
BIG DATA
Serving layer



INTRODUCTION

• In the last chapters you learned

• how to precompute arbitrary views of any dataset by making use of batch computation

• In this chapter

• you’ll learn how to access contents of views with low latency

• We’ll present the full theory behind creating a simple, scalable, fault-tolerant, and

general-purpose serving layer.

• While investigating the serving layer, you’ll learn the following:

• Indexing strategies to minimize latency, resource usage, and variance

• The requirements for the serving layer in the Lambda Architecture

• How the serving layer solves the long-debated normalization versus de-normalization problem



PERFORMANCE METRICS FOR THE SERVING 
LAYER

• As with the batch layer

• the serving layer is distributed among many machines for scalability

• The indexes of the serving layer are created, loaded, and served in a fully distributed

manner

• Two main performance metrics for designing indexes:

• Throughput: the number of queries that can be served within a given period of time

• Latency: the time required to answer a single query



PERFORMANCE METRICS FOR THE SERVING 
LAYER

• Consider pageviews-over-time query:



PERFORMANCE METRICS FOR THE SERVING 
LAYER

• Consider pageviews-over-time query:

• A straightforward way to index

• use a key/value strategy with [URL, hour] pairs as keys and pageviews as values.

• Partition index using the key

• Pageview counts for the same URL would reside on different partitions.

• Different partitions would exist on separate servers

• retrieving a range of hours for a single URL involves fetching values from multiple servers



PERFORMANCE METRICS FOR THE SERVING 
LAYER

• Consider pageviews-over-time query:

• A straightforward way to index

• works but, has serious issues

• Latency would be consistently high

• Need to query numerous servers to get the pageview counts for a large range of hours

• Response times of (even homogeneous) servers vary

• Different loads

• Garbage collection

• Overall query response time is limited by the speed of the slowest server

• The more servers a query touches, the higher the overall latency of the query

• more servers => more likelihood that at least one will respond slowly

• worst-case performance of one server => common-case performance of queries



PERFORMANCE METRICS FOR THE SERVING 
LAYER

• Consider pageviews-over-time query:

• A straightforward way to index

• works but, has serious issues

• Poor throughput

• Retrieving a value for a single key requires a disk seek

• A single query may fetch values for dozens or more keys.

• Disk seeks are expensive operations

• finite number of disks in cluster => hard limit to the number of disk seeks per second

• Suppose that on average:

• a query fetches 20 keys per query

• the cluster has 100 disks

• each disk can perform 500 seeks per second.

• In this case, the cluster can only serve 2,500 queries per second



PERFORMANCE METRICS FOR THE SERVING 
LAYER

• Consider pageviews-over-time query:

• Another indexing strategy

• store the pageviews information for a single URL on the same partition sequentially

• Fetching the pageviews only require a single seek and scan

• Scans are extremely cheap relative to seeks

• more resource efficiency.

• Only a single server needs to be contacted per query

• no longer subject to the issues of the previous strategy



SOLUTION TO THE NORMALIZATION/ 
DENORMALIZATION PROBLEM

• Normalized

• De-normalized



REQUIREMENTS FOR A SERVING LAYER 
DATABASE

• Four requirements:

• Batch writable

• Scalable

• Random reads

• Fault-tolerant

• Amazing property

• Does not require random writes

• responsible for the majority of the complexity

• E.g.

• need for compaction

• need to synchronize reads and writes



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Pageviews over time

• Recall: batch view computes the bucketed counts for hourly, daily, weekly, monthly, and

yearly granularities

• minimizes the total number of retrieved values to resolve a query

• Having key-to-sorted-map index makes these higher granularities redundant

• extremely cheap to read all sequentially stored values for a range all at once

• Example:

• 12 bytes for each entry (4 bytes for the bucket number and 8 bytes for the value)

• approximately 17,500 values for a two-year period

• Total amount of 205 KB must be retrieved



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Uniques over time

• The only way with perfect accuracy: compute the unique count on the fly

• Too expensive

• Alternate: an approximation like the HyperLogLog algorithm

• requires information on the order of 1 KB to estimate set cardinalities of up to one billion with

a maximum 2% error rate



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Uniques over time

• Very similar to pageviews over time but with big differences:

• HyperLogLog sets used for buckets are significantly larger

• More data to read

• Having hourly granularity and 1024 bytes for HyperLogLog set size

• 17 MB of HyperLogLog information for a two-year query

• 60 ms just for reading the information with a hard disk with a read throughput of 300 MB/s

• Merging HyperLogLog sets is expensive

• making use of the higher granularities would be better



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Uniques over time

• The key is a compound key of URL and granularity

• The indexes are partitioned solely by the URL, not by both the URL and granularity



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Bounce-rate analysis

• only requires a key/value index



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Contrasting with a fully incremental solution

• First attempt: using a key-to-set database

• Two pieces to any fully incremental approach:

• the write side

• the read side



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Contrasting with a fully incremental solution

• First attempt: using a key-to-set database

• The write side

• key in the database: pair of [URL, hour bucket]

• Value: the set of all UserIDs to visit that URL in that hour bucket

• Whenever a new pageview is received

• UserID is added to the appropriate bucket



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Contrasting with a fully incremental solution

• First attempt: using a key-to-set database

• The read side

• Queries are resolved by

• fetching all buckets in the range of the query

• merging the sets together

• computing the unique count of that set



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Contrasting with a fully incremental solution

• First attempt: using a key-to-set database

• Straightforward, but with a lot of problems

• The database is very large space-wise

• Very large number of database lookups for a query over a large range

• a one-year period contains about 8,760 buckets.

• For popular websites, even individual buckets could have tens of millions of elements



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Contrasting with a fully incremental solution

• Second approach: using a key-to-HyperLogLog database

• Key: pair of [URL, hour bucket]

• Value: a HyperLogLog set representing all UserIDs that visit that URL in that hour.

• Write side: simply adds the UserID to the appropriate bucket’s HyperLogLog set

• Read side

• fetches all HyperLogLog sets in that range

• merges them together

• gets the count



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Contrasting with a fully incremental solution

• Second approach: using a key-to-HyperLogLog database

• Enormous space savings of HyperLogLog => everything is more efficient

• Individual buckets are now guaranteed to be small

• The database as a whole is significantly more space-efficient

• But still has the problem of queries over large ranges

• Fix: change the key to be a triplet of [URL, hour bucket, granularity]

• Write side on a new pageview

• Add UserID to the HyperLogLog set of the target bucket with appropriate granularity

• Read side

• The minimum number of buckets are read to compute the result



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Contrasting with a fully incremental solution

• Second approach: using a key-to-HyperLogLog database

• This is a very satisfactory approach to the problem

• fast for all queries

• space-efficient

• easy to understand

• straightforward to implement



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Contrasting with a fully incremental solution

• But, what about equivs?

• A terrible result: There’s no way to use HyperLogLog

• A HyperLogLog set doesn’t know what elements are within it



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Contrasting with a fully incremental solution

• But, what about equivs?

• Lets go back to the first attempt

• a set of UserIDs is stored for every [URL, hour bucket] pair

• Suppose that: only store one UserID per person

• You should iterate over the entire database on a new equiv

• Or use a second index

• UserID -> set of all buckets the UserID exists in

• What if a search engine bot visits every URL every hour?

• That UserID’s bucket will contain all buckets in database

• Highly impractical



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Contrasting with a fully incremental solution

• But, what about equivs?

• Lets go back to the first attempt

• Another approach: handling equivs on the read side (first attempt)



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Contrasting with a fully incremental solution

• But, what about equivs?

• Lets go back to the first attempt

• Another approach: handling equivs on the read side (first attempt)

• it’s far too expensive

• Imagine a query that has 100 million uniques.

• you’d have to fetch many gigabytes of information to get the UserID set

• then do 100 million lookups into the UserID-to-PersonID index. 

• There’s no way that work will ever complete in just a few milliseconds



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Contrasting with a fully incremental solution

• But, what about equivs?

• Lets go back to the first attempt

• Another approach: handling equivs on the read side (second attempt)



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Contrasting with a fully incremental solution

• But, what about equivs?

• Lets go back to the first attempt

• Another approach: handling equivs on the read side (second attempt)

• Good news: we finally have a viable approach that can be made performant.

• Bad news: this comes with some caveats.

• The level of accuracy is not nearly the same as HyperLogLog

• Good throughput requires special hardware for the UserID-to-PersonID index

• UserID sets need at least 100 elements for reasonable error rates

• At least 100 lookups into UserID-to-PersonID index during queries

• Each lookup requires at least one seek

• You should use SSD

• Or ensure that the UserID-to-PersonID index is kept completely in memory



DESIGNING A SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Comparing to the Lambda Architecture solution

• Fully incremental solution is worse in every respect than the Lambda Architecture

solution

• It must use an approximation technique with significantly higher error rates

• It has worse latency

• It requires special hardware to achieve reasonable throughput

• What makes all the difference?

• A fully incremental solution has to handle equivs as they come in

• The batch layer looks at all the data at once

• The equivs are handled first

• Then the views are created with that out of the way

• You gain the ability to use a far more efficient strategy



ILLUSTRATION

• Basics of ElephantDB

• It is a key/value database

• both keys and values are stored as byte arrays.

• It partitions the batch views over a fixed number of shards

• Each server is responsible for some subset of those shards

• Sharding scheme: The pluggable function that assigns keys to shards

• Once assigned to a shard

• The key/value is stored in a local indexing engine

• BerkeleyDB is the default

• But the engine is configurable

• it could be any key/value indexing engine that runs on a single machine



ILLUSTRATION

• Basics of ElephantDB

• Two aspects to ElephantDB

• View creation

• occurs in a MapReduce job at the end of the batch layer workflow

• the generated partitions are stored in the distributed filesystem

• View serving.

• a dedicated ElephantDB cluster loads the shards from the distributed filesystem

• interacts with clients that support random read requests.



ILLUSTRATION

• Basics of ElephantDB

• View creation in ElephantDB

• Shards are created by a MapReduce job

• Input is a set of key/value pairs.

• The number of reducers is configured to be the number of ElephantDB shards

• The keys are partitioned to the reducers using the specified sharding scheme

• Each reducer is responsible for producing exactly one shard

• Each shard is then indexed (BerkeleyDB ) and uploaded to the distributed filesystem



ILLUSTRATION

• Basics of ElephantDB

• View serving in ElephantDB

• cluster is composed of a number of machines that divide the work of serving the shards.

• shards are evenly distributed among the servers.

• also supports replication

• each shard is redundantly hosted across a predetermined number of servers

• When a server detects that a new version of a shard is available

• it does a throttled download of the new partition

• Upon completing the download, it switches to the new partition and deletes the old one

• Then the contents of the batch views are accessible via a basic API



ILLUSTRATION

• Basics of ElephantDB

• Using ElephantDB

• It is straightforward to use.

• There are three separate aspects

• creating shards

• setting up a cluster to serve requests

• using the client API to query the batch views



ILLUSTRATION

• Basics of ElephantDB

• Creating Elephantdb Shards

• It provides a tap to automate the shard creation process

• tap abstraction makes it simple to create a set of shards

• Having a subquery that generates key/value pairs

• creating the ElephantDB view is as simple as executing that subquery into the tap



ILLUSTRATION

• Basics of ElephantDB

• Setting Up An Elephantdb Cluster

• Two required configurations

• local configuration

• global configuration



ILLUSTRATION

• Basics of ElephantDB

• Querying An Elephantdb Cluster

• simple API for issuing queries

• After connecting to any ElephantDB server, you can issue queries

• If the connected server doesn’t store the requested key locally, it will communicate with the

other servers in the cluster to retrieve the desired values.



BUILDING THE SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Pageviews over time

• Ideal view: an index from key to sorted map

• ElephantDB only supports key/value indexing

• The ideal view is not possible with ElephantDB

• All the granularities should be indexed into the view



BUILDING THE SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Pageviews over time

• serializations for composite keys and the pageview values



BUILDING THE SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Pageviews over time

• avoid the variance problem with a custom ShardingScheme



BUILDING THE SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Pageviews over time

• create the ElephantDB tap and put the pieces together



BUILDING THE SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Uniques over time

• Ideal index cannot be implemented

• Strategy: similar to the one used by pageviews over time

• The only difference is that uniques over time stores HyperLogLog sets



BUILDING THE SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Uniques over time

• Ideal serving layer database would know how to handle HyperLogLog sets natively

• Complete queries on the server.

• server should merge the sets and return only the cardinality

• This would maximize efficiency

• avoiding the network transfer of any HyperLogLog sets during queries



BUILDING THE SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Bounce-rate analysis

• ideal view is a key/value index



BUILDING THE SERVING LAYER FOR 
SUPERWEBANALYTICS.COM

• Bounce-rate analysis

• ideal view is a key/value index


