PARALLEL PROCESSING SYSTEMS

Chapter 5: PRAM and Basic Algorithms

Introduction

- we deal with five key building-block algorithms
 - Data broadcasting
 - Semigroup or fan-in computation
 - Parallel prefix computation
 - Ranking the elements of a linked list
 - Matrix multiplication

- concurrent operation of p processors on mword
 - accessible to all of them
 - in three phases of one cycle, processor i can do :
 - 1. Fetch an operand from the source address s_i in the shared memory
 - 2. Perform some computations on the data held in local registers
 - 3. Store a value into the destination address d_i in the shared memory

- Not all three phases need to be present in every cycle
 - a particular cycle may require
 - no new data from memory
 - or no computation
 - or no storing in memory

- several processors may want to read/write the same memory location
 - four submodels of the PRAM

- CRCW sub-models
 - Undefined: In case of multiple writes, the value written is undefined (CRCW-U)
 - Detecting: A special code representing "detected collision" is written (CRCW-D).
 - Common: Multiple writes allowed only if all store the same value (CRCW-C)
 - sometimes called the consistent-write submodel.
 - Random: The value written is randomly chosen from among those offered (CRCWR)
 - sometimes called the arbitrary-write submodel.
 - Priority: The processor with the lowest index succeeds in writing its value (CRCW-P)
 - Max/Min: The largest/smallest of the multiple values is written (CRCW-M)
 - Reduction: The arithmetic sum (CRCW-S), logical AND (CRCW-A), logical XOR (CRCW-X), or some other combination of the multiple values is written.

- Using computational power to order the submodels:
 - Two PRAM submodels are equally powerful if each can emulate the other with a constant-factor slowdown
 - A PRAM submodel is (strictly) less powerful than another submodel (denoted by the "<" symbol)
 - if there exist problems for which the former requires significantly more computational.
 - E.g., the CRCW-D PRAM submodel is less powerful than the one that writes the maximum value
 - the latter can find the largest number in a vector A of size p in a single step
 - Processor i reads A[i] and writes it to an agreed-upon location x
 - the former needs at least $\Omega(\log n)$ steps.

EREW < CREW < CRCW-D < CRCW-C < CRCW-R < CRCW-P

- Simple, or one-to-all, broadcasting
 - one processor needs to send a data value to all other processors.
 - Trivial in the CREW or CRCW submodels
 - sending processor can write the data value into a memory location
 - all processors reading that data value in the next cycle.
 - done in $\Theta(1)$ steps.
- Multicasting within groups
 - equally simple if each processor knows its group membership(s)
 - only members of each group read the multicast data for that group.
- All-to-all broadcasting
 - each of the p processors needs to send a data value to all other processors
 - can be done through p separate broadcast operations
 - $\Theta(p)$ steps, which is optimal.

- Previous scheme is inapplicable to the EREW
- The simplest scheme for EREW
 - make p copies of the data value
 - say in a broadcast vector B of length p
 - initially, Processor i writes its data value into B[0].
 - Use recursive doubling to copy B[0] into all elements of B
 in log 2 pl steps
 - let each processor read its own copy by accessing B[j].

The simplest scheme for EREWRecursive doubling

Making p copies of B[0] by recursive doubling

for k = 0 to $\lceil \log_2 p \rceil - 1$ Processor $j, 0 \le j < p$, do Copy B[j] into $B[j + 2^k]$ endfor

- The simplest scheme for EREW
 - allow us to use the idle processors for other tasks
 - to speed up algorithm execution
 - or to reduce the memory access traffic
 - when the algorithm is ported to a physical sharedmemory machine
 - in Step k of doubling process, only the first 2^k processors need to be active

• The simplest scheme for EREW

EREW PRAM algorithm for broadcasting by Processor i

Processor *i* write the data value into B[0] s := 1while s < p Processor *j*, $0 \le j < \min(s, p - s)$, do Copy B[j] into B[j + s] s := 2sendwhile

Processor *j*, $0 \le j < p$, read the data value in B[j]

- The simplest scheme for EREW
 - It is optimal for EREW PRAM
 - initially a single copy of the data value exists
 - at most one other processor can get the value
 - through a memory access in the first step
 - In the second step
 - two more processors can become aware of the data value
 - Continuing in this manner
 - at least log2 p read–write cycles are necessary

- all-to-all broadcasting in EREW
 - let Processor j write its value into B[j]
 - rather than into B[0].
 - Each processor then reads the other p 1 values in p 1 memory accesses
 - To ensure that all reads are exclusive
 - Processor j
 - begins reading the values starting with B[j + 1]
 - wrapping around to B[0] after reading B[p-1].

EREW PRAM algorithm for all-to-all broadcasting

Processor *j*, $0 \le j < p$, write own data value into B[j]for k = 1 to p - 1 Processor *j*, $0 \le j < p$, do Read the data value in $B[(j + k) \mod p]$ endfor

- all-to-all broadcasting in EREW
 - It is optimal
 - the shared memory is the only mechanism for interprocessor communication
 - each processor can read only one value in each machine cycle.

a naive sorting algorithm

- let Processor j compute the rank R[j] of the data element S[j]
 - examining all other data elements
 - counting the number of elements S[1] that are smaller than S[j].

• then store S[j] into S[R[j]].

Naive EREW PRAM sorting algorithm using all-to-all broadcasting

```
Processor j, 0 \le j < p, write 0 into R[j]
for k = 1 to p - 1 Processor j, 0 \le j < p, do
l := (j + k) \mod p
if S[l] < S[j] or S[l] = S[j] and l < j
then R[j] := R[j] + 1
endif
endfor
Processor j, 0 \le j < p, write S[j] into S[R[j]]
```

- trivial for a CRCW of the "reduction"
 - $\,\,$ if the reduction operator happens to be \otimes
 - E.g., sum of p values, one per processor
 - can be done in a single cycle
 - each processor writing its corresponding value into a common

- recursive doubling can be used on EREW
 - virtually identical EREW broadcasting
 - with the copying operation replaced by a (\otimes) operation.

EREW PRAM semigroup computation algorithm

Processor $j, 0 \le j < p$, copy X[j] into S[j] s := 1while s < p Processor $j, 0 \le j , do$ $<math>S[j + s] := S[j] \otimes S[j + s]$ s := 2sendwhile Broadcast S[p - 1] to all processors

Broadcast S[p-1] to all processors

0:0	1
0:1	
1:2	
,2:3	
3:4	
4:5	
5:6	
6:7	
7:8	
8:9	

0:0	(
0:1	(
0:2	(
0:3	
0:4	
0:5	
0:6	
0:7	
1:8	(
2:9	[(

- recursive doubling can be used on EREW
 - It is optimal, needs $\Theta(\log p)$ computation
 - in each machine cycle, a processor can combine only two values
 - the semigroup computation requires that we combine p values to get the result.

- When each processors have n/p elements
 - each processor
 - first combines its n/p elements
 - n/p steps to get a single value.
 - Then, the algorithm just discussed is used
 - the first step replaced by copying the result of the above into S[j].

- Speed-up and efficiency
 - final broadcasting takes log 2 p steps
 - algorithm needs $n/p + 2 \log 2 p$ EREW steps in all
 - n/(n/p + 2 log2 p) speed-up over the sequential version
 - If $p = \Theta(n)$
 - a sublinear speed-up of $\Theta(n/\log n)$ is obtained.
 - efficiency is $\Theta(n/\log n)/\Theta(n) = \Theta(1/\log n)$.

Parallel prefix computation

- Can be done like the first phase of the semigroup computation
- as we find the semigroup result in S[p-1]
 - all partial prefixes are also obtained in the previous elements of S

Parallel prefix computation

- a solution using divide and conquer
 - Sub-problem 1: computing odd-indexed results s1, s3, s5, ...
 - Combine pairs of consecutive elements to obtain a list of half the size
 - Perform parallel prefix computation on this list
 - Sub-problem 2: computing the even-indexed results s0, s2, s4, ...
 - combine even-indexed inputs with their next odd-indexed result
 - By a single PRAM step

•
$$T(p) = T(p/2) + 2 \Longrightarrow T(p) = 2 \log_2 p$$

Parallel prefix computation

- Another solution using divide and conquer
 - view the input list as composed of two odd/even sublists
 - Perform parallel prefix separately on each sublist
 - Obtain final results by pairwise combination of adjacent partial results
 - a single PRAM step
 - $T(p) = T(p/2) + 1 \Longrightarrow T(p) = \log_2 p$
 - applicable only if the operator \otimes is commutative

Ranking the elements of a linked list

- rank the list elements in terms of the distance of each to the terminal element
 - It is important
 - it is a very useful building block in many
 - it demonstrates how a problem that seems hopelessly sequential can be efficiently parallelized

Ranking the elements of a linked list

- A sequential algorithm
 - requires $\Theta(p)$ time.
 - list must be traversed once to determine the distance of each element from the head
 - second pass, through the list to compute all the ranks

Ranking the elements of a linked list

- parallel solution (pointer jumping)
 - Processor j, $0 \le j \le p$, is responsible for computing rank [j]
 - number of elements that are skipped doubles with each iteration
 - the number of iterations is logarithmic in p

The product C of m×m matrices A and B:
 c_{ij} = ∑^{m-1}_{k=0} a_{ik}b_{kj}
 O(m³)-step sequential algorithm

Sequential matrix multiplication algorithm

```
for i = 0 to m - 1 do
for j = 0 to m - 1 do
t := 0
for k = 0 to m - 1 do
t := t + a_{ik}b_{kj}
endfor
c_{ij} := t
endfor
endfor
```

- If the PRAM has $p = m^3$ processors
 - can be done in $\Theta(\log m)$ time
 - using one processor to compute each product a_{ik}b_{ki}
 - then allowing groups of m processors to perform minput summations (semigroup computation)
 - in Θ(log m) time.
 - is not a practical solution.
 - we are usually not interested in parallel processing unless m is large

- if PRAM has $p = m^2$ processors.
 - can be done in $\Theta(m)$ by parallelizing the i and j loops
 - using one processor to compute each c_{ii}
 - The processor
 - reads the elements of Row i in A and the elements of Column j in B
 - multiplies their corresponding kth elements
 - adds each of the obtained products to a running total t.

• if PRAM has $p = m^2$ processors.

- would require the CREW submodel
 - multiple processors will be reading the same row of A or the same column of B
- it is possible to convert the algorithm for EREW
 - by skewing the memory accesses (how?)

- if PRAM has p = m processors
 - can be done in $\Theta(m^2)$ by parallelizing the i loop
 - Processor i compute the m elements in Row i of the product matrix C
 - Processor i
 - read the elements of Row i in A and the elements of all columns in B
 - multiply their corresponding kth elements
 - add each of the obtained products to a running total t.

```
for j = 0 to m - 1 Processor i, 0 \le i < m, do

t := 0

for k = 0 to m - 1 do

t := t + a_{ik}b_{kj}

endfor

c_{ij} := t

endfor
```

• if PRAM has p = m processors

- each processor reads a different row of the matrix A
 - no concurrent reads from A are ever attempted.
- however, all m processors access the same element b_{kj} at the same time.
- one can skew the memory accesses for B for the EREW

```
for j = 0 to m - 1 Processor i, 0 \le i < m, do

t := 0

for k = 0 to m - 1 do

t := t + a_{ik}b_{kj}

endfor

c_{ij} := t

endfor
```

- If the number of processors is even less than m
 - Occurs in many practical situations
 - parallelizing the k loop is not good
 - has data dependencies
 - parallelizing the j loop is not good
 - imply m synchronizations of the processors once at the end of each i iteration
 - assuming the SPMD model

- If the number of processors is even less than m
 parallelizing the i loop
 - Processor i compute a set of m/p rows in the result matrix C
 - Rows i, i + p, i + 2p, ..., i + (m/p 1)p
 - almost linear speedup for UMA
 - speed-up of about 22 for 24 processors multiplying two 256 × 256 matrices

- If the number of processors is even less than m
 parallelizing the i loop
 - Has drawback for NUMA
 - Low computation to memory access ratio
 - each element of B is fetched m/p times
 - with only two arithmetic operations for each element
 - one multiplication and one addition

- If the number of processors is even less than m
 - Block matrix multiplication
 - divide the m × m matrices A, B, and C into p blocks of size q × q, where $q = m/\sqrt{p}$
 - then multiply the m×m matrices using $\sqrt{p} \times \sqrt{p}$ matrix multiplication with $\sqrt{p}^2 = p$ processors where
 - the terms in the algorithm statement $t:=t+a_{ik}b_{kj}$ are now $q\times q$ matrices
 - Processor (i, j) computes Block (i, j) of the result matrix C.

- If the number of processors is even less than m
 - Block matrix multiplication
 - the algorithm is like our second algorithm above
 - the statement $t := t + a_{ik}b_{kj}$ replaced by a sequential $q \times q$ matrix multiplication algorithm

- If the number of processors is even less than m
 - Block matrix multiplication
 - The assumption here is
 - Processor (i, j) has sufficient local memory to hold
 - Block (i, j) of the result matrix C (q² elements)
 - one block-row of the matrix B
 - the q elements in Row kq + c of Block (k, j) of B.

- If the number of processors is even less than m
 - Block matrix multiplication
 - Elements of A can be brought in one at a time.
 - as element in Row iq+a of Column kq+c in Block (i, k) of A is brought in
 - it is multiplied in turn by the locally stored q elements of B
 - and the results added to the appropriate q elements of C

- If the number of processors is even less than m
 - Block matrix multiplication
 - Each multiply–add computation on q×q blocks needs
 - $2q^2 = 2m^2/p$ memory accesses to read the blocks
 - 2q³ arithmetic operations.
 - So, q arithmetic operations are performed for each memory access
 - better performance will be achieved as a result of improved locality