
PARALLEL PROCESSING SYSTEMS

Chapter 3: Parallel Algorithm Complexity

Introduction

 Algorithms can be analyzed in two ways
 precise

 we count the number of operations performed in the worst or
average case
 (e.g., arithmetic, memory access, data transfer)

 use these counts as indicators of algorithm complexity
 is quite tedious and at sometimes impossible to perform.

 approximate.
 We resort to various approximate analysis methods
 keeping in mind the error margin of the method applied

 if such an approximate analysis indicates that Algorithm A is 1.2
times slower than Algorithm B

 we may not be able to conclude with certainty that Algorithm B
is better for the task at hand.

ASYMPTOTIC COMPLEXITY

 Suppose that
 a parallel sorting algorithm requires (log2 n)² compare–exchange steps
 another one (log2 n)²/ 2 + 2 log2 n steps
 a third one 500 log2 n steps

 Ignoring lower-order terms and multiplicative constants
 we may say that

 the first two algorithms take on the order of log² n steps
 the third one takes on the order of log n steps.

 The logic behind ignoring these details
 when n becomes very large

 eventually log n will exceed any constant value.
 for such large values of n and any values of the constants c and c'

 an algorithm with c log n is asymptotically better than an algorithm with
c' log² n

ASYMPTOTIC COMPLEXITY

 n must indeed be very large for log n to
overshadow the constant 500

 In practice
 we do not totally ignore the constant factors
 We take a two-step approach

 First, we determine which algorithm is likely to be
better for large problem sizes
 through asymptotic analysis

 If we have reason to doubt this conclusion
 we resort to an exact analysis to determine the constant

factors involved

ASYMPTOTIC COMPLEXITY

 Some notations
 Given two functions ƒ(n) and g(n) we define the

relationships
 “O” (big-oh)

 “Ω” (big-omega)

 “Θ” (theta)

ASYMPTOTIC COMPLEXITY

 notations allow us to compare the growth rates of
different functions
 ƒ(n) = O(g(n)) means that ƒ(n) grows no faster than

g(n)
 for n sufficiently large and a suitably chosen constant c

 ƒ(n) always remains below c g(n)

 ƒ(n) = Ω(g(n)) means that ƒ(n) grows at least as fast as
g(n)
 Eventually ƒ(n) will exceed c g(n) for all n beyond n0

 ƒ(n) = Θ(g(n)) means that ƒ(n) and g(n) grow at about
the same rate
 value of f(n) is always bounded by c g(n) and c’ g(n)

(for n > n0)

ASYMPTOTIC COMPLEXITY

 notations allow us to compare the growth rates
of different functions

ASYMPTOTIC COMPLEXITY

 In other words

ASYMPTOTIC COMPLEXITY

 At a very coarse level

Complexity classes

 Problems are divided into several complexity
classes
 Based on their running times on a single-processor

 Problems said to belong to the P class
 running times are upper bounded by polynomials in n
 generally considered to be tractable.

 Even if the polynomial is of a high degree

 there is still hope that a reasonable running time may be
obtained
 by improvements in the algorithm or in computer

performance

Complexity classes

 problems said to belong to NP
(nondeterministic polynomial) class
 best known deterministic algorithm runs in

exponential time
 But the correctness of the solution can be verified in

polynomial time

 They are intractable
 E.g., subset-sum problem

 Given a set of n integers and a target sum s
 determine if a subset of the integers in the given set

add up to s

Complexity classes

 problems said to belong to NP-complete class
 any problem in NP can be transformed to any one of

these problems
 by a computationally efficient process

 The subset-sum problem is known to be NP-complete

 if one ever finds an efficient solution one of these
problems
 this proves P = NP

 are the “hardest” problems in the NP class
 proving that a problem is NP-complete removes any hope

of finding an efficient algorithm

Complexity classes

 problems said to belong to NP-hard class
 problems that are not even in NP

 verifying that a claimed solution to such a problem
is correct is currently intractable

 we do not know to be in NP
 but do know that any NP problem can be reduced to it

by a polynomial-time algorithm

 are at least as hard as any NP problem

Complexity classes

Parallelizable tasks and the
NC class
 parallel processing

 is generally of no avail for solving NP problems
 A problem that takes 400 billion centuries on a

uniprocessor
 if it can be perfectly parallelized over 1 billion

processors
 It would still take 400 centuries

 is useful for speeding up the execution time of the
problems in P
 even a factor of 1000 speed-up can mean the

difference between practicality and impracticality

Parallelizable tasks and the
NC class
 The NC class

 efficiently parallelizable problems in P
 defined as

 problems that can be solved
 By at most polylogarithmic in the problem size n, i.e., T(p)

= O(logk n) for some constant k

 using no more than a polynomial number p = O(nl) of
processors

 Sorting is a good example

Parallel programming
paradigms
 Divide and Conquer

 Decompose the problem of size n into two or more
“smaller” subproblems.
 takes Td(n) time when done in parallel

 Solve the subproblems independently and obtain the
corresponding results
 the time Ts to solve them will likely be less than T(n)

 Finally, combine the results of the subproblems to
compute the answer to the original problem.
 If the combining can be done in time Tc(n),

 the total computation time is given by
T(n) = Td(n) + Ts + Tc (n).

Parallel programming
paradigms
 Divide and Conquer

 is perhaps the most important tool for devising
parallel algorithms

 E.g., sorting a list of n keys
 decompose the list into two halves

 sort the two sublists independently in parallel

 merge the two sorted sublists into a single sorted list

Parallel programming
paradigms
 Randomization

 Often balanced divide and conquer is impossible,
or computationally difficult
 Obstacles for achievable effective speed-up

 Large decomposition and combining overheads

 wide variations in the solution times of the subproblems

 it might be possible to use random decisions
 lead to good results with very high probability.

 Has led to the solution of many otherwise
unsolvable problems.

Parallel programming
paradigms
 Randomization

 Again, sorting provides a good example
 each of p processors begins with a sublist of size n/p
 each processor selects a random sample of size k from its local

sublist
 The kp samples from all processors form a smaller list that can

be readily sorted
 on a single processor
 or using an efficient parallel algorithm for small lists.

 this sorted list of samples is now divided into p equal segments
 the beginning values in the p segments used as thresholds to

divide the original into p sublists
 the lengths of these sublists will be approximately balanced with

high probability

Parallel programming
paradigms
 Randomization

 Again, sorting provides a good example
 The sorting problem has thus been transformed into

 an initial random sampling
 a small sorting problem for the kp samples
 broadcasting of the p threshold values to all processors
 permutation of the elements among the processors according

to the p threshold values
 p independent sorting problems of approximate size n/p

 The average case running time can be quite good
 However, there is no useful worst-case guarantee on its

running time.

Parallel programming
paradigms
 Randomization

 can be applied in several other ways
 Input randomization

 used to avoid bad data patterns that a particular
algorithm

 is efficient on the average

 might have close to worst-case performance

 Random search

 Control randomization

 Symmetry breaking

Parallel programming
paradigms
 Randomization

 can be applied in several other ways
 Input randomization

 Random search
 Searching a large space for an abundant element

 random search can lead to very good average-case
performance

 A deterministic linear search can lead to poor performance
 if all of the desired elements are clustered together

 Control randomization

 Symmetry breaking

Parallel programming
paradigms
 Randomization

 can be applied in several other ways
 Input randomization
 Random search
 Control randomization

 Randomly choosing the algorithm or an algorithm
parameter

 avoid consistently experiencing close to worst-case
performance
 with one algorithm
 For some unfortunate distribution of inputs

 Symmetry breaking

Parallel programming
paradigms
 Randomization

 can be applied in several other ways
 Input randomization

 Random search

 Control randomization

 Symmetry breaking
 deterministic processes may exhibit a cyclic behavior

that leads to deadlock
 Randomization can be used to break the symmetry and thus

the deadlock

Parallel programming
paradigms
 Approximation

 Iterative numerical methods often use approximation
 begin with some rough estimates for the answers
 successively refine these estimates using numerical calculations

 Advantage
 fairly precise results can be obtained rather quickly
 additional iterations may be used to increase the precision if

desired
 It is a powerful method for time/cost/accuracy trade-offs

because
 the computations for each iteration can be easily parallelized

over any number p of processors
 the computation can still be performed at lower precision in case

of deadline limitations

