PARALLEL PROCESSING SYSTEMS

Chapter 5: PRAM and Basic Algorithms

Introduction

» we deal with five key building-block
algorithms
= Data broadcasting
o Semigroup or fan-in computation
o Parallel prefix computation
= Ranking the elements of a linked list

o Matrix multiplication

PRAM submodels and assumptions

= concurrent operation of p processors on m-
word

o accessible to all of them

o 1n three phases of one cycle, processor 1 can do :

1. Fetch an operand from the source address s, in the
shared memory

2. Perform some computations on the data held in
local registers

3. Store a value into the destination address d. in the
shared memory

PRAM submodels and assumptions

= Not all three phases need to be present 1n
every cycle
o a particular cycle may require
* no new data from memory

* Or no computation

* Or no storing 1n memory

PRAM submodels and assumptions

= several processors may want to read/write the
same memory location

o four submodels of the PRAM

Reads from Same Location

Exclusive Concurrent
£ 3
L B e

(&) we »

, o Most "Realistic” Default
L
g 8
g 3 e M Tocwrml
= 2 " Not Useful ost "Powerful”,
:E 5 o Ve Further Subdivided

PRAM submodels and assumptions

= CRCW sub-models

m}

Undefined: In case of multiple writes, the value written 1s undefined
(CRCW-U)

Detecting: A special code representing “detected collision™ 1s written
(CRCW-D).

Common: Multiple writes allowed only if all store the same value
(CRCW-C)

= sometimes called the consistent-write submodel.

Random: The value written 1s randomly chosen from among those offered
(CRCWR)

= sometimes called the arbitrary-write submodel.

Priority: The processor with the lowest index succeeds in writing its value
(CRCW-P)

Max/Min: The largest/smallest of the multiple values 1s written (CRCW-
M)

Reduction: The arithmetic sum (CRCW-S), logical AND (CRCW-A),

logical XOR (CRCW-X), or some other combination of the multiple
values 1s written.

PRAM submodels and assumptions

» Using computational power to order the submodels:

= Two PRAM submodels are equally powerful if each can
emulate the other with a constant-factor slowdown

= A PRAM submodel is (strictly) less powerful than another
submodel (denoted by the “<” symbol)

- 1f there exist problems for which the former requires
significantly more computational.

- E.g., the CRCW-D PRAM submodel is less powerful than the
one that writes the maximum value

= the latter can find the largest number in a vector A of size p in a
single step
 Processor i reads A[i] and writes it to an agreed-upon location x

= the former needs at least 2(log n) steps.

EREW < CREW < CRCW-D < CRCW-C < CRCW-R < CRCW-P

Data broadcasting

= Simple, or one-to-all, broadcasting
@ one processor needs to send a data value to all other processors.
@ Trivial in the CREW or CRCW submodels

= sending processor can write the data value into a memory location
= all processors reading that data value in the next cycle.
= done m O(1) steps.
» Multicasting within groups
o equally simple if each processor knows its group membership(s)
= only members of each group read the multicast data for that group.

= All-to-all broadcasting

= each of the p processors needs to send a data value to all other
processors

= can be done through p separate broadcast operations
= O(p) steps, which 1s optimal.

Data broadcasting

» Previous scheme 1s mapplicable to the EREW
» The simplest scheme for EREW

o make p copies of the data value
= say 1n a broadcast vector B of length p
= 1nitially, Processor 1 writes its data value into B[0].
= Use recursive doubling to copy B[0] into all elements of B
" In [log 2 p] steps
o]et each processor read its own copy by accessing BJj].

-t

I Data broadcasting

» The simplest scheme for EREW

o Recursive doubling

Making p copies of B[0] by recursive doubling

fork=0to f10g2p1 — 1 Processor j, 0 <j<p, do
Copy B|j] into B[j + 2]
endfor

—~—ODWwoONOOMEWN=O

Data broadcasting

» The simplest scheme for EREW

= allow us to use the 1dle processors for other tasks
= to speed up algorithm execution

= or to reduce the memory access traffic

= when the algorithm 1s ported to a physical shared-
memory machine

o in Step k of doubling process, only the first 2X
processors need to be active

Data broadcasting

» The simplest scheme for EREW

EREW PRAM algorithm for broadcasting by Processor i

Processor 7 write the data value into B[0]

s:=1

while s < p Processor j, 0 <j <min(s, p — s), do
Copy B[j] into B[j + 5]
si=25

endwhile

Processor j, 0 <j < p, read the data value in B|j]

B

= -

S O0OWONONEWN—=-O

-t b

Data broadcasting

» The simplest scheme for EREW
o It 1s optimal for EREW PRAM

= 1nitially a single copy of the data value exists

= at most one other processor can get the value

- through a memory access in the first step

* In the second step

= two more processors can become aware of the data
value

= Continuing 1n this manner

= at least [logZ p] read—write cycles are necessary

Data broadcasting

= all-to-all broadcasting in EREW

=]let Processor j write 1ts value into BJj]
= rather than into BJ[O0].

o Each processor then reads the other p — 1 values in p —
1 memory accesses

= To ensure that all reads are exclusive

= Processor j
- begins reading the values starting with B[] + 1]
- wrapping around to B[0] after reading B[p — 1].

EREW PRAM algorithm for all-to-all broadcasting

Processor j, 0 <j < p, write own data value into B|J]
fork=1top— 1 Processorj 0<j<p, do

Read the data value in B[(j + k) mod p]
endfor

I Data broadcasting

= all-to-all broadcasting in EREW
o It 1s optimal

= the shared memory is the only mechanism for
Interprocessor communication

= each processor can read only one value in each
machine cycle.

Data broadcasting

» anaive sorting algorithm
o let Processor j compute the rank R[j] of the data
element S[j]
= examining all other data elements
- goﬁlinting the number of elements S[1] that are smaller than
= then store S[j] into S[R[j]].

Naive EREW PRAM sorting algorithm using all-to-all broadcasting

Processor j, 0 <j < p, write 0 into R[J]
for k=1to p—1Processorj, 0<j<p, do
[:=(G+k)modp
if S[I] < S[j] or S[I]1=S[jland I <
then R[j] := R[j] + 1
endif
endfor
Processor j, 0 <j < p, write S[j] into S[R[j]]

Semigroup or fan-in computation

= trivial for a CRCW of the “reduction™
= 1f the reduction operator happens to be &

= E.g., sum of p values, one per processor
= can be done 1n a single cycle

= each processor writing its corresponding value into a
common

Semigroup or fan-in computation

» recursive doubling can be used on EREW

= virtually identical EREW broadcasting
= with the copying operation replaced by a (&) operation.

EREW PRAM semigroup computation algorithm

Processor j, 0 < j < p, copy X[j] into S[j]
s:=1
while s < p Processorj, 0 <j<p -5, do
S+ s] :=S[j] ® S[j + 5]
s:=2s
endwhile
Broadcast S[p — 1] to all processors

S
R e = B =
et ool e s
it S e
e N e
ia: b [=

Semigroup or fan-in computation

» recursive doubling can be used on EREW

o]t 1s optimal, needs ®(log p) computation

= 1n each machine cycle, a processor can combine only
two values

= the semigroup computation requires that we combine
p values to get the result.

Semigroup or fan-in computation

= When each processors have n/p elements

o each processor
= first combines its n/p elements
= n/p steps to get a single value.

= Then, the algorithm just discussed 1s used

= the first step replaced by copying the result of the above
into S[j].

Semigroup or fan-in computation

» Speed-up and efficiency
= final broadcasting takes log 2 p steps
o algorithm needs n/p + 2 log2 p EREW steps in all

= n/(n/p + 2 log2 p) speed-up over the sequential
Version

o If p=0O(n)
= a sublinear speed-up of ®(n/log n) 1s obtained.
= efficiency 1s ®(n/log n)/O(n) = O(1/log n).

Parallel prefix computation

» Can be done like the first phase of the
semigroup computation

= as we find the semigroup result in S[p — 1]

o all partial prefixes are also obtained in the previous
elements of S

GHH %%
oA
GH 5%
G457
1:8
2:9

N7
I

§U,

D57

ﬁ-

<4

U‘I-hmll\)—l

N

<+ |+
(oM le-1 LN le)]
OINIO \
<X
DI
~ S n

CONONHEWN = O
ié'cbk'aii)&hlibbi\')'-i

Parallel prefix computation

= a solution using divide and conquer

= Sub-problem 1: computing odd-indexed results sl , s3, s5, . ..

* Combine pairs of consecutive elements to obtain a list of half the
size

= Perform parallel prefix computation on this list
= Sub-problem 2: computing the even-indexed results s0, s2, s4 , . ..

= combine even-indexed inputs with their next odd-indexed result
= By asingle PRAM step

o T(p) =T(p/2) +2=>T(p) =2 log, p

The p inputs .
0:0 1;1 2:2 3:3 4:4 5;5 6:6 7:7 p-3:p-3 p-2:p-2 p-l:p-1
"~\\j "\“ﬁj MNNNJ MMN~J

0:1 2:3 4:5 6:7 p-4:p-3 p-2:p-1
Parallel prefix computation of size p/2 | >

0:1 0:1 0:§ Did 0:p-3 0:p-1

\»..,« ", M) \
U:U U:g Via U:0 J:p-2

Parallel prefix computation

» Another solution using divide and conquer
= view the input list as composed of two odd/even sublists
= Perform parallel prefix separately on each sublist

= (Obtain final results by pairwise combination of adjacent
partial results

= asingle PRAM step

= T(p) =T(p/2) + 1 =>T(p) = log, p
o applicable only if the operator & is commutative

p/2 even-indexed inputs o>
0 2 4 6 E W p-2
Parallel prefix computation of size p/2 >
0 02 024 0246 024... (p-2)
)
\L N\ ‘\ p/2 odd-indexed inputs \\ .
1 3 5 7 . . . pP-3 \ p-1
Parallel prefix computation of size j/2 >
1 13 35 357 1 5. (p—K 13...(p-1)
t

0:0 O0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:(p=-3) O0:(p-2) O0:(p-1)

Ranking the elements of a
linked list

= rank the list elements in terms of the distance
of each to the terminal element

o It 1s important
= 1t 1s a very useful building block 1n many

= 1t demonstrates how a problem that seems hopelessly
sequential can be efficiently parallelized

head info next Terminal element
—P|C[o P F|erPA|&PE|ePB|e 1P D| g

Rank: 5 4 3 2 1 0
(or distance from terminal)

Distance from head:
1 2 3 4 5 6

Ranking the elements of a
linked list

» A sequential algorithm

o requires O(p) time.

* list must be traversed once to determine the distance
of each element from the head

= second pass, through the list to compute all the ranks

headinfoncxt Terminal element
—P|C[o P F|erPA|&PE|ePB|e 1P D| g

Rank: 5 4 3 2 1 0
(or distance from terminal)

Distance from head:
1 2 3 4 5 6

Ranking the elements of a
linked list

= parallel solution (pointer jumping)
= Processor j, 0 <j <p, 1s responsible for computing rank [j]

= number of elements that are skipped doubles with each
iteration

= the number of iterations 1s logarithmic in p

PRAM list ranking algorithm (via pointer jumping) sl : = ; >
Processor j, 0 <j < p, do {initialize the partial ranks }
if next(j]=j > n 2 2 1 0l
then rank(j] = 0 | | I Y 3]) 4

else rank(j] := 1

endif . ‘ 3 : Ll‘_“.L"q‘__l
while rank[next{head]] # 0 Processor j, 0 <j < p, do | .

rank(j] := rank|j] + rank[next{j]] p : : : : T
next|j] := next|[next|jl] [1 .L'ﬂ“

endwhile

Matrix multiplication

* The product C of mxm matrices A and B:

m-1

Cy= 2 . Ay
= O(m?)-step sequential algorithm

Sequential matrix multiplication algorithm

fori=0tom—-1do
forj=0tom—1do
t:=0
fork=0tom—-1do
r:=r+aikbkj
endfor

endfor

endfor

Matrix multiplication

» [f the PRAM has p = m?® processors

= can be done in ®(log m) time
" using one processor to compute each product a; by

= then allowing groups of m processors to perform m-
Input summations (semigroup computation)

* 1n O(log m) time.
= 1S not a practical solution.

= we are usually not interested in parallel processing
unless m 1s large

Matrix multiplication

» 1f PRAM has p = m? processors.

o can be done in ®(m) by parallelizing the 1 and j loops
" using one processor to compute each c;;
= The processor
. .rea]gs the elements of Row 1 1n A and the elements of Column j
in
- multiplies their corresponding kth elements
- adds each of the obtained products to a running total t.

Processor (7, 7), 0 <1, j<m, do

begin
t:=0
fork=0tom—-1do
t:=r+aikbkj i" = 3
endfor
c...=1

1

Matrix multiplication

» 1f PRAM has p = m? processors.

o WOu

" mul

d require the CREW submodel

tiple processors will be reading the same row of A

or

he same column of B

= 1t 1S possible to convert the algorithm for EREW

= by skewing the memory accesses (how?)

Matrix multiplication

» 1f PRAM has p = m processors

o can be done in ®(m?) by parallelizing the 1 loop
= Processor 1 compute the m elements in Row 1 of the
product matrix C
= Processor 1

« read the elements of Row 1 1n A and the elements of all
columns in B

- multiply their corresponding kth elements
- add each of the obtained products to a running total t.

for j=0tom— 1 Processor i, 0 <i<m, do
t:=0
fork=0tom—-1do
=1+ al.kbkj
endfor

Matrix multiplication

» 1f PRAM has p = m processors

o each processor reads a different row of the matrix A

* no concurrent reads from A are ever attempted.

° however, all m processors access the same element by
at the same time.

= one can skew the memory accesses for B for the EREW

for j=0tom— 1 Processor i, 0 <i<m, do
t:=0
fork=0tom—-1do
=1+ al.kbkj
endfor

Matrix multiplication

= [f the number of processors 1s even less than m
= Occurs in many practical situations
o parallelizing the k loop 1s not good
= has data dependencies
o parallelizing the j loop 1s not good

= 1mply m synchronizations of the processors once at
the end of each 1 iteration

= assuming the SPMD model

Matrix multiplication

» If the number of processors 1s even less than m

o parallelizing the 1 loop

= Processor 1 compute a set of m/p rows in the result
matrix C
* Rowsi,1+p,1+2p,...,1+(m/p—1)p

= almost linear speedup for UMA

= speed-up of about 22 for 24 processors multiplying two
256 x 256 matrices

Matrix multiplication

» If the number of processors 1s even less than m

o parallelizing the 1 loop
* Has drawback for NUMA

- Low computation to memory access ratio
- each element of B is fetched m/p times

- with only two arithmetic operations for each element

- one multiplication and one addition

Matrix multiplication

» [f the number of processors 1s even less than m

o Block matrix multiplication
= divide the m x m matrices A, B, and C into p blocks of
size q x q, where ¢ = m/\/p
* then multiply the m>xm matrices using /p X /p matrix
multiplication with \/ﬁz = p processors where
* the terms in the algorithm statement t := t +a; by, are now q x

q matrices
= Processor (1, j) computes Block (i, j) of the result matrix C.
1 2 »
l G=mAp mpuplmncmm
2l o ‘e bolds i
local memory

Matrix multiplication

= [f the number of processors 1s even less than m

= Block matrix multiplication

= the algorithm 1s like our second algorithm above

* the statement t :=t + a;by; replaced by a sequential q x
q matrix multiplication algorithm

1 2 p
i
aNp One processor
3 computes these
2 et elements of C
1 that it holds in
local memory

Matrix multiplication

» If the number of processors 1s even less than m

= Block matrix multiplication

= The assumption here 1s

= Processor (1,) has sufficient local memory to hold
* Block (1, j) of the result matrix C (g* elements)

» one block-row of the matrix B
- the q elements in Row kq + ¢ of Block (k, j) of B.

Matrix multiplication

» [f the number of processors is even less than m

= Block matrix multiplication

= Elements of A can be brought in one at a time.
= as element in Row 1g+a of Column kqg+c 1n Block (1, k) of A 1s
brought in
- it 1s multiplied in turn by the locally stored q elements of B

- and the results added to the appropriate q elements of C
jgl

Element of
Block (i, k)
in Matrix A

in Matrix C

iqrq-1 igrq-1

Matrix multiplication

» If the number of processors 1s even less than m

= Block matrix multiplication
= Each multiply—add computation on qxq blocks needs

= 2¢*= 2m?*/p memory accesses to read the blocks

= 2q? arithmetic operations.

= So, q arithmetic operations are performed for each
memory access

= better performance will be achieved as a result of
improved locality

