
PARALLEL PROCESSING SYSTEMS

Chapter 2: A Taste of Parallel Algorithms

Some simple computations

 five fundamental building-block computations
 Semigroup (reduction, fan-in) computation

 Parallel prefix computation

 Packet routing

 Broadcasting, and its more general version,
multicasting

 Sorting records in ascending/descending order of
their keys

Some simple computations

 Semigroup (reduction, fan-in) computation
 Let be an associative binary operator

 i.e., (x y) z = x (y z) for all x, y, z S.

 A semigroup is simply a pair (S,)
 where S is a set of elements on which is defined

 Semigroup computation is defined as:
 Given a list of n values x0, x1, . . . , xn–1, compute

x0 x1 . . . xn–1 .
 Common examples for the operator include +, ×, , ,

, ∩, , max, min.
 The operator may or may not be commutative

 i.e., it may or may not satisfy x y = y x

Some simple computations

 Semigroup (reduction, fan-in) computation

Some simple computations

 Parallel prefix computation
 With the same assumptions as in the semigroup

 a parallel prefix computation is defined as
 simultaneously evaluating all the prefixes of the

expression x0 x1 . . . xn–1;
 i.e., x0, x0 x1, x0 x1 x2, . . . , x 0 x1 . . .

xn–1.

 The comment about commutativity of the binary
operator applies here as well.

Some simple computations

 Packet Routing
 A packet of information resides at Processor i and must

be sent to Processor j.
 The problem is to route the packet through the fastest

path
 The problem becomes more challenging when

 multiple packets reside at different processors
 each with its own destination.
 the packet routes may interfere with one another

 as they go through common intermediate processors.

 It is called one-to-one communication or 1–1 routing
 When each processor has at most one packet to send and

one packet to receive

Some simple computations

 Broadcasting
 Disseminate a value a known at a certain processor

I to all p processors as quickly as possible

 sometimes referred to as one-to-all communication.

 Multicasting is the more general case
 one-to-many communication

Some simple computations

 Sorting
 Given a list of n keys x0, x1, . . . , xn–1, and a total

order ≤ on key values, rearrange the n keys as

Some simple architectures

 four simple parallel architectures:
 Linear array of processors

 Binary tree of processors

 Two-dimensional mesh of processors

 Multiple processors with shared variables

Some simple architectures

 Linear array
 The diameter is D = p – 1

 defined as the longest of the shortest distances between
pairs of processors

 The (maximum) node degree is d = 2
 defined as the largest number of links or communication

channels associated with a processor
 The ring variant has

 the same node degree of 2
 a smaller diameter of D = p/2 .

Some simple architectures

 Binary Tree
 The binary tree is balanced

 if leaf levels differ by at most 1.
 Diameter is

 The binary tree is complete
 If all leaf levels are identical and every non-leaf processor has

two children
 diameter is

 The (maximum) node degree in a binary tree is d = 3

Some simple architectures

 2D Mesh
 The diameter of a square mesh is
 the mesh does not have to be square.
 The diameter of a p-processor r × (p/r) mesh is D = r + p/r – 2.
 multiple 2D meshes may exist for the same number p of processors,

 e.g., 2 × 8 or 4 × 4.
 Square meshes are usually preferred

 because they minimize the diameter.
 The torus variant has end-around or wraparound links for rows and columns.
 The node degree for both meshes and torus is d = 4.
 But a p-processor r × (p/r) torus has a smaller diameter of D = r /2 + p/(2r) .

Some simple architectures

 Shared Memory
 can be modeled as a complete graph

 every piece of data is directly accessible to
every processor
 assuming each processor can simultaneously

send/receive data over all of its p – 1 links

 The diameter D = 1 is an indicator of this
direct access.

 The node degree d = p – 1
 indicates that is quite costly to implement

 if no restriction is placed on data accesses

Algorithms for a linear
array
 Semigroup Computation

 Finding maximum
 Each of the p processors holds a value initially
 our goal is for every processor to know the largest of these values.
 In each step

 a processor sends its max value to its two neighbors.
 on receiving values from its left and right neighbors

 Each processor sets its max value to the largest of the three values, i.e., max(left, own, right)
 The dotted lines show how the maximum value propagates from P6 to all other processors

 Had there been two maximum values, say in P2 and P6 , the propagation would have been faster.
 Needed operations in the worst case

 p – 1 communication steps
 each involving sending a processor’s value to both neighbors
 This is the best one can hope for

 given that the diameter of a p-processor linear array is D = p – 1
 the same number of three-way comparison steps

Algorithms for a linear
array
 Semigroup Computation

 For a general semigroup computation
 initially, all processors are dormant or inactive
 the processor at the left end becomes active and sends its data

value to the right
 On receiving a value from its left neighbor, a processor

 becomes active
 applies the semigroup operation to the value received from the

left and its own data value
 sends the result to the right
 becomes inactive again
 This wave of activity propagates to the rightmost processor

 The computation result is then propagated leftward to all
processors

 In all, 2p – 2 communication steps are needed

Algorithms for a linear
array
 Parallel Prefix Computation

 we want the ith prefix result at the ith processor, 0
≤ i ≤ p – 1
 we already have an algorithm

 The general semigroup algorithm without the last
broadcast

 takes p – 1 communication/combining steps.

Algorithms for a linear
array
 Extension of the semigroup and parallel prefix algorithms

 each processor initially holds several data
 The algorithm consists of each processor doing

 a prefix computation on its own data set of size n/p
 takes n/p – 1 combining steps

 a diminished parallel prefix computation
 each processor holds onto the value received from the left
 Takes p – 1 communication/combining steps

 finally combining the result of two prefix computations
 Takes n /p combining steps

 Number of operations required in all
 2n/p + p– 2 combining steps
 p – 1 communication steps

Algorithms for a linear
array
 Packet Routing

 To send a packet of information from Processor i to
Processor j
 Attach a routing tag with the value j – i to it

 The sign determines the direction of move
 (+ = right, – = left)

 The magnitude indicates the action to be performed
 (0 = remove the packet, nonzero = forward the packet).

 With each forwarding
 the magnitude of the routing tag is decremented by 1

Algorithms for a linear
array
 Broadcasting

 If Processor i wants to broadcast a value a to all
processors
 it sends

 an rbcast(a) (read r-broadcast) message to its right neighbor
 an lbcast(a) message to its left neighbor

 receiving an rbcast(a) message, any processor
 copies the value a and forwards the message to its right

neighbor (if any).
 receiving an lbcast(a) message, any processor

 copies the value a and forwards the message to its left
neighbor (if any)

 The worst-case number of communication steps is p – 1

Algorithms for a linear
array
 Sorting

 two versions of sorting on a linear array
 with I/O

 without I/O

Algorithms for a linear
array
 Sorting

 with I/O
 p keys are input, one at a time, from the left end
 Each processor, on receiving a key value from the left

 compares the received value with the value stored in its local register
 initially, all local registers hold the value +∞

 The smaller of the two values is kept in the local register
 larger value is passed on to the right

 Once all p inputs have been received
 we must allow p – 1 additional communication cycles for the key values

that are in transit to settle into their respective positions
 If the sorted list is to be output from the left

 the output phase can start immediately after the last key value has been
received

 an array half the size of the input list would be adequate
 we effectively have zero-time sorting

 the total sorting time is equal to the I/O time

Algorithms for a linear
array
 Sorting

 with I/O

Algorithms for a linear
array
 Sorting

 without I/O
 the key values are already in place, one per processor
 an algorithm known as odd–even transposition can be used

 A total of p steps are required.
 In an odd-numbered step

 odd-numbered processors compare values with their even-numbered right
neighbors

 The two processors exchange their values if they are out of order.
 in an even-numbered step

 even-numbered processors compare–exchange values with their right
neighbors

 In the worst case
 the largest key value

 resides in Processor 0
 must move all the way to the other end of the array

 This needs p – 1 right moves

Algorithms for a linear
array
 Sorting

 without I/O

Algorithms for a linear
array
 Sorting with the number n of keys is greater than

the number p of processors
 the odd–even algorithm with n/p keys per processor

 each processor sorts its list using any efficient sequential
sorting algorithm.
 Let us say this takes (n/p)log2(n/p) compare–exchange steps.

 the odd–even transposition sort is performed as before
 except that each compare–exchange step is replaced by a

merge–split step
 the two processors merge their sublists of size n/p into a single

sorted list of size 2n/p
 then split the list down the middle
 one processor keeping the smaller half
 the other keeps the larger half

Algorithms for a linear
array
 Sorting with the number n of keys is greater than the

number p of processors
 the odd–even algorithm with n/p keys per processor

 E.g., if P0 is holding (1, 3, 7, 8) and P1 has (2, 4, 5, 9)
 a merge–split step will turn the lists into (1, 2, 3, 4) and (5, 7, 8,

9), respectively
 Because the sublists are sorted

 the merge–split step requires n/p compare–exchange steps.
 the total time of the algorithm is (n/p)log2 (n/p) + n
 the first term (local sorting) will be dominant if p< log2 n
 the second term (array merging) is dominant for p > log2n .
 For p ≥ log 2 n

 the time complexity of the algorithm is linear in n
 the algorithm is more efficient than the one-key-per-processor version

Algorithms for a linear
array
 One final observation about sorting

 it is important
 occasionally it also helps us in data routing
 permutation routing problem

 data values being held by the p processors are to be routed to other
processors

 such that the destination of each value is different from all others.
 the p distinct destinations must be 0, 1, 2, . . . , p – 1
 The correct destination for each record can be find by

 forming records with the destination address as the key
 sorting these records

 p compare–exchange steps.
 Effectively

 p packets are routed in the same amount of time that is required for
routing a single packet in the worst case

Algorithms for a binary tree

 we assume that the data elements are initially
held by the leaf processors only

 The nonleaf (inner) processors participate in
the computation
 but do not hold data elements of their own

 This simplifying assumption
 can be easily relaxed
 leads to simpler algorithms
 Does not pose great inefficiency

 Because roughly half of the tree nodes are leaf nodes

Algorithms for a binary tree

 Semigroup Computation
 binary-tree architecture is ideally suited for this

 semigroup computation is sometimes referred to as tree
computation

 Each inner node
 receives two values from its children

 if each of them has already computed a value or is a leaf node
 applies the operator to them
 passes the result upward to its parent

 After log2 p steps, the root processor will have the
computation result

 All processors can then be notified of the result through a
broadcasting operation from the root.

 Total time: 2 log2p steps

Algorithms for a binary tree

 Parallel Prefix Computation
 Again

 this is quite simple

 can be done optimally in 2 log
2 p steps

Algorithms for a binary tree

 Parallel Prefix Computation
 upward propagation phase

 identical to the upward
movement of data in semigroup
computation

 At the end, each node will have
the semigroup computation
result for its subtree

Algorithms for a binary tree

 Parallel Prefix Computation
 downward phase

 Each processor remembers the value it
received from its left child.

 On receiving a value from the parent, a node
passes
 the value received from above to its left child

and
 combination of this value and the one that came

from the left child to its right child.
 The root initiates the downward phase by

sending
 the identity element to the left
 the value received from its left child to the

right.
 At the end

 the leaf processors compute their respective
results

Algorithms for a binary tree

 Some applications of Parallel Prefix
Computation
 Given a list of 0s and 1s

 the rank of each 1 in the list (its relative position
among the 1s) can be determined by a prefix sum
computation

Algorithms for a binary tree

 Some applications of Parallel Prefix
Computation
 priority circuit

 has a list of 0s and 1s as its inputs

 picks the first (highest-priority) 1 in the list.

 The function of a priority circuit can be defined as:

Algorithms for a binary tree

 Packet Routing
 The algorithm depends on the processor numbering

scheme
 “preorder” indexing

 Nodes in a subtree are numbered by
 first numbering the root node
 then its left subtree
 and finally the right subtree

 the index of each node is less than of all its descendants.
 We assume that each node

 Is aware of its own index (self) in the tree
 knows the largest node index in its left (maxl) and right

(maxr) subtrees.

Algorithms for a binary tree

 Packet Routing
 “preorder” indexing

 Routing algorithm for a
packet
 on its way from node i to node

dest
 currently residing in node self

 This algorithm does not make
any assumption about the tree
except that it is a binary tree.

 the tree need not be complete
or even balanced

Algorithms for a binary tree

 Broadcasting
 Processor i sends the desired data upwards to the

root processor

 The root then broadcasts the data downwards to all
processors

Algorithms for a binary tree

 Sorting
 algorithm is similar to bubblesort

 first, smaller elements in the leaves “bubble up” to
the root processor

 root “sees” all the data elements in nondescending
order.

 root then sends the elements to leaf nodes in the
proper order.

Algorithms for a binary tree

 Sorting
 upward movement

 Initially
 each leaf has a single data item

 all other nodes are empty.

 Each inner node has storage space for two values
 migrating upward from its left and right subtrees.

Algorithms for a binary tree

 Sorting
 upward movement up to the point when

 the smallest element is in the root node
 ready to begin its downward movement

Algorithms for a binary tree

 Sorting
 downward movement

 coordinated if each node knows the number of leaf nodes
in its left subtree.

 For an element received from above
 Keep the rank order in a local counter
 If the rank order <= the number of leaf nodes to the left,

 then the data item is sent to the left.
 Otherwise,

 it is sent to the right.

 implicitly assumes that data are to be sorted from left to
right in the leaves.

Algorithms for a binary tree

 Sorting
 takes linear time in the number of elements to be sorted

 reasoning based on a bisection-based lower bound:
 partition a tree architecture into two equal or almost equal

halves
 in the worst case

 all values in the left (right) half of the tree must move to the
right (left) half

 Hence, all data elements must pass through the single link
 it takes linear time for all the data elements to pass through this

bottleneck

Algorithms for a 2d mesh

 Semigroup Computation
 do the semigroup computation

 in each row

 then in each column.

 E.g., finding the maximum of a set of p values,
stored one per processor
 the row maximums

 are computed

 made available to every processor in the row.

 Then column maximums are identified.

Algorithms for a 2d mesh

 Parallel Prefix Computation.
 can be done in three phases

 assuming that the processors (and their stored values) are indexed in row-
major order

1. do a parallel prefix computation on each row
2. do a diminished parallel prefix computation in the rightmost column
3. broadcast the results in the rightmost column to all the elements in the

respective rows
 combine with the initially computed row prefix value.

 E.g., in doing prefix sums
 first-row prefix sums are computed from left to right

 At this point, the processors in the rightmost column hold the row sums
 A diminished prefix computation in this last column yields the sum of all

the preceding rows in each processor
 Combining the sum of all the preceding rows with the row prefix sums

yields the overall prefix sums.

Algorithms for a 2d mesh

 Packet Routing
 To route a data packet from the processor in Row r, Column c, to the

processor in Row r', Column c’,
 we first route it within Row r to Column c’.
 Then, we route it in Column c' from Row r to Row r’.
 This algorithm is known as row-first routing.

 Clearly, we could do
 column-first routing
 or use a combination of horizontal and vertical steps to get to the

destination node along a shortest path
 When multiple packets must be routed between different source and

destination nodes
 the above algorithm can be applied to each packet independently of others
 However, multiple packets might then compete for the same link
 The processors must have sufficient buffer space to store the waiting

packets

Algorithms for a 2d mesh

 Broadcasting
 is done in two phases:

1. broadcast the packet to every processor in the
source node’s row

2. broadcast in all columns.

 This takes at most 2 – 2 steps.

Algorithms for a 2d mesh

 Sorting
 the simple version of a sorting algorithm known as shearsort

 consists of log2r + 1 phases in a 2D mesh with r rows.
 In each phase, except for the last one

 all rows are independently sorted in a snakelike order:
 even-numbered rows 0, 2, … from left to right
 odd-numbered rows 1, 3, . . . from right to left

 Then, all columns are independently sorted from top to bottom.
 E.g., in a 3 × 3 mesh, two such phases are needed
 In the final phase, rows are independently sorted from left to right

Algorithms for a 2d mesh

 Sorting
 the simple version of a sorting algorithm known as

shearsort
 we already know that row-sort and column-sort on a

p-processor square mesh take compare-exchange
steps

 the shearsort algorithm needs exchange
steps for sorting in row-major order.

Algorithms with shared
variables
 Semigroup Computation

 Each processor
 obtains the data items from all other processors
 performs the semigroup computation independently

 all processors will end up with the same result
 This approach is quite wasteful of the complex

architecture
 because its linear time complexity is

 comparable to that of the semigroup computation
algorithm for the much simpler linear-array architecture

 worse than the algorithm for the 2D mesh.

Algorithms with shared
variables
 Parallel Prefix Computation

 Like the semigroup computation
 except that each processor only obtains data items

from processors with smaller indices

 Packet Routing
 Trivial in view of the direct communication path

between any pair of processors.

 Broadcasting
 Trivial, as each processor can send a data item to

all processors directly

Algorithms with shared
variables
 Sorting

 The algorithm has two phases
 ranking

 determining the relative order of each key in the final sorted
list

 Processor i is responsible for ranking its own key xi.
 done by

 comparing xi to all other keys
 counting the number of keys that are smaller than xi

 data permutation
 If each processor holds one key

 the jth-ranked key can be sent to Processor j
 requiring a single parallel communication step

Algorithms with shared
variables
 Sorting

 Despite the greater complexity over the linear-array
or binary-tree
 the required linear time is wasteful

 It is comparable to the algorithms for these simpler
architectures.

 We will see (in Chapter 6) that
 logarithmic-time sorting algorithms can be developed

for the shared variable architecture
 leading to linear speed-up over sequential algorithms

 that need n log n steps to sort n items.

