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Abstract— This paper first introduces the L-graph automaton built on an L-graph using a zero-constraint set. Then, we study the
behavior of the corresponding automaton when the L-graph is a path L-graph (cycle, complete, fully bipartite). These L-graph
automata have some applications in various fields. One of them is the identification of drugs that have the most similar side effects.
These concepts and applications have been illustrated with some examples.

Index Terms— L-graph, L-graph automaton, the behavior of the L-graph automaton

I. INTRODUCTION

Leonhard Euler first coined the term graph. Since then,
graph theory has been used for the big problems of life
Operations Research. The working group AIM minimum rank-
special graphs introduced the concept of a zero-forcing process
for bounding the minimum rank of graph G [1]. After that,
many authors have extended this notion [5]. For modeling
natural events that are uncertain and vague, it was first modeled
by Zadeh using a fuzzy set [19]. Therefore, these applications
have been considered by many authors. In 1975, Kaufman used
the concept of the fuzzy graph to solve real-world problems
[6]. Rosenfeld, on the other hand, has many applications for
fuzzy graphs in various fields [13]. Wee [17] and Santos [14]
introduced fuzzy automata. Fuzzy finite automata have many
applications. The residuated lattice was introduced by Morgan
Ward and Robert P. Dilworth in 1939 [16]. Many researchers
have considered this concept and used it in many different
branches of science. Many authors, such as Ciric and his co-
authors [4], Qiu [9] [10], and Tiwari and his co-authors [15],
worked on automata theory based on the residuated lattice.
Recently, the new definition of graph based on residuated
lattice was presented by Zahedi and Raisi Sarbizhan, etc. [11]
[12]. Just like fuzzy graphs, there are many applications that
Mordeson and his colleagues have recently described in detail
in their book [8]. In this paper, the notion of a graph built on
a residuated lattice (L-graph) is explained. Moreover, an L-
graph automaton is constructed on an L-graph by using zero
forcing sets. It also has many applications in various fields.
Therefore, we have described a number of these applications
in this paper. We have also given some examples and theorems
for clarification.

II. PRELIMINARIES

In this section, the basic notions of graph [18] [3], residuated
lattice [16] [2], and L-fuzzy automaton [7] are explained.

Definition 1: [1]

• Color-change rule:
If G is a graph with each vertex colored either white or
black, u is a black vertex of G, and exactly one neighbor
v of u is white, then change the color of v to black.

• Given a coloring of G, the derived coloring is the result
of applying the color-change rule until no more changes
are possible.

• A zero forcing set for a graph G is a subset of vertices
Z such that if initially the vertices in Z are colored black
and the remaining vertices are colored white, the derived
coloring of G is all black.

• Z(G) is the minimum of |Z | over all zero forcing sets
Z ⊆ V(G).

Definition 2: [16] A residuated lattice is an algebra
L = (L,∧,∨, ⊗,→, 0, 1) such that

1) L = (L,∧,∨, 0, 1) is a lattice (the corresponding order
will be denoted by ≤) with the smallest element 0 and
the greatest element 1,

2) L = (L, ⊗, 1) is a commutative monoid (i.e. ⊗ is
commutative, associative, and x ⊗ 1 = x holds),

3) x ⊗ y ≤ z if and only if x ≤ y → z holds (adjointness
condition).

Proposition 1: [2] Let (L,∧,∨, ⊗,→, 0, 1) be a residuated
lattice. Then the following properties hold:
(R1) 1 ∗ x = x, where ∗ ∈ {∧, ⊗,→},
(R2) x ⊗ 0 = 0, 1′ = 0, 0′ = 1,
(R3) x ⊗ y ≤ x ∧ y ≤ x, y, and y ≤ (x → y),
(R4) (x → y) ⊗ x ≤ y,
(R5) x ≤ y implies x ∗ z ≤ y ∗ z, where ∗ ∈ ∧,∨, ⊗,
(R6) z ⊗ (x ∧ y) ≤ (z ⊗ x) ∧ (z ⊗ y),
(R7) x ⊗ (y ∨ z) = (x ⊗ y) ∨ (x ⊗ z).

Definition 3: [11] G = (α, β) is called an L-graph on
G∗ if α : V → L and β : E → L are functions, with
β(st) ≤ α(s) ⊗ α(t) for every st ∈ E . Besides, if G∗ is
a path (cycle, bipartite, complete, complete bipartite) graph,
then G is called a path (cycle, bipartite, complete, complete
bipartite) L-graph on G∗.

III. THE L-GRAPH AUTOMATON

In this section, we introduce the notion of a related L-graph
automaton construct on the L-graph. In this paper, we assume
that L is a residuated lattice and G∗ is a simple graph (V, E). It
proves the behavior of the associated automaton if the L-graph
is a path (cycle, complete, fully bipartite) L-graph.

Definition 4: Let G = (α, β) be an L-graph on G∗ and let
Z(G) be a zero forcing set of G∗. Then an L-graph automaton
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A(Z(G)) is defined with respect to G is defined by five-tuple
(Q, X, µ, F, σ), where;
(i) Q = V is the finite nonempty set of states,

(ii) X = { f , n} is the set of letters of alphabet,
(iii) µ : V × X × V −→ L is the transition function;

µ(qi, u, qj) =

{
β(qiqj) i f u = f ,

1 i f u = n,
(iv) F is the set of final states, where q ∈ F if and only if q

does not force any enforce vertices,
(v) σ : V −→ L is the initial distribution;

σ(qi) =
{

1 i f qi ∈ Z(G),
0 otherwise, for every qi ∈ Q.

Moreover, a new set
Z(A(Z(G))) = {qi ∈ Q | σ(qi) = 1} = {qi ∈ Q | qi ∈ Z(G)} has
been defined. Also, a response function of A(Z(G)) is defined.
A k-behavior of A(Z(G)) with threshold c is set

Bk(A(Z(G)), c) = {x ∈ X∗ |
∨
q∈F

rµ(x, q) > c and |x | ≤ k}.

Definition 5: Let A1 = (Q1, X, µ1, F1, σ1) and
A2 = (Q2, X, µ2, F2, σ2) be L-graph automata. Then
they are equivalent if and only if, Bk(A1, c) = Bk(A2, c), for
every k = 0, 1, 2, . . . and for every c ∈ L \ 1.

Example 1: Suppose L = ([0, 1],∧,∨, ⊗,→, 0, 1),

where a ⊗ b = ab, and a → b =
{

1 i f a ≤ b,
b
a i f a > b,

and the L-graph G = (α, β) on G∗ = (V, E),
as in Fig. 1, where V = {q1, q2, q3, q4, q5, q6},
E = {q1q2, q1q6, q2q3, q2q6, q3q4, q4q5, q4q6, q5q6},
β(qiqj) = α(qi) ⊗ α(qj), α(q1) = 0.1, α(q2) = 0.8,
α(q3) = 0.6, α(q4) = 0.9, α(q5) = 0.3, α(q6) = 0.5,
β(q1q2) = 0.08, β(q1q6) = 0.05, β(q2q3) = 0.48,
β(q2q6) = 0.4, β(q3q4) = 0.54, β(q4q6) = 0.45,
β(q4q5) = 0.18, β(q5q6) = 0.15, and Z(G) = {q1, q2}. Then,
corresponding L-graph automaton A(Z(G)) = (Q, X, µ, F, σ)
can be determined with respect to Z(G), as in Fig. 2, where
Q = V , X = {n, f }, F = {q5}, µ(q1, n, q2) = µ(q2, n, q1) = 1,
µ(q4, n, q6) = µ(q6, n, q4) = 1, µ(q2, n, q6) = µ(q6, n, q2) = 1,
µ(q1, f , q6) = 0.05, µ(q2, f , q3) = 0.48, µ(q3, f , q4) = 0.54,
µ(q4, f , q5) = 0.18, µ(q6, f , q5) = 0.15, σ(q1) = σ(q2) = 1,
and σ(q3) = σ(q4) = σ(q5) = σ(q6) = 0. So,

rµ( f 3, q) = σ(q2) ⊗ µ(q2, f , q3) ⊗ µ(q3, f , q4) ⊗ µ(q4, f , q5))

= 0.48 ⊗ 0.54 ⊗ 0.18
= 0.046656.

Also,

rµ( f 2, q) = σ(q1) ⊗ µ(q1, f , q6) ⊗ µ(q6, f , q5)

= 0.05 ⊗ 0.15
= 0.075.

Theorem 1: Let G = (α, β) be an L-graph on G∗ = (V, E),
and let β =

∨
qq′∈E β(qq′) and β′ =

∧
qq′∈E β(qq′), Then,

(i) If G is a path L-graph with n vertices, then
A(Z(G)) = (Q, X, µ, F, σ) is a related L-graph automaton
such that

rµ( f n−1, q) ≤ ⊗q∈Vα(q),

for every zero forcing set Z(G).

Fig. 1. The L-graph G.

Fig. 2. The L-graph automaton A(Z(G)).

(ii) If G is a cycle L-graph with 2k vertices, then
A(Z(G)) = (Q, X, µ, F, σ) is an associated L-graph
automaton such that

⊗i=1,...,k−1β
′ ≤

∨
q∈F

rµ(n∗ f k−1n∗, q) ≤ ⊗i=1,...,k−1β,

for every zero forcing set Z(G).
(iii) If G is a cyclic L-graph with 2k + 1 vertices, then

A(Z(G)) = (Q, X, µ, F, σ) is an associated L-graph au-
tomaton such that

⊗i=1,...,k β
′ ≤ rµ(n∗ f k, q) ≤ ⊗i=1,...,k β,

for every zero forcing set Z(G).
(iv) If G is a complete L-graph with n vertices, then

A(Z(G)) = (Q, X, µ, F, σ) is an associated L-graph au-
tomaton such that

β′ ≤ rµ( f , q) ≤ β,

for any zero forcing set Z(G).
(v) If G is a complete bipartite L-graph with n vertices,

then A(Z(G)) = (Q, X, µ, F, σ) is an associated L-graph
automaton such that

β′ ≤
∨
q∈F

rµ( f , q) ≤ β,

for any zero forcing set Z(G).
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Proof: (i) G has two distinct zero forcing sets Z1(G) and
Z2(G), but these related L-graph automata are equivalent and
isomorphic. Thus, consider Z(G) = {q1}. Thus

rµ( f n−1, q) = rµ( f n−1, qn)

= σ(q1) ⊗ µ
∗(q1, f n, qn)

= µ(q1, f , q2) ⊗ . . . ⊗ µ(qn−1, f , qn)

≤ ⊗q∈Vα(q), by Proposition 1(R5).

(ii) Since these zero forcing sets are one of the two vertices
adjacent to this L-graph, there are k −1 vertices in each chain
that constraining the other vertex. Suppose Z(G) = {q1, q2},
and F = {k + 1, k + 2}. Thus,∨
q∈F

rµ( f k−1, q) = σ(q1) ⊗ µ
∗(q1, f k−1, qk+2)

∨ σ(q2) ⊗ µ
∗(q1, f k−1, qk+1)

= µ∗(q1, f k−1, qk+2) ∨ µ
∗(q1, f k−1, qk+1)

≤ ⊗i=1,...,k−1β,

and∨
q∈F

rµ( f k−1, q) = µ∗(q1, f k−1, qk+2) ∨ µ
∗(q1, f k−1, qk+1)

≥ ⊗i=1,...,k−1β
′.

Moreover, for any n∗ f k−1n∗, it is similar to the above with
some modifications.

(iii) The proof with some terms is similar to the above.
(iv) We know that every zero forcing set has n− 1 vertices.

Z(G) = {q1, q2, . . . , qn−1}, and F = {qn}. Thus,

rµ( f , q) = µ(q1, f , qn) ∨ . . . ∨ µ(qn−1, f , qn)

≤ β,

and

rµ( f , q) = µ(q1, f , qn) ∨ . . . ∨ µ(qn−1, f , qn)

≥ β′.

(iv) The proof is similar to the proof above but with some
modifications.

Example 2: Consider L in Example 1 and a
complete bipartite L-graph G = (α, β) on G∗,
as in Fig. 3, where V = {q1, q2, q3, q4, q5},
E = {q1q3, q1q4, q1q5, q2q3, q2q4, q2q5}, α(q1) = 0.4,
α(q2) = 0.6, α(q3) = 0.3, α(q4) = 0.9, α(q5) = 0.8,
β(q1q3) = 0.1, β(q1q4) = 0.3, β(q1q5) = 0.2, β(q2q3) = 0.1,
β(q2q4) = 0.5, β(q2q5) = 0.4, and Z(G) = {q1, q3, q4}.
Therefore, A(Z(G)) = (Q, X, µ, F, σ) is an associated L-graph
automaton, shown in Fig. 3, where Q = V , F = {q2, q5},
µ(q1, n, q3) = µ(q3, n, q1) = 1, µ(q1, n, q4) = µ(q4, n, q1) = 1,
µ(q1, f , q5) = 0.2, µ(q3, f , q2) = 0.1, µ(q4, f , q2) = 0.5,
µ(q2, n, q5) = µ(q5, n, q2) = 1, σ(q1) = σ(q3) = σ(q4) = 1,
and σ(q2) = σ(q5) = 0. So,

rµ( f , q) = (σ(q1) ⊗ µ(q1, f , q5)) ∨ (σ(q3) ⊗ µ(q3, f , q2))

∨ (σ(q4) ⊗ µ(q4, f , q2))

= 0.2 ∨ 0.1 ∨ 0.5.

Also, for every x = n∗ f n∗, rµ(x, q) = 0.5.

Fig. 3. The L-graph G.

IV. SOME APPLICATIONS OF L-GRAPH AUTOMATA

In this section, we discuss the applications of L-graph
automata and illustrate them with an example.

Application 1: The related L-graph automata have some
applications. For example;

a: Assume n drugs with m side effects
and L = (P(X),∩,∪, ⊗,→, ∅, X), where
X = {a1, a2, . . . , am} such that ai per i is labeled for
m side effects of these drugs and A⊗ B = A∩ B, and

A → B =
{

X i f A ⊆ B,
B i f B ⊂ A. Then, G = (α, β)

on G∗ is the L-graph in which V = {q1, q2, . . . , qn}
such that qi for each i = 1, 2, . . . , n is labeled with
these drugs. Moreover, qiqj ∈ E if and only if
these two drugs have at least one similar side effect
α(qi) = {ak |ak is one of side effects of qi} and
β(qiqj) = α(qi)⊗α(qj), for each qiqj ∈ E . Therefore,
A(Z(G)) = (Q, X, µ, F, σ) is the associated L-graph
automaton such that Z(G) is a zero-forcing set.
Moreover, these behaviors whose words do not have
the label n are certain drugs that have the most
similar side effects.

b: Suppose that n drugs have m health bene-
fits. As in the above method, we can use
A(Z(G)) = (Q, X, µ, F, σ), which is the associated
L-graph automaton, so Z(G) is a zero forcing set.
Moreover, these behaviors whose words do not have
the label n are determined to be drugs that have the
most similar health benefits.

c: These L-graph automata can also be used to deter-
mine the number of articles or books that have the
most similar topics.

Example 3: Suppose that four drugs q1, q2, q3, and q4
have five side effects, namely, headache, dizziness, nausea,
drowsiness, and physical pain, so that drug q1 has two side
effects: Headache, dizziness, and nausea, and drug q2 has
four side effects: Dizziness, nausea, drowsiness and body
pain, the drug q3 two side effects: Nausea and drowsi-
ness, and drug q4 one side effect: physical pain. Suppose
L = (P(X),∩,∪, ⊗,→, ∅, X), where X = {a1, a2, . . . , a5},

A ⊗ B = A ∩ B, and A → B =
{

X i f A ⊆ B,
B i f B ⊂ A.

Then, G = (α, β) on G∗ is the L-graph, as in Fig.
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Fig. 4. The L-graph G, and the related L-graph automaton A(Z(G)).

4, where V = {q1, q2, q3, q4}, E = {q1q2, q2q3, q2q4},
α(q1) = {a1, a2, a3}, α(q2) = {a2, a3, a4, a5},
α(q3) = {a3, a4}, α(q4) = {a5}, β(q1q2) = {a2, a3},
β(q2q3) = {a3, a4}, and β(q2q4) = {a5}. For any zero
forcing set, these related L-graph automata are equivalent.
Consider Z(G) = {q1, q4}. Thus, A(Z(G)) = (Q, X, µ, F, σ)
is the related L-graph automaton, as in Fig. 4, where
Q = V , σ(q1) = σ(q4) = X , σ(q2) = σ(q3) = ∅,
µ(q1, f , q2) = {a2, a3}, µ(q4, f , q2) = {a5}, and
µ(q3, f , q2) = {a3, a4}. Hence,

rµ( f 2, q) = (σ(q1) ⊗ µ(q1, f , q2) ⊗ µ(q2, f , q3))

∨ (σ(q4) ⊗ µ(q4, f , q2) ⊗ µ(q2, f , q3))

= (({a2, a3}) ⊗ ({a3, a4}))

∨ (({a5}) ⊗ ({a3, a4}))

= {a5} ∨ ∅

= {a5}.

drugs q1, q2, and q3 have the most similar side effects.

V. CONCLUSION

In this paper, the associated L-graph automata are intro-
duced, and their behaviors are studied. In addition, some
theorems and examples are presented for clarification. We also
found some applications for L-graph automata. For example:
find drugs that have the most similar treatments. L-Graph au-
tomata are used to find the drugs that are most similar in terms
of side effects or health benefits. One of the applications of this
article is to help medical researchers treat diseases better. In
the next article, we will try to establish a connection between
the L-graph and the corresponding L-graph automaton to solve
more complex problems, such as choosing the best drug for a
disease.
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