PARALLEL PROCESSING SYSTEMS

Chapter 2: A Taste of Parallel Algorithms

Some simple computations

» five fundamental building-block computations
o Semigroup (reduction, fan-in) computation
o Parallel prefix computation
= Packet routing

= Broadcasting, and its more general version,
multicasting

o Sorting records 1n ascending/descending order of
their keys

Some simple computations

» Semigroup (reduction, fan-in) computation

= Let @ be an associative binary operator

"1, (xQ®y)R®z=xR (y®z)forallx,y,z € S.
o A semigroup is simply a pair (S, &)

* where S 1s a set of elements on which) is defined
o Semigroup computation 1s defined as:

= Given a list of n values x0, x1, . .., xn—1, compute

xX0QR x1 Q... xn—1.

* Common examples for the operator @ include +, X, A, V,
@D, N, U, max, min.

= The operator @ may or may not be commutative
" 1.e., it may or may not satisfyx Q y=y & x

Some simple computations

» Semigroup (reduction, fan-1n) computation

Xo
identity
element § @

Figure 2.1. Semigroup computation on a uniprocessor.

Some simple computations

= Parallel prefix computation

= With the same assumptions as in the semigroup

= a parallel prefix computation 1s defined as

= simultaneously evaluating all the prefixes of the

expression x0 @ x1 ... &Q xn—1;
* 1.e,X0,x0Rx1,x0Qx1 ®x2,...,x0x1 ...
xn—1.

= The comment about commutativity of the binary
operator) applies here as well.

Some simple computations

= Packet Routing

O

A packet of information resides at Processor 1 and must
be sent to Processor j.

The problem 1s to route the packet through the fastest
path

The problem becomes more challenging when
= multiple packets reside at different processors
= each with 1ts own destination.
= the packet routes may interfere with one another
= as they go through common intermediate processors.
It 1s called one-to-one communication or 1-1 routing

= When each processor has at most one packet to send and
one packet to receive

Some simple computations

» Broadcasting
= Disseminate a value a known at a certain processor
I to all p processors as quickly as possible
= sometimes referred to as one-to-all communication.
o Multicasting 1s the more general case

= one-to-many communication

Some simple computations

= Sorting
o (Given a list of n keys x0, x1, ..., xn—1, and a total
order < on key values, rearrange the n keys as

X, X;, ..., X ,suchthat x;, <x; <...<x;
0 | n-1 0 I n-1

Some simple architectures

» four simple parallel architectures:
o Linear array of processors
o Binary tree of processors
o Two-dimensional mesh of processors

o Multiple processors with shared variables

Some simple architectures

» Linear array

o The diameteris D=p—1

= defined as the longest of the shortest distances between
pairs of processors

o The (maximum) node degree 1s d = 2

= defined as the largest number of links or communication
channels associated with a processor

= The ring variant has
* the same node degree of 2
= a smaller diameter of D = lp/2J :

' PP 0 PP 1 Bs [P s

Figure 2.2. A linear array of nine processors and its ring variant.

Some simple architectures

* Binary Tree
= The binary tree 1s balanced
- 1f leaf levels differ by at most 1.
* Diameter is 2Llog2 p | or 2Llog2 p -1
= The binary tree 1s complete

= If all leaf levels are 1dentical and every non-leaf processor has
two children

» diameteris 2 logo(p + 1) — 2
o The (maximum) node degree in a binary tree is d = 3

)y

P B2
of W o %

Figure 2.3. A balanced (but incomplete) binary tree of nine processors

Some simple architectures

2D Mesh

u]

u]

u]

u]

The diameter of a square mesh is 2\[; =9

the mesh does not have to be square.

The diameter of a p-processor r x (p/r) mesh is D =r + p/r — 2.

multiple 2D meshes may exist for the same number p of processors,
e.g.,2x8or4 x4,

Square meshes are usually preferred
because they minimize the diameter.

The torus variant has end-around or wraparound links for rows and columns.

The node degree for both meshes and torus is d = 4.

But a p-processor r x (p/r) torus has a smaller diameter of D = lr /2J +lp/(2r)J :

1 | [orsm—_y
Py |— P, |—{ P FP3 P, HH Ps |
P P, P, I P P; |4 P, |
] —

Figure 2.4. A 2D mesh of nine processors and its torus variant.

Some simple architectures

» Shared Memory
o can be modeled as a complete graph

o every piece of data 1s directly accessible to
EVery processor

= assuming each processor can simultaneously
send/receive data over all of its p — 1 links

* The diameter D = 1 is an indicator of this
direct access.

o The node degreed=p — 1

* indicates that 1s quite costly to implement

= 1f no restriction is placed on data accesses

Algorithms for a linear
array

= Semigroup Computation
o Finding maximum

= Each of the p processors holds a value initially

= our goal is for every processor to know the largest of these values.

= In each step
a processor sends its max value to its two neighbors.

* on receiving values from its left and right neighbors
Each processor sets its max value to the largest of the three values, i.e., max(left, own, right)

* The dotted lines show how the maximum value propagates from P6 to all other processors
Had there been two maximum values, say in P2 and P6 , the propagation would have been faster.

Needed operations in the worst case
p — 1 communication steps
each involving sending a processor’s value to both neighbors
This is the best one can hope for
given that the diameter of a p-processor lineararrayisD=p—1
the same number of three-way comparison steps

Py }—{ P, }—{ P, }—{P; {7, {P; P, | {F; P,

5 2 8 6 - T e | ¢ a— m

5 8 8 8 Tttt g g 9 ", 4

8 8 8 8. 9 9 9 9

5 8 Bt 9 9 9 9 9

8 Bt 9 9 9 9 9 9

| RETLA 9 9 9 9 9 9 9 :
s 9 9 9 3353 W icnieg

Algorithms for a linear
array

= Semigroup Computation

= For a general semigroup computation
= 1nitially, all processors are dormant or inactive

= the processor at the left end becomes active and sends its data
value to the right

= On receiving a value from its left neighbor, a processor
= becomes active

= applies the semigroup operation & to the value received from the
left and 1ts own data value

= sends the result to the right
= becomes 1nactive again
= This wave of activity propagates to the rightmost processor

= The computation result is then propagated leftward to all
processors

= In all, 2p — 2 communication steps are needed

Algorithms for a linear

array
= Parallel Prefix Computation

= we want the ith prefix result at the 1th processor, 0
<1<p-1
= we already have an algorithm

= The general semigroup algorithm without the last
broadcast

= takes p — 1 communication/combining steps.

Py }—{ P, P, P, { P, {Ps —{ Ps }—{ P, |—{ P
§' ., 2. 8 6 3 7 9 1 . %m
5 77, B 6 3 7 9 1 4

5 7 15 "*0es, ¢ 3 7 9 1 §

5 T 15 21 M, 3 7 9 1 1

5 7015 21 2477 9 1 4

5 7015 21 24 317t 9 1 4

5 7 15 21 24 31 40, L 4 '

5 7 15 21 24 31 40 414 Final

5 7015 21 24 31 40 41 45" M o

Algorithms for a linear
array

= Extension of the semigroup and parallel prefix algorithms
= each processor initially holds several data
= The algorithm consists of each processor doing
a prefix computation on its own data set of size n/p
takes n/p — 1 combining steps
= a diminished parallel prefix computation
each processor holds onto the value received from the left
Takes p — 1 communication/combining steps
finally combining the result of two prefix computations
Takes n /p combining steps
= Number of operations required in all
= 2n/p + p— 2 combining steps
p — 1 communication steps
Po P P2

3 7 9 1 4 e Initial
5 3 6 7 5 values

P,
6
2
3 7 9 i | LR Local
8 10 15 8] prefixes

-) Lincar-array
@ 33 41 51 66 74 diminished
prefix sums

36 48 60 67 78 Final
a1 51 66 74 83 results

Algorithms for a linear

array
» Packet Routing

= To send a packet of information from Processor 1 to
Processor]
= Attach a routing tag with the value j —1to 1t
= The sign determines the direction of move
* (+ =right, — = left)
= The magnitude indicates the action to be performed

* (0 =remove the packet, nonzero = forward the packet).

= With each forwarding

= the magnitude of the routing tag 1s decremented by 1

Algorithms for a linear
array

» Broadcasting

o [f Processor 1 wants to broadcast a value a to all

Proccssors

= 1t sends
= an rbcast(a) (read r-broadcast) message to its right neighbor
= an Ibcast(a) message to its left neighbor

= recelving an rbcast(a) message, any processor
= copies the value a and forwards the message to its right

neighbor (if any).
= receiving an lbcast(a) message, any processor

= copies the value a and forwards the message to its left
neighbor (if any)

= The worst-case number of communication steps is p — 1

Algorithms for a linear

array
= Sorting
o two versions of sorting on a linear array

* with [/O
* without [/O

Algorithms for a linear

array

= Sorting
= with [/O

= p keys are input, one at a time, from the left end

= Each processor, on receiving a key value from the left
= compares the received value with the value stored in its local register
- 1nitially, all local registers hold the value +oo
The smaller of the two values is kept in the local register
= larger value is passed on to the right

= Once all p inputs have been received

= we must allow p — 1 additional communication cycles for the key values
that are 1n transit to settle into their respective positions

= If the sorted list 1s to be output from the left

= the output phase can start immediately after the last key value has been
received

= an array half the size of the input list would be adequate
= we effectively have zero-time sorting
- the total sorting time is equal to the 1/O time

I Algorithms for a linear
array

= Sorting Y g g B g g O Wy
. 52963791 [H I H -]
DWlthI/O 5296379[1|-‘—{HH}_L]_L}_.D_D__D
““HHH_H_}—H

s 2o [PP HH O

s : P FAFC -
slll—ls}—-L*HHHI—[_}—{—l—{_l

PP PO

Tz 1 n s {7 H

lleHs}i-l*HvP-ISHHHJ

1 2 3 4 6 8

-

~

2 {2 3] s o P]
1 2 3 SHSHT]'—E—D
2 3] Ol o i o O 22 I

ﬂ—f_]—l—l—i HSHGHVI—[THTI

Algorithms for a linear

array

= Sorting
= without I/O
= the key values are already 1n place, one per processor

= an algorithm known as odd—even transposition can be used
= A total of p steps are required.
* In an odd-numbered step

 odd-numbered processors compare values with their even-numbered right
neighbors

« The two processors exchange their values if they are out of order.
= 1n an even-numbered step

- even-numbered processors compare—exchange values with their right
neighbors

» In the worst case

- the largest key value
» resides in Processor 0
« must move all the way to the other end of the array

 This needs p — 1 right moves

Algorithms for a linear

array
= Sorting
o without I/O

Po —{P1 F—{Po }~{Fs }—{Pe }—{Fs |—{Fe} P P
6 3
3

In odd steps, S 2P 4P i ¥
1,3,5,ec, 5 2 8 -l P 7 S\ Pp!? 4
odd-numbered 2 ‘P 3 P 6 P 1 P 4
processors 2 3 SqPp-6 tgP 1 4P 4 9
exchangs \"=—2 3gPpS tqgPpl SgPi TgPd
values with 2 : | SPpl ‘P4 tgdP’ 9
their right 2 34Ppl . S4P! b P-7 sgP9
neighbors 2 1 4P S4P-© TPt 9

1 243 t@PS5S @gP7 SgP?

Algorithms for a linear
array

» Sorting with the number n of keys 1s greater than
the number p of processors

o the odd—even algorithm with n/p keys per processor

= each processor sorts its list using any efficient sequential
sorting algorithm.

= Let us say this takes (n/p)log2(n/p) compare—exchange steps.
= the odd—even transposition sort is performed as before
= except that each compare—exchange step is replaced by a
merge—split step
» the two processors merge their sublists of size n/p into a single
sorted list of size 2n/p
» then split the list down the middle
* one processor keeping the smaller half
- the other keeps the larger half

Algorithms for a linear
array

= Sorting with the number n of keys 1s greater than the
number p of processors

= the odd—even algorithm with n/p keys per processor
- E.g.,1f PO is holding (1, 3, 7, 8) and P1 has (2, 4, 5, 9)
= a merge—split step will turn the lists into (1, 2, 3, 4) and (5, 7, 8,
9), respectively
= Because the sublists are sorted
= the merge—split step requires n/p compare—exchange steps.
* the total time of the algorithm 1s (n/p)log, (n/p) +n
= the first term (local sorting) will be dominant if p<log, n
* the second term (array merging) is dominant for p > log,n .
- Forp>log,n
- the time complexity of the algorithm 1s linear in n
- the algorithm is more efficient than the one-key-per-processor version

Algorithms for a linear
array

= One final observation about sorting
@ 1t is important
= occasionally it also helps us in data routing
@ permutation routing problem

data values being held by the p processors are to be routed to other
processors

such that the destination of each value is different from all others.
the p distinct destinations must be 0, 1,2, ...,p—1

The correct destination for each record can be find by

= forming records with the destination address as the key

= sorting these records

p compare—exchange steps.

Effectively

= p packets are routed in the same amount of time that is required for
routing a single packet in the worst case

I Algorithms for a binary tree

= we assume that the data elements are initially
held by the leaf processors only

* The nonleaf (1nner) processors participate in
the computation
= but do not hold data elements of their own
» This simplifying assumption
= can be easily relaxed
o]eads to simpler algorithms

= Does not pose great inefficiency
= Because roughly half of the tree nodes are leaf nodes

Algorithms for a binary tree

= Semigroup Computation

= binary-tree architecture 1s 1deally suited for this

= semigroup computation is sometimes referred to as tree
computation

o Each inner node

= receives two values from its children

= 1f each of them has already computed a value or 1s a leaf node
= applies the operator to them
- passles the refult upward to its parent

o After Llog2 pl steps, the root processor will have the
computation result

= All processors can then be notified of the result through a
broadcasting operatjon from the root.

= Total time: 2[10g2p steps

Algorithms for a binary tree

= Parallel Prefix Computation
o Again

= this 1s quite simple

- canJae done optimally 1n ZLlog
2 p 1steps

Algorithms for a binary tree

= Parallel Prefix Computation

o ypward propagation phase

[| xo8x @x28x3@x,

Upward
Propagation

= 1dentical to the upward
movement of data in semigroup
computation

= At the end, each node will have
the semigroup computation N o N A Dl
result for its subtree

0B 1 @8 3 “#f—— Result
X0 X8] Xp@x18X; xp8x @xX28X3@X,

Algorithms for a binary tree

= Parallel Prefix Computation

= downward phase

= Each processor remembers the value it
received from its left child.

= On receiving a value from the parent, a node
passes [51]

the value received from above to its left child
and

combination of this value and the one that came
from the left child to its right child.

= The root initiates the downward phase by
sending
the 1dentity element to the left
the value received from its left child to the
right.
= Atthe end

the leaf processors compute their respective %0 x08x |
results

[| xo8x @x28x3@x,

Upward
Propagation

Downward
Propagation

KQ@% 1 @X2G% 3 R
“#f-—- Result
Xp@x 18%7 xg@x]01201‘30!4

Algorithms for a binary tree

» Some applications of Parallel Prefix
Computation
o (Given a list of Os and 1s

= the rank of each 1 in the list (its relative position
among the 1s) can be determined by a prefix sum

computation
Data: 0 0 | 0] 0 | | |
Prefix sums: 0 0 1] 2 2 2 3 5
Ranks of 1s: | 2 3 5

Algorithms for a binary tree

» Some applications of Parallel Prefix
Computation
o priority circuit
= has a list of Os and Is as its inputs
* picks the first (highest-priority) 1 1n the list.
o The function of a priority circuit can be defined as:

Data: 0 0 1 0 1 0 0 1 1 1

Diminished prefix logical ORs: 0 0 0 1 1 1 I 1 1 1
Complement: 1 1 1 0 O O O O 0 0

AND with data: 0 0 1 0 o O O O 0 O

S O - O

Algorithms for a binary tree

= Packet Routing

o The algorithm depends on the processor numbering
scheme

o “preorder”’ indexing

= Nodes 1n a subtree are numbered by
= first numbering the root node
" then its left subtree
= and finally the right subtree
= the index of each node 1s less than of all its descendants.

= We assume that each node
= Is aware of its own index (self) in the tree

= knows the largest node index 1n its left (maxl) and right
(maxr) subtrees.

Algorithms for a binary tree

= Packet Routing
o “preorder’” indexing

: : if dest = sel
] Routmg algorlthm for a then removg the packet {done}
packet else if dest < self or dest > maxr
= on its way from node 1 to node then route upward
dest else if dest < maxl
« currently residing in node self then route leftward

' ’ else route rightward
* This algorithm does not make ensdi;ou ightwar

any assumption about the tree .
except that it 1s a binary tree. .4

= the tree need not be complete
or even balanced

Algorithms for a binary tree

» Broadcasting

= Processor 1 sends the desired data upwards to the
root processor

o The root then broadcasts the data downwards to all
Processors

Algorithms for a binary tree

= Sorting
o algorithm 1s similar to bubblesort

= first, smaller elements 1n the leaves “bubble up” to
the root processor

* root “sees’ all the data elements 1n nondescending
order.

* root then sends the elements to leaf nodes in the
proper order.

Algorithms for a binary tree

= Sorting
= ypward movement
= Initially
= each leaf has a single data item

= all other nodes are empty.

= Each inner node has storage space for two values

= migrating upward from its left and right subtrees.

if you have 2 items

then do nothing

else if you have 1 item that came from the left (right)
then get the smaller item from the right (left) child
else get the smaller item from each child
endif

endif

Algorithms for a binary tree

= Sorting
= upward movement up to the point when

» the smallest element 1s in the root node
= ready to begin its downward movement

Figure 2.12. The first few steps of the sorting algorithm on a binary tree.

Algorithms for a binary tree

= Sorting
o downward movement

» coordinated if each node knows the number of leaf nodes
in 1ts left subtree.

* For an element received from above
= Keep the rank order in a local counter
= If the rank order <= the number of leaf nodes to the left,
* then the data item 1s sent to the left.
* Otherwise,
* 1t 1s sent to the right.

= 1mplicitly assumes that data are to be sorted from left to
right in the leaves.

Algorithms for a binary tree

= Sorting
o takes linear time in the number of elements to be sorted

= reasoning based on a bisection-based lower bound:

partition a tree architecture into two equal or almost equal
halves
* 1n the worst case

- all values 1n the left (right) half of the tree must move to the
right (left) half

* Hence, all data elements must pass through the single link

- 1t takes linear time for all the data elements to pass through this
bottleneck

Bisection Width = 1

Figure 2.13. The bisection width of a binary tree architecture.

Algorithms for a 2d mesh

= Semigroup Computation

o do the semigroup computation
* 1n each row
* then 1n each column.

o E.g., finding the maximum of a set of p values,
stored one per processor

* the row maximums
= are computed

= made available to every processor in the row.

= Then column maximums are i1dentified.

Algorithms for a 2d mesh

» Parallel Prefix Computation.

= can be done in three phases

= assuming that the processors (and their stored values) are indexed in row-
major order

1. do aparallel prefix computation on each row
2. do a diminished parallel prefix computation in the rightmost column

3. broadcast the results in the rightmost column to all the elements in the
respective rows
combine with the initially computed row prefix value.
= E.g., in doing prefix sums
= first-row prefix sums are computed from left to right
At this point, the processors in the rightmost column hold the row sums

= A diminished prefix computation in this last column yields the sum of all
the preceding rows in each processor

= Combining the sum of all the preceding rows with the row prefix sums
yields the overall prefix sums.

Algorithms for a 2d mesh

» Packet Routing

= To route a data packet from the processor in Row r, Column c, to the
processor in Row r', Column ¢’,

= we first route it within Row r to Column ¢’.
* Then, we route it in Column c¢' from Row r to Row r’.
= This algorithm is known as row-first routing.
o Clearly, we could do
= column-first routing

= or use a combination of horizontal and vertical steps to get to the
destination node along a shortest path

o When multiple packets must be routed between different source and
destination nodes

= the above algorithm can be applied to each packet independently of others
= However, multiple packets might then compete for the same link

= The processors must have sufficient buffer space to store the waiting
packets

Algorithms for a 2d mesh

» Broadcasting

o 1S done in two phases:

1. broadcast the packet to every processor in the
source node’s row

2. broadcast in all columns.

o This takes at most 2Vp -2 steps.

Algorithms for a 2d mesh

= Sorting
= the simple version ff a sorting algorithm known as shearsort
= consists of [logzr + 1 phases in a 2D mesh with r rows.

= In each phase, except for the last one

= all rows are independently sorted in a snakelike order:
+ even-numbered rows 0, 2, ... from left to right
* odd-numbered rows 1, 3, . . . from right to left
= Then, all columns are independently sorted from top to bottom.

= E.g.,in a 3 x 3 mesh, two such phases are needed
= In the final phase, rows are independently sorted from left to right

|1 4-[3_ 1 3-4l1

THéeRS 6709

Initial values Snake-like Top-to-bo&-o; Snake-like Top-to-bottom Left-to-right
. Tow sort column sort = row sort columnlortj \ rowsort

\"2 -V Vv
Phase 1 Phase 2 Phase 3

I Algorithms for a 2d mesh

= Sorting

o the simple version of a sorting algorithm known as
shearsort

= we already know that row-sort and column-sort on a

p-processor square mesh take Vp compare-exchange
steps

- the shearsort algorithm needs (2[log,p 1+ 1)¥p exchange
steps for sorting in row-major order.

Algorithms with shared

variables

= Semigroup Computation

= Each processor
= obtains the data items from all other processors
* performs the semigroup computation independently
o all processors will end up with the same result
o This approach 1s quite wasteful of the complex
architecture

* because 1ts linear time complexity 1s

= comparable to that of the semigroup computation
algorithm for the much simpler linear-array architecture

= worse than the algorithm for the 2D mesh.

Algorithms with shared

variables

= Parallel Prefix Computation
o Like the semigroup computation

o except that each processor only obtains data items
from processors with smaller indices

» Packet Routing

= Trivial in view of the direct communication path
between any pair of processors.

» Broadcasting

= Trivial, as each processor can send a data item to
all processors directly

Algorithms with shared

variables
= Sorting
= The algorithm has two phases
* ranking
= determining the relative order of each key in the final sorted
list
= Processor 1 1s responsible for ranking its own key xi.
* done by
» comparing xi to all other keys
» counting the number of keys that are smaller than xi
= data permutation
= If each processor holds one key
- the jth-ranked key can be sent to Processor j
- requiring a single parallel communication step

Algorithms with shared

varliables
= Sorting
o Despite the greater complexity over the linear-array
or binary-tree

= the required linear time 1s wasteful

= It is comparable to the algorithms for these simpler
architectures.

= We will see (in Chapter 6) that

* logarithmic-time sorting algorithms can be developed
for the shared variable architecture

= leading to linear speed-up over sequential algorithms
- that need n log n steps to sort n items.

