BLOCKCHAIN TECHNOLOGY

Smart Contracts

Introduction

- This smart contract concept is not new
- With the advent of the blockchain
 - interest in this idea was revived
- is now an active area of research in the blockchain because of
 - reducing the cost of transactions
 - Simplifying complex contracts

Smart contract history

- first theorized in late 1990s
- almost 20 years later
 - potential and benefits are appreciated with the invention of Bitcoin and blockchain technology.
- Smart contracts are described as follows
 - an electronic transaction protocol that executes the terms of a contract.
 - general objectives are
 - to satisfy common contractual conditions such as
 - payment terms
 - Liens
 - Confidentiality
 - and even enforcement
 - To minimize exceptions
 - both malicious and accidental
 - To minimize the need for trusted intermediaries
 - Related economic goals include lowering
 - fraud loss
 - arbitrations
 - enforcement costs
 - Other transaction costs

- There is no consensus on a standard definition
- One definition is
 - A smart contract is a secure and unstoppable computer program representing an agreement that is automatically executable and enforceable
 - It is a computer program
 - it encompasses agreements between parties
 - in the form of business logic
 - It is automatically executed when certain conditions are met
 - It is enforceable
 - The code is law
 - all contractual terms are executed as defined and expected
 - even in the presence of adversaries
 - It is secure and unstoppable
 - fault-tolerant
 - executable in a reasonable amount of time

- Even though smart contracts are named smart
 - they are not really smart
 - they in fact only do what they have been programmed to do
 - they produce same output every time they are executed.
 - highly desirable deterministic nature
 - allow a smart contract to be run by any node on a network and achieve the same result
 - always produce the same results for a specific input
 - if results are inconsistent between nodes
 - then consensus will never be achieved

- language itself should be deterministic
 - Have no non-deterministic functions
 - which can produce different results on various nodes
 - E.g., various floating-point operations
 - can produce different results in different runtime environments

In summary

- a smart contract has the following four properties:
 - Automatically executable
 - Enforceable
 - Semantically sound
 - Secure and unstoppable
- The first two are required as a minimum
- the latter two may not be required in some scenarios
 - E.g., financial derivatives contract
 - does not perhaps need to be semantically sound and unstoppable
 - But should at least be automatically executable and enforceable at a fundamental level

- smart contracts cannot access external data
 - might be required to control the execution of the business logic
 - E.g., the stock price of a security product that is
 - required by the contract to release the dividend payments.
- An Oracle is an interface
 - delivers data from an external source to smart contracts.

- Oracles can deliver different types of data
 - weather reports
 - real-world news
 - corporate actions
 - data coming from IoT devices
- Oracles are trusted entities
 - use a secure channel to transfer data to a smart contract
 - capable of digitally signing the data
 - proving that the source of the data is authentic.

- Smart contracts can subscribe to the Oracles
 the smart contracts can either pull the data
 - or Oracles can push the data to the smart contracts
- Oracles should not be able to manipulate the data
 - must be able to provide authentic data.

- The issue of trust
 - How do you trust a third party about the quality and authenticity of data they provide?
 - especially true in the financial world
 - market data must be accurate and reliable
- The issue of centralization
 - A large, reputable, trusted third party may be a good oracle
 - It will become a single point of failure

Decentralized Oracles

- can be built based on some distributed mechanism
- Oracles can find data from another blockchain
 - driven by distributed consensus
 - ensuring the authenticity of data
- E.g., one institution running their private blockchain
 - can publish their data feed via an Oracle

Generic model of an Oracle and smart contract ecosystem

The DAO

- one of the highest crowdfunded projects
 - it started in April 2016
 - was a set of smart contracts to provide a platform for investment.
 - Was hacked due to a bug in the code
 - 50 million dollars was siphoned out of the DAO
 - resulted in a hard fork on Ethereum
 - to recover from the attack
 - The hard fork was against the notion of *code is law*
 - There was resistance against this hard fork
 - some miners decided to keep mining on the original chain
 - resulted in the creation of Ethereum Classic
 - where *the code is still the law*