PARALLEL PROCESSING SYSTEMS

Chapter 7: Sorting and Selection Networks

Chapter outline

- What is a sorting network?
- Figures of merit for sorting networks
- Design of sorting networks
- Batcher sorting networks
- Other classes of sorting networks
- Selection networks

What is a sorting network

- A sorting network is a circuit that
- receives n inputs, $\mathrm{x}_{0}, \mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{X}_{\mathrm{n}-1}$
- permutes them to produce n outputs, $\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{\mathrm{n}-1}$
- such that the outputs satisfy $\mathrm{y}_{0} \leq \mathrm{y}_{1} \leq \mathrm{y}_{2} \leq \ldots \mathrm{y}_{\mathrm{n}-1}$.
- For brevity
- we often refer to such a sorting network as an n-sorter
- many sorting algorithms are based on comparing and exchanging pairs of keys
- we can build an n-sorter out of 2-sorter building blocks

What is a sorting network

- 2-sorter
- compares its two inputs
- orders them at the output, by the smaller value before the larger value

Alternate Representations

What is a sorting network

- 2-sorter hardware realization
- If we view inputs as unsigned integers in bit-parallel form
- can be implemented using
- a comparator
- and two 2-to-1 multiplexers
- If bit-parallel input are impractical
- the keys are long
- or we have pin limitation on a single VLSI chip
- Can be implemented using
- two state flip-flops.
- The flip-flops state 00 represents the two inputs being equal
- The state of 01 means the upper input is less
- The state of 10 means the lower input is less
- in the state 00 or 01
- the inputs are passed to the outputs straight through
- in the state 10
- the inputs are interchanged

What is a sorting network

- 4-sorter built of 2-sorter building blocks
- How do we verify the circuit?
- easy in this case
- After the first two circuit levels
- the top line carries the smallest
- the bottom line carries the largest
- The final 2-sorter orders the middle two values
- More generally, we need to verify through
- Tedious formal proofs
- or by time-consuming exhaustive testing
- Neither approach is attractive
- We can use the zero-one principle

What is a sorting network

- The Zero-One Principle
- An n-sorter is valid if it correctly sorts all $0 / 1$ sequences of length n.
- Example
- The network
- clearly sorts 0000 and 1111.
- sorts all sequences with a single 0
- the 0 "bubbles up" to the top line.
- sorts all sequences with a single 1
- the 1 "sink down" to the bottom line
- sorts the all the sequences $0011,0101,0110,1001,1010,1100$
- to the correct output 0011

Figures of merit for sorting networks

- Two figures of merit for "the best n-sorter"
- Cost
- the total number of 2-sorter blocks used
- Delay
- the number of 2 -sorters on the critical path
- We can also use composite figures of merit
- minimizing cost \times delay
- if we expect linear speed-up from more investment in the circuit
- E.g., redesigning a network to 10% faster but only 5% more complex is deemed to be cost-effective
- the resulting circuit is said to be time-cost-efficient

Figures of merit for sorting networks

- examples of low-cost sorting networks
- lowest-cost designs are known only for small n
- no general method for systematically deriving low-cost designs

$\mathrm{n}=12,39$ modules, 9 levels

$n=10,29$ modules, 9 levels

Figures of merit for sorting networks

- examples of fast sorting networks
- possible designs are also known only for small n

$\mathrm{n}=12,40$ modules, 8 levels

$\mathrm{n}=16,61$ modules, 9 levels

Figures of merit for sorting networks

- Time-cost-efficient sorting networks are even harder to come by
- For the 10 -input examples

29 modules, 9 delay units
cost \times delay $=261$
31 modules, 7 delay units \quad cost \times delay $=217$

- in general, the most time-cost-efficient design
- may be neither the fastest nor the least complex n-sorter.

Design of sorting networks

- many ways to design sorting networks
- leading to different results
- a 6-sorter based on the odd-even transposition

- discussed in sorting on a linear array in Section 2.3
- quite inefficient
- it uses $n\lfloor n / 2\rfloor$ modules
- has n units of delay.

Figure 2.10. Odd-even transposition sort on a linear array.

- Its cost \times delay product is $\Theta\left(n^{3}\right)$.

Design of sorting networks

- One way to sort n inputs
- sort the first $\mathrm{n}-1$ inputs
- then insert the last input in its proper place
- Another way
- select the largest value among the n inputs
- output it on the bottom line
- then sort the remaining $n-1$ values
- both lead to the same design
- which is in effect based on the parallel version of bubblesort

Parallel insertion sort $=$ Parallel selection sort $=$ Parallel bubble sort!

Design of sorting networks

- One way to sort n inputs
- sort the first $\mathrm{n}-1$ inputs
- then insert the last input in its proper place
- Another way
- select the largest value among the n inputs
- output it on the bottom line
- then sort the remaining $n-1$ values

$$
\begin{aligned}
& C(n)=C(n-1)+n-1=(n-1)+(n-2)+\cdots+2+1=n(n-1) / 2 \\
& D(n)=D(n-1)+2=2+2+\cdots+2+1=2(n-2)+1=2 n-3
\end{aligned}
$$

Cost \times Delay $=n(n-1)(2 n-3) / 2=\Theta\left(n^{3}\right)$

- Both are quite inefficient
- Lower bounds are:
- Cost : $\Omega(\mathrm{n} \log \mathrm{n})$
- Delay: $\Omega(\log n)$

Design of sorting networks

- Can we achieve those lower bounds?
- if both bounds are achieved simultaneously
- cost \times delay product will be $\Theta\left(n \log ^{2} n\right)$
- which is more than the sequential lower bound on work
- but this is the best we can hope for
- AKS sorting network
- O(n $\log \mathrm{n})$-cost, $\mathrm{O}(\log \mathrm{n})$-delay
- is of theoretical interest only
- as the asymptotic notation hides huge four-digit constants

Design of sorting networks

- Can we achieve those lower bounds?
- researchers have not given up hope
- But work has diversified on other fronts
- One is the design of efficient sorting networks with special inputs or outputs, for example
- when inputs are only 0 s and 1 s
- or they are already partially sorted
- or we require only partially sorted outputs
- Another is the networks that
- sort the input sequence with high probability
- but do not guarantee sorted order for all possible inputs
- Practical sorting networks are based on designs by Batcher and others
- have $O\left(n \log ^{2} n\right)$ cost and $O\left(\log ^{2} n\right)$ delay.
- are a factor of $\log \mathrm{n}$ away from being asymptotically optimal
- but $\log _{2} \mathrm{n}$ is only 20 when n is as large as 1 million

Batcher sorting networks

- Batcher's ingenious constructions
- date back to the early 1960s
- constitute some of the earliest examples of parallel algorithms.
- in more than three decades
- only small improvements have been made

Batcher sorting networks

- One Batcher network
- is based on the idea of an ($\mathrm{m}, \mathrm{m}^{\prime}$)-merger
- uses a technique known as even-odd merge or oddeven merge
- An ($\mathrm{m}, \mathrm{m}^{\prime}$)-merger is a circuit
- merges two sorted sequences of lengths m and m '
- produce a single sorted sequence of length $\mathrm{m}+\mathrm{m}^{\prime}$

Batcher sorting networks

- Let the two sorted sequences be

$$
\begin{aligned}
& x_{0} \leq x_{1} \leq \ldots \leq x_{m-1} \\
& y_{0} \leq y_{1} \leq \ldots \leq y_{m^{\prime}-1}
\end{aligned}
$$

- If $\mathrm{m}=0$ or $\mathrm{m}^{\prime}=0$
- then nothing needs to be done
- For $\mathrm{m}=\mathrm{m}^{\prime}=1$
- a single comparator can do the merging
- we assume $\mathrm{mm}{ }^{\prime}>1$ in what follows

Batcher sorting networks

- The odd-even merge
- Is done by merging the even- and odd-indexed elements of the two lists $x_{0}, x_{2}, \ldots, x_{2[m / 27-2}$ and

$$
y_{0}, y_{2}, \ldots, y_{2\left\lceil m^{\prime} / 2\right\rceil-2} \text { are merged to get }
$$

$$
v_{0}, v_{1}, \ldots, v_{\lceil m / 2\rceil+\left\lceil m^{\prime} / 2\right\rceil-1}
$$

$$
x_{1}, x_{3}, \ldots, x_{2\lfloor m / 2\rfloor-1} \text { and }
$$

$$
y_{1}, y_{3}, \ldots, y_{2\left\lfloor m^{\prime} / 2\right\rfloor-1} \text { are merged to get }
$$

$$
w_{0}, w_{1}, \ldots, w_{\lfloor m / 2\rfloor+\left\lfloor m^{\prime} / 2\right\rfloor-1}
$$

- If we now compare-exchange the pairs of

$$
w_{0}: v_{1}, w_{1}: v_{2}, w_{2}: v_{3}, \ldots,
$$

- the resulting $v_{0} w_{0} v_{1} w_{1} v_{2} w_{2} \ldots$ sequence will be completely sorted.

Batcher sorting networks

- example
- merging two sorted lists of sizes 4 and 7
- The three circuit segments correspond to
- a (2, 4)-merger for evenindexed inputs
- a (2, 3)-merger for odd-indexed inputs

- and the final parallel compareexchange operations

Batcher sorting networks

- Each of the smaller mergers can be designed recursively
- a (2, 4)-merger consists of
- two (1, 2)-mergers for evenand odd-indexed inputs
- followed by two parallel compare-exchange operations
- a (1, 2)-merger is built from
- a (1, 1)-merger or a single comparator
- for the even-indexed inputs

- followed by a single compareexchange operation.

Batcher sorting networks

- delay and cost for (m, m) even-odd merger
- m is a power of 2
$C(m)=2 C(m / 2)+m-1=(m-1)+2(m / 2-1)+4(m / 4-1)+\cdots=m \log _{2} m+1$
$D(m)=D(m / 2)+1=\log _{2} m+1$
Cost \times Delay $=\Theta\left(m \log ^{2} m\right)$

Batcher sorting networks

- n -sorter using two $\mathrm{n} / 2$-sorters and an ($\mathrm{n} / 2, \mathrm{n} / 2$)merger

Batcher sorting networks

- delay and cost for Batcher sorting networks
- based on the even-odd merge technique
$C(n)=2 C(n / 2)+(n / 2)\left(\log _{2}(n / 2)\right)+1 \approx n\left(\log _{2} n\right)^{2} / 2$
$D(n)=D(n / 2)+\log _{2}(n / 2)+1=D(n / 2)+\log _{2} n=\log _{2} n\left(\log _{2} n+1\right) / 2$
Cost \times Delay $=\Theta\left(n \log ^{4} n\right)$

Batcher sorting networks

- Batcher network based on the notion of bitonic sequences
- A bitonic sequence is defined as one that
- "rises then falls" $\left(x_{0} \leq x_{1} \leq \ldots \leq x_{i} \geq x_{i+1} \geq x_{i+2} \geq \ldots \geq x_{n-1}\right)$
- "falls then rises" $\left(x_{0} \geq x_{1} \geq \ldots \geq x_{i} \leq x_{i+1} \leq x_{i+2} \leq \ldots \leq x_{n-1}\right)$
- or is obtained from the first two through cyclic shifts or rotations

133466622100 Rises then falls
877666546889 Falls then rises
898776665468 The previous sequence, right-rotated by 2

Batcher sorting networks

- bitonic Batcher sorting network
- if we sort the first half and second half in opposite directions
- the resulting sequence will be bitonic
- can thus be sorted by a special bitonic-sequence sorter

Batcher sorting networks

- bitonic Batcher sorting network
- A bitonic-sequence sorter with n
- has the same delay and cost as an even-odd ($\mathrm{n} / 2, \mathrm{n} / 2$)merger.
- bitonic sorters have the same delay and cost as those based on even-odd merging

Batcher sorting networks

- bitonic Batcher sorting network
- A bitonic-sequence sorter design
- if we compare-exchange the elements in the first half with those in the second half
- indicated by the dotted comparators
- each half of the resulting sequence will be a bitonic sequence
- each element in the first half will be no larger than any element in the second half
- the two halves can be independently sorted
- by smaller bitonic-sequence sorters

Batcher sorting networks

- 8 input bitonic Batcher sorting network

- Batcher sorting networks are quite efficient
- when n is large
- Only marginal improvements are obtained

Other classes of sorting networks

- Periodic balanced sorting networks
- possess the same asymptotic delay and cost as Batcher
- consists of $\log _{2} n$ identical stages
- each is a $\left(\log _{2} n\right)$-stage n-input bitonic-sequence sorter
- the delay and cost are $\left(\log _{2} n\right)^{2}$ and $n\left(\log _{2} n\right)^{2} / 2$

Other classes of sorting networks

- Periodic balanced sorting networks
- larger delay (9 versus 6)
- higher cost (36 versus 19)
- offer some advantages
- The structure is regular and modular
- easier VLSI layout
- Slower, but more economical
- implementations are possible by reusing the blocks
- Using an extra block provides tolerance to some faults
- missed exchanges
- Using two extra blocks provides tolerance to any single fault
- a missed or incorrect exchange

- Multiple passes through a faulty network can lead to correct sorting
- graceful degradation
- Single-block design can be made faulttolerant by adding an extra stage to the block

Selection networks

- If we need the kth smallest value
- using a sorting network would be an overkill
- n -sorter does more than what is required
- three selection problems
I. Select the k smallest values and present them on k outputs in sorted order.
- the hardest
II. Select the kth smallest value and present it on one of the outputs.
III. Select the k smallest values and present them on k outputs in any order
- the easiest

Selection networks

- a type III (8, 4)-selector
- pairs of integers denote the possible minimum and maximum rank

