
PARALLEL PROCESSING SYSTEMS

Chapter 3: Parallel Algorithm Complexity



Introduction 

 Algorithms can be analyzed in two ways
 precise 

 we count the number of operations performed in the worst or 
average case 
 (e.g., arithmetic, memory access, data transfer) 

 use these counts as indicators of algorithm complexity
 is quite tedious and at sometimes impossible to perform.

 approximate. 
 We resort to various approximate analysis methods
 keeping in mind the error margin of the method applied

 if such an approximate analysis indicates that Algorithm A is 1.2 
times slower than Algorithm B

 we may not be able to conclude with certainty that Algorithm B 
is better for the task at hand.



ASYMPTOTIC COMPLEXITY

 Suppose that 
 a parallel sorting algorithm requires (log2 n)² compare–exchange steps
 another one (log2 n)²/ 2 + 2 log2 n steps
 a third one 500 log2 n steps 

 Ignoring lower-order terms and multiplicative constants
 we may say that 

 the first two algorithms take on the order of log² n steps 
 the third one takes on the order of log n steps. 

 The logic behind ignoring these details 
 when n becomes very large

 eventually log n will exceed any constant value. 
 for such large values of n and any values of the constants c and c'

 an algorithm with c log n is asymptotically better than an algorithm with 
c' log² n



ASYMPTOTIC COMPLEXITY

 n must indeed be very large for log n to 
overshadow the constant 500 

 In practice
 we do not totally ignore the constant factors 
 We take a two-step approach

 First, we determine which algorithm is likely to be 
better for large problem sizes
 through asymptotic analysis 

 If we have reason to doubt this conclusion
 we resort to an exact analysis to determine the constant 

factors involved



ASYMPTOTIC COMPLEXITY

 Some notations
 Given two functions ƒ(n) and g(n) we define the 

relationships 
 “O” (big-oh)

 “Ω” (big-omega)

 “Θ” (theta)



ASYMPTOTIC COMPLEXITY

 notations allow us to compare the growth rates of 
different functions
 ƒ(n) = O(g(n)) means that ƒ(n) grows no faster than 

g(n)
 for n sufficiently large and a suitably chosen constant c

 ƒ(n) always remains below c g(n)

 ƒ(n) = Ω(g(n)) means that ƒ(n) grows at least as fast as 
g(n)
 Eventually ƒ(n) will exceed c g(n) for all n beyond n0 

 ƒ(n) = Θ(g(n)) means that ƒ(n) and g(n) grow at about 
the same rate 
 value of f(n) is always bounded by c g(n) and c’ g(n) 

(for n > n0)



ASYMPTOTIC COMPLEXITY

 notations allow us to compare the growth rates 
of different functions



ASYMPTOTIC COMPLEXITY

 In other words



ASYMPTOTIC COMPLEXITY

 At a very coarse level



Complexity classes

 Problems are divided into several complexity 
classes 
 Based on their running times on a single-processor

 Problems said to belong to the P class 
 running times are upper bounded by polynomials in n 
 generally considered to be tractable. 

 Even if the polynomial is of a high degree

 there is still hope that a reasonable running time may be 
obtained
 by improvements in the algorithm or in computer 

performance



Complexity classes

 problems said to belong to NP 
(nondeterministic polynomial) class
 best known deterministic algorithm runs in 

exponential time
 But the correctness of the solution can be verified in 

polynomial time

 They are intractable 
 E.g., subset-sum problem

 Given a set of n integers and a target sum s
 determine if a subset of the integers in the given set 

add up to s



Complexity classes

 problems said to belong to NP-complete class
 any problem in NP can be transformed to any one of 

these problems
 by a computationally efficient process

 The subset-sum problem is known to be NP-complete

 if one ever finds an efficient solution one of these 
problems
 this proves P = NP

 are the “hardest” problems in the NP class
 proving that a problem is NP-complete removes any hope 

of finding an efficient algorithm



Complexity classes

 problems said to belong to NP-hard class
 problems that are not even in NP

 verifying that a claimed solution to such a problem 
is correct is currently intractable

 we do not know to be in NP 
 but do know that any NP problem can be reduced to it 

by a polynomial-time algorithm

 are at least as hard as any NP problem



Complexity classes



Parallelizable tasks and the 
NC class
 parallel processing 

 is generally of no avail for solving NP problems
 A problem that takes 400 billion centuries on a 

uniprocessor
 if it can be perfectly parallelized over 1 billion 

processors 
 It would still take 400 centuries 

 is useful for speeding up the execution time of the 
problems in P
 even a factor of 1000 speed-up can mean the 

difference between practicality and impracticality



Parallelizable tasks and the 
NC class
 The NC class

 efficiently parallelizable problems in P
 defined as 

 problems that can be solved 
 By at most polylogarithmic in the problem size n, i.e., T( p) 

= O(logk n) for some constant k

 using no more than a polynomial number p = O( nl ) of 
processors

 Sorting is a good example



Parallel programming 
paradigms
 Divide and Conquer 

 Decompose the problem of size n into two or more 
“smaller” subproblems. 
 takes Td(n) time when done in parallel

 Solve the subproblems independently and obtain the 
corresponding results
 the time Ts to solve them will likely be less than T(n)

 Finally, combine the results of the subproblems to 
compute the answer to the original problem. 
 If the combining can be done in time Tc(n), 

 the total computation time is given by 
T(n ) = Td(n ) + Ts + Tc (n).



Parallel programming 
paradigms
 Divide and Conquer 

 is perhaps the most important tool for devising 
parallel algorithms

 E.g., sorting a list of n keys
 decompose the list into two halves

 sort the two sublists independently in parallel

 merge the two sorted sublists into a single sorted list



Parallel programming 
paradigms
 Randomization

 Often balanced divide and conquer is impossible, 
or computationally difficult
 Obstacles for achievable effective speed-up

 Large decomposition and combining overheads

 wide variations in the solution times of the subproblems

 it might be possible to use random decisions
 lead to good results with very high probability. 

 Has led to the solution of many otherwise 
unsolvable problems.



Parallel programming 
paradigms
 Randomization

 Again, sorting provides a good example
 each of p processors begins with a sublist of size n/p
 each processor selects a random sample of size k from its local 

sublist
 The kp samples from all processors form a smaller list that can 

be readily sorted
 on a single processor 
 or using an efficient parallel algorithm for small lists. 

 this sorted list of samples is now divided into p equal segments 
 the beginning values in the p segments used as thresholds to 

divide the original into p sublists
 the lengths of these sublists will be approximately balanced with 

high probability



Parallel programming 
paradigms
 Randomization

 Again, sorting provides a good example
 The sorting problem has thus been transformed into 

 an initial random sampling
 a small sorting problem for the kp samples
 broadcasting of the p threshold values to all processors
 permutation of the elements among the processors according 

to the p threshold values
 p independent sorting problems of approximate size n/p

 The average case running time can be quite good
 However, there is no useful worst-case guarantee on its 

running time.



Parallel programming 
paradigms
 Randomization

 can be applied in several other ways
 Input randomization

 used to avoid bad data patterns that a particular 
algorithm

 is efficient on the average

 might have close to worst-case performance

 Random search

 Control randomization

 Symmetry breaking



Parallel programming 
paradigms
 Randomization

 can be applied in several other ways
 Input randomization

 Random search
 Searching a large space for an abundant element

 random search can lead to very good average-case 
performance

 A deterministic linear search can lead to poor performance 
 if all of the desired elements are clustered together

 Control randomization

 Symmetry breaking



Parallel programming 
paradigms
 Randomization

 can be applied in several other ways
 Input randomization
 Random search
 Control randomization

 Randomly choosing the algorithm or an algorithm 
parameter

 avoid consistently experiencing close to worst-case 
performance 
 with one algorithm
 For some unfortunate distribution of inputs

 Symmetry breaking



Parallel programming 
paradigms
 Randomization

 can be applied in several other ways
 Input randomization

 Random search

 Control randomization

 Symmetry breaking
 deterministic processes may exhibit a cyclic behavior 

that leads to deadlock
 Randomization can be used to break the symmetry and thus 

the deadlock



Parallel programming 
paradigms
 Approximation

 Iterative numerical methods often use approximation
 begin with some rough estimates for the answers 
 successively refine these estimates using numerical calculations

 Advantage
 fairly precise results can be obtained rather quickly
 additional iterations may be used to increase the precision if 

desired
 It is a powerful method for time/cost/accuracy trade-offs 

because
 the computations for each iteration can be easily parallelized 

over any number p of processors
 the computation can still be performed at lower precision in case 

of deadline limitations


