BIG DATA

Batch layer

INTRODUCTION

* In the last chapters you learned
* how to form a data model for your dataset

* how to store your data in the batch layer in a scalable way

* In this chapter
« you’ll learn how to compute arbitrary functions on that data.

« We'll start by introducing some motivating examples to illustrate the concepts of computation
on the batch layer.

* Then you’ll learn in detail how to compute indexes of the master dataset that the application
layer will use to complete queries.

* You'll examine the trade-offs between recomputation algorithms and incremental algorithms
* You’'ll see what it means for the batch layer to be scalable

* Then you’ll learn about MapReduce

MOTIVATING EXAMPLES

 Number of pageviews over time

function pageviewsOverTime (masterDataset, url, startHour, endHour) {
pageviews = 0
for (record in masterDataset) {
if (record.url == url &&
record.time >= startHour &&
record.time <= endHour)
pageviews += 1

}
}

return pageviews

MOTIVATING EXAMPLES

 Gender inference

Normalizes all
names function genderInference (masterDataset, personId) (

the person for (record in masterDataset)
if (record.personld == personld) {
names.add (normalizeName (record.name))
}
} Averages each name’s
maleProbSum = 0.0 probability of being male
for (name in names) { <

maleProbSum += maleProbabilityOfName (name)

}

maleProb = maleProbSum / names.size ()

if (maleProb > 0.5) { <
return "male" Returns the gender with
} else { the highest likelihood

return "female"

}

MOTIVATING EXAMPLES

e Influence score

influence = new Map () between all pairs of people
for (record in masterDataset) { <
curr = influence.get (record.responderId) || new Map(default=0)

curr [record.sourceld] += 1

function influence_ score (masterDataset, personId) { Computes amount of influence

influence.set (record.sourceld, curr)

\ Counts the number of people for
score = 0 whom personld is the top influencer
for (entry in influence) { <

if (topKey (entry.value) == personId)

score += 1

}
}

return score

COMPUTING ON THE BATCH LAYER

* A naive strategy

o

Master
dataset

—

Query
results

» Instead, you can precompute intermediate results

0

Master
dataset

-

Query
results

Precomputation

Low-latency query

COMPUTING ON THE BATCH LAYER

* Precompute intermediate results for pageviews example

@

URL Hour # Pageviews
foo.com/blog | 2012/12/08 15:00 876
foo.com/blog | 2012/12/08 16:00 987
foo.com/blog | 2012/12/08 17:00 762
foo.com/blog | 2012/12/08 18:00 413
foo.com/blog | 2012/12/08 19:00 1098
foo.com/blog | 2012/12/08 20:00 657
foo.com/blog | 2012/12/08 21:00 101

Results:
2930

COMPUTING ON THE BATCH LAYER

* Recomputation algorithms vs. incremental algorithms

)
)
Recomputed
Merged view:
Master /v dataset 20,612,788
dataset records
- -
)
Batch update:
187,596 Updated
records view:
20,612,788
(Old view: EERE
20,425,192
records

key trade-offs between the two approaches are performance, human-fault
tolerance, and the generality of the algorithm

COMPUTING ON THE BATCH LAYER

* Recomputation algorithms vs. incremental algorithms
* Performance has two aspects

» the amount of resources required to update a batch view with new data
* incremental algorithm almost always uses significantly less resources
* the size of the batch views produced

* the size of the batch view for incremental algorithm can be significantly larger

URL el 1D URL AT S Visitor IDs
visitors visitors

foo.com 2217 foo.com 2217 1,4,5,7,10,12,14,....

foo.com/blog 1899 foo.com/blog 1899 2,3,5,17,22,23,27,...

foo.com/about 524 foo.com/about 524 3,6,7,19,24,42,51,...

foo.com/careers 413 foo.com/careers 413 12,17,19,29,40,42,...
foo.com/faq 1212 foo.com/faq 1212 8,10,21,37,39,46,55,...

Recomputation batch view Incremental batch view

Figure 6.7 A comparison between a recomputation view and an incremental view for determining
the number of unique visitors per URL

COMPUTING ON THE BATCH LAYER

* Recomputation algorithms vs. incremental algorithms

* Human-fault tolerance

* recomputation algorithms are inherently human-fault tolerant

* human mistakes can cause serious problems in incremental algorithms
* Generality of the algorithms

* Incremental algorithm can generate prohibitively large batch views
» storage cost can be reduced at the price of making the algorithm approximate instead of exact
* incremental algorithms shift complexity to on-the-fly computations

» Example: improving semantic normalization in gender inference example

COMPUTING ON THE BATCH LAYER

* Recomputation algorithms vs. incremental algorithms

* Choosing a style of algorithm

Recomputation algorithms Incremental algorithms

Performance | Requires computational effort to process the | Requires less computational resources
entire master dataset but may generate much larger batch views

Human-fault | Extremely tolerant of human errors because Doesn’t facilitate repairing errors in the
tolerance the batch views are continually rebuilt batch views; repairs are ad hoc and may
require estimates

Generality Complexity of the algorithm is addressed dur- | Requires special tailoring; may shift
ing precomputation, resulting in simple batch | complexity to on-the-fly query processing
views and low-latency, on-the-fly processing

Conclusion Essential to supporting a robust data- Can increase the efficiency of your sys-
processing system tem, but only as a supplement to recom-
putation algorithms

SCALABILITY IN THE BATCH LAYER

* Scalability definition:
» the ability of a system to maintain performance under increased load by adding more
resources
* More important scalability is linear scalability

* maintaining performance by adding resources in proportion to the increased load

 MapReduce is linearly scalable

» should the size of your master dataset double, then twice the number of servers will be
able to build the batch views with the same latency

MAPREDUCE: A PARADIGM FOR BIG DATA
COMPUTING

 Expresses computations in terms of map and reduce functions that manipulate
key/value pairs

* The canonical example: word count

function word count reduce (word, values)

function word count map (sentence) ({ sum = 0
for (word in sentence.split (" ")) { for(val in values)
emit (word, 1) sum += val

} }

} emit (word, sum)

}

MAPREDUCE: A PARADIGM FOR BIG DATA
COMPUTING

* Scalability
* programs written in terms of MapReduce are inherently scalable

« MapReduce automatically parallelizes the computation across a cluster of machines
regardless of input size.

» All the details of concurrency, transferring data between machines, and execution planning are
abstracted by the framework

* Scalability

COMPUTING

MAPREDUCE: A PARADIGM FOR BIG DATA

Data file: Distributed filesystem) <to,1>, <be, 1>,
input.txt Map task: . | <or,1>, <not,1>,
Server 1 Server 2 Server 3 server 1 <to,1>, <be, 1>,
H NS e | =
File block S 4 S 5 S 6 code <brevity,1>, <is,1>
ione: erver erver erver 1>, i1,
locations: Map task: <the,1>, <soul,1>
L RE BT (|| server 3 "] cof. 15, cwie, 15,

B

Before a MapReduce program begins processing data, it first
determines the block locations within the distributed filesystem.

<to,1l>, <be,l>,
<or,1>, <not,1l>,
<to,1>, <be,1>,

<brevity, 1>,
<the, 1>,
<of,1>, <wit,1>,

<is, 1>,
<soul, 1>

‘ Reduce task 1] ‘ Reduce task 2

<once,l>, <more,l>,
<unto,l>, <the,1l>,
<breach, 1>,

During the shuffle phase, all of the key/value pairs generated by the map tasks are distributed among
the reduce tasks. In this process, all of the pairs with the same key are sent to the same reducer.

© Code is sent to the servers
hosting the input files to limit
network traffic across the cluster.

<to, 1>
<and, 1>
<from, 1>
<to, 1>

Sort

® The map tasks generate
intermediate key/value pairs that
will be redirected to reduce tasks.

Y

<and, 1>
<and, 1>
<from, 1>
<from, 1>

Reduce

<and, 2>
<from, 2>
<here, 1>
<to, 2>

Y

<here, 1>
<from, 1>
<and, 1>

<here, 1>
<to, 1>
<to, 1>

_

MAPREDUCE: A PARADIGM FOR BIG DATA
COMPUTING

« Fault-tolerance
 MapReduce computations are also fault tolerant

 MapReduce watches for errors and automatically retries that portion of the computation
on another node

* MapReduce requires that your map and reduce functions be deterministic

* An entire application will fail only if a task fails more than a configured number of
times—typically four

MAPREDUCE: A PARADIGM FOR BIG DATA
COMPUTING

* Generality of MapReduce

 MapReduce computational model is expressive enough to compute almost any functions
on your data

» Pageviews over time

function map (record) ({
key = [record.url, toHour (record.timestamp))]
emit (key, 1)

}

function reduce (key, vals) {
emit (new HourPageviews (key[0], key[1l], sum(vals)))
}

MAPREDUCE: A PARADIGM FOR BIG DATA
COMPUTING

* Generality of MapReduce

 (Gender inference

Semantic normalization
function map (record) { occurs during the
emit (record.userid, normalizeName (record.name)) mapping stage.

}

function reduce (userid, vals) ({

allNames = new Set () A set is used
for (normalizedName in vals) { to remove any

allNames.add (normalizedName) potential duplicates.
}

maleProbSum = 0.0
for (name in allNames) {

maleProbSum += maleProbabilityOfName (name) Averages the
}

) probabilities
maleProb = maleProbSum / allNames.size ()

of being male.
if (maleProb > 0.5) ({ <1
gender = "male" Returns the most

} else { likely gender.
gender = "female"

}

emit (new InferredGender (userid, gender))

MAPREDUCE: A PARADIGM FOR BIG DATA
COMPUTING

* Generality of MapReduce

e Influence score

function mapl (record) ({
emit (record.responderId, record.sourceld)

} . .
The first job determines
function reducel (userid, sourcelds) ({ the top influencer for

influence = new Map(default=0) each user.
for (sourceId in sourcelds)
influence [sourcelId] += 1

}

emit (topKey (influence))

}

function map2 (record) {

emit (record, 1) . .
The top influencer data is

} then used to determine
the number of people

function reduce2 (influencer, vals) { .
each user influences.

emit (new InfluenceScore(influencer, sum(vals)))

}

MAPREDUCE: A PARADIGM FOR BIG DATA

COMPUTING

* Low-level nature of MapReduce

» Multistep computations are unnatural

* Intermediate output of chained MapReduce jobs should be manually stored and cleaned

» Joins are very complicated to implement manually

id age user_id gender location
3 25 1 m USA
1 71 9 f Brazil
7 37 3 m Japan
8 21 \ /
Inner join
Y

id age gender | location

1 71 m USA

3 25 m Japan

MAPREDUCE: A PARADIGM FOR BIG DATA

COMPUTING

Low-level nature of MapReduce

» Joins are very complicated to implement manually

* you need to read two independent datasets in a single MapReduce job

Use the source directory the record
came from to determine if the record
is on the left or right side of the join.

function join_map(sourcedir, record) {

Set the MapReduce key to be the id or
user_id, respectively. This will cause
all records of those ids on either side
of the join to get to the same reduce

if (sourcedir=="/data/age") { invocation. If you were joining on
emit (record.id, {"side"™ = "1" multiple keys at once, you'd put a
The values you [- "values" = [record.agel}) collection as the MapReduce key.
care to put in } else {
the output emit (record.user_id,
record are put {"side" = "r",
into a list here. "values" = [record.gender, record.location])
Later they’ll be }

concatenated }
with records

from the other function join_reduce(id, records) {

side of the join side_1 = []
to produce the side_r = []
output.
for (record : records) {
values = record.get ("values")
if (record.get ("side") == "1") {
side_l.add(values)
} else {
side_r.add (values)
To achieve the }
semantics of }
joining,
concatenate for(l : side_1) {
every record on for(r : side_r) {
each side of the emit (concat ([id], 1, r), null)
join with every }
record on the }
other side of }

the join.

When reducing, first split
records from either side of the
join into “left” and “right” lists.

The id is added to the concatenated
values to produce the final result.
Note that because MapReduce always
operates in terms of key/value pairs,
in this case you emit the result as the
key and set the value to null. You
could also do it the other way around

Imagine joining on multiple
fields, with five sides to the join,
with some sides as outer joins
and some as inner joins

MAPREDUCE: A PARADIGM FOR BIG DATA
COMPUTING

* Low-level nature of MapReduce
_ , _ _ EXCLUDE WORDS = Set("a", "the")
» Logical and physical execution tightly coupled -

* Extended word-count example function map (sentence) {
for (word : sentence) ({

if (not EXCLUDE_WORDS.contains (word)) {
emit (word, 1)

* Works, but it mixes together multiple tasks into
the same function

* Good programming practice involves separating }
independent functionality }

* Modularizing creates more MapReduce jobs, }

making the computation hugely inefficient
function reduce (word, amounts) {

result = 0
for (amt : amounts) {
result += amt

}

emit (result * 2)

» Concepts

PIPE DIAGRAMS

* The idea is to think of processing in terms of

Tuples
Functions
Filters
Aggregators
joins

merges

Input:
[sentence]

'

Function:
Split

(sentence) -> (word)

Y

Filter:
FilterAandThe
(word)

Group by:
[word]

Aggregator:
Count
() -> (count)

'

Function:
Double

(count) -> (double)

'

Output:
[word, count]

» Concepts

sentence

PIPE DIAGRAMS

the dog

fly to the moon

dog

word

double

dog 4

fly

to

NININ

moon

word word
the dog
Function: dog Filter: fly
split fly — FilterAandThe —» to
(sentence) -> (word) to (word) moon
the dog
moon \
dog Group by
[word]
word
word count dog
do
Function: dog 2 Aggregator: 9
- double fly 1 |« count - fly
(count) -> (double) to 1 () -> (count) :
(o}
moon 1
moon

PIPE DIAGRAMS

» Concepts

name age name gender name location
bob 25 bob m maria USA
alex 71 sally f sally Brazil
bob 37 george m george Japan
sally 21 bob m
Outer
Inner Inner
Inner Outer Inner Inner i
‘ » N
Join Join Join
Y Y
name age gender name gender | location
bob 25 m bob m nul
bob 25 m sally f Brazil
bob 37 m
bob 37 = george m Japan
sally 21 f bob m null

name age | gender | location

sally 21 f Brazil

george null m Japan

» Concepts

merge operation requires all tuple sets to have the same number of fields and

PIPE DIAGRAMS

user_id

age

1

21

id age
3 25
1 71
7 37

2

22

\

/

MERGE:
[ID, AGE]

Y

AGE

25

71

37

21

N = [N [= W

22

specifies new names for the tuples

» Concepts

PIPE DIAGRAMS

Input:
[person, gender]

Y

Filter:
KeepMale
(gender)

Input: ‘

[person, follower]

Join

|

Group by:
[follower]

Y

Aggregator:
count
() -> (count)

Y

Output:
[follower, count]

compute the number of males each person follows

PIPE DIAGRAMS

» Executing pipe diagrams via MapReduce

» Pipe diagrams can be compiled to a series of MapReduce jobs
* Functions and filters
* look at one record at a time
* can be run either in a map step or in a reduce step following a join or aggregation
* Group by
» easily translated to MapReduce via the key emitted in the map step
» Aggregators
* looks at all tuples for a group

* happens in the reduce step

PIPE DIAGRAMS

» Executing pipe diagrams via MapReduce

» Pipe diagrams can be compiled to a series of MapReduce jobs
* Join
* You've already seen the basics of implementing joins
* require some code in the map step and some code in the reduce step
* Merge

* just means the same code will run on multiple sets of data

a smart compiler will pack as many operations
into the same map or reduce step as possible

PIPE DIAGRAMS

Combiner aggregators

» example

compute the count of all the records

every tuple should go into the same group

the aggregator should run on every single tuple in dataset.
Normally

* that every tuple would go to the same machine

* then the aggregator code would run on that machine
This isn’t scalable
can be executed a lot more efficiently

* compute partial counts

* send the partial counts to a single machine to produce global count

Input:
[value]

'

Group by:
GLOBAL

l

Aggregator:
count
() -> (count)

:

Output:
[count]

PIPE DIAGRAMS

* Combiner aggregators
» All combiner aggregators work this way
» doing a partial aggregation first
* then combining the partial results to get the desired result.
* Not every aggregator can be expressed this way

* When it’s possible you get huge performance and scalability boosts

PIPE DIAGRAMS

« Examples

» Pageviews over time

Input:
[url, timestamp]

Y

Function:
ToHourBucket
(timestamp) -> (bucket)

Y

Group by:
[url, bucket]

Y
Aggregator:
count
() -> (count)

Y

Output:
[url, bucket, count]

« Examples

 (Gender inference

PIPE DIAGRAMS

Input:
[id, name]

Group by:
[id]

Y

Function:
NormalizeName
(name) -> (normed-name)

'

'

Aggregator:
average

(prob) -> (avg)

L e

Function:
maleProbabilityofName
(normed-name) -> (prob)

Function:
ClassifyGender
(avg) -> (gender)

\

Output:
[id, gender]

PIPE DIAGRAMS

« Examples Input:
[source-id, responder-id]

e Influence score

Y

Group by:
[responder-id]

Y
Aggregator:
Toplnfluencer
(source-id) -> (influencer)

Y

Group by:
[influencer]

Y
Aggregator:
Count
() -> (score)

Y

Output:
[influencer, score]

ILLUSTRATION

» Jcascalog
 a fairly direct mapping of pipe diagrams

» enables a whole range of abstraction and composition techniques that just aren’t possible
with other tools

» enables programming techniques that allow you to write very concise, very elegant code

AN ILLUSTRATIVE EXAMPLE

* Word count:

List SENTENCE = Arrays.asList(
Arrays.asList ("Four score and seven years ago our fathers"),
Arrays.asList ("brought forth on this continent a new nation"),
Arrays.asList ("conceived in Liberty and dedicated to"),
Arrays.asList ("the proposition that all men are created equal"),

. Specifies the output types
Queries output returned by the query
to be written R
h le . eads each
to the conso Api.execute (new StdoutTap(), sentence from
new Subquery ("?word", "?count") the input
.predicate (SENTENCE, "?sentence") <+
Tokenizes each .predicate(new Split(), "?sentence").out ("?word")
sentence into .predicate(new Count (), "?count")); <G+
separate words
Determines the count
for each word
public static class Split extends CascalogFunction {
public void operate (FlowProcess process, FunctionCall call) Partitions
String sentence = call.getArguments () .getString(0) ; a sentence
for (String word: sentence.split (" ")) { into words

call.getOutputCollector () .add (new Tuple (word)) ;

}

} Emits each word
} in its own tuple

COMMON PITFALLS OF DATA-PROCESSING
TOOLS

» Complexity in code
» Essential complexity
» Accidental complexity
* Minimize this to have code that easier to maintain
* Two sources:

* Custom languages

* Poorly composable abstractions

AN INTRODUCTION TO JCASCALOG

* The JCascalog data model

the same as that of the pipe diagrams

manipulates and transforms tuples

» A set of tuples shares a schema

When executing a query

* represents the initial data as tuples

» transforms input into other tuple sets at each stage

Punctuation:

e ? for non-nullable

Examples dataset:

I! for nullable in outer joisn

! For nullable
AGE GENDER FOLLOWS INTEGER
?person ?age ?person ?gender ?person ?follows ?num
"alice" 28 "alice" " "alice" “david" -1
"bob" 33 "bob" "m" "alice" “bob" 0
"chris" 40 "chris" "m" "bob" "david" 1
"david" 25 "emily" ' "emily" "gary" 2

AN INTRODUCTION TO JCASCALOG

* The structure of a JCascalog query

* Consist of
* a destination tap

* a subquery that defines the actual computation

The destination tap
Api.execute (new StdoutTap(),

new Subquery ("?person") < The output fields
.predicate (AGE, "?person", "?age")
.predicate (new LT (), "?age", 30)); Predicates that define
the desired output

AN INTRODUCTION TO JCASCALOG

* The structure of a JCascalog query

» predicates can be categorized into four main types:
* Function predicate
» specifies a relationship between a set of input fields and a set of output fields
» Filter predicate
» specifies a constraint on a set of input fields and removes all un matched tuples
» Aggregator predicate
« a function on a group of tuples
» generator predicate
* simply a finite set of tuples.
* can either be

A source of data like an in-memory data structure or file on HDFS

* Result from another subquery

AN INTRODUCTION TO JCASCALOG

The structure of a JCascalog query

* Predicate examples:

Type Example Description

Generator .predicate (SENTENCE, "?sentence") A generator that creates
tuples from the SENTENCE
dataset, with each tuple
consisting of a single field
called ?sentence.

Function .predicate (new Multiply (), 2, "?x").out("?z") This function doubles the
value of ?x and stores the
result as ?z.

Filter .predicate (new LT(), "?y", 50) This filter removes all tuples

unless the value of 2y is
less than 50.

AN INTRODUCTION TO JCASCALOG

* The structure of a JCascalog query

* Predicates share a common structure

» first argument is the predicate operation

* remaining arguments are parameters for that operation

provide extremely rich semantics

labels for the outputs are specified using the out method

Type Example Description

Function .predicate (new Plus(), 2, "?x").out(6) Although Plus () is a

as filter function, this predicate
filters all tuples where
the value of ?2x # 4.

Compound .predicate(new Multiply(), 2, "?a").out("?z") Inconcert, these

filter .predicate (new Multiply(), 3, "?b").out("?z")

predicates filter all tuples
where 2 (?a) # 3 (?b).

AN INTRODUCTION TO JCASCALOG

* Querying multiple datasets

» Joins are expressed explicitly in SQL

» Joins in JCascalog are implicit based on the variable names

Language Query Description
SQL SELECT AGE.person, AGE.age, GENDER.gender This clause explicitly defines
FROM AGE the join condition.
INNER JOIN GENDER
ON AGE.person = GENDER.person
JCascalog new Subquery("?person", "?age", "?gender") By specifying ?person as
.predicate (AGE, "?person", "?age") a field name for both datasets,
.predicate (GENDER, "?person'", "?gender) ; JCascalog does an implicit
join using the shared name.

AN INTRODUCTION TO JCASCALOG

* Querying multiple datasets

* QOuter joins

Jointype Query Results
"o noomop noomgg "
J:aell:t outer nefpizg?zzig EAég?rfgge;soﬂﬁ?e " ';ag(-e'.'?ender) ?name ?age 7?gender
.predicate (GENDER, "?person'", "!!gender) ; "bob" 33 "m"
"chris" 40 "m"
"david" 25 null
"jim" 32 null
!:l.]” outer new Subquery("?person", "!lage", "!!gender") ?name ?age 7?gender
join .predicate (AGE, "?person", "!lage")
.predicate (GENDER, "?person", "!!gender) ; "alice" null “f
"bob" 33 "m"
"chris" 40 "m"
"david" 25 null
"emily" null b
"jim" 32 null

AN INTRODUCTION TO JCASCALOG

* Querying multiple datasets

 combine and union

TEST1 TEST2
X ?y X ?y
"a" 1 "d" 5
"b" 4 "b" 4
"a" 1 "p" 3
Api.union (TEST1, TESTZ/ \pl .combine (TEST1, TEST2)
UNION COMBINE
X ?y X ?y
a 1 "a" 1
b 4 "p" 4
"b" 3 "a" 1
d 5 "d" 5
"b" 4
"b" 3

AN INTRODUCTION TO JCASCALOG

* Grouping and aggregators
* grouping is implicit based on the desired query output

The output field names

define all potential
The underscore groupings.

informs When executing the

.]Casc.:alog to new Subquery ("?person", "?count") agoresator. the
ignore this field. .predicate (FOLLOWS, "?person", " ") oﬁ%pu% ﬁelc’ls imply
.predicate (new Count (), "?count"); tuples should be
grouped by ?person.
This query
will group
tuples by Before the aggregator,
’gender. new Subquery ("?gender", "?count") the AGE and FFNDER
.predicate (GENDER, "?person", "?gender") datasets are joined.
.predicate (AGE, "?person", "?age")
Tuples are then .predicate (new LT (), "?age", 30)
filtered on 2age. TD -predicate(new Count (), "?count"); Even though the ?person and 2age

fields were used in earlier
predicates, they are discarded by
the aggregator because they aren’t
included in the specified output.

AN INTRODUCTION TO JCASCALOG

» Stepping though an example query

Generators
for the test L new Subquery nean,

.predicate (VAL1,

datasets

n ?avg n)

ll?all’

Pre-aggregator
function and
||?bu) .Out (n?double_bn) ﬁlter

"?avg") .out ("?double-avg")
Post-aggregator predicates

(
(
.predicate (VAL2, "?a",
.predicate(new Multiply (),
.predicate(new LT (), "?b",
Multiple .predicate (new Count (), "?count")
aggregators ’—D .predicate(new Sum(), "?double-b").out ("?sum")
.predicate(new Div (), "?sum", "?count").out("?avg")
.predicate (new Multiply (),
.predicate(new LT(), "?double-avg", 50);
VAL1 VAL2
?a ?b ?a ?c
Ilall 1 llbll 4
Ilbll 2 “bll
"C" "CII 3
||d|l 12 Ildll 15
Ildll 1

AN INTRODUCTION TO JCASCALOG

» Stepping though an example query

© These operations can
be applied immediately
and in either order

VAL1 —_——————————— ——— —_——————————
» % | .predicate(new Multiply(), 2, "?b") :
a : .out ("?double-b")
|ra|| 1 7777777777777 ; 7777777777777
"b" 2 7a ?b ?double-b
"o 5 ngn 1 2
g 12 e 2 4
ngr 1 ne 5 10
VAL2 'd 12 24
?a ?c "d" 1 2
"pyn 4
"y 6
nen 3
?double-b ?c
g 15
"b" 4 4
"y 4 5
gck 5 10 3
"d" 12 24 15
"d" 1 2 15
@ Conversely, this filter
cannot be applied ——_ TS ST ST T T I AT T —r ey T
untl after thejoin. = L_-Predicate(new LT(), "7bv, "ren)
L]
?a ?b ?double-b ?c
"b" 2 4 4
"b" 2 4 6
"d" 12 24 15
"d" 1 2 15

AN INTRODUCTION TO JCASCALOG

» Stepping though an example query

%a 7% 7double-b ¢ © !n the aggregation
stage, JCascalog

"b" 2 4 4 groups tuples by

"B 2 4 6 the output variables
declared in the query.

"d" 12 24 15

"d" 1 2 15

@ After the grouping, the —___ : .predicate (new Count (), "?count") :
aggregator operators | -predicate (new Sum(), "?double-b") |
are applied I .out("?sum) :

L

?a ?count ?sum

"B 2 8
g2 26
© Allremaining predicates | .predicate (new Div(), "?sum", "zcount")

|
‘ |
are applied to the _ | .out("?avg") |
resulting tuples. | .predicate (new Multiply(), 2, "?2avg") |

} .out ("?double-avg") :
! l

.predicate (new LT (), "?double-avg", 50)

?a 7?count 7?sum 7?avg ?double-avg

"b" 2 8 4 8
"d" 2 26 13 26
@ The desired output ?a ?avg
variables aresentto ———
the specified tap. B "b" 4
"y 13

AN INTRODUCTION TO JCASCALOG

» Custom predicate operations

* done by implementing the appropriate interfaces
 FILTERS

public static class GreaterThanTenFilter extends CascalogFilter ({
public boolean isKeep (FlowProcess process, FilterCall call) {
return call.getArguments() .getInteger(0) > 10; < Obtains the first

} element of the
} input tuple and
treats the value
as an integer

AN INTRODUCTION TO JCASCALOG

» Custom predicate operations
« FUNCTIONS

* emits zero or more tuples as output

Obtains the | public static class IncrementFunction extends CascalogFunction {
value from the public void operate (FlowProcess process, FunctionCall call) ({

input tuple int v = call.getArguments().getInteger (0);
call.getOutputCollector () .add (new Tuple(v + 1)) ; < Emits 2 new
} tuple with the
} incremented value

?a ?b ?a ?b ?c
@ 1| T predicata new Tnorementranceion(r, nbv) | & 1 2
"b" 4 |__-out("2?c") o _____] "b" 4

nau 1 'a- 1 2

AN INTRODUCTION TO JCASCALOG

» Custom predicate operations
« FUNCTIONS

* can act as a filter if it emits zero tuples
Regards Lpublic static class TryParseIlnteger extends CascalogFunction {

input Va!ue public void operate(FlowProcess process, FunctionCall call) {
as a string > String s = call.getArguments() .getString(0);
try { Emits value as
int i = Integer.parselnt(s); integer if parsing
call.getOutputCollector () .add (new Tuple(i)) ; succeeds
}
catch(NumberFormatException e) {}
} Emits nothing if
} parsing fails
?a ?b
?a ?b ?c
"aaa" 1 | oredicate (mew TrvParseInteger () "oan) |
___: .predlc?tefnew TryParselnteger(), "?za") | _| nom 4
2" 4 i__oue(®?e™ __________]
“3“ “3"

AN INTRODUCTION TO JCASCALOG

» Custom predicate operations
« FUNCTIONS

each output tuple is appended to its own copy of the input arguments

public static class Split extends CascalogFunction {
{

public void operate (FlowProcess process, FunctionCall call)
call.getArguments () .getString(0) ;

Emits each String sentence =
word as a for (String word: sentence.split(" ")) {
separate tuple call.getOutputCollector () .add (new Tuple (word));
}
} For simplicity, splits into words
} using a single whitespace
?s w

?s "the big dog" "the"

"the big dog" [*|.predicate (new Split(), "?s").out("?w") a{ "the bigdog" "big"
"data" “the big dog" "dog"
"data" "data"

AN INTRODUCTION TO JCASCALOG

* Custom predicate operations
« AGGREGATORS : three different types

* First: aggregator
* looks at one tuple at a time for each tuple in a group
» adjusts some internal state for each observed tuple

* can be chained in a query

* computing multiple aggregations at the same time for the same group

Initializes the public static class SumAggregator extends CascalogAggregator
aggregator public void start (FlowProcess process, AggregatorCall call) ({
internal state call.setContext (0) ;

}

public void aggregate (FlowProcess process, AggregatorCall call) {

int total = (Integer) call.getContext();
Called for each — call.setContext (total + call.getArguments().getInteger(0));
tuple; updates }
the internal
state to store public void complete (FlowProcess process, AggregatorCall call) (
the running int total = (Integer) call.getContext();
sum call.getOutputCollector () .add (new Tuple(total)) ;
}
} Once all tuples are processed,

emits a tuple with the final result

AN INTRODUCTION TO JCASCALOG

» Custom predicate operations

« AGGREGATORS : three different types
* Second: buffer

* receives an iterator to the entire set of tuples for a group
» easier to write than aggregators
* can not be chained in a query

* can’t be used along with any other aggregator type
public static class SumBuffer extends CascalogBuffer ({
public void operate (FlowProcess process, BufferCall call) {

Iterator<TupleEntry> it = call.getArgumentslterator(); - The tuple set is

int total = 0; accessible via

while (it .hasNext ()) { an iterator.
TupleEntry t = it.next();
total+=t.getInteger(0);

}

call.getOutputCollector () .add (new Tuple(total)); < A single function iterates

} over all tuples and emits
} the output tuple.

AN INTRODUCTION TO JCASCALOG

» Custom predicate operations

« AGGREGATORS : three different types
* Third: parallel aggregators

» analogous to combiner aggregators

+ performs an aggregation incrementally by doing partial aggregations in the map tasks

AN INTRODUCTION TO JCASCALOG

Map input Map output
4 N 4
3 3

@ For buffers and aggregators,
the reducers are responsible

for the computation.

Map input Map output
1 _ 1
1 - 1
9 9

_Network _

» Custom predicate operations

« AGGREGATORS : three different types
* Third: parallel aggregators

@ All data is thus transferred to the
reducers, affecting performance.

Map input

4
3

Map output

7

@ For parallel aggregators, maps
perform intermediate work

where possible

Reduce
input
4
Reduce

3 output
1 18

1

9

Map input

1
1
9

Map output

"

_Network _

@ Performance is improved because less
data transfers across the network
and reducers are responsible

for less work.

Reduce
input Reduce
output
7
18
1

AN INTRODUCTION TO JCASCALOG

» Custom predicate operations

« AGGREGATORS : three different types
* Third: parallel aggregators

* you must implement two functions:

init: maps the arguments from a single tuple to a partial aggregation for that tuple

combine: specifies how to combine two partial aggregations into a single aggregation value

can be chained with other parallel aggregators or regular aggregators

But act like regular aggregators when chaining with regular aggregators
For sum,

the partial
aggregation is
just the value in
the argument.

public static class SumParallel implements ParallelAgg {
public void prepare (FlowProcess process, OperationCall call) {}

public List<Object> init (List<Object> input) {

return input;

public List<Object> combine (List<Object> inputl,
List<Object> input2) {

int vall = (Integer) inputl.get(0); To c?mbi"e two_
int val2 = (Integer) input2.get(0); P.amla| aggretﬁatlt;;'ls,
return Arrays.asList ((Object) (vall + wval2)); - Simply sum the values.

AN INTRODUCTION TO JCASCALOG

» Composition
» Combining subqueries

* they can be addressed as data sources for other subqueries

The first subquery determines

all people that follow more Considers only the
than 2 others. follower, not the
source
> Subquery manyFollows = new Subquery("?person")
.predicate (FOLLOWS, "?person", "_")
.predicate (new Count (), "?count")
Countsthe ———————— .predicate (new GT (), "?count", 2);
p::l;:l::;:J Api.execute (new StdoutTap(), Uses the results of the
user follows, new Subquery ("?personl", "?person2") first Squ“er_Y as the
and keeps those .predicate (manyFollows, "?personl") < source for this subquery
with count .predicate (manyFollows, "?person2")
greater than 2 .predicate (FOLLOWS, "?personl", "?person2"));

Only keeps records where follower
and source are both present in
the result of the first subquery

find all the records in FOLLOWS dataset where each person in the record follows more than two people

AN INTRODUCTION TO JCASCALOG

» Composition
» Combining subqueries

* Subqueries are lazy

* nothing is computed until Api.execute is called

The basic word
count subquery

Subquery wordCount = new Subquery("?word", "?count") <
.predicate (SENTENCE, "?sentence")
.predicate(new Split(), "?sentence").out ("?word")
.predicate (new Count (), "?count");
Api.execute (new StdoutTap(), The second subquery
new Subquery("?count", "?num-words") J only requires the
.predicate (wordCount, "_", "?count") count for each word.
.predicate (new Count (), "?num-words")); <

Determines the
number of words
for each count value

finding the number of words that exist for each computed word count

AN INTRODUCTION TO JCASCALOG

» Composition

* Dynamically created subqueries
{"buyer": 123,

"seller": 456, "amt": 50, "timestamp": 1322401523}
{"buyer": 1009, "seller": 12, "amt": 987, "timestamp": 1341401523}
{"buyer": 2, "seller": 98, "amt": 12, "timestamp": 1343401523}

The subquery needs a Cascalog
function to perform the actual parsing.
A regular Java function dynamically An external J
Generates generates the subquery. library public static class ParseTransactionRecord extends CascalogFunction { <
a tap from converts public void operate(FlowProcess process, FunctionCall call) {
the public static Subquery parseTransactionData(String path) { the JSON to String line = call.getArguments () .getString(0);
provided return new Subquery("?buyer", "?seller", "?amt", "?timestamp") amap. Map parsed = (Map) JSONValue.parse(line);
HDFS path .predicate (Api.hfsTextline (path), "?line") > call.getOutputCollector () .add(new Tuple (parsed.get ("buyer"),
.predicate (new ParseTransactionRecord(), "?line") The desired parsed.get("sellex"),
.out ("?buyer", "?seller", "?amt", "?timestamp");

: Calls the custom
JSON parsing
function

"?count") ;

"?2count")

map values are
translated into
a single tuple. }

public static Subquery buyerNumTransactions (String path) ({
return new Subquery ("?buyer",

.predicate (parseTransactionData (path) ,
.predicate (new Count (),

n ?buyer n , ll_l! n n

parsed.get ("amt"),
parsed.get ("timestamp"))) ;

- Disregards
all fields but
the buyer

AN INTRODUCTION TO JCASCALOG

» Composition
* Dynamically created subqueries

* Dynamic predicates in sub-query

» find all chains of retweets of a certain length

public static Subquery chainsLength3 (Object pairs) {

return new Subquery("?a", "?b", "?c")
.predicate (pairs, "?a", "?b")
.predicate (pairs, "?b", "?c");
}
public static Subquery chainsLength4 (Object pairs)
return new Subquery("?a", "?b", "?2c", "24")
.predicate (pairs, "?a", "?b")
.predicate (pairs, "?b", "?c")

.predicate (pairs, "?c", "24d");

AN INTRODUCTION TO JCASCALOG

» Composition
* Dynamically created subqueries
* Dynamic predicates in sub-query

» find all chains of retweets of a certain length

public static Subquery chainsLengthN (Object pairs, int n) {
List<String> genVars = new ArrayList<Strings> () ;
for(int i=0; i<n; i++) {
genVars.add (Api.genNullableVar()) ; Generates
) unique nullable
output variables
Subquery ret = new Subquery(genVars) ;
for(int i=0; i<n-1; i++) {
ret = ret.predicate(pairs, genVars.get (i), genVars.get (i+1)) ;

}

return ret; Loops to define the

required number of joins

AN INTRODUCTION TO JCASCALOG

» Composition

* Dynamically created subqueries

* draw a random sample of N elements from a dataset of unknown size

1. Generate a random number for every element.

2. Find the N elements with the smallest random numbers.

Generates
separate fields
for input and
output variables

Uses the
JCascalog
RandLong

function to
append each
input tuple with
a random value

Introspects the input dataset to
determine the correct number of
input and output fields

public static Subquery fixedRandomSample (Object data, int n) {

List<String> inputVars = new ArrayList<Strings>();
List<String> outputVars = new ArrayList<Strings>() ;
for (int i=0; i < Api.numOutFields(data); i++) {

inputVars.add (Api.genNullableVar()) ;

outputVars.add (Api.genNullableVar()) ;
Creates a separate field to
hold the random values

}

String randVar = Api.genNullableVar () ; <FJ
return new Subguery (outputVars)

.predicate (data, inputVars) Performs secondary sorting
.predicate (new RandLong(), randvVar) on the random values

.predicate (Option.SORT, randVar)
.predicate (new Limit (n), inputVars) .out (outputVars); <

Uses the Limit aggregator to find ¥
random tuples from the dataset

AN INTRODUCTION TO JCASCALOG

» Composition
* Predicate macros
* 1s an operation that JCascalog expands to another set of predicates
* can create powerful abstractions by composing predicates together
Uses a template to

define a predicate macro
with one input variable

The predicate
macro PredicateMacroTemplate Average =

. returns a PredicateMacroTemplate.build("?val") <G+ Average expands to

single output. . .out ("?avg") three predicates:
.predicate (new Count (), "?count") < count, sum, and div.
> .predicate(new Sum(), "?val").out ("?sum")
Temp variables .predicate (new Div (), "?sum", "?count").out ("?avg"); <
store the results of

the aggregation. Divides aggregate results

to compute final output

AN INTRODUCTION TO JCASCALOG

» Composition
e Predicate macros

* 1s an operation that JCascalog expands to another set of predicates

* can create powerful abstractions by composing predicates together

new Subquery("?result") Example source code using
.predicate (INTEGER, "?n") the Average predicate macro.
.predicate (Average, "?n) .out("?result");

'

new Subquery ("?result") Behind the scenes, JCascalog
.predicate (INTEGER, "?n") expands the macro into its
.predicate (new Count (), "?count genl") constituent predicates using
.predicate (new Sum(), "?n).out("?sum_gen2") unique field names so as not
.predicate (new Div (), "?sum _gen2", "?count_genl") to conflict with the surrounding

.out ("?result") ; subquery.

AN INTRODUCTION TO JCASCALOG

» Composition
* Predicate macros
* Compute the number of distinct values for a given set of variables
» Templates only support fixed sets of input and output variables

* Macros with flexible number of input and output variables:

public static class DistinctCountAgg extends CascalogAggregator {
static class State { -

int count = 0; Internal state to track
Tuple last = null; the current count and
For each } the previously seen tuple

group,
initializes the

" public void start (FlowProcess process, AggregatorCall call) {
tracking state

call.setContext (new State());

}
public void aggregate (FlowProcess process, AggregatorCall call) {
State s = (State) call.getContext(); 3
Tuple t = call.getArguments () .getTupleCopy() ; When processing a
if (s.last==null || !s.last.equals(t)) { tuple, retrieves the
Increases the s.count++; current state
distinct count } Always updates
only if the s.last = t; < !:he last seen tuple
current tuple | } in the state
differs from the
previous one public void complete (FlowProcess process, AggregatorCall call) {
State s = (State) call.getContext();
call.getOutputCollector () .add(new Tuple(s.count));
}
} When all tuples of the group

have been processed, emits
the distinct count

AN INTRODUCTION TO JCASCALOG

» Composition
e Predicate macros

* Compute the number of distinct values for a given set of variables
public static Subquery distinctCountManual () {
return new Subquery("?distinct-followers-count")
.predicate (FOLLOWS, "?person", " ") Sorts the tuple
.predicate (Option.SORT, "?person") < by ?person field
.predicate (new DistinctCountAgg(), "?person")
.out ("?distinct-followers-count") ;

The input and output fields are
determined when the macro is
used within a subquery.

public static class DistinctCount implements PredicateMacro {
public List<Predicate> getPredicates (Fields inFields,

Fields outFields) ({
List<Predicate> ret = new ArrayList<Predicatex>() ;

ret.add (new Predicate (Option.SORT, inFields)); < Groups are sorted
ret.add (new Predicate(new DistinctCountAgg(), by the provided
inFields, input fields.
outFields)) ;
return ret;
} For this macro, the distinct count emits
} a single field, but the general macro

form supports multiple outputs.

AN INTRODUCTION TO JCASCALOG

» Composition

* Dynamically created predicate macros

Reads a dataset
new Subquery ("?x", "?y", "2z") containing triples
.predicate (TRIPLETS, "?a", "?b", "?2c") < of numbers
.predicate (new IncrementFunction(), "?a").out ("?x") <
.predicate (new IncrementFunction(), "?b").out("?y") Returns a new triplet
.predicate (new IncrementFunction(), "?c").out("?z"); where each field is
incremented

1t’s a simple query, but there’s considerable repetition

AN INTRODUCTION TO JCASCALOG

» Composition
* Dynamically created predicate macros

new Subquery("?x", "?2y", "?2z")
.predicate(TRIPLETS, "?a", "?b", "?c")
.predicate (new Each(new IncrementFunction()), "?a", "?b", "?c")
.out ("?x", "?y", "?2z");

public static class Each implements PredicateMacro {
Object _op;

public Each(Object op) { Each is parameterized
_op = op; < with the predicate
} operation to use.

public List<Predicates> getPredicates(Fields inFields,

Fields outFields) ({
List<Predicate> ret = new ArrayList<Predicate>();

for(int i=0; i<inFields.size(); i++) {
Object in = inFields.get (i) ;
Object out = outFields.get (i); The predicate macro
ret.add(new Predicate(_op, creates a predicate
Krrays.asList(in), foreachghmn!npuﬁ
Arrays.asList (out))); < output field pair.

}

return ret;
}
}

