BLOCKCHAIN TECHNOLOGY

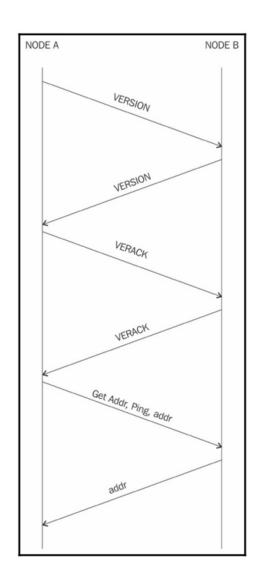
Bitcoin Network and Payments

- a peer-to-peer network
 - where nodes exchange transactions and blocks.
 - two main types of nodes
 - full nodes
 - implementations of Bitcoin core clients
 - performing
 - Wallet
 - Miner
 - full blockchain storage
 - network routing functions.
 - Simple Payment Verification (SPV) nodes
 - Also called lightweight clients
 - perform only wallet and network routing functionality
 - Can function without a blockchain
 - only download the headers of the blocks
 - they can request transactions from full nodes

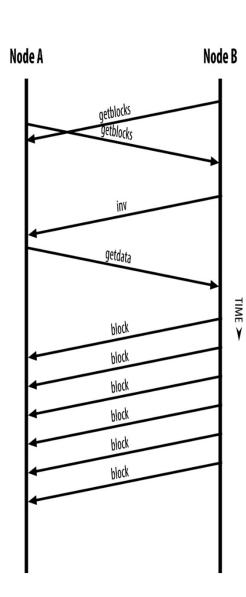
- a peer-to-peer network
 - a few nonstandard but heavily used nodes
 - are called pool protocol servers
 - make use of alternative protocols
 - such as the stratum protocol.
 - a line-based protocol
 - makes use of TCP sockets and human-readable JSON-RPC
 - are used in mining pools.
 - Some nodes only compute hashes
 - use the stratum protocol to submit their solutions to the mining pool

- a peer-to-peer network
 - There are 27 types of protocol messages
 - likely to increase over time as the protocol grows.
 - Most used protocol messages
 - version
 - the first message that a node sends out to the network
 - advertising its version and block count
 - The remote node then replies with the same information and the connection is then established.

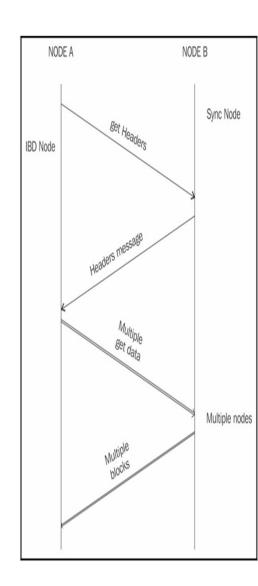
- a peer-to-peer network
 - Most used protocol messages
 - verack
 - the response of the version message accepting the connection request
 - inv
 - used by nodes to advertise their knowledge of blocks and transactions
 - getdata
 - response to inv, requesting a single block or transaction identified by its hash.


- a peer-to-peer network
 - Most used protocol messages
 - getblocks
 - returns an inv packet containing the list of all blocks starting after the last known hash or 500 blocks.
 - getheaders
 - is used to request block headers in a specified range
 - tx
 - is used to send a transaction as a response to the getdata
 - block
 - sends a block in response to the getdata

- a peer-to-peer network
 - Most used protocol messages
 - headers
 - returns up to 2,000 block headers as a reply to the getheaders request
 - getaddr
 - is sent as a request to get information about known peers
 - addr
 - provides information about nodes on the network.
 - contains address list in the form of IP address and port number.


- When a Bitcoin core node starts up
 - it initiates the discovery of all peers
 - achieved by querying DNS seeds
 - hardcoded into the Bitcoin core client
 - maintained by Bitcoin community members

```
// Pieter Wuille, only supports x1, x5, x9, and xd
vSeeds.emplace_back("seed.bitcoin.sipa.be");
// Matt Corallo, only supports x9
vSeeds.emplace_back("dnsseed.bluematt.me");
// Luke Dashjr
vSeeds.emplace_back("dnsseed.bitcoin.dashjr.org");
// Christian Decker, supports x1 - xf
vSeeds.emplace_back("seed.bitcoinstats.com");
// Jonas Schnelli, only supports x1, x5, x9, and xd
vSeeds.emplace_back("seed.bitcoin.jonasschnelli.ch");
// Peter Todd, only supports x1, x5, x9, and xd
vSeeds.emplace_back("seed.btc.petertodd.org");
```


- NODE A starts the connection
 - by sending the version message
 - contains BestHeight, a node's current number of blocks
- NODE B then responds with its own version message
- NODE A and NODE B then exchange a verack message
 - indicating that the connection has been successfully established.
- Then the peers can exchange getaddr and addr messages
 - to discover other peers on the network

- Peered nodes will exchange a getblocks message
 - contains the hash of the top block on their local blockchain.
- The peer that has the longer chain
 - identify the first 500 blocks
 - transmit their hashes using an inv message.
- The node missing the blocks
 - retrieve them, by issuing a series of getdata messages
 - using the hashes from the inv message.

- headers-first approach
 - Previous method was called blocksfirst approach
 - Was very slow
 - Replaced with headers-first approach
 - resulted in major performance improvement
 - new node first gets block headers and validates them
 - Next, blocks are requested in parallel from all available peers

- wallet software is used to
 - store private or public keys and Bitcoin address.
 - as receiving and sending bitcoins (Bitcoin client)
 - different types
 - Non-deterministic wallets
 - Deterministic wallets
 - Hierarchical Deterministic wallets
 - Brain wallets
 - Paper wallets
 - Hardware wallets
 - Online wallets
 - Mobile wallets

- Non-deterministic wallets
 - contain randomly generated private keys
 - are also called just a bunch of key wallets.
 - Managing keys is very difficult and an error-prone
 - can lead to theft and loss of coins
 - there is a need to create regular backups

- Deterministic wallets
 - keys are derived out of a seed value via hash functions.
 - This seed number
 - is generated randomly
 - is commonly represented by human-readable mnemonic code words.
 - Mnemonic code words can be used to recover all keys
 - makes private key management comparatively easier

- Hierarchical Deterministic wallets (HD)
 - store keys in a tree structure derived from a seed
 - The seed generates the parent key (master key)
 - Master key is used to generate child keys and, subsequently, grandchild keys.
 - does not generate keys directly
 - it produces some information (private key generation information)
 - can be used to generate a sequence of private keys.
 - The complete hierarchy is easily recoverable
 - if the master private key is known.
 - are very easy to maintain and are highly portable

Brain wallets

- master private key can also be derived from the hash of passwords that are memorized.
- Can result in a full HD wallet that is derived from a single memorized password.
- is prone to
 - password guessing
 - brute force attacks

- Paper wallets
 - a paper-based wallet with the required key material printed on it.
 - It requires physical security to be stored
- Hardware wallets
 - a tamper-resistant device to store keys
 - can be
 - custom-built
 - A Secure Element (SE) in NFC phones

- Online wallets
 - Are stored entirely online
 - are provided as a service usually via the cloud.
 - provide a web interface to the users to
 - manage their wallets
 - perform various functions such as making and receiving payments
 - They are easy to use
 - but imply that the user trusts the online wallet service provider

- Mobile wallets
 - are installed on mobile devices
 - can provide various methods to make payments
 - most notably scaning QR codes quickly and make payments

- Wallet choice depends on factors such as
 - Security
 - ease of use
 - available features. Out of all these attributes,
- security should be of paramount importance
 - Hardware wallets tend to be more secure
 - Web wallets are not as secure as a hardware device.
- mobile wallets are quite popular
 - due to a balanced combination of features and security.

Bitcoin Improvement Proposals (BIPs)

- are used to propose or inform the Bitcoin community about
 - The improvements suggested
 - the design issues
 - or information about some aspects of the bitcoin ecosystem.
- three types of Bitcoin improvement proposals:
 - Standard BIP
 - Used to describe the major changes that have a major impact on the Bitcoin system
 - E.g., block size changes, network protocol changes, or transaction verification changes.
 - Process BIP
 - usually deal with proposing a change in a process that is outside the core Bitcoin protocol.
 - are implemented only after a consensus among bitcoin users.
 - Informational BIP
 - are usually used to record some information about the Bitcoin
 - E.g., design issues.

- Transaction throughput is a critical issues
 - Bitcoin network can only process about 3 to 7 tps
 - Visa can process about 24,000 tps
 - PayPal can process about 200 tps
 - Ethereum can process up to on average 20 tps.

- Segregated Witness (SegWit)
 - a soft fork to the Bitcoin protocol
 - addresses some weaknesses such as throughput and security
 - Reorganizes the block data
 - results in reduced size of the transaction
 - More transaction per block

- Bitcoin Cash
 - increases the block limit to 8 MB
 - uses PoW as consensus algorithm
 - Mining hardware is still ASIC based.
 - The block interval is changed from 10 minutes to
 10 seconds and up to 2 hours.

- Bitcoin Unlimited
 - block size is increased
 - but not set to a hard limit.
 - Miners come to a consensus on the block size cap over a period.
 - Other concepts
 - parallel validation
 - allows nodes to validate more than one block in parallel
 - When a node receives a block in bitcoin
 - · Should validate it
 - Then accept it or reject it
 - cannot relay new transactions or validate any blocks during validation period
 - extreme thin blocks
 - fixes an inefficiency in Bitcoin
 - transaction are regularly received twice
 - once at the time of broadcast by the sender
 - then again when a mined block is broadcasted

Bitcoin Gold

- a hard fork since of the original Bitcoin blockchain.
 resulted in a new blockchain, named Bitcoin Gold (BTG)
- The core idea is to address the issue of mining centralization
 - power shifts towards miners with more hashing power
 - Uses the Equihash mining algorithm
 - is inherently ASIC resistant
 - uses GPUs for mining