PARALLEL PROCESSING SYSTEMS

Chapter 1: Introduction to Parallelism

References

 Introduction to Parallel Processing-Algorithms and Architectures, Behrooz Parhami, 2002, Kluwer Academic Publishers

- The quest for higher-performance digital computers seems unending
- Moore's law :The growth of microprocessor speed/performance by a factor of 2 every 18 months (or about 60% per year)
- growth is the result of a combination of two factors:
 - Increase in complexity of VLSI chips
 - Introduction of, and improvements in architectural features such as
 - on-chip cache memories
 - large instruction buffers
 - multiple instruction issue per cycle
 - multi-threading
 - deep pipelines
 - out-of-order instruction execution
 - branch prediction

- Moore's law
 - was originally formulated in 1965
 - seems to hold regardless of how one measures processor performance
 - counting the number of executed instructions per second (IPS)
 - counting the number of floating-point operations per second (FLOPS)
 - sophisticated benchmark suites that attempt to measure the processor's performance on real applications

- Moore's law
 - it is expected that Moore's law will continue to hold for the near future
 - But there is a limit that will eventually be reached.
 - dictated by physical laws
 - speed-of-light argument
 - The speed of light is about 30 cm/ns.
 - Signals travel on a wire at a fraction of the speed of light.
 - If the chip diameter is 3 cm
 - any computation that involves signal transmission from one end of the chip to another cannot be executed faster than 10¹⁰ times per second.
 - we are in fact not very far from limits imposed by the speed of signal propagation and several other physical laws

- once the physical limit has been reached
 - the only path to improved performance is the use of multiple processors.
 - any parallel processor will also be limited by the speed at which the various processors can communicate
 - the limit is less serious here
 - communication does not have to occur for every low-level computation
 - large number of computation steps can be performed between two successive communication steps (for many applications)

- another way to show the need for parallel processing
 - Applications that need TFLOPS or PFLOPS performance
 - space research
 - climate modeling
 - auto crash or engine combustion simulation
 - design of pharmaceuticals
 - design and evaluation of complex ICs
 - scientific visualization, and multimedia

- another way to show the need for parallel processing
 - E.g., The model for heat transfer from southern oceans to the South Pole
 - ocean is divided into
 - 4096 regions E–W
 - 1024 regions N–S
 - 12 layers in depth
 - A single iteration of the model
 - simulates ocean circulation for 10 minutes
 - involves about 30B floating-point operations
 - To carry out the simulation for 1 year
 - about 50,000 iterations are required
 - Simulation for 6 years would involve 10¹⁶ floating-point operations

- The motivations can be summarized as follows:
 - 1. Higher speed, or solving problems faster.
 - important when applications have "hard" or "soft" deadlines
 - E.g., at most a few hours of computation time to do 24-hour weather forecasting
 - 2. Higher throughput, or solving more instances of given problems
 - important when many similar tasks must be performed
 - E.g., banks and airlines use transaction processing systems that handle large volumes of data.
 - 3. Higher computational power, or solving larger problems.
 - allow us to
 - use more accurate models
 - or to carry out simulation runs for longer periods of time
 - (e.g., 5-day weather forecasting).

- figure-of-merit in parallel processors
 - the computation speed-up factor with respect to a uniprocessor
 - Captures all three aspects above
 - The ideal efficiency in parallel systems is to achieve a computation speed-up factor of p with p processors
 - in many cases cannot be achieved
 - some speed-up is generally possible
 - actual gain depends on
 - the architecture used for the system
 - the algorithm run on it

• A motivating example

- Problem: constructing the list of all prime numbers in
 [1, n] for a given integer n>0
 - [1, n] for a given integer n>0
 - Sieve of Eratosthenes (a simple algorithm):
 - Start with the list of numbers 1, 2, 3, 4, ..., n
 - represented as a "mark" bit-vector
 - initialized to 1000 . . . 00.
 - In each step
 - the next unmarked number m is a prime.
 - associated with a 0 in element m of the mark bit-vector
 - Find this element m and mark all multiples of m beginning with m².
 - When m² > n, the computation stops and all unmarked elements are prime numbers.

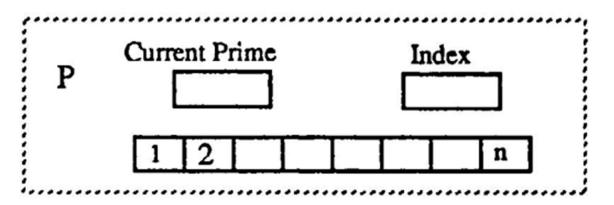
A motivating example

2 11-2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	3 m=3		5		7		9		11		13		15		17		19		21		23		25		27		29	
2	3		5 m=5		7				11		13				17		19				23		25				29	
2	3		5	1	7 m=7				11		13				17		19				23						29	

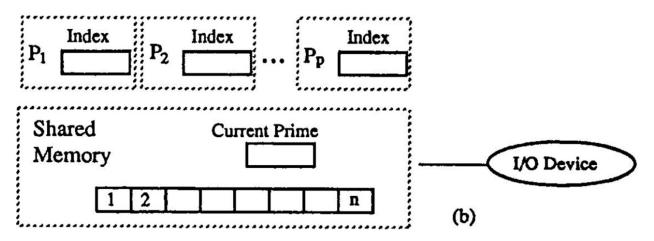
Figure 1.3. The sieve of Eratosthenes yielding a list of 10 primes for n = 30. Marked elements have been distinguished by erasure from the list.

• A motivating example

- a single-processor implementation
 - The variable "current prime"
 - is initialized to 2
 - in later stages, holds the latest prime number found.
 - For each prime found, variable "index"
 - is initialized to the square of this prime
 - is then incremented by the current prime in order to mark all its multiples

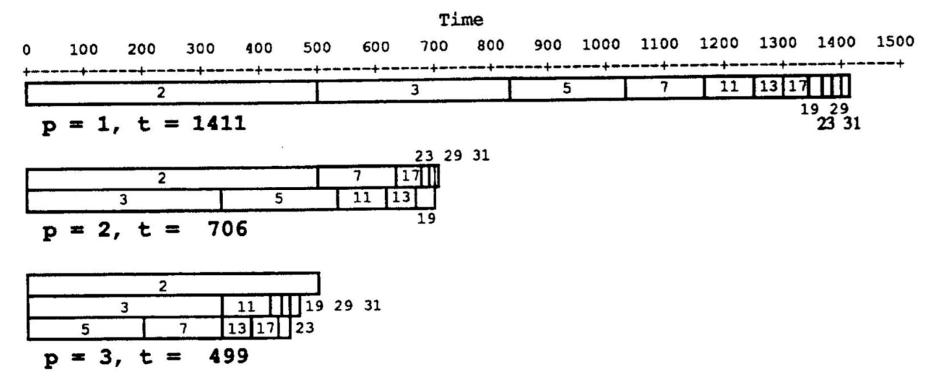


- A motivating example
 - first parallel solution using p processors
 - The list of numbers and the current prime are stored in a shared memory.
 - An idle processor
 - refers to the shared memory
 - updates the current prime
 - uses its private index to
 - step through the list
 - mark the multiples of that prime
 - Division of work is thus self-regulated.

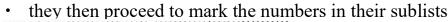


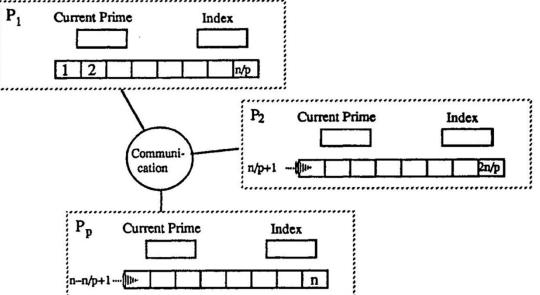
A motivating example

- first parallel solution using p processors
 - activities of the processors and the termination time for n=1000 and $1\leq p\leq 3$
 - using more than three processors would not reduce the computation time



- A motivating example
 - a data-parallel approach
 - the bit-vector representing the n integers is divided into p equal-length segments
 - each segment stored in the private memory of one processor
 - Assume that $p < \sqrt{n}$,
 - Processor 1, acts as a coordinator
 - all the primes whose multiples must be marked reside in
 - It finds the next prime and broadcasts it to all other processors





• A motivating example

- a data-parallel approach
 - The overall solution time consists of two components
 - the time spent on transmitting the selected primes to all processors (communication time)
 - Typically, grows with the number of processors
 - though not necessarily in a linear fashion
 - the time spent by individual processors marking their sub lists (computation time)

• A motivating example

- a data-parallel approach
 - adding more processors beyond a certain optimal number
 - does not lead to any improvement in the total solution time or in attainable speed-up
 - because of the communication overhead

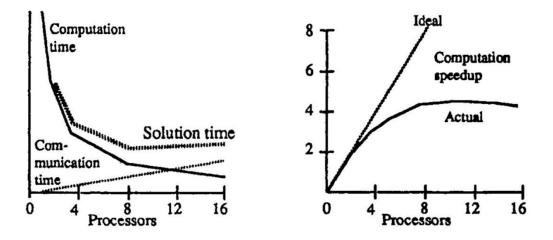


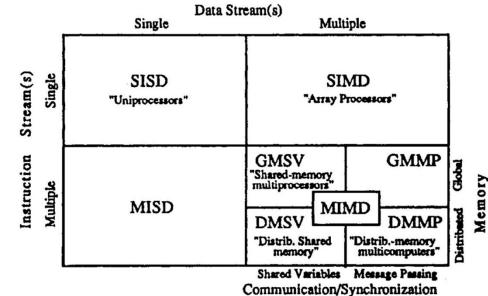
Figure 1.8. Trade-off between communication time and computation time in the data-parallel realization of the sieve of Eratosthenes.

Types of parallelism: a taxonomy

- Two main categories for parallel computers
 - Control-flow parallel computers
 - are essentially based on the same principles as the sequential or von Neumann computer
 - except that multiple instructions can be executed at any given time
 - Data-flow parallel computers
 - sometimes referred to as "non-von Neumann,"
 - are completely different
 - they have no pointer to active instruction(s) or a locus of control.
 - The control is totally distributed
- we will focus exclusively on control-flow parallel computers

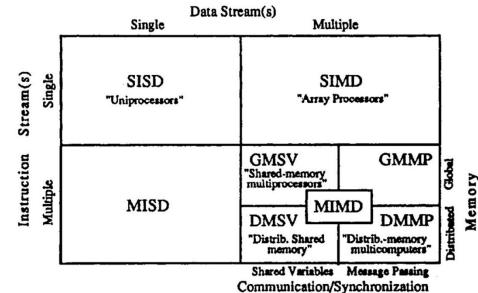
Types of parallelism: a taxonomy

- Flynn proposed a four-way classification of computer systems
 - SISD
 - represents ordinary "uniprocessor" machines
 - SIMD
 - several processors directed by instructions issued from a central control unit
 - sometimes characterized as "array processors."
 - MISD
 - have not found widespread application
 - MIMD
 - Further classified based on
 - their memory structure (global or distributed)
 - mechanism used for communication/synchronization (shared variables or message passing).



Types of parallelism: a taxonomy

- Flynn proposed a four-way classification of computer systems
 - MIMD
 - GMSV
 - loosely referred to as (shared-memory) multiprocessors
 - GMMP
 - is not widely used
 - DMMP
 - known as (distributed-memory) multicomputers
 - DMSV
 - is becoming popular combining
 - the implementation ease of distributed memory
 - the programming ease of the shared-variable scheme
 - is some-times called distributed shared memory

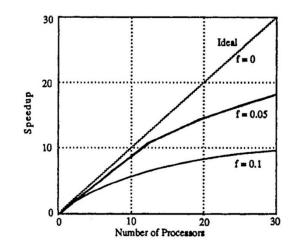


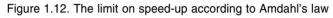
- The software inertia
 - billions of dollars worth of existing software makes it hard to switch to parallel systems
 - This objection is valid in the short term
 - In the long term
 - New applications will be developed
 - many new problems will become solvable with increased performance.
 - Students are already being trained to think parallel.
 - tools are being developed to transform sequential code into parallel code automatically

- Amdahl's law
 - a small fraction *f* of inherently sequential or unparallelizable computation severely limits the speed-up that can be achieved with p processors

speed-up
$$\leq 1/[f + (1 - f)/p] = p/[1 + f(p - 1)]$$

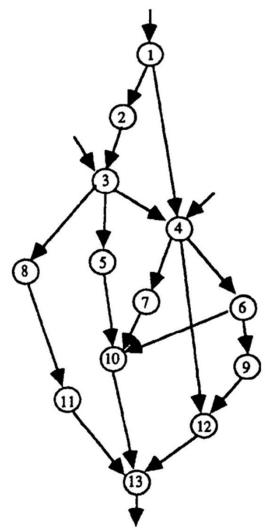
- Amdahl's law
 - The speed-up can never exceed 1/f
 - no matter how many processors are used
 - for f = 0.1, speed-up has an upper bound of 10
 - Fortunately
 - there exist applications with very small sequential overhead.
 - the sequential overhead need not be a constant fraction of the job independent of problem size.





 Closely related to Amdahl's law

- some applications lack
 inherent parallelism
 - limiting the achievable speed-up with multiple processors



Effectiveness of parallel processing

- certain measures for effectiveness of parallel algorithms
 - Number of processors

p

- W(p) Total number of unit operations performed by the *p* processors; this is often referred to as computational work or energy
- T(p) Execution time with *p* processors; clearly, T(1) = W(1) and $T(p) \le W(p)$

$$S(p) \qquad \text{Speed-up} = \frac{T(1)}{T(p)}$$

$$E(p) \qquad \text{Efficiency} = \frac{T(1)}{pT(p)}$$

$$R(p) \qquad \text{Redundancy} = \frac{W(p)}{W(1)}$$

$$U(p) \qquad \text{Utilization} = \frac{W(p)}{pT(p)}$$

$$Q(p) \qquad \text{Quality} = \frac{T^{3}(1)}{pT^{2}(p)W(p)}$$

Effectiveness of parallel processing

- certain measures for effectiveness of parallel algorithms
 - not difficult to establish the following relationships

$$1 \le S(p) \le p$$

$$U(p) = R(p)E(p) \qquad \qquad \frac{1}{p} \le E(p) \le U(p) \le 1$$

$$E(p) = \frac{S(p)}{p} \qquad \qquad 1 \le R(p) \le \frac{1}{E(p)} \le p$$

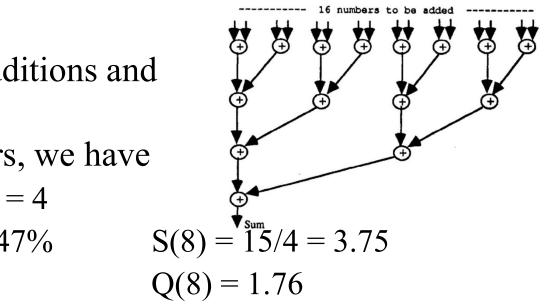
$$Q(p) = E(p) \frac{S(p)}{R(p)} \qquad \qquad Q(P) \le S(p) \le p$$

Effectiveness of parallel processing

• E.g., Finding the sum of 16 numbers

•
$$T(1) = W(1) = 15$$

- Assume unit-time additions and ignore all else
- With p = 8 processors, we have
 - W(8) = 15 T(8) = 4
 - $E(8) = \frac{15}{8 \times 4} = \frac{47\%}{5}$ $S(8) = \frac{15}{15}/4 = 3.75$
 - R(8) = 15/15 = 1



- the 8 processors perform all the additions at the same tree level
- The relatively low efficiency is the result of limited parallelism near the root of the tree