
PARALLEL PROCESSING SYSTEMS

Chapter 2: A Taste of Parallel Algorithms



Some simple computations

 five fundamental building-block computations
 Semigroup (reduction, fan-in) computation 

 Parallel prefix computation 

 Packet routing 

 Broadcasting, and its more general version, 
multicasting

 Sorting records in ascending/descending order of 
their keys



Some simple computations

 Semigroup (reduction, fan-in) computation 
 Let be an associative binary operator

 i.e., (x y ) z = x (y z) for all x, y, z S. 

 A semigroup is simply a pair (S, )
 where S is a set of elements on which is defined

 Semigroup computation is defined as: 
 Given a list of n values x0, x1, . . . , xn–1, compute 

x0 x1 . . . xn–1 . 
 Common examples for the operator include +, ×, , , 

, ∩, , max, min. 
 The operator may or may not be commutative

 i.e., it may or may not satisfy x y = y x 



Some simple computations

 Semigroup (reduction, fan-in) computation 



Some simple computations

 Parallel prefix computation 
 With the same assumptions as in the semigroup

 a parallel prefix computation is defined as 
 simultaneously evaluating all the prefixes of the 

expression x0 x1 . . . xn–1;
 i.e., x0, x0 x1, x0 x1 x2, . . . , x 0 x1 . . . 

xn–1. 

 The comment about commutativity of the binary 
operator applies here as well.



Some simple computations

 Packet Routing
 A packet of information resides at Processor i and must 

be sent to Processor j. 
 The problem is to route the packet through the fastest 

path
 The problem becomes more challenging when 

 multiple packets reside at different processors
 each with its own destination. 
 the packet routes may interfere with one another 

 as they go through common intermediate processors. 

 It is called one-to-one communication or 1–1 routing 
 When each processor has at most one packet to send and 

one packet to receive



Some simple computations

 Broadcasting
 Disseminate a value a known at a certain processor 

I to all p processors as quickly as possible

 sometimes referred to as one-to-all communication. 

 Multicasting is the more general case 
 one-to-many communication



Some simple computations

 Sorting
 Given a list of n keys x0, x1, . . . , xn–1, and a total 

order ≤ on key values, rearrange the n keys as 



Some simple architectures

 four simple parallel architectures:
 Linear array of processors 

 Binary tree of processors 

 Two-dimensional mesh of processors

 Multiple processors with shared variables



Some simple architectures

 Linear array
 The diameter is D = p – 1 

 defined as the longest of the shortest distances between 
pairs of processors

 The (maximum) node degree is d = 2
 defined as the largest number of links or communication 

channels associated with a processor
 The ring variant has 

 the same node degree of 2 
 a smaller diameter of D = p/2 .



Some simple architectures

 Binary Tree 
 The binary tree is balanced 

 if leaf levels differ by at most 1. 
 Diameter is

 The binary tree is complete 
 If all leaf levels are identical and every non-leaf processor has 

two children
 diameter is

 The (maximum) node degree in a binary tree is d = 3



Some simple architectures

 2D Mesh
 The diameter of a square mesh is
 the mesh does not have to be square. 
 The diameter of a p-processor r × (p/r) mesh is D = r + p/r – 2. 
 multiple 2D meshes may exist for the same number p of processors, 

 e.g., 2 × 8 or 4 × 4. 
 Square meshes are usually preferred 

 because they minimize the diameter. 
 The torus variant has end-around or wraparound links for rows and columns. 
 The node degree for both meshes and torus is d = 4.
 But a p-processor r × (p/r) torus has a smaller diameter of D = r /2 + p/(2r) .



Some simple architectures

 Shared Memory
 can be modeled as a complete graph

 every piece of data is directly accessible to 
every processor 
 assuming each processor can simultaneously 

send/receive data over all of its p – 1 links

 The diameter D = 1 is an indicator of this 
direct access.

 The node degree d = p – 1
 indicates that is quite costly to implement 

 if no restriction is placed on data accesses



Algorithms for a linear 
array
 Semigroup Computation

 Finding maximum
 Each of the p processors holds a value initially
 our goal is for every processor to know the largest of these values. 
 In each step

 a processor sends its max value to its two neighbors. 
 on receiving values from its left and right neighbors

 Each processor sets its max value to the largest of the three values, i.e., max(left, own, right)
 The dotted lines show how the maximum value propagates from P6 to all other processors

 Had there been two maximum values, say in P2 and P6 , the propagation would have been faster. 
 Needed operations in the worst case

 p – 1 communication steps 
 each involving sending a processor’s value to both neighbors
 This is the best one can hope for

 given that the diameter of a p-processor linear array is D = p – 1
 the same number of three-way comparison steps



Algorithms for a linear 
array
 Semigroup Computation

 For a general semigroup computation
 initially, all processors are dormant or inactive
 the processor at the left end becomes active and sends its data 

value to the right 
 On receiving a value from its left neighbor, a processor 

 becomes active
 applies the semigroup operation to the value received from the 

left and its own data value
 sends the result to the right
 becomes inactive again
 This wave of activity propagates to the rightmost processor 

 The computation result is then propagated leftward to all 
processors

 In all, 2p – 2 communication steps are needed



Algorithms for a linear 
array
 Parallel Prefix Computation

 we want the ith prefix result at the ith processor, 0 
≤ i ≤ p – 1
 we already have an algorithm

 The general semigroup algorithm without the last 
broadcast

 takes p – 1 communication/combining steps. 



Algorithms for a linear 
array
 Extension of the semigroup and parallel prefix algorithms 

 each processor initially holds several data
 The algorithm consists of each processor doing 

 a prefix computation on its own data set of size n/p 
 takes n/p – 1 combining steps

 a diminished parallel prefix computation 
 each processor holds onto the value received from the left
 Takes  p – 1 communication/combining steps

 finally combining the result of two prefix computations 
 Takes n /p combining steps

 Number of operations required in all
 2n/p + p– 2 combining steps 
 p – 1 communication steps



Algorithms for a linear 
array
 Packet Routing

 To send a packet of information from Processor i to 
Processor j
 Attach a routing tag with the value j – i to it

 The sign determines the direction of move 
 (+ = right, – = left) 

 The magnitude indicates the action to be performed 
 (0 = remove the packet, nonzero = forward the packet).

 With each forwarding
 the magnitude of the routing tag is decremented by 1



Algorithms for a linear 
array
 Broadcasting

 If Processor i wants to broadcast a value a to all 
processors
 it sends 

 an rbcast(a) (read r-broadcast) message to its right neighbor 
 an lbcast(a) message to its left neighbor

 receiving an rbcast(a) message, any processor 
 copies the value a and forwards the message to its right 

neighbor (if any). 
 receiving an lbcast(a) message, any processor 

 copies the value a and forwards the message to its left 
neighbor (if any)

 The worst-case number of communication steps is p – 1



Algorithms for a linear 
array
 Sorting

 two versions of sorting on a linear array
 with I/O

 without I/O



Algorithms for a linear 
array
 Sorting

 with I/O
 p keys are input, one at a time, from the left end
 Each processor, on receiving a key value from the left

 compares the received value with the value stored in its local register 
 initially, all local registers hold the value +∞

 The smaller of the two values is kept in the local register 
 larger value is passed on to the right

 Once all p inputs have been received
 we must allow p – 1 additional communication cycles for the key values 

that are in transit to settle into their respective positions 
 If the sorted list is to be output from the left

 the output phase can start immediately after the last key value has been 
received

 an array half the size of the input list would be adequate 
 we effectively have zero-time sorting

 the total sorting time is equal to the I/O time



Algorithms for a linear 
array
 Sorting

 with I/O



Algorithms for a linear 
array
 Sorting

 without I/O
 the key values are already in place, one per processor
 an algorithm known as odd–even transposition can be used 

 A total of p steps are required. 
 In an odd-numbered step

 odd-numbered processors compare values with their even-numbered right 
neighbors

 The two processors exchange their values if they are out of order. 
 in an even-numbered step

 even-numbered processors compare–exchange values with their right 
neighbors 

 In the worst case
 the largest key value 

 resides in Processor 0 
 must move all the way to the other end of the array

 This needs p – 1 right moves



Algorithms for a linear 
array
 Sorting

 without I/O



Algorithms for a linear 
array
 Sorting with  the number n of keys is greater than 

the number p of processors
 the odd–even algorithm with n/p keys per processor 

 each processor sorts its list using any efficient sequential 
sorting algorithm. 
 Let us say this takes ( n/p)log2(n/p ) compare–exchange steps. 

 the odd–even transposition sort is performed as before
 except that each compare–exchange step is replaced by a 

merge–split step 
 the two processors merge their sublists of size n/p into a single 

sorted list of size 2n/p 
 then split the list down the middle
 one processor keeping the smaller half 
 the other keeps the larger half



Algorithms for a linear 
array
 Sorting with  the number n of keys is greater than the 

number p of processors
 the odd–even algorithm with n/p keys per processor 

 E.g., if P0 is holding (1, 3, 7, 8) and P1 has (2, 4, 5, 9)
 a merge–split step will turn the lists into (1, 2, 3, 4) and (5, 7, 8, 

9), respectively
 Because the sublists are sorted

 the merge–split step requires n/p compare–exchange steps. 
 the total time of the algorithm is (n/p)log2 (n/p ) + n 
 the first term (local sorting) will be dominant if p< log2 n
 the second term (array merging) is dominant for p > log2n . 
 For p ≥ log 2 n

 the time complexity of the algorithm is linear in n
 the algorithm is more efficient than the one-key-per-processor version



Algorithms for a linear 
array
 One final observation about sorting

 it is important
 occasionally it also helps us in data routing
 permutation routing problem 

 data values being held by the p processors are to be routed to other 
processors

 such that the destination of each value is different from all others. 
 the p distinct destinations must be 0, 1, 2, . . . , p – 1
 The correct destination for each record can be find by

 forming records with the destination address as the key 
 sorting these records 

 p compare–exchange steps.
 Effectively

 p packets are routed in the same amount of time that is required for 
routing a single packet in the worst case



Algorithms for a binary tree

 we assume that the data elements are initially 
held by the leaf processors only 

 The nonleaf (inner) processors participate in 
the computation
 but do not hold data elements of their own

 This simplifying assumption
 can be easily relaxed
 leads to simpler algorithms
 Does not pose great inefficiency 

 Because roughly half of the tree nodes are leaf nodes



Algorithms for a binary tree

 Semigroup Computation
 binary-tree architecture is ideally suited for this 

 semigroup computation is sometimes referred to as tree 
computation

 Each inner node 
 receives two values from its children 

 if each of them has already computed a value or is a leaf node
 applies the operator to them
 passes the result upward to its parent

 After log2 p steps, the root processor will have the 
computation result

 All processors can then be notified of the result through a 
broadcasting operation from the root. 

 Total time: 2 log2p steps



Algorithms for a binary tree

 Parallel Prefix Computation
 Again

 this is quite simple 

 can be done optimally in 2 log 
2 p steps



Algorithms for a binary tree

 Parallel Prefix Computation
 upward propagation phase 

 identical to the upward 
movement of data in semigroup 
computation

 At the end, each node will have 
the semigroup computation 
result for its subtree



Algorithms for a binary tree

 Parallel Prefix Computation
 downward phase

 Each processor remembers the value it 
received from its left child. 

 On receiving a value from the parent, a node 
passes 
 the value received from above to its left child 

and 
 combination of this value and the one that came 

from the left child to its right child. 
 The root initiates the downward phase by 

sending 
 the identity element to the left 
 the value received from its left child to the 

right. 
 At the end

 the leaf processors compute their respective 
results



Algorithms for a binary tree

 Some applications of Parallel Prefix 
Computation
 Given a list of 0s and 1s

 the rank of each 1 in the list (its relative position 
among the 1s) can be determined by a prefix sum 
computation



Algorithms for a binary tree

 Some applications of Parallel Prefix 
Computation
 priority circuit 

 has a list of 0s and 1s as its inputs 

 picks the first (highest-priority) 1 in the list. 

 The function of a priority circuit can be defined as:



Algorithms for a binary tree

 Packet Routing
 The algorithm depends on the processor numbering 

scheme 
 “preorder” indexing

 Nodes in a subtree are numbered by 
 first numbering the root node
 then its left subtree
 and finally the right subtree

 the index of each node is less than of all its descendants. 
 We assume that each node

 Is aware of its own index (self) in the tree
 knows the largest node index in its left (maxl) and right 

(maxr) subtrees. 



Algorithms for a binary tree

 Packet Routing
 “preorder” indexing

 Routing algorithm for a 
packet 
 on its way from node i to node 

dest
 currently residing in node self

 This algorithm does not make 
any assumption about the tree 
except that it is a binary tree. 

 the tree need not be complete 
or even balanced



Algorithms for a binary tree

 Broadcasting
 Processor i sends the desired data upwards to the 

root processor

 The root then broadcasts the data downwards to all 
processors



Algorithms for a binary tree

 Sorting
 algorithm is similar to bubblesort

 first, smaller elements in the leaves “bubble up” to 
the root processor 

 root “sees” all the data elements in nondescending
order. 

 root then sends the elements to leaf nodes in the 
proper order. 



Algorithms for a binary tree

 Sorting
 upward movement

 Initially
 each leaf has a single data item 

 all other nodes are empty. 

 Each inner node has storage space for two values
 migrating upward from its left and right subtrees.



Algorithms for a binary tree

 Sorting
 upward movement up to the point when 

 the smallest element is in the root node
 ready to begin its downward movement



Algorithms for a binary tree

 Sorting
 downward movement

 coordinated if each node knows the number of leaf nodes 
in its left subtree. 

 For an element received from above 
 Keep the rank order in a local counter
 If the rank order <= the number of leaf nodes to the left, 

 then the data item is sent to the left. 
 Otherwise, 

 it is sent to the right. 

 implicitly assumes that data are to be sorted from left to 
right in the leaves.



Algorithms for a binary tree

 Sorting
 takes linear time in the number of elements to be sorted

 reasoning based on a bisection-based lower bound:
 partition a tree architecture into two equal or almost equal 

halves
 in the worst case

 all values in the left (right) half of the tree must move to the 
right (left) half 

 Hence, all data elements must pass through the single link
 it takes linear time for all the data elements to pass through this 

bottleneck



Algorithms for a 2d mesh

 Semigroup Computation
 do the semigroup computation 

 in each row 

 then in each column. 

 E.g., finding the maximum of a set of p values, 
stored one per processor
 the row maximums 

 are computed 

 made available to every processor in the row. 

 Then column maximums are identified. 



Algorithms for a 2d mesh

 Parallel Prefix Computation. 
 can be done in three phases

 assuming that the processors (and their stored values) are indexed in row-
major order

1. do a parallel prefix computation on each row
2. do a diminished parallel prefix computation in the rightmost column
3. broadcast the results in the rightmost column to all the elements in the 

respective rows 
 combine with the initially computed row prefix value. 

 E.g., in doing prefix sums
 first-row prefix sums are computed from left to right

 At this point, the processors in the rightmost column hold the row sums
 A diminished prefix computation in this last column yields the sum of all 

the preceding rows in each processor
 Combining the sum of all the preceding rows with the row prefix sums 

yields the overall prefix sums.



Algorithms for a 2d mesh

 Packet Routing
 To route a data packet from the processor in Row r, Column c, to the 

processor in Row r', Column c’, 
 we first route it within Row r to Column c’. 
 Then, we route it in Column c' from Row r to Row r’. 
 This algorithm is known as row-first routing. 

 Clearly, we could do 
 column-first routing
 or use a combination of horizontal and vertical steps to get to the 

destination node along a shortest path
 When multiple packets must be routed between different source and 

destination nodes
 the above algorithm can be applied to each packet independently of others
 However, multiple packets might then compete for the same link 
 The processors must have sufficient buffer space to store the waiting 

packets



Algorithms for a 2d mesh

 Broadcasting
 is done in two phases: 

1. broadcast the packet to every processor in the 
source node’s row 

2. broadcast in all columns. 

 This takes at most  2 – 2  steps. 



Algorithms for a 2d mesh

 Sorting
 the simple version of a sorting algorithm known as shearsort

 consists of log2r + 1 phases in a 2D mesh with r rows.
 In each phase, except for the last one

 all rows are independently sorted in a snakelike order: 
 even-numbered rows 0, 2, … from left to right
 odd-numbered rows 1, 3, . . . from right to left

 Then, all columns are independently sorted from top to bottom. 
 E.g., in a 3 × 3 mesh, two such phases are needed
 In the final phase, rows are independently sorted from left to right



Algorithms for a 2d mesh

 Sorting
 the simple version of a sorting algorithm known as 

shearsort
 we already know that row-sort and column-sort on a 

p-processor square mesh take      compare-exchange 
steps

 the shearsort algorithm needs                        exchange 
steps for sorting in row-major order.



Algorithms with shared 
variables
 Semigroup Computation

 Each processor 
 obtains the data items from all other processors 
 performs the semigroup computation independently

 all processors will end up with the same result
 This approach is quite wasteful of the complex 

architecture 
 because its linear time complexity is

 comparable to that of the semigroup computation 
algorithm for the much simpler linear-array architecture 

 worse than the algorithm for the 2D mesh.



Algorithms with shared 
variables
 Parallel Prefix Computation

 Like the semigroup computation
 except that each processor only obtains data items 

from processors with smaller indices

 Packet Routing
 Trivial in view of the direct communication path 

between any pair of processors.

 Broadcasting
 Trivial, as each processor can send a data item to 

all processors directly



Algorithms with shared 
variables
 Sorting

 The algorithm has two phases
 ranking 

 determining the relative order of each key in the final sorted 
list

 Processor i is responsible for ranking its own key xi. 
 done by 

 comparing xi to all other keys 
 counting the number of keys that are smaller than xi

 data permutation
 If each processor holds one key

 the jth-ranked key can be sent to Processor j
 requiring a single parallel communication step



Algorithms with shared 
variables
 Sorting

 Despite the greater complexity over the linear-array 
or binary-tree
 the required linear time is wasteful

 It is comparable to the algorithms for these simpler 
architectures. 

 We will see (in Chapter 6) that 
 logarithmic-time sorting algorithms can be developed 

for the shared variable architecture
 leading to linear speed-up over sequential algorithms 

 that need n log n steps to sort n items.


