
BIG DATA
Batch layer



INTRODUCTION

• In the last chapters you learned

• how to form a data model for your dataset

• how to store your data in the batch layer in a scalable way

• In this chapter

• you’ll learn how to compute arbitrary functions on that data.

• We’ll start by introducing some motivating examples to illustrate the concepts of computation

on the batch layer.

• Then you’ll learn in detail how to compute indexes of the master dataset that the application

layer will use to complete queries.

• You’ll examine the trade-offs between recomputation algorithms and incremental algorithms

• You’ll see what it means for the batch layer to be scalable

• Then you’ll learn about MapReduce



MOTIVATING EXAMPLES

• Number of pageviews over time



MOTIVATING EXAMPLES

• Gender inference



MOTIVATING EXAMPLES

• Influence score



COMPUTING ON THE BATCH LAYER

• A naive strategy

• Instead, you can precompute intermediate results



COMPUTING ON THE BATCH LAYER

• Precompute intermediate results for pageviews example



COMPUTING ON THE BATCH LAYER

• Recomputation algorithms vs. incremental algorithms

key trade-offs between the two approaches are performance, human-fault 
tolerance, and the generality of the algorithm



COMPUTING ON THE BATCH LAYER

• Recomputation algorithms vs. incremental algorithms

• Performance has two aspects

• the amount of resources required to update a batch view with new data

• incremental algorithm almost always uses significantly less resources

• the size of the batch views produced

• the size of the batch view for incremental algorithm can be significantly larger



COMPUTING ON THE BATCH LAYER

• Recomputation algorithms vs. incremental algorithms

• Human-fault tolerance

• recomputation algorithms are inherently human-fault tolerant

• human mistakes can cause serious problems in incremental algorithms

• Generality of the algorithms

• incremental algorithm can generate prohibitively large batch views

• storage cost can be reduced at the price of making the algorithm approximate instead of exact

• incremental algorithms shift complexity to on-the-fly computations

• Example: improving semantic normalization in gender inference example



COMPUTING ON THE BATCH LAYER

• Recomputation algorithms vs. incremental algorithms

• Choosing a style of algorithm



SCALABILITY IN THE BATCH LAYER

• Scalability definition:

• the ability of a system to maintain performance under increased load by adding more

resources

• More important scalability is linear scalability

• maintaining performance by adding resources in proportion to the increased load

• MapReduce is linearly scalable

• should the size of your master dataset double, then twice the number of servers will be

able to build the batch views with the same latency



MAPREDUCE: A PARADIGM FOR BIG DATA 
COMPUTING

• Expresses computations in terms of map and reduce functions that manipulate

key/value pairs

• The canonical example: word count



MAPREDUCE: A PARADIGM FOR BIG DATA 
COMPUTING

• Scalability

• programs written in terms of MapReduce are inherently scalable

• MapReduce automatically parallelizes the computation across a cluster of machines

regardless of input size.

• All the details of concurrency, transferring data between machines, and execution planning are

abstracted by the framework



MAPREDUCE: A PARADIGM FOR BIG DATA 
COMPUTING

• Scalability



MAPREDUCE: A PARADIGM FOR BIG DATA 
COMPUTING

• Fault-tolerance

• MapReduce computations are also fault tolerant

• MapReduce watches for errors and automatically retries that portion of the computation

on another node

• MapReduce requires that your map and reduce functions be deterministic

• An entire application will fail only if a task fails more than a configured number of

times—typically four



MAPREDUCE: A PARADIGM FOR BIG DATA 
COMPUTING

• Generality of MapReduce

• MapReduce computational model is expressive enough to compute almost any functions

on your data

• Pageviews over time



MAPREDUCE: A PARADIGM FOR BIG DATA 
COMPUTING

• Generality of MapReduce

• Gender inference



MAPREDUCE: A PARADIGM FOR BIG DATA 
COMPUTING

• Generality of MapReduce

• Influence score



MAPREDUCE: A PARADIGM FOR BIG DATA 
COMPUTING

• Low-level nature of MapReduce

• Multistep computations are unnatural

• Intermediate output of chained MapReduce jobs should be manually stored and cleaned

• Joins are very complicated to implement manually



MAPREDUCE: A PARADIGM FOR BIG DATA 
COMPUTING

• Low-level nature of MapReduce

• Joins are very complicated to implement manually

• you need to read two independent datasets in a single MapReduce job

Imagine joining on multiple
fields, with five sides to the join,
with some sides as outer joins
and some as inner joins



MAPREDUCE: A PARADIGM FOR BIG DATA 
COMPUTING

• Low-level nature of MapReduce

• Logical and physical execution tightly coupled

• Extended word-count example

• Works, but it mixes together multiple tasks into

the same function

• Good programming practice involves separating

independent functionality

• Modularizing creates more MapReduce jobs,

making the computation hugely inefficient



PIPE DIAGRAMS

• Concepts

• The idea is to think of processing in terms of

• Tuples

• Functions

• Filters

• Aggregators

• joins

• merges



PIPE DIAGRAMS

• Concepts



PIPE DIAGRAMS

• Concepts



PIPE DIAGRAMS

• Concepts

merge operation requires all tuple sets to have the same number of fields and 
specifies new names for the tuples



PIPE DIAGRAMS

• Concepts

compute the number of males each person follows



PIPE DIAGRAMS

• Executing pipe diagrams via MapReduce

• Pipe diagrams can be compiled to a series of MapReduce jobs

• Functions and filters

• look at one record at a time

• can be run either in a map step or in a reduce step following a join or aggregation

• Group by

• easily translated to MapReduce via the key emitted in the map step

• Aggregators

• looks at all tuples for a group

• happens in the reduce step



PIPE DIAGRAMS

• Executing pipe diagrams via MapReduce

• Pipe diagrams can be compiled to a series of MapReduce jobs

• Join

• You’ve already seen the basics of implementing joins

• require some code in the map step and some code in the reduce step

• Merge

• just means the same code will run on multiple sets of data

a smart compiler will pack as many operations 
into the same map or reduce step as possible



PIPE DIAGRAMS

• Combiner aggregators

• example

• compute the count of all the records

• every tuple should go into the same group

• the aggregator should run on every single tuple in dataset.

• Normally

• that every tuple would go to the same machine

• then the aggregator code would run on that machine

• This isn’t scalable

• can be executed a lot more efficiently

• compute partial counts

• send the partial counts to a single machine to produce global count



PIPE DIAGRAMS

• Combiner aggregators

• All combiner aggregators work this way

• doing a partial aggregation first

• then combining the partial results to get the desired result.

• Not every aggregator can be expressed this way

• When it’s possible you get huge performance and scalability boosts



PIPE DIAGRAMS

• Examples

• Pageviews over time



PIPE DIAGRAMS

• Examples

• Gender inference



PIPE DIAGRAMS

• Examples

• Influence score



ILLUSTRATION

• Jcascalog

• a fairly direct mapping of pipe diagrams

• enables a whole range of abstraction and composition techniques that just aren’t possible

with other tools

• enables programming techniques that allow you to write very concise, very elegant code



AN ILLUSTRATIVE EXAMPLE

• Word count:



COMMON PITFALLS OF DATA-PROCESSING 
TOOLS

• Complexity in code

• Essential complexity

• Accidental complexity

• Minimize this to have code that easier to maintain

• Two sources:

• Custom languages

• Poorly composable abstractions



AN INTRODUCTION TO JCASCALOG

• The JCascalog data model

• the same as that of the pipe diagrams

• manipulates and transforms tuples

• A set of tuples shares a schema

• When executing a query

• represents the initial data as tuples

• transforms input into other tuple sets at each stage

• Punctuation:

• ? for non-nullable ! For nullable !! for nullable in outer joisn

• Examples dataset:



AN INTRODUCTION TO JCASCALOG

• The structure of a JCascalog query

• Consist of

• a destination tap

• a subquery that defines the actual computation



AN INTRODUCTION TO JCASCALOG

• The structure of a JCascalog query

• predicates can be categorized into four main types:

• Function predicate

• specifies a relationship between a set of input fields and a set of output fields

• Filter predicate

• specifies a constraint on a set of input fields and removes all un matched tuples

• Aggregator predicate

• a function on a group of tuples

• generator predicate

• simply a finite set of tuples.

• can either be

• A source of data like an in-memory data structure or file on HDFS

• Result from another subquery



AN INTRODUCTION TO JCASCALOG

• The structure of a JCascalog query

• Predicate examples:



AN INTRODUCTION TO JCASCALOG

• The structure of a JCascalog query

• Predicates share a common structure

• first argument is the predicate operation

• remaining arguments are parameters for that operation

• labels for the outputs are specified using the out method

• provide extremely rich semantics



AN INTRODUCTION TO JCASCALOG

• Querying multiple datasets

• Joins are expressed explicitly in SQL

• Joins in JCascalog are implicit based on the variable names



AN INTRODUCTION TO JCASCALOG

• Querying multiple datasets

• Outer joins



AN INTRODUCTION TO JCASCALOG

• Querying multiple datasets

• combine and union



AN INTRODUCTION TO JCASCALOG

• Grouping and aggregators

• grouping is implicit based on the desired query output



AN INTRODUCTION TO JCASCALOG

• Stepping though an example query



AN INTRODUCTION TO JCASCALOG

• Stepping though an example query



AN INTRODUCTION TO JCASCALOG

• Stepping though an example query



AN INTRODUCTION TO JCASCALOG

• Custom predicate operations

• done by implementing the appropriate interfaces

• FILTERS



AN INTRODUCTION TO JCASCALOG

• Custom predicate operations

• FUNCTIONS

• emits zero or more tuples as output



AN INTRODUCTION TO JCASCALOG

• Custom predicate operations

• FUNCTIONS

• can act as a filter if it emits zero tuples



AN INTRODUCTION TO JCASCALOG

• Custom predicate operations

• FUNCTIONS

• each output tuple is appended to its own copy of the input arguments



AN INTRODUCTION TO JCASCALOG

• Custom predicate operations

• AGGREGATORS : three different types

• First: aggregator

• looks at one tuple at a time for each tuple in a group

• adjusts some internal state for each observed tuple

• can be chained in a query

• computing multiple aggregations at the same time for the same group



AN INTRODUCTION TO JCASCALOG

• Custom predicate operations

• AGGREGATORS : three different types

• Second: buffer

• receives an iterator to the entire set of tuples for a group

• easier to write than aggregators

• can not be chained in a query

• can’t be used along with any other aggregator type



AN INTRODUCTION TO JCASCALOG

• Custom predicate operations

• AGGREGATORS : three different types

• Third: parallel aggregators

• analogous to combiner aggregators

• performs an aggregation incrementally by doing partial aggregations in the map tasks



AN INTRODUCTION TO JCASCALOG

• Custom predicate operations

• AGGREGATORS : three different types

• Third: parallel aggregators



AN INTRODUCTION TO JCASCALOG

• Custom predicate operations

• AGGREGATORS : three different types

• Third: parallel aggregators

• you must implement two functions:

• init: maps the arguments from a single tuple to a partial aggregation for that tuple

• combine: specifies how to combine two partial aggregations into a single aggregation value

• can be chained with other parallel aggregators or regular aggregators

• But act like regular aggregators when chaining with regular aggregators



AN INTRODUCTION TO JCASCALOG

• Composition

• Combining subqueries

• they can be addressed as data sources for other subqueries

find all the records in FOLLOWS dataset where each person in the record follows more than two people



AN INTRODUCTION TO JCASCALOG

• Composition

• Combining subqueries

• Subqueries are lazy

• nothing is computed until Api.execute is called

finding the number of words that exist for each computed word count



AN INTRODUCTION TO JCASCALOG

• Composition

• Dynamically created subqueries



AN INTRODUCTION TO JCASCALOG

• Composition

• Dynamically created subqueries

• Dynamic predicates in sub-query

• find all chains of retweets of a certain length



AN INTRODUCTION TO JCASCALOG

• Composition

• Dynamically created subqueries

• Dynamic predicates in sub-query

• find all chains of retweets of a certain length



AN INTRODUCTION TO JCASCALOG

• Composition

• Dynamically created subqueries

• draw a random sample of N elements from a dataset of unknown size

1. Generate a random number for every element.

2. Find the N elements with the smallest random numbers.



AN INTRODUCTION TO JCASCALOG

• Composition

• Predicate macros

• is an operation that JCascalog expands to another set of predicates

• can create powerful abstractions by composing predicates together



AN INTRODUCTION TO JCASCALOG

• Composition

• Predicate macros

• is an operation that JCascalog expands to another set of predicates

• can create powerful abstractions by composing predicates together



AN INTRODUCTION TO JCASCALOG

• Composition

• Predicate macros

• Compute the number of distinct values for a given set of variables

• Templates only support fixed sets of input and output variables

• Macros with flexible number of input and output variables:



AN INTRODUCTION TO JCASCALOG

• Composition

• Predicate macros

• Compute the number of distinct values for a given set of variables



AN INTRODUCTION TO JCASCALOG

• Composition

• Dynamically created predicate macros

it’s a simple query, but there’s considerable repetition



AN INTRODUCTION TO JCASCALOG

• Composition

• Dynamically created predicate macros


