

Voltage Variations and Flicker Level				
Flicker severity factor	Planning levels		Emission levels	
	MV (1-36)	HV (36- 230)	MV and HV	
Pst	0.9	0.8	.35	
Plt	0.7	0.6	0.25	
$P_{lt} = \sqrt[3]{\frac{1}{12}\sum_{j=1}^{12}}$ $P_{lt}:\text{Long ter}$ $P_{st}:\text{Short ter}$ $\Delta V = 2\%:$	$\sum_{i=1}^{2} P_{stj}^{3}$ m (2 hours m (10 min. Different fo) flicker se) flicker se or network:	everity factor everity factor s	- , - ,
	R. F	adaeinedjad		

$$P_{lt} = c(\psi_k, v_a) \cdot \frac{S_n}{S_k}$$

 S_k :Short circuit Power of grid at PCC, S_n :Apparent power of WT at raterd power, P_{lt} :Flicker distortion, $c(\psi_k, v_a)$:Flicker coefficient, v_a :Annual average wind speed, ψ_k :Grid impedance phase angle at PCC,

 $P_{lt-(nWTs)} = \sqrt{n}.P_{lt-(singleWT)},$ n:Number of wind turbines

R. Fadaeinedjad

79

Re	ferences				
	Natinal Resorces Canada <u>www.canren.gc.ca</u>				
	The National Renewable Energy Laboratory (NREL) www.nrel.gov				
	Danish Wind Industry Association www.windpower.org				
	German Advisory Council on Global Change <u>www.wbgu.de</u>				
	J. Manwell, J. McGowan, and A. Rogers, Wind Energy Explained - Theory Design and Application. John Wiley and Sons Ltd, 2002.				
	E. Muljadi, C. Butter [–] eld, J. Chacon, and H. Romanowitz, "Power quality aspects in a wind power plant," in IEEE Power Engineering Society General Meeting, Montreal, Quebec, Canada, June 2006				
	J. M. Jonkman and M. L. J. Buhl, "Fast user's guide, www.nrel.gov," Aug. 2005				
	E. Muljadi, C. Butterfield, A. Ellis, J. Mechenbier, J. Hochheimer, R. Young, N. Miller, R. Delmerico, R. Zavadil, and J. Smith, "Equivalencing the collector system of a large wind power plant," in IEEE Power Engineering Society General Meeting, Montreal,				
102	Quebec 23:18:34				