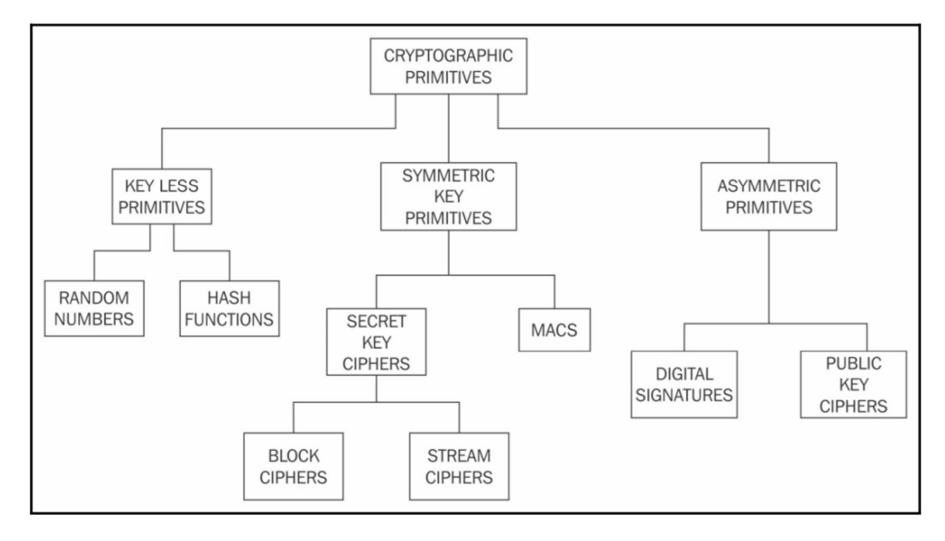

BLOCKCHAIN TECHNOLOGY

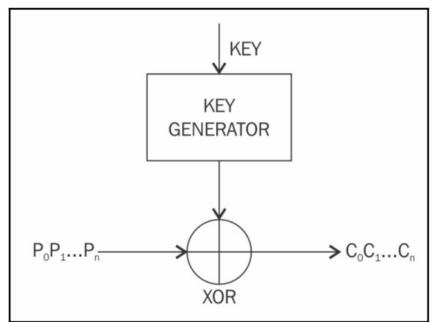
Introduction

- Cryptography
 - the science of making information secure in the presence of adversaries.
 - under the assumption that limitless resources are available to adversaries.
- Ciphers
 - algorithms used to encrypt or decrypt data
 - The data is meaningless to adversary without decryption
 - which requires a secret key.

Introduction

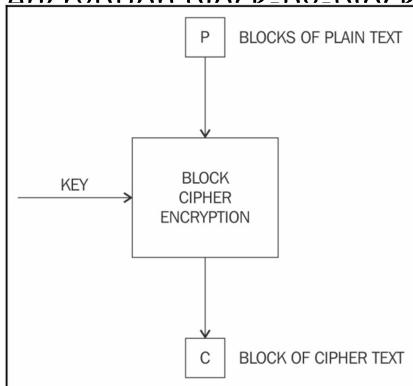

Cryptography

Introduction


- Cryptography
 - primarily used to provide a confidentiality service
 - the assurance that information is only available to authorized entities
 - also provides other security services
 - Integrity
 - the assurance that information is modifiable only by authorized entities
 - Authentication
 - The assurance about the identity of an entity or the validity of a message
 - Non-repudiation
 - the assurance that an entity cannot deny a previous commitment or action
 - Accountability
 - the assurance which states that actions affecting security can be traced back to the responsible party

Taxonomy of Cryptographic primitives

- Uses the same key both encryption and decryption
- Also known as shared key cryptography
 - The key must be established or agreed upon before the data exchange occurs
- Another name: secret key cryptography
- Two types of symmetric ciphers
 - stream ciphers
 - E.g., RC4 and A5
 - block ciphers.
 - E.g., Data Encryption Standard (DES) and Advanced Encryption Standard (AES)

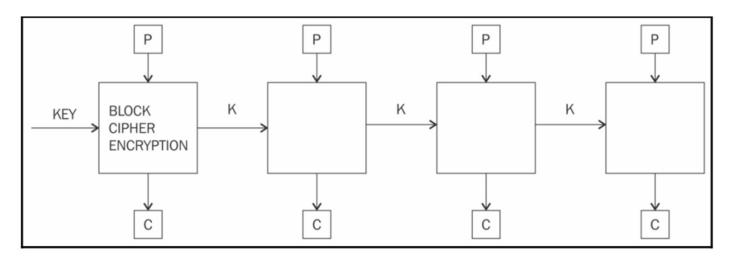

- Stream ciphers
 - apply encryption algorithms on a bit-by-bit basis to data using a keystream.
 - encryption and decryption are the same function
 - they are simple modulo-2 additions or XOR operations.

- Stream ciphers
 - Two types
 - synchronous stream ciphers
 - the keystream is dependent only on the key
 - asynchronous stream ciphers
 - have a keystream that is also dependent on the encrypted data
 - The fundamental requirement is the security and randomness of keystreams

Block ciphers

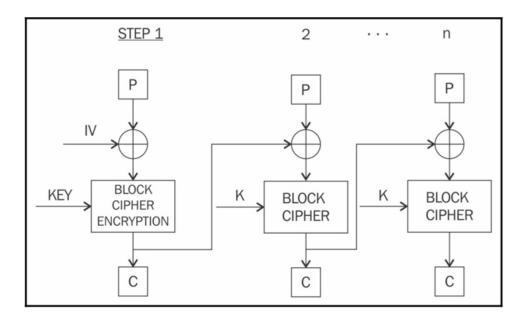
- break up the data to be encrypted into blocks of a fixed length
- apply the <u>approximation black_by_black</u>

- Block ciphers
 - combine multiple rounds of repeated operations to achieve
 - 1. Confusion
 - makes the relationship between the encrypted text and plaintext complex
 - is achieved by substitution
 - In practice, A in plaintext is replaced by X in encrypted text.
 - In modern algorithms, it is performed using lookup tables called S-boxes
 - diffusion

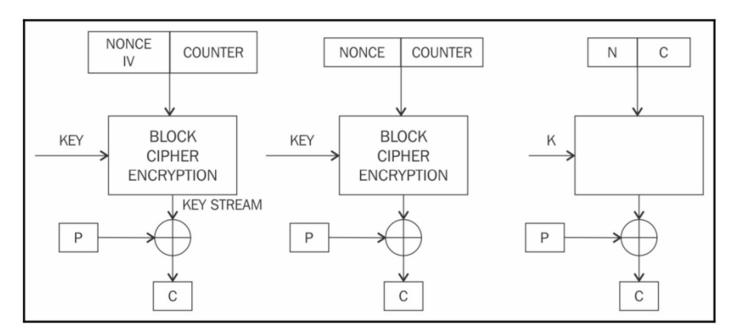

- Block ciphers
 - combine multiple rounds of repeated operations to achieve
 - 2. Diffusion
 - spreads the plaintext statistically over the encrypted data
 - ensures that
 - even if a single bit is changed in the input text
 - it results in changing at least half (on average) of the bits in the ciphertext

Block ciphers

- multiple modes of operation
 - Electronic Code Book (ECB)
 - Cipher Block Chaining (CBC)
 - Counter (CTR) mode


Block ciphers

- Electronic Code Book (ECB)
 - the most straightforward mode
 - applying the encryption algorithm one-by-one to each block of plaintext.
 - should not be used in practice
 - it is insecure and can reveal information


Block ciphers

- Cipher Block Chaining (CBC)
 - each block of plaintext is XOR'd with the previouslyencrypted block
 - uses the Initialization Vector (IV) to encrypt the first block.
 - recommended that the IV be randomly chosen

Block ciphers

- Counter (CTR) mode
 - effectively uses a block cipher as a stream cipher.
 - a unique nonce is supplied that is concatenated with the counter value to produce a keystream

Data Encryption Standard

- introduced by the U.S. National Institute of Standards and Technology (NIST)
- it was in widespread use during the 1980s and 1990s.
- it did not prove to be very resistant to brute force attacks

Data Encryption Standard

- uses a key of only 56 bits
 - which raised some concerns
- This problem was addressed with the introduction of Triple DES (3DES)
 - proposed the use of a 168-bit key
 - three 56-bit keys
 - the same number of executions of the DES algorithm
 - making brute force attacks almost impossible
 - other limitations
 - Slow performance
 - 64-bit block size

- Advanced Encryption Standard (AES)
 - In 2001, an encryption algorithm named Rijndael was standardized as Advanced Encryption Standard (AES).
 - So far, no attack has been found against AES that is more effective than the brute-force method.
 - The original version of Rijndael permits different key and block sizes
 - In the AES standard
 - only a 128-bit block size is allowed
 - key sizes of 128-bit, 192-bit, and 256-bit are permissible