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What is a sorting network

 A sorting network is a circuit that 
 receives n inputs, x0, x1, x2 ,…, xn-1

 permutes them to produce n outputs, y0, y1, y2, yn-1

 such that the outputs satisfy y0 ≤ y1 ≤ y2 ≤ . . . yn–1. 

 For brevity
 we often refer to such a sorting network as an n-sorter

 many sorting algorithms are based on comparing and 
exchanging pairs of keys
 we can build an n-sorter out of 2-sorter building blocks



What is a sorting network

 2-sorter 
 compares its two inputs 

 orders them at the output, by the smaller value 
before the larger value



What is a sorting network

 2-sorter hardware realization 
 If we view inputs as unsigned integers in bit-parallel form

 can be implemented using 
 a comparator 
 and two 2-to-1 multiplexers

 If bit-parallel input are impractical 
 the keys are long
 or we have pin limitation on a single VLSI chip
 Can be implemented using

 two state flip-flops. 
 The flip-flops state 00 represents the two inputs being equal
 The state of 01 means the upper input is less
 The state of 10 means the lower input is less
 in the state 00 or 01

 the inputs are passed to the outputs straight through
 in the state 10

 the inputs are interchanged



What is a sorting network

 4-sorter built of 2-sorter building blocks
 How do we verify the circuit? 

 easy in this case
 After the first two circuit levels

 the top line carries the smallest 
 the bottom line carries the largest 

 The final 2-sorter orders the middle two values
 More generally, we need to verify through 

 Tedious formal proofs 
 or by time-consuming exhaustive testing

 Neither approach is attractive
 We can use the zero–one principle



What is a sorting network

 The Zero–One Principle
 An n-sorter is valid if it correctly sorts all 0/1 sequences of 

length n.
 Example

 The network 
 clearly sorts 0000 and 1111. 
 sorts all sequences with a single 0 

 the 0 “bubbles up” to the top line.
 sorts all sequences with a single 1

 the 1 “sink down” to the bottom line
 sorts the all the sequences 0011, 0101, 0110, 1001, 1010, 1100 

 to the correct output 0011



Figures of merit for sorting 
networks
 Two figures of merit for “the best n-sorter”

 Cost
 the total number of 2-sorter blocks used

 Delay
 the number of 2-sorters on the critical path

 We can also use composite figures of merit 
 minimizing cost × delay 

 if we expect linear speed-up from more investment in the 
circuit

 E.g., redesigning a network to 10% faster but only 5% 
more complex is deemed to be cost-effective 
 the resulting circuit is said to be time-cost-efficient



Figures of merit for sorting 
networks
 examples of low-cost sorting networks

 lowest-cost designs are known only for small n
 no general method for systematically deriving low-cost designs



Figures of merit for sorting 
networks
 examples of fast sorting networks

 possible designs are also known only for small n



Figures of merit for sorting 
networks
 Time-cost-efficient sorting networks are even 

harder to come by
 For the 10-input examples

 in general, the most time-cost-efficient design 
 may be neither the fastest nor the least complex n-sorter.



Design of sorting networks

 many ways to design sorting 
networks
 leading to different results

 a 6-sorter based on the odd–even 
transposition 
 discussed in sorting on a linear 

array in Section 2.3
 quite inefficient 

 it uses n n/2 modules 
 has n units of delay.
 Its cost × delay product is Θ(n³ ).



Design of sorting networks

 One way to sort n inputs 
 sort the first n – 1 inputs
 then insert the last input in its proper place

 Another way 
 select the largest value among the n inputs
 output it on the bottom line
 then sort the remaining n – 1 values

 both lead to the same design
 which is in effect based on the parallel version of bubblesort



Design of sorting networks

 One way to sort n inputs 
 sort the first n – 1 inputs
 then insert the last input in its proper place

 Another way 
 select the largest value among the n inputs
 output it on the bottom line
 then sort the remaining n – 1 values

 Both are quite inefficient
 Lower bounds are: 

 Cost : Ω(n log n) 
 Delay: Ω (log n)



Design of sorting networks

 Can we achieve those lower bounds? 
 if both bounds are achieved simultaneously

 cost × delay product will be Θ(n log² n ) 
 which is more than the sequential lower bound on work

 but this is the best we can hope for

 AKS sorting network
 O(n log n )-cost, O(log n)-delay

 is of theoretical interest only
 as the asymptotic notation hides huge four-digit constants



Design of sorting networks

 Can we achieve those lower bounds? 
 researchers have not given up hope 
 But work has diversified on other fronts

 One is the design of efficient sorting networks with special inputs or 
outputs, for example
 when inputs are only 0s and 1s
 or they are already partially sorted
 or we require only partially sorted outputs

 Another is the networks that 
 sort the input sequence with high probability 
 but do not guarantee sorted order for all possible inputs

 Practical sorting networks are based on designs by Batcher 
and others 
 have O(n log² n) cost and O(log² n) delay. 
 are a factor of log n away from being asymptotically optimal 

 but log2 n is only 20 when n is as large as 1 million



Batcher sorting networks

 Batcher’s ingenious constructions 
 date back to the early 1960s 

 constitute some of the earliest examples of parallel 
algorithms. 

 in more than three decades
 only small improvements have been made



Batcher sorting networks

 One Batcher network
 is based on the idea of an (m, m')-merger 

 uses a technique known as even–odd merge or odd-
even merge

 An (m, m')-merger is a circuit 
 merges two sorted sequences of lengths m and m’ 

 produce a single sorted sequence of length m + m'



Batcher sorting networks

 Let the two sorted sequences be

 If m = 0 or m' = 0
 then nothing needs to be done

 For m = m' = 1
 a single comparator can do the merging

 we assume mm' > 1 in what follows



Batcher sorting networks

 The odd–even merge
 Is done by merging the even- and odd-indexed 

elements of the two lists

 If we now compare–exchange the pairs of 

 the resulting                           sequence will be 
completely sorted.



Batcher sorting networks

 example
 merging two sorted lists of 

sizes 4 and 7

 The three circuit segments 
correspond to 
 a (2, 4)-merger for even-

indexed inputs

 a (2, 3)-merger for odd-indexed 
inputs

 and the final parallel compare–
exchange operations



Batcher sorting networks

 Each of the smaller mergers 
can be designed recursively 
 a (2, 4)-merger consists of 

 two (1, 2)-mergers for even-
and odd-indexed inputs

 followed by two parallel 
compare–exchange operations

 a (1, 2)-merger is built from 
 a (1, 1)-merger or a single 

comparator
 for the even-indexed inputs

 followed by a single compare–
exchange operation. 



Batcher sorting networks

 delay and cost for (m, m) even–odd merger
 m is a power of 2



Batcher sorting networks

 n-sorter using two n /2-sorters and an (n/2, n/2)-
merger



Batcher sorting networks

 delay and cost for Batcher sorting networks 
 based on the even–odd merge technique



Batcher sorting networks

 Batcher network based on the notion of bitonic
sequences
 A bitonic sequence is defined as one that 

 “rises then falls”

 “falls then rises” 

 or is obtained from the first two through cyclic shifts or 
rotations



Batcher sorting networks

 bitonic Batcher sorting network

 if we sort the first half and 
second half in opposite 
directions
 the resulting sequence will be 

bitonic
 can thus be sorted by a 

special bitonic-sequence 
sorter



Batcher sorting networks

 bitonic Batcher sorting network

 A bitonic-sequence sorter 
with n 
 has the same delay and cost 

as an even–odd (n/2, n /2)-
merger. 

 bitonic sorters have the same 
delay and cost as those based 
on even–odd merging



Batcher sorting networks

 bitonic Batcher sorting network

 A bitonic-sequence sorter design 
 if we compare–exchange the elements in 

the first half with those in the second half
 indicated by the dotted comparators 

 each half of the resulting sequence will be 
a bitonic sequence 

 each element in the first half will be no 
larger than any element in the second half

 the two halves can be independently sorted 
 by smaller bitonic-sequence sorters



Batcher sorting networks

 8 input bitonic Batcher sorting network

 Batcher sorting networks are quite efficient
 when n is large 

 Only marginal improvements are obtained



Other classes of sorting 
networks
 Periodic balanced sorting networks

 possess the same asymptotic delay and cost as 
Batcher

 consists of log2 n identical stages
 each is a (log2 n)-stage n-input bitonic-sequence 

sorter

 the delay and cost are (log2 n)2 and n (log2 n)2/2



Other classes of sorting 
networks
 Periodic balanced sorting networks

 larger delay (9 versus 6) 
 higher cost (36 versus 19)
 offer some advantages

 The structure is regular and modular 
 easier VLSI layout

 Slower, but more economical
 implementations are possible by reusing the 

blocks
 Using an extra block provides tolerance to 

some faults
 missed exchanges

 Using two extra blocks provides tolerance to 
any single fault 
 a missed or incorrect exchange

 Multiple passes through a faulty network can 
lead to correct sorting 
 graceful degradation

 Single-block design can be made fault-
tolerant by adding an extra stage to the block



Selection networks

 If we need the kth smallest value 
 using a sorting network would be an overkill 

 n-sorter does more than what is required

 three selection problems
I. Select the k smallest values and present them on k 

outputs in sorted order.
 the hardest

II. Select the kth smallest value and present it on one 
of the outputs.

III. Select the k smallest values and present them on k 
outputs in any order

 the easiest



Selection networks

 a type III (8, 4)-selector
 pairs of integers denote the possible minimum and 

maximum rank


