
PARALLEL PROCESSING SYSTEMS

Chapter 1: Introduction to Parallelism



References

 Introduction to Parallel Processing-
Algorithms and Architectures, Behrooz
Parhami, 2002, Kluwer Academic Publishers



Why parallel processing?

 The quest for higher-performance digital computers seems 
unending

 Moore’s law :The growth of microprocessor speed/performance by 
a factor of 2 every 18 months (or about 60% per year)

 growth is the result of a combination of two factors:
 Increase in complexity of VLSI chips
 Introduction of, and improvements in architectural features such as 

 on-chip cache memories
 large instruction buffers
 multiple instruction issue per cycle
 multi-threading
 deep pipelines
 out-of-order instruction execution
 branch prediction



Why parallel processing?

 Moore’s law 
 was originally formulated in 1965
 seems to hold regardless of how one measures 

processor performance
 counting the number of executed instructions per 

second (IPS)
 counting the number of floating-point operations per 

second (FLOPS)
 sophisticated benchmark suites that attempt to 

measure the processor's performance on real 
applications



Why parallel processing?

 Moore’s law 
 it is expected that Moore's law will continue to hold for 

the near future
 But there is a limit that will eventually be reached. 

 dictated by physical laws
 speed-of-light argument

 The speed of light is about 30 cm/ns.
 Signals travel on a wire at a fraction of the speed of light. 
 If the chip diameter is 3 cm

 any computation that involves signal transmission from one end of 
the chip to another cannot be executed faster than 1010 times per 
second. 

 we are in fact not very far from limits imposed by the speed of 
signal propagation and several other physical laws



Why parallel processing?

 once the physical limit has been reached
 the only path to improved performance is the use of 

multiple processors. 
 any parallel processor will also be limited by the 

speed at which the various processors can 
communicate 
 the limit is less serious here 

 communication does not have to occur for every low-level 
computation

 large number of computation steps can be performed 
between two successive communication steps (for many 
applications)



Why parallel processing?

 another way to show the need for parallel 
processing
 Applications that need TFLOPS or PFLOPS 

performance
 space research

 climate modeling 

 auto crash or engine combustion simulation

 design of pharmaceuticals

 design and evaluation of complex ICs

 scientific visualization, and multimedia



Why parallel processing?

 another way to show the need for parallel processing
 E.g., The model for heat transfer from southern oceans to the 

South Pole
 ocean is divided into 

 4096 regions E–W
 1024 regions N–S
 12 layers in depth 

 A single iteration of the model 
 simulates ocean circulation for 10 minutes 
 involves about 30B floating-point operations

 To carry out the simulation for 1 year
 about 50,000 iterations are required

 Simulation for 6 years would involve 1016 floating-point 
operations



Why parallel processing?

 The motivations can be summarized as follows:
1. Higher speed, or solving problems faster. 

 important when applications have “hard” or “soft” deadlines
 E.g., at most a few hours of computation time to do 24-hour 

weather forecasting
2. Higher throughput, or solving more instances of given 

problems
 important when many similar tasks must be performed

 E.g., banks and airlines use transaction processing systems that 
handle large volumes of data.

3. Higher computational power, or solving larger problems. 
 allow us to 

 use more accurate models 
 or to carry out simulation runs for longer periods of time 

 (e.g., 5-day weather forecasting).



Why parallel processing?

 figure-of-merit in parallel processors
 the computation speed-up factor with respect to a 

uniprocessor

 Captures all three aspects above

 The ideal efficiency in parallel systems is to achieve a 
computation speed-up factor of p with p processors
 in many cases cannot be achieved

 some speed-up is generally possible

 actual gain depends on 
 the architecture used for the system 

 the algorithm run on it



Why parallel processing?

 A motivating example
 Problem: constructing the list of all prime numbers in 

[1, n] for a given integer n>0
 Sieve of Eratosthenes (a simple algorithm):

 Start with the list of numbers 1, 2, 3, 4, . . . , n
 represented as a “mark” bit-vector 
 initialized to 1000 . . . 00. 

 In each step
 the next unmarked number m is a prime. 

 associated with a 0 in element m of the mark bit-vector
 Find this element m and mark all multiples of m beginning 

with m². 
 When m² > n, the computation stops and all unmarked 

elements are prime numbers.



Why parallel processing?

 A motivating example



Why parallel processing?

 A motivating example
 a single-processor implementation 

 The variable “current prime” 
 is initialized to 2
 in later stages, holds the latest prime number found.

 For each prime found, variable “index” 
 is initialized to the square of this prime 
 is then incremented by the current prime in order to mark all 

its multiples



Why parallel processing?

 A motivating example
 first parallel solution using p processors

 The list of numbers and the current prime are stored in a shared 
memory. 

 An idle processor 
 refers to the shared memory
 updates the current prime
 uses its private index to 

 step through the list 
 mark the multiples of that prime

 Division of work is thus self-regulated. 



Why parallel processing?

 A motivating example
 first parallel solution using p processors

 activities of the processors and the termination time for n = 1000 
and 1 ≤ p ≤ 3

 using more than three processors would not reduce the 
computation time



Why parallel processing?

 A motivating example
 a data-parallel approach

 the bit-vector representing the n integers is divided into p equal-length 
segments
 each segment stored in the private memory of one processor 

 Assume that p < , 
 Processor 1, acts as a coordinator 

 all the primes whose multiples must be marked reside in 
 It finds the next prime and broadcasts it to all other processors

 they then proceed to mark the numbers in their sublists



Why parallel processing?

 A motivating example
 a data-parallel approach

 The overall solution time consists of two components
 the time spent on transmitting the selected primes to all 

processors (communication time) 
 Typically, grows with the number of processors

 though not necessarily in a linear fashion

 the time spent by individual processors marking their 
sub lists (computation time)



Why parallel processing?

 A motivating example
 a data-parallel approach

 adding more processors beyond a certain optimal number 
 does not lead to any improvement in the total solution time or 

in attainable speed-up

 because of the communication overhead



Types of parallelism: a 
taxonomy
 Two main categories for parallel computers 

 Control-flow parallel computers 
 are essentially based on the same principles as the sequential or 

von Neumann computer
 except that multiple instructions can be executed at any given 

time

 Data-flow parallel computers
 sometimes referred to as “non-von Neumann,” 
 are completely different 
 they have no pointer to active instruction(s) or a locus of control. 
 The control is totally distributed

 we will focus exclusively on control-flow parallel 
computers



Types of parallelism: a 
taxonomy
 Flynn proposed a four-way classification of computer systems

 SISD
 represents ordinary “uniprocessor” machines

 SIMD
 several processors directed by instructions issued from a central control unit
 sometimes characterized as “array processors.”

 MISD
 have not found widespread application

 MIMD
 Further classified based on 

 their memory structure (global or distributed) 
 mechanism used for communication/synchronization (shared variables or message passing).



Types of parallelism: a 
taxonomy
 Flynn proposed a four-way classification of computer systems

 MIMD
 GMSV 

 loosely referred to as (shared-memory) multiprocessors
 GMMP 

 is not widely used
 DMMP 

 known as (distributed-memory) multicomputers
 DMSV 

 is becoming popular combining 
 the implementation ease of distributed memory 
 the programming ease of the shared-variable scheme

 is some-times called distributed shared memory



Roadblocks to parallel 
processing
 The software inertia

 billions of dollars worth of existing software makes 
it hard to switch to parallel systems

 This objection is valid in the short term
 In the long term

 New applications will be developed 
 many new problems will become solvable with 

increased performance. 
 Students are already being trained to think parallel. 
 tools are being developed to transform sequential 

code into parallel code automatically



Roadblocks to parallel 
processing
 Amdahl’s law

 a small fraction ƒ of inherently sequential or 
unparallelizable computation severely limits the 
speed-up that can be achieved with p processors



Roadblocks to parallel 
processing
 Amdahl’s law

 The speed-up can never exceed 1/ƒ
 no matter how many processors are 

used
 for ƒ = 0.1, speed-up has an upper 

bound of 10

 Fortunately
 there exist applications with very 

small sequential overhead. 
 the sequential overhead need not be 

a constant fraction of the job 
independent of problem size. 



Roadblocks to parallel 
processing
 Closely related to 

Amdahl’s law
 some applications lack 

inherent parallelism
 limiting the achievable 

speed-up with multiple 
processors



Effectiveness of parallel 
processing
 certain measures for effectiveness of parallel 

algorithms



Effectiveness of parallel 
processing
 certain measures for effectiveness of parallel 

algorithms
 not difficult to establish the following relationships



Effectiveness of parallel 
processing
 E.g., Finding the sum of 16 numbers

 T(1) = W(1) = 15
 Assume unit-time additions and 

ignore all else
 With p = 8 processors, we have

 W(8) = 15 T(8) = 4
 E(8) = 15/(8 × 4) = 47% S(8) = 15/4 = 3.75
 R(8) = 15/15 = 1 Q(8) = 1.76
 the 8 processors perform all the additions at the same tree 

level 
 The relatively low efficiency is the result of limited 

parallelism near the root of the tree


