
PARALLEL PROCESSING SYSTEMS

Chapter 5: PRAM and Basic Algorithms



Introduction 

 we deal with five key building-block 
algorithms
 Data broadcasting 

 Semigroup or fan-in computation 

 Parallel prefix computation

 Ranking the elements of a linked list

 Matrix multiplication



PRAM submodels and assumptions

 concurrent operation of p processors on m-
word 
 accessible to all of them

 in three phases of one cycle, processor i can do :
1. Fetch an operand from the source address si in the 

shared memory 

2. Perform some computations on the data held in 
local registers

3. Store a value into the destination address di in the 
shared memory



PRAM submodels and assumptions

 Not all three phases need to be present in 
every cycle
 a particular cycle may require 

 no new data from memory

 or no computation

 or no storing in memory



PRAM submodels and assumptions

 several processors may want to read/write the 
same memory location
 four submodels of the PRAM



PRAM submodels and assumptions

 CRCW sub-models
 Undefined: In case of multiple writes, the value written is undefined 

(CRCW-U)
 Detecting: A special code representing “detected collision” is written 

(CRCW-D).
 Common: Multiple writes allowed only if all store the same value 

(CRCW-C)
 sometimes called the consistent-write submodel.

 Random: The value written is randomly chosen from among those offered 
(CRCWR)
 sometimes called the arbitrary-write submodel.

 Priority: The processor with the lowest index succeeds in writing its value 
(CRCW-P)

 Max/Min: The largest/smallest of the multiple values is written (CRCW-
M)

 Reduction: The arithmetic sum (CRCW-S), logical AND (CRCW-A), 
logical XOR (CRCW-X), or some other combination of the multiple 
values is written.



PRAM submodels and assumptions

 Using computational power to order the submodels:
 Two PRAM submodels are equally powerful if each can 

emulate the other with a constant-factor slowdown
 A PRAM submodel is (strictly) less powerful than another 

submodel (denoted by the “<” symbol) 
 if there exist problems for which the former requires 

significantly more computational.
 E.g., the CRCW-D PRAM submodel is less powerful than the 

one that writes the maximum value
 the latter can find the largest number in a vector A of size p in a 

single step 
 Processor i reads A[i] and writes it to an agreed-upon location x

 the former needs at least Ω(log n) steps. 



Data broadcasting

 Simple, or one-to-all, broadcasting 
 one processor needs to send a data value to all other processors. 
 Trivial in the CREW or CRCW submodels

 sending processor can write the data value into a memory location
 all processors reading that data value in the next cycle. 
 done in Θ(1) steps. 

 Multicasting within groups 
 equally simple if each processor knows its group membership(s) 

 only members of each group read the multicast data for that group. 

 All-to-all broadcasting
 each of the p processors needs to send a data value to all other 

processors
 can be done through p separate broadcast operations 

 Θ(p) steps, which is optimal.



Data broadcasting

 Previous scheme is inapplicable to the EREW

 The simplest scheme for EREW
 make p copies of the data value

 say in a broadcast vector B of length p

 initially, Processor i writes its data value into B[0].

 Use recursive doubling to copy B[0] into all elements of B 
 in log 2 p steps

 let each processor read its own copy by accessing B[j]. 



Data broadcasting

 The simplest scheme for EREW
 Recursive doubling



Data broadcasting

 The simplest scheme for EREW
 allow us to use the idle processors for other tasks 

 to speed up algorithm execution

 or to reduce the memory access traffic 
 when the algorithm is ported to a physical shared-

memory machine

 in Step k of doubling process, only the first 2k

processors need to be active



Data broadcasting

 The simplest scheme for EREW



Data broadcasting

 The simplest scheme for EREW
 It is optimal for EREW PRAM

 initially a single copy of the data value exists
 at most one other processor can get the value 

 through a memory access in the first step

 In the second step
 two more processors can become aware of the data 

value

 Continuing in this manner
 at least log2 p read–write cycles are necessary



Data broadcasting

 all-to-all broadcasting in EREW
 let Processor j write its value into B[j]

 rather than into B[0]. 

 Each processor then reads the other p – 1 values in p –
1 memory accesses
 To ensure that all reads are exclusive

 Processor j 
 begins reading the values starting with B[j + 1]
 wrapping around to B[0] after reading B[p – 1].



Data broadcasting

 all-to-all broadcasting in EREW
 It is optimal 

 the shared memory is the only mechanism for 
interprocessor communication 

 each processor can read only one value in each 
machine cycle.



Data broadcasting

 a naive sorting algorithm
 let Processor j compute the rank R[j] of the data 

element S[j] 
 examining all other data elements 
 counting the number of elements S[l] that are smaller than 

S[j].
 then store S[j] into S[R[j]]. 



Semigroup or fan-in computation

 trivial for a CRCW of the “reduction” 
 if the reduction operator happens to be 

 E.g., sum of p values, one per processor
 can be done in a single cycle 

 each processor writing its corresponding value into a 
common



Semigroup or fan-in computation

 recursive doubling can be used on EREW 
 virtually identical EREW broadcasting

 with the copying operation replaced by a ( ) operation. 



Semigroup or fan-in computation

 recursive doubling can be used on EREW 
 It is optimal, needs Θ(log p) computation 

 in each machine cycle, a processor can combine only 
two values 

 the semigroup computation requires that we combine 
p values to get the result.



Semigroup or fan-in computation

 When each processors have n/p elements
 each processor 

 first combines its n/p elements 
 n/p steps to get a single value. 

 Then, the algorithm just discussed is used
 the first step replaced by copying the result of the above 

into S[j].



Semigroup or fan-in computation

 Speed-up and efficiency
 final broadcasting takes log 2 p steps

 algorithm needs n/p + 2 log2 p EREW steps in all

 n/(n/p + 2 log2 p) speed-up over the sequential 
version

 If p = Θ(n)
 a sublinear speed-up of Θ(n/log n) is obtained. 

 efficiency is Θ(n/log n)/Θ(n) = Θ(1/log n). 



Parallel prefix computation

 Can be done like the first phase of the 
semigroup computation

 as we find the semigroup result in S[p – 1]
 all partial prefixes are also obtained in the previous 

elements of S



Parallel prefix computation

 a solution using divide and conquer
 Sub-problem 1: computing odd-indexed results s1 , s3, s5, . . .

 Combine pairs of consecutive elements to obtain a list of half the 
size

 Perform parallel prefix computation on this list
 Sub-problem 2: computing the even-indexed results s0, s2, s4 , . . . 

 combine even-indexed inputs with their next odd-indexed result
 By a single PRAM step

 T(p) = T(p/2) + 2 => T(p) = 2 log2 p



Parallel prefix computation

 Another solution using divide and conquer
 view the input list as composed of two odd/even sublists
 Perform parallel prefix separately on each sublist
 Obtain final results by pairwise combination of adjacent 

partial results 
 a single PRAM step

 T(p) = T(p/2) + 1 => T(p) = log2 p
 applicable only if the operator is commutative



Ranking the elements of a 
linked list
 rank the list elements in terms of the distance 

of each to the terminal element
 It is important 

 it is a very useful building block in many 

 it demonstrates how a problem that seems hopelessly 
sequential can be efficiently parallelized



Ranking the elements of a 
linked list
 A sequential algorithm 

 requires Θ(p) time. 
 list must be traversed once to determine the distance 

of each element from the head

 second pass, through the list to compute all the ranks



Ranking the elements of a 
linked list
 parallel solution (pointer jumping)

 Processor j, 0 ≤ j < p, is responsible for computing rank [j]
 number of elements that are skipped doubles with each 

iteration
 the number of iterations is logarithmic in p



Matrix multiplication

 The product C of m×m matrices A and B:

 O(m³)-step sequential algorithm



Matrix multiplication

 If the PRAM has p = m³ processors
 can be done in Θ(log m) time 

 using one processor to compute each product aikbkj

 then allowing groups of m processors to perform m-
input summations (semigroup computation) 
 in Θ(log m) time. 

 is not a practical solution. 
 we are usually not interested in parallel processing 

unless m is large



Matrix multiplication

 if PRAM has p = m² processors. 
 can be done in Θ(m) by parallelizing the i and j loops

 using one processor to compute each cij
 The processor 

 reads the elements of Row i in A and the elements of Column j 
in B

 multiplies their corresponding kth elements
 adds each of the obtained products to a running total t. 



Matrix multiplication

 if PRAM has p = m² processors. 
 would require the CREW submodel

 multiple processors will be reading the same row of A 
or the same column of B

 it is possible to convert the algorithm for EREW 
 by skewing the memory accesses (how?)



Matrix multiplication

 if PRAM has p = m processors
 can be done in Θ(m²) by parallelizing the i loop

 Processor i compute the m elements in Row i of the 
product matrix C 
 Processor i

 read the elements of Row i in A and the elements of all 
columns in B

 multiply their corresponding kth elements
 add each of the obtained products to a running total t. 



Matrix multiplication

 if PRAM has p = m processors
 each processor reads a different row of the matrix A

 no concurrent reads from A are ever attempted. 

 however, all m processors access the same element bkj

at the same time. 

 one can skew the memory accesses for B for the EREW



Matrix multiplication

 If the number of processors is even less than m
 Occurs in many practical situations

 parallelizing the k loop is not good
 has data dependencies

 parallelizing the j loop is not good
 imply m synchronizations of the processors once at 

the end of each i iteration
 assuming the SPMD model



Matrix multiplication

 If the number of processors is even less than m
 parallelizing the i loop

 Processor i compute a set of m/p rows in the result 
matrix C
 Rows i, i + p, i + 2p, . . . , i + (m/p – 1)p

 almost linear speedup for UMA
 speed-up of about 22 for 24 processors multiplying two 

256 × 256 matrices



Matrix multiplication

 If the number of processors is even less than m
 parallelizing the i loop 

 Has drawback for NUMA
 Low computation to memory access ratio

 each element of B is fetched m/p times

 with only two arithmetic operations for each element
 one multiplication and one addition



Matrix multiplication

 If the number of processors is even less than m
 Block matrix multiplication

 divide the m × m matrices A, B, and C into p blocks of 
size q × q, where 

 then multiply the m×m matrices using matrix 
multiplication with processors where
 the terms in the algorithm statement t := t +aikbkj are now q ×

q matrices 
 Processor ( i, j) computes Block (i, j) of the result matrix C.



Matrix multiplication

 If the number of processors is even less than m
 Block matrix multiplication

 the algorithm is like our second algorithm above
 the statement t := t + aikbkj replaced by a sequential q ×

q matrix multiplication algorithm



Matrix multiplication

 If the number of processors is even less than m
 Block matrix multiplication

 The assumption here is 
 Processor (i, j) has sufficient local memory to hold 

 Block (i, j) of the result matrix C (q² elements) 

 one block-row of the matrix B
 the q elements in Row kq + c of Block (k, j) of B. 



Matrix multiplication

 If the number of processors is even less than m
 Block matrix multiplication

 Elements of A can be brought in one at a time. 
 as element in Row iq+a of Column kq+c in Block (i, k) of A is 

brought in
 it is multiplied in turn by the locally stored q elements of B
 and the results added to the appropriate q elements of C



Matrix multiplication

 If the number of processors is even less than m
 Block matrix multiplication

 Each multiply–add computation on q×q blocks needs 
 2q²= 2m²/p memory accesses to read the blocks 

 2q³ arithmetic operations. 

 So, q arithmetic operations are performed for each 
memory access 
 better performance will be achieved as a result of 

improved locality


