
BIG DATA
Data model for Big Data



INTRODUCTION

• The master dataset: the only part that must be safeguarded from corruption

• Must be carefully engineered regarding two components

• The data model

• How you physically store the master dataset

• This chapter is about designing a data model

• You’ll learn about physically storing a master dataset in the next chapter



THE PROPERTIES OF DATA

• Suppose you’re designing the next big social network: FaceSpace

• Information you should store regarding Tom’s connections

• The sequence of Tom’s friend and unfriend events

• Tom’s current list of friends

• Tom’s current number of friends

• Terms we’ll use

• Information

• Data

• Queries

• Views

• Important note:

• one person’s data can be another’s view



THE PROPERTIES OF DATA

• key properties of data

• Rawness

• The rawer your data, the more questions you can ask of it

• Semantic normalization: the process of reshaping freeform information into a structured form

• Store the result of simple and accurate

• Store the unstructured form of the data if the algorithm is subject to change

• More information doesn’t necessarily mean rawer data

• What exactly should you store once Tom provides the URL of his blog?

• Immutability

• Eternal trueness



THE PROPERTIES OF DATA

• key properties of data

• Rawness

• Immutability

• you don’t update or delete data, you only add more

• Two vital advantages

• Human-fault tolerance

• Simplicity

• It uses more storage

• But Big Data isn’t called “Big Data” for nothing

• Eternal trueness



THE PROPERTIES OF DATA

• key properties of data

• Rawness

• Immutability

• Eternal trueness

• Master dataset grows by adding new immutable and eternally true pieces of data

• A piece of data, once true, must always be true

• Special cases in which you do delete data

• Garbage collection

• you delete all data units that have low value

• Regulations

• Government regulations



THE FACT-BASED MODEL FOR REPRESENTING 
DATA

• Deconstruct the data into fundamental units called facts

• Two core properties of facts

• Atomicity

• no redundancy

• Timestamped

• immutable and eternally true facts



THE FACT-BASED MODEL FOR REPRESENTING 
DATA

• Deconstruct the data into fundamental units called facts

• Additional recommended property

• Identifiability

• Helps in identifying duplicates

• Removes the need for transactional appends



THE FACT-BASED MODEL FOR REPRESENTING 
DATA

• Benefits of the fact-based model

• Data is queryable at any time in its history

• Data tolerates human errors

• Data handles partial information

• Dataset only have facts for the known information

• Additional new information would naturally be introduced via new facts

• Data has the advantages of both normalized and denormalized forms

• In relational databases

• Normalization: data consistency

• Denormalization: query efficiency

• In lambda architecture

• Master dataset is fully normalized

• Batch views are like denormalized tables



GRAPH SCHEMAS

• Captures the structure of a dataset

• Elements

• Nodes: the entities in the system

• Edges: relationships between nodes

• Properties: information about entities



A COMPLETE DATA MODEL FOR 
SUPERWEBANALYTICS.COM



ILLUSTRATION

• Apache Thrift

• A tool that can be used to define statically typed, enforceable schemas

• Provides an interface definition language to describe the schema

• Can be used to automatically generate the actual implementation in multiple programming

languages

• Initially developed at Facebook

• Can be used for many purposes

• We’ll limit our discussion to its usage as a serialization framework



ILLUSTRATION

• Apache Thrift

• Core components: struct and union type definitions composed of

• Primitive data types (strings, integers, longs, and doubles)

• Collections of other types (lists, maps, and sets)

• Other structs and unions

• Unions are useful for representing nodes

• Structs are natural representations of edges

• Properties use a combination of both



ILLUSTRATION

• Apache Thrift

• Nodes

• Edges



ILLUSTRATION

• Apache Thrift

• Properties



ILLUSTRATION

• Apache Thrift

• Tying everything together into data objects



ILLUSTRATION

• Apache Thrift

• Evolving your schema

• key to evolving: the numeric identifiers associated with each field

• Evolving rules for backward compatibility

• Fields may be renamed

• A field may be removed, but you must never reuse that field ID

• Only optional fields can be added to existing structs



ILLUSTRATION

• Apache Thrift

• Evolving your schema

• Changing schema to store a person’s age and the links between web pages



ILLUSTRATION

• Limitations of serialization frameworks

• They only check that all required fields are present and are of the expected type

• They’re unable to check richer properties like

• “Ages should be nonnegative”

• “true-as-of timestamps should not be in the future.”

• Two approaches to work around these limitations

• Wrap your generated code in additional code

• Check the extra properties at the very beginning of your batch-processing workflow


