PARALLEL PROCESSING SYSTEMS

Chapter 2: A Taste of Parallel Algorithms

- five fundamental building-block computations
 - Semigroup (reduction, fan-in) computation
 - Parallel prefix computation
 - Packet routing

- Broadcasting, and its more general version, multicasting
- Sorting records in ascending/descending order of their keys

- Semigroup (reduction, fan-in) computation
 □ Let ⊗ be an associative binary operator
 - Let \bigotimes be all associative billiary operator
 - i.e., $(x \otimes y) \otimes z = x \otimes (y \otimes z)$ for all x, y, $z \in S$.
 - A semigroup is simply a pair (S, \otimes)
 - where S is a set of elements on which \otimes is defined
 - Semigroup computation is defined as:
 - Given a list of n values x0, x1, ..., xn–1, compute $x0 \otimes x1 \otimes ... \otimes xn-1$.
 - Common examples for the operator ⊗ include +, ×, ∧, ∨,
 ⊕, ∩, ∪, max, min.
 - The operator \otimes may or may not be commutative
 - i.e., it may or may not satisfy $x \otimes y = y \otimes x$

Semigroup (reduction, fan-in) computation

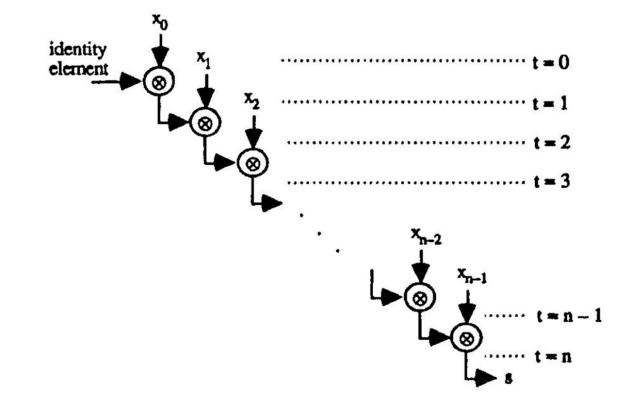


Figure 2.1. Semigroup computation on a uniprocessor.

Parallel prefix computation

- With the same assumptions as in the semigroup
 - a parallel prefix computation is defined as
 - simultaneously evaluating all the prefixes of the expression $x0 \otimes x1 \dots \otimes xn-1$;
 - i.e., $x0, x0 \otimes x1, x0 \otimes x1 \otimes x2, \dots, x0 \otimes x1 \otimes \dots \otimes xn-1$.
 - The comment about commutativity of the binary operator \otimes applies here as well.

Packet Routing

- A packet of information resides at Processor i and must be sent to Processor j.
- The problem is to route the packet through the fastest path
- The problem becomes more challenging when
 - multiple packets reside at different processors
 - each with its own destination.
 - the packet routes may interfere with one another
 - as they go through common intermediate processors.
- It is called one-to-one communication or 1–1 routing
 - When each processor has at most one packet to send and one packet to receive

Broadcasting

- Disseminate a value *a* known at a certain processor
 I to all p processors as quickly as possible
- sometimes referred to as one-to-all communication.
- Multicasting is the more general case
 - one-to-many communication

- Sorting
 - Given a list of n keys x0, x1, ..., xn–1, and a total order \leq on key values, rearrange the n keys as

 $x_{i_0}, x_{i_1}, \ldots, x_{i_{n-1}}, \text{ such that } x_{i_0} \le x_{i_1} \le \ldots \le x_{i_{n-1}}$

- four simple parallel architectures:
 - Linear array of processors
 - Binary tree of processors
 - Two-dimensional mesh of processors
 - Multiple processors with shared variables

Linear array

- The diameter is D = p 1
 - defined as the longest of the shortest distances between pairs of processors
- The (maximum) node degree is d = 2
 - defined as the largest number of links or communication channels associated with a processor
- The ring variant has
 - the same node degree of 2
 - a smaller diameter of $D = \lfloor p/2 \rfloor$.

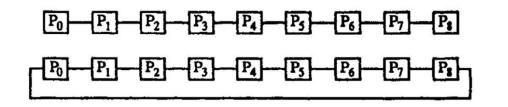


Figure 2.2. A linear array of nine processors and its ring variant.

Binary Tree

- The binary tree is balanced
 - if leaf levels differ by at most 1.
 - Diameter is $2\lfloor \log_2 p \rfloor$ or $2\lfloor \log_2 p \rfloor 1$
- The binary tree is complete
 - If all leaf levels are identical and every non-leaf processor has two children
 - diameter is $2 \log_2(p+1) 2$
- The (maximum) node degree in a binary tree is d = 3

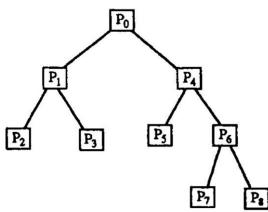


Figure 2.3. A balanced (but incomplete) binary tree of nine processors

- 2D Mesh
 - The diameter of a square mesh is

$$2\sqrt{p}-2$$

- the mesh does not have to be square.
- The diameter of a p-processor $r \times (p/r)$ mesh is D = r + p/r 2.
- multiple 2D meshes may exist for the same number p of processors,
 - e.g., 2×8 or 4×4 .
- Square meshes are usually preferred
 - because they minimize the diameter.
- The torus variant has end-around or wraparound links for rows and columns.
- The node degree for both meshes and torus is d = 4.
- But a p-processor $r \times (p/r)$ torus has a smaller diameter of $D = \lfloor r/2 \rfloor + \lfloor p/(2r) \rfloor$.

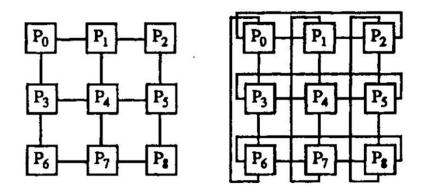
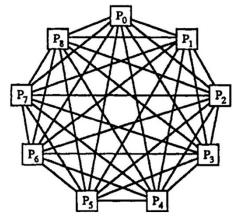


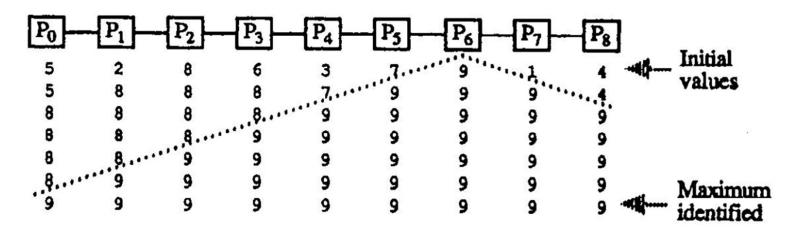
Figure 2.4. A 2D mesh of nine processors and its torus variant.

Shared Memory

- can be modeled as a complete graph
- every piece of data is directly accessible to every processor
 - assuming each processor can simultaneously send/receive data over all of its p – 1 links
 - The diameter D = 1 is an indicator of this direct access.
- The node degree d = p 1
 - indicates that is quite costly to implement
 - if no restriction is placed on data accesses

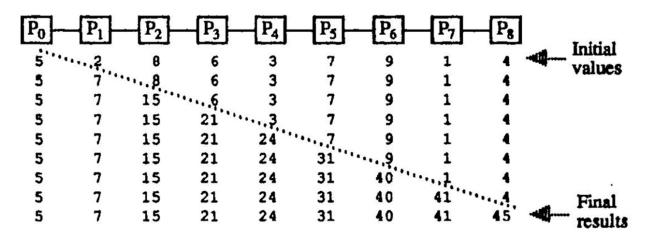


- Semigroup Computation
 - Finding maximum
 - Each of the p processors holds a value initially
 - our goal is for every processor to know the largest of these values.
 - In each step
 - a processor sends its max value to its two neighbors.
 - on receiving values from its left and right neighbors
 - Each processor sets its max value to the largest of the three values, i.e., max(left, own, right)
 - The dotted lines show how the maximum value propagates from P6 to all other processors
 - Had there been two maximum values, say in P2 and P6, the propagation would have been faster.
 - Needed operations in the worst case
 - p-1 communication steps
 - each involving sending a processor's value to both neighbors
 - This is the best one can hope for
 - given that the diameter of a p-processor linear array is D = p 1
 - the same number of three-way comparison steps

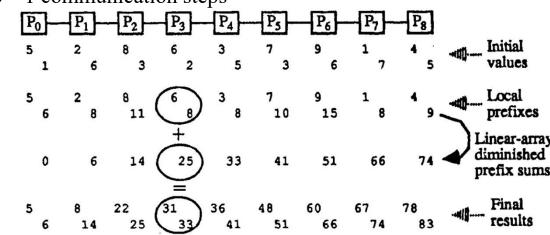


- Semigroup Computation
 - For a general semigroup computation
 - initially, all processors are dormant or inactive
 - the processor at the left end becomes active and sends its data value to the right
 - On receiving a value from its left neighbor, a processor
 - becomes active
 - applies the semigroup operation ⊗ to the value received from the left and its own data value
 - sends the result to the right
 - becomes inactive again
 - This wave of activity propagates to the rightmost processor
 - The computation result is then propagated leftward to all processors
 - In all, 2p 2 communication steps are needed

- Parallel Prefix Computation
 - $\hfill\square$ we want the ith prefix result at the ith processor, $0 \leq i \leq p-1$
 - we already have an algorithm
 - The general semigroup algorithm without the last broadcast
 - takes p 1 communication/combining steps.



- Extension of the semigroup and parallel prefix algorithms
 - each processor initially holds several data
 - The algorithm consists of each processor doing
 - a prefix computation on its own data set of size n/p
 - takes n/p 1 combining steps
 - a diminished parallel prefix computation
 - each processor holds onto the value received from the left
 - Takes p 1 communication/combining steps
 - finally combining the result of two prefix computations
 - Takes n /p combining steps
 - Number of operations required in all
 - 2n/p + p-2 combining steps
 - p 1 communication steps



- Packet Routing
 - To send a packet of information from Processor i to Processor j
 - Attach a routing tag with the value j i to it
 - The sign determines the direction of move

• (+ = right, - = left)

- The magnitude indicates the action to be performed
 - (0 = remove the packet, nonzero = forward the packet).
- With each forwarding
 - the magnitude of the routing tag is decremented by 1

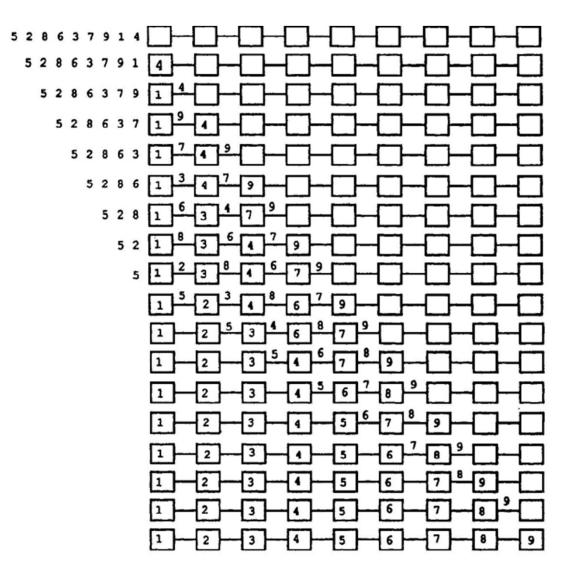
- Broadcasting
 - If Processor i wants to broadcast a value a to all processors
 - it sends
 - an rbcast(a) (read r-broadcast) message to its right neighbor
 - an lbcast(a) message to its left neighbor
 - receiving an rbcast(a) message, any processor
 - copies the value a and forwards the message to its right neighbor (if any).
 - receiving an lbcast(a) message, any processor
 - copies the value a and forwards the message to its left neighbor (if any)
 - The worst-case number of communication steps is p 1

Sorting

- two versions of sorting on a linear array
 - with I/O
 - without I/O

- Sorting
 - with I/O
 - p keys are input, one at a time, from the left end
 - Each processor, on receiving a key value from the left
 - compares the received value with the value stored in its local register
 - initially, all local registers hold the value $+\infty$
 - The smaller of the two values is kept in the local register
 - larger value is passed on to the right
 - Once all p inputs have been received
 - we must allow p 1 additional communication cycles for the key values that are in transit to settle into their respective positions
 - If the sorted list is to be output from the left
 - the output phase can start immediately after the last key value has been received
 - an array half the size of the input list would be adequate
 - we effectively have zero-time sorting
 - the total sorting time is equal to the I/O time

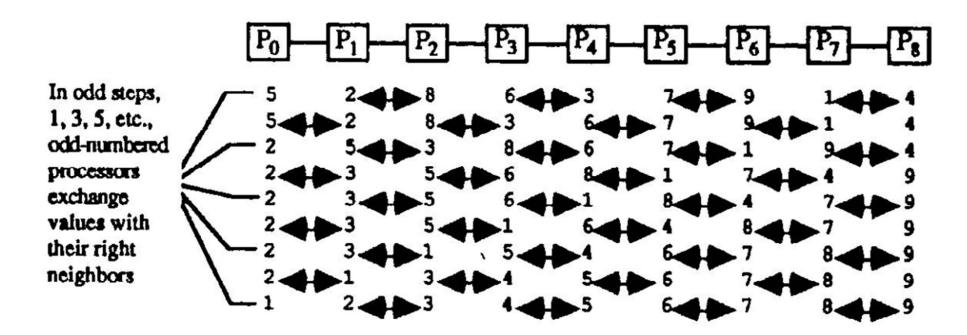
Sortingwith I/O



- Sorting
 - without I/O
 - the key values are already in place, one per processor
 - an algorithm known as odd–even transposition can be used
 - A total of p steps are required.
 - In an odd-numbered step
 - odd-numbered processors compare values with their even-numbered right neighbors
 - The two processors exchange their values if they are out of order.
 - in an even-numbered step
 - even-numbered processors compare–exchange values with their right neighbors
 - In the worst case
 - the largest key value
 - resides in Processor 0
 - must move all the way to the other end of the array
 - This needs p 1 right moves

Sorting

• without I/O



- Sorting with the number n of keys is greater than the number p of processors
 - the odd–even algorithm with n/p keys per processor
 - each processor sorts its list using any efficient sequential sorting algorithm.
 - Let us say this takes (n/p)log2(n/p) compare–exchange steps.
 - the odd–even transposition sort is performed as before
 - except that each compare–exchange step is replaced by a merge–split step
 - the two processors merge their sublists of size n/p into a single sorted list of size 2n/p
 - then split the list down the middle
 - one processor keeping the smaller half
 - the other keeps the larger half

- Sorting with the number n of keys is greater than the number p of processors
 - the odd–even algorithm with n/p keys per processor
 - E.g., if P0 is holding (1, 3, 7, 8) and P1 has (2, 4, 5, 9)
 - a merge–split step will turn the lists into (1, 2, 3, 4) and (5, 7, 8, 9), respectively
 - Because the sublists are sorted
 - the merge–split step requires n/p compare–exchange steps.
 - the total time of the algorithm is $(n/p)\log_2(n/p) + n$
 - the first term (local sorting) will be dominant if $p < \log_2 n$
 - the second term (array merging) is dominant for $p > \log_2 n$.
 - For $p \ge \log_2 n$
 - the time complexity of the algorithm is linear in n
 - the algorithm is more efficient than the one-key-per-processor version

- One final observation about sorting
 - it is important
 - occasionally it also helps us in data routing
 - permutation routing problem
 - data values being held by the p processors are to be routed to other processors
 - such that the destination of each value is different from all others.
 - the p distinct destinations must be $0, 1, 2, \ldots, p-1$
 - The correct destination for each record can be find by
 - forming records with the destination address as the key
 - sorting these records
 - p compare–exchange steps.
 - Effectively
 - p packets are routed in the same amount of time that is required for routing a single packet in the worst case

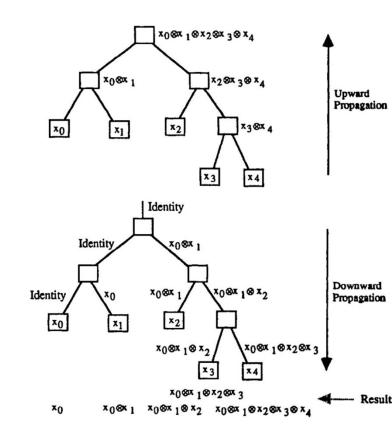
- we assume that the data elements are initially held by the leaf processors only
- The nonleaf (inner) processors participate in the computation
 - but do not hold data elements of their own
- This simplifying assumption
 - can be easily relaxed
 - leads to simpler algorithms
 - Does not pose great inefficiency
 - Because roughly half of the tree nodes are leaf nodes

- Semigroup Computation
 - binary-tree architecture is ideally suited for this
 - semigroup computation is sometimes referred to as tree computation
 - Each inner node
 - receives two values from its children
 - if each of them has already computed a value or is a leaf node
 - applies the operator to them
 - passes the result upward to its parent
 - After llog2 pl steps, the root processor will have the computation result
 - All processors can then be notified of the result through a broadcasting operation from the root.
 - Total time: 2llog2pl steps

Parallel Prefix Computation

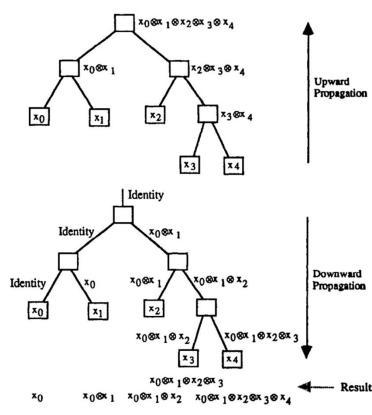
Again

- this is quite simple
- can be done optimally in 2llog
 2 p steps

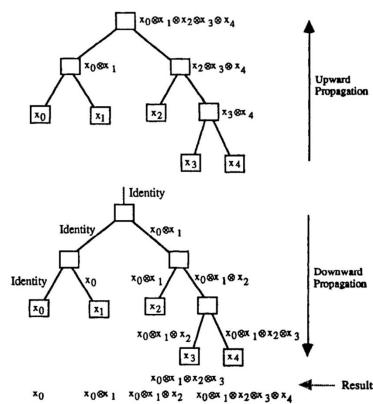


Parallel Prefix Computation

- upward propagation phase
 - identical to the upward movement of data in semigroup computation
 - At the end, each node will have the semigroup computation result for its subtree



- Parallel Prefix Computation
 - downward phase
 - Each processor remembers the value it received from its left child.
 - On receiving a value from the parent, a node passes
 - the value received from above to its left child and
 - combination of this value and the one that came from the left child to its right child.
 - The root initiates the downward phase by sending
 - the identity element to the left
 - the value received from its left child to the right.
 - At the end
 - the leaf processors compute their respective results



- Some applications of Parallel Prefix Computation
 - Given a list of 0s and 1s
 - the rank of each 1 in the list (its relative position among the 1s) can be determined by a prefix sum computation

Data:	0	0	1	0	1	0	0	1	1	1	0
Prefix sums:	0	0	1	1	2	2	2	3	4	5	5
Ranks of 1s:			1		2			3	4	5	

- Some applications of Parallel Prefix Computation
 - priority circuit
 - has a list of 0s and 1s as its inputs
 - picks the first (highest-priority) 1 in the list.
 - The function of a priority circuit can be defined as:

Data: 0	0	1	0	1	0	0	1	1	1	0
Diminished prefix logical ORs: 0	0	0	1	1	1	1	1	1	1	1
Complement: 1	1	1	0	0	0	0	0	0	0	0
AND with data: 0	0	1	0	0	0	0	0	0	0	0

- Packet Routing
 - The algorithm depends on the processor numbering scheme
 - "preorder" indexing
 - Nodes in a subtree are numbered by
 - first numbering the root node
 - then its left subtree
 - and finally the right subtree
 - the index of each node is less than of all its descendants.
 - We assume that each node
 - Is aware of its own index (self) in the tree
 - knows the largest node index in its left (maxl) and right (maxr) subtrees.

Packet Routing

- "preorder" indexing
 - Routing algorithm for a packet
 - on its way from node i to node dest
 - currently residing in node self
 - This algorithm does not make any assumption about the tree except that it is a binary tree.
 - the tree need not be complete or even balanced

if dest = self
then remove the packet {done}
else if dest < self or dest > maxr
then route upward
else if dest ≤ maxl
then route leftward
else route rightward
endif
endif
endif

Broadcasting

- Processor i sends the desired data upwards to the root processor
- The root then broadcasts the data downwards to all processors

- Sorting
 - algorithm is similar to bubblesort
 - first, smaller elements in the leaves "bubble up" to the root processor
 - root "sees" all the data elements in nondescending order.
 - root then sends the elements to leaf nodes in the proper order.

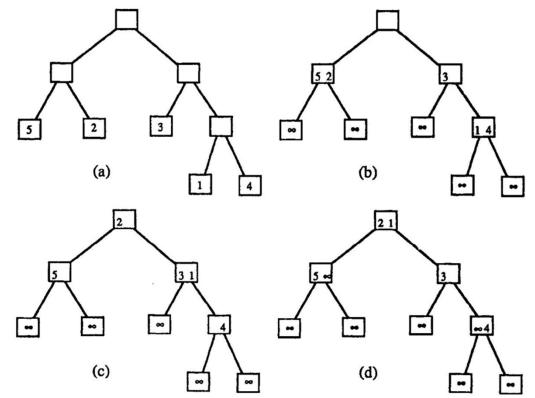
Sorting

- upward movement
 - Initially
 - each leaf has a single data item
 - all other nodes are empty.
 - Each inner node has storage space for two values
 - migrating upward from its left and right subtrees.

if you have 2 items then do nothing else if you have 1 item that came from the left (right) then get the smaller item from the right (left) child else get the smaller item from each child endif

Sorting

- upward movement up to the point when
 - the smallest element is in the root node
 - ready to begin its downward movement



Sorting

- downward movement
 - coordinated if each node knows the number of leaf nodes in its left subtree.
 - For an element received from above
 - Keep the rank order in a local counter
 - If the rank order <= the number of leaf nodes to the left,
 - then the data item is sent to the left.
 - Otherwise,
 - it is sent to the right.
 - implicitly assumes that data are to be sorted from left to right in the leaves.

Sorting

- takes linear time in the number of elements to be sorted
 - reasoning based on a bisection-based lower bound:
 - partition a tree architecture into two equal or almost equal halves
 - in the worst case
 - all values in the left (right) half of the tree must move to the right (left) half
 - Hence, all data elements must pass through the single link
 - it takes linear time for all the data elements to pass through this bottleneck

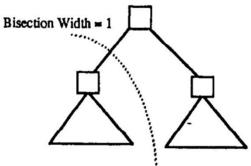


Figure 2.13. The bisection width of a binary tree architecture.

- Semigroup Computation
 - do the semigroup computation
 - in each row
 - then in each column.
 - E.g., finding the maximum of a set of p values, stored one per processor
 - the row maximums
 - are computed
 - made available to every processor in the row.
 - Then column maximums are identified.

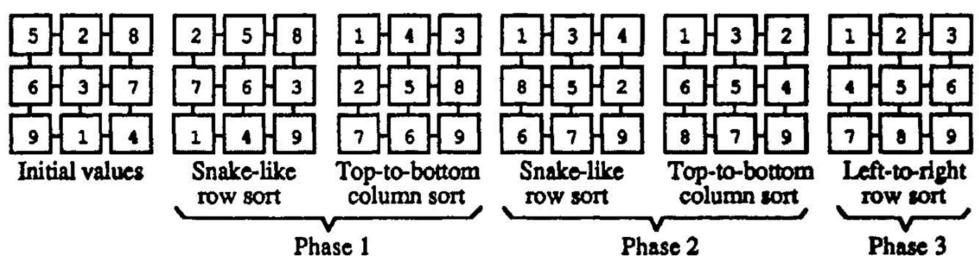
- Parallel Prefix Computation.
 - can be done in three phases
 - assuming that the processors (and their stored values) are indexed in rowmajor order
 - 1. do a parallel prefix computation on each row
 - 2. do a diminished parallel prefix computation in the rightmost column
 - 3. broadcast the results in the rightmost column to all the elements in the respective rows
 - combine with the initially computed row prefix value.
 - E.g., in doing prefix sums
 - first-row prefix sums are computed from left to right
 - At this point, the processors in the rightmost column hold the row sums
 - A diminished prefix computation in this last column yields the sum of all the preceding rows in each processor
 - Combining the sum of all the preceding rows with the row prefix sums yields the overall prefix sums.

- Packet Routing
 - To route a data packet from the processor in Row r, Column c, to the processor in Row r', Column c',
 - we first route it within Row r to Column c'.
 - Then, we route it in Column c' from Row r to Row r'.
 - This algorithm is known as row-first routing.
 - Clearly, we could do
 - column-first routing
 - or use a combination of horizontal and vertical steps to get to the destination node along a shortest path
 - When multiple packets must be routed between different source and destination nodes
 - the above algorithm can be applied to each packet independently of others
 - However, multiple packets might then compete for the same link
 - The processors must have sufficient buffer space to store the waiting packets

Broadcasting

- is done in two phases:
 - 1. broadcast the packet to every processor in the source node's row
 - 2. broadcast in all columns.
- This takes at most $2\sqrt{p} 2$ steps.

- Sorting
 - the simple version of a sorting algorithm known as shearsort
 - consists of $\log_2 r + 1$ phases in a 2D mesh with r rows.
 - In each phase, except for the last one
 - all rows are independently sorted in a snakelike order:
 - even-numbered rows 0, 2, ... from left to right
 - odd-numbered rows 1, 3, . . . from right to left
 - Then, all columns are independently sorted from top to bottom.
 - E.g., in a 3×3 mesh, two such phases are needed
 - In the final phase, rows are independently sorted from left to right



Sorting

- the simple version of a sorting algorithm known as shearsort
 - we already know that row-sort and column-sort on a p-processor square mesh take √p compare-exchange steps
 - the shearsort algorithm needs $(2\lceil \log_2 p \rceil + 1)\sqrt{p}$ exchange steps for sorting in row-major order.

- Semigroup Computation
 - Each processor
 - obtains the data items from all other processors
 - performs the semigroup computation independently
 - all processors will end up with the same result
 - This approach is quite wasteful of the complex architecture
 - because its linear time complexity is
 - comparable to that of the semigroup computation algorithm for the much simpler linear-array architecture
 - worse than the algorithm for the 2D mesh.

- Parallel Prefix Computation
 - Like the semigroup computation
 - except that each processor only obtains data items from processors with smaller indices
- Packet Routing
 - Trivial in view of the direct communication path between any pair of processors.
- Broadcasting
 - Trivial, as each processor can send a data item to all processors directly

- Sorting
 - The algorithm has two phases
 - ranking
 - determining the relative order of each key in the final sorted list
 - Processor i is responsible for ranking its own key xi.
 - done by
 - comparing xi to all other keys
 - counting the number of keys that are smaller than xi
 - data permutation
 - If each processor holds one key
 - the jth-ranked key can be sent to Processor j
 - requiring a single parallel communication step

- Sorting
 - Despite the greater complexity over the linear-array or binary-tree
 - the required linear time is wasteful
 - It is comparable to the algorithms for these simpler architectures.
 - We will see (in Chapter 6) that
 - logarithmic-time sorting algorithms can be developed for the shared variable architecture
 - leading to linear speed-up over sequential algorithms
 - that need n log n steps to sort n items.