PARALLEL PROCESSING SYSTEMS

Chapter 3: Parallel Algorithm Complexity

Introduction

- Algorithms can be analyzed in two ways
 - precise
 - we count the number of operations performed in the worst or average case
 - (e.g., arithmetic, memory access, data transfer)
 - use these counts as indicators of algorithm complexity
 - is quite tedious and at sometimes impossible to perform.
 - approximate.
 - We resort to various approximate analysis methods
 - keeping in mind the error margin of the method applied
 - if such an approximate analysis indicates that Algorithm A is 1.2 times slower than Algorithm B
 - we may not be able to conclude with certainty that Algorithm B is better for the task at hand.

- Suppose that
 - a parallel sorting algorithm requires (log2 n)² compare–exchange steps
 - another one $(\log 2 n)^2/2 + 2 \log 2 n$ steps
 - a third one 500 log2 n steps
- Ignoring lower-order terms and multiplicative constants
 - we may say that
 - the first two algorithms take on the order of log² n steps
 - the third one takes on the order of log n steps.
- The logic behind ignoring these details
 - when n becomes very large
 - eventually log n will exceed any constant value.
 - for such large values of n and any values of the constants c and c'
 - an algorithm with c log n is asymptotically better than an algorithm with c' log² n

 n must indeed be very large for log n to overshadow the constant 500

In practice

- we do not totally ignore the constant factors
- We take a two-step approach
 - First, we determine which algorithm is likely to be better for large problem sizes
 - through asymptotic analysis
 - If we have reason to doubt this conclusion
 - we resort to an exact analysis to determine the constant factors involved

Some notations

- Given two functions *f*(n) and g(n) we define the relationships
 - "O" (big-oh)

f(n) = O(g(n)) if $\exists c, n_0$ such that $\forall n > n_0$ we have f(n) < c g(n)

"Ω" (big-omega)

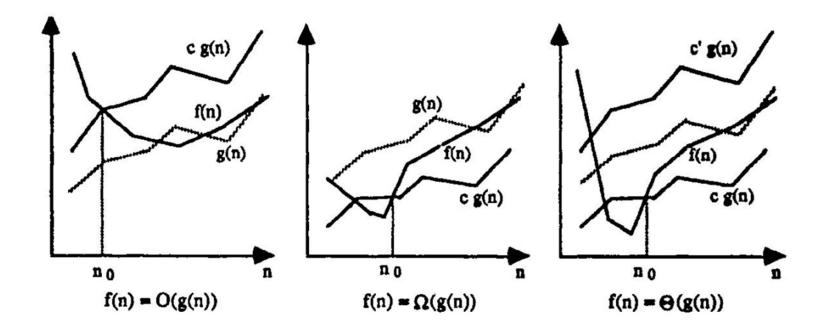
 $f(n) = \Omega(g(n))$ if $\exists c, n_0$ such that $\forall n > n_0$ we have f(n) > c g(n)

• "Θ" (theta)

 $f(n) = \Theta(g(n)) \text{ if } \exists c, c', n_0 \text{ such that } \forall n > n_0 \text{ we have } c \ g(n) < f(n) < c' \ g(n)$ $f(n) = \Theta(g(n)) \text{ iff } f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n))$

- notations allow us to compare the growth rates of different functions
 - f(n) = O(g(n)) means that f(n) grows no faster than g(n)
 - for n sufficiently large and a suitably chosen constant c
 - f(n) always remains below c g(n)
 - $f(n) = \Omega(g(n))$ means that f(n) grows at least as fast as g(n)
 - Eventually f(n) will exceed c g(n) for all n beyond n0
 - $f(n) = \Theta(g(n))$ means that f(n) and g(n) grow at about the same rate
 - value of f(n) is always bounded by c g(n) and c' g(n) (for n > n0)

 notations allow us to compare the growth rates of different functions



In other words

"The rate of growth of f(n) is _____ that of g(n)."

we can fill in the blank with the relational symbol (<, \leq , =, \geq , >) to the left of the defined relations shown below:

<	$f(n) = \mathrm{o}(g(n))$	$\lim_{n \to \infty} f(n)/g(n) = 0 \text{ {read little-oh of } } g(n)$
\leq	$f(n) = \mathcal{O}(g(n))$	{big-oh}
=	$f(n) = \Theta(g(n))$ or $\theta(g(n))$	{theta}
\geq	$f(n) = \Omega(g(n))$	{big-omega}
>	$f(n) = \omega(g(n))$	$\lim_{n \to \infty} f(n)/g(n) = \infty \{ \text{little-omega} \}$

• At a very coarse level

Sublinear	O(1)	constant-time
	$O(\log \log n)$	double logarithmic
	$O(\log n)$	logarithmic
	$O(\log^k n)$	polylogarithmic; k is a constant
	$O(n^a)$	$a < 1$ is a constant; e.g., $O(\sqrt{n})$ for $a = 1/2$
	$O(n / \log^k n)$	k is a constant

Linear O(n)

Superlinear $O(n \log^k n)$

 $O(n^c)$ polynomial; c > 1 is a constant; e.g., $O(n\sqrt{n})$ for c = 3/2 $O(2^n)$ exponential $O(2^{2^n})$ double exponential

- Problems are divided into several complexity classes
 - Based on their running times on a single-processor
- Problems said to belong to the P class
 - running times are upper bounded by polynomials in n
 - generally considered to be tractable.
 - Even if the polynomial is of a high degree
 - there is still hope that a reasonable running time may be obtained
 - by improvements in the algorithm or in computer performance

- problems said to belong to NP (nondeterministic polynomial) class
 - best known deterministic algorithm runs in exponential time
 - But the correctness of the solution can be verified in polynomial time
 - They are intractable
 - E.g., subset-sum problem
 - Given a set of n integers and a target sum s
 - determine if a subset of the integers in the given set add up to s

- problems said to belong to NP-complete class
 - any problem in NP can be transformed to any one of these problems
 - by a computationally efficient process
 - The subset-sum problem is known to be NP-complete
 - if one ever finds an efficient solution one of these problems
 - this proves P = NP
 - are the "hardest" problems in the NP class
 - proving that a problem is NP-complete removes any hope of finding an efficient algorithm

- problems said to belong to NP-hard class
 - problems that are not even in NP
 - verifying that a claimed solution to such a problem is correct is currently intractable
 - we do not know to be in NP
 - but do know that any NP problem can be reduced to it by a polynomial-time algorithm
 - are at least as hard as any NP problem

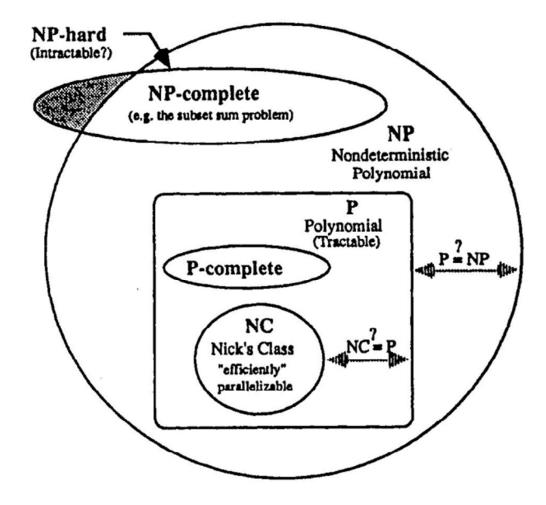


Figure 3.4. A conceptual view of complexity classes and their relationships.

Parallelizable tasks and the NC class

- parallel processing
 - is generally of no avail for solving NP problems
 - A problem that takes 400 billion centuries on a uniprocessor
 - if it can be perfectly parallelized over 1 billion processors
 - It would still take 400 centuries
 - is useful for speeding up the execution time of the problems in P
 - even a factor of 1000 speed-up can mean the difference between practicality and impracticality

Parallelizable tasks and the NC class

- The NC class
 - efficiently parallelizable problems in P
 - defined as
 - problems that can be solved
 - By at most polylogarithmic in the problem size n, i.e., T(p)
 = O(log^k n) for some constant k
 - using no more than a polynomial number p = O(n¹) of processors
 - Sorting is a good example

- Divide and Conquer
 - Decompose the problem of size n into two or more "smaller" subproblems.
 - takes T_d(n) time when done in parallel
 - Solve the subproblems independently and obtain the corresponding results
 - the time T_s to solve them will likely be less than T(n)
 - Finally, combine the results of the subproblems to compute the answer to the original problem.
 - If the combining can be done in time T_c(n),
 - the total computation time is given by $T(n) = T_d(n) + T_s + T_c(n).$

- Divide and Conquer
 - is perhaps the most important tool for devising parallel algorithms
 - E.g., sorting a list of n keys
 - decompose the list into two halves
 - sort the two sublists independently in parallel
 - merge the two sorted sublists into a single sorted list

- Randomization
 - Often balanced divide and conquer is impossible, or computationally difficult
 - Obstacles for achievable effective speed-up
 - Large decomposition and combining overheads
 - wide variations in the solution times of the subproblems
 - it might be possible to use random decisions
 - lead to good results with very high probability.
 - Has led to the solution of many otherwise unsolvable problems.

- Randomization
 - Again, sorting provides a good example
 - each of p processors begins with a sublist of size n/p
 - each processor selects a random sample of size k from its local sublist
 - The kp samples from all processors form a smaller list that can be readily sorted
 - on a single processor
 - or using an efficient parallel algorithm for small lists.
 - this sorted list of samples is now divided into p equal segments
 - the beginning values in the p segments used as thresholds to divide the original into p sublists
 - the lengths of these sublists will be approximately balanced with high probability

- Randomization
 - Again, sorting provides a good example
 - The sorting problem has thus been transformed into
 - an initial random sampling
 - a small sorting problem for the kp samples
 - broadcasting of the p threshold values to all processors
 - permutation of the elements among the processors according to the p threshold values
 - p independent sorting problems of approximate size n/p
 - The average case running time can be quite good
 - However, there is no useful worst-case guarantee on its running time.

- Randomization
 - can be applied in several other ways
 - Input randomization
 - used to avoid bad data patterns that a particular algorithm
 - is efficient on the average
 - might have close to worst-case performance
 - Random search
 - Control randomization
 - Symmetry breaking

- Randomization
 - can be applied in several other ways
 - Input randomization
 - Random search
 - Searching a large space for an abundant element
 - random search can lead to very good average-case performance
 - A deterministic linear search can lead to poor performance
 - if all of the desired elements are clustered together
 - Control randomization
 - Symmetry breaking

- Randomization
 - can be applied in several other ways
 - Input randomization
 - Random search
 - Control randomization
 - Randomly choosing the algorithm or an algorithm parameter
 - avoid consistently experiencing close to worst-case performance
 - with one algorithm
 - For some unfortunate distribution of inputs
 - Symmetry breaking

- Randomization
 - can be applied in several other ways
 - Input randomization
 - Random search
 - Control randomization
 - Symmetry breaking
 - deterministic processes may exhibit a cyclic behavior that leads to deadlock
 - Randomization can be used to break the symmetry and thus the deadlock

- Approximation
 - Iterative numerical methods often use approximation
 - begin with some rough estimates for the answers
 - successively refine these estimates using numerical calculations
 - Advantage
 - fairly precise results can be obtained rather quickly
 - additional iterations may be used to increase the precision if desired
 - It is a powerful method for time/cost/accuracy trade-offs because
 - the computations for each iteration can be easily parallelized over any number p of processors
 - the computation can still be performed at lower precision in case of deadline limitations