
PARALLEL PROCESSING SYSTEMS

Chapter 5: PRAM and Basic Algorithms

Introduction

 we deal with five key building-block
algorithms
 Data broadcasting

 Semigroup or fan-in computation

 Parallel prefix computation

 Ranking the elements of a linked list

 Matrix multiplication

PRAM submodels and assumptions

 concurrent operation of p processors on m-
word
 accessible to all of them

 in three phases of one cycle, processor i can do :
1. Fetch an operand from the source address si in the

shared memory

2. Perform some computations on the data held in
local registers

3. Store a value into the destination address di in the
shared memory

PRAM submodels and assumptions

 Not all three phases need to be present in
every cycle
 a particular cycle may require

 no new data from memory

 or no computation

 or no storing in memory

PRAM submodels and assumptions

 several processors may want to read/write the
same memory location
 four submodels of the PRAM

PRAM submodels and assumptions

 CRCW sub-models
 Undefined: In case of multiple writes, the value written is undefined

(CRCW-U)
 Detecting: A special code representing “detected collision” is written

(CRCW-D).
 Common: Multiple writes allowed only if all store the same value

(CRCW-C)
 sometimes called the consistent-write submodel.

 Random: The value written is randomly chosen from among those offered
(CRCWR)
 sometimes called the arbitrary-write submodel.

 Priority: The processor with the lowest index succeeds in writing its value
(CRCW-P)

 Max/Min: The largest/smallest of the multiple values is written (CRCW-
M)

 Reduction: The arithmetic sum (CRCW-S), logical AND (CRCW-A),
logical XOR (CRCW-X), or some other combination of the multiple
values is written.

PRAM submodels and assumptions

 Using computational power to order the submodels:
 Two PRAM submodels are equally powerful if each can

emulate the other with a constant-factor slowdown
 A PRAM submodel is (strictly) less powerful than another

submodel (denoted by the “<” symbol)
 if there exist problems for which the former requires

significantly more computational.
 E.g., the CRCW-D PRAM submodel is less powerful than the

one that writes the maximum value
 the latter can find the largest number in a vector A of size p in a

single step
 Processor i reads A[i] and writes it to an agreed-upon location x

 the former needs at least Ω(log n) steps.

Data broadcasting

 Simple, or one-to-all, broadcasting
 one processor needs to send a data value to all other processors.
 Trivial in the CREW or CRCW submodels

 sending processor can write the data value into a memory location
 all processors reading that data value in the next cycle.
 done in Θ(1) steps.

 Multicasting within groups
 equally simple if each processor knows its group membership(s)

 only members of each group read the multicast data for that group.

 All-to-all broadcasting
 each of the p processors needs to send a data value to all other

processors
 can be done through p separate broadcast operations

 Θ(p) steps, which is optimal.

Data broadcasting

 Previous scheme is inapplicable to the EREW

 The simplest scheme for EREW
 make p copies of the data value

 say in a broadcast vector B of length p

 initially, Processor i writes its data value into B[0].

 Use recursive doubling to copy B[0] into all elements of B
 in log 2 p steps

 let each processor read its own copy by accessing B[j].

Data broadcasting

 The simplest scheme for EREW
 Recursive doubling

Data broadcasting

 The simplest scheme for EREW
 allow us to use the idle processors for other tasks

 to speed up algorithm execution

 or to reduce the memory access traffic
 when the algorithm is ported to a physical shared-

memory machine

 in Step k of doubling process, only the first 2k

processors need to be active

Data broadcasting

 The simplest scheme for EREW

Data broadcasting

 The simplest scheme for EREW
 It is optimal for EREW PRAM

 initially a single copy of the data value exists
 at most one other processor can get the value

 through a memory access in the first step

 In the second step
 two more processors can become aware of the data

value

 Continuing in this manner
 at least log2 p read–write cycles are necessary

Data broadcasting

 all-to-all broadcasting in EREW
 let Processor j write its value into B[j]

 rather than into B[0].

 Each processor then reads the other p – 1 values in p –
1 memory accesses
 To ensure that all reads are exclusive

 Processor j
 begins reading the values starting with B[j + 1]
 wrapping around to B[0] after reading B[p – 1].

Data broadcasting

 all-to-all broadcasting in EREW
 It is optimal

 the shared memory is the only mechanism for
interprocessor communication

 each processor can read only one value in each
machine cycle.

Data broadcasting

 a naive sorting algorithm
 let Processor j compute the rank R[j] of the data

element S[j]
 examining all other data elements
 counting the number of elements S[l] that are smaller than

S[j].
 then store S[j] into S[R[j]].

Semigroup or fan-in computation

 trivial for a CRCW of the “reduction”
 if the reduction operator happens to be

 E.g., sum of p values, one per processor
 can be done in a single cycle

 each processor writing its corresponding value into a
common

Semigroup or fan-in computation

 recursive doubling can be used on EREW
 virtually identical EREW broadcasting

 with the copying operation replaced by a () operation.

Semigroup or fan-in computation

 recursive doubling can be used on EREW
 It is optimal, needs Θ(log p) computation

 in each machine cycle, a processor can combine only
two values

 the semigroup computation requires that we combine
p values to get the result.

Semigroup or fan-in computation

 When each processors have n/p elements
 each processor

 first combines its n/p elements
 n/p steps to get a single value.

 Then, the algorithm just discussed is used
 the first step replaced by copying the result of the above

into S[j].

Semigroup or fan-in computation

 Speed-up and efficiency
 final broadcasting takes log 2 p steps

 algorithm needs n/p + 2 log2 p EREW steps in all

 n/(n/p + 2 log2 p) speed-up over the sequential
version

 If p = Θ(n)
 a sublinear speed-up of Θ(n/log n) is obtained.

 efficiency is Θ(n/log n)/Θ(n) = Θ(1/log n).

Parallel prefix computation

 Can be done like the first phase of the
semigroup computation

 as we find the semigroup result in S[p – 1]
 all partial prefixes are also obtained in the previous

elements of S

Parallel prefix computation

 a solution using divide and conquer
 Sub-problem 1: computing odd-indexed results s1 , s3, s5, . . .

 Combine pairs of consecutive elements to obtain a list of half the
size

 Perform parallel prefix computation on this list
 Sub-problem 2: computing the even-indexed results s0, s2, s4 , . . .

 combine even-indexed inputs with their next odd-indexed result
 By a single PRAM step

 T(p) = T(p/2) + 2 => T(p) = 2 log2 p

Parallel prefix computation

 Another solution using divide and conquer
 view the input list as composed of two odd/even sublists
 Perform parallel prefix separately on each sublist
 Obtain final results by pairwise combination of adjacent

partial results
 a single PRAM step

 T(p) = T(p/2) + 1 => T(p) = log2 p
 applicable only if the operator is commutative

Ranking the elements of a
linked list
 rank the list elements in terms of the distance

of each to the terminal element
 It is important

 it is a very useful building block in many

 it demonstrates how a problem that seems hopelessly
sequential can be efficiently parallelized

Ranking the elements of a
linked list
 A sequential algorithm

 requires Θ(p) time.
 list must be traversed once to determine the distance

of each element from the head

 second pass, through the list to compute all the ranks

Ranking the elements of a
linked list
 parallel solution (pointer jumping)

 Processor j, 0 ≤ j < p, is responsible for computing rank [j]
 number of elements that are skipped doubles with each

iteration
 the number of iterations is logarithmic in p

Matrix multiplication

 The product C of m×m matrices A and B:

 O(m³)-step sequential algorithm

Matrix multiplication

 If the PRAM has p = m³ processors
 can be done in Θ(log m) time

 using one processor to compute each product aikbkj

 then allowing groups of m processors to perform m-
input summations (semigroup computation)
 in Θ(log m) time.

 is not a practical solution.
 we are usually not interested in parallel processing

unless m is large

Matrix multiplication

 if PRAM has p = m² processors.
 can be done in Θ(m) by parallelizing the i and j loops

 using one processor to compute each cij
 The processor

 reads the elements of Row i in A and the elements of Column j
in B

 multiplies their corresponding kth elements
 adds each of the obtained products to a running total t.

Matrix multiplication

 if PRAM has p = m² processors.
 would require the CREW submodel

 multiple processors will be reading the same row of A
or the same column of B

 it is possible to convert the algorithm for EREW
 by skewing the memory accesses (how?)

Matrix multiplication

 if PRAM has p = m processors
 can be done in Θ(m²) by parallelizing the i loop

 Processor i compute the m elements in Row i of the
product matrix C
 Processor i

 read the elements of Row i in A and the elements of all
columns in B

 multiply their corresponding kth elements
 add each of the obtained products to a running total t.

Matrix multiplication

 if PRAM has p = m processors
 each processor reads a different row of the matrix A

 no concurrent reads from A are ever attempted.

 however, all m processors access the same element bkj

at the same time.

 one can skew the memory accesses for B for the EREW

Matrix multiplication

 If the number of processors is even less than m
 Occurs in many practical situations

 parallelizing the k loop is not good
 has data dependencies

 parallelizing the j loop is not good
 imply m synchronizations of the processors once at

the end of each i iteration
 assuming the SPMD model

Matrix multiplication

 If the number of processors is even less than m
 parallelizing the i loop

 Processor i compute a set of m/p rows in the result
matrix C
 Rows i, i + p, i + 2p, . . . , i + (m/p – 1)p

 almost linear speedup for UMA
 speed-up of about 22 for 24 processors multiplying two

256 × 256 matrices

Matrix multiplication

 If the number of processors is even less than m
 parallelizing the i loop

 Has drawback for NUMA
 Low computation to memory access ratio

 each element of B is fetched m/p times

 with only two arithmetic operations for each element
 one multiplication and one addition

Matrix multiplication

 If the number of processors is even less than m
 Block matrix multiplication

 divide the m × m matrices A, B, and C into p blocks of
size q × q, where

 then multiply the m×m matrices using matrix
multiplication with processors where
 the terms in the algorithm statement t := t +aikbkj are now q ×

q matrices
 Processor (i, j) computes Block (i, j) of the result matrix C.

Matrix multiplication

 If the number of processors is even less than m
 Block matrix multiplication

 the algorithm is like our second algorithm above
 the statement t := t + aikbkj replaced by a sequential q ×

q matrix multiplication algorithm

Matrix multiplication

 If the number of processors is even less than m
 Block matrix multiplication

 The assumption here is
 Processor (i, j) has sufficient local memory to hold

 Block (i, j) of the result matrix C (q² elements)

 one block-row of the matrix B
 the q elements in Row kq + c of Block (k, j) of B.

Matrix multiplication

 If the number of processors is even less than m
 Block matrix multiplication

 Elements of A can be brought in one at a time.
 as element in Row iq+a of Column kq+c in Block (i, k) of A is

brought in
 it is multiplied in turn by the locally stored q elements of B
 and the results added to the appropriate q elements of C

Matrix multiplication

 If the number of processors is even less than m
 Block matrix multiplication

 Each multiply–add computation on q×q blocks needs
 2q²= 2m²/p memory accesses to read the blocks

 2q³ arithmetic operations.

 So, q arithmetic operations are performed for each
memory access
 better performance will be achieved as a result of

improved locality

