PARALLEL PROCESSING SYSTEMS

Chapter 5: PRAM and Basic Algorithms

Introduction

- we deal with five key building-block algorithms
- Data broadcasting
- Semigroup or fan-in computation
- Parallel prefix computation
- Ranking the elements of a linked list
- Matrix multiplication

PRAM submodels and assumptions

- concurrent operation of p processors on m word
- accessible to all of them
- in three phases of one cycle, processor i can do :

1. Fetch an operand from the source address s_{i} in the shared memory
2. Perform some computations on the data held in local registers
3. Store a value into the destination address d_{i} in the shared memory

PRAM submodels and assumptions

- Not all three phases need to be present in every cycle
- a particular cycle may require
- no new data from memory
- or no computation
- or no storing in memory

PRAM submodels and assumptions

- several processors may want to read/write the same memory location
- four submodels of the PRAM

Reads from Same Location

PRAM submodels and assumptions

- CRCW sub-models
- Undefined: In case of multiple writes, the value written is undefined (CRCW-U)
- Detecting: A special code representing "detected collision" is written (CRCW-D).
- Common: Multiple writes allowed only if all store the same value (CRCW-C)
- sometimes called the consistent-write submodel.
- Random: The value written is randomly chosen from among those offered (CRCWR)
- sometimes called the arbitrary-write submodel.
- Priority: The processor with the lowest index succeeds in writing its value (CRCW-P)
- Max/Min: The largest/smallest of the multiple values is written (CRCWM)
- Reduction: The arithmetic sum (CRCW-S), logical AND (CRCW-A), logical XOR (CRCW-X), or some other combination of the multiple values is written.

PRAM submodels and assumptions

- Using computational power to order the submodels:
- Two PRAM submodels are equally powerful if each can emulate the other with a constant-factor slowdown
- A PRAM submodel is (strictly) less powerful than another submodel (denoted by the "<" symbol)
- if there exist problems for which the former requires significantly more computational.
- E.g., the CRCW-D PRAM submodel is less powerful than the one that writes the maximum value
- the latter can find the largest number in a vector A of size p in a single step
- Processor i reads $\mathrm{A}[\mathrm{i}]$ and writes it to an agreed-upon location x
- the former needs at least $\Omega(\log n)$ steps.
EREW < CREW < CRCW-D < CRCW-C < CRCW-R < CRCW-P

Data broadcasting

- Simple, or one-to-all, broadcasting
- one processor needs to send a data value to all other processors.
- Trivial in the CREW or CRCW submodels
- sending processor can write the data value into a memory location
- all processors reading that data value in the next cycle.
- done in $\Theta(1)$ steps.
- Multicasting within groups
- equally simple if each processor knows its group membership(s)
- only members of each group read the multicast data for that group.
- All-to-all broadcasting
- each of the p processors needs to send a data value to all other processors
- can be done through p separate broadcast operations
- $\Theta(p)$ steps, which is optimal.

Data broadcasting

- Previous scheme is inapplicable to the EREW
- The simplest scheme for EREW
- make p copies of the data value
- say in a broadcast vector B of length p
- initially, Processor i writes its data value into $\mathrm{B}[0]$.
- Use recursive doubling to copy $\mathrm{B}[0]$ into all elements of B - in $\left\lceil_{\log 2} 2\right\rceil_{\text {steps }}$
- let each processor read its own copy by accessing $\mathrm{B}[\mathrm{j}]$.

Data broadcasting

- The simplest scheme for EREW
- Recursive doubling

Making p copies of $B[0]$ by recursive doubling for $k=0$ to $\left\lceil\log _{2} p\right\rceil-1$ Processor $j, 0 \leq j<p$, do Copy $B[j]$ into $B\left[j+2^{k}\right]$ endfor

Data broadcasting

- The simplest scheme for EREW
- allow us to use the idle processors for other tasks
- to speed up algorithm execution
- or to reduce the memory access traffic
- when the algorithm is ported to a physical sharedmemory machine
- in Step k of doubling process, only the first 2^{k} processors need to be active

Data broadcasting

- The simplest scheme for EREW

EREW PRAM algorithm for broadcasting by Processor i
Processor i write the data value into $B[0]$
$s:=1$
while $s<p$ Processor $j, 0 \leq j<\min (s, p-s)$, do Copy $B[j]$ into $B[j+s]$
$s:=2 s$
endwhile
Processor $j, 0 \leq j<p$, read the data value in $B[j]$
B

Data broadcasting

- The simplest scheme for EREW
- It is optimal for EREW PRAM
- initially a single copy of the data value exists
- at most one other processor can get the value
- through a memory access in the first step
- In the second step
- two more processors can become aware of the data value
- Continuing in this manner
- at least $[\log 2 \mathrm{p}\rceil$ read-write cycles are necessary

Data broadcasting

- all-to-all broadcasting in EREW
- let Processor j write its value into B[j]
- rather than into B[0].
- Each processor then reads the other $\mathrm{p}-1$ values in $\mathrm{p}-$ 1 memory accesses
- To ensure that all reads are exclusive
- Processor j
- begins reading the values starting with $\mathrm{B}[\mathrm{j}+1]$
- wrapping around to $\mathrm{B}[0]$ after reading $\mathrm{B}[\mathrm{p}-1]$.

EREW PRAM algorithm for all-to-all broadcasting
Processor $j, 0 \leq j<p$, write own data value into $B[j]$
for $k=1$ to $p-1$ Processor $j, 0 \leq j<p$, do
Read the data value in $B[(j+k) \bmod p]$
endfor

Data broadcasting

- all-to-all broadcasting in EREW
- It is optimal
- the shared memory is the only mechanism for interprocessor communication
- each processor can read only one value in each machine cycle.

Data broadcasting

- a naive sorting algorithm
- let Processor j compute the rank $\mathrm{R}[\mathrm{j}]$ of the data element S[j]
- examining all other data elements
- counting the number of elements $S[1]$ that are smaller than S[j].
- then store $S[j]$ into $S[R[j]]$.

Naive EREW PRAM sorting algorithm using all-to-all broadcasting
Processor $j, 0 \leq j<p$, write 0 into $R[j]$
for $k=1$ to $p-1$ Processor $j, 0 \leq j<p$, do
$l:=(j+k) \bmod p$
if $S[l]<S[j]$ or $S[l]=S[j]$ and $l<j$
then $R[j]:=R[j]+1$
endif
endfor
Processor $j, 0 \leq j<p$, write $S[j]$ into $S[R[j]]$

Semigroup or fan-in computation

- trivial for a CRCW of the "reduction"
- if the reduction operator happens to be \otimes
- E.g., sum of p values, one per processor
- can be done in a single cycle
- each processor writing its corresponding value into a common

Semigroup or fan-in computation

- recursive doubling can be used on EREW
- virtually identical EREW broadcasting
- with the copying operation replaced by a (\otimes) operation.

EREW PRAM semigroup computation algorithm

Processor $j, 0 \leq j<p$, copy $X[j]$ into $S[j]$
$s:=1$
while $s<p$ Processor $j, 0 \leq j<p-s$, do $S[j+s]:=S[j] \otimes S[j+s]$
$s:=2 s$
endwhile
Broadcast $S[p-1]$ to all processors

Semigroup or fan-in computation

- recursive doubling can be used on EREW
- It is optimal, needs $\Theta(\log p)$ computation
- in each machine cycle, a processor can combine only two values
- the semigroup computation requires that we combine p values to get the result.

Semigroup or fan-in computation

- When each processors have n / p elements
- each processor
- first combines its n / p elements
- n / p steps to get a single value.
- Then, the algorithm just discussed is used
- the first step replaced by copying the result of the above into $\mathrm{S}[\mathrm{j}]$.

Semigroup or fan-in computation

- Speed-up and efficiency
- final broadcasting takes $\log 2 p$ steps
- algorithm needs $n / p+2 \log 2 p$ EREW steps in all
- $n /(n / p+2 \log 2 p)$ speed-up over the sequential version
- If $\mathrm{p}=\Theta(\mathrm{n})$
- a sublinear speed-up of $\Theta(n / \log n)$ is obtained.
- efficiency is $\Theta(n / \log n) / \Theta(n)=\Theta(1 / \log n)$.

Parallel prefix computation

- Can be done like the first phase of the semigroup computation
- as we find the semigroup result in $\mathrm{S}[\mathrm{p}-1]$
- all partial prefixes are also obtained in the previous elements of S

Parallel prefix computation

- a solution using divide and conquer
- Sub-problem 1: computing odd-indexed results s1, s3, s5, ..
- Combine pairs of consecutive elements to obtain a list of half the size
- Perform parallel prefix computation on this list
- Sub-problem 2: computing the even-indexed results $\mathrm{s} 0, \mathrm{~s} 2, \mathrm{~s} 4, \ldots$
- combine even-indexed inputs with their next odd-indexed result
- By a single PRAM step
- $\mathrm{T}(\mathrm{p})=\mathrm{T}(\mathrm{p} / 2)+2 \Rightarrow \mathrm{~T}(\mathrm{p})=2 \log _{2} \mathrm{p}$

The p inputs

Parallel prefix computation

- Another solution using divide and conquer
- view the input list as composed of two odd/even sublists
- Perform parallel prefix separately on each sublist
- Obtain final results by pairwise combination of adjacent partial results
- a single PRAM step
- $T(p)=T(p / 2)+1 \Rightarrow T(p)=\log _{2} p$
- applicable only if the operator \otimes is commutative

Ranking the elements of a

 linked list- rank the list elements in terms of the distance of each to the terminal element
- It is important
- it is a very useful building block in many
- it demonstrates how a problem that seems hopelessly sequential can be efficiently parallelized

Ranking the elements of a

 linked list- A sequential algorithm
- requires $\Theta(p)$ time.
- list must be traversed once to determine the distance of each element from the head
- second pass, through the list to compute all the ranks

Ranking the elements of a

linked list

- parallel solution (pointer jumping)
- Processor $\mathrm{j}, 0 \leq \mathrm{j}<\mathrm{p}$, is responsible for computing rank [j]
- number of elements that are skipped doubles with each iteration
- the number of iterations is logarithmic in p

PRAM list ranking algorithm (via pointer jumping)

Processor $j, 0 \leq j<p$, do \{initialize the partial ranks \}
if $\operatorname{next}[j]=j$
then $\operatorname{rank}[j]:=0$
else $\operatorname{rank}[j]:=1$
endif
while $\operatorname{rank}[$ next $[h e a d]] \neq 0$ Processor $j, 0 \leq j<p$, do

$$
\operatorname{rank}[j]:=\operatorname{rank}[j]+\operatorname{rank}[\operatorname{next}[j]]
$$

next $[j]:=\operatorname{next}[$ next $[j]]$
endwhile

Matrix multiplication

- The product C of $\mathrm{m} \times \mathrm{m}$ matrices A and B :

$$
c_{i j}=\sum_{k=0}^{m-1} a_{i k} b_{k j}
$$

- $\mathrm{O}\left(\mathrm{m}^{3}\right)$-step sequential algorithm

Sequential matrix multiplication algorithm

$$
\begin{aligned}
& \text { for } i=0 \text { to } m-1 \text { do } \\
& \text { for } j=0 \text { to } m-1 \text { do } \\
& t:=0 \\
& \text { for } k=0 \text { to } m-1 \text { do } \\
& t:=t+a_{i k} b_{k j} \\
& \text { endfor } \\
& c_{i j}:=t \\
& \text { endfor } \\
& \text { endfor }
\end{aligned}
$$

Matrix multiplication

- If the PRAM has $\mathrm{p}=\mathrm{m}^{3}$ processors
- can be done in $\Theta(\log m)$ time
- using one processor to compute each product $\mathrm{a}_{\mathrm{ik}} \mathrm{b}_{\mathrm{kj}}$
- then allowing groups of m processors to perform m input summations (semigroup computation)
- in $\Theta(\log m)$ time.
- is not a practical solution.
- we are usually not interested in parallel processing unless m is large

Matrix multiplication

- if PRAM has $\mathrm{p}=\mathrm{m}^{2}$ processors.
- can be done in $\Theta(\mathrm{m})$ by parallelizing the i and j loops
- using one processor to compute each c_{ij}
- The processor
- reads the elements of Row i in A and the elements of Column j in B
- multiplies their corresponding kth elements
- adds each of the obtained products to a running total t .

Processor $(i, j), 0 \leq i, j<m$, do begin
$t:=0$
for $k=0$ to $m-1$ do $t:=t+a_{i k} b_{k j}$
endfor
$c_{i j}:=t$
end

Matrix multiplication

- if PRAM has $\mathrm{p}=\mathrm{m}^{2}$ processors.
- would require the CREW submodel
- multiple processors will be reading the same row of A or the same column of B
- it is possible to convert the algorithm for EREW
- by skewing the memory accesses (how?)

Matrix multiplication

- if PRAM has $\mathrm{p}=\mathrm{m}$ processors
- can be done in $\Theta\left(\mathrm{m}^{2}\right)$ by parallelizing the i loop
- Processor i compute the m elements in Row i of the product matrix C
- Processor i
- read the elements of Row i in A and the elements of all columns in B
- multiply their corresponding kth elements
- add each of the obtained products to a running total t .

$$
\begin{aligned}
& \text { for } j=0 \text { to } m-1 \text { Processor } i, 0 \leq i<m \text {, do } \\
& t:=0 \\
& \text { for } k=0 \text { to } m-1 \text { do } \\
& \quad t:=t+a_{i k} b_{k j} \\
& \text { endfor } \\
& c_{i j}:=t \\
& \text { endfor }
\end{aligned}
$$

Matrix multiplication

- if PRAM has $\mathrm{p}=\mathrm{m}$ processors
- each processor reads a different row of the matrix A
- no concurrent reads from A are ever attempted.
- however, all m processors access the same element $b_{k j}$ at the same time.
- one can skew the memory accesses for B for the EREW

$$
\begin{aligned}
& \text { for } j=0 \text { to } m-1 \text { Processor } i, 0 \leq i<m \text {, do } \\
& t:=0 \\
& \text { for } k=0 \text { to } m-1 \text { do } \\
& \quad t:=t+a_{i k} b_{k j} \\
& \text { endfor } \\
& c_{i j}:=t \\
& \text { endfor }
\end{aligned}
$$

Matrix multiplication

- If the number of processors is even less than m
- Occurs in many practical situations
- parallelizing the k loop is not good
- has data dependencies
- parallelizing the j loop is not good
- imply m synchronizations of the processors once at the end of each i iteration
- assuming the SPMD model

Matrix multiplication

- If the number of processors is even less than m
- parallelizing the i loop
- Processor i compute a set of m / p rows in the result matrix C
- Rows $\mathrm{i}, \mathrm{i}+\mathrm{p}, \mathrm{i}+2 \mathrm{p}, \ldots, \mathrm{i}+(\mathrm{m} / \mathrm{p}-1) \mathrm{p}$
- almost linear speedup for UMA
- speed-up of about 22 for 24 processors multiplying two 256×256 matrices

Matrix multiplication

- If the number of processors is even less than m
- parallelizing the i loop
- Has drawback for NUMA
- Low computation to memory access ratio
- each element of B is fetched m / p times
- with only two arithmetic operations for each element
- one multiplication and one addition

Matrix multiplication

- If the number of processors is even less than m
- Block matrix multiplication
- divide the $\mathrm{m} \times \mathrm{m}$ matrices A, B, and C into p blocks of size $\mathrm{q} \times \mathrm{q}$, where $q=m / \sqrt{p}$
- then multiply the $\mathrm{m} \times \mathrm{m}_{2}$ matrices using $\sqrt{p} \times \sqrt{p}$ matrix multiplication with $\sqrt{p}^{2}=p$ processors where
- the terms in the algorithm statement $t:=t+a_{i k} b_{k j}$ are now $q \times$ q matrices
- Processor (i, j) computes Block (i, j) of the result matrix C.

Matrix multiplication

- If the number of processors is even less than m
- Block matrix multiplication
- the algorithm is like our second algorithm above
- the statement $\mathrm{t}:=\mathrm{t}+\mathrm{a}_{\mathrm{ik}} \mathrm{b}_{\mathrm{kj}}$ replaced by a sequential $\mathrm{q} \times$ q matrix multiplication algorithm

Matrix multiplication

- If the number of processors is even less than m
- Block matrix multiplication
- The assumption here is
- Processor (i, j) has sufficient local memory to hold
- Block (i, j) of the result matrix C (q^{2} elements)
- one block-row of the matrix B
- the q elements in Row $\mathrm{kq}+\mathrm{c}$ of $\operatorname{Block}(\mathrm{k}, \mathrm{j})$ of B .

Matrix multiplication

- If the number of processors is even less than m
- Block matrix multiplication
- Elements of A can be brought in one at a time.
- as element in Row iq + a of Column kq+c in Block (i, k) of A is brought in
- it is multiplied in turn by the locally stored q elements of B
- and the results added to the appropriate q elements of C

Matrix multiplication

- If the number of processors is even less than m
- Block matrix multiplication
- Each multiply-add computation on $\mathrm{q} \times \mathrm{q}$ blocks needs
- $2 \mathrm{q}^{2}=2 \mathrm{~m}^{2} / \mathrm{p}$ memory accesses to read the blocks
- $2 q^{3}$ arithmetic operations.
- So, q arithmetic operations are performed for each memory access
- better performance will be achieved as a result of improved locality

