PARALLEL PROCESSING SYSTEMS

Chapter 6: More Shared-Memory Algorithms

Introduction

- we develop PRAM algorithms for several additional problems
- Sequential rank-based selection
- A parallel selection algorithm
- A selection-based sorting algorithm
- Alternative sorting algorithms
- Convex hull of a 2D point set
- Some implementation aspects

Sequential rank-based selection

- the problem is finding a (the) $\mathrm{k}^{\text {th }}$ smallest element in a sequence $S=x 0, x 1, \ldots, x n-1$ whose elements belong to a linear order
- Median, maximum, and minimum finding are special cases
- Clearly, can be solved through sorting
- Sort the sequence in nondescending order
- Output the kth element of the sorted list
- is wasteful
- requires $\Omega(\mathrm{n} \log \mathrm{n})$ time
- $\mathrm{O}(\mathrm{n})$-time selection algorithms are available

Sequential rank-based selection

- a recursive linear-time selection algorithm
- Step 1
- If body requires constant time, say c0
- Else body requires linear time in $|\mathrm{S}|$, say c1 $|\mathrm{S}|$
- Step 2 constitutes a $|\mathrm{S}| / \mathrm{q}$ selection problem
- Step 3 takes linear time in $|\mathrm{S}|$, say c3 |S|
- Step 4 is a selection problem of the size $3|\mathrm{~S}| / 4$ in worst case
$\underline{\text { Sequential rank-based selection algorithm } \operatorname{select}(S, k)}$

1. if $|S|<q \quad\{q$ is a small constant $\}$
then sort S and return the k th smallest element of S
else divide S into $|S| / q$ subsequences of size q
Sort each subsequence and find its median
Let the $|S| / q$ medians form the sequence T
endif
2. $\quad m=\operatorname{select}(T,|T| / 2)\{$ find the median m of the $|S| / q$ medians \}
3. Create 3 subsequences
L : Elements of S that are $<m$
E: Elements of S that are $=m$
G : Elements of S that are $>m$
4. if $|L| \geq k$
then return $\operatorname{select}(L, k)$
else if $|L|+|E| \geq k$
then return m
else return $\operatorname{select}(G, k-|L|-|E|)$
endif

Sequential rank-based selection

- a recursive linear-time selection algorithm
- Total running time
- $\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / \mathrm{q})+\mathrm{T}(3 \mathrm{n} / 4)+\mathrm{cn}$
- has a linear solution for any $q>4$
- E.g., q=5
- $T(n)=20 \mathrm{cn}$
$\underline{\text { Sequential rank-based selection algorithm } \operatorname{select}(S, k)}$

1. if $|S|<q \quad\{q$ is a small constant $\}$
then sort S and return the k th smallest element of S
else divide S into $|S| / q$ subsequences of size q Sort each subsequence and find its median
Let the $|S| / q$ medians form the sequence T
endif
2. $\quad m=\operatorname{select}(T,|T| / 2)\{$ find the median m of the $|S| / q$ medians \}
3. Create 3 subsequences

L: Elements of S that are $<m$
E: Elements of S that are $=m$
G : Elements of S that are $>m$
4. if $|L| \geq k$
then return $\operatorname{select}(L, k)$
else if $|L|+|E| \geq k$
then return m
else return $\operatorname{select}(G, k-|L|-|E|)$
endif

Sequential rank-based selection

- a recursive linear-time selection algorithm
- analysis to justify the term $T(3 n / 4)$
- The median m of the n / q medians is no larger than at least half, or $(\mathrm{n} / \mathrm{q}) / 2$, of the medians
- each of which is in turn no larger than $q / 2$ elements of the original input list S .
- Thus, m is guaranteed to be no larger than at least $((\mathrm{n} / \mathrm{q}) / 2) \times \mathrm{q} / 2=\mathrm{n} / 4$ elements of the input list S

Sequential rank-based selection

- a recursive linear-time selection algorithm
- example with $\mathrm{n}=25$ and $\mathrm{q}=5$

To find the 5th smallest element in S, select the 5th smallest element in $L(|L| \geq 5)$ as follows

Sequential rank-based selection

- A parallel selection algorithm
- If parallel computation model supports fast sorting
- the problem can be solved through sorting
- This is the case, e.g., for the CRCW-S or "summation" submodel with $\mathrm{p}=\mathrm{n}^{2}$ processors

Sequential rank-based selection

- A parallel algorithm for CRCW-S with $\mathrm{p}=\mathrm{n}^{2}$
${ }^{-}$Processor (i, j) compares inputs $\mathrm{S}[\mathrm{i}]$ and $\mathrm{S}[\mathrm{j}]$
- writes a 1 into rank[j] if $\mathrm{S}[\mathrm{i}]<\mathrm{S}[\mathrm{j}]$ or if $\mathrm{S}[\mathrm{i}]=\mathrm{S}[\mathrm{j}]$ and i $<\mathrm{j}$.
- $\operatorname{rank}[j]$ will hold the rank of $\mathrm{S}[\mathrm{j}]$ in the sorted list
- In the second cycle
- Processor $(0, j), 0 \leq \mathrm{j}<\mathrm{n}$, reads $\mathrm{S}[\mathrm{j}]$ and writes it into S [rank[j]]
- The selection process is completed in a third cycle when all processors read $\mathrm{S}[\mathrm{k}-1]$
- the kth smallest element in S

Sequential rank-based selection

- A parallel algorithm for CRCW-S with $\mathrm{p}=\mathrm{n}^{2}$
- It is difficult to imagine a faster selection algorithm.
- However, it is quite impractical
- It uses both
- many processors
- a very strong PRAM submodel

Sequential rank-based selection

- Parallel version of the sequential algorithm

- Assume $p^{=} n^{1-x}$
- x is a parameter that is known a priori
- $\mathrm{x}=1 / 2$ corresponds to $\mathrm{p}=\sqrt{n}$
- P is sublinear in n
- Step 1 involves
- Broadcasting
- needs $\mathrm{O}(\log \mathrm{p})=\mathrm{O}(\log \mathrm{n})$ time
- dividing into sublists
- is done in constant time
- each processor independently computing the beginning and end of its associated sublist based on $|\mathrm{S}|$ and x
- Sequential selection on each

Parallel rank-based selection algorithm $\operatorname{PRAMselect}(S, k, p)$

1. if $|S|<4$
then \quad sort S and return the k th smallest element of S
else broadcast $|S|$ to all p processors divide S into p subsequences $S^{(j)}$ of size $|S| / p$
Processor $j, 0 \leq j<p$, compute the median $T_{j}:=\operatorname{select}\left(S^{(j)},\left|S^{(j)}\right| / 2\right)$
endif
2. $m=P R A M \operatorname{select}(T,|T| / 2, p) \quad$ \{find the median of the medians in parallel\}
3. Broadcast m to all processors and create 3 subsequences
L : Elements of S that are $<m$
E: Elements of S that are $=m$
G : Elements of S that are $>m$
4. if $|L| \geq k$
then return PRAMselect (L, k, p)
else if $|L|+|E| \geq k$
then return m
else return PRAMselect $(G, k-|L|-|E|, p)$
sublist of length n / p
endif

- needs $O(n / p)=O\left(n^{x}\right)$ time

Sequential rank-based selection

- Parallel version of the sequential algorithm

- Step 3 can be done as follows
- each processor counts the number of elements that it should place in each of the lists L, E, and G
- in $\mathrm{O}(\mathrm{n} / \mathrm{p})=\mathrm{O}\left(\mathrm{n}^{\mathrm{x}}\right)$ time
- three diminished parallel prefix computations are performed
- to determine the number of elements to be placed on each list by all processors with indices that are smaller than i.
- the actual placement takes $\mathrm{O}\left(\mathrm{n}^{\mathrm{x}}\right)$ time
- each processor independently writing into the lists L, E, and G
- using the diminished prefix computation result as the starting address
$\underline{\text { Parallel rank-based selection algorithm } \operatorname{PRAMselect}(S, k, p)}$

1. if $|S|<4$
then \quad sort S and return the k th smallest element of S
else broadcast $|S|$ to all p processors divide S into p subsequences $S^{(j)}$ of size $|S| / p$
Processor $j, 0 \leq j<p$, compute the median $T_{j}:=\operatorname{select}\left(S^{(j)},\left|S^{(j)}\right| / 2\right)$
endif
2. $m=P R A M \operatorname{select}(T,|T| / 2, p) \quad$ \{find the median of the medians in parallel\}
3. Broadcast m to all processors and create 3 subsequences
L : Elements of S that are $<m$
E: Elements of S that are $=m$
G : Elements of S that are $>m$
4. if $|L| \geq k$
then return PRAMselect (L, k, p)
else if $|L|+|E| \geq k$
then return m
else return PRAMselect $(G, k-|L|-|E|, p)$
endif

Sequential rank-based selection

- Parallel version of the sequential algorithm
- logarithmic terms are negligible compared with $\mathrm{O}\left(\mathrm{n}^{\mathrm{x}}\right)$
- Step 4 will have no more than $3 n / 4$ inputs
$\underline{\text { Parallel rank-based selection algorithm } \operatorname{PRAMselect}(S, k, p)}$

1. if $|S|<4$
then \quad sort S and return the k th smallest element of S
else broadcast $|S|$ to all p processors
divide S into p subsequences $S^{(j)}$ of size $|S| / p$
Processor $j, 0 \leq j<p$, compute the median $T_{j}:=\operatorname{select}\left(S^{(j)},\left|S^{(j)}\right| / 2\right)$
endif
2. $m=\operatorname{PRAMselect}(T,|T| / 2, p) \quad$ \{find the median of the medians in parallel \}
3. Broadcast m to all processors and create 3 subsequences
L : Elements of S that are $<m$
E: Elements of S that are $=m$

- for $\mathrm{p}=\mathrm{n}^{1-\mathrm{x}}$ we have
- $T(n, p)=T\left(n^{1-x}, p\right)+$ $T(3 n / 4, p)+n^{x}$
G : Elements of S that are $>m$

4. if $|L| \geq k$
then return $\operatorname{PRAMselect}(L, k, p)$
else if $|L|+|E| \geq k$
then return m else return PRAMselect $(G, k-|L|-|E|, p)$ endif

- $T(n, p)=O\left(n^{x}\right)$

Sequential rank-based selection

- Parallel version of the sequential algorithm
- $\operatorname{Speed}-\mathrm{up}(\mathrm{n}, \mathrm{p})=\Theta(\mathrm{n}) / \mathrm{O}\left(\mathrm{n}^{\mathrm{x}}\right)=\Omega\left(\mathrm{n}^{1-\mathrm{x}}\right)=\Omega(\mathrm{p})$
- Efficiency $=$ Speed-up $/ p=\Omega(1)$
- $\operatorname{Work}(n, p)=p T(n, p)=\Theta\left(n^{1-x}\right) O\left(n^{x}\right)=O(n)$
- One positive property
- it is adaptable to any number of processors
- yields linear speed-up in each case.
- we do not have to adjust the algorithm for running it on different hardware configurations.
- It is self-adjusting

Sequential rank-based selection

- A selection-based sorting algorithm
- Choose a small constant k
- identify the $\mathrm{k}-1$ elements in positions $\mathrm{n} / \mathrm{k}, 2 \mathrm{n} / \mathrm{k}, 3 \mathrm{n} / \mathrm{k}, \ldots$, $(\mathrm{k}-1) \mathrm{n} / \mathrm{k}$ in the sorted list
- Call them $\mathrm{m}_{1}, \mathrm{~m}_{2}, \mathrm{~m}_{3}, \ldots, \mathrm{~m}_{\mathrm{k}-1}$
- define $\mathrm{m}_{0}=-\infty$ and $\mathrm{m}_{\mathrm{k}}=+\infty$
- Put the above $\mathrm{k}-1$ elements in their proper places in the sorted list
- Move all other elements so that
- any element that is physically located between m_{i} and $\mathrm{m}_{\mathrm{i}+1}$ in the list has a value in the interval $\left[\mathrm{m}_{\mathrm{i}}, \mathrm{m}_{\mathrm{i}+1}\right]$
- independently sort each of the k sublists

Sequential rank-based selection

- A selection-based sorting algorithm
- assumptions
- $\mathrm{p}<\mathrm{n}$ processors with $\mathrm{p}=\mathrm{n}^{1-\mathrm{x}}$.
- x is known a priori
- we can choose $k=2^{1 / x}$

Sequential rank-based selection

- A selection-based sorting algorithm
- Step 1 takes constant time
- Step 2 consists of
- k parallel selection problems
- n inputs $\& \mathrm{n}^{1-\mathrm{x}}$ processors.
- k is a constant
- total time is $\mathrm{O}\left(\mathrm{n}^{\mathrm{x}}\right)$

Parallel selection-based sorting algorithm PRAMselectionsort(S, p)

1. if $|S|<k$ then return quicksort (S)
2. for $i=1$ to $k-1$ do
$m_{i}:=P R A M s e l e c t(S, i|S| / k, p)$
\{for notational convenience, let $\left.m_{o}:=-\infty ; m_{k}:=+\infty\right\}$
endfor
3. for $i=0$ to $k-1$ do
make the sublist $T^{(i)}$ from elements of S that are between m_{i} and m_{i+1} endfor
4. for $i=1$ to $k / 2$ do in parallel

PRAMselectionsort ($T^{(i)}, 2 p / k$)
$\{p /(k / 2)$ processors are used for each of the $k / 2$ subproblems $\}$
endfor
5. for $i=k / 2+1$ to k do in parallel

PRAMselectionsort($\left.T^{(i)}, \quad 2 p / k\right)$
endfor

Sequential rank-based selection

- A selection-based sorting algorithm
- Step 3
- each processor compares its n^{x} values with the $k-1$ thresholds
- counts the elements for each of the k partitions.
- k diminished parallel prefix computations performed
- each taking $O(\log p)=O(\log n)$ time
- each processor writes its n^{x} elements to the various partitions.
- Step 3 takes a total of $\mathrm{O}\left(\mathrm{n}^{\mathrm{x}}\right)$ time

Parallel selection-based sorting algorithm PRAMselectionsort(S, p)

1. if $|S|<k$ then return quicksort (S)
2. for $i=1$ to $k-1$ do
$m_{i}:=$ PRAMselect $(S, i|S| / k, p)$
\{for notational convenience, let $m_{o}:=-\infty ; m_{k}:=+\infty$ \}
endfor
3. for $i=0$ to $k-1$ do
make the sublist $T^{(i)}$ from elements of S that are between m_{i} and m_{i+1} endfor
4. for $i=1$ to $k / 2$ do in parallel

PRAMselectionsort ($T^{(i)}, 2 p / k$)
$\{p /(k / 2)$ processors are used for each of the $k / 2$ subproblems $\}$
endfor
5. for $i=k / 2+1$ to k do in parallel

PRAMselectionsort($\left.T^{(i)}, 2 p / k\right)$
endfor

Sequential rank-based selection

- A selection-based sorting algorithm
- Step 4 cannot handle all the k subproblems
- Needed processors to solve each subproblem
- (number of inputs $^{1-\mathrm{x}}=(\mathrm{n} / \mathrm{k})^{1-\mathrm{x}}=\left(\mathrm{n} / 2^{1 / \mathrm{x}}\right)^{1-\mathrm{x}}=\mathrm{n}^{1-\mathrm{x} / 2^{1 / x-1}=\mathrm{p} /(\mathrm{k} / 2)}$
- Total needed processors
- $\mathrm{k} * \mathrm{p} /(\mathrm{k} / 2)=2 * \mathrm{p}$

Parallel selection-based sorting algorithm PRAMselectionsort(S, p)

1. if $|S|<k$ then return quicksort (S)
2. for $i=1$ to $k-1$ do
$m_{i}:=P R A M s e l e c t(S, i|S| / k, p)$
\{for notational convenience, let $\left.m_{o}:=-\infty ; m_{k}:=+\infty\right\}$
endfor
3. for $i=0$ to $k-1$ do
make the sublist $T^{(i)}$ from elements of S that are between m_{i} and m_{i+1} endfor
4. for $i=1$ to $k / 2$ do in parallel

PRAMselectionsort ($\left.T^{(i)}, 2 p / k\right)$
$\{p /(k / 2)$ processors are used for each of the $k / 2$ subproblems $\}$
endfor
5. for $i=k / 2+1$ to k do in parallel

PRAMselectionsort($\left.T^{(i)}, 2 p / k\right)$
endfor

Sequential rank-based selection

- A selection-based sorting algorithm
- Steps 4 and 5 recursively call the algorithm
- Total running time
- $\mathrm{T}(\mathrm{n}, \mathrm{p})=2 \mathrm{~T}(\mathrm{n} / \mathrm{k}, 2 \mathrm{p} / \mathrm{k})+\mathrm{cn}^{\mathrm{x}}$
- $T(n, p)=O\left(n^{x} \log n\right)$

Parallel selection-based sorting algorithm PRAMselectionsort(S, p)

1. if $|S|<k$ then return quicksort (S)
2. for $i=1$ to $k-1$ do
$m_{i}:=$ PRAMselect $(S, i|S| / k, p)$
\{for notational convenience, let $\left.m_{o}:=-\infty ; m_{k}:=+\infty\right\}$
endfor
3. for $i=0$ to $k-1$ do
make the sublist $T^{(i)}$ from elements of S that are between m_{i} and m_{i+1} endfor
4. for $i=1$ to $k / 2$ do in parallel

PRAMselectionsort ($T^{(i)}, 2 p / k$)
$\{p /(k / 2)$ processors are used for each of the $k / 2$ subproblems $\}$
endfor
5. for $i=k / 2+1$ to k do in parallel

PRAMselectionsort($\left.T^{(i)}, 2 p / k\right)$
endfor

Sequential rank-based selection

- A selection-based sorting algorithm
- $\operatorname{Speed}-u p(n, p)=\Omega(n \log n) / O\left(n^{x} \log n\right)=\Omega\left(n^{1-x}\right)$
$=\Omega(\mathrm{p})$
- Efficiency $=$ Speed-up $/ p=\Omega(1)$
- $\operatorname{Work}(\mathrm{n}, \mathrm{p})=\mathrm{pT}(\mathrm{n}, \mathrm{p})=\Theta\left(\mathrm{n}^{1-\mathrm{x}}\right) \mathrm{O}\left(\mathrm{n}^{\mathrm{x}} \log \mathrm{n}\right)=$ $O(n \log n)$

Sequential rank-based selection

- A selection-based sorting algorithm
- Example
$|S|=25$ elements, using $p=5$ processors (thus, $x=1 / 2$ and $k=2^{1 / x}=4$)

$$
\begin{gathered}
S: 6456715382103456217045495 \\
\\
m_{0}=-\infty \\
n / k=25 / 4 \approx 6 \\
2 n / k=50 / 4 \approx 13 \quad m_{1}=\operatorname{PRAM\operatorname {select}(S,6,5)=2} \\
3 n / k=75 / 4 \approx 19 \quad m_{2}=\operatorname{PRAMselect}(S, 13,5)=4 \\
\\
m_{3}=\operatorname{PRAMselect}(S, 19,5)=6 \\
\\
\quad m_{4}=+\infty \\
T: 0011121233444415555561667789
\end{gathered}
$$

Alternative sorting
 algorithms

- Alternative sorting algorithms
- previous algorithm results in k subproblems of the same size
- allows us to establish an optimal upper bound on the worst-case running time
- Brings up complexity
- There exist many useful algorithms that
- are quite efficient on the average
- but exhibit poor worst-case behavior
- Sequential quicksort is a prime example
- runs in order $n \log n$ time in most cases
- but can take on the order of n^{2} time for worst-case input patterns.

Alternative sorting
 algorithms

- Alternative sorting algorithms
- In the case of previous sorting algorithm
- We can choose thresholds approximately equal to in / k
- the rest of the algorithm dose not change
- the only difference we get
- k subproblems will be of roughly the same size

Alternative sorting algorithms

- Alternative sorting algorithms
- Given a large list S of inputs
- Use a random sample of the elements to establish the k thresholds.
- easier if we pick $\mathrm{k}=\mathrm{p}$
- A single processor handles each subproblem
- assumption: $\mathrm{p} \ll \sqrt{n}$

Parallel randomized sorting algorithm PRAMrandomsort($(, p$)

1. Processor $j, 0 \leq j<p$, pick $|S| p^{2}$ random samples of its $|s| / p$ elements and store them in its corresponding section of a list T of length $|S| / p$
2. Processor 0 sort the list T
\{the comparison threshold m_{i} is the $\left(i|S| / p^{2}\right)$ th element of $\left.T\right\}$
3. Processor $j, 0 \leq j<p$, store its elements that are between m_{i} and m_{i+1} into the sublist $T^{(i)}$
4. Processor $j, 0 \leq j<p$, sort the sublist $T^{(j)}$

Alternative sorting algorithms

- Alternative sorting algorithms
- Binary radixsort
- we examine every bit of the k-bit keys in turn
- starting from the least-significant bit (LSB)
- In Step I
- Examine bit $\mathrm{i}, 0 \leq \mathrm{i}<\mathrm{k}$
- Shift records with keys having
- a 0 in bit i toward the beginning of the list
- a 1 in bit i toward the end of the list
- keep the relative order of records with the same bit
- sometimes referred to as stable sorting

Input list	Sort by LSB	Sort by middle bit	Sort by MSB
$5(101)$	$4(100)$	$4(100)$	$1(001)$
$7(111)$	$2(010)$	$5(101)$	$2(010)$
$3(011)$	$\underline{2(010)}$	$\underline{1(001)}$	$2(010)$
$1(001)$	$5(101)$	$2(010)$	$\underline{3(011)}$
$4(100)$	$7(111)$	$2(010)$	$4(100)$
$2(010)$	$3(011)$	$7(111)$	$5(101)$
$7(111)$	$1(001)$	$3(011)$	$7(111)$
$2(010)$	$7(111)$	$7(111)$	$7(111)$

Alternative sorting
 algorithms

- Alternative sorting algorithms
- Binary parallel radixsort
- upward and downward shifting step can be done efficiently in parallel
- For Bit 0 , new position of each record can be established by two prefix sum computations:
- a diminished prefix sum computation on the complement of Bit 0
- for records with 0 in bit position 0
- a normal prefix sum computation on Bit 0
- for each record with 1 in bit position 0 relative to the last record of the first category
- running time
- mainly consists of the time to perform 2k parallel prefix computations
- k is the key length in bits
- For k a constant
- the running time is asymptotically $\mathrm{O}(\log \mathrm{p})$ for sorting a list of size p using p processors

Input list	Compl't of Bit 0	Diminished prefixsums	Bit 0	Prefix sums plus 2	Shifted list
$5(101)$	0	-	1	$1+2=3$	$4(100)$
$7(111)$	0	-	1	$2+2=4$	$2(010)$
$3(011)$	0	-	1	$3+2=5$	$\underline{2(010)}$
$1(001)$	0	-	1	$4+2=6$	$5(101)$
$4(100)$	1	0	-	$7(111)$	
$2(010)$	1	-	-	$3(011)$	
$7(111)$	0	2	1	$5+2=7$	$1(001)$
$2(010)$	1	0	-	$7(111)$	

Convex hull of a 2D point set

- The convex hull problem for a 2 D point set
- Given a point set Q of size n
- points specified by their (x, y) on the Euclidean plane
- find the smallest convex polygon that encloses all n points
- It is an example of geometric problems
- encountered in image processing and computer vision.
- The algorithm is also an excellent case study of multiway divide and conquer

Convex hull of a 2D point set

- The convex hull problem for a 2D point set
- The inputs can be assumed to be
- in the form of two n-vectors X and Y
- The desired output is a list of points
- belonging to the convex hall
- starting from an arbitrary point
- proceeding, say, in clockwise order
- has a size of at most n
- convex hull can be divided into
- the upper hull
- goes from the point with the smallest x to the one with the largest x
- the lower hull
- returns from the latter to the former

Convex hull of a 2D point set

- properties that allow us to construct an efficient PRAM algorithm
- Property 1.
- Let q_{i} and q_{j} be consecutive points of $\mathrm{CH}(\mathrm{Q})$.
- View q_{i} as the origin of coordinates.
- The line from q_{j} to q_{i} forms a smaller angle with x axis than the line from q_{j} to any other q_{k} in Q.

Convex hull of a 2D point set

- properties that allow us to construct an efficient PRAM algorithm
- Property 2
- A segment $\left(q_{i}, q_{j}\right)$ is an edge of $\mathrm{CH}(\mathrm{Q})$
- iff all of the remaining $\mathrm{n}-2$ points fall to the same side of it

Convex hull of a 2D point set

- Convex hull algorithm
- for a 2D point set of size p
- on a p-processor CRCW PRAM.

Parallel convex hull algorithm PRAMconvexhull(S, p)

1. Sort the point set by the x coordinates
2. Divide the sorted list into \sqrt{p} subsets $\mathrm{Q}^{(i)}$ of size $\sqrt{p}, 0 \leq i<\sqrt{p}$
3. Find the convex hull of each subset $Q^{(i)}$ by assigning \sqrt{p} processors to it
4. Merge the \sqrt{p} convex hulls $\mathrm{CH}\left(Q^{(i)}\right)$ into the overall hull $\mathrm{CH}(Q)$

Convex hull of a 2D point set

- Convex hull algorithm
- Step 4 is the heart of the algorithm
- Each subset of size \sqrt{p} is assigned \sqrt{p} processors
- to determine the upper tangent line between its hull and each of the other $\sqrt{p}-1$ hulls.
- One processor finds each tangent in $\mathrm{O}(\log \mathrm{p})$ steps using Overmars algorithm
- Based on binary search.
- To determine the upper tangent from $\mathrm{CH}\left(\mathrm{Q}^{(\mathrm{i})}\right)$ to $\mathrm{CH}\left(\mathrm{Q}^{(\mathrm{k})}\right)$
- The midpoint of the upper part of $\mathrm{CH}\left(\mathrm{Q}^{(\mathrm{k})}\right)$ is taken
- the slopes for its adjacent points compared with its own slope
- If the slope is minimum
- then we have found the tangent point
- Otherwise
- the search is restricted to one or the other half
- CREW model must be assumed
- Because multiple processors read data from all hulls

Convex hull of a 2D point set

- Convex hull algorithm
- Step 4 is the heart of the algorithm
- Once all the upper tangents from each hull to all other hulls are known
- a pair of candidates are selected
- By finding the min/max slopes
- If the angle between the two candidates is less than 180
- no point from $\mathrm{CH}\left(\mathrm{Q}^{(\mathrm{i})}\right.$) belongs to $\mathrm{CH}(\mathrm{Q})$
- Else
- a subset of points from $\mathrm{CH}\left(\mathrm{Q}^{(\mathrm{i})}\right)$ belongs to $\mathrm{CH}(\mathrm{Q})$

Convex hull of a 2D point set

- Convex hull algorithm
- The final step is to renumber the points in proper order
- to obtain rank or index of each node on $\mathrm{CH}(\mathrm{Q})$
- Use a parallel prefix on the list of the number of points from each $\mathrm{CH}\left(\mathrm{Q}^{(\mathrm{i})}\right)$ that are belong to the combined hull
- The complexity excluding the initial sorting
- $\mathrm{T}(\mathrm{p}, \mathrm{p})=\mathrm{T}\left(\mathrm{p}^{1 / 2}, \mathrm{p}^{1 / 2}\right)+\mathrm{c} \log \mathrm{p} \approx 2 \mathrm{c} \log \mathrm{p}$
- sorting can also be performed in $\mathrm{O}(\log \mathrm{p})$
- overall time complexity is $\mathrm{O}(\log \mathrm{p})$
- the above algorithm is asymptotically optimal
- Because best sequential algorithm requires $\Omega(p \log p)$

Some implementation aspects

- In any physical implementation of shared memory
- the m memory locations are in B memory banks (modules)
- each bank holding m / B addresses
- in each memory cycle
- a memory bank can provide access to a single memory word.
- multiport memories exist
- can allow access to a few independently addressed words in a single cycle
- are quite expensive
- if the number of memory ports is less than m / B
- which is certainly the case in practice
- Multiport memories do not allow us the same type of permitted access even in the weakest PRAM submodel.

Some implementation aspects

- even if the PRAM algorithm assumes the EREW
- memory bank conflicts may still arise
- moderate to serious loss of performance may result
- Depending on how bank conflicts are resolved
- An obvious solution: prevent conflicts by
- try to lay out the data in the shared memory
- organize the computational steps
- so that a memory bank is accessed at most once in each cycle.
- quite a challenging problem
- has received significant attention from the research community

Some implementation aspects

- Consider an $\mathrm{m} \times \mathrm{m}$ matrix multiplication with $\mathrm{p}=\mathrm{m}^{2}$ processors
- each processor has an index pair (i, j).
- P_{ij} is responsible for computing the element c_{ij}
- $P_{\text {iy }}, 0 \leq y<m$ need to read Row i of A
- we can skew the accesses
- P_{iy} reads the elements of Row i beginning with A_{iy}.
- the entire Row i of A is read out in every cycle
- albeit with the elements distributed differently to the processors in each cycle.

Some implementation aspects

- Consider an $\mathrm{m} \times \mathrm{m}$ matrix multiplication with $\mathrm{p}=\mathrm{m}^{2}$ processors
- To remove conflicts for all elements of each row
- we must assign different columns of A to different memory banks.
- It is possible if
- we have at least m memory banks
- We store the matrix in column-major order
- the element (i, j) is found in location i of memory bank j
- If fewer than m memory modules are available
- the element (i, j) can be stored in location $i+m\lfloor j / B]_{\text {of memory bank } j \bmod B}$
- This ensures maximum parallelism in reading the row elements

Some implementation aspects

- Consider an $\mathrm{m} \times \mathrm{m}$ matrix multiplication with $\mathrm{p}=\mathrm{m}^{2}$ processors
- Processors $\mathrm{P}_{\mathrm{xj}}, 0 \leq \mathrm{x}<\mathrm{m}$, all access the $\mathrm{j}^{\text {th }}$ column of B.
- column-major storage leads to memory bank conflicts for all columns of B.
- We can store B in row-major order to avoid such conflicts.
- if B is later to be used in a different matrix multiplication, say $\mathrm{B} \times \mathrm{D}$
- the layout of B must be changed
- by physically rearranging it in memory
- or the algorithm must be modified

Some implementation aspects

- Consider an $\mathrm{m} \times \mathrm{m}$ matrix multiplication with $\mathrm{p}=\mathrm{m}^{2}$ processors
- skewed storage can be used
- both columns and rows are accessible in parallel without memory bank conflicts.
- the element (i, j) is found in location i of module $(i+j) \bmod B$
- If $B \geq m$
- all elements (i, y), $0 \leq \mathrm{y}<\mathrm{m}$ are in different modules
- all elements (x, j), $0 \leq \mathrm{x}<\mathrm{m}$ are in different modules
- conflicts could arise for diagonal elements (x, x) unless
- $B \geq 2 m$
- or else B is an odd number in the range $\mathrm{m} \leq \mathrm{B}<2 \mathrm{~m}$.

Some implementation aspects

- Generalized conflict-free parallel matrix access
- View the $\mathrm{m} \times \mathrm{m}$ matrix as an m^{2}-element vector
- column-major or row-major order does not matter
- only interchanges the first two strides

Column: $\quad k, k+1, k+2, k+3, k+4, k+5$
Row: $\quad k, k+m, k+2 m, k+3 m, k+4 m, k+5 m$
Diagonal: $\quad k, k+m+1, k+2(m+1), k+3(m+1), k+4(m+1), k+5(m+1)$
Antidiagonal: $k, k+m-1, k+2(m-1), k+3(m-1), k+4(m-1), k+5(m-1)$

Some implementation aspects

- Generalized conflict-free parallel matrix access
- The problem is reduced to
- Given a vector of length l
- store it in B memory banks in such a way that
- accesses with strides $\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~s}_{\mathrm{h}-1}$ are
- conflict-free (ideal)
- involve the minimum possible amount of conflict.

Some implementation aspects

- Generalized conflict-free parallel matrix access
- linear skewing scheme
- stores the $\mathrm{k}^{\text {th }}$ vector element in the bank $\mathrm{a}+\mathrm{kb} \bmod \mathrm{B}$
- The address within the bank
- is irrelevant to conflict-free parallel access
- does affect the ease with which memory addresses are computed by the processors
- The constant a is also irrelevant and can be safely ignored.
- Thus, we can limit our attention to assigning V_{k} to memory module $\mathrm{M}_{\mathrm{kb} \bmod \mathrm{B}}$.

Some implementation aspects

- Generalized conflict-free parallel matrix access
- linear skewing scheme
- the elements $\mathrm{k}, \mathrm{k}+\mathrm{s}, \mathrm{k}+2 \mathrm{~s}, \ldots, \mathrm{k}+(\mathrm{B}-1) \mathrm{s}$ are in different memory modules
- iff sb is relatively prime with respect to the number B of memory banks.

Some implementation aspects

- Generalized conflict-free parallel matrix access
- linear skewing scheme
- the elements $\mathrm{k}, \mathrm{k}+\mathrm{s}, \mathrm{k}+2 \mathrm{~s}, \ldots, \mathrm{k}+(\mathrm{B}-1) \mathrm{s}$ are in different memory modules
- iff sb is relatively prime with respect to the number B of memory banks.
- If we choose B to be a prime number
- conflict-free parallel access for all strides is guaranteed for $\mathrm{b}=1$
- But having a prime number of banks is inconvenient for other reasons
- Thus, many alternative methods have been proposed

Some implementation aspects

- Even assuming conflict-free access to memory banks
- Still, multiple memory access must be directed from the processors to the memory banks
- this is a nontrivial problem
- If we have many processors and memory banks
- Ideally
- the memory access network should be a permutation network
- Can connect each processor to any memory bank
- as long as the connection is a permutation.
- However, permutation networks are
- quite expensive to implement
- difficult to control (set up).
- Therefore
- we usually settle for networks that do not possess full permutation capability.

Some implementation aspects

- Multistage interconnection network
- an example of a compromise solution.
- It is a butterfly network
- we will encounter again in the next chapters
- For now
- only note that memory accesses can be self-routed through this network
- by letting the $\mathrm{i}^{\text {th }}$ bit of the memory bank address determine the switch setting in Column $\mathrm{i}-1(1 \leq \mathrm{i} \leq 3)$
- 0 indicating the upper path
- 1 the lower path.
- E.g., any request to memory bank 3 (0011)
- will be routed to the "lower," "upper," "upper," "lower" output line
- by the switches that forward it in Columns 0-3.
- independent of the source processor

Some implementation aspects

- Multistage interconnection network
- switches can be designed to deal with access conflicts by
- simply dropping duplicate requests
- memory acknowledgment is required
- buffering one of the two conflicting requests
- introduces nondeterminacy in the memory access time
- determining the buffer size is a challenging problem
- combining access requests to the same memory location.

