
PARALLEL PROCESSING SYSTEMS

Chapter 5: PRAM and Basic Algorithms



Introduction 

 we deal with five key building-block 
algorithms
 Data broadcasting 

 Semigroup or fan-in computation 

 Parallel prefix computation

 Ranking the elements of a linked list

 Matrix multiplication



PRAM submodels and assumptions

 concurrent operation of p processors on m-
word 
 accessible to all of them

 in three phases of one cycle, processor i can do :
1. Fetch an operand from the source address si in the 

shared memory 

2. Perform some computations on the data held in 
local registers

3. Store a value into the destination address di in the 
shared memory



PRAM submodels and assumptions

 Not all three phases need to be present in 
every cycle
 a particular cycle may require 

 no new data from memory

 or no computation

 or no storing in memory



PRAM submodels and assumptions

 several processors may want to read/write the 
same memory location
 four submodels of the PRAM



PRAM submodels and assumptions

 CRCW sub-models
 Undefined: In case of multiple writes, the value written is undefined 

(CRCW-U)
 Detecting: A special code representing “detected collision” is written 

(CRCW-D).
 Common: Multiple writes allowed only if all store the same value 

(CRCW-C)
 sometimes called the consistent-write submodel.

 Random: The value written is randomly chosen from among those offered 
(CRCWR)
 sometimes called the arbitrary-write submodel.

 Priority: The processor with the lowest index succeeds in writing its value 
(CRCW-P)

 Max/Min: The largest/smallest of the multiple values is written (CRCW-
M)

 Reduction: The arithmetic sum (CRCW-S), logical AND (CRCW-A), 
logical XOR (CRCW-X), or some other combination of the multiple 
values is written.



PRAM submodels and assumptions

 Using computational power to order the submodels:
 Two PRAM submodels are equally powerful if each can 

emulate the other with a constant-factor slowdown
 A PRAM submodel is (strictly) less powerful than another 

submodel (denoted by the “<” symbol) 
 if there exist problems for which the former requires 

significantly more computational.
 E.g., the CRCW-D PRAM submodel is less powerful than the 

one that writes the maximum value
 the latter can find the largest number in a vector A of size p in a 

single step 
 Processor i reads A[i] and writes it to an agreed-upon location x

 the former needs at least Ω(log n) steps. 



Data broadcasting

 Simple, or one-to-all, broadcasting 
 one processor needs to send a data value to all other processors. 
 Trivial in the CREW or CRCW submodels

 sending processor can write the data value into a memory location
 all processors reading that data value in the next cycle. 
 done in Θ(1) steps. 

 Multicasting within groups 
 equally simple if each processor knows its group membership(s) 

 only members of each group read the multicast data for that group. 

 All-to-all broadcasting
 each of the p processors needs to send a data value to all other 

processors
 can be done through p separate broadcast operations 

 Θ(p) steps, which is optimal.



Data broadcasting

 Previous scheme is inapplicable to the EREW

 The simplest scheme for EREW
 make p copies of the data value

 say in a broadcast vector B of length p

 initially, Processor i writes its data value into B[0].

 Use recursive doubling to copy B[0] into all elements of B 
 in log 2 p steps

 let each processor read its own copy by accessing B[j]. 



Data broadcasting

 The simplest scheme for EREW
 Recursive doubling



Data broadcasting

 The simplest scheme for EREW
 allow us to use the idle processors for other tasks 

 to speed up algorithm execution

 or to reduce the memory access traffic 
 when the algorithm is ported to a physical shared-

memory machine

 in Step k of doubling process, only the first 2k

processors need to be active



Data broadcasting

 The simplest scheme for EREW



Data broadcasting

 The simplest scheme for EREW
 It is optimal for EREW PRAM

 initially a single copy of the data value exists
 at most one other processor can get the value 

 through a memory access in the first step

 In the second step
 two more processors can become aware of the data 

value

 Continuing in this manner
 at least log2 p read–write cycles are necessary



Data broadcasting

 all-to-all broadcasting in EREW
 let Processor j write its value into B[j]

 rather than into B[0]. 

 Each processor then reads the other p – 1 values in p –
1 memory accesses
 To ensure that all reads are exclusive

 Processor j 
 begins reading the values starting with B[j + 1]
 wrapping around to B[0] after reading B[p – 1].



Data broadcasting

 all-to-all broadcasting in EREW
 It is optimal 

 the shared memory is the only mechanism for 
interprocessor communication 

 each processor can read only one value in each 
machine cycle.



Data broadcasting

 a naive sorting algorithm
 let Processor j compute the rank R[j] of the data 

element S[j] 
 examining all other data elements 
 counting the number of elements S[l] that are smaller than 

S[j].
 then store S[j] into S[R[j]]. 



Semigroup or fan-in computation

 trivial for a CRCW of the “reduction” 
 if the reduction operator happens to be 

 E.g., sum of p values, one per processor
 can be done in a single cycle 

 each processor writing its corresponding value into a 
common



Semigroup or fan-in computation

 recursive doubling can be used on EREW 
 virtually identical EREW broadcasting

 with the copying operation replaced by a ( ) operation. 



Semigroup or fan-in computation

 recursive doubling can be used on EREW 
 It is optimal, needs Θ(log p) computation 

 in each machine cycle, a processor can combine only 
two values 

 the semigroup computation requires that we combine 
p values to get the result.



Semigroup or fan-in computation

 When each processors have n/p elements
 each processor 

 first combines its n/p elements 
 n/p steps to get a single value. 

 Then, the algorithm just discussed is used
 the first step replaced by copying the result of the above 

into S[j].



Semigroup or fan-in computation

 Speed-up and efficiency
 final broadcasting takes log 2 p steps

 algorithm needs n/p + 2 log2 p EREW steps in all

 n/(n/p + 2 log2 p) speed-up over the sequential 
version

 If p = Θ(n)
 a sublinear speed-up of Θ(n/log n) is obtained. 

 efficiency is Θ(n/log n)/Θ(n) = Θ(1/log n). 



Parallel prefix computation

 Can be done like the first phase of the 
semigroup computation

 as we find the semigroup result in S[p – 1]
 all partial prefixes are also obtained in the previous 

elements of S



Parallel prefix computation

 a solution using divide and conquer
 Sub-problem 1: computing odd-indexed results s1 , s3, s5, . . .

 Combine pairs of consecutive elements to obtain a list of half the 
size

 Perform parallel prefix computation on this list
 Sub-problem 2: computing the even-indexed results s0, s2, s4 , . . . 

 combine even-indexed inputs with their next odd-indexed result
 By a single PRAM step

 T(p) = T(p/2) + 2 => T(p) = 2 log2 p



Parallel prefix computation

 Another solution using divide and conquer
 view the input list as composed of two odd/even sublists
 Perform parallel prefix separately on each sublist
 Obtain final results by pairwise combination of adjacent 

partial results 
 a single PRAM step

 T(p) = T(p/2) + 1 => T(p) = log2 p
 applicable only if the operator is commutative



Ranking the elements of a 
linked list
 rank the list elements in terms of the distance 

of each to the terminal element
 It is important 

 it is a very useful building block in many 

 it demonstrates how a problem that seems hopelessly 
sequential can be efficiently parallelized



Ranking the elements of a 
linked list
 A sequential algorithm 

 requires Θ(p) time. 
 list must be traversed once to determine the distance 

of each element from the head

 second pass, through the list to compute all the ranks



Ranking the elements of a 
linked list
 parallel solution (pointer jumping)

 Processor j, 0 ≤ j < p, is responsible for computing rank [j]
 number of elements that are skipped doubles with each 

iteration
 the number of iterations is logarithmic in p



Matrix multiplication

 The product C of m×m matrices A and B:

 O(m³)-step sequential algorithm



Matrix multiplication

 If the PRAM has p = m³ processors
 can be done in Θ(log m) time 

 using one processor to compute each product aikbkj

 then allowing groups of m processors to perform m-
input summations (semigroup computation) 
 in Θ(log m) time. 

 is not a practical solution. 
 we are usually not interested in parallel processing 

unless m is large



Matrix multiplication

 if PRAM has p = m² processors. 
 can be done in Θ(m) by parallelizing the i and j loops

 using one processor to compute each cij
 The processor 

 reads the elements of Row i in A and the elements of Column j 
in B

 multiplies their corresponding kth elements
 adds each of the obtained products to a running total t. 



Matrix multiplication

 if PRAM has p = m² processors. 
 would require the CREW submodel

 multiple processors will be reading the same row of A 
or the same column of B

 it is possible to convert the algorithm for EREW 
 by skewing the memory accesses (how?)



Matrix multiplication

 if PRAM has p = m processors
 can be done in Θ(m²) by parallelizing the i loop

 Processor i compute the m elements in Row i of the 
product matrix C 
 Processor i

 read the elements of Row i in A and the elements of all 
columns in B

 multiply their corresponding kth elements
 add each of the obtained products to a running total t. 



Matrix multiplication

 if PRAM has p = m processors
 each processor reads a different row of the matrix A

 no concurrent reads from A are ever attempted. 

 however, all m processors access the same element bkj

at the same time. 

 one can skew the memory accesses for B for the EREW



Matrix multiplication

 If the number of processors is even less than m
 Occurs in many practical situations

 parallelizing the k loop is not good
 has data dependencies

 parallelizing the j loop is not good
 imply m synchronizations of the processors once at 

the end of each i iteration
 assuming the SPMD model



Matrix multiplication

 If the number of processors is even less than m
 parallelizing the i loop

 Processor i compute a set of m/p rows in the result 
matrix C
 Rows i, i + p, i + 2p, . . . , i + (m/p – 1)p

 almost linear speedup for UMA
 speed-up of about 22 for 24 processors multiplying two 

256 × 256 matrices



Matrix multiplication

 If the number of processors is even less than m
 parallelizing the i loop 

 Has drawback for NUMA
 Low computation to memory access ratio

 each element of B is fetched m/p times

 with only two arithmetic operations for each element
 one multiplication and one addition



Matrix multiplication

 If the number of processors is even less than m
 Block matrix multiplication

 divide the m × m matrices A, B, and C into p blocks of 
size q × q, where 

 then multiply the m×m matrices using matrix 
multiplication with processors where
 the terms in the algorithm statement t := t +aikbkj are now q ×

q matrices 
 Processor ( i, j) computes Block (i, j) of the result matrix C.



Matrix multiplication

 If the number of processors is even less than m
 Block matrix multiplication

 the algorithm is like our second algorithm above
 the statement t := t + aikbkj replaced by a sequential q ×

q matrix multiplication algorithm



Matrix multiplication

 If the number of processors is even less than m
 Block matrix multiplication

 The assumption here is 
 Processor (i, j) has sufficient local memory to hold 

 Block (i, j) of the result matrix C (q² elements) 

 one block-row of the matrix B
 the q elements in Row kq + c of Block (k, j) of B. 



Matrix multiplication

 If the number of processors is even less than m
 Block matrix multiplication

 Elements of A can be brought in one at a time. 
 as element in Row iq+a of Column kq+c in Block (i, k) of A is 

brought in
 it is multiplied in turn by the locally stored q elements of B
 and the results added to the appropriate q elements of C



Matrix multiplication

 If the number of processors is even less than m
 Block matrix multiplication

 Each multiply–add computation on q×q blocks needs 
 2q²= 2m²/p memory accesses to read the blocks 

 2q³ arithmetic operations. 

 So, q arithmetic operations are performed for each 
memory access 
 better performance will be achieved as a result of 

improved locality


