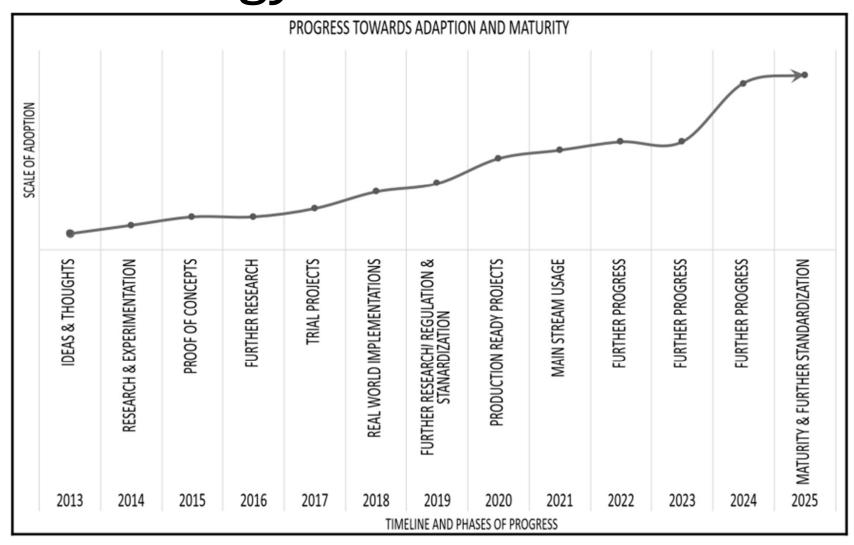
BLOCKCHAIN TECHNOLOGY

Introduction


References

- Mastering Blockchain, Imran Bashir, 2nd Edition, Packt Publishing
- The vast ocean of Internet knowledge

The growth of blockchain technology

- With the invention of Bitcoin in 2008
 - the world was introduced to a new concept, which
 - is now likely to revolutionize the whole of society.
 - is something that promises to have an impact on every industry
- Some describe blockchain as a revolution
- Another school of thought believes that it is going to be more evolutionary
 - it will take many years before any practical benefits of blockchain reach fruition.
 - This thinking is correct to some extent,
 - but, the revolution has already begun.

The growth of blockchain technology

- Understanding distributed systems is essential
 - Blockchain
 - is a distributed ledger which can be centralized or decentralized.
 - usually used as a decentralized platform.
 - has properties of both decentralized and distributed paradigms.
 - is a decentralized-distributed system

- Distributed systems are a computing paradigm
 - two or more nodes work with each other
 - in a coordinated fashion to achieve a common outcome.
 - users see it as a single logical platform

- A node in a distributed system
 - can be defined as an individual player
 - can send and receiving messages to and from any other node.
 - can be honest, faulty, or malicious
 - has memory and a processor.
- A node that exhibits irrational behavior is also known as a Byzantine node

- The Byzantine Generals problem
 - a group of army generals who lead different parts of the Byzantine army are planning to attack or retreat from a city.
 - The only way of communicating among them is via a messenger.
 - They need to agree to strike at the same time in order to win.
 - The issue is that one or more generals might be traitors who could send a misleading message.
 - Therefore, there is a need for a viable mechanism that allows for agreement among the generals,
 - even in the presence of the treacherous ones
- As an analogy to distributed systems
 - the generals can be considered nodes
 - the traitors as Byzantine (malicious) nodes
 - and the messenger can be thought of as a channel of communication among the generals.

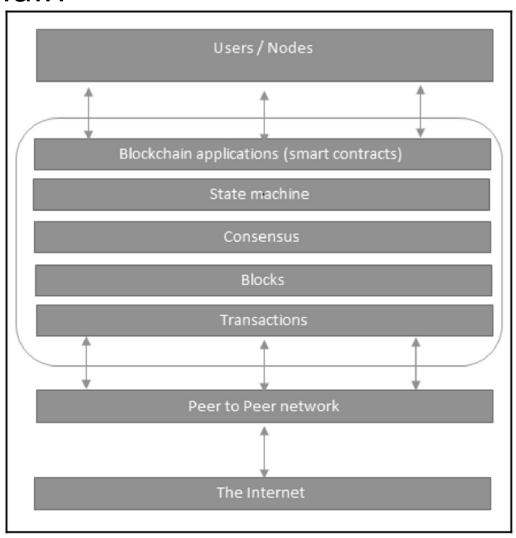
- The primary challenges in distributed system
 - coordination between nodes
 - fault tolerance.
- They should tolerate
 - faulty nodes
 - network links break

- Electronic cash
 - The concept is not new
 - Since the 1980s, e-cash protocols have existed
 - Two fundamental issues need to be addressed
 - Accountability
 - ensure that cash
 - is spendable only once (double-spend problem)
 - can only be spent by its rightful owner
 - Anonymity
 - protect users' privacy (As with physical cash)

- Electronic cash
 - Bitcoin: the first practical implementation in 2009
 - solved the problem of distributed consensus in a trustless network
 - It used
 - public key cryptography
 - Proof of Work (PoW) mechanism
 - The key innovation was
 - the idea of an ordered list of blocks composed of transactions
 - cryptographically secured by the PoW mechanism

- Blockchain
 - A groundbreaking paper in 2008
 - Entitled "Bitcoin: A Peer-to-Peer Electronic Cash System"
 - Under the pseudonym Satoshi Nakamoto
 - No one knows the actual identity
 - remained active in the Bitcoin developer community until 2011
 - He then handed over Bitcoin development to its core developers and simply disappeared.
 - It introduced the term chain of blocks.
 - Evolved over the years into the word blockchain

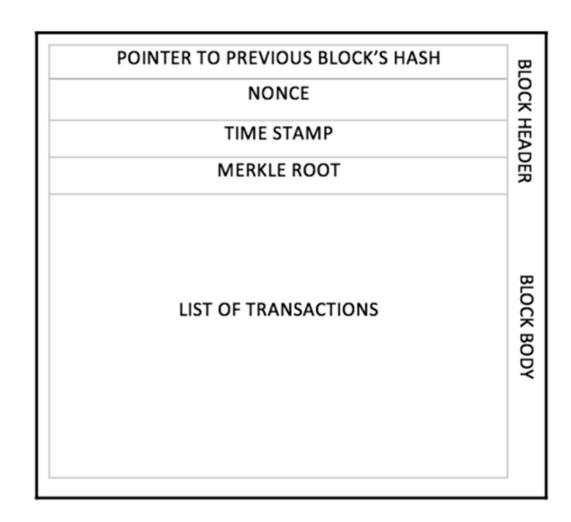
- Blockchain
 - Technical definition:
 - A peer-to-peer, distributed ledger that is
 - cryptographically-secure
 - append-only
 - immutable (extremely hard to change)
 - updateable only via consensus or agreement among peers


- Blockchain
 - Peer-to-peer
 - Means that
 - there is no central controller in the network
 - all participants talk to each other directly
 - Allows for
 - cash transactions to be exchanged
 - directly among the peers
 - without a third-party involvement (such as a bank)

- Blockchain
 - Distributed ledger
 - a ledger is spread across the network among all peers in the network
 - each peer holds a copy of the complete ledger
 - Cryptographically-secure
 - cryptography has been used to provide security services
 - make the ledger secure against tampering and misuse

- Blockchain
 - Append-only
 - data can only be added to the blockchain in timeordered sequential order
 - once data is added to the blockchain
 - it is almost impossible to change that data
 - can be considered practically immutable

- Blockchain
 - Updateable only via consensus
 - most critical attribute
 - gives the power of decentralization
 - no central authority is in control of updating the ledger.
 - any update
 - is validated against strict criteria
 - defined by the blockchain protocol
 - added to the blockchain only after a consensus among all nodes


Blockchain

- Blockchain
 - A block
 - is merely a selection of transactions bundled together
 - A transaction is a record of an event
 - E.g., the event of transferring cash from a sender's account to a beneficiary's account
 - Has a reference to a previous block
 - unless it is a genesis block (the first block in the blockchain)
 - Has a nonce
 - a number that is generated and used only once
 - used
 - in PoW consensus algorithms
 - for transaction replay protection

- Blockchain
 - A block
 - Has a Merkle root
 - a hash of all the nodes of a Merkle tree.
 - Merkle trees are widely used to validate the large data structures securely and efficiently.
 - Merkle tree in the blockchain world
 - is used to allow efficient verification of transactions.
 - presents in the block header section of a block
 - which is the hash of all transactions in a block.
 - Its verification is only required to verify all transactions present in the Merkle tree

- Blockchain
 - A block

- Types of Blockchain
 - Permissionless
 - Participants of the network are not known
 - Anyone can participate in the network
 - Permissioned
 - Participants of the network are already known and trusted
 - do not need to use a distributed consensus mechanism
 - instead, an agreement protocol is used to maintain a shared version of the blockchain.
 - There is no need for a mining mechanism
 - All transaction verifiers are already preselected by a central authority

Blockchain Demo

- What is Consensus & Why do we need it?
 - is a method for coming to agreement over a shared state
 - Solving Byzantine general problem
 - Contain two parts:
 - Sybil resistance mechanism: defends against users creating a large amount fake nodes
 - PoW
 - PoS
 - Chain selection algorithm
 - E.g. Nakamoto longest chain rule

- Classical consensus protocols
 - has been used since the 1980
 - are based on all-to-all voting
 - They typically have
 - a designated leader who initiates the decision process
 - a series of rounds of all-to-all communication to ensure that all correct nodes reach the same decisions with absolute certainty.

- Classical consensus protocols
 - They typically require quadratic communication overhead with all-to-all communication of O(n²)
 - with 100 nodes each round requires 10,000 messages.
 - In the event that the leader fails the communication overhead increases further to O(n³)
 - they need accurate knowledge of membership of all participating nodes
 - If an attacker gains control of 1/3 +1 of the network, they can launch a double-spend attack which is guaranteed to succeed.

- Classical consensus protocols
 - HotStuff: The most scalable Classical protocol used by Facebooks
 - only supports approximately 100 validators before the performance begins to suffer.
 - They are not suitable for large, open and permissionless networks due to
 - limitations in the scalability of number of participants
 - being more fragile where accurate membership needs to be maintained

- Nakamoto consensus protocols
 - The first breakthrough in consensus protocols
 - have become popular with the rise of Bitcoin.
 - does away with the requirement for all-to-all communication
 - Is based on the longest chain rule
 - provide a probabilistic rather than deterministic safety guarantee.
 - Unlike classical consensus protocols
 - Probability of a double spend is arbitrarily small
 - enabling high value financial systems to be constructed on this foundation