Matrix Analysis

Mina Jamshidi

Graduate University of Advanced Technology

Matrix Operations

- Matrix addition/subtraction
- Matrices must be of same size.
- Matrix multiplication
m X n
$\left[\begin{array}{cccc}a_{11} & a_{12} & \cdot & a_{1 n} \\ a_{21} & a_{22} & \cdot & a_{2 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m 1} & a_{m 2} & \cdot & a_{m n}\end{array}\right]\left[\begin{array}{cccc}b_{11} & b_{12} & \cdot & b_{1 p} \\ b_{21} & b_{22} & \cdot & b_{2 p} \\ \cdots & \cdots & \cdots & \cdots \\ b_{q 1} & b_{q 2} & \cdot & b_{q p}\end{array}\right]=\left[\begin{array}{cccc}c_{11} & c_{12} & \cdot & c_{1 p} \\ c_{21} & c_{22} & \cdot & c_{2 p} \\ \cdots & \cdots & c_{i j} & \cdots \\ c_{m 1} & c_{m 2} & \cdot & c_{m p}\end{array}\right]$

Condition: $\mathbf{n}=\mathbf{q}$

$$
c_{i j}=\sum_{k=1}^{m} a_{i k} b_{k j}
$$

Identity Matrix

$$
A I=I A=A \text {, where } I=\left[\begin{array}{cccc}
1 & 0 & . & 0 \\
0 & 1 & . & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & . & 1
\end{array}\right]
$$

Matrix Transpose

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & . & a_{1 n} \\
a_{21} & a_{22} & . & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{m 1} & a_{m 2} & . & a_{m n}
\end{array}\right], A^{T}=\left[\begin{array}{cccc}
a_{11} & a_{21} & . & a_{m 1} \\
a_{12} & a_{22} & . & a_{m 2} \\
\ldots & \ldots & \ldots & \ldots \\
a_{1 n} & a_{2 n} & . & a_{m n}
\end{array}\right]
$$

Property: $(A B)^{T}=B^{T} A^{T}$

Symmetric Matrices

$$
A=A^{T}\left(a_{i j}=a_{j i}\right)
$$

Example:

$$
\left[\begin{array}{ccc}
4 & 5 & -3 \\
5 & 7 & 2 \\
-3 & 2 & 10
\end{array}\right]
$$

Determinants

2×2

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], \quad \operatorname{det}(A)=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}
$$

3×3

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{cc}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{21}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|+a_{31}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right|
$$

n X n

$$
\operatorname{det}(A)=\sum_{j=1}^{m}(-1)^{j+k} a_{j k} \operatorname{det}\left(A_{j k}\right), \text { for any } k: 1 \leq k \leq m
$$

Determinants

$$
\begin{gathered}
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \\
\operatorname{det}(A+B) \neq \operatorname{det}(A)+\operatorname{det}(B)
\end{gathered}
$$

diagonal matrix:
If $A=\left[\begin{array}{cccc}a_{11} & 0 & \cdot & 0 \\ 0 & a_{22} & \cdot & 0 \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \cdot & a_{n n}\end{array}\right]$, then $\operatorname{det}(A)=\prod_{i=1}^{n} a_{i i}$

Matrix Inverse

- The inverse A^{-1} of a matrix A has the property:

$$
A A^{-1}=A^{-1} A=I
$$

- A^{-1} exists only if $\operatorname{det}(A) \neq 0$

Matrix Inverse (cont'd)

- Properties of the inverse:

$$
\begin{gathered}
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)} \\
(A B)^{-1}=B^{-1} A^{-1} \\
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
\end{gathered}
$$

Pseudo-inverse

- The pseudo-inverse A^{+}of a matrix A (could be nonsquare, e.g., $m \times n$) is given by:

$$
A^{+}=\left(A^{T} A\right)^{-1} A^{T}
$$

- It can be shown that:

$$
A^{+} A=I \quad \text { (provided that }\left(A^{T} A\right)^{-1} \text { exists) }
$$

Matrix trace

$$
\operatorname{tr}(A)=a_{11}+a_{22}+\cdots+a_{n n}
$$

properties:

$$
\begin{gathered}
\operatorname{tr}\left(A^{T}\right)=\operatorname{tr}(A) \\
\operatorname{tr}(A \pm B)=\operatorname{tr}(A) \pm \operatorname{tr}(B) \\
\operatorname{tr}(A B)=\operatorname{tr}(B A) \\
\text { (in general, } \operatorname{tr}(A B) \neq \operatorname{tr}(A) \operatorname{tr}(B))
\end{gathered}
$$

Rank of matrix

- Equal to the dimension of the largest square submatrix of A that has a non-zero determinant.

Example: $\left[\begin{array}{cccc}4 & 5 & 2 & 14 \\ 3 & 9 & 6 & 21 \\ 8 & 10 & 7 & 28 \\ 1 & 2 & 9 & 5\end{array}\right]$ has rank 3

$$
\operatorname{det}(A)=0, \text { but } \operatorname{det}\left[\begin{array}{ccc}
4 & 5 & 2 \\
3 & 9 & 6 \\
8 & 10 & 7
\end{array}\right]=63 \neq 0
$$

Rank of matrix (cont'd)

- Alternative definition: the maximum number of linearly independent columns (or rows) of A.

$$
c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{k} v_{k}=0 \quad c_{1}=c_{2}=\cdots=c_{k}=0
$$

Example:

$$
1\left[\begin{array}{l}
4 \\
3 \\
8 \\
1
\end{array}\right]+2\left[\begin{array}{c}
5 \\
9 \\
10 \\
2
\end{array}\right]+0\left[\begin{array}{l}
2 \\
6 \\
7 \\
9
\end{array}\right]-1\left[\begin{array}{c}
14 \\
21 \\
28 \\
5
\end{array}\right]=0
$$

Therefore, rank is not 4 !

Rank and singular matrices

If A is $n x n, \operatorname{rank}(A)=n \operatorname{iff} A$ is nonsingular (i.e., invertible).
If A is $n x n, \operatorname{rank}(A)=n$ iff $\operatorname{det}(A) \neq 0$ (full rank).
If A is $n x n, \operatorname{rank}(A)<n$ iff A is singular

Orthogonal matrices

- Notation:
$\left.\left.A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdot & a_{1 n} \\ a_{21} & a_{22} & \cdot & a_{2 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m 1} & a_{m 2} & \cdot & a_{m n}\end{array}\right], \quad \begin{array}{l}u_{1}^{T}=\left[\begin{array}{lll}a_{11} & a_{12} & \cdots\end{array} a_{1 n}\right.\end{array}\right] \quad \begin{array}{l}u_{2}^{T}=\left[\begin{array}{llll}a_{21} & a_{22} & \cdots & a_{2 n}\end{array}\right] \quad u_{m}^{T}=\left[\begin{array}{lll}a_{m 1} & \cdots & a_{m 2}\end{array} \cdots\right. \\ u_{m n}\end{array}\right] \quad A=\left[\begin{array}{c}u_{1}^{T} \\ u_{2}^{T} \\ \cdots \\ u_{m}^{T}\end{array}\right]$
- A is orthogonal if:

$$
u_{j} . u_{k}=0, \text { for every } j \neq k\left(u_{j} \text { is perpendicular to } u_{k}\right)
$$

Example: $\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$

Orthonormal matrices

- A is orthonormal if:

$$
\begin{aligned}
& \text { (1) } u_{k} \cdot u_{k}=1 \text { or }\left\|u_{k}\right\|=1 \text {, for every } k \\
& \text { (2) } u_{j} \cdot u_{k}=0 \text {, for every } j \neq k\left(u_{j} \text { is perpendicular to } u_{k}\right)
\end{aligned}
$$

- Note that if A is orthonormal, it easy to find its inverse:

$$
\left.A A^{T}=A^{T} A=I \quad \text { (i.e., } A^{-1}=A^{T}\right)
$$

Property:

$$
\|A v\|=\|v\|(\text { does not change the magnitude of } v)
$$

Eigenvalues and Eigenvectors

- The vector v is an eigenvector of matrix A and λ is an eigenvalue of A if:

$$
A v=\lambda v(\text { assume non-zero v })
$$

- Interpretation: the linear transformation implied by A cannot change the direction of the eigenvectors v, only their magnitude.

Computing λ and v

- To find the eigenvalues λ of a matrix A, find the roots of the characteristic polynomia:

$$
\operatorname{det}(A-\lambda I)=0
$$

Example: $A=\left[\begin{array}{ll}5 & -2 \\ 6 & -2\end{array}\right]$

$$
A v=\lambda v
$$

$$
\operatorname{det}\left[\begin{array}{cc}
5-\lambda & -2 \\
6 & -2-\lambda
\end{array}\right]=0 \text { or } \lambda^{2}-3 \lambda+2=0 \text { or } \lambda_{1}=1, \lambda_{2}=2
$$

$$
v_{1}=\left[\begin{array}{c}
1 / 2 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{c}
2 / 3 \\
1
\end{array}\right]
$$

Properties

- Eigenvalues and eigenvectors are only defined for square matrices (i.e., $m=n$)
- Eigenvectors are not unique (e.g., if v is an

$$
A v=\lambda v
$$ eigenvector, so is $k v$)

- Suppose $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of A, then:

$$
\begin{aligned}
& \text { (1) } \sum_{i} \lambda_{i}=\operatorname{tr}(A) \\
& \text { (2) } \prod_{i} \lambda_{i}=\operatorname{det}(A)
\end{aligned}
$$

(3) if $\lambda=0$ is an eigenvalue, then the matrix is not invertible

Matrix diagonalization

- Given A, find P such that $P^{1} A P$ is diagonal (i.e., P diagonalizes A)
- Take $P=\left[v_{1} v_{2} \ldots v_{n}\right]$, where $v_{1}, v_{2}, \ldots v_{n}$ are the eigenvectors of A :

$$
A v=\lambda v
$$

$A P=P\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 0 & 0 & \lambda_{n}\end{array}\right]$ or $P^{-1} A P=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ 0 & 0 & \lambda_{n}\end{array}\right]$

Matrix diagonalization (cont'd)

Example: $\quad A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$

$$
\begin{gathered}
\lambda_{1}=0, \lambda_{2}=2, v_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], v_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \\
P=\left[\begin{array}{ll}
1 & 1 \\
-1 & 1
\end{array}\right], P^{-1}=\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right] \\
P^{-1} A P=\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]
\end{gathered}
$$

Are all n x n matrices diagonalizable?

- Only if P^{-1} exists (i.e., A must have n linearly independent eigenvectors, that is, $\operatorname{rank}(\mathrm{A})=\mathrm{n}$)
- If A has n distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then the corresponding eigevectors $v_{1}, v_{2}, \ldots v_{n}$ form a basis:
(1) linearly independent
(2) span R^{n}

Diagonalization \rightarrow Decomposition

- Let us assume that A is diagonalizable, then:

Decomposition: symmetric matrices

- The eigenvalues of symmetric matrices are all real.
- The eigenvectors corresponding to distinct eigenvalues are orthogonal.

$$
A=P\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
0 & 0 & \lambda_{n}
\end{array}\right] P^{-1}
$$

$$
\mathrm{P}^{-1}=\mathrm{P}^{\mathrm{T}}
$$

$$
\longrightarrow \quad \mathrm{A}=\mathrm{PDP}^{\mathrm{T}}=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{T}
$$

