
PARALLEL PROCESSING SYSTEMS

Chapter 2: A Taste of Parallel Algorithms



Some simple computations

 five fundamental building-block computations
 Semigroup (reduction, fan-in) computation 

 Parallel prefix computation 

 Packet routing 

 Broadcasting, and its more general version, 
multicasting

 Sorting records in ascending/descending order of 
their keys



Some simple computations

 Semigroup (reduction, fan-in) computation 
 Let be an associative binary operator

 i.e., (x y ) z = x (y z) for all x, y, z S. 

 A semigroup is simply a pair (S, )
 where S is a set of elements on which is defined

 Semigroup computation is defined as: 
 Given a list of n values x0, x1, . . . , xn–1, compute 

x0 x1 . . . xn–1 . 
 Common examples for the operator include +, ×, , , 

, ∩, , max, min. 
 The operator may or may not be commutative

 i.e., it may or may not satisfy x y = y x 



Some simple computations

 Semigroup (reduction, fan-in) computation 



Some simple computations

 Parallel prefix computation 
 With the same assumptions as in the semigroup

 a parallel prefix computation is defined as 
 simultaneously evaluating all the prefixes of the 

expression x0 x1 . . . xn–1;
 i.e., x0, x0 x1, x0 x1 x2, . . . , x 0 x1 . . . 

xn–1. 

 The comment about commutativity of the binary 
operator applies here as well.



Some simple computations

 Packet Routing
 A packet of information resides at Processor i and must 

be sent to Processor j. 
 The problem is to route the packet through the fastest 

path
 The problem becomes more challenging when 

 multiple packets reside at different processors
 each with its own destination. 
 the packet routes may interfere with one another 

 as they go through common intermediate processors. 

 It is called one-to-one communication or 1–1 routing 
 When each processor has at most one packet to send and 

one packet to receive



Some simple computations

 Broadcasting
 Disseminate a value a known at a certain processor 

I to all p processors as quickly as possible

 sometimes referred to as one-to-all communication. 

 Multicasting is the more general case 
 one-to-many communication



Some simple computations

 Sorting
 Given a list of n keys x0, x1, . . . , xn–1, and a total 

order ≤ on key values, rearrange the n keys as 



Some simple architectures

 four simple parallel architectures:
 Linear array of processors 

 Binary tree of processors 

 Two-dimensional mesh of processors

 Multiple processors with shared variables



Some simple architectures

 Linear array
 The diameter is D = p – 1 

 defined as the longest of the shortest distances between 
pairs of processors

 The (maximum) node degree is d = 2
 defined as the largest number of links or communication 

channels associated with a processor
 The ring variant has 

 the same node degree of 2 
 a smaller diameter of D = p/2 .



Some simple architectures

 Binary Tree 
 The binary tree is balanced 

 if leaf levels differ by at most 1. 
 Diameter is

 The binary tree is complete 
 If all leaf levels are identical and every non-leaf processor has 

two children
 diameter is

 The (maximum) node degree in a binary tree is d = 3



Some simple architectures

 2D Mesh
 The diameter of a square mesh is
 the mesh does not have to be square. 
 The diameter of a p-processor r × (p/r) mesh is D = r + p/r – 2. 
 multiple 2D meshes may exist for the same number p of processors, 

 e.g., 2 × 8 or 4 × 4. 
 Square meshes are usually preferred 

 because they minimize the diameter. 
 The torus variant has end-around or wraparound links for rows and columns. 
 The node degree for both meshes and torus is d = 4.
 But a p-processor r × (p/r) torus has a smaller diameter of D = r /2 + p/(2r) .



Some simple architectures

 Shared Memory
 can be modeled as a complete graph

 every piece of data is directly accessible to 
every processor 
 assuming each processor can simultaneously 

send/receive data over all of its p – 1 links

 The diameter D = 1 is an indicator of this 
direct access.

 The node degree d = p – 1
 indicates that is quite costly to implement 

 if no restriction is placed on data accesses



Algorithms for a linear 
array
 Semigroup Computation

 Finding maximum
 Each of the p processors holds a value initially
 our goal is for every processor to know the largest of these values. 
 In each step

 a processor sends its max value to its two neighbors. 
 on receiving values from its left and right neighbors

 Each processor sets its max value to the largest of the three values, i.e., max(left, own, right)
 The dotted lines show how the maximum value propagates from P6 to all other processors

 Had there been two maximum values, say in P2 and P6 , the propagation would have been faster. 
 Needed operations in the worst case

 p – 1 communication steps 
 each involving sending a processor’s value to both neighbors
 This is the best one can hope for

 given that the diameter of a p-processor linear array is D = p – 1
 the same number of three-way comparison steps



Algorithms for a linear 
array
 Semigroup Computation

 For a general semigroup computation
 initially, all processors are dormant or inactive
 the processor at the left end becomes active and sends its data 

value to the right 
 On receiving a value from its left neighbor, a processor 

 becomes active
 applies the semigroup operation to the value received from the 

left and its own data value
 sends the result to the right
 becomes inactive again
 This wave of activity propagates to the rightmost processor 

 The computation result is then propagated leftward to all 
processors

 In all, 2p – 2 communication steps are needed



Algorithms for a linear 
array
 Parallel Prefix Computation

 we want the ith prefix result at the ith processor, 0 
≤ i ≤ p – 1
 we already have an algorithm

 The general semigroup algorithm without the last 
broadcast

 takes p – 1 communication/combining steps. 



Algorithms for a linear 
array
 Extension of the semigroup and parallel prefix algorithms 

 each processor initially holds several data
 The algorithm consists of each processor doing 

 a prefix computation on its own data set of size n/p 
 takes n/p – 1 combining steps

 a diminished parallel prefix computation 
 each processor holds onto the value received from the left
 Takes  p – 1 communication/combining steps

 finally combining the result of two prefix computations 
 Takes n /p combining steps

 Number of operations required in all
 2n/p + p– 2 combining steps 
 p – 1 communication steps



Algorithms for a linear 
array
 Packet Routing

 To send a packet of information from Processor i to 
Processor j
 Attach a routing tag with the value j – i to it

 The sign determines the direction of move 
 (+ = right, – = left) 

 The magnitude indicates the action to be performed 
 (0 = remove the packet, nonzero = forward the packet).

 With each forwarding
 the magnitude of the routing tag is decremented by 1



Algorithms for a linear 
array
 Broadcasting

 If Processor i wants to broadcast a value a to all 
processors
 it sends 

 an rbcast(a) (read r-broadcast) message to its right neighbor 
 an lbcast(a) message to its left neighbor

 receiving an rbcast(a) message, any processor 
 copies the value a and forwards the message to its right 

neighbor (if any). 
 receiving an lbcast(a) message, any processor 

 copies the value a and forwards the message to its left 
neighbor (if any)

 The worst-case number of communication steps is p – 1



Algorithms for a linear 
array
 Sorting

 two versions of sorting on a linear array
 with I/O

 without I/O



Algorithms for a linear 
array
 Sorting

 with I/O
 p keys are input, one at a time, from the left end
 Each processor, on receiving a key value from the left

 compares the received value with the value stored in its local register 
 initially, all local registers hold the value +∞

 The smaller of the two values is kept in the local register 
 larger value is passed on to the right

 Once all p inputs have been received
 we must allow p – 1 additional communication cycles for the key values 

that are in transit to settle into their respective positions 
 If the sorted list is to be output from the left

 the output phase can start immediately after the last key value has been 
received

 an array half the size of the input list would be adequate 
 we effectively have zero-time sorting

 the total sorting time is equal to the I/O time



Algorithms for a linear 
array
 Sorting

 with I/O



Algorithms for a linear 
array
 Sorting

 without I/O
 the key values are already in place, one per processor
 an algorithm known as odd–even transposition can be used 

 A total of p steps are required. 
 In an odd-numbered step

 odd-numbered processors compare values with their even-numbered right 
neighbors

 The two processors exchange their values if they are out of order. 
 in an even-numbered step

 even-numbered processors compare–exchange values with their right 
neighbors 

 In the worst case
 the largest key value 

 resides in Processor 0 
 must move all the way to the other end of the array

 This needs p – 1 right moves



Algorithms for a linear 
array
 Sorting

 without I/O



Algorithms for a linear 
array
 Sorting with  the number n of keys is greater than 

the number p of processors
 the odd–even algorithm with n/p keys per processor 

 each processor sorts its list using any efficient sequential 
sorting algorithm. 
 Let us say this takes ( n/p)log2(n/p ) compare–exchange steps. 

 the odd–even transposition sort is performed as before
 except that each compare–exchange step is replaced by a 

merge–split step 
 the two processors merge their sublists of size n/p into a single 

sorted list of size 2n/p 
 then split the list down the middle
 one processor keeping the smaller half 
 the other keeps the larger half



Algorithms for a linear 
array
 Sorting with  the number n of keys is greater than the 

number p of processors
 the odd–even algorithm with n/p keys per processor 

 E.g., if P0 is holding (1, 3, 7, 8) and P1 has (2, 4, 5, 9)
 a merge–split step will turn the lists into (1, 2, 3, 4) and (5, 7, 8, 

9), respectively
 Because the sublists are sorted

 the merge–split step requires n/p compare–exchange steps. 
 the total time of the algorithm is (n/p)log2 (n/p ) + n 
 the first term (local sorting) will be dominant if p< log2 n
 the second term (array merging) is dominant for p > log2n . 
 For p ≥ log 2 n

 the time complexity of the algorithm is linear in n
 the algorithm is more efficient than the one-key-per-processor version



Algorithms for a linear 
array
 One final observation about sorting

 it is important
 occasionally it also helps us in data routing
 permutation routing problem 

 data values being held by the p processors are to be routed to other 
processors

 such that the destination of each value is different from all others. 
 the p distinct destinations must be 0, 1, 2, . . . , p – 1
 The correct destination for each record can be find by

 forming records with the destination address as the key 
 sorting these records 

 p compare–exchange steps.
 Effectively

 p packets are routed in the same amount of time that is required for 
routing a single packet in the worst case



Algorithms for a binary tree

 we assume that the data elements are initially 
held by the leaf processors only 

 The nonleaf (inner) processors participate in 
the computation
 but do not hold data elements of their own

 This simplifying assumption
 can be easily relaxed
 leads to simpler algorithms
 Does not pose great inefficiency 

 Because roughly half of the tree nodes are leaf nodes



Algorithms for a binary tree

 Semigroup Computation
 binary-tree architecture is ideally suited for this 

 semigroup computation is sometimes referred to as tree 
computation

 Each inner node 
 receives two values from its children 

 if each of them has already computed a value or is a leaf node
 applies the operator to them
 passes the result upward to its parent

 After log2 p steps, the root processor will have the 
computation result

 All processors can then be notified of the result through a 
broadcasting operation from the root. 

 Total time: 2 log2p steps



Algorithms for a binary tree

 Parallel Prefix Computation
 Again

 this is quite simple 

 can be done optimally in 2 log 
2 p steps



Algorithms for a binary tree

 Parallel Prefix Computation
 upward propagation phase 

 identical to the upward 
movement of data in semigroup 
computation

 At the end, each node will have 
the semigroup computation 
result for its subtree



Algorithms for a binary tree

 Parallel Prefix Computation
 downward phase

 Each processor remembers the value it 
received from its left child. 

 On receiving a value from the parent, a node 
passes 
 the value received from above to its left child 

and 
 combination of this value and the one that came 

from the left child to its right child. 
 The root initiates the downward phase by 

sending 
 the identity element to the left 
 the value received from its left child to the 

right. 
 At the end

 the leaf processors compute their respective 
results



Algorithms for a binary tree

 Some applications of Parallel Prefix 
Computation
 Given a list of 0s and 1s

 the rank of each 1 in the list (its relative position 
among the 1s) can be determined by a prefix sum 
computation



Algorithms for a binary tree

 Some applications of Parallel Prefix 
Computation
 priority circuit 

 has a list of 0s and 1s as its inputs 

 picks the first (highest-priority) 1 in the list. 

 The function of a priority circuit can be defined as:



Algorithms for a binary tree

 Packet Routing
 The algorithm depends on the processor numbering 

scheme 
 “preorder” indexing

 Nodes in a subtree are numbered by 
 first numbering the root node
 then its left subtree
 and finally the right subtree

 the index of each node is less than of all its descendants. 
 We assume that each node

 Is aware of its own index (self) in the tree
 knows the largest node index in its left (maxl) and right 

(maxr) subtrees. 



Algorithms for a binary tree

 Packet Routing
 “preorder” indexing

 Routing algorithm for a 
packet 
 on its way from node i to node 

dest
 currently residing in node self

 This algorithm does not make 
any assumption about the tree 
except that it is a binary tree. 

 the tree need not be complete 
or even balanced



Algorithms for a binary tree

 Broadcasting
 Processor i sends the desired data upwards to the 

root processor

 The root then broadcasts the data downwards to all 
processors



Algorithms for a binary tree

 Sorting
 algorithm is similar to bubblesort

 first, smaller elements in the leaves “bubble up” to 
the root processor 

 root “sees” all the data elements in nondescending
order. 

 root then sends the elements to leaf nodes in the 
proper order. 



Algorithms for a binary tree

 Sorting
 upward movement

 Initially
 each leaf has a single data item 

 all other nodes are empty. 

 Each inner node has storage space for two values
 migrating upward from its left and right subtrees.



Algorithms for a binary tree

 Sorting
 upward movement up to the point when 

 the smallest element is in the root node
 ready to begin its downward movement



Algorithms for a binary tree

 Sorting
 downward movement

 coordinated if each node knows the number of leaf nodes 
in its left subtree. 

 For an element received from above 
 Keep the rank order in a local counter
 If the rank order <= the number of leaf nodes to the left, 

 then the data item is sent to the left. 
 Otherwise, 

 it is sent to the right. 

 implicitly assumes that data are to be sorted from left to 
right in the leaves.



Algorithms for a binary tree

 Sorting
 takes linear time in the number of elements to be sorted

 reasoning based on a bisection-based lower bound:
 partition a tree architecture into two equal or almost equal 

halves
 in the worst case

 all values in the left (right) half of the tree must move to the 
right (left) half 

 Hence, all data elements must pass through the single link
 it takes linear time for all the data elements to pass through this 

bottleneck



Algorithms for a 2d mesh

 Semigroup Computation
 do the semigroup computation 

 in each row 

 then in each column. 

 E.g., finding the maximum of a set of p values, 
stored one per processor
 the row maximums 

 are computed 

 made available to every processor in the row. 

 Then column maximums are identified. 



Algorithms for a 2d mesh

 Parallel Prefix Computation. 
 can be done in three phases

 assuming that the processors (and their stored values) are indexed in row-
major order

1. do a parallel prefix computation on each row
2. do a diminished parallel prefix computation in the rightmost column
3. broadcast the results in the rightmost column to all the elements in the 

respective rows 
 combine with the initially computed row prefix value. 

 E.g., in doing prefix sums
 first-row prefix sums are computed from left to right

 At this point, the processors in the rightmost column hold the row sums
 A diminished prefix computation in this last column yields the sum of all 

the preceding rows in each processor
 Combining the sum of all the preceding rows with the row prefix sums 

yields the overall prefix sums.



Algorithms for a 2d mesh

 Packet Routing
 To route a data packet from the processor in Row r, Column c, to the 

processor in Row r', Column c’, 
 we first route it within Row r to Column c’. 
 Then, we route it in Column c' from Row r to Row r’. 
 This algorithm is known as row-first routing. 

 Clearly, we could do 
 column-first routing
 or use a combination of horizontal and vertical steps to get to the 

destination node along a shortest path
 When multiple packets must be routed between different source and 

destination nodes
 the above algorithm can be applied to each packet independently of others
 However, multiple packets might then compete for the same link 
 The processors must have sufficient buffer space to store the waiting 

packets



Algorithms for a 2d mesh

 Broadcasting
 is done in two phases: 

1. broadcast the packet to every processor in the 
source node’s row 

2. broadcast in all columns. 

 This takes at most  2 – 2  steps. 



Algorithms for a 2d mesh

 Sorting
 the simple version of a sorting algorithm known as shearsort

 consists of log2r + 1 phases in a 2D mesh with r rows.
 In each phase, except for the last one

 all rows are independently sorted in a snakelike order: 
 even-numbered rows 0, 2, … from left to right
 odd-numbered rows 1, 3, . . . from right to left

 Then, all columns are independently sorted from top to bottom. 
 E.g., in a 3 × 3 mesh, two such phases are needed
 In the final phase, rows are independently sorted from left to right



Algorithms for a 2d mesh

 Sorting
 the simple version of a sorting algorithm known as 

shearsort
 we already know that row-sort and column-sort on a 

p-processor square mesh take      compare-exchange 
steps

 the shearsort algorithm needs                        exchange 
steps for sorting in row-major order.



Algorithms with shared 
variables
 Semigroup Computation

 Each processor 
 obtains the data items from all other processors 
 performs the semigroup computation independently

 all processors will end up with the same result
 This approach is quite wasteful of the complex 

architecture 
 because its linear time complexity is

 comparable to that of the semigroup computation 
algorithm for the much simpler linear-array architecture 

 worse than the algorithm for the 2D mesh.



Algorithms with shared 
variables
 Parallel Prefix Computation

 Like the semigroup computation
 except that each processor only obtains data items 

from processors with smaller indices

 Packet Routing
 Trivial in view of the direct communication path 

between any pair of processors.

 Broadcasting
 Trivial, as each processor can send a data item to 

all processors directly



Algorithms with shared 
variables
 Sorting

 The algorithm has two phases
 ranking 

 determining the relative order of each key in the final sorted 
list

 Processor i is responsible for ranking its own key xi. 
 done by 

 comparing xi to all other keys 
 counting the number of keys that are smaller than xi

 data permutation
 If each processor holds one key

 the jth-ranked key can be sent to Processor j
 requiring a single parallel communication step



Algorithms with shared 
variables
 Sorting

 Despite the greater complexity over the linear-array 
or binary-tree
 the required linear time is wasteful

 It is comparable to the algorithms for these simpler 
architectures. 

 We will see (in Chapter 6) that 
 logarithmic-time sorting algorithms can be developed 

for the shared variable architecture
 leading to linear speed-up over sequential algorithms 

 that need n log n steps to sort n items.


