BLOCKCHAIN TECHNOLOGY

Alternative Coins

- Bitcoin was released in 2009
- the first alternative coin project (named Namecoin) was introduced in 2011
- In 2013 and 2014, the alternative coins (altcoin) market grew exponentially
 - A few of those became a success
 - many failed
 - A few were pump and dump scams
 - surfaced for some time but soon disappeared
- Alternative approaches can be divided into two categories
 - alternative chains
 - the primary goal is to build a decentralized blockchain platform
 - discussed in detail in Chapter 16
 - altcoin
 - the sole purpose is to introduce a new virtual currency
 - The focus of this chapter

- Altcoins must be able to attract new users, trades, and miners
 - otherwise, the currency will have no value
- Methods to gain initial number of users
 - Create a new blockchain and allocate coins to initial miners
 - Now unpopular due to many scam schemes or pump and dump schemes
 - Proof of Burn (PoB)
 - Proof of ownership
 - Pegged sidechain

- Altcoins must be able to attract new users, trades, and miners
 - otherwise, the currency will have no value
- Methods to gain initial number of users
 - Create a new blockchain and allocate coins to initial miners
 - Proof of Burn (PoB)
 - also called a one-way peg or price ceiling.
 - users permanently destroy a certain quantity of bitcoins in proportion to the quantity of altcoins to be claimed
 - This means that bitcoins are being converted into altcoins
 - E.g., if ten bitcoins were destroyed
 - Altcoins can have a value no greater than some bitcoins destroyed.
 - Proof of ownership
 - Pegged sidechain

- Altcoins must be able to attract new users, trades, and miners
 - otherwise, the currency will have no value
- Methods to gain initial number of users
 - Create a new blockchain and allocate coins to initial miners
 - Proof of Burn (PoB)
 - Proof of ownership
 - proving that users own a certain number of bitcoins
 - This proof can be used to claim altcoins
 - E.g., this can be achieved by merged mining
 - bitcoin miners can mine altcoin blocks while mining for bitcoin without any extra work
 - Pegged sidechain

- Altcoins must be able to attract new users, trades, and miners
 - otherwise, the currency will have no value
- Methods to gain initial number of users
 - Create a new blockchain and allocate coins to initial miners
 - Proof of Burn (PoB)
 - Proof of ownership
 - Pegged sidechain
 - blockchains separate from the bitcoin network
 - but bitcoins can be transferred to them
 - Altcoins can also be transferred back to the bitcoin network
 - This concept is called a two-way peg.

- PoW was first used in Bitcoin
 - provides decentralization, security, and stability for the blockchain.
 - required properties
 - progress freeness
 - means that the reward for consuming computational resources should be
 - random
 - proportional to the contribution made by the miners
 - some chance of winning the block reward is given to even weak miners
 - Adjustable difficulty
 - Mining difficulty is regulated matching with hashing power
 - Quick verification
 - computational puzzles should be easy and quick to verify
 - Causes power shifting towards miners with large-scale ASIC farms

- ASIC-resistant puzzles
 - building ASICs for solving theses puzzles
 - is infeasible
 - does not result in a major performance gain over commodity hardware.

- ASIC-resistant puzzles
 - memory hard computational puzzles
 - puzzle solving requires a large amount of memory
 - initially used in Litecoin and Tenebrix
 - the Scrypt hash function was used
 - a memory intensive hash function
 - was initially advertised as ASIC resistant
 - Scrypt ASICs have now become available
 - Disproving the original claim by Litecoin.
 - it was thought that building ASICs with large memories is difficult
 - This is no longer the case
 - memory is increasingly becoming cheaper
 - It is possible to produce nanometer scale circuits

- ASIC-resistant puzzles
 - Using multiple hash functions
 - also called a chained hashing scheme
 - The rationale is that designing multiple hash functions on an ASIC is not very feasible.
 - example is the X11 memory hard function implemented in Dash
 - comprises 11 chained hash function
 - did provide some resistance to ASIC development
 - but now ASIC miners are available commercially

- ASIC-resistant puzzles
 - self-mutating puzzles
 - intelligently or randomly change the PoW scheme or its requirements as a function of time.
 - It may be designed in future
 - will make almost impossible to be implemented in ASICs
 - Now
 - it is unclear how this can be achieved practically.

- PoW has huge energy consumption
 - A solution is proof of useful work
 - puzzles can be designed to serve two purposes
 - primary purpose is in consensus mechanisms
 - Secondary purpose is to perform some useful scientific computation
 - An example is Primecoin
 - the requirement is to find special prime number chains
 - known as Cunningham chains and bi-twin chains.
 - prime number distribution has significance in scientific disciplines
 - such as physics
 - By mining Primecoin, miners
 - not only achieve the block reward
 - but also help in finding the special prime numbers

- PoW has huge energy consumption
 - A solution is proof of useful work
 - Another example is Proof of Storage
 - Introduced by Microsoft Research
 - provides a useful benefit of distributed storage of archival data.
 - Miners are required to store a pseudo, randomlyselected subset of large data to perform mining

- Proof of Stake (PoS)
 - also called virtual mining
 - It was first proposed in Peercoin
 - users are required to prove possession of a certain number of coins (coins)
 - simplest form is where mining is made comparatively easier for those users who demonstrably own larger number of coins
 - benefits are twofold
 - acquiring large number of coins is difficult as compared to buying high-end ASIC devices
 - it results in saving computational resources.

- Proof of Stake (PoS)
 - Stake types
 - Proof of coinage
 - coin age: the time since the coins were last used or held.
 - The miner is rewarded for holding and not spending coins for a period.
 - The difficulty of mining puzzles is inversely proportional to the coinage
 - has been implemented in Peercoin combined with PoW

- Proof of Stake (PoS)
 - Stake types
 - Proof of Deposit (PoD)
 - newly minted coins by miners are get locked for a certain period.
 - miners can perform mining at the cost of freezing a certain number of coins for some time.
 - Proof of Burn
 - destroys a certain number of bitcoins to get equivalent altcoins.
 - is commonly used when starting up a new coin projects to provide a fair initial distribution.

- Proof of Stake (PoS)
 - Stake types
 - Proof of Activity (PoA)
 - a hybrid of PoW and PoS.
 - blocks are initially produced using PoW
 - then each block randomly assigns three stakeholders that are required to digitally sign it.

In bitcoin

T = *Time previous* * *time actual / 2016* * *10 min*

- if a new coin use the same PoW based on SHA-256 as bitcoin uses
 - it is easy for a malicious user to control the entire network.
 - using ASIC miners
- Pool hopping is a more significant threat
 - Pool can automatically switch to the new profitable currency
 - impacts the network adversely because
 - pool hoppers join the network only when the difficulty is low
 - can gain quick rewards
 - the moment difficulty goes up
 - they hop off
 - then come back again
 - when the difficulty is adjusted back.

- If a multipool hops into mining a new coin
 - The difficulty will increase very quickly
 - when the multipool leaves the network
 - It becomes almost unusable because
 - it is no longer profitable for solo miners
 - can no longer be maintained.
 - The only fix is to initiate a hard fork

- Kimoto Gravity Well
 - was first introduced in Megacoin
 - adjusts the difficulty for every block adaptively

KGW = 1 + (0.7084 * pow((double(PastBlocksMass)/double(144)), -1.228))

- The algorithm runs in a loop that
 - goes through a set of predetermined blocks (PastBlockMass)
 - calculates a new readjustment value

- Dark Gravity Wave (DGW)
 - was first introduced in Dash
 - makes use of multiple exponential moving averages and simple move averages
 - allows improved difficulty retargeting compared to KGW

- DigiShield
 - has been used in Zcash
 - works by going through a fixed number of previous blocks
 - calculates the time they took to be generated
 - readjusts the difficulty to the difficulty of the previous block by
 - dividing the actual time span by averaging the target time
 - the retargeting is calculated much more rapidly
 - the recovery from a sudden hash rate change is quick
 - protects against multipools

- Multi-Interval Difficulty Adjustment System (MIDAS)
 - Is comparatively more complex than previously discussed algorithms
 - Has more parameters.
 - responds much more rapidly to abrupt changes in hash rates

- Analyzing blockchain is trivial, because
 - it is a public ledger of all transactions
 - It is openly available
- A big concern
 - By combining blockchain analysis and traffic analysis
 - transactions can be linked back to their source IP addresses
 - transaction's originator can be revealed

- Privacy and anonymity
 - Three types of proposals to address the privacy issue in Bitcoin
 - mixing protocols
 - third-party mixing networks
 - Inherent anonymity

- Mixing protocols
 - A mixing service provider is used
 - an intermediary or a shared wallet
 - Users send coins to this shared wallet as a deposit
 - Then, the shared wallet sends some other coins to the destination.
 - the same value deposited by some other users
 - Users can also receive coins via this intermediary.
 - This way
 - the link between outputs and inputs is no longer there
 - transaction graph analysis becomes useless

- Mixing protocols
 - Coinjoin is an example
 - two transactions are joined together to form a single transaction
 - keeping the inputs and outputs unchanged
 - core idea is to build a shared transaction
 - signed by all participants
 - improves privacy for all participants involved in the transactions

- Third-party mixing protocols
 - Various third-party mixing services are available
 - if the service is centralized
 - It knows about all inputs and outputs
 - poses the threat of tracing the mapping between users
 - pose the risk of the administrators of the service stealing the coins.
 - E.g., CoinShuffle, Coinmux, and Darksend in Dash
 - are based on the idea of CoinJoin transactions.
 - CoinShuffle is decentralized alternative
 - does not require a trusted third party

- CoinJoin-based schemes have some weaknesses
 - most prominently the possibility of launching a denial-of-service attack
 - users initially commit to signing the transactions
 - but are not providing their signature

- Inherent anonymity
 - includes coins that support privacy inherently
 - built into the design of the currency.
 - The most popular is Zcash
 - uses Zero-Knowledge Proofs (ZKP) to achieve anonymity
 - It is discussed in detail later in the chapter
 - Other examples include Monero
 - makes use of ring signatures to provide anonymous services.
 - a type of digital signature that can be performed by any member of a set of users that each have keys

Extended protocols on top of Bitcoin

- Colored coins
 - a set of methods to represent digital assets on the Bitcoin blockchain
 - Coloring a bitcoin means updating it with some metadata
 - representing a digital asset (smart property).
 - The coin still works and operates as a bitcoin
 - but additionally carries some metadata representing some assets
 - The metadata can be
 - some information related to the asset
 - some calculations related to transactions
 - or any arbitrary data.
 - allows issuing and tracking specific bitcoins
 - Metadata can be recorded using
 - the bitcoins OP_RETURN opcode
 - or optionally in multisignature addresses
 - This metadata can also be encrypted
 - to address any privacy concerns.
 - Some implementations support storage of metadata on torrent network
 - virtually unlimited amounts of metadata can be stored.
 - Moreover, smart contracts are also supported

Extended protocols on top of Bitcoin

- Colored coins
 - can be used to represent
 - Commodities
 - Certificates
 - Shares
 - Bonds
 - Voting
 - and so on
 - a wallet that interprets colored coins is necessary
 - normal Bitcoin wallets will not work.
 - they cannot differentiate between colored coins and not colored coins

Extended protocols on top of Bitcoin

- Colored coins
 - The idea of colored coins is very appealing
 - it does not require any modification to the Bitcoin protocol
 - can make use of the already existing secure Bitcoin network. In
 - A significant use case
 - issuance of financial instruments on the blockchain with
 - low transaction fees
 - valid and mathematically secure proof of ownership
 - Fast transferability without requiring some intermediary
 - instant dividend payouts to the investors
 - possibility of creating smart contracts

Extended protocols on top of Bitcoin

- Counterparty
 - another service that can be used
 - to create custom tokens that act as a cryptocurrency
 - for various purposes such as issuing digital assets on top of bitcoin blockchain.
 - The architecture has a counterparty server
 - works based on the same idea as colored coins by
 - embedding data into regular bitcoin transactions
 - provides a much more productive library and tools
 - to support the handling of digital assets.
 - embedding the data is by using OP_RETURN
 - also called embedded consensus
 - because the counterparty transactions are embedded within bitcoin transactions
 - Uses a currency
 - known as XCP
 - as the fee for running the contract
 - Technically is an Ethereum contract
 - can store and verify bitcoin block headers

- Altcoin projects can be started very quickly
 by simply forking the bitcoin or another coin's source code
- but several things need to be considered
 - Usually, the code base is written in C++
 - as was the case with bitcoin
 - but almost any language can be used
 - for example, Golang or Rust.
 - the challenging issue is how to start a new currency
 - so that investors and users can be attracted to it

- from a technical point of view
 - various parameters are required to be tweaked or introduced
 - Consensus algorithms
 - PoW or PoS
 - Difficulty adjustment algorithms
 - KGW, DGW, Nite's Gravity Wave, and DigiShield
 - can be tweaked to produce different results
 - Inter-block time
 - too fast might destabilize the blockchain
 - too slow may not attract many users

- from a technical point of view
 - various parameters are required to be tweaked or introduced
 - Block rewards
 - Inflation control
 - Block size and transaction size
 - Interest rate
 - applies only to PoS systems
 - Impacts the inflation

- from a technical point of view
 - various parameters are required to be tweaked or introduced
 - Coinage
 - defines how long the coin must remain unspent
 - to become eligible to be considered stake worthy
 - Total supply of coins
 - Fixed or unlimitted

- the first fork of the Bitcoin source code
- The key idea
 - It is not to produce an altcoin
 - It is to provide improved naming
 - decentralization
 - censorship resistance
 - privacy
 - Security
 - faster
 - responds to inherent limitations in DNS protocols
 - such as slowness and centralized control

- is used to provide a service to register a key/value pair
- One major use case
 - it can provide a decentralized TLS certificate validation mechanism
 - driven by blockchain-based decentralized consensus
- provides the following three services
 - Secure storage and transfer of names (keys)
 - Attachment of some value to the names
 - up to 520 bytes of data
 - Production of a digital currency (Namecoin)

- introduced merged mining for the first time
 - miners create a Namecoin block
 - produce a hash of that block
 - Then the hash is added to a Bitcoin block
 - coinbase transaction scriptSig is used to include the hash
 - miners solve the block
 - at equal to or greater than the Namecoin block difficulty

- introduced merged mining for the first time
 - If a miner solve a hash at the bitcoin blockchain difficulty level
 - the bitcoin block is built
 - becomes part of the Bitcoin network
 - the Namecoin hash is ignored by the bitcoin blockchain
 - if a miner solves a block at Namecoin blockchain difficulty level
 - a new block is created in the Namecoin blockchain.
 - The core benefit of is
 - all the computational power spent by the miners contributes towards securing both Namecoin and Bitcoin.

- a fork of the bitcoin source
- uses Scrypt as PoW
 - originally introduced in the Tenebrix coin
- allows for faster transactions than bitcoin
 - Has faster block generation time of 2.5 minutes.
- Difficulty readjustment is achieved every 3.5 days
 - roughly due to faster block generation time.
- total coin supply is 84 million

- Scrypt is a sequentially memory hard function
 key idea
 - if the function requires a significant amount of memory to run
 - then custom hardware such as ASICs will require more VLSI area
 - would be infeasible to build

- Scrypt is a sequentially memory hard function
 - is based on a phenomenon called Time-Memory Trade-Off (TMTO)
 - If memory requirements are relaxed, then it results in increased computational cost
 - makes it unfeasible for an attacker to gain more memory
 - it is expensive
 - It is difficult to implement on custom hardware

- Scrypt is a sequentially memory hard function
 - uses the following parameters to generate a derived key (Kd)
 Kd = scrypt (P, S, N, P, R, dkLen)
 - Passphrase: a string of characters to hash
 - Salt: a random string that is provided to Scrypt functions
 - to provide a defense against brute-force dictionary attacks using rainbow tables
 - N: a memory/CPU cost parameter
 - must be a power of 2 > 1
 - P: the parallelization parameter
 - R: the block size parameter
 - dkLen: the intended length of the derived key in bytes

- Scrypt is a sequentially memory hard function
 - the algorithm takes P and S as input
 - Applies PBKDF2 and SHA-256-based HMAC.
 - Then the output is fed to an algorithm called ROMix
 - internally uses the Blockmix algorithm to fill up the memory
 - using the Salsa20/8 core stream cipher
 - requires large memory to operate
 - enforce the sequentially memory hard property
 - The output is finally fed to the PBKDF2 function again
 - to produce a derived key

- Litecoin mining uses specific parameters
 - N= 1024, R = 1, P=1, and S = random
 80 bytes producing a 256-bit output
 - due to these parameters
 - Litecoin ASIC development turned out to be not very difficult

Primecoin

- uses searching prime numbers as a PoW
 - Not all types of prime number are allowed
 - Only Three types of prime numbers meet the requirements
 - Cunningham chain of the first kind $(p_{i+1} = 2p_i + 1)$
 - Cunningham chain of the second kind $(p_{i+1} = 2p_i 1)$
 - bi-twin chains $n-1, n+1, 2n-1, 2n+1, \dots, 2^k n-1, 2^k n+1$
- difficulty is dynamically adjusted
 - For every block
 - By changing the chain length
- verification is quick enough
- total number of coins is community-driven
 - no definite limit on the number of coins

- a privacy-protecting, digital currency
- people can transact efficiently and safely with low fees.
- Shielded Zcash ensures transactions remain confidential
 - while allowing people to selectively share transaction information
- addresses are either
 - private (z-addresses)
 - start with a "z"
 - transparent (t-addresses).
 - start with a "t."
- four transaction types:

- A Z-to-Z transaction
 - appears on the public blockchain
 - Has A memo field
 - allows the sender to include relevant information to the receiver
 - useful for passing along messages and instructions
 - it is known to have occured and fees were paid.
 - But the addresses, transaction amount and the memo field are all encrypted
 - possible using zero-knowledge proofs
 - The owner of an address can disclose z-address and transaction details using
 - view keys
 - Address owner can disclose all incoming transactions and the memo field
 - Address owner does not have access to the sender address
 - unless identifying information is included in the memo field
 - payment disclosure
 - Either the sender or receiver may disclose transaction-specific details
 - The receiver may disclose a transaction value and memo
 - but does not have access to the sender's address

- A T-to-T transaction works just like Bitcoin
 - The sender, receiver and transaction value are publicly visible.
- shielded transactions in Zcash
 - can be fully encrypted on the blockchain
 - yet still be verified as valid by consensus rules
 - using zk-SNARK proofs

zk-SNARK

- allow one party (the prover) to prove to another (the verifier) that a statement is true
 - without revealing any other information
- E.g.
 - given the hash of a random number
 - can convince the verifier that
 - the number exists
 - he in fact know such a number