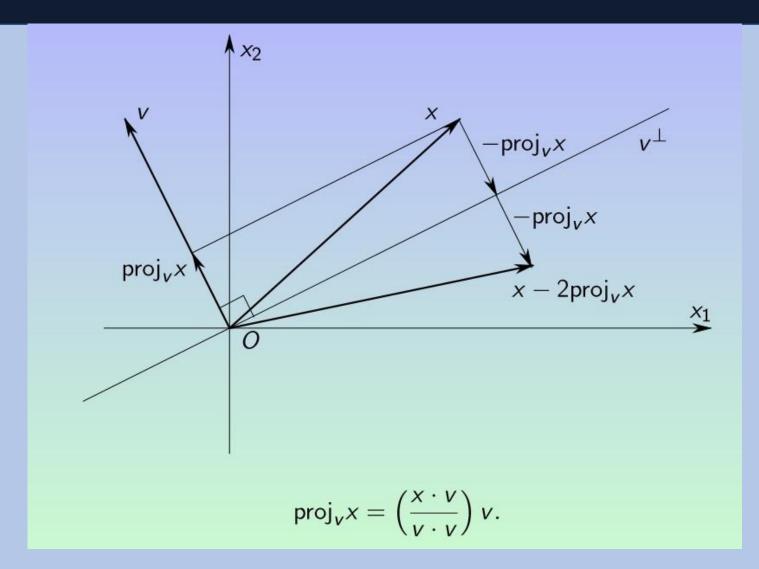
Mina Jamshidi Graduate University of Advanced Technology

Alston Scott Householder. Born: 5 May 1904 in Rockford, Illinois, USA. Died: 4 July 1993 in Malibu, California, USA.



$$x - 2\operatorname{proj}_{v} x = x - 2\left(\frac{x \cdot v}{v \cdot v}\right) v = x - 2\left(\frac{v \cdot x}{v \cdot v}\right) v$$

$$= x - \frac{2}{v^{T}v}(v^{T}x)v = x - \frac{2}{v^{T}v}v(v^{T}x)$$

$$= x - \frac{2}{v^{T}v}(v v^{T})x = \underbrace{\left(I - \frac{2}{v^{T}v}(v v^{T})\right)}_{P} x$$

$$= \left(I - \frac{2}{\|v\|_{2}^{2}}(v v^{T})\right) x = \left(I - 2\frac{v}{\|v\|_{2}}\frac{v^{T}}{\|v\|_{2}}\right) x$$

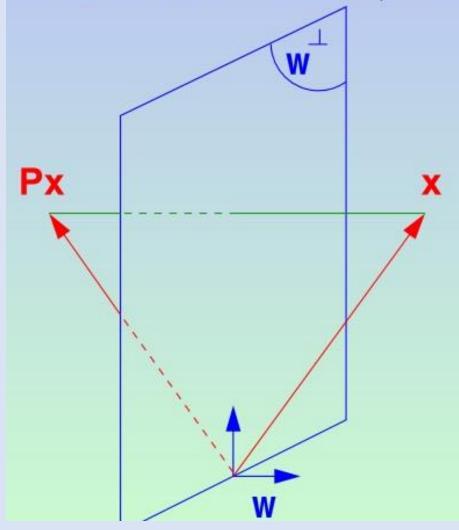
$$= \underbrace{\left(I - 2w w^{T}\right)}_{P} x = Px$$

where $w = v/||v||_2$ is a unit vector in 2-norm.

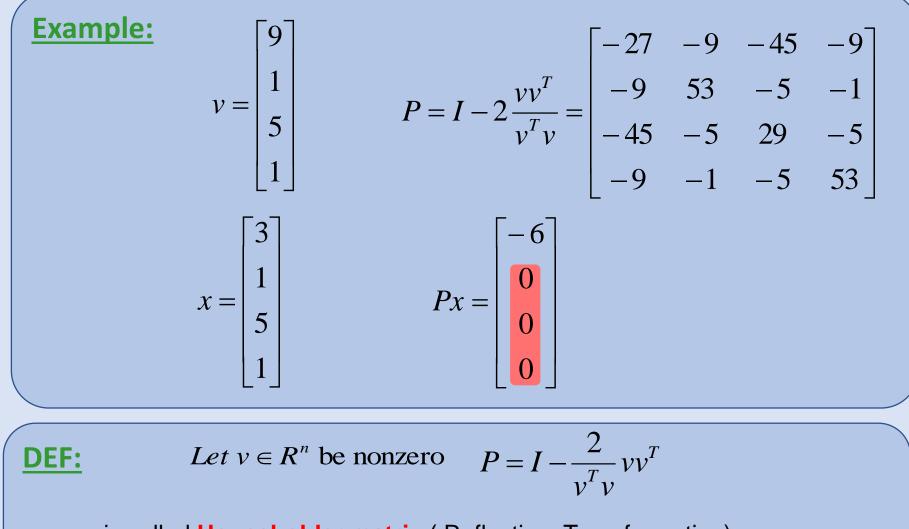
Householder reflectors are matrices of the form

$$P = I - 2w w^T$$
,

where w is a unit vector (a vector of 2-norm unity).



Geometrically, Px represents a mirror image of x with respect to the hyperplane span $\{w\}^{\perp}$.



is called Householder matrix (Reflection, Transformation)

v is called Householde r vector

<u>Problem 1:</u> Given a vector $x \neq 0$, find w such that the Householder reflection will zero out all but the first entry of x, i.e.

$$Px = (I - 2w w^T)x = [\alpha, 0, 0, \cdots, 0] = \alpha e_1,$$

where α is a (free) scalar. Writing $(I - \beta v v^T)x = \alpha e_1$ yields

$$\beta(\mathbf{v}^T \mathbf{x}) \ \mathbf{v} = \mathbf{x} - \alpha \mathbf{e}_1 \quad \rightarrow \quad \mathbf{v} = \frac{1}{\beta(\mathbf{v}^T \mathbf{x})} (\mathbf{x} - \alpha \mathbf{e}_1)$$

Desired v is a multiple of $x - \alpha e_1$, i.e., we can take

$$v = x - \alpha e_1$$

To determine α we just recall that

$$\|Px\| = \|(I - 2w w^{T})x\|_{2} = \|x\|_{2} = \|\alpha e_{1}\|.$$

As a result: $|\alpha| = ||x||_2$, or

 $\alpha = \pm \|x\|_2$

is called Householder matrix (Reflection, Transformation)

DEF: Let $v \in R^n$ be nonzero $P = I - \frac{2}{v^T v} v v^T$

v is called Householde r vector

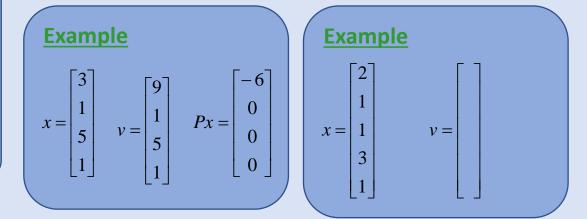
Rem:

- 1) They are rank-1 modifications of the identity
- 2) They are symmetric and orthogonal
- They can be used to zero selected components of a vector

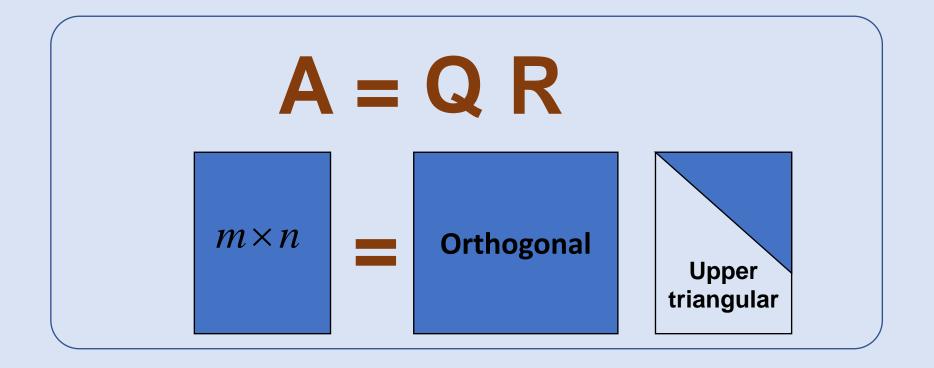
$$0 \neq x \in \mathbb{R}^n$$
 and want $Px \in span\{e_1\}$
 $v = x + \alpha e_1$ where $\alpha = \pm ||x||_2$

Example

 $v = \begin{vmatrix} 5 \\ 1 \\ 5 \\ 1 \end{vmatrix} \quad x = \begin{vmatrix} 5 \\ 1 \\ 5 \\ 1 \end{vmatrix} \quad Px = \begin{vmatrix} -0 \\ 0 \\ 0 \\ 0 \end{vmatrix}$

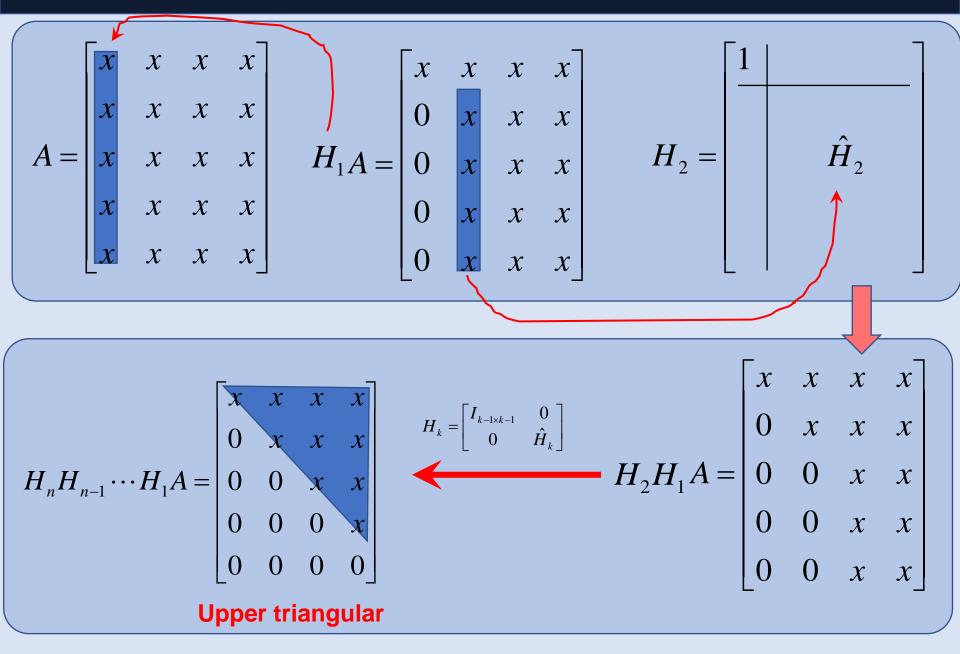


QR factorization

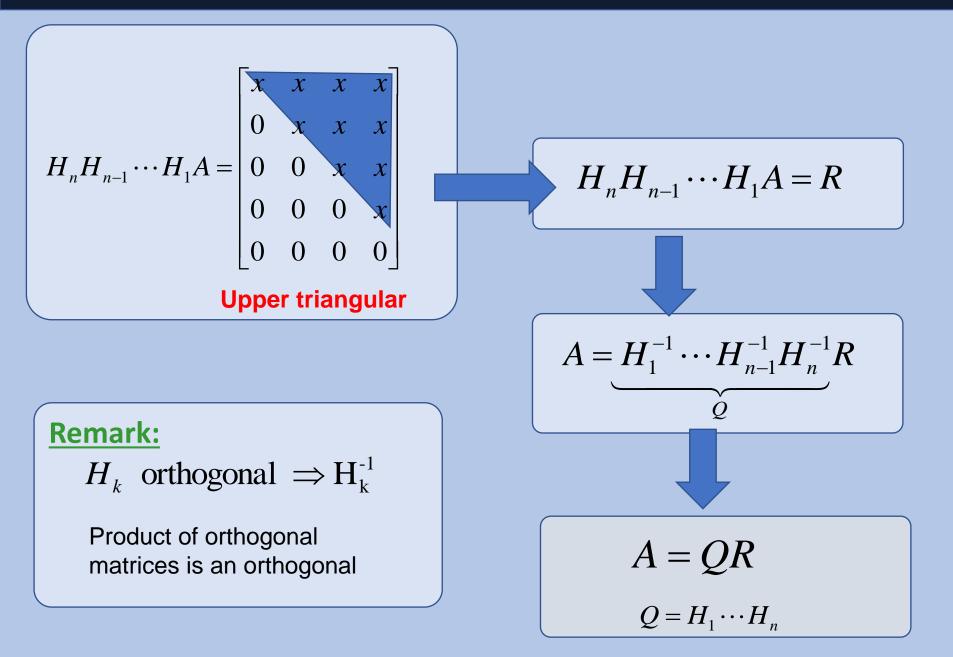


We begin with a QR factorization method that utilizes Householder transformations.

QR factorization



QR factorization

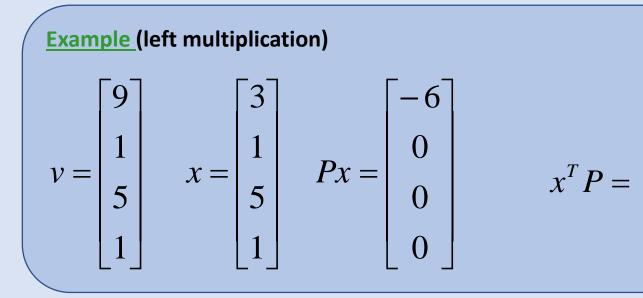


DEF: Let $v \in \mathbb{R}^n$ be nonzero

$$P = I - \frac{2}{v^T v} v v^T$$

is called Householder matrix (Reflection, Transformation)

v is called Householde r vector



Computing Householder

 $0 \neq x \in \mathbb{R}^n$ and want $Px \in span\{e_1\}$ $v = x + \alpha e_1$ where $\alpha = \pm ||x||_2$

Choice of sign:
$$v_1 = x_1 \pm ||x||_2$$

$$v_1 = x_1 - \|x\|_2$$

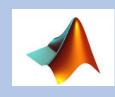
It is dangerous if x is close to a positive multiple of e1 because sever cancellation would occur.

Solution:

$$v_1 = x_1 - \|x\|_2 = \frac{x_1^2 - \|x\|_2^2}{x_1 + \|x\|_2} = \frac{-(x_2^2 + \dots + x_n^2)}{x_1 + \|x\|_2}$$

 $case: x_1 > 0$

Matlab



[Q,R] = qr(A), where A is m-by-n, produces an m-by-n upper triangular matrix R and an m-by-m unitary matrix Q so that A = Q*R. **Algorithm 1 Householder Vector**. Given $x \in \mathbb{R}^n$, this function computes $v \in \mathbb{R}^n$ with v(1) = 1 and $\beta \in \mathbb{R}$ such that $P = I_n - \beta v v^T$ is orthogonal and $Px = ||x||_2 e_1$.

function [v, β] = HouseholderVector(x)
 n = length(x)

3:
$$\sigma = x(2:n)^T x(2:n), \quad v = \begin{bmatrix} 1 \\ x(2:n) \end{bmatrix}$$

- 4: if $\sigma = 0$ then
- 5: $\beta = 0$
- 6: **else**

7:
$$\mu = \sqrt{x(1)^2 + \sigma}$$

- 8: **if** $x(1) \le 0$ **then**
- 9: $v(1) = x(1) \mu$
- 10: else

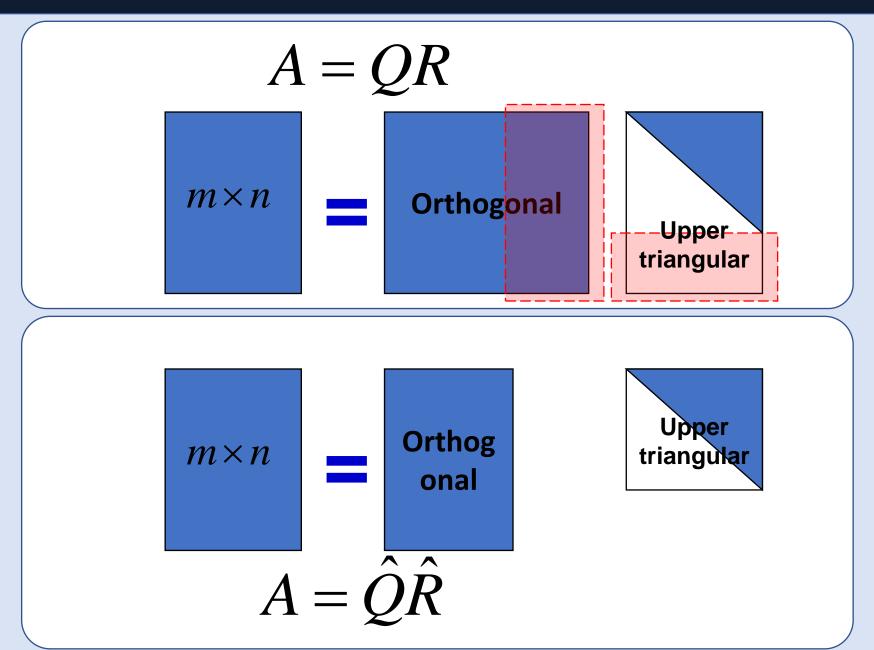
11:
$$v(1) = -\sigma/(x(1) + \mu)$$

12: end

13:
$$\beta = 2v(1)^2/(\sigma + v(1)^2), v = v/v(1)$$

14: end

Reduced QR factorization



Gram-Schmedit

Gram-schmedit Orthogonalization

 $\{a_1, a_2, a_3\} \text{ lin indep} \qquad \text{Find } \{q_1, q_2, q_3\} \text{ orthonorma } 1$ such that $span\{a_1, a_2, a_3\} = span\{q_1, q_2, q_3\}$ $span\{a_1, a_2\} = span\{q_1, q_2\}$ $span\{a_1\} = span\{q_1\}$

$$v_{1} = a_{1}$$

$$v_{1} = \|v_{1}\|$$

$$q_{1} = \frac{v_{1}}{r_{11}}$$

$$r_{12} = q_{1}^{T} a_{2}$$

$$v_{2} = a_{2} - r_{12}q_{1}$$

$$r_{13} = q_{1}^{T} a_{3}$$

$$r_{23} = q_{2}^{T} a_{3}$$

$$v_{3} = a_{3} - r_{13}q_{1} - r_{23}q_{2}$$

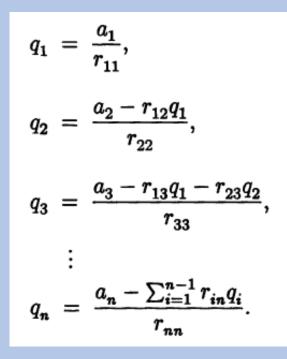
$$r_{33} = \|v_{3}\|$$

$$q_{2} = \frac{v_{2}}{r_{22}}$$

$$q_{3} = \frac{v_{3}}{r_{33}}$$

Gram-Schmedit

 \mathcal{V}



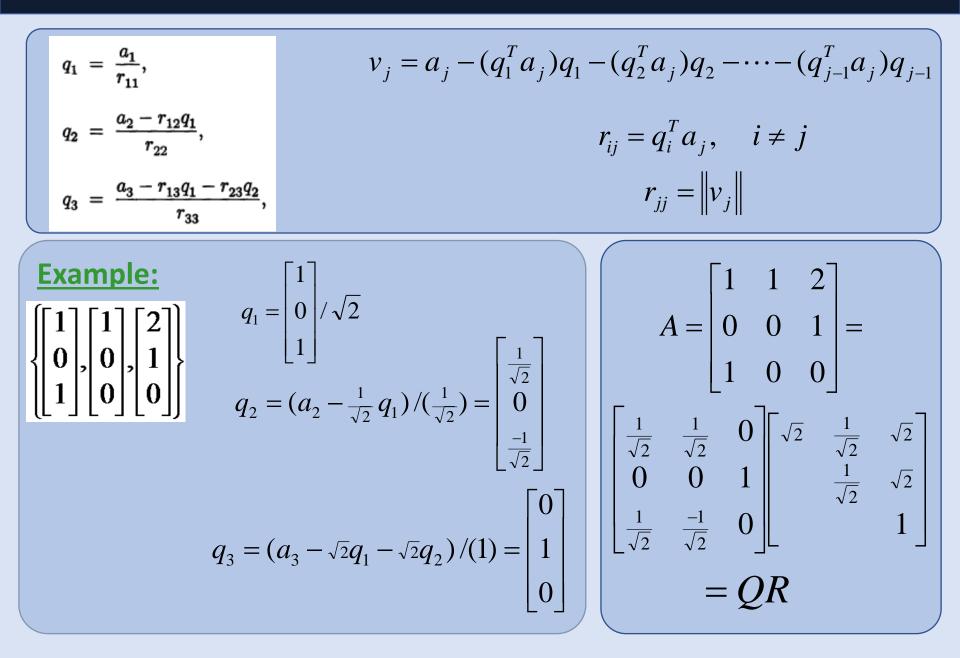
$$= a_{j} - (q_{1}^{T}a_{j})q_{1} - (q_{2}^{T}a_{j})q_{2} - \dots - (q_{j-1}^{T}a_{j})q_{j-1}$$

$$r_{ij} = q_{i}^{T}a_{j}, \quad i \neq j$$

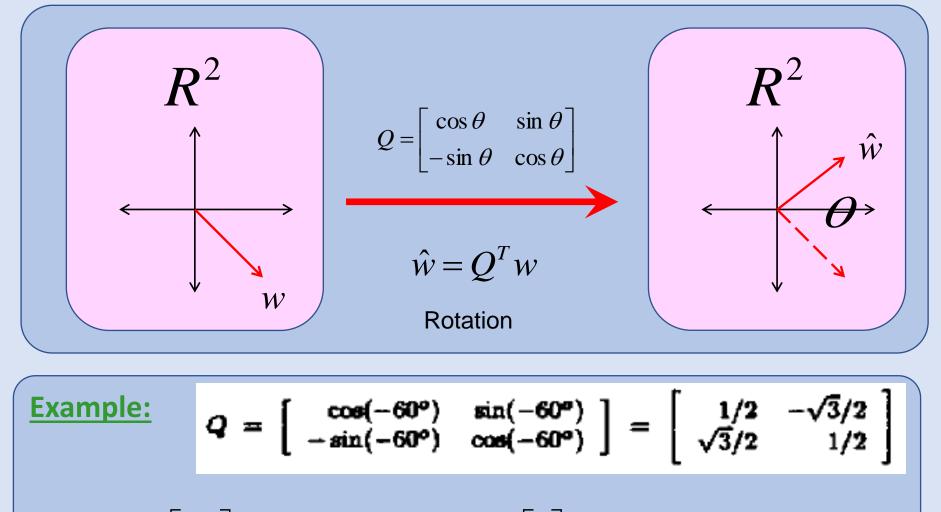
$$r_{jj} = \|v_{j}\|$$

$\left[\begin{array}{c c}a_1 & a_2 & \cdots \\ \end{array}\right]$	$\left a_{n}\right = \left[q_{1}\right]$	$q_2 \cdots q_n$	$\left[\begin{array}{cccc} r_{11} & r_{12} & \cdots & r_{1n} \\ & r_{22} & & & \vdots \\ & & \ddots & & \\ & & & & r_{nn} \end{array}\right]$	
--	---	------------------	---	--

Gram-Schmedit



Givens Matrices



$$x = \begin{bmatrix} 1\\ \sqrt{3} \end{bmatrix} \qquad \qquad Q^T x = \begin{bmatrix} 2\\ 0 \end{bmatrix}$$

Givens Rotations

To zero a specific entry (not all as Householder)

Givens Rotations are of this form:

$G(i, k, \theta) =$	1 : 0 :	••• ••. •••	0 : c :	••••	0 : s :		0 : 0 :	i
$G(t, \mathbf{x}, \mathbf{v}) =$	0		- s		c		0	k
	:		;		:	۰.	;	~
	0	•••	0	•••	0	•••	1	
			i		k			-
	(0)	•						

where $c = \cos(\theta)$ and $s = \sin(\theta)$

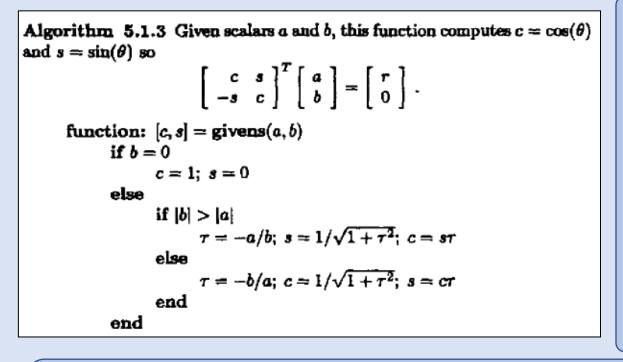
Givens Rotation are orthogonal

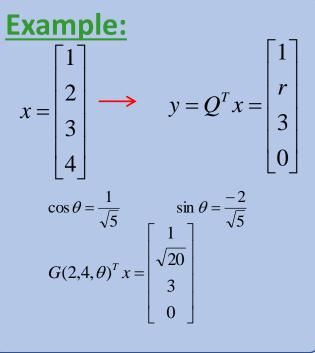
$$y = G(i, k, \theta)^{T} x$$
$$y_{j} = x_{j}, \quad j \neq i, k$$
$$y_{i} = cx_{i} - sx_{k}$$
$$y_{k} = sx_{i} + cx_{k}$$

We can force y_k to be zero by setting:

$$c = \frac{x_i}{\sqrt{x_i^2 + x_k^2}}$$

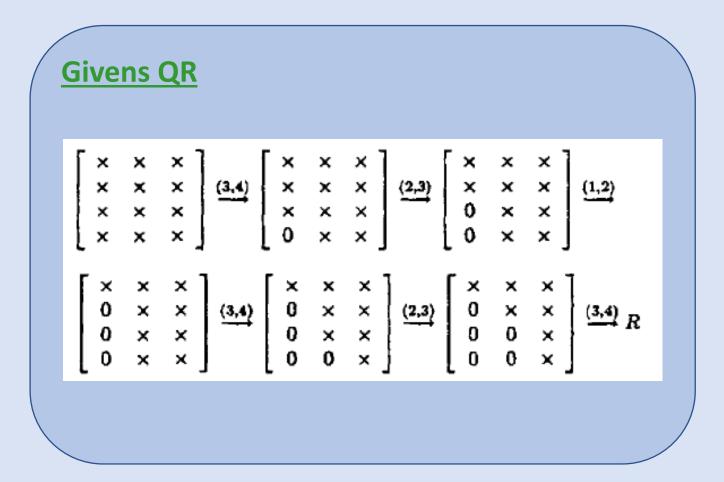
$$s = \frac{-x_k}{\sqrt{x_i^2 + x_k^2}}$$





Applying Givens Rotations	$\int \partial r d = 1 dr$
$\alpha : \cdot \cdot \alpha^T $	for $j = 1:n$ $\tau_1 = A(i, j)$
$G(i, j, \theta)^T A$	$\tau_2 = A(k, j)$
	$A(1,j) = c\tau_1 - s\tau_2$
Just effects two rows of A	$A(2,j) = s\tau_1 + c\tau_2$ end
	Chu

of operations = 6n



Theorem: (QR Decomposition)

If A is real m-by-n matrix, then there exist orthogonal matrix Q

such that

$$A = QR$$

R upper tria ngular

Theorem:

n: (QR Decomposition)

If A is real m-by-n matrix matrix of full rank, then A has a unique reduced QR factorization

$$A = \hat{Q}\hat{R} \qquad \text{with } r_{ii} > 0$$

```
function [v]=house(x)
```

```
v=x;
v(1)=sign(x(1))*norm(x)+x(1);
```

```
function [Q,R]=myqr(A)
[m,n]=size(A);
for k=1:n
    x=A(k:m,k)
    [v]=house(x);
    A(k:m,k:n)= A(k:m,k:n) -( 2/v'*v) v*(v'**A(k:m,k:n));
end
```

IMA Journal of Numerical Analysis (2010) 30, 887–897

Householder triangularization of a quasimatrix

Lloyd N. Trefethen†

Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

A standard algorithm for computing the QR factorization of a matrix A is Householder triangularization. Here this idea is generalized to the situation in which A is a quasimatrix, that is, a 'matrix' whose 'columns' are functions defined on an interval [a, b]. Applications are mentioned to quasimatrix least squares fitting, singular value decomposition and determination of ranks, norms and condition numbers, and numerical illustrations are presented using the chebfun system.

Questions

Orthogonal Matrices:

- 1) Two class of orthogonal matrices (small modification from the identity) Householder - Givens any others
- 2) Can we think of Q such that Q(col1) = multiple of e1Q(col2) = multiple of e2