
BIG DATA
Data storage on the batch layer



INTRODUCTION

• The master dataset is typically too large to exist on a single server

• we must choose how to distribute data across multiple machines

• In this chapter we’ll do the following

• Determine the requirements for storing the master dataset

• See why distributed filesystems are a natural fit for storing a master dataset

• See how the batch layer storage for the SuperWebAnalytics.com project maps to

distributed filesystems



STORAGE REQUIREMENTS FOR THE MASTER 
DATASET

• Data is immutable

• Each piece of your data will be written once and only once

• The only write operation will be to add a new data

• The storage solution must be optimized to handle a large, constantly growing set of data

• The batch layer is also responsible for computing functions on the dataset

• It needs to be good at reading lots of data at once

• Random access to individual pieces of data is not required



STORAGE REQUIREMENTS FOR THE MASTER 
DATASET

• With this “write once, bulk read many times” paradigm in mind, requirements for

the data storage are:



CHOOSING A STORAGE SOLUTION FOR THE 
BATCH LAYER

• Using a key/value store for the master dataset

• the most common type of distributed database

• giant persistent hashmaps that are distributed among many machines

• What should a key be?

• Need fine-grained access to key/value pairs to do random reads and writes

• can’t compress multiple key/value pairs together

• Meant to be used as mutable stores

• can’t disable the ability to modify existing key/value pairs

• Has a lot of things you don’t need: random reads, random writes, and all the components

making those work

• enormously complex for your requirements



CHOOSING A STORAGE SOLUTION FOR THE 
BATCH LAYER

• Filesystems: perfect fit for batch layer storage

• Files are sequences of bytes

• They’re stored sequentially on disk

• The most efficient way to consume files is by scanning through them

• You have full control over the bytes of a file

• You have the full freedom to compress them however you want

• A filesystem gives you exactly what you need and no more,

• Also not limiting your ability to tune storage cost versus processing cost.

• Filesystems implement fine-grained permissions systems

• Perfect for enforcing immutability

• The main problem: they exist on just a single machine

• Limited scalability



CHOOSING A STORAGE SOLUTION FOR THE 
BATCH LAYER

• Distributed filesystems

• Similar to regular filesystems, except

• Spread their storage across a cluster of computers

• Scale by adding more machines to the cluster

• Designed for tolerating faults

• Their operations are more limited

• Not able to write to the middle of a file

• Not able to modify a file at all after creation

• Having small files are inefficient



CHOOSING A STORAGE SOLUTION FOR THE 
BATCH LAYER

• Hadoop Distributed File System (HDFS)

• HDFS and Hadoop MapReduce are the two prongs of the Hadoop project

• Hadoop is deployed across multiple servers called a cluster

• HDFS manages how data is stored across the cluster

• In an HDFS cluster

• Single namenode

• Multiple datanode

• Files are first chunked into blocks of a fixed size (typically between 64 MB and 256 MB)

• Each block is then replicated across random chosen datanodes (typically three)

• The namenode keeps track of the file-to-block mapping and where each block is located



CHOOSING A STORAGE SOLUTION FOR THE 
BATCH LAYER

• Hadoop Distributed File System (HDFS)



CHOOSING A STORAGE SOLUTION FOR THE 
BATCH LAYER

• Hadoop Distributed File System (HDFS)



STORING A MASTER DATASET WITH A 
DISTRIBUTED FILESYSTEM

• Distributed filesystems vary in the

kinds of operations they permit.

• Some let you modify existing files, and

others don’t.

• Some allow to append to existing files,

and some don’t.

• How you can store a master dataset

where a file can’t be modified at all?

• spread the master dataset among

many files



STORING A MASTER DATASET WITH A 
DISTRIBUTED FILESYSTEM



VERTICAL PARTITIONING

• Vertical partitioning: partitioning data

so that a function only accesses data

relevant to its computation.

• it can greatly make the batch layer

more efficient

• can be done by sorting data into

separate folders



LOW-LEVEL NATURE OF DISTRIBUTED 
FILESYSTEMS



ILLUSTRATION

• Using the Hadoop Distributed File System



ILLUSTRATION

• Using the Hadoop Distributed File System



USING THE HADOOP DISTRIBUTED FILE 
SYSTEM

• The small-files problem

• computing performance is significantly degraded when data is stored in many small files

in HDFS

• MapReduce job launches multiple tasks, one for each block in the input dataset.

• Each task requires some overhead to plan and coordinate its execution

• because each small file requires a separate task, the cost is repeatedly incurred

• Solution

• Small files should be consolidated in large files



USING THE HADOOP DISTRIBUTED FILE 
SYSTEM

• Towards a higher-level abstraction

• Important operations for manipulating a master dataset in HDFS

• Appending to a dataset

• Vertically partitioning a dataset and not allowing an existing partitioning to be violated

• Efficiently consolidating small files together into larger files

• We need a tool for accomplishing these tasks in an elegant manner



USING THE HADOOP DISTRIBUTED FILE 
SYSTEM

• Towards a higher-level abstraction



DATA STORAGE IN THE BATCH LAYER WITH 
PAIL

• An abstraction over files and folders

• http://github.com/nathanmarz/dfs-datastores

• is just a Java library that uses the standard Hadoop APIs



DATA STORAGE IN THE BATCH LAYER WITH 
PAIL

• An abstraction over files and folders (http://github.com/nathanmarz/dfs-datastores)



DATA STORAGE IN THE BATCH LAYER WITH 
PAIL

• Serializing objects into pails



DATA STORAGE IN THE BATCH LAYER WITH 
PAIL



DATA STORAGE IN THE BATCH LAYER WITH 
PAIL

• Batch operations using Pail

• Pail operations are all implemented using MapReduce

• they scale regardless of the amount of data

• The append operation is particularly smart.

• It checks the pails to verify that it’s valid to append the pails together.

• it won’t allow to append a pail containing strings to a pail containing integers.

• Consolidate operation merges small files to create new files



DATA STORAGE IN THE BATCH LAYER WITH 
PAIL

• Vertical partitioning with Pail



DATA STORAGE IN THE BATCH LAYER WITH 
PAIL

• Vertical partitioning with Pail



DATA STORAGE IN THE BATCH LAYER WITH 
PAIL

• Pail file formats and compression



DATA STORAGE IN THE BATCH LAYER WITH 
PAIL

• Summarizing the benefits of Pail



STORING THE MASTER DATASET FOR 
SUPERWEBANALYTICS.COM

• How to map SuperWebAnalytics.com schema to folders:



STORING THE MASTER DATASET FOR 
SUPERWEBANALYTICS.COM

• Steps to use HDFS and Pail for SuperWebAnalytics.com

1. create an abstract pail structure for storing Thrift objects

• Thrift serialization is independent of the type of data being stored

• cleaner code by separating this logic

2. derive a pail structure from the abstract class for storing SuperWebAnalytics.com Data

objects

3. define a further subclass that will implement the desired vertical partitioning scheme

don’t worry about the details of the code
this code works for any graph schema



STORING THE MASTER DATASET FOR 
SUPERWEBANALYTICS.COM

• A structured pail for Thrift objects



STORING THE MASTER DATASET FOR 
SUPERWEBANALYTICS.COM

• A basic pail for SuperWebAnalytics.com



STORING THE MASTER DATASET FOR 
SUPERWEBANALYTICS.COM

• A split pail to vertically partition the dataset

• SplitDataPailStructure creates a map between Thrift IDs and classes to process the

corresponding type

• The SplitDataPailStructure is responsible for the top-level directory of the vertical

partitioning

• it passes the responsibility of any additional subdirectories to the other classes (FieldStructure

interface)



STORING THE MASTER DATASET FOR 
SUPERWEBANALYTICS.COM

• A split pail to vertically partition the dataset



STORING THE MASTER DATASET FOR 
SUPERWEBANALYTICS.COM

• A split pail to vertically partition the dataset

• FieldStructure usage for vertical partitioning of the table



STORING THE MASTER DATASET FOR 
SUPERWEBANALYTICS.COM

• A split pail to vertically partition the dataset

• EdgeStructure class is trivial



STORING THE MASTER DATASET FOR 
SUPERWEBANALYTICS.COM

• A split pail to vertically partition the dataset

• The PropertyStructure class



STORING THE MASTER DATASET FOR 
SUPERWEBANALYTICS.COM

• A split pail to vertically partition the dataset

• The PropertyStructure class


