
PARALLEL PROCESSING SYSTEMS

Chapter 4: Models of Parallel Processing



Introduction 

 we deal with abstract models of real machines
 Benefits

 technology-independent theories 

 algorithmic techniques that are applicable to many 
existing and future machines

 Disadvantages 
 inability to predict the actual performance accurately 

 tendency to simplify the models too much, so that 
they no longer represent any real machine.



Development of early models

 Associative processing (AP) 
 perhaps the earliest form of parallel processing

 Associative or content-addressable memories 
(AMs, CAMs)
 allow memory cells to be accessed based on contents 

 came into the forefront in the 1950s when advances 
in technologies 

 the origins of research go back to the 1943



Development of early models

 Associative processing (AP) 
 Early memories 

 provided two basic capabilities
 masked search

 looking for a particular bit pattern in selected fields of all 
memory words 

 marking those for which a match is indicated
 parallel write
 storing a given bit pattern into selected fields of all memory 

words that have been previously marked. 

 suffice for 
 programming of sophisticated searches 
 even parallel arithmetic operations



Development of early models

 Perceptrons
 introduced in the 1950s

 a neuronlike device in charge of processing a single 
pixel in a digital image

 laid the foundation for the modern field of neural 
networks



Development of early models

 Cellular automata 
 a model of fundamental importance introduced in 1960
 natural extensions von Neumann-type sequential computers
 typically viewed as a collection of identical finite-state automata

 are interconnected, through their input–output links, in a regular 
fashion

 state transitions controlled by 
 its own state
 the states of the connected neighbors
 its primary inputs, if any [Garz95]. 

 Systolic arrays can be viewed as cellular automata
 basis of high-performance VLSI-based designs 

 In recent years interest in cellular automata 
 as theoretical models of massively parallel systems 
 as tools for modeling physical phenomena 



SIMD versus MIMD architectures

 Most early parallel machines had SIMD 
designs
 a central unit 

 fetches and interprets the instructions 

 broadcasts appropriate control signals to several 
processors operating in lockstep. 



SIMD versus MIMD architectures

 Two fundamental design choices in SIMD:
 Synchronous versus asynchronous

 Custom- versus commodity-chip



SIMD versus MIMD architectures

 Two fundamental design choices in SIMD:
 Synchronous versus asynchronous

 each processor can execute or ignore the instruction 
 based on its local state or data-dependent conditions

 leads to inefficiency in conditional computations
 “if-then-else” statement 

 is executed by 
 first enabling the processors for which the condition is satisfied 
 then flipping the “enable” bit before getting into the “else” part. 

 On the average, half of the processors will be idle for each 
branch.

 situation is even worse for “case” statements



SIMD versus MIMD architectures

 Two fundamental design choices in SIMD:
 Synchronous versus asynchronous

 A possible cure is to use the asynchronous version known 
as SPMD 
 where each processor runs its own copy of the common 

program

 The advantage in an “if-then-else” computation
 each processor will only spend time on the relevant branch

 The disadvantages include the need for 
 occasional synchronization 

 higher complexity of each processor
 must have a program memory and instruction fetch/decode logic.



SIMD versus MIMD architectures

 Two fundamental design choices in SIMD:
 Custom versus commodity-chip

 designed can be based on 
 commodity (off-the-shelf) components 

 Components are general purpose
 tend to be inexpensive because of mass production
 will likely contain unwanted elements 

 may complicate the design, manufacture, and testing of the SIMD 
machine 

 may introduce speed penalties as well

 custom chips
 generally, offer better performance 
 but lead to much higher cost 



SIMD versus MIMD architectures

 MIMD has become more popular recently
 Because of 

 higher flexibility 
 their ability to take advantage of commodity 

microprocessors
 avoiding lengthy development cycles 
 getting a free ride on the speed improvement curve for such 

microprocessors

 MIMD are most effective for medium to coarse-
grain parallel applications
 the computation is divided into relatively large 

subcomputations or tasks 
 executions are assigned to the various processors. 



SIMD versus MIMD architectures

 Three fundamental design choices in MIMD:
 MPP—massively or moderately parallel processor

 Tightly versus loosely coupled MIMD

 Explicit message passing versus virtual shared 
memory



SIMD versus MIMD architectures

 Three fundamental design choices in MIMD:
 MPP—massively or moderately parallel processor

 the “herd of elephants” or the “army of ants” 
approach?
 A general answer cannot be given to this question

 the best choice is both application- and technology-
dependent



SIMD versus MIMD architectures

 Three fundamental design choices in MIMD:
 Tightly versus loosely coupled MIMD

 Which is a better approach
 Using specially designed multiprocessors/ multicomputers

 using network of workstations (cluster computing)
 collection of ordinary workstations 

 interconnected by commodity networks (such as Ethernet or ATM) 

 whose interactions are coordinated by special system software and 
distributed file systems

 has been gaining popularity in recent years

 However, many open problems exist for taking full advantage 
of such architectures



SIMD versus MIMD architectures

 Three fundamental design choices in MIMD:
 Explicit message passing versus virtual shared 

memory
 Which scheme is better

 forcing the users to explicitly specify all messages that 
must be sent between processors 

 allow users to program in an abstract higher-level model
 The required messages automatically generated by the 

system software



Global versus distributed 
memory
 Global memory

 a central location where all processors can access it with equal 
ease

 a special processor-to-memory network
 must have very low latency

 optional processor-to-processor network 
 for coordination and synchronization purposes



Global versus distributed 
memory
 Global memory multiprocessor

 Is characterized by 
 the type and number p of processors

 the capacity and number m of memory modules

 and the network architecture

 p and m are independent parameters
 But must be comparable in magnitude

 too few memory modules causes contention among the 
processors 

 too many would complicate the network design.



Global versus distributed 
memory
 Global memory multiprocessor

 Example networks
1. Crossbar switch

1. O(pm) complexity

2. quite costly for highly parallel systems 

2. Single or multiple buses 

3. Multistage interconnection network (MIN)
1. cheaper than Example 1

2. more bandwidth than Example 2



Global versus distributed 
memory
 Global memory multiprocessor

 network type affects efficient algorithm development
 programmers should be aware of tedious 

considerations

 PRAM abstract model to reduce difficulties



Global versus distributed 
memory
 Global memory multiprocessor

 private cache memory 
 reasonable size memory within each processor

 is used to reduce the processor-to-memory traffic
 Because of locality of data access



Global versus distributed 
memory
 Global memory multiprocessor

 private cache memory 
 cache coherence problem in the case of multiple caches

 Different tackling approaches
1. Do not cache shared data at all 

 Works for small volume shared data with infrequent access to it

2. Do not cache “writeable” shared data
3. Use a cache coherence protocol

 may introduce a nontrivial overhead
 Examples

 snoopy caches for bus-based systems 
 each cache monitors all data transfers on the bus

 directory-based schemes 
 writeable shared data are “owned” by a single processor or cache at any 

given time
 a directory is used to determine physical data locations



Global versus distributed 
memory
 Distributed-memory architectures

 A collection of p processors
 each with its own private memory
 communicates through a network

 the latency of the network may be less 
critical
 each processor is likely to access its 

own local memory most of the time

 the bandwidth of the network may or 
may not be critical depending on 
 the type of parallel applications 
 the extent of task interdependencies



Global versus distributed 
memory
 Distributed-memory architectures

 each processor usually has multiple 
links to network

 Also known as nonuniform memory 
access (NUMA) architectures
 access to remote memory modules 

involves considerably more latency

 inattention to data and task partitioning 
may have dire consequences

 load-balancing is also of some 
importance



The PRAM shared-memory model

 RAM (random-access machine)
 The theoretical model used for SISD class

 not to be confused with random-access memory

 PRAM
 The parallel version of RAM

 an abstract model of the class of global-memory 
parallel processors



The PRAM shared-memory model

 In the formal PRAM model
 a single processor is assumed to be active initially
 In each computation step, each active processor 

 can read from and write into the shared memory 
 can also activate another processor. 

 log2 p steps are necessary to activate all p 
processors. 

 In our discussions
 the set of active processors is usually implied
 We do not explicitly activate the processors.



The PRAM shared-memory model

 PRAM algorithms might involve statements like
 “for 0 ≤ i < p, Processor i adds the contents of memory 

location 2i + 1 to the memory location 2i” 
 different locations accessed by the various processors

 “each processor loads the contents of memory location 
x into its Register 2” 
 the same location accessed by all processors

 The problem of multiple processors attempting to 
write into a common memory location must be 
resolved in some way. 
 A detailed discussion of this issue is postponed to 

Chapter 5



The PRAM shared-memory model

 can also be SIMD
 all processors obey the same instruction in each 

machine cycle

 they often execute the operation on different data 
 because of indexed and indirect (register-based) 

addressing



The PRAM shared-memory model

 the previous depicted model is highly 
theoretical. 
 processor-to-memory connectivity would have to 

be realized by an interconnection network. 



Distributed-memory or graph 
models
 is characterized primarily by its network 

 usually represented as a graph
 vertices corresponding to processor–memory nodes 

 edges corresponding to communication links. 

 directed edges if communication links are 
unidirectional

 undirected edges for bidirectional communication



Distributed-memory or graph 
models
 is characterized primarily by its network 

 Important parameters include
 Network diameter

 the longest of the shortest paths between various pairs of 
nodes

 should be relatively small if network latency is to be 
minimized

 is more important with store-and-forward routing 
 a message is stored in its entirety and retransmitted by 

intermediate nodes
 Is less important with wormhole routing 

 a message is quickly relayed through a node in small pieces
 Bisection (band)width
 Vertex or node degree



Distributed-memory or graph 
models
 is characterized primarily by its network 

 Important parameters include
 Network diameter
 Bisection (band)width: 

 the smallest number (total capacity) of links that need to be 
cut in order to divide the network into two subnetworks of 
half the size. 

 is important when nodes communicate with each other in a 
random fashion. 

 A small bisection (band)width 
 limits the rate of data transfer between the two halves of the 

network
 affects the performance of communication-intensive 

algorithms.
 Vertex or node degree



Distributed-memory or graph 
models
 is characterized primarily by its network 

 Important parameters include
 Network diameter
 Bisection (band)width
 Vertex or node degree: 

 the number of communication ports required for each 
node

 should be a constant independent of network size 
 For scalability of the architecture 

 has a direct effect on the cost of each node
 more significant when the node is required to communicate 

over all of its ports at once.


