
PARALLEL PROCESSING SYSTEMS

Chapter 6: More Shared-Memory Algorithms

Introduction

 we develop PRAM algorithms for several
additional problems
 Sequential rank-based selection

 A parallel selection algorithm

 A selection-based sorting algorithm

 Alternative sorting algorithms

 Convex hull of a 2D point set

 Some implementation aspects

Sequential rank-based
selection
 the problem is finding a (the) kth smallest

element in a sequence S = x0 , x 1, . . . , x n -1
whose elements belong to a linear order
 Median, maximum, and minimum finding are

special cases
 Clearly, can be solved through sorting

 Sort the sequence in nondescending order
 Output the kth element of the sorted list
 is wasteful

 requires Ω(n log n) time

 O(n)-time selection algorithms are available

Sequential rank-based
selection
 a recursive linear-time

selection algorithm
 Step 1

 If body requires constant time,
say c0

 Else body requires linear time
in |S|, say c1 |S|

 Step 2 constitutes a |S|/q
selection problem

 Step 3 takes linear time in |S|,
say c3 |S|

 Step 4 is a selection problem of
the size 3|S|/4 in worst case

Sequential rank-based
selection
 a recursive linear-time

selection algorithm
 Total running time

 T(n) = T(n/q)+T(3n/4)+cn

 has a linear solution for
any q > 4

 E.g., q=5
 T(n) = 20cn

Sequential rank-based
selection
 a recursive linear-time selection algorithm

 analysis to justify the term T(3n/4)
 The median m of the n/q medians is no larger than at

least half, or (n/q)/2, of the medians

 each of which is in turn no larger than q/2 elements of
the original input list S.

 Thus, m is guaranteed to be no larger than at least
((n/q)/2) × q/2 = n/4 elements of the input list S

Sequential rank-based
selection
 a recursive linear-time selection algorithm

 example with n = 25 and q = 5

Sequential rank-based
selection
 A parallel selection algorithm

 If parallel computation model supports fast sorting
 the problem can be solved through sorting

 This is the case, e.g., for the CRCW-S or “summation”
submodel with p = n² processors

Sequential rank-based
selection
 A parallel algorithm for CRCW-S with p = n²

 Processor (i, j) compares inputs S[i] and S[j]
 writes a 1 into rank[j] if S[i] < S[j] or if S[i] = S[j] and i

< j.

 rank[j] will hold the rank of S[j] in the sorted list
 In the second cycle

 Processor (0, j), 0 ≤ j < n , reads S[j] and writes it into
S [rank[j]]

 The selection process is completed in a third cycle
when all processors read S[k – 1]
 the kth smallest element in S

Sequential rank-based
selection
 A parallel algorithm for CRCW-S with p = n²

 It is difficult to imagine a faster selection algorithm.

 However, it is quite impractical
 It uses both

 many processors

 a very strong PRAM submodel

Sequential rank-based
selection
 Parallel version of the sequential algorithm

 Assume p=n1-x

 x is a parameter that is known a
priori

 x = 1/2 corresponds to p=
 P is sublinear in n

 Step 1 involves
 Broadcasting

 needs O(log p) = O(log n) time
 dividing into sublists

 is done in constant time
 each processor independently

computing the beginning and
end of its associated sublist
based on |S| and x

 Sequential selection on each
sublist of length n/p
 needs O(n/p) = O(nx) time

Sequential rank-based
selection
 Parallel version of the sequential algorithm

 Step 3 can be done as follows
 each processor counts the number

of elements that it should place in
each of the lists L , E, and G
 in O(n/p) = O(nx) time

 three diminished parallel prefix
computations are performed
 to determine the number of

elements to be placed on each
list by all processors with indices
that are smaller than i.

 the actual placement takes O(nx)
time
 each processor independently

writing into the lists L, E , and G
 using the diminished prefix

computation result as the
starting address

Sequential rank-based
selection
 Parallel version of the sequential algorithm
 logarithmic terms are

negligible compared
with O(nx)

 Step 4 will have no
more than 3n/4 inputs

 for p = n1–x we have
 T(n, p) = T(n1–x , p) +

T(3n/4, p) + cnx

 T(n, p) = O(nx)

Sequential rank-based
selection
 Parallel version of the sequential algorithm

 Speed-up (n, p) = Θ (n)/O(nx) = Ω(n1-x) = Ω(p)

 Efficiency = Speed-up / p = Ω (1)

 Work (n, p) = pT(n, p) = Θ(n1-x)O(nx) = O(n)

 One positive property
 it is adaptable to any number of processors

 yields linear speed-up in each case.

 we do not have to adjust the algorithm for running it
on different hardware configurations.
 It is self-adjusting

Sequential rank-based
selection
 A selection-based sorting algorithm

 Choose a small constant k
 identify the k – 1 elements in positions n/k, 2n/k, 3n/k, . . . ,

(k – 1)n/k in the sorted list
 Call them m1, m2, m3 , . . . , mk–1

 define m0= –∞ and mk= +∞
 Put the above k–1 elements in their proper places in the

sorted list
 Move all other elements so that

 any element that is physically located between mi and mi+1 in the
list has a value in the interval [mi , mi+1]

 independently sort each of the k sublists

Sequential rank-based
selection
 A selection-based sorting algorithm
 assumptions

 p < n processors with p = n1–x .
 x is known a priori
 we can choose k=21/x

Sequential rank-based
selection
 A selection-based sorting algorithm
 Step 1 takes constant time
 Step 2 consists of

 k parallel selection problems
 n inputs & n1–x processors.
 k is a constant
 total time is O(nx)

Sequential rank-based
selection
 A selection-based sorting algorithm

 Step 3
 each processor compares its nx values with the k – 1 thresholds
 counts the elements for each of the k partitions.
 k diminished parallel prefix computations performed

 each taking O(log p) =O(log n) time
 each processor writes its nx elements to the various partitions.
 Step 3 takes a total of O(nx) time

Sequential rank-based
selection
 A selection-based sorting algorithm
 Step 4 cannot handle all the k subproblems

 Needed processors to solve each subproblem
 (number of inputs)1–x = (n/k)1-x = (n/21/x)1–x = n1-x/21/x–1 = p/(k/2)

 Total needed processors
 k * p/(k/2) = 2*p

Sequential rank-based
selection
 A selection-based sorting algorithm
 Steps 4 and 5 recursively call the algorithm
 Total running time

 T(n, p) = 2T(n/k, 2p/k) + cnx

 T(n, p) = O(nx log n)

Sequential rank-based
selection
 A selection-based sorting algorithm

 Speed-up(n, p) = Ω(n log n) / O(nx log n) = Ω(n1-x)
= Ω(p)

 Efficiency = Speed-up / p = Ω(1)

 Work(n, p) = pT(n, p) = Θ(n1–x) O(nx log n) =
O(n log n)

Sequential rank-based
selection
 A selection-based sorting algorithm

 Example

Alternative sorting
algorithms
 Alternative sorting algorithms

 previous algorithm results in k subproblems of the same
size
 allows us to establish an optimal upper bound on the

worst-case running time
 Brings up complexity

 There exist many useful algorithms that
 are quite efficient on the average
 but exhibit poor worst-case behavior

 Sequential quicksort is a prime example
 runs in order n log n time in most cases
 but can take on the order of n² time for worst-case input

patterns.

Alternative sorting
algorithms
 Alternative sorting algorithms

 In the case of previous sorting algorithm
 We can choose thresholds approximately equal to in/k

 the rest of the algorithm dose not change

 the only difference we get
 k subproblems will be of roughly the same size

Alternative sorting
algorithms
 Alternative sorting algorithms

 Given a large list S of inputs
 Use a random sample of the elements to establish the k

thresholds.
 easier if we pick k = p

 A single processor handles each subproblem

 assumption: p

Alternative sorting
algorithms
 Alternative sorting algorithms

 Binary radixsort
 we examine every bit of the k-bit keys in turn
 starting from the least-significant bit (LSB)
 In Step I

 Examine bit i, 0 ≤ i < k
 Shift records with keys having

 a 0 in bit i toward the beginning of the list
 a 1 in bit i toward the end of the list

 keep the relative order of records with the same bit
 sometimes referred to as stable sorting

Alternative sorting
algorithms
 Alternative sorting algorithms

 Binary parallel radixsort
 upward and downward shifting step can be done efficiently in parallel
 For Bit 0, new position of each record can be established by two prefix sum

computations:
 a diminished prefix sum computation on the complement of Bit 0

 for records with 0 in bit position 0
 a normal prefix sum computation on Bit 0

 for each record with 1 in bit position 0 relative to the last record of the first category
 running time

 mainly consists of the time to perform 2k parallel prefix computations
 k is the key length in bits

 For k a constant
 the running time is asymptotically O(log p) for sorting a list of size p using p processors

Convex hull of a 2D point
set
 The convex hull problem for a 2D point set

 Given a point set Q of size n
 points specified by their (x, y) on the Euclidean plane

 find the smallest convex polygon that encloses all n
points

 It is an example of geometric problems
 encountered in image processing and computer

vision.

 The algorithm is also an excellent case study of
multiway divide and conquer

Convex hull of a 2D point
set
 The convex hull problem for a 2D point set

 The inputs can be assumed to be
 in the form of two n-vectors X and Y

 The desired output is a list of points
 belonging to the convex hall
 starting from an arbitrary point
 proceeding, say, in clockwise order
 has a size of at most n

 convex hull can be divided into
 the upper hull

 goes from the point with the smallest x to the one with the largest x
 the lower hull

 returns from the latter to the former

Convex hull of a 2D point
set
 properties that allow us to construct an

efficient PRAM algorithm
 Property 1.

 Let qi and qj be consecutive points of CH(Q).
 View qi as the origin of coordinates.
 The line from qj to qi forms a smaller angle with x

axis than the line from qj to any other qk in Q.

Convex hull of a 2D point
set
 properties that allow us to construct an

efficient PRAM algorithm
 Property 2

 A segment (qi, qj) is an edge of CH(Q)
 iff all of the remaining n–2 points fall to the same side

of it

Convex hull of a 2D point
set
 Convex hull algorithm

 for a 2D point set of size p

 on a p-processor CRCW PRAM.

Convex hull of a 2D point
set
 Convex hull algorithm

 Step 4 is the heart of the algorithm
 Each subset of size is assigned processors

 to determine the upper tangent line between its hull and each of
the other -1 hulls.

 One processor finds each tangent in O(log p) steps using
Overmars algorithm
 Based on binary search.
 To determine the upper tangent from CH(Q(i)) to CH(Q(k))

 The midpoint of the upper part of CH(Q(k)) is taken
 the slopes for its adjacent points compared with its own slope
 If the slope is minimum

 then we have found the tangent point
 Otherwise

 the search is restricted to one or the other half
 CREW model must be assumed

 Because multiple processors read data from all hulls

Convex hull of a 2D point
set
 Convex hull algorithm

 Step 4 is the heart of the algorithm
 Once all the upper tangents from each hull to all other hulls are known

 a pair of candidates are selected
 By finding the min/max slopes

 If the angle between the two candidates is less than 180
 no point from CH(Q(i)) belongs to CH(Q)

 Else
 a subset of points from CH(Q(i)) belongs to CH(Q)

Convex hull of a 2D point
set
 Convex hull algorithm

 The final step is to renumber the points in proper order
 to obtain rank or index of each node on CH(Q)

 Use a parallel prefix on the list of the number of points from
each CH(Q(i)) that are belong to the combined hull

 The complexity excluding the initial sorting
 T(p, p) =T(p1/2, p1/2) + c log p ≈ 2 c log p

 sorting can also be performed in O(log p)
 overall time complexity is O(log p)

 the above algorithm is asymptotically optimal
 Because best sequential algorithm requires Ω(p log p)

Some implementation aspects

 In any physical implementation of shared memory
 the m memory locations are in B memory banks (modules)
 each bank holding m/B addresses

 in each memory cycle
 a memory bank can provide access to a single memory word.

 multiport memories exist
 can allow access to a few independently addressed words in

a single cycle
 are quite expensive
 if the number of memory ports is less than m/B

 which is certainly the case in practice
 Multiport memories do not allow us the same type of permitted

access even in the weakest PRAM submodel.

Some implementation aspects

 even if the PRAM algorithm assumes the EREW
 memory bank conflicts may still arise

 moderate to serious loss of performance may result
 Depending on how bank conflicts are resolved

 An obvious solution: prevent conflicts by
 try to lay out the data in the shared memory
 organize the computational steps

 so that a memory bank is accessed at most once in each cycle.

 quite a challenging problem
 has received significant attention from the research community

Some implementation aspects

 Consider an m×m matrix multiplication with
p=m² processors
 each processor has an index pair (i, j).

 Pij is responsible for computing the element cij

 Piy, 0 ≤ y < m need to read Row i of A

 we can skew the accesses
 Piy reads the elements of Row i beginning with Aiy.

 the entire Row i of A is read out in every cycle

 albeit with the elements distributed differently to the
processors in each cycle.

Some implementation aspects

 Consider an m×m matrix multiplication with p=m² processors
 To remove conflicts for all elements of each row

 we must assign different columns of A to different memory banks.
 It is possible if

 we have at least m memory banks
 We store the matrix in column-major order

 the element (i, j) is found in location i of memory bank j

 If fewer than m memory modules are available
 the element (i, j) can be stored in location i + m ⎣j/B⎦ of memory bank j mod B
 This ensures maximum parallelism in reading the row elements

Some implementation aspects

 Consider an m×m matrix multiplication with
p=m² processors
 Processors Pxj, 0≤x<m , all access the jth column of B.

 column-major storage leads to memory bank conflicts for
all columns of B.

 We can store B in row-major order to avoid such conflicts.

 if B is later to be used in a different matrix multiplication,
say B × D
 the layout of B must be changed

 by physically rearranging it in memory

 or the algorithm must be modified

Some implementation aspects

 Consider an m×m matrix multiplication with p=m² processors
 skewed storage can be used

 both columns and rows are accessible in parallel without memory bank
conflicts.

 the element (i ,j) is found in location i of module (i + j) mod B
 If B ≥ m

 all elements (i, y), 0 ≤ y < m are in different modules
 all elements (x, j), 0 ≤ x < m are in different modules

 conflicts could arise for diagonal elements (x, x) unless
 B ≥ 2m
 or else B is an odd number in the range m ≤ B < 2 m.

Some implementation aspects

 Generalized conflict-free parallel matrix
access
 View the m×m matrix as an m2-element vector

 column-major or row-major order does not matter
 only interchanges the first two strides

Some implementation aspects

 Generalized conflict-free parallel matrix
access
 The problem is reduced to

 Given a vector of length l
 store it in B memory banks in such a way that

 accesses with strides s0, s1, . . . , sh–1 are
 conflict-free (ideal)

 involve the minimum possible amount of conflict.

Some implementation aspects

 Generalized conflict-free parallel matrix
access
 linear skewing scheme

 stores the kth vector element in the bank a+kb mod B
 The address within the bank

 is irrelevant to conflict-free parallel access
 does affect the ease with which memory addresses are

computed by the processors

 The constant a is also irrelevant and can be safely
ignored.

 Thus, we can limit our attention to assigning Vk to
memory module Mkb mod B·

Some implementation aspects

 Generalized conflict-free parallel matrix
access
 linear skewing scheme

 the elements k, k+s, k+2s, . . . , k+(B– 1)s are in
different memory modules
 iff sb is relatively prime with respect to the number B of

memory banks.

Some implementation aspects

 Generalized conflict-free parallel matrix access
 linear skewing scheme

 the elements k, k+s, k+2s, . . . , k+(B– 1)s are in different
memory modules
 iff sb is relatively prime with respect to the number B of

memory banks.

 If we choose B to be a prime number
 conflict-free parallel access for all strides is guaranteed for

b=1

 But having a prime number of banks is inconvenient for
other reasons
 Thus, many alternative methods have been proposed

Some implementation aspects

 Even assuming conflict-free access to memory banks
 Still, multiple memory access must be directed from the

processors to the memory banks
 this is a nontrivial problem

 If we have many processors and memory banks
 Ideally

 the memory access network should be a permutation network
 Can connect each processor to any memory bank

 as long as the connection is a permutation.

 However, permutation networks are
 quite expensive to implement
 difficult to control (set up).

 Therefore
 we usually settle for networks that do not possess full

permutation capability.

Some implementation aspects

 Multistage interconnection network
 an example of a compromise solution.
 It is a butterfly network

 we will encounter again in the next chapters
 For now

 only note that memory accesses can be self-routed through this network
 by letting the ith bit of the memory bank address determine the switch setting in Column i–1 (1 ≤ i ≤ 3)

 0 indicating the upper path
 1 the lower path.

 E.g., any request to memory bank 3 (0011)
 will be routed to the “lower,” “upper,” “upper,” “lower” output line

 by the switches that forward it in Columns 0–3.
 independent of the source processor

Some implementation aspects

 Multistage interconnection network
 switches can be designed to deal with access conflicts by

 simply dropping duplicate requests
 memory acknowledgment is required

 buffering one of the two conflicting requests
 introduces nondeterminacy in the memory access time
 determining the buffer size is a challenging problem

 combining access requests to the same memory location.

