
PARALLEL PROCESSING SYSTEMS

Chapter 3: Parallel Algorithm Complexity



Introduction 

 Algorithms can be analyzed in two ways
 precise 

 we count the number of operations performed in the worst or 
average case 
 (e.g., arithmetic, memory access, data transfer) 

 use these counts as indicators of algorithm complexity
 is quite tedious and at sometimes impossible to perform.

 approximate. 
 We resort to various approximate analysis methods
 keeping in mind the error margin of the method applied

 if such an approximate analysis indicates that Algorithm A is 1.2 
times slower than Algorithm B

 we may not be able to conclude with certainty that Algorithm B 
is better for the task at hand.



ASYMPTOTIC COMPLEXITY

 Suppose that 
 a parallel sorting algorithm requires (log2 n)² compare–exchange steps
 another one (log2 n)²/ 2 + 2 log2 n steps
 a third one 500 log2 n steps 

 Ignoring lower-order terms and multiplicative constants
 we may say that 

 the first two algorithms take on the order of log² n steps 
 the third one takes on the order of log n steps. 

 The logic behind ignoring these details 
 when n becomes very large

 eventually log n will exceed any constant value. 
 for such large values of n and any values of the constants c and c'

 an algorithm with c log n is asymptotically better than an algorithm with 
c' log² n



ASYMPTOTIC COMPLEXITY

 n must indeed be very large for log n to 
overshadow the constant 500 

 In practice
 we do not totally ignore the constant factors 
 We take a two-step approach

 First, we determine which algorithm is likely to be 
better for large problem sizes
 through asymptotic analysis 

 If we have reason to doubt this conclusion
 we resort to an exact analysis to determine the constant 

factors involved



ASYMPTOTIC COMPLEXITY

 Some notations
 Given two functions ƒ(n) and g(n) we define the 

relationships 
 “O” (big-oh)

 “Ω” (big-omega)

 “Θ” (theta)



ASYMPTOTIC COMPLEXITY

 notations allow us to compare the growth rates of 
different functions
 ƒ(n) = O(g(n)) means that ƒ(n) grows no faster than 

g(n)
 for n sufficiently large and a suitably chosen constant c

 ƒ(n) always remains below c g(n)

 ƒ(n) = Ω(g(n)) means that ƒ(n) grows at least as fast as 
g(n)
 Eventually ƒ(n) will exceed c g(n) for all n beyond n0 

 ƒ(n) = Θ(g(n)) means that ƒ(n) and g(n) grow at about 
the same rate 
 value of f(n) is always bounded by c g(n) and c’ g(n) 

(for n > n0)



ASYMPTOTIC COMPLEXITY

 notations allow us to compare the growth rates 
of different functions



ASYMPTOTIC COMPLEXITY

 In other words



ASYMPTOTIC COMPLEXITY

 At a very coarse level



Complexity classes

 Problems are divided into several complexity 
classes 
 Based on their running times on a single-processor

 Problems said to belong to the P class 
 running times are upper bounded by polynomials in n 
 generally considered to be tractable. 

 Even if the polynomial is of a high degree

 there is still hope that a reasonable running time may be 
obtained
 by improvements in the algorithm or in computer 

performance



Complexity classes

 problems said to belong to NP 
(nondeterministic polynomial) class
 best known deterministic algorithm runs in 

exponential time
 But the correctness of the solution can be verified in 

polynomial time

 They are intractable 
 E.g., subset-sum problem

 Given a set of n integers and a target sum s
 determine if a subset of the integers in the given set 

add up to s



Complexity classes

 problems said to belong to NP-complete class
 any problem in NP can be transformed to any one of 

these problems
 by a computationally efficient process

 The subset-sum problem is known to be NP-complete

 if one ever finds an efficient solution one of these 
problems
 this proves P = NP

 are the “hardest” problems in the NP class
 proving that a problem is NP-complete removes any hope 

of finding an efficient algorithm



Complexity classes

 problems said to belong to NP-hard class
 problems that are not even in NP

 verifying that a claimed solution to such a problem 
is correct is currently intractable

 we do not know to be in NP 
 but do know that any NP problem can be reduced to it 

by a polynomial-time algorithm

 are at least as hard as any NP problem



Complexity classes



Parallelizable tasks and the 
NC class
 parallel processing 

 is generally of no avail for solving NP problems
 A problem that takes 400 billion centuries on a 

uniprocessor
 if it can be perfectly parallelized over 1 billion 

processors 
 It would still take 400 centuries 

 is useful for speeding up the execution time of the 
problems in P
 even a factor of 1000 speed-up can mean the 

difference between practicality and impracticality



Parallelizable tasks and the 
NC class
 The NC class

 efficiently parallelizable problems in P
 defined as 

 problems that can be solved 
 By at most polylogarithmic in the problem size n, i.e., T( p) 

= O(logk n) for some constant k

 using no more than a polynomial number p = O( nl ) of 
processors

 Sorting is a good example



Parallel programming 
paradigms
 Divide and Conquer 

 Decompose the problem of size n into two or more 
“smaller” subproblems. 
 takes Td(n) time when done in parallel

 Solve the subproblems independently and obtain the 
corresponding results
 the time Ts to solve them will likely be less than T(n)

 Finally, combine the results of the subproblems to 
compute the answer to the original problem. 
 If the combining can be done in time Tc(n), 

 the total computation time is given by 
T(n ) = Td(n ) + Ts + Tc (n).



Parallel programming 
paradigms
 Divide and Conquer 

 is perhaps the most important tool for devising 
parallel algorithms

 E.g., sorting a list of n keys
 decompose the list into two halves

 sort the two sublists independently in parallel

 merge the two sorted sublists into a single sorted list



Parallel programming 
paradigms
 Randomization

 Often balanced divide and conquer is impossible, 
or computationally difficult
 Obstacles for achievable effective speed-up

 Large decomposition and combining overheads

 wide variations in the solution times of the subproblems

 it might be possible to use random decisions
 lead to good results with very high probability. 

 Has led to the solution of many otherwise 
unsolvable problems.



Parallel programming 
paradigms
 Randomization

 Again, sorting provides a good example
 each of p processors begins with a sublist of size n/p
 each processor selects a random sample of size k from its local 

sublist
 The kp samples from all processors form a smaller list that can 

be readily sorted
 on a single processor 
 or using an efficient parallel algorithm for small lists. 

 this sorted list of samples is now divided into p equal segments 
 the beginning values in the p segments used as thresholds to 

divide the original into p sublists
 the lengths of these sublists will be approximately balanced with 

high probability



Parallel programming 
paradigms
 Randomization

 Again, sorting provides a good example
 The sorting problem has thus been transformed into 

 an initial random sampling
 a small sorting problem for the kp samples
 broadcasting of the p threshold values to all processors
 permutation of the elements among the processors according 

to the p threshold values
 p independent sorting problems of approximate size n/p

 The average case running time can be quite good
 However, there is no useful worst-case guarantee on its 

running time.



Parallel programming 
paradigms
 Randomization

 can be applied in several other ways
 Input randomization

 used to avoid bad data patterns that a particular 
algorithm

 is efficient on the average

 might have close to worst-case performance

 Random search

 Control randomization

 Symmetry breaking



Parallel programming 
paradigms
 Randomization

 can be applied in several other ways
 Input randomization

 Random search
 Searching a large space for an abundant element

 random search can lead to very good average-case 
performance

 A deterministic linear search can lead to poor performance 
 if all of the desired elements are clustered together

 Control randomization

 Symmetry breaking



Parallel programming 
paradigms
 Randomization

 can be applied in several other ways
 Input randomization
 Random search
 Control randomization

 Randomly choosing the algorithm or an algorithm 
parameter

 avoid consistently experiencing close to worst-case 
performance 
 with one algorithm
 For some unfortunate distribution of inputs

 Symmetry breaking



Parallel programming 
paradigms
 Randomization

 can be applied in several other ways
 Input randomization

 Random search

 Control randomization

 Symmetry breaking
 deterministic processes may exhibit a cyclic behavior 

that leads to deadlock
 Randomization can be used to break the symmetry and thus 

the deadlock



Parallel programming 
paradigms
 Approximation

 Iterative numerical methods often use approximation
 begin with some rough estimates for the answers 
 successively refine these estimates using numerical calculations

 Advantage
 fairly precise results can be obtained rather quickly
 additional iterations may be used to increase the precision if 

desired
 It is a powerful method for time/cost/accuracy trade-offs 

because
 the computations for each iteration can be easily parallelized 

over any number p of processors
 the computation can still be performed at lower precision in case 

of deadline limitations


