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DEF: nonzero be  nRvLet  T
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is called Householder matrix ( Reflection, Transformation)

r vectorHouseholde called is    v

Rem:

1) They are rank-1 

modifications of the identity

2)  They are symmetric and 

orthogonal

3)  They can be used to zero 

selected components of a 

vector

}{ want and 0 1espanPxRx n 

Example
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QR  factorization

A = Q R

Orthogonalnm
Upper

triangular

=

We begin with a QR factorization method that utilizes 
Householder transformations.



QR  factorization
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Remark:

QR  factorization

Upper triangular
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Product of orthogonal 

matrices is an orthogonal QRA =

  
Q

nHHQ 1=



Householder Transformations

DEF: nonzero be  nRvLet  T

T
vv

vv
IP

2
−=

is called Householder matrix ( Reflection, Transformation)

r vectorHouseholde called is    v

Example (left multiplication)
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Computing Householder

}{ want and 0 1espanPxRx n 

21        where xexv =+= 

211 xxv =

211 xxv −=

Choice of sign:

It is dangerous if  x  is close to a positive 

multiple of   e1 because sever cancellation 

would occur.

Solution:

0: 1 xcase



Householder Transformations

Matlab [Q,R] = qr(A), where A is m-by-n, produces an m-by-n 

upper triangular matrix R and an m-by-m unitary matrix 

Q so that A = Q*R.





Reduced QR  factorization

Orthogonalnm =

Orthog
onal

nm
Upper

triangular=

Upper

triangular

QRA =

RQA ˆˆ=



Gram-Schmedit

Gram-schmedit Orthogonalization
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Gram-Schmedit

jiaqr j

T

iij =      ,

jjj vr =

112211 )()()( −−−−−−= jj

T

jj

T

j

T

jj qaqqaqqaqav 



Gram-Schmedit

Example:

jiaqr j
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Givens Matrices

Example:
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ŵ

2R

w










−
=





cossin

sincos
Q


wQw T=ˆ

Rotation









=

3

1
x 








=

0

2
xQT



Givens Rotations

To zero a specific entry (not all as Householder)
xkiGy T),,( =

kijxy jj ,   , =

kii sxcxy −=

kik cxsxy +=

Givens Rotations are of this form:

Givens Rotation are orthogonal

We can force      to be zero 

by setting:
ky



Householder Transformations

Example:
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Applying Givens Rotations

AjiG T),,( 

Just effects two rows of A

# of operations = 6n



Householder Transformations

Givens QR 



Householder Transformations

Theorem: (QR  Decomposition)

If  A is real m-by-n matrix matrix of full rank, then  A  has a unique  

reduced QR factorization 

RQA ˆˆ= 0with  iir

Theorem: (QR  Decomposition)

If  A is real m-by-n matrix, then there exist orthogonal matrix  Q 

such that QRA = ngularupper tria  R



Householder Transformations

function [Q,R]=myqr(A)

[m,n]=size(A);

for k=1:n

x=A(k:m,k)

[v]=house(x);

A(k:m,k:n)= A(k:m,k:n) –( 2/v’*v) v*(v’**A(k:m,k:n));

end

function [v]=house(x)

v=x;

v(1)=sign(x(1))*norm(x)+x(1);



Householder Transformations



Questions

Orthogonal Matrices:

1) Two class of orthogonal matrices ( small modification from the identity )

Householder  - Givens  any others

2)  Can we think of  Q  such that  Q(col1) = multiple of  e1

Q(col2) = multiple of  e2


