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Introduction 

 we develop PRAM algorithms for several 
additional problems
 Sequential rank-based selection

 A parallel selection algorithm

 A selection-based sorting algorithm

 Alternative sorting algorithms

 Convex hull of a 2D point set

 Some implementation aspects



Sequential rank-based 
selection
 the problem is finding a (the) kth smallest 

element in a sequence S = x0 , x 1, . . . , x n -1 
whose elements belong to a linear order
 Median, maximum, and minimum finding are 

special cases
 Clearly, can be solved through sorting

 Sort the sequence in nondescending order 
 Output the kth element of the sorted list
 is wasteful 

 requires Ω(n log n) time

 O(n)-time selection algorithms are available



Sequential rank-based 
selection
 a recursive linear-time 

selection algorithm
 Step 1 

 If body requires constant time, 
say c0 

 Else body requires linear time 
in |S|, say c1 |S|

 Step 2 constitutes a |S|/q 
selection problem

 Step 3 takes linear time in |S|, 
say c3 |S|

 Step 4 is a selection problem of 
the size 3|S|/4 in worst case



Sequential rank-based 
selection
 a recursive linear-time 

selection algorithm
 Total running time

 T(n) = T(n/q)+T(3n/4)+cn

 has a linear solution for 
any q > 4

 E.g., q=5
 T(n) = 20cn



Sequential rank-based 
selection
 a recursive linear-time selection algorithm

 analysis to justify the term T(3n/4)
 The median m of the n/q medians is no larger than at 

least half, or (n/q)/2, of the medians

 each of which is in turn no larger than q/2 elements of 
the original input list S. 

 Thus, m is guaranteed to be no larger than at least 
((n/q)/2) × q/2 = n/4 elements of the input list S



Sequential rank-based 
selection
 a recursive linear-time selection algorithm

 example with n = 25 and q = 5



Sequential rank-based 
selection
 A parallel selection algorithm

 If parallel computation model supports fast sorting
 the problem can be solved through sorting

 This is the case, e.g., for the CRCW-S or “summation” 
submodel with p = n² processors



Sequential rank-based 
selection
 A parallel algorithm for CRCW-S with p = n²

 Processor ( i, j) compares inputs S[i] and S[j] 
 writes a 1 into rank[j] if S[i] < S[j] or if S[i] = S[j] and i

< j. 

 rank[j] will hold the rank of S[j] in the sorted list
 In the second cycle

 Processor (0, j), 0 ≤ j < n , reads S[j] and writes it into 
S [rank[j]]

 The selection process is completed in a third cycle 
when all processors read S[k – 1]
 the kth smallest element in S



Sequential rank-based 
selection
 A parallel algorithm for CRCW-S with p = n²

 It is difficult to imagine a faster selection algorithm. 

 However, it is quite impractical
 It uses both 

 many processors 

 a very strong PRAM submodel



Sequential rank-based 
selection
 Parallel version of the sequential algorithm

 Assume p=n1-x

 x is a parameter that is known a 
priori

 x = 1/2 corresponds to p=
 P is sublinear in n

 Step 1 involves 
 Broadcasting

 needs O(log p) = O(log n) time
 dividing into sublists

 is done in constant time 
 each processor independently 

computing the beginning and 
end of its associated sublist
based on |S| and x

 Sequential selection on each 
sublist of length n/p
 needs O(n/p) = O(nx) time



Sequential rank-based 
selection
 Parallel version of the sequential algorithm

 Step 3 can be done as follows
 each processor counts the number 

of elements that it should place in 
each of the lists L , E, and G 
 in O(n/p) = O(nx) time

 three diminished parallel prefix 
computations are performed 
 to determine the number of 

elements to be placed on each 
list by all processors with indices 
that are smaller than i. 

 the actual placement takes O(nx) 
time
 each processor independently 

writing into the lists L, E , and G 
 using the diminished prefix 

computation result as the 
starting address



Sequential rank-based 
selection
 Parallel version of the sequential algorithm
 logarithmic terms are 

negligible compared 
with O(nx)

 Step 4 will have no 
more than 3n/4 inputs

 for p = n1–x we have
 T(n, p) = T(n1–x , p) + 

T(3n/4, p) + cnx

 T(n, p) = O(nx)



Sequential rank-based 
selection
 Parallel version of the sequential algorithm

 Speed-up (n, p) = Θ (n)/O(nx) = Ω(n1-x) = Ω(p)

 Efficiency = Speed-up / p = Ω (1)

 Work (n, p) = pT(n, p) = Θ(n1-x)O(nx) = O(n)

 One positive property 
 it is adaptable to any number of processors

 yields linear speed-up in each case. 

 we do not have to adjust the algorithm for running it 
on different hardware configurations. 
 It is self-adjusting



Sequential rank-based 
selection
 A selection-based sorting algorithm

 Choose a small constant k
 identify the k – 1 elements in positions n/k, 2n/k, 3n/k, . . . , 

(k – 1)n/k in the sorted list
 Call them m1, m2, m3 , . . . , mk–1

 define m0= –∞ and mk= +∞
 Put the above k–1 elements in their proper places in the 

sorted list
 Move all other elements so that 

 any element that is physically located between mi and mi+1 in the 
list has a value in the interval [mi , mi+1]

 independently sort each of the k sublists



Sequential rank-based 
selection
 A selection-based sorting algorithm
 assumptions 

 p < n processors with p = n1–x .
 x is known a priori
 we can choose k=21/x



Sequential rank-based 
selection
 A selection-based sorting algorithm
 Step 1 takes constant time
 Step 2 consists of 

 k parallel selection problems 
 n inputs & n1–x processors.
 k is a constant
 total time is O(nx) 



Sequential rank-based 
selection
 A selection-based sorting algorithm

 Step 3
 each processor compares its nx values with the k – 1 thresholds 
 counts the elements for each of the k partitions. 
 k diminished parallel prefix computations performed 

 each taking O(log p) =O(log n) time
 each processor writes its nx elements to the various partitions. 
 Step 3 takes a total of O(nx) time



Sequential rank-based 
selection
 A selection-based sorting algorithm
 Step 4 cannot handle all the k subproblems

 Needed processors to solve each subproblem
 (number of inputs)1–x = (n/k)1-x = (n/21/x)1–x = n1-x/21/x–1 = p/(k/2)

 Total needed processors
 k * p/(k/2) = 2*p



Sequential rank-based 
selection
 A selection-based sorting algorithm
 Steps 4 and 5 recursively call the algorithm
 Total running time

 T(n, p) = 2T(n/k, 2p/k) + cnx

 T(n, p) = O(nx log n)



Sequential rank-based 
selection
 A selection-based sorting algorithm

 Speed-up(n, p) = Ω(n log n) / O(nx log n) = Ω(n1-x) 
= Ω(p)

 Efficiency = Speed-up / p = Ω(1)

 Work(n, p) = pT(n, p) = Θ(n1–x) O(nx log n) = 
O(n log n)



Sequential rank-based 
selection
 A selection-based sorting algorithm

 Example



Alternative sorting 
algorithms
 Alternative sorting algorithms

 previous algorithm results in k subproblems of the same 
size
 allows us to establish an optimal upper bound on the 

worst-case running time
 Brings up complexity

 There exist many useful algorithms that 
 are quite efficient on the average 
 but exhibit poor worst-case behavior

 Sequential quicksort is a prime example 
 runs in order n log n time in most cases 
 but can take on the order of n² time for worst-case input 

patterns.



Alternative sorting 
algorithms
 Alternative sorting algorithms

 In the case of previous sorting algorithm
 We can choose thresholds approximately equal to in/k

 the rest of the algorithm dose not change

 the only difference we get
 k subproblems will be of roughly the same size



Alternative sorting 
algorithms
 Alternative sorting algorithms

 Given a large list S of inputs
 Use a random sample of the elements to establish the k 

thresholds. 
 easier if we pick k = p

 A single processor handles each subproblem

 assumption: p



Alternative sorting 
algorithms
 Alternative sorting algorithms

 Binary radixsort
 we examine every bit of the k-bit keys in turn
 starting from the least-significant bit (LSB)
 In Step I

 Examine bit i, 0 ≤ i < k
 Shift records with keys having 

 a 0 in bit i toward the beginning of the list
 a 1 in bit i toward the end of the list

 keep the relative order of records with the same bit 
 sometimes referred to as stable sorting



Alternative sorting 
algorithms
 Alternative sorting algorithms

 Binary parallel radixsort
 upward and downward shifting step can be done efficiently in parallel
 For Bit 0, new position of each record can be established by two prefix sum 

computations:
 a diminished prefix sum computation on the complement of Bit 0 

 for records with 0 in bit position 0 
 a normal prefix sum computation on Bit 0 

 for each record with 1 in bit position 0 relative to the last record of the first category
 running time 

 mainly consists of the time to perform 2k parallel prefix computations
 k is the key length in bits

 For k a constant
 the running time is asymptotically O(log p) for sorting a list of size p using p processors



Convex hull of a 2D point 
set
 The convex hull problem for a 2D point set 

 Given a point set Q of size n
 points specified by their (x, y) on the Euclidean plane

 find the smallest convex polygon that encloses all n 
points

 It is an example of geometric problems 
 encountered in image processing and computer 

vision. 

 The algorithm is also an excellent case study of 
multiway divide and conquer



Convex hull of a 2D point 
set
 The convex hull problem for a 2D point set 

 The inputs can be assumed to be 
 in the form of two n-vectors X and Y

 The desired output is a list of points 
 belonging to the convex hall 
 starting from an arbitrary point 
 proceeding, say, in clockwise order
 has a size of at most n

 convex hull can be divided into 
 the upper hull

 goes from the point with the smallest x to the one with the largest x 
 the lower hull

 returns from the latter to the former



Convex hull of a 2D point 
set
 properties that allow us to construct an 

efficient PRAM algorithm
 Property 1. 

 Let qi and qj be consecutive points of CH(Q). 
 View qi as the origin of coordinates. 
 The line from qj to qi forms a smaller angle with x 

axis than the line from qj to any other qk in Q. 



Convex hull of a 2D point 
set
 properties that allow us to construct an 

efficient PRAM algorithm
 Property 2

 A segment (qi, qj) is an edge of CH(Q)
 iff all of the remaining n–2 points fall to the same side 

of it



Convex hull of a 2D point 
set
 Convex hull algorithm 

 for a 2D point set of size p 

 on a p-processor CRCW PRAM.



Convex hull of a 2D point 
set
 Convex hull algorithm 

 Step 4 is the heart of the algorithm
 Each subset of size is assigned processors 

 to determine the upper tangent line between its hull and each of 
the other -1 hulls. 

 One processor finds each tangent in O(log p) steps using 
Overmars algorithm
 Based on binary search. 
 To determine the upper tangent from CH(Q(i)) to CH(Q(k))

 The midpoint of the upper part of CH(Q(k)) is taken 
 the slopes for its adjacent points compared with its own slope
 If the slope is minimum

 then we have found the tangent point
 Otherwise

 the search is restricted to one or the other half
 CREW model must be assumed 

 Because multiple processors read data from all hulls



Convex hull of a 2D point 
set
 Convex hull algorithm 

 Step 4 is the heart of the algorithm
 Once all the upper tangents from each hull to all other hulls are known

 a pair of candidates are selected 
 By finding the min/max slopes

 If the angle between the two candidates is less than 180
 no point from CH(Q(i)) belongs to CH(Q)

 Else
 a subset of points from CH(Q(i)) belongs to CH(Q)



Convex hull of a 2D point 
set
 Convex hull algorithm 

 The final step is to renumber the points in proper order
 to obtain rank or index of each node on CH(Q) 

 Use a parallel prefix on the list of the number of points from 
each CH(Q(i)) that are belong to the combined hull

 The complexity excluding the initial sorting
 T(p, p) =T(p1/2, p1/2) + c log p ≈ 2 c  log p

 sorting can also be performed in O(log p)
 overall time complexity is O(log p)

 the above algorithm is asymptotically optimal
 Because best sequential algorithm requires Ω(p log p) 



Some implementation aspects

 In any physical implementation of shared memory
 the m memory locations are in B memory banks (modules)
 each bank holding m/B addresses

 in each memory cycle
 a memory bank can provide access to a single memory word. 

 multiport memories exist
 can allow access to a few independently addressed words in 

a single cycle
 are quite expensive
 if the number of memory ports is less than m/B 

 which is certainly the case in practice
 Multiport memories do not allow us the same type of permitted 

access even in the weakest PRAM submodel.



Some implementation aspects

 even if the PRAM algorithm assumes the EREW 
 memory bank conflicts may still arise

 moderate to serious loss of performance may result 
 Depending on how bank conflicts are resolved

 An obvious solution: prevent conflicts by
 try to lay out the data in the shared memory 
 organize the computational steps 

 so that a memory bank is accessed at most once in each cycle. 

 quite a challenging problem 
 has received significant attention from the research community



Some implementation aspects

 Consider an m×m matrix multiplication with 
p=m² processors
 each processor has an index pair (i, j). 

 Pij is responsible for computing the element cij

 Piy, 0 ≤ y < m need to read Row i of A 

 we can skew the accesses 
 Piy reads the elements of Row i beginning with Aiy. 

 the entire Row i of A is read out in every cycle

 albeit with the elements distributed differently to the 
processors in each cycle.



Some implementation aspects

 Consider an m×m matrix multiplication with p=m² processors
 To remove conflicts for all elements of each row 

 we must assign different columns of A to different memory banks. 
 It is possible if 

 we have at least m memory banks
 We store the matrix in column-major order

 the element (i, j) is found in location i of memory bank j

 If fewer than m memory modules are available
 the element (i, j) can be stored in location i + m ⎣j/B⎦ of memory bank j mod B
 This ensures maximum parallelism in reading the row elements



Some implementation aspects

 Consider an m×m matrix multiplication with 
p=m² processors
 Processors Pxj, 0≤x<m , all access the jth column of B.

 column-major storage leads to memory bank conflicts for 
all columns of B. 

 We can store B in row-major order to avoid such conflicts. 

 if B is later to be used in a different matrix multiplication, 
say B × D
 the layout of B must be changed 

 by physically rearranging it in memory 

 or the algorithm must be modified



Some implementation aspects

 Consider an m×m matrix multiplication with p=m² processors
 skewed storage can be used

 both columns and rows are accessible in parallel without memory bank 
conflicts. 

 the element (i ,j) is found in location i of module (i + j) mod B
 If B ≥ m

 all elements (i, y), 0 ≤ y < m are in different modules
 all elements (x, j), 0 ≤ x < m are in different modules

 conflicts could arise for diagonal elements (x, x) unless 
 B ≥ 2m 
 or else B is an odd number in the range m ≤ B < 2 m.



Some implementation aspects

 Generalized conflict-free parallel matrix 
access
 View the m×m matrix as an m2-element vector

 column-major or row-major order does not matter 
 only interchanges the first two strides



Some implementation aspects

 Generalized conflict-free parallel matrix 
access
 The problem is reduced to 

 Given a vector of length l
 store it in B memory banks in such a way that 

 accesses with strides s0, s1, . . . , sh–1 are 
 conflict-free (ideal) 

 involve the minimum possible amount of conflict.



Some implementation aspects

 Generalized conflict-free parallel matrix 
access
 linear skewing scheme 

 stores the kth vector element in the bank a+kb mod B
 The address within the bank 

 is irrelevant to conflict-free parallel access
 does affect the ease with which memory addresses are 

computed by the processors

 The constant a is also irrelevant and can be safely 
ignored. 

 Thus, we can limit our attention to assigning Vk to 
memory module Mkb mod B·



Some implementation aspects

 Generalized conflict-free parallel matrix 
access
 linear skewing scheme 

 the elements k, k+s, k+2s, . . . , k+(B– 1)s are in 
different memory modules 
 iff sb is relatively prime with respect to the number B of 

memory banks. 



Some implementation aspects

 Generalized conflict-free parallel matrix access
 linear skewing scheme 

 the elements k, k+s, k+2s, . . . , k+(B– 1)s are in different 
memory modules 
 iff sb is relatively prime with respect to the number B of 

memory banks. 

 If we choose B to be a prime number
 conflict-free parallel access for all strides is guaranteed for 

b=1

 But having a prime number of banks is inconvenient for 
other reasons
 Thus, many alternative methods have been proposed



Some implementation aspects

 Even assuming conflict-free access to memory banks
 Still, multiple memory access must be directed from the 

processors to the memory banks
 this is a nontrivial problem

 If we have many processors and memory banks
 Ideally

 the memory access network should be a permutation network 
 Can connect each processor to any memory bank 

 as long as the connection is a permutation.

 However, permutation networks are 
 quite expensive to implement 
 difficult to control (set up). 

 Therefore
 we usually settle for networks that do not possess full 

permutation capability.



Some implementation aspects

 Multistage interconnection network 
 an example of a compromise solution. 
 It is a butterfly network 

 we will encounter again in the next chapters
 For now

 only note that memory accesses can be self-routed through this network
 by letting the ith bit of the memory bank address determine the switch setting in Column i–1 (1 ≤ i ≤ 3)

 0 indicating the upper path 
 1 the lower path. 

 E.g., any request to memory bank 3 (0011) 
 will be routed to the “lower,” “upper,” “upper,” “lower” output line 

 by the switches that forward it in Columns 0–3. 
 independent of the source processor 



Some implementation aspects

 Multistage interconnection network 
 switches can be designed to deal with access conflicts by 

 simply dropping duplicate requests 
 memory acknowledgment is required 

 buffering one of the two conflicting requests 
 introduces nondeterminacy in the memory access time
 determining the buffer size is a challenging problem

 combining access requests to the same memory location.


