion, reflection, and diffraction that 
we describe in this chapter, but the resulting overall wavefield is so complex that 
individual arrivals cannot be associated with a particular path through the medium 
given a limited number of surface recordings. Generally, seismologists attempt to 
characterize the statistical properties of the scattering medium in terms of the 
spectrum of spatial heterogeneities superimposed on any simple layered structure. 
Many techniques have been developed to relate the coda to the heterogeneity 
spectrum. 

A-14 SIVB Impact 
Alsep 12 

FIGURE 3.B5.1 Three-component seismograms recording the impact of an Apollo lander on 
the Moon. Seismograms ring for more than 1 h. [From Dainty etal., 1974.) 

continues 
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Scattering can also decrease the amplitude of a seismic phase by shifting energy 
from the direct arrival back into the coda. This apparent attenuation is called 
scattering attenuation, and is often characterized by an exponential attenuation 
quality factor, j2sc- Unlike Q defined for anelastic processes, Q^^ is not a measure 
of energy loss per cycle but, rather, a measure of energy redistribution. Q^^ 
depends very strongly on frequency and is very path dependent, since it depends 
on the particular heterogeneity spectrum encountered by a wavefield propagating 
through the Earth. Q^^ is usually modeled with stochastic operators, or randomiza­
tion coefficients. Figure 3.B5.2 show snapshots of a wavefield at different times as 
it propagates though material that has a random 10% distribution of velocity 
heterogeneity. Note the direct P wave remains fairly coherent, but a complex suite 
of later arrivals is generated by the heterogeneity. These will appear at a single 
station as coda scattered from all directions. 

P-Wave (Divergence) SV-Wave (Curl) 

.064 sec 

.192 sec 

.320 sec 

.512 sec 

FIGUIIE 3.B5.2 Synthetic P waves in a heterogeneous material. After 0.512 s. the 
spherical wavefront is broken up and coda has been developed. (From Frankel and Clayton. 
1986.] 
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Spring Constant k 
y^^-^^;^-— Mass m 

FIGURE 3 .31 Phenomenoiogical model for 
seisnnic attenuation. The spring represents 
elastic processes in the Earth. Force f 
represents friction opposing the motion of the 
mass. 

mass m attached to a spring with spring 
constant A: (A: is a measure of the spring's 
stiffness) slides across a surface. Let us 
first consider a frictionless case. The equa­
tion of motion for this system relates the 
restoring force of the spring to the inertial 
force imparted by the moving mass: 

mx + fcc == 0. (3.115) 

The general solution to this equation is a 
harmonic oscillation: 

(OQ=y[k/m. (3.116) 

Once the motion starts, it will continue 
forever, oscillating at the natural fre­
quency of the system o)^. We can intro­
duce attenuation by adding a damping 
force, such as friction between the moving 
mass and the underlying surface. In this 
case, there is an added force, proportional 
to the velocity of the mass 

mjc + yi-hfcc = 0 (3.117) 

or rewriting, 

X 4- ecj^x 4- WQJC = 0, (3.118) 

where e = (y/mtOoX and (OQ = {k/mY^. y 
and E are called coefficients of friction. 

The solution of (3.118) is of the form 

x{t) =^0^"^"""' sin(ci>or\/l - ê  ), 

(3.119) 

where A^e'^"^^^ =A(e), This is a harmonic 
oscillation that decays exponentially with 
time. If e = 0 (no attenuation), (3.119) re­
verts to Eq. (3.116). We can express e in 
the form of a quality factor, Q: 

e = 1/2Q. (3.120) 

Using (3.120), we can write the amplitude 
as a function of time as 

v4(0=v4o^-""'/^^, (3 .̂121) 

where Q is defined in terms of the frac­
tional loss of energy per cycle of oscilla­
tion. In other words 

1 

Q 

AE 
2ITE 

(3.122) 

This is most easily understood in terms of 
the logarithmic decrement, 8, which is the 
logarithm of the ratio of amplitudes of 
successive cycles of oscillation 

5 = ln (^ i /^2) - (3.123) 

Since energy is proportional to the square 
of amplitude, then 

2lnA = lnE. (3.124) 

Combining (3.121) with (3.123), where the 
amplitudes are one period (TQ^ITT/COQ) 
apart gives 

Q = 7r/8. (3.125) 

We can also write an equation for ampli-
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Vertical geophone 350' deep in hole No. 3 

CO 

Vertical geophone 450' deep in hole No. 9 

8 

Vertical geophone 650' deep in hole No. 10 

Vertical geophone 550' deep in hole No. 4 

g-

Vertical geophone 750' deep in hole No.5 

|< 0.01S si o J 

FIGURE 3.32 The effects of attenuation on a seismic pulse. Comparing the pulse width at 
350 f t with that at 750 f t shows a significant pulse broadening. This is due to preferential 
removal of higher frequencies by attenuation. This is accompanied by a decrease in amplitude 
at a rate greater than expected just for geometric spreading. [After McDonal etal., 1958.) 

tude as a function of distance traveled: 

A{x)==^AQe-^f''/^'^\ (3.126) 

It is obvious from (3.126) that for a con­
stant value of Q a high-frequency wave 
will attenuate more rapidly than a low-
frequency wave. This is because for a given 
distance the high-frequency wave will go 
through more oscillations than a low-
frequency wave will. Figure 3.32 shows the 
development of a wave as it travels away 
from its source. Notice that the pulse 
broadens at successive distances. The 
high-frequency component of the pulse has 
been removed through attenuation. 

Energy loss through nonelastic pro­
cesses is usually measured by intrinsic at­
tenuation and parameterized with Q. Large 
values of Q imply small attenuation. As Q 
approaches zero, attenuation is very strong. 
Q for P waves in the Earth is systemati­
cally larger than Q for S waves, and we 
thus refer to the corresponding quantities 
as Q^ and Q^, respectively. It is believed 
that intrinsic attenuation occurs almost en­
tirely in shear, associated with lateral 
movements of lattice effects and grain 

boundaries. Table 3.2 gives values of Q for 
several rock types. In general, Q increases 
with material density and velocity. For a 
material with all losses due to only shear­
ing mechanisms, Q^ ~ | Q ^ . 

Q for seismic waves is observed to be 
largely independent of frequency in the 
range from 0.001 to 1.0 Hz (Figure 3.33). 
At higher frequencies, Q depends on fre­
quency and, in general, increases with 
frequency. To explain this frequency de­
pendence, we must modify our phe-
nomenological model, the oscillating 
spring, as shown in Figure 3.34. This model 
is called a standard linear solid. The springs 

TABLE 3.2 Q for Various Rock Types 

Rock type 

Shale 

Sandstone 

Granite 

Peridotite 
Midmantle 
Lower mantle 
Outer core 

Qa 

30 

58 • 

250 

650 
360 

1200 
8000 

e. 
10 

31 

70-150 

280 
200 
520 

0 
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FIGURE 3.33 The frequency dependence of Qp for observed seismic waves in the Earth. The 
hachured bands give the range of observations. Between 1000 s and 1 s, O is nearly 
constant. (From Sipkin and Jordan. 1979.) 

represent elastic behavior, and the dash-
pot represents nonelastic, or viscous, 
losses. Hooke's law, as written in Eq. (2.44), 
does not describe the constitutive relation­
ship of a standard linear solid. Rather, the 
constitutive law is written 

a- -h T^o- = MX £ + rj), (3.127) 

Mass 

FIGURE 3.34 Phenomenoiogical model for a 
standard linear solid. 

where M^ is called the relaxed elastic mod­
ulus (appropriate for low frequencies over 
long times), and r^ and r̂  are called the 
stress and strain relaxation times, respec­
tively. T̂  implies constant strain, and r̂  
implies constant stress. It is simple to un­
derstand the physics of Eq. (3.127) by re­
turning to Figure 3.34. If you deflect the 
mass, it reaches a point X where it is 
acted on by a restoring force F. If you 
hold the mass at X, the force F will 
diminish with time as the dashpot relaxes. 
This reduction in restoring force is not 
recoverable. Hence the system behaves 
anelastically. 

The dynamics of (3.127) can be investi­
gated by looking at the ratio of stress to 
strain: 

( 7 ( 0 A ( 0 = ^ * . (3.128) 

M* is called the complex elastic modulus 
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and is given by 

M'^^M^ + SM 
i8Ma)T 

+ 1 + CO^TI 1 -h (O^T^ ' 

(3.129) 

where SM ^M^-M^.M^^ T^MJT^ is the 
unrelaxed elastic modulus (the elastic re­
sponse expected for high-frequency dis­
placement applied over a short time—sort 
of like the initial deflection of the mass 
described above). This complex elastic 
modulus has several significant differences 
from simple elastic moduli; most impor­
tant, the behavior of a standard linear 
solid depends on frequency (o)). This im­
plies that waves that travel through such a 
solid will be dispersed. In other words, the 
different frequencies in a seismic wavelet 
will travel with different velocities. We can 
write the phase velocity as 

i ^p (^ )== 
1 8M (o^ri 
2 M, (l+co^rj) 

(3.130) 

This equation is valid only for small SM. 
Note that if 8M = 0, then v^ is indepen­
dent of frequency and is, of course, just 
the velocity in the elastic case. For small 
8M we can also write an equation for Q: 

1 8M 
e(o>) M, 1+C.V2 

(3.131) 

P 

100 

FIGURE 3.35 Q"'' as a function of frequency 
for a standard linear solid. The peak in Q~^ is 
known as a Debye peak. 

tion and movement of crystal lattice de­
fects, and thermal currents. 

In the Earth we noted that measure­
ments of seismic-wave Q indicate that Q 
is frequency independent over a large range 
in the seismic frequency band. How is this 
reconciled with the Debye peak model? 
Because of the great variety and scale of 
attenuation processes in the Earth, no sin­
gle mechanism dominates. The sum or su­
perposition of numerous Debye peaks for 
the various relaxation processes, each with 
a different frequency range, produces a 
broad, flattened absorption band. Figure 
3.36 shows this superposition effect; note 
that Q~^ i^ basically constant for frequen­
cies of 1.0 Hz (1.0 cycle/s) to 2.8 X 
10 ""̂  Hz (1.0 cycle/h). Phenomenologi-
cally, this corresponds to a coupled system 
of many standard linear solid elements. 

The foregoing expressions for phase veloc­
ity and Q can be understood by plotting 
them as a function of (OT„. Figure 3.35 
shows the behavior: attenuation is high 
when G~Ms large; thus enhanced attenu­
ation occurs over a limited range of fre­
quencies. The peak of attenuation is called 
a Debye peak. In general, each relaxation 
mechanism in the Earth has a distinct De­
bye peak. These relaxation processes 
include grain boundary sliding, the forma-

0.01 4-

a i 
0.05 

FIGURE 3.36 Superposition of numerous Debye 
peaks results in an absorption band—nearly 
constant Q over a range of frequencies. 
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Let us return to the single Debye peak 
model in Figure 3.35. For the period range 
shown, the change in velocity is on the 
order of 5%, with higher frequencies trav­
eling faster. This result has a profound 
implication, namely that the velocity struc­
ture of the Earth, as determined from free 
oscillations or long-period surface waves, 
will diifer from that determined by body 
waves. Although Q is constant in the fre­
quency range of the absorption band, the 
phase velocity will still be dispersive with 
the following functional form: 

c{a)) =Co 
1 / 0) 

14-—— In — 
^2m \ ^0 

, (3.132) 

where a>o is some reference frequency. In 
general, this dispersion is minor for body 
waves of interest to earthquake seismol­
ogy. On the other hand, it can be impor­
tant for very high frequencies, and it is 
very important for seismic surface waves, 
which we discuss in the next chapter. 

The most common way to determine Q 
is to compare the amplitude and frequency 
content of seismic rays that have traveled 
similar paths. This eliminates unknown 
source effects. An example of such a com­
parison is shown in Figure 3.37. For S 
waves that travel down to the core, re­
flected S (ScS) and reflected P (ScP) 
arrivals can be observed at the same dis­
tance. Examples are shown for short-
period phases from a deep earthquake. 
Both ScS and ScP have about the same 
source radiation (5-wave energy) and simi­
lar attenuation on the path down to the 
core-mantle boundary. However, on the 
return leg through the mantle, the ScP 
phase is attenuated by the relatively high 
Q^ values in the mantle, whereas ScS is 
attenuated by Q^. This causes ScS to be 
both lower in amplitude and depleted in 
high-frequency content relative to ScP, as 
seen at station JCT. If we account for the 
reflection coefficients, we can estimate Q^ 

JCT 

FIGURE 3 .37 Short-period records fronn 
WWSSN station JCT (Junction City, Texas) for 
a deep South American event of March 27, 
1967. showing ScP and ScS arrivals. (From 
Burdick, 1985. Reprinted with permission from 
the Royal Astronomical Society.) 

and Qp averaged over the entire mantle 
path by matching the amplitude and fre­
quency content of the two signals. 

Actual measurements of Q vary later­
ally by an order of magnitude within the 
Earth, much larger variation than is ob­
served for seismic velocity (10% vari­
ations). The mechanisms of intrinsic atten­
uation (grain-boundary and crystal-defect 
sliding) are very sensitive to pressure and 
temperature conditions. This means that 
Q will vary within the Earth as a function 
of temperature heterogeneity. Tectonically 
active regions typically have relatively high 
heat flow and are more attenuating than 
"colder" regions. It has also been ob­
served that Q variations correlate with 
travel-time variations. Fast travel-time 
paths are typically high Q, slow paths typi­
cally low Q. This is a manifestation of the 
thermal activation of the attenuation 
mechanisms. Thus, mapping Q can reveal 
thermal processes at depth. In Chapter 7 
we will discuss the lateral variation of Q 
and its consequences for tectonic pro­
cesses. 
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In body-wave studies we commonly ac­
count for the effects of attenuation by 
convolving the elastic pulse shape with an 
attenuation operator parameterized by the 
value t*. Although we will discuss convo­
lution later (see Chapter 10), it is instruc­
tive to introduce t*, the travel time 
divided by the quality factor in a region of 
uniform attenuation: 

t travel time 
Q quality factor 

(3.135) 

In the Earth, 0 is a function of depth (and 
frequency), with the lowest Q values 
(highest attenuation) occurring in the up­
per mantle. Since Q = Qir), r* is usually 
written as a path integral value 

*̂ = / 7 T = E 7 ^ , (3.136) 

where t^ and (2/ ^^^ the travel time and 
quality factor for the /th layer in a layered 
Earth. Clearly, r* is thus the total travel 
time divided by the path-averaged value of 
Q. Observationally, we find that r* is ap­
proximately constant for body waves with 
periods longer than 1 s in the distance 
range 30° < A < 95°. In this range, /* ^ 1.0 
and /^ « 4.0. Thus, we can account for the 
effects of r* by replacing t/Q in Eq. (3.125) 
to give 

--A^e -TTft* (3.137) 

Note that /* is much larger for 5 waves 
than for P waves; thus 5 waves attenuate 
much more rapidly with distance. Figure 
3.38 shows the effects of different values of 
r* on long- and short-period seismograms. 
Note that changing r* by a factor of 20 
changes the short-period F-wave ampli-

Short-period WWSSN Long-period WWSSN 

Amp = 665 

174 

44 

t*=.1 

t*=.5 

t*=1.0 

t*=2.0 

21.4 

0.00 5.00 10.00 
Time (sec) 

FIGURE 3.38 The effect of different t* on observed 
sinort-period and long-period instrunnents. 

P waves recorded on WWSSN 



Additional Reading 

tude by a factor of 100, but it changes the 
long-period amplitude by only a factor of 
6. The change in amplitude of the high-
frequency energy is vastly greater, but the 
narrowband instrument response obscures 
this. Attenuation of body waves is compli­
cated by both frequency dependence for 
periods of less than 1 s and strong lateral 
variations at all periods (see Chapter 7). 
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CHAPTER 

4 
SURFACE WAVES AND FREE 
OSCILLATIONS 

The last two chapters have demon­
strated the remarkably simple basic char­
acter of solutions of the equations of 
motion for linear-elastic, isotropic, homo­
geneous (or weakly inhomogeneous) un­
bounded media. The displacement field 
created by a stress imbalance is completely 
accounted for by propagating P and S 
waves, no matter what type of seismic 
source is involved (Chapter 8). These 
wavefields become increasingly complex 
when discontinuous material properties 
and localized inhomogeneities are present. 
Wave phenomena such as refraction, wave 
type conversion, frequency-dependent 
scattering, and diffraction take place in an 
inhomogeneous medium like the Earth, 
leading to a very complicated body wave 
field. The fact that the Earth's inhomo-
geneity is primarily one-dimensional (i.e., 
varies with depth) allows us to interpret 
most of the body-wave complexity. The 
Earth has two additional fundamental at­
tributes, shared with all finite structures, 
that profoundly affect the seismic wave-
field. These are the presence of the free 
surface and the finite (quasi-ellipsoidal) 
shape of the planet. 

The free surface of an elastic medium 
has the special stress environment defined 

by the vanishing of surface tractions. For 
the Earth, all seismic-wave measurements 
are made at or near the free surface; thus 
it is critical to understand free-surface ef­
fects in order to interpret seismograms. At 
the surface both incident and reflected 
waves instantaneously coexist, and the to­
tal motion involves the sum of their re­
spective amplitudes. For example, from 
Table 3.1 we know that a reflected SH 
wave has the same amplitude as the inci­
dent wave. Thus, at the free surface the 
amplitude of SH motion is doubled. We 
call this multiplicative factor the SH re­
ceiver function. Free-surface receiver func­
tions for P and SV waves involve compa­
rable displacement amplifications. Even 
more important is the interaction of inci­
dent P and SV waves with the free-surface 
boundary condition, which gives rise to an 
interference wave that effectively travels 
along the surface as a Rayleigh wave. Total 
reflection of SH waves at the free surface 
combines with internal layering of the 
Earth to trap SH reverberations near the 
surface, which interfere to produce hori­
zontally propagating Love waves. Gravita-
tionally controlled waves in water on the 
Earth's surface give rise to sea waves, or 
tsunamis, which often cause greater dam-
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4.1 Free-Surface Interactions 

age from earthquake faulting than any 
elastic waves in solid rock. We will con­
sider the basic properties of these free-
surface waves in this chapter. 

The finiteness of the Earth, like its in­
ternal layering, provides scale lengths and 
boundary conditions on the seismic wave-
field. We can view the planet as a finite 
elastic system with unique boundary condi­
tions that govern the solutions of the equa­
tions of motion in the medium. This per­
spective leads to the definition of normal 
modes of the system, involving discrete 
frequencies at which the system can oscil­
late, in a manner analogous to the har­
monic tones of an organ pipe or a vibrat­
ing guitar string. For internal sources, these 
normal modes are called free oscillations, 
and we will discuss these modes of whole-
Earth oscillation in this chapter. Clearly, 
all body waves propagating in the Earth 
(remember, P and S waves provide com­
plete solutions to the equations of motion, 

although they may involve very complex 
wavefields) must have counterparts in both 
propagating surface waves or standing-
wave free oscillations. Nonetheless, each 
representation has distinct advantages for 
studying Earth structure and seismic 
sources. 

4.1 Free-Surface Interactions 

Rayleigh waves involve interaction be­
tween P and S waves at a free surface; 
thus we must further explore the nature of 
body-wave reflection coefficients at the free 
surface. We consider the two cases shown 
in Figure 4.1, for incident P and incident 
SV plane waves impinging on a free sur­
face. A free surface requires the tractions 
to vanish at x^ = 0; 0-33 = 0-13 = 0-23 = 0. For 
our choice of coordinate system, with the 
wavenumber vectors for the plane waves 
being confined to the x^x^ plane (u2 = 0, 

Free Surface 

Free Surface 
^ - X, 

a P . P 

- p ' 

^ sin i, ^ slnj2= Kg ^ K3 
a p CO 0) 

FIGURE 4.1 Geometry for free-surface interactions of (a) an incident P wave and [b) an 
incident SV wave. 
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FIGURE 4.2 (Top) Square root of reflected to incident P-wave energy at the free surface for 
various half-space velocity combinations. (Bottom) Similar plot for an incident SV wave. 
(From Ewing etal., 1957.) 
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dujdx2 = 0), Hooke's law (2.44) becomes 

' 3 3 ■ dXy dx 
+ +2Ai 

dx^ 
= 0 

(4.1) 

The displacement components are ob­
tained from potentials by using (2.91). For 
the case of an incident P wave, propagat­
ing in the -JC3 and +JCI directions (Figure 
4.1a), we assume plane-wave potentials of 
the form 

(l) = (t>, + (t>R=A cxp[ia)(px^ - 7]^Xj - 0 ] 

-\-BQxp[ia){pXi +Va^3 ~ 0 ] 

*A = /̂? = Cexp[/(y(/7Xi -h 97̂ X3 - t)Y 

(4.2) 

At the free surface (JC3 = 0), the stress 
conditions [Eq. (4.1)] lead to equations re­
lating the incident amplitude (y4) to the 
reflected P (B) and reflected SV (C) am­
plitudes. Using (2.91) and (4.1), (733 = 0 
gives 

( ^ + 5 ) [ ( A + 2 / i ) T 7 ^ + p ' A ] 

+ C(2AIPT7^) = 0 (4.3) 

and a"i3 = 0 gives 

(A-B)2pv^-C{p^'~vl)=0, (4.4) 

Combining these equations yields the 
plane-wave potential reflection coefficients 

These are equivalent to the expressions in 
Table 3.1, except that (4.5) and (4.6) are 
for potentials, not displacements. The 
value of Rps vanishes when p = 0 (normal 
incidence) and when 17̂  = 0 = [(1/a^) -
p 2 p = [(1/^2) _ (sin2 ,y«2)]i^ (i.e., at 
/i = 90°, grazing incidence). In general, two 
incident angles, /, exist at which Rp^ = 0, 
yielding total P to SV conversion. These 
depend on particular values of a and j8. 
Figure 4.2 shows calculations of the energy 
partitioning as a function of incidence an­
gle for P waves for various half-space ve­
locity parameters. The actual particle 
displacements at the surface consist of 
combined displacements due to coexisting 
incident and reflected P and SV motion 
and are obtained by computing the deriva­
tives indicated in (2.91). This gives the 
incident i'-wave surface response, or re­
ceiver function. 

For the case of an incident SV wave 
(Figure 4.1b), we assume plane-wave po­
tentials of the form 

(l}=F exp[/w( px^ + 77̂ X3 - 0 ] 

il/ = D cxp[ia){pxy - 77̂ :̂3 - t)] 

-\- Eexp[i(o(px^ + V/3X3 ~ 0 ] • i^-^) 

The stress boundary conditions provide 

B 

C 

(A + 2/x)ry^ +/7^A + 4^p^v„Vf,/{p^ - y^) 

- [(A + 2fi)ril ^ P ^ A ] + 4iJLp^7^^r]^/{p^ - vj) 

{\-^2fi)ril+p^\ 

(A + 2fi)7]l +p^\ - ^^lP^v^'n^/{p^ - 7)1) 

(4.5) 

(4.6) 
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potential reflection coefficients 

^ 5 S = ~ 
E [(A + IfiWa +P'A + 4fip^VaVp/{p^ - Vl)] 

^SP = ~ = 
F 4iJLprip 

D [(A + 2ti)ril + P ' A ] - 4 M P ' I 7 „ V ( P ' " ^^) 

(4.8) 

(4.9) 

Note that Rpp^R^^- The corresponding 
energy functions are also plotted in Figure 
4.2. Since a> p, an angle of incidence, 
j \ = sin"^(j8/a), exists such that the P-wave 
"reflection" travels along the free surface 
((2 = 90°). For angles j^ greater than this 
"critical" angle, we follow the procedure 
introduced in Chapter 3 and allow (2 to 
become complex and T]^ to become purely 
imaginary. Thus, the (f> potential acquires 
a phase shift, and the amplitude decays 
exponentially away from the interface, sim­
ilar to the head-wave behavior discussed 
previously. Thus, a P wave can be 
"trapped" propagating along the free sur­
face. This type of wave is known as an 
evanescent wave because it decays expo­
nentially with depth. The postcritical SV 
reflection has unity magnitude and also 
has a phase shift, but it otherwise propa­
gates as a plane wave. Figure 4.3a illus­
trates the resulting situation. The critically 
refracted P wave exists simultaneously 
with the incident SV wave, but no energy 
is transmitted back into the medium by the 
F-wave motion. This suggests that an 
evanescent P wave alone cannot propa­
gate along the boundary. 

The inability to trap purely P-wave en­
ergy near the boundary is demonstrated by 
considering the P potential 

(/) =Aexp[i(o(pXi - Va^s ~ 0 ] 

+ 5exp[/a)(pjCi +17^X3 - 1 ) ] , 

(4.10) 

for the case p>l/a, r]^ = irj^ = i(p^ -
\/a^y^^, which gives 

^ =y4exp[/a>(pxi - / ) ] exp['̂ ^a)-jf3] 

+ Bexp[ico(/7JCi - r ) ] exp[-a>T)^JC3], 

(4.11) 

which diverges as Jt:3 -> 00 unless 4̂ = 0. 
Satisfying the boundary condition cr^^ = 0 
assuming that no SV wave is present leads 
to fi = 0. In other words, although a plane 
P wave may propagate along the bound­
ary, an evanescent P wave alone cannot. 
A similar result is found for a horizontally 
propagating SV wave; the surface stress 
condition precludes the existence of purely 
P or SV evanescent waves on the bound­
ary. However, we will now demonstrate 
that simultaneous, coupled evanescent P 
and SV waves do satisfy the surface 
boundary condition, yielding a new form 
of wave solution. 

4.2 Rayleigh Waves 

We now consider the situation in Figure 
4.3b, where evanescent P and SV waves 
are assumed to simultaneously propagate 
along the free surface. Assume that the 
potentials have the form 

</) =v4exp[/(i>(pj:i + 17̂ X3 - r)] 

==y4exp[-wT}^jC3] exp[/ai(pA:i - r ) ] 

(/r = 5exp[f6>(/7^i + 17̂ X3 - / ) ] 

= Bexp[-0)77^X3] exp[/a>(pxi - 0 ] ' 

(4,12) 
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r 

FIGURE 4.3 (a) Postcritical SV wave incident on a free surface gives rise to an evanescent 
P wave propagating along the boundary as well as to a phase-shifted SV reflection, (b) 
Sinnultaneous existence of evanescent P- and SV -̂wave energy traveling horizontally along a 
free surface produces the interference surface wave called a Rayleigh wave. 

where the horizontal apparent velocity 
c = (1/p) < j8 < a. This confines the en­
ergy to propagate along the surface with 
exponential decay of the potentials away 
from the JĈ  = 0 surface: 

Va = 
1 2 .^ 

M P 

"^^^y^-p ^'"ip 

= I n' = 1 J2 . (4-13) 

where \/p = c <p <a. If p <c <a, the 
SV energy will propagate away from the 
free surface as a body wave, and the only 
way to satisfy the surface boundary condi­
tion is simultaneously to have incident SV 

energy as shown in the last section. Lord 
Rayleigh (the former J. W. Stutt) explored 
the system in Eq. (4.12) in 1887 and found 
that the surface boundary condition can in 
fact be satisfied, leading to the existence of 
a coupled P-SV wave traveling along the 
surface with a velocity lower than the shear 
velocity and with amplitudes decaying ex­
ponentially away from the surface. These 
waves spread cylindrically on the surface 
and thus have a two-dimensional geomet­
ric decrease in amplitude with radius r 
from the source proportional to l/^/r, 
compared to the three-dimensional (1/r) 
decay for body waves. The resulting waves, 
Rayleigh waves, tend to be the largest ar­
rivals on long-period or broadband seismo-
grams. 

Using (2.91) and (4.12), the condition 
0-33^3=0 = 0 gives 

^[(A + 2fi)vl + Ap2] + B{2fiprj^) = 0 

(4.14) 
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and 0-131̂ 3=0 = 0 yields into (4.18), giving 

Ai2prjJ+B{p^-ril) = 0. (4.15) (^2 _ 2^^^2 _ l ! | 

The coupled Eqs. (4.14) and (4.15) can be 
written in matrix form 

(A + 2M)T,̂  + Ap2 Ifip-ns 
^ 2 

0 

0 

(4.16) 

The only solutions other than the trivial 
solution /I = B = 0 are given by vanishing 
of the determinant of the matrix 

[iX + 2n)yil + Xp']{p'-7jl) 

- ^tJ-p^Va'np = 0. (4.17) 

The term on the left in Eq. (4.17) appears 
in the denominators of the free-surface 
reflection coefficients in Eqs. (4.5) and (4.6) 
and again in Eqs. (4.8) and (4.9) and is 
hence called the Rayleigh denominator. If 
Eq. (4.17) is satisfied with a real 77̂  and 
77̂ , then Rps and Rpp will be infinite. The 
only possible solution to Eq. (4.17) that 
satisfies all conditions are imaginary 17̂  
and r/̂ , which results in an evanescent 
wave. It is convenient to rewrite (4.17) in 
terms of velocities, using pa^ = (A H- Ifx), 
p/3^ = /i to obtain 

0^2 

+ 1 IP^ 
-v,2 

1 - ^ 
p' 

^P^VaVp 0. (4.18) 

Since we need to satisfy (4.13), we insert 
corresponding expressions for TĴ  and 17̂  

+ 4j8 

(4.19) 

This equation can be rationalized to give a 
final form suitable for solution: 

p' 
^ - 8 

/3^ + c' 
24 

P' 
16 

- 1 6 1 - P' 0. (4.20) 

For prescribed values of a and j8, one 
solution of (4.20) for 0 < c < )8 can always 
be found. As an example, we consider the 
case of a Poisson solid for which A = /A, 
a^ = 3/3 .̂ Equation (4.20) becomes 

c" c* 56 c^ 
—— — o — - H — 
/3* P^ 3 /3^ 

32 

T = 0, (4.21) 

which is cubic in (c^/p^) and has roots 
(c^p^) = 4, (2 + 2 / v/3 ), (2 - 2 / v^). Only 
the last root satisfies (c/j8) < 1 and gives 
c = 0.9194)8 as the velocity of a Rayleigh-
wave disturbance in a Poisson solid half-
space. Figure 4.4 shows solutions of (4.20) 
for different values of Poisson's ratio. For 
typical values of Poisson's ratio (0.2 < 
V < 0.4), the Rayleigh-wave velocity is 0.9)3 
to 0.95)8. 

We now consider the nature of the par­
ticle motions associated with a Rayleigh 
wave. The surface-wave motion involves a 
mix of P and SV motion, with relative 
amplitudes A and B. We can rewrite (4.14) 
as 

B 
-A[{cyp')-2] 

2C7]p 
(4.22) 
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FIGURE 4.4 Half-space Rayleigh-wave velocity 
c as a function of Poisson's ratio, v, where 
p=l{a^/p^]-2]/2lia^/l3^)-^. For a fluid. jS 
= 0 and 1^=0.5, in which case c = 0 . For a 
Poisson solid, a =}/3p, i ^=0 .25 , and c = 
0 .9194 /3 . (From Sheriff and Geldar t . 
"Exploration Seismology," Vol. 1 , History, 
theory, and data acquisition. Copyright© 1982. 
Reprinted with the permission of Cambridge 
University Press.) 

and then compute the Rayleigh-wave dis­
placements using (4.12), (4.22), and 

d(l) dil/ d(f) dil/ 
U.= 

dx^ dXi 

(4.23) 

to find 

u^=Ae''^'"''-'^io)p 

X 2\p' / J 

M3= -Ae'^^P^'-'^o) 

X 
1 I c^ 
2A fl2 2c^p \ P 

Xe~'"''fl-^3 (4.24) 

Since the Rayleigh-wave ground motion 
must be real, we use exp[/a>(/?JCi - f)] = 
cos[a)(pXi — 0] + / sin[a)(pxi — t)] and 

retain only real terms 

Wj = -Aa)psin[(o{px^ - t)] 

M2= -A(0pC0s[(0{pXi - t)] 

la r% A. 2 c ' ^ \ ^ 

Xe-"^p^3 (4.25) 

For the Poisson solid, c = 0.919)3 = 0.531a, 
and letting k = (op = cj/c be the Rayleigh 
wavenumber, Eq. (4.25) becomes 

u^ = —Ak sin(fcci - (ot) 

M3 = —Ak cos(fcci - (ot) 

X(0.85^-^-^^^^3- l,47^-^^^^^3). 

(4.26) 

At the surface of the Poisson solid, JC3 = 0 
and 

Wi == -QAlAk sin(foci - (ot) 

u^ = 0.62Akcos(kx^-(ot). (4.27) 

The Rayleigh-wave displacements given by 
(4.26) depend harmonically on x^ and ex­
ponentially on JC3 (depth). The displace­
ments Mj and M3 are out of phase by 90° 
and therefore combine to give ellipsoidal 
particles motion, as illustrated in Figure 
4.5. The surface vertical motion is larger 
than the horizontal motion by a factor of 
1.5. At the top of the cycle (in the -x^ 
direction) the surface horizontal motion is 
opposite the direction of propagation, and 
the elliptical motion is retrograde. Figure 
4.6 illustrates the motion of adjacent parti­
cles on the surface and at depth as a 
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Rayleigh wave passes by. The horizontal 
distance between surface particle motions 
at the same point in their elliptical cycle 
defines the Rayleigh-wave wavelength A. 
At a depth of about A/5 the horizontal 
motion goes to zero, and at greater depth, 
the elliptical motion has a prograde sense. 
By a depth of A/2, the horizontal particle 
motion is about 10% of the horizontal 
motion at the surface, and the vertical 
motion is about 30% of the surface verti­

cal motion. All of the Rayleigh-wave mo­
tion is contained in the vertical plane 
(JC1JC3) with no tangential (^2) component. 

Since the Rayleigh-wave amplitudes 
have exponential dependence in the 
form ^~^^3 = (̂-27r/A)x3̂  long-wavelength 
Rayleigh waves have larger displacements 
at greater depth than shorter-wavelength 
waves. In the end-member case of a homo­
geneous half-space, the velocity of 
Rayleigh waves does not depend on fre-

(Kx . -co t ) 

t Increases for fixed X^ 

K x , - c o t = - ^ 

^ U , 

K x , - c o t = - 2 ' ^ 

t increases 

(Kx, -co t = 0) 

- ^ Wave Direction 

FIGURE 4.5 [Top) Plot of Eq. (4.27) as a function of the phase argument C/a>, ~a)t). (Bottom) 
Behavior of an individual particle as a function of time. The surface motion is retrograde 
elliptical. 
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FIGURE 4.6 (Top) Rayleigh-wave particle motions over one wavelength along the surface and 
as a function of depth. (Bottom] Horizontal iu) and vertical (iv) displacements of Rayleigh 
waves in a homogeneous half-space. The particle motion is retrograde elliptical above depth 
h and prograde elliptical at greater depth. (From Sheriff and Geldart. "Exploration Seismol­
ogy," Vol. 1, History, theory, and acquisition. Copyright© 1982. Reprinted with the permis­
sion of Cambridge University Press.) 

quency, but for a layered or vertically in-
homogeneous structure, the Rayleigh wave 
is dispersive. Because in general the veloc­
ity in the Earth increases with depth, the 
longer wavelengths tend to sample faster 
material, giving rise to higher Rayleigh-
wave velocities for large-wavelength, low-
frequency wave components, which pro­
duces dispersion. Rayleigh waves only re­
quire a free surface to be a viable solution 
of the equations of motion, but only a 
half-space produces an undispersed 
Rayleigh pulse (see Box 4.1). A much more 

characteristic Rayleigh waveform is shown 
in Figure 4.7, where the Rayleigh phase 
labeled LR is spread out over more than 
10 min, with lower-frequency energy arriv­
ing earlier in the waveform. We will dis­
cuss such dispersion later in this chapter. 
Note that the Rayleigh-wave motions are 
the largest of any arrivals on this seismo-
gram, which results from the two-dimen­
sional geometric spreading of the surface 
wave relative to the three-dimensional 
spreading that affects the body waves. 
Sources near the surface tend to excite 
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Box 4.1 Lamb's Problem 

A complete theory for Rayleigh waves, even for a half-space, must include their 
excitation by a specific source. Chapter 8 will demonstrate how seismic sources are 
represented in the equations of motion and will discuss Rayleigh wave radiation 
from faults. At this point we show a classic result, first obtained by H. Lamb 
(1904), which is the transient solution to an impulsive vertical point force applied 
to the surface of a half-space. Part (a) of Figure 4.B1.1 shows Lamb's (1904) 
calculations, which are believed to be the first theoretical seismograms. The 
motions begin with the P arrival. The small arrival prior to the large-amplitude 
pulse is the 5 wave, and the large pulse itself is a Rayleigh-wave pulse. The 
Rayleigh wave shows a clear phase shift between the radial (^Q) and vertical (WQ) 
components and is much larger than the body-wave arrivals. The experimental 
result shown in part (b) is a recording of a breaking pencil lead point-force source 
on a piece of brass, which has a vertical motion very similar to Lamb's prediction. 
Recordings of natural sources approximating Lamb's solution are shown in 
Box 8.2, but normally Rayleigh waves in the Earth are dispersed and resemble 
Figure 4.7. Rayleigh-wave excitation varies substantially with source force system 
and depth. 

% 

^0 

Source h—4.9 cm.—A Receiver 

777777777!h77777777T/7777777T 

FIGURE 4.B1.1 (a) Radial (QQ) and vertical [WQ] surface ground motions calculated by Lamb 
(1904) for an impulsive vertical force on the surface, (b) An experimentally recorded vertical 
ground motion for a vertical point source. The largest motion in each case corresponds to 
the undispensed Rayleigh pulse. (From Ewing etal., 1957). 
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FIGURE 4.7 A characteristic vertical-com­
ponent seismic recording showing body-wave 
arrivals (p, pP, PP. pPP. sS) followed by a 
dispersed Rayleigh wave, the onset of which is 
labeled LR. Tick marks on the record are 60 s 
apart, with time increasing to the right. Note 
that lower-frequency components of LR arrive 
earlier because of dispersion. Rayleigh-wave 
motions persist for over 10 min and produce 
the largest ground motions on the seismogram. 
(From Simon, "Earthquake Interpretations: A 
Manual for Reading Seismograms," Copy-
r ight©1981 William Kaufmann, Inc.) 

Strong Rayleigh waves, whereas sources 
deep in the Earth excite only weak 
Rayleigh waves. Solution of Rayleigh-wave 
propagation in a layered or inhomoge-
neous elastic medium is beyond the scope 
of this text (a simple case is considered in 
Box 4.3) but is treated fully in advanced 
texts by Aki and Richards (1980), Kennett 
(1983), and Ben-Menahem and Singh 
(1981). We will consider Rayleigh-wave 
motion in the Earth in the context of 
equivalent spheroidal free oscillations later 
in this chapter. 

4.3 Love Waves 

The presence of a free surface is suffi­
cient to enable coupled P-SV generation 
of a Rayleigh-wave surface disturbance. 
However, the SH component of the S 
wave, having displacements parallel to the 
surface, can only have total reflections 
from the free surface. In order to trap any 
SH energy near the surface, the velocity 
structure at depth must keep turning en­
ergy toward the surface. If the S velocity 
increases with depth, a waveguide can be 
formed, in which rays are multiply re­
flected between the surface and deeper 
turning or reflection points. If the ray 

strikes the reflecting horizon at postcritical 
angles, all the energy is trapped within the 
waveguide. The properties of an SH dis­
turbance trapped in a near-surface wave­
guide were first explored by A. E. H. Love 
in 1911, and these waves are hence named 
Love waves. 

We consider the nature of SH waves 
trapped in a low-velocity layer overlying a 
half-space, as shown in Figure 4.8. The 
layer has thickness //, which introduces a 
spatial dimension to the problem that was 
not present in the Rayleigh-wave solution 
for a half-space. This dimensionality leads 
to frequency dependence of velocity for 
the propagating interference patterns that 
we call a Love wave, even though the 
intrinsic shear-wave velocity, jS ,̂ has no 
frequency dependence. 

We are considering 5//-type displace­
ments, so we use the result found in Chap­
ter 2, that we do not need to use potentials 
because the SH displacements satisfy the 
wave equation. Thus we can write plane-
wave solutions of the form 

Fj =v4 exp[/a>(/7A:i -h 7]^x^ - t)] 

+ B exp[/a)(p.Xi - 7]^x^ - t)] 

F2 = Cexp[/(y(p.Xi4-T7^^j^3-r)], (4.28) 

where V^ is the SH displacement in the 
layer, composed of upward- and down­
ward-propagating plane waves, and V2 is 
the SH displacement in the half-space, 
composed of transmitted SH waves gener­
ated at each reflection point at the base of 
the layer. If lix>Pi^ then j^<Ji and 
transmitted energy will always propagate 
away from the high-velocity layer, with 
layer reverberations progressively dimin­
ishing. For Px<l32, J3>Ji'=J2 aî d the 
transmitted wave is refracted closer to the 
boundary but still propagates away, leak­
ing energy out of the low-velocity layer, 
until j \ =j^ = sin~KjSi//32), the critical an­
gle at which the transmitted wave refracts 
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FIGURE 4.8 Geometry of SH waves that repeatedly reflect in a layer over a half-space. 
X3=0 Is a free surface, and the layer thickness is H. Interactions with the boundary of 
X3=H involve incident [SH^], reflected (SHp,). and transmitted iSHj] SH waves. For ^^ <^2' 
a critical angle j^=s'\n~'^[p^/p^) will exist beyond which SH reverberations will be totally 
trapped in the layer (/-, >lc]. 

along the boundary as a head wave. For j^ 
angles equal to, and larger than, the criti­
cal angle, the shear-wave reflection coef­
ficient B/A has unit magnitude and ac­
quires a phase shift, as discussed in Chap­
ter 3. Since the SH energy is then totally 
reflected at both the boundary and the 
free surface, the postcritical SH wave in 
the layer will be "trapped" in the layer. 

The boundary conditions for this prob­
lem are 

^321^3 = 0 —Ml 
A:3 = 0 

(free surface) 

(continuity of stress on boundary) 

V2\x, = H— K2L3.//-

(continuity of displacement on boundary). 

(4.29) 

Applying (4.29) to (4.28) yields three re­
sulting equations: 

A^B (4.30) 

Afii7]p\^^P{i<^Vp^H) - txp{~io)r]^H)] 

= Cii2Vp^ exp(/6)T7^^//) (4.31) 

A[Qxp{io)7]pH) 4- Qxp{-ia)Ti^^H)] 

= Cexp(/a>77^^//). (4.32) 

The horizontal apparent velocity of all of 
the SH motions is c = l/p = k^/o). We 
can rewrite the complex exponentials in 
terms of trigometric functions (Box 2.4), 
and taking the ratio of Eqs. (4.31) and 
(4.32) yields 

tan(wT]^^//) = T 
^2^7/32 M2^i82 

if^iVp^ Mii?̂ ^ 
(4.33) 

where we assume the postcritical situation 
for which c = l / p < ^2^ yielding r]^^ = irj^^ 
with r)^ being purely real. Equation (4.33) 
is a condition relating CJ and c that must 
be satisfied to give a stable horizontally 
propagating disturbance. Because the wave 
velocity c explicitly depends on frequency, 



0), Eq. (4.33) is called a dispersion equa­
tion. Rewriting (4.33) in terms of the mate­
rial parameters iii, fiz^ Pv ^^^ Pi ^^^ the 
variables (o and c, we have 

ian[H(0}/l/l3J-l/c^) 

M2\/l/c2^1/)8 

fJL,^l/P',-l/c' 
(4.34) 

Equation (4.34) indicates that for the solu­
tions to be real numbers, jSj < c < j82-

Solutions to the Love-wave dispersion 
equation (4.34) are conventionally illus­
trated using a graphical technique. We let 

y=/ / [ ( l / i8 f ) - ( l / c2)F , where y is de­
fined for the interval 0 <y <//[(l/j8f)-
il/Pj)f^. Figure 4.9a shows a plot of 
tan (oy versus the right-hand side of Eq. 
(4.34) over the defined interval of y. The 
tan((oy) function is periodic, resulting in 
discrete intersections of the two functions, 
corresponding to combinations of CD and c 
that solve Eq. (4.34). For a given value of 
(0, a finite number of solutions exist, which 
we number from left to right using n, 
beginning with n = 0. The n = 0 solution is 
called the fundamental mode for that fre­
quency, and larger values of n define the 
higher modes or overtones of the system. 
The different modes have a simple physi-

C((o) 

FIGURE 4.9 (a] Graphical solution of (4.34). where intersections of the dashed and solid 
lines yield discrete modes, (b) The phase velocity dispersion curve for fundamental and higher 
modes for the layer-over-a-half-space case. 
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cal significance that can be inferred from 
Figure 4.8. If we imagine harmonic dis­
placements V(x2) distributed over the ray-
paths of the reverberating SH path, the 
fundamental mode corresponds to one-half 
a harmonic cycle distributed from the sur­
face to the intersection with the boundary. 
Thus, over the entire depth range of the 
layer along that path, the sense of motion 
is uniformly in the ±X2 direction. Over­

tones correspond to solutions in which the 
harmonic reverberations in the layer have 
n nodes (zero crossings) along the path 
from JC3 = 0tojC3 = / / , essentially dividing 
the layer into n + 1 layers oscillating in the 
+JC2 direction in alternating sequences 
separated by nodal surfaces. Box 4.2 shows 
that the geometry of "fitting" the oscilla­
tions into the layer gives rise to the disper­
sion equation. 

Box 4.2 Love-Wave Optics 

We can gain further insight into the Love-wave dispersion relation by explicitly 
considering the interference effects that underlie it. Consider (Figure 4.B2.1) a 
postcritical SH wavefront (PQ) at point A at time t and the wavefront at point B 
(P\Q'), which has just reflected from the surface. In order for the plane-wave 
motions of PQ and P'Q' not to destructively interfere, the difference in phase 
must be a whole number of cycles, 2m7r. The difference in phase is 

^B~ ^A^ 2m7r =v40B(27r/A()) + <̂ , -f </)2. (4.2.1) 

AOBilir/A^^) is the differential length traveled times the wavenumber, lir/k^^, 
where Ao is the wavelength, ( ,̂ is the phase change that the wave at P'Q 
underwent upon reflection at point O, and <̂ 2 '̂  ^^^ free-surface-reflection phase 
change; ^^ = 0- Using the double-angle formula cos 2^ = 2cos^ 0 - 1, we find that 
AOB^ 2 / / cos ; , . The postcritical-reflection phase change is the SH equivalent of 
(3.104) and (3.105) 

(/)i = ~2tan 
M2\/lA'-l/^l ] 
M,\/Vi8?-1A^ J 

(4.2.2) 

If we define the horizontal wavenumber to be /:, = (w/c) = (27r/A) = 
(27r/A())sin7,, the constructive phase requirement becomes 

2nnr 
2//cos;,277 

A sin y, 
2 tan" 

I IX2]/l/c 1/^2 

[/x.Vv^f-iA' 
(4.2.3) 

Since sin7, = /3|/c and cos/, = (1 - p^/c^Y^^, this can be written as 

tan( / /a)y ' l / j8?- l/c^^ = 
M.VV^f-lA' ' 

(4.2.4) 

continues 
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which is the same as (4.34). A similar analysis can be done for large angles ;,, for 
which PQ and P'Q' do not overlap, by accounting for constructive interference 
between spatially offset wavefronts. 

t 
H 

I 
y1 = H 

CosTp 

FIGURE 4.B2.1 Overlapping wavefront PQ at point A and P'Q' at point B. 

As 0) increases in (4.34), the number of 
tangent functions (with zeros (oy = nnr) 
that fail in the defined interval of y in­
creases. This means that the number of 
solutions increases (more higher modes) as 
o) increases. The nth overtone can only 
exist as a horizontally propagating wave 
for frequencies equal to or greater than 

niT 
(o. HyJ{\/Pl)-{l/Pl) 

(4.35) 

where o)^ is the cutoff frequency for the 
n\h mode. The phase velocity of the ni\\ 
overtone is c = ^2 ^^ ̂ c ^^^ approaches 
c = jSj as (o increases (Figure 4.9b). This 
makes it clear that very high frequency 
waves have displacements concentrated 
near the surface, whereas lower-frequency 
components for the same mode have dis­
placements concentrated near Xj^H, giv­
ing velocities controlled by the half-space. 
The Love-wave displacements do extend 
into the half-space, but remember that 
their amplitudes decay exponentially be­
low Xj = H. It is not easy to visualize how 
this dispersion arises from plane waves 

because it involves lateral interference of 
many upgoing and downgoing plane waves. 
Basically, waves with angles close to the 
critical angle propagate with the velocity 
near that of the head wave, ^2^ ^"^ more 
horizontally propagating waves travel at 
velocities approaching that of the layer, 

Love waves are always dispersive be­
cause they require at least a low-velocity 
layer over a half-space to exist. Because 
Love-wave particle motion is parallel to 
the surface, a complete separation of Love-
and Rayleigh-wave surface motions occurs, 
with Love waves traveling faster and thus 
arriving on the transverse component 
ahead of the Rayleigh wave, which arrives 
on the vertical and radial components. 
Figure L2 shows block diagrams compar­
ing the sense of motion of body and 
surface waves, while Figure LI shows an 
example of a naturally rotated set of seis-
mograms with clear body and surface-wave 
arrivals. The Love wave is "naturally" po­
larized on the transverse (E-W) compo­
nent in this particular case. 

The physics of Love-wave propagation 
in a multilayered structure like the Earth 
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P, 0<sin-'O,/PJ 

Pa 
FIGURE 4 .10 Love waves in a multilayered medium involve SH-wave reverberations trapped 
within the layers. 

can be analyzed in much the same fashion 
as the simple case of a single layer over a 
half-space discussed earlier. Critical angles 
at various depths in the structure (Figure 
4.10) can trap Love-wave energy in a se­
quence of surface waveguides. Longer-
wavelength, lower-frequency waves tend to 
have higher velocities, because velocity 
usually increases with depth; however, the 
actual velocity gradients in the mantle 
cause long-period Love waves to be less 
dispersive than Rayleigh waves of corre­
sponding period. 

4.3.1 Surface Waves on a 
Spherical Earth 

The particular geometry of the Earth 
has an important effect on surface-wave 
propagation—the waves spread over the 
spherical surface and hence converge at a 
point on the diametrically opposite side of 
the globe from the source, called the an-
tipode. The waves converge from all direc­
tions at the antipode, with Rayleigh waves 
constructively interfering to give strong 
vertical amplifications, while Love waves 
destructively interfere to give no net 
Love-wave motion at the antipode. The 
waves "pass through" one another and 
diverge from the antipode, spreading over 
the surface again, eventually converging 
on the source and repeating the process. 
We can treat the motions of the repeated 
passage of Rayleigh and Love waves on 
the Earth's surface as traveling waves, as 
we have been discussing, or as patterns of 
standing waves or normal modes, which 

are discussed later. In the perspective of a 
wave traveling from source to receiver, 
surface-wave energy obeys Fermat's prin­
ciple (Chapter 3) by following the shortest 
travel-time path on the two-dimensional 
surface. If the velocity structure in ques­
tion is a laterally homogeneous, flat-
layered structure, the surface-wave path is 
a straight line on the surface from source 
to receiver. Lateral variations in the 
medium would cause the path to follow a 
curved trajectory, giving the least-travel-
time path. 

On a sphere, the surface-wave path in a 
laterally homogeneous, radially stratified 
structure is along a great-circle path (Box 
4.4) connecting the source and receiver. 
Surface waves can travel in two directions 
along the great-circle path to the station, 
with the shorter path being called the mi­
nor arc and the longer path the major arc. 
Because waves traveling along both arcs 
pass the station and continue to follow the 
great circle, they eventually circuit the 
globe and pass by the station again, re­
peatedly. We denote long-period Rayleigh 
and Love waves by R and G (for Beno 
Gutenberg, who studied Love waves), re­
spectively. Minor-arc arrivals are indicated 
with odd-number subscripts that increase 
with the number of passages of the station 
(e.g., R^,R2,Rs), and major-arc arrivals 
are indicated by even-number subscripts 
(R2,R4,Re, etc.). Figure 4.11a shows an 
example of minor-arc and major-arc sur­
face-wave arrivals on a long-period digital 
seismometer of the GEOSCOPE network 
(see Chapter 5). The horizontal ground 
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Box 4.3 Rayleigh Waves in a Fluid Layer over a Half-Space 

The simplest case for which we can derive dispersion for Rayleigh waves is for a 
fluid layer ((3 = 0) over a half-space, which is very pertinent to the Earth. We 
consider the following geometry: 

Fluid Layer H { P <x 
paP ->X, \ 

- ^ -
-P^ 

No S waves exist in the water, so we can assume that all motions are P waves 
traveling up and down in the water. We let the P potential in the water layer be 

</)̂  = C, exp[/a;(/7x, -Vv^Xj-t)] + C2exp[/ft>(/7X, +T7^JC3-r)], (4.3.1) 

while in the solid we have potentials of the form (4.12) 

</»=/4exp[/w(px, + ^ « X 3 - 0 ] 

fA = Bexp[/w(pxi +^(3^3-0]' (^-12) 

No shear stress exists in the ideal fluid, so the boundary conditions are 0-33 = 0 at 
JC3 = - / / ; 0-33 and u^ continuous, and o-^^ = 0 at X3 = 0. 

In this example we do not require continuity of w, at the interface x^ = 0, as this 
condition can be satisfied only by allowing the water to have a small finite viscosity. 
In a real medium, the fluid will have a finite viscosity, leading to a thin boundary 
layer right above the interface in which u^ will vary rapidly, but our solution will 
not include this eff*ect. The free-surface condition ((733 = 0 at JC3 = —H) yields 

C, = -C2Cxp[-2i(x)7]^H]. (4.3.2) 

This result is used in the expressions derived from the interface conditions: 
W3 = d(t)/dx2, -f difz/dxi Continuity to give 

2C,r/^exp[/a>T7^//]cos((i;i7^//) ^Aifj^-hBp. (4.3.3) 

Continuity of 0-33 modifies (4.14) to give 

-2ip^exp[ia)T]^H]s\n((OT]^H) = A{pa^7)l -\- \p^) + IBfip-q^, (4.3.4) 

continues 



SURFACE WAVES AND FREE OSCILLATIONS 

while o-,3 = 0 is satisfied by (4.15) 

lAprj^+ B{p^-7)1)^0, (4.3.5) 

The latter three equations relate the amplitudes of the potentials and frequency, 
(o, to the velocity of Rayleigh waves, c = 1/p. The only nontrivial solution is given 
by choices of o> and c that make the determinant of the coefficients of C^, A, and 
B vanish. With some algebra the vanishing of the determinant gives an equation 

tan Ho) 

0.6 

T 1 I I I I I I 

First Mode 
« « I I I 1 1 I I 

0.1 0.5 1 

Second Mode 

m i l 
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(4.3.6) 
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FIGURE 4.B3.1 (Left) Dispersion curves for the fundamental and first-overtone Rayleigli 
waves for a water layer over a half-space with parameters p =2.5p^.a=v^/3,and /3 =2a^ . 
(Right) Distribution of maximum particle motion with depth (eigenfunctions) for Rayleigh 
modes and the Stoneley mode. Horizontal displacements are u^ and vertical motions are u^-
(Modified from Ewing ef a/., 1957.) 

continues 
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If / / = 0, the half-Space surface-wave solution (4.19) is recovered, and we have the 
undispersed half-space Rayleigh wave. For very large wavelengths, A = lir/k, 
where k =oi(X/a\ — 1/c^)^/^, the Rayleigh wave is insensitive to the water layer. 
However, for shorter wavelengths, the wave energy is partitioned between motions 
in the solid and motions in the water layer. As in the case of the Love-wave 
solution (4.34) for each frequency, discrete velocities will satisfy the dispersion 
equation, and higher modes with cutoff frequencies will exist as well. (Below the 
cutoff frequency, the higher-mode waves have velocities greater than ^ and leak 
energy into the half-space, which is called a leaky mode.) The horizontally 
propagating Rayleigh waves have velocities a^<c <p <a, which ensures that 
they are evanescent in the half-space, with the number of nodal vertical-displace­
ment positions (^3 = 0) in the water layer corresponding to the mode number. 
Figure 4.B3.1 shows dispersion curves for phase velocity c and group velocity U 
(see Section 4.4) as a function of dimensionless frequency ft = Hco/a for the 
fundamental mode and the first overtone for a specific choice of velocities. The 
distribution of maximum particle motions as a function of depth for three Rayleigh 
modes is also shown. For very large ft, one other type of solution exists, with 
c<a^, which involves displacements that decay exponentially away from the 
interface in both directions. This type of interface wave is called a Stoneley wave. 
As ft -^ 00, the phase velocity of this wave approaches 0.998a^. 

Box 4.4 Great-Circle Paths, Azimuth, and Bacic Azimuth 

Parameters of great-circle paths can be determined using spherical trigonome­
try. Consider the spherical triangle shown below. E is the source (or epicenter), S 
is the seismic station, and N is the north pole. A, B, and C are the three internal 
angles of the spherical triangle. In general, A -{- B -^ C ^ 180°. a, b, and c are the 
sides of the triangle in degrees measured between radii from an origin in the 
center of the sphere. U A, b, and c are given, then 

a = cos"'(cos focose + sin bsin ccos A) (4.4.1) 

/ cos c — cos a cos b \ 
C = cos-M ; — . (4.4.2) 

\ sm fl sm b / 

The angular distance a is often called A, the epicentral distance. For most 
applications, A is the difference in longitude between E and 5, and b and c are 
the source and station colatitudes, respectively (colatitude is 90° - latitude). When 
measured clockwise from north, angle C is called the azimuth and gives the 
direction in which a ray must leave the source to arrive at a given station. Source 

continues 
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radiation patterns are usually given in terms of azimuth from the source. If the 
station were located to the left of the epicenter in Figure 4.B4.1, the azimuth 
would be 360° - C (remember, always measure clockwise). The back azimuth, 
which is the angle measured from north to the direction from which energy arrives 
at the station, is given either by 

B = cos" 
cos b -cosa cos c 

sm a sin c 
(4.4.3) 

or by 360° - B (as in the case shown). Note that B is not simply related to C and 
must be calculated separately. Back azimuth is used to determine the longitudinal 
and transverse directions for an incoming ray at a prescribed station. The longitu­
dinal component lies along the great circle, and the transverse component is 
perpendicular to the great circle. 

FIGURE 4.B4.1 Spherical geometry for great-circle paths. 

motions are rotated to correspond to mo­
tion transverse to the great circle or along 
the great circle (longitudinal). Note that 
the Gi and G2 arrivals at these periods 
( > 100 s) are relatively impulsive, whereas 
the Rayleigh waves are very dispersed. The 
Love-wave motion is concentrated on the 
component transverse to the great-circle 
path, but some G2 energy is visible on the 
longitudinal component as a result of de­
flection of the Love wave from the great-
circle path. The Rayleigh-wave energy in 
R^ and R2 is stronger on the vertical com­
ponent than on the longitudinal compo­
nent by about a factor of L5, as found for 
Rayleigh waves in a Poisson half-space. 
The arrival labeled X2 is a Rayleigh-wave 

overtone that has traveled on the major-arc 
path with a higher velocity than the funda­
mental mode. The packet of overtones on 
the minor arc, X^, is weak because it 
mainly involves periods shorter than 100 s 
which have been filtered out. R2 is more 
dispersed than R^ and has lower ampli­
tude because it has traveled farther. In 
general, one expects to see the amplitudes 
|/?il>|/?2l> ••• > I i?„l, but both propaga­
tion effects (Box 4.5) and source effects 
(Chapter 9) can produce anomalous ampli­
tude behavior. The long-period Rayleigh 
waves travel with velocities (group veloci­
ties, as defined in Section 4.4 on disper­
sion) of 3.5-3.9 km/s, while long-period 
Love waves travel about 4.4 km/s. The 
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FIGURE 4 .11 (a) Long-period recordings of surface waves from the May 26, 1983 Akita-Oki 
(Honshu) earthquake recorded by GEOSCOPE station PAF. (1) is the transverse component, 
(2) is the longitudinal component, and [3) is the vertical component. All traces have been 
filtered to remove oscillations that have periods of less than 100 s. (b) Travel 
time of surface waves with different group velocities for different distances. Long-period 
Rayleigh waves travel at a velocity of about 3 .5-3 .9 k m / s , while Love waves travel at a 
velocity of about 4.4 k m / s . (Cb) is Courtesy of H. Kanamori.) 
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Box 4.5 Surface-Wave Amplitude Anomalies 

Surface-wave amplitudes in a flat-layered structure decrease with increasing 
propagation distance because of geometric spreading, anelastic attenuation, and 
(generally) dispersion. On a spherical surface, surface-wave amplitudes decrease 
progressively with propagation distance because of anelasticity and dispersion, but 
geometric spreading has a more complex form. It can be shown (e.g., Aki and 
Richards, 1980) that away from the source or its antipode, geometric spreading is 
given approximately by (sin AY^, where A is the angular distance between source 
and receiver. This spreading gives the lowest amplitudes near A = 90°, i.e., when 
the surface wavefront is spread over the entire circumference of the planet. 
Curiously, R^, R2, and R^, for example, all have the same geometric spreading at 
a given station (A = AQ). Generally, however, we expect \R^\ > |/?2l ^ 1^3!' ^^c-
due to the dominating effects of attenuation and dispersion, as seen in 
Figure 4.B5.1. The seismograms in Figure 4.B5.2 show several stations with the 
normal behavior (HAL,RAR), but other stations (PFO, CMO, KIP) for which 
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FIGURE 4.B5.1 200-s-period Rayleigh-wave amplitude on the vertical component as a 
function of distance. Observations at two different distances, 30° and 90°, are marked for 
great-circle orbits. The source Is 33 km deep and has a moment of 1 x 10^° N m and a fault 
mechanism of strike =0°. dip =45°, rake =90°. [Courtesy of H. Kanamori.) 
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FIGURE 4.B5.2 (a) Great-circle Rayleigh-wave arrivals at IDA stations (Chapter 5) for the 
September 1977 Tabas. Iran earthquake. (From Masters and Ritzwoller, 1988.) (b) Projec­
tion of phase-velocity heterogeneity for 200-s-period Rayleigh waves on the hemisphere 
centered on Japan, along with surface-wave raypaths for R2 arrivals at each point and R^ 
arrivals at each point on the same hemisphere, (c] Calculated amplitude anomalies at 
different distances from two source regions for two models of surface-wave phase-velocity 
heterogeneity (boxes and triangles). (From Schwartz and Lay. Geophys. Res. Lett. 12, 
231 - 2 3 4 . 1985; copyright by the American Geophysical Union.) 
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Strong amplitude anomalies (e.g., \R^\ » \R^\ at PFO, KIP; \R^\ » \R^\ at CMO) 
are observed. Since this earthquake did not have any source complexity that could 
account for these anomalies, propagation effects are probably responsible. It is 
now recognized that surface waves propagating on the surface of a laterally 
heterogeneous sphere (like the Earth) are deflected from the great-circle path, and 
focusing and defocusing can result. Part (b) of the figure shows raypaths on the 
surface of the Earth for 200-s-period surface waves traveling through a model 
having a laterally varying phase velocity. Instead of being straight, radial spokes, 
the rays bundle up, enhancing the amplitude. Part (c) shows predicted Rayleigh-
wave amplitude anomalies at different distances from sources in Japan and North 
America plotted asfunctions of azimuth from the sources. Amplitude ratios are 
predicted to vary by a factor of 3, comparable with actual observations. Deflection 
of Love-wave energy (G2) from the great-circle path can be observed in Figure 
4.11a. While the deflections are usually minor, large-amplitude anomalies can 
result, and one must be cautious in assuming the surface-wave energy has propa­
gated on the great circle. 

curves in Figure 4.11b indicate approxi­
mate arrival times for sequential great-
circle surface-wave groups. It takes about 
2.5 h for long-period Love waves to circle 
the Earth and about 3 h for Rayleigh 
waves to do so. Additional examples of 
great-circle surface-wave phases are shown 
in profiles for the 1989 Loma Prieta earth­
quake in Figures 1.7 and 6.11. 

4.4 Dispersion 

All surface waves, except Rayleigh waves 
in an isotropic half-space, exhibit disper­
sion, with the apparent velocity along the 
surface depending on frequency. Almost 
any seismic source excites waves that com­
prise a continuous spectrum of frequen­
cies, each harmonic component having a 
velocity, dio), that is called the phase ve­
locity. If a monochromatic wave were 
somehow excited, only the phase velocity 
for that frequency would be needed to 
characterize the disturbance fully. How­

ever, when a spectrum of frequencies ex­
ists, the wave disturbances interfere, 
producing constructive and destructive 
patterns that influence the total ground 
motion. Constructive interference patterns 
behave as wave packets, which themselves 
propagate as disturbances along the sur­
face with well-defined group velocities, 
U((x)). Thus, the phase velocity is directly 
controlled by the medium parameters 
(scale lengths of layering, intrinsic P 
and/or S velocities, rigidity, etc.) and the 
geometric "fit" of a particular harmonic 
component into the associated boundary 
conditions, as seen in the last section. The 
group velocity depends on the medium 
parameters through their influence on the 
phase velocity, but it also depends on the 
variation of phase velocity with frequency, 
which controls the interference between 
different harmonics. 

To understand this, we begin by consid­
ering two harmonic waves with the same 
amplitude but slightly different frequen­
cies i(o',(i)"), wavenumbers, and phase ve-
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locities (A:' = o>'/c', )k" = a)"/c"). These 
combine to give a total displacement of 

u = cos(<w'f -k'x) + cos{<o"t - k"x). 
(4.36) 

We define a> as the average of CD" and o)' 
such that 6>' + So) = o) = w" - 5ft>, and k = 
(i>/c such that k' + 8k ^ k = k" - 8k, 
where So) <^o), 8k ^ k. By inserting these 

into (4.36) and using the cosine law, 
2 cos jc cos y = cos(jc + y) + COSCJC - y), we 
obtain 

u = 2cos(a>^ — fcc)cos(5a>^ — 8kx). 

(4.37) 

This is the product of two cosines, the 
second of which varies much more slowly 
than the first. Figure 4.12 shows a specific 
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FIGURE 4.12 Example of the interference of two waves of the form (4.36) at two positions 
x = 0 and x = 1.5. The envelope of the interference pattern moves with group velocity C/=3 
knn/s. [Courtesy of H. Kanamori.) 
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example. The envelope of the modulated 
signal propagates with a velocity different 
from the phase velocity of the average 
harmonic term c, which is defined as the 
group velocity: 

So) 

In the limit as Sio and 8 k-^0 

(4.38) 

U = 
dw d{kc) 
dk dk 

dc 
'^'Tk 

dc 

(4.39) 

From (4.39) we see that the group velocity 
depends on both the phase velocity and 
the variation of phase velocity with 
wavenumber. If dc/dk = 0, the phase and 
group velocities are equal. In general, in 
the Earth the phase velocity decreases 
monotonically with frequency, so dc/dk < 
0 and f/ < c. 

4.4.1 Measurement of Group 
and Phase Velocity 

Dispersion changes the overall appear­
ance of a surface wave as it propagates. 
One can visualize the surface wave as hav­
ing started from the source essentially as 
an undispersed pulse, with each frequency 
component having an amplitude Aio)) and 
initial phase, <̂ o(̂ X determined by the 
excitation of the source and medium. As 
the wave spreads outward, dispersion 
modifies it, spreading the energy out over 
a wavetrain, as shown in Figure 4.13. 

The group velocity is very important in 
that energy propagates mainly in the con­
structively interfering wave packets, which 
move with the group velocity rather than 
the individual phase velocities. Box 4.6 
shows that narrowband filtering of a seis-
mogram isolates the wave packet that cor­
responds to the central frequency of the 
filter, and the group velocity for that fre­
quency can then be determined by dividing 
the path length by the travel time of the 
wave packet. This requires knowledge of 
the source location and origin time. Alter-

*" Time 

FIGURE 4.13 Example of increasing waveform dispersion with increasing distance. Solid 
lines indicate different group velocities that control the travel time of particular frequency 
motions from the origin. Dashed lines indicate phase velocities of individual harmonic compo­
nents. (From Officer, 1974.) 
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Box 4.6 Wave Packets 

An earthquake source excites surface waves with a continuum of frequencies 
rather than just two discrete frequencies hke the example in the text. As these 
waves propagate away from the source, they disperse. The total surface-wave 
displacement involves a summation of all the propagating harmonic components. 
Consider the sum of a continuum of harmonic terms with uniform amplitude over 
a finite frequency band Aw centered on average frequency OJQ given by 

cos[wr - k{a))x\ d(o. 
coy-Aw/2 

For small Aw, we expand k(a)) in a Taylor series: 

dk 
k{(o) = k((OQ) + 

d(o 
{(O-(OQ) + • 

(4.6.1) 

(4.6.2) 

and we can evaluate the integral of the first sum to order w: 

U = 
1 

t - (dk/d(o)a>^^x sm 

- s m 

t-
dk 
d(o 

dk \ 

d(i)jo>,, 
(4.6.3) 

Using 2sin acos P = sin(a + j8) - sin(/8 - a) 

U = 
t- (dk/do))a,^,x sm 

Aco 
t -

dk 
d(o X cos(a;o^ - k{a)^)x). (4.6.4) 

If we let y = (A(i)/2)[t - (dk/d(o)^ x], the summation becomes 

siny 
U = Ad) — — cos[a>or - k{a)Q)x]. (4.6.5) 

Thus, we find a cosine harmonic term with the reference parameters modulated by 
a sine function, which is peaked at y = 0 and has rapidly diminishing side lobes. 
Thus the periodic modulations seen in Figure 4.12 are modified to a single, 
isolated wave packet when a continuum of frequencies is considered (Figure 
4.B6.1): 

/wwwx/wvw 
^ • I z ^ ^ U 

Cos[coQt-k(o)Jx] 
SinY 

Y 
Product 

FIGURE 4.B6.1 

continues 
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The envelope propagates with group velocity U = {da)/dk)^^. Thus, surface-wave 
ground motions filtered in a narrow frequency band have isolated group wave-
packet, arrivals, as shown in Figure 4.B6.2. 

Mongolia Jan. 20,1967. 01 57 23.1 
DDR (A = 3249.5 KM) 

yl̂ ** Transverse A i i l l . .....^..^Q^A"^P 

2:10 ' ' .ill 2:15! I ' . 

T»14.5sec 

'109. 

1/10 unit 

4.5 4.0 3.5 3.0 
Group Vebcity, Km/sec 

FIGURE 4.B6.2 Wave packets in narrow frequency bands obtained by filtering a Love-wave 
recording. The unfiltered record is shown at the top. Narrowband records with central 
periods shown on the left are plotted below the original seismogram, with varying amplitude 
scale. Note that each narrowband-filtered trace has the appearance of a wave packet. 
(Fronn Kanamori and Abe. 1968.) 

natively, given a single very well dispersed 
waveform like that in Figure 4.14, one can 
basically measure the arrival time of each 
frequency, because each oscillation corre­
sponds to a narrow-frequency wave packet 
with an average period given by the period 
of that cycle. Knowing the origin time al­
lows us to estimate the group-velocity dis­
persion curve. This procedure is not as 
stable as successively narrowband filtering 
the signal because interference over the 
continuous distribution of frequency com­
ponents distorts each arrival. 

If two stations are located on the same 
great-circle path, the group-velocity dis­
persion between the stations can be deter­
mined by measuring the difference in ar­
rival times of filtered wave packets. This is 

called the two-station method. A special 
application is the use of a single station to 
measure times between successive passes 
of surface waves traveling on the great 
circle (e.g., R^^R^)- This yields an average 
group velocity over the entire great-circle 
path. Another way to estimate either sin­
gle-station or two-station group velocities 
is first to determine the phase-velocity dis­
persion curve over the corresponding path 
and then use (4.39) to calculate U(a)). 

Several single- and two-station methods 
exist for measuring phase-velocity disper­
sion curves. We can obtain a crude mea­
sure using well-dispersed seismograms 
from two nearby stations, like those in 
Figure 4.14b. Each harmonic term at a 
given point in its cycle is associated with a 
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AT 

FIGURE 4.14 Examples of very well dispersed wave trains, (a] A Rayleigh wave for wliich 
individual group-arrival velocities can be made for each cycle of the waveform knowing the 
distance to the source and the origin time, (b) Measurement of phase velocity between two 
nearby stations for which common cycles of a given phase can be reliably identified and 
differential travel time measured. 

peak or trough of a particular period of 
oscillation, and the differential time and 
propagation distance between correspond­
ing cycles are used to estimate the phase 
velocity for each frequency. This proce­
dure gives poor results unless the disper­
sion is so pronounced that the peaks are 
not actually envelopes of interfering fre­
quencies. Typically, phase velocity is mea­
sured by taking the Fourier transform of a 
seismogram and obtaining the phase spec­
trum. A surface wave can be represented 
in the form 

1 
u{x,t) = — / u(a),x) 

XCOS (Ot — - X -h(^o(£o) do), 
c{o)) 

where the phase is (f)((x)) = (t)Q(a)) -
[(ox/c((o)] + ITTN -f (ot. The term (t>Q(a)) is 
the initial phase at the source, and the 
term ITTN represents the periodicity of 
the harmonic function. The amplitude 
spectrum u(x,(o) describes the amplitude 
of each harmonic term that contributes to 
the actual time-domain waveform. If one 
has a single instrument-corrected seismo­
gram that starts at time t^ after the origin 
time at a distance JCJ from the source, a 
Fourier transform of the signal yields the 
phase of each frequency at the corre­
sponding start time 

^ i ( ^ ) =^^1 +</>o(^) 
COJCi 

c((o) 
ITTN. 

(4.41) 

(4.40) If the initial phase at the source, the origin 
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time (/ = 0), and the distance traveled (x^) 
are known, then c((o) can be determined 
to within the uncertainty due to ITTN. The 
value of Â  is usually selected by ensuring 
that the phase velocities for the longest-
period signals converge onto globally aver­
aged values of c((o); long-period phase 
velocities vary by only a few percent, which 
is sufficient to constrain the choice of N. 
One must know the faulting mechanism 
and depth of the source to calculate the 
initial phase </)o(a>). In detail, additional 
corrections to the phase must be made 
because of the effects of anelasticity and 
polar passages (which add 7r/2 to the phase 
each time the wave passes the source loca­
tion or antipode). The most accurate pro­
cedure for estimating phase velocity is to 
take the difference in the phase spectra at 
two points on a great-circle path (again, 
one can use a single station and look at 
successive great-circle orbits). In this case 
the initial phase cancels out, leaving 

(Ai(cu) -il/2(o)) 

= (o(t,-t2) 
c(a)) 

(Xj -X2) + ITTM 

(4.42) 

or 

C(ft>) 

( / i -r2) + nM-(l/2i7)(./.,(a,)-./-2(a>))]' 

(2.43) 

where M, the difference in number of 27r 
cycles, is again chosen to give consistency 
with globally averaged values at long peri­
ods. Corrections for attenuation and polar 
passages between the stations are needed 
for precise measurements. Once the dis­
persion relation /(w, /c) = 0 is determined, 
the group-velocity curve can be estimated 

from the Taylor series expansion 

f{(o-\-d(o,k-\-dk) 

do) 
ao) -\—-

giving 

U-

+ 

d(o 
'dk 

= 0 

dk 
91 

dk 

(4.44) 

(4.45) 

There are two main applications of dis­
persion-curve measurements. The most 
critical is the determination of velocity 
structure, and the second is correcting the 
observed phase back to the source so that 
the source radiation can be determined. 
Dispersion reflects the nature of the veloc­
ity gradients at depth, as shown in Figure 
4.15a. Stronger velocity gradients produce 
more pronounced dispersion. Figure 4.15b 
shows the characteristic shape of phase-
and group-velocity dispersion curves for 
Rayleigh waves in an elastic layer over a 
half-space (note the similarity to the fluid 
layer results in Box 4.3). Phase-velocity 
curves generally tend to be monotonic, 
whereas group-velocity curves often have a 
local minimum. The existence of a local 
minimum implies that significant energy 
will arrive at about the same time, produc­
ing an amplification and interference ef­
fect called an Airy phase. For continental 
paths an Airy phase with about a 20-s 
period often occurs, and long-period waves 
in the Earth have an Airy phase with ap­
proximately a 200-s period. Figure 4.16 
illustrates average observed group veloci­
ties for Rayleigh waves in continental and 
oceanic regions. At periods longer than 
80-100 s, regional near-surface differences 
have little effect since the waves are "see­
ing" deep into the upper mantle, where 
heterogeneity is less pronounced. The av­
erage oceanic crust is thinner than conti­
nental crust, resulting in a shift of the 
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FIGURE 4.16 Observed group-velocity curves 
for Rayleigh waves. Averaged values for oceanic 
and continental paths are shown for periods 
less than 80 s. (Modified from B§th, 1979.) 
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FIGURE 4.15 [a] Influence of vertical velocity 
gradient on dispersion of surface waves. The 
stronger gradient causes greater dispersion, 
(b) Theoretical fundamental-nnode Rayleigh-wave 
dispersion curves for a layer over a half-space. 
The paranneters Vp and y^ ^^^ P-\Na\/e and 
S-wave velocities, respectively. (Modified from 
B§th. 1979.) 

crustal Airy phase to periods of 10-15 s. 
This sensitivity to crustal and upper-man­
tle velocity structure has led to extensive 
use of Rayleigh and Love waves to analyze 
three-dimensional Earth structure, which 
we will describe in Chapter 7. 

Rayleigh waves in a layered structure 
have overtones similar to those described 
for Love waves in the previous section (see 
Box 4.3). Both Love- and Rayleigh-wave 
overtones have their own dispersion curves. 
Generally the overtone group velocities are 
higher than velocities for the fundamental 

modes, causing overtones to arrive earlier. 
Figure 4.17 shows the relative contribution 
of the fundamental mode and the first 10 
overtones to a radial-component synthetic 
seismogram. The overtone wave packets 
are identified by Z„, where odd n corre­
spond to initial minor-arc paths and even 
n to initial major-arc paths. The Rayleigh-
wave overtone amplitudes tend to be 
stronger on the horizontal component than 
on the vertical component, as seen in 
Figure 4.11. Additional overtone observa­
tions are shown in Figures 1.7 and 6.11 for 
the Loma Prieta earthquakes. These 
Rayleigh-wave overtones are useful for 
probing deeper structure than that sam­
pled by fundamental modes. Love-wave 
overtones are not well isolated from the 
fundamental modes in Figure 4.11 but 
contribute to the long-period oscillations 
before the main Love-wave pulses. 

4 . 5 Tsunamis 

In our development of surface waves, 
we have assumed that the elastic medium 
has a free surface with a vacuum above it. 
However, 70% of the Earth's surface is 
covered by water of variable thickness, and 
all regions are overlain by the gaseous 
envelope of the atmosphere. Since SH 
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FIGURE 4.17 Computation of the relative contribution of fundamental modes (n=0} and 
overtone branch (n = 1 to 10) Rayleigh waves. The total synthetic ground motion Is shown at 
the top. This is the radial component of ground motion, on which the overtone group arrivals 
(Xv ^ 2 . X3. X4) have the largest amplitude relative to the fundamental-mode Rayleigh waves 
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Society.) 

waves cannot travel in the fluid media, the 
presence of these surface layers scarcely 
affects propagating Love waves, which in­
volve only horizontal surface motions. 
However, the vertical surface motions 
caused by propagating Rayleigh-wave dis­
turbances (as well as the vertical motions 
produced by incident P and SV waves) 
clearly must affect the water and atmo­
spheric layers. In turn, oceanic and atmo­
spheric disturbance, such as pressure vari­
ations, internal oscillations, winds, and 
tides, must produce ground motions in the 
solid Earth. In other words, a coupling of 
motion occurs across the interface despite 
the change in state of the medium, which 
leads to a number of interesting phenom­
ena. Although some of the coupled inter­
actions can be evaluated by treating the 
surface fluid layers as "elastic" layers in 

which the rigidity and shear velocity go to 
zero (see Box 4.3 for an example), the 
primary restoring force for most fluid mo­
tions is gravity rather than interaction be­
tween adjacent particles. Finite-amplitude 
displacements of particles in ocean and 
atmospheric waves that are not readily de­
scribed by infinitesimal strain theory can 
clearly occur. 

Generally, we do not treat fluid motions 
using the Lagrangian formulation in which 
we have been developing elastic-wave the­
ory for solids. Instead, the Eulerian formu­
lation is used, in which we monitor the 
behavior of a material element according 
to its position at a particular time rather 
than keep track of particle motion. Indi­
vidual particles may flux into or out of the 
material element. We use this formulation, 
developed in many texts on fluid mechan-



ics, to describe gravitationally controlled 
wave behavior in media that may have 
large particle motions. 

One of the most important gravity waves 
that occurs on the Earth's surface is a 
tsunami, a long-period wave in the ocean. 
The basic physics of these waves is like 
that of ordinary wind-driven ocean waves, 
but tsunamis are distinguished by particu­
larly long periods (200-2000 s) and wave­
lengths of tens of kilometers. Tsunamis 
are excited by large-scale displacements 
of water due to submarine landslides, 
volcanic eruptions, or most commonly, 
sea-bottom displacements caused by sub­
marine fault motions. Tsunami wave am­
plitudes in the deep ocean range from 
centimeters to 5-10 m in height, but run­
up of these long-period waves on shore­
lines can cause enormous destruction, 
overwhelming the standard storm-wave 
coastal defenses designed for much 
shorter-period waves. Fortunately, truly 
large, damaging tsunamis are relatively 
rare, with about one major event occurring 
per decade. 

Gravity waves behave differently than 
the elastic waves that we have been con­
sidering in that gravity is the main restor­
ing force in the system, with gravitational 
energy making up more than 95% of the 
energy in tsunami waves (the rest is com-
pressional energy in the slightly compress­
ible water and compressional and shear 
energy in the underlying rock). A fluid-
mechanics derivation provides a wave 
equation for tsunami wave height h as 

Tt 2 = g V - ( d V A ) , (4.46) 

where d is the depth of the water and g is 
the acceleration due to gravity. Note that 
gravity has not appeared in our previous 
elastic wave equations other than as a 
possible inhomogeneous body-force term. 

Equation (4.46) behaves distinctively de­
pending upon the wavelength of the 

tsunami wave. For wavelengths of A j : » d, 
long-wave (or shallow-water) theory holds, 
and the wave obeys 

d^h 

dt 
2 ^c^V^h, (4.47) 

where the velocity c = ^fgd is nondisper-
sive and depends solely on water depth. 
The displacements in the vertical and ra­
dial directions vary linearly with depth. 
The tsunami velocities for periods of 
200-2000 s are on the order of 700—900 
km/h in the open ocean, or about the 
speed of a jet airliner. At short wave­
lengths (Ay «: d), the tsunami velocity is 
given by c = {K^g/2Try^, giving disper­
sive behavior with motions that decay ex­
ponentially with depth from the surface. 
Theoretical tsunami group and phase-
velocity curves for a homogeneous self-
gravitating Earth model covered by oceans 
that are 2, 4, and 6 km deep are shown in 
Figure 4.18. The dispersive nature of 
tsunamis leads to calculations quite analo­
gous to those used to produce surface-wave 
synthetic seismograms. Examples of syn­
thetic tsunami waveforms at distances of 
2°-20° from a 10-km-deep vertical fault 
with vertical shearing displacement are 
shown in Figure 4.19. Note the increasing 
spread of the tsunami wave with increasing 
distance due to decreasing group velocities 
for the shorter-period waves. 

Water-pressure sensors in the deep 
ocean can record the passage of tsunamis 
larger than a few millimeters, but most 
tsunami records are from tide gauges in 
harbors. The shallowing of the water in 
the harbor, along with geometric effects, 
influences the peak amplitude of the 
tsunami wave. This run-up effect is due to 
the decrease in velocity as the depth shoals; 
the kinetic energy of the wave is trans­
formed into gravitational energy by in­
creasing the wave height. Table 4.1 lists 
some of the catastrophic consequences that 
have occurred as tsunamis came onshore. 
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FIGURE 4.19 Synthetic vertical motions of a tsunami at distances of 2°. 5°, 10°. and 20° 
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Ward. 1989.) 



TABLE 4 .1 Famous Tsunami Events 

14th Century B.C. Mediterranean 

1755 

1883 

1896 

1946 

1958 

Thera volcanic eruption. Tsunami destroys Minoan 
civilization. 

Lisbon, Portugal Underwater earthquake. 16-m tsunami run-up in 
Lisbon harbor. 

Indonesia Krakatau volcanic eruption. 40-m tsunami run-up. 
36,000 killed. 

Japan Sanriku earthquake. 30-m tsunami run-up. 
27,000 killed. 

Aleutian Islands Magnitude 7.4 earthquake. 30-m tsunami locally; 
16 m in Hawaii. 159 killed. 

Alaska Peninsula Earthquake-triggered landslide. 550-m run-up in 
Lituya Bay. 

An observed tide gauge recording with a 
tsunami signal superimposed on the 12-h 
tidal oscillation is shown in Figure 4.20. 
This recording is from the Azores Islands 
about 18° from an earthquake in the east­
ern Atlantic, located 400 km offshore from 
the African coast. Note that the tsunami 
waveform resembles the dispersed signals 
in Figure 4.19. About 2 h after the tsunami 
begins, a second arrival with a similar wave 
shape is seen. This corresponds to the 
tsunami that reflected off the coast of 
Africa, traveling about 800 km farther to 
the tide gauge. This illustrates one of the 
complications of tsunamis—ocean basin 
geometry strongly influences them. 

Because the depth of ocean basins is 
well known, it is straightforward to deter­
mine the velocity variations that control 
tsunami propagation. This allows us to de­
termine the source area that produced a 

tsunami (meaning the region where the 
seafloor was moved up or down by volca­
noes, faulting, or landslides) by using the 
arrival times of tsunamis on tide gauges 
that are azimuthally distributed around the 
source. The seafloor motion in the source 
region can be estimated by correcting the 
observed tsunami amplitudes for any local 
nonlinear bathymetric effects at the tide 
gauge and for geometric spreading from 
the source region. Decay of tsunami am­
plitude with distance depends on source 
depth (see Figure 4.21), but it is approxi­
mately given by l/\/r, corresponding to 
two-dimensional spreading. Numerical cal­
culation of the full propagation effects al­
lows complete modeling of tsunami wave­
forms to determine fault slip on submarine 
earthquakes (see Box 10.5). In detail, 
tsunami excitation depends on the geome­
try of faulting, the depth of faulting, and 

Box 4.7 Tsunami Wavefronts 

The lateral variation in ocean depth produces a laterally varying velocity struc­
ture for tsunami waves. This causes wave refraction, similar to that for surface 
waves (Box 4.5). Focusing and defocusing occur, resulting in nonuniform tsunami 
amplitudes. Modern methods account for this by either computing tsunami waves 
with numerical methods for a laterally varying ocean model or tracing rays along 
the surface through the velocity field to determine where focusing occurs. 
Figure 4.B7.1 illustrates the effects of actual ocean depth variations on the tsunami 

continues 
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wavefronts relative to what they would be if the ocean depth were uniform. For a 
tsunami produced by an earthquake in Chile, rays converge on Japan because it is 
150° away (i.e., approaching the antipode). The tsunami takes 15 h to reach Hawaii 
and 22 h to reach Japan. A great earthquake in Chile in 1960 produced a 
disastrous tsunami in Japan 1 day later. 

Chile (35°S,76^W) 

Aleutian (5r,176^W) 

Japan (39°N,143°E) 
FIGURE 4.B7.1 Tsunami raypaths traced through a realistically varying ocean depth nnodel 
(left) for three different source regions, compared to the simple ray patterns for a hypothet­
ical uniform-thickness model on the right. The cross marks in the rays define the tsunami 
wavefront at instants in time 1 h apart. (From Satake. 1988.) 
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the time history of faulting. Earthquakes almost always have a large seismic mo-
that excite particularly strong tsunamis are ment associated with shallow underwater 
called tsunamigenic earthquakes, and they faulting. 
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FIGURE 4 .21 Computed tsunami amplitude decrease as a function of distance for earth­
quake sources at depths of 10 and 40 km below the ocean bottom. For distances greater 
than about 2000 km, the amplitude is not sensitive to source depth. (From Ward. 1989.) 
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4.6 Free Oscillations 

We have seen how vertical scale lengths 
in a layered medium provide physical con­
straints on the types of motions than can 
occur for waves propagating along the sur­
face. The finite spherical shape of the 
Earth intrinsically provides both radial and 
circumferential constraints on solutions to 
the equations of motion in the planet. In 
this perspective, only surface waves that 
constructively interfere after propagating 
around the Earth's surface will persist as 
long-term motions. The circumference 
provides a scale length into which an inte­
gral number of wavelengths can fit to pro­
duce persistent standing motions. Because 
only discrete wavelengths and frequencies 
fit the Earth's boundary conditions, the 
corresponding standing waves are called 
the free oscillations or normal modes of 
the system. 

We build some insight into normal 
modes by considering the one-dimensional 
case for a string held fixed at either end 
(Figure 4.22). We assume that a source 
excites small-amplitude motions of the 
string that propagate as waves away from 
the source in the ±jCi directions, involving 
particle motions u in the +JC3 direction. 
These motions must obey the one-dimen­
sional wave Eq. (2.60) 

'dx{ 
1 d^u 

(4.48) 

In Chapter 2 we derived general solutions 
of this equation in the form of (2.66) 

M(jC,0=C,e'"<'"'^/^> 

+ C2e'^^'~-'/''^ + C3^"'"^^''^-'/^> 

_^^ -Mr-VO, (4.49) 

The boundary conditions for the string are 
given by the fixed end points, with u(0,t) 
= M ( L , O = 0. The first gives C^=-C2 
and C3 = — C4. The condition at A: = L 

^ x , 

FIGURE 4.22 Geometry of a string under 
tension with fixed end points separated by 
distance L. Motions of the string excited by any 
source (f) comprise a weighted sum of the 
eigenfunctions, which are solutions that satisfy 
the boundary condit ions w i th d iscre te 
eigenfrequencies. The f irst three eigenfunctions 
are shown below. 

then gives 

(Ci^'^' + C3^-'^')2/sin(coL/c) = 0 . 

(4.50) 

The nontrivial solutions are given by zeros 
of the sine function, (oL/c = (/i + DTT, 
n = 0 ,1 ,2 , . . . , 00. Thus, discrete frequen­
cies of motion, a>„ = (n + DTTC/L, called 
eigenfrequencies, exist that satisfy the 
boundary conditions. These eigenfrequen­
cies have corresponding displacement pat­
terns, e^"^"^ sm(a)^x/c), called eigenfunc­
tions or normal modes of the system. The 
n = 0 mode is the fundamental mode and 
has no internal nodes (places where mo­
tion is zero) within the system; n>0 cor­
responds to higher modes or overtones 
that each have n internal nodes. Figure 
4.22 shows the first three eigenfunctions 
that are allowed by the boundary condi­
tions. Oscillatory motion of each eigen-
function occurs without horizontal motion 
of the nodes, so that horizontal propaga­
tion of each mode alone does not appear. 
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Thus, these are called standing-wave pat­
terns, when viewed in isolation. Any gen­
eral propagating disturbance on the string 
can be represented by an infinite weighted 
sum of the eigenfunctions, because they 
constitute all permissible components of 
any solution in the medium: 

n = 0 

Xsinl 

Thus, the standing-wave representation in 
terms of normal modes can equivalently 
represent traveling waves in the system. 
The Fourier transform power spectrum of 
(4.51) will have discrete spikes at the 
eigenfrequencies (o^, with relative ampli­
tudes given by the weighting functions. 

If we take a continuous-displacement 
recording that extends many hours or days 
after a large earthquake, like that in Fig­
ure 4.23a, we can view the time-domain 
signal as a sequential passage of surface 
waves traveling along great circles. When 
the power spectrum is computed for this 
signal (Figure 4.23b), we observe discrete 
peaks at different frequencies with vari­
able relative amplitudes. These corre­
spond to eigenfrequencies of the Earth 
system, involving standing waves that fit 
into the layered spherical geometry of the 
planet. The system is much more complex 
than the string, but the basic ideas are the 
same; the Earth can be set into global 
motions that make it ring like a bell. Con­
structive interference of the coexisting vi­
brations corresponds to disturbances that 
move along the surface as a function of 
time, which we view in the traveling-wave 
perspective as Love and Rayleigh waves. 
In fact, we can equivalently represent all 
internal body-wave motions by summing a 
sufficient number of normal modes, for the 
infinite set of modes must represent all 
motions in the medium. 

The modes of a spherical body involve 
both radial and surface patterns that must 

fit into the geometry of the system. The 
viable oscillations are of two basic types: 
(1) spheroidal oscillations, analogous to the 
P, SV, and Rayleigh waves, which have a 
component of motion parallel to the ra­
dius (radial motion in spherical geometry) 
from the Earth's center, and (2) toroidal 
or torsional oscillations, involving shear 
motions parallel to the sphere's surface, 
analogous to SH- or Love-wave motions. 
Gravity does not influence toroidal mo­
tions at all, but long-period (̂  > 500 s) 
spheroidal motions do involve significant 
work against gravity, thereby sensing the 
Earth's gross density structure as no other 
seismic wave type can. 

Figure 4.24 summarizes some of the 
characteristics of normal-mode motions for 
a spherical, elastic, nonrotating medium. 
The easiest modes to visualize are the 
toroidal modes, which involve twisting mo­
tions of portions of the sphere. A nomen­
clature from spherical harmonics (Box 4.8) 
is used to identify patterns of motions. 
The toroidal modes are labeled ^Tf, where 
n indicates the number of zero crossing for 
the eigenfunction along the radius of the 
Earth and / indicates the number of nodal 
motion lines on the surface, the angular 
order number or degree of the spherical 
harmonic term. For toroidal motions the 
poles have no motion, counting as the 
/ = 1 term. Thus o7̂ 2 corresponds to alter­
nating twisting of the entire upper and 
lower hemispheres of the body. The mode 
{r2 corresponds to similar twisting of a 
central sphere overlain by twisting in the 
reverse direction of the outer hemispheri­
cal shells. The mode ^T^ is undefined, and 
QT^ cannot exist because it would corre­
spond to oscillation in the rate of rotation 
of the whole Earth, which violates conser­
vation of angular momentum. Both n and 
/ can take on integer values up to infinity, 
but in practice, for the Earth it is impor­
tant to identify only the first few hundred 
values. 

The nomenclature for spheroidal modes 
is ^Si, where, in general, n and / have 
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Box 4.8 Spherical Harmonics 

Analysis of the Earth's normal modes is most naturally performed in a spherical 
coordinate system. Here we consider basic mathematical solutions of the wave 
equation V^S = {l/c^\d^S/dt^) in the spherical polar coordinate system ir,d,<f>) 
defined in Box 2,5. The wave equation for a homogeneous, nonrotating spherical 
fluid becomes (see Box 2.5) 

1 d 
r^ dr 

1 dS 
dr } r^sindde 

I . dS\ 1 
s m 0 — +-^-T 

\ de j r^ sii 

d^S 

sin^ e d(}>' 

1 d^S 
-2-^- (4-8-1) c^ dt^ 

As usual, to solve this we use separation of variables, letting S(r,0,<f),t) = 
R(r)&i0)^i<l))TU). We find a standard solution for the time-dependent term as a 
harmonic function and take Tit) = 6''"", leaving 

+ m^^ = 0 (4.8.2) 

dr 

d I d&\ 
- — s i n e - — -
de\ do I 

dR\ 

r 2 

[ sin^ d 

- ^ - / ( / + 1 ) 

-1(1+1) / c i n fi^ 
^sin (7 J 

R = 0 (4.8.3) 

(4.8.4) 

where we have introduced constants m^ and /(/ + 1). Equation (4.8.2) has solutions 
^im<t> ^ ^Q^ m(/) + / sin mc^, where m must be an integer for the solutions to satisfy 
the spherical geometry. Equation (4.8.3) for Rir) involves the frequency, a>, but 
not m; thus in the homogeneous, nonrotating system, w will be independent of m 
but will depend on the constant /. This is a well-studied differential equation that 
has solutions of the class called spherical Bessel functions. These solutions have 
the form 

Ji{^)=x' 
- 1 d 

X dx 
sm X (4.8.5) 

where here x = (or/c. For / = 0 and rRir) a siniior/c), spherical Bessel functions 
have the form of decaying sinusoids, as shown in Figure 4.B8.1. Equation (4.8.4) 
for S(0) is also in the form of a classic equation called the associated Legendre 
equation, which is usually given in terms of ^ = cos 0 with cases m = 0 

e ( 0 ) = P , ( c o s 0 ) = P / ( j c ) , (4.8.6) 

continues 
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where Piix) are Legendre polynomials. These are expressed by 

1 d' 
2'1\ dx' 7 (^ - 1 ) . (4.8.7) 

which gives Pgix) = 1, /',(jr) = ;c, P2ix) = \i3x^ - 1). Examples of Legendre poly­
nomial functional dependence for / = 2 to 5 are shown in Figure 4.B8.1. For m¥=0 
the solutions are given by the associated Legendre functions Pi"ix), where 

P,'"ix) = {l-x^) 
2,n,/z( d'"P,(x) 

dx' 
(l-x'Y Jl + m 

\ I'll j \ dx 

i-l<m<l). 

7T7r(^'-i) 

(4.8.8) 

Many mathematical texts describe the multitude of properties of these functions in 
detail. For m = 0,4> is a constant and 5 will have axial symmetry. 

P,(X) 

+1.0 

-0.5 
FIGURE 4.B8.1 Functional behavior of spherical Bessel functions (left) and Legendre polyno­
mials (right). 

The product 0(^)4>(<^) = P/"(cos e)e''^'^ is called a surface spherical harmonic 
of degree / and order m. The most common form in seismology is the fully 
normalized spherical harmonic 

Yr{0,ci>) = {-~iy 
2l+l\ {l-m)\ 

Av j (/ + m)! 

1/2 

P/"(cos(9)e""*^, (4.8.9) 

continues 
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with / and m being integers. The function e""*̂  has zeros along 2m meridians of 
longitude (m great circles), while P["(cosd) has zeros along l-m parallels of 
latitude. Examples of the surface patterns produced by spherical harmonics are 
shown in Figure 4.B8.2. The angular order number I gives the total number of 
nodal lines on the surface with zero displacement. The parameter m gives the 
number of great circles through the pole with zero displacement. Thus, there are 
always / - m nodal lines along latitude. Rotation of the coordinate system cannot 
change the order number / but can change m. 

Application of boundary conditions on the medium prescribes the values of the 
eigenfrequencies in terms of the sphere geometry and constants n and /, „ci>/, 
where n = 0 will correspond to the fundamental modes and n > 0 will give the 
overtones of the system. Since „&>/ does not depend on m for the case considered, 
all modes with angular order / (for a given n) will have the same frequency but 
different displacement patterns (eigenfunctions). Thus, a normal-mode power-
spectrum peak for the system is actually a multiplet, composed of overlapping 
peaks of 2/ -h 1 singlets with different displacement patterns. This overlap of all 
values of m is called normal-mode degeneracy. Any departure of the medium from 
spherical symmetry, such as that produced by rotation, aspherical shape, or 
aspherical distribution of material properties, breaks down this degeneracy, giving 
each of the singlets its own frequency. This is called splitting of the multiplet. An 
actual Earth free-oscillation peak is thus composed of the overlapping peaks 
produced by the split multiplet, with the spread of the pulses being obscured by 
attenuation and limited frequency resolution, which are intrinsic in any finite time 
series. Mode splitting varies with path and from mode to mode. 

Finally, for the elastic Earth we must use vector surface harmonics: 

1 dYr . dYr . 

Tr{e,ct>) 

sin 0 d(f) 

1 dY/" 
sin 0 dcj) 

. dYr . 
e —(i> 

do 

(4.8.10) 

(4.8.11) 

(4.8.12) 

to represent the total ground motion. The first two terms, R^" and S^, are needed 
to describe spheroidal motion, while Tf" describes toroidal motion. 

Zonal Harmonics Tesseral Harmonic 

O Q 
p°(Cos e) pjcose) Pg(cos 6) cos 3<t) 

FIGURE 4.B8.2 Examples of surface spherical harmonics. m = 0 yields zonal harmonics of 
degree /. For l=m, the nodal surfaces are longitudinal lines giving sectoral harmonics. For 
0 < | m | < / . the combined latitudinal and longitudinal nodal patterns are called tesseral 
harmonics. 
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FIGURE 4.23 Ca) A 20-h-long record of an IDA gravimeter. CMO (see Chapter 5). at College. 
Alaska recording the 1985 Mexico earthquake. Long-period Earth tides have been removed. 
The bursts of energy correspond to Rayleigh-wave great-circle arrivals. Cb] The power 
spectrum for CMC showing spikes at discrete frequencies corresponding to eigenfrequen-
cies of the Earth. (Modified from Gubbins. 1990.) 

similar significance, although the poles are 
not positions of zero motion. Modes with 
/ = 0 have no surface nodes and corre­
spond to the subset called radial modes, 
with all motions in the radial direction. 
Mode ô o involves expansion and contrac­
tion of the sphere as a whole. Mode ^SQ 
has one internal surface of zero motion 
separating alternating layers moving in­
ward or outward. For / > 0, nodal lines 

occur on the surface along small circles 
parallel to the equatorial plane or along 
longitudinal great circles through the poles, 
which subdivide the surface into portions 
with alternating motion. Mode QS^ is un­
defined, as this would correspond to a 
horizontal shift of the center of gravity, 
which can happen only if the sphere is 
acted on by an external force. Mode 0̂ 2 is 
the longest-period normal mode of the 
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Surface Patterns 

Radial Patterns 

^n=0 ll/n=1 \f "=2 l|/n=3 
Center 

Fundamental First Overtone Second Overtone Third Overtone 

Toroidal Motions 

0T2 

FIGURE 4.24 (Top) Surface and radial patterns of motions of spheroidal modes. (Bottom) 
Purely radial modes involve no nodal patterns on the surface, but overtones have nodal 
surfaces at depth. Toroidal modes involve purely horizontal twisting of the Earth. Toroidal 
overtones (^fg) have nodal surfaces at constant radii across which the sense of twisting 
reverses. (After Bolt, 1982.) 

sphere and is sometimes called the "foot­
ball" mode. It involves alternating motion 
from a prolate to an oblate spheroid, as 
shown in Figure 4.24. Mode 0̂ 2 has only 
two equatorial bands of zero motion, while 
0̂ 3 and QS^ have three and four nodal 
lines, respectively. 

The normal modes in the real Earth 
behave basically in this manner, except 
that complications are introduced by the 
variation of material properties with depth 
and by departures from spherical symme­
try caused by rotation, aspherical shape, 
and material-property heterogeneity. For 

example, the Earth has a fluid outer core 
(see Chapter 7) in which the shear velocity 
is very small or zero. Torsional modes 
depend only on the shear-velocity struc­
ture and thus are confined to motions of 
the solid shell of the mantle. The inner 
core appears to be solid and may have 
inner-core toroidal motions, but some in­
ner-core source must excite these and they 
cannot be observed at the surface. 
Spheroidal modes are sensitive to both P 
and S velocity and density structure, and 
the partitioning of compressional and shear 
energy with depth is complex. In general, 
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FIGURE 4.25 Compressional (solid line) and shear (dashed line] energy density for funda­
mental spheroidal modes (top row) and some spheroidal overtones that are sensitive to core 
structure. (Modified from Davis, 1989.) 

fundamental modes (n =0) have energy 
concentrated in the mantle (Figure 4.25), 
with the shear energy being distributed 
deeper into the mantle than compressional 
energy. Note that QS2 is sensitive to the 
entire mantle and hence to gravity varia­
tions over the depth extent of motions 
caused by the mode. Including effects of 
self-gravitation changes the period of this 
mode by almost 10 min. As / increases, the 
energy in both shear and compression is 
concentrated toward the surface. For / > 
20, the fundamental spheroidal modes in­
terfere to produce traveling Rayleigh-wave 
fundamental modes. The overtones (n>0) 
of spheroidal motion generally involve en­
ergy sampling deeper in the Earth, includ­

ing in the inner and outer core. Examples 
are shown in Figure 4.25 for overtones 
that are sensitive to core structure. In the 
real Earth, radial-motion eigenfunctions of 
the spheroidal modes (n, / > 0) do not nec­
essarily have n zero crossings along the 
radius, although toroidal modes do. 

The normal modes of the Earth are 
identified primarily by computing ground-
motion power spectra, as seen in Figure 
4.23, and by associating the corresponding 
eigenfrequencies with those calculated for 
a model of the planet. This is clearly an 
iterative process, in which changes in the 
model can lead to reidentification of a 
particular mode peak. This process began 
in 1882 when Horace Lamb first calculated 
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the norma] modes of a homogeneous, elas­
tic, solid sphere, finding that QS2 must 
have the longest period. The search for 
this mode of the Earth required develop­
ment of very sensitive ground-motion in­
struments, with Hugo Benioff being a pio­
neer in development of ultra-long-period 
instrumentation. Following the great 1952 
earthquake in Kamchatka, Benioff and 
others (1954) reported the first observation 
of a mode with a period of '^ 57 min, close 
to the '-̂  1-h period expected for QS2' This 
observation was refined when the 1960 
Chile earthquake (M^ = 9.5, the largest 
earthquake this century) occurred. About 
40 normal modes were observed, and 0^2 
was found to have a period of 53.83 min. 
Because good starting Earth models ex­
isted, many modes could be confidently 
identified, as in Figure 4.23. Subsequently, 
several thousand modes have been identi­
fied and their degenerate eigenfrequencies 
determined. Table 4.2 lists the degenerate 
frequencies (see Box 4.8) of various ob­
served modes of the Earth. 

The process of identifying particular 
mode frequencies and finding an Earth 
model that is consistent with them flour­
ished in the 1970s and continues today. 
Figure 4.26 shows a set of spheroidal and 
toroidal modes ordered by angular order 
number / and associated eigenfrequency; 
this set was obtained by data analysis by 

TABLE 4 . 2 Some Observed Normal-Mode 
Periods 

Spheroidal 
modes 

0*^0 

0'^2 

0*^15 
0*^30 

0'^45 

0*^60 
0*^150 
1^2 

1*̂ 10 

2*^10 

^(s) 
1227.52 
3233.25 
426.15 
262.09 
193.91 
153.24 
66.90 

1470.85 
465.46 
415.92 

Toroidal 
modes 

0^2 

0^10 

0^20 

0^30 
0^40 

0^50 
0^60 
1T2 
1^10 

2^40 

n^) 
2636.38 

618.97 
360.03 
257.76 
200.95 
164.70 
139.46 
756.57 
381.65 
123.56 

Gilbert and Dziewonski (1975). Note that 
the modes sort into distinct branches for 
different values of n, but some branches 
come close together and have very similar 
eigenfrequencies. Groups of overtone 
modes along trajectories in these (o-l sets 
correspond to particular body-wave equiv­
alent energy, a few of which are identified. 
This association is based on the modes 
that have appropriate phase velocities and 
particle motions. Given an Earth model 
that adequately predicts the observed 
eigenfrequencies, one can, of course, pre­
dict the eigenfrequencies of all modes. 

This elegant procedure, of considering 
the entire Earth system in a boundary-
value problem, is complicated by the non-
spherical asymmetry of the system. The 
most important factor is the spinning of 
the Earth, which produces the Coriolis 
force, which is spherically asymmetric. This 
leads to a breakdown of the degeneracy of 
the eigenfrequencies for 2/ + 1 values of 
m for each spherical harmonic (Box 4.8). 
The result is called splitting, with the split 
eigenfrequencies being close together and 
the relative eigenvalue patterns of motions 
interfering with one another. The singlets 
are identified by the superscript m, so the 
multiplet 05*2 is composed of singlets QS2'^, 
0^2"\ 0*̂ 2' 0*̂ 2' ^^^ 0^2» ^^ch with a singlet 
eigenfrequency, ^wj", and eigenfunction. 
Splitting of modes QS2 and QS^ was first 
observed for the 1960 Chile earthquake. 
Rotation splits the singlet eigenfrequen­
cies according to the amount of angular 
momentum they possess about the Earth's 
rotation axis. The effect of rotational split­
ting on normal-mode peaks for stations at 
different latitudes is shown in Figure 4.27. 
The same mode has discrete multiplets at 
nonpolar stations (actually the 2/ -h 1 mul­
tiplets are smeared together to give broad­
ened, multiple peaks that do not resolve 
the individual eigenfrequencies for each 
l,m eigenvalue) but a single degenerate 
multiplet spike at high latitudes where the 
Coriolis force does not perturb the sym­
metry of the mode patterns. The strong 
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FIGURE 4.26 Spheroidal (top) and toroidal (bottom) mode eigenfrequencies as a function of 
angular order number. /. Note that modes align on fundamental (n =0) and overtone (n > 0) 
branches. Body-wave equivalent modes, which cross branches, are indicated for a few main 
body-wave phases. (From Gilbert and Dziewonski, 1975.) 

splitting of the modes io'̂ 2 ^^^ 11*̂4 is 
greater than expected due to rotation, and 
these modes are sensitive to the core (see 
Figure 4.25); this is now attributed to 
anisotropy of the inner core ahgned along 
the spin axis (Chapter 7). 

In the time domain, the beating be­
tween the split singlets can strongly affect 
the temporal behavior of a single mode, as 
shown in Figure 4.28. The rotational split­

ting of modes manifests itself differently 
for each source-receiver combination. This 
is true also of the effects of asphericity in 
the material properties, including ellip-
ticity of the Earth. If we think of the 
standing-wave energy distributed over the 
great circle, lateral variations in velocity 
structure will distort the standing-wave 
pattern, locally perturbing the eigenfre­
quencies of the multiplet, as shown in 
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FIGURE 4.27 High-resolution spectra of four low-harmonic-degree multiplets recorded at 
nonpolar latitudes (top row) and polar latitudes (bottom row). The polar spectra are not 
obviously split, indicating effective cylindrical symmetry as produced by rotation. The low-lati­
tude spectra are split, with rotation explaining the splitting of the QS^ and -,$4 modes well 
but not accounting for the extent of splitting of -,0^2 ^^^ i i ^4- (From Masters and 
Ritzwoller, 1988.) 

Figure 4.29. The mode will effectively av­
erage the great-circle velocity structure, 
with different average great-circle veloci­
ties leading to different multiplet frequen­
cies for different paths. The local shift of 
phase at a particular distance affects the 
amplitude of the multiplet, leading to vari­
ations of the spectral peaks that effectively 
correspond to focusing and defocusing in 
the traveling wave-equivalent surface 
waves (see Box 4.5), although one must 
account for lateral averaging of the modes 
as well. The splitting and amplitude-varia­
tion properties of normal modes are used 
extensively in the study of Earth structure 
and seismic sources, as described in later 
chapters. 

The final property of normal modes that 
we briefly discuss arises from the close 
proximity of some mode eigenfrequencies, 
as apparent in Figure 4.26. This can in­
clude the interactions between singlets of 
a given multiplet, interactions between ad­

jacent modes on the same branch, interac­
tions between modes on different branches, 
and interactions between toroidal and 
spheroidal modes, induced by Coriolis 
asymmetry. We describe such interactions 
as mode coupling. Rotation, aspherical 
structure, and possible anisotropy of the 
medium must all be included in rather 
complex calculations of coupling effects, 
but one must often do so to estimate accu­
rately eigenfrequencies and attenuation of 
each mode. Figure 4.30 presents observed 
and synthetic seismograms, showing that 
coupling between spheroidal and toroidal 
modes can sometimes be observed (most 
favorably in great-circle paths traveling 
near the poles, with tangential motion that 
is very strong and spheroidal motion that 
is very weak on the path). The complex, 
ringy waveforms reflect mixing of toroidal 
and spheroidal energy onto this vertical 
(i.e., radial motion) seismogram, leading to 
precursory energy ahead of R^. Such 
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FIGURE 4.28 Behavior of the mode gSg as a function of time for an observed path, 
compared to synthetics with and without rotational splitting. (From Stein and Geller, 1978.) 
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FIGURE 4 .29 A cartoon illustrating the distortion of the standing-wave multiplet caused by 
lateral heterogeneity in velocity structure. Although the number of wavelengths around any 
great circle remains constant, the local wavenumber. k, varies with local frequency pertur­
bation 5(y,ocai- The spatial shift of the phase at distance A perturbs the observed multiplet 
amplitude. [Modified from Park, 1988.) 

o 
CM 
CO 
CO 

i n 

i n 
LO 
CM W 

O 

R2 R3 
R4 R5 4 ' *0 ^g|Q 

first-order splitting 

oSt - oTt' coupling 

Time (hrs) 
10 

FIGURE 4 .30 Data and synthetics for the September 12, 1979 New Guinea earthquake on 
a vertical-component recording at IDA station TWO. Coriolis coupling is high on this path, 
which goes within 5° of the rotation axis and leads to mixed spheroidal and toroidal motions 
on the seismogram. This is not included In the synthetics for first-order splitting, which 
account only for interactions within each multiplet, as in Figure 4.28. but is better ac­
counted for when coupling between nearby fundamental-mode toroidal and spheroidal modes 
is calculated. (From Park, 1988). 
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complexity of free-oscillation theory is an 
active area of research and is revealing 
new aspects of Earth heterogeneity. 

decay coefficient y at a given period T 

*̂̂ '4'"M,„ (4.52) 

4.7 Attenuation of Surface 
Waves and Free Oscillations 

Anelastic losses cause surface-wave and 
free-oscillation motions to attenuate with 
time. For body waves we characterize 
anelastic properties of the Earth in terms 
of radial and lateral variations of the 
P-wave attenuation quality factor Q^ and 
the 5-wave attenuation quality factor Q^. 
Since, in general, both P- and 5-wave mo­
tions contribute to surface waves and 
standing waves, there are separate 
Rayleigh (QR), Love (Qi), spheroidal 
(QsX and toroidal (Q^) quality factors, all 
depending on frequency as well as varying 
from path to path. We know from Chapter 
3 that the existence of anelasticity pro­
duces velocity dispersion, given by 

C{0)) =Co 
1 (O 

1 + In — , (3.132) 

where C is the circumference of the path, 
and the spectral amplitudes at that period 
are Ai (for R^) and ^,^2 ^̂ ^̂  ^i+i^- This 
relates amplitude reduction to the attenu­
ation factor. The corresponding inverse 
quality factor is given by 

Q-\T) = '^TU{T)y(T), (4.53) 

where U(T) is the group velocity on the 
great-circle path. This approach has been 
used extensively to measure surface-wave 
attenuation values for periods less than 
500 s. 

Free-oscillation attenuation measure­
ments can be made by a variety of proce­
dures. For an isolated split multiplet, with 
mean eigenfrequency COQ, the contribution 
to the displacements at the surface will 
have the form 

2/+1 

m = 0 

where subscripts indicate a reference fre­
quency, (OQ, and reference phase velocity, 
CQ, and <2n, is the wave quality factor. 
Since surface-wave Q values are relatively 
low, on the order of 100 for short-period 
waves and a few hundred for long-period 
waves, the effects of physical dispersion 
become important. Thus, Q is studied for 
long-period waves both to understand at­
tenuation processes in the Earth and to 
allow models of Earth structure consistent 
with both body waves and surface waves or 
normal modes to be derived. 

Measurement of surface-wave attenua­
tion is conceptually straightforward but 
difficult in practice. Some of the first mea­
surements were made for sequential 
great-circle passages of R^ and /?̂ +2 ^^ ^i 
and Gi^2 waves. One can measure the 

Xexp 2Q^ 
(4.54) 

where So)^ is the difference between the 
singlet eigenfrequency and the mean mul­
tiplet eigenfrequency and aj^x) is the am­
plitude of the singlet at the receiver. The 
amplitude fl^(x) is a function of the source 
and receiver location, the Earth model, 
and the earthquake mechanism. The qual­
ity factor Q^ may or may not vary for each 
singlet. 

If the multiplet is not split, then Q can 
be readily measured by narrowband filter­
ing to isolate the mode and by using the 
temporal decay of the natural logarithm of 
the envelope of the time-domain trace. 
Figure 4.31 shows examples of this proce­
dure. Smoothly decaying motions yield sta-
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FIGURE 4 .31 Q as determined by narrowband filtering of given modes (QSQ and QS^Q). Each 
box shows the natural logarithm of the unsmoothed envelope for a given mode as a function 
of time. The slope of the decay of amplitude is proportional to Q. (From Stein et al., in 
"Anelastlcity in the Earth." pp. 3 9 - 5 3 . 1981 ; copyright by the American Geophysical 
Union.) 

ble attenuation estimates. In the frequency 
domain, Q is estimated by the spread of 
the corresponding spectral peak Aco, with 
Q = (OQ/A(O. 

Clearly, if splitting exists, both the fre­
quency-domain (Figure 4.27) and time-
domain (Figure 4.28) signals are complex, 
and simple Q measurements cannot be 
made. The analysis used to estimate Q 
then depends on the relative amount of 
pulse broadening due to attenuation ver­
sus multiplet splitting. If one can ac­
curately predict the individual singlet 
eigenfrequencies, one can estimate Q by 
modeling the time-domain signal or the 
split spectral peaks. This procedure is cur­

rently yielding attenuation values for many 
modes that have strong splitting, but it 
does have high attendant uncertainties. As 
high-quality digital data have increased in 
abundance, seismologists have even mea­
sured separate singlet attenuation values 
for a few strongly split modes. 

The 1960 Chile earthquake commenced 
the analysis of free-oscillation attenuation, 
and it was quickly recognized that Q is 
higher for longer-period fundamental 
modes. This indicates that Q increases 
with depth. It is desirable to relate the 
particular Q value for a surface wave or 
normal mode to the depth-dependent val­
ues of Q^ and (2^. For a given model, with 
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N layers, the toroidal-mode attenuation is 
given by 

Q T ' = L ^ \ ^ \ G,- ' (4.55) 

and the spheroidal-mode attenuation is 
given by 

Gs-' E 
1=1 

a[ I dC^ 

Cg \ da, I I k,p,p 
e;/ 

^M^^'),,,/^"^ , (4.56) 

where C(j^^) is the mode phase velocity, k 
is the compressibility, p is the density, and 

ai,Pi are the P and 5 velocities in each 
layer. Note that these expressions give a 
weighted contribution of P- and 5-wave 
attenuation in each layer corresponding to 
how much that layer influences the mode. 
These weighting factors are the kernels of 
the mode, indicating the partitioning of 
corresponding wave energy into each layer, 
where it is then attenuated according to 
the corresponding quality factor. The total 
dispersive effect on the mode due to the 
layered attenuation structure has a corre­
sponding kernel. Examples of attenuation 
kernels for a specific Earth model for 
spheroidal modes are shown in Figure 4.32. 
The smooth shape of these kernels yields 
limited resolution of Q variations with 
depth. A model that is compatible with 
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FIGURE 4.32 The attenuation kernels for different spheroidal free oscillations. For a given 
mode the kernel indicates the depths that are controlling the attenuation. For example, for 
oSi9i, all the attenuation is caused by Q in the upper 100 km of the Earth. (From Stein 
etal.. in "Anelasticity in the Earth," pp. 3 9 - 5 3 , 1981 ; copyright by the American Geophysi­
cal Union.) 
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(although not uniquely required by) com­
bined surface-wave, normal-mode, and 
body-wave attenuation measurements is 
shown in Figure 4.33. This model, SL8, 
shows shear attenuation, Q^, and bulk at­
tenuation, Qf^ (the quality factor in pure 
compression). These are related to Q^ and 

QB = Q, (4.57) 

Q-' = LQ;'^{I-L)QJ;' (4.58) 

G,= [ ( l - L ) Q , 0 ^ ] / ( G ^ - L e j , 

(4.59) 

where L = \{&/af. Table 8.1 also lists 
another attenuation model with a simpler 
structure that is still generally consistent 
with free-oscillation observations. Note the 
low Q in the upper mantle and the very 
high Q in the core. The dispersive effect 
on surface waves for such a Q model is 
illustrated in Figure 4.34, which shows the 
relative correction of either phase velocity 
(for surface waves) or period (for normal 
modes) as a function of period. Shorter-
period waves that sample the low-j3 upper 
mantle have strong dispersive effects. 
Chapter 7 will discuss ongoing efforts to 
map the aspherical structure of anelastic-
ity in the Earth. 
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FIGURE 4.33 The SL8 model for whole-Earth Q. For the upper mantle the bulk attenuation 
is infinite; Q^ is the shear O. (From Anderson and Hart. J. Geophys. Res. 83. 5 8 6 9 - 5 8 8 2 , 
1978; copyright by the American Geophysical Union.] 
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FIGURE 4 .34 Fractional change in Love wave 
(toroidal mode) and Rayleigh wave (spheroidal 
mode) phase velocities (periods) as functions of 
period, computed for observed 0 observations. 
(From Kanamori and Anderson, Rev. Geophys. 
Space Phys. 15. 1 0 5 - 1 1 2 . 1977; copyright by 
the American Geophysical Union.) 
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C H A P T E R 

5 
SEISMOMETRY 

The theory of elastic waves described in 
the previous chapters explains how the 
Earth vibrates as seismic waves pass 
through it and along its surface. Quantita­
tive analysis of these seismic disturbances 
requires that the vibrations be instrumen-
tally recorded. The instrumentation must 
(1) be able to detect the transient vibra­
tions within a moving reference frame (the 
instrument moves with the Earth as it 
shakes); (2) operate continuously with a 
very sensitive detection capability with ab­
solute timing so that the ground motion 
can be recorded as a function of time, 
producing a seismogram; and (3) have a 
fully known linear response to ground mo­
tion, or instrument calibration, which al­
lows the seismic recording to be accurately 
related to the amplitude and frequency 
content of the causal ground motion. Such 
a recording system is called a seismograph, 
and the actual ground-motion sensor that 
converts ground motions into some form 
of signal is called a seismometer, or a 
geophone in exploration seismology. The 
design and development of seismic record­
ing systems is called seismometry, and 
many successful instruments have been de­
veloped over the past 120 years, almost all 
based on the concept of an inertial pendu­
lum. Different concepts are applied to 
study other Earth motions such as rota­
tion, tilting, and straining. 

The first known attempts to simply reg­
ister the occurrence of ground motion were 
conducted by the Chinese as early as 
132 AD. At that time, a Chinese philoso­
pher, Chang Heng, developed the first 
seismoscope, an instrument that documents 
the occurrence of motion but does not 
produce a recording as a function of time. 
His instrument presumably involved a pen­
dulum system inside a 6-ft-diameter jar, 
from which eight dragon heads protruded 
at principal compass directions. Balls were 
placed in the mouths of the dragons, and 
the internal pendulum was designed so 
that ground shaking would dislodge the 
ball from the dragon mouth in the direc­
tion of the azimuth to the source. The 
underlying technology for this seismoscope 
appears to have been lost, and significant 
further development of ground-motion 
sensors was not pursued until the 1700s. 

The Italians developed numerous seis-
moscopes in the early eighteenth century, 
motivated mainly by the frequent occur­
rence of earthquakes in the Mediter­
ranean. In 1751 Andrea Bina described a 
pendulum system with a pointer etching in 
sand, and increasingly sophisticated pen­
dulum systems were incorporated in seis-
moscopes over the next 100 years. The first 
attempt to record the time of shaking was 
probably made in 1784, when A. Cavalli 
placed seismoscopes (involving bowls filled 
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to the brim with mercury) above rotating 
platforms perforated with cavities, keyed 
to the time of day, which would collect any 
mercury slopped out of the bowls. In 1851 
Robert Mallet applied a ground-motion 
sensor that used optical reflection from a 
basin of mercury to measure the speed of 
elastic waves in surface rocks, initiating 
the field of explosion seismology. 

The first true seismograph, which 
recorded the relative motion of a pendu­
lum and the Earth as a function of time, 
was built by Filippo Cecchi in Italy in 
1875. A seismoscope was designed to start 
a clock and a recording device at the first 
onset of shaking. The oldest known seis­
mic record produced by this system is dated 
February 23, 1887. A period of rapid in­
strument development and improvement 
occurred after 1875. A group of British 
seismologists teaching in Japan, the best 
known being John Milne, James Ewing, 
and Thomas Gray, led to the first rela­
tively long-period systems (mainly sensitive 
to ground displacements for nearby events) 
and the first vertical-component seismo­
graphs. In these early systems, mechanical 
or optical systems amplified the mass mo­
tion, and friction provided the only damp­

ing of the pendulum oscillators. Euro­
peans pursued the developments in Japan, 
and in 1889 the first known seismogram of 
a distant earthquake was made on a pho­
tographically recording, horizontal mo­
tion-sensing instrument designed by Ernst 
von Rebeur-Paschwitz and located in Pots­
dam. By 1900 the first global array of 40 
photographically recording horizontal-
component seismographs built by John 
Milne, along with other observatory instru­
ments built in Europe and Japan, provided 
the initial seismogram data base for apply­
ing elastic-wave theory to begin to under­
stand Earth vibrations. 

5.1 Inertial Pendulum Systems 

Almost all seismometers are based on 
damped inertial-pendulum systems of one 
form or another. Simple vertical and hori­
zontal seismometer designs are illustrated 
in Figure 5.1. The frame of the seismome­
ter is rigidly attached to the ground, and 
the pendulum is designed so that move­
ment of the internal proof mass, m, is 
delayed relative to the ground motion by 
the inertia of the mass. Each pendulum 

Vertical Seismometer Horizontal Seismometer 

FIGURE 5.1 Schematics of inertial-pendulum vertical and horizontal seismographs. Actual 
ground motions displace the pendulums from their equilibrium positions, inducing relative 
motions of the pendulum masses. The dashpots represent a variety of possible damping 
mechanisms. Mechanical or optical recording systems with accurate clocks are used to 
produce the seismograms. 
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system has an equilibrium position in which 
the mass is at rest and to which it will 
return following small transitory distur­
bances. The orientation of the pendulum 
further determines which component of 
ground motion will induce relative pendu­
lum motion. 

Ground displacements, U(t\ are com­
municated to the proof mass via the at­
tached springs or lever arms, with favor­
ably oriented motions perturbing the sys­
tem from its equilibrium position, leading 
to periodic oscillation of the mass. Friction 
or viscous damping, represented by the 
dashpots, is generally proportional to the 
velocity of the mass and acts to restore the 
system to its equilibrium position. Small-
scale fluctuations in the springs and damp­
ing elements determine the intrinsic in­
strument noise level, below which actual 
ground motions cannot be detected. Al­
though many early seismometers were de­
signed empirically without mathematical 
analysis, the equation of motion for sim­
ple, damped harmonic oscillators provides 
insight into instrument characteristics. 

The motion of the pendulum mass in an 
inertial reference frame is given by the 
sum of the ground motion plus the devia­
tion of the mass from its equilibrium state, 
y(t). For the vertical seismometer in Fig­
ure 5.1, the forces on the mass must act 
through the spring and dashpot, with 
recording-system friction effects included 
in the dashpot. The force from the spring 
is -Kyit), which is directly proportional 
to movement of the mass from its equilib­
rium position and which must involve 
stretching or contraction of the spring, 
which has a spring constant K. The damp­
ing force, -Dyit), is directly proportional 
to the velocity of the mass, with D being a 
damping coefficient. Newton's law 
(F = ma) is then 

Ky{t)-Dy{t)==m[y{t)-^U{t)]. 

(5.1) 

This is rearranged to give 

y{t)+2ywoHt)+'^ly{t)= -f^(0> 
(5.2) 

where COQ = yJK/m , and y = D/l^Km is 
the damping factor. The significance of ÔQ 
is shown by considering the undamped 
(y = 0) system with Hit) = 0. 

y{t)-^a)ly(t)=0, (5.3) 

which has purely harmonic solutions of the 
form cos (o^t, sin (OQI, or e-"^"^ where COQ 
is the natural or resonant frequency of the 
undamped system. 

All recording systems that translate the 
pendulum motion into an actual seismo-
gram, x(t), involve at least a magnification 
coefficient, G, that gives rise to the indica­
tor equation for x(t): 

x(t) -^2y(0Qx{t) +a)lx{t) = -GU{t). 

(5.4) 

Solutions of (5.4) for prescribed functional 
forms of U(t) can characterize the seismo­
graph response. This type of linear differ­
ential equation is readily solved using 
Laplace transforms (for transient motions) 
or Fourier transforms (for stationary 
ground oscillations). It is straightforward 
to consider simple harmonic forms of U(t) 
such as 

t/(0 = cos a)t — /sin cot. (5.5) 

Of course, actual ground motion must be a 
real function, but it is easiest to analyze 
the general form of U(t) and then con­
sider the real part of xU). Inspection of 
(5.4) indicates that xU) will have the form 
x(t)=x(a))e-''^', giving 

x(a)) -Gc 
(o — (I)Q + 2i(oya)Q 

(5.6) 
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Box 5.1 Time and Frequency Domain Equivalence 

In seismometry and many other aspects of seismology, it is often useful to 
represent transient time functions by equivalent functions in the frequency do­
main. This is possible using Fourier transforms, which are integral relationships 
that state that for an arbitrary function, fit), a set of harmonic terms exists such 
that 

1 

where 

F(a))=|^(a))|e'^<->= f f{t)e-'-'dt. 

(5.1.1) 

(5.1.2) 

These transform pairs correspond to a mapping from the time domain to the 
frequency domain, where w is angular frequency, Aio)) is the amplitude of each 
harmonic component, and (/)(a>) is the corresponding phase shift (see Figure 
5.B1.1). The integral in (5.1.1) is simply a sum, so this theorem states that an 
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FIGURE 5.B1.1 A signal that is a function of time, as shown on the left, may be equivalently 
represented by its Fourier spectrum, as shown on the right. The amplitude and phase 
spectra are both needed to provide the complete time series. 

arbitrary ground-motion time series, even an impulsive one, can be expressed as a 
sum of monochromatic periodic functions (Figure 5.B1.2). This is possible if the 
amplitude and phase alignment of the harmonic terms are chosen appropriately 
and the sum is over a continuous distribution of harmonic functions. Destructive 
and constructive interference between the harmonics is balanced so that they add 
up exactly to the original time series. The functions are called the signal spectrum 
and define the frequency-domain representation of the time-domain trace. Fourier 
spectra are determined using computers and digital, discretized versions of Fourier 
transforms. This text will often represent seismological observations by their 
spectra, which contain all of the information of the original seismogram, as long as 
both amplitude and phase are considered. 

continues 
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FIGURE 5.B1.2 A discretlzed version of Eq. [5.1.1). showing how a sum of harmonic terms 
can equal an arbitrary function. The amplitudes of each harmonic term vary, being prescribed 
by the amplitude spectrum. The shift of the phase of each harmonic term is given by the 
phase spectrum. 

The complex function x((o) can be repre­
sented in the form x(a)) = \x((D)\e''^^'^^ 
with 

U(o>)| = 
Go)^ 

(j)= — tan + 77, (5.7) 

where x((o) is called the frequency re­
sponse of the instrument, and \x((o)\ is the 
amplitude response and (f>((o) the phase 
delay. The actual physical seismogram 
would correspond to the real part of this 
solution in the time domain, 

1 . 0 0 

x{t)^-—\ |A:(ft>)|^'^("V"'d6>. (5.8) 
LIT • ' - 0 0 

As y -^ 0 (undamped), the solutions 
have increasing amplitude as w -^ a>, o» 

which is called resonance. Typically, the 
natural period of the seismometer ( r = 
27r/a>o) has the maximum amplitude re­
sponse. If y «: 1 (underdamped), the mass 
responds primarily to periods near the 
pendulum period, and the signal tends to 
"ring" at that period. For y = 1 the signal 
is critically damped and oscillation is mini­
mized, with the mass quickly returning to 
rest as ground motion ceases. For y > 1 
(overdamped), no oscillations occur, but 
the mass returns to rest more slowly. Most 
instruments are designed to operate with 
near-critical damping so that the seismic 
record is not excessively ringy. 

If the ground-motion frequency is much 
lower than the seismometer frequency 
(o) ^̂  a>o), the amplitude response is pro­
portional to (D^/iol, and the seismogram 
records ground acceleration. Thus, design 
of accelerometers, intended to record 
strong acceleration at frequencies near 



FIGURE 5.2 Early mechanical horizontal-motion seismographs: (a) The 1905 Omori 60-s 
horizontal-pendulum seismograph and (b) the 1904 1000-kg WIechert inverted-pendulum 
seismograph. Both instruments etched a record on smoked-paper recorders. Friction on the 
stylus provided the only damping in the Omori system, while air pistons CD and D'] damped 
the Wiechert instrument. Restoring springs, connected to the top of the mass, W, kept the 
inverted pendulum in equilibrium, with a special joint at the base of the mass permitting 
horizontal motion in any direction. 

5-10 Hz, involves seismometers with very 
high resonant frequencies. If the driving 
frequency is much higher than the natural 
frequency (o)» (OQ), displacement on the 
seismogram is directly proportional to 
ground displacement. Much of the early 
developmental work in seismometry sought 
to reduce COQ to yield displacement record­
ings for regional-distance seismometers. 
Most modern seismometers are actually 
primarily sensitive to ground velocity be­
cause motions of the pendulum mass are 
converted to an output voltage signal pro­
portional to the mass velocity. A variety of 
instruments with varying response charac­
teristics will be discussed later in this 
chapter. 

We conclude this discussion of simple 
harmonic oscillators by considering two 
classic seismic instruments developed 
around the turn of the century, shown in 
Figure 5.2. The first is the Omori horizon­
tal pendulum seismograph, developed by a 
student of John Milne in Japan from 1899 
to 1905. The instrument had direct re­

sponse to ground displacement for periods 
less than 60 s, with the long pendulum 
period achieved by having a nearly vertical 
swinging-gate pendulum (increasing the 
angle of the pivot arm to the vertical de­
creases the pendulum period). A stylus 
attached to the mass etched a record di­
rectly onto a rotating drum covered with 
smoked paper. The only damping in the 
system was due to the stylus friction and 
mechanical friction in the hinges, and, of 
course, the restoring force acting on the 
mass was simply gravity. Figure 1.5 shows 
a recording from an Omori instrument for 
the 1906 San Francisco earthquake. In 
1898 E. Wiechert in Germany introduced 
viscous damping in a horizontal-pendulum 
instrument and extended this to an in­
verted-pendulum seismograph in 1900. A 
1000-kg mass was used in the 1904 variety, 
shown in Figure 5.2b, with mechanical 
levers magnifying the signal 200 times and 
etching a record on smoked paper. Air-
filled pistons provided the damping. 
Wiechert inverted-pendulum seismome-
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ters are still operated today, having pro­
vided more than 90 years of relatively uni­
form instrumental records. 

5.2 Earth Noise 

Before continuing a discussion of seis-
mometry developments in this century we 
must consider an additional important as­
pect of ground-motion recording: the 
ground is never truly at rest. Because all 
sources of rapid deformational energy ex­
cite seismic waves and because sources 
such as tides, atmospheric pressure, diur­
nal heating of the surface, and human-
induced vibrations are continuous, a con­
tinuous background noise level exists 
composed of small signals or microseisms. 
Any detection of transient wave arrivals 
must be made in the presence of this noise. 
Not surprisingly, the background noise 
level is temporally and spatially variable 
and is not uniform at all frequencies. This 
has strongly influenced the design of seis­
mic recording systems in this century. 

Wave surf and standing waves in the 
ocean are some of the primary sources of 

seismic noise, with water movements con­
tinually generating surface waves in the 
solid Earth. Figure 5.3 shows the variation 
of background noise ground acceleration 
for stations at varying distances from 
coastlines. These ground-acceleration 
spectra typically have noise peaks at fre­
quencies from 0.15-0.2 Hz. The units are 
decibels, given by lOlogipCsignal power). 
Because signal power is proportional to 
the square of the signal amplitude, 20 dB 
corresponds to a factor of 10 variation of 
the signal amplitude, in this case ground 
acceleration. Thus, ground-acceleration 
noise varies by a factor of about 10"̂  over 
the frequency range shown, and the high-
frequency noise peak will tend to swamp 
any seismometer with uniform sensitivity 
unless it has a dynamic range that can 
resolve very large variations in signal am­
plitudes. This figure also suggests that is­
land sites (RPN is on Easter Island) will 
be much noisier than land sites well re­
moved from the coast. The factor of 10 
variation in noise levels in the 0.1-1.0 Hz 
passband also indicates that seismic-event 
detection will be nonuniform and mea­
surement error will vary from station to 
station. 
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FIGURE 5.3 Power spectra of average background-noise ground acceleration recorded on 
vertical-motion accelerometers. Note the peak in noise near 0.2 Hz at all stations and the 
systematic decrease in noise with distance from the coast. Figure 5.14 shows the'station 
locations. The units of dB (decibels) are in terms of lOlog^Q (acceleration power). Thus, 20 
dB corresponds to a factor of 10 variation in ground acceleration. (From Hedlln etal., 1988.) 
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FIGURE 5.4 Differences in ground-acceleration power spectra at four stations located in 
the former Soviet Union between day and night (left) and winter versus summer (right). The 
vertical units are decibels, with 20 dB corresponding to a factor of 10 variation in ground 
acceleration noise level. (From Given, 1990.) 

Ground noise also exhibits daily and 
seasonal variations at sites well removed 
from coastlines. Figure 5.4 shows differen­
tial noise spectra from seismic stations in 
the former Soviet Union, all of which dis­
play enhanced high-frequency noise during 
the daytime and variable seasonal noise 
character. Human-induced and atmo­
spheric variations are partly responsible 
for the diurnal behavior. Seasonal varia­
tions can reflect ground-water freezing, 
changes in atmospheric patterns, and tem­
perature variations of the recording sen­
sors. 

In the 1960s many studies of ground-
motion noise characteristics were con­
ducted to improve seismograph design. It 
was found that placing instruments in deep 
mines below the surface or in deep bore­
holes could significantly reduce the back­
ground noise levels, enabling better tran­
sient event detection. Figure 5.5 illustrates 

the factor of 10 signal-to-noise enhance­
ment achievable by placing the sensor in a 
borehole. This is particularly important for 
noisy island sites (although horizontal tilt­
ing cannot be so easily eluded) and is 
driving new development of ocean-bottom 
borehole instrumentation. 

In this text we treat seismic noise as a 
nuisance, limiting our ability to observe 
transient seismic signals, but we should 
note that seismologists have conducted 
many interesting studies of microseism 
sources. For example, the locations of large 
storm centers have been inferred from 
noise characteristics of sets of stations. 
Ground motions of microseisms vary from 
10"^ to 10"^ cm, and no seismogram can 
ever be totally free of some background 
noise. Most seismological analyses must 
explicitly allow for noise-contaminating 
effects on any estimate of a given signal 
amplitude and phase spectrum. 
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FIGURE 5.5 Illustration of the background noise reduction that can be achieved by using 
deep-borehole seismometers in place of vault seismometers. A value 20 dB on the vertical 
axis corresponds to a factor of 10 variation in ground acceleration. (From Incorporated 
Research Institutes for Seismology. 1991-1995. ) 

5.3 Electromagnetic 
Instruments and Early Global 
Networks 

In 1914 a Russian, B. Galitzin, intro­
duced an electromagnetic moving-coil 
transducer to convert pendulum mass mo­
tion into an electric current. Motion of a 
wire coil in the presence of a magnetic 
field generates a signal voltage that is pro­
portional to the mass velocity, which 
Galitzin used to rotate a galvanometer coil. 
Light reflected from a mirror on the gal­
vanometer coil was recorded on photo­
graphic paper, and a long optical lever 
arm was used to produce large magnifica­
tions. This type of electromagnetic system 
has dominated instrumentation this cen­
tury, with the optical recording eliminating 
friction. The coupling of a seismometer 
pendulum, electromagnetic transducer, 
and galvanometer also allowed shaping the 
instrument response to emphasize a par­
ticular frequency passband. The elec­
tromechanical response of the galvanome­
ter can be approximated by a solution of 
the form of (5.7), but with different damp­

ing and resonant frequency corresponding 
to the galvanometer characteristics. The 
product of the pendulum, transducer, and 
galvanometer frequency responses controls 
the overall instrument response, leading to 
responses that are peaked at the pendu­
lum period. 

Instrumental response curves for some 
classical mechanical and electromagnetic 
seismographs are shown in Figure 5.6. Note 
that the Galitzin responses achieve higher 
gains due to the optical recording, but they 
are more narrowband (i.e., record a nar­
rower frequency range) than early me­
chanical instruments like the Wiechert, 
Bosch-Omori, and Milne-Shaw instru­
ments. These instrument responses clearly 
show the strong falloff in response at long 
periods, proportional to T~^ (o)^), where 
the response is proportional to ground ac­
celeration. The noise spectra in Figure 5.3 
show that one of the clear advantages of 
the Galitzin electromagnetic systems is that 
response at short periods, where the in­
struments respond directly to ground ve­
locity (slope a T), is reduced near the large 
noise peaks near 5 to 6 s. 
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FIGURE 5.6 Instrument-response curves for a suite of classic seismometers, indicating 
their magnification as a function of period. For very long periods all of these instruments are 
sensitive to ground acceleration, with the response falling off in proportion to l / T^ . where T 
is the period. (Modified from Kanamori. 1988.} 

This response tuning was critical for the 
1940s development of the short-period 
Benioff and long-period Sprengnether 
electromagnetic instruments based on the 
Galitzin design. These were deployed in 
the World Wide Standardized Seismic 
Network (WWSSN) in the 1960s. These 
instruments were designed to straddle the 
strong Earth noise peak, with short-period 
instruments having 1-s pendulum periods 

and 0.7-s galvanometers, while the long-
period instruments had either 15- or 30-s-
period pendulums with 100-s-period gal­
vanometers. 

In the early 1960s, as part of the 
VELA-Uniform project sponsored by the 
Department of Defense following the move 
to underground nuclear testing, a global 
array of these instruments was installed. 
Each station had three short-period and 
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three long-period instruments to record 
horizontal and vertical ground motion. Ini­
tially, 30-s-period pendulums in the long-
period Sprengnethers were used, but they 
proved to be excessively sensitive to baro­
metric pressure variations, so more stable 
15-s-period configurations were adopted by 
1965. The distribution of the WWSSN sta­
tions (Figure 5.7) was extensive, reflecting 
the global collaboration typical of seismol­
ogy, although clear gaps exist due to both 
political situations and ocean basins. This 
global network was more extensive than 
any preceding instrument deployment and 
was equipped with very accurate timing by 
crystal clocks and standardized instrumen­
tation. 

The instrument responses of the short-
period and long-period WWSSN seismo­
graphs are shown in Figure 5.8, along with 
responses for other instruments that domi­

nated seismic data collection from 1922, 
when the Wood-Anderson torsion seismo­
graph was developed, to 1976. All of these 
except the Wood-Anderson instruments 
are electromagnetic systems with gal­
vanometers. The torsion seismographs 
simply involve a copper cylinder attached 
to a vertical suspension wire. Shaking 
causes the cylinder to rotate slightly, mov­
ing a mirror that reflects a light signal to a 
photographic recorder. Two designs were 
made, one with a 0.8-s period with a mag­
nification of 2800 and the other with a 
6.0-s period and a magnification of up to 
800. The short-period sensor was critical 
for providing regional earthquake record­
ings used to develop the Richter magni­
tude scale. 

The WWSSN recordings have been very 
extensively utilized because the original 
photographic records were filmed on 35-
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FIGURE 5.7 Global nnap indicating the locations of stations of the World Wide Standardized 
Seismograph Network (WWSSN). (Courtesy of the U.S. Geological Survey.) 
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FIGURE 5.8 Instrunnent response curves for short- and long-period seisnnometers of the 
WWSSN, Benioff, Wood-Anderson, and Press-Ewing varieties, which dominated local and 
global data collection from 1950 to 1977. The Instrument pairs were designed to minimize 
the effects of ground-noise maxima between 5 and 10 s. (Courtesy of H. Kanamori.] 

or 70-mm microfiche, and copies were pro­
vided to major seismic data centers, where 
magnified paper copies could be made. 
The impact of the WWSSN was tremen­
dous, coming at the time of the plate tec­
tonics revolution, when accurate seismic 
recordings were critical for determining 
faulting patterns. The accurate timing and 
response standardization allowed many 
basic studies of Earth structure and earth­
quake sources to be conducted throughout 
the 1960s to 1980s. 

5.4 Force-Feedback Instruments 
and Digital Global Networks 

Beginning in the early 1970s seismic 
recording systems began to forgo low-
dynamic-range analog recording by ink. 

photographic systems, or analog tape 
recording in favor of digital recording on 
magnetic tape. In essence, these systems 
sample the output current from the seis­
mometer and amplification electronics, and 
they write the voltage at each time step to 
tape rather than use it to drive a mechani­
cal or optical recording system. The first 
digital observatory stations were the High 
Gain Long Period (HGLP) stations de­
ployed by Columbia University from 1969 
to 1971 at sites in Alaska, Australia, Israel, 
Spain, and Thailand. The HGLP stations 
used sensors similar to those of the 
WWSSN, but they included both digital 
and optical recordings and had better 
thermal isolation. HGLP stations were the 
first to resolve minimum Earth noise in the 
20- to 100-s-period range. Beginning 
around 1975, these were superceded by 
the Seismic Research Observatories 



5.4 Force-Feedback Instruments and Digital Global Networks 

(SRO), with the HGLP stations being 
modified to become Abbreviated Seismic 
Research Observatories (ASRO). ASRO, 
SRO, and digitally upgraded WWSSN 
(DWWSN) made up the Global Digital 
Seismic Network (GDSN), with additional 
digital stations deployed in the Regional 
Seismic Test Network (RSTN). 

The distribution of the GDSN is shown 
in Figure 5.9. Note that the total number 
of stations is less than that of the WWSSN. 
The SRO stations of the GDSN employ 
the KS36000 seismometer, which has three 
components and is deployed about 100 m 
deep in a borehole. The SRO and ASRO 
recording systems write directly to mag­
netic tape, and the response is still sepa­
rated into short- and long-period record­
ings for the SRO sensors, despite the fact 

that only one type of seismometer was 
used, unlike the separate short- and long-
period sensors of the WWSSN and 
HGLP/ASRO. The long-period SRO re­
sponse peaks at a period of 25 s, with a 
narrowband amplitude response. This was 
motivated by a desire to record 20-s-period 
surface waves from earthquakes and from 
nuclear explosions for treaty-monitoring 
purposes. Figure 5.10 shows examples of 
ground impulse responses of GDSN sys­
tems. The filtering effect of the instrument 
causes a spike impulse ground motion to 
produce a 20-s-period seismogram, which 
clearly limits the potential resolution of 
rapid ground vibration. These systems were 
mainly for recording global surface waves, 
and the convenience of digital recording 
prompted the first aspherical Earth model 
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FIGURE 5.9 Global map indicating the locations of stations of the Global Digital Seismic 
Network (GDSN) composed of SRO. ASRO. and DWWSSN stations. These instruments 
dominated global data collection from 1977 to 1986. (Courtesy of the U.S. Geological 
Survey.] 
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FIGURE 5 . 1 0 Examples of the impulse 
ground-motion response of long-period digital 
instruments In the GDSN. Digital seismograms 
are processed to account for the instrument-
response distortions when analyzing seismo­
grams. (From Shearer. 1991.) 

inversions (see Chapter 7). The major fail­
ing of the SRO system is that the sensors 
and electronics exhibit nonlinear re­
sponses for rapid accelerations such as 
those associated with large, impulsive 
body-wave arrivals. Also, the only high-
frequency recordings were for triggered, 
short-period vertical components. 

One of the critical aspects of the 
KS36000 and most other recent seismic 
sensors is that they employ force-feedback 
systems. This involves a negative feedback 
loop in which a force proportional to the 
inertial mass displacement is applied to 
the mass to cancel its relative motion. An 
electrical transducer converts the mass 
motion into an electrical signal to assess 
how much feedback force to apply. The 
amount of force required to hold the pen­
dulum at rest corresponds to the ground 
acceleration. The force-feedback strategy 
greatly extends the bandwidth and linear­
ity of a seismometer, because the mass 
cannot make large excursions that bend 
the springs or levers. Since 1973 all broad­
band seismic sensors have incorporated 
force feedback, particularly borehole sen­
sors like the KS36000 or the newer 

KS54000, which intrinsically cannot ac­
commodate large pendulum motions due 
to the compact size of the sensors. 

Force-feedback systems of various types 
have actually existed at least since 1926, 
when de Quervain and Piccard used one in 
a 21-ton seismograph in Zurich. Much of 
the challenge in designing broadband seis­
mometers has been in the development of 
stable force-generating systems that can 
respond accurately over the whole range 
of motions that a seismometer will un­
dergo. It has also been necessary to de­
velop recording equipment with sufficient 
dynamic range to exploit the capabilities 
of the most recent generation of sensors. 

Figure 5.11 shows a schematic of the 
Wielandt-Streckeisen STS-1 leaf spring 
seismometer and a sample broadband 
recording system. The seismometer is a 
standard, remarkably compact pendulum-
type design, but its capabilities are mainly 
due to the feedback electronics that pre­
vent the mass from moving significantly. 
Digitizing the feedback-generated signal 
with 16- to 24-bit resolution, careful tim­
ing, filtering, and tape recording are all 
critical to retrieving a useful signal. 

Figure 5.12 illustrates the merits of the 
STS-1 broadband seismograph relative to 
WWSSN and GDSN stations. The broad­
band system avoids the artificial separation 
of signal energy into separate short- and 
long-period channels as was done in the 
WWSSN instrumentation. The dynamic 
range of the system is so great that using 
separate channels that straddle Earth noise 
peaks is no longer necessary. Also, the 
digital filtering is far less severe than in 
the SRO system, allowing retrieval of much 
more waveform information. 

The magnitude of the progress in seis­
mograph development is dramatically il­
lustrated in Figure 5.13, which compares 
the dynamic range and bandwidth of the 
latest generation of instrumentation with 
those of the WWSSN systems. The new 
systems being deployed by the Incorpo­
rated Research Institutions for Seismology 
(IRIS) jointly with the U.S. Geological 
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Survey (USGS) as the new Global Seismic 
Network (GSN) have astounding capabili­
ties. These instruments can record both 
Earth tides and high-frequency body waves 
ranging from minimum Earth noise levels 
up to the strong accelerations expected for 

a magnitude 9.5 earthquake 3300 km away. 
This new instrumentation, first developed 
in 1986 but built on 10 years' experience 
with STS-1-type sensors at the Grafen-
berg seismic array in Germany, is now 
being widely deployed around the world. 
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FIGURE 5.11 Schematic of the leaf-spring seismometer and system configuration involved 
in modern broadband digital seismographs. The Streckeisen STS-1 leaf-spring seismometers 
are attached to feedback electronics that adjust to minimize actual motions of the mass. 
The electric currents produced by the feedback are digitized, synchronized with time signals, 
and electronically filtered and recorded. These systems can reduce instrument noise by 
factors of 2 0 - 4 0 dB relative to GDSN-generation equipment. 
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FIGURE 5.12 Comparison of seismograms with varying instrument responses for the same 
ground motion. The records on the left compare a teleseismic P wave from the March 4, 
1977 Bucharest event, as it would appear on WWSSN short- and long-period seismograms, 
with the broadband signal (proportional to ground velocity) actually recorded at station A1 of 
the Grafenberg seismic array in Germany. The broadband recording contains much more 
information than either WWSSN recordings alone or combined. The example on the right 
compares GDSN CSRG-LP), WWSSN-LP, and broadband ground-displacement recordings for 
a P wave from the April 23, 1979 Fiji earthquake that has traversed the Earth's core. The 
broadband recording contains much more information that can reveal details of the core 
structure. (Modified from Harges etal., 1980.] 
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FIGURE 5.13 The range of ground acceleration (in dB) and period of ground motions spanned 
by the very broadband seismic system of IRIS Global Seismic Network (GSN] compared with 
capabilities of the WWSSN instrumentation and expected ground accelerations from magni­
tude 5.0 and 9.5 earthquakes at a distance of 30° (angular distance) and from Earth tide 
motions. GSN-type instruments have become dominant for global seismic recording since 
1986. (From Incorporated Research Institutes for Seismology, 1991-1995. ) 
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FIGURE 5.14 Global distribution of IRIS-GSN and IRIS-IDA seismic stations by the end of 
1993. Broadband Instrumentation with recorders of different dynamic range are differenti­
ated In the figure. [Courtesy of R. Butler.) 

Figure 5.14 shows the current distribu­
tion of the fully configured, latest-genera­
tion seismic stations operated by the 
United States by IRIS/USGS. The net­
work is growing continuously, with an ulti­
mate goal of 128 stations with relatively 
uniform coverage of the surface. These 
systems are also being deployed at another 
important global network (open stars in 
Figure 5.14) operated by the University of 
California at San Diego (now affiliated with 
IRIS), called the International Deploy­
ment of Accelerometers (IDA). 

The IDA instruments were the best 
available from 1977 to 1987 for recording 
free oscillations of the Earth. The instru­
ment used in these is a force-feedback 
LaCoste-Romberg vertical gravimeter, 
which senses vertical motion by the result­

ing change in gravity. The gravimeter mass 
is connected to the center plate of a 
three-plate capacitor, whose outer two 
plates are fixed. As the mass moves, the 
voltage generated between the center plate 
and the outer plates is proportional to the 
displacement. A 5-kHz alternating voltage 
is applied to the outer plates, so that the 
lower-frequency seismic signal modulates 
the amplitude of the 5-kHz signal. The 
modulated signal is fed to an amplifier, 
which generates a voltage that is propor­
tional to the 5-kHz component of the sig­
nal and thus to the displacement of the 
mass. The signal then goes to an integrator 
circuit whose output is proportional to the 
acceleration of the mass. This is the seis­
mic systems output. This voltage is also 
then fed back to the outer capacitor plates 
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FIGURE 5.15 Global distribution of Project GEOSCOPE stations by the end of 1990. STS-1 
seismometers are located at all stations, but slightly different recording characteristics 
are used at different sites. (Modified from Romanowicz etal., 1991.) 
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FIGURE 5.16 Global network of very broadband seismometers planned for the end of the 
twentieth century, composed of various international network deployments. (Courtesy of R. 
Butler.) 
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FIGURE 5.17 Schematic of ocean-bottom borehole-seismometer deployment and recording 
operations. Broadband instrumentation for such submarine boreholes is being designed and 
tested in the early 1990s. (From Stephen eC al., 1988.) 

to stabilize the system and increase linear­
ity. 

Instrumentation comparable to that of 
the GSN (STS-1 seismometers with dual 
16-bit digitizing system) have been de­
ployed by France beginning in 1982 under 
project GEOSCOPE (Figure 5.15), and to­
gether with instruments deployed by seis­
mologists in Europe, Australia, Canada, 
and Japan, a new global network (Figure 
5.16) of the highest quality is evolving to 
finally replace the WWSSN with a com­
plete global coverage. It will require up to 

10 years to upgrade the global network 
fully with the new, rather expensive instru­
mentation. It is clear that even then, ocean 
basins will cause substantial gaps in cover­
age. To overcome this, scientists are cur­
rently developing a broadband borehole 
sensor for deployment in ocean basins. 
Both the extreme environmental condi­
tions and the difficulty of deploying and 
retrieving data from the system provide 
major technological challenges. Figure 5.17 
illustrates one concept for an ocean-
bottom borehole system. 
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5.5 Seismic Arrays 
and Regional Networics 

Although the first priority for seismic 
instrument development was global de­
ployment of observatory instrumentation 
to increase knowledge of Earth's structure, 
the underlying principles were quickly 
adapted to other instrument capabilities. 
Small seismometers, with many hundreds 
of sensor channels, were developed for 
explosion seismology. These involve easily 
deployable geophones that can be laid out 
at regular intervals to record high-
frequency seismic waves over short dis­
tances. Portable seismograph systems were 
designed as isolated units that could be 
deployed near large earthquake ruptures 
to record aftershocks or to study the crust 
locally. Ocean-bottom seismometers were 
designed for similar studies. Yet another 
seismological instrumentation develop­
ment came with the VELA-Uniform pro­
ject. This involved dense arrays of seis­
mometers with either fixed locations or 
portable systems that were laid out in a 
regular pattern. In every case, these in­
volve pendulum-based seismometers, with 
the most current ones having force-feed­
back systems to provide great bandwidth. 

Major U.S.-deployed seismic arrays have 
included the Long Range Seismic Mea­
surements (LRSM) program of the 1960s, 
the Geneva arrays of the 1960s to 1970s, 
the Large Aperture Seismic Array (LASA), 
and the Norwegian Seismic Array 
(NORSAR), a large array in Norway that 
is still operational. The LRSM involved 
mobile seismological observatories that 
used film and FM magnetic tape to record 
short- and long-period three-component 
data. Linear arrays straddling the United 
States were deployed primarily to record 
underground nuclear tests. The Geneva 
Arrays included five arrays around the 
United States installed between 1960 and 
1963 that ran until 1970 or 1975. These 
included arrays in Oklahoma (WMO), 
Tennessee (CPO), Oregon (BMO), Utah 
(UBO), and the Tonto Forest Observatory 

(TFO) in Arizona. TFO was the primary 
research system, but all of these were de­
signed to study multiple-element seismic-
recording procedures to assess potential 
advantages for seismological studies. All of 
them except TFO had apertures of 4 km, 
with 10 to 19 sensors laid out in different 
patterns. TFO was larger and denser and 
operated until 1975. 

LASA was built on the experience with 
small arrays and involved an array of ar­
rays with 525 seismometers over an aper­
ture of 200 km. Twenty-one clusters, each 
with 25 sensors over 7-km^ regions, were 
deployed, all recording vertical high-
frequency (> 3 Hz) ground motion. LASA 
operated from the mid-1960s to 1978. This 
array enabled significant new analyses of 
high-frequency seismic waves traversing 
the Earth's deep interior. 

NORSAR began operation in 1971 and 
involved the subarray cluster design devel­
oped at LASA. Twenty-two subarrays dis­
tributed over 100 km^ were included in 

FIGURE 5.18 Geometry of small, dense arrays 
of high-frequency seismometers deployed at 
NORESS and ARCESS. The aperture of these 
arrays Is only a few kilometers. NORESS is 
located in a portion of the much larger array 
NORSAR. which has a total aperture of about 
100 km. 



5.5 Seismic Arrays and Regional Networks 

the original NORSAR configuration, with 
the array being reduced to seven subarrays 
with an aperture of 50 km in 1976. The 
primary focus of NORSAR has been mon­
itoring underground nuclear testing in 
Eurasia, but many other important appli­
cations of its data have been made. 

A new form of dense array is currently 
deployed in four locations in Europe. This 
involves up to 24-element arrays over a 
3-km aperture with high-frequency verti­
cal-component sensors and up to four sets 
of horizontal components. The first was 
deployed within NORSAR and is called 
NORESS. Figure 5.18 shows the sensor 
arrangement at NORESS and a similar 
array in northern Norway called ARCESS. 
A third array like this is now deployed in 

Finland (FINESSA), and another is lo­
cated in Germany (GERESS). 

Figure 5.19 shows an example of record­
ings of a nearby quarry explosion at 
NORESS. The motions are similar across 
the array, which allows determination of 
the actual wavefront sweeping across the 
surface. The array signals are digitally 
recorded, and computers can automati­
cally determine the direction from which 
the wave came, estimate the distance to 
the source, and identify secondary arrivals. 
This automation is a key advantage of 
small-array geometries and helps to cope 
with the vast number of seismic detections 
provided by these high-quality arrays. For 
deep Earth structure interpretations, ar­
rays have been of major importance be-
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FIGURE 5.19 Example seismograms from the NORESS array for a nearby quarry blast. 
Individual arrivals, such as the P-wave or S-wave refracted along the top of the mantle [Pn 
and Sn, respectively), can be timed across the array, enabling direct measurement of 
apparent velocity iclT/dA]-\ The length of time shown is 100 s. (From Mykkelttveit, 1985.) 
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Box 5.2 Complete Ground Motion Recording 

This chapter has focused on seismic instruments designed to record transient 
ground motions, but we must analyze other important ground motions to under­
stand dynamic processes in the Earth. To address displacements caused by 
longer-term processes, specialized instruments like LaCoste accelerometers have 
been used to observe directly gravitational changes associated with mass redistribu­
tion, and strain and tilt meters have been developed to detect gradual displace­
ments along faults and on or near volcanoes. Figure 5.B2.1 shows the types of 
ground motion and corresponding phenomena of interest that can be measured at 
different frequencies. 

•-^Coste. Terrascope ^ ^ 
Acceleration \ . 

Displacement ^ ^ ' " " o ^ ^^\ . . 

Gravity LaCoste 

Laser Strain 
Strain 

Leveling Long-base tilt 
Tilt 

10-^ 10"* 10"^ 10-2 10^ 10^ 

Wave propagation 

Dynamic mpture 

Afterslip, slow mpture 

Tides 

Unsteady strain 

Secular strain 
Phenomena of Interest 

I I I 

10-® 10-^ lO"' 10-2 10° 10^ 
Frequency (Hz) 

FIGURE 5.B2.1 Various ground-motion nneasurements and corresponding phenomena that 
can be studied using a variety of instrumentation. (Courtesy of D. Agnew.) 

continues 
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Because noise processes in mechanical systems make measurement of strain and 
tilt difficult, strain and tilt meters have a long and interesting historical develop­
ment. Agnew (1986) summarizes such systems well. The most important recent 
advances in permanent ground-displacement measurement have involved satellite-
based systems using the Global Positioning Satellite (GPS) system or very long 
baseline interferometry (VLBI), which uses phase shifts between galactic radio 
signals to measure extremely small lateral displacements. These new instruments, 
which were extensively developed in the 1980s, allow us to measure directly plate 
tectonic motions rather than having to infer them from transient earthquake 
shaking. This will be discussed further in Chapter 11. 

cause signals can be summed across the 
array with correct delay times (stacked) to 
enhance very small arrivals, and the slope 
of the travel-time curve of the individual 
arrivals can be measured directly. 

Regional seismic networks designed to 
monitor small-earthquake activity across 
the United States began to be extensively 
deployed in the 1970s and continue to 
operate today. Figure 5.20 shows the loca­

tions of primarily short-period seismome­
ters whose signals are digitally recorded at 
various research centers across the coun­
try. The networks are densest in regions of 
active seismicity such as California, Wash­
ington, Utah, Missouri, and New England. 
These also monitor areas of historically 
significant earthquakes with low current-
day activity. The density of stations influ­
ences the lower size threshold for events 

130* 125» 12(r 115« nO« IDS' too* 95' 85' 80» 75* 

120* 115» 110* 105* 100- 95* 90* 85' 80" 

FIGURE 5.20 Regional seismic network stations in the United States, deployed to monitor 
local earthquake occurrence. The concentrations of stations reflect historical seismicity 
patterns across the country and the locations of oil fields, nuclear plants, and volcanoes. 
[From Heaton etal., 1989.) 
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FIGURE 5.21 Locations of strong-motion accelerometers in California as of 1990. including 
distributions of sensors in major cities. These instruments record ground motions for 
nearby large events and are distributed near major seismic zones in the state. (From 
Heaton etal., 1989.) 

that can be studied. These regional seismic 
networks are being upgraded to increas­
ingly sophisticated systems with automated 
event-location processing, broader-band 
and three-component recording, and accu­
rate calibration to ground motion. 

Instruments with very short natural peri­
ods, or accelerometers, are designed to 
record very strong ground shaking from 
large earthquakes, which saturates the re­
sponses of more standard seismometers 
like those in the regional networks. Figure 
5.21 also shows the distribution of ac-

celerometer locations in California. The 
distribution closely follows the locations 
of major faults in the shallow crust, 
since these instruments are intended to 
record earthquake strong ground motions. 
Ground accelerations slightly exceeding 1 
g have occasionally been recorded for 
earthquakes, and the acceleration records 
have played a major role in developing 
construction codes for buildings in regions 
of high earthquake risk. Accelerometers 
have also been deployed to study strong 
motions above buried explosions, some-
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FIGURE 5.22 Comparison of accelerometer and regional-network recording capabilities 
relative to average noise levels and ground accelerations caused by earthquakes of various 
sizes at three distances. [Fronn Heaton ef a/.. 1989.) 

times recording ground accelerations of 
10-30 g, which, of course, sends the in­
strument airborne! 

The response characteristics of acceler-
ometers and standard regional-network in­
struments are compared with expected 
earthquake accelerations and ground noise 
in Figure 5.22. Until the development of 
the very broadband systems currently de­
ployed in the GSN, a spectrum of instru­
ments was required to record the full vast 
range of ground motions. Several elTorts 
are currently under way to deploy very 
broadband systems in conjunction with re­
gional networks and accelerometer sys­
tems to enable on-scale recording of all 
local events, including magnitude 8 rup­

tures. The TERRASCOPE network, being 
deployed in Southern California, will have 
about 20 GSN-compatible stations com­
plementing the other stations in the re­
gion. These provide the most complete 
recording of ground motions from local 
earthquakes, and several data examples 
from TERRASCOPE stations are shown 
in this text. 

Broadband seismic sensors are also be­
ing deployed in a new United States Na­
tional Seismograph Network (USNSN), 
whose planned distribution is shown in 
Figure 5.23, along with stations in Alaska, 
Hawaii, Central America, and the Carib­
bean. These stations include modern 
broadband force-feedback seismometers 
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FIGURE 5.23 The broadband United States National Seismic Networic [USNSN) in the 
process of being deployed. The network will augment regional network recording capabilities 
around the country, providing on-scale recordings of large, regional events. Satellite teleme­
try is used to transmit the signals to a central data center at the National Earthquake 
Information Center (NEIC] in Golden, Colorado. (Courtesy of the U.S. Geological Survey.) 

with high-dynamic-range recording sys­
tems, but they also feature satellite 
telemetry to a central collection antenna 
located at the National Earthquake Infor­
mation Center (NEIC) in Golden, Col­
orado. The network is designed to locate 
and analyze earthquakes larger than mag­
nitude 2.5 anywhere in the country, with 
the broadband, high-dynamic-range sys­
tems providing on-scale ground motions 
even for the largest events. 

Finally, perhaps the most flexible form 
of array involves portable seismographs, 
which are used in earthquake aftershock 
studies, refraction surveying, and deep-
Earth investigations. From early deploy-
able instruments which produced analog 
recordings (often with a stylus etching on a 
kerosene-smoked paper drum) a new com­
puterized generation of portable seismo­

graphs has evolved. The IRIS organization 
has coordinated development of one field 
system, called PASSCAL instrumentation, 
which has superb programming flexibility 
and 24-bit recording capability. Together 
with new compact broadband sensors, 
these lightweight systems represent a ma­
jor new tool for seismology. 

References 

Agnew, D. C. (1986). Strainmeters and tiltmeters. 
Rev. Geophys. 24, 579-624. 

Given, H. K. (1990). Variations in broadband seismic 
noise at IRIS/IDA stations in the USSR with 
implications for event detection. Bull. Seismol. 
Soc. Am, 80, 2072-2088. 

Harges, H.-P., Henge, M., Stork, B., Seidi, C, and 
Kind, R. (1980). "GRF Array Documentation," 
Internal Report of Seismologiscles Zentrolob-
servatorium, Grafenberg. 



Additional Reading 

Heaton, T. H., Anderson, D. L., Arabasz, W. J., 
Buland, R., Ellsworth, W. L., Hartzell, S. H., Lay, 
T., and Spudich, P. (1989). National Seismic 
System Science Plan. Geol. Surv. Circ. {U.S.) 1031. 

Hedlin, M. A. H., Fels, J.-F., Berger, J., Orcutt, J. A., 
and Lahau, D. (1988). Seismic broadband signal 
and noise levels on and within the seafloor and on 
islands. In "Proceedings of a Workshop on 
Broad-band Downhole Seismometers in the Deep 
Ocean," pp. 185-192. Woods Hole Oceanographic 
Institution, Woods Hole, MA. 

Incorporated Research Institutes for Seismology 
(1991). "The IRIS Proposal, 1991-1995." IRIS 
Consortium, Washington, DC. 

Kanamori, H. (1988). The importance of histori­
cal seismograms for geophysical research. In 
"Historical Seismograms and Earthquakes of the 
World" (W. K. H. Lee, ed.), pp. 16-33. Academic 
Press, New York. 

Mykkeltveit, S. (1985). A new regional array in 
Norway: Design work and results from analysis of 
data from a provisional installation. In "The 
VELA Program" (A. U. Kerr, ed.), pp. 546-553 
DARPA, Washington, DC. 

Romanowicz, B., Karczewski, J. F., Cara, M., 
Bernard, P., Borsenberger, J., Cantin, J.-M., Dole, 
B., Fouassier, D., Koentig, J. C , Morand, M., 
Pillet, R., Pyrolley, A., and Roulard, D. (1991). 
The GEOSCOPE Program: Present status and 
perspectives. Bull. Seismol. Soc. Am. 81, 243-264. 

Shearer, P. (1991). Constraints on upper mantle 
discontinuities from observations of long-period 
reflected and converted phases. / . Geophys. Res. 
96, 18,147-18,182. 

Stephen, R. A., Orcutt, J. A., Berleaux, H., Koelsch, 
D., and Turpening, R. (1988). Low frequency 
acoustic seismic experiment (LFASE). In 
"Proceedings of a Workshop on Broad-band 
Downhole Seismometers in the Deep Ocean." pp. 
216-218. Woods Hole Oceanographic Institution, 
Woods Hole, MA. 

Additional Reading 

Agnew, D. C. (1986). Strainmeters and tiltmeters. 
Rev. Geophys. 24, 579-624. 

Agnew, D. C. (1989). Seismic instrumentation. In 
"The Encyclopedia of Solid Earth Geophsyics" 
(D.E. James, ed.), pp. 1033-1036. Van Nostrand-
Reinhold, New York. 

Aki, K., and Richards, P. G. (1980). "Quantitative 
Seismology: Theory and Methods," Vol. 1, Chapter 
10. Freeman, San Francisco. 

Bath, M. (1979). "Introduction to Seismology," 
Chapter 2. Birkhauser, Berlin. 

Bullen, K. E., and Bolt, B. A. (1985). "An 
Introduction to the Theory of Seismology." 
Cambridge Univ. Press, Cambridge, UK. 

Dewey, J., and Byerly, P. (1969). The early history of 
seismometry. Bull. Seismol. Soc. Am. 59, 183-227. 

Farrell, W. E. (1986). Sensors, systems and arrays: 
Seismic instrumentation under VELA Uniform. 
In "The VELA Program" (A. U. Kerr, ed.), pp. 
465-505. DARPA, Executive Graphics Services, 
Washington, DC. 

Hagiwara, T. (1958). A note on the theory of the 
electromagnetic seismograph. Bull. Earthquake 
Res. Inst., Univ. Tokyo 36, 139-164. 

Howell, B. F., Jr. (1989). Seismic instrumentation: 
History. In "The Encyclopedia of Solid Earth 
Geophysics" (D. E. James, ed.), pp. 1037-1044. 
Van Nostrand-Reinhold, New York. 

McCowan, D. W., and La Coss, R. T. (1978). Transfer 
function for the seismic research observatory 
system. Bull. Seismol. Soc. Am. 68, 501-512. 

Peterson, J., Butler, H. M., Holcomb, L. T., and 
Hutt, C. R. (1976). The seismic research 
observatory. Bull. Seismol. Soc. Am. 66, 
2049-2068. 

Steim, J. M. (1986). The very broadband seismograph, 
Ph.D. Thesis, Harvard University, Cambridge, MA. 

Wielandt, E., and Streckeisen, G. (1982). The leaf 
spring seismometer: Design and performance. 
Bull. Seismol. Soc. Am. 72, 2349-2367. 



CHAPTER 

6 
SEISMOGRAM INTERPRETATION 

In the preceding chapters we have dis­
cussed the theory of wave propagation and 
how ground vibrations are recorded as 
seismograms. Much of the material in the 
remaining chapters of this book will deal 
with inferences extracted from seismo­
grams. Our knowledge of the velocity 
structure of the Earth and of the various 
types of seismic sources is the result of 
interpreting seismograms. The more fully 
we quantify all of the ground motions in a 
seismogram, the more fully we understand 
the Earth's structure and its dynamic pro­
cesses. Seismograms are a complicated 
mixture of source radiation effects such as 
the spectral content and relative ampli­
tude of the P' and 5-wave energy that is 
generated at the source, propagation phe­
nomena such as multiple arrivals produced 
by reflection and transmission at seismic 
impedance boundaries or at the surface, 
and frequency band-limiting effects of the 
recording instrument. Only experience, 
and sound foundations in elastic-wave the­
ory, can guide a seismologist to sort out 
coherent vibrations produced by reflec­
tions off deep layers from background 
noise or from other arrivals scattered by 
the Earth's three-dimensional heterogene­
ity. This chapter describes the essence of 
this procedure, with examples of how sim­

ple measurements lead to important re­
sults such as the location of the source. In 
modern practice many of these procedures 
are implemented on computers to assist 
with processing vast quantities of data. 

Figure 6.1 shows broadband seismic 
recordings from a deep earthquake be­
neath Peru recorded at HRV (the 
Harvard, Massachusetts, seismic station). 
Vertical and horizontal ground motions 
are shown, with the horizontal component 
oriented transverse to the back azimuth to 
the source. The P, 5, Love (L), and 
Rayleigh (R) waves are marked, but addi­
tional large-amplitude arrivals or phases 
clearly exist. The keys to identifying these 
arrivals involve assessing their behavior as 
a function of distance, measuring the type 
of ground motion they produce, and estab­
lishing their consistency from event to 
event. These additional arrivals are pri­
marily reflections from velocity discontinu­
ities at depth or from the free surface of 
the Earth. The timing of the various ar­
rivals is a predictable function of the depth 
of the source and the distance between the 
seismic source and receiver. These signals 
are more complex than those in Figure 1,1 
because the source is deep, which allows 
the surface reflections to be observed. The 
identification of seismic phases is by no 
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FIGURE 6.1 Broadband seismic recordings of a deep earthquake (May 24. 1991) beneath 
Peru recorded at HRV [Harvard. Massachusetts). The top and bottom traces are the 
tangential and vertical components, respectively. P. S. R and L are labeled, as are several 
other phases iA, B. C, D, and E). A \s a P wave that reflected off the surface above the 
source [pP], S is an S wave that reflected off the surface halfway between the source and 
receiver iSS), C is an S wave that reflected off the surface above the source isS), D is an S 
wave that reflected off the Earth's core [ScS], and E is an S wave that f irst reflected off the 
surface above the source and then off the Earth's core isScS). Additional arrivals include 
surface and core multiple reflections and scattered surface waves. 

means a trivial exercise, and in fact many 
modern-day seismologists have little direct 
experience in the routine "reading" or 
"picking" of seismic-phase travel times and 
amplitudes. Systematic cataloging of the 
absolute and differential travel times of all 
phases on seismograms provides informa­
tion that we can use to determine the 
structure of the Earth and to generate 
travel-time tables that can be used to lo­
cate other earthquakes. 

Nearly 3000 seismic stations distributed 
worldwide have been systematically report­
ing major seismic phase arrival times to 
the International Seismological Centre 
(ISC) since 1964. Once direct P arrivals at 

different stations have been associated with 
a particular event and that event is lo­
cated, one can seek to interpret the addi­
tional arrivals. The ISC data base has more 
than 7 million arrival times that have been 
attributed to more than 25 seismic phases, 
each with a specific structural interaction, 
or path, through the Earth. Figure 1.19a 
shows a large sample of the ISC travel-time 
picks as a function of epicentral distance. 
A smaller data set, for particularly well-
located events, is shown in Figure 6.2. 
Clear lineaments exist that represent the 
travel-time branches of various phases such 
as direct P and S, as well as phases that 
have more complicated travel paths. One 
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can view this as the Earth's "fingerprint," 
uniquely characterizing the complexity im­
parted into seismic wavefields by the struc­
ture. A seismogram at any particular dis­
tance will record the corresponding time 
sequence of arrivals, although source radi­
ation and depth differences may make 
seismograms at the same distance appear 
dissimilar. In this chapter we will develop 
a nomenclature for the various arrivals 
and some simple rules for identifying seis­
mic phases. The fact that coherent travel-
time branches are so pronounced in 
Figures 1.19 and 6.2 demonstrates the gross 
radial symmetry of the Earth's layered ve­
locity structure. On the other hand, some 
of the unidentified arrivals as well as some 
of the scatter about the mean for any 

given branch are manifestations of three-
dimensional velocity heterogeneity. As­
suming a radially symmetric, layered veloc­
ity structure enables us to predict the 
arrival times of most seismic phases to 
within a few percent, which provides the 
basis for most earthquake location proce­
dures. Later, we will discuss several tech­
niques for locating earthquakes, including 
some that can be adapted to three-dimen­
sional structures. 

For many seismic sources, the P and S 
waves are radiated from a concentrated 
volume, which can be approximated as a 
point source. The coordinates of an earth­
quake point source are known as the 
hypocenter. The hypocenter is usually given 
in terms of latitude, longitude, and depth 
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below the surface. The epicenter is the 
surface projection of the hypocenter (the 
latitude and the longitude), and the focal 
depth is the depth below the surface. Epi-
central distance is the distance separating 
the epicenter and the recording seismic 
station. For large earthquakes, the finite-
ness of the source volume is not negligible, 
and then these terms usually refer to the 
point at which the rupture initiates. Other 
terms such as the earthquake centroid will 
be introduced later to define the effective 
point of stress release of the source. 

The basic character of seismograms de­
pends strongly on the epicentral distance. 
At short epicentral distances the character 
of seismograms is dominated by the details 
of the highly heterogeneous crustal struc­
ture. At large distances, seismograms are 
dominated by the relatively simple velocity 
structure of the deep mantle and core. 
There are four general classifications of 
seismograms based on epicentral distance: 
(1) Local distances are defined as travel 
paths of less than 100 km. Seismic record­
ings at local distances are strongly affected 
by shallow crustal structure, and relatively 
simple direct P and S phases are followed 
by complex reverberations. (2) Regional 
distances are defined as 100 <X < 1400 km 
(1° < A < 13°), where X and A are the 
epicentral distance in kilometers and an­
gular degrees, respectively. Regional-dis­
tance seismograms are dominated by seis­
mic energy refracted along or reflected 
several times from the crust-mantle 
boundary. The corresponding waveforms 
tend to be complex because many phases 
arrive close in time. (3) Upper-mantle dis­
tances are defined as 13° < A < 30°, and 
seismograms recorded at these distances 
are dominated by seismic energy that turns 
in the depth range of 70 to 700 km below 
the surface. This region of the Earth has a 
very complex velocity distribution, with a 
low-velocity zone in the upper mantle and 
at least two major velocity discontinuities 
(400 and 660 km depths) within what is 
called the transition zone. (We will discuss 

the details of these velocity structures in 
the next chapter.) The direct P and S 
phases at upper-mantle distances have 
complex interactions with the discontinu­
ities. (4) Teleseismic distances are defined 
as A > 30°. The direct P- and 5-wave ar­
rivals recorded at teleseismic distances out 
to A « 95° are relatively simple, indicating 
a smooth velocity distribution below the 
transition zone, between 700 and 2886 km 
depth. The simplicity of teleseismic direct 
phases between 30° and 95° makes them 
invaluable for studying earthquake sources 
because few closely spaced arrivals occur 
that would obscure the source information 
(Chapter 10). The overall seismogram at 
these distances is still complex because of 
the multiplicity of arrivals that traverse the 
mantle, mainly involving surface and core 
reflections (Figures 6.1, 1.19). Beyond 95°, 
the direct phases become complicated once 
again due to interactions with the Earth's 
core. Since the character of seismograms 
depends on the epicentral distance, the 
nomenclature for phases is also distance 
dependent. 

6.1 Nomenclature 

6.1.1 Body-Wave Nomenclature 
Seismic-wave energy can travel multiple 

paths from a source to a receiver at a 
given distance. For example, as we saw in 
Chapter 3, energy traveling through a sin­
gle, flat layer over a high-velocity half-
space will result in P and S head waves, 
direct P and 5 arrivals, and many re­
flected arrivals. The reflected arrivals and 
head waves include energy that initially 
took off upward from the source before 
traversing the shallow layer to interact with 
the half-space. To help sort out the vari­
ous phases, seismologists have developed a 
nomenclature to describe each phase in 
terms of its general raypath. 

The simplest and most frequently stud­
ied body-wave phases are the direct ar-
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FIGURE 6.3 Ca) Geometry of upgoing and downgoing rays, (b) Geometry of depth phases. 

rivals. They travel the minimum-time path 
between source and receiver and are usu­
ally just labeled P or 5. At epicentral 
distances greater than a few tens of kilo­
meters in the Earth, direct arrivals usually 
leave the source downward, or away from 
the surface, and the increasing velocities 
at depth eventually refract the wave back 
to the surface. Figure 6.3a shows two rays 
leaving a seismic source. The angle, /, that 
the ray makes with a downward vertical 
axis through the source is known as the 
takeoff angle. If the takeoff angle of a ray 
is less than 90°, the phase, or that segment 
of the raypath, is labeled with a capital 
letter: P or S. If the seismic ray has a 
takeoff angle greater than 90°, the ray is 
upgoing, and if it reflects from the surface 
or is a short upgoing segment of a compos­
ite raypath, it is signified by a lowercase 
letter: p or s, Upgoing rays that travel 
from the source up to the free surface, 
reflect, and travel on to the receiver are 
known as depth phases. 

The various portions of the path a ray 
takes, for example, between the source 
and the free surface, are known as legs. 
Each leg of a ray is designated with a 
letter indicating the mode of propagation 
as a P or S wave, and the phase is desig­
nated by stringing together the names of 
legs. Thus, there are four possible depth 
phases that have a single leg from the 
surface reflection point to the receiver: 
pP, sS, pS, and sP (see Figure 6.3b). The 

relative timing between the direct arrivals 
and the depth phases is very sensitive to 
the depth of the seismic source (hence the 
name depth phases). Figure 6.4 shows ex­
amples of the pP depth phase for two 
events. The pP arrivals must arrive later 
than direct P because they traverse a 
longer path through the Earth, but their 
relative ampHtudes can vary due to the 
source radiation pattern. The sP phase, 
which always arrives after pP, is present 
but not impulsive in these examples. 

At local and regional distances a special 
nomenclature is used to describe the travel 
paths. Figure 6.5a shows a very simplified 
crustal cross section with primary ray-
paths, and Figure 6.5b shows an actual 
regional-distance seismogram as it appears 
for two instrument responses. Note how 
different the ground motion appears for 
the different frequency bands. The 
higher-frequency signal allows ready iden­
tification of discrete arrivals, but there is a 
continuous flux of short-period energy, 
much of which is scattered in the crust. 
The direct arrivals at these short distances 
are usually referred to as Pg and Sg. De­
pending on the source depth, the velocity 
gradient within the shallow crust, and the 
distance between the source and the sta­
tion, these arrivals may be either upgoing 
or downgoing phases. The g subscript is 
from early petrological models that di­
vided the crust into two layers: an upper 
granitic layer over a basaltic layer. Arrivals 
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earthquake shown in Figure 6 .1 . The middle 
trace is a broadband recording at HRV (Harvard, 
Massachuset ts ] ; the bot tom panel is a 
simulated short-period recording at COR 
(Corvallis. Oregon). 

that travel as head waves along, or just 
below, the Moho are known as P„ and 5„. 
The frequency dependence of these head 
waves (Chapter 3) tends to make them 
longer period. Moho reflections are la­
beled PmP, PmS, SmP, or SmS. (Note 
that each leg of the ray is named, and m 
denotes a reflection at the Moho.) At dis­
tances less than about 100 km, Pg is the 
first arrival. Beyond 100 km (depending on 
the crustal thickness), P^ becomes the first 
arrival, as in Figure 6.5. The phase labeled 
Rg in Figure 6.5 is a short-period Rayleigh 

wave, which will be described later. In 
many regions of the Earth additional re­
gional arrivals are observed that have clas­
sically been interpreted as head waves 
traveling along a midcrustal velocity dis­
continuity, usually known as the Conrad 
discontinuity. In the next chapter we dis­
cuss the Conrad discontinuity further, but 
here it is sufficient to state that the arrivals 
associated with the Conrad, called F* and 
5*, respectively, are observed only in cer­
tain regions. For example, P* is very 
strong in the western United States (see 
Figure 3.16) but nearly absent in the east­
ern United States. In older literature P* 
is written as Pfc (fe denotes the basaltic 
layer). 

At distances beyond 13°, P^ amplitudes 
typically become too small to identify the 
phase, and the first arrival is a ray that has 
bottomed in the upper mantle. The stan­
dard nomenclature for this arrival is now 
just P or 5, although subscripts are used 
to identify different triplication branches 
for the transition zone arrivals. Seismic 
phases that reflect at a boundary within 
the Earth are subscripted with a symbol 
representing the boundary. For example, 
P-wave energy that travels to the core and 
reflects is called PcP, the c indicating 
reflection at the core. In a spherical Earth 
it is possible for a ray to travel down 
through the mantle, return to the surface, 
reflect, and then repeat the process (Figure 
6.6). Because the original ray initially trav­
eled downward, the phase is denoted by a 
capital letter. The free-surface reflection is 
not denoted by a symbol; rather, the next 
leg is just written P or S. This type of 
phase is known as a surface reflection. 
Some common surface reflections are PP, 
PS, and PPP, where PP and PS each have 
one surface reflection (involving conver­
sion for PSX and PPP has two surface 
reflections. Multiple reflections from both 
the core and surface occur as well, such as 
PcPPcP, ScSScS (ScSjX and ScSScSScS 
(ScSj) (see Figure 6.7). Both reflected 
phases and surface reflections can be gen-
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FIGURE 6.5 (a) A simplified cross section of a two-layer crust and corresponding raypaths 
for various phases observed at regional distances, (b) Broadband and short-period seisnno-
grams for an event located 300 km from PAS. The crustal phases are much more apparent 
at high frequencies. The phases are complex due to multiple travel paths within the crust. 

erated by depth phases. In this case the 
phase notation is preceded by a lowercase 
s or p, for example, pPcP and sPF (Figure 
6.7). All of these phases are a natural 
consequence of the Earth's free surface 
and its internal layering, combined with 
the behavior of elastic waves. 

The amplitude of body-wave phases 
varies significantly with epicentral dis­
tance. This occurs both because reflection 
coefficients depend on the angle of inci­
dence on a boundary and because the ve­
locity distribution within the Earth causes 
focusing or defocusing of energy, depend­
ing on the behavior of geometric spreading 

along different raypaths. Thus, the fact 
that a raypath can exist geometrically does 
not necessarily mean it will produce a 
measurable arrival. For example, the 
P-wave reflection coefficient for a verti­
cally incident wave on the core is nearly 
zero (the impedance contrast is small), but 
at wider angles of incidence the reflection 
coefficient becomes larger. Thus, PcP can 
have a large amplitude in the distance 
range 30° < A < 40°. The surface reflec­
tions PS and SP do not appear at dis­
tances of less than 40°, but they may be 
the largest-amplitude body waves beyond 
100°. Progressive energy losses due to at-
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Box 6.1 Seismic Waves in the Ocean 

In the early 1940s D. Lineham reported a class of seismic waves that were 
observed only on coastal and island seismic stations. These seismic waves, denoted 
T waves (/ertiary waves, compared to primary and secondary waves), travel at 
very low phase velocities and correspond to sound waves trapped in the oceanic 
water layer. The normal salinity and temperature profile of the ocean conspires to 
decrease the compressional velocity of seawater from 1.7 km/s at the surface to 
about 1.5 km/s at a depth of 800-1300 m. Below this depth the velocity increases. 
This low-velocity channel is known as the SOFAR (sound fixing and ranging 
channel), and it traps sound waves very efficiently. Sound waves that enter the 
SOFAR channel can bounce back and forth between the top and the bottom of the 
channel (beyond critical angle), and since the attenuation of seawater is very low, 
the energy can travel very long distances, eventually coupling back into solid rock 
at ocean coastlines. For some shallow volcanic events the observed T waves may 
be larger than the P and S arrivals by a factor of 5 or more. 

The multiply reflected nature of T waves results in a complex wave packet. The 
T phase does not have a sharp onset and may produce ringing arrivals that last 
longer than 2 min. They are high-frequency waves (never observed at periods 
larger than 2 s) and are usually monochromatic. T waves are best observed on 
ocean-bottom seismometers (OBS), although they are occasionally observed as 
converted phases at island seismic stations. These converted phases are referred as 
TPg, TSg, or TRg. Figure 6.B1.1 shows an example T phase. Considerable 
research has been done on T phases for two reasons: (7) submarine noise can 
generate T phases that have been observed up to 1000 km away, and (2) they are a 
powerful tool for discriminating between underwater nuclear explosions and 
natural earthquakes. In the case of nuclear explosions, the sound is injected 
directly into the SOFAR channel and can be 30 times larger than the P or 5 
waves. 

FIGURE 6.B1.1 Short-period recording showing a typical T phase recorded at an island 
station. [From Kulhanek. 1990). 
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FIGURE 6.6 Raypaths for various surface 
reflections observed in the Earth. (Modified from 
Bullen and Bolt. 1985.) 

tenuation cause multiple reverberations to 
become smaller (Figure 6.7). Amplitudes 
are further complicated by variability of 
excitation, which depends on the orienta­
tion of the seismic source. Figure 6.7 shows 
a three-component recording with various 
phases identified, showing how the polar­
ization of ground motion also critically in­
fluences the amplitude of individual ar­
rivals. 

Direct P waves that travel beyond 95° 
show rapidly fluctuating, regionally vari­
able amplitudes. Beyond 100° the ampli­
tudes decay rapidly, and short-period en­
ergy nearly disappears beyond 103°. 
Short-period P waves reappear beyond 
140° but with a discontinuous travel-time 
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FIGURE 6.7 Examples of seismograms recorded at upper-mantle and teleseismic dis­
tances. Multiple S-wave iScS^) reflections off the core and free surface {sScS„] are shown 
at the top, on a long-period transverse-component signal. Note that it takes about 15 min 
for an S wave to travel down to the core and back. A three-component recording is shown 
below, with the E-W component being naturally rotated as the transverse component. Note 
the different observability of phases on each component. [Lower figure from Simon, 1981). 
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branch (see Figure 6.2). The distance range 
103° < A < 140° is called the core shadow 
zone and is caused by a dramatic drop in 
seismic velocities that occurs going from 
the base of the mantle into the core. Body 
waves that pass through the core have 
their own nomenclature. The legs of P 
waves traversing the outer core are de­
noted by a Â  (from Kernwellen, the Ger­
man word for core). As discussed in the 
next chapter, the outer core is a fluid, so 
only P waves can propagate through it. 
Thus a P wave that travels to the core, 
traverses it, and reemerges as a P wave is 
denoted as PKP (or abbreviated P'). Simi­
larly, it is possible to have phases PKS, 
SKS, and SKP. The leg of a F wave that 
traverses the inner core (which is solid) is 
denoted with an / (e.g., PKIKP); an S 
wave that traverses the inner core is writ­
ten as / (e.g., PKJKP). A reflection from 
the inner core-outer core boundary is de­
noted with an / (e.g., PKiKP), Figure 6.8 
shows the raypaths for several different 
core phases. There is a great proliferation 

PKiKP 
PKIKP 

PKP 

PKKP 

FIGURE 6.8 Raypaths for various core phases. 
The core-mantle boundary is at a depth of 2886 
km. and the inner core-outer core boundary is 
at a depth of approximately 5150 km. (Modified 
from Bullen and Bolt. 1985.) 

of phase combinations, not all of which 
will have significant energy. 

Since the core-mantle boundary is such 
a strong reflector, it produces both topside 
(e.g., PcP) and bottomside (e.g., PKKP) 
reflections. P waves reflected once off the 
underside of the boundary are denoted 
PKKP, and other phases include SKKS, 
SKKP, and PKKS. Paths with multiple un­
derside reflections are identified as PmKP, 
SmKSy etc., where m gives the number of 
K legs and m - 1 gives the number of 
underside reflections. Seismic arrays have 
provided observations of P7KP (see Fig­
ure 7.54). Figure 6.9 shows some examples 
of core phases. The outer core has little 
F-wave attenuation, so short-period P sig­
nals can be observed even for phases with 
long path lengths in the core. Multiple 
PKP branches can be observed at a given 
distance due to the spherical structure of 
the core and velocity gradients within it. 
Chapter 7 will elaborate on this. Note the 
decrease in amplitude of the P, PcP, and 
PKiKP phases in Figure 6.9. This results 
mainly from geometric spreading in the 
Earth and from weak reflection coeffi­
cients at different boundaries for the latter 
phases. 

The reader should be careful not to 
confuse the multiplicity of seismic arrivals 
with complexity of the source process or 
with the existence of more than one initial 
P and one initial S spherical wavefront 
released from the source. First, remember 
that seismic rays are an artifice for track­
ing a three-dimensional wavefront and that 
wave interactions with any boundary or 
turning point in the Earth have 
frequency-dependent effects. Interactions 
with the Earth strongly distort the initial 
outgoing P wavefront, folding it back over 
on itself and begetting secondary wave-
fronts as energy partitions at boundaries. 
The body-wave nomenclature simply keeps 
track of the geometric complexity involved. 
The energy that arrives at one station as P 
may arrive at another station as PP with 
additional propagation effects. It is thus 
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FIGURE 6.9 Examples of core phases, on short-period recordings. PKP can have multiple 
arrivals at a given station because of the geometry of the core. Note the strong amplitude 
variation between P, PcP, and PKiKP. This is caused by geometric spreading and attenuation 
along each path. (Left portion courtesy of X. Song; right portion from Engdahl et al., 1974. 
Reprinted with permission of the Royal Astronomical Society.) 

constructive to think of this as a wavefield 
that has been selectively sampled at dif­
ferent locations as a function of time rather 
than as discrete energy packets traveling 
from source to receiver. If we knew the 
Earth's structure exactly, we could reverse 
the propagation of the entire wavefield 
back to the source, successfully recon­
structing the initial outgoing wavefront. Of 
course, sources can also have significant 
temporal and spatial finiteness, often visu­
alized as subevents, each giving rise to its 
own full set of wave arrivals that super­
pose to produce very complex total ground 
motions. Because of our imperfect knowl­
edge of planetary structure, as described 
in the next chapter, there are limits to how 
well we can separate source and propaga­
tion effects. 

6.1.2 Surface-Wave 
Nomenclature 

The nomenclature for surface waves is 
far simpler than that for body waves. This, 
of course, results from the fact that all 
surface waves travel along the surface, and 
the complex interference of P and S waves 
that yields the surface wave is treated col­
lectively rather than as discrete arrivals. 
Most of the nomenclature for surface 
waves is related to the frequency band of 
the observation. At local and regional dis­
tances, short-period (< 3 s) fundamental 
mode Rayleigh waves are labeled Rg. Rg 
excitation is very dependent on the focal 
depth; if the source depth is greater than 
3 km, Rg is usually absent. Rg propaga­
tion depends only on the seismic proper-
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FIGURE 6.10 Exannples of Rg and Lg. [a) Rg wave at 39 km produced by a shallow 2000-lb 
explosion in Maine. The upper trace is the raw seisnnogram, while the lower trace is low-pass 
filtered with a cutoff of 4 Hz. (b) Vertical component of a seismogram from an underground 
nuclear explosion at Lop Nor, China. Epicentral distance Is 24°. The Lg phase is a ringy 
sequence of arrivals with group velocities of 3 .6 -3 .4 km/s. (Part a is from Kafka and Ebel, 
1988.) 

ties of the upper crust, for which most 
paths have an average group velocity of 
about 3 km/s. In most regions, R^ is 
rapidly attenuated, and it is rare to iden­
tify it beyond a few hundred kilometers. 
High-frequency overtones, or higher-mode 
Rayleigh waves, as well as some high-
frequency Love-wave overtone energy 
combine to produce a phase called Lg. Lg 
waves have a typical group velocity of about 
3.5 km/s and can be large-amplitude ar­
rivals on all three components of motion 
(vertical, radial, and transverse) out to 1000 

km. Lg phases are the main high-frequency 
arrival at regional distances in regions of 
thick continental crust. Figure 6.10 shows 
examples of Rg and Lg. 

In general, Rayleigh waves with periods 
of 3 to 60 s are denoted R or LR, and 
Love waves are denoted L or LQ (the Q 
is for Querwellen, a German word used to 
describe Love waves). Very long-period 
surface waves are often called mantle 
waves. The periods of mantle waves ex­
ceed 60 s, with corresponding wavelengths 
of several hundred to about 1200 kilome-
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FIGURE 6.11 Profiles of transverse-component Ctop) and longitudinal-component (bottom] 
long-period seismograms for the 1989 Loma Prieta earthquake. The corresponding vertical 
components are shown in Figure 1.7. Great-circle arrivals of Love waves (G/), Rayleigh waves 
iRj], and Rayleigh-wave overtones (X^) are labeled. [From Velasco etal., 1994.) 

ters. Mantle waves from large earthquakes 
can reappear at a seismic station as they 
make a complete circuit around the globe 
on a great-circle path (this was discussed 
in Section 4.3). Figure 1.7 and Figure 6.11 
show profiles of long-period ground mo­
tions recorded globally for the 1989 Loma 
Prieta earthquake. Love waves are polar­
ized such that they are seen on only the 

horizontal transverse component, whereas 
Rayleigh waves are seen on both the verti­
cal and horizontal longitudinal compo­
nents. The Rayleigh waves are labeled 
i?i,i?2'^3» ^tc., indicating wave packets 
traveling along the minor arc (odd num­
bers) or major arc (even numbers) of the 
great circle. R^ is the same packet of 
energy as R^, except it has traveled an 
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additional circuit around the Earth, and 
/?4 is the next passage of the Rj wave. 
Long-period Love waves are labeled 
Gi,G2, etc. after Gutenberg. On the ra­
dial components of motion additional ar­
rivals between /?„ arrivals correspond to 
higher-mode Rayleigh waves, which have 
group velocities that differ significantly 
from those of the fundamental modes. 
These are labeled variously as Oi^Oj or 
Jfj, A'2, etc. The overtone wave groups are 
more sensitive to deeper mantle structure 
than are fundamental modes of compara­
ble period. 

6.2 Travel-Time Curves 

Numerous seismologists have compiled 
large arrival-time data sets like that shown 
in Figure 6.2. Average fits to the various 
families of arrivals are known as travel-time 
curves or charts. The first widely adopted 
empirical travel-time curves were pub­
lished by Sir Harold Jeffreys and Keith 
BuUen in 1940; the tabular form of these 
travel-time curves, called travel-time ta­
bles, is referred to as the J-B tables 
(Jeffreys and Bullen, 1958). These repre­
sented painstaking data-collection efforts 
over the first four decades of the century, 
using a global array of diverse seismic sta­
tions. Careful statistical treatments were 
used to smooth the data so that meaning­
ful average travel times are given by the 
tables. One can also use travel-time tables 
to calculate the ray parameter (the deriva­
tive of the travel-time curve) for a particu­
lar phase at a given distance and to calcu­
late source depth. The J-B tables are re­
markably accurate, and for teleseismic dis­
tances they can predict the travel times of 
principal seismic phases to within a few 
seconds. For a typical teleseismic F-wave 
travel time of 500 s, the tables are accurate 
to within a fraction of a percent of the 
total travel time. The J-B times are less 
useful at regional and upper-mantle dis­

tances, where strong heterogeneity affects 
times. Much of the inaccuracy in the 
travel-time tables comes from uncertainty 
in the origin time of the earthquake 
sources that generated the waves. In 1968 
Eugene Herrin and colleagues attempted 
to improve the accuracy by using only 
well-located earthquakes and underground 
nuclear explosions. The resulting travel-
time curves, known as the 1968 tables 
(Herrin et aL, 1968), improved the J-B 
tables slightly at teleseismic distances and 
more at upper-mantle distances. Kennett 
and Engdahl (1991) used the complete ISC 
catalogue of arrival picks to construct the 
most accurate, radially symmetric travel-
time curves yet available, known as iaspQl 
(Kennett, 1991). Figure 6.12 shows the 
iasp91 curve for a 600-km-deep seismic 
source. The shape of the direct P-wave 
branch in Figure 6.12 is generally consis­
tent with a gradual increase in velocity 
with depth in the mantle (see Chapter 3). 
On the scale of the figure, complexity of 
the P-wave branch in the distance range 
15°-24° is not clear, but triplications from 
the transition zone are included; this com­
plexity will be discussed in detail in the 
next chapter. The later branches are iden­
tified by finding paths through the Earth 
that are consistent with the observed times. 

The details of a travel-time curve de­
pend strongly on the depth of the source; 
seismic sources not at the surface have 
separate curves for all depth-phase 
branches (compare Figures 1.19b and 6.12). 
The depth phases are most dramatically 
affected, but all the travel times will 
change. For example, the core shadow on­
set is at 103° for a surface focus, but it 
starts at 95° for a 600-km-deep earth­
quake. 

Travel-time curves are a primary tool 
for interpreting a seismogram and identify­
ing phases. If the location of the source is 
not independently known, the usual proce­
dure is first to determine an approximate 
epicentral distance. This usually amounts 
to picking the P-wave arrival time and the 
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FIGURE 6.12 Travel-time curves for the empirical model iasp91 for a BOO-km-deep source. 
This model prediction indicates the arrival times of the major depth phases. The additional 
depth phase travel time curves add complexity relative to the surface-focus travel time 
curve, one of which is shown in Figure 1.19b. Phases that extend beyond 180° have 
travel-time curves whose times increase to the left. (From Kennett, 1991.] 
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Box 6.2 Travel-Time Curves Obtained by Stacicing 
Digital Seismograms 

The availability of large data sets of digitally recorded seismograms makes it 
possible to construct "travel-time curves" without actually picking individual phase 
arrivals. If seismograms of many earthquakes are ordered in distance and plotted 
as a function of travel time, the corresponding figure is known as a record section. 
The moveout of the various phases in the record section produces coherent 
lineaments that correspond to travel-time branches. The coherence arises because 
the high-amplitude phases arrive in a systematic fashion, and therefore seismo­
grams of similar epicentral distance will have a similar character. It is possible to 
sum together the seismograms of several events or event-station pairs over a small 
window of epicentral distances (e.g., 1° ± 0.5°), thus enhancing coherent signals 
and diminishing the amount of random noise. This is known as stacking a record 
section. Stacking seismograms directly has several problems; for example, the size 
of individual phases depends on the size of the event. This means that the stacked 
section will mostly depend on the largest events. Second, the polarity of various 
phases depends not only on propagation phenomena such as reflections but also 
on the orientation of the seismic source. In an attempt to correct for these factors, 
most stacked record sections actually sum seismograms that have been normalized 
to a reference phase amplitude, and only the relative amplitude of the signal is 
kept. When these corrected seismograms are stacked, coherent information gives a 
large-amplitude arrival. The stacked record section provides a travel-time curve 
that should be devoid of arrival-picking errors or systematic bias in picking 
procedures. Perhaps the biggest advantage of stacking is that some relative-ampli­
tude information is preserved. Various phases will be strong at certain distances 
but very small at other distances, and this provides important information about 
the elastic properties of the Earth. 

Peter Shearer (1991) developed stacking procedures for global data sets and 
investigated the details of the upper-mantle velocity structure. Figure 6.B2.1 shows 
a stacked record section of 32,376 long-period digital seismograms representing 
1474 earthquakes. Comparing Figure 6.B2.1 with Figure 1.19 allows identification 
of the major travel-time branches (the arrival of the Rayleigh wave is marked by 
the strongest arrival across the section). Notice how the strength of direct P 
rapidly diminishes beyond 100°. The energy that is present is called P^^^ and 
represents P waves diffracted along the core surface. Another advantage of using 
digital data to produce stacked travel-time curves is that the data contain the 
frequency signature of the various arrivals. If the seismograms are high-pass 
filtered prior to stacking, only sharp velocity boundaries are imaged. Short-period 
stacks typically show strong PKKP and FP' phases; long-period stacks show PPP 
and SSS, which lack high frequencies due to attenuation. 

continues 
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FIGURE 6.B2.1 Earth's travel time curve as defined by stacking long-period seisnnograms 
as a function of distance from the source. Shallow earthquakes were used, to avoid 
complexity from depth phases. (From Shearer. 1991.] 

arrival time of either an S wave or 
Rayleigh wave, then comparing the mea­
sured differential time to the travel-time 
curve. Once the distance is approximated, 
the travel-time curve predicts times of 
other arrivals such as PP and ScS, and the 
consistency of these predicted times with 
the times of the observed sequence of ar­
rivals ensures reasonably accurate identi­
fication of the reference phases. Depth 
phases are sought as well, with differential 
times such as pP -P or sS - S used to 
determine source depth. One will not ob­
serve all phases shown on a travel-time 
curve on any particular seismogram be­
cause of source radiation or propagation 
effects. Another problem results from the 
extreme frequency dependence of the am­
plitudes of some phases. A strong short-
period arrival ( ^ 1 s) may be absent at 

long periods ('^10 s), or vice versa. Fur­
ther, all three components of ground mo­
tion should be used to interpret phases. 
For example, SKP is much stronger than 
PKS on the vertical component because it 
emerges at the surface as a P wave with a 
steep incidence angle, causing the ground 
to move mainly vertically. Even experi­
enced seismologists can misidentify ar­
rivals, given the many possibilities, and it 
is often necessary to inspect other stations 
that record the event to establish the 
travel-time moveout of the phases in ques­
tion. The ISC often reidentifies phases 
picked by station operators who do not 
have accurate location estimates. 

Many of the branches of the travel-time 
curve are related. For example, for a sur­
face focus, the PP travel time can be 
equated to twice the travel time of P at 
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half the distance: tpp(A) = 2tp(^/2X Simi- 6.3.1 Single Station Locations 
larly, t^pi^) = tp(A^)-^ tsi^2^y where A = 
Ai + A2, and the ray parameter of the P 
wave with tpiA^) equals that of the S 
wave with t^i^j^^ These types of simple 
relationships make it possible to predict 
the travel times of various phases and to 
determine a window in which to expect an 
arrival. These relationships also provide a 
tool for imaging the deviation of Earth 
structure from an ideal spherically sym­
metric velocity structure. Numerous inves­
tigators have mapped the differences be­
tween the observed and predicted times 
onto three-dimensional velocity models. 
These results are discussed more fully in 
the next chapter. 

6.3 Locating Earthquakes 

One of the most important tasks in ob­
servational seismology is locating seismic 
sources. This involves determining both the 
hypocentral coordinates and the source 
origin time. In general, determining the 
source location requires identification of 
seismic phases and measuring their arrival 
times, as well as knowing the velocity 
structure between the hypocenter and the 
seismic station. Given the location of a 
seismic source, one can calculate the travel 
time for any particular phase to a seismic 
station anywhere in an arbitrarily complex 
velocity model. This type of problem is 
known as a forward model; arrival times 
are calculated based on a parameterized 
model. On the other hand, finding the 
earthquake location is usually posed as an 
inverse problem, where we know the data 
(the phase arrival times) but must solve for 
a source location and origin time that are 
consistent with the data. In this section we 
will introduce the concept of a generalized 
inverse, perhaps the most critical modern 
tool for interpreting seismograms as well 
as for addressing other geophysical prob­
lems. 

In general, the arrival times of various 
seismic phases at many seismic stations are 
required to determine an earthquake 
hypocenter and origin time accurately, but 
it is possible to use a single seismic station 
to obtain a crude estimate. Single-station 
methods require three-component record­
ings of ground motion. Since P waves are 
vertically and radially polarized, the vector 
P wave motion can be used to infer the 
azimuth to the epicenter. Figure 6.13 dis­
plays the nature of P-wave polarization; if 
the vertical motion of the P wave is up­
ward, the radial component of the P wave 
is directed away from the epicenter. If the 
vertical component of the P wave is down­
ward, the radial component is directed 
back toward the epicenter. Unless the 
event is at a back azimuth such that the 
horizontal P wave motion is naturally ro­
tated onto a single component, both hori­
zontal seismometers will record the radial 
component of the P wave. The ratio of 
the amplitudes on the two horizontal com­
ponents can then be used to find the vec­
tor projection of the P wave along the 
azimuth to the seismic source. 

The distance to the seismic source is 
obtained from the difference between the 
arrival time of two phases, usually P and 
5. If the earthquake is at local ranges, then 
the distance can be approximated by 

D 
) / 3 - l a. (6.1) 

Equation (6.1) assumes a Poisson solid. 
For most crustal events, the rule of thumb 
is D = Us - tp) X 8.0. At larger distances 
one simply uses the travel-time tables to 
estimate the distance. Knowing the dis­
tance, one can estimate the P travel time 
and thereby determine the origin time. 
Comparing differential times between 
multiple sets of phases with times from the 
travel-time curves can improve the dis-
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FIGURE 6.13 Procedure for determining the azimuth to the source of a recorded P wave by 
using the three-component vector ground motion and the fact that P-wave motions are 
polarized in the vertical and radial plane. (After BSth, 1979). 

tance estimation. If clear depth phases are 
present, one may even reasonably estimate 
source depth from a single station. This 
simple procedure for estimating location is 
not accurate at distances greater than 
about 20° because the P wave arrives 
steeply and its horizontal component is too 
small to give a reliable estimate of the 
azimuth to the source. 

(t^ — tp) is plotted against the absolute 
arrival time of the P wave. Since t^ - tp 
goes to zero at the hypocenter, a straight-
line fit on the Wadati diagram gives the 
approximate origin time at the intercept 
with the P arrival time axis. Figure 6.14 
shows an example Wadati diagram. The 
slope of the trend is m == (a//3 — 1), which 

B.3.2 Multiple Station Locations 
When several stations are available, an 

accurate location can be determined by 
using P and/or 5 arrival times alone. If 
the event is at local distances, the two 
principal phases on the seismogram are P 
and S. The origin time of the earthquake 
can be determined with a very simple 
graphical technique called a Wadati dia­
gram. (K. Wadati used location methods 
to discover the existence of deep earth­
quakes, in seismic bands called Wadati-
Benioff zones, which were later inter­
preted as events in subducting slabs.) The 
time separation of the S and P phase 
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FIGURE 6.14 An example of the Wadati 
diagram method for determining the origin time 
of a local earthquake. The origin time is given by 
the intercept with the P arrival time axis. 
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FIGURE 6.15 Circle method for triangulation of a hypocenter. 

can be related to Poisson's ratio as follows: 

a 

' \ 

. - . 

/i-
l-n/2 
1-n 

, (6.2) 

where n = (m -h 1) .̂ 
Once the origin time (OT) has been 

estimated, the epicentral distance for the 
ith station can be estimated by taking the 
travel time of the P wave and multiplying 
it by an estimate for the average P veloc­
ity 

D, = {tl-OT)a, (6.3) 

The epicenter must lie on a hemisphere of 
radius D^ centered on the ith station. In 
map view this corresponds to a circle of 
radius D^. Figure 6.15 shows an example 
of this method for three stations. Since a 
single hypocenter must account for all 
three P-wave arrivals, the hemispheres for 
all the stations must intersect at a point. 
The epicenter can be found by drawing 
the cord of intersecting sections of the 
circles. The intersection of the cords will 
give the epicenter. The focal depth, d, can 

be determined by taking the square root of 
the difference between the squares of 
propagation distance, D„ and the distance 
along the surface to the epicenter. A: d = 
(D^ - b^y^. Including more observations 
will give additional intersections that theo­
retically should pass through the epicen­
ter. In practice, error is always present, 
both in the data and in the assumptions 
that raypaths are straight and that the 
velocity is known perfectly, so scatter in 
the intersection usually occurs. 

This method for determining the hypo­
center of an earthquake is called the 
method of circles. For our example we as­
sumed a homogeneous half-space. The 
method will still work for an inhomoge-
neous velocity structure as long as it is 
flat-layered. We can extend the method to 
a spherical Earth, but we will consider a 
slight variation that will help us conceptu­
alize the inverse problem. Consider sev­
eral globally distributed seismic stations 
that have recorded an earthquake. We 
need to determine four unknowns: the 
three coordinates of the hypocenter and 
the origin time. We can guess a solution 
for these and calculate expected P-wave 
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FIGURE 6.16 Adjustments of "epicentral guesses" are made by plotting the difference 
between predicted and observed travel times and epicentral distances. The sine pattern Is 
due to a systematic distance error between the estimated location, E, and the actual 
location, EQ. (From BSth, "Introduction to Seismology," Copyright ©1979. With permission 
from Birkhauser Verlag.) 

arrival times. If we compare these predic­
tions to the observed times, we can deter­
mine how much our guesses are in error. 
We then correct our guesses and repeat 
the process until we have obtained accept­
ably small differences between calculated 
and observed arrival times. 

In Figure 6.16, 10 seismic stations are 
shown distributed around a presumed epi­
center (E). The actual epicenter (EQ) lies 
to the northwest. The predicted arrival 
times of seismic waves at stations to the 
northwest of the presumed epicenter will 

be later than observed, and, conversely, 
predictions at stations to the southeast will 
be earlier than observed. Travel times of 
waves arriving at seismic stations to the 
northeast and southwest will not be greatly 
affected by this particular source misloca-
tion. We can use these relationships to 
estimate a correction in the presumed epi­
center, using a five-step process: 

1. Determine a predicted travel time, t^, 
and distance, D^, for each station based 
on the presumed epicenter. 
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2. Determine a distance, D^ to each sta­
tion by taking the difference between 
the observed P arrival time and the 
presumed origin time, i^, and convert­
ing this time difference to distance by 
consulting a travel-time table. 

3. Plot the difference, D, ~ D^ against the 
calculated azimuth from the presumed 
epicenter for each station. If the pre­
sumed epicenter is exactly right, then 
Z). - D^ will be zero. Otherwise, the 
variation of D^ - D^ with azimuth will 
be sinusoidal, with the maximum and 
minimum of the sinusoid aligned along 
the vector that points from the pre­
sumed to the true epicenter. 

4. Shift the origin time by an amount equal 
to the average value of t^ - t^, and shift 
the location by the amplitude of the 
sine-curve variations, with the direction 
of shift being along the azimuth of the 
maximum of the sine curve. 

5. Once a new epicenter is found, it can 
be used as a new starting model, and 
the five-step procedure is repeated. In 
general, a single iteration will give epi-
central locations accurate to within 
± 100 km. 

The procedure just described is a series 
of forward-modeling exercises that gener­
ate data that can be compared to observa­
tions. When we find a forward model that 
closely approximates the observations, we 
declare that the model sufficiently de­
scribes the earthquake location for given 
model assumptions. Mathematically, we 
can think of this as a series of equations 

(t^,t2,...,t„). The variable x^ gives the 
model parameters, and we can also con­
sider it a vector m that has m components 
(in general, m = 4, for the spatial and tem­
poral coordinates of the earthquake). We 
can rewrite Eq. (6.4) as a series of equa­
tions of the form 

F ( m ) = d . (6.5) 

F is defined as an operator which uses the 
elements of the model vector to give the 
data vector. If F is a series of linear equa­
tions (which is not the case for the location 
problem), then F is a matrix called the 
data kernel. 

6.3.3 The Inverse Problem 

If we could rearrange the terms in (6.5) 
such that we could divide d by some oper­
ator F~Mo give m directly, we would be 
solving an inverse problem. To develop 
how an inverse problem is done, it is in­
structive to follow the example of earth­
quake location in a homogeneous material 
with velocity v. The homogeneous medium 
gives us simple straight-line raypaths to 
simplify the algebra. The Cartesian coordi­
nates of the true hypocenter and the /th 
seismic station are (JC, y, z) and (jc,, y-, z^), 
respectively. Let t and t^ be the origin 
time of the earthquake and the arrival 
time at the iih station, respectively. Then 

t, = t + 
^(x,-xf + (y,-yf + (z,~zf 

' predicted 
-fiXi,U)=t: (6.4) (6.6) 

where x^ is the location of the earthquake, 
u is the velocity structure, and / is a 
function which calculates the arrival time, 
t: , given X: and v. If we have n sta-

'predicted' ^ ' 

tions at which we have actually measured 
arrival times, we can think of t: as the 

'observed 

iih component of a data vector d that has 
n components, which we write d = 

It is obvious that t^ is an element of the 
data vector d, and x, y, z, and t are the 
elements of the model vector m that we 
wish to determine. Ideally, only one unique 
combination of hypocentral parameters fits 
the observed times. Individual data ele­
ments, flf-, are related to the model vector 
by the right-hand side of (6.6), which we 
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write as 

¥{x,y,z,t)=d. (6.7) 

How can we find m? The equation for d is 
nonlinear, which precludes us from obtain­
ing a linear least-squares solution of the 
equation. The standard procedure is to 
linearize the problem and iteratively im­
prove guesses of m. The first step is to 
guess a solution m° for which the pre­
dicted times, d^, can be calculated and 
investigate the behavior of d^ in the neigh­
borhood of m^, just as in the last section. 
We approximate changes in m^ with a 
Taylor series approximation 

m)=m^ + 8mj, (6.8) 

where 8m^ is an incremental variation of 
the yth model parameter that moves the 
model toward a better fit to the data. For 
our example problem this amounts to 
guessing a solution (XQ, yg, ZQ, IQ) and then 
determining incremental changes in that 
guess: SXQ = (x^ - XQ), Sy^ = (yj - y^), 
8zo = ( z i - Z o ) , and StQ^U^-to). Sub­
scripts correspond to the iteration number 
in the procedure. The corresponding 
change in the predicted data vector can be 
found by expanding (6.8) in a Taylor series 
about m° H- 5m^: 

I d¥ \ I d¥ \ / ^F \ ( d¥\ 

= di-FP(xo,yo,Zo,to). (6.9) 

Examination of (6.9) shows that the dif­
ference in the observed and predicted 
travel times [the right-hand side of (6.9)] is 
now linearly related to changes we require 
in the hypocentral coordinates to make the 
model better predict the data. Using only 
the first term of a truncated Taylor series 
provides the linearization, but this also 
precludes the perturbations from immedi­
ately converging to the true m. The deriva­
tives are evaluated at the guessed solution, 

m^. Substituting (6.7) into (6.9) and rewrit­
ing gives 

8di= --—5m, 
' dm; ^ 

(6.10) 

or defining ddj/dnij as a partial derivative 
matrix 

dd: 
G„ = —!-

" dm, 
(6.11) 

we can write a system of equations that 
maps changes in model parameters onto 
improvements in the fit to the data: 

Ad = GAin. (6.12) 

It is standard notation to drop the A nota­
tion and write (6.12) as d = Gm. Be cau­
tious, as this form also holds for a purely 
linear problem, not just our linearized ver­
sion. From this point forward in this dis­
cussion, the data and model vectors are 
understood to be vectors of changes in 
model and data space. 

Returning to Eq. (6.9), we have a system 
of equations with four unknowns that are 
multiplied by constant coeflftcients. 
(dF./dmj are functions evaluated at m^ 
and, assuming they exist, are constants.) If 
there are four observed arrival times, we 
have four equations and can solve the sys­
tem by Gaussian elimination, giving either 
no solution or an exact result for 8mPj, Any 
errors in the data will lead to an incorrect 
solution, or inconsistent equations. Once 
8x, 8y, 8z, and 8t are calculated, we can 
"correct" the source parameter guesses: 

X J ^ X Q + SJCO, y i = y o + S>'o. 

Zi=Zo + S^o» ^ = ô + ^^o- (6.13) 

This new guess (jc^, y^, 21,^1) is now used 
to repeat the entire process [Eqs. (6.8) to 
(6.13)] to estimate a refined model 
(jC2,y2»^2J^2)- This iterative process is 
continued until the Ad becomes accept­
ably small. 
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This procedure is sometimes called 
Geiger's method. Unfortunately, the rate 
at which it converges depends strongly on 
the accuracy of the initial guess (called the 
starting model). Further, this process does 
not guarantee convergence. 

6.4 Generalized Inverse 

In the last section we developed a sys­
tem of simultaneous equations that related 
the changes of model parameters to im­
provements in the fit to the data. Equation 
(6.12) is valid for any problem in seismol­
ogy for which we have a set of measure­
ments that depends on a set of model 
parameters. A whole branch of mathemat­
ics has been developed to study the solu­
tion of such systems, known as inverse 
theory. The details of inversion are beyond 
the scope of this text, but we will develop 
some basic formulations because they are 
important for later chapters. For more de­
tailed geophysical inversion theory, see 
Menke (1989) and Tarantolla (1987). 

Equation (6.12) relates a data vector of 
dimension n (number of observations) to a 
model vector of dimension m (number of 
model parameters). In general, most 
earthquake location problems are overde-
termined: there are more observations than 
unknowns (n> m). For Earth structure in­
versions (discussed in Chapter 7), the con­
tinuous functions of material properties 
are approximated by a finite model simpli­
fied to ensure n> m. For (n > m) the ma­
trix G is not square (i.e., the matrix has 
more rows than columns), which we will 
consider later. If G is square, which im­
plies we have a system of n = m equations 
and n=m unknowns, we could simply 
multiply both sides of the equation by G~ \ 
the inverse of G, assuming it exists. By 
definition, G~^G = I, where I is the iden­
tity matrix (see Box 6.3), so a new system 
of equations is formed: 

Thus we could solve for m directly. This is 
a simple equation and is easy to solve. 
Unfortunately, we never have this case in 
seismology. We are dealing with data that 
have errors, such as those associated with 
picking the arrival times. Similarly, 
Eq. (6.14) assumes that we can perfectly 
predict the data. In the case of travel 
times, this means that we must know the 
velocity structure between the source and 
receiver extremely well. In fact, we usually 
do not; thus, we are dealing with inconsis­
tent equations, making it impossible to use 
(6.14). Despite these problems, all is not 
lost, because if we measure many data, we 
can find an overdetermined solution, which 
is the best model fit to an "average" of the 
data. 

Before we discuss overdetermined solu­
tions, let us return to Eq. (6.12), where G 
is a square (n = m) nXn matrix, and de­
velop some definitions. In this equation we 
can think of G as an operator which maps 
the model parameters into predicted data 
vectors. In other words, G transforms an 
n-dimensional vector into another n-
dimensional vector. This is analogous to a 
coordinate transformation with position 
vectors. We can extend the analogy to 
introduce the concept of eigenvalue prob­
lems. 

The eigenvalue problem can be defined 
by transforming the model vector onto a 
parallel vector: 

Gd = Ad. (6.15) 

Physically, this means that we want to find 
the set of data vectors that, when operated 
on by G, returns vectors that point in the 
same direction, with a length scaled by 
the constant A. We can use this to define 
the homogeneous equation 

[G-A]d = 0„, (6.16) 

G-M = m. (6.14) 

where 0„ is an « X 1 vector of zeros. This 
system of homogeneous equations has a 
nontrivial solution if, and only if, the 
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Box 6.3 Linear Algebra and Matrix Operations 

The manipulation of matrices is extremely important in seismology, especially in 
inverse problems. Operations on matrices, such as addition, multiplication, and 
division, are known as linear algebra. A review of the basics of linear algebra is in 
order to understand Section 6.4 on the generalized inverse. In general, a matrix is 
described by the number of rows (M) and columns (N), or an MxN matrix. 
Consider such a matrix A: 

*21 

M2 
*22 «2yv 

a Ml 

(6.4.1) 

^Af2 ' * * ^MN 

A second matrix, B, can be added to A if it has exactly the same dimensions: 

A + B = 

Matrix multiplication is defined by the following: 

« i i + ^ n 

«21+'^21 

»Ml+^Afl 

«12 + ^12 

«22 + ^22 

^Ml^^Ml 

axN^t>\N 

(^IN^b^N 

^MN "*" ^MN 

(6.4.2) 

AB 

•MI 

-Ml 

*22 

*M2 

-22 

•'M2 

'2/V 

•MN 

- 2 P 

-MP 

^yvi 

'12 

/22 

^N2 

'\P 

^2P 

(6.4.3) 

where Cu = ai^bf^j. Note that when we write out the dimensions of A and B, we see 
MxN and NxP, respectively. Multiplication is possible only when the number 
of rows of matrix B matches the number of columns of matrix A. The resulting 
matrix C has M rows and P columns. In general, AB ¥- BA. In fact, if AB exists, 
there is no reason to believe that BA exists. 

continues 
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Another very important matrix operation is called the transpose. The transpose 
of A is formed by taking the columns and turning them into rows. In other words, 

'12 

MN 

*21 

*22 

*2N 

*M\ 

*M2 

*'MN 

(6.4.4) 

Thus, A^ is an A^xAf matrix. The product AA^ always exists and is a square 
MXM matrix. If the matrix is symmetric (a^j = a ,̂), then A^ = A. This is, of course, 
the case for both stress and strain. 

The determinant of a matrix is a measure of its "size." It is written as |A| and is 
defined for square matrices as a complex product of entries from each column. For 
example, if A is a 3 X 3 matrix, then 

A = «2! 

'12 

'32 

'13 

'33 

= ^11^22^33 + «12«23«31 + «13«21«32 

- «,3flf22«3l - «12«2I«33 " ^n«23«32- ( 6 . 4 . 5 ) 

In general, the determinant can be written 

|A| = E(±)«l; ,« 2)2 «^,' (6.4.6) 

summed over all permutations of JxJi,...J„. If the order of y, is an even 
permutation, then the -I- sign is used; if the order of 7, is an odd permutation, 
then the - sign is used. Note that this requires N\ terms. The determinant is a 
very important concept for solving systems of equations, but it obviously can be 
very tedious to calculate. Fortunately, many properties of determinants greatly 
reduce the difficulty of computation. Detailed discussion of these procedures is 
beyond the scope of this seismology text, so we refer the reader to a linear algebra 
text such as Elementary Linear Algebra by Kolman. 

Some of the useful facts and properties of determinants are (1) if two rows or 
columns in A are identical, |A| = 0 , and (2) if two rows or columns of A are 
interchanged, |A| remains the same absolute value, but its sign changes. Most 
important, |A| = |A^|. 

The inverse of A is defined such that 

AA A 'A = I, (6.4.7) 

where I is called the identity matrix, which is a square matrix whose elements are 
all zero except those along the diagonal, where the values are 1. The inverse matrix 
can be found by the equation 

A- ' = ( l / | A | ) ( a d j / l ) , (6.4.8) 

continues 
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1 where adj A 
of A, which 

is called the adjoint of A. The adjoint 
are written 

adjA = B b^j = {-y 

where M̂y are matrices derived from A with row 

is determined from the cofactors | 

'1M,,| 

/ and column ; removed. 

(6.4.9) 

determinant of the system equals 0: 

IG-AII 

^11 - ' ^ ^12 ^13 

Sll g22 - A g23 Sin 

Snl Sn2 Sn3 

(6.17) 

The determinant is given by the polyno­
mial of order n in \, called the character­
istic polynomial 

(6.18) 

The roots of this equation are called eigen­
values of G. Thus there are n eigenvalues 
(Aj, A2,..., A„), each of which can be used 
to find a solution of the system of homoge­
neous equations. The solution can be tabu­
lated as follows: 

A=Ai Ui= [u\,u\ '" u\] 

= A2 U2=[u^i,ul '" ul] 

= A„ n,= [K.ul'"K\\ 

(6.19) 

The solutions u represent n distinct vec­
tors called the eigenvectors of G. 

The eigenvalues and eigenvectors are 
used to define two matrices: 

A = 

A, 0 0 
0 A, 0 

0 0 0 

0 
0 

(6.20) 

u = (6.21) 

Thus, A is a diagonal matrix with the 
eigenvalues of G, and U is an n X n matrix 
with the eigenvectors of G in the columns. 
The eigenvectors define a new coordinate 
system, equally valid for describing the so­
lution to our original system of equations. 
The advantage of the new coordinate sys­
tem is mainly in the computational sim­
plicity of determining the generalized in­
verse, but some physical insight can be 
gleaned by considering the role of G. As 
we stated before, G transforms, or links, 
the model parameters (or model space) to 
predicted data (or data space), A change 
in one model parameter will affect certain 
elements of data space. For example, in 
the earthquake location problem, a change 
in depth will affect the travel times at all 
observing stations. In the eigenvector co­
ordinate system, the original model pa­
rameters are mapped to a new model 
space; likewise for data space. In this coor-
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dinate system, a change in one model pa­
rameter will affect only one element of the 
data vector. This one-to-one linkage is ex­
tremely valuable when one tries to under­
stand which combination of model param­
eters is best resolved. 

In Eq. (6.18) we assume that the charac­
teristic polynomial has n roots. In general, 
these roots may be complex, but for the 
types of problems we are interested in 
solving in seismology, all the roots are real. 
However, we have no guarantee that the 
roots will not be zero or repeated, prob­
lems which must be addressed. If an eigen­
value is zero, this implies that one "coordi­
nate axis" in the transform space does not 
exist, and only n — 1 model parameters 
are resolvable. If an eigenvalue is re­
peated, we refer to the eigenvalues as de­
generate. In this case, the eigenvalue does 
not correspond to a single eigenvector but 
rather a plane defined by the two eigen­
vectors. In this case, the uniqueness of the 
eigenvector vanishes; any two vectors in 
the plane will describe the new model 
space. 

One application of eigenvectors is to 
find the principal coordinate system. This 
amounts to the diagonalization of G in our 
example. From (6.15) we can write 

GU = UA. (6.22) 

Multiplication by the inverse of U yields 

U^GU = A, (6.23) 

with A being the diagonalized matrix 
(6.20). As an example, consider the case 
where G is an arbitrary stress tensor. Then 
the eigenvalues are the magnitude of the 
principle stresses, and the eigenvectors give 
the orientation of coordinate axes for the 
principal stress system. 

We can use eigenvalue analysis to find a 
formulation of G"^ We start by perform­
ing a similar eigenvalue analysis on G^ 
(the transpose of G) to define a matrix of 
eigenvectors V. The eigenvalues of G^ are 

identical to those of G (the value of the 
determinant does not change if the 
columns and rows are interchanged). Thus 

GTV = VA. (6.24) 

We can manipulate Eq. (6.24) by taking 
the transpose of both sides: 

V'^G=AV^ (6.25) 

multiplying both sides by U: 

V'^GU=AV'^U. (6.26) 

Now we can use Eq. (6.22) to write (6.26) 
as 

V'̂ UA = AV'̂ U. (6.27) 

This is an important equation and is the 
basis of a technique called singular value 
decomposition. The only way in which (6.27) 
can be true is for V^U = I. This implies 
that V^ and U are orthogonal. Using our 
coordinate transformation analogy, this or­
thogonality means the coordinate axes (ei­
genvectors) are orthogonal. Recall that we 
defined the inverse matrix as U~^U = I, 
which leads to several relations between 
the eigenvectors of G and G :̂ 

U = (VO 

(6.28) 

If we substitute V^ = U~^ in Eq. (6.25) 
and multiply by U, we obtain what is known 
as the singular value decomposition of G: 

G = UAV'̂  = UAU-^ = UAU'̂ . (6.29) 
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A similar equation can be written for G" 

G- '=UA-'V' ' 

where A~' is given by 

(6.30) 

/A, 
0 
0 

0 

0 
1/A, 

0 

0 

0 
0 

0 

0 
0 

0 
1/A„ 

-1 _ 

(6.31) 

These manipulations are a rather com­
plex approach to inverting a square matrix, 
although insight can always be gained from 
considering the eigenvector and eigen­
value structure of a problem. However, for 
most problems in geophysics, we are in­
volved with situations with many more data 
than model parameters. If the seismic data 
and our models for predicting observations 
were perfect, then an overdetermined 
problem would be redundant. For a redun­
dant set of equations, some eigenvalues 
will be zero. In this case G~^ does not 
exist, but you could eliminate the redun­
dancy and still find a complete solution. If 
the data and model contain noise and er­
rors, perfect redundancy will not exist, and 
the inverse problem can be formulated as 
an overdetermined problem. In this case, 
G is not a square matrix and we cannot 
use (6.14) or (6.31) directly, so we must 
further manipulate our basic formulation 
of the problem (6.12). 

An example of a overdetermined prob­
lem is an unknown earthquake location 
with more than four arrival times. No loca­
tion will perfectly predict all the arrival 
times, so we seek a location which will 
provide the best prediction. The best fit .is 
usually defined as the model with the 
smallest residual, or difference between 
observed and predicted data. From Eq. 
(6.12), we can write an equation which 
measures the misfit of the model: 

E = [ d - G i n ] . 

If the model exactly fit all the data, then E 
would be a vector of dimension n with all 
elements equal to zero. Since this will not 
usually be the case, the inverse problem is 
designed to find a model that minimizes E. 
One of the most common ways to do this 
is to write an equation for the squared 
error 

E 
/ = 1 

(6.33) 

and force £^ to be a minimum. We do this 
by taking the derivative of E^ with respect 
to the model parameters and setting it 
equal to zero: 

dmi 
2E-

dE 
dmu 

= - 2 E U , - EG,,m,|G,, = 0 
< = 1 \ ; = 1 

(6.34) 

or collecting terms. 

n n I m \ 
Ld^G,,- E HG.jmAG,,, (6.35) 

which can be rewritten in matrix notation 
as 

G*d = G*Gm, (6.36) 

a very useful form called the normal equa­
tions. G^G is now a square matrix, so it 
has an inverse (as long as it is not 
singular!). Further, G^G is symmetric, 
which means that its eigenvalues are real 
and nonnegative. Therefore we can write 
an equation of the form 

m = [G^G] V d , (6.37) 

(6.32) 
where [G'̂ GJ'̂ G^ = G'Ms called the gen­
eralized inverse of G. (Strictly speaking, 
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this is called the least-squares inverse', if 
G^G is nonsingular, then it is the general­
ized inverse.) Equation (6.37) provides the 
best solution to m in a least-squares sense 
(the squared error is minimized). Equation 
(6.37) (and its modifications) is one of the 
most important equations in geophysics for 
both linear and nonlinear problems. In 
general, most problems that are posed are 
not linear. Thus, m will only serve as a 
correction to a starting model, and we 
must repeat the inverse process, with G 
updated for the new model. 

We can solve (6.37) by the method of 
singular value decomposition. The non-
square matrix G has dimensions n X m, so 
G^G is of dimension mXm, and GG^ is 
of dimension nXn. Since these matrices 
are square, we can use (6.29) to solve for 
the inverse of G^G, in terms of eigenvec­
tor matrices V and U for G'̂ G and (G^G)'̂  
= GG^, respectively. From (6.29) we can 
write 

G T G = [ V A „ ( , , V ^ ] , (6.38) 

where V is mXm, and the eigenvalue 
matrix A (̂2) is mXm. The eigenvalues 
are actually just the squared values of the 
eigenvalues of G itself, so we denote them 
with the subscript (2). This corresponds to 
the singular-value decomposition of G^G. 
One singular value exists for each model 
parameter, although these are not guaran­
teed to be nonzero. The matrix V contains 
the eigenvectors associated with these sin­
gular values, and we say that it "spans the 
model space." We can write a similar de­
composition for GG^: 

GG^ UA,(2)U^ (6.39) 

where U is now an nXn matrix of eigen­
vectors "spanning the data space." Note 
that GG^ has dimensions of nXn, with 
n> m, but only up to m eigenvalues are 
nonzero, and they are the same as those in 
(6.38). The extra n-m rows and columns 
of A„ are just zeros, although the corre­
sponding eigenvectors need not be zero. 

In Eq. (6.37) we need [G^G]-^ Our 
eigenvalue formulation allows us to carry 
out the necessary inverse directly: 

[G^G]- = [ V ^ ] - ' [ A „ ( , , ] - V - . (6.40) 

The inverse of V^ is just V, and similarly, 
V~̂  is V^. Thus, we can rewrite Eq. (6.40) 
as 

, - 1 [G^G]- =V[A^,(2)]-'VT. (6.41) 

Now we can use (6.41) to write the gener­
alized inverse, [G'^G]~^G'^ = G~«. First, 
consider G^. While this is a nonsquare 
matrix of dimension mXn, we can de­
compose it using (6.29), if we consider only 
the up to m eigenvectors in the matrix 
A^. This allows us to use (6.29) as 

G = UA„V^ 

GT = VA nT. 

(6.42) 

(6.43) 

Combining (6.41) and (6.43), recognizing 
that the eigenvector matrices are the same 
for G^G and G ,̂ we have 

G - « = [ G ^ G ] " V 

= {V[A^,^,^]-V-}{VA^U-} (6.44) 

= V [ A ^ , ( 2 ) ] ~ ' A ^ U ^ . (6.45) 

Recalling that the eigenvalues in A (̂2) ^^e 
simply the square of those in A^, we find 

G^=[G^G] 'G^ = \\JV^, (6.46) 

where the eigenvector matrix is of the form 
of (6.31). The squares of the eigenvalues in 
(6.46) are called the singular values (most 
algorithms will just compute the inverse of 
G^G) and these are arranged such that 
Ai>A2> ••• A^>0. 
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6.4.1 Errors, Redundant Data, 
and Resolution 

In the previous discussion we assumed 
that all the data were independent and 
that each model parameter affected ail the 
data. For the earthquake location problem 
this assumption is valid, but for many other 
geophysical inverse problems this will not 
be the case. In the latter situation, G^G 
will be singular, with at least one eigen­
value equal to zero. In this case the form 
of Eq. (6.46) is slightly modified. The ma­
trices V, A, and U are redefined as systems 
of p nonzero eigenvalues: 

(6.47) 

and \p is the matrix of eigenvectors associ­
ated with nonzero eigenvalues of G^G, 
while U^ is a matrix of eigenvectors associ­
ated with the eigenvalues of GG^. G^G 
and GG^ have the same p nonzero eigen­
values, so it is possible to write 

p 

"Ai 
0 

0 

0 
A2 

0 

0 • 
0 •• 

0 ■ 

■ ^ 1 
■ ^ 

• A,J 

how well can we determine each of the 
modal parameters, and how important are 
the individual observations to our solu­
tion?" We can write the model derived 
from (6.48) as 

m. G^d (6.49) 

but recall d = Gm, where m is the entire 
model space. Then m^ is related to m by 

. = G - i ' 

= V^A-^UjU^AX'm = V^V/m. 

(6.50) 

The matrix R = V̂V̂^ is called the resolu­
tion matrix. The columns of the resolution 
matrix indicate how much the true model 
is smeared into the various parameters of 
the inversion model. Ideally, one would 
obtain a diagonal resolution matrix, recov­
ering the full model. Calculation of the 
resolution matrix is essential for assessing 
an inversion result. 

We make two further definitions. The 
information density matrix is given by 

G~^ = V A'^U'^ (6.48) D u,u; (6.51) 

where G^ ^ is now the generalized inverse 
and G = UAV'̂  = U^A^V/. The restriction 
to only a limited portion of the model 
space spanned by the V̂  eigenvectors 
means that there are nonunique parts of 
the model which cannot be detected by the 
inversion, while the limitation to the part 
of the data space spanned by U^ eigenvec­
tors means that there are aspects of the 
data which cannot be fit by the model. The 
reduced problem can be solved, but one 
must be aware of the limitations of the 
solution. 

Equation (6.48) provides a very general 
means of solving an inverse problem, but 
we need to step back and evaluate the 
significance of the inverse. In particular, 
we should ask, "Is the solution unique. 

and the covariance matrix is given by 

c = V A~^V' (6.52) 

where the elements of A^^ are {l/\\, 
1/A|,...,l/Ap. Equations (6.50), (6.51), 
and (6.52) are all related and can give us 
physical insight into the inversion solution. 
The rank of the matrix G^ is defined as p, 
or the number of nonzero singular values. 
Small singular values cause a greater vari­
ance in the solution [see (6.52)]. Thus small 
eigenvalues lower the stability of the in­
verse. If the smaller eigenvalues are dis­
carded, then the stability increases. How­
ever, this decreases the resolution. If all 
the model parameters are associated with 
nonzero singular values, then R is an iden-
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tity matrix, and we have perfect resolution. 
If we decrease the number of singular 
values, R moves away from being an iden­
tity matrix. We usually attempt to optimize 
this trade-off between resolution and sta­
bility by using a cutoff on the ratio of a 
given eigenvalue to the largest eigenvalue. 
The condition number is defined as 

TABLE 6.1 Earthquake Location Examples: 
Station Location 

Station 

1 
2 
3 
4 
5 
6 

X 

2.0 
3.0 

50.0 
55.0 
81.0 

-9 .0 

y 
31.0 

- 5 . 0 
58.0 
47.0 
3.0 

-18.0 

P-wave time 

40.02 
42.76 
41.07 
40.38 
45.05 
45.75 

di - d„ 

5.77 
6.93 
2.70 
2.72 
4.05 
7.02 

(6.53) 

We choose a cutoff condition number to 
determine the number of singular values 
to retain. 

Finally, it is clear that errors in mea­
surement of the data will cause errors in 
the determination of the model parame­
ters. It is usually assumed that the errors 
associated with the data are random with a 
Gaussian distribution. This means that a 
given data point d has di 95% probability 
of falling within ±20- of the true value, 
where a is the standard deviation. The 
errors in the data map to the errors in 
model parameters by the equation 

r2 = , - 1 ^ 2 [G->]' (6.54) 

differences between the calculated and ob­
served data {di -d^) give the data vector 
in the form of Eq. (6.12) (given in Table 
6.1). Clearly, our initial guess is not very 
good. 

We now need to determine G. In this 
example this is fairly simple since the ana­
lytic derivatives of (6.6) evaluated at 0 are 
easy to obtain 

dx v\t,-t^) ' 

- ( ^ / - ^ o ) 
dz ~v\t,-t,) ' 

dy 

dt, 

dtn 

-(yj-yo) 

= 1 (6.55) 

yielding 

6.4.2 Example of Generalized 
Inverse for Earthquake Location 

The principles of generalized inversion 
are best illustrated by an example. Con­
sider the case of an earthquake that oc­
curred in a homogeneous half-space; the P 
waves were recorded at six seismic sta­
tions. Table 6.1 gives the location of each 
station (in grid coordinates) and the 
F-wave arrival times. The arrival times 
were calculated exactly, and then white 
noise (±0.01 s) was added to simulate 
uncorrected data errors. To start the in­
version process, we "guess" a solution (XQ 
= 21, yo = 21, Zo=12, ô = 30.0) from 
which we can calculate a data vector. The 

0.1331 
0.0917 
0.1030 
0.1318 
0.1621 
0.1021 

-0.0700 
0.1325 

-0.1315 
-0.1004 

0.0486 
0.1327 

0.0841 
0.0612 
0.0426 
0.0465 
0.0324 
0.0408 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 

G = 

(6.56) 

The eigenvalues of G^G, or nonzero singu­
lar values, are given by A 

A = 
.452 
0 
0 
0 

0 
0.342 

0 
0 

0 
0 

0.2101 
0 

0 
0 
0 

0.0199 

(6.57) 
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with the corresponding eigenvectors: 

V = 

0.0117 
0.0018 
0.0512 
0.9986 

0.7996 
0.5981 
0.0524 
0.0056 

-0.5854 
0.7961 

-0.1528 
-0.0005 

-0.1327 
0.0915 
0.9855 
0.0522 

(6.58) 

Even before we obtain a solution, A and V 
provide some valuable insight into how 
this particular problem is posed. Each ele­
ment of a particular eigenvector corre­
sponds to a dependence of the eigenvalue 
on a given model parameter. For example, 
the largest eigenvalue, 2.452, is associated 
with the eigenvector in the first column in 
V. Each element in this vector is related to 
a model parameter. The fourth model pa­
rameter, which is Q̂, the origin time, domi­
nates this eigenvector. The vector "points" 
in the direction of IQ. This eigenvalue is 
much larger than the other three, and 
hence the model parameter estimate is 
most stable. In other words, our inversion 
estimates for the change in origin time are 
the most stable. On the other hand, the 
smallest eigenvalue is 0.0199, with a corre­
sponding eigenvector dominated by the 
third model parameter, z, focal depth. 
Thus the estimate of changes to the depth 
are the least stable part of the inversion 
process. As we will see shortly, we have 
difficulty determining true depth given the 
starting model we chose. 

Since there are four nonzero eigenval­
ues, the model resolution is perfect, but 
we can look at the data-density matrix to 
see how important each observation is in 
constraining the solution: 

If we look at the diagonal terms, we can 
get a relative measure of the importance 
of each station. The largest values (0.8992 
and 0.8120) are associated with stations 1 
and 6; these stations constrain the solution 
the most. Station 4 provides the least con­
straint, although most of the data are about 
equally important. The off-diagonal terms 
give a measure of the influence other sta­
tions have on a given value. 

The inversion predicts a change to the 
model m, which is given by 

m = 

8.268 
9.704 
9.063 
4.480 

(6.60) 

The summed squared error for the starting 
model was 161.8; for the inversion solution 
it is now 0.0579. Table 6.2 compares the 
hypocentral guess with the true model 
value for several iterations. Note that al­
though jc, y, and t are very close to the 
"true" values, z is not. In fact, the inver­
sion initially pushed z in the wrong direc­
tion! This is a result of our poor initial 
guess. After six iterations we obtain a re­
sult that is very close to the true location. 
Remember, we added white noise to the 
data, so the inversion will not be exact. It 
is commonplace for inversions that start 
off with poor starting models to settle into 
a local minimum, never approaching the 
actual solution. This is a result of the 
linearization of the problem, and various 
strategies are used to move the inversion 
over a wider range of parameters to seek a 
global minimum. 

D = 

0.8120 
0.2605 
0.0987 
0.1328 
0.2265 
0.0776 

0.2605 
0.5887 

-0.2663 
-0.0232 

0.2741 
0.1662 

0.0987 
-0.2663 

0.6142 
0.3450 
0.0160 
0.1922 

0.1328 
-0.0232 

0.3450 
0.3906 
0.2881 

-0.1333 

-0.2265 
0.2741 
0.0160 
0.2881 
0.6951 

-0.0467 

0.0775 
0.1662 
0.1922 

-0.1333 
-0.0467 

0.8992 

(6.59) 
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Box 6.4 Joint Determination of Hypocenters (JHDl 

The example of hypocenter determination in the text assumes that it is possible 
to accurately predict the travel times for an arbitrary station-source configuration. 
Unfortunately, this requires the use of an Earth model, and obviously the actual 
Earth is more complicated, so errors are introduced into the earthquake location 
process. For a given seismic station, the error in the predicted travel time is due to 
inaccuracies of the assumed velocity model. These deviations can occur anywhere 
along the travel path, although in general we divide the errors into three groups: 
(1) deviations from the velocity structure near the source, (2) deviations near the 
station, and (3) deviations along the deep travel path. For a single event-station 
pair it is not possible to isolate the effects of these errors. On the other hand, if a 
cluster of earthquakes occurs (a group of earthquakes with approximately the same 
location), we can determine something about the errors in the idealized model. 
Specifically, we can determine a "station correction" that accounts for the inaccu­
racies of the model structure along the travel path and beneath the station. In this 
case we can recast the problem to one of determining n station corrections and m 
earthquake hypocenters. Equation (6.9) can be replaced with 

dt dt dt dt 
r, = dT, + — dx,^ — dy: + — rfz, -h — ds:, (6.4.1) 
'̂  ' dx ' dy ^' dz ' ds ' ^ ^ 

where r̂y is the residual, or error, at the /th station for the yth earthquake 
(r̂ y = f,y - ,̂y, whcrc f,y is the observed arrival time and f-y is the computed travel 
time and station correction). dT^ is the perturbation of the origin time for the yth 
event. In matrix form, (6.4.1) is just 

ry=^^dxy + 5yds, (6.4.2) 

where Ty is the data change vector and dx and ds are separate model change 
vectors (compare to Eq. (6.12)). The solution of this system of equations is known 
as joint hypocentral determination (JHD) and was first proposed by Douglas (1967). 

Numerous authors (Herrmann et al., 1981; Pavlis and Booker, 1983; Pujol, 1988) 
have proposed eflficient inversion schemes for solving (6.4.2); nearly all the schemes 
involve singular value decomposition. The relative locations obtained by JHD are 
better than those determined by inversion of more complete and complex velocity 
models. The resulting hypocentral locations often give a focused picture of the 
seismicity. Figure 6.B4.1 compares hypocenters determined by conventional inver­
sion and by JHD. 

continues 
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FIGURE 6.B4.1 Comparison of earthquake locations for conventional procedures of ISC 
(left) and JHD relocations (right). These events are located in the Kurile subduction zone 
along the rupture zones of large thrust events in 1963 and 1958. and the vertical cross 
sections traverse the interplate thrust zone from left to right, with the slab dipping toward 
the right. Note that the JHD relocations reduce scatter and define a dipping plane, which is 
the main thrust contact. (From Schwartz et ai, 1989.) 

TABLE 6.2 Comparison of Hypocentral Guess, Solutions After 
Various Iterations, and True Model Values 

Parameter 

X 

y 
z 
t 

Initial guess 

21.0 
21.0 
12.0 
30.0 

1st iteration 

29.3 
30.7 
21.1 
34.5 

3rd iteration 

29.9 
30.2 
9.1 

34.9 

References 

6th iteration 

30.0 
30.2 

8.9 
35.0 

True value 

30.0 
30.0 

8.0 
35.0 

Inversion for source location using more 
complicated Earth models or travel times 
obtained from tables proceeds along simi­
lar lines, with the only real differences 
being in the calculation of the partial 
derivatives needed for each iteration and 
in the use of spherical geometry. Armed 
with this cadre of analytic procedures for 
interpreting seismograms, we can now turn 
to some of the primary results for Earth 
structure. 
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CHAPTER 

7 
DETERMINATION OF EARTH 
STRUCTURE 

Seismic waves provide a probe of the 
Earth's deep interior, and their pre­
dictable behavior, as set out in Chapters 3 
and 4, makes it is possible to obtain high-
resolution models of some of the Earth's 
internal properties. A model is a simplified 
mathematical representation of the actual 
three-dimensional material property varia­
tions within the planet. Seismology pro­
vides primary constraints on the variations 
of density, rigidity, and incompressibility 
and secondary constraints on the tempera­
ture field at all depths in the Earth. Inter­
pretation of the actual chemistry, physical 
state, and dynamic behavior associated 
with the seismological structure requires 
experimental and modeling results from 
other disciplines such as mineral physics 
and geodynamics. Nonetheless, seismology 
has the primacy of providing our best reso­
lution of the actual structure of the planet. 

Not surprisingly, our detailed knowledge 
of Earth structure generally diminishes 
with depth. The shallow continental crust 
has been extensively explored using high-
resolution seismic reflection methods in a 
search for petroleum and mineral re­
sources. The technology developed by the 
oil industry is now being applied to the 
deep crust to investigate crustal-scale 

faulting and rheological models for crustal 
evolution, but we still have very limited 
global sampling of continental deep-crustal 
structure at high resolution. The processes 
operating near the surface of the Earth 
have produced a remarkably complex 
crustal structure, with the rocks preserving 
more than 4 billion years of continental 
evolution and relics of plate tectonic events 
through the ages. Below the Moho, the 
crust-mantle boundary, our detailed reso­
lution of internal structure diminishes, but 
surprisingly we obtain increasingly com­
plete global coverage. This is because 
earthquakes provide the primary seismic 
sources rather than human-made explo­
sion sources. While both earthquake and 
seismic station distributions are spatially 
nonuniform, there are vast numbers of 
paths through the Earth, yielding fairly 
complete global coverage. The velocity 
structure of the upper mantle is very com­
plex, with strong lateral variations associ­
ated with the deep structure of plate 
tectonics processes and depth variations 
associated with a myriad of high-pressure 
phase transformations in mantle minerals. 
The deeper layers of the Earth, the lower 
mantle and core, are well characterized in 
their average properties as a function of 

236 
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depth, but only in the past 17 years have 
seismologists begun to map out what ap­
pears to be a modest, few-percent lateral 
heterogeneity at each depth. 

This chapter describes how we use seis­
mic wave recordings to determine large-
scale Earth structure. Only a fraction of 
the methodologies that have been devel­
oped can be discussed in this chapter, and 
new procedures are continually being in­
troduced. Thus, we present a spectrum of 
methods and the results of their applica­
tion to various depth ranges in the Earth. 
Numerous complete texts are devoted to 

the techniques and interpretations of shal­
low crustal reflection seismology (see ref­
erences for this chapter), so we do not 
discuss that field here. Our discussion first 
lays out some basic methodologies com­
mon to all applications and then works 
down from crust to core, considering the 
seismic waves at the different distance 
ranges defined in Chapter 6. The regional, 
upper-mantle, and teleseismic distance 
ranges (Figure 7.1) provide data that are 
sensitive to different depth intervals, with 
very different seismogram characteristics, 
as revealed in the last chapter. Here we 

§ 121 , 
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FIGURE 7.1 Schematic diagram of the three characteristic distance ranges used in the 
study of Earth structure. The range 0 - 1 4 0 0 km (0°-13°) is the near-f\eld to regional-
distance range (center), where the seismic wavefield is predominantly crustal phases. The 
upper-mantle distance range (bottom) is from 1400 to 3300 km (13''-30°) and is dominated 
by upper-mantle triplications. The teleseismic range (30°-180°) involves waves that sample 
the lower mantle and core or reverberate in the upper mantle. 
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describe how the information in seismo-
grams is transformed into a model of the 
Earth's interior. 

7.1 Earth Structure Inversions 

EarHer chapters in this text have pro­
vided a general characterization of seismic 
wave behavior in media that have smooth 
velocity variations or abrupt discontinu­
ities in material properties. Mathematical 
expressions predict how the seismic wave 
amplitudes and travel times should vary as 
a function of distance from the source. It 
is logical that comparison of observed 
travel-time and amplitude behavior with 
calculations for a suite of model represen­
tations of the medium may yield a model 
or range of models that satisfactorily match 
the observations. Such a model explo­
ration constitutes forward modeling of the 
data, in which we iteratively perturb model 
parameters in an effort to predict the ob­
served behavior more accurately. For sim­
ple models, with only a few parameters, it 
is not unreasonable to perform forward 
modeling to get a "best" model, but even 
a realistic one-dimensional Earth model 
may involve many parameters, and a 
three-dimensional model is guaranteed to. 
Furthermore, one must address critical is­
sues in defining a best model, such as 
uniqueness of that representation of the 
Earth, criteria by which one judges the fit 
to the data, and resolution of individual 
model parameters given possible trade-offs 
between model features. 

Although enormous increases in com­
puter speed in recent years enable some 
"brute force" forward modeling optimiza­
tion of model parameters by searching over 
vast suites of models, most current seismo-
logical methods employ a different strat­
egy, involving geophysical inverse theory. 
In Chapter 6 inverse theory was intro­
duced in the context of earthquake loca­
tion in a medium with a prescribed veloc­
ity structure. Clearly, the location depends 

on the velocity structure, which can at best 
be an approximation of the actual Earth 
structure. How, then, can we determine 
the structure, at least well enough to en­
able a bootstrapping procedure of itera­
tively improving both the velocity model 
and the source location? 

The key is to exploit the systematic rela­
tionship between seismic wave behavior as 
a function of distance and the velocity 
structure encountered along the path. We 
begin by considering a classic inverse pro­
cedure useful for determining a one-
dimensional model of velocity variation as 
a function of depth. Then we will consider 
a three-dimensional procedure. 

7.1.1 Herglotz-Wiechert 
Inversion 

Consider the travel time-epicentral dis­
tance behavior for a spherical medium with 
smoothly varying velocity that is a function 
only of depth, v(r). In Chapter 3 we devel­
oped parametric equations relating travel 
time and distance 

T=pA-^2 — —dr (3.70) 

dr A = 2pf 
. ry/e-p^ ' (3.67) 

where f = r/v, r^ is the radius to the turn­
ing point of the ray, p = (r sin i)/v(r), and 
TQ is the radius of the sphere. We want to 
use the observed travel-time curve, r(A), 
to determine the velocity variation with 
depth, by a method other than forward 
modeling. If the r(A) curve is well sam­
pled with a smooth curve fit to the data, 
we can determine p(A) = dT{^)/d^ from 
the instantaneous slope of the curve. Note 
that this already implies some smoothing 
and averaging of the data, which will never 
lie along a perfectly smooth curve because 
of both measurement error and three-
dimensional heterogeneity in the actual 
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medium. The precise criteria used in fit­
ting a curve to individual measurements 
TjiAf) will aflfect the p(A) curve and ulti­
mately the model values of v(r). Having 
determined r(A) and p(A), we proceed by 
changing the variables of integration in the 
integral for A to 

= 2 p / ' (o 1 

p r yfe^i 
dr\ 

\d^, (7.1) 

where ^x^r^/v^=p and ^Q-
apply the integral operator 

/ 
P = ̂ o dp 

p=Pi y/7^ 

r-o/Vo- We 

(7.2) 

to (7.1), where ^ i = ^ i A i = P i is the ray 
parameter for a ray bottoming at radius r^. 
Thus (7.2) is an integration over all rays 
from the ray at zero range (p = ^Q, A = 0) 
to a ray with turning point r̂  and ray 
parameter ^j = r^/Ui'. 

f̂. }f?^ •'?. 

■r: 2p 

P ry[e^yf?^,yd^ T^fQ''-
(7.3) 

The left-hand side of (7.3) can be inte­
grated by parts to give 

A cosh" 
^1 

d^ 

t*^°*"'(i;)*-<'■"> 
The first term vanishes because cosh " Kl) == 
0, and A = 0 at /? = 0̂ by definition. The 
second term in (7.4) can be written as an 

integral over A by 

/ . ̂ 'cosh-'[|-|dA. (7.5) 

Turning now to the double integral in (7.3), 
we can change the order of integration to 
obtain 

4 '• Ud4 
2pdp 

i>]/} ■^y/F^ 

(7.6) 

The integral on p has a closed form, re­
ducing this to 

m) di 

X{sin" 
2p'-{e + ̂ f) 

(7.7) 

which reduces to 

Integrating (7.8) and combining with (7.5), 
our Eq. (7.3) becomes 

This is an expression for r^ in terms of 
quantities measured from the r(A) plot. 
The quantity ^^=p^==idT/dA\ is the 
slope of r(A) at distance Aj. The integral 
is numerically evaluated with discrete val­
ues of /7(A) for all A from 0 to Aj, yield­
ing a value for r^, with vir^) being ob­
tained from 1̂ = ^iAi. This procedure is 
known as the Herglotz-Wiechert formula 
for inverting a travel-time curve to find 
velocity as a function of depth. It was used 
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extensively in the development of the ear­
liest P-wave and 5-wave velocity models 
for deep Earth structure. The procedure is 
stable as long as AC;?) is continuous, with 
v{r)/r decreasing with r. If a low-velocity 
zone is present at depth, the formula can­
not be used directly, although it is possible 
to "strip off' layers above the low-velocity 
zone and then use the contracted travel-
time curve to construct smoothly increas­
ing velocities at greater depth. Thus, one 
could build an Earth model for the man­
tle, then strip this off before determining 
the velocity structure of the low-velocity 
core. 

7.1.2 Parameterized Model 
Inversion 

The Herglotz-Wiechert procedure in­
volves an analytic inversion of the integral 
relationship for distance as a function of 
ray parameter, using observed travel times 
to evaluate the inversion numerically. This 
is actually a rare example in geophysical 
inversion, in that most Earth structure in­
versions are constructed as solutions of 
simultaneous equations giving perturba­
tions of the model in terms of reduced 
misfit between data and predictions, much 
like the earthquake location problem in 
Chapter 6. These are called discrete inver­
sions, for a model with a finite set of 
parameters. This almost always involves 
solution of a system of equations in the 
form 

d = Gm, (7.10) 

where d is a vector of observations or 
differences between observations and 
model predictions, G is a matrix of partial 
derivatives dd^/dm^, and m is the vector of 
model parameters. If we have n observa­
tions and m model unknowns, the solution 
is overdetermined if n> m and G has rank 
m, underdetermined if n <m, and exacdy 
determined if m=n. Since the observa­
tions have noise, the data may not all be 

consistent, and one must define the crite­
ria for matching them, such as a least-
squares fit. In practice, most seismological 
inversions are mixed, with both underde­
termined and overdetermined aspects, and 
all solutions and models are intrinsically 
nonunique. 

In some problems, the inversion can be 
cast in terms of continuous model func­
tions m(r) constrained by discrete, finite 
data sets that are often noisy. Continuous 
inverse theory explicitly provides an error 
analysis in the form of trade-offs between 
resolution and error in the fit to the data 
over a range of possible model solutions. 
This complete error analysis is available 
for assessing any model derived from seis­
mic data but is often computationally de­
manding. 

The choice of inversion method is largely 
predicated on the nature of the data that 
are available and the extent of a priori 
constraints on the model. First, let us con­
sider the nature of the data. We have seen 
that the most reliable travel-time data are 
generally for first arrivals because later 
arrivals overlap with multiple reverbera­
tions and scattered signal coda. Herglotz-
Wiechert inversion is usually applied to 
first-arrival information alone. However, 
the information content of first-arrival 
times may be inadequate to constrain the 
structure. Figure 7.2a shows an example of 
a first-arrival travel-time curve that is ex­
actly compatible with an infinite set of 
structures with markedly different layer­
ing, three of which are shown. These dif­
ferent structures could be readily differen­
tiated by the secondary branches in the 
full wavefield but not by the first arrivals 
alone. 

Another aspect of the limited resolution 
of seismic data is shown in Figure 7.2b. 
Four structures are shown that represent 
different transition structures across a 
boundary. Each structure would have a 
different petrological interpretation, but 
the details of the transition cannot be re­
solved by signals with wavelengths greater 
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FIGURE 7.2 One of the prinnary challenges in Earth structure studies is determining the 
uniqueness of the nnodel. [a] First-arrival travel-time curve that is exactly matched by the 
three velocity profiles shown below, (b) Four velocity profiles that are indistinguishable when 
examined using only 1-km-wavelength seismic waves. (Part a is modified from Aki and 
Richards C1980); part b Is modified from Spudich and Orcutt, Rev. Geophys. Space Phys. 18. 
6 2 7 - 6 4 5 , 1980; © copyright by the American Geophysical Union.) 

than 1 km. The examples in Figure 7.2 
illustrate the need to use both complete 
wavefield information and broadband seis­
mic data to study deep structure, which 
has driven the development of all of the 
procedures discussed later in this chapter. 

As an example of the improvement in 
structural sensitivity offered by waveform 
and secondary-arrival information, Figure 
7.3 shows synthetic seismogram profiles 
computed using a high-frequency wavelet 
in the crust for three models of the crust-
mantle boundary. The sharpness, or depth 
distribution, of the velocity increase across 
the boundary clearly affects the amplitude 

of both reflected waves near vertical inci­
dence (at close distances) and head waves 
(P„) at long distances, which can poten­
tially discriminate between various models. 
The overall waveform shape can constrain 
the complexity of the boundary as well. 

In the following sections we will see the 
results of many applications of travel-time 
and waveform forward modeling and in­
version used to determine one-dimen­
sional Earth structures. The applications 
are wide ranging, from thickness of the 
crust to velocity increase at the inner core 
boundary, but the basic principles are the 
same, exploiting the simple travel time-
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FIGURE 7.3 Synthetic seismogram profiles for three different Moho velocity structures 
that show how waveform information can potentially distinguish between models of the 
transition. Reflected arrivals are designated PNR\ head waves are designated PN. One can 
determine the apparent velocities of arrivals in km/s from the angles shown on the circular 
scales. (Modified from Braile and Smith, 1975. Reprinted with permission of the Royal 
Astronomical Society.) 

distance and boundary interaction (reflec­
tion, refraction, conversion) properties of 
seismic waves. Although complete descrip­
tion of the methodologies used in each 
case must be deferred to more advanced 
seismology texts that develop the mathe­

matical procedures for constructing seis-
mograms (i.e., solving the forward prob­
lem), the seismology basics in Chapters 
2-6 provide sufficient background for one 
to appreciate the procedure. Before pro­
ceeding, we need to describe additional 
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methodologies used for developing three-
dimensional models and for studying at­
tenuation structure in the Earth. 

7.1.3 Seismic Tomography 
To a fairly high level of approximation, 

the Earth can be viewed as a spherically 
layered planet, with primary chemical 
stratification between the crust, mantle, 
and core. A one-dimensional model such 
as PREM (Figure 1.20) accurately predicts 
travel times for waves spreading through­
out the planet with an error of less than 
1% for teleseismic P waves. Thus, seis­
mologists have exerted great effort to de­
velop and refine a one-dimensional model 
for use in routine earthquake location and 
geochemical interpretations. The iasp91 
model associated with Figures 6.2 and 6.12 
represents one of the latest attempts to 
develop such a refined model. However, 
we know that some lateral heterogeneity 
exists at every depth in the Earth. This is 
directly indicated by the scatter in seismic 
wave arrival times at all distances (Figure 
1.19a). While the lateral variations at a 
given depth are typically less than 10% for 
shear velocity (the most variable of elastic 
parameters), these small fluctuations have 
great significance as markers of dynamic 
processes in the Earth's interior, as we 
shall see. For more than 35 years seismol­
ogists have been mapping gross velocity 
differences near the surface, associated 
with variations between continental and 
oceanic crust and upper mantle, and in the 
past 17 years a concerted effort has 
emerged to map, or image, the three-
dimensional structure everywhere inside 
the Earth. The process has evolved from 
localized one-dimensional characteriza­
tions of structure beneath a given area to 
complete three-dimensional modeling us­
ing a method called seismic tomography. 

Seismic tomography was first introduced 
in the mid-1960s in an earlier form called 
regionalization, in which surface waves 

traversing mixed oceanic and continental 
paths were analyzed to determine separate 
structures beneath each region. This in­
volved calculating a travel-time anomaly 
relative to a reference symmetric Earth 
model for a surface-wave phase with a 
particular period and then partitioning the 
anomaly with respect to the percentage of 
path length in a specified tectonic region­
alization of the surface. This procedure 
was necessary because only a few paths 
occur for which the source, receiver, and 
entire path length are within a particular 
region, such as ocean basins less than 20 
million years old. 

From these early beginnings seismology 
moved toward a smaller and smaller subdi­
vision of the media, forgoing any regional­
ization based on surface geology and in­
cluding both local and global two- and 
three-dimensional parameterizations of the 
media for which velocity or slowness (re­
ciprocal velocity) perturbations would be 
found in each region. In every case the 
principle is that the particular seismic 
phase has a travel time, T, given by a path 
integral through the medium of 

where u(s) is the slowness [l/i;(5)] along 
the path. This reflects the localized sam­
pling behavior of all traveling seismic 
waves, which makes them most sensitive to 
velocity near the raypath from source to 
receiver. The travel-time residual relative 
to the reference Earth model may be 
caused by a velocity or slowness perturba­
tion anywhere along the path (assuming 
the source location is known; otherwise 
the location parameters must be included 
in the problem). A change in velocity along 
the ray must perturb the raypath, but this 
effect is often minor or can be addressed 
by iteratively calculating new raypaths for 
each model update. Almost all seismic to­
mography methods involve subdividing the 
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medium into blocks or other spatial func­
tions, such as spherical harmonic expan­
sions, and solving for slowness perturba­
tions that cause predicted times to match 
observed times better than an initial (usu­
ally homogeneous or one-dimensional) 
model. The idea is that the path integral 
through the medium perturbations should 
equal the observed travel-time residual 

fAu{s)ds = AT=T„,,-T^,^, (7.12) 

where Au(s) is the slowness perturbation 
to be determined. If the medium is subdi­
vided into blocks, one can calculate the 
path length Ij in the yth block and dis-
cretize (7.12) to give 

Ar=E/>AM^.. (7.13) 

Clearly, a single observation is inadequate 
for partitioning the slowness perturbations 
along the path, and the most reasonable 
choice would be to distribute the anomaly 
uniformly over the whole path length. But 
if there are many event-station pairs, each 
with the ith raypath, we develop a system 
of / equations 

A7;.= L / , , A M , , (7.14) 

where raypaths that intersect a common 
block may require slowness perturbations 
in that block that are different from the 
uniformly distributed anomaly along each 
raypath. The information contained in 
crossing raypaths provides an integral con­
sistency in the system of equations that 
can reveal two- or three-dimensional vari­
ations in the medium. Equation (7.14) is in 
the form of a linear system like (7.10), 
which can be solved by the matrix inver­
sion methods introduced in Chapter 6. In 
this case the path length of each ray in a 
block, l^j, is the partial derivative, dT^/dUj, 
of the travel time with respect to the slow­
ness of that block. We usually have many 

more raypaths than model parameters, 
yielding an overdetermined system, but 
noise in the data and inadequacy of the 
model parameterization are sure to make 
the system inconsistent. The generalized 
inverse solution of (7.14) is provided by 

m = [G^G] G^d, (6.37) 

where we let d = AT], G = /,y, and m = Auj. 
If the generalized inversion is unstable, we 
resort to damping or singular-value trun­
cation to obtain a solution, as described in 
Chapter 6. The resolution matrix (6.50) 
can be computed to reveal how well the 
model can be reconstructed if the data and 
model parameterization are perfect. Usu­
ally the resolution matrix reveals streaking 
between adjacent blocks where the ray 
coverage is inadequate to isolate the 
anomaly uniquely in each block. 

Examples of seismic tomography geome­
tries are shown in Figures 7.4 and 7.5. 
Figure 7.4a corresponds to the common 
application of local earthquakes recorded 
by an array of surface sensors. While it is 
possible to locate the events with a one-
dimensional velocity model, the crossing 
ray coverage allows us to solve for shallow 
crustal heterogeneity as well. Sometimes 
this involves holding the earthquake loca­
tions fixed, solving for the three-dimen­
sional structure, and then iterating on both 
locations and structure, or the problem 
can be formulated for a simultaneous solu­
tion of velocity structure and source loca­
tions. 

The most widely applied geometry for 
seismic tomography is illustrated in Figure 
7.4b, in which teleseismic waves recorded 
by a seismic array are used to invert for 
three-dimensional crust and upper-mantle 
heterogeneity under the array. This proce­
dure was introduced in the mid-1970s. The 
basic idea is that in the absence of hetero­
geneity the incident wavefronts should 
have a simple plane-wave apparent veloc-
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ity across the array. The array data are 
processed by computing individual station 
anomalies relative to the best plane-wave 
fit reduced by the average anomaly across 
the array for a particular event, giving 
relative residuals for each raypath. Events 
at different azimuths are analyzed, provid­
ing cones of incident rays under each sta­
tion, which overlap at depth, giving ray-
crossing coverage of each block. A system 

like (7.14) is determined by calculating 
raypath segments through the model, and 
this is solved by damped-least-squares, sin­
gular-value decomposition (SVD), or by 
iterative procedures called back projection 
that iteratively solve the matrix equations 
without having to invert huge matrices. 

The latter techniques became popular 
in the 1980s as increasingly large data 
sets and model parameterizations were 
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adopted. One scheme involves solution of 
(7.14) in the least-squares form 

GTG(in) = G^d. (7.15) 

Rather than solve for the generaUzed in­
verse of G^G, one simply uses the diagonal 
of this matrix to approximate the solution, 
giving 

Auj = (7.16) 

The two sums are computed separately 
and updated ray by ray. Then each slow­
ness perturbation is calculated, and the 
model is perturbed. In a procedure called 
simultaneous iterative reconstruction tech­
nique (SIRT), this new model is used to 
compute new residuals, and the procedure 
repeats for many iterations. Because no 
large matrix inversions are performed, 
huge models can be examined but at the 
cost of not computing any resolution ma­
trices. This iterative back-projection ap­
proach was developed in medical imaging 
tomography. 

The example in Figure 7.5 illustrates an 
actual data application for a large model 
with 9360 blocks used in a tomographic 
inversion of P velocity structure beneath 
Europe. Both regional and teleseismic 
earthquakes recorded at European sensors 
were used in this study by Spakman and 
Nolet (1988), who analyzed about 500,000 
travel times from 25,000 earthquakes. In­
cluding earthquake location parameters 
and combining similar paths by averaging, 
a total of 20,000 unknowns were extracted 
from 300,000 equations. An iterative algo­
rithm similar to SIRT was used to solve 
this problem because the large, sparse ma­
trices were too large to invert. Figure 7.5b 
shows a contour plot of cell hit counts in 
one cross section (along the heavy lines) in 
Figure 7.5a. This indicates the nonuniform 
distribution of raypaths in the model, 
which is characteristic of most applica­
tions. The darker regions are well sampled 
and correspond to blocks below stations as 

FIGURE 7.5 Ca] Example of three-dimensional 
grid of blocks used in an inversion for structure 
beneath Europe. Block thickness varies with 
depth, (b] Cross section along one slice in the 
grid in Ca). showing contours of raypath " h i t s " 
of each cell. The dark areas of high cell hits 
correspond to blocks either below stations or 
near sources in the dipping ocean slabs 
subducting in the Mediterranean, [c] Inversion 
result for known input model in the section 
shown in (b), showing smearing effects of 
imperfect ray coverage and inversion instability. 
Cd) Actual data inversion showing velocity 
perturbations in the section in (b) for data 
recorded in Europe. A dipping high-velocity 
structure is seen on the left. (From Spakman 
and Nolet. 1988.) 
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well as to earthquake zones in the dipping 
Aegean slab. The nonuniform raypath dis­
tribution affects the model resolution, 
which is indicated by the results of an 
inversion with known 5% velocity anoma­
lies for the same ray coverage, as shown in 
Figure 7.5c. The blocks with dark out­
lines correspond to locations of anomalous 
velocities in the simulation, with the 
smeared-out inversion results indicating 
the poor vertical resolution and fair hori­
zontal resolution of the particular geome­
try involved. Only blocks with very high hit 
counts and favorable raypath geometries 
are well resolved. The actual model ob­
tained in the same slice is shown in Figure 

7.5d. The band of fast-velocity material 
dipping across the left half of the cross 
section is inferred to be the high-velocity 
Aegean slab, dipping toward the north­
west, overlain by a low-velocity region un­
der the Aegean Sea. Although the extent 
of vertical streaking is not easy to assess, 
the general features of the structure ap­
pear to be resolved. This is called an im­
age of the interior, being a nonunique, 
smeared model visualization of the actual 
Earth structure. Current research in to­
mography is striving to improve both the 
image development and the assessment of 
the reliability of such models. Other tomo­
graphic images are shown later in this 

Box 7.1 Receiver Functions 

Although most detailed investigations of crustal structure utilize multiple seismic 
recordings, a few techniques have been developed to study crustal layering beneath 
isolated three-component stations. The most widely used is called receiver function 
analysis, which exploits the fact that teleseismic P waves that are incident upon 
the crustal section below a station produce F to 5 conversions at crustal bound­
aries as well as multiple reverberations in the shallow layering. The P to 5 
conversions have much stronger amplitudes on the longitudinal component (the 
horizontal component along the great circle from source to receiver) than on the 
vertical component. By deconvolving the vertical-component signal from the longi­
tudinal component, the obscuring effects of source function and instrument re­
sponse can be removed, leaving a signal composed of primarily ^-wave conversions 
and reverberations below the station. These deconvolved horizontal components 
are called receiver function traces and can be inverted for a model of the shear 
velocity layering in the crust (see Figure 7.B1.1). 

Receiver function analysis reveals the presence of interfaces at depth, but the 
absolute velocities and depths of the boundaries are not well resolved, as shown by 
the excellent fit to the data provided by a suite of models. Using independent 
determination of the average crustal velocities provided by a surface-vvave disper­
sion analysis can provide a better constrained model. This technique can give 
stable results if the layers are horizontal, in which case the receiver function is the 
same for all azimuths, and the tangential component of the P-wave motion is very 
small. In regions of three-dimensional structure, the inversion is usually ill posed, 
and forward modeling of the azimuthally varying receiver functions is used to 
constrain the crustal and uppermost mantle structure. 
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FIGURE 7.B1.1 Receiver function analysis of the crustal velocity structure under Death 
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of different initial models in the inversion, but all produce reasonable fits to the data. To 
better resolve the structure, short-period surface-wave dispersion observations are mod­
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chapter, and one must keep in mind the 
caveats about nonuniqueness and limited 
resolution. 

From seismic tomography applications, 
of which there were well over 100 by the 
end of the 1980s, it has become well estab­
lished that the Earth is heterogeneous at 
all depths at all scale lengths and that we 
can never achieve a complete determinis­
tic understanding of the full internal spec­
trum of heterogeneity. However, great 
progress has already been made toward 
assessing the strength of heterogeneities in 
different regions, as shown in Figure 7.6. 
Perturbations in seismic velocity from 1% 
to 10% appear to exist throughout the 
mantle and crust, with smaller perturba­
tions possibly existing in the core. Seismic 
waves of different ranges and wavelengths 

detect this heterogeneity, and any given 
data set will be able to resolve only a 
limited portion of the length spectrum. 
Fortunately, the mantle heterogeneity 
spectrum appears to be "red," meaning 
that the longer-wavelength features have 
more variations. This is a favorable situa­
tion for seismic tomography, as much of 
the important internal structure can be 
imaged using models with large-scale pa-
rameterizations. The heterogeneity spec­
trum in the lithosphere, and possibly near 
the core-mantle boundary, appears to be 
"white," with a more uniform degree of 
heterogeneity occurring at all spatial 
scales. This greatly complicates attaining 
detailed seismic images at shallow depth. 
At some level there is simply not enough 
wavefield information to resolve the 
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small-scale heterogeneity in detail, and 
statistical tomography techniques are used 
to characterize parameters of a random 
medium representation of the interior. 
Both statistical and deterministic images 
of the interior are our main means for 
studying the dynamic processes presently 
occurring deep in the Earth, so there are 
many ongoing efforts to extend and im­
prove both methods. 

7.1.4 Attenuation Modeling 
As described in Chapter 3, the Earth 

does not transmit seismic waves with per­
fect elasticity; small anelastic losses occur 
that progressively attenuate the wave en­

ergy. This anelasticity causes dispersion, 
changes pulse shapes, and affects ampli­
tudes of the waves; therefore it can be 
modeled as well. Unlike the case for seis­
mic velocities, the Earth does not have a 
simple layered attenuation structure. In­
stead, lateral variations in attenuation 
quality factor Q can involve many orders 
of magnitude at a given depth. In general, 
the upper mantle Jias lower Q values 
(higher attenuation) than the deep mantle, 
but there are paths through the upper 
mantle with little attenuation and others 
with strong attenuation. Thus, it has long 
been apparent that a three-dimensional 
model of Q is needed. In the early 1980s it 
further became widely accepted that atten-
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uation is a function of frequency across 
the seismic wave frequency range, with the 
spatial variations having complex fre­
quency dependence as well. 

Seismic attenuation is caused by either 
intrinsic anelasticity, associated with 
small-scale crystal dislocations, friction, 
and movement of interstitial fluids, or 
scattering attenuation (see Box 3.5), an 
elastic process of redistributing wave en­
ergy by reflection, refraction, and conver­
sion at irregularities in the medium. The 
latter process is not true anelasticity but 
has virtually indistinguishable effects that 
are not accounted for by simple Earth 
models. At frequencies with wavelengths 
much larger than the heterogeneities in 
the medium, intrinsic attenuation domi­
nates. Thus seismic models for attenuation 
were first constructed for low frequencies. 

The main challenge in measuring and 
developing Earth models for attenuation 
structure is separating out the anelastic 
effects from both propagation and source 
effects. In Chapter 3 we saw that effects of 
anelasticity on body waves can largely be 
accounted for by an operator that modifies 
the amplitude spectrum by a factor of 

e-'^f^*(f\ 

where 

■<^'-fe 
ds 

s)Qis,f) 

(7.17) 

(7.18) 

where the dispersive effect on the velocity, 
v(s), is neglected. Here the /* parameter 
is clearly defined as a path-specific and 
frequency-dependent function. Because 
the wave amplitudes are reduced accord­
ing to (7.17), measurement of r* involves 
measuring amplitude reductions beyond 
that expected from elastic effects. Some­
times this involves assuming a particular 
source spectrum, following scaling laws like 
those described in Chapter 9, and then 
measuring spectral decay of observed body 
waves relative to the assumed shape. This 

can give stable estimates of differences in 
attenuation between different paths, but it 
is unreliable for the absolute ^* values. 
Other procedures give more reliable abso­
lute values by designing an experiment that 
eliminates uncertainty in the source spec­
trum, which commonly involves spectral 
ratios between different phases. 

A classic example of a procedure used 
to estimate stable, absolute attenuation in 
the Earth is the analysis of multiple ScS 
(5c5„) reverberations. Raypaths for these 
signals and some examples of transverse-
component waveforms are shown in Figure 
7.7. The core reflections have from one to 
four transits up and down through the 
mantle. These arrive as discrete, isolated 
pulses that decay in amplitude with time. 
It is straightforward to predict the ampli­
tude decrease induced by geometric 
spreading expected for these pulses, which 
predicts a less rapid decrease in amplitude 
between successive multiples than is ob­
served. The additional amplitude decay is 
caused by attenuation along the paths 
through the mantle. The ScS^ arrivals all 
have similar source radiation, so we can 
view ScS^^i as a more attenuated version 
of ScS^ due to its additional transit through 
the mantle. We can write this as 

F(a),At)S{(o) +Ar(co) =5'(a>), 

where Sicj) and 5'(a>) are the spectra of 
ScS^ and 5c5„ + i, respectively, and Nico) 
is the noise spectrum. Ficj) is the attenua­
tion filter Qxp(-a)At/2Qscs)' Computing 
spectral ratios such as ScS^if^ScSjif), 
5cS4(/)/5c53(/), etc. eliminates the un­
known source spectrum to a large extent. 
Measurement of the slope of the spectral 
ratios as a function of frequency then re­
veals the t* value appropriate for the fre­
quency band of the observations. Less pre­
cise resolution of r* can be obtained by 
simply making synthetic waveforms and 
varying the mantle Q model until the syn­
thetics match the data in the time domain, 
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a procedure which emphasizes the period 
range of the major pulses, which in turn 
reflects the instrument response character­
istics. Since the paths traverse the entire 
mantle, we cannot assess how the attenua­
tion varies with depth using ScS^ alone; 
however, comparisons of sScS^ and ScS^ 
for deep sources allow a separation of 
attenuation in the extra upper-mantle legs 
above the source for the surface reflec­
tions. Seismologists use many similar com­
parisons of different phases to isolate the 

anelastic losses in signals in an effort to 
map out the radial and lateral variations of 
attenuation (see Figure 3.37). 

7.2 Earth Structure 

All different seismic wave types have 
been analyzed in determining Earth struc­
ture, ranging from free oscillations of the 
planet to high-frequency body waves re-
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fleeted from shallow sedimentary layers. 
The waves reveal aspects of the Earth 
incorporated in Earth models, functional 
descriptions of how the material proper­
ties vary in the interior. A large number of 
body-wave travel times, free-oscillation 
eigenfrequencies, and surface-wave and 
normal attenuation measurements were 
modeled in constructing the Preliminary 
Reference Earth Model (PREM) (Dzie-
wonski and Anderson, 1981) (Figure 1.20). 
The parameters of this model at a refer­
ence period of 1 s are given in Table 7.1, 
including density, P velocity, S velocity, 
shear attenuation coefficient (G^), the adi-
abatic bulk modulus {K^, rigidity (/x), 
pressure, and gravity. The PREM model 
includes anisotropic upper-mantle layers 
that are not listed here, and the velocities 
vary with reference period because of 
anelastic dispersion. Note that the varia­
tion of the attenuation coefficient with 
depth is very simple, with only a few-layer 
model being resolved. The core has very 
high values of Q, with almost no seismic 
wave attenuation, and attenuation of body 
waves, surface waves, and free oscillations 
requires a relatively low Q in the upper 
mantle. Although the PREM Q model is 
reasonable for globally averaging waves 
such as free oscillations, it provides only a 
reference baseline for path-specific attenu­
ation as sampled by body waves and sur­
face waves. Later sections will thus em­
phasize three-dimensional attenuation 
variations. 

In addition, different PREM models are 
provided for oceanic and continental litho-
sphere. As complete a model as PREM is, 
it still lacks a three-dimensional descrip­
tion of aspherical heterogeneity, and some 
details of the upper-mantle structure are 
undergoing revision. Ultimately, seismol­
ogy will achieve a complete three-dimen­
sional, anelastic (hence, frequency-depen­
dent) anisotropic Earth model, but many 
aspects of such a complete model are still 
being resolved. Attaining such a detailed 
model will be critical for achieving a thor­

ough understanding of the composition 
and dynamic processes inside the Earth. 
Since this is an ongoing process, the re­
mainder of this chapter will traverse from 
the crust to the core, outlining major as­
pects of what we know about Earth struc­
ture and how it is determined by seismic-
wave analysis. 

7.2.1 Crustal Structure 
In terms of relative societal importance, 

seismological investigations of the struc­
ture of the shallow crust unquestionably 
have the greatest impact and largest effort. 
Much of that effort involves reflection seis­
mology, the collection and processing of 
multichannel seismic data that record hu­
man-made explosive and vibrational 
sources. Although the principles involved 
in multichannel seismic processing have 
basic origins in the behavior of seismic 
waves and their reflection from bound­
aries, as described in previous chapters, 
the processing of the dense and now often 
two-dimensional recordings of the wave-
field involves a multitude of specific proce­
dures beyond the scope of this text. We 
instead focus our attention on whole-
crustal-scale investigations of the shallow 
crust, which are typically performed with 
sparser seismic instrumentation than in 
shallow-crust reflection imaging. 

On the larger scale of whole-crustal 
imaging, the main objective is to deter­
mine the basic layered structure of the 
crust; the P and S velocities as a function 
of depth, including the depth and con­
trasts across any internal boundaries; and 
the overall crustal thickness, or depth to 
the crust-mantle boundary. The effort to 
determine crustal thickness dates back to 
1910, when Croatian researcher Andrija 
Mohorovicic first identified an abrupt in­
crease in velocity beneath the shallow rocks 
under Europe. The boundary separating 
crustal rocks from mantle rocks is now 
called the Moho and is a ubiquitous 
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TABLE 7.1 Parameters of the Preliminary Reference Earth Model 
at a Reference Period of 1 s 

Radius 
(km) 
0 

200.0 
400.0 
600.0 
800.0 
1000.0 
1200.0 
1221.5 
1221.5 
1400.0 
1600.0 
1800.0 
2000.0 
2200.0 
2400.0 
2600.0 
2800.0 
3000.0 
3200.0 
3400.0 
3480.0 
3480.0 
3600.0 
3800.0 
4000.0 
4200.0 
4400.0 
4600.0 
4800.0 
5000.0 
5200.0 
5400.0 
5600.0 
5650.0 
5701.0 
5701.0 
5771.0 
5871.0 
5921.0 
5971.0 
5971.0 
6061.0 
6106.0 
6151.0 
6151.0 
6186.0 
6221.0 
6256.0 
6291.0 
6291.0 
6311.0 
6331.0 
6346.6 

Depth 
(km) 
6371.0 
6171.0 
5971.0 
5771.0 
5571.0 
5371.0 
5171.0 
5149.5 
5149.5 
4971.0 
4771.0 
4571.0 
4371.0 
4171.0 
3971.0 
3771.0 
3571.0 
3371.0 
3171.0 
2971.0 
2891.0 
2891.0 
2771.0 
2571.0 
2371.0 
2171.0 
1971.0 
1771.0 
1571.0 
1371.0 
1171.0 
971.0 
771.0 
721.0 
670.0 
670.0 
600.0 
500.0 
450.0 
400.0 
400.0 
310.0 
265.0 
220.0 
220.0 
185.0 
150.0 
115.0 
80.0 
80.0 
60.0 
40.0 
24.4 

Density 
(g/cm^) 

Tsm 
13.07 
13.05 
13.01 
12.94 
12.87 
12.77 
12.76 
12.16 
12.06 
11.94 
11.80 
11.65 
11.48 
11.29 
11.08 
10.85 
10.60 
10.32 
10.02 
9.90 
5.56 
5.50 
5.40 
5.30 
5.20 
5.10 
5.00 
4.89 
4.78 
4.67 
4.56 
4.44 
4.41 
4.38 
3.99 
3.97 
3.84 
3.78 
3.72 
3.54 
3.48 
3.46 
3.43 
3.35 
3.36 
3.36 
3.37 
3.37 
3.37 
3.37 
3.37 
3.38 

K 
(km/s) 
n26 
11.25 
11.23 
11.20 
11.16 
11.10 
11.03 
11.02 
10.35 
10.24 
10.12 
9.98 
9.83 
9.66 
9.48 
9.27 
9.05 
8.79 
8.51 
8.19 
8.06 
13.71 
13.68 
13.47 
13.24 
13.01 
12.78 
12.54 
12.29 
12.02 
11.73 
11.41 
11.06 
10.91 
10.75 
10.26 
10.15 
9.64 
9.38 
9.13 
8.90 
8.73 
8.64 
8.55 
7.98 
8.01 
8.03 
8.05 
8.07 
8.07 
8.08 
8.10 
8.11 

Vs 
(km/s) 
3M 
3.66 
3.65 
3.62 
3.59 
3.55 
3.51 
3.50 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
7.26 
7.26 
7.18 
7.09 
7.01 
6.91 
6.82 
6.72 
6.61 
6.50 
6.37 
6.24 
6.09 
5.94 
5.57 
5.51 
5.22 
5.07 
4.93 
4.76 
4.70 
4.67 
4.64 
4.41 
4.43 
4.44 
4.45 
4.46 
4.46 
4.47 
4.48 
4.49 

Q. 
85 
85 
85 
85 
85 
85 
85 
85 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

312 
312 
312 
312 
312 
312 
312 
312 
312 
312 
312 
312 
312 
312 
143 
143 
143 
143 
143 
143 
143 
143 
143 
80 
80 
80 
80 
80 
600 
600 
600 
600 

Ks 
(kbar) 
14253 
14231 
14164 
14053 
13898 
13701 
13462 
13434 
13047 
12679 
12242 
11775 
11273 
10735 
10158 
9542 
8889 
8202 
7484 
6743 
6441 
6556 
6440 
6095 
5744 
5409 
5085 
4766 
4448 
4128 
3803 
3471 
3133 
3067 
2999 
2556 
2489 
2181 
2037 
1899 
1735 
1630 
1579 
1529 
1270 
1278 
1287 
1295 
1303 
1303 
1307 
1311 
1315 

M 
(kbar) 
1761 
1755 
1739 
1713 
1676 
1630 
1574 
1567 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

2938 
2907 
2794 
2675 
2559 
2445 
2331 
2215 
2098 
1979 
1856 
1730 
1639 
1548 
1239 
1210 
1051 
977 
906 
806 
773 
757 
741 
656 
660 
665 
669 
674 
674 
677 
680 
682 

Pressure 
(kbar) 
3638.5 
3628.9 
3600.3 
3552.7 
3486.6 
3402.3 
3300.4 
3288.5 
3288.5 
3187.4 
3061.4 
2922.2 
2770.4 
2606.8 
2432.4 
2248.4 
2055.9 
1856.4 
1651.2 
1441.9 
1357.5 
1357.5 
1287.0 
1173.4 
1063.8 
957.6 
854.3 
753.5 
655.2 
558.9 
464.8 
372.8 
282.9 
260.7 
238.3 
238.3 
210.4 
171.3 
152.2 
133.5 
133.5 
102.0 
86.4 
71.1 
71.1 
59.4 
47.8 
36.1 
24.5 
24.5 
17.8 
11.2 
6.0 

Gravity 
(cm/s^) 

0 
73.1 
146.0 
218.6 
290.6 
362.0 
432.5 
440.0 
440.0 
494.1 
555.4 
616.6 
677.1 
736.4 
794.2 
850.2 
904.1 
955.7 
1004.6 
1050.6 
1068.2 
1068.2 
1052.0 
1030.9 
1015.8 
1005.3 
998.5 
994.7 
993.1 
993.2 
994.6 
996.9 
998.8 
1000.6 
1001.4 
1001.4 
1000.3 
998.8 
997.9 
996.8 
996.8 
993.6 
992.0 
990.4 
990.4 
989.1 
987.8 
986.6 
985.5 
985.5 
984.9 
984.3 
983.9 

[Continues) 
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TABLE 7 A—Continued 

Radius 
(km) 

6346.6 
6356.0 
6356.0 
6368.0 
6368.0 
6371.0 

Depth 
(km) 

24.4 
15.0 
15.0 
3.0 
3.0 

0 

Density 
(g/cm^) 

2.90 
2.90 
2.60 
2.60 
1.02 
1.02 

Vp 
(km/s) 

6.80 
6.80 
5.80 
5.80 
1.45 
1.45 

Vs 
(km/s) 

3.90 
3.90 
3.20 
3.20 

0 
0 

Q. 
600 
600 
600 
600 

0 
0 

Ks 
(kbar) 

753 
753 
520 
520 

21 
21 

M 
(kbar) 

441 
441 
266 
266 

0 
0 

Pressure 
(kbar) 

6.0 
3.3 
3.3 
0.3 
0.2 
0.0 

Gravity 
(cm/s^) 

983.9 
983.3 
983.3 
982.2 
982.2 
981.5 

boundary of highly variable character. Al­
though we generally accept that the crust 
is chemically distinct from the upper man­
tle and that the Moho likely involves a 
chemical contrast, additional contributions 
to the seismically detectable boundary may 
arise from transitions in Theological prop­
erties, phase transitions in shallow mineral 
structures, and petrographic fabrics of the 
rocks. These complexities are combined 
with the complex tectonic history of the 

surface to provide a remarkably heteroge­
neous crustal layer. 

While we recognize the complexity of 
the crust, it is still useful to assess the 
basic seismological feature common to all 
crustal environments, which is that the 
shallow rocks have slower seismic veloci­
ties than the deeper rocks, usually approx­
imating a low-velocity layer over a faster 
mantle. Figure 7.8 shows highly schematic 
characteristics of crustal structure and 

a ^ 6 . 2 Km/s 

a ^ 6 . 7 Km/s 

M h * 15 to 20 km 

th = 15to20km 

-150 km X 

a - 7.8 to 8.2 Km/sec 

Water a = 1.5 Km/s 

a - 5 . 0 Km/s 

a ^7.0 Km/s 

th = 2 to5km 

>th = 5 to10km 

a -7 .8 to 8.1 Km/s -40 km 
FIGURE 7.8 Schematic travel-time curves and generic continental and oceanic crustal 
structures. Only primary-wave arrivals are shown, but each interface spawns a set of 
multiple reflections and conversions that produce many later arrivals. 
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associated travel-time curves for primary 
seismic-wave arrivals for continental and 
oceanic regions. These regions differ pri­
marily in the thickness of the crust, which 
varies from 20 to 70 km beneath conti­
nents and from 5 to 15 km beneath oceans. 
Both regions have very low seismic velocity 
surface cover, with the water and mud 
layers on oceanic crust having a particu­
larly low velocity. Both regions tend to 
have at least two crustal subdivisions, with 
the lower-velocity layer below the sedi­
ments typically having steep velocity gradi­
ents with depth down to a transition or 
midcrustal discontinuity. At greater depths 
the average gradients and reflective prop­
erties of the deep crust vary substantially. 

The travel-time curves for these generic 
layered crusts are thus composed of dis­
tinct primary-wave branches, with direct 
phases being called Pg in continental envi­
ronments and P2 ^̂  oceanic crust (layer 1 
is the soft sediments; layer 2 is the shallow 
basaltic layer in the oceanic crust). For 
continental regions with a midcrustal dis­
continuity, often called the Conrad discon­
tinuity, the head wave from this structure 
is called P*, and P^ is the head wave 
traveling along the Moho. The analogous 
oceanic arrivals are P^ and Pn, and both 
types of crust have PmP reflections from 
the Moho. As discussed in Chapter 6, S 
phases have corresponding labels (Sg, 5*, 
S^, S^S, etc.). The crossover distances of 
the various travel-time branches, the slopes 
of the branches, and their zero-distance 
intercepts reveal the layer thickness and 
velocities using the straightforward wave 
theory from Chapter 3. The variation in 
crustal thickness between oceanic and con­
tinental regions ensures a very different 
appearance of the seismograms as a func­
tion of distance for the two regions. 

A representative continental crustal 
profile from Globe, Arizona to Silver City, 
New Mexico is shown in Figure 7.9. The 
Pg arrival indicates a velocity of 6 km/s, so 
plotting the profile with a reduced time 
[T-(X/6)], where X is the distance, 

causes Pg to arrive along ^ horizontal 
reduced time of 0 s. The Pn velocity is 7.9 
km/s, so the associated arrival branch 
slants downward toward the right, as will 
all arrivals with velocities higher than 6 
km/s. The crossover distance is about 140 
km, corresponding to a crustal thickness in 
excess of 30 km. A clear P* arrival (here 
labeled P^R) is apparent at distances of 
less than 140 km, but as is very often the 
case, the velocity contrast producing this 
head wave is not large enough for the P* 
branch to be observed as a first arrival at 
any distance. This makes it diflficult to 
detect and model midcrustal discontinu­
ities, and we can usually study them only 
by interpreting secondary arrivals. 

A data profile of this type, covering sev­
eral hundred kilometers from the source 
and allowing the head-wave branches to 
be identified, is called a refraction profile. 
Refraction seismology is quite straightfor­
ward and involves directly identifying 
travel-time branches; measuring slopes, 
crossovers, and amplitude behavior along 
the branches; and relating these to one- or 
two-dimensional models of the primary 
layers in the structure. Note that at closer 
distances, less than 30 km, a weak Moho 
reflection, P^P, occurs, as well as other 
strong arrivals. At close-in distances, di­
rect body and surface waves dominate the 
seismograms, which display a long se­
quence of nearly vertically propagating 
waves composed of single or multiple re­
flections from crustal layers near the source 
region. This is the domain of reflection 
profiles. Reflection seismology strives to 
determine the reflectivity of the crust, 
meaning detailed layering and impedance 
contrasts below a localized region. The 
procedures for isolating energy associated 
with any particular reflector at depth in­
volve unscrambling the many superim­
posed arrivals generated by the detailed 
rock layering. Usually, high-precision im­
ages of the shallow layering can be ex­
tracted from the data using the pre­
dictability of seismic-wave interactions with 
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FIGURE 7.9 A typical seismic profile for continental structure is shown at the top, with a 
reduction velocity of 6 km/s. The f irst arrival is direct Pg out to about 140 km, beyond which 
the Moho refraction, Pn, arrives first. PmP is the reflection from the Moho. The later 
reverberations are multiples and scattered arrivals in the crust. The slope of the Pn arrival 
travel-time curve yields an estimate of the velocity of the uppermost mantle. The map shows 
a summary of many investigations, with contours of Pn velocity under the United States. 
Note the lower velocities characteristic of the tectonically active western region. (Top from 
Gish et al., J. Geophys. Res. 86. 6 0 2 9 - 6 0 3 8 . 1981 ; © copyright by the American Geophys­
ical Union. Bottom from Braile et al., 1989.) 

layering, just as for refraction work, but 
the signal environment is much more com­
plex in reflection profiles. Modern whole-
crustal imaging actually involves both 
classes of seismic recording, with refrac­
tion and reflection work in the same re­
gion giving the best overall model of the 
crustal structure. Still, the most extensive 
coverage of the subsurface has involved 
straightforward refraction modeling, so we 
emphasize results from those procedures. 

One of the earliest, and most important, 
applications of refraction profiling was the 
systematic reconnaissance of uppermost 
mantle velocity variations, as directly mea­
sured by Pn velocity. Figure 7.9 shows a 
map of Pn velocity contours below the 
United States, interpolated from many lo­
calized Pn velocity determinations like that 
in the Globe profile. Note that in the 
Basin and Range province the Pn veloci­
ties are lower than beneath the Colorado 
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Plateau (under northern Arizona and 
southeastern Utah) or under the stable 
continental platform underlying the Mid­
west. These variations are due to upper­
most mantle differences in temperature 
and petrology, which are directly linked to 
crustal processes such as ongoing rifting in 
the Basin and Range. By its very nature, 
the Pn wave travels large horizontal dis­
tances, and assigning any single local ve­
locity to it involves a lateral averaging along 
the path. If the profiles are not reversed, 
one cannot assess the possible bias due to 
any dip of the refractor (see Box 3.2), and 
the Moho boundary itself may not be a 
sharp boundary or may be underlain by 
velocity gradients that can bias the Pn 
arrival times (Figure 7.3). Thus, recent in­
vestigations of Pn velocity variations have 
attempted to allow for more heterogeneity 
in Pn, using tomographic inversions that 
explicitly model variations on each path, 
exploiting path overlap and intersection. 

An image of Pn velocity variations ob­
tained by seismic tomography for the west-
em United States is shown in Figure 7.10. 
Many features are found in common with 
Figure 7.9; however, the tomographic 
model allows more detailed variations to 
be detected along any particular path. Both 
earthquakes and explosions provided the 
data used in this study, so earthquake lo­
cations, crustal thicknesses, and crustal ve­
locity variations must be included in the 
tomographic model inversion. 

The Pn crossover distance and PmP 
intercept time provide primary constraints 
on crustal thickness on any particular re­
fraction profile. Figure 7.11 shows a con­
tour map of crustal thickness variations 
below North America, which has interest­
ing comparisons with Figure 7.9. Both 
maps are based on compilations of local­
ized one-dimensional crustal models, which 
exhibit strong lateral variations between 
regions. Continental crustal thickness cor-

FIGURE 7.10 Result of a tomographic inversion of Pn velocity in the western'United 
States, obtained by analysis of many crossing paths. (From Hearn et al., J. Geophys. Res. 
96. 16 .369 -16 ,381 . 1991 ; © copyright by the American Geophysical Union.) 
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FIGURE 7.11 Contour map of crustal thickness under North Annerica obtained from a great 
number of studies of regional-distance travel-time curves. Note the thinner crust in the 
Basin and Range extensional region under Utah and Nevada. (From Braile et aL. 1989.] 

relates weakly with Pn velocity and heat 
flow; thick crust usually has a high Pn 
velocity and low heat flow. The crust also 
tends to be thicker under tectonically sta­
ble regions and old mountain belts and 
thinner under actively rifting areas such as 
the Basin and Range and the Rio Grande 
Rift of central New Mexico. These gross 
characteristics of continental thickness and 
Moho properties, readily determined from 
refraction profiles, are critical to under­
standing crustal processes. 

Refraction profiling has been extensively 
performed on several continents, and some 
gross continental characteristics are sum­
marized for different continental provinces 
in Figure 7.12. The velocities of the rocks 
at depth place important bounds on the 
petrology of the deep crust, but debate 
continues over the precise composition and 
state of the deep continental rocks, partic­
ularly those overlying the Moho. This has 

been fueled by relatively recent applica­
tions of reflection seismology approaches 
to examine details of the PmP and mid-
crustal reflections. Beginning in the 1970s, 
petroleum industry methods were utilized 
by university consortiums, such as CO-
CORP and CALCRUST in the United 
States and similar groups in Europe, to 
examine the deep crust. Using high-
frequency, near-vertical-incidence reflec­
tions, they have found that the crustal 
layers and boundaries defined by low-reso­
lution refraction methods have highly vari­
able, small-scale structure. An example of 
the high-frequency reflected wavefield 
from a local portion of the Moho beneath 
Germany is shown in Figure 7.13. This 
display corresponds to many seismograms 
running from top to bottom, with darker 
regions corresponding to larger-amplitude 
reflections, some of which correlate from 
trace to trace to define a deep reflector. 
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FIGURE 7.12 Idealized velocity-depth distributions in various continental crustal provinces. 
S. shield areas; C. Caledonian provinces; V. Variscan provinces; R. r i f ts; 0. orogens. (From 
Meissner and Wever, 1989.3 

Moho 

FIGURE 7.13 Interpreted seismic reflection profile showing multiple reflection at two-way 
travel times CTWT] of 6 - 9 s below the Black Forest, Germany. This is believed to indicate a 
layered, or laminated, Moho transition. (After Meissner and Bortfield, 1990.) 
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The time scale is two-way travel time (from 
the surface down and back), so the energy 
between 6 and 8 s corresponds to depths 
near 24 km, near the Moho in this region. 
Whereas a 1-s-period wave refracting hori­
zontally along this boundary would reveal 
little more than the presence of an overall 
velocity increase, the high-frequency re­
flections show a complex, laminated Moho 
boundary with a vertical distribution of 
reflecting interfaces. In some regions, a 
comparable strong reflectivity is observed 
throughout the lower crust, while in other 
regions the whole crust, or just the shallow 
crust, has many strong reflections. Seis­
mologists are combining reflection and re­
fraction methods to map out the lateral 
variations in crustal seismic reflectivity 
character (Figure 7.14), but no consensus 
has been achieved about the cause of these 
variable properties. Likely factors in the 
seismic response of the crust include rheo-

logical transitions from shallow brittle be­
havior to deeper ductile behavior, crustal 
thinning and stretching, fluid concentra­
tions, igneous intrusive layering, and 
crustal underplating. Seismology will con­
tinue to provide the primary probe for 
interpreting continental crustal fabric. 

This variable character of crustal reflec­
tions even raises the question of what 
defines the crust. The Moho is more dis­
tinctive than intermittent midcrustal struc­
tures like the Conrad discontinuity, but 
does it strictly represent a chemical transi­
tion? Feldspar is the most abundant min­
eral in the continental crust, followed by 
quartz and hydrous minerals. The most 
common minerals in the mantle are ultra-
mafic, such as olivine and pyroxene. A 
typical K-feldspar rock has a P-wave ve­
locity of about 6 km/s, and dunite (olivine) 
may have a velocity of 8.5 km/s. The lami­
nated Moho transition suggested by Figure 
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FIGURE 7.14 Characterization of crustal reflectivity variations in Europe, showing complex 
pattern of crustal variations. These are believed to represent the complex tectonic history 
of the region. [From DEKORP Research Group. 1990.] 



7.13 is clearly not a single, sharp chemical 
boundary, and petrologists have estab­
lished a complex sequence of mineral re­
actions with increasing pressure and tem­
perature. A combination of gross chemical 
stratification, mineralogical phase trans­
formations and reactions, laminated sill 
injection and partial melting, and rheologi-
cal variations occur near the crust-mantle 
boundary, and great caution must be exer­
cised in interpreting limited-resolution 
seismological models for the transition in 
terms of associated processes and chem­
istry. The same caution holds for all mod­
els of deeper structure as well. 

A key to making progress toward under­
standing the continental crust is the devel­
opment of progressively higher-resolution, 
three-dimensional models. We can achieve 
this only by merging the methodologies of 
refraction and reflection seismology with 
seismic tomography. The Pn velocity 
model in Figure 7.10 is one example of 
merging refraction methods with tomogra­
phy to produce a two-dimensional model. 
Figure 7.15 shows an example of merging 
reflection seismology with tomography to 
develop a three-dimensional model for the 
shallow crust beneath a volcano. In this 
region, previous reflection work has estab­
lished the crustal layering surrounding the 
volcanic caldera, so raypaths from sources 
at different distances from the recording 
stations in the caldera were fairly accu­
rately known. This allowed raypaths from 
different azimuths and distances to thor­
oughly sample the volume below the array, 
allowing a block inversion like that in Fig­
ure 7.4 to be set up. The east-west profile 
through the resulting model shows velocity 
perturbations of ±10% in blocks below 
the caldera, with the slowest velocities near 
the central region at a depth of 3-6 km. 
The bottom figure shows a row of the 
resolution matrix for the central lowest-
velocity block, indicating fair spatial reso­
lution because of the variety of raypaths 
available. Many comparable seismic to­
mography experiments are being con­

ducted to analyze other complex regions of 
continental crust. Figure 1.21 shows a re­
flection profile in the East African Rift 
zone, an area where seismologists are us­
ing seismic tomography experiments to 
look at the three-dimensional structure be­
low an active rift. 

Investigations of oceanic crust have fol­
lowed a similar evolution, with primary 
reconnaissance refraction studies being 
used to map out gross crustal properties 
and more recent reflection and tomo­
graphic imaging experiments targeting 
localized regions of particular tectonic in­
terest. Figure 7.16 shows representative 
one-dimensional seismic-velocity models 
determined in regions of variable crustal 
age. The crustal thickness varies less than 
in continental regions, being on the order 
of 5-7 km in most places, but anomalous 
regions occur, such as near fracture zones, 
where the crust may be as thin as 3 km, 
and beneath oceanic plateaus, where it is 
as much as 30 km thick. These anomalous 
regions account for less than 10% of the 
oceanic region. For normal oceanic crust 
the thickness is set by chemical diflferenti-
ation and intrusion near midocean spread­
ing ridges, and the thickness subsequently 
varies little. However, the Pn velocity does 
vary strongly with age of the oceanic litho-
sphere. Young oceanic plate near the ridge 
has Pn velocities of 7.7-7.8 km/s, while 
the oldest Jurassic crust (-- 200 million 
years old) may have Pn velocities that 
exceed 8.3 km/s. 

The shallowest layers in oceanic crust 
involve water-saturated muds and ooze 
(layer 1) that are underlain by layer 2, 
which has a steep velocity gradient extend­
ing over 1 to 2 km. Layer 2 corresponds to 
fractured, water-saturated basaltic crust 
that becomes more competent with depth. 
In some older crust the thickness of layer 
2, a "weathered" layer, is large, extending 
deep into the basaltic crust. The P2 arrival 
is the direct wave through this weathered 
gradient, which may be a smooth increase 
rather than the stepwise layers seen in 
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FIGURE 7.15 Results of a high-resolution seismic experiment near Newberry Volcano, 
Oregon. The top shows typical raypaths used in the tomography, for explosive sources at 
different distances. An east -west cross section through the center of Newberry caldera 
[middle) shows velocity perturbations found in the inversion. The resolution matrix for the 
central block under the caldera is shown at the bottom. [Adapted from Achauer et al., 
J. Ceophys. Res. 93. 10 .135-10,147, 1988; © copyright by the American Geophysical 
Union.) 

Figure 7.16. The P^ head wave along the 
top of the midcrustal transition to more 
competent rock is often observable as a 
first arrival over a limited distance range 
(Figure 7.8), unlike the Conrad arrival. 
The typical distance to crossover in oceanic 
crust is about 40 km; thus refraction pro­

files span a much different distance range 
in oceanic profiling. As a result, many more 
joint reflection-refraction analyses of 
oceanic crust have been done. The thin 
crust and strong velocity gradients in 
oceanic regimes motivated many of the 
early developments of synthetic seismo-
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FIGURE 7.16 (Left] Crust P velocity profiles for young ( < 2 0 million year) oceanic basin 
structures found by synthetic modeling. (Right] Crustal P and S velocity structures from 
oceanic regions older than 20 million years. (From Spudich and Orcutt, Rev. Geophys. Space 
Phys. 18, 6 2 7 - 6 4 5 , 1980; © copyright by the American Geophysical Union.) 

gram modeling to extract more informa­
tion from the seismic wavefield, because 
crossover and travel-time branch identifi­
cations are more difficult in oceanic envi­
ronments. 

Oceanic environments were also the first 
to provide convincing evidence for upper­
most mantle anisotropy. Measurement of 
Pn velocities as a function of azimuth with 
respect to the strike of spreading-ridge 
segments has revealed higher velocities 
perpendicular to the ridge (Figure 7.17). 
The solid curve in Figure 7.17 is the 
anisotropic variation measured in labora­
tory samples of rocks believed to represent 
uppermost mantle materials under oceanic 
crust (exposed in upthrust ophiolites). 
These measurements are very compatible 
with the spreading-ridge data. The 
several-percent azimuthal anisotropy is as­
sumed to reflect petrographic fabrics in 
the residual uppermost mantle material 
from which the basaltic crust has been 
extracted. Seismologists are now exten­

sively studying crustal anisotropy in both 
oceanic and continental regions to infer 
rock fabric and predominant stress orien­
tations. 

Three-dimensional imaging of oceanic 
crustal regions is concentrating on struc­
ture under islands and spreading ridges, 
and seismic tomography images similar to 
Figure 7.15 are beginning to map out the 
volcanic plumbing underlying the rift sys­
tem. It will require much more extensive 
mapping before we understand oceanic 
crustal processes. This is particularly true 
for transitional structures such as conti­
nental margins, oceanic plateaus, and rift 
systems such as the Afar rift near the Red 
Sea. 

7.2.2 Upper-Mantle Structure 
As we delve deeper into the Earth, the 

information gleaned from seismology plays 
an increasingly large role in our knowledge 
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FIGURE 7.17 Azimuthal anisotropy of Pn waves in the Pacific upper mantle. Deviations are 
from a mean of 8.159 km/s. The data are points from seismic refraction results; the curve 
is a laboratory measurement from an ophiolite structure believed to correspond to oceanic 
mantle. [Modified from Morris et a/.. 1969 and Christensen and Salisbury. 1979.) 

of the interior. Only a handful of unusual 
processes have exposed samples of mantle 
materials at the surface for petrological 
analysis, and no drill hole has yet pene­
trated to the Moho anywhere. Thus the 
material properties revealed by seismology 
play a dominant role in constraining both 
the composition and dynamics of the man­
tle. The disciplines of mineral physics and 
geodynamics directly utilize seismological 
observations as boundary conditions or 
measurements that experimenters strive to 
explain. 

As we stated earlier, the entire Earth 
can be approximately viewed as a layered, 
one-dimensionally stratified, chemically 
differentiated planet composed of crust, 
mantle, and core. These major layers are 
separated by boundaries (the Moho and 

the core-mantle boundary, or CMB) across 
which seismically detectable material 
properties have strong contrasts. Addi­
tional stratification of the mantle is repre­
sented by global seismic-velocity bound­
aries at depths near 410, 520, and 660 km 
(Figure 7.18) that define the transition zone 
in the lower part of the upper mantle. 
These boundaries give rise to reflections 
and conversions of seismic waves, which 
reveal the boundaries and allow us to 
model them in terms of depth and con­
trasts in velocity, density, and impedance. 
Once these values are reliably determined 
by seismology, high-pressure, high-temper­
ature experiments on plausible mantle ma­
terials are used to assess the likely cause 
of the particular structure inside the Earth. 
Whereas major compositional contrasts 
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FIGURE 7 . 1 8 Schematic cross sect ion 
through the Earth, showing depths of globally 
extensive and intermittent boundaries detected 
by seismic-wave analysis. Major mantle 
boundaries exist near depths of 410 and 660 
km. bracketing the upper-mantle transition 
zone. A weak boundary near 520 km may exist 
globally as well. These are primarily phase 
boundaries and have minor topographic relief 
due to thermal variations. The core-mantle 
boundary is the major chemical boundary inside 
the Earth, separating the silicate mantle from 
the molten iron-alloy core. (Reprinted by 
permission from Lay. Nature, vol. 355, pp. 7 6 8 -
769; copyright © 1992 Macmillan Magazines 
Limited.) 

probably underlie the Moho and CMB 
contrasts, the 410-, 520-, and 660-km dis­
continuities probably represent mineralog-
ical phase transformations that involve no 
bulk change in composition but reflect a 
transition to denser lattice structures with 
increasing pressure. 

The mantle also has localized bound­
aries at various depths associated with lat­
erally varying thermal and chemical struc­
ture (Figure 7.18). The upper 250 km of 
the mantle is particularly heterogeneous, 
with strong regional variations associated 
with surface tectonic provinces. The up­
permost mantle just below the Moho is a 
region with high seismic velocities (P ve­
locities of 8.0-8.5 km/s) that is often called 
the lid because it overlies a lower-velocity 
region. The base of the lid may be any­
where from 60 to 200 km in depth, and it 

is thought to represent the rheological 
transition from the high-viscosity litho-
sphere to the low-viscosity asthenosphere. 
The thickness of the lid varies with tec­
tonic environment, generally increasing 
since the time of the last thermotectonic 
event. Under very young ocean crust, the 
lid may actually be absent, but it is com­
monly observed under old ocean plates. 
Beneath the lid is a region of reduced 
velocity, usually referred to as the low-
velocity zone (LVZ). Gutenberg first pro­
posed the presence of the LVZ in 1959, 
and it is thought to correspond to the 
upper portion of the rheologically defined 
asthenosphere. The LVZ may be very shal­
low under ridges, and it deepens as the lid 
thickness increases. Beneath old continen­
tal regions the LVZ may begin at a depth 
of 200 km, with relatively low velocities 
usually ending by 330 km, where a seismic 
discontinuity is intermittently observed. A 
relatively strong seismic discontinuity is 
observed under some continental and is­
land-arc regions near a depth of 220 km, 
which may be associated with LVZ struc­
ture or some transition in mantle fabric 
associated with concentrated LVZ flow 
structures. 

Below 350 km, the transition zone has 
less pronounced lateral variations, al­
though seismologists have reported inter­
mittent seismological boundaries near 
depths of 710, 900, and 1050 km. A depth 
of 710 km or so is reasonable for the 
boundary between the upper and lower 
mantle, as known mineralogical phase 
transformations could persist to this depth. 
Few, if any, candidate phase transforma­
tions are expected in the lower mantle at 
greater depths; thus intermittent deeper 
boundaries may involve chemical hetero­
geneity. The only strong candidate for such 
a deep intermittent boundary is found 
about 250 km above the CMB, as dis­
cussed later. The only major boundary in 
the core is the inner core-outer core 
boundary at 5155 km depth, which is asso­
ciated with freezing of the inner core as 



DETERMINATION OF EARTH STUCTURE 

the geotherm crosses the solidus, giving 
rise to a solid inner core. 

Seismological investigation of the man­
tle and core can be discussed in terms of 
(1) study of velocity gradients with depth, 
generally found either by inverting travel-
time curves, as in the Herglotz-Wiechert 
method, or by doing parameterized inver­
sions of model representations of the ve­
locity gradient, and (2) study of seismic 
discontinuities. A vast array of methods 
has been developed to study mantle dis­
continuities, exploiting the many types of 
interactions with boundaries that seismic 
waves can have, including refractions, re­
flections, and conversions. Both travel-time 
inversions and boundary-interaction analy­
ses can be incorporated in tomographic 
models to develop three-dimensional mod­
els of both smooth and discontinuous vari­
ations inside the Earth. The primary moti­
vation for this whole effort is to develop 
sufficiently accurate representations of the 
detectable elastic-wave material properties 
to allow us to interpret composition and 

dynamics with some degree of confidence. 
We will now review some of the method­
ologies and results about the deep Earth 
found from systematic application of the 
principles in Chapters 2 to 4 for body 
waves, surface waves, and free oscillations. 

One of the most important ways of 
studying upper-mantle structure has been 
analysis of direct P and S waves at 
upper-mantle distances. Beyond a distance 
of 10° to 13°, the first arrivals on seismo-
grams in continental regions correspond to 
waves that have turned in the upper man­
tle rather than refracted along the Moho 
(Figure 7.19). The precise depths to which 
the waves observed from 10° to 15° have 
penetrated depend strongly on the velocity 
structure in the lid, with strong lid-velocity 
increases refracting energy from relatively 
shallow depths, while lower velocity gradi­
ents or decreases cause the energy to dive 
deeply into the upper mantle. As early as 
the 1940s it was clear that at a distance of 
'-' 15° the ray parameters associated with 
the first-arrival travel-time curves of P and 
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FIGURE 7.19 Complexity of seismic raypaths at upper-mantle distances produced by veloc­
ity variations wit l i depth. Raypaths are shown for a velocity structure characteristic of a 
stable continental region, with a thick high-velocity lid above a weak low-velocity zone (Ivz). 
Oceanic or tectonically active continental structures will have different raypaths to each 
distance. Multiple arrivals at a given distance correspond to triplications caused by rapid 
upper-mantle velocity increases. (From LeFevre and Helmberger, J. Geophys. Res. 94 , 
17 ,749-17 .765 , 1989; © copyright by the American Geophysical Union.) 
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S changed abruptly, but it was not until 
the 1960s that seismic data were adequate 
to reveal two triplications in the travel-time 
curves from 15° to 30°, leading to the dis­
covery of the 410- and 660-km discontinu­
ities (actually, reflections from the bound­
aries were being detected at around the 
same time). These triplications dominate 
the upper-mantle signals, and they arise 
from the wavefield grazing along the dis­
continuities with strong refractions, as 
shown by the raypaths in Figure 7.19. 

An example of seismic travel-time and 
ray-parameter observations at upper-man­
tle distances is shown in Figure 7.20. Note 
that the travel times show a particularly 
clear change in first arrival time near 15°, 
with a more subtle crossover near 24°. 
Characterization of the upper-mantle 
structure in this region, beneath the Gulf 
of California, depends strongly on identify­
ing the secondary branches of the triplica­
tion. When this is possible, as is clearly the 
case in Figure 7.20b, we can reliably deter­
mine the depth and size of the impedance 
contrasts, with the gradients between the 
structures being controlled by the curva­

ture of the travel-time curves (measured 
most directly by the ray-parameter values) 
and by amplitude variations. Model GCA 
accurately fits the travel-time and ray-
parameter data, constraining the transition 
zone structure well but any features in the 
very thin lid and LVZ to a lesser degree. 
The upper-mantle distance observations 
are often called wide-angle reflections, be­
cause they graze along the discontinuities. 
At wide angles of incidence the reflection 
coefficients are primarily sensitive to veloc­
ity contrasts at the boundaries and are 
insensitive to density contrasts. The P 
waves constrain the P velocity discontinu­
ity only, and S waves constrain only the S 
velocity discontinuity. 

Modeling the amplitude and waveform 
information at upper-mantle distances now 
plays as large a role as fitting the travel 
times and ray parameters. This is due to 
the additional sensitivity to sharpness 
(depth extent) of the discontinuity and ad­
jacent velocity gradients provided by am­
plitude information. Figure 7.21 displays 
waveforms corresponding to the travel 
times in Figure 7.20, with the dense profile 
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FIGURE 7.20 Left: A P-wave velocity model found for the tectonically active upper mantle 
below the Gulf of California. The observed and predicted travel times for this region are 
shown in the middle, and observed and predicted ray parameter values are shown on the 
right. [Modified from Waick, 1984. Reprinted with permission from the Royal Astronomical 
Society. ] 
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FIGURE 7.21 (a) Data record section combining short-period array recordings for 10 
events spanning the range 9°-4G°. (b) Synthetic record section for model GCA from Figure 
7.20, on the same scale, with source wavelets varying with distance to match the data. 
(From Waick, 1984. Reprinted with permission from the Royal Astronomical Society.) 

being accumulated for multiple sources 
recorded at a large array of stations in 
southern California. The profile on the 
right is for model GCA, which clearly 
shows the two upper-mantle triplications. 
Note that near 20° the triplications over­
lap, giving five arrivals (quintuplication) on 
a given seismogram. Because any discon­
tinuity near a depth of 520 km would 
appear at these distances, it has been 
difficult to identify confidently any such 
structure with wide-angle reflections. The 
data in Figure 7.21 are clearly more com­
plex than the synthetics, with many addi­
tional incoherent, and some coherent, later 
arrivals. These correspond to waves rever­
berating in the structure under the sta­

tions, unmodeled source complexity, scat­
tered arrivals from the surface above the 
sources, and scattered energy in the vol­
ume between the sources and receivers. 
Although a few clear secondary branches 
can indeed be observed and timed, it is 
not surprising that the much sparser data 
available prior to 1960 failed to clearly 
reveal upper-mantle triplications. The syn­
thetics provide a helpful guide to the ex­
pected relative amplitudes of the later ar­
rivals, and the GCA model was adjusted to 
match characteristics of the secondary ar­
rivals. 

While short-period seismograms, like 
those in Figure 7.21, or modern broad­
band seismograms are most useful at up-
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per-mantle distances, extensive modeling 
of long-period body waves has been per­
formed as well. Probably the most useful 
long-period data have proved to be the 
multiple surface reflections PP and SS 
observed at distances of 30° to 60°. These 
phases involve waves that travel twice 
through the upper-mantle triplications, 
which doubles the time difference between 
triplication branches, making them more 
observable in the long-period signals. 
Figure 7.22 shows observed and synthetic 
SS phases traversing the tectonically active 
region of the East Pacific Rise and west­
ern North America. The phases are aligned 
on the direct S phases, which are simple 
because they have bottoming depths in the 
smooth lower mantle. The large secondary 
arrivals are 55, which show dramatic 
waveform changes as the signals sweep 
through the (doubled) triplication dis­
tance. Both waveform modeling and tim­
ing are used to determine a model, TNA 
(Figure 7.23), that matches the observed 
behavior closely. 

By modeling F, 5, PP, and 55 waves at 
different distances in tectonically uniform 
regions, a suite of upper-mantle velocity 
models has been developed. Some are 
shown in Figure 7.23, which illustrates the 
10% 5-wave and 5% P-wave velocity varia­
tions observed in the lid and LVZ, with 
the primary transition zone discontinuities 
at 410 and 660 km having fairly consistent 
depths and velocity increases. The variable 
nature of strong velocity gradients near 60, 
80, 160, 200, and 300 km is the underlying 
cause of the intermittence of bounda­
ries near these depths in Figure 7.18. The 
lower-velocity models, TNA and T7, are 
for tectonically active western North 
America, and SNA and K8 are higher-
velocity models found under the Canadian 
and Baltic shields, respectively. The details 
of the LVZ are extremely hard to deter­
mine precisely because the low velocities 
do not refract energy back to the surface, 
but some evidence indicates that shear ve­
locity heterogeneity persists to depths of at 
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FIGURE 7 .22 An example of long-period 
waveform modeling to determine upper-mantle 
shear velocity s t ruc tu re . SH-component 
waveforms traversing the mantle under the 
western United States are shown on the left. 
The f irst arrivals are S waves turning in the 
lower mantle. The second arrivals are the SS 
waves, once reflected from the surface, with 
raypaths encountering upper-mantle triplica­
tions. Synthetic waveforms for model TNA 
(Figure 7.23] are shown on the right. The SS 
waveforms have dramatic waveform changes 
with distance, caused by upper-mantle triplica­
tions, which are well modeled by the synthetics. 
(From Grand and Helmberger, 1984. Reprinted 
with permission from the Royal Astronomical 
Society.) 
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FIGURE 7.23 A variety of S-wave (left) and P-wave [right) velocity models determined in 
different regions by waveform modeling of upper-mantle triplication arrivals. Models with 
higher velocities (SNA, K8) correspond to the upper mantle beneath stable shields. Models 
with lower velocities (TNA. T7) correspond to tectonically active regions. Note that little 
variation occurs below 400 km depth. 

least 350 km, while P velocity heterogene­
ity may be confined to the upper 250 km. 
The tectonic associations of these varia­
tions, with thick high-velocity regions be­
neath continental cratonic shields, has led 
to the idea of a thick root existing beneath 
ancient continental crust instead of the 
100-km-thick lithosphere of classical plate 
tectonics scenarios. 

The velocity discontinuities near 410 and 
660 km have contrasts of 4% to 8%, with 
comparable density increases. Establishing 
the underlying cause of these changes in 
material properties has been a major effort 
of the past 25 years, and the work contin­
ues. The primary features that must be 
established for any structure are (1) its 
global extent, (2) the velocity and density 
contrasts, (3) the depth (hence pressure) 
and variation in depth (topography) of the 
boundary, (4) the sharpness of the con­

trast, and (5) behavior of the contrast in 
regions of known temperature structure, 
such as near downwelling slabs. 

The 410- and 660-km discontinuities are 
observed rather extensively and appear to 
be global features, but they do vary in 
depth. Depths as shallow as 360 km and as 
deep as 430 km have been reported for the 
"410," with 20- to 30-km variations re­
ported for the "660." The precision of 
depth estimates from wide-angle studies is 
not that great because of their limited 
resolution of lid and LVZ structure, which 
can baseline-shift the transition zone 
structure. Thus, depth estimates are usu­
ally based on near-vertical-incidence re­
flections from both above and below the 
boundary. 

One of the classical procedures used for 
detecting and constraining the depth of 
mantle discontinuities is illustrated in 
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FIGURE 7.24 Short-period waveform and raypaths for the phases P'P' [PKPPKP] and 
PgegP', the underside reflection from a discontinuity 880 km deep below the P'P' surface 
reflection point. The difference in arrival times of these phases reveals the depth of the 
mantle reflector, while the amplitude ratio indicates the impedance contrast. 

Figure 7.24. Underside reflections arrive 
as precursors to PKPPKP {FP' for short), 
observed at a distance near 70° from the 
source. The time difference between P'P' 
and precursors such as P^^P' is propor­
tional to the depth of the discontinuity. 
The depth is determined using a model for 
seismic velocities above the reflector. The 
amplitude ratio and frequency content of 
the precursor provide a measure of the 
impedance contrast. We must account for 
the frequency-dependent propagation ef­
fects caused by focusing due to core veloc­
ity structure, but this technique, first de­
veloped in the 1960s, is reliable if the 
signals are rich in high-frequency energy. 
The sample record shown, which has an 

unusually large, isolated P^^^QP' arrival, is 
from an underground nuclear explosion, a 
good source of high-frequency energy. 

Unfortunately, the P'P' precursor ap­
proach is limited by the narrow distance 
range of favorable focusing by the core, 
but many analogous discontinuity interac­
tions have been utilized to bound the 
depth, magnitude, and sharpness of upper-
mantle discontinuites. Example raypaths 
and associated nomenclature are shown in 
Figure 7.25. A variety of topside and bot-
tomside reflections and conversions can be 
detected, each with a distance range favor­
able for observing isolated arrivals. Many 
localized observations of the mantle-dis­
continuity phases have been examined; 
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FIGURE 7.25 Examples of the multitude of raypath reflections and conversions produced by 
all mantle discontinuities. Many of the corresponding arrivals are very weak, but they can be 
detected by stacking waveforms at appropriate distances. (From Shearer, J. Geophys. Res. 
96, 18 ,147-18 ,182 . 1991 ; ©copyright by the American Geophysical Union.) 

however, the availability of large digital 
data sets has created the opportunity to 
seek these phases on a global scale. Using 
a variation of the waveform-stacking pro­
cedure described in Box 6.1, large num­
bers of seismograms have been combined 
to make the impressive displays in Figure 
7.26. Digitally recorded long-period body-
wave seismograms from globally dis­
tributed shallow events were combined 
(stacked by summation after alignment on 
a reference phase) in 0.5° windows 
throughout the teleseismic distance range 
where mantle discontinuity interaction 
phases are observed. The stacks aligned on 

P (Figure 7.26a), SH (Figure 7.26b), and 
SSH (Figure 7.26c) are shown along with 
computed travel-time curves for major and 
minor seismic phases for model PREM, 
which has discontinuities at 410- and 
660-km depths. The first two stacks exhibit 
clear topside reflection arrivals (PP^^QP, 
^P660^» 55410 ,̂ SS^^QS) as well as strong 
converted phases (P^^QSP, P^^SP, P^^QSPP, 
P^^QSPP) from the boundaries. The SS 
stacks show prominent underside reflec­
tions (S^^QS, S^^QS). The clarity of these 
low-amplitude arrivals convincingly 
demonstrates the global existence of these 
discontinuities, and the coherence of the 
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FIGURE 7.26 Observed seismogram profiles comprising thousands of stacked waveforms 
at different distances for (a) vertical components aligned on the P waves, (b) horizontal 
transverse components aligned on the S waves, and [c] horizontal transverse components 
aligned on the SS waves. In each case a travel-time curve is shown below for model PREM, 
with arrival times of major seismic phases (solid lines) and minor phases generated by 
interactions with upper-mantle discontinuities near 410 and 660 km depth. (From Shearer, 
J. Geophys. Res. 96 , 18 ,147-18 .182 , 1991 ; © copyright by the American Geophysical 
Union.] 
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FIGURE 7.2B—Continued 

Stacked images bounds the topographic 
variability of the boundaries to a few tens 
of kilometers. 

The 55* underside precursors are excep­
tionally clear (Figure 7.26c) and allow iso­
lated observations to be investigated. The 
time difference between S^^S and SS can 
be used in a fashion similar to the P'P' 
precursors to map the depth variation of 
the boundary on a much more extensive 
scale. The 5^605-55 travel-time differ­

ences can be corrected for shallow hetero­
geneity by using models that correct for SS 
midpoint travel-time anomalies caused 
mainly by structure in the upper 400 km 
under the SS bounce point, allowing a 
mapping of depth to the "660"-km bound­
ary. The first such global map of an inter­
nal mantle discontinuity is shown in 
Figure 7.27, derived from the 5^0-^ obser­
vations. This is a smoothed version of the 
isolated observations but shows that the 
depth varies globally by 20 to 30 km, with 
the boundary tending to be deeper in re­
gions of subducting cold material. The 
magnitude of the topography reveals phys­
ical characteristics of the boundary, such 
as the magnitude of thermal heterogeneity 
that must exist to cause a phase boundary 
to vary in depth by this amount. 

We have seen a few of the ways in which 
seismology determines characteristics of 
the major transition zone mantle bound­
aries. This information is used by mineral 
physicists to constrain the mineralogy of 
the mantle materials. Since the 1950s it 
has been known that common upper-man­
tle minerals such as olivine (Mg,Fe)2Si04 
and enstatite (Mg,Fe)Si03 undergo phase 
transformations with increasing pressure. 
In particular, the low-pressure olivine crys­
tal converts to the /3-spinel structure at 
pressures and temperatures expected near 
410 km depth, the j8-spinel structure con­
verts to y-spinel structure near 500 km 
depth, and then the y-spinel structure 
converts to perovskite (Mg,Fe)Si03 and 
magnesiowiistite (Mg,Fe)0 at conditions 
near 660 km depth. These mineralogical 
phase transitions compact the crystal lat­
tice (Figure 7.28) and cause an increase in 
seismic-wave velocity. Because the phase 
transformations can occur over a fairly 
narrow range in depth (pressure), it is 
plausible that upper-mantle discontinuities 
may indicate internal phase boundaries. 

The experimental and observational 
agreement in depth, sharpness, and topo­
graphic variability of transition zone 
boundaries favors their interpretation as 
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FIGURE 7.27 A smooth fit to the apparent depth of the 660-km discontinuity from SS 
precursor SeeoS observations. The depths have been corrected for an upper-mantle shear 
velocity model and are plotted relative to the mean depth of 659 km. [Adapted from Shearer 
and Masters, 1992. Reprinted by permission from Nature 355, 7 9 1 - 7 9 6 ; © copyright 
1992 Macmillan Magazines Limited.) 

FIGURE 7.28 One of the major causes of rapid upper-mantle seismic-velocity increases is 
phase transformation, in which material with uniform composition collapses to a denser 
crystal structure with increasing pressure. An example is shown here for olivine, a common 
mineral in the upper mantle. On the left is shown the low-pressure form of the olivine crystal, 
in which large atoms are oxygen, horizontally striped ones are silicon, and black atoms are 
magnesium. On the right is shown the high-pressure ^-spinel phase of the same mineral, in 
which the atoms are closer together. This transformation occurs at pressures near a depth 
of 410 km and probably accounts for the seismic velocity increase near that depth. (Modified 
from Press and Siever. 1978.) 
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primarily the result of phase transitions. 
The olivine-)8-spinel transition is widely 
accepted as the cause of the 410-km dis­
continuity, and this boundary should occur 
at shallower depth in cold regions, such as 
descending slabs, and at greater depth in 
warm upwellings. The 660-km discontinu­
ity is most likely due to the dissociative 
phase transformations of olivine (y-spinel) 
and enstatite to perovskite and magne-
siowustite, with a similar transition in gar­
net perhaps occurring a bit deeper ('^ 710 
km). These endothermic transitions have 
pressure-temperature slopes opposite to 
those of the exothermic olivine-)8-spinel 

transition; thus cold downwellings should 
depress the boundary (Figure 7.18). This is 
consistent with the pattern of 660-km dis­
continuity topography seen in Figure 7.27. 

If these major transition zone disconti­
nuities are predictable phase boundaries, 
does it follow that we know the upper-
mantle composition? Unfortunately, the 
problem is complex, and many plausible 
mantle constituents are consistent with ob­
served seismic models. The main seismic 
model parameters are compared with ex­
perimental results for a variety of plausible 
Earth materials in Figure 7.29. Compar­
isons such as these are used to construct 

Box 7.2 S-Wave Splitting and Upper-Mantle Anisotropy 

The upper mantle has laterally variable anisotropy, and we can use body waves 
to determine local anisotropic properties beneath three-component broadband 
stations. One technique that has been widely applied is analysis of teleseismic 
shear-wave splitting. Anisotropy causes shear waves to split into two pulses, one 
traveling faster than the other, with the differential time between the two pulses 
accumulating with the path length traversed in the anisotropic region. The two 
pulses can most readily be observed for phases that have a known initial polariza­
tion before they enter the anisotropic region. One such phase is SKS, which has 
purely SV polarization at the conversion from P to SV at the core-mantle 
boundary. If the entire mantle along the upgoing path from the core to the surface 
is isotropic, then the SKS phases will have no transverse component. If anisotropy 
is encountered, the SKS phases split into two polarized shear waves traveling at 
different velocities, and this generally results in a tangential component of motion 
when the ground motion is rotated to the great-circle coordinate frame. An 
example of SKS arrivals on horizontal broadband seismograms is shown in 
Figure 7.B2.1a, with a clear, distorted tangential component being observed. By 
searching over all possible back azimuths, it is possible to find the polarization 
direction of the anisotropic splitting, which has fast and slow waves with the same 
shape (Figure 7.B2.1b). Note that the ground motion has a complex nonlinear 
polarization. 

By shifting the fast and slow waves to eliminate the anisotropic splitting, a linear 
polarization is retrieved. Rotation of the shifted traces into the great-circle 
coordinate system then eliminates the transverse component of the SKS phase. 
This procedure reveals the polarization direction of the fast and slow shear waves 
and the magnitude of the splitting. If paths from different azimuths give uniform 
anisotropic properties, the region where splitting occurs is likely to be in the 
shallow structure under the station. 

continues 
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FIGURE 7.B2.1 (a) Teleseismic broadband recordings of SKS and S. The top two traces are 
the original transverse and radial components, showing strong SKS energy on the trans­
verse component. The bottom two traces are corrected for anisotropic splitting by finding 
the fast and slow directions and shifting the signals for the splitting prior to rotation, (b) 
Top traces: Superposition of fast and slow SKS arrivals with observed splitting (left) and 
after correction (right). Bottom: Particle motion plots In the horizontal plane for uncor­
rected (left) and corrected (right) observations, showing how correction restores the linear 
polarization of the wave. (Modified from Silver and Chan, J. Geophys. Res. 96, 16 .429-
16,454, 1991 : © copyright by the American Geophysical Union.) 
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FIGURE 7.29 Comparison of globally averaged models for upper-mantle P velocity Cleft), S 
velocity (middle), and density (right) with various experimental results for minerals and 
mineral assemblages. Such comparisons are used to interpret the velocity discontinuities 
and gradients found by seismology. (From Bass and Anderson, Geophys. Res. Lett. 1 1 , 
2 3 7 - 2 4 0 , 1984; © copyright by the American Geophysical Union.) 

models of bulk-mantle composition com­
patible with the observed density and seis­
mic velocities; however, this is a nonunique 
process. At this time it is still possible to 
conclude that either upper and lower man­
tles must be chemically stratified, even al­
lowing for phase transformations in the 
transition zone, or that the upper and 
lower mantles have a uniform composi­
tion. We must refine both seismological 
models and mineral physics experiments 
before the extent of mantle chemical strat­
ification can be resolved. 

7.2.3 Upper-Mantle Tomography 
The variation in one-dimensional veloc­

ity models for different tectonic regions 
indicates upper-mantle heterogeneity, but 
tomographic techniques are required to 
determine the complete structure. Numer­
ous seismic wave data sets have been used 
to investigate upper-mantle heterogeneity 
on a variety of scale lengths. Dense arrays 
of seismometers provide sufficient raypath 
coverage of the underlying lithosphere to 
develop tomographic images of the upper 
mantle to depths of several hundred kilo­
meters. Figure 7.30 shows one example of 

P velocity heterogeneity beneath the 
southern California region, developed us­
ing teleseismic travel-time relative residu­
als. The tomographic image, obtained 
using the SIRT algorithm, shows a high-
velocity tabular structure extending into 
the upper mantle beneath the Transverse 
Ranges. This is believed to represent deep 
crustal material forced downward by con­
vergent flux near the big bend of the San 
Andreas fault in the San Gabriel Moun­
tains. 

A continental-scale tomographic image, 
developed from S- and ^S^-wave travel-
time residuals beneath North America, is 
shown in Figure 7.31. The shear velocity 
variations range from the slow-velocity 
model TNA beneath the western tectonic 
region to the high-velocity structure SNA 
(Figure 7.23) beneath the Canadian shield, 
but the tomographic model shows the full 
three-dimensional variation of the conti­
nental root. This model also suggests that 
low-velocity material extends quite deep 
below the Mid-Atlantic Ridge and near 
segments of the East Pacific Rise. 

Even larger-scale tomographic models 
have been developed using large data sets 
of digitally recorded surface waves. A 
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FIGURE 7.30 Lithospheric heterogeneity under southern California revealed by seismic 
tomography using P-wave travel times. The dark, stippled region is a fast-velocity body that 
extends vertically into the mantle below the Transverse Ranges. (From Humphreys et al., 
Geophys. Res. Lett. 1 1 . 6 2 5 - 6 2 7 . 1984; © copyright by the American Geophysical Union.) 

model for the entire Pacific Ocean was 
developed by tomographic modeling of 
crossing Love- and Rayleigh-wave paths, 
with the phase velocity for Love waves 
with different periods for lithosphere of 
different ages being shown in Figure 7.32. 
Along with the data, a simple model with a 
thickening seismic lid overlying an LVZ is 
shown, with predicted variation of phase 
velocity. This simple model, based on a 

thermally growing plate structure, fits the 
data well except for the longest-period 
waves, which suggest less pronounced 
thickening of the plate with age. Thus, 
modeling seismic velocities under oceanic 
regions can constrain the thermal evolu­
tion of the oceanic lithosphere. An addi­
tional factor influencing the plate thick­
ness is the spreading rate of the ridge 
system. The variation in lithospheric age 
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FIGURE 7.31 Shear velocity variations with respect to average velocity in two depth ranges 
below North America. Darker areas correspond to fast velocities below the stable shield 
region of the continent. The tectonically active area of western North America has slow 
upper-mantle shear velocities. (Modified from Grand, J. Geophys. Res. 92 , 14 ,065-14 ,090 , 
1987; © copyright by the American Geophysical Union.) 

of oceanic plates is shown in Figure 7.33, 
and it is clear that the Pacific plate has 
long had the fastest spreading rate. This is 
manifested in differences between Love-
wave dispersion in oceanic lithosphere of 
the same age, with the relatively slow-
spreading Atlantic and Indian plates hav­
ing higher velocities by a given age than 
the Pacific plate. 

In addition to characterizing the gross 
structure of oceanic upper mantle, the to­
mographic models reveal detailed struc­
tures in the upper mantle under important 
tectonic elements such as ridges and hot 
spots. Figure 7.34 shows cross sections 
through a relatively high-resolution tomo­
graphic shear-wave model derived from 
surface-wave dispersion observations, for 
profiles across the midocean ridges, and 
across major hot spots. The profiles across 
ridges reveal broad low-velocity regions in 
the upper 100 km extending laterally over 

500 to 1500 km on either side of the ridge 
axis. The width of the low-velocity regions 
found under the ridges is proportional to 
the spreading rate. The ridges overlie 
broad regions of slower than average man­
tle, but there is not clear evidence of con­
centrated deep anomalies. This suggests a 
passive upwelling process with plates 
pulling apart and the decrease in pressure 
of upwelling material leading to partial 
melting. This velocity structure appears to 
be very different from the deep velocity 
structure beneath hot spots, where the to­
mographic images reveal concentrated 
low-velocity regions from 100 to 200 km 
under the surface volcanic centers, sug­
gesting a deeper source and perhaps a 
more active upwelling mantle flow under 
hot spots. Future efforts will improve the 
resolution of such images, which at 
present have a horizontal scale of 1000 km 
and a vertical resolution of 60 km. 
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FIGURE 7.32 (Top) A model for lithospheric evolution of shear velocities under the Pacific 
Ocean. (Bottom) Comparison of the model predictions (solid lines) with observed Love-wave 
phase velocities with periods from 80 to 200 s plotted as a function of plate age. The 
observations were obtained by a tomographic inversion of Love waves traversing the Pacific. 
(From Zhang. 1991.) 

In addition to being applied to regions 
of upwelling flow, seismic tomography has 
been extensively applied to determine up­
per-mantle structure beneath subduction 
zones, where old oceanic lithosphere sinks 
into the mantle. For over 25 years, seismic 
observations have revealed that the sink­
ing tabular structure of the plate provides 
a high-velocity, low-attenuation (high-!2) 
zone through which waves can propagate 
upward or downward through the mantle, 

and seismologists have expended extensive 
effort to determine properties of both the 
slab and the overlying mantle wedge. The 
arc volcanism overlying the cold slab is 
clearly associated with anomalous proper­
ties of the wedge, as has been known for 
several decades (Figure 7.35). LxDcalized 
regions of very slow shear velocities and 
strong attenuation indicate partial melting 
in the mantle above the slab. The locations 
of anomalous zones have been constrained 
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FIGURE 7.33 (Top) Map of oceanic lithosphere age variations. (Bottom) Comparison of 
Love-wave phase velocities for 100-s-period waves in different age plate beneath the Pacific 
(PAC), Atlantic (ATL). and Indian (IND) oceans. (From Zhang. 1991.) 

mainly by using phases from intermediate-
and deep-focus events in the slab recorded 
either at stations in the overlying plate or 
at teleseismic distances, where surface-
reflected phases such as pP and sS are 
observed. 

Up until the mid-1970s subducting slabs 
were always shown as cartoons, geometri­
cally constrained by the intraplate earth­
quake locations in the Benioff zone, but as 
vast numbers of body-wave travel times 
began to accumulate, it became possible to 
develop tomographic images of the sub­
ducting high-velocity slab without a priori 

constraints. One such image, shown in a 
cross section through the model, is dis­
played in Figure 7.36. This plot shows the 
P velocity anomaly relative to the average 
velocity at each depth for the Aleutian 
slab with 2% contour intervals. The loca­
tions of shallow and intermediate-depth 
earthquakes are superimposed on the ve­
locity anomaly structure. On average, the 
slab appears to be about 5% faster than 
surrounding mantle in the upper 400 km, 
with local perturbations as large as 
10-12% at depths near the low-velocity 
zone. Earthquakes deeper than 40 km ap-
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FIGURE 7.34 Cross sections into a three-dimensional shear velocity structure determined 
from Love- and Rayleigh-wave tomography on transects perpendicular to mid-ocean ridges 
Cleft) and hotspots (right]. Dotted regions correspond to more than 1 % slow shear veloci­
ties and indicate shallow low velocities under the ridges and deeper low velocities under 
the hot spots. CReprinted with permission from Nature 355, 4 5 - 4 9 ; © copyright 1992 
Macmillan Magazine Limited.) 
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FIGURE 7.35 Cartoon of subducting oceanic lithosphere showing variations in attenuation 
below an island arc. The slab has high seismic velocities and low attenuation (high O'relative 
to the surrounding mantle. (From Barazangi and Isacks, J. Geophys. Res. 76, 8493 -851B. 
1971 ; © copyright by the American Geophysical Union.) 
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FIGURE 7.36 Cross section through a seismic tomography model determined for beneath 
the Aleutian island arc. The contours show velocity perturbations relative to the average 
velocity at each depth and define a fast-velocity, dipping lithospheric slab. The squares are 
earthquake locations near the cross section, showing that most intermediate-depth events 
are located near the upper-mantle boundary of the subducting slab. Most events shallower 
than 50 km are thrust events on the contact between the two plates. (From Engdahl and 
Gubbins. J. Geophys. Res. 92. 13 ,855-13 .862 . 1987; © copyright by the American Geo­
physical Union.) 

pear to be located within the upper por­
tion of the subducting slab. Other tomo­
graphic images of subducting slabs are 
shown in Figure 1.22. Developing velocity 
models like these requires relocation of 
the sources using three-dimensional ray 
tracing because the strong velocity anoma­
lies can significantly deflect the raypath. 
Stable solution of the nonlinear inversion 
for structure and source location when 
raypath perturbations must be included is 
a current area of active research in seismic 
tomography. 

Lower-resolution images, but of a global 
extent, have been developed using huge 
sets of long-period body waves, surface 
waves, and free oscillations. The surface-
wave inversions often involve a two-step 
procedure of first extracting tomographic 
models for the Rayleigh- and Love-wave 
dispersion, using either block models or 
spherical harmonic expansions, and then 
doing a second inversion to find an S 
velocity model (usually with constrained P 
velocity and density models) that fits the 
dispersion. Examples of surface-wave dis-
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FIGURE 7.37 Global models of Rayleigh-wave (left) and Love-wave (right) phase-velocity 
variations relative to the average velocity at periods near 155 and 256 s. Fast regions are 
darker, with the contour interval being 0.5% for Rayleigh waves and 1 % for Love waves. 
(Modified from Wong. 1989.) 

persion models represented in spherical-
harmonic expansions up to degree 12 are 
shown in Figure 7.37. The first such mod­
els were obtained in 1984 (see Figure 1.23), 
following several years of accumulating 
global digital seismic data from the ASRO, 
SRO, and IDA networks (Chapter 5). The 
surface-wave dispersion models have vary­
ing depth sensitivity depending on how 
deeply each period wave samples. Since 
the shorter-period fundamental modes 
sense the lithosphere, a strong correspon­
dence in Rayleigh- and Love-wave phase-
velocity variations with tectonic region is 
found. Note that ocean ridges tend to 
overlie slow-velocity material, while conti­
nental cratons and older ocean regions 
tend to overlie fast-velocity material. The 
heterogeneity in phase velocity is stronger 
at short periods, and the patterns for 
longer-period waves lose any clear rela­
tionship with shallow structure. 

When surface-wave dispersion and 
body-wave travel-time observations are in­
verted for shear velocity, models like those 
in Figure 7.38 are obtained, with shear 
velocity variations at shallow depths of 50 
to 150 km having patterns that are clearly 
related to surface tectonics. However, 
variations at greater depths have weaker, 
tectonically unrelated patterns. These het­
erogeneities reflect both chemical and 
thermal variations in the mantle, with shear 
velocities varying moderately by ± 5 % . The 
associated thermal variations should be on 
the order of several hundred degrees, per­
haps stronger in small-scale regions that 
are not resolved by the low-resolution 
models. Fluid-dynamics calculations show 
that such large thermal variations have 
density variations that drive solid-state 
convective motions of the upper mantle 
over long time scales. Thus, to the degree 
that the velocity variations map thermal 
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FIGURE 7.38 Maps of global S-wave velocity heterogeneity at four depths in the upper 
mantle, determined from Love- and Rayleigh-wave dispersion observations. The model is 
expanded to spherical harmonic degree and order 12. Faster regions are darker, and the 
scale differs between two columns. CFrom Su etal., 1994. Figure prepared by Y. Zheng). 

heterogeneity, these images can be associ­
ated with dynamic flow in the interior. 
However, one must isolate the thermal 
variations from possible petrological varia­
tions, which might, for example, contribute 
to the high-velocity deep roots of conti­
nents, before inferring dynamics from any 
seismic model. 

One procedure for obtaining indepen­
dent constraints on thermal variations in 
the mantle is to map the aspherical struc­
ture of seismic-wave attenuation. As de­
scribed in Chapter 3, seismic attenuation 
structure in the Earth is only crudely ap­
proximated by any radially layered struc­
ture. With order-of-magnitude lateral vari­
ations in the quality factor, Q, at the 
upper-mantle depths, a simple stratified Q 
model like that for PREM (Table 7.1) or 
SL8 (Figure 4.33) is useful only to provide 
a baseline for body-wave attenuation or 
for global averages of surface-wave paths 
or free oscillations. Seismic attenuation is 

path specific in the Earth, and some gen­
eral relationships with surface tectonics 
have been observed. Typically, paths 
through the mantle under stable cratons, 
which tend to be relatively high-velocity 
regions, have much lower attenuation, or 
lower r* values, than paths under tectoni-
cally active regions such as the western 
United States or midocean ridges. The 
lower mantle appears to have very little 
attenuation everywhere except possibly 
near the base of the mantle, so most of the 
regional variations in attenuation occur in 
the upper-mantle low-attenuation region, 
from 50 to 350 km depth. This has been 
demonstrated by comparing high-
frequency attenuation between shallow and 
deep-focus earthquakes. Because most at­
tenuation mechanisms at upper-mantle 
depths are expected to involve thermally 
activated processes, developing aspherical 
upper-mantle attenuation models can pro­
vide a mantle thermometer to complement 
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FIGURE 7.39 The frequency dependence of tp and f | (the path-integrated effects of 
intrinsic attenuation on P and S waves} for paths under North America. The solid curve is 
for paths entirely within the mantle under the stable continental shield. The dashed curve is 
for a path that traverses from the tectonically active area to the shield. It is assumed that 
tp=0.25t^. (From Der etal., 1982. Reprinted with permission from the Royal Astronomical 
Society.} 

velocity-variation and boundary-topogra­
phy models. 

In the 1980s much progress was made in 
determining high-frequency body-wave at­
tenuation models and crude tectonic re-
gionalizations. An important complication 
that was demonstrated is that attenuation 
does vary with frequency in the short-
period body-wave band, leading to fre­
quency-dependent t* models like those 
shown in Figure 7.39. Two models are 
shown, both of which have an 5-wave at­
tenuation factor that is four times the P-
wave attenuation factor, ^| = 4r*. The up­
per curve is for a body-wave path with one 
leg through the upper mantle under a tec­
tonically active region and a second leg 
through a stable shield, the lower curve for 
source and receiver paths that both pass 
through a shield structure. A purely tec­
tonic path would have systematically higher 
t* values. For the mixed path the t^ at a 
period of 1 s is 0.8 s, with models such as 
PREM predicting values of 0.8-1.2 s over 
the body-wave frequency band for teleseis-
mic raypaths. Purely shield paths are much 

less attenuating than average Earth mod­
els or mixed paths, and it is remarkable to 
see how small the t* values become at 
frequencies above 1 Hz. The implication is 
that 4- to 5-Hz waves are transmitted 
through the Earth extremely efficiently, 
with almost no anelastic loss. Recalling 
that t* affects body-wave spectral ampli­
tudes by a factor proportional to e~^ '̂*, 
the decrease in r* with increasing fre­
quency results in a high-frequency content 
of teleseismic waves that is many orders of 
magnitude larger than would be the case if 
t* had constant values near 1 s, as was 
commonly assumed in the 1970s. 

Both the frequency dependence and re­
gional variation of r* near a period of 1 s 
contribute to variability of short-period 
body-wave magnitudes, m^. This has actu­
ally had great political significance, since 
most nuclear test sites in the Soviet Union 
overlie shield-like mantle and the U.S. test 
site in Nevada (NTS) overlies a tectoni­
cally active region. As a result, explosions 
of the same yield have smaller teleseismic 
magnitudes for NTS explosions than for 
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FIGURE 7.40 Lateral variations of attenuation of seismic waves at a deptii of 160 km in the 
mantle, obtained by analysis of surface wave amplitudes. The attenuation is very high in the 
eastern Pacific near the East Pacific Rise, as well as along the Mid-Atlantic Ridge. [Courtesy 
of B. Romanowicz.3 

Soviet tests. This has compHcated the veri­
fication of nuclear test yield limitation 
treaties, and this concern motivated many 
of the early studies of regional variations 
in seismic attenuation. 

The high-frequency r* determinations 
have relied mainly on comparison of tele-
seismic ground-motion spectra with theo­
retical source models or near-source 
recordings of the seismic radiation. At 
longer periods, many studies of body-wave 
attenuation have been conducted to deter­
mine average levels and lateral variations 
in t* near a period of 10 s. Analysis of 
multiple 5c5„ phases has been the most 
extensively applied procedure because of 
its intrinsic stability and source-effect can­
cellation properties. It is well documented 
that /* varies regionally in the long-period 
body-wave band, but frequency depen­
dence is not reliably resolved. Surface-wave 
attenuation coefficients can also be deter­
mined to develop regionalized and fre­
quency-dependent models, although reli­

able separation of dispersive effects from 
attenuation effects is a complex proce­
dure. Surface-wave analyses have con­
firmed the strong regional variations in 
upper-mantle attenuation across North 
America and Eurasia, and they constrain 
the vertical distribution of attenuation 
variations, which is difficult to attain with 
most body-wave studies. 

Although much progress has been made, 
development of an aspherical attenuation 
model is in a state of infancy compared 
with elastic velocity models. This is in part 
because it is more difficult to isolate ef­
fects of attenuation from propagation and 
source effects. In the case of surface-wave 
analyses, it is important to have a detailed 
velocity model first to account for focusing 
and dispersive effects, as discussed in 
Section 4.7. When this is done, the resid­
ual amplitude variations can be tomo-
graphically mapped into an aspherical 
model, as shown in Figure 7.40. This is a 
first-generation, low-resolution model ob-
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tained from global surface-wave data, but 
it is a harbinger of increasingly refined 
aspherical models yet to come. As the 
reliability of these models improves, com­
parisons with the elastic velocity models 
will enable an improved separation of 
thermal and chemical causes of the het­
erogeneity. 

Another property of the upper mantle 
that is still in very early stages of being 
mapped out is the global distribution of 
anisotropy. As for attenuation, any simple 
stratified model of anisotropic properties 
in the Earth is grossly inaccurate for de­
scribing path-specific behavior. This is 
largely due to systematic regional differ­
ences in anisotropic orientation, appar­
ently associated with large-scale litho-
spheric motions. While teleseismic body 
waves largely provide point examples of 
upper-mantle anisotropic character (see 
Box 7.2), surface waves provide global path 
coverage required to constrain large-scale 
anisotropic properties. As might be ex­
pected given the oceanic Pn velocity 
anisotropy shown in Figure 7.17, a compo­
nent of the surface-wave anisotropy ap­
pears to correlate with plate motion direc­
tions. This is illustrated in Figure 7.41, 
which plots the orientation of horizontally 
fast directions of azimuthal anisotropy af­
fecting surface waves. Note that the fast 
directions tend to parallel plate spreading 
directions in the ocean basins, indicating 
lithospheric and asthenospheric shear 
flow-induced fabrics that result in the di­
rectional dependence of surface-wave ve­
locities. Improving azimuthal coverage of 
the surface with increasing numbers of 
surface-wave observations should improve 
these azimuthal anisotropy models in the 
future. 

Perhaps an even more fundamental as­
pect of upper-mantle anisotropy is that it 
is generally required in order to explain 
simultaneously Love- and Rayleigh-wave 
observations when fitting the data to high 
precision. In other words, isotropic models 
fail to explain jointly Love- and Rayleigh-

FIGURE 7.41 (a] A map showing the fast 
direction for Rayleigh-wave phase velocities with 
a period of 200 s for a model with azimuthal 
anisotropy. The length of the lines is 
proportional to the extent of anisotropy. (b) 
Flow lines at a depth of 260 km for a kinematic 
plate tectonics model with a low-viscosity 
channel in the upper mantle. Note that there is 
some co r respondence w i t h az imutha l 
anisotropy. ((a) From Tanimoto and Anderson, 
1984; (b] from the model of Hager and 
O'Connell. 1979; reproduced from Anderson, 
1989.) 

wave dispersion on many paths, but simpli­
fied anisotropic parameterizations, such as 
transverse isotropy, provide suflScient pa­
rameters to reconcile the Love/Rayleigh-
wave discrepancy. Unfortunately, intro­
duction of additional parameters into the 
large-scale tomographic inversions is often 
not stable. This issue is important because 
the best isotropic models that tolerate mis­
fit of the joint Love- and Rayleigh-wave 
data may have significantly different fea­
tures than alternative (albeit poorly re­
solved) anisotropic models. An example is 
provided by oceanic lithospheric models, 
for which isotropic inversions imply plate 
thicknesses that increase to more than 100 
km with increasing age, overlying strong 
low-velocity zones. Anisotropic inversions 



DETERMINATION OF EARTH STUCTURE 

of the same data can result in maximum 
lid thicknesses of only 60-70 km and much 
less pronounced low-velocity zones. 
Anisotropy introduces many additional pa­
rameters and attendant resolution prob­
lems into mantle imaging, but it is clearly 
critical for future efforts to include 
anisotropic models. 

7.2.4 Lower-Mantle Structure 
The standard seismological procedure 

for studying the lower mantle has involved 
inversion of travel-time curves for smoothly 
varying structure, with array measure­
ments of ray parameters as a function of 
distance playing a major role. This is due 
to the absence of significant boundaries 
throughout much of the vast region from 
710 to 2600 km depth (Figure 7.42). Some 
observations indicate possible impedance 
boundaries near 900 and 1050 km 
(Figure 7.18), but the extent and nature of 
any structures at these depths are unre­
solved. The extremal bounds shown in 
Figure 7.42 constrain any associated 
impedance contrasts to less than a few 

percent for a spherically averaged model. 
No deeper impedance contrasts appear to 
exist except locally in the lowermost 250 
km of the mantle, which is a region of 
anomalous velocity gradients called the D" 
region. 

Both Herglotz-Wiechert and parame­
terized model inversions for lower-mantle 
structure suggest smooth variations in 
properties compatible with self-compres­
sion of a homogeneous medium through­
out the bulk of the lower mantle. Because 
all common upper-mantle materials have 
undergone phase transitions to the per-
ovskite structure at depths from 650 to 
720 km, it is generally believed that 
the lower mantle is primarily composed 
of (MgQ9Feo.i)Si03 perovskite plus 
(MgFe)O, with additional Si02 in the 
high-pressure stishovite form and uncer­
tain amounts of calcium perovskite. No 
high-pressure phase transitions in the per­
ovskite, stishovite, and MgO (rock salt) 
structures are expected over the pressure 
range spanned by the lower mantle, so the 
absence of structure is compatible with 
uniform composition. However, bulk com-

Box 7.3 Absorption Bands and Frequency Dependence of O 
in the Mantle 

The lower mantle transmits teleseismic body waves with very little attenuation 
for periods shorter than 0.5 s, but long-period body waves are more attenuated, 
and free oscillations require even stronger lower-mantle attenuation. This fre­
quency dependence can be interpreted in the context of an absorption band model 
(Chapter 3) in which the absorption band shifts to lower frequencies in the deep 
mantle and to higher frequencies in the upper mantle, although with strong lateral 
variations. There is some evidence that the D" region has stronger short-period 
attenuation as well. One model of depth-varying frequency-dependent attenuation 
throughout the mantle is shown in Figure 7.B3.1. This model is very simplified, and 
no one-dimensional structure can describe the attenuation for specific paths, but 
this type of model provides a useful baseline behavior for deep-mantle thermally 
activated processes. Complete mapping of three-dimensional frequency-dependent 
anisotropic properties of the Earth is a long-term goal of seismology that will 
improve our understanding of the Earth's thermal structure at depth. 

continues 
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FIGURE 7.B3.1 Model of frequency-dependent attenuation variation with depth in the 
mantle. Attenuation is parameterized as an absorption band that represents a continuum of 
relaxation mechanisms, which vary with depth. When O"' ' is large, attenuation is high. This 
model allows short-period waves to travel through the lower mantle with little attenuation, 
except in the D" region. [From Anderson and Given. J. Geophys. Res. 87. 3893 -3904 . 1982; 
© copyright by the American Geophysical Union.] 

position is still uncertain, in particular the 
Fe and Si component relative to the upper 
mantle, so it remains unresolved whether a 
contrast in overall chemistry occurs that 
would favor stratified rather than whole-
mantle convection. A critical parameter in 
this issue is the density structure of the 
lower mantle. Body-wave observations do 
not constrain the density structure in the 
lower mantle because it lacks detectable 
impedance contrasts. Instead, it is low-
frequency free oscillations, which involve 
deep-mantle motions of large volumes, that 
we use to constrain the lower-mantle den­
sity structure. The free oscillations are not 
sensitive to the detailed density structure, 
but in combination with gross mass con­

straints from the Earth's moments of iner­
tia, they can resolve the average density 
structure of the lower mantle rather well. 
The average density, along with density 
contrasts in the transition zone bound­
aries, provide the primary data modeled 
by mineral physicists in their effort to con­
strain the bulk composition of the lower 
mantle. 

Although no major internal boundaries 
occur in the lower mantle above the D" 
region, lateral heterogeneities occur 
throughout the region that can be mod­
eled using seismic tomography. Several in­
vestigators have used body-wave travel 
times from thousands of events in three-
dimensional inversions for lower-mantle 
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FIGURE 7.42 Average lower-mantle seismic velocity and density structures. No major 
radial structures appear to occur below 1000 km depth (see Figure 7.18) down to 2600 km 
depth. The 200- to 300-km-thick D" region at the base of the mantle has strong lateral and 
radial heterogeneity. The extremal bound curves bracket the range of average model parame­
ters consistent with travel-time data. Local structure may extend beyond these bounds. 
(From Lay, 1989.] 

Structure. The data are the millions of 
travel times assembled over the past 25 
years by the ISC bulletin. The scatter in 
these times relative to any homogeneous 
model (see Figure 1.19) constitutes the 
evidence for lower-mantle heterogeneity. 
The models differ in parameterization and 
inversion method, but they are generally 
consistent in their large-scale structure. 
Constant-depth slices through one of the 
F-wave tomography models are shown in 
Figure 7.43. From 700 to 2500 km depth 
the lateral variations tend to be less than 
±1%, with large slow-velocity regions un­
der Africa and the central Pacific extend­
ing throughout the lower mantle. In the 
D" region the heterogeneity is stronger, 
±2% for P waves and ±3% for S waves. 
The inversions yielding such models in­
volve huge matrices that must be inverted 
either on the largest supercomputers or by 
using back-projection methods that lack a 
resolution analysis. Up to several million 
travel times are used in these inversions, 
although redundant data are averaged to 

weight the inversion evenly and to en­
hance signal stability. Since the models 
result in small heterogeneities, raypath 
perturbations are ignored, which is reason­
able for all depths other than for D", 
where grazing rays may be sensitive to 
even a few-percent heterogeneity. 

Large data sets of long-period wave­
forms have also been inverted for lower-
mantle tomographic images, sometimes in 
conjunction with free-oscillation inver­
sions. An example of a shear-wave velocity 
model for the entire lower mantle is shown 
in Figure 7.44. The body-wave inversion 
involves constructing synthetic waveforms 
for a heterogeneous model that match the 
data better than waveforms from a starting 
model, mainly by perturbing the travel time 
of the wave. The free-oscillation inversions 
involve calculating multiplet splitting for 
the heterogeneous structure that matches 
observed spectral peaks. Although these 
inversions are based on far fewer observa­
tions than the ISC inversions, the data 
quality is much higher and is free of subtle 
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FIGURE 7.43 Maps of P velocity variations at two depths in the lower mantle obtained by 
tomography. Circles indicate slow-velocity regions. (From Inoue etal., 1990.) 

biases and noise processes that afflict the 
ISC data base. Nonetheless, some of the 
large-scale features from the travel-time 
and waveform inversions are very similar. 
The model in Figure 7.44 shows several-
percent shear velocity variations through­
out the lower mantle, with stronger het­
erogeneity in the D" region. Relatively 
high velocities in the lower mantle tend to 
extend downward around the Pacific rim, 
with relatively slow velocities occurring un­
der the central Pacific and Africa. 

The large-scale patterns of lower-mantle 
heterogeneity are not yet reliably resolved, 
but they strongly suggest a dynamic con-
vective system. If the velocity heterogene­
ity is caused by temperature variations, 
then temperature fluctuations of several 
hundred degrees occur in the deep mantle. 
This is sufficient to induce density hetero­
geneity that will in turn drive solid-state 
convection. Thus, slow-velocity regions are 
probably hot, relatively buoyant regions 
that are slowly rising, while fast-velocity 
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FIGURE 7.44 Maps of S velocity variations in the lower mantle obtained from tomography 
using S waves and free oscillations. Darker regions are faster velocities. Note that the 
most pronounced heterogeneity is near the base of the mantle. (Courtesy of G. Masters, 
1992.) 

regions are colder, sinking regions. If the 
seismic images indeed reveal the convec-
tive flow of the interior, can they resolve 
the dynamic configuration of the whole 
mantle? Clearly, higher-resolution studies 
are needed to resolve this issue, so seis­
mologists have concentrated on two re­
gions in particular: (1) the upper-mantle 
downwellings with deep seismicity and 
(2) the D" region at the base of the man­
tle. 

One of the most straightforward ways to 
determine whether upper-mantle material 
penetrates into the lower mantle or is de­
flected into a stratified convection system 
is to determine the fate of subducting 
oceanic lithosphere. Several methods have 
been developed to assess the extent of 

lower-mantle slab penetration by detecting 
the high-velocity structure associated with 
the cold slab material. Earthquakes occur 
no deeper than 700 km in the mantle; 
presumably the mechanism by which they 
occur is terminated by the 660-km phase 
transition, but they do mark the down-
welling flow to at least the base of the 
upper mantle. If the slab continues to sink 
unimpeded into the lower mantle, one 
would expect to observe a tabular high-
velocity structure along the downdip ex­
tension of the seismic zone. One approach 
to imaging such a structure is to construct 
a residual sphere, which is a stereographic 
plot of travel-time anomalies of P or 5 
waves from a deep-focus event, with the 
anomalies projected to the azimuth and 
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takeoff angle at the source for each associ­
ated raypath. A tabular high-velocity struc­
ture below the source should then produce 
a systematic pattern of fast and slow 
anomalies, which can be reproduced by 
modeling. This procedure has been ap­
plied over several decades with some­
what mixed results and interpretations. 
Figure 7.45 shows one of the most convinc­
ing cases favoring a high-velocity slab ex­

tension into the lower mantle at least a 
few hundred kilometers. Residual spheres 
for events at various depths in the verti­
cally plunging Marianas slab are compared 
with predictions obtained by ray tracing 
through a fast slab structure extending to a 
depth of 1300 km. A cross section perpen­
dicular to the slab model is shown on the 
right. The intermediate-depth events 
clearly show a regular pattern of positive 
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FIGURE 7.45 Residual sphere analysis for intermediate- and deep-focus earthquakes in the 
Marianas slab. Data for individual events at different depths are shown on the left, synthetic 
predictions for a slab nnodel are shown in the middle. Seismicity and contours of the velocity 
model are shown in the cross section on the right, which is in a plane perpendicular to the 
strike of the slab. (From Creager and Jordan, J. Geophys. Res. 9 1 , 3 5 7 3 - 3 5 8 9 , 1986; © 
copyright by the American Geophysical Union.) 
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and negative anomalies, with early arrival 
times observed along the strike of the slab. 
This is predicted by the model because 
raypaths at these azimuths have a rela­
tively long path length in the high-velocity 
material. A similar, although weaker, pat­
tern is observed for very deep focus events. 
The lower-mantle extension of the slab is 
introduced to explain the patterns of 
residuals from the deep event. This proce­
dure is greatly complicated by the fact that 
the earthquake locations are not known 
independently and must be determined in 
the modeling. Also, corrections for deep-
mantle and near-receiver velocity hetero­
geneity must be made before the near-
source contribution to the patterns can be 
reliably modeled. Differences among seis­
mologists as to the magnitude of these 
corrections have prevented a clear consen­

sus on the depth of slab penetration using 
residual-sphere analysis. 

Rather than model specific events, one 
can use tomographic imaging to detect any 
aseismic extension of the slab velocity het­
erogeneity. Figure 7.36 shows one example 
for which the velocity heterogeneity of the 
slab appears to extend about 150 km be­
low the deepest earthquakes. Several stud­
ies have produced corresponding images 
of velocity heterogeneity near deep-focus 
source regions. One example is shown in 
Figure 7.46a in a cross section through the 
Kuril subduction zone. Note the broad re­
gion of slightly fast material that extends 
the high-velocity slab structure into the 
lower mantle. In order to assess the relia­
bility of this image, the same raypaths were 
used for the input slab model in Figure 
7.46b, and the inversion was performed on 

ISC delay time inversion Exact upper mantle slab model 

FIGURE 7.46 Cross section through a three-dimensional velocity model in the vicinity of a 
subducting slab for (a) actual data inversion, Cb) an input synthetic mode, and (c) inversion of 
the synthetic data set. (d) Cell hit count for blocks of the model. The lack of crossing 
coverage causes downward smearing of the synthetic slab anomaly (c), giving art i facts 
similar to the patterns in the data. (From Spakman efa/., Geophys. Res. Lett. 16, 1097 -1100 , 
1989; © copyright by the American Geophysical Union.) 
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the synthetic data set, giving the image in 
Figure 7.46c. Clearly the inversion tends to 
smear the known anomaly into the lower 
mantle, giving an erroneous impression of 
slab penetration. The cell-hit-count plot 
shows the variable ray coverage of the 
model that leads to this streaking effect. In 
order to overcome these contaminating 
effects, the data sets used in deep-slab 
imaging have been augmented with more 
raypaths, including upgoing phases that 
help to stabilize the depth determination, 
and with procedures that remove common 
path effects from the data. This is resulting 
in much clearer slab images (see Figure 
1.22), yet these still provide an ambiguous 
resolution of the slab-penetration ques­
tion. In many cases, as in Figure 1.22, the 
high-velocity material appears to broaden 
and deflect horizontally near 600-800 km 
depth, without a tabular extension into the 
lower mantle. This is compatible with the 

large-scale downward deflection of the 
660-km phase transition landward of sub-
duction zones, as seen in Figure 7.27. 
However, it is unclear whether this broad­
ened high-velocity region continues to sink, 
causing the lower mantle ring of high-
velocity material beneath the Pacific rim, 
or whether thermal coupling may occur 
across a boundary in a layered convecting 
system, by which the cool slab material 
induces downwellings in the deeper layer. 
As seismic tomography improves, it is 
hoped that this issue will be resolved. 

The D" region at the base of the mantle 
has received much attention as well, since 
the core-mantle boundary is likely to be a 
major thermal boundary layer. If signifi­
cant heat is coming out of the core, the 
mantle will be at least partially heated 
from below, and D" may be a source of 
boundary-layer instabilities. It is often pro­
posed that hot spots are caused by thermal 
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FIGURE 7.47 Various shear-wave (left) and P-wave (right) velocity models that have been 
proposed for the D" region at the base of the mantle. A variety of travel-time, 
waveform-modeling, triplication-modeling, and diffracted-wave analyses were used to obtain 
these models, and there is no clear, best-average structure. (Reproduced, with permission, 
from Young and Lay. Annual Review of Earth and Planetary Sciences 15. 2 5 - 4 6 . © 1987 by 
Annual Reviews Inc.) 
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plumes rising from a hot internal boundary 
layer, with D" being a plausible candidate. 

Seismological investigations of D" have 
not yet resulted in a complete characteri­
zation of the region, although it is clearly a 
more laterally heterogeneous region than 
the overlying bulk of the lower mantle. A 
small sample of the remarkable diversity 
of seismic models for the D" region is 
shown in Figure 7.47. These models have 
been obtained by travel-time studies, 
free-oscillation inversions, analysis of re­
flected phases, and studies of waves 
diffracted into the core-shadow zone. The 
low-resolution travel-time and free-oscilla­
tion inversions tend to give smooth models 
like the PREM structures, which simply 

show a tapering of velocity gradients 175 
km above the core-mantle boundary. 
Diffracted-wave studies (Figure 7.48) tend 
to give models with stronger velocity gradi­
ent reductions, producing weak low-veloc­
ity zones just above the core (e.g., PEMC-
LOI), while other studies have detected 
abrupt velocity discontinuities near the top 
of D". The variation among models is rem­
iniscent of the variety of lithospheric mod­
els seen in Figure 7.23, and no single best 
radial model can be reliably interpreted in 
terms of boundary-layer structure. Thus, 
there have been many efforts to determine 
the three-dimensional structure of the D" 
region. This includes tomographic inver­
sions, such as those in Figures 7.43 and 
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FIGURE 7.48 Raypaths for P waves diffracted by the outer core, which arrive in the 
core-shadow zone, along with a profile of observations. The timing and waveforms of the 
diffracted waves are most sensitive to velocity structure at the base of the mantle. 
(Modified from Wysession etai, J. Geophys. Res. 97, 8 7 4 9 - 8 7 6 4 . 1992; © copyright by the 
American Geophysical Union.) 
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7.44, which resolve large-scale hetero­
geneities, and analyses of travel times and 
waveforms of diffracted waves that tra­
verse long distances in the D" region, as 
shown in Figure 7.48. Those large-scale 
studies indicate the presence of ±2% P 
velocity and ±3% 5 velocity heterogene­
ity. 

Determination of more localized D" 
structure associated with these large lat­
eral variations is performed using vertical 
reflections and wide-angle grazing body 
waves. Examples of the latter are shown in 
Figure 7.49, which shows profiles of S and 
sS phases and the core reflections ScS and 
sScS, An intermediate arrival between 
these phases is observed at distances from 
72° to 95°, which appears to be a triplica­
tion caused by an abrupt velocity increase 
at the top of D" in regions that are faster 
than average. The travel times show a clear 
triplication. Predictions for a model with a 
2.75% shear velocity increase 250 km above 
the core are shown in Figure 7.49. A simi­
lar triplication is intermittently observed in 
broadband P waves. Figure 7.50 shows a 
map of regions of D" that have been stud­
ied with wide-angle body waves and the 
shear velocity models found in each case. 
The models are similar except beneath the 
central Pacific, where the velocities vary 
from slow in the southern portion of the 
SGHE region to fast in the north. Precur­
sors to near-vertical-incident ScS phases 
indicate intermittent occurrence of a D" 
impedance contrast under the western Pa­
cific. The cause of such a laterally variable 
boundary is uncertain, but it may plausibly 
represent a variable chemical boundary 
layer, somewhat analogous to the conti­
nental structures embedded in the surface 
lithosphere. Much further work is needed 
before the precise nature and dynamics of 
the D" region can be reliably determined. 

7.2.5 Structure of the Core 
The Earth's core was first discovered in 

1906 when Oldham found a rapid decay of 

P waves beyond distances of 100°, and he 
postulated that a low-velocity region in the 
interior produced a shadow zone. Guten­
berg accurately estimated a depth to the 
core of 2900 km in 1912, and by 1926 
Jeffreys showed that the absence of 5 
waves traversing the core required it to be 
fluid. The core extends over half the ra­
dius of the planet and contains 30% of its 
mass. The boundary between the mantle 
and core is very sharp and is the largest 
compositional contrast in the interior, sep­
arating the molten core alloy from the 
silicate crystalline mantle. Seismologists 
have used reflections from the top side of 
the core-mantle boundary (PcP), under­
side reflections (PKKP), and transmitted 
and converted waves (SKS, PKP, and 
PKIKP) to determine topography on the 
boundary, which appears to be less than a 
few kilometers. The contrast in density 
across the boundary is larger than that at 
the surface of the Earth; thus it is not 
surprising that little if any topography ex­
ists. The strong density contrast may be 
responsible for a concentration of chemi­
cal heterogeneities in the D" region com­
posed of materials that are denser than 
average mantle but less dense than the 
core. The material properties of the core 
are quite uniform (Figure 7.51), with a 
smoothly increasing velocity structure 
down to a depth of 5150 km, where a 
sharp boundary separates the outer core 
from the solid inner core. This 7-9% ve­
locity increase boundary was discovered by 
the presence of refracted energy in the 
core shadow zone by Lehmann in 1936. It 
was not until the early 1970s that solidity 
of the inner core was demonstrated by the 
existence of finite rigidity affecting normal 
modes that sense the deep structure of the 
core. 

The decrease in P velocity from values 
near 13.7 km/s at the base of the mantle 
to around 8 km/s at the top of the outer 
core profoundly affects seismic raypaths 
through the deep Earth, as discussed in 
Chapter 6. The principal P waves with 
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FIGURE 7.49 Lower-mantle shear-wave triplications in S and sS phases. Data profiles from 
a single deep-focus event are shown on the left, with superimposed travel-time curves 
identifying the S triplication and ScS arrivals in these horizontally transverse, long-period 
signals. The travel-time curves show observed triplication arrivals (triangles] that require a 
complex structure in D". The curves are for model SYLO, shown in Figure 7.50. (Left from 
Lay. 1986; right from Young and Lay. 1990.) 
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FIGURE 7.51 Seismologjcally measured density ( 1 x 1 0 ^ k g / m ^ . bold solid curve), 
elastic-wave velocities (compressional iVp) and shear [Vg] velocities in k m / s . thin solid 
curves), and gravitational acceleration [in m / s ^ , thin dashed curve) through the core and 
lowermost mantle are shown as functions of depth and corresponding pressure (top scale). 
Extremal bounds on the Vp profile through the core are included for comparison (thin solid 
lines about the average Vp curve). The differences between the polar (N-S) and equatorial 
(Eq.) compressional velocities through the inner core, as proposed by Morelli et al. (19BB) 
and Woodhouse et al. (1986), are indicated by dotted lines. Heterogeneity in the lowermost 
mantle (the D" region) is illustrated by the variations in Vp and VQ profiles (dotted curves) 
observed at different locations above the core. (Reproduced with permission, from Jeanioz, 
Annual Review of Earth and Planetary Sciences 18. 3 5 7 - 3 8 6 , © 1990 by Annual Reviews 
Inc.) 

paths through the core are shown in Fig­
ure 7.52. As the takeoff angle from the 
source decreases from that of rays that just 
graze the core and diffract into the shadow 
zone, the PKP waves are deflected down­
ward by the low velocities, being observed 
at distances of 188° to 143° (PKP^B^ and 
then again at 143° to 170° iPKPgc) as the 
takeoff angle continues to decrease. Re­
flections from the inner-core boundary de­
fine the PKiKP (CD) branch (Figure 7.53), 
after which the P wave penetrates the 
inner core as PKIKP, which is observed 
from 110° to 180°. Note that most of this 
complexity of the core travel-time curve 
stems from the velocity decrease, the 
spherical geometry of the core, and the 
increase in velocity in the inner core. 

These core phases are readily identified 
on teleseismic short-period recordings, and 
vast numbers of travel times are reported 
by the ISC (Figure 7.53). The travel times, 
ray parameters, and positions of the cusps 
of the travel-time data are used to invert 
for models of the core. Since the outer 
core does not transmit S waves, we believe 
it to be fluid, but the fact that the S 
velocity at the base of the mantle is slightly 
lower than the P velocity at the top of the 
core (Figure 7.51) means that the core is 
not a low-velocity zone for the converted 
phase SKS. As a result, the SKS phase 
and attendant underside reflections off the 
core-mantle boundary, such as SKKS, are 
also used to determine the velocity struc­
ture of the outer core, particularly in the 
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FIGURE 7.52 (a) Raypaths for PKP waves traversing the outer core. Cb) Raypaths for PKIKP 
waves. (After B. Gutenburg.) 

outermost 800 km where PKP phases do 
not have turning points. Some evidence 
from SKKS phases suggests that the outer­
most 100 km of the core may have reduced 
seismic velocities relative to a uniform 
core, possibly representing a chemical 
boundary layer. 

The P-wave impedance contrast at the 
core-mantle boundary is small (which 
causes PcP to be weak), but the boundary 
is very sharp, so it can effectively reflect 
short-period energy several times. Phases 
such as PKKKKP (PK^P) and PK-jP are 
thus observed (Figure 7.54), and they pro­
vide useful measures of the core velocity 
structure as well as bounds on the topog­
raphy on the boundary. The observation of 
these phases indicates that seismic attenu­

ation in the outer core is negligible, allow­
ing waves to ring on for long durations. 

The inner core-outer core boundary has 
been extensively investigated for more than 
50 years, in part due to the scattered ar­
rivals preceding the B cusp, or caustic 
(Figure 7.53). These arrivals were origi­
nally attributed to a complex transition 
zone at the top of the inner core, and a 
wide variety of models have been devel­
oped for this boundary (Figure 7.55). How­
ever, seismic arrays established that the 
PKP precursors are caused by scattering, 
probably in the D" region or at the core-
mantle boundary. The currently preferred 
models for the inner-core boundary in­
volve a simple discontinuity, perhaps with 
a slightly reduced outer-core velocity gra-
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FIGURE 7.53 [Top) Theoretical travel-time curves for PKP ^.ABCi. PKiKP [CD], and PKIKP 
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core showing the various branches of the core phases. (Top from Shearer and Toy. 1991 ; J. 
Geophys. Res. 96 , 2 2 3 3 - 2 2 4 7 . 1991 ; © copyright by the American Geophysical Union. 
Bottom from Johnson and Lee. 1985.) 

dient just above the boundary. No topog­
raphy has been detected on the inner-core 
boundary, but it appears that attenuation 
strongly increases in the inner core. 

Both the velocity and density contrasts 
and attenuation structure of the inner core 
have been studied using PKiKP reflections 

and PKIKP refractions. An example of 
waveform comparisons used to determine 
inner-core properties is shown in Figure 
7.56. Here the core phases PKP (BC) and 
PKIKP are seen on a single recording. 
When the two arrivals are rescaled and 
superimposed, it is clear that the DF 
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FIGURE 7.54 Multiple-reflection raypaths for PK^^P waves in the outer core. The inset 
shows the short-period recording of the PKKKKP phase from an underground nuclear 
explosion in the Soviet Union. (Modified from Bolt, 1973.) 

branch arrival is broadened relative to the 
BC arrival, indicating a lower Q in the 
inner core. Waveform modeling is used to 
match observations like these by consider­
ing a suite of Earth models and finding 
models that match the relative timing, am­
plitude, and frequency content of the core 
phases. 

Mineral physics experiments demon­
strate that the seismologically determined 
density of the core is lower than expected 
for pure iron, so the outer core is believed 
to have about 10% of a light alloying com­
ponent such as Si, O, C, or S. The inner 
core may be almost pure iron, with the 
freezing process brought about by the 
geotherm dipping below the alloy melting 
temperature. The freezing process tends 

to concentrate the lighter component in 
the fluid. Rise of this buoyant material 
provides compositionally driven convection 
in the core, which is believed to sustain 
core dynamics that produce the Earth's 
magnetic field. Proximity to the solidus is 
implied by the existence of the inner core; 
thus the outer core may actually contain 
suspended particles, up to 30% by volume. 
It is not known whether these impart 
any effective rigidity to the outer core, 
but anomalous, unexplained core modes 
(Chapter 4) may require a complex mecha­
nism. Because the core rotates, the polar 
regions of the outer core may have a sepa­
rate flow regime from the spherical annu-
lus of material along the equator. Thus, 
cylindrical symmetry may play a role in 
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FIGURE 7.55 Various P-wave velocity models for the inner core-outer core boundary. 
Analysis of PKiKP, PKIKP/PKP waveforms and travel-time behavior underlies most of these 
models. Most recent models favor a relatively simple boundary, with a sharp velocity 
increase of 0 .8 -1 .0 km/s, possibly overlain by a zone of reduced P velocity gradient at the 
base of the outer core. (From Song and Helmberger, J. Geophys. Res. 97 . 6 5 7 3 - 6 5 8 6 . 
1992; © copyright by the American Geophysical Union.) 

Box 7.4 Structure of the Inner Core 

The inner core is a very small region inside the Earth but appears to have 
surprising internal structure. Seismic waves traversing the inner core on paths 
parallel to the spin axis travel faster than waves in the equatorial plane, indicating 
the existence of inner-core anisotropy. This has been detected by travel times of 
PKIKP waves (Figure 7.B4.1) as well as by innercore-sensitive normal modes. The 
travel-time variations have ^ 1-s systematic differences with angle from the 
north-south axis. This axial symmetry may result from convective flow in the inner 
core that induces an alignment in weakly anisotropic crystals of solid iron. Thus, 
seismological measurements can reveal dynamic processes as deep as 6000 km into 
the Earth. 

continues 
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FIGURE 7.B4.1 Two separate analyses of PKIKP travel-time anomalies, revealing a pattern 
of more negative anomalies (faster velocities) for paths along the polar direction. The top 
plot shows the residuals as a function of azimuth from the axis. The lower plot is a map of 
the anomalies at the source and receiver locations, with a low-order degree-4 expansion of 
the pattern. [Top from Shearer and Toy. J. Geophys. Res. 96, 2233 -2247 . 1991 ; ©copyright 
by the American Geophysical Union. Bottom from Morelli et al., Geophys. Res. Lett. 13. 
1545 -1548 . 1986; © Copyright by the American Geophysical Union.) 
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FIGURE 7.56 Comparison of PKP {BO and PKIKP iPKP [DF)] arrivals on the same seismo-
gram. Raypaths for these phases are shown on the left. When the DF and BC branches are 
overlain, it is clear that PKIKP is broadened by its transit through the inner core. (From 
Shearer and Toy. 1991.] 

core characteristics, perhaps with varying 
degrees of suspended particles in the polar 
regions. Improved seismic models are 
needed to detect any such aspherical 
structure of the outer core, but inner-core 
asphericity has already been detected (Box 
7.4). 
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C H A P T E R 

8 
SEISMIC SOURCES 

Having investigated the various types of 
seismic waves that propagate in the Earth, 
and having surveyed the interior structure 
of the planet which controls the evolution 
of the seismic wavefields, it is now time 
that we address the wave sources and their 
quantitative description. Although many 
investigations of Earth structure can be 
designed to minimize the effects of uncer­
tainty in the source, in general, structural 
investigations do require detailed knowl­
edge of the seismic source. Of course, the 
sources themselves are also of great inter­
est, because they commonly represent im­
portant dynamic processes. The observed 
seismogram is a complex marriage of the 
signature of the source and the effects of 
propagation. Knowledge of the propaga­
tion effects allows us to constrain the phys­
ical process of the source. This is a startling 
proposition: to use the limited sampling of 
seismic wavefields provided by seismome­
ters located sparsely on the surface to de­
duce complex transient phenomena that 
have taken place thousands of kilometers 
away, perhaps at great depth, in a medium 
as complicated as the Earth! Certainly, a 
student of the Earth's gravitational, ther­
mal, magnetic, or chemical fields could not 
hope to analyze remotely a distant 
ephemeral process inside the planet with 

any claim of uniqueness. It is again the 
properties of seismic waves that prove to 
be the seismologist's ally in this endeavor, 
with detailed information about the local­
ized, remote source process being con­
veyed to the seismometer with relatively 
little loss of resolution, provided the prop­
agation effects can be accounted for. The 
last chapter demonstrated the advanced 
state of current capabilities for doing the 
latter. In the next few chapters we will see 
how this capability enables remarkable 
characterization of seismic sources. 

The vast majority of important seismic 
sources involve faulting, or shearing mo­
tions on surfaces inside the Earth. How­
ever, let us first consider source repre­
sentations of human-made underground 
explosions. These, too, are common 
sources, having a vast range of energy 
scales. Small explosions are used for min­
ing, quarrying, road excavating, and other 
constructional applications, as well as in 
natural resource exploration and crustal 
studies. Larger sources include under­
ground nuclear tests, which produce waves 
strong enough to be observed on the oppo­
site side of the Earth. Naturally occurring 
explosive or implosive sources are rare, 
but some may occur with metastable min-
eralogical phase transitions or magmatic 

310 
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Cavtty or spherical 
surface wi th pressure F(t) 

Outward propagating P wave 
at time t = r/a 
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FIGURE 8.1 An underground explosion source is conceptualized as a small cavity or spheri­
cal surface within which a spherically symmetric pressure pulse is suddenly applied. At the 
instant of application a P wave is Initiated in the surrounding elastic medium, which has 
P-wave velocity a. This wave spreads spherically outward from the source. The shape of the 
P-\Na\/e potential will directly reflect the time history of the pressure pulse, examples of 
which are shown in the inset, with the displacements being given by Eq. C8.3]. 

processes at depth. The most general as­
pect that we intuitively associate with all 
explosions is spherical symmetry. 

Consider an explosion in a whole space 
(Figure 8.1). The explosion can be ideal­
ized as a sudden application of a pressure 
pulse to the inside of a small cavity with 
spherical symmetry. In detail, of course, 
the explosion itself may produce the cavity 
by melting, vaporizing, and deforming the 
surrounding rock (underground nuclear 
explosions can produce 0.5-km-radius cavi­
ties in preexisting rock). Nonetheless, 
whatever nonlinear process has occurred 
immediately after the energy release, at 
some distance from the source called the 
elastic radius, r^, a spherical surface exists 
beyond which infinitesimal strain theory is 
valid and on which we can predict the 
elastic displacements and strains due to 
the effective pressure force, F(t), pro­
duced by the inelastically deformed inte­
rior. The time history of the effective pres­
sure force can range from an impulse (the 
pressure quickly drops back to its initial 
state) to a step (permanent strains in the 
inelastically distorted medium serve as an 
effective permanent pressure). Nuclear ex­
plosions often involve a combination of 

these, with an overshoot of pressure that 
decays to a static permanent step as gas 
pressure in the newly created cavity dissi­
pates. The elastic radius for an under­
ground nuclear explosion may be 1 km or 
larger. 

Beyond the elastic radius the equation 
of motion reduces to a one-dimensional 
inhomogeneous wave equation 

1 / l2 JL 

^ ^ = - 4 ^ ^ ( 0 5 ( O > (8.1) 

which is in terms of the P-wave displace­
ment potential, (f){r,t), and the effective 
force function, Fit), applied at the elastic 
radius. The solution for the displacement 
potential has the form 

0(^0 = 
-F{t-{r/a)) 

(8.2) 

where Fit) is called the reduced displace­
ment potential, and r is the distance from 
the elastic radius (often the latter is negli­
gible and the source is treated as a point 
source). Thus, seismic waves propagate 
outward with equal amplitude in all direc­
tions on a spherical wavefront. It is a com-
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mon characteristic of particular solutions 
of inhomogeneous wave equations that the 
wave potential has a D'Alembert solution 
of this type, with the functional shape be­
ing the same as the force-time history. 
Since the P-wave energy is spread over a 
spherical wavefront, the wave potential de­
cays as r~^. 

The spherically symmetric displacement 
field u(r,t) is given by 

«(/-,0 = #(r,0 
dr m-^) 

+ 
1 \dF{t-(r/a)) 

ra dr 

(8.3) 

where T = t- ir/ot) is the retarded time. 
The surrounding medium is at rest until 
time t = ir/a) (r = 0) after the explosion, 
which corresponds to the time that it takes 
for the P wave to travel to the observing 
point. The first term in (8.3) involves dis­
placements that are directly proportional 
to the reduced displacement potential and 
that decay rapidly (proportional to 1/r^) 
with distance from the source. This is 
called the near-field term, and if any step 
in the effective pressure occurs, a static 
(permanent) deformation of the surround­
ing elastic medium will result. The second 
term decays more slowly, thus dominating 
displacement at large distances, and corre­
sponds to the far-field term, which is pro­
portional to the time derivative of the re­
duced displacement potential. Thus, a step 
in effective pressure at the source pro­
duces an impulsive far-field ground mo­
tion. This is a characteristic that we will 
find for far-field motions from other 
sources, and our ability to infer the time 
history of the forces acting at the source 
hinges on the sensitivity of far-field dis­
placements to the temporal derivative of 
the source time history. 

It turns out that three mutually perpen­
dicular dipoles (pairs of forces acting along 

the same line in opposite directions) pro­
duce waves identical to those from an ex­
plosive point source. The strength of a 
dipole, or force couple, is given by its 
moment, M=fdx, where / is the strength 
of the force and dx is the distance separat­
ing the forces. For our explosion source, 
the time history of F(t) is related to MU) 
by MU) = -ATTPO^FU) [where F{t) is de­
fined in terms of force per unit mass]. 
Thus, an explosive source can be repre­
sented by equivalent body forces, which 
produce the same motions. We will find 
wave solutions for equivalent body-force 
representations of other seismic sources 
later in this chapter, also using solutions of 
the inhomogeneous wave equation with 
body-force source terms. 

The solution in (8.3) indicates that the 
particle motions produced by an explosion 
in a whole space are outward along radial 
directions (corresponding to radial static 
deformations, if any, and to transient 
F-wave motions). This is actually observed 
in the Earth, which is clearly not a whole 
space, with the direct P waves from a 
large explosion having compressional first 
arrivals at all stations, at all azimuths. 
Compressional P-wave motion is defined 
as P-wave particle motion away from the 
source, after allowing for wavefront curva­
ture effects along the seismic raypath (Fig­
ure 8.2). Since elastic-wave propagation 
does not modify the shape of the wave 
initiated at the source, except by pre­
dictable transmission effects, the near-
source compressions are observable at 
large distance. An idealized explosion in­
volves no shear deformation at the source, 
and hence no S wave will be directly gen­
erated or excited by the explosion. How­
ever, even if the Earth had perfect radial 
symmetry, we do expect to see SV waves 
for an explosion, and hence Rayleigh 
waves, due to P to SV conversions at 
boundaries such as the free surface {pS, 
PS, PPS, etc.) or the core-mantle bound­
ary {PcS, PKS, PKIKS, etc.). Theoretically 
we would not expect to see either SH or 
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FIGURE 8.2 Initial P-wave motions from an underground explosion are compressional. 
defined as being in the direction of wave propagation, or "away" from the source, allowing 
for the raypath perturbations caused by Earth structure. Thus, explosions produce upward 
ground motions for the f irst P or PKP arrivals everywhere on the surface of the Earth. 

Love waves from an explosion in such a 
radially symmetric Earth. Actually, we do 
commonly observe SH and Love waves 
from both large and small explosions. The 
transverse-component energy is produced 
by departure from spherical symmetry of 
the source, triggering of an earthquake or 
deviatoric strain release near the explo­
sion, and/or conversion of P and SV en­
ergy to SH energy by heterogeneous struc­
tures and nonspherical asymmetry of the 
Earth (Box 8.1). 

In this chapter we will pursue more 
complex earthquake-faulting source repre­
sentations, demonstrating both intuitive 
and mathematical representations of these 
internal sources. We will see that elastic-
wave theory provides simplified force 
systems that represent complex physical 
processes, revealing many features about 
the source, but not a first-principles theory 
for the source phenomena. 

8.1 Faulting Sources 

Unlike an underground explosion, most 
seismic sources lack spherical symmetry. 
For example, faulting involves shear dislo­
cation on a planar surface, which is cer­
tainly not spherically symmetric but does 
have some low-order symmetry. The out­
going waves are influenced by the strain 
distribution near the source and hence 
convey the asymmetry to distant locations. 
This leads to the concept of a radiation 
pattern, which is a geometric description of 
the amplitude and sense of initial motion 
distributed over the P and 5 wavefronts in 
the vicinity of a source. The low-order 
symmetry of shear dislocations provides 
predictable relationships between the radi­
ation pattern of detectable wave motions 
and the fault-plane orientation, which al­
lows remote determination of the faulting 
processes. 



8. SEISMIC SOURCES 

Box 8.1 Explosion SH Waves? 

One of the sociologically important applications of modern seismology is the 
monitoring of global underground nuclear testing. The seismic waves generated by 
such explosions reveal the occurrence of the event as well as provide an estimate of 
the size of the explosion, mainly by empirical calibration of P- and Rayleigh-wave 
amplitudes with explosions of known yield, or energy release, in equivalent 
kilotons of TNT. But first an event must be identified as an explosion rather than a 
natural source. Usually this discrimination of explosion events is accomplished by 
examining a variety of waveform characteristics that may distinguish earthquakes 
from explosions. It would seem reasonable to rely mainly on whether or not 
5//-wave energy is observed, for an explosion source theoretically will not generate 
significant transverse-component radiation at the source. However, Figure 8.B1.1 
compares SH and Love waves from an earthquake with the same component 
recorded for an explosion. 

YKC 
A = 25r -^i!\^fj\lf TOP TRACE-8/16/66 

CMC 
A = 30.5' 
A2=359 

MBC 
Ẑ  = 39.0* 
A2=358* 

FIGURE 8.B1.1 Comparison between SH and Love waves for the nuclear explosion GREE­
LEY (December 20, 1966) and an earthquake in eastern Nevada (August 16. 1966). The 
seismograms are lined up on the S arrival, and the amplitude scale is the same for both the 
earthquake and explosion. (From Wallace etal., 1983.) 

continues 
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The SH components are virtually identical, and this holds for the full azimuthal 
range surrounding the event. For this large explosion, fault motion was presumably 
triggered in the surrounding crust, a process called tectonic release, which accounts 
for the 5//-wave energy. Although not all explosions produce such clear SH 
radiation, it is clear that other waveform attributes have to be used to discriminate 
explosions. The most successful discriminants prove to be location (source depths 
greater than humans can drill to, or in underwater locations where other means of 
detecting explosions are very reliable) and the ratio of short-period (1-s) P-wave 
energy (m^) to 20-s-period Rayleigh-wave energy (M^), which is higher for explo­
sions than for earthquakes larger than magnitude 3.5. 

In Chapter 1 the elastic rebound theory 
was introduced (Figure 1.4), which hypoth­
esizes that shearing motions on a fault 
occur when the elastic strain accumulation 
in the vicinity of the fault overcomes the 
static frictional stress that resists motion. 
Sliding motions initiate at a point (the 
earthquake hypocenter), and a slip front 
expands outward over the fault, separating 
regions that are slipping (or perhaps have 
slipped and then come to rest) from re­
gions that have not yet slipped (Figure 

8.3). The expansion of the rupture area is 
thus a function of space and time, A(x, t), 
as is the corresponding slip function, 
D(x, 0, which gives the actual vector slid­
ing motions on the fault. The stored elastic 
strain energy in the source region is liber­
ated as heat and seismic waves, and even­
tually the fault slippage ends. For the 
long-wavelength waves excited by the 
source motions, the rupture area and 
source volume that release strain energy 
are relatively small and can be approxi-

Epicenter 

Hypocenter Or 
Earthquake 
Fcxus 

Displacement Field 
On Rupture Area 

D(x.t) 

Paul 
Plane 

Spreading 
Rupture 
Pront 

FIGURE 8.3 A schennatic diagram of rupture on a fault spreading from the hypocenter, or 
earthquake focus, over the fault plane. All regions that are sliding continually radiate 
outgoing P- and S-wave energy. The displacement field, D(x, t), varies over the surface of the 
fault. Note that the direction of rupture propagation does not generally parallel the slip 
direction. (Modified from Bolt. 1988.) 
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mated as a point source of the seismic 
waves, concentrated in space. Shorter-
wavelength waves are sensitive to the finite 
extent and detailed variation of slip pro­
cess on the fault, and they require finite 
source models. In the next chapter we will 
address the nature of the frictional sliding 
of faults and the associated stress regime 
in the rock; in this chapter we will concen­
trate on the geometric nature of faulting 
and its mathematical representation. 

A standard nomenclature has evolved 
for describing fault orientation and slip 
direction that is useful to introduce at this 
point. We visualize faulting as slippage 
between two blocks of material (Figure 
8.4a), where the slip is constrained to lie in 
the plane connecting the two blocks. This 
constraint precludes extensional crack 
opening or closing, but we will discuss 
such sources later. To describe the orien­
tation of the fault plane in geographic 
coordinates, we require two angular pa­
rameters. These are the strike of the fault, 
(l)p the azimuth of the fault's projection 
onto the surface measured from north, 
and the dip of the fault, S, the angle 
measured downward from the surface to 
the fault plane in the vertical plane per­
pendicular to the strike. The strike direc­
tion is defined such that the dip is < 90° 

(i.e., so that if you orient the thumb on 
your right hand along the strike and rotate 
your hand downward from the horizontal 
to the fault plane, your hand will pivot 
through an angle less than 90°). The strike 
direction is arbitrarily either orientation 
for a vertically dipping fault (S = 90°). The 
actual motion of the two blocks on either 
side of the fault is defined by a slip vector, 
which can have any orientation on the 
fault plane. The direction of the slip vector 
is given by the angle of slip, or rake (A), 
measured in the plane of the fault from 
the strike direction to the slip vector show­
ing the motion of the hanging wall relative 
to the footwall. The magnitude of the slip 
vector is given by D, the total displace­
ment of the two blocks. In general, (t)f, 8, 
A, and D can vary over the finite fault 
surface, with average values being used 
for simple models. 

Three basic categories of fault slip are 
commonly used to characterize motions on 
faults relative to the Earth's surface (Fig­
ure 8.5). When the two sides of a fault slip 
horizontally relative to each other, the mo­
tion is called pure strike slip (A = 0°, 180°), 
and if the dip is 90° the geometry is called 
vertical strike slip. For A = 0°, the hanging 
wall (or near side of a vertical fault) moves 
to the right, so that a point on the other 

Footwall 

Hanging wall 

FIGURE 8.4 (a) Convention for naming the two blocks on either side of a nonvertical fault. 
The block above the fault is the hanging wall; that below is the footwall. Cb) Standard definition 
of fault-plane and slip-vector orientation parameters. The figure also defines strike (</>f], dip 
(5). and rake or slip (A), as discussed in the text. 
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Strike-slip fault 

FIGURE 8.5 Examples of the end-member 
styles of faulting for different slip vectors. (From 
Bolt. 1988. Copyright © 1988 by W. H. Freeman 
and Co. Reprinted with permission.} 

side of the fault moves to the left; this type 
of fault movement is called left-lateral slip. 
If A = 180°, the fault movement is called 
right'lateral slip. The other end-member 
types of motion involve slip with a vertical 
component of relative displacement of the 
two blocks, which is called dip-slip fault­
ing because the slip vector parallels the 
dip direction. For A = 90°, the hanging wall 
moves upward, causing thrust faulting, and 
for A = 270° it moves downward, causing 
normal faulting. In general, A will have a 
value different than these special cases, 
and the motion is then called oblique slip, 
with the predominant character being de­
scribed by stringing together appropriate 
modifiers (e.g., right-lateral oblique normal 
faulting, for 180° < A < 270°). 

Now, let us apply our intuition to con­
sider the pattern of P-wave displacement 
motions that we expect for an arbitrarily 
oriented shear dislocation. Referring to 
Figure 8.6, we expect that alternating 
quadrants will exist in which static motions 
will occur and that the initial motions of 
the P arrival will be compressional (mo­
tion away from the source) or dilatational 
(motion toward the source). This is in­
ferred from considering the respective 
pushing and pulling of the quadrants sur­
rounding the fault when sudden slip oc­

curs. The changes in static deformations 
and initial P-wave polarity on the spread­
ing wavefront do not occur abruptly, but 
rather a smooth, three-dimensional radia­
tion pattern results that we can describe 
using polar coordinates with simple 
trigonometric functions. Thus, we intro­
duce a local Cartesian coordinate system 
at the source, with the jCj axis along the 
slip direction, X2 also in the plane of the 
fault, and JC3 perpendicular to the fault. 
We also introduce spherical coordinates 
r,0,</) for this source reference frame, as 
defined in Figure 8.7a. In this geometry, 
the P-wave displacements can be de­
scribed by w^a sin20cos^(^, as will be 
derived later. When 0 = 0° (i.e., in the 
JC1JC3 plane) u^ a sin 26 (Figure 8.7b), which 
is a simple four-lobed azimuthal pattern 
reflecting the alternating quadrants in Fig­
ure 8.6. The smoothly varying function 
makes intuitive sense, with reversals in po­
larity occurring where amplitudes have 
smoothly gone to zero. Thus, no tearing of 
the ground occurs outside the slip zone or 
on the P wavefront, just a smooth transi­
tion from outward initial motions to in­
ward initial motions. The strongest P-wave 
motions are thus expected in the middle of 
the four quadrants, at 45° angles to the 
fault plane {x^X2) (Figure 8.7c). We will 
see that such simple geometric patterns 
are characteristic of radiation from faults 
and that most of the complexity of infer­
ring the source geometry comes from 
mapping from the Earth's geographic ref­
erence frame in which we make wave mea-

© 
— r .® 

Fault plane 

SLIP "^ ^ \^y^ 
VECTOR auxiliary plane . 

FIGURE 8.6 Sense of initial P-\Na\/e motion with 
respect to the fault plane and auxiliary plane. 
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Nodal 
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compression 

Ur ~ sin 2 0 

Strong compressional amplitude 

Weak amplitude 
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Strong dilatation 

Wavefront 

FIGURE 8.7 (a) The local source coordinate system Cx-,, Xg, X3] with coordinates parallel or 
perpendicular to the fault plane with one axis along the slip direction, (b) The radi­
ation-pattern variation over the P wavefront in the x^Xg plane. Cc] The three-dimensional 
variation of P-wave amplitude and polarity on a spreading wavefront from a shear dislocation. 

surements back to the source coordinate 
system, where radiation patterns have sim­
ple low-order symmetry. 

The ampHtude and polarity of the 
F-wave displacements will be preserved 
along the associated path to any receiver 
because the wave transmits the initial mo­
tion from particle to particle without mod­
ification. If sufficient observations of the 
static deformations near the fault or of the 
first P-wave motions are made and if their 
initial orientation relative to the source is 
determined by "propagating" the wave 
back to the source, the orientation of the 
fault plane can be determined. If static 
deformations or actual surface rupture is 
measured, the fault plane can be deter­
mined uniquely; however, the symmetry of 
the pattern of alternating compressional 
and dilatational quadrants prevents the 
fault plane from being uniquely deter­
mined by P-wave first motions alone. In 

this case an orthogonal auxiliary plane 
exists, perpendicular to the fault plane 
(Figure 8.6), that could just as well have 
experienced faulting dislocation, with an 
opposing sense of slip (i.e., right-lateral 
motion on the true fault is indistinguish­
able from left-lateral motion on the auxil­
iary plane). In the Earth, we must account 
for the curvature of the seismic-wave ray-
paths (e.g., Figure 8.2) when relating ini­
tial motions to the source orientation. The 
situation is relatively straightforward near 
the event, where raypaths are simple and 
the quadrantal distribution of motions is 
readily apparent for a vertical strike-slip 
fault (Figure 8.8). Procedures for deter­
mining the fault orientation for arbitrary 
orientations and more complex raypaths 
are described later. 

We now consider how these simple ideas 
of faulting can be represented in a form 
suitable for incorporation in the elastic 
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FIGURE 8.8 First motions of P waves at seismometers located in various directions about 
an earthquake allow determination of the fault orientation. P waves, for which upward 
motions are compressional (away from the source) and downward motions are dilatational 
(toward the source], exhibit a simple alternation with quadrants for a vertical strike-slip 
fault, as shown. (Modified from Bolt, 1988. Copyright © 1988 by W. H. Freeman and Co. 
Reprinted with permission.) 

equations of equilibrium or motion. Then 
we proceed to relate the source radiation 
from shear-dislocation sources to the 
ground-motion observations provided by 
seismograms. 

8.2 Equivalent Body Forces 

We have considered intuitively the ge­
ometry of P-wave displacement radiation 
from a shear dislocation, and we will now 
proceed to quantify this. We recall the full 
equation of motion for an elastic medium 

pu = f+ (A +2^t)V(V-u) - ^ t V x V X u . 

(2.52) 

In the earlier chapters of this book we set 
f = 0 (no body forces) and let u = V(̂  + 

V x * to separate P- and 5-wave distur­
bances. Now, we want to ask the question: 
Are there body forces, f, that are equiva­
lent to earthquake-faulting dislocations, 
and if so, can we still solve this equation to 
find the wave disturbances they produce? 

At first thought it seems unlikely that 
any simple body-force system could possi­
bly be an adequate representation of a 
finite shear-faulting failure. First of all, 
there is the finite extent of the faulting. As 
described in the last section, the rupture 
initiates at the hypocenter and spreads 
over the fault plane as a rupture front, or 
spreading dislocation surface (Figure 8.3). 
As the rupture front expands, all enclosed 
sliding regions of the fault continually ra­
diate energy in the form of P and S waves. 
Individual particles on the fault may have 
smooth or irregular time histories of parti-
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cle dislocation. Each point on the rupture 
surface may also have a slightly different 
slip vector. In general, these slip vectors 
are expected to be nearly parallel, but the 
amount of slip can vary spatially within the 
rupture zone and must vary at the edges of 
the final rupture surface (where the dis­
placement goes to zero). While fault slip­
page results from the earthquake process, 
we ignore many other phenomena, such as 
local heating and perhaps mehing of rock, 
hydrologic pressure variations, and rock 
fracturing, to conceptualize the kinematic 
rupture history. Our goal is to replace this 
kinematic rupture process with a useful 
force system that produces equivalent seis­
mic-wave radiation. 

We proceed by "standing back" from 
the fault and considering the average 
properties of the rupture. We are mainly 
interested in gross characteristics such as 
the total rupture area, ^,_the average dis­
placement over the fault, D, and the aver­
age velocity and direction of rupture prop­
agation, y.. For seismic waves with periods 
longer than or comparable to the duration 
of rupture and for wavelengths that are 
large relative to the fault dimensions, we 
can visualize replacing the complex fault­

ing by a simple dislocation representation 
(Figure 8.9). In its simplest form the dislo­
cation model idealization will involve a 
point source (i.e., no spatial extent), with a 
simple dislocation time history to approxi­
mate the process of seismic-wave radiation 
during particle dislocation and expansion 
of the rupture area. More complex models 
of spatial distributions of dislocations can 
be constructed from this end-member case. 
Model complexity increases as the ratio of 
seismic-energy wavelength to fault length 
decreases. 

The average dislocation model in Figure 
8.9 now looks like a simple enough system 
to be replaced by a force system that would 
be dynamically equivalent, meaning one 
that produces equivalent seismic-wave ra­
diation. Indeed, it would appear that we 
simply need a time-varying force couple 
applied within the elastic medium to simu­
late the dislocation. The level of approxi­
mation implied in Figure 8.9 clearly de­
pends on the sensitivity of the seismic 
waves to the details of the faulting com­
plexity, which is frequency and wavelength 
dependent, and on the extent to which one 
wants to determine actual stresses on the 
fault. Both dislocation and equivalent 

Actual Fault 
Displacement History 

Average 
Dislocation Model 

Equivalent 
Body Force Systeni 
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FIGURE 8.9 Concepts underlying equivalent body forces. Actual faulting involves complex 
cracking and frictional sliding over a surface in a short t ime that results in a space-t ime 
history of slipping motion. The finite spatial-temporal faulting process can be approximated 
by a dislocation model with dislocation time history D{t]. In turn, this dislocation model can 
be idealized by an equivalent force system that can be directly incorporated in the equations 
of motion. 
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body-force models must fail at some point 
to express the actual physics of faulting, 
but point-source and finite-source models 
of fault kinematics have revealed many 
gross characteristics of faulting. The main 
failing of such kinematic models is that 
they do not explicitly include physics for 
initiating or terminating rupture, and 
hence they leave many fundamental issues 
unresolved. 

A clear problem with the single-couple 
model of faulting is that a force couple has 
an associated moment, MQ = \f\8d (as the 
separation between the force arms, 5 J -> 0 
and I/I -* 00, giving a constant MQ). Thus, 
we would have a net unbalanced moment 
introduced into the medium when the dis­
location occurred. Recalling the ambiguity 
between fault plane and auxiliary plane for 
P-wave radiation patterns, it is reasonable 
to expect that we need a second force 
couple to balance the moment of the force 
system (Figure 8.9) so that no net moment 
is added to the medium and so that the 
force couple will be directed along the 
auxiliary plane. This is the double-couple 
model, which is the currently preferred 
model of equivalent body forces for a dis­
location source. Later in this chapter we 
will introduce a more general system of 
body forces called a seismic moment ten­
sor, which includes double couples as a 
special case. 

There was much debate about the suit­
ability of the single-couple versus the dou­
ble-couple model for faulting that lasted 
from the 1920s until the mid-1960s. Al­
though the single-couple model makes less 
sense physically, the main reason for not 
ruling it out was that the P-wave radiation 
from both models is indistinguishable. 
However, the 5-wave and surface-wave ra­
diation is not, and when sufficient data 
became available, it was unambiguously 
demonstrated that the double-couple 
model was more appropriate. In addition, 
elastodynamic solutions for actual stress 
and displacement discontinuities in the 

medium (an alternate way of modeling 
shear faults, which we do not consider in 
this text) confirm the equivalence of dou­
ble-couple body forces and shear disloca­
tions. 

If we consider the geometry of the dou­
ble-couple force system, we can anticipate 
some of the results of the next section. 
Figure 8.10 shows that a double-couple 
force system can be equivalently repre­
sented by a pair of orthogonal dipoles 
without shear, or what are called the prin­
cipal axes. These axes are at 45° angles to 
the x^X2 fault plane, in the orthogonal 
plane JCiJC l-*3- The dipole directed toward 
the source is the compressional or P axis 
and lies in the quadrants of dilatational 
P-wave first motions toward the source 
(you can avoid confusion over the nomen­
clature by thinking of the P axis as push­
ing the ground toward the source, which 
clearly implies P-wave dilatation). The 
dipole directed outward from the source is 
the tensional or T axis, and it lies in the 
quadrants of compressional initial F-wave 
motion (think of these as regions where 
the ground is pulled away from the source, 
hence giving compressional P waves). 
5-wave radiation patterns follow the geom­
etry shown in Figure 8.10, with the sense 
of shearing motion on the wavefront re­
flecting the orientation of the force on the 
near side of the source double couple. The 
P and S radiation patterns are rotated by 
45° from one another, but a sin 20 symme­
try still precludes distinguishing the fault 
plane and the auxiliary plane using only 
first motions. The 5-wave radiation for a 
single couple has only a two-lobed radia­
tion pattern, which provides the basis for 
distinguishing it from the double-couple 
mechanism. While the double-couple force 
system has no net moment, the strength of 
the two couples can be represented by the 
seismic moment, MQ, which will be shown 
to equal jxAD, where /ijs the rigidity, A 
is the fault area, and D is the average 
displacement on the fault. 
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FIGURE 8.10 The double-couple force system in the x-,X3 plane for a shear dislocation in 
the x-jXg plane. An equivalent set of point forces composed of two dipoles without shear, or 
the principal axes, is shown in the center. On the right are the patterns of P- and S-wave 
radiation distributed over the respective wavefronts in the x^Xg plane. 

The key to constructing solutions of the 
equations of motion for a complex set of 
body forces such as a double couple is to 
solve first for the displacement field due to 
a single point force and then to use the 
linearity of elastic solutions to superim­
pose the solutions for several forces to 
produce a displacement field for force 
couples. Thus, it is important to gain phys­
ical insight into the most elementary elas­
tic solutions for a point force. We do so by 
considering the solution of the static prob­
lem of a force, F, applied at a point in a 
homogeneous elastic medium, as in Figure 
8.11. Let us consider the displacement 
field, u, on a spherical surface S of radius 
r centered on the point source. The mag­
nitude of the displacement can be approxi­
mated as follows. For the system to be in 
equilibrium, the body force, F, must be 
balanced by the stresses acting on 5. The 
stress will be compressional at point C, 
purely shear at Q, and mixed shear and 
compressional or dilatational at intermedi­
ate points on 5. If we generically repre­

sent the stress on 5 by cr, a first-order 
force balance gives |F| ~ 4Trr V. For lin­
ear elasticity we know that o- = Ee = 
£(Vu), where E is some general elastic 
modulus and e is the strain. If we let M(r) 
be the magnitude of the displacement at r. 

FIGURE 8.11 A planar cut through a three-
dimensional volume, V, in which a point force, F, 
is acting. We consider the nature of the 
displacement field, u, on a spherical surface of 
radius r centered at the point of application of 
the force. 
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then du/dr gives the magnitude of a: function 5(r) 

du F 

Thus 

dr 47rr̂  

-Fdr F 

Thus the static displacement field from a 
point force is expected to diminish with 
distance from the source, and the displace­
ments are directly proportional to the force 
divided by an elastic modulus. This ap­
proximation lacks the directionality infor­
mation of the displacement field, which 
involves a combination of radial and shear 
components, but the logic sequence is the 
same, as we will now follow to derive com­
plete solutions. We will introduce a point 
force, use the equations of equilibrium or 
motion to produce a force balance, and 
then find a representation of the observ­
able ground motions (both static and tran­
sient) in terms of the force magnitude and 
time history. 

8.3 Elastostatics 

We want to determine the static dis­
placement u at point P in an isotropic, 
infinite, homogeneous elastic medium with 
density p and elastic constants A and /̂  
due to a force at point O. At large dis­
tances from the source, u = 0. We define 
the point force F by 

F - lim pf6F, (8.5) 

where f is the force per unit mass, pf is the 
body force per unit volume, and SK is a 
small volume element being acted on. We 
introduce the three-dimensional delta 

Using Gauss' theorem (Box 2.3) we can 
find that 

«<^>-47'l7)- («■') 

which allows us to represent the delta 
function by spatial derivatives of the radial 
coordinate r~^ 

8.3.1 Static Displacement Field 
Due to a Single Force 

We now introduce this mathematical 
representation of a point force into our 
basic elastic equations for equilibrium 
(2.52), with ii = 0: 

F + (A -f- 2)Lt)V( V • u) - /iV X V X u = 0. 

(8.8) 

Consider a point force of magnitude F at 
the origin. 

F = pf = Fa5(r) = -FvA — \ 
KATrr I 

= -F V V 
I 4 irr j l4irA-/J 

(8.9) 

where a is a unit vector in the direction of 
the force. We have used the vector identity 
(2.51) [V2u = V(V-u) -VxVXu] . The 
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equation of equilibrium becomes 

- 1 ^ ) 
' -'H 

obtain Poisson's equations 

F 
V^Ap = 

Airr 
V X V ^(£;) Vl4c = 

4ir(A + 2;x)r 

F 
4ir/i.r 

(8.14) 

= - ( A + 2 / i ) V ( V - u ) + / i V x V X u . 

(8.10) 

We look for a solution of the form 

u = V ( V - A p ) - V x V x A j where 

Since V^r = 2/r, we can integrate these to 
obtain 

v4p = 
Fr 

8ir(A + 2^) 

Fr 
^s=T^ (8.15) 

[ V x A p = 0 

1 V - A 5 = 0 

.•.V2Ap = V(V-Ap) 

.•.V^A5= - V X V X A ^ 

(8.11) 

based on our knowledge (Box 2.3) that any 
displacement field can be represented by a 
sum of solenoidal and irrotational fields, 
as the source has been represented. Sub­
stitution of this solution leads to 

These solutions are potentials that solve 
the inhomogeneous equations (8.13). We 
compute the displacements by inserting 
them into (8.11). Plugging in our potentials 
Ap and A^ and expressing the vector op­
erations with indicial notation, (8.11) and 
(8.15) yield the ith component of displace­
ment for a unit force (F = 1) in the jth 
direction, u\: 

1 d dr 

V V-
Fa 

Airr 
+ (A + 2/i)V2Ap 

87r(A + 2/i) dx- dxj 

1 d dr 1 ^ 
+ 5,...-—W 87r/x dx^ dXj '̂  STT/JL 

+ V X V X 
Fa 
Airr 

(8.12) 

1 , A+iLL d'r 
Sir fjL A + 2/A dXi dXj 

or 

which can be satisfied by having 

(A + 2/X)V2A^ = 

/ ^ ^ , = 

Fa 
47rr 

Fa 
(8.13) 

If we put Ap=ApB and Xs^^AgSi, we 

w = Sirfi 
( S , , r „ , - r r „ , ) (8.16) 

where 

r = 
A +/X 

A + 2iLi 
(8.17) 

For A «jLL, a Poisson solid, T = 2/3. We 
have oriented our Cartesian coordinate 
system in the reference frame of the source 
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FIGURE 8.12 (a] The unit vectors in the polar coordinate system centered on the source, 
(b) The azimuthal pattern of radial displacements, u^, and tangential displacements, u^, in 
the X1X3 plane for a point force in the x^ direction. These combine to give the deformation 
field shown in Figure 8 .11 . 

(i.e., the force acts along one of the axes), 
and we determine displacements relative 
to this local source reference frame. Equa­
tion (8.16) is the Somigliana tensor. Note 
that it is symmetric, u{ == u). For a force, F, 
the six independent permutations are 

«{ = 

M? = 

STT/U. 

F 

F 
SlTjU, 

F 

[r r'j 

(r^) 

( ^ ^ ) 

W9 = 

.3 = 

ul = 

STT/JL 

F 
STT/JL 

F 

ri--4 
r r 

1 X 

n (8.18) 

We consider the case in which the force is 

applied in the jCj direction and find the 
displacements given in polar coordinates 
ir,6,(f)) for the source reference frame 
(Figure 8.12), using the Jacobian coordi­
nate transformation: 

sin 0 cos (f) sin 0 sin (f) cos 6 
cosdcos(f) cos0sin(^ -sine/) 

- sin (f) cos (̂  0 

(8.19) 

In the x^x^ plane, <̂  = 0; thus we find 

sin^wJ + cos^wl = 
477/1 r 

UQ = COS9U\ - sinOul 

F ( r 

sine 

(8.20) 
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These solutions, with simple trigonometric 
patterns of static deformation as illus­
trated in Figure 8.12, are very similar to 
the intuitive derivation at the end of the 
preceding section. The radial motions are 
static deformations that have a simple 
two-lobed sinusoidal distribution around 
the source, with maxima toward and away 
from the point force in the direction of the 
force. The shearing deformations in the 
x^x^ plane also have a two-lobed pattern 
of shearing parallel to the direction of the 
force. Axial symmetry requires that these 
patterns be rotated around the x^ axis to 
obtain the full, three-dimensional pat­
terns. 

8.3.2 Static Displacement Field 
Due to a Force Couple 

If we apply a force at position (^j, 2̂? ^3) 
instead of at the origin, the displacement 
at P(jCi, JC2, JC3) will still be given by the 
Somigliana tensor, with all distances cor­
rected by the offset of the source location, 
e.g., r2 = ( x i - ^ i ) 2 + (jC2-^2)^ + (jC3-
^3)^. If we apply a force F in the x^ direc­
tion at ^2 "̂  i d^2 ^^^ another force F in 
the -jCj direction at ^2" h^^i^ we con­
struct a single force couple as shown in 
Figure 8.13. The displacement at 
P(jCi, ^2, JC3) is the sum of the displace­
ments from the two individual forces: 

u\{^\A2^ld^2^^3'' ^l.-^2'^3) 

find the couple response. Since 

' ■ ' = ( ^ 1 - ^ 1 ) ' + ( ^ 2 - ^ 2 ) ' + ( ^ 3 - ^ 3 ) ' 

we see that 

Therefore 

dr 

du{ 

^^k 

dr 

du{ 
dx^ 

(8.22) 

and the displacement for the force couple 
in Figure 8.13 is given by 

- — ^ d ^ 2 + 0(d^2) ' . 
0X2 

(8.23) 

If we let d^2 -* 0 and F -> 00 so that Fd^2 
-^M, a finite moment, this result gives the 
static displacement field for the single cou­
ple with moment M. This is a direct conse­
quence of linear superposition of solutions 
for elastic materials. Thus, the displace­
ment (w,) due to a single couple at the 
origin with forces acting in the x, direc­
tion offset in the X2 direction can be ob­
tained by replacing F by M in the 
Somigliana tensor, taking the derivative of 
all the terms with respect to X2, and 
changing the sign: 

" K ^ i ' ^ 2 - i ^ ^ 2 » f 3 : ^ P ^ 2 > ^ 3 ) "1 
M 

STT/X 

— IX'j 
■ ( ^ - ^ ) 

du] 2 
-^d^2^0{d^2). (8.21) u.= 

M 0-^) 
Here the arguments give the source loca­
tion and then the observing position. Thus, 
we calculate the difference between the 
displacement fields due to the single forces, 
allowing for the slight spatial offset d^2-> ^^ 

M 

877/1 

/ X^X2X2\ (8.24) 

Similarly, if the single couple is oriented 
along the A: 2 axis with offset arm along the 
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P (X^, X2, X3 ) 

F(^.42+4^2.^) 

FIGURE 8.13 A force couple acting at position (f^.^g'^s^ parallel to the x^X2 plane. 

jCj direction, we find 

w , = 
M 

M -2x, 
" 9 = -

M^ = 
M 

STT/X 

( ^ - ^ ) 

,(_3^j (8.25) 

In general, for a couple oriented with 
forces in the yth direction with offset in 
the A:th direction, the displacements are 

uj ^, where moment is defined to be M . = 
positive for clockwise rotation and nega­
tive for counterclockwise rotation around 
the perpendicular axis. 

8.3.3 Static Displacement Field 
Due to a Double Couple 

In the previous section, it was argued 
that a double-couple model is an appropri­
ate equivalent body-force system for an 
earthquake dislocation. To determine the 
displacement field due to the double cou­

ple, all we do is sum the displacements for 
the individual couples! This is because the 
principle of superposition that holds for 
point forces must also hold for couples. 
Thus, for the double couple in the JC1X2 
plane shown in Figure 8.14a, the displace­
ments are given by 

«. 

M llx 
STT/X 

M 
Airiir^ 

-«?,2 + «U 

2MT 
SviJL \ r 

3x1 

(8.26) 

DX J X1 

M . = 
M I2x^\ IMF 

M 

\ -
DX -jX \ 

Avfir^ 

M 

1 - r 1 -
3x1 

AvfjLr'^ \ r^ J 

SlTfl 

M 
(8.27) 
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FIGURE 8.14 (a] A double couple in the x^x^ plane, (b) Azimuthal pattern of radial (t/p) and 
tangential [u^) displacements in the x^Xg plane, (c] The total displacement pattern in the 
x^Xg plane on a circle around the source, involving a combination of u^ and u^ components. 

Using the polar coordinates (r,0, ĉ ) in 
Figure 8.12, the displacements can be writ­
ten in terms of u^, UQ, and u^: 

^ I - I . 

Un = 0, and 

Mil r 
Mfl = 

4ir/xr^ \ 2 2 

M 

— sin 20 sin 2(^ 

47r/xr 
r ( l - r ) s in0cos2<^. (8.28) 

Note that the displacement fields for the 
double couple drop off with distance from 
the source much more rapidly than for the 
point force. On the 1̂X2 plane, 0 = 7r/2, 

w . « | l + ^|sin2</> 

"<^^(l -r)cos2<^. (8.29) 

These are the azimuthal variation of ŵ , w^ 
displacements in the X1X2 plane and are 
shown in Figure 8.14b. If we consider the 
static displacements on a circle, we have 
the pattern in Figure 8.14c, involving both 
shearing and radial components. 

So are these results useful for anything? 
Indeed they are, as Eqs. (8.27), or the 
similar terms for any other double-couple 
orientation, can be numerically computed 
to determine static deformations of the 
Earth around a slipped fault. The basic 



8.3 Elastostatics 

FIGURE 8.15 Ground displacements on the surface of a half-space computed for slip on a 
vertical strike slip, with a length (2L) equal to the downdip width [D]. Fault parallel motions 
are shown on the upper right, fault perpendicular motions are shown on the lower left, and 
vertical motions are shown on the lower right. Contour values in units of 10 "^ U. where U is 
the uniform dislocation on the fault. Solid contours in the lower right indicate uplift, dashed 
indicate depression. (From Chinnery. 1961.] 

idea is that the displacement field due to a 
shear dislocation can be given by the dis­
placement field due to a distribution of 
equivalent double couples that are placed in 
a medium without any dislocation. This is 
one of the most important concepts in 
seismology, and it underlies both static 
and dynamic displacement modeling. 

Since static deformations decay rapidly 
with distance from the source, most mod­
eling involves vertical and horizontal 
ground deformations that are observed 
near the fault, so a point-source approxi­
mation is almost never valid. Thus, a finite 
fault with a numerically discretized distri­

bution of double couples is usually used. 
Calculations of surface horizontal and ver­
tical displacements for a vertical strike-slip 
fault are shown in Figure 8.15. Note that 
the finite dimensions of the fault produce 
complex patterns of displacement at the 
ends of the fault, even for this uniform-slip 
model. Observed patterns can be modeled 
to constrain the faulting parameters. An 
actual data application is shown in Figure 
8.16, where surface vertical ground mo­
tions measured by leveling before and af­
ter the 1989 Loma Prieta earthquake are 
used to derive an average fault model for 
the event. Oblique right-lateral thrust 
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50 H 

FIGURE 8.16 Observed vertical ground motions (in millimeters] near the 1989 Loma Prieta 
rupture zone compared to predictions of a dislocation model. The orientation of the fault 
zone is a 30-km-long fault parallel to the San Andreas dipping about 70° to the south. The 
star shows the epicenter of the event; the triangle labeled LP is the location of Loma Prieta 
Mountain, for which the event is named. (From Marshall et al., 1991.3 
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faulting produced the 0.6-m uplift as well 
as horizontal motions of about 1.5 m. Typ­
ically, some constraints can be placed on 
the total slip and fault area (and hence on 
the seismic moment) of well-recorded 
events. Ongoing research in geodetic mod­
eling of faulting includes incorporating vis-
coelastic effects of the deeper crust and 
upper mantle, adding layering and elastic 
parameter heterogeneity in the Earth 
model, and inverting for variable slip func­
tions or changing fault mechanisms. 

We proceed now to allow for time de­
pendence of the source force system, which 
gives rise to both transient waves and per­
manent static deformations of the medium. 

8.4 Elastodynamics 

We now consider the application of a 
time-varying force system to a homoge­
neous elastic whole space. Mathematically 
this is a much more difficult problem than 
the statics case. The temporal dependence 
means that we will have to perform an 
extra set of integrations, with respect to 
both time and space. The elastostatics pro­
vided the logical framework for elastody­
namics, and we will follow the same basic 
procedures. Because some of the mathe­
matics is beyond the scope of this text, we 
have left out some of the mathematical 
steps. More detailed analysis can be found 
in advanced texts such as Aki and Richards 
(1980) or Kasahara (1981). As for the static 
problem, we construct the full solution for 
the double-couple force system by sum­
ming up solutions for the single force re­
sponse. The elastodynamic equations are 

pii = pf + (A + 2/i)V( V 'u)-/iVxVXu. 

(2.52) 

We let the body force per unit volume (pf) 
have the time-dependent form pt(t) = 
F(t)8(r)a, where Fit) is the time history of 
the applied force. Common force-time 

histories to consider are delta functions, 
8(0, step functions, HU), and ramp func­
tions, R(tX like those in Figure 8.1. As 
before, we use a vector identity to write 

pf = F ( 0 5 ( r ) a = - F ( r ) V 2 ( £ ^ ) 

= -F(0(v[ ̂  l4 irrj j 

- V X V X i^))- ''• 30) 

So we seek a solution of the form [see 
(8.11)] 

u ( 0 = V ( V - A p ) - V X V X V A ^ 

The elastodynamic equation separates into 

fit) d^k, 
(A + 2)n)V^Ap= a + p 

M V 2 A , = 

4irr 

— a + p —T-. 

(8.32) 

Puttingkp=Apai, A^ = ^ j a , these reduce 
to scalar equations: 

V^A, 
F(t) 1 dU, 

+ -^ 4v(X. + 2fi)r a^ dt 

where a = P velocity ■■ 
A +2/1 

47r/xr )8^ dr 

where )8 = 5 velocity = W — • (8.33) 

Before proceeding, we want to consider 
the form of solutions to the inhomoge-
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neous wave equation 

1 d^^ 
W^(t>{Xi,X2,Xj,t) - -^ r:2"(jfi,JC2.^3'0 c2 dt^ 

^g{Xt,X2,Xj,t). 

tions: 

1 9^ 

(8.34) HT,t) = 
1 5 ( f - T - | x - | | / c ) 

4ir I x - | | 
A specific form of g that is useful to know 
the solution for is 

g ( x , f ) = - S ( x ) S ( 0 = - 5 ( r ) S ( 0 

(8.35) 

or a point force in space and time. The 
solution is 

1 8{t-(r/c)) 

This solution is very important. It states 
that the solution to a symmetric point-
source impulse is an outward-propagating 
wave that decays in amplitude as 1/r. A 
corresponding solution was invoked in the 
initial discussion of explosion sources at 
the start of this chapter. From Chapter 2 
(Box 2.5), we recall that the form of spher­
ically symmetric waves that solve the ho­
mogeneous wave equation is 

(8.37) 

a standard D'Alembert-type solution. The 
1/r term stems from the amplitude de­
crease required to keep the total energy 
on the spreading wavefront constant. We 
also see that the delta function source 
shape is of the same form as the far-field 
displacement time history. Given (8.36), 
we can readily construct additional solu-

(8.38) 

which is the solution for a point force at 
position Jc = (^1,^25^3) applied at time 
t = T. Another basic solution is 

1 aV 
V ' ^ - 3 ^ = -«(^-^)/(0 

^ 
1 fit-\x-^\/c) 

ATT \x-i\ 
(8.39) 

If the source is extended throughout a 
volume, V, as well as in time 

^('' ' ') = j z / / / ■'—^' d^-
u-i\ 

(8.40) 

This states that the field at (x, f) is sensi­
tive to source activity in the element dV 
(at | ) only at the retarded time f - ( | x -
| | / c ) . We can thus write down solutions to 
Eq. (8.33) as 

A =-L fff -n^- |x- | l /«) 
'' 4ir JjJ 4T7(A + 2M)r |x-€ l 

A,= 
1 

/ / / 
- f ( f - | x - | | / i 3 ) 

dV, 4vfir\\-^\ 

(8.41) 

where | = 0 for a point force at the origin. 
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The next steps are rather messy. It is 
necessary to integrate over the volume 
around position x. Let the distance 
Ix-gl =aT, where r is the transit time. 
Then it can be shown that 

Ap(r,t) 

1 
4p7rr \-'o 

F{t-{r/a)-T)rdT 

Asir 

- j"F{t-T)Tdr\ 

,t)-- {rF(t~(r/P)-r)rdT 
Apirr \JQ 

-fF{t-r)TdT\. (8.42) 

The actual displacement field is obtained 
by computing 

u = V ( V - A p ) - V x V X A 5 . (8.43) 

For a body force Fit) applied in the x^ 
direction at the origin the total displace­
ment field is 

M,(x,0 

= r — ^ - ^ \ rF(t-T)dT 
Airp \dXidXi r jJr/a 

Airpa'^r \ dx^ dx^ ) \ a ) 

1 / -dr ^f \ ( f \ 
"̂  4Trpl3^r\ '^lix~ ^ j V ~ ^ j ' 

(8.44) 

We can repeat this process by letting each 
dx^ be dx2 or dx^, thus easily obtaining 
the solutions for point forces in the JC2 or 
JC3 direction. 

For a point force FU) in the Xj direc­
tion, located at the origin, we have the 

classic Stokes solution: 

1 1 r/P ^(3%r.-^o);i(;^/^(^-)^r 

1 \ r r^ 
Airpa"^ V V a) 

1 1 / r \ 
-^(r,r,-a,v)7^('-^). iirpp 

(8.45) 

where y^ is the direction cosine; y, = 
(x^/r) = dr/dXj. The first integral term be­
haves like 1/r^ for short-duration sources, 
and the other terms behave like 1/r. Thus 
the first term is called the near-field term, 
and the latter terms are far-field terms. 
The first far-field term is a P wave: 

uf-- -y.y.-F\t---] (8.46) 

with the following properties: (1) it attenu­
ates as 1/r, (2) the wave propagates with 
velocity a = [(A 4- 2/A)/P]^^, (3) the wave­
form is proportional to the applied force, 
and (4) the displacement is parallel to the 
direction from the source. Figure 8.17 in­
dicates the sense of P radial motions asso­
ciated with this term. The second far-field 
term is an 5 wave 

(8.47) 

with the following properties: (1) it attenu­
ates as 1/r, (2) the wave propagates with 
velocity j8 = (fx/py^, (3) the displacement 
waveform is proportional to the force, and 
(4) the direction of displacement is per­
pendicular to the direction from the 
source. The sense of shearing motions is 
shown in Figure 8.17. The near-field dis­
placements comprise contributions from 
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P Wave 8 Wave 

FIGURE 8.17 Sense of far-field displacements on P and S wavefronts produced by a single 
force in the Xj direction in an infinite, homogeneous, isotropic medium. 

both the P and S wavefields, and these 
cannot be easily separated. 

The displacement field for single cou­
ples and double couples can be obtained 
by differentiating the single-force results 
with respect to appropriate coordinates. 
This is the same as we saw for the static 
fields. 

Differentiating the complete Stokes so­
lution with respect to each coordinate 
direction gives the result for a couple par­
alleling each direction. The complete solu­
tion including near-field terms is given on 
pages 78-83 of Aki and Richards (1980). 
The major results can be obtained from 
considering the far-field P wave alone, 
with the other results following from simi­
lar analysis. 

P waves in the far field from a force 
couple (Figure 8.18) with time history hit) 
are given by summing the motions due to 
individual point forces: 

«f= 
1 

Airpa ;y ,yr 
h{t-ir/a)) 

uf^ AiTpa 
1 . ,^{t-{r,/a)) 

iJiJ-x 

(8.48) 

The sum of these gives the total displace­
ment due to the force couple: 

Airpa % y r 
h{t-{r/a)) 

+ rrr-1 
^2 

(8.49) 

Let's consider yp,y-\,r2 for |Ar| 
r . - r <^r 

Xi 

% = 

xf2 xf^ X 
Ji ^ - ^ « - ( f o r ; # 2 ) 

r + Ar r r 

^ 2 fa* Jt 2 

AJC-, 
Ji ' = T/ '2j' 

(for ; = 2) 

(8.50) 

Note that although Ar<^r, Ax2 is not 
necessarily <^X2- Referring to Figure 8.18, 
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P(X, ,X2,X3) 

r2 = >/X,'+(X2+AX2)2+X3 

^ X, 

FIGURE 8.18 A couple for which far-field P-wave displacements are computed. 

we approximate the direction cosines: pared with hU - (rj/a))? 

y, = — = cos 6 
r 

So 

y^2, = cos l/f = 

il/ = Tr + e 

cos( TT + 0) ~ — cos 0 

y-\= - T i -

ri r hit-(r/a)) 

r + Ar 

«,̂  4irpa^ I'' r 

\h(t-

''2 \ 

We can approximate l//'2 as 1/r for 
Ar «: r, but what about M̂  - (r/a)) com-

/ i ( r - ( / -2 /a ) )= / , (^ - (r /a ) - (Ar /a ) ) . 

(8.53) 

A r/a may not be small relative to t -
(r/a) = tQ = arrival time. We need a Tay­
lor series expansion 

dh 
h(t)=h(to) + —(to)it-to) + 

(8.51) h{t - (r/a) - (Ar/a)) 

= h(t~ir/a))+h{t-{r/a)) 

X[it-(r/a)-(Ar/a)) 

-{t-ir/a))] + 

(8.52) -h{t-{r/a)) 

-(Ar/a)h(t-(r/a)) + ■■■ 

(8.54) 
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Then, to first order 

71 
4Trpa^ r,-

hit-ir/a)) 

-Ji 
h{t-{r/a)) 

Ar h{t-(r/a)) 

+ — - d 2j 
hit-(r/a)) 

Ar h(t-{r/a)) 

Ji I Arhit-{r/a)) 
4irpa i^r 

ar 

+ 
AX2S2J 

'{'--) 
Ar .1 r \ 
—h[t--\ 
a \ a J 

(8.55) 

The second group of terms decays as 
1/r^; therefore these are near-field terms 
that we can dismiss relative to the far-field 
terms, which decay as 1/r. This leaves the 
far-field displacements 

explosion case described at the start of this 
chapter. We now need to consider Ar = 

dr 
A r « — A x 2 = 72^X2 (8.57) 

(recall direction cosines % = x^/r = dr/dx^) 

wr = 
riTzTi 

' Airpa 

iiXj . 

^ ( ' - ^ ) . (8.58) 

Now, we must consider the limit as AJC2 -> 
0 and /i -» 00 such that ^X2h -^M, which 
is the moment of the couple: 

M\t I = lim ^X2^^\t | 
\ a I AJC2->O \ a I 

it 1 = lim ^X2h\t 1. 
V a I AA:2->O \ a I 

M 

(8.59) 

wr = 
Ti 

4vpa 

r , A r A ( r - ( r / a ) ) 
(8.56) 

It is critical to note that this differencing 
process has yielded a temporal differenti­
ation of the source time history. The spa­
tial offset of the forces leads to far-field 
displacement sensitivity to particle veloci­
ties at the source rather than to particle 
displacements. This was also found for the 

So the solution for the couple is given by 

TiTiTi M(t- (r/a)) 

47rpa^ r 

If we did the same analysis for a couple 
with an orientation parallel to the X2 axis 
in the x^X2 plane and if we offset F2 by 
AJCI in the negative X2 direction, we would 
get the identical results because of symme­
try of the products of the direction cosines. 
Summation of these two couples gives the 
double couple shown in Figure 8.14. 

Thus, the total response to the double-
couple system in far-field P waves is 

-De _ 7172% M{t-~{r/a)) 

Airpa^ r 
(8.61) 

The general form of the far-field displace-
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ments for a couple in the pq plane is given 
by 

^n pq np,q 

, (8.62) 

we find that the far-field displacements are 

u(x,0 

1 M^{t-{r/a)) 
= 3 (sin 2B cos (f>f) 

Airpa 

where Mp^ is any of the nine possible 
force couples (or dipoles) for three-dimen­
sional geometries. These nine couples 
compose the seismic moment tensor. The 
next section will discuss this general force 
system in greater detail. 

The general form of the far-field 5-wave 
displacements for a couple in the pq plane 
is given by 

, '-{ynyp-^np)yqKqit-{r/p)) 
AirpP' 

(8.63) 

If the displacements are considered in a 
spherical coordinate system (Figure 8.12), 

+ • Airpp 
■ (cos 26 cos<̂  ^ - cos ̂  sin </>0) 

X 
Mo{t-{r/P)) (8.64) 

where M^U) = ixA{t)D{t) is the time-de­
pendent moment function. The first term 
is the P-wave radiation, and the second is 
the 5-wave radiation. These expressions 
have the four-lobed patterns shown in Fig­
ure 8.19. Note that the azimuthal patterns 
are the same as found in the static case 
(Figure 8.14). Also note that the far-field 
displacements are proportional to the time 
derivative of the moment function, M{t), 
which is called the moment rate function. 

= 90* 0 - 90* 

0 = 180* 

0 = 90" 

180* 

FIGURE 8.19 Far-field radiation patterns in the x-jXg plane (0 =0) for radial components of 
displacement (left) and transverse components of displacement (right), for a double couple in 
the x-iXg plane. The full vector displacements are given by Eq. (8.64). (Modified from Aki and 
Richards. 1980. Copyright ©1980 by W. H. Freeman and Co. Reprinted with Permission.) 
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Box 8.2 Point-Force Sources 

Our theoretical development of equivalent body forces used point-force solu­
tions mainly to build couples and double couples, and one might ask whether 
point-force sources exist. Several natural phenomena have been found to be well 
explained by equivalent point-force sources, on the basis of observing compatible 
radiation patterns. The simplest examples include vertical volcanic eruptions, 
which can be modeled as a point force representing the counterforce of the 
eruption. Figure 8.B2.1 shows the theoretical horizontal and vertical ground 
motions for a vertical point force on the surface, which primarily excites a large 
Rayleigh wave. The solution for this system was first provided by Lamb (1904) and 
represents the ground-motion calculation of a transient wave. The figure on the 
right shows observed and synthetic ground motion (mainly Rayleigh wave) for a 
station 67 km from an eruption of Mt. St. Helens, on June 13, 1980 (a minor 
eruption after the main blast). Kanamori and Given (1983) estimated a force 
strength of 5.5 X 10̂ ^ dyne by matching the observed amplitude. 

Another process that can be modeled by a point force quite successfully is a 
nearly horizontal landslide. In this case the point represents the reaction force on 
the surface due to laterally moving the slide mass off the hillside. Kanamori and 
Given (1982) modeled the massive landslide of the May 18, 1980 Mt. St. Helens 
eruption with a horizontal force, finding that this was the best way to model 
long-period Love and Rayleigh waves from the event. Another example is the 1975 
Kalapana, Hawaii event, which involved either slip on a very shallow dipping fault 

Away 

t ^ S R 

h(--^o) 

Up I L_ I . 
0 5 10 sec 

A=67 km, a = 5 km/sec, 0-a/^ 
P = 0.I5 sec 

t 
Lomb (1904) 

Obs 

Radial Syp. 

Vert ical 

f =5.5 XIO'^ dyne 

60 sec 

FIGURE 8.B2.1 (Left) Theoretical radial and vertical ground motions for a point force on the 
surface of a half-space. (Right) Comparison of observed and synthetic ground motions for 
the June 13. 1980 eruption of Mt. St. Helens. The synthetics are computed for a vertical 
downward point force at the source, with strength ^ ^ = 5 . 5 x 10''^ dyne. (From Kanamori 
and Given. Geophys. Res. Lett. 10, 3 7 3 - 3 7 6 , 1983; © Copyright by the American Geophysi­
cal Union.) 

continues 
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or a large slump (Figure 8-B2.2). The observed radiation pattern of Love waves 
from the event is two-lobed, consistent with the single-force model as shown. From 
the strength of the point force one can estimate the peak acceleration of the slide 
block as 0.1-1.0 m / s l 

FIGURE 8.B2.2 Observations and interpretations of the source mechanism for the 1975 
Kalapana, Hawaii event. Observations are shown in (a) and (d), where subhorizontal surface 
ground motions were observed southeast of the hypocenter and the teleseismic Love-wave 
radiation has the observed pattern in (d). Interpretation of the source as a shallow double 
couple Cb) predicts a four-lobed Love wave radiation (e); interpretation as a reaction point 
force (c) due to land sliding produces a Love-wave radiation pattern (f) in better agreement 
with the data. (From Eissler and Kanamori, J. Geophys. Res. 92, 4 8 2 7 - 4 8 3 6 , 1987; © 
Copyright by the American Geophysical Union.] 

It is usually much more convenient to 
express the radiation pattern in terms of a 
geographical coordinate system rather than 
the coordinate system defined by the dou­
ble couple. This requires an algebraic 
mapping between the two systems, as 
shown in Figure 8.20. We follow Aki and 
Richards (1980) in defining a ray coordi­
nate system with directions f,p,(^ along 
the P, SV, and SH directions at the source. 
The equations for the far-field P and 5 
waves from a point double-couple source 
with standard fault orientation parameters 
(l>j; 8, and A and source takeoff angle i^^ 

can be written as: 

t/p(r,/) = 

UsAr,t)-

tJsHir,t) = 

1 
4irpra 

:R''M i-^] 
1 

AnprP' 
R'^'M H) 

1 
AnprP' 

R''"M\t-
P 
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R^ == COS A sin 5 sin^ i^ sin 2(j) 

- cos A cos 8 sin 2i^ cos </» 

-h sin A sin 25(cos^ /;, - sin^ i^ sin^ <̂ ) 

+ sin A cos 25 sin 2if^ sin <̂  

7?'̂ ^ = sin A cos 25 cos 2i^ sin <̂  

— cos A cos 8 cos 2//, cos </> 

+ 1 cos A sin 8 sin 2/;, sin 2<̂  

- 1 sin A sin 25 sin 2i^(l + sin^ </>) 

R^" = cos A cos 5 cos i^ sin <̂  

+ cos A sin 8 sin /;, cos 2</> 

+ sin A cos 25 cos i^ cos </> 

- 1 sin A sin 25 sin if^ sin 2(^, 

(8.65) 

where cf) = (f)f- (fy^, with <̂ŷ  the fault strike 

and (f)^ the station azimuth. The 1/r term 
accounts for geometric spreading in a 
whole space, and we need to modify this 
for actual geometric spreading in the 
Earth. To estimate the actual geometric 
spreading to the far field, we use expres­
sion (3.72) for the decrease in energy per 
unit area on the wavefront as a function of 
distance 

^ (A) 
EQ sin if^VQ 

cos/osin ATQ COS/Q 

d^T 

aÂ  

£oSini^ 

TQ sin A cos IQ 

dii 

dA 
(8.66) 

where EQ is the energy emitted per unit 
solid angle at the source, /;, is the takeoff 
angle at the source, and i^ is the incident 
angle at the receiver. 

We will consider geometric spreading 
for a P wave. If we take the Fourier 
transform of the P-wave time-domain sig-

Fault Strike 

Station 

/ Ray Path 

FIGURE 8.20 Definition of a geographic coordinate system, with positive X3 being down­
ward. The fault strike, (f>f, is measured from north; the dip. 8. is measured in the plane of the 
fault. The observing station is at azimuth <f)^, and the raypath to that station has a takeoff 
angle, /"h, relative to the X3 axis. 
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nal and consider the spectral amplitude, 
we have 

M,(r,w) = 
1 

Avpra 
^/?^(o|M(a))|. (8.67) 

Recall that the Fourier transform of a 
time derivative of a function is given by o) 
times the transform of the function. Con­
sider a small sphere of radius r = c;̂  at the 
source. Since the energy passing through a 
unit area of wavefront per unit time is 
proportional to paa)^\u(a))\^, then 

1 
= Phah(o 4vp^al 

Rpa)\M{a))\\ . 

(8.68) 

If we let |w/a>)| be the amplitude spectral 
density at the station, we have 

E{A)-Poaoio'\uX<o)\\ (8.69) 

Then we have 

1 g(A, / i ) 
\uX<o)\ 

where 

4irpft«A '•o 
-R'^a)\M(a))\, 

(8.70) 

8(^,h) = 
Ph"h sinift 1 
Potto sin A cos I'o 

di. 
\dA 

(8.71) 

Inverting this to the time domain, we find 

l".(A,Ol 
1 ^(A,/ i) 

^'^PhOth ^0 
/ ? ^ M ( r - ( r / a ) ) . 

(8.72) 

Similar expressions are found for SH and 
SV waves. The term g(A,h)/rQ is a geo-
metric spreading factor, which replaces 1/r 
in (8.65). 

We will consider the nature of the mo­
ment rate function M{t - {r/a)) in detail 
in later chapters. For the present we sim­
ply recognize that M is the time derivative 
of the moment function. We thus need to 
consider the time history of M{t), Earli£r 
we defined the static moment, Mg = jiAD, 
where D is the average displacement over 
the fault area A after motion ends. 
MU) = p.A{t)D{t). Also, M{t) = 
p[d{A{t)DU))/dtl 

If all the displacement occurred instan­
taneously in time, then 

M{t)=H{t), (8.73) 

where Hit) is a step function and 

M(0=S(0. (8.74) 

as shown in Figure 8.21. More realistically, 
it takes a finite length of time for any given 
particle to achieve its total offset, even for 
a point source for which Ait) is a step 
function. In this case, a ramp function can 

M(t) 
Mo I 

M(t) = H{t) 

M(t)=:S(t) 

M(t) = R(t) 

M(t) = B(t) 

M(t) 

Mo I : 

M(t) . 
M' I 7^^|>-^..Mo^area 

t 

FIGURE 8 . 2 1 Far-field P- and S-wave 
displacements are proportional to Mit), the 
time derivative of the moment function Mit) = 
fiAinOit). Simple step and ramp moment 
functions generate far-field impulses or boxcar 
ground motions. 
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represent the moment function (Figure 
8.21) 

and 

M{t)=Rit) 

M{t)-B{t), 

(8.75) 

(8.76) 

where B{t) is a boxcar function. The area 
A under the boxcar function is equal 
to MQI 

A= r M{t)dt==M'T = Mo. (8.77) 

Thus, the details of the particle-dislocation 
time history affect the far-field body-wave 
signals. In the next chapter we will con­
sider a few simple rupture time histories, 
including both finite particle dislocation 
and areal expansion histories. 

8.5 The Seismic Moment Tensor 

In the previous section we derived a 
general form for the far-field P- and S-
wave displacements for any of the nine 
possible couples in the local-source Carte­
sian coordinate system [Eqs. (8.62) and 
(8.63)]. The full set of couples, M^̂ , is 
shown in Figure 8.22. We summed the 
displacement fields produced by M^2 ^^^ 
M21 to produce double-couple solutions 
(8.61), but we could just as well sum 
Mi3 -f M31 or M23 + M32 to produce dou­
ble couples acting in orthogonal coordi­
nate planes of the local-source coordinate 
system. The explosion source described 
early in this chapter can be modeled by 
the sum of the three dipole terms, M^ + 
M22 + M33, with each having equal mo­
ment. The full set of couples can clearly be 
summed to produce a very wide range of 
effective source deformations and time 
histories. In many cases we can assume 
that the force couples all have the same 
time dependence, sU), so we can define a 
second-order tensor M with M compo­

nents, giving the excitation of the pq 
couple: 

M = 
Mil ^ 
M21 M< 

A^3i Af. 

12 

22 

32 

M 

M 

M. 

13 

23 

33 

(8.78) 

The double-couple solution given by (8.61) 
has the corresponding moment tensor 

M = M r 
0 

M2, 
0 

Mn 
0 
0 

0 
0 
0 

(8.79) 

where the scalar factor, MQ, is taken out­
side. 

The seismic moment tensor is always 
symmetric. Because it is a tensor, coordi­
nate transformations must exist that relate 
the terms of the moment tensor in the 
source coordinate system to the more use­
ful geographic coordinate system in which 
the couples are not necessarily aligned with 
the axes. Thus, we want to find expressions 
analogous to (8.65) for the full moment 
tensor. 

We initially consider double-couple mo­
ment tensors. The arbitrarily oriented 
double couple will act on a fault plane 
with a slip vector, D, and a normal to the 
plane, v. The elements of M^j for the 
geographic (or any other) reference frame 
are 

M,, = nA{D,y, + Djy,). (8.80) 

Note the symmetry of the slip vector D 
and the fault normal v, which gives rise to 
the ambiguity of the fault plane and auxil­
iary plane for a point double couple. If we 
adopt the coordinate system in Figure 8.20 
and if we express the coordinates of the 
slip vector and the fault normal in terms of 
(f)f, 8, and A, we find 

D = D(cos A cos </)f + cos 8 sin A sin (f>f)\i 

+ D(cos A sin (̂ ^ 

- cos 8 sin A cos <̂ f )x2 

— D sin 5 sin A x 3» (8.81) 
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FIGURE 8.22 The nine couples composing the seismic moment tensor. (From Aki and 
Richards, 1980. Copyright ©1980 by W. H. Freeman and Co. Reprinted with permission.) 

where D is the average slip; 

V = —sin 5sin</>f Xi 

+ sin 3 cos <̂ f X2 ~ c^s 5x3 (8.82) 

and 

Afji = —Mo(sin 8 cos A sin 2(f)^ 

+ sin 2S sin A sin^ </>f) 

M22 = A/o(sin 3 cos A sin 2<f)^ 

- sin 25 sin A cos^ <̂ f) 

Af33 = Afo(sin25sin A) = -{M^^ +^22) 

M12 = Mo(sin 8 cos A cos24>i 

+ |sin 28 sin A sin 2<^f) 

Mi3 = -Mo(cos 8 cos A cos ^^ 

-f cos25 sin Asin</>f) 

M23 = — Mo(cos 8 cos A sin </»f 

- cos 28 sin A cos <^f). (8.83) 

It is possible to construct the P, SV, or SH 
motion for a moment tensor by summing 
the moment tensor weighted Green's func­
tions using: 

w„(x,0= E^ /*G, . , (8.84) 
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where m i = M i i , 1712=" M22, m3 = Mi2, 
m^ =Mi3, and m^ =^23' ^^^ ^in ^^^ ^̂ ^ 
Green's functions corresponding to each 
of the respective moment tensor elements. 
This is attractive for formulating waveform 
inversions directly for the moment tensor 
elements. Aki and Richards (1980) show 
that a double couple can also be repre­
sented in terms of four combinations of 
elementary moment tensors, the simplest 
possible combination, where the elemen­
tary moment tensors correspond to shear 
dislocations. A double-couple displace­
ment can actually be represented by 
weighted summation of three fundamental 
fault Green's functions, corresponding to 
a vertical strike-slip fault (6 = 7r/2, A = 0), 
a vertical dip-slip fault (5 = 7r/2, A = 7r/2), 
and a fault dipping 45° with slip being 
purely updip (5 = 7r/4, A = TT/I) evaluated 
at a 45° azimuth. The first two of these 
correspond to moment tensor Green's 
functions, but the third differs slightly from 
any of the M^ Green's functions because 
it is evaluated at a particular azimuth. This 
formulation is useful for inverting for fault 
parameters directly rather than moment 
tensor elements. The ability to express the 
displacement for an arbitrary double-cou­
ple fault mechanism as the sum of five 
moment tensor Green's functions or three 
fundamental faults is the basis for many 
synthetic seismogram programs and wave­
form inversions, which will be described in 
Chapter 10. 

Since the moment tensor is symmetric, it 
can be rotated into a principal-axis system. 
For example, the source described by (8.79) 
can be diagonalized to 

M' = 
Mo 0 
0 -Mn 
0 0 0 

, (8.85) 

where the new elements are along axes 
defined by the principal dipole axes, P 
(maximum compressional deformation), T 
(minimum compressional deformation). 

and B (intermediate or null axis). This 
shows that a double-couple force system is 
equivalent to two orthogonal force dipoles, 
as illustrated in Figure 8.10. 

In general, a seismic moment tensor 
need not correspond to a pure double 
couple, but the symmetric tensor can still 
be diagonalized, with linear combination 
of three orthogonal dipoles completely de­
scribing the moment tensor excitation. The 
diagonalized values then correspond to 
eigenvalues of the moment tensor, with 
associated orthonormal eigenvectors a, = 
{a^^^.a^^^.a^^^^. For a double couple, the 
eigenvector corresponding to the positive 
eigenvalue gives the tension axis, T\ the 
eigenvector for the zero eigenvalue gives 
the intermediate stress axis, B\ and the 
eigenvector for the negative value gives 
the compressional axis, P. In general, we 
can decompose the diagonalized moment 
tensor 

M^ 0 
0 

0 0 

M2 0 
0 M. 

tr(M) 0 0 
0 tr(M) 0 
0 0 tr(M) 

Ml 
0 
0 

0 
Ml 

0 
0 

Ml 
(8.86) 

where tr(M) = Mj + M2 + M3 is the trace 
of M, and the remaining terms M/ are the 
deviatoric eigenvalues of M. The isotropic 
terms given by the trace correspond to 
volume changes in the medium due to 
either explosion or implosion. Most shear­
ing sources appear to have little isotropic 
component, and moment tensors for fault­
ing events are often determined with the 
constraint tKM) = 0. 
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The diagonalized deviatoric moment 
tensor can be decomposed into a variety of 
eigenvalue combinations that have some­
what different physical implications. One 
decomposition is into three vector dipoles 

Ml 
0 
0 

0 

^l 
0 

0 " 

0 

Ml 
= 

M/ 0 0 
0 0 0 
0 0 0 

where each deviatoric term is a double 
couple. 

Other decompositions involve compen­
sated linear vector dipoles (CLVDs), which 
have one dipole of strength 2 in the direc­
tion of one eigenvector and two dipoles of 
unit strength in the directions of the other 
eigenvectors. A moment tensor can be 
represented by an isotropic term and three 
CLVDs 

0 
0 
0 

0 
M^ 
0 

o" 
0 
0 

+ 
0 0 0 
0 0 0 
0 0 Mj 

(8.87) 

M, 0 
0 M, 

0 
0 

0 0 M, 

for which the dipoles act in the directions 
of the eigenvectors of M. In this case, the 
null (B) axis is nonzero if the moment 
tensor is not a double couple. 

Alternatively, a moment tensor can be 
decomposed into an isotropic part and 
three double couples 

^1 0 0 
0 M2 0 
0 0 M3 

1 
3 

"tr(M) 
0 tr 
0 

0 
(M) 
0 

0 
0 

tr(M) 

1 
^ 3 

1 
+ 3 

tr(M) 0 0 
0 tr(M) 0 
0 0 tr(M) 

2Mi 
0 
0 

-M2 0 
0 
0 

2M, 

0 0 
-M, 0 

0 -Ml 

0 
0 

-M, 

1 
+ 3 

1 
^ 3 

M , - A / 2 
0 
0 

0 0 
0 A/2-M3 
0 0 

0 0 
• (M1-M2) 0 

0 0 

0 
0 

■(M2-A/3) 

A/1-M3 0 
0 
0 

0 
0 

0 
0 

-(M,-M,) 

1 
^3 

- M 3 
0 
0 

0 
-M3 
0 

0 
0 

2M, 

(8.89) 

(8.88) 

A common decomposition is in terms of 
a major and minor double couple, where 
the major double couple is the best ap­
proximation of the moment tensor by a 
double couple with the same principal axes. 
Since the trace of the deviatoric part of 
the moment tensor is M/ + Mj + Mj = 0 
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and if |M/ | > IM2M > IM3I, we can write 

^1 0 0 

0 Mj 0 
0 0 M3 

1 
3 

tr(M) 0 0 
0 tr(M) 0 
0 

[M/ 0 
0 - M / 

[ ( ) 0 

0 tr(M) 

0 ' 

0 
0 . 

+ 
"0 0 

0 - M j ' 
0 0 

0 1 
0 

A/3'J 

(8.90) 

where the middle term is the major double 
couple, comprising the largest eigenvalue, 
and the other double couple is the minor 
double couple. 

Yet another approach involves decom­
position into an isotropic part, a double 
couple, and a CLVD. For |M/ | > \M^\ > 
IM31, we compute e = -M\/Ml, and then 
we have 

0 
0 

1 

0 

0 

tr(M) 
0 
0 

0 
0 

+ ( l - 2 e ) 

0 
tr(M) 

0 

0 0 
0 - M , 

0 
0 

tr(M) 

0 
0 

+ e 
-M3 0 
0 
0 

-M, 
0 
0 

2M, 

(8.91) 

where e is a measure of the size of the 
CLVD component relative to the double 
couple. For a pure double couple, e = 0; 
for a pure CLVD, e = ±0.5. 

Seismologists use all of these moment 
tensor decompositions to characterize how 
well an equivalent body-force system of 
the moment tensor explains any particular 
source. The great utility of moment ten­
sors is that once Earth responses are com­
puted for the various couple orientations, 
actual ground motions are simply a linear 
sum of the couple responses, with weight­
ing factors being the constant (or time-
dependent) terms of the moment tensor. 
This enables linear moment tensor inver­
sion, the process of retrieving an estimate 
of the moment tensor from actual data. 
Chapter 10 will discuss this further. 

8.6 Determination of 
Faulting Orientation 

We conclude this chapter with a brief 
discussion of how fault orientations are 
determined from seismic-wave observa­
tions. At this point we will restrict our 
attention to methods based on first-motion 
polarity and amplitude patterns for body 
waves and surface waves. After further 
developing finite-fault theory in the next 
chapter, we will return to complete wave­
form analysis in Chapter 10, showing how 
both the fault orientation and slip function 
are determined by both fault parameter 
and moment tensor inversions. 

8.6.1 Stereographic Projections 
The arbitrary orientation of faulting 

requires a procedure for handling the 
three-dimensional character of seismic-
wave radiation from a source. A conve­
nient approach is to imagine a small sphere 
around the source called the focal sphere 
(Figure 8.23). The focal sphere is imagined 
to be in a homogeneous medium, so ray-
paths to it from the source are simple 
radial spokes. This is useful because it is 
the curvature of raypaths in the Earth that 
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Focal _ 
Sphere 

FIGURE 8.23 (a) The snnall focal sphere near the source, which can be thought of as the 
initial outgoing P (or S) wavefront. The raypath to a point on the Earth's surface (b) will have 
an associated takeoff angle and azimuth. 

complicates observing the simple double-
couple radiation patterns. Any P-wave ray-
path leaving the source can be identified 
by two parameters: the azimuth from the 
source, 0^, and the ray parameter or take­
off angle, i^ (Figure 8.23). Each (fy^Jh 
combination prescribes a unique path 
through the Earth to a point on the sur­
face, and a corresponding portion of the 
outgoing wavefront is destined to reach 
that distant point, conveying the initial 
motion in the associated region of the 
outgoing wave. 

Stereographic or equal-area projections 
are used to project the focal sphere onto a 
single plane as shown in Figure 8.24. Rays 
that take off upward will intersect the up­
per hemisphere of the focal sphere, but 
these are simply projected back to the 
lower hemisphere by adding 180° to the 
station azimuth (this exploits the low-order 
symmetry of fault mechanisms). The fault 
plane and auxiliary plane intersect the fo­
cal sphere, and the intersections project to 
the equatorial plane as curves that sepa­
rate regions of compressional and dilata-

^P . : 

Equatorial 
plane 

Equatorial Plane 

Stereographic O A ' = tan (^ I h) 

Equal area O A ' = 72 sin (^ I h) 

FIGURE 8.24 Projections for mapping spherical surfaces onto a plane. Both stereographic 
and equal-area projections are used, with the difference being the radial point A used to 
represent the chord from the top of the focal sphere to the point intersected by the 
outgoing raypath. A ray going straight down Intersects the center of the equatorial plane. 
Azimuth is preserved in the projection. 
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y Stereographic 
^ Projection for a 

Thrust Fault 

Regions with Dilatational 
P wave First Arrivals 

FIGURE 8.25 Projection of the fault plane and auxiliary plane onto the focal-sphere equato­
rial plane. 

tional P-wave motions (Figure 8.25). The 
curves follow great circles on the equato­
rial plane, and their orthogonality pro­
duces characteristic appearance of the 
different faulting types. Examples of focal 
mechanisms^ as these projections are 
called, for common faults are shown in 
Figure 8.26. 

If we project observed P-wave first mo­
tions to the correct ^^ and i^ in the focal 
mechanism, we should see systematic 
quadrants of compressional or dilatational 
arrivals, and given adequate data these 
can be used to find the strike and dip of 
the two P-wave nodal planes (i.e., the aux­
iliary and fault planes). The same is true 
for 5-wave polarizations. Figure 8.27 shows 
the expected patterns of P-wave polarities 
and amplitudes; it also shows 5-wave po­
larizations and amplitudes projected onto 
focal mechanisms for the same fault orien­
tation. An equal-area projection is used 
for the P waves, a stereographic projec­
tion for the S waves. Note the regular 
patterns arising from the smooth P and S 
radiation patterns and the systematic ten­
dency for 5-wave polarizations to converge 
on the projection of the T axis. The B axis 
lies on the intersection of the two planes, 
and this is also the "pole" (perpendicular) 
to the plane containing the P and 7 axes. 
The intersection of that plane with the 
fault plane is the slip-vector direction. 

All that we need to do to determine the 
fault orientation from data is to project 
observed P and 5 polarities and ampli­
tudes onto the equatorial plane and then 
determine the orthogonal planes. The fol­
lowing procedures are used to determine a 
focal mechanism: 

1. For known earthquake and receiver lo­
cations we can determine the azimuth, 
(f), and the distance. A, for each station 
from the source. 

2. Since we know r(A) for the Earth, we 
know p(A), and for each station we 
have a value of p = (r̂  sin //,)/^^, where 
r^ and V^ are values at the source. We 
can thus determine /;,(A) for any given 
source depth. Table 8.1 gives a table of 
iu for P waves for shallow sources. 

TABLE 8.1 Takeoff Angles for Surface Source 

A 
15° 
17 
18 
21 
23 
25 
27 
29 
31 
33 
35 

'h 
45° 
43 
39 
35 
32 
30 
29 
29 
29 
28 
28 

A 
37° 
41 
45 
49 
51 
55 
59 
63 
67 
71 
75 

'h 
27° 
26 
25 
24 
23 
22 
22 
21 
20 
19 
18 

A 
79° 
83 
87 
91 
95 

'h 
17° 
16 
15 
14 
14 



8.6 Determination of Faulting Orientation 

Strike-Slip Faulting 

X = o° 

Normal Faulting 

Thrust Faulting 

Oblique Normal 

270 < X < 360\ i 

FIGURE 8.26 Basic fault types and their appearance in focal mechanism projections. Dark 
regions indicate compressional P-wave motions. 

Using <|) and /;,, we project the ray 
position to each station on a lower-
hemisphere stereographic projection. 
We use different symbols to indicate 
whether compressional or dilatational 
first P arrivals were observed at each 

station (usually open circles for dilata­
tions and filled circles for compres­
sions). 
The first-motion data are rotated on 
the stereonet to find a meridian line 
that separates compressions from di-
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Auxiliary plane 

Fault plane 

(90'. 0') 

Null axis "B" 

FIGURE 8.27 Focal mechanisms for an oblique-slip event showing P-wave polarities and 
relative amplitudes (left) and S-wave polarizations and amplitudes Cright]. Plus signs (+) 
indicate compressions. The fault and auxiliary planes are shown as well as projections of the 
P, T, and B axes. (Modified from Aki and Richards, 1980. Copyright ©1980 by W. H. Freeman 
and Co. Reprinted with permission.) 

latations. This plane is drawn in along 
with the pole to the plane, which pro­
jects at 90° from the plane. 

5. The data plot is rotated to find a sec­
ond meridian that separates dilatations 
and compressions, but which also passes 
through the pole of the first plane. 

6. The maximum compressive strain axis, 
P, is a pole lying on the plane contain­
ing the poles of the two "fault" planes 
(one is really the auxiliary plane). It lies 
in the dilatational quadrant 45° from 
the two planes. 

7. The minimum compressive stress axis, 
r , lies in the compressional quadrant 
45° from the two planes. 

8. The intermediate compressive stress 
axis, B, is the intersection of the two 
fault planes. 

9. The slip vector is defined as the pole of 
the auxiliary plane. 

Well-constrained focal mechanisms for 
oblique-slip and strike-slip events are 
shown in Figure 8.28. Regional P waves 
provide good coverage of the focal sphere, 
as shown by the solution for the Loma 
Prieta event, while for teleseismic signals, 
the data cluster in the center of the mech­
anism. This reflects the narrow cone of 

takeoff angles spanned by teleseismic P 
and SH', many other examples of focal 
mechanisms are shown in Chapters 10 and 
11. Often one plane is well constrained, 
and the other can lie within a large range 
of possible orthogonal orientations. Joint 
use of P and S polarities reduces the 
ambiguity. To discriminate which plane is 
the actual fault plane, one must either 
observe ground breakage, see aftershocks 
preferentially distributed on one plane, or 
analyze short-period seismic signals to re­
solve any source finiteness effects. 

8.6.2 Focal Mechanisms from 
Surface Waves 

Surface waves can also be used to deter­
mine fault orientations because their az-
imuthal amplitude and phase patterns 
contain information about the fault orien­
tation. Let us briefly consider a surface-
wave displacement 

x{t) = ^ r xico)e"^'do>, (8.92) 
ZTT • ' - 0 0 

where A ' ( ^ ) is the Fourier spectrum of 
jc(0. At a given frequency, a>, for a Love-
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Box 8.3 Moment Tensor Conventions 

Unfortunately, not all seismologists use the same coordinate system to define the 
general moment tensor terms. Alternative choices of reference frame to that in 
Figure 8.20 are shown in Figure 8.B.3.I. 

® = Colatitude 
r = Radius 
^ = Longitude 

' " "̂  " West 

FIGURE 8.B3.1 In the case on the left, which is a convention commonly used in free-oscilla­
tion analyses, the unit vectors r,e,$ point upward, southward, and eastward, respectively. 
The terms in Eq. (8.83) transform to M r̂ ^'^aa- ^m =^^11. <̂̂ «̂  =A^22' ^ro =^^13- ^r(t> = - ^ 2 3 -
and Mf,^ = - M^2- The ir,d,(f)) geographic coordinate system is used in the routinely reported 
moment tensors obtained by the centroid moment tensor inversions performed at Harvard. 
The x'y'z' system has been extensively used by Hiroo Kanamori in his surface-wave inversion 
procedures. In this case 

^ 1 3 = - ^ x ' z ' . M23=Myry. /l^l2 = - ^ x V 

Care in choice and consistency of the reference frame is critical. 

wave seismogram observed at a distance A while for a Rayleigh wave we have 
(in degrees) from the earthquake source, 
we have ;^^(^) 

XL(<^) 
1 

Vsin A 
.^-K'T^/4)^ia>a(^/c)^-a)^(a/ZQU) 

VsinA 
.^-KTT4)^ia>aWc)^-<oA(a/ZQU) x{s^Sl-^p^Pi-^iq^Ql), 

(8.94) 

X ( P L ^ L + ^ ^ L G L ) , (8.93) where a is the Earth's radius, c and U are 
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FIGURE 8.28 Examples of well-constrained focal nnechanisms. On the left. P-wave first 
motions for the 1989 Loma Prieta earthquake from regional-distance stations are shown in 
an equal-area lower-hemisphere projection. Compressional motions are indicated by C+] 
and dilatations by [0]. In this case <̂ ^ = 130°, 8 =70°, and A =140°. On the right, teleseismic 
P-wave and SH-wave f irst motions are shown with P- and SH-radiation nodal planes for the 
November 8. 1980 Eureka. California earthquake. This left-lateral str ike-sl ip event has 
0^ = 48°, 8 =90°. and A =0°. Upward motions of P waves correspond to compressions (solid 
dots], while upward motion of SH corresponds to counterclockwise motion at the source. 
First-arrival amplitudes are shown for an equalized instrument gain. (Left from Oppenheimer. 
Geophys. Res. Lett. 17, 1 1 9 9 - 1 2 0 2 , 1990: © Copyright by the American Geophysical 
Union. Right from Lay et al., 1982.) 

phase and group velocity at (o, and Q is 
the corresponding attenuation quality fac­
tor. The phase function is exp[/6>fl(A/c)], 
and l/(sinA)^/^ describes the geometric 
spreading. The other parameters are as 
follows: 

PL = cos S sin A sin 8 sin 2(̂  

+ cos A sin 5 cos 2 (̂  

^L = ~ cos A cos 5 sin </) -f sin A cos 28 cos (f) 

5R = sin A sin 5 cos 5 

^̂ ĵ  = sin A cos 25 sin <̂  + cos A cos 8 cos (f) 

PR = cos A sin 8 sin 2</) 

where (̂  = </>̂ -</»„ and P^, Ql,Sl,Pl^, 
and J2R are the surface-wave excitation 
functions, which are complicated expres­
sions of the elastic constants and source 
depth. Therefore we can write XL^^^ = 
F^iAXp^Pl^ iq^Qi) or ATRC^) = 
F^(AXsj,Sl-hp^Pl-^iq^Ql). This im­
plies that we can compute surface-wave 
amplitude radiation patterns at a given 
frequency as 

= ]/{sKSl)' + {p^Pk)'^{qf,QW 

Ad<f>) = }/{Pi^Pl)' + {Qi^Ql)' . (8.96) 

sin A sin 8 cos 8 cos2(^, (8.95) Figure 8.29 shows the surface-wave radia-
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FIGURE 8.29 P-wave focal-nnechanism projections and surface-wave radiation patterns for 
four basic fault orientations. The relative amplitude of the Love-wave (left) and Rayleigh-wave 
[r ight) radiation pa t te rns is not drawn to scale. (Adapted f rom Kanamori, 
J. Geophys. Res. 75 , 5 0 1 1 - 5 0 2 7 , 1970; © Copyright by the American Geophysical Union.) 
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FIGURE 8.30 Azimuthal amplitude and phase variations from Rayleigh-wave and Love-wave 
observations for the 1989 Lome Prieta earthquake. The spectra have been equalized back to 
the source. The solid curve is the fit of a theoretical moment tensor source with a major 
double couple that is oblique right-lateral thrust, (Modified from Velasco et aL, 1993. 
Reprinted with permission.) 
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tion patterns for several fault orientations. 
The azimuthal patterns can be used to 
determine the fauh orientation and mo­
ment by either inversion or forward mod­
eling. In the actual analysis of surface 
waves, the seismograms are Fourier ana­
lyzed and equalized to the same distance 
from the epicenter (including phase shifts 
and amplitude effects) before they are in­
verted for a mechanism. Figure 8.30 shows 
equalized Rayleigh-wave and Love-wave 
spectra for the 1989 Loma Prieta earth­
quake, which exhibit azimuthal radiation 
patterns that constrain the fault geometry. 
In Chapter 10 we will expand on the ac­

tual inversion for fault parameters or mo­
ment tensor terms. 
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CHAPTER 

10 
SEISMIC WAVEFORM MODELING 

Early in this text we stated that one of 
the goals of a seismologist is to understand 
every wiggle on the seismogram. The pre­
ceding chapters have dealt with phenom­
ena that influence the structure of seismo­
gram: propagation effects, source effects, 
and characteristics of the seismometer it­
self. It is possible to model each of these 
effects mathematically and, therefore, to 
develop a procedure to predict the charac­
ter of a seismogram in a realistic model of 
the Earth. Such a mathematical construc­
tion is known as a synthetic seismogram. 
The formalism of comparing synthetic and 
observed seismograms is known as wave­
form modeling. Waveform modeling has 
become one of the most powerful tools 
available to seismologists for refining Earth 
structure models and understanding fault 
rupture processes. In general, waveform 
modeling is an iterative process in which 
differences between the observed and syn­
thetic seismograms are minimized by ad­
justing the Earth structure or source rep­
resentation. 

The underlying mathematical theory for 
constructing synthetic seismograms is 
called linear filter theory. The seismogram 
is treated as the output of a sequence of 
linear filters. Each filter accounts for some 
aspect of the seismic source or propaga­

tion. Figure 10.1 shows an example of a 
trapezoid-shaped P-wave ground displace­
ment, along with recordings on short- and 
long-period seismometers. The trapezoid 
shape can be considered to be the output 
of filters that account for the effects of 
rupture on a finite fault plane as well as 
any propagation effects (Chapter 9). This 
ground motion is then distorted by the 
recording characteristics of the seismome­
ter, a linear filter that is usually well known, 
and the output is a seismogram. 

It is possible to characterize the ele­
ments of a linear filter system by consider­
ing the response of the filter to an im­
pulse, or delta, function. In a physical 
sense, this corresponds to a single, instan­
taneous pulse of energy at the source for 
which the complex resulting seismogram 
determines the propagation filter. If the 
impulse response of a particular filter is 
f(t), its corresponding Fourier transform is 
F(a)). If fit) is known, the response, y(t), 
of an arbitrary input, x(t), can be calcu­
lated with the convolution operator (see 
Box 9.2). If X((o) is the Fourier transform 
of x(t), then the transform of the output 
signal, Y((o), is given by 

Y((o)^F{(o)X{(o). (10.1) 
If a signal goes through a succession of 

397 
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FIGURE 10.1 [Top] A trapezoid time function, corresponding to a hypothetical ground 
motion. (Middle) A seismogram produced by the trapezoid motion convolved with a 
short-period instrument response. (Bottom] A seismogram produced by the trapezoid 
convolved with a long-period instrument response. 

filters, / i , / 2 , • • • /« (0 , the Fourier trans­
form of the output signal is given by 

Y{a>)-F,{co)F,{io)'" F,{<o)X{a>). 

(10.2) 

In other words, the output signal is given 
by the multiple product of the spectra of 
each filter and the input signal. 

In seismic waveform modeling, there are 
three basic filters: 

uit)=s(t)^g{t)^i{t), (10.3) 

where u(t) is the seismogram, s(t) is the 
signal from the seismic source, git) is the 
propagation filter, and i(t) is the seis­
mometer response. In actuality, s(t) and 
git) can be divided into several filters to 
account for specific effects. For example, 
git) can be divided into a filter that ac­
counts for the multiplicity of arrivals due 

to reflections and refractions at material 
boundaries within the Earth along with a 
filter that accounts for the seismic-wave 
attenuation. Similarly, sit) can be divided 
into filters accounting for source radiation 
conditions and fault rupture characteris­
tics. 

Linear filter theory provides a very ele­
gant methodology for waveform modeling. 
It is possible to isolate the effects of one 
specific process on the character of the 
seismogram. For example, the effects of 
git) for teleseismic body waves are easily 
accounted for, so often only the character 
of sit) need be adjusted or timed such 
that a synthetic seismogram adequately 
predicts an observation. Most of what is 
known about seismic source processes has 
been learned by applying such a proce­
dure. In this chapter we will explore wave­
form modeling and provide some exam­
ples. 
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10.1 Body Waveform Modeling: 
The Finite Fault 

We can readily construct the filters on 
the right-hand side of Equation (10.3) for 
a simple point source. From Figure 9.3 we 
know that the far-field source time history 
of a single particle on a fault is approxi­
mately boxcar shaped. The length of the 
boxcar is r̂  (the rise time), and the height 
of the boxcar is MQ/T^, where MQ is the 
seismic moment. We call a single-particle 

fault a point source; the body waves from a 
point-source dislocation would be a simple 
boxcar pulse if no other filters were in 
operation. A more realistic source would 
include temporal and spatial fault finite-
ness, and the source-time function is more 
clearly approximated by a trapezoid (see 
Chapter 9). The source rise time and 
source finiteness can be thought of as two 
fi-lters, with the output being the source-
time function. Figure 10.2 shows a graphi­
cal representation of the various filters that 

Linear Filter Theory and Synthetic Body Waveforms 
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Particle History * Fault Finiteness Near Source Structure Attenuation 

Gain 

r=1 
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sP 

FIGURE 10.2 Schematic representation of various processes and their equivalent filter 
representations, which combine to give the total selsmogram seen at the bottom. 
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produce a teleseismic body-wave seismo-
gram, the first two of which produce the 
source time function. 

The most complex filter in Eq. (10.3) is 
git), sometimes called the Earth transfer 
function. This filter accounts for all propa­
gation effects such as reflections, triplica­
tions, diffractions, scattering, attenuation, 
mode conversions, as well as geometric 
spreading. The usual procedure is to di­
vide git) into a filter that accounts for 
elastic phenomena, Rit), and a filter that 
accounts for attenuation. Ait). At teleseis­
mic distances, Rit) is a time series with a 
sequence of impulses temporally dis­
tributed to account for the variability in 
arrival times. At teleseismic distances, the 
most important P-wave arrivals are P, pP, 
and sP, so Rit) is a "spike train" with 
three pulses spaced to account for the 
differences in arrival times. The amplitude 
of a given spike depends on the angle of 
incidence at the surface and the seismic 
radiation pattern. In Chapters 3 and 4, 
mathematical expressions were developed 
to calculate the amplitudes of impulse P 
waves. In Chapter 8, we developed the 
equations for a far-field P wave: 

^F(r,t) = -^-^R''Mit--], (10.4) 

where R^ gives the radiation pattern in 
terms of fault geometry and takeoff angle. 
We can rewrite (10.4) using the fact that 
any double couple can be represented as a 
weighted sum of three elementary faults 
(Section 8.5) to give 

i^n(r,t)-
1 3 

3 E^.(*»A,5)c, 4Trpra ^ 

* M ■<-,)■ (10.5) 

where Ai is called the horizontal radiation 
pattern and c^ is called the vertical radia­

tion pattern, which are given by 

^1 = sin 20 cos A sin 8 

+ \ cos2<f) sin A sin 26 

y42 == cos 0 cos A cos 6 - sin (f) sin A cos 25 

ŷ 3 = | s inAsin26, (10.6) 

where <̂  = ĉ ^ - 0f, and 

C i = -p^ 

C2 = 2ep7]^ 

e = 
+ 1 if ray is upgoing 
- 1 if ray is downgoing. 

C 3 = p 2 2vl (10.7) 

The three fundamental faults are (1) a 
vertical strike-slip fault, (2) a vertical 
dip-slip fault, and (3) a 45° dipping thrust 
fault (A = 90°) evaluated at an azimuth of 
45°. (By plugging in the appropriate strike, 
dip, and rake, you can see that A 2 and A^ 
vanish for the first fundamental fault, A^ 
and A 2 vanish for the second fundamental 
fault, and so on.) Equation (10.5) is ex­
tremely useful because it isolates Rit) and 
provides a simple methodology for its cal­
culation given an arbitrary fault orienta­
tion. If we calculate the spike train for 
each of the three fundamental faults, we 
just require a linear sum to account for the 
effects of any fault. Equation (10.5), as 
written, is only accurate for a half-space. If 
the P wave interacts with structure, it will 
undergo reflection and transmission, which 
depend on the angle of incidence. The ĉ  
coefficient contains all the information 
about the angle, so we can rewrite (10.5) 
as 

/ I ^ 3 
M^>0 = I ^ 3 E H^iCiRMoPk 

(10.8) 
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FIGURE 10.3 Primary raypaths corresponding 
to direct P and surface reflections pP and sP 
that arrive at a teleseismic station. For a 
shallow source these arrivals are close 
together in time, and together they comprise 
the P "arr ival ." The relative amplitudes of the 
arrivals are influenced by the source radiation 
pa t te rn and the free-surface reflection 
coefficients. Small-amplitude differences due to 
extra attenuation or geometric spreading for 
the upgoing phases also can be accounted for if 
the source is deep. 

where N is the number of arrivals, or rays, 
is M, Ok 

represented by the Earth filter; R 
the receiver function, with M being "the 
mode type (P or S wave) of the kth ray; 
and O is the recording component (radial 
or vertical). Finally, Ô t is the product of 
all the transmission and reflection coeffi­
cients that the A:th ray experiences on its 
journey from the source to receiver. The 
parenthetic term on the right side of 
Eq. (10.8) is just the R(t) we need to 
calculate the Earth transfer function. 

Although (10.8) looks complicated, it is 
actually straightforward to determine R(t) 
at teleseismic distances. Figure 10.3 shows 
R(t) for a dip-slip fault in a half-space. 

The amplitudes of the depth phases are 
affected by both the surface reflection co-
eflScient and the radiation pattern from 
the source. In the example, P and pP 
both leave the source with a compressional 
motion. Upon reflection at the free sur­
face, pP is inverted. The combined effects 
of the SV radiation pattern and free-
surface reflection also invert the polarity 
of the sP arrival relative to P. The relative 
arrival times of the various phases depend 
on the depth of the earthquake and the 
distance between the source and receiver 
(which controls the ray parameter or take­
off angle). The surface-reflection delay 
times are given by 

At-d7]^'\-dT]^, (10.9) 

where rj^ and 77 ̂  are the vertical slow­
ness of the upward and downward paths of 
a given depth phase and d is the hypocen-
tral depth. 

The relative amplitudes of the spikes in 
R(t) vary greatly depending on source ori­
entation. This variability produces wave­
forms that are diagnostic for different fault 
orientations. Waveform modeling is much 
more powerful for constraining fault ori­
entation than first-motion focal mecha­
nisms because it provides more complete 
coverage of the focal sphere and uses rela­
tive-amplitude information. A realistic 
R(t) actually contains many more than just 
three wave arrivals. For a layered Earth 
structure, multiple reflections and conver­
sions occur both near the source and 
beneath the receiver. In general, these 
multiples are much less important than the 
primary three rays at teleseismic distances 
unless the earthquake occurred beneath 
the ocean floor. In this case water reverber­
ations, rays bouncing between the surface 
and ocean floor, can produce significant 
additional spikes. 

The attenuation filter. Ait), is usually 
represented by a r* operator (see Chapter 
3). At teleseismic distances r* is nearly 
constant over much of the body-wave 
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frequency band and is thus easy to param­
eterize as a filter. Figure 3.38 shows an 
impulse convolved with short- and long-
period instruments for several values of 
t*. As r* increases, the high frequencies 
are more effectively removed. Note that 
the amplitude of the short-period signal is 
affected by changes in r* to a much greater 
degree than the long-period signal. 

Figure 10.4 shows a suite of P synthetic 
waveforms for the relevant fundamental 
faults using all of the filter elements we 
have discussed. The corresponding Earth 
transfer function, which includes the radi­
ation pattern, is given in the left-hand 
column, and three different time functions 
are used (all the sources have the same 
seismic moment, so the shortest-duration 
source has the "highest" stress drop). P 
and SH waveforms for different fault ori­
entations differ enough to be diagnostic of 
the source type, although there are trade­
offs between the various filters. Of course, 
much additional information is contained 
in the azimuthal pattern of motions that 
would be observed for each fundamental 

fault. The source depth, time function, 
fault orientation, and seismic moment are 
known as the seismic source parameters. 
The goal of waveform modeling is to re­
cover the source parameters by "fitting" 
the observed waveforms with synthetics. 
The strongest trade-off is between source 
depth and source time function duration. 
Figure 10.5 demonstrates this trade-off. 
Basically, a deeper source with a shorter-
duration source function may be similar to 
a shallower source with a longer source 
function. Broadband data can overcome 
much of this trade-off for simple sources. 
However, the convolutional nature of lin­
ear filter theory implies that direct trade­
offs must exist. Differences in source depth 
exactly trade off with complex source func­
tions for a single station, although using 
multiple stations can again reduce, but not 
eliminate, the trade-offs. 

From the mid-1970s through the early 
1980s, many studies of earthquake source 
parameters were done using teleseismic 
waveform modeling, mainly of long-period 
WWSSN data. The methodology involved 
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FIGURE 10.4 P-wave synthetic seismograms for the three potential terms with varying 
depth and time functions. The numbers in the upper right are actual potential amplitudes 
without the MQ/ATTPQ, yR decay, and receiver functions included. The source time parame­
ters, dr , are high stress drop (0.5, 1.0. 0.5), medium stress drop (1.0, 3.0, 1.0), and low 
stress drop (2.0, 6.0, 2.0). (From Langston and Helmberger, 1975. Reprinted with permis­
sion from the Royal Astronomical Society.) 
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FIGURE 10.5 Il lustration of the trade-off 
between source depth and source time function 
durat ion for teleseismic P waves. The 
synthet ics have a long-period WWSSN 
response, convolved with a impulse response 
Green's function and a source time function. 
Note that identical waveforms can be produced 
for different combinations of Green's function 
and source time function (rows a and c]. Both 
depth and mechanism were changed in this 
case, but simply changing depth can give the 
same result. The trade-offs can be overcome by 
using multiple stations, to some extent. [From 
Christensen and Ruff, 1985]. 

fitting long-period P and SH waves that 
were well distributed in azimuth about the 
source. The waveform information con­
strains the focal mechanism, depth, and 
source time function. A comparison of the 
predicted and observed amplitudes of the 
waveforms yields the seismic moment. In 
general, about a factor of 2 scatter is typi­
cally observed in moment estimates from 
station to station. This scatter reflects un­
certainty in the filters, particularly g{t). 
(Although some uncertainty was associ­
ated with the WWSSN instrument re­
sponse, modern broadband digital data ex­
hibit less amplitude scatter.) Once the time 
function is known, it is possible to infer 
the source dimensions if we assume a rup­
ture velocity. Given an estimate_of fault 
area, the average displacement (D) on the 
fault and the stress drop can be calculated. 
Aftershock distribution or observed sur­
face faulting is often used to estimate fault 
dimensions. 

A fundamental concept underlying 
waveform modeling is separation of the 

source and propagation effects. For a dou­
ble couple, (10.8) explicity achieves this. 
Now let us consider a full moment tensor 
source where all moment tensor terms have 
an identical source time history, s{t). Us­
ing (8.84) we can rewrite Eq. (10.3) as 

5 

U,{x,t)^s{t)^i{t)* E ( m r G / n ( 0 ) 

(10.10) 

' ^ I ' ^ ^ i i ' ^I'^Mii^ ^2>^f^n^ 

m^^M^^, m5=M23, 

where «„ is the vertical, radial, or tangen­
tial displacement, and the Earth transfer 
function has been replaced by the summa­
tion operator. The summation is the prod­
uct of the seismic moment tensor (here 
represented by m,, the five elements left 
when assuming no isotropic component, 
i.e., m33 = -(mii + m22X and G^J^t), the 
corresponding Green's functions. The mo­
ment tensor terms are simply constants to 
be determined. The Green's functions are 
impulse displacement responses for a seis­
mic source with orientation given by each 
corresponding moment tensor element. 
Note that each moment tensor Green's 
function / will give three components (n) 
of displacement. Any arbitrary fault orien­
tation can be represented by a specific 
linear combination of moment tensor ele­
ments (see Section 8.5), so the summation 
in Eq. (10.10) implies that any Earth trans­
fer function can also be constructed as a 
linear combination of Green's functions. 
This is an extremely powerful representa­
tion of the seismic waveform because it 
requires the calculation of only five (or 
with some recombination of terms, four) 
fundamental Green's functions to produce 
a synthetic waveform for an arbitrary mo­
ment tensor at a given distance. 

Equation (10.10) is the basis for inver­
sion procedures to recover the seismic 
source parameters. It includes the purely 
double-couple representation in (10.8) as a 
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special case. In the simplest case, let us 
assume that the source time function and 
source depth are known. Then s(t) and 
i(t) can be directly convolved with the 
Green's functions, yielding a system of lin­
ear equations: 

5 

u„ix,t)= E "I, •//,„(')> (10.11) 

where // ,„(0 are the new Green's func­
tions (impulse response passed through an 
attenuation and instrument filter). We can 
write (10.11) in simple matrix form 

u = Gm. (10.12) 

In order to match the observed seismo-
gram in a least-squares sense, we can draw 
on the methods introduced in Chapter 6 to 
invert (10.12) for an estimate of m 

in = G"^u, (10.13) 

where G~^ is a generalized inverse. 
This holds for each time step in the 

observed seismogram, uj^x,t). Basically, 
all one is doing is find the five weighting 
terms (moment tensor values) of functions 
that add up to give the seismogram. A 
single horizontal record that is not natu­
rally rotated can be used to recover the 
full moment tensor, because each time 
sample helps to constrain m. More stable 
estimates of the moment tensor are pro­
vided by inverting all three components at 
a single station. The most stable procedure 
is to simultaneously fit many seismograms 
from stations with distinctive Green's 
functions. For a given time t with multiple 
stations (10.12) can be written in vector 
form as 

Gil ^12 

'21 

kxl 

'22 

^k2 

kx5 

'15 

'25 

G k5 

m. 
nin 

m 

5 X 1 , 

(10.14) 

where k is the number of waveforms of 
interest; when A: > 5, the system is overde-
termined, and it should be possible to re­
solve the moment tensor. In practice, the 
system must be very overdetermined to 
resolve m, which is easily achieved using 
multiple time samples. 

Of course, we usually do not know the 
source time function or source depth 
a priori, so we can recast the problem as 
an iterative inversion. In this case we dis-
cretize the source time function and invert 
for the time series. The two most common 
parameterizations of the time function are 
a series of boxcars, or overlapping trian­
gles (Figure 10.6). Consider the case in 
which the boxcar parameterization is cho­
sen. Then we can write s{t) as 

M 

5 ( 0 = I.B,b{t-r,), (10.15) 

where b{t — TJ) is equal to a boxcar of 
width AT that begins at time TJ and ends 
at Tj -f- AT, Bj is the height of the boxcar, 
and M A T is the total length of the time 
function. Equation (10.15) can be used to 
rewrite (10.10) as 

M 5 

"n = ̂ ( 0 * E i:Bjm,[b{t-Tj)^G,„it)], 
7 = 1 i = l 

(10.16) 

Now this equation has two sets of un­
knowns: the heights of the boxcars, Bj, 
and the elements of the moment tensor, 
m^. Since Eq. (10.16) is a nonlinear func­
tion of the unknowns, an iterative, lin­
earized least-squares inverse can be used. 
We assume an initial model, construct syn­
thetics for it, and then match the data in a 
least-squares sense by minimizing the dif­
ference, obs(0 - syn(r) = Adit). We then 
solve 

Ad = AAP, (10.17) 

where A is a matrix of partial derivatives 
(Aij = dUi/dPj) of the synthetic waveform 
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A t A T 

FIGURE 10.6 Two alternative parameterizations of an arbitrarily shaped source function. 

(ŵ ) with respect to a given parameter Pj, 
AP is the model vector to be solved for, 
which contains the changes in the parame­
ters, Pj, required to diminish the differ­
ence between the observed and synthetic 
seismograms. This type of linearization is 

valid only for small AP; thus it requires a 
good starting model, and a criterion is 
added to the inversion to minimize A P. 

Equation (10.17) can be solved with the 
generalized inverse techniques described 
in Section 6.4. In general, simultaneous 

AFI 
Regional az«233 

S waves 

JH a 
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Time (sec) 

FIGURE 10.7 An example of waveform modeling for the 1989 Loma Prieta earthquake. 
Ground displacements are for the P„, and teleseismic P and SH waves. Top trace of each 
seismogram pair is the observed, and bottom trace is the synthetic. The time function used 
is shown at the lower right. The focal mechanism determined from this inversion is <̂ ^ = 128° 
± 3 ° . 5 =66° ± 4 ° . A =133° ± 7 ° . and the moment is 2.4 x 10^^ N m. [From Wallace e t a / 
1991.] 
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inversion for the moment tensor constants 
and time function elements results in some 
nonlinear parameter trade-offs that can 
cause some singular values to be very small, 
but exploring the solution space by invert­
ing with many different starting models 
usually yields a robust solution. The mo­
ment tensors from waveform inversion are 
hardly ever "perfect" double couples. The 
moment tensor is usually diagonalized and 
decomposed into a major and minor dou­
ble couple or into a major double couple 
and a CLVD (Section 8.5 discusses these 
decompositions in detail). The minor dou­
ble couple is usually small and is ignored; 
it is usually assumed that the minor double 
couple is the result of noise or of mapping 
incomplete or inaccurate Green's func­
tions into the source parameters. Figure 
10.7 shows the results of a body-wave in­
version for the 1989 Loma Prieta, Califor­
nia, earthquake. The source time function 

was parameterized in terms of boxcars. 
Note that it does not look like the ideal­
ized trapezoid; we will discuss source 
time-function complexity in Section 10.3. 
The moment tensor from this inversion 
has only a small CLVD, suggesting that 
representing the source as a point source 
double couple, with an oblique thrust focal 
mechanism, adequately approximates the 
source for teleseismic body waves. 

The power of waveform modeling for 
determining seismic source parameters by 
Eq. (10.10) depends on being able to cal­
culate the Green's functions accurately. At 
teleseismic distances this is usually not a 
problem, since the rays P, pP, and sP 
have simple structural interactions and 
turn in the lower mantle where the seismic 
velocity structure is smooth. Although 
"ringing" can occur in a sedimentary basin, 
for the most part teleseismic Green's func­
tions for isolated body-wave arrivals are 

♦►R 

Total (4094) ^ 

FIGURE 10.8 Vertical-component displacement seismograms for a station 1000 km from a 
shallow (8 km] source in a simple layer over a half-space model. No instrument response is 
included. [From Helmberger, 1983.) 
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Box 10.1 Slow Earthquakes 

Although the source duration of most earthquakes scales directly with seismic 
moment (see Figure 9.16), there are some exceptions. In particular, slow earth­
quakes have unusually long source durations for the seismic moments associated 
with them. Slow earthquakes typically have an m^ that is small relative to M^. 
Figure lO.Bl.l shows the effect of duration on short- and long-period body waves. 
The slow rise time presumably results from a very low stress drop (see Section 9.3), 
which controls the particle velocity. Variability in the source function occurs on all 
scales, from rapid events to slow creep events. Figure 10.B1.2 compares the seismic 
recordings of several aftershocks of the 1960 Chile earthquake. The upper two 
recordings are normal earthquakes, with typical fundamental mode excitation. The 
May 25 event has some greater complexity in the surface wave train, while the 
June 6 event is incredibly complex, with over an hour-long interval of surface wave 
excitation. 

Fault movement Seismic waves 

r= 1 to 10 s 

A"'-' 
7-=I02 to 10' s 

-\- -V 
— ► ! 
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i_̂  

M— 

^ ^ " ' = 0 , 
Ut=oo 

r 
J\^ 

- ► / 

Short period Moderate period 
(1 to 10 s) (20 s) 

FIGURE 10.B1.1 The effect of different rise times on teleseismic signals. (From Kanamori, 
1974.) 

Kanamori (1972) noted that some subduction zone earthquakes produce extraor­
dinarily large tsunamis but have moderate surface-wave amplitudes. In these cases 
M^ is small for the actual moment, and very slow rupture velocities apparently 
enhance the very low frequency spectrum. The physical mechanism responsible for 
such a slow rupture process is unknown, but in the extreme, it could produce a 
"silent'' earthquake devoid of short-period body and surface waves. Recently, two 
investigators, G. Beroza and T. Jordan, suggested that several silent earthquakes 

continues 
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occur each year that can be identified only because they produce free oscillations 
of the Earth. However, several sources, including large atmospheric storms and 
volcanic processes, can excite low-frequency oscillations, so the source of the free 
oscillations observed by Beroza and Jordan is somewhat uncertain, but likely to be 
associated with unusual earthquake dynamics. 

June 20 
M =7.0 

Nov 1 
M =7.2 

May 25 
M5 = 6.9 

June 6 
M3=6.9 

cm 
PP = I.45 

4 > i n i » # . f » i | i i i » < ■ » i i t i ^ i . I I I 

PP = 0.45 
<|K"l'(Ni M<WJ>ii|i Willi Ml i l 'M MwniMU'w ■ 

PP = 0.28 

|<IIH»>W<W <II4><>< Ni>" "■' 

PP = 0.63 

60 nnin 

FIGURE 10.B1.2 Recordings of four aftershocks of the 1960 Chile earthquake. The upper 
two traces are conventional in appearance, with well-concentrated /?>, wavepackets. The 
lower two events have nnuch more complex surface waves intervals, indicative of long, 
complex source radiation, extending over more than an hour for the June 6 event. (From 
Kanamori and Stewart, 1979J 

simple. This is not the case at upper-man­
tle and regional distances. At regional dis­
tances the crust acts as a waveguide, and 
hundreds of reflections between the sur­
face and Moho are important for the 
waveform character. Figure 10.8 shows the 
vertical-component seismograms calcu­
lated for a simple layer over a half-space 
model for a station 1000 km from a shal­
low (8 km) source. Note that more than 
200 rays are required before the waveform 
shape becomes stable. The suite of crustal 
reverberations following the P„ head wave 
comprise the P^i phase. However, despite 
the obvious complexity in the Green's 
functions, the waveforms are very diagnos­
tic of source orientation. The signature of 

the seismic source on the P^i waveform is 
robust as long as the gross parameters of 
the crustal waveguide (crustal thickness, 
average crustal seismic velocities, and up­
per-mantle P^ velocity) are well approxi­
mated. Figure 10.9 shows an example of 
inversion for source fault orientation from 
regional JP„/ waveforms. 

Regional-distance analysis is extremely 
important in the study of small or moder­
ate-sized earthquakes (m^ < 5.5), which 
are rarely well recorded at teleseismic dis­
tances. Advances in broadband instrumen­
tation have made it possible to determine 
the seismic source parameters from a sin­
gle seismic station. The transient motion 
for a given double-couple orientation is 
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FIGURE 10.9 Comparison of regional long-period P^, waveforms (upper traces) and synthet­
ics [lower traces) obtained by waveform inversion for fault parameters of the 1966 Truckee, 
California, earthquake. (From Wallace and Helmberger,1982.) 

unique; thus if three components of mo­
tion are recorded, the source parameter 
can be determined provided that suflS-
ciently accurate Green's functions are 
available (see Box 10.2). 

At upper-mantle distances, triplications 
from the 400- and 670-km discontinuities 
make the body-wave Green's functions 
complex. Further, the mantle above the 
400-km discontinuity has tremendous re­
gional variability (Chapter 7). In general, 
beyond 14°, the first-arriving P wave has 
turned in the upper mantle, and the 
400-km triplication occurs between 14° and 
20°. The triplication from the 670-km dis­
continuity usually occurs between 16° and 
23°. Figure 10.10 shows Green's functions 
for an upper-mantle model constructed for 
the western United States. The complexity 
and regional variability of upper-mantle-
distance seismograms diminish their utility 
in seismic source parameter studies. Only 
when an earthquake occurs where the up­

per-mantle structure is very well known 
are the records of use for source analysis. 
Figure 10.11 compares observed and syn­
thetic waveforms for the 1975 Oroville 
earthquake for distances from 5° to 75°, 
showing how well a single source model 
can match waveforms at regional, upper-
mantle, and teleseismic distances when the 
structure is well known. 

This text is filled with other examples of 
waveform modeling that have been used to 
illustrate various aspects of seismology. For 
example. Figure 9.11a shows a waveform 
study of the 1975 Haicheng, China, earth­
quake. This earthquake is well known be­
cause it was predicted by the Chinese State 
Seismological Bureau and the epicentral 
population center was evacuated, poten­
tially saving thousands of lives. Body waves 
for this event show clear directivity, adding 
complexity to the waveforms. The pulse 
widths at stations to the west are much 
narrower than those at stations to the east, 
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FIGURE 10.10 Upper-mantle synthetics without and with long-period WWSSN instrument 
for the three fundamental orientations (ZSS =vertical strike-slip; ZDS =vertical dip-slip: 
Z 4 5 = 4 5 ° dip-slip at an azimuth of 45°) assuming a source depth of 8 km, t = 1. and 
8t^ = 5 t 2 = 5 t 3 = 1 for the source time history. (Modified from Helmberger, 1983.) 

Box 10.2 Source Parameters from a Single Station 

In Chapter 8 we showed that slip on a fault could be represented by an 
equivalent double-couple force system. It turns out that the displacement field 
from a given double couple is unique, which means that if we can model the entire 
transient displacement field at a single point, we should be able to recover the 
source orientation. In other words, a source-parameter study should require only a 

continues 
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complete waveform inversion at a single seismic station. In practice, uncertainties 
in the Green's functions and source time function, limited bandwidth of recording 
instruments, and noise make this nearly impossible. However, at local and near-
regional distances the effects of structure are easily accounted for, and the new 
generation of very broadband (vbb), high-dynamic-range instruments, such as the 
IRIS stations, makes it possible to use very sparse networks to determine accu­
rately the source parameters of small to moderate-sized earthquakes. 

Figure 10.B2.1 shows the recording of an ML = 4.9 earthquake 12 km beneath a 
broadband station in Pasadena, California (PAS). The earthquake was well 
recorded on the Southern California network, and a first-motion focal mechanism 
was determined (see the second panel). The radial and tangential waveforms 
indicate that the source time function is complicated; for the synthetics, two 
triangles are assumed. The first-motion focal mechanism very poorly predicts the 
SH waveform and the relative sizes of the radial and tangential waveforms. A 
minor adjustment to the focal mechanism dramatically improves the quality of the 
fit of the synthetic to the observation. The main difference between the observed 
and synthetic waveforms is a near-field effect, not accounted for in the synthetic. 
This example shows the potential power of waveform inversion for complete 
seismograms. 
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FIGURE 10.B2.1 Example of the determination of a focal mechanism by modeling the 
three-component data from a single station. [Modified from Kanamori et al., 1990.-) 



10. SEISMIC WAVEFORM MODELING 

regioncbl 

f=:0,MQ=: 1.4-10^5 

upper mantie 

f=1.3,MQ=1.7.102^ 

J>30« 

f=1.0^MQ = 1.7.10 25 

0 60s 0 30 s 
FIGURE 10.11 Comparison of synthetics with waveform data for the August 1, 1975 
Oroville, California, event. The preferred model is 0^ = 215°,A = - 6 3 ' , and 5 = 4 8 ° . Inversion 
results: with the 5 P„, records exclusively, <̂ ^ = 195°.A = - 7 ? , and 6 = 4 6 ° ; with 10 upper-
mantle ranges exclusively, <f>f = ^97°,\ =-S^, and 5 = 5 8 ° : with 8 teleseismic waveforms 
exclusively. </>f = 221°.A =82° , and 5 = 4 4 ° . (AfterYao e ta / . . 1982.) 

suggesting that the fault ruptured west­
ward along the nodal plane striking 288°. 
(This strike is consistent with the surface 
trace of the fault and the aftershock distri­
bution.) Figure 9.11 shows the observed 
variability in the time function plotted as a 
function of azimuth, as well as a theoreti­
cal model for a fault propagating to the 
west for 22 km at a velocity of 3.2 km/s. 
The synthetic seismograms shown in Fig­
ure 9.11 were generated with directivity 
built into the time function. 

The methodology described for invert­
ing body waves for seismic source parame­
ters can be applied as soon as a waveform 

is "extracted" from a seismogram. Re­
cently, the IRIS Data Management System 
has developed dial-up access to a signifi­
cant part of the GSN (see Chapter 5). 
IRIS uses this remote access to implement 
a data-gathering system known as 
spyder^^. When an earthquake occurs, it 
is located by the NEIC (National Earth­
quake Information Center), and an elec­
tronic message is broadcast to IRIS. The 
spyder system then calls GSN stations and 
downloads broadband seismic waveforms. 
These waveforms are then available via 
Internet to any interested seismologist. In 
practice, data from any earthquake greater 
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than magnitude 6.5 are available within 
several hours. Thus it is possible to re­
cover seismic source parameters within a 
matter of hours for large events anywhere 
in the world. Recent developments have 
made it possible to trigger spyder even 
more rapidly for regional networks, such 
as that in the western United States. It is 
now possible to determine focal mecha­
nisms and seismic moments for western 
U.S. earthquakes with M > 4.5 within 1 h. 
This "near-real-time" analysis is used to 
identify the causal fault, to anticipate en­
suing tsunami hazard, and to predict where 
strong shaking is likely to have occurred to 
assist in emergency response activities or 
shutdown of critical lifelines such as free­
ways and train tracks. 

10.2 Surface-Wave Modeling 
for the Seismic Source 

In Section 8.6 we discussed how fault 
orientation could be constrained from am­
plitude and phase of surface waves. It is 
possible to invert this information to de­
termine the moment tensor from surface 
waves, but the resolving power for source 
depth and source time function is intrinsi­
cally limited. The amplitude and phase of 
a Rayleigh or Love wave is very dependent 
on the velocity structure along the travel 
path. This means that we must correct for 
the effects of velocity and attenuation het­
erogeneity precisely for an inversion 
scheme to be robust. This is equivalent to 
knowing the Earth transfer function in 
body-wave inversion procedures, but there 
we are not as sensitive to absolute travel 
time as we are for surface waves. This 
usually means that surface-wave inversions 
are best performed at very long periods 
(> 100 s) for which the heterogeneity is 
relatively well mapped. These periods are 
so long compared to most source durations 
that we can usually consider the far-field 
time function simply as a boxcar function 

with duration r. In this case we can write 
the source spectrum of an earthquake 
source as 

K(a>,/i,0) =a{o),h,(f)) -^i 13(a),h,(f)), 

(10.18) 

where (o is frequency, h is source depth, 
and (̂  is the takeoff azimuth. For Rayleigh 
waves the real (a) and imaginary (j8) parts 
of the spectrum are 

a= -PR(a>,A)Afi2sin2(^ 

+ ^Pfdo), A)( M22 - Mji) cos2(/) 

- | 5 R ( C O , / I ) ( M 2 2 + M , I ) (10.19a) 

(3 = Q^(a),h)M22 sin(/> 

-hQ^{(o,h)M^^ cos (f) (10.19b) 

and for Love waves 

-PJ^(o,h)Mi2Cos2(l) (10.20a) 

13= -QL(w,/z)Mi3sin<^ 

+ Qi^((o, h)M22 cos (f). (10.20b) 

The FR, 5R, QR, P^, and (2L terms are 
called surface-wave excitation functions 
(analogous to the body-wave Green's func­
tions) and depend on the elastic properties 
of the source region and the source depth. 
Figure 10.12 shows P^^ as a function of 
depth and period for different types of 
travel paths. 

The spectrum, V, is calculated directly 
from the surface-wave seismogram if that 
seismogram has been corrected for instru­
ment response and propagation effects. We 
can rewrite (10.18) as a matrix equation. 
For example, for Rayleigh waves 

V = BD, (10.21) 
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where 

V = 

B = 

D== 

0 0 0 

PRMU 

0 
sin(^ 

(10.22) 

0 
cos</> 

(10.23) 

PR(M22-M,,) 

G R M 2 3 

QRMU 

(10.24) 

Now B is a known matrix, depending only 
on source-receiver geometry; thus D con­
tains all the unknowns. Equation (10.21) 
can be extended to the spectra observed at 
N stations. Then B is a 2N X 5 real matrix, 
and V is a real vector with dimension 2N, 
This system of equations can be solved for 
D(w) at several frequencies. Typically the 
optimal choice of source duration r is 
determined as that which minimizes the 
misfit in this inversion. 

Once D has been determined, it is possi­
ble to decompose it into two vectors, one 

containing the excitation functions and the 
other containing the elements of the mo­
ment tensor: 

\=[D^{a>,),D\<o,),.,.,D^<o),Y 

A=EM, (10.25) 

where 

E = [E^,E2,'-.,E^] 

£, = diag[FR(a>,),PR(co,),5R(a),), 

G R ( ^ , ) , G R ( ^ . ) ] 

M = [Mi2,M22-Mii,M22 

+MH,M23,Mi3f. (10.26) 

Equation (10.25) is a standard overdeter-
mined problem that can be solved by least 
squares. For any real data, there will be 
some misfit to the spectrum, which can be 
measured as error. The excitation func­
tions in Ei are, of course, dependent on 
depth, so the inversion must be repeated 
for several depths. A comparison of the 

I I I I I I I 
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Oceanic 
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1 16I-
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FIGURE 10.12 Dependence of the fundamental Love-mode displacement spectrum on 
source depth for a vertical str ike-sl ip source. Excitation functions are shown for three 
different upper-mantle models, representative of shield, continental, and oceanic regions. 
Variations in the excitation coefficients as a function of period provide information about the 
source depth. (From Ben Menahem and Singh. 1981.) 
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errors for the different depths should re­
sult in a minimum error, which yields the 
source depth and thus the preferred mo­
ment tensor. 

Let us return to the question of the 
source time function. We stated that the 
details of the time function do not affect 
the spectrum much. This is true to the 
extent that the source can be approxi­
mated as a point source with a boxcar 
source function. For large events the ef­
fective source duration will have an az-
imuthal pattern, as can be seen by consid­
ering the equation for source finiteness 
(9.20). Directivity effects are more appar­

ent in surface waves than in body waves 
because their phase velocity is much 
slower. This source finiteness not only 
causes an azimuthal pattern in the phase 
but also reduces the amplitude of short-
period waves; thus the spectrum for a large 
event must be corrected for source finite­
ness. 

Figure 10.13 shows a series of moment 
tensor estimates from inversions of long-
period surface-wave spectra (Figure 8.30) 
from the 1989 Loma Prieta earthquake. 
Several combinations of global attenuation 
models and source region excitation struc­
tures are considered. These inversions 

Box 10.3 Centroid Moment Tensor Solutions 

In 1981 the seismology research group at Harvard headed by Adam Dziewonski 
began routinely determining the seismic source parameters of all earthquakes with 
Afg > 5.5 using the centroid moment tensor (CMT) method. This inversion process 
simultaneously fits two signals: (1) the very long period ( r > 40 s) body wave train 
from the P-wave arrival until the onset of the fundamental modes and (2) mantle 
waves (T> 135 s). These are fit for the best point-source hypocentral parameters 
(epicentral coordinates, depth and origin time) and the six independent moment 
tensor elements (not assuming a deviatoric source). The CMT solves an equation 
very similar to (10.10): 

(10.2.1) 

where (/r̂ „ is called the excitation kernel and is essentially the complete seismogram 
Green's function for each of the moment tensor elements. The receiver is at jc, 
and the source is at x^ (which is unknown). One initially estimates m,, and then an 
iterative procedure begins that adjusts both the location and source orientation to 
minimize 

a,8r^ + b,8e, + cM.^d,dt,+ £ C * 5m„ (10.2.2) 

continues 
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where w" and i/r/̂  are based on the initial estimate. 8r^, 86^, and 8(f)^ are the 
changes in spatial coordinates of the hypocenter, and a„, fc„, and c„ are the partial 
derivatives with respect to perturbations in the hypocentral coordinates. 8t^ is the 
change in the origin time. The kernels are obtained by summing the normal modes 
of the Earth. Thus the excitations exist a priori, and the inversion process can be 
efficiently performed for many events. Figure 10.B3.1 shows the Harvard CMT 
catalogue for the month of July 1990. The moment tensors are not constrained to 
be double couples; hence many focal mechanisms are shaped more like baseballs 
(large CLVD components) than the expected sectioned beach balls (double cou­
ples). The largest earthquake during this month was the July 24, 1990 Philippines 
event (see also Figure 1.15 for more CMT solutions). 

FIGURE 10.B3.1 Harvard CMT solutions for the month of July. 1990. (Based on Dziewonski 
e ta / . . 1991.) 

provide insight into trade-offs associated 
with specifying source velocity and Q 
models. In all cases the major double cou­
ple is nearly identical to that determined 
from the body waveform inversion, but the 
minor double-couple component varies 
from 3% to 14% for different Earth mod­
els. This leads to a word of caution about 

comparing source parameters determined 
for different wave types. Various seismic 
waves are sensitive to different aspects of 
the rupture process, and it is very impor­
tant to note that path corrections and the 
choice of attenuation will significantly af­
fect source depths determined from sur­
face-wave inversions. Surface waves can 
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better constrain total seismic moment and 
total rupture duration than shorter-period 
waves can. 

10.3 The Source Time Function 
and Fault Slip 

Thus far in our discussion of faulting 
and radiated seismic energy, we have as­
sumed that the rupture process is fairly 
smooth. This predicts a simple far-field 
time function approximated by a trape­
zoid, and slip is described by D (the aver­
age slip). In detail, the actual slip on a 
fault is not smoothly distributed, and 
source time functions deviate significantly 
from trapezoids. For example, consider the 
time function for the Loma Prieta earth­
quake in Figure 10.7. The irregularity of 
the time function is the result of tempo­
rally and spatially heterogeneous slip on 
the fault. Figure 10.14 shows the inferred 
variation in slip magnitude along the fault 
plane of the Loma Prieta earthquake. This 
slip function was derived by waveform 
modeling of both teleseismic P and SH 
waves and strong motion records from ar­
eas close to the fault. The slip is concen­
trated in two patches, with relatively small 
slip in the intervening regions. The regions 
of very high slip, known as asperities, are 
extremely important in earthquake hazard 
analysis because the failure of the asperi­
ties radiates most of the high-frequency 
seismic energy. The concentration of slip 
on asperities implies they are regions of 
high moment release, which, in turn, im­
plies a fundamental difference in the fault 
behavior at the asperity compared with 
that of the surrounding fault. A conversion 
of slip to stress drop indicates that asperi­
ties are apparently regions of high strength 
(very large stress drop). The reason for the 
high relative strength could be heterogene­
ity in the frictional strength of the fault 
contact or variations in geometric orienta­
tion of the fault plane. 

Moment Tensor for Loma Prieta Model: 
Rayleigh Wave Inversion 
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FIGURE 10 .13 Moment tensor elements 
(Kanamori notation—see Box 8.3) for the Loma 
Prieta earthquake estimated from long-period 
Rayleigh- and Love-wave spectral inversions. 
Results are shown for several different 
attenuation models and for excitation functions 
from different Earth structures. (From Wallace 
et al., 1991.3 

The geometric explanation for asperities 
reflects the fact that faults are not per­
fectly planar. On all scales, faults are rough 
and contain jogs or steps. The orientation 
of the fault plane as a whole is driven by 
the regional stress pattern. Segments of 
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SOU k f E lE COMBINED SUP 

Diitifciiet Along Strike (km) 
FIGURE 10.14 Slip distribution on the fault associated with the 1989 Lonna Prieta earth­
quake [NW end on the fault on the left). There are two prominent regions of slip, known as 
asperities. (From Wald et a/.. 1991.) 

Box 10.4 Tectonic Release from Underground Nuclear Explo­
sions 

Theoretically, the seismic waves generated by an underground nuclear explosion 
should be very different from those generated by an earthquake. An explosive 
source creates an isotropic stress imbalance without the shear motion that charac­
terizes double-couple sources. Therefore, the seismograms from an explosion 
should not have SH or Love waves, but as we saw in Figure 8.B1.1, many 
explosions do have SH-iype energy. This energy is thought to be generated by a 
"tectonic" component, namely the release of preexisting strain by the detonation 
of an explosion. There are three possible mechanisms for generation of the 
nonisotropic seismic radiation, known as tectonic release: (1) triggering of slip on 
prestressed faults, (2) release of the tectonic strain energy stored in a volume 
surrounding the explosion, and (3) forced motion on joints and fractures. For all 
three of these mechanisms for tectonic release, the long-period teleseismic radia­
tion pattern can be represented by an equivalent double-couple source. Depending 
on the orientation and size of the tectonic release, the seismic waveforms from 
underground explosions can be significantly modified from those we expect for an 
isotropic source (an explosion). 

Waveform modeling can be used to constrain the size and orientation of the 
tectonic release. For large explosions, it appears that tectonic release is associated 
with a volume of material surrounding the detonation point, and the volume is 
related to the size of the explosion. If an explosion is detonated within the 
"volume" of a previous explosion, the tectonic release is dramatically reduced. 
Figure 10.B4.1 shows two large underground nuclear explosions at the Nevada 
Test Site (NTS). BOXCAR (April 26, 1968, m^ = 6.2) was detonated 7 yr before 
COLBY (March 14, 1975, ^^, = 6.2); the epicenters are separated by less than 

continues 
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3 km. Although the P waveforms recorded at LUB are similar, there are some 
distinct differences. Below the BOXCAR waveform is a synthetic seismogram 
constructed by "adding" the waveform of a strike-slip earthquake to the waveform 
of COLBY. The near-perfect match between the observed and synthetic waveform 
for BOXCAR supports the double-couple interpretation for tectonic release. 

h 1 nnin • '\ 

^"^^^^ 

A=I2.4' 

Boxcar '-J(l^^ 
FIGURE 10.B4.1 A comparison of the P and P^ waveforms for BOXCAR and COLBY at LUB. 
Also shown is a synthetic waveform constructed by summing the COLBY waveform and a 
synthetic calculated for a str ike-sl ip double couple (moment is 1 .0x10 ' ' ^ N m). (From 
Wallace etal., 1983.) 

the fault that are subparallel to this orien­
tation can have significantly higher normal 
stresses than surrounding regions, making 
them "sticking" points that resist steady, 
regular slip. Figure 10.15 shows a geomet­
ric irregularity that could serve as an as­
perity. The size and apparent strength of 
the asperity depend on d^ and 0^ (see 
Figure 10.15). At high frequencies, failure 
of discrete asperities may be manifested as 
distinct seismic arrivals. This implies that 
the details of source time functions may 
correspond to seismic radiation on particu­
lar segments of the fault. Figure 10.16 
shows the source time function and in­
ferred fault geometry for the 1978 Santa 
Barbara, California, earthquake (m^ = 
5.8). The short-period P waves for this 
oblique thrust event are more complex 
than the long-period P waves. This results 
from the passband of the instrumentation. 

which consists of WWSSN long- and 
short-period (1-s) seismometers, as illus­
trated in Figure 10.1. The long-period in­
strument cannot resolve the double peak 
apparent in the short-period signals, and 
the short-period records do not record the 
longer-period slip associated with the en­
tire fault. The spatial distribution and 
orientation of the two asperities were de­
termined from strong-ground-motion 
recordings. The new generation of very 
broadband seismometers has reduced the 
need for operating numerous instruments 
at a site to recover the details of faulting, 
and seismologists have begun to produce 
unified source models, which can be used to 
explain the entire faulting process from 
static offset to 10 Hz. These source models 
may include variation in the slip direction 
on the fault as well as variation in the slip 
magnitude. For the Loma Prieta event. 
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FAULT 

SLIP PLANE 

FIGURE 10 .15 Geometric irregularity that could serve as an asperity. (From Scholz. 1990.) 
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FIGURE 10.16 Source time function and Inferred fault geometry for the 1978 Santa 
Barbara. California, earthquake (nib =5.8). [From Wallace e ta / . , 1981.) 
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Figure 1.7 shows a model of variable slip 
on the fault from both local and teleseis-
mic signals. 

In general, there are no near-field 
recordings for most earthquakes of inter­
est, and we must infer any faulting hetero­
geneity from details of the far-field time 
function alone. As discussed in Section 
10.1, the source time function is usually 
determined iteratively in generalized 
source-parameter inversion. Another ap­
proach is to recast Eq. (10.10) as a decon-
volution problem 

u„{x,t)*{g{t)*i{t))-'=s{t) (10.27) 

or 

u{o}) 

g(a))i{o)) 
= s(a)), (10.28) 

This deconvolution procedure is a natural 
extension of linear filter theory. This is 
possible when the source orientation is 
known independently and we simply want 
the source time function. The major prob­
lem with this procedure is that it maps 
uncertainty in the Earth transfer function 
and source orientation into the time func­
tion. This is a problem for analysis of large 
earthquakes unless the Earth transfer 
function correctly includes the effects of 
fault finiteness. One way to allow for 
finiteness is to produce a suite of Earth 
transfer functions for a given geometry 
and write the time-domain displacement 
response as 

M 
u(x,t)=j:Bj[b{t'Tj)*gj], (10.29) 

where gj is the Earth transfer function 
from the yth element of the fault that 
"turns on" at some time r,, which is pre­
scribed by the rupture velocity; bit - TJ) is 
the parameterization of the time function 
as described in Eq. (10.15); and Bj is the 
variable of interest in the inversion, namely 
the strength of element b(t - TJ) in the 

source time function. A separate source 
time function is found for each element of 
the fault by solving for Bj(t). Figure 10.17 
shows an example of the forward problem 
for a fault that ruptures from 15 to 36 km 
depth. It is obvious that unless the vari­
ability in timing of the depth phases is 
accounted for, an inversion for the time 
function will be biased. Figure 10.18 shows 
examples of inversions for source time 
function based on Eq. (10.29). 

The time functions in Figure 10.18 indi­
cate very different fault behavior. The 
Solomon Islands earthquake had a much 
smoother source process than the 
Tokachi-Oki earthquake. The bursts of 
moment release during the Tokachi-Oki 
earthquake suggest that several asperities 
along the fault plane broke when the rup­
ture front arrived. This type of time-func­
tion variability has been used to character­
ize segments of subduction zones. Figure 
10.19 shows the source time functions from 
four great subduction zone earthquakes 
and a model for the distribution of asperi­
ties in different subduction zones. In the 
case of subduction zones, the variability of 
asperity size and distribution presumably 
reflects coupling between the subducting 
and overriding plates. The Aleutian sub­
duction zone is strongly coupled along the 
segment that generated the 1964 Alaskan 
earthquake, and the Kuril region is char­
acterized by weaker coupling and sporadic 
asperity distribution. The factors causing 
the variability in coupling are discussed in 
the next chapter, but the asperity model 
suggests that an earthquake in a strongly 
coupled region would be much larger than 
in a weakly coupled subduction zone. We 
will discuss coupling in much greater de­
tail in Chapter 11. 

Let us return to the heterogeneity of 
slip on the fault plane as shown in Figure 
10.14. An important question is, What 
causes the rupture to stop? Along with the 
concept of asperities, the concept of barri­
ers has been introduced for regions on the 
fault that have exceptional strength and 
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FIGURE 10.17 Earth transfer functions for a four-point source representation of a thrust­
ing earthquake. The sum of the g[t) convolved with time functions appropriate for each point 
source will give the synthetic seismogram. (From Hartzell and Heaton. 1985.) 

impede or terminate rupture. Alterna­
tively, barriers may be regions of low 
strength in which the rupture "dies out." 
This type of barrier is known as a relax­
ation barrier. The concepts of strength and 
relaxation barrier are generally consistent 
with the asperity model if adjacent seg­
ments of the fault are considered. A 
strength barrier that terminates rupture 
from an earthquake on one segment of the 
fault may serve as an asperity for a future 
earthquake. Similarly, the high-slip region 
of a fault during an earthquake may act as 
a relaxation barrier for subsequent earth­
quakes on adjacent segments of the fault. 
Aseismic creep may also produce relax­
ation barriers surrounding asperities that 
limit the rupture dimensions when the as­
perity fails. Unfortunately, there are also 
inconsistencies between the barrier and 

asperity models of fault behavior. In Fig­
ure 10.14 a region of moderate slip is 
located between the two asperities. Is this 
reduced slip caused by a region of previ­
ous failure, or is this a region of the fault 
that is primed for a future earthquake? It 
may be possible to resolve this question by 
studying the detailed spatial distribution of 
aftershocks. If the regions adjacent to the 
asperities have a concentration of after­
shocks but the asperities themselves are 
aftershock-free, this would be inconsistent 
with strength barriers. There is some indi­
cation that aftershock distributions outline 
asperities, but there are still problems with 
spatial resolution that preclude strong 
conclusions. Aftershocks are clearly a pro­
cess of relaxing stress concentrations intro­
duced by the rupture of the mainshock, 
but there remains an active debate as to 
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FIGURE 10.18 The source time function for two subduction zone earthquakes. Separate 
time functions are shown for each point source at four depths, with a sum being shown 
above the observed and synthetic seismograms. (From Hartzell and Heaton, 1985.] 

their significance in terms of asperities and 
barriers. The only thing that is certain is 
that, averaged over long periods of time, 
the entire fault must slip equal amounts. 

10.4 Complex Earthquakes 

Fault roughness and the asperity model 
appear to apply to earthquakes at all scales. 

When earthquakes reach a certain size, 
the faulting heterogeneity can be repre­
sented with the concept of subeuents. In 
other words, for some large events the 
seismic source process can be thought of 
as a series of moderate-sized earthquakes. 
When source time functions become suf­
ficiently complicated to suggest earthquake 
multiplicity, the event is known as a com­
plex earthquake. Because all earthquakes 



ALASKA 3-28-64 

BUL, A = 139.0* 

k i A^SA 
0 6 0 5g(. 120 

Moment ~ 190 x 10?'dyne-cm 

RAT IS 2 -4 -65 

wV' 
Moment ~ 5 x lOr dyne • cm 

COLOMBIA 12-12-79 

AAE, A= 117.5* 

-'jJV— 
Momeni ~ 3 dyne • cm 

KURILE IS 10-13-63 

~ 2 XIC?' dyne • cm 

10. SEISMIC WAVEFORM MODELING 

Asperity Model 

(1) Chile 

(2) Aleutians ^ 

(4) Morionas 

\°4 
1 

:l l^U 
—H 

A 
1 1 

L 1 ( _L J 
H 

Rupture Extent 

FIGURE 10.19 Source time functions fronn four great subduction zone earthquakes and a 
nnodel for the distribution of asperities in different subduction zones. (Left is from Ruff and 
Kanamori, 1983; right is from Lay and Kanamori, 1981.) 

Box 10.5 Modeling Tsunami Waveforms for Earthquake 
Source Parameters 

In Chapter 4 we discussed the propagation of tsunamis, which were generated by 
rapid displacement of the ocean floor during the faulting process. Just as the 
seismic recording of a surface wave is a combination of source and propagation 
effects, the tidal gauge recordings of a tsunami are sensitive to the slip distribution 
on a fault and the ocean bathymetry along the travel path. It is possible to invert 
the waveform of a tsunami (ocean height as a function of time) for fault slip. The 
propagation effects are easily modeled because the tsunami velocity depends only 
on the water depth, which is usually well known. Figure 10.B5.1 shows the 
observed and synthetic tsunami waves from the 1968 Tokachi-Oki earthquake, 
which was located northeast of Honshu, Japan. Figure 10.B5.2 compares the fault 
slip derived from the inversion of the tidal gauge data and that determined by the 
analysis of surface waves. The general agreement between both models is good; 
slip is concentrated west and north of the epicenter (arrows on figures), while slip 
south of the epicenter was zero or very small. 

The inversion of tsunami data is potentially very useful for pre-WWSSN data. 
Few high-quality seismic records exist to estimate the heterogeneous fault motion 
of these older events, but older tidal gauge records often exist that are as good as 
modern records. 

continues 
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FIGURE 10.B5.1 Comparison between observed and predicted tsunamis for the 1968 
Tokachi-Oki earthquake. The model fault is rectangular with heterogeneous slip. (From 
Satake. J. Geophys. Res. 94, 5627 -5636 . 1989; © copyright by the American Geophysical 
Union.) 
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FIGURE 10.B5.2 Fault slip inferred from (a] tsunami data and Cb] seismic surface waves. 
tFrom Satake, J. Geophys. Res. 94 , 5 6 2 7 - 5 6 3 6 , 1989; © copyright by the American 
Geophysical Union.) 
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are complex in detail, we usually reference 
fault complexity to the passband of obser­
vation. Figure 10.20 is an empirical classi­
fication of complex earthquakes; in the 
period band 5-20 s, many earthquakes with 
source dimensions that are greater than 
100 km are complex. This is particularly 
true for strike-slip earthquakes. Figure 
10.21 shows a multiple shock analysis for 
the February 4, 1976 Guatemala earth­
quake. A sequence of subevents is used to 
match each complex waveform, with con­
sistency between the station sequences in­
dicating the rupture complexity. The 
strike-slip rupture propagated bilaterally 
away from subevent 1, radiating pulses of 
energy as each fault segment failed. In this 
analysis it is assumed that each subevent 
has a specified fault orientation (the fault 
curves from west to east; see Figure 1.16). 
By matching the observed waveforms at 
stations azimuthally distributed around the 
source, we can determine the timing and 
moment of each subevent. 

In our previous discussion of inverting 
for source parameters, we assumed that 
the rupture front progressed in a smooth 
and predictable manner. Clearly, in the 
case of the Guatemalan earthquake we 
have no a priori constraints that the rup­
ture is smooth, nor should we expect it to 
be bilateral. It is possible to develop a 
generalized waveform inversion in which 
the temporal and spatial distribution of 
moment release can be recovered. In the 
simplest case, a fault can be parameterized 
as a series of subevents with known spatial 
coordinates but with unknown moment re­
lease or rupture time. Then the least-
squares difference between an observed 
waveform and a synthetic is given by 

^'^ r[u{t)-mw{t-t^)fdt, (10.30) 

where w(0 is the observed seismogram, w 
is a synthetic seismogram calculated for a 
point source [w is given by (10.3), with 
5(r), the appropriate time function for a 

"unit" earthquake of moment VTIQ], m is 
the size scaling factor, and A is minimized 
in terms of m and t{, thus the timing and 
size of a subevent can be determined. We 
can generalize Eq. (10.30) to many 
subevents and multiple observations by 
successively "stripping away" the contribu­
tion of each subevent. In this procedure a 
wavelet is fit to the data, and a residual 
waveform is used to define a new seismo­
gram. This residual is fit with another 
wavelet, stripped, and so on until the en­
tire observed seismogram is adequately ex­
plained. This problem is usually severely 
underdetermined, so a "search procedure" 
is used to find the minima in A. The 
generalized form of (10.30) is given by 

M 

E 
(10.31) 

where M is the number of stations used, 
jCŷ  is the residual data at the /th station 
after k-\ iterations, m̂ ,̂ is the moment 
chosen for the A:th iteration, >Vŷ  is the 
synthetic wavelet for the yth station from 
the A:th subevent, r^ is the timing of the 
k\h subevent, and /^ gives the source pa­
rameters for the k\h subevent (epicenter, 
focal mechanism, etc.). The spatial-tem­
poral resolution of a given subevent can be 
evaluated by plotting the correlation be­
tween the observed waveform and the syn­
thetic wavelet at various allowable fault 
and time locations. Figure 10.22 shows the 
correlation for three iterations of such an 
inversion for the Guatemala earthquake. 
t is the time after rupture began, and / is 
the distance along the fault from the epi­
center. For the first iteration the correla­
tion is highest at a time of approximately 
20 s and a distance of 90 km west of the 
epicenter. After this subevent is stripped 
away (removing the largest moment 
subevent), the process is repeated, and the 
largest correlation is 60 s from rupture 
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FIGURE 10.22 Correlation for three iterations of inversion for the Guatennala earthqualce. 
The darker values indicate times and locations in which point sources can explain power in 
the residual seismogram from the previous iteration. The upper right shows the space-t ime 
sequence of pulses, with the size of triangles indicating the relative moment of pulses along 
the fault. [From Young et al., 1989.)D 

initiation, 150 km west of the epicenter. 
This process is repeated for a prescribed 
number of iterations, and the results from 
each iteration are combined to give the 
overall rupture process. It is interesting to 
note that the largest moment release for 
the Guatemala earthquake occurred near 
the bend in the Motagua fault, consistent 
with our discussion earlier in this chapter 
about asperities produced by irregularities. 

The procedure described above has been 
extended to invert for source orientation 
of various subevents. Figure 1.16 shows 
corresponding results for the Guatemala 
earthquake with variable subevent fault 
orientation and moment being recovered. 
Such an application has a huge number of 
parameters and is reliable only with an 
extensive broadband data set. 

Another waveform-modeling procedure 
to recover temporal changes in fault orien­

tation is to invert for a time-dependent 
moment tensor. In this case we can rewrite 
Eq. (10.10) as 

Un{x,t)= E m , ( 0 * G J x , r ) , (10.32) 

where now the moment tensor elements 
are independent time series of moment 
release, and we incorporate the instru­
ment response in the Green's function. 
Each moment tensor element now has its 
own time history, or time function. In the 
frequency domain we can write this as 

5 
u^{x,o))= Y. mi{ti))Gi^{x,a)), (10.33) 

where m, is the only unknown and it is a 
set of constants for each frequency. We 
can solve for m, at a set of discrete fre-
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quency points and use the inverse Fourier 
transform to obtain a time-dependent mo­
ment tensor. In matrix form, Eq. (10.33) 
for a single frequency, / , looks like 

where uf and u\ correspond to the ob­
served spectra at station 1 at frequency / , 
and u^ and ul correspond to the spectra 
at station n at frequency / . The Green's 

Gf. 

G\r 

Gni 

- G } , 

Gf, 

~G!,I 

G„i 

Gfs 

Gls 

G« 

^n5 

-G\s 

Gfs 

-^nS 

^n5 

m\ 

m\ 

nic 
m\ 

(10.34) 

Box 10.6 Empirical Green's Functions 

Although Earth models have become quite sophisticated, there are many in­
stances where our ability to compute accurate theoretical Green's functions is 
inadequate to allow source information to be retrieved from particular signals. 
This is very common for broadband recordings of secondary body waves with 
complex paths in the Earth iPP, SSS, etc.), as well as for short-period surface 
waves ( r = 5-80 s). A strategy for exploiting these signals is to let the Earth itself 
calibrate the propagation effects for these signals, which are usually very complex. 
This is achieved by considering seismic recordings from a small earthquake located 
near a larger event of interest. If the source depth and focal mechanism of the two 
events are identical, the Earth response to each station will be the same. If the 
small event has a short, simple (impulse-like) source time function, its recordings 
approximate the Earth's Green's functions, including attenuation, propagation, 
instrument, and radiation pattern effects, with a corresponding seismic moment. 
We use these signals to model the signals for a larger event, with the differences 
being attributed to the greater complexity of the source time function for the 
larger earthquake. Often this involves deconvolving the "empirical" Green's func­
tions from the corresponding records for the larger event. This provides an 
approximation of the source time function for the larger event, normalized by the 
seismic moment of the smaller event (Figure 10.B6.1). Isolated phases with a single 
ray parameter are usually deconvolved, with azimuthal and ray parameter (takeoff 
angle) variations in the relative source time functions providing directivity patterns 
that allow finiteness of the larger event to be studied. The procedure is valid for 
frequencies below the corner frequency of the smaller event, and in practice it is 
desirable to have two orders of magnitude difference in the seismic moments. 
Rupture processes of both tiny and great events have been studied in this way. 

continues 
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FIGURE 10.B6.1 Examples of deconvulution of recordings for a large event by recordings for 
a small nearby event recorded on the same station. Pairs of vertical component broadband 
surface wave recordings for two events are shown on the left, with the June 28, 1992 
Landers iM^=7.3) event producing larger amplitudes than the nearby April 23, 1992 
Joshua Tree event. Both events involved strike-slip faulting in the Mojave desert. Having 
similar focal mechanisms, locations, and propagation paths allows the smaller event to 
serve as an empirical Green's function source for the larger event. Deconvolution of the 
records at each station results in the simple relative source time functions shown on the 
right, with these giving the relatively longer source time function for the Landers event. 
Directivity analysis indicates that the rupture propagated toward BKS, producing a narrow 
pulse, and away from NNA. which has a broadened pulse. (From Velasco et al. 1994.with 
permission.) 

function matrix is composed of 10 columns 
corresponding to the real and imaginary 
parts of five moment tensor elements for 
each station. This is required because of 
the complex multiplication: (m^ + m'XG^ 
+ G 0 . The real part is (m^G^-m^G^), 
and the imaginary part is (m^G^ + m^G^). 

Inversion of (10.34) is typically unstable at 
high frequencies due to inaccuracies of the 
Green's functions, so only the lower fre­
quencies are used. Figure 10.23 shows the 
results of a time-dependent moment-tensor 
inversion for the 1952 Kern County earth­
quake. The results show a temporal evolu-
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FIGURE 10.23 Results of a time-dependent 
moment-tensor inversion of the 1952 Kern 
County earthquake. Source time functions for 
each moment tensor element are shown for 
two depths. The preferred solution involves a 
pure thrust at 20 km depth in the f irst 8 s and 
a shallower oblique component in the next 7 s. 

tion of rupture from primarily northwest-
southeast thrusting to east-west oblique 
strike-slip motion. The geologic interpre­
tation of the Kern County earthquake is 
that it started at the southwest corner of 
the fault at a depth of approximately 20 
km. The fault ruptured to the northeast, 
where the fault plane became much shal­
lower and the slip became partitioned into 
shortening (thrusting) and strike-slip com­

ponents. For the entire rupture, the P 
axes remained nearly constant, but the T 
axis rotated from being nearly vertical to a 
much more horizontal position. 

10.5 Very Broadband Seismic 
Source Models 

As the preceding discussions have indi­
cated, seismologists use numerous 
methodologies to extract the details of 
faulting from seismic waveforms. We have 
tried to cast these different procedures in 
the context of linear filters and have con­
centrated on recovering the source time 
function. The one filter element we have 
largely ignored is the instrument response. 
This is because it is well known and can 
often be removed from the problem, but 
limited instrument bandwidth does pro­
vide an important constraint on our ability 
to recover source information. Given that 
earthquakes involve faulting with a finite 
spatial and temporal extent, different-
frequency waves are sensitive to different 
characteristics of the rupture process. Fur­
ther, different wave types tend to have 
different dominant observable frequencies 
as a result of interference during rupture 
and propagation. The net result is that 
wave types recorded on band-limited in­
struments can resolve different aspects of 
the fault history. Thus, inversion of the 
body-wave recording on WWSSN instru­
ments may give a different picture of an 
earthquake than inversion of very long pe­
riod surface waves recorded on a gravime-
ter. A truly broadband source model is 
required to explain rupture over a fre­
quency range of a few hertz to static off­
sets. The new generation of broadband 
instruments help tremendously toward this 
end, but part of the problem is intrinsic to 
the physics of the seismic-wave generation. 
For example, the broadband waves from 
the 1989 Loma Prieta earthquake can be 
used to resolve two asperities. The funda-
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mental-mode Rayleigh-wave analysis can­
not resolve these details, but it does 
provide an accurate estimate of the total 
seismic moment. This moment is 20-30% 
larger than that determined by the body 
waves; thus the body waves are missing 
some of the slip process, perhaps a compo­
nent of slow slip. 

An ideal seismic source inversion would 
simultaneously fit the observations from 
different wave types over a broad fre­
quency range. In practice, the methodol­
ogy has been to perform distinct, high-res­
olution inversion of each wave type, thus 
solving for the source characteristics best 
resolved by a particular wave type. The 
distinct source characteristics are then 
merged to give a total model of the source. 
When incompatibilities in source charac­
teristics determined by different inversions 
are observed, ad hoc procedures are used 
to merge the source characteristics. For 

example, consider the moment discrep­
ancy for the Loma Prieta earthquake. Fig­
ure 10.24 shows the effect of adding a 
long-period component of moment to the 
derived body-wave time function for Loma 
Prieta. Note that the "slow slip" compo­
nent does not noticeably affect the body 
waves if it is spread out over more than 
30 s. Although the slip model would ac­
count for the observed body and surface 
waves, it would require a type of fault 
behavior that is not observed in the labo­
ratory. Given the uncertainty in various 
model assumptions, it is often difficult to 
judge how far to interpret these complex 
models from merging of results for differ­
ent wave types. 

A major problem with simply combining 
all different wave types in a single inver­
sion is the normalization of the data. How 
does one weight a misfit in a P waveform 
as compared to a misfit of a single spectral 
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FIGURE 10.24 Effect of adding a long-period component of moment to the derived body-wave 
time function for the Loma Prieta earthquake. (From Wallace et a/., 1991.) 



point for a long-period surface wave? Cur­
rently, strategies for deriving very broad­
band source models include iterative feed-
hack inversions in which the body waves, 
high-resolution surface waves, and near-
field strong motions are inverted indepen­
dently. The results from each inversion are 
combined into a new starting model, which 
is, in turn, used in a heavily damped re­
peat of the independent inversions. After 
several iterations, all the data are com­
bined, and the misfit is measured by a 
single error function, which is minimized 
in a final inversion. This type of procedure 
improves the ad hoc model merging and 
results in a model that is consistent with 
the sampled range of the seismic spec­
trum. Ultimately, it will be desirable to 
achieve this routinely, but this will require 
a better understanding of model depen­
dence for different wave analyses. 
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Abbreviated Seismic Research Observatories 
(ASRO), 185 

Absolute plate motion, 437, 438 
Absorption band 

Debye peak, 112 
mantle, 290-291 

Absorption band model, 290-291 
Accelerometer, 177, 196 

response characteristics, 197 
Acoustic impedance, 100 
Adjoint, 226 
Aegean slab, 247-249 
Aftershocks, 385-388 

area, 386 
asperity, 422-423 
barriers, 422-423 
Omori's law, 385 

Airy phase, 146 
Aleutian slab, 282 
Aliasing, 375-376 
Amonton's first law, 357 
Amonton's second law, 357-358 
Amplitude 

anelastic attenuation, 104-115 
as function of distance, 110 
geometric spreading, 93-96 
partitioning at boundary, 96-104 
propagating fault, 370-371 
Rayleigh wave, 124 
seismic arrival, 78-80 
seismic phase, 73 
surface wave, 138-140 
tsunami, 149 

Amplitude anomalies, surface wave, 138-140 
Amplitude range, 3 
Amplitude spectrum, boxcar, 373-375 
Anderson's theory of faulting, 359 
Anelasticity 

intrinsic, 250 
modeling, 249-251 

Angle of incidence, ray, 75 
Angular frequency, harmonic wave, 56 

Angular order number, 155, 158, 163 
Anisotropic media, seismic waves, 65-66 
Anisotropic variation, 263-264 
Anisotropy 

azimuthal, 65, 289 
general, 49 
inner core, 305 
surface-wave, 289 
upper-mantle, 276-277, 289-290 

Antipodal focusing, 94-95 
Antipode, 132 
Apparent dip, 88 
Arrays, seismic, 192-198 
Aseismic slip, 451 
Asperity, 358 

aftershock, 387 
earthquake hazard analysis, 417-420 
strength barrier, 422 
subduction zone, 421, 424 

Asperity coupling, 462, 464 
Aspherical attenuation model, 288 
Asphericity, inner core, 307 
Associated Legendre function, 156-157 
Asthenosphere, 434-437 

subduction, 451-452 
Attenuation, 104-115 

bulk, 170 
convolving, 114 
effect on seismic pulse, 110 
enhanced, 112 
free oscillation, 167-171 
frequency dependent, 14, 290-291 
inner core, 303 
intrinsic, 110 
model, 106, 109 

aspherical, 288 
narrowband filtering, 167-168 
outer core, 302 
peak, 112 
phase velocity, 112 
scattering, 250 
shear, 170 
spheroidal-mode, 169 
surface wave, 167-171 
toroidal-mode, 168-169 

497 



Attenuation filter {AU)X 401-402 
Attenuation kernels, 169 
Attenuation modeling, 249-251 

upper mantle, 282-283, 286-287 
Attenuation quality factor (GscX ^08 
Axial valley, 441 
Azimuth, 135-136 

epicenter, 217-218 
Azimuthal anisotropy, 65, 289 

B 

Back arc, subduction zone, 465 
Background noise reduction, 180-181 
Back projection, 245-246 

iterative approach, 246-248 
Bandwidth, 3, 376 
Bar, unit of stress, 44 
Barriers, 422-423 
Basaltic layer, body-wave nomenclature, 205 
Basin and Range Province, 475 
Benioff electromagnetic instrument, 182, 184 
Bilateral rupture, 371 
Black azimuth, 135-136 
Blind zone, travel-time equation, 85 
Body forces, continuum, 42 
Body-wave magnitude (m^,), scale, 16, 381 
Body-wave modeling, 399-413 

upper-mantle distance, 409-410 
Body waves 

attenuation, 114-115 
core phases, 209 
definition, 5, 70 
direct arrival, 203-204 
nomenclature, 203-210 
period, 13 
phase amplitude, 206-209 
ray theory interpretation, 70-115 

Body-wave travel time 
continuous medium, 86-91 
layered earth, 80-86 
lower mantle, 291-292 
spherical earth, 91-93 

Borehole seismometer, 191 
earth noise reduction, 180-181 

Borehole sensor, 186 
Boundary 

convergent 
continental collision, 470-471 
subduction zone, 435-436, 450-469 

creeping plate, 451-452 
different elastic moduli, 73 
divergent, 435, 437-443 
fluid-fluid, 99 
partitioning seismic energy at, 96-104 
plate, 435 
seismic velocity, 264 

transcurrent, 436, 443-450 
welded surface, 98 

Boxcar 
amplitude spectrum, 373-375 
convolution, 366-368 
Fourier transform, 373 
ground motion, 341-342 
spectrum, 373-375 
synthetic, 419 

Boxcar function, 342 
source time, one-dimensional fault, 364, 366 

Broadband data, seismic source, 402-403 
Broadband seismic sensor, 186-191 
Bulk attenuation, 170 
Bulkmodulus(^), 49, 50 
b value, 393 

earthquake swarm, 439-440 
Byerlee's law, 358 

Calavaeras fault 
cumulative slip, 479, 480 
moment release, 479, 480 

Cartesian displacement components, 36-38 
Cartesian strain components, 36-38 
Cascadia subduction zone, 465 
Caustic focusing, 94-95 
Cell-hit-count plot, 296-297 
Centroid, center of slip distribution, 440 
Centroid moment tensor (CMT) method, 415-416 
Characteristic earthquake, 478-479 

model, 478-479 
Characteristic polynomial, 226 
Characteristic rupture dimension, 377 
Circular rupture, 371 
Coda, 107 
Coefficient of friction, 358 

attenuation, 109 
Coefficient of internal friction, 357 
Cohesion, 357 
Colby, tectonic release, 419 
Complex conjugate, 58 
Complex earthquake, 423-431 
Complex elastic modulus, 111-112 
Complex number, 57, 59 
Compressional deformation, subduction process, 

466-469 
Compressional motion, 317 
Compressional (P) axis, 321 
Compressional P wave motion, 312 
Compressional shear velocity, rock, 68, 69 
Compressional stress, 44 
Compressive loading, rock behavior, 487 
Compressive stress axis 

intermediate, 350 
maximum, 350 
minimum, 350 



Conditional number, 231 
Conrad discontinuity, 86 

body-wave nomenclature, 205 
crustal structure, 255 

Conrad head wave, 86 
Constant fault aspect ratio, 389 
Constant strain, 389 
Contact force 

continuum, 42 
internal, 42 

Continental collision, 470-471 
India-Eurasian, 470-471 

Continental rift, 441-443 
Continuous medium, body wave travel in, 86-91 
Continuum, 35 

body force, 42 
concept, 34 
contact force, 42 
equation of motion, 47-53 
mechanics, 34 

Convergent boundary 
continential collision, 470-471 
subduction zone, 435-436, 450-469 

Convolution, 366-368 
Convolving, 114 
Coordinate system, moment tensor, 351 
Core 

density, 304 
inner core-outer core boundary, 265-266 
material properties, 299, 301 
structure, 299-307 
travel-time curve, 301, 303 
velocity structure, 299, 301 

Core-mantle boundary, 297 
Core shadow zone, 209 
Coriolis coupling, 164, 166 
Coriolis force, 162 
Corner frequency, 373-375 
Coulomb failure criterion, 357 
Coupled P-SV wave, 121 
Coupling 

asperity, 462, 464 
Coriolis, 164, 166 
mode, 164 
subduction zone, 421 

shallow plate, 462, 464-466 
Covariance matrbc, 230 
Cracks 

dynamic model, 361-363 
formation, 359 
growth, 363 
types, 363 

Crack tip stress, 359, 363 
Creeping fault, 451-452 
Creeping plate boundary, 451-452 
Critical angle, 81 
Critical refraction, 81 
Crossover distance, 82 
Cross product, vector, 52 
Crustal deformation cycle, 490 

Crustal event, locating, 217-218 
Crustal region, models, 29-32 
Crustal structure, 252-263 

granitic layer, 204 
ocean, 261-263 
receiver function analysis, 247-248 
schematic characteristics, 254-255 
thickness, 255 

characteristics, 255-259 
Cubic dilation, 42 
Curl, 52 
Curl-free field, 54 

D'Alembert's solution, 55 
Damping, viscous, 178 
Damping force, 175 
Data kernel, 221 
Debye peak, 112-113 
Decomposition 

seismic moment tensor, 344-346 
singular-value, 245 

Deconvolution, 421 
empirical Green's function, 429-430 

Deep earthquake 
mechanism, 459 
origin time, 218-219 

Deep event, 20 
Deep seismicity zones, 452 
Deformation, infinitesimal strain theory, 35 
Degenerate frequency, 162 
Delay time, 86, 89 
Del operator, 52 
Density 

core, 304 
heterogeneity, 32 
structure, lower mantle, 291-292 

Depth phase 
body waveform modeling, 401 
nomenclature, 204, 206 

Derivative ray, 80 
Determinant 

matrix, 223, 225, 226 
polynomial, 226 

Deviatoric stress, 47 
Diagonalized moment tensor, 342-346 
Diffracted-wave study, 298 
Diffraction, seismic, 102-103 
Diffraction frown, 103 
Digital network, 184-191 
Dilatancy model, 484, 487 
Dilatational motion, 317 
Dip 

fault, 316 
finding, 348 



Dipole, 312 
Dipping layer, travel time, 87-88 
Dipping thrust fault, body waveform modeling, 400 
Dip-slip faulting, 317 
Directivity, 368-373 

surface wave, 415 
vertical, 373 

Discrete inversion, 240 
Discrete transform, 375-376 
Dislocation model, 320 
Dispersion, 140-147 

frequency dependence, 14 
Love wave, 129-131 
Rayleigh wave, 125, 133-135 
tsunami, 149-150 

Dispersion equation. Love wave, 129 
Displacement 

double couple. Green's function, 344 
equation of motion, 47-48, 54 
gradual, 194 
normal, 97 
point force, 323 
Rayleigh wave, 123 
stress relationship, 48-51 
transmission across interface, 96-104 
vertical strike-slip fault, 329 

Displacement field 
elastic 

double couple, 336-337 
force couple, 334-336 
single force, 332-333 

spatial gradients, 35 
static 

double couple, 327-331 
force couple, 326-327 
single force, 323-327 

wave types, 54 
Displacement motion, fault, 317-319 
Distribution 

Gaussian, 231 
mapping, 17-23 

Divergence, vector field, 53 
Divergence-free field, 54 
Divergent boundaries, 435, 437-443 

oceanic ridge, 437-441 
Dot product, 52 
Double couple 

equation of motion, 322-323 
force system, 321-322 
model, 321, 322 
shear faulting model, 13 
static displacement field, 327-331 
techtonic release, 418-419 

Downdip, travel path, 87 
Downdip compression, focal mechanism, 455 
Downdip extension, focal mechanism, 455 
Downgoing ray, 204 
D region, 297-300 
Dynamically equivalent idealized force systems, 9 
Dynamic coefficient of friction, 358 

Dynamic crack model, 361-362 
Dynamic range, 3 
Dynamic similarity, 389-390 

Earth 
cross section, 7 
inner core, discovery, 5, 7 
internal structure, 26-29 
layered, travel time in, 80-86 
layering, radial, 26-29 
properties, 1 
spherical 

surface waves, 132-140 
travel time in, 91-93 

velocity structure, 80 
Earth model 

heterogeneous, 29-32 
layered, 80 
radial layering, 26-29 

Earth noise, 179-180 
HGLP stations, 184 

Earthquake 
aftershock, 385-388 
cycle, 477-483 
deep 

mechanisms, 459 
origin time, 218-219 

distribution, 17-23 
epicentral distance, estimating, 219 
frequency of occurrence, 392-394 
great, 16 

historical record, 21 
hazard assessment, 437 
hypocenter, determining, 219 
induced, 476-477 
interplate, 388-390 
intraplate, 388-390, 472-477 
large, 16, 387 

historical record, 21-22 
locating, 217-223 
magnitude, 379, 383-385 
mainshock, 385 
maximum credible, 394 
microearthquake, 381 
origin time determination, 218-219 
periodicity, 477-483 
prediction, 486-493 
probability, 485-486 
quantification, 13-17 
recurrence interval, 437 
recurrence rate, 475 
scaling, 388-392 
self-similarity, 388-392 



shallow 
definition, 12 
stick-slip, 358 

silent, 407-408 
size, 392-394 

seismic moment (MQ), 383-385 
seismogenic zone, 387 
transform fault, 446 

slow, 407-408 
small, 387 
statistics, 392-395 
swarms, 393-394, 439-440 
transcurrent fault, 446 
tsunamigenic, 153 
yearly energy release, 393 

Earthquake event 
Akita-Oki, May 26, 1983, long-period recording of 

surface waves, 137 
Alaska 

seismicity, 462 
source time function, 464 

Borah Peak, Idaho, 1983, aftershocks, 386-387 
Charleston, South Carolina, 1886, intensity, 474 
Chile 

aftershocks, 407-408 
directivity, 371-372 
effect of duration on body waves, 407 
free-oscillation attenuation, 168 
largest recorded, 16 
March 3, 1985, ground displacement history, 2, 

3 
plate interaction, 451-452 
tsunami, 152 

Eureka, California, November 8, 1980, wave 
motions, 352 

Fort Tejon, California, 1857, San Andres fault, 448 
Friuli, Italy, 1974, aftershocks, 385 
Guatemala, February 4, 1976 

rupture model, 25 
shock analysis, 427-428 
spatial-temporal iterations, 427-428 

Haicheng, 1975, prediction, 493 
Huajuapan, Mexico, October 24, 1980, 250 
Izu-Oshima-Kinkai, precursory changes, 489 
Kern County, California, 1952, time-dependent 

moment-tensor inversion, 430, 431 
Kuril Islands, 1963, 464 
Loma Prieta, October 18, 1989 

amplitude spectrum, 375 
average fault model, 329-331 
azimuthal amplitude and phase variation, 

353-354 
broadband recording, 13-14 
broadband source model, 431-433 
long-period ground motion, 212 
moment tensor estimates, 415-416 
P wave motion, 352 
San Andres fault, 448 
slip distribution model, 26 

source motion, 24 
variation in slip magnitude, 417, 418 
waveform modeling, 405, 406, 417 

Mexico City 
damage, 17 
power spectrum, 159 

Nankai, 1947, vertical land movement, 490 
New Madrid, Missouri, 1811-1812, 474-475 
North Palm Springs, California, 1986, aftershock, 

387-388 
Oroville, California, August, 1975, observed and 

synthetic waveforms, 412 
Parkfield, California, displacement wave formation, 

368-369 
Peru, May 24, 1991, broadband seismic recording, 

200-201 
San Fernando, 1971, three-component observation, 

67,69 
San Francisco, 1906 

San Andres fault, 448 
shear faulting, 10-12 

Santa Barbara, California, 1978, 419-420 
Tabas, Iran, September 1977, great-circle Rayleigh 

wave arrival, 139-140 
Tangshan, China, 1976, destruction, 16 
Tokachi-Oki, Japan, 1968, observed and predicted 

tsunamis, 424-425 
Earth structure 

attenuation modeling, 249-251 
core, 299-307 
crustal region, 29-32, 252-263 
determination, 4, 236-238 
inner core, 305-306 
inversion 

Herglotz-Wiechert, 238-240 
parameterized model, 240-243 

lower-mantle, 290-299 
radial layering, 26-29 
seismic tomography, 243-249 
upper-mantle, 263-278 
upper-mantle tomography, 278-290 

Earth tide, frequencies, 3 
Earth transfer function, 400-403 

uncertainty, 421 
East African Rift (EAR) zone, 442-443, 444 
Eigenfrequency, 154 

split, 162 
Eigenfunction, 154 
Eigenvalue, 46 

analysis, 227 
degenerate, 227 
problem, 223 

Eigenvector, 47 
principal coordinate system, 227 

Eikonal equation, 72-73 
ray geometry, 73-80 
reciprocal, 73-74 

Einstein summation notation, 41 
Elastic, meaning, 48 



Elasticity 
equation of motion, 47-53 
linear, 48-50 
strain, 35-42 
stress, 42-47 
theory, 34 

Elastic modulus, 35, 48, 50 
complex, 111-112 
relaxed, 111 
unrelaxed, 112 

Elastic radius, 311 
Elastic rebound theory 

developed, 7 
earthquake cycle, 477-479 
faulting source, 315 
formulation, 10-11 

Elastic shell, 490 
Elastic wave 

generation, 9 
properties, 1-2 

Elastodynamics, 331-342 
homogeneous wave equation, 332 
inhomogeneous wave equation, 332 

Elastostatics, static displacement field 
double couple, 327-331 
force couple, 326-327 
single force, 323-326 

Electromagnetic instruments, 181-184 
Endothermic transition, 276 
Energy 

arrival, 93-96 
per unit fault area, 394 
plane wave, 96 
seismic, partitioning at boundary, 96-104 
strain, 95-96 
yearly release, 393 

Energy decay, 94 
Energy density, wave, 79 
Epicenter, 203 

azimuth location, 217-218 
location, 219-221 
presumed, correction in, 220-221 

Epicentral distance 
classifying seismogram, 203 
estimating, 219 

Equal-area projections, 347-350 
Equation of motion 

continuum, 47-53 
displacement, 54 
double couple, 322-323 
homogeneous, 48 
isotropic linear elastic medium, 49 
seismic waves, 47-53 
three-dimensional, 59-69 
three-dimensional homogeneous vector, 51 

Equivalent body force, 312, 319-323 
model, 320-321 

Error 
generalized inverse, 230-231 
source depth, 413, 414-415 
travel time, 233 

Euler pole, 436 
Euler's theorem, motion of ridge plates, 436 
Evanescent wave, 120 
Exactly determined solution, 240 
Excitation function, surface wave, 413-417 
Excitation kernel, 415-416 
Explosion source, nuclear testing, 310-315; see also 

Nuclear explosion 
model, 342 
underground nuclear, 418-419 

External seismic source, 9 

Failure envelope, 359 
Farallon plate, 446-447 
Far-field displacement 

double couple, 337-340 
force couple, 334-336 

general form, 335-336 
pulse shape, 366-368 
ramp history, 364 
source time function, 364-368 

Far-field term, 312 
force couple displacement, 334-336 
single force displacement, 333 

Fault 
creeping, 451-452 
definition, 11 
dip, 316 
displacement motion, 317-319 
fundamental, 400 
one-dimensional, 364-373 
rake, 316 
ribbon, 364 
rupture, 313, 315-319 

geometry, 368-370 
properties, 319-323 

single particle, 399 
strain, 11-12 
stress, 394-395 
strike, 316 
strike direction, 316 

Fault area, 386 
energy per unit, 394 

Fault finiteness, 399 
Faulting 

Anderson's theory, 359 
dip-slip, 317 
model 

double-couple, 321, 322 
single-couple, 321 

normal, 317 



orientation, 316-319 
thrust, 317 

Faulting orientation 
determination, 346-355 
failure envelope, 359 
focal mechanism, surface wave, 350-354 
seismic source parameter, 402 
stereographic projection, 347-350 

Faulting patterns, global, 23-26 
Faulting source, 313, 315-319 

elastic rebound theory, 315 
expansion of rupture area, 315 
parameters, 364 

Fault mechanics, basics, 357-364 
Fault scarp, paleoseismic indicator, 481-482 
Fault slip 

angle, 316 
asperity, 387, 417 
categories, 316-317 
direction, 316 
duration, 362 
function, 315 
San Andreas fault, 451-452 
seismic moment, 361 
seismic waveform modeling, 417-423 
source time function, 417-423 
stages, 357 
tsunami data, 424-425 
vector, 316 
weakening, 358 

Feedback inversion, 433 
Fermat's principle, 70, 75 
Fluid-fluid interface, 98-99, 102 
Fluid layer, Rayleigh waves in, 133-135 
Focal depth, 203 

Rayleigh wave, 210 
Focal mechanisms 

determination of, modeling, 410-411 
determining faulting orientation 

stereographic projection, 348-350 
surface waves, 350-354 

downdip compression, 455 
downdip extension, 455 
subduction zone, 455-456 

Focal sphere, 346 
Force couple 

displacement, elastic space, 334-336 
static displacement field, 326-327 

Forced subduction, 460 
Force-feedback instruments, 184-191 
Force systems, idealized, dynamically equivalent, 9 
Foreshock activity, 491 
Forward model, 217 

earthquake location, 220-221 
earth structure inversion, 238 
equations, 221 

410-km discontinuity, 270-276 
Fourier spectra, 176 

Fourier transform 
boxcar, 373 
delta function, 375-376 
inverse, time-dependent moment tensor, 428-430 
output signal, 397-398 
seismic signal, 375-376 
time and frequency domain equivalence, 176-177 

Fracture growth, 363 
Fracture mechanics, 363 
Fracture zone, 444-445 
Free oscillations, 117, 154-167 

attenuation, 167-171 
period, 13 
slow earthquake, 407-408 

Free surface, traction, 97 
Free-surface interaction, 117-119 
Frequency 

degenerate, 162 
seismic wave, 57 

Frequency and time domain equivalence, 176-177 
Frequency-dependent attenuation, mantle, 290-291 
Frequency domain, convolution, 367 
Frequency domain representation, seismic signals, 

375-376 
Frequency range, seismic observation, 3, 376 
Frequency spectrum, seismic wave, 13 
Fresnel zone, 102 
Friction, control factors, 358-359 
Frictional sliding 

dynamics, 358 
existing crack, 357-358 
subduction zone, 454-455 

Friction coefficient 
internal, 357 
kinetic, 358 
static, 358 

Fundamental fault Green's functions, 344 
Fundamental mode, 129, 154, 160-161 

Galitzin electromagnetic instrument, 181 
Gaussian distribution, 231 
Gauss's theorem, 53 
Geiger's method, earthquake location, 221-223 
General anisotropy, 49 
Generalized inverse, see Inverse, generalized 
General transformation law, stress, 47 
Geneva arrays, 192 
Geochemical precursor 

ground water anomaly, 487 
radon, 487, 489 

Geodetic observation, 11 
Geographic coordinate system, 339-340 
Geometric ray theory, 70, 72 



Geometric spreading, 93-96 
earth, 340-341 
surface waves, 138-140 
whole space, 340 

Geophone, 173 
Geophysical inverse theory, 4 
Global Digital Seismic Network (GDSN), 185-186 
Global distribution of anisotropy, upper mantle, 289 
Global networks, 3 

digital, 184-191 
early, 181-184 

Global Positioning Satellite (GPS) system, 195 
Global Seismic Network (GSN), 187-191 
Global seismic-velocity boundary, depth, 264 
Global seismology 

distribution mapping, 17-23 
earthquake distribution, 17-23 
earthquake sources involving shear faulting, 10-13 
global faulting patterns and rupture models, 23-26 
heterogeneous earth models, 29-32 
historical development, 4-7 
quantification of earthquakes, 13-17 
radial earth layering, 26-29 
seismic sources, 9-10 
topics, 8 

Global travel-time curve, 27 
Gradient vector, scalar field, 52-53 
Gradual displacement, detecting, 194 
Granitic layer, crust, 204 
Gravimeter, LaCoste-Romberg vertical, 189 
Gravity wave, 149 
Grazing incidence, 100 
Great circle path, 132, 135-136 
Great earthquake 

historical record, 21 
shallow subduction zone seismicity, 462, 464-466 

Green's function 
empirical, 429-430 
fundamental fault, 344 
seismic moment tensor, 343-344 
waveform modeling, 403-404, 406-407 

Griffith's theory, 363 
Ground-acceleration spectra, 179-180 
Ground displacement, inertial pendulum system, 175 
Ground displacement history (u(t)) 

example, 2 
mathematical expression, 8 

Ground motion 
components, 2, 66-69 
instrument response, 185-191 
mathematical expression, 8 
recording, 194-195 

Ground noise, 179-180 
Ground water anomaly, geochemical precursor, 487 
Group velocity, 140, 142-147 

single-station, 144 
two-station, 144 

Group velocity dispersion curve, 144-147 

H 

Half-spreading rate, 440 
Harmonic component, 57 
Harmonic oscillator, simple, 175-179 
Harmonics 

spherical, 156-158 
zonal, 158 

Harmonic terms, sum of, 176-177 
Harmonic wave, 56-59 
Harmonic wave solution, 56-59 
Haskell one-dimensional source model, 364-368 

directivity, 368-373 
Head wave, 81 

travel time, 81-83 
Healing 

chemical, 389 
interseismic, 472 

Healing front, rupture, 361-362 
Heaton slip pulse model, 362 
Helmholtz's theorem, 53, 54 
Herglotz-Wiechert inversion, 238-240 
Herglotz-Wiechert inversion, lower-mantle structure, 

290 
Heterogeneity spectrum, earth, 248-249 
Hexagonal medium, 65 
High Gain Long Period (HGLP) stations, 184 
Homogeneous equation of motion, 48 
Hooke's Law, 35 

free surface interactions, 119 
introduction, 5 
isotropic linear elastic material, 49 
linear elasticity, 48 
relating stress and strain, 41 
static stress drop, 377 

Horizontal radiation pattern, 400 
Horizontal seismometer, 174-175 
Horizontal slowness, 61 

apparent velocity, 80-81 
change in travel time, 78 
Snell's law, 75-76 

Horizontal travel time, 78, 82 
Hot spot, upper mantle, 280 
Huygens' principle, 70, 71 
Hydrostatic stress, 47 
Hypocenter, 202-203 

joint determination, 233-234 
method of circles, 219 

Idealized force systems, dynamically equivalent, 9 
Identity, vector, 53 
Identity matrix, 223, 225 
Imaginary wave, 57 



Impulse, 311 
Inclination, ray, 75 
Incompressibility (k), 50 
Incorporated Research Institutions for Seismology 

(IRIS), 186 
Index of refraction, 73-74 
India-Eurasian collision, 470-471 
Indicator equation, 175 
Indicial notation, 40-41 
Induced earthquake, 476-477 
Inertial pendulum system, 174-179 
Infinitesimal strain, 37 
Infinitesimal strain tensor, 39-40, 42 
Infinitesimal strain theory, 34-35 

deformations, 35 
Information density matrix, 230 
Inner core 

anisotropy, 305 
asphericity, 307 
attenuation, 303 
structure, 305-306 

Inner core-outer core boundry, 265-266, 302, 305 
Instruments 

electromagnetic, 181-184 
force-feedback, 184-191 
response, 431 

Intensity scale, 15 
Intercept, tangent to travel-time curve, 86, 89 
Interface 

fluid-fluid, 98-99, 102 
types, 96-97 

Intermediate compressive stress axis, 350 
Intermediate-depth event, 20 
Internal deformation within slab, subduction zone, 

452-462 
Internal friction, 106 

angle of in rock, 359 
failure envelope relation, 359 

Internal seismic sources, 9 
Internal structure, earth, 26-29 
International Deployment of Accelerometers (IDA), 

189 
International Seismological Centre (ISC) data base, 

201 
Interplate coupling, see Coupling 
Interplate earthquake, 388-390 

intraplate comparison, 472 
Interseismic healing, 472 
Intramission angle, 100 
Intraplate earthquake, 388-390, 472-477 
Intraplate seismicity, 452, 466-469 
Intrinsic anelasticity, 250 
Intrinsic attenuation, 110 
Invariant, tensor, 46-47 
Inverse 

generalized, 223-234 
body waveform modeling, 404, 405-406 
earthquake location example, 231-234 
error, 230-231 

redundant data, 230-231 
resolution, 230-231 

iterative, 404 
least-squares, 228-229 

Inverse matrix, 225 
Inverse problem, locating earthquakes, 221-223 
Inverse theory, 223 
Inversion 

earth structure 
Herglotz-Wiechert, 238-240 
parameterized model, 240-243 

feedback, 433 
introduction, 4 
seismic waveform modeling, 403-406, 410-411 

Inversion process, centroid moment tensor method, 
415-416 

Inverted-pendulum seismograph, 178-179 
Isacks and Molnar's model, 456-457 
Isoseismal, definition, 15 
Isostasy, 438, 440 
Isotherm, 434 
Isotropy, transverse, 289 

Jacobian coordinate transformation, 325 
J-B tables, 7, 213 
Joint hypocentral determination (JHD), 233-234 
Juan de Fuca plate, 465-466 

Kernel 
data, 221 
excitation, 415-416 
of mode, 169 

Kinetic energy density, 384 
Kinetic friction coeflftcient, 358 
Koyna dam, seismicity, 476 
Kronecker delta function, indical notation, 41 
Kuril subduction zone, 296 

asperity distribution, 421, 424 
coupling, 421 
deep seismicity, 455-456 
earthquake history, 480-481 
large earthquake, 464 
space-time seismicity, 491 

LaCoste accelerometer, 194 
LaCoste-Romberg vertical gravimeter, 189 
Lagrangian description, particle motion, 35 



Lake Mead, seismicity, 476 
Lamb's problem, 126 
Lame's second constant, 49, 50 
Laplacian 

scalar field, 53 
spherical coordinates, 62 
vector field, 53 

Large Aperture Seismic Array (LASA), 192 
Large earthquake, 387 

historical record, 21-22 
self-similarity, 390-392 

Layered structure 
dipping layer, 87-88 
travel time, 80-86 

Layer velocity, travel-time curve determination, 83-84 
Leaky mode, 135 
Least-squares inverse, 228-229 
Left-lateral slip, 317 
Leg, ray, nomenclature, 204 
Legendre polynomial, 157 
Lid, upper mantle, 265 
Linear algebra, 224-226 
Linear elasticity, 48-50 
Linear filter system 

production of seismogram, 8 
propagation filter, 397 

Linear filter theory 
deconvolution, 421 
synthetic seismogram, 397-399 

Linear moment tensor inversion, 346 
Linear wave approximation, 64 
Lithosphere 

fault zones, 490 
mobile, 434 
oceanic, 437-441 
subduction, 450-452 
thermal, 434 
thickness 

calculation, 438 
earthquake size, 446 

Lithospheric model, 289 
Lithospheric motion, 434-437 
Local distance, seismogram classification, 203 
Local magnitude ( M L ) , scale, 380-381 
Longitudinal direction, 69 
Lost River fault, scarp analysis, 481-482 
Love wave, 116, 127-132 

discovery, 5 
dispersion, 129-131 
dispersion equation, 129 
nomenclature, 211-213 
optics, 130-131 
propagation, 131-132 
Querwellen, 211 
source spectrum, 413 

Lower mantle 
body-wave travel time, 291-292 
density structure, 291-292 
perovskite structure, 290 

shear velocity model, 299-300 
slab penetration, 294 
structure, 290-299 
tomography, 292-293 
velocity variation, 292-294 
viscosity, 435 

Low-velocity zone (LVZ), 265-266 
travel-time curve, 84-85 
upper mantle, 265-266 

M 

Magma chamber, inflation preceding eruption, 439 
Magnitude 

maximum, subduction zone, 464-465 
seismic energy and, 383-385 

Magnitude saturation, 383 
Magnitude scales, 379-383 

body-wave magnitude im^), 381 
development, 15-17 
general form, 379-380 
local magnitude ( M L ) , 380-381 
surface-wave magnitude im^\ 381-383 

Main Boundary Thrust (MBT), 470-471 
Main Central Thrust (MCT), 470-471 
Mainshock, 385 
Major arc, 132 
Major-arc arrival, nomenclature, 132 
Mantle wave, 211-212 
Marianas slab, 295 
Marianas subduction zone, 464 
Matrix 

covariance, 230 
determinant of, 223, 225, 226 
identity, 225 
information density, 230 
inverse, 225 
operations, 224-226 
resolution, 230 
symmetric, 225 

Maximum compressive stress, 44 
Maximum compressive stress axis, 350 
Maximum credible earthquake, 394 
Mean recurrence time, 480 
Mesosphere, 435 
Method of circles, 219 
Microearthquake, 381 
Microseism, 179 
Midoceanic ridge system, 435 

fracture zone, 444-445 
Migration, 481, 483 
Mineralogical phase transformation, upper mantle, 

265 
Mineralogical phase transition, 274-275 
Minimum compressive stress, 44 
Minimum compressive stress axis, 350 
Minimum error, source depth, 415 



Minimum-time path, ray, 70 
Minor arc, 132 
Minor-arc arrival, nomenclature, 132 
Misfit of a model, equation, 228 
Mode 

coupling, 164 
degenerate frequency, 162 
fundamental, 129, 154, 160-161 
identification, 162 
kernel of, 169 
normal, 117, 154, 160-162 
radial, 159-161 
rotational splitting, 163-164 
spheroidal, 159-163 
toroidal, 155 
torsional, 160 

Mode conversion, 104 
Mode coupling, 164 
Mode I crack, 363 
Mode II crack, 363 
Mode III crack, 363 
Model 

absorption band, 290-291 
attenuation, 249-251 
characteristic earthquake, 478-479 
definition, 236 
dilatancy, 484, 487 
dislocation, 320 
double-couple, 321, 322 
dynamic crack, 361-362 
earth 

heterogeneous, 29-32 
layered, 80 
radial layering, 26-29 

explosion source, 310-315 
faulting 

double-couple, 321, 322 
single-couple, 321 

forward, 217, 220-221 
Haskell one-dimensional source, 364-368 
Heaton slip pulse, 362 
Isacks and Molnar's, 456-457 
lithospheric, 289 
refining, 221-234 
rupture, 23-26, 361-362 
shear velocity, lower mantle, 299-300 
shear velocity layering, crust, 247-248 
single-couple, 321 
slip predictable, 479 
slip pulse, Heaton, 362 
starting, 223 
time predictable, 479-480 
tomographic, 278-281 
unified source, 421 
vector, 221-223 
very broadband seismic source, 431-433 
w^ source, 375 

Mogi doughnut, 491 

Moho discontinuity 
chemical transition, 260-261 
crustal structure boundary, 252, 254, 255 
definition, 83 
discovery, 7 
ray nomenclature, 205 

Mohr circle, 359 
reservoir pressure, 476 

Moment magnitude (M^), 384-385 
Moment tensor, seismic, see Seismic moment tensor 
Motagua fault, 25 
Motion, equation of, 47-53 
Moveout, 69 
Multiple-station location, seismic source, 218-221 
Multiplet, 158 

split, 158 
Multiplication, matrix, 224 

N 

Narrowband filtering, attenuation, 167-168 
National Earthquake Hazards Reduction Program 

(NEHRP), 485 
National Earthquake Information Center (NEIC), 198 
Near-field term, 312 

single source displacement, 333 
Networks, see also specific networks 

global, 3 
digital, 184-191 
early, 181-184 

regional, 192-198 
Nevada Seismic Belt, 475 
New Madrid seismic zone, 474-475 
Noise 

background, reduction, 180-181 
ground, 179-180 
white, 231 

Nomenclature 
body wave, 203-210 
fault orientation, 313, 315-319 
major-arc arrival, 132 
minor-arc arrival, 132 
spheroidal modes, 155, 159-160 
surface wave, 210-213 

Non-double-couple moment tensor, 354-355 
Normal displacement, 97 
Normal faulting, 317 
Normal mode, 117, 154, 160-162 
Normal-mode degeneracy, 158 
Normal strain, 35-38 

mathematical representation, 37 
Normal stress, 44 

Amonton's law, 358 
average, 47 
lithostatic load, 395 

Normal traction, 97 
Norwegian Seismic Array (NORSAR), 192-193 



Notation 
Einstein summation, 41 
indicial, 40-41 

Nuclear explosion 
spherically symmetric pressure pulse, 311 
tectonic release, 418-419 
underwater, 207 
wave equation, 311 

Nuclear testing 
historical monitoring, 7 
as seismic source, 310 
seismic wave generation, 314-315 
underground, NORSAR, 193 

Nyquist frequency, 375-376 

Oblique slip, 317 
Oceanic crust, 261-263 
Oceanic profiling, 262-263 
Oceanic ridges, divergent boundaries, 437-441 
Oceanic upper mantle, 280 
Olivine, 66 
Olivine -^ /3-spinel transition, 276 

deep earthquake, 459 
Omori horizontal pendulum seismograph, 178 
Omori's law, 385 
One-dimensional fault, 364-373 
One-dimensional wave solution, 54-59 
Origin time 

determination, Wadati diagram, 218 
source, estimation of, 84-86 

Orthotropic medium, 65 
Outer core 

seismic attenuation, 302 
velocity structure, 301-302 

Overdetermined problem, standard, 414-415 
Overdetermined solution, 223, 240 
Overtone, 129 

group velocity, 147 
spheroidal motion, 160-161 
wave packet, 147 

Pacific plate, 446-447 
Paleoseismology, 480, 481-482 
Parallel vector, 223 
Parameterized model inversion, 240-243 

lower-mantle structure, 290 
Particle velocity, 361 

stress drop, 378-379 
Pascal, unit of stress, 44 
PASSCAL instrumentation, 198 
Penetrative convection, 461 

Perfect resolution, 231 
Period, harmonic wave, 56 
Perovskite structure, lower mantle, 290 
Phase 

nomenclature, 203-213 
wave solution, 55 

Phase velocity, 142-147 
attenuation, 112 
definition, 140 
dispersion curve, 144-147 
estimating, 146 

Plane wave 
energy, 96 
ray, 70 

Plane-wave potential, 119 
reflection coefficients, 119-120 

Plane-wave solution, 60-61 
Love waves, 127 

Plate boundary 
absolute plate motion, 437 
motion, 435, 437 
types, 435 

Plate techtonics, theory, 434 
Plate tectonics, theory, 17 
Pn velocity, 256-258 
Point force 

displacement, 323 
elastic solutions, 322-323 
mathematical representation, 323-326 
source, 338-339 
static displacement field, 323-326 
time varying, 332-333 

Point source 
earthquake, 202-203 
fault, 315-316 
filters, 398-399 
symmetric impulse, elastodynamics, 332 

Poisson equations of motion, 5 
Poisson solid, 49 
Poisson's ratio iu), 49, 50 
Polar coordinate, 58 
Polar form, 58 
Pore pressure, earthquake cause, 476 
Porosity 

local, 484, 487 
rock, prior to rupture, 487 

Portable seismograph, 192, 198 
Precursor 

geochemical, 487, 489 
seismicity pattern, 489, 491 

Precursory phenomena, earthquake prediction, 
484-493 

Prediction, earthquake, 486-493 
Preliminary Reference Earth Model (PREM), 252, 

253-254 
Preshock sequence, 491 
Principal axes, fault plane, 321 
Principal axes of strain, 46 



Principal coordinate system, 46, 227 
Principal stress axes, 46 
Principle of superposition, couples, 327 
Probability, earthquake, 485-486 
Project GEOSCOPE, 190, 191 
Propagation filter 

Earth transfer function, 400-403 
linear filter system, 397 

Propagation function, mathematical expression, 
P synthetic waveforms, 402 
Pulse shape, far-field displacement, 366-368 
Pure strike-slip, 316 
P wave displacement 

far-field, 333-341 
one-dimensional source, 364-373 

fault plane, 317-319 
potential, 311 
three-dimensional wave solution, 63 

P waves 
amplitude, 381 
anisotropic media, 65-66 
attenuation, 114 
definition, 5 
equations, 54-69 
evanescent wave, 120 
moveout, 69 
period, 13 
radiation pattern, 23-24 
raypath, identification, 346-347 
reflection coefficient, 104-105 
refraction coefficient, 104-105 
velocity, 54, 68 

Quasi-compressional wave iqP), 65 
Quasi-shear waves (qSV and qSH), 65 
Quiescence, seismic, 489, 491 

Radial direction, 69 
Radial earth layering, 26-29 
Radial mode, 159-161 
Radial patterns, spheroidal mode, 160-161 
Radiation pattern, 313 
Radon, geochemical precursor, 487, 489 
Rake, fault, 316 
Ramp displacement history, far-field fault, 364 
Ramp function, moment function representation, 

341-342 
Ray 

curvature, 76-77 
definition, 70 
deflection, 76 

derivative, 80 
downgoing, 204 
leg, nomenclature, 204 
reflected, 80 
refracted, 80 
upgoing, 204 

Ray equations 
arrival, 77-78 
extension of, 79-80 
travel time, 76, 78 

Ray geometry 
derived wave, 96 
dipping interface, 88 
Eikonal equation, 73-80 

Rayleigh denominator, 122 
Rayleigh pulse, 125-126 
Rayleigh wave, 116, 120-127 

amplitude, 124 
discovery, 5 
dispersion, 125 
displacement, 123 
ellipsoidal particle motion, 123-124 
fluid layer over half-space, 133-135 
focal depth, 210 
Lamb's problem, 126 
nomenclature, 210-213 
source depth, 210 
source spectrum, 413 
surface wave motion, 122-123 
wavelength, 124 

Rayleigh waveform, 125, 127 
Rayleigh wavenumber, 123 
Ray parameter, 75 

calculation, 213 
change in travel time with distance, 78 
in layered earth, 80-86 
in spherical earth, 91-93 

Raypath 
equation, 74 
P wave, identification, 346-347 
travel time along, 75 

Ray theory, 70-115 
Receiver function, 247-248 

free surface interaction, 119 
Receiver function analysis, 247-248 
Receiver function trace, 247 
Recurrence interval, 437 

earthquake cycle, 478 
earthquake probability, 485-486 
estimating, 480-481 
mean, 480 

Redundancy, 228 
Redundant data, generalized inverse, 230-231 
Reference event, magnitude scale, 380 
Reflected ray, 80 

travel time, 81-83 
Reflection coefficient, 98, 99-100 

P wave, 104-105 



Reflection profile, 255 
Reflection seismology, 252, 255 
Reflectivity, crust, 255-256 
Refracted ray, 80 

travel time, 81-83 
Refraction, critical, 81 
Refraction coefficient, P wave, 104-105 
Refraction profile, 255, 256 
Refraction seismology, 255 
Refraction survey, 87 
Regional distance 

body-wave modeling, 408-409 
range, earth structure, 237 
seismogram classification, 203 

Regionalization, 243 
Regional networks, 192-198 
Regional Seismic Test Network (RSTN), 185 
Relative plate motion, 437 
Relaxation barrier, 422 
Relaxed elastic modulus, 111 
Reservoir, earthquake generation, 476 
Residual, 228 
Residual sphere, 294-295 
Resolution 

generalized inverse, 230-231 
perfect, 231 

Resolution matrix, 230 
Resonance, 177 
Reverse profiling, two-dimensional, 88 
Richter magnitude scale, development, 15-16 
Ridge push, 458, 460 
Ridge-ridge offset, 446 
Right-lateral slip, 317 
Rigid-body rotation, mathematical representation, 42 
Rigidity (jx), resistance to shear, 49, 50 
Rise time, 364 
Rock failure, theory, 357 
Rotational splitting, mode, 163-165 
Rupture 

bilateral, 371 
characteristic dimension, 377 
circular, 371 
duration, 362 
fault, 313, 315-319 

geometry, 368-370 
properties, 319-323 

friction and, 359 
maximum fault width, 387 
model, 23-26, 361-362 
process, 359-361 

deconvolving empirical Green's function, 
429-430 

pulse velocity ratio, 370 
self-similarity, 389-390 
slow, 407-408 
stress drop, 360 
termination, 422-423 
time, 370 
unilateral, 371 
velocity, 370-371 

Sampling function, 375-376 
San Andreas fault 

creeping section, 451-452 
development, 446-450 
earthquake probability, 486 
heat flow, 395 
paleoseismic work, 480 

Scalar, zeroth order tensor, 46 
Scalar product, 52 
Scaling relations, 388-392 

self-similarity, 390-392 
size and occurrence, 392-394 

Scarp 
paleoseismic indicator, 481-482 
topographic, 445 

Scattering, 107-108 
Scattering attenuation, 108, 250 
Seismic array, 192-198 
Seismic arrival, 73 

amplitude, 78 
Seismic attenuation, cause, 250 
Seismic belt, 475 
Seismic diffraction, 102-103 
Seismic efficiency, 394 
Seismic energy, 383-385 

boundary partitioning, 96-104 
radiated, 384 

Seismic gap, 437, 481 
Seismic intensity scale, development, 15 
Seismic inversion, see Inversion 
Seismicity, 18 

categories, 451-452 
deep, 459 
double, 457-458 
shallow subduction zone, 462, 464-466 

Seismicity pattern 
historical, 18-22 
precursory indicator, 489, 491 

Seismic magnitude scale, see Magnitude scale 
Seismic moment (A/Q) 

definition, 2-3 
earthquake size, 383-385 
entire fault, 361 
function 

rate, 337 
time derivative, 341 

magnitude scale, development, 16 
moment magnitude (Af^), 384-385 
release, average yearly expected, 437 
scaling, 390-392 
stress drop, 377-378 
sum to zero, 43, 45 
transform fault, 446-447 

Seismic moment tensor 
centroid, 415-416 
conventions, 351 
decomposition, 344-346 



diagonalized, 342-346 
faulting events, 344 
Green's function, 343-344 
linear inversion, 346 
non-double-couple, 354-355 
shear faulting model, 13 
waveform inversion, 406 

Seismic noise, 179-180 
Seismic phases, 73 

identifying, 200-203 
Seismic profile, 26 
Seismic quiescence, 489, 491 
Seismic ray parameter, 61 

definition, 75-76 
Seismic reflection profile, 30 
Seismic Research Observatories (SRO), 184-185 
Seismic signals, frequency-domain representation, 

375-376 
Seismic source model, very broadband, 431-433 
Seismic source parameters, 402 
Seismic sources, 9-10, 310-356; see also Elastostatics; 

Source depth; Source time function 
depth estimation, 217-218 
earthquakes involving shear faulting, 10-13 
elastodynamics, 331-342 
elastostatics, 323-331 
equivalent body force, 319-323 
faulting source, 313, 315-319 
induced earthquake, 476-477 
locating 

error, 230-231 
example, 231-234 
Geiger's method, 221-223 
generalized inverse, 223-229 
multiple station, 218-221 
redundant data, 230-231 
resolution, 230-231 
single station, 217-218 

multiple-station location, 218-221 
point force, 338-339 
shear faulting, 10-13 
single-source location, 218 
sonic boom, 9-10 
surface-wave modeling, 413-417 

Seismic tomography, 30, 243-249 
Seismic-velocity boundary, 264 
Seismic waveform modeling, 397-398 

basic filters, 398 
body waveform, 399-413 
complex earthquake, 423-431 
fault slip, 417-423 
source time function, 417-423 
stripping away procedure, 427-428 
surface wave, 413-417 
tectonic release, 418-419 
very broadband seismic source models, 431-433 

Seismic waves, 34-69 
amplitude, 3 
anisotropic media, 65-66 
definition, 1 

in determination of faulting orientation, 346-355 
equation of motion, 47-53 
frequency, 3, 57 
generation, 35 

nuclear testing, 314-315 
ocean, 207 
source location, 17-18 
strain, 42-47 
stress, 35-42 
wave equations, P and S waves, 54-69 

Seismogenic zone, 21, 387 
crustal deformation, 490 

Seismogram 
character, 203 
classification, 203 
definition, 2 
generalized inverse, 223-234 

errors, 230-231 
example, 231-234 
redundant data, 230-231 
resolution, 230-231 

interpretation, 199-233 
locating earthquakes, 217-223 

inverse problem, 221-223 
multiple-station location, 218-221 
single-station location, 217-218 

nomenclature 
body wave, 203-210 
surface wave, 210-213 

synthetic, 397 
travel-time curve, 213-217 
waveform inversion, 411 

Seismograph, 173 
broadband digital, 186-191 
inverted-pendulum, 178-179 
Omori horizontal pendulum, 178 
portable system, 192, 198 
Wood-Anderson torsion, 183, 184 

Seismology, see also Global seismology 
definition, 1 
explosion, 192 

Seismometer, 1, 173 
development, 5, 7 
KS360000, 185, 186 
ocean-bottom, 192 
Wiechert inverted-pendulum, 178-179 
Wielandt-Streckeisen STS-1, 186-187 

Seismometry 
definition, 3, 173 
digital global networks, 184-191 
early global networks, 181-184 
earth noise, 179-180 
electromagnetic instruments, 181-184 
force-feedback instruments, 184-191 
history, 173-197 
inertial pendulum systems, 174-179 
regional networks, 192-198 
seismic arrays, 192-198 

Seismoscope, 173 



Seismotectonics 
convergent boundaries 

continental collision, 470-471 
subduction zone, 450-469 

creeping plate boundary, 451-452 
crustal deformation cycle, 490 
definition, 4 
divergent boundaries, 437-443 
earthquake cycle, 477-483 
earthquake prediction, 486-493 
earthquake probability, 485-486 
earthquake swarm, 439-440 
intraplate earthquake, 472-477 
introduction, 434-437 
mechanisms for deep earthquakes, 459 
paleoseismology, 481-482 
transcurrent boundary, 443-450 

Self-similarity, earthquake, 388-392 
Self-similar scaling, 390-392 
Separation of variables, method, 55-56 
Separation phase, 395 
Shah function, 375-376 
Shallow earthquake, 12 
Shallow subduction zone, seismicity, 462, 464-466 
Shear 

attenuation, 170 
displacement, cracks, 363 
impedance, 104 
modulus (ill 49, 50 
resistance to, 49, 50 
strain, 35, 38-39 
strength, rock, 357 
stress, 44 

Shear faults 
earthquake sources involving, 10-13 
transform fault, 443, 445-446 

Shear velocity 
compressional, 68, 69 
layering, model, 247-248 
model, lower mantle, 299-300 
structure, upper mantle, 269-270 

Shear wave 
splitting, 65 

upper-mantle anisotropy, 276-277 
triplication, lower mantle, 299-300 
velocity model, lower mantle, 292, 294 

SH receiver function, 116 
SH wave. Love wave, 127-132 
Signal spectrum, 176 
Silent earthquake, 407-408 
Simple harmonic oscillator, 175-179 
Simultaneous iterative reconstruction technique 

(SIRT), 246 
upper-mantle tomography, 278 

Single-couple model, 321 
Single force, static displacement field, 323-326 
Single station 

location, seismic source, 217-218 
method 

group-velocity dispersion curves, 144 
phase-velocity dispersion curves, 144-145 

Singular-value decomposition (SVD), 227-228, 245 
660-km discontinuity, 272-276 
Slab penetration 

lower mantle, 294 
subducted slab, 460 

Slab pull, 460 
Sliding 

stable, 358 
stick-slip, 358 
unstable, 358 

Sliding mode, 363 
Slip, see Fault slip 
Slip distribution model, 26 
Slip function, 315 
Slip predictable, 479 

model, 479 
Slip pulse model, Heaton, 362 
Slip vector 

direction, 348 
magnitude, 316 

Slip weakening, 358 
Slow earthquakes, 407-408 
Slowness perturbation, regional, 243-244 
Small earthquake, 387 

self-similarity, 390-392 
Snell's Law 

derived waves, 96 
equation, 75 
geometric interpretation, 75-76 
reflected and refracted rays, 80 
spherical earth, 91 

Somigliana tensor, 325, 326 
Sonic boom, seismic source, 9-10 
Sound fixing and ranging (SOFAR) channel, 207 
Source depth 

attenuation, 416 
estimating 

multiple-station location, 218-221 
single-station location, 218 

Rayleigh wave, 210 
seismic source parameter, 402 
travel-time curve, 213 

Source duration, slow earthquake, 407-408 
Source function, mathematical expression, 8 
Source geometry, determination, 23-26 
Source location 

error, 230-231 
estimation, 84-86 
example, 231-234 
Geiger's method, 221-223 
generalized inverse, 223-229 
multiple station, 218-221 
redundant data, 230-231 
resolution, 230-231 
single station, 217-218 

Source parameters, single station, 410-411 



Source spectrum, 373-376 
self-similar scaling, 392 
surface-wave modeling, 413-415 

Source time function, 364 
complex earthquake, 423, 427 
deconvolution, 421 
faulting model, 373 
fault slip, 417-423 
filter output, 399-409 
Haskell model, 370 
one-dimensional fault, 364 
subduction zone earthquake, 421 

Source-time function, subduction zone earthquake, 
423 

Spatial-temporal iteration, waveform modeling, 
427-428 

Spectrum 
boxcar, 373-375 
decay, 375 
heterogeneity, 248-249 
source, 373-376 

surface-wave modeling, 413-415 
Spherical Bessel function, 156-157 
Spherical-geometry coordinate system, 62 
Spherical harmonics, 156-158 

degree of, 155 
Spherically symmetric displacement field, equation, 

312 
Spherical surface, mapping onto plane, 347-348 
Spherical symmetric pressure pulse, 310-311 
Spherical symmetry, explosion, 310-311 
Spherical wave, 62 

ray, 70 
Spheroidal mode 

attenuation, 169 
radial pattern, 159-163 
surface pattern, 160 

Spheroidal motion, 158 
Spheroidal oscillation, 155 
Spike train, 400-401 
Spreading center, 437-441 
Spreading rate, divergent boundary, 438, 440 
Sprenghether electromagnetic instrument, long-

period, 182 
Spyder system, 412 
Stable sliding, 358 
Stacking digital seismograms, 215-216 
Standard linear solid, 110 
Standing wave, 132 

frequencies, 3 
pattern, 155 

Starting model, 223 
Static deformation, around slipped fault, 328-329 
Static displacement field 

double-couple, 327-331 
force couple, 326-327 
single force, 323-326 

Static friction coefficient, 358 
Static similarity, 389-390 
Static stress drop, 376-377 

Station correction, for travel path error, 233 
Statistical tomography, 249 
Step, time history of pressure force, 311 
Stereographic projection 

faulting orientation, 347-350 
introduction, 23-24 

Stick-slip sliding, 358 
Stoneley wave, 135 
Strain, 35-42 

constant. 111 
definition, 34 
infinitesimal, 37 
normal, 35-38 
precursory phenomena, 484, 487 
shear, 35-38-39, 38-39 
transformation law, 47 

Strain-displacement relationship, 36-42 
Strain energy 

shear faulting, 11 
wavelength, 95-96 

Strain meter, 194 
Strain theory, 34-35 
Strength barrier, 422 
Stress, 42-47 

balancing of, 45 
components, 43-44 
compressional, 44 
constant, 111 
definition, 34 
deviatoric, 47 
displacement relationship, 48-51 
equilibrium equation, 45 
free surface interaction, 119 
general transformation law, 47 
Isacks and Molnar's model, 456-457 
localized, 473 
maximum compressive, 44 
minimum compressive, 44 
normal, 44 

average of, 47 
regional, 473 
shear, 44 
slab, 455-457 
subducting plate, thermal structure, 459 
tensional, 44 
tensor, 46-47 
transmission across interface, 96-104 
unit, 44 
viscous relaxation of, 490 

Stress drop, 358 
asperities, 417, 418 
faulting dynamics, 376-379 
particle velocity, 378-379 
rupture, 360 
scatter, 389 
seismic energy, 384 
seismic moment, 377-378 
static, 376 
uncertainty, 389 

Stress field, intraplate earthquake, 472-473 



Stress intensity factor, 363 
Stress tensor, 44 
Stress vector, 42 
Strike 

fault, 316 * 
finding, 348 

Strike direction, fault, 316 
Strike-slip fault, 443, 446-447 

Asia, 471 
Stripping away procedure, waveform modeling, 

427-428 
Structure, Earth, see Earth structure 
Subducted plate, age, 464-465 
Subducting slab, 281-284 

seismicity, 460, 462 
seismicity away from, 466-469 
slab penetration, 460 
velocity heterogeneity of, 296 

Subduction, forced, 460 
Subduction model, evolutionary, 466 
Subduction zone 

asperity, 421, 424 
convergent boundaries, 450-469 
frictional sliding, 454-455 
internal deformation within slab, 452-462 
seismicity away from subducting slab, 466-469 
shallow seismicity, 462, 464-466 
upper-mantle structure, 281-284 
upper-mantle structure beneath, 281-282 

Subduction zone earthquake, source time function, 
421, 423 

Subevent, complex earthquake, 423, 427 
Surface horizontal distance, 93 
Surface pattern, spheroidal mode, 160-163 
Surface reflection, nomenclature, 205-206 
Surface spherical harmonic, 157-158 

vector harmonics, 158 
Surface waves 

amplitude anomalies, 138-140 
anisotropy, 289 
attenuation, 167-171 
definition, 5 
determining fault orientation, 350-354 
dispersion, 140-147 
excitation function, 413 
focal mechanism, 350-354 
Love wave, 127-132 
magnitude (m^X scale, 16, 381-383 
modeling, 413-417 

source spectrum, 413-415 
nomenclature, 210-213 
period, 13 
radiation pattern, 350-354 
Rayleigh wave, 120-127 
on spherical earth, 132-140 
tsunamis, 147-153 

Suture zone, continential coUision, 470 
SV component, S wave motion, 63, 64 
SV evanescent wave, 120 
Swarm, earthquake, 393-394, 439-440 

S wave displacement 
far-field, 333-341 
particle, 63 

S wave motion 
anisotropic media, 65-66 
SH component, 63-64 
SV component, 63, 64 

S waves 
attenuation, 114 
definition, 5 
equations, 54-69 
moveout, 69 
period, 13 
radiation pattern, 23-24 
velocity, 54, 68 

Symmetric matrix, 225 
Syntax, coUisional, 470 
Synthetic, body waveform modeling, 402-410 
Synthetic seismogram, 397-399 

1968 tables, 213 
Takeoff angle, ray, 204 
Tangential direction, 69 
Tau function, 89, 93 
Taylor series approximation, travel time, 222 
Tearing mode, 363 
Tectonic release, 315 

underground nuclear explosion, 418-419 
Teleseismic distance 

body waveform modeling, 401-403 
J-B tables, 213 
seismogram classification, 203 

Teleseismic distance range, earth structure, 237 
Temperature variation, lower mantle, 293 
Temporal clustering, 475 
Tensional stress, 44 
Tensional (T) axis, 321 
Tensor 

first-order, 46 
second-order, 46, 47 
Somigliana, 325, 326 
strain, 42 
stress, 44 
zeroth-order, 46 

Tensor invariants, 46-47 
TERRASCOPE network, 197 
Tertiary (T) waves, 207 
Tesseral harmonic, 158 
Thermal buoyancy 

double Wadati-Benioff zone, 458, 460 
subduction, 451 

Thermal lithosphere, 434 
Thermal variation, seismic models, 32 
Three-dimensional wave solutions, 59-69 
Thrust fauhing, 317 
Tide, earth, long-period signal, 13-14 
Tilt meter, 194 



Time and frequency domain equivalence, 176-177 
Time dependence, earth materials, 1 
Time-dependent moment-tensor inversion, 428-431 
Time function, seismic source parameter, 402 
Time predictable 

earthquake behavior, 479 
model, 479-480 

Time series, sampled, 375 
Time-varying force couple, 320-321 
Time-varying force system, application, 331-342 
Tomographic model, 278-281 
Tomography 

lower mantle, 292-293 
seismic, 30, 243-249 
statistical, 249 

Tonto Forest Observatory (TFO), 192 
Topographic scarp, 445 
Toroidal mode, 155 
Toroidal mode attenuation, 169 
Toroidal motion, 158, 160 
Toroidal oscillation, 155 
Torsional mode, 160 
Torsional oscillation, 155 
Torsion seismograph, Wood-Anderson, 183, 184 
Total reflection, 100 
T phase, 207 
Traction, 9, 97 

normal, 97 
Traction vector, 42 
Transcurrent boundary, 436, 443-450 
Transcurrent fault earthquake, 446, 450 
Transfer function, 366 
Transform, discrete, 375-376 
Transformation law 

strain, 47 
stress, 47 

Transform fault, 443, 445-446 
Transient wave, ground-motion calculation, 9-10 
Transition zone, 264 
Transmission coefficient, 98, 99-100 
Transpose, matrix operation, 225 
Transverse direction, 69 
Transverse isotropy, 65, 289 
Traveling wave, 132 
Travel time 

body wave 
continuous medium, 86-91 
layered earth, 80-86 
lower mantle, 291-292 
spherical earth, 91-93 

dipping layer, 87-88 
error, 233 
observed and predicted, difference in, 221-223 
ray parameter, 78 
seismic phase, 73 
Taylor series approximation, 222 

Travel-time chart, 213 
Travel-time curve, 213-217 

branch, 82 
continuous medium, 86-91 

core, 301, 303 
crustal structure, 255 
definition, 27 
dipping structure, 88 
earth layering, 26-29 
iasp91, 213 
intercept, 86, 89 
layered structure, 82 
layer velocity, 83-84 
low-velocity zone, 84-85 
source depth, 213 
spherical geometry, 91-93 
stacking digital seismograms, 215-216 
1968 tables, 213 
triplication, 89 
upper-mantle, 266-267 

Travel-time equation, 78 
blind zone, 85 
dipping layer, 87 
direct arrival, 81 
head wave, 81 
layered structure, 82 
low-velocity zone 

direct wave, 85 
head wave, 85 

n layers, 84 
reflected arrival, 81 
in a sphere, 91-93 

Travel-time residual, I^'i-IA^ 
Travel-time tables, see J-B tables 
Triplication, 89 

upper mantle, 268 
True dip, 88 
Tsunamigenic earthquake, 153 
Tsunamis, 116-117, 147-153 

velocity, 149 
wave amplitude, 149 
waveform modeling, 424-425 
wavefront, 151-152 
wave height equation, 149 
wave length, 149 

Two-station method 
group-velocity dispersion curve, 144 
phase-velocity dispersion curve, 144-145 

u 
Uncertainty, Earth transfer function, 421 
Underdetermined solution, 240 
Underground explosion, 314-315, 418-419 
Unified source model, 419 
Unilateral rupture, 371 
United States National Seismograph Network 

(USNSN), 197-198 
Unrelaxed elastic modulus, 112 
Unstable sliding, 358 
Updip, travel path, 87 
Upgoing ray, 204 



Upper mantle 
anisotropy, 263, 276-277, 289-290 
attenuation modeling, 282-283, 286-287 
discontinuity, 270-276 
distance 

body-wave modeling, 409-410 
seismogram classification, 203 

distance range, earth structure, 237 
global distribution of anisotropy, 289 
lid, 265 
low-velocity zone, 265-266 
model, 409-410 
petrological variation, 286 
shear velocity structure, 269-270 
structure, 263-278 

subduction zone, 281-284 
thermal variation, 286-287 
tomography, 278-290 
travel-time curve, 266-267 
triplications, 268 
velocity models, 269-270 
viscosity, 435 
wide-angle reflection, 267 

U.S. Geological Survey (USGS), 186-187, 189 

outer core, 301-302 
radial symmetry, 202 
spherical earth, 91-93 

tsunamis, 149 
variation, lower mantle, 292-294 
weakening, 358 

Vertical dip-slip fault, body waveform modeling, 400 
Vertical directivity, 373 
Vertical radiation pattern, 400 
Vertical seismometer, 174-175 
Vertical slowness, 61 
Vertical strike-slip, 316 
Vertical strike-slip fault, body waveform modeling, 

400 
Vertical travel-time, 78, 82 
Very broadband seismic source models, 431-433 
Very long baseline interferometry (VLBI), 195 
Viscous damping, 178 
Volcanic eruption 

slow earthquake, 408 
vertical, 338 

Volcanic region, earthquake swarm, 439-440 

w 

Vector 
first-order tensor, 46 
model, 221-223 
parallel, 223 
product, 52 
relationships, 52-53 
surface harmonics, 158 
wave equation, 54 

Vector identities, 53 
VELA-Uniform project, 192 
Velocity 

apparent, 91 
change, triplication, 89 
Conrad discontinuity, see Conrad discontinuity 
at depth, 81 
410-km discontinuity, 270-276 
as function of depth, 238-240 
gradient, curvature of ray, 76-77 
group, 142-147 
heterogeneity of, subducting slab, 296 
layer, 83-84 
model, upper mantle, 269-270 
Moho discontinuity, see Moho discontinuity 
phase, 142-147 
P/i, 256-258 
rupture, 370-371 
610-km discontinuity, 212-216 
slowness ratio, 92 
structure 

continuous medium, 86-91 
layered earth, 80-86 

Wadati-Benioff zone, 218, 452 
double, 457-458, 460 

thermal buoyancy, 458, 460 
focal mechanisms along, 455 

Wadati diagram, origin time determination, 218-219 
Wasatch fault zone, seismic belt, 475 
Water reverberation, 401 
Wave amplitude, 93-96 
Wave behavior 

one-dimensional solutions, 54-59 
three-dimensional solutions, 59-69 

Wave equations 
heterogeneous media, 71 
nuclear explosion, 311 
one-dimensional solutions, 54-59 
P and S waves, 54-69 
spherical waves, 62 
three-dimensional solutions, 59-69 
tsunami wave height, 149 

Wavefield, 63 
Waveform 

dispersion, 140-147 
Rayleigh wave, 125, 127 

Waveform modeling, seismic, see Seismic waveform 
modeling 

Wavefront, 70 
area, 79 
definition, 55 
expanding, 70 
expanding spherical, 79 
movement, 61 
reflected ray, 80 



temporal dependence, 70 
three-dimensional, 73 
tsunami, 151-152 

Waveguide, 127 
Wave interference, 140-147 
Wavelength 

harmonic wave, 56 
Rayleigh wave, 124 
tsunamis, 149 

Wavenumber 
harmonic wave, 57 
Rayleigh wave, 123 
vector, 60 

Wave packets, 143-144 
Wave scattering theory, 32 
Wave variables, relationships among, 57 
Weichert inverted-pendulum seismometer, 178-179 
Welded interface, 97, 102 
White noise, 231 
Whole-crustal imaging, 252-255 
Wide-angle grazing body wave, 299-300 
Wide-angle reflection, 267 
Wielandt-Streckeisen STS-1 seismometer, 186-187 
Wood-Anderson torsion seismograph, 183-184 

Wood-Anderson torsion seismometer, magnitude 
scale origin, 380-381 

World Wide Standardized Seismic Network 
(WWSSN), 182, 183-184 

World Wide Standard Seismograph Network, 7 
w^ source model, 375 

Xianshuihe fault, earthquake history, 471 

Yield, explosion, 314 
Young's modulus (£) , 49, 50 

Zonal harmonics, 158 
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